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1
Summary

When robots work in social contexts they are often required to partake in increasingly
complex social interactions. This sets high requirements for their social capabilities.
To participate in complex social interactions, the robots must be properly understood
by the humans with whom they interact. This effect can be influenced by how the
robots express themselves and how they are emotionally perceived. The more robots
are able to comprehend whom they are interacting with and where the interaction
occurs, the more they can adapt their behaviors to different scenarios. This adaption
can potentially make it possible to optimize how they are perceived and as a result
make them better equipped for handling complex social interactions.

We, humans express ourselves with both verbal and nonverbal communication meth-
ods to convey how we feel, and we do this with a deep understanding of the context
of the interaction and the people we interact with. To us as humans, this task is often
trivial when interacting in familiar environments and with people we know. When we
no longer have the advantage of familiarity with known contexts, we often have to rely
on our ability to interpret the cues and signals of the immediate situation. As a path
towards improving the affective abilities of robots, it is crucial that we focus on the
robots’ ability to understand the immediate context. Even a simple understanding
of the context will allow them to adapt to both contextual changes as well as to the
humans they interact with. These abilities are vital for strengthening their affective
impact and successfully introducing them into complex social scenarios. This disserta-
tion reports the conduct and results of a series of experiments that aims to contribute
to our understanding of how to create more impactful and context-aware affective
robots. The subject was investigated through robot engineering and experiments in
human-robot interactions.
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1 Summary

Inspired by patterns in human-human interactions, the experimental setup outlined
in this dissertation aimed at highlighting both the engineering and behavioral aspects
of each human-robot interaction with the aim to strengthen the affective impact of
social robots. In each of our interactions, we humans often express ourselves using
multiple interaction modalities. These include the way we gesture, how we move, how
we speak, and even how we look. To understand the specific synergy among these
interaction modalities, we designed and constructed two non-humanoid robots. The
technical and behavioral implementations of the robots were verified through multiple
human-robot interactions, and the results contribute to the research field of affective
robots in a number of ways. The initial finding defines a model for systematically
assessing and characterizing the affective strengths of a robot. The model is useful
both for the comparison of robots and as a guideline for roboticists in the design
phase of affective robots. By applying the model to existing social robots it was
also found that the use of multiple interaction modalities for robots in human-robot
interactions has an untapped potential for success. The second finding outline how
the coordination and specific timing of a robot’s reactions in an interaction influence
the robot’s affective impact and alter how humans perceive it. That is, the project
showed that when robots can respond to a broad variety of input types with the proper
timing, humans perceive them as having a greater affective impact.

The current generation of social robots works fairly well in the context for which
they have been designed. However, they rarely adapt their (affective) behavior to
the changes in the environment, and they often struggle to comprehend the social
requirements of their interaction. Throughout each of our interactions, we humans
regulate our behaviors by interpreting subtle cues from the people we interact with
and by understanding the constraints of the places in which we interact. This may
be as simple as not laughing when someone is sad or lowering our voice in a smaller
space. We also adapt to the mood of the people we interact with and adjust our
behaviors to the requirements of the physical context. To navigate interactions that
demand such contextual comprehension, robots need a subset of the same skills. In
this project, we designed a humanoid robot to facilitate autonomous context aware-
ness through human-robot interactions combined with context-informing cues in the
physical environment. We also presented a system that enables robots to adapt to
different physical contexts using immediately available sensor data in each interac-
tion. We found that simple context awareness in robots can be facilitated using data
that are easily attainable from the physical context. The system is applicable to other
robots and requires only simple sensors available in most robots. Finally, we came
up with a method that allows a robot to adapt to different users based on simple
sensors and through a short-duration interaction. Through our experiments, we found
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1 Summary

that the speech and movement patterns of humans gained from the initial moments
of an interaction could sufficiently be used to distinguish individual users and could
potentially facilitate further user adaptation of robot behaviors.

This dissertation argues for the need to shift our perspective on and approach to
designing, constructing, and testing social robots, with the aim of increasing the affec-
tive impact of robots. The approach focuses on simultaneously using multiple simple
interaction modalities to optimize how robots convey complex affective information.
This is in contrast to using a single but highly specialized interaction modality. The
approach also focuses on combining several sources of context information to gain
knowledge on the circumstances of the interaction, and on adapting to such circum-
stances to create more impactful and believable robots. It aims to outline how simple,
information obtainable from the immediate interactions between humans and robots
can help the robots become more context aware and have a stronger affective impact.
The simple information in our experiments consisted of the physical dimensions of the
test environment while the measured human attributes consisted of the speech and
movement characteristics of each participant. Using such information may give robots
the ability to adapt to changes in the physical context and to meet the user-specific
behavioral demands of each interaction.

As a future strategy, this dissertation suggests that robot designers change their
perspective on when to use contextual knowledge and decrease the requirements on
systems that provide contextual comprehension. Although a complete and human-like
understanding of the current context may not be possible with the current technology,
it is beneficial to already use the available contextual information in robots, as even
simplistic context information may be useful for informing affective robot behaviors.
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2
Summary (In Danish)

N̊ar robotter skal arbejde i sociale sammenhænge, er det ofte p̊akrævet at de tager
del i komplekse sociale interaktioner. Dette kan være udfordrende for deres sociale
egenskaber. For at kunne deltage i s̊adanne interaktioner kræves det, at robotterne
kan udtrykke sig p̊a en måde, der er tydelig og forst̊aelig for de mennesker, de in-
teragerer med. Den forst̊aelse kan p̊avirkes af m̊aden hvorp̊a robotter udtrykker sig
i interaktioner, samt hvordan de emotionelt bliver opfattet af mennesker. Jo bedre
robotter er i stand til at forst̊a de mennesker de interagerer med og forst̊a de fysiske
omstændigheder, hvori de interagerer, desto bedre kan de tilpasse sig deres omgivelser.
Denne tilpasning kan potentielt set muliggøre, at robotter bliver i stand til forbedre,
hvordan de bliver opfattet af mennesker i forskellige situationer. Dermed bliver de
bedre udrustet til at h̊andtere komplekse sociale interaktioner.

Vi mennesker bruger b̊ade verbale og non-verbale kommunikationsmetoder til at
udtrykke, hvordan vi har det. Dette gør vi med en dyb forst̊aelse for den aktuelle
kontekst, samt for de mennesker vi interagerer med. For os mennesker er dette ofte
en let opgave, n̊ar vi omg̊aes de mennesker, vi kender, og vi befinder os i omgivelser,
vi er vante til. N̊ar vi derimod er i uvante omgivelser, m̊a vi forsøge at tilpasse os
de ændrede fysiske og sociale kontekster. Dette gør vi ved at forst̊a adfærdsmæssige
signaler fra de mennesker, vi interagerer med og ved at forst̊a simple tegn fra de fysiske
omgivelser.

Robotter har brug for affektive egenskaber for at kunne kommunikere følelsesmææssige
informationer til mennesker. Det giver derfor mening at forbedre netop de affektive
egenskaber hos robotter med det form̊al at gøre dem i stand til at h̊andtere komplekse
sociale interaktioner. En mulig forbedring af disse færdigheder kan n̊aes gennem robot-
ters umiddelbare forst̊aelse af deres kontekst. Selv en simpel forst̊aelse af konteksten
kan muliggøre en tilpasning af deres opførsel til eventuelle ændringer i b̊ade de fysiske

6



2 Summary (In Danish)

omstændigheder samt hos de mennesker, med hvem de interagerer. Denne afhandling
præsenterer indholdet og resultaterne af en serie af eksperimenter, der har til form̊al
at skabe bedre affektive og kontekstforst̊aende robotter. Disse omr̊ader er blevet un-
dersøgt gennem robotudvikling samt eksperimenter i interaktioner mellem mennesker
og robotter.

Ved at se p̊a de mønstre, som mennesker interagerer med hinanden i, har dette pro-
jekt forsøgt at afdække b̊ade de konstruktionsmæssige og adfærdsmæssige aspekter af
mennesker-robot interaktioner for at styrke sociale robotters affektive indvirkning. I
hver interaktion udtrykker vi mennesker os ved hjælp af alle tilgængelige kommunika-
tionskanaler. Dette inkluderer den måde hvormed vi gestikulerer, hvordan vi bevæger
os, hvordan vi taler og endda hvordan vi ser ud. Alle disse kommunikationskanaler
hjælper os til at udtrykke os klart og tydeligt. For at forst̊a synergien mellem disse
interaktionsmodaliteter, designede og konstruerede vi to ikke-humanoide robotter.

Vi testede robotternes tekniske og adfærdsmæssige egenskaber i flere interaktioner
mellem mennesker og robotter, og resultaterne heraf bidrager til den generelle viden
om affektive robotter p̊a følgende m̊ader: Det første projekt definerer en model til sys-
tematisk at kunne vurdere og karakterisere en robots affektive styrker. Modellen kan
bruges b̊ade som et sammenligningsgrundlag imellem robotter samt som en ledesnor for
robotdesignere i designfasen af affektive robotter. Ved at bruge modellen p̊a et udsnit
af aktuelle affektive robotter kan vi se, at der er et ubenyttet potentiale i at kombinere
flere interaktionsmodaliteter, n̊ar affektive robotter kommunikerer. Resultaterne fra
vores andet projekt beskriver, hvordan den specifikke timing af robotters reaktioner i
en interaktion p̊avirker, hvordan mennesker opfatter robotten. Resultaterne indikerer,
at n̊ar robotter reagerer p̊a en bred vifte af input-typer med en velovervejet timing, s̊a
opfatter mennesker dem som havende en større affektiv indvirkning p̊a interaktionen.

Mange nuværende sociale robotter fungerer godt i den sammenhæng, de er designet
til at arbejde i. Det er dog ofte, at de bliver udfordret, n̊ar miljøet omkring dem
ændrer sig. De er ogs̊a udfordret i at kunne tilpasse sig, n̊ar de sociale kontekstuelle
krav ændrer sig i interaktioner med mennesker.

N̊ar vi mennesker interagerer med andre mennesker, s̊a tilpasser vi vores adfærd
til hinanden. Dette gør vi ud fra en tolkning af simple signaler fra de mennesker, vi
interagerer med. Vi gør det ogs̊a ved at forst̊a de fysiske omstændigheder for vores
interaktion. Det kan være helt simple ting, vi tilpasser, som for eksempel at vi und-
lader at grine, n̊ar vi snakker med en person, der er ked af det, eller at vi dæmper
stemmen, n̊ar vi er tæt p̊a andre mennesker. For at kunne h̊andtere komplekse so-
ciale interaktioner har robotterne brug for lignende færdigheder. I dette projekt har
vi designet en humanoid robot for at undersøge, hvordan vi kan facilitere kontekstbe-

7



2 Summary (In Danish)

vidsthed for robotter i interaktioner med mennesker. Dette opn̊ar robotten gennem
en forst̊aelse af simple kontekstuelle informationer ud fra de fysiske omstændigheder
for interaktionen. Vores resultater indikerer, at en simpel forst̊aelse af den fysiske
kontekst kan opn̊aes med let tilgængelig data fra den umiddelbare interaktion. Sys-
temet er direkte anvendeligt for andre robotter og har begrænsede hardwaremæssige
krav. Systemet benytter udelukkende sensorer, der er til stede i de fleste robottyper.
Vi designede en metode, der muliggører, at en robot tilpasser sig forskellige brugere.
Dette var ogs̊a baseret p̊a simple sensorer og krævede kun korte interaktioner for at
opsamle tilstrækkeligt data. Vi kom frem til, at talemønstre og bevægelsesmønstre
kunne bruges til at genkende individuelle brugere i enkelte kontekster, og at disse data
potentielt kan bruges til yderligere brugertilpasning af robotters adfærd.

Med sit fokus p̊a at øge robotters affektive virkemåde, præsenterer denne synopsis
et paradigmeskift i metoden hvorp̊a vi designer, konstruerer og tester sociale robotter.
Metoden argumenterer for at robotter skal kombinere flere enkle kommunikations-
modaliteter til at formidle følelser og lignende komplekse informationer. Dette st̊ar
i kontrast til at fokusere p̊a en enkelt specialiseret modalitet for at styrke en robots
kommunikationsevne. Metoden fokuserer p̊a at kombinere flere forskellige simple kon-
tekstuelle informationskilder for at give et større indblik i omstændighederne for hver
interaktion. Dette gøres med henblik p̊a at skabe mere virkningsfulde og troværdige
robotter gennem den udvidede forst̊aelse af konteksten. De opsamlede informationer
kan bruges af robotterne til at tilpasse sig eventuelle ændringer i den fysiske kontekst
og til at imødekomme de adfærdsmæssige krav der ligger i enhver interaktion med
mennesker.

P̊a baggrund af vores resultater er det et forslag i denne afhandling, at robo-
tudviklere ændrer deres syn p̊a, hvordan robotter kan anvende kontekstuelle infor-
mationer. Dette medfører at kravene sænkes for, hvad robotter skal kunne forst̊a i den
umiddelbare kontekst for sociale menneske-robot interaktioner. En komplet forst̊aelse
af den aktuelle kontekst for robotter er muligvis for kompliceret at opn̊a med den
nuværende teknologi. Alligevel giver det mening allerede nu at begynde at bruge de
simple kontekstuelle informationer i robotprojekter, da selv helt enkle informationer
om konteksten kan anvendes til at forbedre robotters adfærd.
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3
Introduction

3.1 Main concepts

When we humans interact with each other, two things are important to ensure that
we are understood. First, we express ourselves using multiple interaction modalities.
This means we use combinations of how we gesture, how we move, how we speak,
and even how we look, to communicate effectively. Second, we adapt to the contex-
tual demands of each interaction by inferring information from the people we interact
with and the places in which we interact [1–3]. By adapting to the contextual de-
mands of our interaction, we try to ensure that we are not misunderstood and that
the information we convey is meaningful in the situation. For instance, we may use
a soft, low voice to relay sensitive information or a loud, sharp voice when we want
to emphasize our frustrations. We also alter our communication strategy if we sense
that the information we send out is not being properly received. For example, we may
use a comforting smile when the person we are speaking with seems uncomfortable in
the interaction, or we may raise a hand to convey the magnitude of what we are say-
ing. Using multiple interaction modalities and adapting to the context are important
strategies to use to communicate successfully and creating robots to master these is a
crucial step toward improving how they communicate.

We need to change our perspective on how to build robots for human-robot inter-
actions. We should combine multiple expression modalities when designing robots to
enable them to communicate more clearly, and we should use multiple simple context
measurement methods to heighten robots’ level of context adaption. This may pave
the way for more dynamic robots and robot behaviors that adapt to the context of
the human-robot interaction to ensure an optimal foundation for communication that
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3 Introduction

works across different circumstances.

3.2 A step forward

The affective impact of a robot details how well it can communicate information that
may alter a person’s current affective state. Such a state can best be described as an
experience of a feeling, emotion, or mood at the current moment. A strong affective
impact is a desirable skill for a robot to possess, as it indicates that the robot can
successfully convey complex information or even emotional states. How the robot is
perceived is important, and a strong affective impact adds value to a robot only if
there is consistency in how the robot is perceived. For instance, if a robot’s behavior
evidently excites many people when it is intended to calm people down, its impact is
nullified. The examples in this subsection further illustrate how we envision a changed
perspective to influence the development and use of social robots.

First, it may be beneficial to pursue context awareness for robots through the
behavior-informing features of the immediate environment as even basic context infor-
mation may be useful for informing affective behaviors. As it is difficult to establish
the full extent of people’s intentions in an interaction, a beneficial strategy can be to
assume that the information will always be incomplete and noisy. However, a robot
can still benefit from using this noisy information as a guide in the interaction as long
as the information is used only to inform processes at a matching abstraction level.
Incomplete information may not provide the robot with a perfect understanding of
the situation but may be sufficient to guide the robot in choosing specific behaviors
or to adjust simple elements of its current behavior.

Imagine the scenario below.

A robot is put to work in a restaurant. The robot is equipped with simple
distance sensors and a camera. It detects a person carrying a green jacket.
The robot cannot infer the full situation from these details, but it has a
simple behavior of looking for humans and jackets. That the robot sees
the customer in the open may mean that the customer is looking for the
restroom or maybe wants to hang his or her coat. The robot reacts to the
customer-room combination and asks the customer if he or she is looking
for the restroom.

The robot may be wrong in a few incidents and right in others, but what the above
scenario shows is a robot that reacts to simple contextual cues. For instance, a human
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holding a restaurant menu is a simple contextual cue that may mean that it would be
appropriate for the robot to take the human’s order.

Second, we hypothesize that it may be beneficial to let perceived complex emotions
in robots emerge from combinations of behaviors and to let meaningful interactions
depend less on user states. Simple actions in combination may be perceived as intelli-
gent in the right circumstances. For instance, in Braitenberg’s “Vehicles,” the simple
combination of distance measurements and motor commands may be perceived as cu-
riosity, love, or fright as it enables the robot to approach or disengage from any human
who reaches out to it [4]. In contrast, user states can be a weak point in human-robot
interactions as each estimated state presents a possibility for the robot to go wrong.
This may result in specific behaviors and reactions fitted to specific states being used
out of place. Getting the state wrong means that the robot reacts to something that
is simply not happening in the interaction, and this may cause the user to disengage
from the interaction. Sequential states also indicate that there are specific entry points
that demand that the users are at a specific state before the interaction is initiated.
State transitions may also require the robot to recognize specific markers to initiate a
transition from each state. The attempt to make this detection as robust as possible
often results in simplifications of the confirmation cues (e.g., reducing complex ques-
tions to “please answer yes or no”), which may again lead the user to withdraw from
a deeper narrative.

There may be a simpler way to achieve a meaningful human-robot interaction by
combining behaviors triggered by environmental markers. Instead of keeping track of
an inner model of the user and the interaction, it may be more viable to use the real
world as a model, as Brooks 1991 suggested [5]. Letting the robot focus on contextual
markers to trigger simple reactive behaviors may make the users perceive them as
acting meaningfully and with complex intentions in the context. The proposed shift
in perspective can be summed up in the hypothesis that meaningful interactions and
perceived emotions can emerge from combinations of behaviors, and there is no need
to use scripted events with inferred user states to develop a deeper narrative.

Imagine the scenario below.

The restaurant robot discovers a person holding a menu. The robot has
a simple behavior triggered by the menu and the person, and the behavior
enables the robot to add a single order. It thus asks the person if there
is anything he wants to add to his or her order. Instead of going through
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each step (starters, main course, dessert) while keeping track of the whole
process, the robot keeps repeating the simple step. When the person puts
down the menu, the robot says “thank you” and drives away.

The above scenario illustrates how a robot can sustain a complex dialogue with a hu-
man using a single repeatable behavior. The robot may get the order wrong sometimes
but it will refrain from expressing something inappropriate for the current context.
The strategy outlines the difference between plans and situated actions as presented in
Suchman 87 [6] and as emphasized in that reference, situated actions don’t necessarily
explude plans. Although it may be preferable to avoid deep dialogue branches, some
conversational branches may depend on each other. For example, when a user orders
a hot dog, it will make perfect sense to ask him or her a follow-up question about the
preferred toppings. In such a case the connecting dialogue states will consist of two
manageable steps.

Third, when social robots communicate with humans, utilizing multiple interaction
modalities to increase their affective abilities may have advantages. Human-robot
interactions can occur across different physical contexts and with multiple human
participants. Using only a single interaction modality may prove a perfect fit for one
physical context and may be unusable in another physical context. For instance, phys-
ical gestures may work well for a robot in close proximity to humans in a small room
but may fail to work across a greater distance in a larger physical space. The more an
interaction modality of a robot is attuned to the current context the more effective it
will be. However, this may come with the inability to work effectively under changed
circumstances. Although humans rely more on non-verbal cues when communicating
with other humans than when communicating with robots, as stated by Verhagen et
al. 2019 [7]. However, using multiple non-verbal communication outlets can also be
beneficial for robots. For example, a robot that uses movement and gestures in combi-
nation with spoken audio can make it easier for humans interacting with it to perceive
it as being hurt rather than having to interpret this from expressive movement alone.
Furthermore, using spoken audio alone may not have a sufficient impact on humans
to make them believe the narrative of the robot being hurt.

Imagine the scenario below.

The restaurant robot needs to evacuate some customers to avoid a poten-
tially dangerous situation. Its first attempt at getting their attention using
its voice in the crowded restaurant does not work. It delivers the evacuation
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message again, but this time it uses its body, with shaking movements and
heavy gesturing, to catch the attention of the customers and to emphasize
the importance of its message.

The foregoing scenario highlights a situation in which the contextual requirements
of the scenario warrant that the robot uses several interaction modalities to success-
fully convey the gravity of the situation.

It can be argued that the given scenarios simplify very complex human-robot in-
teractions in a real-world example. As such, they are not complete solutions to every
aspect of such interactions. Instead, they should be perceived as suggested changes to
the control systems of the current social robots and as suggested changes to some of
the current research directions. Current research projects involving technical imple-
mentations often focus on developing and testing single robot communication features
in isolation and often test the robots in strict laboratory conditions while refraining
from adhering to any changing contextual requirements.

It may be easy to discover practical disadvantages that will pose problems for the
robot in some of the presented examples. The point, however, is that these disadvan-
tages may be countered by adding further loosely coupled single-purpose behaviors.
This is opposed to countering any problem by expanding the existing behaviors and
thereby potentially creating greater complexity and user state dependence. Our hy-
pothesis is that perceived meaningful intelligent behavior of the robot will emerge from
the combination of a sufficient number of simpler behaviors.

3.3 A combination of interaction modalities

Interaction modalities are the different types of communication features a robot can
use to express itself as it interacts with humans. In this research, we focused on
five different high-level modalities: gesturing, movement and orientation, audio, mor-
phological changes, and anthropomorphic and zoomorphic features. The concept of
anthropomorphism refers to the projection of human intentions and motives onto non-
human entities such as robots. We humans, tend to anthropomorphize the robots we
interact with as found by Fusse et al. 2008 [8]. In this project, the anthropomorphic
features pertained to any zoomorphic or anthropomorphic features added to the robot.
This may include a head, eyes, tails, and other features that make the robot resemble
known animal or humanoid figures in an attempt to invoke anthropomorphism [9].
Humans rely on multiple interaction modalities to communicate when they interact.
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Robots may gain potential benefits by similarly utilizing multiple categories of high-
level interaction modalities as they interact with humans.

Some people tend to use certain means of communication more than others. Some
may use much gesturing while others may accentuate their voice or move their heads
energetically to be understood as found by Numan et al. 2019 [10]. Although humans
can emphasize certain aspects of their communication methods, they rarely disregard
interaction modalities to prioritize a single modality [11–13]. The strategy of not em-
phasizing a single interaction modality may be beneficial for robots and can make for
a less demanding implementation that can apply to more robot projects.

Robots interact with the world through their bodies [14]. Nevertheless, the body
and morphology of the robot also influence how it is perceived by the people it interacts
with [15]. An anthropomorphic robot may be viewed as having more social presence
than a zoomorphic robot as found by Barco et al. 2020 [16]. Robots have bodies, These
are not utilities they can switch on and off. The body resides in a physical context
and may change that context as it moves around [17]. All these factors influence
how we perceive robots, therefore it is logical to assume that multiple aspects rather
than a single isolated communication feature of the robot influence every human-robot
interaction and must be considered when researching such topic.

3.4 Defining a context

There is a great amount of contextual information that has very little impact on how a
robot should accomplish its task. Context information has been defined by Menezes et
al. 2014 as information that influences or constrains the way some actions are selected,
without being at the center of interest for the task [18]. This means that any robot
that aims to use contextual information must filter the information it collects. This is
a particularly difficult task for a robot as there is an enormous amount of information
that it has to sort through to find the information it needs. Imagine the scenario
below.

A healthcare robot is being used to vaccinate people against COVID-19. At
1:00 p.m. it enters a large green room to vaccinate a little girl. The girl is
having a hard time sitting still and moves anxiously back and forth.

In this example, the current time, the physical dimensions, and the color of the
room have no impact on the vaccination robot’s designated task. In contrast, the fact
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that the girl is moving around is important as it may indicate that the girl is nervous.
This information can help the robot change behaviors to calm the girl down or try
to make her laugh so she may find it easier to get through being injected. Dennett
1984 defines this as the framing problem of AI and uses an example of a robot that
needs to pick up an item in a room containing a bomb timed to go off to highlight
how classic AI struggles with deciding which details to focus on and instead tries to
incorporate all details. The robot in Dennett’s scenario had just finished calculating
that removing the wagon would not change the color of the walls in the room when
the bomb exploded. [19].

For the human brain, it is a trivial task to filter out all unnecessary information
and focus on the vital one. We all receive millions of different inputs each minute,
but our brains make sure that only the most important information is considered [20].
Robots currently do not have such a filter. To aid them, we must instead identify the
subtle cues in a social context that are usable in relation to what the robot is trying
to accomplish, and inform the robot of such. This project investigated the feasibility
of increasing context-awareness using input cues from both the physical and social
contexts.

3.5 Strengthening context awareness

We, humans are highly skillful in adapting to multiple social contexts based on our
perceptions of the people we interact with [21, 22]. For instance, we use a soft voice
when we approach someone who is crying or we may behave energetically when some-
one with a high energy level approaches us. We are even able to adapt socially to
other cultures as found in Soltani & Keyvanara 2013 [23]. This is mostly facilitated
by an immediate reading of the people we interact with, and should motivate research
on the use of immediately available data in an interaction. We also establish recogniz-
able patterns in how other people move, talk, and gesture as we interact with them.
We adjust our behaviors so they would match how others behave. Khoramshahi and
Billard 2019, and Kühnlenz et al. 2013 found, that robots also have the potential to
adapt to how humans behave [24, 25]. Pfeifer et al. 2007 highlight the strength of
embodied bio-inspired robots that are robust because of their abilities to adapt [26].
As mentioned earlier, adjusting behaviors on the basis of contextual cues may enable
a robot to work across several changed interaction contexts. There are also indica-
tions that contextual information may improve the social interaction between humans
and robots, as found by Meneze et al. 2014 [18]. This indicates that a robot’s affec-
tive impact may be influenced by its ability to comprehend contextual information.
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Furthermore, Ullrich et al. 2017 found that the task domain influences how a robot’s
personality is perceived, which indicates that context information can be used as a
guide for the adaptation of robot behaviors [27]. The given scenarios show that robots
may gain the ability for more personalized interactions and more robust behaviors
by adapting to contextual cues in an interaction. However, it may be challenging for
robots to determine which attributes are important for their current tasks.

3.6 Embodiment inspirations in our project

When we interact with robots, we tend to anthropomorphize these and project human
emotions onto them [8,28]. This anthropomorphism extends to simple moving shapes,
as found by Heider and Simmel 1944 [29]. In the Heider and Simmel experiment, the
test participants were shown images of two triangles of different sizes moving around.
The participants interpreted the scenario as the bigger of the two triangles was a bully
who was trying to capture the smaller triangle.

Examples of social robots invoking emotions date back to the 1950s when William
Grey Walter created mechanical tortoises, small robots resembling turtles moving
around the room [30, 31]. Created to illustrate that simple connected sensor systems
could amount to complex intelligent behaviors, they were able to successfully navigate
in an indoor arena using simple distance sensors. Although they were not created
specifically for social purposes or to invoke anthropomorphism, they possessed some
degree of social qualities with their pet-like behavior. Walter’s tortoises illustrated
how robot behaviors could invoke complex emotions using only simple movements.

Rodney Brooks suggested in Brooks 1989, 1990, and 1991 that using finite symbolic
representations of a robot’s state and the environment was a limiting bottleneck for
the robot. Instead, Brooks suggested that a composition of layered behaviors with
a shorter route from the sensors to selected actions could pave the way for a new
breed of behavior-based robots that would be able to accomplish more complex tasks
compared to the previous generations, including socially interactive tasks [5, 32, 33].
This inspired us to focus in our project on how the immediate reactions of a robot
influence how it is perceived. For instance, a robot with a short route from sensing
to actions may be perceived as being more responsive and intelligent. Following this
strategy, Braitenberg suggested simple robot control systems that portrayed complex
human emotions, which again underlines the emergence of intelligent affective behavior
[4]. The principle of parallel, loosely coupled processes, as presented by Pfeifer 1996,
defines emergent intelligent behavior as an entity facilitated by many simultaneously
running subsystems [17]. In our project, we found indications that robot behaviors
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guided by contextual information, which invoke emotions in those interacting with the
robot, may also be successfully facilitated by a combination of parallel subsystems.

Figure 3.1: The areas of interest influensing affective robot designs that were investi-
gated as a part of this project. These three areas may be vital for emergent
behaviors. Such behaviors can be facilitatet as a result of how the robot
is constructed morphologically, its control ar- chitecture, and how the en-
vironment may be structured. The intersection represent overlap between
the different areas.

Both Brooks 1991 and Pfeifer 1996 emphasize the importance of robots having a
physical presence (embodiment) and of placing robots in a physical space rather than
in a simulated scenario (situated agents), in which both the task and the context influ-
ence the perception of intelligent behaviors. Figure 3.1 shows the vital research areas
investigated in this dissertation. Each of these areas was investigated to determine its
impact on how intelligent affective behaviors can emerge. The high-level areas have
similarities with the areas of interest mentioned by Brooks and Pfeifer. Hafner et
al. 2002 and Bovet and Pfeifer 2005 state that behaviors enabling obstacle avoidance
can emerge as a result of how the robot is constructed morphologically, its control ar-
chitecture, and how the environment is structured [34,35]. In the same vein, we found
that empathy can be evoked or remorse can be communicated by using a combination
of embodied behaviors [36]. In Mataric 1991, complex tasks were accomplished with
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a behavior-based architecture in a robot that could handle the tasks through the syn-
ergy between combinations of embodied behaviors [37]. Mataric and Michaud further
elaborated on the strengths of combining behaviors to enable robots to handle complex
tasks. The mentioned principles build upon the concept in Brooks 1991. He outlines a
decentralized model with the strengths of the individual behaviors’ ability to store and
manage simple representations [5, 38]. Our research had a similar assumption, that
it is a good approach to make robots rely on a combination of subsystems providing
information through the immediate sampling of the context.

In Breazeal and Scassellati 1999, a context-dependent system was presented to con-
trol where a robot focuses its attention [39, 40]. The robot that was used in the
experiments was “Kismet,” a robotic head that could communicate through multiple
interaction modalities and could replicate human emotions. Cynthia Breazeal further
embraced the embodiment of an agent as a vital part of human-robot interactions
and investigated robot learning inspired by how infants learn. Infants learn through
the constraints in the environment and the constraints in what they are presented.
“Leonardo,” another robot developed at Massachusetts Institute of Technology, was
able to infer the internal states of the humans it interacted with and couple these with
how such humans felt about an object [41]. It was also able to comprehend social
references in the voices of the humans it interacted with, similar to how infants learn
through social referencing [42].

This project investigated context awareness through the embodied design perspec-
tives set forth by Brooks and Pfeifer and extended by researchers such as Breazeal and
Mataric. We adopted similar perspectives in this project, including the assumption
that a finite model of the interaction and context cannot be created. We also empha-
sized that physical embodiment and situated agent principles are highly influential in
invoking emotions in the people with whom a robot interacts. Finally, we found it
important to highlight the notion that the perceived robot emotions emerge from and
reside in the minds of those interacting with the robot.

3.7 Changing paradigms

This project can be viewed as extending a paradigm shift that started with Brooks
and Pfeifer and was followed by Mataric and Breazeal, who extended their research
to embodied AI. Through this project, we suggest extending the current paradigm in
social-robot development, first on how robots express themselves and how they gain
contextual knowledge. This research projects that involve technical implementations
are currently dominated by a tradition in which roboticists implement and focus on a
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sparse set of, often technically complex methods of communicating with humans. This
implies that there may be an unused potential in making robots communicate using
a wider palette of interaction modalities. Second, we suggest changing the current
paradigm that gaining insight into the current context is not feasible as there are
too many variables to consider. This often results in contextual information being
disregarded in robot projects. We propose that the traditional approach in both
these areas be disregarded, and suggest that it may be beneficial to combine multiple
subsystems to improve the expression abilities of social robots. By combining simple
methods of communication from each high-level category of interaction modalities, the
affective impact of the robot may increase.

We also suggest accepting that a single context information system will never be
precise. If we tolerate uncertainties in the context classifications made by robots,
useful information can be retrieved even from simplistic sensors. The simple sensors
informing robots about the context of the interaction through low-resolution informa-
tion sources are often robust and have high fault tolerance. The provided information
does not have to be highly detailed as even simple knowledge about the context may
benefit most robots. This project aimed to clarify the validity of this extension to the
evolving paradigm shift in social-robot development by focusing on the expression and
context awareness abilities of robots.

3.8 Research objectives

The main research objective of this project was to find the answers to the following
main question.

• How can we improve the affective impact of robots?

The answer to this question was sought from a hardware and software engineering
standpoint and was elaborated on through additional sub-objectives. Figure 3.2 de-
picts an interaction between a human and a robot. It outlines the parts of human-robot
interactions we focused on through our additional research objectives. We investigated
the impact of and synergy between the different interaction modalities of robots. This
included investigations into the sensing and reaction abilities of social robots and the
perceptions of different robot behaviors and engineering aspects. We also investigated
the feasibility of using immediate and readily available physical context information,
and finally, of measuring and using the immediate cues of the humans involved in the
interaction.

22



3 Introduction

Figure 3.2: The areas of Human-Robot Interaction that were investigated through this
project.

The first additional objective was to gain an overview of the affective abilities of
social robots. This spawned the research question below.

• How can we define the affective strengths of social robots?

We sought the answer to this question by developing a systematic comparison model
applicable to any robot that would provide an objective description of its affective abil-
ities. We did this in our paper entitled “A Systematic Comparison of Affective Robot
Expression Modalities,” in which we also used the model to gain an overview of the
tendencies in the current affective robot research [9]. The resumé of this work is avail-
able in Section 5, and the full text is available in Section 11. The paper is included in
the proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems.

The second additional research objective was to investigate the affective impact of
reactive versus non-reactive behaviors in social robots. This spawned the research
question below.
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• How does the timing of a robot’s behaviors influence its perceived affective im-
pact?

To find the answer to this question, we performed experiments in our paper entitled
“On the Causality between Affective Impact and Coordinated Human-Robot Reac-
tions” that determined the effects of events shared by humans and robots during an
interaction between them [43]. The results showed a clear impact on how the robots
were perceived and that delaying reactions alters their affective impact. The resumé
of this work is available in Section 6, and the full text is available in Section 12. This
paper is a part of the proceedings of the 2020 29th IEEE International Conference on
Robot and Human Interactive Communication.

With the third additional research objective, we focused on how robots could mea-
sure simple context information and adjust their behaviors so these would match the
contextual demands of an interaction. This spawned the research question below.

• How can social robots be enabled to retrieve and use contextual information to
improve their affective impact?

We sought the answer to this research question by investigating the feasibility of
using low-detail context information to drive behavior selection in social robots. In our
paper entitled “Adaptable Context-Based Behavior Selection in Autonomous Robots”
we presented a context representation system for a social robot. The system could
facilitate behavior prioritization to infer the best behavior for previously unvisited
physical contexts [44]. The resumé of this work is available in Section 7, and the full
text is available in Section 13. This paper is currently under review for publication in
the 2021 IEEE/RSJ International Conference On Intelligent Robots and Systems.

We also helped find the answer to the third additional research question, through
our paper entitled “A Minimalistic Approach to the User-Group Adaptation of Robot
Behaviors using Movement and Speech Analysis” [45]. In this project, the main focus
for contextual awareness was enabling robots to use the human cues available within
the initial minute of an interaction. We investigated the minimal number of speech
and movement characteristics needed for a robot to distinguish its users, and how
these numbers are influenced by human-robot interactions across multiple contexts.
The results showed that robots could use these types of data to distinguish individual
humans in the context, but that the information was insufficient for robots to do the
same across multiple contexts. The resumé of this work is available in Section 8, and
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the full text is available in Section 14. This paper is a part of the proceedings of the
2021 30th IEEE International Conference on Robot and Human Interactive Commu-
nication.

Although the works mentioned below are not included in the main contents of this
dissertation, we may also briefly touch on them.

• “Robots Can Defuse High-Intensity Conflict Situations,” included in the pro-
ceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems [36].

• “Augmenting the Audio-Based Expression Modality of a Non-Affective Robot,”
a part of the proceedings of the 2019 8th International Conference on Affective
Computing and Intelligent Interaction [46].

3.9 Content overview

The following section (Section 4) presents an overview of the related previous projects
and the suggested design principles for affective robot development. The subsequent
Section 5 summarizes the findings of the first project reported in this dissertation
regarding the impact of using multiple interaction modalities in human-robot interac-
tions. Section 6 details the findings of the second project regarding the coordination
of a robot’s reactions to outside stimuli. Section 7 outlines the findings of the third
project on the feasibility of using immediate context information to drive behavior
selection. Section 8 presents the findings of the final included project on the use of
contextual cues from the humans interacting with robots. Section 9 discusses each
design principle with a focus on the engineering aspects of each principle and hypo-
thetical evaluations of each principle. Section 10 presents the conclusion arrived at on
the basis of the obtained project results. Sections 11, 12, 13, and Section 14 present
the full text of each of the included papers. Finally, section 14 contains the numbered
references of this dissertation.
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4
Principles of affective robotics

This section reviews the important milestones in the relevant literature starting with
a short chronological review of affective robotics research. The section then presents
references to state-of-the-art research projects and highlights the results obtained on
each of the high-level topics investigated in this project. With each topic, we highlight
how our research relates to the presented approaches or how we complement the pre-
vious findings. Some references used in this section may appear in the papers included
in this dissertation alongside other new relevant research references that have emerged
since the original papers were published. The included references cover each high-level
topic investigated in the project and we discuss how the findings were distilled into the
suggested design principles for affective robots that were used as guidelines throughout
the project.

4.1 Emphasizing anthropomorphic interpretations

In this subsection, we focus on how anthropomorphism was used in previous robotics
projects. This includes the tortoise robots created by William Grey Walter in the 1950s
as an early example of social robots [31,47]. They had some social skills through how
people interpreted their behavior, but examples of affective robotics and of human-
robot interaction date even further back. “The Turk,” a seemingly autonomous chess
table developed by Baron Wolfgang von Kempelen in 1769, was introduced as the
Chess Playing Automaton [48]. The machine was touted as capable of besting all its
challengers. In reality, the contraption’s inner machinery consisted of a hidden human
controlling the chess moves. The interaction between the players and the contraption
can be seen as an early version of “Wizard of Oz” interaction studies (named after
an animatronic figure in the movie with the same title) [49]. The word “robot” was
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used for the first time in a 1920 play by Karel Chapek about a constructed mechan-
ical humanoid. Through the events of the play, the robot is shown to possess human
emotions and eventually revolts against its creator [50]. “Shakey” the robot developed
within the period from 1968 to 1972, was the first mobile robot that used a layered
control architecture to navigate through a simple scenario. The robot was an early
example of the application of an autonomous artificial intelligence (AI) that was able
to assess the outcomes of its actions [51].

Brooks 1986 presented a new approach to AI, abandoning the idea of creating a sym-
bolic representation of the world and instead began using the world as a model. As he
stated, “The world is its own best model” [52]. This drastic departure from mainstream
AI also included a departure from relying on calculated actions as used in a symbolic
representation of the environment. Instead, the robot would use layers of behaviors
with actions and measurable reactions in its real-world environment. In 1999, Sony
Electronics Incorporated introduced AIBO, a dog robot developed solely to function as
a consumer version of a social robot. AIBO’s controller was also behavior-based, but
the number of behaviors was extended to hundreds of simultaneously running parallel
behaviors [53]. Pepper, a robot created by SoftBank Robotics, is frequently used in
research and is an example of a robot being used to provide social functionality outside
academic projects [54]. Pepper is often used in the industry to welcome guests to new
venues and to offer information about conferences, etc. With its humanoid form, Pep-
per is also used for various research purposes, such as in therapeutic settings [55]. The
Nao Robot was also developed by SoftBank Robotics. The humanoid robot has a toy-
like appearance but can be programmed to replicate complex human behaviors [56]. It
has been used in research projects on a wide array of topics, such as affective touch in
Andreasson et al. 2018, the perception of mechanical sounds in robot gestures in Frid
et al. 2018, and improving the balancing skills of robots with reinforcement learning in
Tutsoy et al. 2017 [57–59]. “Paro the Seal” is a successful non-humanoid social robot
developed in 1996. It facilitates therapy and care with an emphasis on helping the
elderly using visual, audio, and tactile sensors [60,61]. Hanson Robotics developed its
humanoid robot “Sophia” in 2016 as a robot that resembles a human to the extent
that the limitations in technology then would allow [62]. The robot is featured in both
academic and cultural circles. It is being used to further both AI and human-robot
interaction research and engineering research on topics such as arm motion genera-
tion in Park et al. 2018 [63]. The robot was a keynote speaker at the 28th IEEE
International Conference on Robot and Human Interactive Communication [64].
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Complementing these findings

Some of these examples of social robots are the results of long-running and well-funded
projects. Such projects may have had a tendency to design robots inspired by human
physicality. The projects replicated the human physical properties and human-like
behaviors in robots to strengthen how they interact with humans. The hypothesis
behind this approach is that humanoid robots and their human-like features may
better enable humans interacting with them to form anthropomorphic interpretations
of the robot’s actions. That is, it is believed that the affective impact (the perceived
strength of the invoked emotions) will increase as the robot approaches human likeness.
However, recent experiments using zoomorphic robots have shown that non-humanoid
robots may equally invoke emotions. This was shown in Pütten et al. 2014, in which the
participants responded equally to a video portraying the mistreatment of both small
dinosaur robots and humans. The findings were verified by measuring similar neural
activation patterns in the brains of the participants as they watched the video [65].
The findings shown in these historic examples made us come up with the hypothesis
below.

• Anthropomorphism may be emphasized to increase the affective impact for
robots.

It should be stated that by emphasizing anthropomorphism we do not mean that
a robot must resemble or use human-inspired features to heighten its communication
abilities, in fact, the aim of this project is to advocate for the exact opposite. The
effects of anthropomorphism can be experienced even with the movements of simplis-
tic triangles, as the Heidler and Simmel experiment showed [29]. This means that
roboticists do not have to use humanoids or human-inspired features to achieve their
desired effect, and that is a good reason for investigating how anthropomorphism can
be used to improve the affective strengths of non-humanoids using simple behaviors
and technical implementations.

The results revealed in the included examples were groundbreaking but may be dif-
ficult to directly apply in some of the current robot projects. We investigated how
simple robots that are not using multiple interaction modalities can benefit from aug-
menting the areas that are not utilized in their current setup. With the augmentation
of non-utilized areas of robot communication modalities, as we discussed in our 2019
paper, we also focused on the immediate applicability of our results [46]. These re-
sults may be directly applied to the current breed of robots that were not initially

28



4 Principles of affective robotics

designed for social interaction. In this project, we also created many smaller proto-
types that included as many different interaction modalities as possible. As stated by
Zamfirescu-Pereira et al. 2021, it may also be beneficial to follow more design-based
research patterns when building robots, as insight can be gained by making many
prototypes [66].

It is also evident in the references, such as the William G. Walter tortoises, that
even simple behaviors can make robots appear intelligent and can enable them to have
a strong affective impact on the humans who perceive them. In our project, we created
prototype robots under the assumption below.

• Perceived complex emotions can emerge from the combination of simplistic be-
haviors.

A good example of the above assumption is given in Erel et al. 2021. These re-
searchers investigated how the simple behaviors of two robots playing ball with a hu-
man participant can influence how the situation is perceived by the participant [67].
They found that making the robots throw the ball at certain angles toward the partici-
pants could make the participants feel rejected, ignored, and meaningless. This effect,
that simple behaviors in certain contexts can invoke a strong affective impact, has
been used in all our experiments. Affective communication can have a large impact
on our society, as Bana et al. 2021 and Tsai et al. 2021 demonstrate with a robot that
uses different behaviors to encourage humans to sanitize their hands [68,69].

4.2 Utilizing multiple interaction modalities

In this subsection, we discuss how we focused on different categories of interaction
modalities. We give examples from each category and explain how they influenced us
to focus on the synergy among the categories. The expression capabilities of social
robots can be roughly divided into the following five high-level interaction modalities:

• The robot’s motion and orientation.

• The robot’s general morphology.

• The robot’s posture, gaze, and gestures.

• The robot’s audio-based communication abilities.

• The robot’s anthropomorphism-invoking features.
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This subsection includes references from research projects with robots that empha-
sized one or more specific modalities.

The motion abilities of a robot influence how it travels from point A to point B
and the movements that it performs on the spot. This is often referred to as the
Kinesics. The orientation abilities reflect how well the robot directs its attention to-
ward either a person or an object in the environment. Simmons et al. used Laban
movement analysis to create expressive motion in a dancing robot [70]. Rudolf Laban
(1879-1958) was a choreographer who created a notation system for expressive move-
ments, and the system has been complemented by Perez and Barakova 2020 as the
foundation for designing expressive interactions for embodied objects [71]. The same
system has also been used by Sharma et al. 2013 and Bevins et al. 2021 to create af-
fective locomotion for flying robots and has been used by Knight et al. 2014 to design
expressive motions for mobile robots [72–74]. Expressive movement may even be effec-
tive for priming humans to behave differently in immediate subsequent scenarios [75].
Mead and Mataric 2013 trained a neural network to identify the relationship between
proxemics and user-initiated social actions [76]. Kitagawa et al. 2021 designed the
movement system of an omnidirectional robot inspired by how humans move toward a
task-specific target. They tested their movement system on 300 observers and found
that people interpreted the robot’s movements as a natural fit for the robot even
though the robot rotated freely while traveling straight [77]. The specifics of move-
ment and orientation also include the acceleration changes of the robot as outlined in
Saerbeck and Bartneck 2010 [78], the changing travel speeds of the robot as described
in Yoshioka et al. 2015 and Knight et al. 2015 [79,80], the variation in the directional
changes as used in Fernandez and Bonarini 2017 as a part of a system developed to
enrich robot movement for conveying affective information [81], and the specific orien-
tation [82]. In Bethel et al. 2009 they enabled the robots to express attentiveness by
using slow movements while sustaining the orientation toward the test participant [82].

As stated in our 2019 paper [9], the morphology of a given robot describes its physi-
cal appearance. The previous projects on the impact of different morphologies include
that by O’Brien et al. 2021, who investigated the impact of using different morpholo-
gies for therapeutic robots for children. They found that the kids preferred to interact
with a pillow-type robot by stroking, holding, and cuddling it [83]. In the 2016 project
by Cha and Mataric, lights were used in combination with audio for a robot to signal
for help in a cooperative task with a human [84]. Miller et al. 2015 aimed at facilitat-
ing a close natural interaction between a human and a pet-like robot. They developed
a tactile sensor that looked like animal fur to encourage tactile interaction [85]. In
Schellin et al. 2020, fur was also the material that was added to an AIBO robot. They
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found that adding fur made their participants dislike the robot when it was framed
as a puppy. However, fur did make the participants perceive the robot as being less
scary [86,87]. The morphology also entails focusing on the build material of the robot,
as evident in the materials used by Stiehl 2006 and Sefidgar et al. 2016 [88,89], and the
physical proportions and shape such as those utilized by Boccanfuso2015 et al. 2015
and Singh et al. 2013 [90,91].

The posture, gaze, and gestures category describes how a robot communicates using
onboard movement or through gaze directions. Block et al. 2021 constructed a hug-
ging robot that adjusted its embrace and posture to the position and size of the test
participant [92]. Knight et al. 2017 used a robot chair to communicate when a human
could pass it and found that motion alone could successfully convey the intents of the
robot [93]. In the 2020 paper by Panteris et al., the focus was to generate waving pat-
terns for non-verbal communication [94]. Their presented system could successfully
generate waving movements based on different expression characteristics. Each of the
patterns they investigated could be sufficiently executed by a six-degree-of-freedom
robotic arm. Projects investigating affective gesturing use a variety of features to con-
vey emotions, including body postures, as used in Cohen et al. 2011 [95]. They also
include gesturing as the dog tail presented in Singh 2013, or the human-inspired arm
gestures developed for a robot storyteller in Xu et al. 2015 [91,96]. Knight et al. 2012
used affective gesturing to enhance the expressions of a robot actor [97]. Rincon et
al. 2018 mapped values from Mehribian and Russells’ Pleasure-Arousal-Dominance
(PAD) emotional model onto expressive gestures for a robot arm [98, 99]. Lee et
al. 2013 used different postures for a robotic room divider to convey whether or not
the test participants should approach it [100]. Yu and Tapus 2020 used a generative
adversarial network to dynamically create movements using audio from speech as the
input [101].

The audio-based expression abilities of a robot encompass the audio originating from
the robot. This includes both the sounds made by the robot by physically interacting
with the environment and any artificially generated audio used for communication
purposes. Robinson et al. 2021 designed artificial movement sound and used them to
alter how a robot was perceived [102]. Rossi et al. 2020 used audio-based communi-
cation features in combination with movements to gain the attention of children who
were getting vaccinated. They found that their robot could lessen the pain of the
vaccination shot [103]. In Pipitone et al. 2021 the voice of a robot was used to express
the reasoning behind a robot’s decision process [104]. The transparency of such a
setup provided anyone a better insight into the current state of the robot and could
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potentially create a stronger bond between it and anyone who interacts with it. Win-
kle and Bremner 2017 used a robot’s voice to convey emotions [105]. Becker-Asano et
al. 2009 tried to create the best synthetic laughter to improve social interaction with
a robot [106]. Lui, Samani, and Tien 2017 used soundscapes to brighten the mood of
the participants who interacted with their robot [107].

The anthropomorphism-invoking features of a robot are the features that are added
to make the robot appear like a recognizable figure, with the aim of projecting human
emotions onto the robot. We tend to anthropomorphize both robots and virtual agents
as stated by Darling et al. 2015 and Zawieska et al. 2012, and according to Natarajan
and Gombolay 2020 the level of anthropomorphism projected onto a robot influence
how much we trust it [108–110]. Hover et al. 2021 found that their research project
participants’ attitudes toward different robots changed as they varied in Gender and
human likeness [111]. Marchesi et al. 2021 found that the tendency to anthropomor-
phize non-human agents influenced how quickly humans accepted mentalistic descrip-
tions of a robot [112]. Examples of human-inspired robots include the previously men-
tioned Sophia by Hansen Robotics, Pepper and Nao by SoftBank Robotics [54,56,62].
Becker-Asano and Ishiguru 2017 also used the humanoid robot “Geminoid F” to in-
vestigate expressive facial expressions [113]. “Barthoc Jr.” is another example of
a humanoid robot. In the 2021 project by Faraj et al., the robot consisted solely
of a human head replica that used its 25 facial muscles to emulate human expres-
sions [114]. Hegel et al. 2011 investigated meaningful cues and signals for robots in
an interaction and stated that the appearance of a robot could also include intended
cues [115]. Collins and Mitchinson 2015 investigated the impact of familiarity in body
language and other emotional expressions from zoomorphic figures [116], and Breazeal
et al. 2004 used “Leonardo,” a small teddy bear robot, to investigate human-robot
collaboration [117]. The previously mentioned Aibo and Paro are both examples of
zoomorphic or animal-inspired robots that are used for recreational and therapeutic
purposes [61,87]. Also, In Canamero et al. 2016 the robot controller was designed with
a focus on how the robot was perceived in interactions. They augmented a humanoid
Nao robot to successfully provide diabetes management to children through different
social interaction styles [118].

Complementing these findings

Similar to what is stated in our 2019 paper, many project robots were created and
tested with a focus on few interaction modalities in their communication abilities [9].
This means that the tests performed on each of them could have emphasized one
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feature and tested it alone, in isolation from other features. This approach makes
sense as it allows the researchers to obtain a clear result from the experiments. This
strategy was also inherited from centuries-old research traditions embracing isolation of
the investigated subject and elimination of any variable that could influence or diffuse
the result. We align with such an approach to testing and verification in most of our
papers that were included in this dissertation. However, this project also suggested
the change shown below.

• Multiple interaction modalities should be utilized when designing affective social
robots.

It may very well be the case that some of the other factors influencing human-robot
interactions are infeasible to exclude in the first place. The potential tendency in
the current research strategies to focus on a few interaction modalities in social-robot
communication in isolation may be problematic. When a robot interacts with humans,
the humans may not be able to disregard other undeveloped features of the robot. For
instance, it may be difficult for a human to evaluate the gestures of a robot consisting
only of a torso, with wires hanging out everywhere, or it may be impossible for a
human to decide between different suitable voices for a robot based on a presented
static image or a virtual character. For the robots that we designed for experiments in
human-robot interaction, we designed them with abilities covering multiple interaction
modalities.

4.3 Coordinating a robot’s actions

This subsection highlights examples of how the temporal aspects of different robot
behaviors impact how robots are perceived in an interaction.

Mirnig et al. 2015 analyzed the data obtained from 201 human-robot interaction
experiments to see how quickly and in what manner the humans reacted to the robots
when the latter made mistakes in the experiments. They found that the humans
reacted with social signals with a delay of 1.63 seconds to a robot that performed
an erroneous action [119]. They found that there was a difference in how much the
humans reacted when the robot crossed the border of an implicit social norm and
when the robot malfunctioned due to a technical error. Using pauses to convey a
status for a robot in an interaction was also included in the 2014 project of Bohus
and Horvitz [120]. They used a Nao humanoid robot in a physical interaction in an
office space and attempted to control and predict the disengagement of the interacting
users. They found that introducing filled (“uhm” sounds) and non-filled conversa-
tional delays can be successfully used by the robot to convey uncertainty and to keep
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the user engaged. Langer et al. 2020 highlighted how the movements of robots can
prime how humans move (that we change movement speeds when interacting with a
slow-moving robot), and indicated that the different timings of robots influence user
satisfaction [75].

The timing aspects span many facets of how robots behave in human-robot inter-
actions. These include robot movements, the general timing of how robots speak, and
also the timing of robot errors in an interaction. Huber et al. 2008 focused on the
timing aspects of a human-robot collaborative task. They used a situation in which a
robot would hand over objects to humans and changed the timings between the exper-
iments to isolate the impacts of the specific timings. They found that to successfully
succeed in object handovers, both the human and the robot in the interaction must
agree on a shared timing for all the movements involved in the task. They likewise
found that increasing the stability of the robot’s movement made the participants feel
safer in the interaction [121]. When humans and robots need to agree on a shared tim-
ing in a cooperative task, it often requires the humans in the interaction to adapt to
the robot’s movements. Vannucci et al. 2019 hypothesized that humans from different
cultures would differ in their level of willingness to adapt, but after conducting studies
in Italy and Japan, they found no evidence of such a difference. This may indicate
that it may be feasible to determine a proper movement control scheme for robots that
will be applicable across cultures [122]. Macarthur et al. 2017 investigated how the
speed and proximity of a robot influence how much a human trusts it (measured using
the Human-Robot Trust Scale) [123,124]. They found that the physical presence of a
robot, how fast it moves, and how close it is to the human change the human’s level
of trust in the robot.

Sharing an experience with a robot may also impact how a human feels about the
robot. Bing and Michael 2012 investigated how humans who shared a stressful experi-
ence with a humanoid robot, felt about the robot. They found that sharing the experi-
ence could aid humans in disregarding the undesired effects of the uncanny valley. The
results of the experiments conducted in the project showed that the test participants
were more likely to prefer humanoids they had previously shared a stressful experience
with to robots they had shared a non-stressful experience with [125, 126]. Deshmukh
et al. 2018 investigated how the speed and amplitude of a robot’s gestures influence
how the robot is perceived by the humans who interacted with it [127]. The experi-
ments used a Pepper robot and changed various aspects of its gestures while groups of
humans rated the robot’s behavior in terms of anthropomorphism, likability, animacy
and intelligence, and Safety [54,128]. The ratings showed a connection with the speed
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and amplitude of the gestures. I was also found that there was a connection between
different types of gestures and specific scores. For instance, welcoming gestures with
open arms resulted in higher scores for anthropomorphism.

Complementing these findings

This project investigated how the coordination between the reactions of a human
and a robot as they experience the same event influences how the human perceives
the robot. The references show how various aspects of robot behaviors, such as the
speed, proximity, and timing of a robot’s actions (often referred to as the proxemics
and Chronemics) influence how the robot is perceived in terms of trust, likability,
and safety. Most of the interactions in the projects reported herein used a humanoid
robot in a cooperative setting in which a human and the robot needed to achieve a
common goal. To widen the general knowledge of these findings, this project focused
on whether or not the same results could be gained from using non-humanoids in a
non-cooperative setting.

Each action that a robot performs following an event also provides opportunities
for the robot to establish a connection between the action and the event. As robots
can react much faster than humans, this project investigated the role of the exact
milliseconds between the event and the reaction. In our 2019 project, we investigated
the perceived impact of coordination between humans and robots reacting to the
same event, and the impact of delaying reactions within the immediate window of
milliseconds after the occurrence of a shared event [43]. Through our experiments, we
found indications that support the suggested design principle below.

• Interacting is reacting; the temporal aspects of an interaction can alter the af-
fective impact of robots.

There are multiple indications of a connection between the impact of a robot’s
behavior and the timing of its initiation in an interaction. Being able to utilize different
timings for various robot tasks may have an impact on the field of social robotics.
For instance, it may be beneficial for a rescue robot to move slowly when trying to
comfort someone in a rescue scenario while a robot may be more effective in conveying
danger and warning bystanders by reacting and moving swiftly. In our 2019 project,
we also investigate the different interaction modalities when used in a reaction in a
high-intensity conflict scenario [36]. The results indicated that the important aspect
of conveying affective information in the interaction is that the robot reacts, not
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necessarily how it reacts or what communication outlet it uses to react. This was also
shown in our 2019 project, in which reaction to outer stimuli was a vital part of the
introduced model of affective expression modalities (MOAM) [9].

4.4 Controlling the perception of robots

The project was influenced by research in the field of cognitive psychology. This subsec-
tion discusses how the current findings in psychology have influenced what we include
and exclude when evaluating experiments in robotics. The research and experiments
conducted in human-robot interactions are often dependent on humans evaluating
their affective state (how they feel) when interacting with robots in different scenar-
ios. The participants who evaluate their own feelings may introduce errors in the
results of these experiments. Self-reporting bias is known to happen in every branch
of research from organizational research to social science research [129,130]. Problems
including social desirability are evident in both online and offline surveys [131]. Some
branches of neuroscience and psychology research have attempted to clarify how we
humans classify emotions and evaluate our own affective states. Quigley et al. 2021
found that it is difficult to measure interoceptive signaling in humans [132]. This
indicates the difficulty of verifying internal human processes because we have limited
tools to do this. It is also complex because most of these processes are initiated sub-
consciously, without us realizing it. The process that influences how we perceive body
signals relating to our state of wellbeing is called interoception as stated in Kleckner
et al. 2017 and Craig et al. 2002 [133,134]. Hoemann, Devlin, and Barrett 2020 state
that emotions in infants materialize as abstract conceptual categories and are classi-
fied and explained using language which is gained by the infants as they develop. This
indicates that the large plethora of emotions felt by infants may start fine-grained but
are evidentially classified as the basic emotions (happiness, sadness, disgust, fear, sur-
prise, and anger according to Eckman 1984-1992) because of how they are explained
in our language [135,136]. This may increase the difficulty of using language to verify
the affective impact of robot behaviors in human-robot interaction experiments. Bar-
ret 2017 revised the previous basic emotions explanations and presented theories on
emotions as constructed. The concept presented here is that emotions are constructed
on the basis of previous experiences and as a solution for the interoception process
to facilitate energy preservation in our bodies [137]. Our bodies and minds construct
emotions to best cope with our current context and to ensure that our body will pre-
serve the greatest amount of energy possible for our handling of our expected future
experiences.
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Complementing these findings

The findings in these references are state-of-the-art neuroscientific theories that may
or may not become the mainstream explanations of how emotions and affect function.
Although these are proposed theories and not necessarily facts, the changed perspec-
tive on emotion research and the problems found in self-reporting techniques inspired
us to focus on the following problematic issues in our approach to experiments in
human-robot interaction.

• When and how humans perceive robots and evaluate robot behaviors are factors
that are difficult to control.

The aforementioned theories may have an impact on the methods we use to ob-
tain results from human-robot-interaction experiments. These include both what we
choose to measure and how we measure it in experiments. It may also impact the
amount of relevant contextual information we decide to include in our evaluation of
studies.

An important aspect of the theories on constructed emotions as a part of the inte-
roception process is that this process is a subconscious one, meaning you cannot turn
it off. Our brain classifies the current context and situation to best handle energy
preservation for our body with every included contextual input. This includes both
conscious and subconscious inputs. We become aware of an emotion when we sense it
as an affect. We then experience this affective state as either pleasant or unpleasant
and with a high or low arousal level, as pointed out by Mehrabian and Russell 1974
and extended by Mehrabian 1980 [99,138]. This also means that when researchers use
human participants to evaluate robot features, this evaluation may begin sooner than
the actual experiment.

The theory of the inclusion of subconscious stimuli in the construction of our imme-
diate emotions may have an impact on how researchers should perform experiments.
When researchers ask the participants to focus on a single communicative feature of a
robot, it may be difficult to isolate the effect of the feature in the result. This theory
indicates that there may be occluded inputs in the interaction between a human and
a robot, which influences the constructed emotion. For instance, it may be difficult
for the test participants to rate a robot’s human-inspired arm gestures if the sounds
of servo motors and turning cogs influence the interaction.
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4.5 Gathering low-resolution behavior information

This subsection presents our inspiration for focusing on adapting the behaviors of
robots to different users by using the attributes obtained in the immediate context
and within a limited-duration interaction. As we pointed out in our 2021 paper, dif-
ferent personality factors have already been used in different robot research projects
to adapt a robot’s behavior to different user segments [45]. Such projects include that
by Momen et al. 2018, who presented a robot that expressed extroversion using gaze
movements [139]. Matching the levels of extroversion of the participants (measured
pre-experiment) with that of the robot had a positive effect on how the participants
perceived the robot. This was also found in Craenen et al. 2018, in which the test
participants preferred robots that possessed traits similar to their own [140]. Ondras
et al. 2020 used audio as an input to generate upper-body movements on a Pepper
robot [54, 141]. This is an example of easily attainable basic contextual information
used to adapt robot behaviors in the immediate interaction. Hiolle et al. 2014 used a
syntehtic emotion model the reacted to the modelled arousal level. The arousal level
was influenced by the amount of human contact. Specific levels would make the robot
detect a learning challenge and as a reaction it would initate human contact [142].
Menezes et al. 2014 discussed how to integrate context-awareness in social robots.
They suggested a system that runs in the background and detects context changes.
The changes trigger the activation of new behaviors in the robot’s main execution
loop [18]. Syrdal et al. 2006 noted in their experiments that the level of extraver-
sion of the participants related to how much they would tolerate from a robot that
made their interaction uncomfortable [143]. Xu et al. 2012 investigated the role of the
social context in the interaction and found that how well the robots were accepted
by the project participants depended on the specific social context [144]. Many of
these references used questionnaires to discover personality traits. These often in-
cluded the “Personality Inventory” established by Eysenck 1965, a series of questions
that measures the level of extraversion (among other personality factors) found in the
participants [145, 146]. Such a questionnaire was also used in the 2008 project of Ta-
pus and Mataric, who investigated the behavior adaptation of a rehabilitation robot
following specific personality traits [147]. In Tanevska et al. 2020 they also adapted
the behaviors of a robot to maximize the pleasantness of the interaction for its peers.
The adaptation was also guided by synthetic emotion algorithms that controlled the
needed level of response and input [148]. The immediate information that is only ob-
tainable in the interaction can also be viewed as a reference to the concept of situated
knowledge in Harraway 1988 [149].

38



4 Principles of affective robotics

Syrdal et al. 2009 presented the “Negative Attitude towards Robot Scale” for use in
discovering biases toward specific robot behaviors [150]. The researchers did not find
a correlation between the evaluation of the behavior and the scale. However, they did
discover a correlation between the scale and the comfort level of the participants when
interacting with the robot. Yamada et al. 2021 looked at the scenario that could lead
to children abusing robots and identified five different subsequent factors that could
escalate a negative scenario [151].

Batrinca et al. 2012 analyzed videos of test participants in collaborative settings
and found that their approach could automatically detect the extraversion level of the
participants [152]. The level of extraversion of the human participants was also deter-
mined by Pianesi et al. 2008 who used video analysis of human-to-human interactions
in their project [153].

Building on these findings

The references show that progress has been made in adapting robot behaviors to the
personalities of the users by focusing on various types of contextual information. There
is a tendency in some of the current social-robot projects to focus on the major person-
ality factors (e.g. the “Big Five”) and to use these to adjust a robot’s behavior. This
approach is feasible as the personality factors are well-researched cognitive-psychology
concepts that are measurable through experiments. However, for robots to gain in-
sight into any of the personality factors of the humans they interact with, a thorough
data-gathering process is often needed. This process usually includes a series of par-
ticipant questions asked prior to the experiment, which can impact the immediate
applicability of the results. This inspired us to investigate the principle below.

• Combining multiple sources of low-complexity context information can increase
the contextual insight.

It is challenging to gain an overview of complex personality factors solely from an in-
teraction between a human participant and a robot. This explains why most research
projects focusing on personality factors attempt to gain insight into such factors ahead
of the interaction. This is often accomplished using questionnaires following the meth-
ods described in previous psychology studies. Examples of such are the questionnaire
on personality traits used by Cattell 1943, the Personality Inventory presented in Ey-
secks 1965, Eysenck 1975, and the Big Five Factor personality model used by McCrae
and John 1992 [154–157]. Although these approaches can provide the necessary insight
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into the personalities of the participants, using them can make it more cumbersome to
directly apply the research results in the current social robots. For instance, robots in
real life usually do not ask humans to fill out a questionnaire before they interact with
them. This project focused on using the immediate but less detailed contextual infor-
mation available in the interaction. This entailed investigating the feasibility of using
contextual information to reinforce behavior adaptation across different contexts. Us-
ing the personality information available in the immediate situation is roughly what
humans do. We often fit aspects of our behavior to the characters we interact with by
reading the immediate situation. There is an opportunity for social robots to benefit
from using a similar strategy.

4.6 Using physical context information

This subsection highlights examples of how the information gained from the physi-
cal work environment of robots has been used to gain better context understanding.
Utilizing knowledge on the physical context of robots may improve human-robot-
interaction scenarios, as shown by Roger and Christensen 2012, who presented a sys-
tem that helped robots understand the semantic meanings of the physical placements
of different objects [158]. Torre et al. 2020 investigated the relationship among the
task, work context, and voice of a robot, and found that the robot’s designated task is
highly influential in what voice type the participants matched to a specific robot [159].
Coupete et al. 2016 tried to make a robotic arm move in an acceptable collaborative
manner that aligns with the requirements in the environment and with the users’ ex-
pectations [160]. Aliasghari et al. 2021 investigated how arm-motion kinetics and gaze
types influence how a humanoid robot is perceived and found that arm movements
can affect the robot’s perceived confidence and eagerness to learn. They also found
that the type of gaze affects the robot’s perceived level of attention to its tasks [161].

Cosgun and Christensen 2018 added context awareness to enhance a person-following
robot. The robot predicted targets of future human interaction by looking at the veloc-
ity of the human it was following [162]. Using movement and audio to sample details
about the users has also been the focus of previous projects. Nakadai et al. 2003
used both to determine the active speaker in a multi-speaker environment. The per-
formance of their developed system depended on the accuracy of localization. They
found that motions directed toward the sound source improve the recognition of the
active speaker as it strengthens the system’s ability to separate the speaker from other
audio sources [163]. Zafar et al. 2018 used machine learning to classify the movement
patterns captured by an RGB-D sensor. They also classified the levels of extroversion,
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agreeableness, and neuroticism traits [164]. They used a humanoid robot in different
role-play scenarios and reached high accuracy in the automatic assessment of personal-
ity traits. Lera et al. 2017 used the acoustic properties of an environment to facilitate
differentiation between indoor contexts [165]. The project trained neuronal networks
on ambient audio signals to classify the contexts.

Improving the communication skills of a robot was the focus of Xiao et al. 2016 [166].
They tried to enhance human-robot interactions by including communication through
natural body language. They created a robot that understood the meaning of human
upper-body gestures. The robot communicated with facial expressions, movements,
and spoken language. Liu, Wang, and Wang 2018 focused on pose estimation to facil-
itate the taking of context-aware safety measures for users working near an assembly
robot. The system used multiple camera sensors of different types to record and clas-
sify assembly poses. The results were used to determine the intentions of the users in
the vicinity of the robot [167].

Building on these findings

The references indicate a general momentum toward using physical context informa-
tion in social robotics. This is evident across a diverse set of robotics research projects.
These projects utilize different approaches to retrieving context information, and the
detail level of the retrieved information varies with each approach. Although retrieving
physical context information is attainable, raising the detail level of the gathered data
is often achieved only with an elaborate sensor setup. Furthermore, a higher detail
level also increases the complexity of the needed data-processing algorithms. Inspired
by these findings, this project investigated the veracity of the statement below.

• Basic context information may be useful for informing affective behaviors.

In real life, we humans cannot switch off our input-sensing capabilities. We sense
and experience all the time while our brain filters out irrelevant inputs [20]. This
inspired the idea of a new breed of context-aware robots. Similar to the interoception
process, these robots will continuously evaluate their context using easily attainable
sensor data. They will benefit from not demanding perfect information about the
context. Instead, they will accept and use imperfect context knowledge to guide the
selection of robot behaviors based on simple sensor information. The simplicity of the
sensor setup will allow such a process to run at a high refresh rate.
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There may be an unused opportunity in focusing on using the sensors present in most
social robots to gain a rough estimate of the physical context. This low-granularity
context information can be used to guide the selection of behaviors to align with the
current context. In our 2021 paper, we focused on the physical dimensions of the
context environment and adapted a robot’s behavior to the preferences of the test
participants in the different physical contexts [44].

The main strategy entails accepting that getting a complete context overview may
be infeasible. Instead, using simple sensors and basic context information may be
usable in guiding behavior adaptation. Furthermore, as such information may be easily
fetched at a high refresh rate with simple sensors and low processing requirements, it
is easy to apply in most robot projects. Although these data may often be inaccurate,
the high refresh rate makes up for various error readings over an averaged result.
A simple setup also presents the opportunity to add further sensors and combine
multiple sources of information. When accepting inaccuracies from single simplistic
sensors, such a setup may be beneficial in raising the detail level of the gathered
physical context knowledge.

4.7 Summary

The research papers presented in this section discussed the progress made in the main
focus areas of this project. The first part included historic examples that inspired this
project to focus on emphasizing anthropomorphism and the perceived emotions that
emerge from using a combination of different behaviors. The second part presented
examples of the impact of using different interaction modalities. It highlighted a ten-
dency in the current research to focus on few interaction modalities in human-robot
communication. This inspired us to focus on how human-robot communication influ-
ences an interaction when robots make use of multiple modalities, and on including
more factors of the interaction besides the communication features. The third part
presented references that utilized the coordination of behaviors and highlighted how
we used it in this project. The fourth section referenced various research results from
state-of-the-art neuroscientific research, which included theories on emotions as con-
structed entities. This had an impact on the data-gathering processes in this project.
The theories may or may not be proven correct, but it may still be infeasible to ask the
participants to focus on single isolated events and evaluate single communication fea-
tures in human-robot-interaction studies. The two final parts of this section contained
references from projects that included context information in social robot scenarios.
These references indicate that there may be an opportunity for social robots to use
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low-detail personality information and adapting their behaviors to it. They also show
that it may be beneficial for social robots to use simple physical context information
to inform the high-level behavior selection processes.
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Paper 1 resumé: The Model of Affective

Expression Modalities

In the paper titled “A Systematic Comparison of Affective Robot Expression Modal-
ities,” MOAM is introduced. This model is a descriptor and comparison tool for
different affective robots. Robots communicate through different interaction modali-
ties, and this paper identifies and focuses on five high-level modalities; morphology,
movement and orientation, posture and gestures, audio-based, and anthropomorphic
reflection. Figure 5.1 shows the latest revision of the model, and it reflects the amount
of emphasis put on specific modalities for each robot. Overall, this works to depict
the communicative and affective strengths and weaknesses of an affective robot using
a point distribution system to highlight the features of each interaction modality. The
model also illustrates how well the robot responds to external stimuli and how aligned
its abilities are with the intended work scenario. Each modality is given a rating from
1 to 4 (in the latest revision), and the corresponding section of the model is colored
to form a connected diagram. Points are given to each modality according to the
following criteria:

0. Point: No interaction modality is present in the robot.

1. Point: The interaction modality aligns with the context.

2. Points: The interaction modality is implemented and aligns with the context,
but it only slightly improves the robot’s affective expression ability.

3. Points: The interaction modality is implemented, aligns with the context, and
is used to improve the robot’s overall affective expression ability.
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4. Points: The interaction modality is implemented, aligns with the context, im-
proves the robot’s affective expression ability, and is also used to respond to
incoming stimuli.

The limit of 4 points per modality reflects a trade-off between depicting a robot
in a high detail level and being able to systematically assess the qualities of affective
robots. The downside of using a simplistic model with 4 points is that it may limit
the variety in the resulting robot depictions, and the upside is that the model is easy
to apply for most robot designers.

Figure 5.1: The latest revision of the model of affective expression modalities (MOAM)
and context alignment. The five slices depict high-level interaction modal-
ities. Each modality can contain one to four possible points that reflects
the extend of its implementation.

The maximum points for each interaction modality depicts a robot’s ability to react
to stimuli in the vicinity using the features from that specific interaction modality. For
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instance, for the movement and orientation modality, this can be as simple as the robot
adjusting its orientation toward a source of audio in its environment. Furthermore,
each created MOAM model should be viewed in light of the robot’s intended work
context and designated task. The inner-circle indicates the robot’s alignment to the
contextual requirements in any scenario. Each working context introduces specific
demands on the interaction modalities and changing the contexts may either decrease
or increase the effectiveness of a robot’s communication abilities.

5.1 Objectives

The project reported in this paper had the following research objectives:

• To define objective measures for the affective abilities of robots.

• To develop a systematic comparison tool applicable to any robot.

• To use such a tool to gain an overview of the current field of affective robot
research.

With the diverse research field in which each project investigates and develops in-
dividual communication features for affective robots, this project aimed at defining
simple traits for each of these affective robots which facilitated a discussion on and
comparison of their affective features. Defining such traits also created an opportunity
to gain an overview of the general direction of the research field as a whole to find
and highlight previously unused potential research directions for the pursuit of further
optimizations.

5.2 Findings

In this project, the model was used to analyze 39 different affective robots. This was
done by gathering information from all available research papers regarding each robot
and its interaction modalities. With this information, we could distribute points for
the modalities in accordance with the MOAM criteria. The results showed that 15%
of the robots had points distributed for all interaction modality slices, and 85% had
a single modality or more with 0 points. This indicates that most research project
robots are designed for tasks that do not require one or more communication outlets.
Furthermore, 25.6% of the included robots had a 0 rating for more than three inter-
action modalities. For the robots that had at least a single modality with 0 points
assigned, the average number of modalities was 1.71. This indicates that a large part
of these robots was created with a focus on few interaction modalities.
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5.3 Contribution

MOAM contributes to the research field of affective robotics by providing a quick
overview of the strengths and possible weaknesses of any robot that interacts with
humans. This may be useful in the following ways:

• As a checklist for consideration in the design phase of the robot.

• As a comparison tool between already constructed robots.

• As a tool for evaluating opportunities for improvements in an existing robot.

Although the model is simplistic, the simplicity may work in its favor when used in
the design phase of social robots. The simple structure that emphasizes five interaction
modalities to consider can work as a checklist if the goal is to amplify a robot’s affective
impact. A more detailed model may provide more direct design directions, but the
high detail level often makes it time-consuming or cumbersome to use. A simple
model that may work solely as a checklist, has a high probability of being adopted by
engineers and being used apart from academic purposes. The same argument can be
made about why the tool can be viable: it can provide an overview of a larger range
of robots. A more time-consuming analysis of several robots may be infeasible.

The model is relevant as a way to pinpoint opportunities for the further development
of the existing robots. In some cases, it can be argued that furthering the development
of an existing interaction modality will have little impact on a robot’s overall expression
ability while adding simple features from another modality can drastically improve it.
Such an impact was investigated in our 2019 project as discussed below [46].

The result of creating and using MOAM on various affective research robots indi-
cates that there is an under-researched opportunity in exploring the synergies of using
multiple interaction modalities for robots to communicate. This informed the project
and led it to include the principle below in the research going forward.

• Multiple interaction modalities should be utilized when designing affective social
robots.

This strategy is a departure from the mainstream affective-robot research which
tends to focus on a single communication measure to improve human-robot interac-
tions. As previously stated, this can be a viable strategy to ensure that the research
experiments obtain clear results from isolated subjects. However, this paper discusses
the possibility that it is also limiting the research from gaining insight into the syner-
gies that may arise from combining several modalities.
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5.4 Implications

The findings of this paper inspired us to investigate the impact of improving the
affective communication abilities of robots with undeveloped modalities. In our 2019
paper, we augmented the audio-based expressions modalities of a robot to strengthen
how it was perceived when interacting with humans [46]. In that project, the MOAM
model was used on the robot and we identified a key area to improve that would fit
the contextual demands of the interaction. The robot consisted of a soft robotic arm
and we altered its overall expression by implementing communication features from
the audio-based interaction modality. The system used sounds that fit the existing
audio originating from the robot. This mitigated the noise occurring from the robot’s
pneumatic systems. When interacting with the human research project participants,
the robot was perceived as being significantly more curious, and happy, and less angry
when augmented by artificial audio. The results highlight the possibility of identifying
the unused potential of interaction modalities which the MOAM model can aid with.

The model proposed in our 2019 paper has been further developed and used at
various stages throughout the current project. The latest version expands the impor-
tance of context alignment and can be seen in Figure 5.1. While the inner ring of the
initial model depicted whether or not the modality was implemented, the new model
places context alignment as the initial entry barrier for each modality. This means
that to gain any points in a modality slice, the implemented features of the robot
must meet the contextual demands of the robot’s work environment. For instance, a
small-armed gesturing robot may have the best and most intricate gesturing abilities
but if the work context is on top of a large building, nobody will be able to see its
small-armed gestures. The work context and intended role of a robot are important
as they can limit the number of distributed points for each modality. For instance, for
Paro the therapeutic seal, there are no points assigned for movement and orientation.
This makes sense as its main therapeutic task is to stay still on the user’s lap [61].
This explains why the context is important when creating MOAM models and why
different models should be compared considering the roles intended for the robot.
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Paper 2 resumé: Coordinating robot

reactions

In our research paper entitled “On the Causality between Affective Impact and Co-
ordinated Human-Robot Reactions” the focus area was the coordination of events
shared between the interacting robots and humans. We investigated the implications
of a human and a robot both experiencing and reacting to an event during an inter-
action. This was investigated with regard to the changes in how the human perceives
the robot, and the changes directly related to the timing of actions and reactions ini-
tiated by a robot. Knowing exactly when to use specific behaviors and how precisely
to respond to human input may amplify how a robot’s intentions are perceived. This
paper investigated this effect in both cooperative and conflict scenarios.

6.1 Objectives

The research objectives of this paper are shown below.

• To investigate if shared events impact how robots are perceived in an interaction

• To measure how the specific timings of a reaction alter how a robot is perceived

• To determine how to improve a robot’s affective impact through delayed re-
sponses

6.2 Experimental work details

To attain these aforementioned research objectives, two different test setups were
created. The first test isolated and measured the reaction element of affective robot
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expressions. The second test investigated the effects of delaying the reactions of a
robot in a physical conflict scenario with a human participant.

Figure 6.1: The average ratings for each question asked in the experiment grouped
by the delay time in milliseconds. The participants were asked about the
perceived impact on themselves (blue), the rated appropriateness of the
robot’s actions (red), and the perceived impact made by the participants
on the robot (green).

The initial test was performed with two different groups of human participants ex-
periencing a scenario involving three small robots residing in a small (2x3m) arena.
One by one, the participants in the first group were asked to push a red button which
triggered a loud explosion sound. In this setup, the participants and the robots expe-
rienced the events simultaneously and the robots reacted to the event in coordination
with the participants. The participants in the second group were also interacting with
the robots one at a time. However, with this group, the explosion sound still hap-
pened but the robots did not react to the sound in coordination with the participant.
Instead, their reactions were initiated at random intervals.

While the first experiment focused on the effects of coordination versus non-coordination,
the second test investigated the exact timing of a robot’s reaction. This test focused
on the immediate delay in the initiation of a response from a robot after an event.
It included a custom-designed robot that could react with greater precision than the
robots that were used in the first experiment. The participants interacted with the
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robot one at a time by hitting it as can be seen in Figure 6.2. By letting the par-
ticipants hit the robot we were able to establish the exact start time of the event.
The robot responded using its eyes and audio. The experiment investigated various
response times by delaying the robot’s response with each new group of participants
varying from 50 ms to 3600 ms.

6.3 Findings

For the initial experiment, we asked the participants to rate the robot’s level of arousal.
The difference between the perceived arousal level for the two test groups was signifi-
cant at p<.05. When the participants shared a reaction with the robots they perceived
the latter as conveying a higher arousal level. This indicates that there is a relation
between coordinating a robot’s response and how we humans perceive the robot’s
affective state.

Figure 6.2: The instructional image from
the second test which included
a physical interaction between
the robot and the participating
humans.

For the second experiment, we asked
the participants to rate the perceived im-
pact of the robot’s reaction. The av-
erage ratings for all the questions per
delay time can be seen in Figure 6.1.
The results indicated a tendency in the
data that the preferred reaction time of
the robot was approximately 200 ms.
As the human reaction time is approx-
imately 250 ms, this indicates that the
participants preferred that the robots
reacted with near-human-like response
times. The experiments also included
questions on how the participants would
rate the impact of the response time on
the robot (as opposed to the impact on
the participants themselves). The re-
sponse time with the highest rated im-
pact on the robots was slightly faster at
approximately 100 ms.
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6.4 Implications

The results obtained from this research project are directly applicable in most robot
projects. They show that the events that occur as we humans interact with robots
change how we perceive the robots. How we make the robots respond to these events
can either increase or decrease the effect of what they are trying to convey. The results
show that:

• How a robot is perceived by a human can be influenced by the events they share.

• If the aim is for the robot to make a big impression on the participants, it must
react with near-human reaction times.

• If the aim is for the test participants to feel that they made a big impression
on the robot, the robot can benefit from reacting with a slightly lesser delay. (
˜100 ms faster).

In a condensed format, the findings of this research project helped in forming the
suggested design principle shown below.

• Interacting is reacting; the temporal aspects of an interaction can alter the af-
fective impact of robots.

The results of this paper complement previous findings indicating that humans
prefer robots that move at human-like speeds in a cooperative setting [168]. Pan et
al. 2019 used humanoid robots in such a setting and this project extended these results
that they obtained by using a non-humanoid robot and a higher-intensity conflict sce-
nario. It should also be mentioned that the results of this paper are context-dependent
and there is no basis for a conclusion that the findings apply to other contexts. For
instance, there is nothing that supports a decision to slow down the movement of the
robotic arms at factories to human-like speeds. The fact that these results depend on
specific contexts both for the task and for the physical work environment should moti-
vate future research to focus on gaining insight into context awareness in human-robot
interaction scenarios.
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In “Adaptable Context-Based Behavior Selection in Autonomous Robots” how to
facilitate context-awareness using only simple sensor input was investigated [44]. This
research direction was a departure from the main strategy of the previously published
papers whose results were highly context dependent. Each interaction modality in
MOAM introduced in Paper 1 and the expressions utilized in Paper 2 all had to be
optimized for the specifics of the physical environment. For instance, a soft-spoken
robot communicates best within close proximity of anyone interacting with it. Robots
both in and outside academia often come with behaviors preconfigured for a generic
work context in which the robot designers envision the robots to be used. Such robots
may have a large variety of behaviors, but they will often not change as the context
changes. For instance, the communicative features of a robot will remain the same
regardless of the physical circumstances of the robot’s task environment such as the
noise level, and the distance to the user. If a robot’s interaction modalities do not
align with the context the robot may be unable to communicate which underscores
the importance of gaining (even simplistic) information on the environment. Although
there are many ways of gathering information on the physical context, this project
focused on measuring and using the simple attainable context information provided by
the sensors present in most social robots. We hypothesized that although the gathered
context information was simple it would be sufficient to guide the robot toward a
general direction with regard to suitable behaviors for its current environment. For
instance, a small physical space may inform the robot that large dance moves are not
suitable for the current physical context. In this project, we created a system that
learns a proper prioritization between predefined discrete behaviors to best align with
the different contexts. However, as the number of robots’ potential work contexts
grows, it may not be feasible for robots to visit and gather details on the behaviors

53
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that fit all of them. For that reason, the project also focused on investigating data
structures that allow robots to generalize the input and interpolate among the different
behavior prioritizations with regard to the measured attributes. This would allow a
robot to learn the best fitting behavior for two contexts and estimate a fitting behavior
for a context with attributes lying between the two.

7.1 Objective

With this paper, we focused on the research objectives shown below.

• To investigate the feasibility of using low-resolution context information to drive
behavior selection in social robots.

• To develop a context representation system that generalizes the gathered data
and facilitates predisposed prioritization of behaviors for previously unvisited
physical contexts.

7.2 Experimental work details

In this paper, we created and tested a context-aware robot. The robot was not de-
veloped to function within a predefined work context but adapted its behaviors as it
explored new contexts and interacted with humans. The robot would start by ex-
ploring different physical environments. Using a single touch sensor, the robot would
attempt to determine the physical room dimensions. This was achieved by driving in a
random direction three times and calculating the average time-of-drive number. There
are more optimal ways of obtaining the estimated size of the room, but the simplicity
of this approach has a purpose: it demands little processing power and requires only
a simple contact sensor present in most off-the-shelf robots.

Once the physical attribute(s) of the room was found, the robot would attempt to
match the current context with the most similar context in a topography of nodes.
Each node would represent a single context. Each time the robot visits a new context
the robot would try to cluster nodes that shared similar context measurements. Each
node also contained the full set of behaviors available for the robot in prioritized
order. The behaviors were similar in that they all consisted of physical movements,
facial expressions, gestures and audio. However, the behaviors differed in intensity
level. The least intensive behaviors consisted of subtle movements, small gestures,
and low-volume audio. The most intensive behaviors, on the other hand, used high-
speed movements, large gestures, and high-volume audio.
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Figure 7.1: The visualized context-map following the initial context exploration. Each
square represents a single contexts containing an individual behavior
prioritization.

The robot would visit new contexts and interact with humans to learn the best-
fitting behavior. With each interaction, it would alter the prioritization for the current
context node. It would also update the surrounding nodes (with a lower learning rate).
With such an update scheme, the robot tried to establish what worked best for the
current context, but also what might be the best fit for similar contexts. The visualized
map created after the initial exploration of two different contexts can be seen in Figure
7.1. In our experiments, the robot was tested on six human participants who interacted
with it in 72 individual encounters. We tested the robot in two different contexts; in
a large physical space and in a small physical space.

7.3 Findings

The initial findings showed that the robot was able to distinguish between the differ-
ent contexts and that it managed to prioritize its behaviors in accordance with the
different context requirements. We hypothesized that high-intensity behaviors would
be preferred in the large physical spaces while the lesser-intensity movements would
be preferred in the small physical spaces. This was confirmed in the experiments in
which the participants, to a significant degree, selected a higher-intensity behavior for
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the larger space and the opposite for the small space. The robot learned from these
interactions and the same result was evident in the behavior prioritization created by
the robot during the experiments.

7.4 Implications

The approach to context awareness presented in the paper is a departure from the
approaches presented in most affective-robot research papers because it embraces the
use of simplistic context knowledge gathered with simple sensors. It may be argued
that the results only confirm common intuition about the proximity of robots and
the preferred amplitude of their movements and gestures, but the created behavior
prioritization is immediately applicable in a large variety of robots. That the map of
contexts and the resulting behavior prioritizations were created using only a simple
sensor made the approach viable for use in almost every robot project. This created
the foundation for the suggested design principle shown below.

• Basic context information may be useful for informing affective behaviors.

From very simple and limited sensor inputs the robot system gained context aware-
ness and used the information to create a simple context-aligned behavior prioriti-
zation. In our experiment, the robot behaviors were simplistic and limited to four
discrete behaviors. This experimental design was chosen to make the tests more feasi-
ble within a limited number of interactions. In real-life scenarios, a robot can prioritize
among a much larger set of different behaviors. As the robot’s context representation
updates the prioritizations not only for the current contexts but also for neighbor-
ing similar contexts it allows the robot to visit unexplored physical environments and
pre-estimate the best possible behavior to use in that context.

This project also investigated how to mitigate the problems of self-reporting bias,
which often occurs when conducting experiments in social robotics using post-experiment
questionnaires. This was done by minimizing the time interval between the experiment
and the user evaluation. We did this by moving the questions posed to the participants
from a post-experiment questionnaire to a central part of the human-robot interaction,
in which the robot would ask the questions during the experiment. This approach was
used in an attempt to capture the users’ immediate sensations and thoughts rather
than only obtaining their post-experiment evaluation. We also included non-verbal
user measure points to support our findings as a way to circumvent the self-reporting
bias.
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The title of the final included paper is “A Minimalistic Approach to the User Group
Adaptation of Robot Behaviors using Movement and Speech Analysis” [45]. The paper
investigated the feasibility of gathering contextual information from the participants
during a minimal set of interactions. The information was gathered for the purpose
of adapting a robot’s behavior to the preferences of individual persons and different
user groups based on their speech and movement characteristics, as an indicator of
an estimated level of extroversion. As a personality trait, extroversion has recently
caught the attention of roboticists as it has proven to influence the preference of
robot behaviors and how much humans tend to anthropomorphize robots [169, 170].
Extroversion was defined by Carl Jung in the early 1920s but was also presented
in Eysenck 1965 as one of the main attributes in the “Personality Inventory” [146,
155, 156, 171]. In this project, we defined the measurable attributes in a human-
robot interactions that could distinguish them across several contexts, and potentially
indicate a general extraversion level of humans. Furthermore, we used this information
for informing high-level behavior prioritization. It was important that the data could
be gathered within the interaction and that the required interaction was only a short
one.

The defined attributes were based on the speech and movement characteristics of
the participants as these relate to how energetic, talkative, and outgoing they were
perceived. These perceptions could indicate their level of extroversion. As discussed
in the paper, there has been progress in using both audio and movement patterns
to define user characteristics. This project focused on obtaining similar results but
with a simpler sensor setup and within a short interaction duration. The project also
investigated how these measured attributes are impacted when the physical contexts of
the interaction are changed, and determined the viability of distinguishing individual
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users across different physical locations based on the selected attributes.

8.1 Objective

With this project we focused on the research objectives stated below.

• To determine the feasibility of using simple readily available data to distinguish
individual users.

• To determine the feasibility of generalizing these attributes to form user groups
and of adapting robot behaviors to them.

• To determine the impact of interacting across several contexts on the measurable
attributes.

8.2 Experimental work details

The experimental setup included a custom-developed control system in a robot equipped
with audio and camera sensors that enabled it to gather the necessary data from its
interaction with humans. The data were gathered as a part of the experiments per-
formed in our 2021 project [44]. To test the user distinction abilities of our system it
was necessary to include multiple interactions with the same participants. All in all,
the robot interacted with six human participants in 36 interactions across two different
physical contexts. The robot interacted with the human participants by asking them
questions and by reacting to their answers with a scripted response. As the aim of the
project was to determine the feasibility of using a minimal dataset and a simplistic
sensor setup to distinguish individual users, the main data were gathered within the
first two questions in the interaction. The environment of the interaction, how the
participants moved during the interaction, and the speech patterns in the participants’
answers was the data that were used in the further analysis. In our experiment, the
robot also asked the participants to select one of two behaviors and proceeded to show
them two behaviors similar to the experiment in our 2021 project [44]. The selected
preference was noted and these data were used to investigate the relation between the
preference and user groups based on the measured personality attributes. The test
participants interacted with the robot one after another with each interaction lasting
about 5 minutes. With each physical context, the participants interacted with the
robot three times.
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8.3 Findings

The findings of this project revealed that the robot could successfully distinguish
individuals in a single context using the measured attributes. This was evident in the
data as the measured data points per individual were more closely clustered together
than the overall standard deviation. The results for distinguishing the participants
across the two physical contexts can be seen in Figure 8.1. As the graph shows,
the measurements of the participants’ personal traits are closer to each other in each
physical context than in a different context. This means that the robot will be able
to distinguish the users individually in each separate context but will not be able to
recognize users across multiple contexts.

The foregoing can be explained by the fact that the selected attributes are insuf-
ficient to give proper insight into the different user characteristics. The minimalistic
setup could also have limited the variety in the data for each participant as two ques-
tions could not have left much time for the participants to stand out. The failure to
distinguish the participants across different contexts can also be attributed to the fact
that people may talk and move slightly differently in each context. The differences in
the physical dimensions of each test environment might have enticed the participants
to move more or less as the space around them increased or decreased.

The data regarding behavior preference were analyzed in terms of the correlation
between the users’ behavior preference and the possible similarity of the user’s speech
and movement attributes. To adapt the behavior of the robot to that of the user groups
on the basis of these attributes, there should be a similarity between the behaviors
chosen by the participants and their individual characteristics. However, beyond a
few coincidental similarities, the data gathered in the experiments were insufficient to
establish a significant correlation between the two.

8.4 Implications

The paper presents a method of gathering contextual information from the partic-
ipants within the first moments of an interactions. The sensors that were used to
gather the information are present in most social robots which makes the results im-
mediately applicable in many robot projects. That the robot was able to distinguish
individual users only within isolated contexts, however, indicates that there is room
for improvements. The approach may be strengthened by combining the speech and
movement attributes with other systems that inform the robot about the current
physical context. For instance, if the robot can distinguish the users in each context,
gaining information on each current context can aid the robot in distinguishing the
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users across several contexts.
It may be argued that defining user groups based on personality information gath-

ered within two sentences of an interaction is infeasible or maybe too ambitious. The
Eysenck personality index uses more than 50 questions to estimate the same. However,
using a limited number of questions makes the system more practical and usable in
a real-life work scenario. The findings of this project highlight the strengths of using
multiple sources of easily attainable information to provide knowledge on the current
context, and they informed the creation of the suggested design principle shown below.

• Combining multiple sources of low-complexity context information can increase
the contextual insight.

Many previous research projects focused on various aspects of a user’s personality,
but the approaches that were used in such projects often require an elaborate sensor
setup or the use of pre-experiment questionnaires to gather information on personality
factors, such as the Five-Factor Model or the Personality Inventory. This is not feasi-
ble for any robot in a real-life scenario that has to function without the information
gathered through a questionnaire administered before every interaction. By tolerating
the impreciseness and uncertainty of the result, robot designers can use this approach
to increase robots’ context awareness. They can either choose to limit a robots’ deci-
sions on the basis on this information or enable the robot to combine such information
with other easily attainable information to gain a richer contextual understanding of
the situation.
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Figure 8.1: Each color represents a participant, and the two circles for each partici-
pant represents their measurements in the two different context. The edge
between circles represent the Euclidean distance between the vectors with
their measurements. The measurements of personal traits for each par-
ticipant are within closer distance to each other in each physical context
than to themselves in the other context. This means that the robot would
be able to distinguish the users in each separate context but not across
multiple contexts.
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Discussion

This dissertation introduces seven design principles that can help robot developers
build robots with a stronger affective impact, and with the ability to communicate
using all available means of interaction. The design principles are not strict rules
but guidelines that may be used to inform the designs of social robots. They are
also meant to serve as a tool for consideration when conducting experiments involving
human-robot interactions.

The principles are as follows:

• Anthropomorphism may be emphasized to increase the affective impact for
robots.

• Perceived complex emotions can emerge from the combination of simplistic be-
haviors.

• When and how humans perceive robots and evaluate robot behaviors are factors
that are difficult to control.

• Multiple interaction modalities should be utilized when designing affective social
robots.

• Interacting is reacting; the temporal aspects of an interaction can alter the af-
fective impact of robots.

• Basic context information may be useful for informing affective behaviors.

• Combining multiple sources of low-complexity context information can increase
the contextual insight.
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It can be argued that encompassing all the above design principles in each robot
project may raise the overall complexity of the project. It can also be argued that
it may be difficult to transform the principles into practical design directions in a
robot project. This section will discuss each design principle considering the following
points:

1. How we attempted to incorporate the design principle.

2. How the principle may be applied to different scenarios.

The principles will be discussed in the following sections, with a focus on the engi-
neering aspects of using each principle and through the hypothetical evaluation of the
applicability of each principle.

9.1 Using anthropomorphism

• Anthropomorphism may be emphasized to increase the affective impact for
robots.

As discussed in Fussel et al. 2008 and as shown by the 1944 Heider and Simmel
experiment, it is difficult to avoid anthropomorphic interpretations of a robot’s be-
haviors [8, 29]. We found that no matter how simple the robot presented in an ex-
periment is, the users will project different human emotions and intelligent intentions
onto the robot. With anthropomorphism being an integral part of the interaction it
is evident that robot designers have to be aware of how it may influence the perceived
intentions conveyed by any robot. It thus becomes vital in affective-robot research to
investigate what stimuli either add to or subtract from a potential anthropomorphic
interpretation. In our project, we investigated how to strengthen anthropomorphic
interpretations of different robot behaviors through the synergy between the behav-
iors and engineering aspects of affective robots. Utilizing anthropomorphism does not
necessarily mean replicating human features. Although some features of the robots we
developed were biologically inspired and human like, we generally avoided using hu-
manoid robots. Instead, we focused on the behaviors and reactions of non-humanoid
robots. We also emphasized anthropomorphism by using the contexts and narratives
of the robot’s actions in the experiments. This was evident in our 2020 project, in
which a high-intensity conflict situation intensified the participants’ feeling of empathy
toward the robot [43].
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It is difficult to directly use anthropomorphism. The interpretation of a robot’s
behaviors cannot be forced, is never universal, and differs from person to person. For
instance, during our experiments, some participants would gladly hit our robot, stating
that it was merely a box, while other participants did not want to hit it or just felt
very sorry for the robot while hitting it. One possible way of emphasizing the effects
of anthropomorphic interpretations of a robot’s actions is to flip it around and to try
to avoid any feature that would subtract from it. We did this in our experiments
by aiming to entice anthropomorphic interpretations with the way we presented the
experiments and robots to the test participants. We refrained from referring to the
robot as “it” and from explaining the inner workings of a robot during the experiments
as so not to prime the participants into thinking of the robot as an object.

• Perceived complex emotions can emerge from the combination of simplistic be-
haviors.

Anthropomorphic interpretations of robots’ actions can be useful with their ability
to attract a finite interpretation even from basic cues in an interaction. Humans often
want to project intelligent intentions onto a robot even when they see only a moving
box or flickering lights. This may be used to reflect a more intelligent robot behavior
through simple communication means. In other words, we do not always have to be
specific when we design expressive behaviors as people will project an interpretation
onto even simple robot behaviors. When the robots got stuck on the carpet of the
arena in our 2020 project, the participants quickly concluded that the robots were just
resting instead of perceiving it as an actual error [43].

Applied to robot projects in general, this means that we do not necessarily have
to copy how humans portray complex emotions. The mix of context and simple
robot behaviors will often result in a complex interpretation. Similar to how humans
interpret each other’s actions in light of the current situation, the context influences
how the robot is perceived. In our 2020 project, we combined simplistic behaviors and
utilized contextual events to make our robot seem remorseful and apologetic [36]. All
the behaviors that were used to convey such specific complex emotions were simplistic
and consisted of basic audio, simple movements, and gestures. The actions of the
participants and how they interacted with the robot in the experiment augmented
how these simple actions were perceived. Furthermore, if robot behaviors are initiated
immediately after an outside event occurs, the robot will often be perceived as having
an opinion of the event. This happens often even though this opinion is actually
formed by and exists only in the minds of the observers.
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• When and how humans perceive robots and evaluate robot behaviors are factors
that are difficult to control.

Some of the references in this dissertation indicated that we humans perceive and
evaluate our current context indefinitely and subconsciously. When we in academia
design robotics experiments including human participants, we sometimes rely on a
definite start and finite end to the experiment. This is often followed by questions
posed to the participants. We also often rely on the scientific conventions of isolation
of the subject under investigation and isolation of the test parameters. Such design
of the experimental setup conflicts with an evaluation process that begins before and
continues after the experiment, a process that also incorporates contextual inputs from
outside the planned experiment parameters. In our project, we acknowledged that the
evaluation happens outside the experiment and we countered the effect of this by mak-
ing sure that our robots were complete in our experiments, in the sense that no loose
wires, cogs, or inner machinery were visible. We covered any unwanted features that
could influence the interaction and how the participants would interpret our robots.
This included paying attention to our robot’s noises. We included audio to cover the
noise from any moving parts for various actions of our robots. This meant developing
appropriate sounds for gesturing or for moving from point A to point B. We also cre-
ated a consistent test environment, in which the participants and the robots interacted
with each other, to exclude any unwanted outside input. For that purpose, we built
separate physical rooms inside the laboratory so that the experiments could take place
with one participant at a time. In our last two projects, we also moved the time that
we asked the participants the questions to within the experiments. This was done
to avoid any self-reporting bias. We also asked the participants questions that could
highlight something else unforeseen outside the isolated object of the investigation.

We tried to be aware of the interdependencies between the different aspects of an
interaction. Figure 9.1 shows the circular dependencies of the investigated subjects.
The expression capabilities of the robot are dependent on being attuned to the context
and the context can be altered by the robot’s actions. The expression abilities of the
robot are dependent on how it is perceived by the users, and the users are influenced
by the context in which they may either like or dislike the experience. The users may
alter the context while the expression abilities of the robot can alter how the users feel.
The circular dependencies of these entities also illustrate that it may be challenging
to design a robot with a focus solely on one of these aspects as the other two are
intrinsic parts of the interaction. Although these focus areas are often investigated
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Figure 9.1: The interdependencies between the areas of interest influensing the inter-
action. The arrows represent overlap between the different areas.

subsequently, in reality, they may influence each other. This may be considered in any
discussions on isolated project findings as the interdependencies of these three entities
may influence the findings. This does not mean that any finding is incorrect but that
any discussion on a finding’s application may benefit from considering all three aspects
of the interaction.

It may be argued that this design principle relates mostly to how robots are used in
laboratory experiments. However, the concept may also benefit robots in other areas
outside academia.

Flipping around the examples given in the introduction and focusing on how the
humans in the interaction experienced the events can result in the scenario below.

The guests are ready to order and the waiter robot approaches the table.
The robot is unstable and shakes a bit as it approaches the table. The robot
has a small screen that shows its eyes, and there is an area with dead pixels
on the right side of it.

The technical problems of the robot are minor, but the guests may be hesitant
to trust it to complete waiting on them. Although the robot’s problems may have
nothing to do with the robot’s functionality, it may still influence the guest’s trust
in the robot and willingness to interact with it. Outside the technical problems,
everything in the context can influence how the robot is perceived. For instance, a
crack in the outer shell of a vaccine robot can make people scared of getting vaccinated
by the robot. It is beneficial for scientists to acknowledge that the experiment may
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actually begin prior to it or may continue beyond it. As such, it may be relevant
to consider all factors that may influence an interaction. Even though some factors
outside the experimental setup may seem technically irrelevant for the robot project,
such factors may end up providing the needed information to more fully comprehend
the human-robot interaction.

9.2 Utilizing interaction modalities

• Multiple interaction modalities should be utilized when designing affective social
robots.

The introduced MOAM contains five different high-level interaction modalities. It
may be argued that the low granularity of the model may result in an unspecific
description of the intended role of the robots. However, the low granularity also pro-
vides some freedom in determining whether and how to implement each modality. The
robots that we developed for the experiments in the included projects were designed
to create simple implementations of each modality so that the full range of modali-
ties could be covered. This also included implementing different reactions using each
modality. This was done to make the robots capable of forming a fitting answer to
most of the outside inputs, to make the robots seem more believable, and to strengthen
how well they invoked an anthropomorphic interpretation of their actions. Our project
also focused on the immediate high-impact improvements of the robot. Rather than
implementing advanced or complex solutions for a single expression modality, we im-
plemented simplistic measures to highlight the unused potential of any unimplemented
modality.

It may not always be possible or necessary to implement all modalities. The extent
of the implementation largely depends on the work context and the intended role of the
robot. MOAM can work to highlight the areas that will provide the biggest affective
return of investment when altering a robot. Many research projects aim to improve
a robot’s existing features to improve its affective communicative capabilities. What
MOAM is trying to convey is that there is a simple alternative to improving a robot
even further. By adding simple implementations of previously unused modalities, it is
possible to radically change how a robot is perceived. In our 2019 project, we found
that adding simple audio capabilities to a soft robot made the project participants
who interacted with it perceive it as being happier, sadder, or more playful. However,
the participants perceived the robot, their impressions of it were stronger [46]. This
shows that a diverse set of simple implementations of different interaction modalities
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offers a strong overall affective impact and that improving the missing areas in the
model may be a good investment.

Anthropomorphic interpretations are a vital part of the interactions between hu-
mans and robots and may be impossible to avoid. Strengthening how much humans
project intent and motives onto robots can make it easier for robots to communicate
and convey affective information. However, that is difficult to control as roboticists can
only control the expression of a robot and not its interpretation. MOAM emphasizes
robot’s reactions to outside inputs using different modalities to form the reactions,
and this may strengthen how people perceive the robots. For instance, a robot that
does not move even when one is physically interacting with it may not be perceived as
a living entity while a robot that shows simple reactions to various input types may
be perceived as real and as an entity that comprehends the situation.

Once again turning around the example from the restaurant and looking at it from
the perspective of the humans in the interaction may result in the scenario below.

A restaurant robot is waiting at a table and the guests are going through
their orders one by one. The guests find the robot fascinating and trust it
in the given situation. One of the guests, however, spills a glass of water.
The robot continues to ask about the order. The guests are trying to stop
the robot by shouting “Stop!,” doing wild gestures, and tapping the robot
on the head, but to no avail. The robot understands only specific spoken
commands and continues unfazed by the events.

It makes sense to enable robots to understand and respond to multiple kinds of
input. The lack of response by the robot in the above scenario may result in the
guests’ lack of trust in it. This is also important for how the robot communicates and
is similar to humans. We all communicate slightly differently, some people rely heavily
on gesturing while others express themselves through variations in the amplitude of
their voice. Any future breed of robots should be able to both use and comprehend
such variations.

9.3 Applying event coordination

• Interacting is reacting; the temporal aspects of an interaction can alter the af-
fective impact of robots.
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Both the included references and the experiments we conducted indicated that a
robot’s reactions to outside events influence how the robot is perceived. In our project,
we investigated the coordination and timing of reactions for robots and found that
these had an effect on their affective impact. This required that the robots we used
could react fast and control their reaction timing within milliseconds. However, not
all of the robots we developed could react with a high level of precision. For some of
the robots, their processing time of the measured input could make them appear a bit
slow. We countered this effect from a software design perspective by doing away with
the input processing that was not important to the interaction.

We aimed at making robots that could react using different kinds of physical and
non-physical communication methods. We embarked on this in our 2020 project, to
ensure that the robots’ reactions would be well conveyed and to investigate how the
hierarchy of modalities can influence how robots are perceived [36]. We found indica-
tions that what mattered most was not the specific type of expression modality used
in the robot’s reaction but that the robot reacted through a broad variety of interac-
tion modalities. This shows the importance of making robots understand and react
to their surroundings.

Although we used a robot that could react with high precision to investigate these
aforementioned concepts, the same technical setup is not needed to apply our findings
in other robots. We found that experiencing the same events as humans do and re-
acting to such events when humans react to these strengthen the affective impact of
robots. This may indicate that there may be an unused potential in enabling robots
to understand different kinds of stimuli and react to them. This can make them seem
more believable and can strengthen their bond with any human they would interact
with.

Let us once again look at a restaurant example from the guests’ point of view.

As the robot is taking an order from a guest another robot in the restaurant
drops a plate. The robot jitters, looks around, and comments on it to lighten
the mood and ease the tension.

Interaction is reacting, meaning the immediate actions a robot carries out after an
event occurs are important and can set the tone for how the robot is perceived through-
out the rest of the conversation. This also applies to turn-taking in human-robot
conversations in which embodied and voiced reactions are used both to communicate
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engagement and to convey a wish to initiate a sentence. In our projects, we enabled a
robot to react while the humans were speaking to convey that the robot was listening
and was still engaged in the conversation. Timing such reactions can also strengthen
this effect. Reacting too slowly may seem inappropriate, and reacting too fast may cut
off the speaker while still talking. Robots are often able to react faster than humans
but this may not always be the best option. It may even often be beneficial to slow
down the working speeds of social robots. This is especially vital for cooperative tasks
in which the humans and robots have to work together. Furthermore, slowing down
the robot’s response time can allow more time for the robot to process the input and
select the optimal response for the given situation.

The results of our experiments indicated that the perceived target of an emotional
impact in an interaction may differ with different reaction speeds. However, there may
be mechanical limitations to the extent to which a robot can guarantee a fast reaction.
In our project, we had to rely on audio and video as communication methods rather
than on gesturing or movements to facilitate subhuman reaction speeds. This was
because our hardware was too slow to provide a physical response. There may be an
opportunity to investigate the synergy among the different interaction modalities in
reactions when one of them is applied with faster timing than the others. For instance,
if a robot cannot react precisely enough using gestures, it can perhaps benefit from
reacting swiftly using audio and then adding a physical reaction more slowly with
gestures or movement. This may also include an investigation of the timing between
the two as delaying the second physical gesture too much can make the robot seem
odd. Also, with better hardware, there is an under-researched opportunity to further
investigate reaction delays to control the perceived target of the emotional impact.
This may be used in cases where the goal is to invoke empathy for the robots.

9.4 Attaining low-detailed context awareness

• Basic context information may be useful for informing affective behaviors.

The physical context can influence how the actions of robots are perceived. An
action that seems fitting in one context may not work in another context or may
mean something other than what is intended. With the initial experiments and robots
developed in this project, the physical context and work scenario of the robots were
highly influential on the shape and size of most of the robots’ communicative features.
This meant that the robots were constructed for the specific targeted physical work
environments and that their interaction modalities were aligned with such specific
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contexts. For instance, we enabled a robot to move on a level surface and attuned the
volume to the specific noise levels in the laboratory. We also adjusted the targeted
distance between the humans and the robots in the interaction. Adhering to specific
physical requirements meant that our robot would mainly work under the conditions
of our laboratory or in another context with similar physical attributes.

In our project, we created experiments that directly focused on the physical contexts
and their impact on behavior prioritization for social robots, but the notion of con-
textual awareness also influenced other projects. We attempted to isolate the tests as
much as possible by constructing a “neutral” test room for each of the experiments. It
may be argued that a neutral context does not exist, but we aimed to exclude as many
outside inputs as possible that could pull the focus away from the experiment and to
provide consistent and similar settings for each experiment. We also used adaptive
behaviors that allowed the robots to react to inputs with the same intensity as the
received inputs. For instance, we adjusted the volume level of the robot so it would
match the measured speaking intensity of the humans in the interaction.

The physical conditions allow robots to successfully communicate. Adapting to
the contexts can make robots function in multiple different environments. Successful
current consumer robots such as Pepper come pre-equipped with morphology, commu-
nication features, and locomotion systems designed for specific working contexts [54].
These features work great in the targeted contexts but are difficult to employ in other
physical domains. Such predefined robots are also rarely designed to switch between
contexts on the fly and adapt as the contextual demands change. We argue that even
simple contextual data can be used to make the robot seem believable.

Let us look at another restaurant example as experienced by the guests.

The robot is informing the guests about the available entrées. It is a small
intimate restaurant and the robot has set the volume level of its voice to
match the atmosphere. Another family is seated at the adjacent table. They
start arguing loudly. The robot continues to serve the family but raises the
volume of its voice to ensure it can be heard.

The data needed to inform the robot about the physical room dimensions can be
gathered using a simple contact sensor, as in our 2021 project, and a noisy environment
can be detected using a microphone [44]. It can be argued that the robot will need
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to verify that the noise did not come from the guests themselves it is waiting on, but
the example still shows that even simple, easily attainable information can be used in
some capacity to inform the robot’s behaviors.

9.5 Combining contextual data sources

• Combining multiple sources of low-complexity context information can increase
the contextual insight.

Although the use of simple available data to form an immediate reaction during an
interaction may have an advantage for robots, there may be scenarios in which a single
source of information does not provide sufficient contextual information on its own.
In our project, we had a robot that attempted to use the speech and movement char-
acteristics of humans to distinguish them from each other [45]. The system worked in
isolated environments but failed across multiple physical contexts. The project thus
suggested that measuring distinctive attributes in each physical context could enable
a robot to work across several contexts. Combining simple sources of information in
each context can provide a robot with a low-granularity overview of the current situ-
ation, one that is both usable and attainable.

With our robot in our 2020 project, we tried to combine many different data sources
to gain contextual information on the intentions of each person currently communi-
cating with the robot [36]. In the experiment, we informed our robot of the intensity
level of the current mood of a human scolding the robot. Our initial implementation
of a system that reacted to loud voices was not sufficient as it also reacted to loud
happy sounds. The combination of several data sources, such as the measured voice
amplitude, sentiment analysis, and facial expression classification, provided enough
contextual information for the robot to determine that the person was scolding it
rather than making fun of it (which the participants also tried to do in an attempt to
trick the robot into reacting to such). Although these individual sets of information
require complex processing, the sensor requirements for gathering them, such as a
microphone and a camera, are readily available in most off-the-shelf robots. The indi-
vidual information sources did not provide enough information, but the combination
of several input sources completed the contextual image.

Let us look a final time at a restaurant example from the point of view of the guests.

The guests are celebrating a birthday party at the restaurant and the robot
waiter approaches them. The robot hears multiple loud noises and sees
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one energetic person moving a lot. The robot decides that several energetic
people with loud voices may indicate something about the social context.
(e.g., party, birthday). It alters its behavior (and tolerance level) before
approaching the table. The guests experience a robot that waits on them
attuned to their festive behavior, a robot perceived as being both energetic
and like a natural part of the festive atmosphere.

The intelligent behavior in the above scenario emanates from two sources of infor-
mation: The first piece informs the robot that the voices are loud and that the persons
may be in a high-intensity mood. The second piece of information informs the robot
that there are multiple people in the vicinity. These contextual cues can be gathered
with simple means but may have a great effect on how well the robot comprehends the
current social context. Also, as with Russels and Mehrebians PAD space, detecting
intensity in combination with the number of people in the vicinity may be a great
approach to classifying various social contexts [99]. The key challenge with using
the information gained in this approach is deciding on a fitting abstraction level that
matches the processed contextual information. For instance, the physical room size
may be used to determine the speed of a robot’s expressive movements but could be
ill-suited for informing a robot on how to invoke empathy in a conversation. Many
robot research projects disregard context awareness, arguing that there are too many
variables to consider and that the gathered data never provide complete or sufficient
context awareness. With this project, we argue that instead of trying to extract a
complete overview of the contextual situation for a robot, we should accept that the
data will always be limited or imprecise and thus adjust the scope of our application
of the information in the current interaction.
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The main research objective of this project was to determine how we could develop
more believable affective robots, and how we could increase such robots’ context aware-
ness ability. To attain this objective, we focused on the following sub-objectives: to
determine the impact of using different expression abilities of affective robots and of co-
ordinating reactions in an interaction, to determine the feasibility of using immediate
and simple physical context information to drive behavior selection, and to determine
the viability of using a minimalistic interaction to gain contextual information on the
humans interacting with the robot. The investigations were performed through the
development of several prototype robots and through experiments in human-robot in-
teractions.

The main conclusion that can be drawn from our overall findings is that to build
more believable affective robots, we should start focusing on using a wider spectrum
of expression and input-sensing abilities when we design them. The immediate gains
from developing a pre-existing single affective feature to further increase the affec-
tive expression abilities of robots may evidently follow the law of diminishing returns.
There is still plenty of room for improvements, but to create more believable agents,
it may be a better investment to focus on utilizing a broad line-up of varied additional
affective abilities than to focus on improving individual features.

There is a definite heritage from Rolf Pfeifer’s complete agents (which are built with
attention to all aspects of autonomous communication) in our departure from main-
stream robot development and our findings indicate that we are at the same type of
scientific crossroad. There can be a paradigm shift in how robot designers build and
test robotics if we disregard some of the conventions that are holding us back. For in-

74



10 Conclusion

stance, there is a long tradition in academia of ensuring simplicity in the experiments
and decreasing the number of variables that may influence the results. In contrast,
we found that the test participants may be influenced by input in each human-robot
interaction experiment that is outside the controllable parameters of any interaction.
The research and experiments we performed revolved around creating a strong com-
municative impact by altering how we perceive robots. That is a complex effect to
measure through the conventional quantitative scientific methods. We conclude that
it may be infeasible to completely isolate the effects of single affective robot commu-
nication features. This may call for a more holistically inspired approach to how we
conduct experiments in human-robot interactions. The experimental setup may still
isolate the subjects, but the approach to capturing the details of any interaction may
benefit from including enough information on the events to gain a full perspective of
the experiment. This will also allow effective robot projects to include a broader range
of affective features in the robots that are used and to allow researchers to build more
complete (MOAM) robots.

A shift in perspective is needed to start constructing robots with a greater potential
for being used outside academia. As stated by Pfeifer 1996, if we keep building apple-
picking robots in a laboratory they will never be able to actually pick apples outside
laboratory conditions [17]. If we want robots that can handle social situations outside
of human-robot interaction experiments, we need to begin including a fuller skillset of
the features that will enable them to function autonomously in a social capacity. The
current robots generally lack the skills to be aware of what is going on around them.
From our findings, we conclude that robots may gain a stronger affective impact if
they react to outside inputs. They also gain a stronger affective impact as they share
reactions with their users, and adapt to each user in the same manner as humans do
in every conversation they partake in.

It will be difficult for future robots to handle real-life socially complex situations
if we do not start giving them a context awareness ability. Context awareness is the
natural evolvement of robots that can express complex affective information. When
we already have a robot that communicates using multiple modalities and reacts to
various kinds of input from each interaction modality, the next step is to stop sending
robots into each interaction unaware of what is happening around them. A compre-
hension of the current context on a human level is extremely difficult to achieve, but
we found that context awareness could be made simple and usable as long as the
robots use it only to make simple decisions at a fitting abstraction level. We conclude
that it is feasible to start using simple, easily attainable sets of context information
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to improve the context awareness of the robots in most of the current robot projects.
The solutions may be as simple as lowering a robot’s voice as it gets closer to a user or
allowing a robot to increase its travel speed when there are no humans in its trajectory.
We acknowledge that human-level complete context awareness is still the next frontier
but we should already start using what we can now.

When robots gain awareness of the events occurring in their immediate vicinity, this
allows them to be reactive to a wider range of contextual inputs. This can influence
how we perceive them in an interaction as the shared coordinated reactions between
humans and robots may spark an immediate bond between them. Using simple con-
text attributes to achieve this may facilitate this effect. We envision the next breed
of rescue robots as capable of reacting to and acknowledging all the sounds that may
scare a frightened human trapped in a tight space and as thereby capable of gaining
humans’ trust in them.

The simple, easily attainable information is available not only in the physical con-
text but also in the characteristics of the humans with whom robots interact. This
information is readable in every interaction and humans use it all the time to adapt
their behaviors to the people they interact with. If we encounter someone extraor-
dinarily happy we try to match his or her energy level. If someone seems tired or
sad as he or she approaches us, we rarely dance around but try to match his or her
behavior to show our support. Such information does not require extensive personal
background knowledge on the humans we interact with but may be gathered from
the immediate cues in the context of the interaction. Reacting and adapting to such
information can make a robot more believable and can increase its viability to function
as a companion in a stressful situation or to act in a therapeutic capacity.

We have stated that the concept of anthropomorphic interpretations of robotic be-
haviors can help robots portray complex emotional scenarios. We found that it is
difficult to completely avoid anthropomorphic interpretations of a robot’s actions. As
a result, we conclude that the best approach to handling the influence of such on
human-robot interactions is using anthropomorphism to our advantage. This entails
maximizing the robot’s affective impact with behaviors that support an anthropomor-
phic interpretation.

Finally, we conclude that it is the synergy in the combination of all the individual
robot abilities that creates a truly convincing social robot that is tolerable to interact
with and has the capacity to adapt to each user in a meaningful way. We suggest
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that encompassing all these responsibilities in one large system may be infeasible, but
creating multiple parallel single-responsibility systems with each robot responsible for
processing a single piece of context information can make the system feasible and can
provide sufficient contextual information.

The main keyword we have worked toward during this project is applicability. We
aimed at creating easily replicable robots using off-the-shelf parts with simple con-
trollers, and it is vital that our results are directly usable in most projects. By de-
veloping simple affectively impactful robots that understand their immediate context
and react to it, we have taken a step toward creating a new breed of social robots
that may work autonomously outside academia, and the way to realize such robots is
through a paradigm shift toward a future with robots we can all benefit from.

“Go forth, affective robots! Learn about the context and react to it!”
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A systematic comparison of affective robot expression modalities

Morten Roed Frederiksen1 and Kasper Stoy2

Abstract— This paper provides a survey of the different
means of expression employed by robots, to convey affective
state to human recipients. The paper introduces a model of
affective means (MOAM) to effectively describe and compare
the emphasis on specific means and applies it to the surveyed
robots. The model entails viewing the effect of applied means
in light of how well the robot responds to external stimuli and
with attention to how aligned the robot’s means of affective
expressions are with the intended working scenario. The model-
based survey shows that a majority (85%) of the surveyed
robots contain a category with room for additional affective
means, and a quarter (25.6%) of the robots use a single or
two affective means of expression to convey affective states.
The result of the survey indicates there is an under-researched
opportunity in exploring synergies between means of affective
expression to amplify the overall affective impact of a robot.

I. INTRODUCTION

To improve the way robots interact with humans, the
intentions of the robots need to be easy to interpret. This
means that the information they convey about their current
status and intentions is easily readable and warrants no
further need for formal explanations [1]. One way to reach
such communicative skills is by enhancing the interaction
using affective means of expression. These means could be
comprised of the robots appearances, the way they move,
how they gesture and pose themselves, how they sound and
whether we are familiar with what they portray [2], and lastly
how they respond to incoming communication [3], [4].

In contrast to robots, humans use subtle cues such as
body language, tone of voice, gestures, and movement in
a constant negotiation of affective status through each en-
counter with each other [5]. Even before the interaction is
initiated our posture and general appearance sparks an initial
presumption of our current mood and intentions towards the
interaction [6], [7]. These affective measures emphasize the
messages we want to convey and influence how well they
are received.

In addition to being able to express affective status some
degree of emotional understanding is also demanded from the
robots to improve the interactions with them. Since affective
computing and emotional intelligent systems were reintro-
duced by Picard in 1997, a significant amount of research
on the topic has centered on how to measure human affective
status [8], [9]. This has yielded successful results using facial
recognition [10], electromyography [11], gesture recognition
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[12], voice patterns [13], and touch measurements [3]. Al-
though the emphasis on how to measure affective changes is
relevant for realistic social interactions between humans and
robots, this study aims to give an overview of the different
means for robots to express affective states and to provide
a model for describing and comparing affective systems.
Therefore the focus will lie solely on the technological
capabilities of the robots to convey emotions.

Fig. 1. The model of affective means (MOAM) and context alignment
with with 0 to 3 points distributed in each of the included five categories
of means. (See the Expression modalities section for further explanation of
the systematic point distribution)

A majority of the robots included in this survey were
created to test and improve single means of affective ex-
pression in isolation from other means. However, there are
indications that means can influence each other and distort or
increase the emotional impact of any emotional expression
on human recipients. Eg. adding music to a scenario might
alter a negative mood towards the positive [14]. By exploiting
synergies between means, we can emphasize the intention of
the robot beyond what is possible with one mean alone.

II. MOAM - MODEL OF AFFECTIVE MEANS

This survey proposes a simple model to facilitate a system-
atic comparison of affective robots. The aim is to illustrate
how much emphasis is placed on specific aspects of the
affective means and to work as a tool for robot engineers
to employ in the design phases of robot construction. The
model divides the available affective means of robots into
five high-level categories. The chosen abstraction level is
the result of a trade-off between the ability to depict robots
in greater detail and the ability to easily compare different
robots. The current model favors the last of the two. The



TABLE I
THE SYSTEMATIC RATING SYSTEM FOR THE MOAM MODEL.

downside to simplifying the model is that in a few cases the
outcome could have similar profiles for robots that have very
different real-life potentials.

A. Expression modalities

The inner parts of the model consist of the different
modalities of the affective means. Through literature studies
of papers from previous affective robot research projects,
we have identified five categories of expression modali-
ties. The five identified high-level modalities are “Morphol-
ogy”, “Movement and Orientation”, “Posture and Gestures”,
“Sound”, and “Anthropomorphic Reflection”. Each part of
the model corresponds to a modality and depicts the amount
of effort directed towards these specific affective aspects of
the robot. Further details on each of these categories will
follow this overview. When depicting arbitrary robots using
the model each of the categories are rated from 0 to 3,
and the points are added to the corresponding section of
the model to form a diagram over the different measures.
When considering each part, the following criteria are used
to establish a distribution of points:

• 0 Points: The mean is not present in any capacity.
• 1 Point: The mean is implemented but has no relation

to the overall affective expression of the robot.
• 2 Points: The mean is implemented and provides a

coordinated effort to increase the impact of the overall
affective expression.

• 3 Points: The mean is implemented, increases the affec-
tive impact level and provides a response to incoming
stimuli.

Table I displays the criteria for each of the identified
categories. The criteria were selected from a combination of

interaction theory and first-hand experience from affective
robots. We emphasize the importance of responsiveness in
the affective expression modalities as delays and lack of
responsiveness tends to cause interaction outage [15]. It
is important to stress, that the ratings of each category
are neither an expression of positive or negative scores.
A zero-rated robot on all accounts can be perfectly suited
for certain tasks depending on the target context, and type
of task it is designed to solve. This means that the role
of the robot is important and can purposefully limit the
amount of point distributed in specific categories. Eg. Paro
the therapeutic seal robot has zero points distributed to the
movement category because its main purpose is to stay still at
the lap of the interacting user [16]. This is why any MOAM
model of a robot is context-specific and comparing different
models should be done in light of the role the robot fulfills.
It is likewise important to mention that the ratings given
to the robots in this survey are strictly interpreted from the
information gathered in the referenced articles. This means
that it has not been possible to obtain some of the details
on specific mean categories. This may result in errors in the
ratings stated for those categories.

B. Responsiveness and adaption

The final points in every category describe the level of
responsiveness or adaptation the robot exhibits towards in-
coming stimuli. It depicts how well, in any of the categories,
the robots respond to external context changes. E.g. the robot
might make a sound every time it discovers another robot or
human in the vicinity, or it might change position to orient
itself towards any entities discovered in the working scenario.
E.g. Limbu 2013 [4], enabled the ‘CuDDler’ robot to respond



to audio stimuli with both gesture and sound.
A response might be immediate but could also manifest

as a longer-lasting effort from the robot to dynamically fit its
means of expression to match the recipient of the interaction
or as an attempt to better align with a current working
context. Examples of such are Miranda 2018 [17], where
a robot alters its longer-lasting personal traits such as level
of disagreeableness through an interaction.

C. Context and task alignment

The outer circle of the model corresponds to the working
context as every individual working context demands dif-
ferent kinds of expressive means. E.g. low light situations
makes gestures and postures hard to decipher while lights
and sounds fit well. Even small changes to the context
may demand large changes to the composition of expression
methods to remain effective. This makes it difficult to create
multi-purpose expressive means without dynamic ad-hoc
adaption to the current environment and attention to the
target of the interaction. As Bennett 2014 [18] argues, the
context changes influence how we recognize the affective
expressions of robots. If the context supports the expressed
emotions the recognition rate will increase. Aligning the
means of expression with the context can potentially amplify
the conveyance of emotional values.

III. USING THE MOAM MODEL

The following example is provided to give an impression
of the applicability of the model. A single robot has been
selected and analyzed using the model in accordance with
the criteria outlined in Table I. Stiehl et al. 2006 designed a
therapeutic robot companion to function alongside nurses and
improve the health and well being of the patients. It features
several input sensors and reacts to touch, temperature, audio
input, and visual stimuli. To express emotions the robot can
change its posture, move limbs or emit sounds in response
to user input. Furthermore, the robot has the appearance of
a teddy bear, with fabric fur covering most of the body. The
MOAM point distribution of that robot is depicted in the
right image of Figure 2.

The affective scores in Figure 2 represent an affective
robot with an even distribution of points. Although the robot
is designed for the specific purpose of being stroked and
to react to user input using movements and sound, the
morphology has been considered in the design phase as well.
The selected materials are applied to make the robot seem
nice to touch and to highlight its familiar anthropomorphic
shape and appearance of a teddy bear. The Huggable robot
responds well to user input, and the responsive elements
consisting of gestures, sound, and posture, increase the
affective interpretation of its overall behavior.

The intended task for the huggable robot is to provide
therapeutic comfort to medical patients, and as such, it is
important that the robot’s affective impression is considered.
The 2 points in morphology mean that the robot’s appearance
and construction have been specially designed to support
the affective impression. The Huggable has no locomotion

Fig. 2. Left: (Pending confirmation of image usage) The Huggable robot
by Stiehl et al. 2006. Right: MOAM for Stiehl 2006 the huggable.

ability, resulting in a zero rating for the movement category.
As the robot responds to outer stimuli with moving limbs and
changing postures the robot is rated 3 for the onboard moving
category. The same argument counts for the sound rating of
3. The robots resemble a well-known character type (a teddy
bear), but the response manifestations to outer stimuli do not
match the appearance of that figure, resulting in a rating of
2 for the anthropomorphic reflection.

IV. MODALITIES OF MEASURES

The following sections provide further details and illustra-
tive examples for each category. All robots included in this
survey have been rated using the MOAM model, and the
resulting point distributions can be seen in Table II

A. Morphology

The morphology of a given robot describes its general ap-
pearance and depicts the level of attention given to affective
expression details in the construction phase. A model with a
high number of points allocated to the morphology category
means, that the visual appearance or tactile sensation has
been considered to a high degree from an affective expression
perspective during the physical construction phase of the
robot. This includes physical size and choice of colors [19],
[20], type of materials used in the construction [3], [21], the
sturdiness and build-quality or lack thereof [3], and the form
and shape of the robot [21], [22]. Furthermore, as a mean
of causing affective changes, the morphology precedes any
initial contact and works at large spatial distances from the
recipient, as long as there is a clear line of sight to the robot.

Some robot projects take advantage of factors that are
already affiliated with certain types of signals. Eg. a red color
means danger. Bethel 2009 used a blue light placed on the
undercarriage of the robots to produce a calming effect [19].
Boccanfuso et al. 2015 used the ‘Sphero’ robot with colors,
sound, and movement to simulate the expression of emotions
[20].

The familiarity of certain appearances is also used by
Singh et al. 2013 in the form of a dogtail attached to a small-
sized robot [22]. Using the shape and size of recognizable
animals was done by Sefidgar et al. 2016 in a small rat-like
form factor therapeutic robot [21]. The soft materials were
similarly important for the ‘Huggable’ robot introduced by



Stiehl et al. 2006 [3]. It made the humans that interacted
with it relax when touching it and the fabric type added a
teddy bear aesthetic to the robot.

B. Movement and orientation

The contents of this category are all implementations that
influence how the robot moves, and how the robot reflects be-
havior of directing attention to something or someone in the
vicinity. The specific speed [23], [24], acceleration changes
[25], directional patterns [20], [24], [26], orientation [19],
[27], and gait patterns employed by the robot as it moves
from point A to B can convey emotional status. Yoshioka
et al. 2015 and Boccanfuso et al. 2015 used simple small
robots that employed movement style to successfully express
emotions with changes in direction, velocity, acceleration and
frequency of rotation [20], [24]. In Bethel et al. 2009 an
emotive mode of the robots made them approach slowly,
keep low to the ground and sustain an orientation towards
the recipient to express attentiveness, caring and caution [19].

The relation between the acceleration curve and the type of
interpreted delivered emotion was investigated in Saerbeck et
al. 2010 [25]. The research results indicated a strong relation
between motion parameters and affective recognition, such
as causality between the acceleration curve and the PAD
placement on arousal and valence axis. A system to retrofit
existing robots was introduced in Fernandez et al. 2017 as
an emotional enrichment system [26]. The aim was to enable
users to describe emotions and to enrich the movements of
the robot using these descriptions.

C. Posture and Gestures

As movements and orientation describe the positioning
of the robot in an external or global scope, this category
describe onboard or internal movements. This covers ges-
tures [22], [28]–[36], speed of motions [32], [37], main
body movements [4], [21], [38], posture [7], [28], [39], and
touch [40]. With a combination of gestures, torso movement
and facial expressions, Hegel et al. 2011 used a ‘BarthocJr’
model robot to measure and mimic live emotions from
a human recipient [38]. The duplication of emotions and
expressions mimicked by the robot works as a primitive
form of empathy. Using solely body movements to express
emotions, a faceless Nao robot in Cohen et al. 2011 suc-
cessfully conveyed emotions as well as an ‘iCat’ robot that
had a face [29], [41]. This indicated a high affective impact
of solely employing body movements. Sefidgar et al. 2016
employed ears that stiffen in their therapeutic robot and a
moving rib cage that simulated breathing [21]. Emotions can
be expressed through touch as well. This was investigated
in Chen et al. 2011, with a medical robot that touches
its patients to calm them down [30]. The results indicated
that the best effect was gained when people understood the
intentions of the robot.

The effect of the neck, arm, and eyelid movement was
researched by Limbu et al. 2013 in a study using the ‘CuD-
Dler’ teddy bear therapeutic robot [4]. It was found that a
combination of movements had a soothing effect on humans

interacting with it. With a subsystem to generate emotions,
Park et al. 2007 used a robot to show several emotion types
including Fear, surprise, joy, anger, and sadness [36]. The
robot employed motion in combination with posture and
gestures and responded to user input from touch sensors
whenever the users stroked it. A robotic stand-up comedian
was developed in Addo et al. 2014 and it was discovered
that using gestures enhanced the comedic impact on the
audience [33]. Investigating affective physiology was the aim
of Bianchi et al. 2016, with the development of an affective
touch device built from rollers to simulate a pleasant human
stroke [40]. The test persons could distinguish different kinds
of emotional touch, which indicated that touch works as an
effective way of expressing affect.

D. Sound

The sound aspect of an affective robot covers all audio
originated from the robot. This includes both naturally occur-
ring sounds (eg. the sound of wheels turning, limbs moving,
servo buzzing), as well as artificial sounds emitted from the
robot. The artificial sounds include voice [33], [42]–[45],
soundscapes [46], [47], and notifications sounds [4], [20],
[23], [48].

Matching the audio to the context is used by Lisetti et
al. 2004 with a robot that has different voices to better match
face and scenario [42]. Read and Balpaeme 2012 used non-
linguistic sounds for robots to communicate with children
and found that utterance rhythm is influential, while the pitch
contour may have little importance in how the message is
conveyed [48]. Gonsior et al. 2012 depicted emotions from
the PAD space, by changing the voice with a different pitch,
range, and accent [43].

To complement the behavioral traits of a pet dog robot,
Yang et al. 2013 used audio as one of the expression
modalities to convey both cognitive and emotional statuses
[23]. Zhang et al. 2017 rated the importance of a robot’s
current synthetic emotional values with each other and
formed the pitch, rate [47]. and volume of the robot’s voice
thereafter. The NAO robot platform was used by Winkle
et al. 2017 to determine that the recognition of emotional
values from robot voice and motion is possible in explicit
validation experiments, but does not work with similar effect
in socially assistive interaction situations [44]. The results
suggest, that the correct interpretation of emotions relies on
the human recipient to have formed an expectation of the
attempted conveyed emotion. The impact of sound seems to
work best when it matches the appearance of the robot, as
was indicated by Becker et al. 2009 investigating laughter
in robots [45]. The results were dependent on how well
the synthetic laughter matched the robot appearance, and
furthermore depended on the receiver’s traits such as gender
and nationality.

E. Anthropomorphic reflection

The anthropomorphic reflection attribute describes how
much emphasis is placed on making the robot appear like a
humanoid or recognizable character. Examples of humanoid



inspired robots are Sophia [49], Gemini(s) [50], [51], Barthoc
Jr. [52] and Pepper [53], while robots based on familiar
characters include among others Leonardo [54], Aibo [55],
and Paro [16]. There is currently an emphasis on using
facial features in many robot research projects, [1], [2],
[28], [42], [56]–[59], under the assumption that using a face
makes it easier to convey emotions as a result of human
familiarity with interpreting affective status through most
social interactions. Only a small number of facial features
are needed to successfully express emotions, as Bennet et
al. 2013 found using only lips and eye lines to convey
affective status [2].

Coupling a face with other means of expressions in a
consistent manner over time could improve the amount of
impact. This is a concept Lisetti et al. 2004 attempted to uti-
lize in a service robot that maintained an ongoing personality
throughout a series of interactions [42]. Zecca et al. 2008
designed KOBIAN a humanoid with the ability to convey
emotions using facial expressions and by using bio-inspired
body language [60]. It is not necessary to employ a whole
face to trigger an emotional response, as Egawa et al. 2016
discovered using a single eye pupil in combination with
an artificial laughter sound [61]. The results demonstrated
that the dilated pupil response with a laughing response is
effective for enhancing empathy.

V. RESULTS AND DISCUSSION

The table in Table II provides an overview of MOAM point
distributions of the robots included in this paper. It is a table
created based on information gathered through a literature
study of papers published from previous affective robot
projects. To create it, the authors gathered all information
available from the paper regarding each specific category and
distributed points according to the rules outlined in the matrix
seen in Table I. By using the point distribution rules outlined
in the MOAM matrix, the authors attempted to approach an
objective overview of the affective means available for each
robot. In the table, the robots are sorted by the number of
non zero affective mean categories. 15% of the robots have
points distributed to all categories while the remaining 85%
display a single or several categories that contain a zero-
rating. Furthermore, the average number of categories per
robot with a zero-point distribution is 1.71. As most of the
robots included in this paper are built for research purposes,
this could indicate that it is the norm to focus solely on
a single category when testing affective means. About a
quarter of the included robots (25.6%) has a zero rating in
more than 3 categories. It can be argued that disregarding
several categories could have a negative impact on the robot’s
affective expression abilities. Eg. a research project might
ask participants to consider the affective facial expressions
of a robot, but forget to acknowledge the loud mechanical
noise the robot is emitting throughout the tests. This could
subconsciously influence how the robot is perceived by the
audience.

The MOAM model illustrates the affective strengths of
the robots, but the model also highlights the areas which

TABLE II
THE DISTRIBUTION OF POINTS FOR ROBOTS INCLUDED IN THIS PAPER.

THE INTENSITY OF COLORS INDICATE THE SCORE.



represent opportunities for improvements. A fully covered
inner circle of the model equals a distribution of two points
for each category of means. This requires each category
to be manifested in some form but demands no further
coordinated effort to increase the affective impact of the
robot. It is possible, that by ensuring a point distribution
that covers the inner circle when constructing robots, the
outcome could be more efficient affective robots with lesser
disregarded areas to influence how they are perceived. Even
some state-of-the-art affective robots contain categories of
the MOAM model with zero points allocated leaving room
for further improvements. An unattended category of means
could present an opportunity to add further expression means
to mitigate any negative aspects of the category.

The lower entries of the table consist of robots that are
constructed with an emphasis on a single category of means.
This makes a lot of sense as these robots are often designed
to test the validity of a single mean of affective expression.
There may be practical (and economic) reasons for limiting
the number of included affective design details. However, the
indication that the MOAM categories could influence each
other in both positive and negative ways, could be viewed
as an argument for considering other means of expression
when designing affective systems. The distribution of points
in each MOAM model can in some cases be limited by the
task intended for the robot to handle (Eg. Paro [16] which
it not designed to move), making it difficult to compare
robots intended for different contexts. For that reason, there
might be a research opportunity in exploring how to create
further specialized MOAM models containing the attributes
of specific working scenarios. Such models could provide an
easier method to compare robots designed to fulfil similar
roles (Eg. social companion robots, therapeutic robots, robot
teachers). However, the main intention of proposing the
model is to provide a general overview of the technical
capabilities of each robot, not to rate how well the robot
performs in different working contexts. As such, the current
model reflects a loss of finer details to gain a wider range
of included robots to compare with. Furthermore, the model
is not solely intended to provide a scoring mechanism. It
has a purpose besides working as a comparison between
robots, it is also intended as a quick reference to aid in the
process of designing affective robots. The overview table in
this paper was created solely by the authors. To generalize the
result, future iterations should also include participation from
a larger sentiment of people to minimize the influence of
subjective evaluation. The aim of using the point distribution
matrix was to avoid bias and subjectivity in the creation of
MOAM models. However, some categories are less prone to
subjectivity than others (Eg. the anthropomorphic reflection
can be culturally dependent), but this can be mitigated by
evaluating the robot in light of its intended role and working
context. Doing so increases the consistency of the resulting
MOAM points distributed by different people.

Some research projects build upon commercially available
robots such as the NAO robot when testing affective means.
Building on top of these platforms allows the research teams

to emphasize on different aspects of affective means. Using
a common base for affective robot research is a good idea
as it works towards minimizing any negative impact from
disregarded categories. However, relying on NAO and similar
robot solutions could in some situations mean missing an
opportunity to customize the morphology to the specific
context. It is possible that some scenarios could demand an
easier customizable affective robot to better align with the
working context but that could be a possible topic for further
research.

VI. CONCLUSION

To this date, essential progress has been made in affective
robot research. As a result, we have substantial knowledge
of how single means of expression works. In comparison,
we know relatively little about how categories of means
influence each other when used together or when disregarded.

The paper has identified five high abstraction level cat-
egories of expressional means and has provided examples
of each to highlight their functionality. The mean cate-
gories are ‘Morphology’, ‘Posture and Gestures’, ‘Sound’,
‘Movement’ and ‘Anthropomorphic reflection’. All identified
categories have been summed up in a proposed model of
affective means (MOAM) to capture strength and weaknesses
for any robot from an affective perspective. To make the
MOAM models comparable to each other, this paper has
also proposed a point distribution system to allocate points
to the affective mean categories. The MOAM model and
its underlying point distribution system have been used to
score and compare all included affective robots. The resulting
MOAM scores are directly comparable and work as system-
atic descriptors of the affective strengths and shortcomings
of the robot, but should be viewed in light of the intended
role and working context of each robot. Overall we argue,
that the MOAM model can sufficiently categorize and be
used to compare a large plethora of different affective robot
types.

Using the models to rate robots and compare with each
other gave insight to the possible opportunities for improving
even the already successful robots that rely on single affective
means to express affective states. There are indications that
the synergies between affective means could possibly change
the impact of the overall impression of the robot. These
indications warrant further investigation into the feasibility
of testing single means of affection in isolation. Furthermore,
we argue that the number of robots in this survey, that has
room to add further means of expression, shows there could
be an unexplored area of research in building more complete
affective agents with attention to all categories.
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On the causality between affective impact
and coordinated human-robot reactions

Morten Roed Frederiksen1 Kasper Stoy2

emotions can facilitate coordination between interacting hu-
mans without either of them possessing previous knowledge
of intentions [33]. This paper focuses on whether this effect
is equally present in human-robot-interactions and investi-
gates the following:

• If there is a causality between reaction coordination and
perceived affective impact on a robot. In other words:
When humans and robots react to the same event, will
the humans perceive the robots’ reactions as stronger?

• Whether delaying the reactions of a robot in a physical
conflict interaction can strengthen its perceived affective
impact.

Gaining knowledge on these aspects of expression abilities
is something all areas of robotics can benefit from. The
investigation may provide an answer to when and how robots
should behave in order to strengthen the affective impact of
an interaction. This could be beneficial in situations where
robots are required to convey vital information as efficiently
as possible. E.g. Socially assistive robotics and rescue robots
that operate in demanding working environments may be
vastly improved if we, by altering how and when they use
their communicative features, can make them communicate
better in a critical situation.

Through each human-robot interaction, the timing dictates
who initiates actions throughout the encounter. E.g. a swift
reacting robot could make a human recipient hold back in
the interaction or a robot that delays answering could make
a human counterpart take charge of the situation. Among
other aspects of communication, the timing encompasses
both estimating when to perform movements (for robots to
safely cooperate with humans) and controlling the flow of
dialogue between humans and robots [34], [35].

When robots react to something, the reaction highlights the

Fig. 1. Left: The ”Affecta” robot. The robot was fastened to a soft foam
pad to hinder it from moving as people interacted with it. Right: The test
setup included an isolated room to let the participants interact with the robot
undisturbed.

Abstract— In an effort to improve how robots function in 
social contexts, this paper investigates if a robot that actively 
shares a reaction to an event with a human alters how the 
human perceives the robot’s affective impact. To verify this, 
we created two different test setups. One to highlight and 
isolate the reaction element of affective robot expressions, and 
one to investigate the effects of applying specific t iming delays 
to a robot reacting to a physical encounter with a human. 
The first t est w as c onducted w ith t wo d ifferent g roups (n=84) 
of human observers, a test group and a control group both 
interacting with the robot. The second test was performed 
with 110 participants using increasingly longer reaction delays 
for the robot with every ten participants. The results show 
a statistically significant c hange ( p<.05) i n p erceived affective 
impact for the robots when they react to an event shared with a 
human observer rather than reacting at random. The result also 
shows for shared physical interaction, the near-human reaction 
times from the robot are most appropriate for the scenario. The 
paper concludes that a delay time around 200ms may render 
the biggest impact on human observers for small-sized non-
humanoid robots. It further concludes that a slightly shorter 
reaction time around 100ms is most effective when the goal is 
to make the human observers feel they made the biggest impact 
on the robot.

I. INTRODUCTION

Creating robots that can understand and express emotions
is a many-faceted problem. One of the many challenges lies
in designing a relatable robotic behavior with which people
will want to interact. If we disregard digital communication
channels, robots convey information through simple means
of expression that includes: Sound, appearance, movements,
and gestures [1]. These means can improve how well the
intentions of the robot are understood, and correctly timing
when to use them can further improve the interaction and can
influence how the robot is perceived [2]. A lot of research has
focused on the expressive abilities of robots and have so far
accomplished making people recognize robotic expressions
of emotions using morphological attributes [3]–[5], facial
features [6]–[13], movement [14]–[16], orientation [17], [18]
sound [8], [19]–[24], and gestures [5], [13], [20], [25]–
[32]. When it comes to expressing affective information and
standard emotions, many projects focus on how to maximize
comprehension. Relatively few projects in comparison focus
on the impact of delaying when the expressive features of
the robot are used, and how the causality between participant
and robot reactions can affect how the affective information
is conveyed. Michael 2010 proposes how perceived shared

1Morten Roed Frederiksen mrof@itu.dk and 2Kasper Stoy 
ksty@itu.dk are affiliated with the REAL lab at the Computer science 
department of The IT-University of Copenhagen, Rued Langgaards vej 7, 
2300 Copenhagen S



connection between robot behavior and the context event, and
it establishes the direction for the current communication.
E.g. for a robot that is designed to portray being afraid of
a dog in the vicinity, there is a timed frame of opportunity
after the dog initiates an action where the robot can react.
Any reactions applied in connection with the dog’s actions
will be perceived as connected to that event or that agent
in the scenario. The robot’s reaction will be interpreted in
light of the event and if a human experiences the same event,
the shared experience may be used to establish a connection
between the human and the robot. The reaction time and
response in the situation is influenced by the complexity and
familiarity of the event information as outlined in Hyman
1953 [36]. Besides the complexity of event information to
which the robot reacts, the hypothesis is that the following
two things (among other factors) can influence how the
expression of a robot’s reaction is perceived:

• The time delay with which the robot reacts
• If the reaction is shared with someone.
To investigate this, we used two experiments. The first

test was a standard A-B test aimed at isolating the effects
of coordinating human-robot reactions to a context event,
while the second test focused on how reaction delays affected
the shared experience in a physical interaction. Our findings
show a causality between human-robot reaction coordination
and the perceived arousal level of the test robots, with a
statistically significant (p<.05) difference between the main
group and the control group. The results further indicate
that the reaction times of the robots in physical interactions
influence the affective state of the humans interacting with it.
We argue that near human-like reaction reflexes overall have
the biggest affective impact on the test participants, while
a slightly lesser delay time ( ˜100ms faster) should be used
when the aim is for the test participants to feel they made
a big impression on the robot. The results also indicate that
the perceived affective impact of the robot is strengthened
slightly by delaying the reaction.

The presented findings are novel in that they present a
new context for using shared experiences to gain emotional
coordination in human-robot interaction scenarios. The new
approaches are based on using non-humanoid robots and by
placing participants on the opposite side of the robot in a
high-intensity conflict situation. The results introduce many
opportunities for further research on the topic. As a whole,
they suggest investigating to what extend shared reactions
could strengthen the affective expression abilities of rescue
robots and improve the reception of critical messages in high-
intensity contexts.

II. OTHER APPROACHES

The timing aspects of cooperative interaction was inves-
tigated by Pan et al. 2019 [37] by in- and decreasing the
reaction times of a robot that was handed an object. The
study, which used a humanoid torso robot with a head and
arms, found that the people preferred reaction time equal
to normal human reaction time when interacting with the
robot. Their test scenario was different than the scenario

investigated in this paper, as it contained a low-intensity
interaction, a humanoid robot, and a cooperative task to
accomplish in the tests, whereas this project focuses on non-
humanoid robots in a high-intensity scenario and a test task
that emphasizes the conflict between the interacting human
and robot participants.

Previous robot projects have investigated increasing the
understanding of affective communication in their research.
Brazeal et al. 2003 employed an emotional subsystem for
the robot Leonardo and controlled realistic employment of
several affective means of expression making it easier to
understand [10]. Gunes et al. 2011 used a LEGO-based
custom robot to convey the emotional intentions of clas-
sical music. The robot employed several affective means
of expression including movement and onboard gestures to
communicate the affective status [38]. The timing aspects
were the focus of Huber et al. 2008 in which they investi-
gated different ways of letting robots hand over objects to
humans. Successfully handing over the objects requires both
parties of the interaction to agree on a common timing for
the involved movements. The study found that the less jerky
the movement was, the safer they felt around the robot. [39].

Bing and Michael 2012 investigated how sharing a stress-
ful experience with a humanoid robot can potentially help
humans overcome the uncanny valley effect [40], [41].
The 2012 paper found that their test participants preferred
familiar humanoids with whom they had shared a stressful
experience with rather than familiar robots that they had
shared a pleasant experience with. This paper aims to extend
the results found in that paper on two different levels. It in-
vestigates whether the results are similar for a non-humanoid
robot that bears no resemblance to a person, and it attempts
to discover whether the result is isolated to people that are on
opposite sides of a conflict- and stressful situation. This paper
emphasizes how humans perceive robot specific nonverbal
behavior which is also the focus in Putten et al. 2018 [42].
In this paper, the robot-like specific behavior is found less
effective than using human-like familiar behaviors to convey
affective information. Both Bing & Michael 2012 and Ptten
et al. 2018 indicate the strengths of using human-inspired
behaviors and morphology in their studies which make a
good contrast to the experiments performed in this paper
using non-humanoids and strictly robot-specific behaviors.

III. METHOD

The first test aims at investigating changes to the general
composition of emotions, while the second test expands the
investigation into a physical and confrontational scenario
to see how that influences the perceived intentions of a
robot. The second test also focuses on the immediate delay
between the context event and the subsequent robot reaction
to see how delaying the robot’s reaction influences how the
robot was perceived. As stated in Bing et al. 2012, a shared
stressful event works stronger using humanoid robots, which
is why a conflicting scenario with a non-humanoid robot was
interesting for the second test in this paper [40].



Fig. 2. The test setup for the initial experiment. The red center of the arena marks the starting position for the robots. The red button on the right side
initiates the experiment in the first test. The same button was removed for the control test of the experiment in which the robots reacted with random
intervals.

A. Using standard descriptors

In affective robotics research it is often the Pleasure,
Arousal and Dominance (or PAD) scale that is used to de-
scribe emotional states [43], [44], while temporal aspects can
be classified in the Traits, Attitudes, Moods and Emotions
(TAME) architecture [45].

We quantify the affective impact by measuring the changes
to the robot’s perceived current emotion in PAD space. We
measure differences between the two test groups on how the
robot’s affective state is perceived. If the test participants
find it more or less pleasant, aroused, or dominant. E.g. if a
person is angry during an interaction with a robot, and the
robot emits a soothing sound to make the person change
to a happier state, the angry emotion could move along
the ‘arousal’ axis towards less aroused - which would be
considered an affective change to the current affective state.
This is what we use as a quantitative measure for the effects
of coordinated reactions in the initial tests.

The tests followed a standard A-B pattern with two
individual groups of test participants where one of them acted
as a control group. The two groups would encounter the
same scenarios, but the control group of participants would
not experience coordinated reactions with the robots as they
would react at random and out of phase with the participants.
The test setup is depicted in Figure 2.

B. Moving to a physical interaction

Building upon the outcome of the first tests, the second test
focused on how the shared reaction was perceived when the
interaction context was changed to a physical and conflicting
encounter with closer proximity between the participants
and the robot. In this test, we asked the participants to
physically strike the robot as much as they wanted and
observe the reaction. We departed from using the standard
PAD descriptor as we were not focusing on the composition
of the affective impact, but rather on investigating where
the interaction was perceived as making the largest impact
- on the robot itself or the test participants. We also wanted
to see how the delay time influenced the perceived size of
the affective reaction and introduced delays between the

physical interaction and the robot’s reaction to highlight
the connection between them. As the robot reacted in this
context, the swiftness of the reaction made it more similar to
a reflex than a prepared response. This approach was chosen
as it matched the conflicting scenario. The sharing in the
second test was solely the interaction, and we attempted to
investigate how placing the participants and the robot on
opposite sides of a conflict situation influenced the human-
robot relationship.

IV. EXPERIMENTAL SETUP

In the first test, there were two groups with 42 people
observing the robots in each of them. The overall gender
distribution was 39 females and 45 males in ages from 10 to
50+. The majority of the participants were between 20 and 30
(71%) years old, and most of the participants either worked
- or studied at The IT-University of Copenhagen (82.5%).

In the second test there were 110 participants distributed
in 7 groups. The gender distribution here was 56% male
and 44% female and the largest age group was 20-30 years
old (33%) followed by people between 10-20 (20.2%). The
initial test used a “Thymio 2” robot while the second test
used and altered a custom-built “Affecta” robot designed to
convey affective information.

A. The first test: impact of reaction

The setup of this test was comprised of three “Thymio
2” robots and a designated arena for the robots to move on.
The arena was constructed from stage parts, forming a 220cm
times 300cm surface, with floor carpets on top to create a
smooth surface to easily maneuver on for the low-clearance
Thymio 2 robots. The edges of the designated test arena
were padded with a small wooden edge to prevent the robots
from falling to the ground. The edges were fastened just high
enough to trigger the proximity sensors positioned at the
front, side, and back of the robots. The first test contained
two experimental phases with different groups participating
in each experiment. The tests were initiated in isolation from
each other and followed this test outline:

Test steps:
1. The robots were initially placed at the center of the



Fig. 3. The diagram shows the perceived arousal level of the robots.
The blue-colored values are from the control test with uncoordinated
human-robot reactions while the red-colored values are from the test group
coordinated reaction between the participants and the robots.

arena. See Figure 2 for the initial position of the robots.
2. The participants were asked to start the experiment by
pushing a button. 3. A high volume sound of an explosion
was played as the button was pushed and the robots (and
participants) reacted to the sound displaying fear. The robots
used the following expression modalities: Sound, movement,
and colored lights to convey the fear behavior. 4. The
robots moved from the start area with maximum speed while
displaying lights, and playing alerting audio signals in an
attempt to show fearful behavior. 5. After 2 seconds of
employing audio and lights, the robots continued to move
but the audio and lights were turned off. This was done to
enforce the connection between the reaction and the event
that initiated it. 5. The robots moved randomly around on
the surface while using front and back sensors to avoid the
perimeter. 6. Once the robots encountered the center ‘resting’
area again, they stopped and waited until reacting again (start
over from point 2).

The control group would go through the same steps.
However, the robots would not react in coordination with
the sound but at random intervals. After each experiment,
the test participants were asked how aroused they perceived
the robots were, how pleasant they perceived the robots
found the experiment, and how dominant they perceived the
current emotion for the robots was on a scale from 1 to 10
(1 meaning: not at all and 10 meaning: maximum possible).
The participants were additionally asked to state their gender,
and age.

B. The second test: the impact of specific timing

The second test used a custom-built robot as depicted
in the left image of Figure 1. The robot was a small
non-humanoid box-shaped robot that was designed to have
implementations for a large variety of expression modalities,
making it a great fit for this project. This specific robot
design was 3d-printable, and suited the test setup. For the
robot to remain stable for the physical interaction, only the
top part of the robot was used and the bottom drive wheels
not added. The robot consisted of two separate software
architectures - a ROS based part to control the physical
movement and gestures of the robot and a mobile application

with access to all available sensors on a mobile smartphone.
For this test, the mobile IOS based platform was expanded
with a module for detecting physical movement using the
onboard accelerometer. When the user would hit the robot the
accelerometer sensor was triggered which informs the main
robot controller to display a reaction using the mobile phone
screen and audio capabilities of the robot (also supplied by
the phone). The reaction consisted of a loud alert noise and
jagged lines flashing at the edge of the screen. The second
test was set up in a specially constructed and isolated test
booth. The booth, which can be seen in the right image of
Figure 1, contained a table with the robot at a raised position
to facilitate a close proximity interaction, and it contained
a poster with instructions for the test participants to strike
the robot. One at a time we asked them to enter the test
booth and hit the robot as much as they liked. They would
interact with the robot by hitting it and observe how the
robot reacted. When the test participants were finished with
the physical interaction, they would step outside of the test
booth and we proceeded by asking the following questions:

• How big an impact did your actions make on the robot?
• How big an impact did the robot’s reaction make on

you?
• How appropriate would you rate the robot’s actions as

being in light of how you interacted with it?
The participants were also asked to state their age group

and their gender. The test was completed with 110 test
participants. With each group of ten participants, the reaction
delay of the robot’s reactions was doubled starting from an
initial reaction delay of 50ms ending at a reaction delay of
3200ms.

V. RESULTS

The first test isolated the effects of coordinating human-
robot reactions to a context event, while the second test
used increasingly longer reaction delays to investigate how
that affected the perceived affective impact of a human-robot
physical interaction.

The results show three important findings:
• There is a causality between coordinating the reactions

of humans and robots and the perceived arousal level
of the test robots.

• The reaction times of the robots in physical interactions
influence the affective state of the humans interacting
with it and near human-like reaction reflexes (˜250ms)
have the biggest affective impact on the test participants

• A slightly lesser delay time ( ˜100ms faster) is preferred
when the aim is for the test participants to feel they
made a big impression on the robot.

A. The influence of coordinating human-robot reactions

In the first test, we asked the participants to rate how
aroused the robots seemed, and the difference between
levels of perceived arousal was statically significant (Two-
tail Wilcoxon signed-rank, p<.05). This shows a strong
connection between experiencing a shared reaction with the
robots and the interpreted level of arousal conveyed by the



robots. The distribution of answers for the question on the
perceived level of arousal can be seen in Figure 3, and the
key figures for the same question can be seen in Table I.

We also asked the participants to rate the perceived
pleasantness of the experience for the robots. The results
for that question showed no relevant differences between
the random group and the reaction group. The participants
agreed that the experience was mildly unpleasant for the
robots in both groups with key figures as seen in Table I.
The last question regarded the perceived level of dominance
for the current emotion, on which the participants rated each
group with near similar scores. This indicated that there was
no connection between the dominance level and sharing a
reaction or not.

B. Reaction delays strengthen affective impact

In the second test, the results indicate that there was
a preferred reaction delay around 200ms for the question
regarding the perceived impact of the robot’s actions on the
participants who interacted with it. The resulting averages
for that question can be seen in Figure 4. This enforced
the results found in by Pan et al. 2019 and extends the
finding to also include non-humanoid robots and a conflicting
scenario rather than a cooperative context [37]. The results
show that the robot made the biggest affective impact on
the participants when it reacted to the physical interaction
with human-like reaction times (which we assume is ap-
proximately 250ms). It is important to state that although
our number of participants is relatively high (n=91), using
the arithmetic mean for smaller individual groupings could
make the result more easily affected by outliers.

We asked the participants to rate how big an impression
the test participants’ actions made on the robot, and for that
question, the relative highest rated delay time was 100ms.
This and the previous result indicate the following:

• If the aim is for the robot to make a big impression
on the participants, it should react with near-human
reaction times.

• If the aim is for the test participants to feel they made
a big impression on the robot, it could benefit from
reacting with a slightly smaller delay. ( ˜100ms faster).

We also asked the participants to rate the appropriateness
of the robot’s action in relation to the actions performed by
the test participants. The resulting ratings were near at par
with each other with a reaction time of 100ms rated relatively

No Reaction (avg/dev) With Reaction
Agitatedness 4.40/2.42 5.55/2.04
Pleasantness 4.83/2.27 4.71/2.11
dominance 3.76/2.34 3.98/2.50

TABLE I
THE AVERAGES AND STANDARD DEVIATION FOR THE ANSWERS FOR

THE PERCEIVED LEVEL OF AROUSAL, PLEASANTNESS, AND LEVEL OF

DOMINANCE IN THE TESTS WHERE THE PARTICIPANTS SHARED A

REACTION WITH THE ROBOTS AND THE CONTROL TEST IN WHICH THE

ROBOTS REACTED AT RANDOM INTERVALS.

Fig. 4. The resulting average ratings in relation to the delay time in
milliseconds concerning the rated impact of the robot’s actions, the impacts
participants made on the robot, and the rated appropriateness of the robot’s
actions.

highest. The resulting averages for the last two questions can
be seen in Figure 4.

Grouping the results by the age of the participants shows
that most of the age groups prefer human-like reaction times.
The top-rated of the average reaction time for the affective
impact of the robot’s behavior in regards to age group was
200ms. Our initial assumption was that the results would
support a relationship between older age and slower preferred
reaction times. However, this is not the case. The 200ms
delay which corresponds to human-like reaction times is
preferred even by the older test participants. The age group
from 21 - 30 preferred the slowest reaction time of 3200ms,
but a closer look at the data reveals that may be explained
by a lack of proper age distribution for some delay times. It
is vital to state that the age distribution across every delay
group is not uniformly distributed. Some delay categories
have very few examples for specific age groups. The results
indicate that the age group of 41 - 50 prefers a slower-than-
human robot with a preferred reaction time of 400ms and
presents an opportunity for further research projects to focus
more on each age group and the preferred reaction times.

VI. FROM MEASURES TO MEANING

The boundaries of each discrete state in models such as
the PAD space are fuzzy, and a single 3d coordinate can
rarely convey the rich sources of information that affective
data is [38]. Because emotions are given significance by the
words that express them, they differ between languages. In
some cases with specific languages, certain emotions are
not present or mean something different [46]. When the
interpretation and comprehension of the affective states are
culturally dependent the problem is that the interpretation of
them change with each cultural context and group of human
observers [47]. This paper acknowledges that it is difficult to
create a test setup that provides clear answers, but attempts
to work around it by using many participants. Our test setup
had the two following drawbacks regarding the age of the
participants:

1. The test was designed to measure the effect of the
delay times. This meant that the age groups were not
uniformly distributed within each tested delay times



and that some delay times had one or more age groups
that were not represented.

2. As our delay time was doubled each time, it left out too
many details of the interesting area between 200 and
400ms. It may be that the effect we were attempting to
verify was smaller than anticipated and that we instead
needed a test that expanded the knowledge on that
specific delay interval.

The results of the first test indicate that there is a causality
between the level of perceived arousal and the coordination
of human-robot reactions to the context event. The robots
were perceived as being more aroused when their reactions
were coordinated with human observers. The results show
that considering the timing aspects of conveying affective
information and sharing a reaction with a human observer
can be beneficial in those scenarios where the aim is to
convey highly aroused affective states.

That the overall voted most suitable reaction delay time
for the reaction to the physical interaction of the second test
is 200ms, might for some scenarios be considered a positive
result. Such a delay leaves a wide timeframe even for low
hardware-driven robots to analyze the input and consider the
proper reaction to a given situation. The physical properties
in the second test also seemed to affect how the participants
interpreted the overall pleasantness of the interaction. Some
participants stated they felt bad about hitting the robot and
did not want to interact with it because it seemed as if they
punished the robot for no reason. The average ratings on
appropriateness in relation to reaction time can be seen in
Figure 4.

The resulting ratings for the different delay times fortify
what Pan et al. 2019 found with humans and robots inter-
acting in a cooperative setting [37]. Our common intuition
would say that the Pan et al. test participants preferred a
human-like response time because they used a humanoid
robot and a human-to-human inspired context with a cooper-
ative task. However, if we interpret the highest-rated suitable
behavior as the preferred behavior, our result shows that
these findings can be extended to non-humanoid robots as
well. They also show that the same reaction time was found
most suitable in high-intensity scenarios - in which people
physically interact with the robot.

When we asked the participants to rate the emotional
impact of hitting the robot, the highest average rating was
given when the robot reacted with a delay time of 100ms
followed by the second-highest ratings for 50ms. This could
indicate that there is a measurable difference between how
the participants wanted the robot to react in the different
scenarios. When the aim is to convey to the participants that
their actions had a large impact, the reaction time should
be shorter than human reaction times (<250ms). When the
aim is for the robot to make a large emotional impact on
the participants, the robot should react similarly to humans
(˜250ms). It makes sense to consider to what extent the
results are applicable in other contexts. The tested scenario
portrayed a social context, and it may be that the highest-
rated reaction speeds in this experiment would be found

suitable for other social situations as well. However, the
results do not per se extend to other robot types and or other
domains. E.g. we don’t necessarily prefer a manufacturing
robot at a factory to work at the same speeds as humans.

Regarding the results grouped by age, we argue that the
presented findings introduce many opportunities for further
research on the topic. As one, we suggest investigating more
specifically to what extend age influences the chosen most
suitable reaction times in a finer interval between 200 and
400 ms - to see if age specific reaction times could strengthen
the reception of affective information even further.

VII. CONCLUSION

The paper has investigated the causality between coor-
dinating human-robot reactions and the perceived affective
impact on robots. It has shown that we can use coordinated
reactions to strengthen the way robots convey affective
information. The emphasis was to see whether the perceived
level of intensity in the behavior was increased when a robot
was reacting to a context event in coordination with a human,
and to test whether delaying the specific reaction times in
physical interactions influenced how test participants viewed
the affective state of the robot. We carried out two human-
robot interaction tests to highlight these aspects of human-
robot interaction.

The result showed that there was a significant difference
between how aroused the human observers rated the robots
as being in the first test when the human-robot reactions
were coordinated. The results of the second test indicated
that even for high-intensity scenarios with non-humanoid
robots, the preferred reaction for the robots was similar to
the reaction time of humans. Furthermore, they showed that
a faster reaction time ( ˜100ms faster) was preferred when
the goal was for the test participants to feel as if they made
a large impact on the robot.

The findings indicate that the concept of sharing reactions
and using near-human reaction delays can be strategically
used to influence how the current affective state of a robot
is perceived.
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Adaptable context-based behavior selection in autonomous robots

Morten Roed Frederiksen1 Kasper Stoy2

Abstract— We all adapt to our current physical context when
we communicate with other people. We lower our voice or
movement speed in small spaces or increase them in larger
physical environments. For robots to partake in social inter-
action with humans, adapting their behavior to the context
should be a requirement. This paper presents a novel system
that uses contextual knowledge to guide a robot’s behavior
in human-robot interactions. The system consists of two parts:
one that represent previously encountered contexts and one that
through human-robot interaction learns to prioritize behaviors
in each of them. The contexts are identified and clustered by
their physical proporties. In a context the system autonomously
tests different behaviors and learns to prioritize between them
to match the users preference and the contextual information.
The system was tested using a custom built affective robot in 2
different physical contexts, with 4 distinctive behaviors through
72 interactions with 6 different test participants. The system
managed to adjust its behaviors to match the physical context in
accordance with the participants. A high intensity behavior was
generally found fitting for the largest of the two context. The
result is statistically significant at (p<.05). Social robots should
be able to adapt to the context and we have shown that while a
richer context distinction may be preferred for context-guided
robot behavior selection, with simple means, a single attribute
can be viable to drive the selection with a significant confidense.

I. INTRODUCTION

The physical context of our interactions have a significant
influence on our behavior. We adapt to it and moderate
different aspects of our behavior with each context we
encounter. E.g. a large physical environment may allow us to
be physically more engaged in interactions while a smaller
space demands that we are less animated. For social robots,
the context poses a challenge for them to communicate effec-
tively. The physical environment, the proxemics, the audio
volume, and the amplitude of its movements are all examples
of adaptable parameters that can enhance an interaction. If
these are not attuned to the physical demands of the context
the robot may not be able to communicate effectively. Eg. a
loud robot can be heard at all times but would probably be
a terrible fit for more intimate interactions.

When social robots are designed they are often equipped
with a few behaviors to handle a variety of social inter-
actions. These behaviors often work well in the context
they are designed to work in and encourages a positive
anthropomorphic interpretation [1], [2]. E.g. among other
behaviors, the Vector robot by Anki has behaviors to map its
surroundings and entertainment behaviors that make it dance

1Morten Roed Frederiksen mrof@itu.dk and 2Kasper Stoy
ksty@itu.dk are affiliated with the REAL lab at the Computer science
department of The IT-University of Copenhagen, Rued Langgaards vej 7,
2300 Copenhagen S

or tell jokes [3]. While such robots work very well in specific
contexts, placing them in a different context can make some
of their actions seem inappropriate (while other behaviors
may fit the changed context). A preconfigured robot without
adaption will unknowingly use the same behaviors even
though they have no or even negative effect on the interaction
in a changed context. Both the social, cultural, and physical
contexts are important for the robots because we interpret
their actions in light of the context in which they are
performed [4].

Fig. 1. Affecta V3, The humanoid robot we created to test the system.

Adapting behaviors to the context can be a drive for more
diverse behavior choices in such projects, and developing
context aware systems may be the hurdle to overcome to
unlock better social functionality of robots outside of lab
conditions [5], [6].

A. Previous approaches

There have been a few projects on optimizing robot
capabilities according to the physical context. Narayanan et
al. 2011 created movements based on visual perception of the
environment and Jamone, Damas, and Santos-Victor 2014
created dynamic mapping models based on interactions with
various objects [9], [10]. The models in the latter allowed the
robot to approximate the torque rate for correctly interacting
with different context objects. Pandey et al. 2010 created a
framework that paid special attention to humans as objects in
the vicinity as their navigation system analysed local clear-
ance and environment structure [11]. Navigation in social
spaces was also the focus of Banisetty et. al 2019 in a system
that among other factors considered social conventions and
physical obstacles to guide promixity constraints for the
robot’s navigation path around humans [6]. Torre et al. 2020
investigated the alignment of voice for the specific context,



task and robot morphology. They tested different voices and
let users select the voice that matched a robot and a physical
context. They found that the task context was a main driver
for which robot was chosen for a voice [12].

The acoustic properties of environments was used in Lera
et al 2017 to classify indoor contexts [13]. The project used
convolutional neuronal networks to classify different contexts
based on ambient audio signals. Cosgun & Christensen 2018
added context awarenes to enhance a person following robot.
The robot predicted targets of future human interaction by
looking at the velocity of the human it was following [14].
Liu, Wang, and Wang 2018 used context aware pose estima-
tion to ensure safety for users in the vicinity of their assembly
robot. The pose estimation system used a kinect, leap motion
and MYI sensor to recognize the intentions of the user by
classifying key assembly poses [15]. Xiao et al. attempted to
increase the contextual knowlede of a robot in an interaction
by allowing communication through natural body language.
The robot they created could understand the meaning of
human upper body gestures and would communicate by
using movements, facial expressions, and verbal language
[16]. Robots that autonomously determines personality traits
of the users were the focus of Zafar et al. 2018 and Zafar et
al. 2019. Their solution used speech charactiristics and found
promising resuts in detecting personality traits [17], [18].
Their approach used excerts from the interactions annotated
by a psychologist to link non verbal cues to level of exhibited
extroversion.

A few of these are examples of how robots dynamically
alter control in conjunction with immediate or processed
sensor input. But for robots that interact with humans in
unknown physical context, the task may be more complex.
If we know the physical context ahead of an interaction it is
viable to pre-define the best contextual behaviors. However,
this is often not the case. There is a potential in learning be-
cause solely relying on pre-selected attributes to distinguish
contexts may not provide enough information. Eg. there is no
guarantee that the thresholds for physical proportions for a
specific behavior are valid for every scenario. The potential
in dynamically adapting behaviors to the physical context
is that it may allow placing robots in previously unvisited
physical contexts and it would then learn to optimize its
behavior to fit them.
The current affective status of a human describes how the
human experiences its current set of emotions and sensory
information (a simplified explanation is that it is how we
feel about what we current see, hear and think about). The
expected affective impact (how much the current interaction
changes the current affective status) of different behaviors is
difficult to know ahead of an interaction, making it difficult
to preconfigure the behavior-selection of a robot for optimal
affective impact in a specific context. The actual impact may
vary with different robot morphologies, different cultural
contexts, etc. which is why there may be unused potential
in learning the affective impact along with the discovery of
new contexts.

B. Context-based behavior selection

In this paper, we create and test a minimalistic solution
for context-specific behavior selection, a novel robot system
that learns to prioritize between a set of preconfigured
discrete behaviors for a specific physical context. This is
a combination of a preconfigured behavior approach and a
dynamic learning approach. The robot we have created for
this purpose was not configured to work in a specific context
but instead optimizes its behavior over multiple previously
unexplored contexts. The robot gradually explores and learns
the specifics of new contexts and attempts to place them in a
topography of nodes representing existing previously know
contexts. As more contexts are visited the robot generalizes
on the input and clusters similar context nodes in the vicinity
of each other. Each node represents designated behavior
strategies that fit this type of context. As the robot encounters
humans it interacts with them and attempts to verify the
impact of its different affective behaviors and to update the
priority in the behavior set that matches the current context.

The robot was tested in 72 different interactions with 6
human participants using a refined version of our custom-
created affective robot “Affecta” as seen in Figure 1. The
details of the robot are explained in the following sections.
The tests we performed showed that our robot was able to
distinguish between individual contexts and that it created a
prioritized set of behaviors that adapted to the users’ prefer-
ence in accordance with the physical context. As expected,
a high intensity level behavior was found more fitting in
a physically large room of 6x5m, while a lesser intensive
action was found more appropriate in a smaller room of
2x3m with a significant majority at p<.05.

Although the robot system we present in this paper is
a simplification of complex human affective processes, the
results indicate that it can provide a good foundation to build
upon for projects on non-preconfigured behavior control.
Even with limited sensor input in our test scenario, the robot
yielded a clear context-aware prioritization. We opted to
focus on the prioritizations of four discrete behaviors, but
in further research projects, the results indicate that there
is no reason not to apply learning on a much larger set
of context-specific behaviors. Based on our initial findings,
we conclude that the system allows for dynamic (simplified)
behavior selection and we suggest focusing on implementing
similar systems for personality-based behavior selection for
future improvements.

II. METHOD

We used the robot depicted in Figure 1 to autonomously
distinguish between different physical contexts and to find
the best possible behavior for each of them. We did this by
letting the robot collect information about its current context
and by letting the robot interact with humans asking their
opinions on the different behaviors.

A. Representing a context

The robot we created for this project was a 75cm tall
humanoid robot using the open source “Romo” face project



Fig. 2. Diagram of the layered system architecture of the Affecta V3 robot
we created for the tests.

and built on the “iRobot Create2” platform [19], [20]. The
Create2 platform consisted of an open source version of the
Roomba robot. It provided a foundation to build upon plus
sensors, and actuation. The robot had three contact sensors
placed at the front bumper on the robot. It also had three
low range distance sensors, one at the front and one on
either side. For actuation the robot used two electric motors
in a differential drive setup allowing the robot to move
forward, backward, and to turn around its own center axis.
The architecture diagram of the Affecta robot can be seen in
Figure 2.

The robot used an estimated physical size of the envi-
ronment as the sole attribute defining the physical context.
Determining the room size was achieved by measuring
time-of-drive in the physical context, using the front facing
contact- and proximity sensors on the robot to determine
time of contact. The robot would move around in each
physical context and measure the time between each collision
with either walls or objects in the environment. As the
robot detected a collision it would turn around randomly
between 140-270 degrees and start another measurement.
Five samples would be averaged and a vector containing this
single value would represent the current context. Estimating
the dimensions of a physical context can be done easier with
a richer sensor setup. We used time-of-drive as the method
as it is available to most mobile robots using simple contact
sensors.

Technically each contex can be represented by multiple
averaged environment samples in that same vector. With
richer sensors available other physical characteristics could
be sampled to give a more precise representation of the cur-
rent context in each vector. The calculated distance between
individual context-vectors dermines the similarity of their
physical properties. If the sum of squared difference between
a preexisting context vector and a newly sampled context
vector is below a predefined threshold, the current context is
assumed to be the same context that the pre-existing vector

represents.

B. Updating the representation

A vital part of the system is a representation of the
different contexts in a data structure that provides dimen-
sionality reduction for the gathered context vectors. The
data structure we used is a self organizing map that is
able to cluster similar contexts in the topological vicinity
of each other [21], [22]. Each of these topological positions
match small variations in different contexts. We altered our
self organizing map implementation to provide emphasis of
individual node weights (see details below) and to provide a
direct input-to-topological-position method.

In our context represenation we have created a 10x10
matrix of contexts context-vectors with a 2d position for
each entry. The matrix is initialized with a context vector for
each position and the values of these vectors are randomized
between 0 and 1. Each time new contexts are explored and
new context-vectors are created, the most similar context-
vector in the matrix is retrieved and each measure point in
this context-vector is updated by the difference between each
value modified by a fixed learning rate. The distance between
context-vectors is defined as the sum of squared difference
between all value paris of the vectors. As the closest match-
ing contet-vector is updated, the nearest contexts in euclidean
distance around it are also updated with a learning rate
that decreases (halves) with each distance step away from
the center context-vector. In similar style as self organising
maps, introducing a fundamentally different new input vector
automatically creates a new region in the topology of the 2d
map by altering the existing context-vectors.

In our implementation, the distance between context-
vectore is furthermore calculated with attention to the im-
portance of each of the gathered mesurements in it. Some
measure points may be more important than others and could
have a greater impact on similarity when determining the
distance between contexts. To model this, each measure point
in a context-vector has an added importance modifier that
multiplies the difference value. In this paper, the context
is identified by a single important measure points so the
modifier for that attribute is set to 1.0.

C. Behaviors in a context

In this paper we investigate the robot’s ability to prioritize
between four different predefined behaviors to dynamically
match the current context. As such, all contexts in our 2d
matrix have a set of behaviors attached. These are ordered
in priority after the best fit for the context. The behaviors
consist of series of movement (forward, backward, and
tuning movements), head antenna gesturing (waving pattern),
facial expression animations, and audio expressions. Each
behavior differs in audio and animations but shares the same
movement and gesturing patterns at different intensity levels
from 0 to 3, meaning that each of the four behaviors has a
unique intensity level. The intensity level defines the size of
the physical movements and gesturing, and also determines



Fig. 3. The physical context representation after 5 minutes of exploration
in each context. The 10x10 square map represents 100 individual contexts,
and the heat map colors represent the normalized time-of-drive measurement
values. The highlighted areas show how the measurements gathered in each
context has created a nieche area for the two contexts in the self-organizing-
map representation.

the intensity of the animated expression. The highest inten-
sity level at three has the largest movement and gesturing
actions while intensity zero does not have any movements or
gesturing but instead consists solely of animations and audio
expressions. The robot prioritizes between behaviors of the
context by testing them through interactions with humans,
and by gradually adjusting its prioritization for the indentified
physical context of each encounter. The behavior priority for
each context is updated with the same strategy as the physical
context-vectors with the behaviors of the neighburing con-
texts being updated with a decreasing learning rate as well.
The topology of the nodes may be altered when new contexts
are discovered which indirectly influence the behaviours
prioritized in similar contexts. Further descriptions of the
interactions are decribed in the following section.

III. THE EXPERIMENTS

The robot was tested in two different experiments. The
first experiment aimed to verify that the system was able to
autonomously distinguish between the contexts using a single
attribute and create a discernable representations for each
of the indentified contexts. The second experiment tested
the affective impact of the four different levels of intensity
behaviors through interactions with human participants, and
verified that the robot created behavior priorities that coupled
the physical contexts with matching behavior intensities.

A. Experiment One: Physical context exploration

The robot was designed to work autonomously through all
phases. The first of which included measuring the context.
We tested the robot in two different contexts, a 6x5m living
room, and a 2x3m bedroom context. It gathered measure-
ments for five minutes in each room and simultaneously
updated its context representation with each gathered data
point. The created context representation was visualized in
relation to the average time of drive measure point and can
be seen in Figure 3.

Before initiating any interactions with test participants the
robot would recognize its current context by moving around
in the physical context and gathering three measurements.
This was repeated before every new interaction.

The robot performed exploration to identify the current
physical context. This was achieved by moving around until
the robot had performed 3 successful measurements of time-
of-drive in the physical space.

1. The measure was recorded as the time between either
of the front-facing distance sensors detected an object
in close proximity or that the front-facing contact
sensors detected a physical collision. Any detection
within 1 second apart from the last previous measure-
ment would be ignored to hinder unprecise subsequent
measurements.

2. Once the robot detected anything in front of it, it
would turn in a random direction between 120 and
240 degrees. If the robot got stuck on any obstacles
we would step in and untangle it.

3. The value was averaged between the 3 successful
measurements and the context of the closest matching
distance was retrieved and the robot would stay idle.

4. The robot would stay idle in the same position until it
detected a human to interact with (detected using the
body and facial recognition). while it idled, the robot
would rotate slightly once every 15th second to gain a
larger field of view in the context.

B. Experiment Two: Behavior prioritization

To verify the robot’s ability to adapt behaviors to the con-
text via human interactions, we tested it through interactions
with 6 different test participants aging from 9 to 70. The
tests were performed in two different physical contexts. The
main attribute we considered in this system was the physical
room size and therefore we tested the system in two different
sized locations: a small indoor bedroom room (2x3m) and
a larger living room (6x5m). Although the two spaces had
very different dimensions they shared acoustic properties and
noise levels. The test participants interacted individually with
the robot one after another. Each interaction lasted for about
ten minutes. The participants were informed that the robot
would interact with them as soon as it could see them.
They were not instructed to perform any specific actions
other than to interact with the robot and answer truthfully to
any questions it would ask them. The following steps were
performed with each participant:

1. When the robot detected the visible face of a par-
ticipant in the vicinity, the robot would initiate the
interaction by asking the participant: “Hello there, can
I ask you a question?”.

2. If the participant approved, the robot would ask “Could
I ask you to tell me a bit about yourself, like who are
you and what do you do?”.

3. The robot would listen while the participants answered
and continue by saying “Okay.. thank you, that sounds
nice. Listen I actually need your help.. I would like you
to assess my behavior.. That’s really really difficult for
me and I would appreciate your honesty. I will show
you two different behaviors and I would like you to
compare the two. Are you ready? Here is the first..”.



4. The robot would select two random behavior from
the current context and show the first of them to the
participant.

5. The robot would say “Okay.. watch carefully.. here
comes the second behavior”. After which the robot
would show the second selected behavior.

6. The robot would continue by asking “so.. please be
honest, which of the two behaviors did you like the
most?”

7. The robot would then ask “And which of the two
behavior did you find most fitting in this context?”

Fig. 4. A test participant interacting with the robot in the larger 6x5m
physical context.

The robot handled all interactions with the test participants
including obtaining an answer on preferred behaviors. Using
a robot to ask the questions retains some of the benefits
of a face-to-face interview rather than using a questionnaire
after the interaction which may introduce bias on self-report
questions as found in Heath et al 2020 and Althubaiti et
al. 2016 [23], [24]. The test interaction can be seen in Figure
4.

The behavior selection strategy for testing the different
behaviors in the interactions was similar to a classic epsilon
greedy reinforcement approach with one part exploration and
one part verification (in a 9/1 ratio). The exploration path
used a random behavior while the verification strategy would
use and test the currently rated best-fitted behavior. In each
interaction two behaviors were compared and the participants
were asked a question regarding the test behavior’s suitability
in the current physical context. This resulted in the two
behaviors being found either suitable or not-suitable for the
physical context. Each behavior was updated following the
interaction and the sum of positive votes out of the total
number of votes would define the behavior-rating for that
specific physical context going forward. The behaviors that
were used as comparison in the interactions were randomly
selected with each encounter. During the full range of tests,
72 behaviors were tested across the two contexts and 96
physical context measurements were gathered.

IV. RESULTS

Figure 5 shows the percentage of total positive votes from
all interactions for each behavior intensity in the different

Fig. 5. The percentage of positive ratings for each behavior in the
two physical contexts. The blue series depicts the largest (6x5m) physical
context, while the red series depics the smaller (2x3m) physical context.
The x-asis shows the different behavior intensity levels while the y-axis
shows the percentage of positive votes for each behavior.

physical contexts. There is a significant (p<.05) difference in
the distribution of votes for the two physical contexts when
the robot asked the users to chose the most fitting of the
two displayed behaviors. The found most fitting behavior for
the largest (6x5m) context was the behavior with intensity
level 2 (selected in 73% of times tested), while the lowest
rated behavior from the same context was the behavior with
intensity level 0 which was only found most fitting in 20%
of the times it was tested. For the smaller physical context
(2x3m) the behavior found most fitting was the behavior with
intensity 1 with 66.7% positive votes, while the least fitting
behavior was the behavior with intensity level 3 27.3% of
the positive votes.

The robot updated its behavior prioritization in accordance
with the interaction results and the visualization can be see
in Figure 6. The visualization depicts the two main physical
context regions and the voted most fitting behavior intensity
in each of them with an intensity level of 2 (yellow) for the
6x5m physical context and an intensity level of 1 (light blue)
for the 2x3m physical context. The maximum intensity level
of 3 is found mainly in the upper right region of the context
representation which matches the largest found physical
context measurements in Figure 3. Comparing the physical
context visualization and the context behavior representation
reveals that the adjusted behavior intensity levels intuitively
matches the physical aspects of each context but also reveals
that the measurements performed prior to each interaction
often places the robot between two well defined context
regions in the representation.

Summing up the results there are three main findings.
The first finding is that the robot managed to distinguish
between each context using a single physical context attribute
to describe the context. The second is that the robot managed
to find a statistically significant prioritation for behavior
intensity for each context. The third finding is that the
robot adjusted the behavior prioritation for each context in
accordance with the physical attributes of each context.



Fig. 6. The context behavior representation. The 10x10 map represents
the 100 individual contexts, while the heat map color represents the highest
prioritized behavior intensity of each context. The light blue color is
intensity level 1 while yellow color is intensity level 2. The topological
regions are similar to those in Figure 3.

V. APPLYING THE FINDINGS

This paper aimed to investigate the feasibility of using
physical context information as a guide to drive behavior
selection for a robot. There is a definite and clear relationship
between the physical properties of the room and the human-
preferred physical properties of the robot’s behaviors. The re-
sults indicate that as the physical space increases around the
robot, and the participants who interact with it, so does the
amount of preferred intensity in the robot’s behaviors. The
robot managed to create regions in its context representation
for each physical context and update the same regions with
a behavior that matched the increased physical dimensions.
However, the system did not map the context consistently
to the same node in the context representation. This stems
from the uncertainty of using a single attribute to recognize
the current context. Adding further parameters to identify the
physical aspects of the contexts would make it more precise.
However, there is a strength and a point in using a single
attribute, as it is easy to apply to most robots and it provides
contextual information even from simples sensors.

The system adjusts its behaviors using a single context
attribute This is a simplification of how behaviors depend
on context in humans which is a complex psychological
process. As it is making assumptions on a sparse set of
information it will often be wrong when determining contexts
and best behaviors. However, the same can be said for
most humans. We don’t always find the completely correct
behavior for a given situation, we adjust our immediate
behaviors and negotiate affective status many times through
each interaction [25]. Many different sensor types could
have been used to provide contextual information about
the physical context, but we aimed at using simple sensors
that would often be available in off-the-shelves robots to
make the system applicable in a large variety of other robot
projects. For that reason, we opted to focus on room size
as the simple context attribute that influenced how a robot
should behave. We also experimented with using reverb
decay to indicate the room size as a second attribute, but we
choose to disregard that attribute to emphasize the simplicity
in driving behavior selection using only time-of-travel as

the input. More complex and richer sensors could provide
better distinctions between contexts but may also introduce
unusable sensor data. Some attributes aid behavior selection
better than others. E.g the detected color of various rooms
would make it easy to recognize a known context, but that
attribute says nothing about the optimal behaviors. The kind
of behaviors that the system optimizes for determines the
choice of attributes, meaning that it is a tradeoff between
context distinction and more generalizable behaviors.

The last two behaviors with intensity 0 and 3 were mostly
down prioritized. Outside of them not generally fitting the
context, this could also be due to the nature of the interaction.
The participants interacted with the robot from a distance
between 1-2 meters and a large physical behavior (intensity
3) might seem intimidating comming from a robot, and a
lack of movement (intensity 0) might make the robot seem
inanimate or uninteresting. However, some people preferred
these behaviors and it indicates that personal preference also
plays a part in each interaction. The individual mood and
personality of each test participant may also influence how
each behavior is received.

When we asked people for their reasoning behind their
opinion on the behaviors tested in the interaction, a lot of
them gave very anthropomorphic reasons for their choices
projecting human reasoning and motives behind the robot’s
behavior. Eg. “the robot rudely changed the flow of the
conversation with some moves”, or “the robot did not really
listen to what I told it, so I got a bit annoyed with it”.
This further indicates that the individual personality of the
users had an impact on how they viewed the behaviors.
Some previous research projects have already indicated
that personality traits such as extroversion influence our
preference for robot behaviors. Future research directions
from this project could benefit from investigating context
based behavior selection in combination with more advanced
awareness of user traits.

VI. CONCLUSION

This paper investigated the abilities of a system that en-
ables a robot to identify physical contexts, and autonomously
test and prioritize between predefined behaviors in each of
them. The system was tested in two different physical con-
texts through 72 interactions with 6 human participants. The
ability to identify contexts was verified as working success-
fully using a single measurable parameter to distingush the
physical properties of each environment. The system created
distinguishable regions for each physical context in its con-
text representation. The robot also managed to autonomously
prioritize behaviors in each identified context. The resulting
list of behaviors matching each physical context were learned
through interactions with the users, and the viualized map
of behaviors showed that the corresponding behaviors had
been correctly prioritized by the robot as it adapted to
each context. The results highlight the potential in mini-
malistic context-based behavior selection and demonstrate
the possibility of basing context-based behavior selection on
the information retrieved from a single measurable attribute



such as averaged time-of-drive. The people who interacted
with the robot had a tendency to project anthropomorphic
reasoning behind the robot’s behavior and we recommend
proceeding with an extension to this system which allows
for greater behavior flexibility based on the atttributes of the
users rather than solely the context.
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A minimalistic approach to user-group adaptation of robot behaviors
using movement and speech analysis

Morten Roed Frederiksen1 Kasper Stoy2

Abstract— Speech characteristics have shown potential as
a tool to identify personality factors in humans but usually
demands longer interactions or elaborate sensor requirements.
This paper presents a novel robot system that uses speech and
body movement characteristics to recognize and distinguish
between users-groups interacting with it through small sets
of interactions. It clusters people with similar characteristics
together and measures the affective impact of specific robot
behaviors. The system was tested using a custom-created affec-
tive robot through 36 interactions with 6 human participants
aging from 11 to 70. 186 samples were collected in two
different physical contexts and the similarity of the samples
for each user was compared. The results indicate that the
speech and movement characteristics have the potential as a
tool to recognize specific users and as a guide to form user-
groups. This was found using only basic sensors available in
most robots through a limited set of interactions. The results
further highlight that there are significant differences between
measurements for the same users in different physical contexts
meaning that the participants move and talk differently with
each context. This paper suggests combining the speech and
movement characteristics with information on the physical
context to gain better user adaption in robot behaviors for
future projects.

I. INTRODUCTION

When people interact with robots, they tend to anthropo-
morphize them and change their behavior to fit the interac-
tions, similar to how they would adjust their behaviors when
interacting with other humans [1], [2]. This is a particular
human skillset that is complex to transfer to a robot. Social
robots are often equipped with sensors and software to
recognize individual users and attempt to adapt to them.
An example of such is Vector by Anki robotics. This robot
uses facial recognition to recognize users and subsequently
states their names when it sees them to catalyze the forming
of a bond between it and the humans it interacts with [3].
Robots that recognize specific users have the potential to
adapt their behaviors to fit the preference of them. Mitsuga
et al. 2008 investigated adapting robot behaviors to social
distances, gaze-meeting-ratio, and gesture coordination and
found that the robot could successfully adapt to a single user
through an interaction [4].

Dynamically adapting to the current user often requires an
elaborate sensor setup to be achieved such as 3d coordinates
of the user [5] or motion capture systems [4]. However, some
research projects suggest gaining further insight into the cur-
rent user state using simpler measurement techniques. Bohus

1Morten Roed Frederiksen mrof@itu.dk and 2Kasper Stoy
ksty@itu.dk are affiliated with the REAL lab at the Computer science
department of The IT-University of Copenhagen, Rued Langgaards vej 7,
2300 Copenhagen S

et al. 2009 found that using audio, they could recognize and
distinguish between the different people and their level of
engagement [6]. Mower et al. 2007 used skin temperature,
and galvanic skin response to measure the engagement level
of the current user [7]. These examples successfully build on
the information available in the current context. However,
there could be potential opportunities in generalizing on
the measured characteristics of the users and optimize the
behaviors for the user groups rather than the individuals.

Fig. 1. A test participant interacts with the robot in the larger living room
context (6x5m).

Adapting behaviors to specific groups is challenging.
There are a near infinite number of different human personal-
ity specific characteristics that may influence the adaptation.
Personality factors such as extraversion, agreeableness, open-
ness, conscientiousness, and neuroticism found in the “Big
Five personality model” introduced by Costa and McCrae
1999 has previously gained attention as usable in human-
robot-interaction research projects [8], [9]. Especially the
personality factors extraversion and openness to experience
are important factors that influence participants’ attitude
towards robots [10], [11]. Andrist et al. 2015 found that the
level of extroversion was an effective personality factor to
use as a guide for adapting a robot’s behavior [12]. Kaplan
et al. 2019 indicated that there was a relation between the
level of extroversion in the users and their tendency to
anthropomorphize robots, making this a viable candidate
personality factor to focus on if the goal is to influence
the affective impact of robot behaviors [13]. The level of
extroversion is often estimated through personality tests
featuring a long series of questions to get a viable read



on the personality factors. However, speech analysis has
shown promising results in establishing personality factors
to a certain degree [14].

In this paper, we created and investigated the feasibility
of a robot system that groups the users it interacts with
by using immediate speech and movement characteristics.
Furthermore, the system attempts to achieve this through a
minimal set of interactions with the users. With our system
we wanted to verify the following hypotheses:

• That the speech characteristics attributes in combination
with movement characteristics can sufficiently be used
to distinguish a single user and determine the user-group
based on the distance between user characteristics. The
speech attributes are avg. speech length for a series of
questions, average pitch, average answer reaction time,
average words per minute, average jitter, shimmer, and
average pause duration. (See the following section for
the elaboration of these). The movement characteristics
are average head movement and average body move-
ment (avg. of any recognized joints).

• That the system can gather sufficient information within
a minimal interaction with a participant

• That the attributes can be used to recognize users across
multiple different contexts.

The robot system also attempted to verify the affective
impact of a set of discrete behaviors on the user-group to
adapt its selected level of intensity to the preference of
the group. As users with different speech and movement
characteristics are encountered, the system attempts to cluster
participants sharing similar characteristics. The system was
tested by collecting 184 samples of speech and movement
characteristics from six participants through 36 interactions
in two different physical contexts, using a refined version of
our custom-created affective robot “Affecta”. The experiment
results indicated the following:

• The selected speech and movement attributes are feasi-
ble for identifying users and users-groups.

• The attributes are co-dependant as the results indicate
that the variation between users across a single speech
or movement attribute is too small to drive the distinc-
tion, so a combination of attributes is required.

• The measurements on a single participant vary greatly
in different contexts making it difficult to distinguish a
participant across multiple contexts.

II. PREVIOUS APPROACHES

Assessing personality factors and psychological attributes
have previously been used for different purposes in robotics.
Rossi et al. 2018 performed reliable screening exams on
elderly participants using social robots in psychometric eval-
uation scenarios [15]. Investigating extroversion as expressed
by a robot’s gaze movement was done by Momen et al. 2018.
They found that the participants were more positive towards
interacting with it when the level of extroversion in the
robot matched the level of extroversion in the participants
[16]. This aligns with Craenen et al. 2010 that found their

participants tended to better like the robot more when they
attribute traits to it that came close to their own [17].
Tapus and Mataric 2008 investigated behavior adaption along
with the introverted/extroverted space in their rehabilitation
robot following personality traits gained from questionnaires
following Eysenck Personality Inventory [18], [19]. They
matched the robot’s behavior to the level of extroversion as
outlined in Eysenck’s “Personality Inventory” and found that
the users preferred robots that matched their own level of
introversion.

A consistent (but nonsignificant trend) was found by
Syrdal et al. 2006 in which the level of extraversion in the
participants was associated with the number of uncomfort-
able directions received from a robot that was toleranced
by the user [20]. The same authors in 2009 also tested the
Negative Attitude towards Robot Scale, a scale to determine
biases towards robots. The motivation for this investigation
was to understand how the personality factors in the indi-
vidual users (plus demographic, technology comfortability,
etc.) impact how they view and rate robot behaviors [21].
They found no relation to the evaluation of the behavior of
the robot but there was a relation to the participants’ comfort
level as they interacted with the robot.

Movement and audio to sample details about the users
have also been the focus of previous projects. Nakadai et
al. 2003 used motion in conjunction with audio to deter-
mine the active speaker in a multi-speaker environment.
The performance of the system they made depended on
the accuracy of localization. They found that movement
motions that were directed at the sound source improve the
recognition of the active speaker as it strengthens its ability
to separate the speaker from other audio sources [22]. Zafar
et al. 2018 used machine learning to classify movement
patterns captured by an RGB-D sensor to classify non-verbal
extroversion, agreeableness, and neuroticism traits [23]. They
used a humanoid robot in different role-play scenarios and
reached a high accuracy in the automatic assessment of
personality traits.

Batrinca et al. 2012 found that extraversion and Emotional
Stability were the easiest factors of the five-factor personal-
ity model to automatically detect using video analysis of
the participants in different collaborative human-computer-
interaction settings [24]. Pianesi et al. 2008 found promising
results in classifying extroversion and Locus of Control using
audio and video analysis of 1-minute slices of human-to-
human interactions [25]. They found that the input from both
the participants in the interaction improved the accuracy of
their classification.

III. METHOD

The previous section includes several successful examples
of robots adapting to different personality factors of the users.
Some of these projects found good results using manual
questionnaires, to gain insight into the personality factors of
the users, while others successfully used elaborate sensors
to record the attributes of the users. However, there may be
room for improvements in both simplifying the requirements



of the sensors and decreasing the temporal demands of the
interaction. If the sensor setup could be less elaborate and
the data and temporal demands could be lowered the user
adaption could apply to more robot projects.

This study used speech and movement characteristics that
were measurable with a relatively simple sensor setup using
means available in most robots. The system used microphone
and camera sensors as they are often already available
on robots for navigation and communication purposes. We
measure speech and movement characteristics as they can
potentially be accurately measured within a short timespan
and through a minimal set of interactions. This paper inves-
tigate if this setup is feasible to guide behavior-selection.

Eysenck 1975 detailed a personality inventory with extro-
version as a key attribute for different user-groups based on
personality factors [18], [26]–[29]. Extroversion can roughly
be simplified to how energetic, how talkative, and how
outgoing a person is. The attributes measured by the robot in
this study were chosen because they relate to this definition
and have previously been found viable to indicate the level
of extroversion in humans. The definition of extraversion can
be translated to some of the measurable characteristics used
in this study as follows:

• Energetic - We measured: Head movement, Body move-
ment, Jitter, Shimmer.

• Talkative - We measure: Words per minute, Average
answer length.

• Outgoing - We measure: Average response time, Aver-
age answer length.

The level of extroversion in humans has in previous
studies been found influental on the human preference in
robot behaviors. This means that using similar speech and
movement characteristics could be a valid starting point for
drive user-group adaption of robot behaviors. The measured
attributes are as follows:

• average voice jitter
• average voice shimmer
• average answer length
• average answer reaction time
• average words per minute
• average pause duration
The movement characteristics:
• average head movement
• average body movement
The average voice jitter can be defined as the overall varia-

tion in pitch for the user’s voice in the interaction. The jitter
is recorded as a percentage of the measured fundamental
frequency of the voice. The average shimmer can be defined
as the overall variation in the volume of the user’s voice. The
shimmer is recorded in decibel. The average answer length is
recorded as the time in seconds measured from the end of the
question (when speech recognition starts) until the end of the
answer (1.2 seconds after the last word has been recognized).
The average answer reaction time is the time in seconds
from the end of the question (when the speech recognition
starts) until the first word was recognized. Both the estimated

Fig. 2. Affecta V3, The humanoid robot that was used in the interactions
with the test participants.

answer length and reaction times were dependent on the
ability of the speech recognition to recognize the spoken
words. The words per minute represent the speaking velocity
of the speaker. This estimated value is calculated as the
number of words recognized for a single minute based on
extending the total time of the total recognized words in the
last recorded sentence.

The Affecta robot that was used for the interactions can
be seen in Figure 2. The sensors on it used in this paper
were proximity sensors, a camera sensor, and a directional
microphone. To aid in the accuracy of the recordings of all
the audio features, the robot was equipped with an internally
powered microphone aimed towards the user in front of the
robot. All the measured values were normalized before they
were used in comparison with each other. The robot used an
iOS app and Apples text-to-speech API to provide some of
the speech attributes. The voice jitter, voice shimmer, average
pitch, and average pause duration were provided from the
Apple Speech analysis API [30]. The iPhone app also utilized
the iOS face-tracking and pose-estimation APIs within ARkit
to track the individual joint movements of the user [31]. The
data gained from the APIs were provided in individual audio
frames, and individual video frames. They were all averaged
and normalized before use.

The measured values were all normalized and stored
on the robot. With each interaction, the robot measured a
single sample containing all values averaged over the whole
interaction. This sample can be represented as a feature
vector containing all the normalized values. This vector holds
a single sample of a user’s speech and movement char-
acteristics. The distance between two vectors was defined
as the sum of squared differences between the individual
samples. This distance determines the similarity of two
participants’ characteristics, and as this value approaches
zero, the probability of those two persons being similar
increases. If they are close, it is determined that they are part
of the same user-group (each group sharing similar speech
and movement characteristics).

The Affecta V3 robot used in this paper was equipped



with a few preconfigured behaviors. The behavior consisted
of simple movement-patterns going backward, forward, and
turning from side to side. The behaviors also consisted of
simple gestures using head antennas on either side of the
robot’s head, face animations using the Romo opensource
facial animations, and simple audio sounds [32]. The behav-
iors were nearly identical in their physical movement and
gesture patterns but differed in intensity strength with each
behavior. Behavior 0 contained no movements or gesturing
while behavior 3 contained large and swift movement and
gesture patterns. The intensity of each behavior was also
evident in its facial animation with behavior 0 being very
calm and behavior 3 being highly energetic.

This paper aimed to investigate the feasibility of user-
group adaption based on the chosen speech and movement
characteristics gathered with a minimal set of interactions.
In the experiments, this was approached by letting the robot
gather samples through interactions with human participants.
In these interactions, the robot also displayed two different
behaviors in sequence and obtained the participants’ opinions
on them. The opinions were obtained by capturing and ana-
lyzing images of the participants’ facial expressions to clas-
sify their current affective status expressed as valence/arousal
values. The full experiment details are described in the
experimental setup section.

Each question in the interactions amounted to a single
sample and more than 40 samples were collected in all from
each person. The number varies a bit as some questions
had to be repeated when the participants gave an answer
that was recorded but not understood by the robot. To
establish the validity of the attributes as a tool to distinguish
individual users distances between vectors from the same
participants and the distances between vectors from different
participants were compared. The hypothesis was that the
measured vectors will be similar for the samples from the
same participant across multiple interactions and different
for two different participants.

The participants were sampled through six individual
interactions in two different physical contexts to investigate
the stability of participant-distinction across different envi-
ronments. The calculated distance was compared between
vectors from the same participants but also with vectors from
the same participants across different physical contexts.

IV. EXPERIMENTAL SETUP

The interaction tests were conducted in two different
physical environments, an indoor living room (6x5m) and a
smaller indoor bedroom (2x3m). Figure 1 shows a participant
interacting with the robot in the larger of the two physical
contexts. The data gathered in for this paper was collected
as part of a larger experiment on context awarnes and robot
behavior-selection. the approach outlined in this section is
similar to the experimental setup in Frederiksen and Stoy
2021, although the collected data types are different [33]. The
tests included 36 interactions with 6 different test participants
aging from 9 to 70. The initial focus of the interactions
was to establish the personality traits of the test participants

through interactions with the robot. Once established, the
interaction continued with the robot measuring the impact
of 2 different behaviors by demonstrating them to the user.
The test participants interacted individually with the robot
in turn, and each interaction lasted for about five minutes.
Each participant would interact with the robot three times in
each physical context. The participants were informed that
the interaction would start as soon as the robot could see
them. They were not told to perform any actions other than
to interact with the robot and to answer any questions the
robot would ask them. The following steps were performed
with each participant:

1. When the robot would detect the face of a participant, it
would start the interaction by asking the participant the
following: “Hello there, can I ask you a question?”.

2. If the participant agreed, the robot would continue
with: “Could I ask you to tell me a bit about yourself,
like who are you and what do you do?”.

3. The robot would listen to the participantss answer and
continue: “Okay.. thank you, that sounds nice. Listen
I actually need your help.. I would like you to assess
my behavior.. That’s really really difficult for me and
I would appreciate your honesty. I will show you two
different behaviors and I would like you to compare
the two. Are you ready? Here is the first..”.

4. The robot would select two random behaviors and start
by demonstrating the first to the participant.

5. Before using the behavior, the robot would say:
“Okay.. watch carefully.. here comes the second be-
havior”. After which the robot showed the second
behavior.

6. The robot recorded the participant’s reaction to the
behavior and would try to classify his or her current
affective status expressed as a normalized value for
valence and arousal levels.

The robot would track the participant’s speech- and move-
ment characteristics with each answer received from the
participant. The interaction contained a step where the robot
could accept or refuse to continue and a step where it needed
to understand the preference of the user. If the robot did not
understand the answer in one of these steps (1,2) it would
repeat the question. The robot demonstrated two behaviors in
each interaction. Immediately following the demonstration,
the robot would attempt to track the participant’s face and
record an immediate reaction to the demonstrated behavior.
The robot would ensure the visibility of the participants face
before the demonstration by asking the participant “Where
did you go? I can’t see your face anymore. Can you please
move so I can see your face?”. The captured image sequence
of the user’s face was analyzed with each demonstrated
behavior using a pre-trained convolutional neural network
(trained on annotated data from the AffectNet dataset) to
classify the participant’s current affective status as expressed
in Russel 1980 with valence- and arousal levels [34], [35].
The detected pleasantness level for each behavior would
determine the users preference in the different behaviors.



Group answer
length

body
move-
ment

head
move-
ment

reaction
time

voice
jitter

voice
shim-
mer

pause
dura-
tion

All 2,754 0,021 0,088 0,536 3,442 1,710 0,269
Single 1,235 0,009 0,049 0,159 1,544 0,517 0,202
Ratio 0,449 0,423 0,559 0,297 0,448 0,302 0,752

TABLE I
THE RESULTING STANDARD DEVIATIONS FOR EACH MEASURED

ATTRIBUTE. THE TOP ROW CONTAINS AVERAGES AND STANDARD DEV.
ACROSS ALL RECORDED SAMPLES, WHILE THE BLUE ROWS SHOW

AVERAGES AND STANDARD DEV. AS AN AVERAGE FOR EACH USER. THE

GREEN ROWS SHOW THE RATIO BETWEEN THE SPREAD OF DATA FOR

ALL SAMPLES AND SAMPLES AVERAGED PER INDIVIDUAL PARTICIPANT.

V. RESULTS

With the results we are interested in seing how close each
sample of speech and movement characteristics lies for each
participant and in general. Table I shows the standard devia-
tions for the collected samples across all participants and the
standard deviation of each individual participant’s samples.
The values are calculated from the raw recorded numbers
and have not been normalized. The individual measurements
were first calculated for the individual users and the averages
of those numbers were recorded. The results highlights that
on average the samples for a single participant lie closer than
the average of samples in general. This is evident in the ratio
between the standard deviations for all participants and per
individual participants with numbers ranging from 0.29 to
0.75. All ratios for the standard deviations were less than
one. With the exception of the standard deviation for the
average pause duration (0.75), and average head movement
(0.55) all attributes had a ratio below 0.5.

For the samples gathered in the different contexts the
distance between them reveals the how well the speech
and movement attributes can be used to distinguish users
in different physical locations. Figure 3 shows all six par-
ticipants and the Euclidean distance between the vectors
containing the average of their respective samples in each
context. Each participant was tested in two contexts (circles
with similar colors) and as the visualization highlights, the
distances between the average measurements are further
between contexts than between individual participants in
each context. The calculated average distances between mea-
surements in each context and between the two contexts
are: 0.30 for the large (5x6m) context, 0.23 for the smaller
(2x3m) context, and 0.54 for the measurements in the one
context compared to the measurements from the other. Based
on the measurements, these numbers show that the vector
of personal traits of participants are more similar to each
other in each physical context than similar to themselves in
a different context.

VI. APPLYING THE FINDINGS

The results indicate that the chosen speech- and movement
characteristics can adequately be used to identify users, even
when gathered through a minimal set of interactions. This

Fig. 3. The participants and the distance relationship between the average
of their respective samples in each context. The colored circles represents
participants and the edges between them is the Euclidean distance between
the two participants’ samples. Each participant was tested in two contexts
and the identical colors of the circles represent the same participant in
different contexts.

is evident in the gathered samples as the average distances
between the samples gathered from a single participant are
smaller than the average distance between the samples from
two different participants. The measurements for a single
attribute may be too close for it to provide enough detail to
distinguish participants based on that alone. A combination
of points is needed but a subset of the ones we use may be
sufficient. We did not investigate this further.

The distance between samples collected from the same
participants but in different physical contexts is higher than
the average distance between different users in the same
context. This poses a challenge for the recognition of users
and behavior adaption across multiple physical contexts.
It also indicates that the participants potentially alter the
way they talk and move with each context and the robot
may register that. This may indicate that any robot system
should not rely on a single measurement when trying to
establish user-groups based on personality factors. It is a
continuous process and the behavior patterns humans exhibit
in one context may be different in the next. Also, this
could indicate that for a social robot to appear more human-
like it could benefit from adapting its different behaviors to
not only the personality factors of the humans it interacts
with but also the physical context as well. It would make
sense to combine the knowledge gained from the speech and
movement measurements with additional info on the physical



context. E.g. a single distance measurement of the robot’s
current physical surroundings may provide enough additional
information to gain a better adaption to its users than relying
solely on data gained from the interaction.

This study also investigated whether the speech and
movement attributes could be used to drive robot behavior
adaption to a specific user group rather than individual
persons. If this was the case, it should be possible to
generalize over the behavior preference from participants
sharing similar characteristics. This would mean that there
could be established a correlation between the measured
characteristics and the participants’ preferences in the dif-
ferent robot behaviors. There were four behaviors in all and
they differed in the amount of movement the robot used and
how energetic the robot acted. The speech and movement
characteristics we gathered in the experiments related to
the level of extroversion in the participants. As extroversion
has previously been shown to influence humans’ preference
in robot behaviors, a relation between the detected user-
group characteristics and their behavior preferences seems
feasible [12], [19], [36]. However, the data we gathered
in these experiments were insufficient to support anything
significant about such a relationship. The problem may arise
from the difficulty in establishing a personality type using
data measured in a limited interaction using three simple
questions and movement patterns. The Eysenck personality
inventory test uses 50+ questions and likewise suffers from
being unprecise.

The distance between speech and movement attribute
vectors was calculated with equal emphasis on all attributes.
It could potentially improve the correlation between attribute
vector distances and behavior preference vector differences
if each attribute was adjusted by a weight to make it more or
less influential on the vector distance. This could be handled
by post-processing the data and adjusting the weights based
on the degree of mismatch between the two calculated
distances. A potential pitfall with such a process is that the
data might be overfitted to a specific dataset making it less
usable as future samples are added.

Overall the system for user-group detection is a simplifi-
cation of some of the psychological processes that occur in
all of us as we interact with other people. It will often be
wrong as it is working on limited input and limited temporal
constraints. However, the same impreciseness is evident
in most humans as we estimate the personality of other
humans. This is acceptable as we don’t have to determine
the definitive correct behavior for a given interaction. It is
enough to get a ballpark estimation of other people to get
a better starting point for a successful interaction. The same
can be said about the robot. The limited amount of time
spent in the interaction and simple sensor setup may decrease
the accuracy of how well the robot detects different user-
groups. A fair degree of uncertainty can be tolerated in its
estimation of user-groups and behavior adaption to them.
Even the lightest information can lead it to a better starting
point for successful communication with its users. The user-
group adaption system is also not necessarily meant to work

in unison but could benefit from being combined with other
contextual information systems to provide a more detailed
image of the user and the current context.

VII. CONCLUSION

This paper aimed to investigate the feasibility of using
speech and movement characteristics, measured over a short
interaction time, to sufficiently detect individual users and in-
vestigate whether it works across multiple different physical
contexts. The hypothesis has been tested using a custom-
built robot in 72 interactions with six participants across
two different physical contexts. It was found that the speech
and movement characteristics were sufficient to distinguish
a participant in a single context. Defining user-groups on the
distance between user-characteristics is feasible. It was also
found that the attributes are co-dependant as the results indi-
cate that the variation between users across a single speech or
movement attribute is too small to drive the distinction, so
a combination of attributes is required. The measurements
on a single participant vary greatly in different contexts
making it difficult to distinguish a participant across multiple
contexts. The project showed that measuring aspects of the
users’ personality factors is possible with some tolerated
impreciseness. The authors suggest combining the measured
data with additional contextual information systems to better
guide user-group adaption in future robot projects.
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