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Abstract (EN)

This thesis addresses how current notions of image production remain 
tied to historical ideas which often prove inadequate for the description of 
visual artefacts of machine learning (ML). ML refers to the simulation of in-
formation acquisition using machines, and when applied to the generation 
of images, it enables visual content to be influenced based on the statistical 
analysis of data. The increasing use of ML in image production highlights 
several aspects which have been present in older forms of media, but which 
now take on new forms and relevance, especially within artistic contexts. 
This research seeks to clarify the mediating role played by visual technolo-
gies and to demonstrate how images produced using ML offer new ways of 
approaching theories of the image.

Images exist at the interstices between human perceptual experience and 
its technological mediation, which is especially relevant as the development 
and implementation of technologies offers new possibilities to produce vis-
ualisations from data. In so doing, technological mediation tangibly aug-
ments relationships between how images are produced, experienced and 
interpreted. The present incorporation of ML into various forms of visual 
media offers insight into this issue by enabling images to be produced as 
the result of the statistical analysis of datasets. Computational relations 
which are extracted and inferred between features within images help to 
construct learned representations which are in turn used to generate new 
images. This results in a form of computationally-determined representa-
tion which is informed by the interpretive processes performed by ma-
chines.

Artists have taken great interest in the potential of ML, in an aesthetic, but 
also a processual capacity, often considering its relation to human vision. 
Their productions offer insight into novel aspects of ML in the creation of 
images through experimental practice which is informed by theory and by 
art history. Using and reflecting on ML, often in novel or reactionary ways, 
artistic and humanistic perspectives provide vital counter-narratives to 
those of computer science (CS), and which facilitate cross-disciplinary un-
derstanding.

In spite of the hype which surrounds it currently, ML does not present an en-
tirely novel approach to image production and rather builds upon existing 
modalities and narratives surrounding the technical production of imag-
es. Notions of technically produced images often lean heavily on historical 
narratives regarding the technical production of images, even perpetuat-



ing inaccuracies from them. These tend to misconstrue images either as 
inherently accurate reflections of reality or as the product of artificial per-
ception and genius, by virtue of their engagement with technological pro-
cesses. This research therefore adopts a media archaeological approach, in 
order to understand how processes that have been present in visual media 
much longer than the use of ML continue to colour discourse. 



Abstract (DK)

Denne afhandling ser på, hvordan aktuelle opfattelser af billedproduktion 
stadig er forankret i historiske idéer, der ofte viser sig utilstrækkelige, når 
man skal beskrive visuelle artefakter inden for maskinlæring (ML). Med ML 
forstår man det at simulere informationsindsamling ved hjælp af maskiner, 
og når ML anvendes til generering af billeder, bliver det muligt at lade statis-
tisk dataanalyse påvirke billedindholdet. Den stadig hyppigere brug af ML i 
billedproduktion sætter fokus på en række aspekter, der allerede var en del 
af ældre medieformer, men som nu antager nye former og relevans særligt 
i kunstneriske sammenhænge. Den her præsenterede forskning søger at 
klarlægge den formidlende rolle, som visuelle teknologier spiller, og at vise, 
hvordan billeder, der produceres ved hjælp af ML, åbner for nye måder at 
tilgå billedteorier på.

Billeder eksisterer i feltet mellem den menneskelige perceptuelle erfaring 
og dens teknologiske formidling, hvilket er særligt relevant, da udvikling 
og implementering af nye teknologier giver nye muligheder for at frem-
bringe visualiseringer ud fra data. Teknologisk formidling udvider dermed 
helt konkret de indbyrdes relationer, mellem hvordan billeder bliver pro-
duceret, oplevet og fortolket. Den måde, hvorpå ML i dag inkorporeres i 
forskellige former for billedmedier, giver et indblik i dette ved at gøre det 
muligt at producere billeder, der er et resultat af statistisk datasætanalyse. 
Computerberegnede relationer, som udledes og antages at forbinde givne 
træk i billeder, er med til at fremstille afledte repræsentationer, som de-
refter selv bruges til at generere nye billeder. Det resulterer i en form for 
computerbestemt repræsentation, som er baseret på fortolkningsprocesser 
udført af maskiner.

Kunstnere har vist stor interesse for potentialet i ML, som en æstetisk, 
men også en processuel dimension, idet de ofte betragter ML stillet over 
for menneskets synsevne. Deres værker giver en indsigt i nye aspekter ved 
ML i frembringelsen af billeder gennem en eksperimentel praksis, der er 
baseret på teori og kunsthistorie. Ved at bruge og reflektere over ML, ofte 
på nye eller reagerende måder, skaber kunstneriske og humanistiske pers-
pektiver vigtige mod-narrativer til dem, vi finder inden for computerviden-
skab, og bidrager dermed til en tværfaglig forståelse.

På trods af den hype, der i dag omgiver ML, så repræsentere ML ikke en 
fuldstændig ny tilgang til billedproduktion, men bygger snarere oven på 
eksisterende modaliteter og narrativer omkring den tekniske billedpro-
duktion. Idéer om teknologisk fremstillede billeder lægger sig ofte op ad 



historiske narrativer om teknisk billedproduktion og viderefører endog 
nogle af deres fejlagtige antagelser, hvor billeder ofte misfortolkes som ent-
en naturgivne præcise gengivelser af virkeligheden eller som et produkt af 
kunstig oplevelsesevne og genialitet i kraft af deres forbindelse til teknol-
ogiske processer. Den her præsenterede forskning anvender derfor en me-
diearkæologisk tilgang for at forstå, hvordan processer, der har eksisteret 
i de visuelle medier meget længere end anvendelsen af ML, forsat præger 
diskursen.
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I believe that nothing in this world — not even the invention of 
media and computer art — can alter the task of art, which is to 
reveal the eternal in the finite. (Kittler 2007)



Introduction

In recent years, machine learning (ML) has received a great deal of atten-
tion from artists, as well as theorists, considering what implications it holds 
for visual culture. Artistic practice incorporating ML provides novel exam-
ples and perspectives regarding the interplay between the visual and non-
visual aspects of images, and the interpretive processes performed by hu-
mans and machines. Current technical possibilities have lent new modes 
of production, aesthetics and modalities to images, yet are often theorised 
in ways that connect to, elaborate upon or reiterate existing notions of what 
images are, how they behave, and what significance they hold. This has 
contributed to a lack of consensus concerning what may be considered the 
defining attributes of images. The present research addresses this lack of 
clarity by examining how recent applications of ML in visual art contexts 
expand upon existing notions of the image.

ML is a subfield of artificial intelligence1 (AI) “in which machines ‘learn’ 
from data or their own ‘experiences.’” (Mitchell 2019, 8). When applied to 
the generation of images, ML enables images to be informed by the process 
of learning. This may affect how the resulting images appear, how they be-
have and how they are understood. Producing images as the result of algo-
rithmic procedures emphasises the processual and non-visual aspects of 
images, as well as provoking speculation about the potential autonomy of 
highly automated image production from human vision and agency. The 
use of ML to produce images thereby also presents several theoretical is-
sues concerning how such artefacts are to be interpreted.

Artists’ explorations often put forward unorthodox perspectives as to how 
ML may be used, misused or seen in new ways. Their investigations have 
also had a great deal of crossover and collaboration with theory, either 
through artists’ writings or through interdisciplinary cooperations. The 
work of Harun Farocki, Trevor Paglen and Hito Steyerl is especially notable 
for its transversal (Gansing 2013) nature, cutting across disciplinary lines, 
but these are just a few names among many who have made significant con-
tributions in this respect. Combining practical and theoretical enquiry has 
offered vital insights into the implications of ML for visual media, which 

1: AI itself is rather complex to define, but the Stanford’s 100 year report on artificial intelligence offers the fol-
lowing “operational definition” of AI: “a branch of computer science that studies the properties of intelligence 
by synthesizing intelligence.” (Stanford University 2016, 13) This working definition is attributed to Herbert A. 
Simon. Further discussion of the connection between ML and AI at large can be found in Chapter 1 (p. 28).
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reciprocally inform one another. For instance, artists experiment with the-
ories in a practical capacity, from which new knowledge may be drawn.

Background

Algorithmic tendencies were already present in visual media before the 
current hype around ML and AI, but they are gaining significance as the 
use of ML becomes more widespread. The capacity for images to be formal-
ised algorithmically enables them to be executed according to specific con-
straints and procedures, which also affords them aspects of mutability, to 
be articulated in variable formats. This grants images greater potential for 
images to be stored, printed, duplicated or electronically transmitted, often 
resulting in an equivocation between image, data and text. Such attributes 
fit with the principles of new media, as described by Lev Manovich (2001, 
27–61), but may also be traced back to much earlier precursors involving 
the implementation rigorous constraints and instructions in the produc-
tion of images, whether analogue or digital.

Formalising images in terms of algorithmic processes also enables the 
production of images to be performed in a highly automated fashion. The 
participation of machines in image-making has long been a contentious is-
sue in art history. The tendency to overstate the autonomy of machines has 
fueled discrepancies regarding the authorship, as well as the truth value, 
of images. Photography, for its part, has been the subject of heated debate 
concerning the role played by the camera in the photographic process, of-
ten minimising the role played by the photographer. As a result of this logic, 
technically produced images have historically been framed as expressions 
of the capacities of the machine — separate from its creator — which is un-
critically believed to result in higher levels of objectivity in technically pro-
duced images.

The photographic aesthetic, which emphasises verisimilitude between rep-
resentation and referent, has been the dominant visual paradigm of the past 
century and continues to be important within digital media. This is in spite 
of the fact that a significant divide may exist between the aesthetic qualities 
of an image and the processes involved in its production. While this has 
been present in older forms of visual media, including painting, drawing or 
photography, the generation of images based on learned patterns in data-
sets disrupts the apparent direct visual referential connection between im-
age and the world that is found in other forms of image-making. The levels 
of interpretation which occur between the visible surface of an image and 
the processes behind it render such referentiality unreliable. Frieder Nake 
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(2008) explains this in terms of interfacing between the (visible) surface 
of an image and the (processual) subface behind it, in which visual media 
is understood as exceeding the visual, but not reducible to process alone. 
Following the perspective of postphenomenology (Ihde 1993), visual tech-
nologies not only modulate perceptual experience through their aesthetic 
qualities but also play an interpretive role therein.

The capacity of visual technologies to mediate or to act as analogues for 
biological vision recalls cybernetic perspectives on perception, which 
draw comparisons between various kinds of visual systems and processes, 
whether biological, mechanical or computational. Notions of nonhuman vi-
sion performed by machines have been explored by artists, as well as the-
orists, who have sought to visualise, to problematise or to re-envision the 
way that machines process visual information. Among them, Harun Faro-
cki’s (2004) concept of operative images2 (17) – or operational images – has 
been especially significant. The influence of Farocki’s ongoing artistic and 
theoretical work examining the interpretive role played by machines can 
be seen, for example, in Ingrid Hoelzl and Rémi Marie’s (2015) softimage and 
Paglen’s (2014) invisible images.

The complexity of relations between human vision and images is a central 
feature of visual technologies. It demonstrates how closely attuned visual 
media are to the human subject, as well as how delicate visual mediation is 
as a result. The overlap between the simulating capacity of images and the 
parameters of human vision is fundamental to the mediation performed 
by images, but it also forms the basis of dissimulation. Technoscientific ap-
proaches to visual media have provided new ways of visualising data, but 
have also proven their capacity for error and manipulation. This is espe-
cially noticeable in adversarial approaches, in which the visual properties 
of an image may operate on a different plane than the way the same im-
age is analysed by a machine. For this reason, adversarial approaches have 
been used by numerous artists in efforts to hinder, to demonstrate or to 
interact with aspects of machine vision3 (MV) and computer vision (CV).

Highly automated processes of image production not only make the differ-
ences between the processing of visual information by humans and ma-
chines starkly apparent but also reveal the error in considering automat-
ed forms of image production as autonomous from human influence. The 
incorporation of ML into the production of images thereby adds to an al-

2: Farocki has used several variations of this term, but for clarity, “operative image” is used in the continuation 
of this thesis.
3:  MV is differentiated from CV as being connected with robotics, concerned with spatial tasks in addition to 
the computational tasks performed by CV.
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ready complex area of discourse surrounding the technologically mediated 
nature of image-making. Though attempts have been made to distinguish 
current from traditional forms of visual media – and their related theories – 
these are compounded together with the wealth of discourse which already 
exists on the topic of the image.

The deceptively simple question, “What is an image?” (Mitchell 1986), 
demonstrates that while pointing to an example of an image may be a sim-
ple task, defining what constitutes an image is fairly difficult. As a result of 
the diversity of technical processes that may be employed in the produc-
tion, dissemination and performance of images, a wide variety of even con-
flicting attributes may now be ascribed to images. This makes it effectively 
impossible to define the image through a single set of criteria, leading to 
what has been referred to as the “crisis of the image” (Belting and Jephcott 
1994). An abundance of terms have arisen in response to this problem, each 
of which addresses various facets of images, yet no master theory proves 
suitable to grasp the image in its entirety. Instead of cover-all theory de-
fining what an image is, there is a multitude of different — often compet-
ing — theories to describe certain of its many potential attributes. Rather 
than being reinvented through a succession of technological paradigms, as 
is suggested by the continual attempts by theorists to rebrand the image, 
visual media contain echoes of the numerous technologies — and theories 

— which have been compounded, one upon another, before arriving at the 
current state-of-the-art.

ML-produced images draw attention to the importance of process in tan-
dem with aesthetics. In older forms of visual media which have entailed 
highly complex processes of mediation through the execution of algorith-
mic procedures, the process of production certainly played an important 
role in how images thus produced were received. Yet the relative obscurity 
of ML processes, which are often not readily apparent in the resulting imag-
es, necessitates higher degrees of knowledge and interpretation on behalf 
of viewers, to understand them. Such a discrepancy makes the products of 
ML image production artefacts of many levels of interpretation and of medi-
ation, which often engage in abstraction as a heuristic device for grappling 
with the complex processes involved.

In addition to altering how images appear and how they behave, algorithmic 
processes also influence images in terms of how the role of those process-
es is understood. While ML gives over the orchestration of image produc-
tion processes in large part to be determined by computational processes 
performed by digital computers, what is more significant is how these pro-
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cesses are defined concerning data and its interpretation. In this sense, the 
visual content of images comes to be equally as important as how it is medi-
ated. This includes the methodological approach as well as the level of the 
interface through which it is encountered. This interfacing quality of imag-
es makes them intermediaries between the human perceptual system and 
the world via technological, biological and conceptual apparatus. Images 
thereby influence not only visual experience but also how that experience 
is interpreted.

As technological developments augment the possibilities of image pro-
duction, they also reshape cultural expectations and understandings of 
how images behave, their value and their meaning. For example, growing 
knowledge as to ML’s simulating capacities and potential for error acts as a 
counterweight to the extremes of techno-optimism and techno-pessimism 
which have often accompanied it and other visual technologies in the past. 
In such a way, image-making technologies play a vital role in interpreting 
the world around us, in addition to being subject to interpretive processes 
in their reading.

Research Question

This research seeks to develop an understanding of how the use of ML — es-
pecially in artistic contexts — contributes to re-evaluations of the image. It 
therefore responds to W. J. T. Mitchell’s (1986) question, “What is an Image?” 
not by answering it, but by asking:

How does machine learning expand understandings of images?

Current methods of image production, such as those employing ML, build 
and expand upon notions, methods and techniques which have existed 
for much longer. This means that not only can attributes and modalities of 
newer media be found in older and often distantly related media artefacts 
and processes, but also that they continue to be framed in terms of theories 
concerning older modes of image-making.

The increasing importance of algorithmic processes in image production 
reveals discrepancies between various understandings of images. This in-
cludes divulging changes in how images have been theorised over time con-
cerning new visual technologies. There is a need for clarification of existing 
thought regarding the growing importance of ML in visual media. Rather 
than seeking to define — or to redefine — the image, this research aims to 
contextualise current practical examples in relation to theory. 
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As a paradigm in image-making, ML departs from the norms of other visual 
technologies, such as photography, by enabling the creation of images 
based on learned patterns in data, rather than capturing visual likenesses 
of real-world objects in a direct sense. The production of images is subject 
to the interpretive processes exerted on therein, both in terms of human 
perception and subjectivity, as well as those imposed by the technological 
conditions of that production. 

Visual media are tied to the parameters of the human perceptual frame-
work in the sense that they are reflective of how and what we see, as well 
as how we interpret it. This means that visual technologies augment what 
is perceived, as well as altering how it is interpreted. The use of ML in im-
age-making thereby intervenes not only in the technological mediation of 
perception but also plays an interpretive role which mediates between the 
performance of visual tasks by machines and the intentionality and per-
ceptual experience of humans. This renders common dichotomies between 
visual and non-visual, human and machine insufficient for understanding 
the complexity of image production processes.

Drawing connections to older — even analogue — techniques and devic-
es, this research considers how historical examples have contributed to 
the current production of images using ML. A contextual understanding 
of how image production is influenced by ML is established by identifying 
and differentiating novel attributes from existing tendencies. Considering 
image-making processes in terms of their role as mediators of human per-
ception — rather than either entirely focused upon or divorced from it — en-
ables a departure from already well-trod approaches to the image.

Theorising the image as either a materially static, primarily visual object 
and the product of human creativity, or as an invisible, ephemeral process 
that is only accessible to machines, fails to adequately address the levels of 
nuance that occur in images. Instead of attempting to debunk these ideas, 
this research seeks to meet them together by establishing common ground 
between them. Cultivating similarities between seemingly disparate forms 
of visual media and ideas regarding the evaluation of images, this research 
develops a perspective on images that is focused primarily on their role as 
mediators of perceptual experience.

To develop a thorough account of how theories of the image are impacted 
by the intervention of ML in image production, current methods of im-
age-making are examined in relation to historical tendencies in the use 
of technology in visual media. We therefore examine how longstanding 
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cultural narratives around the production of images have shaped current 
understandings of image-making technology. This involves performing an 
analysis on representative examples from contemporary art and art his-
tory, as well as drawing insights from technical experimentation. Instead 
of treating ML approaches to visual media as isolated from past forms of 
image-production, employing an approach to this topic informed by media 
archaeology enables us to see how current theories of the image act as a 
continuation of — not a distinct break from — existing notions of the image.

Methodology

The nature of this research topic crosses the boundaries of several fields of 
research, which necessitates an interdisciplinary approach. Artistic prac-
tices involving ML in image-making bring together knowledge — and often 
practitioners — from a range of disciplines including art, the humanities 
and computer science (CS). The visual productions they create may have 
relevance within these fields of research but are also of wider significance 
as visual culture becomes subject to mediation involving ML on an increas-
ing basis. The holistic approach of this research aims to develop a more 
nuanced view of the topic than existing discipline-specific views have up to 
this point been able to provide.

It also seeks to bridge disciplinary divides by establishing common lan-
guage and knowledge across several areas of research. While each of the 
areas touched upon by this research contributes aspects of competency to 
this study, they each bring with them their own assumptions, conventions 
and languages, which may hinder understanding across disciplines. There 
are notable differences between the ways that artists and researchers in 
the humanities or in CS speak about the same topics. Not only do they ap-
proach them from different angles, but they also have different traditions 
and terminology for describing the research that they do.

There is a lack of unifying discourse and synthesised understanding be-
tween — and even within — fields, which this thesis seeks to address. While 
the exploration of ML within art and the humanities has led to fresh ap-
proaches and articulate criticism, it has also at times proven uninformed, 
even clichéd. Appropriation and examination of ML by non-experts acts 
at times as a reckoning with, and at others, as a re-articulation of, the en-
trenched mythology that surrounds AI. In discussions on the topic of ML in 
humanities and art contexts, for example, I have found there is a tendency 
toward abstraction, approximation and recourse to metaphor. While these 
may be helpful for a number of reasons, including developing ways of un-
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derstanding and communicating complex processes, it often lends itself to 
imprecision, misunderstandings and inaccuracy. On the other hand, while 
CS excels in technical terms, it often lacks the criticality provided by more 
humanistic perspectives.

Developing a contextually based account of this topic that is relevant to in-
terdisciplinary contexts compiles knowledge from several fields to develop 
a technically descriptive, yet theoretically-grounded approach. This ena-
bles important technical aspects to be described in such a way as to enrich 
a humanistic view of this subject matter. It also discusses technical pro-
cesses and theoretical concepts in such a way that they are understandable 
to those who are not specialised in those respective topics.

Therefore, an effort is made here to limit the use of unnecessary jargon, 
which has the potential to be more vague than clarifying — even alienating 

— for readers. I have therefore adjusted my writing style in order to better 
communicate with audiences across the several disciplines involved in this 
research. A hybrid perspective is therefore not only vital to the extraction 
and synthesis of existing ideas, but it also helps to prevent the potential 
propagation of misinformation.

Artistic practice contributes to this research by offering an understanding 
of the processes and methods involved in ML by engaging with them di-
rectly. As an artist, my interest in this research topic is not limited to cu-
riosity about its conceptual dimensions but is also directed at how it plays 
out culturally. By adopting a hands-on approach within this research, I also 
challenge myself to understand its inner workings in new ways, outside the 
lens of art and theory.

During the course of this PhD project, I conducted a series of experiments 
seeking to better understand the modalities involved in the use of ML to pro-
duce images. Admittedly, the practical side of this project led to the hum-
bling experience of struggling with ML on a technical level, which brings its 
own insights to the project. I now understand from experience that some 
aspects of this material may be grasped in different ways by those who are 
approaching it initially than by those who are more familiar with the tech-
nical processes involved.

That said, approaching this topic by way of a background in art and media 
studies brings with it the benefit of seeing certain aspects from a different 
perspective than that of experts in ML. For example, the fact that modal-
ities of generative ML processes are in certain ways reminiscent of much 
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older image-making processes is understandably not a central issue for CS 
researchers. But within the present research, it is important to understand 
how today’s visual technologies have been influenced by those of the past, 
as well as their related discourses.

Discussion of my own artistic works related to the research topic allows 
me to pinpoint and discuss particular modalities that are significant to this 
research. This includes the projects Identifying Abstract Art (Lee 2018) (p. 92), 
Artbreeder Experiment (Lee 2019a) (p. 44), Deconstructing Representation (Lee 
2019b) (p. 113), image machine / machine image (Lee 2019c) (p. 60) and the im-
age is a machine (Lee 2019d) (p. 26). Being a practitioner has also facilitated 
close contact with the community of other artists and researchers in the 
area of research, which has been a vital resource in terms of knowledge 
exchange throughout the development of this project.

One of the central contributions of this research is a historically-ground-
ed survey of ML’s application in the production of images, which enables 
current forms of visual media to be contextualised in relation to those that 
have preceded present image-making technologies. It also contributes to 
ongoing discourses regarding the technical nature of the image, as well as 
the influence of ML on art, by seeking to make internal discrepancies that 
have persisted in theories about the image more apparent.

Media archaeology (Huhtamo and Parikka 2011), which seeks to build con-
nections to technologies from the distant past, is a significant influence 
on the approach of this research. The drawing of comparisons between 
examples that may appear disparate, but that demonstrate critical tenden-
cies and relations, is used as a method to enrich the understanding of the 
present context. This demands that we think in more nuanced terms about 
visual technologies’ relation to their precursors. 

Examining a particular media artefact relative to its historical precursors 
allows, for example, digital screens to be seen in light of examples from 
cinema and pre-cinema (Mannoni 2000), such as the magic lantern. Per-
forming such a “screenology” (Huhtamo 2012) facilitates a deeper under-
standing of technologies of the screen than examining contemporary me-
dia alone may afford. According to Huhtamo, this enables media constructs 
like the screen to be made visible, as attention is usually fixated on the con-
tent mediated, as opposed to on the medium itself.

Here, the image is examined as a construct, enabling us to compare its vari-
ous ways of being, as opposed to merely approaching the image by in terms 
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of its appearance. Just as the screen may become invisible, so, too, do the 
edges of the image. Considering what and how images may be now, in com-
parison to examples from history, allows us to see how certain aspects and 
ideas have remained the same while others have been altered by changing 
technological conditions and cultural contexts.

The focus of this research is on the artistic use of ML which highlights the 
process involved, the aesthetic qualities of the resulting images and their 
combined significance. Images produced by generative adversarial networks 
(GANs) (Goodfellow et al. 2014) (p. 39), for instance, have proven especial-
ly popular among artists due to both the degree of pictorial realism they 
provide and their engagement with generative and interpretive processes. 
Because of the importance of not only the visual but also the processual na-
ture of algorithmic media, such explorations provide especially insightful 
perspectives on this topic. GANs, which are among the most popular ML 
architectures currently used by artists are therefore a central focus.

The adoption of ML in artistic practices often goes beyond visual experi-
mentation with the aesthetic and technical capacities of the technology. 
Instead, numerous artists and theorists have engaged with the processes, 
power structures, history and ideas behind ML and AI. The practices which 
form the central part of this investigation strike a contrast with the more 
technically focused explorations heralding from CS research. Often the lat-
ter are more technically than conceptually driven, in which case ML is ap-
plied for the purpose of creating visual effects as opposed to engaging to a 
greater extent with their conceptual significance. In contrast, artistic appli-
cations of ML which consider the meaning, context and nuances of the tech-
nology lend greater insight into this subject, offering critical reflections on 
the mediating role of technology therein.

The review of literature and technical and artistic projects conducted in the 
early stages of this research led to the discovery that there was some work 
concerning the algorithmic behaviour at work in images, but that it did not 
substantially address the relation between the technical and theoretical di-
mensions of this issue. Discussion with others within my field of research 
helped form a consensus that there is a lack of work in this specific area. 
Identifying this problem helped in clarifying my research question and es-
tablishing a framework for the continuation of the research.

Close readings are performed on a representative selection of artistic, the-
oretical and technical projects that have had a defining impact on the field. 
These are contextualised within a historical framework and in connection 
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to central themes in current theoretical discourse. Documentation of my 
own artistic explorations of this topic is used to complement these central 
figures in the field, with the intention of building theory from artistic prac-
tice.

Through close examination of the modalities of exemplary artistic works 
employing ML, we consider how this reflects new and longer-term tenden-
cies in image-making technology. The examples covered are compiled with 
the intention of creating a representative selection of projects that demon-
strate the state of the art in the use of ML in contemporary visual art during 
the three-year study period of this research (01/10/2017–30/09/2020). This 
includes the work of artists who are highly regarded as well as those who 
are less established but push forward discourse in this area. These are con-
textualised in relation to examples from art history and from CS research 
that develop a clearer picture of how to understand these practices.

Analysing the artefacts covered in this thesis is a complex, qualitative task 
because it is so multifaceted and spans centuries of technological devel-
opment of image-making processes. Many of the examples covered touch 
upon several issues at once or could be used to make a variety of different 
points. The delineations used in this thesis are by no means the only rea-
sonable way of dividing the material but they can be seen as thematic sec-
tions that allow it to be approached in a focused manner. This enables often 
overlooked or otherwise inconspicuous commonalities between diverse 
examples to be made apparent.

This research considers the use of ML in visual art as a way of develop-
ing a deeper understanding of its relation to existing theoretical stances 
on image production. To achieve this aim, a mix of methods is employed, 
combining theoretical analysis with practical experimentation. The foun-
dation of the thesis consists of an interdisciplinary review of literature and 
of projects, examining theoretical, technical and artistic landmarks in the 
history of image production. From analysis of notable artistic and technical 
works in relation to existing theories around the image, a new understand-
ing is developed of how the images created using ML meaningfully depart 
from earlier notions regarding what an image is and how it may behave.

The methodology employed in this research addresses the particularities 
of the research topic by looking closely at concrete examples in connection 
to theory. The main axis of this approach is the comparison of theories and 
technologies of image production over time. Considering how visual arte-
facts of ML fit into a larger history of technological development as well as 
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surrounding discourses on the image makes it possible to identify and to 
understand aspects of novelty in comparison to older forms of media. Using 
this knowledge to identify historical tendencies also allows critical miscon-
ceptions about the technological mediation of perception and agency that 
is present in the production of images to be addressed. Together, these pri-
mary threads of this research facilitate an intensive examination of theo-
ries on the image and how they are altered by the use of ML.

Several aspects are excluded from the scope of this research in order to 
highlight certain features and to avoid areas that do not contribute signifi-
cantly to the aims of this research.

The selection of examples that are discussed in this thesis has ultimate-
ly been based on qualitative judgements about which are most reflective 
of the relevant issues within the field. These assessments are constrained 
by subjective interpretation, personal taste and situated knowledge, which 
are specific to Western perspectives on art. In acknowledgement of this, 
the present thesis hopes to underscore that there is a multitude of differ-
ent perspectives on this topic. Non-Western artefacts of algorithmic media 
have been examined to a limited degree in the early stages of this research, 
but are not discussed here as they fall outside the scope of this PhD thesis.

Computational creativity and generative art are other issues that are not 
considered to any great degree in this research. The main reason for this is 
that creativity is not a significant topic within discourse on art, because it 
is taken as a precondition for art, rather than a novelty. Therefore, instead 
of examining computational creativity itself, this research approaches how 
ML functions as a complement to creative practice. For related reasons, 
generation as a tendency in image-making is prioritised over the specif-
ic examination of generative art. This is due to the fact that generative art 
tends to focus heavily on the implementation of generative processes with-
out engaging critically with the technical processes involved or with the 
historical narratives that surround them.

Beyond its direct use for image generation, algorithmic processes also in-
form design processes and aesthetics. This can be seen in applications such 
as parametric — or algorithmic — design (Parisi 2013), in which algorithmic 
processes structure a great variety of media outputs. As Manovich (2018) 
demonstrates, ML and AI may also play an analytical role in the interpre-
tation of cultural data, including images. As significant work has already 
been done concerning the systematic implementation of ML in the design, 
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organisation, visualisation and interpretation of vast amounts of data, this 
research does not go into great depth in addressing these issues.

Although ML raises many questions around privacy, bias, fairness, truth-
fulness and manipulation in visual media, this research does not focus 
on ethical issues, except when directly relevant within the scope of the re-
search. The ethical dimensions of ML and AI are too broad to thoroughly 
investigate here and would require limiting the scope of research to that 
subject alone. Superficial investigations into the ethics of ML and AI have 
also become something of a cliché within theory and in art, which tend to 
reiterate the same findings without progressing further. Therefore, this re-
search specifically focuses on how various ideas which surround the use of 
algorithmic media in turn shape visual culture.

Thesis Overview

In order to give readers a solid foundation to build upon, Chapter 1 (p. 28) 
gives an overview of the relevant concepts, methods and historical context 
necessary to the progression of the research. It is intended as a guide to 
ML, specific to its use in the generation of images, in response to the is-
sue that while many artists, designers and theorists are interested in ML, 
they may or may not be well-versed in its technical processes, concepts and 
terminology. Such an approach is critical due to a lack of related material 
explaining central aspects of ML relevant to visual media in a coherent yet 
understandable way for non-experts. It also focuses on particular methods 
and examples that give depth to current artistic practice involving ML. This 
includes looking at artificial neural networks, from the neuron upwards, to 
more complex neural networks and deep neural networks. It also gives a 
basic introduction to the ideas behind AI and its historical connection to 
cybernetics, which are often touched upon by artists and theorists.

Each chapter in the body of the thesis offers a different angle in the exami-
nation of how current artistic practices involving the use of ML relate to ear-
lier precursors and their surrounding discourses. The major themes that 
are thereby addressed are: the impact of algorithmic processes on defining 
aspects of the image (Ch. 2, p. 48); the interplay between human and ma-
chine agency in the production of images (Ch. 3, p. 74); the mediating role 
played by technical methods and apparatus (Ch. 4, p. 96);  and  the impact 
these changes have on regimes of representation (Ch. 5, p. 113). This seeks 
to demonstrate significant changes or continuities that have occurred in 
discourses surrounding image technologies over time, as well as to famil-
iarise readers with central ideas on the technical production of images. A 
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number of transversal (Gansing 2013) narratives cut across these three 
chapters, which highlight similar modalities in and ideas connected to of-
ten disparate forms of media.

The integration of algorithmic processes into the production of images has 
had a resounding impact on the diverse range of qualities the resulting im-
ages may take on. Drawing connections between current forms of algorith-
mic media, such as those employed in the use of ML to generate images, 
Chapter 2 (p. 48) looks at much older — and simpler — instances in which 
algorithmic processes have shaped the qualities of images. This includes 
considering how methods for the production of images according to sys-
tematic, data-based procedures have enabled images to be transcribed in 
the form of code — to be executed by humans or machines. It also covers 
how geometry, optics and mechanical processes have become integrated 
into image production over time.

Analogue algorithmic processes and procedural practices enabled images 
to be executed according to rigorous sets of instructions and constraints. 
Geometrical systems of proportion shaped the structure of visual composi-
tions. With the integration of optical principles, image-making techniques 
began to consider the position of the image as a mediator between visual 
perception and the world. Images thereby took on greater degrees of com-
pliance with the parameters of human vision, as opposed to the ideological 
and symbolic dimensions of visual media. Mechanised production pro-
cesses, such as the printing press and the camera, allowed the automation 
of aspects of image production. This facilitated the production of multiples, 
leading to theoretical difficulties around how such images should be eval-
uated.

Chapter 3 (p. 74) digs deeper into the connotations automation may hold for 
notions concerning the image. Comparisons between human and machine 
vision and agency are often brought up in regard to technologically mediat-
ed forms of image production but often suffer from oversimplification. Be-
ginning with the way in which industrialised production processes caused 
a rift between evaluations of the products of human labour and those made 
by machines, we consider what implications this has held for the way in 
which automated image processes have been theorised.

As automation enabled machines to play a greater role in the production 
of images, they came to be seen as less directly subject to the intentions 
of humans. Machine-produced images came to be regarded as common-
place and less valuable than those produced by the human hand. The pre-
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sumed autonomy of image-making machines also gave rise to was the myth 
of the machine as artist (Broeckmann 2019), diverting ideas about art as 
reflections of human genius into automated image production. Seen from 
a contemporary, posthumanist angle, this is suggestive of forms such as 
nonhuman photography (Zylinska 2017), in which highly-automated visual 
processing systems are considered to be estranged from the intentionality 
and vision of humans.

The differences between human and machine interpretation of images, 
which is especially visible in adversarial approaches to ML, offers unique 
insight into the interplay between these. While image production may be 
highly automated, there is a tendency to perpetuate mythology surround-
ing ML and AI, and the participation of machines in image-making, in which 
ML is often framed in terms of either cybernetic metaphor or as “black box”. 
One consequence of this thinking has been the historical framing of ma-
chine-produced images as scientifically accurate, objective portrayals, de-
spite the capacity they have demonstrated to manipulate appearances.

Chapter 4 (p. 96) problematises the polarities set out by existing theories 
of the image, which attempt to differentiate visual from non-visual aspects 
of images, and human from machine intentionality. Approaching this from 
the perspective of postphenomenology (Ihde 1993), we examine the medi-
ating and hermeneutic role played by visual media. Not only do visual tech-
nologies act in a complementary fashion to the constraints of human vision, 
augmenting its capacities, but they also play an important role in how per-
ceptual experience is interpreted. 

Rather than theorising the participation of machines in image produc-
tion as estranged from either human vision or intentionality, we examine 
the degrees of interaction and overlap that are found in highly automated 
forms of image production, such as those involving ML. The reformulation 
of the image in terms of processes performed by machines is especially 
well demonstrated in Farocki’s (2004) work on the operative image. Exam-
ination of the concept of Umwelt (von Üexküll 1934), from sensory ecology, 
enables a deeper understanding of the perceptual mediation which occurs 
through visual technology.

Chapter 5 (p. 113) addresses the capacity to produce visual simulations 
from data. This considers the signifying role played by images in relation 
to the way in which images are produced and interpreted by machines. In 
contrast to earlier perspectives that have had a tendency to place blind faith 
in the products of technoscientific methods, we see that there is little cer-
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tainty in the ability of visual media to provide reliable relations between 
images and the world. The visual outputs of ML can thereby be seen as rep-
resentative of the statistical analysis of data, upsetting the expectation for 
images to act as representations of either human intellect and experience 
or empirical evidence of real-world phenomena.

The concluding chapter of this thesis (Ch. 6, p. 134) draws together and 
sums up the major arguments developed in this enquiry and the insights 
that have been gained as a result. This also includes projections for the con-
tinuation of the research.



26Introduction: The image is a machine.

The image is a machine. The image drives the machines that produce the 
imagé .

The image may be more of a complex ecosystem, more like a pond than a 
mechanism. The image may be mechanical, electrical, chemical, biological.

The image may be automated or autopoietic. The imagé  is latent in the in-
structions for its performance.

The image is not reducible to source code. The image has the potential for 
variability of expression.

The imagé  need not be built. Non-expression is a potential expression.

The image is a database. It takes in information and spits out electromag-
netic waves.

The image may or may not be visual. The imagé  may be instantiated in 
other forms, such as sound. Sound-imagé .

Too much concern is lavished on the imagé , the face. Of greater conse-
quence is the commodification of the image, human capital.

The image forgoes scarcity in favour of the fecund circulation of imageś . 
The image may populate the world with innumerable imageś .

The imagé  has no inherent value. The image is a producer of value.

The imagé  is derived from the distillation of societal value systems. The 
image is fat with the intellectual, creative and labour value it has consumed.

The image may or may not look back. The image may be used as a mode of 
interpretation of imageś .

The image constrains what imageś  may be produced from it. The design of 
images directly conditions the production of imageś .

The image is concerned with method. The image is processual, procedural, 
a practice.

The image is a machine.
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Fig. 1: The image is a machine (Lee 2019d).

To set the tone for this investigation, documentation of The image is a ma-
chine (Lee 2019d) gives an explorative overview of the major themes of this 
research. The work does not attempt to deliver a final word on defining the 
attributes of images. Instead, it seeks to grasp the significant character-
istics of ML-generated images, poetically, allowing ambiguities in its dis-
tinctions. This text-based image is divided in pairs, which complement or 
correspond to one another. The prime symbol ( ´ ) is used to denote instan-
tiations of algorithmically-informed images, in comparison with generali-
sations about images. Rather than being opposites, distinguishing between 
the imagé  and the image explores how algorithmic qualities of current 
media may fit within or relate to existing notions of the image. Defining the 
image in this way helps us better understand certain aspects at work there-
in, but it also underscores the murkiness of this investigation. While it may 
elucidate some attributes, it also appears to obscure others in the process. 
This piece provides several different entryways from which to proceed on-
ward in examining this topic.



1. Machine Learning in Image Production

1.1 Machine Learning

The approach of machine learning (ML) seeks to develop artificial intelli-
gence (AI) systems with “ability to acquire their own knowledge, by extract-
ing patterns from raw data.” (Goodfellow, Bengio and Courville 2016, 2) AI, 
itself, is rather difficult to define, but is described well by Melanie Mitchell 
(2019) as “ investigating the mechanisms of ‘natural’ (that is, biological) in-
telligence by trying to embed it in computers.” (7) Learning, in this context, 
has to do with improving a learning algorithm’s development and adjustment 
of a model to better perform a task, given input data.1 This is similar to the 
process of learning in animals, in which the accumulation of experience or 
information about the world, enables the improved performance of a giv-
en task. As such, learning in ML functions as a metaphor for the interplay 
between acquiring information, in the form of data, and implementing it, 
through the establishment of rules about how that information is to be in-
terpreted.

In spite of the intentional distancing of AI from cybernetics, its influence is 
still noticeable in the tradition of drawing comparisons between diverse 
systems and processes, such as between the biological and the technical. 
These areas of research have diverged over time, yet draw from inter-re-
lated ideas, methods and often terminology. Words such as “intelligence”, 

“thinking” and “cognition” are each packed with a number of meanings, de-
scribing a variety of different phenomena across different contexts (Mitchell 
2019, 6). These descriptors help to illustrate some of the processes that are 
mimicked, for example in ML’s progressive improvement of performance.

The overlap between other fields which have been influential to the prehis-
tory of ML remains important to cultural understandings — and misunder-
standings — of what is at stake therein. For example, familiar depictions 
from popular culture often treat ML, AI and artificial general intelligence 
(AGI) as interchangeable. HAL 9000 in 2001: A Space Odyssey (Kubrick 1968), 
for instance, is an important point of reference within the cultural imagi-
nation as to what AI is or can be. HAL 9000 is more representative of AGI, 
which aims toward realising human-level intelligent behaviour using ma-
chines. than of ML or AI, but this kind of thinking is significant to our later 

1: It is important to differentiate that it is the learning algorithm which is performed, and which remains 
constant over time, as opposed to the model, which is continually modified as a result of that process. This 
process is referred to as training. 
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discussion of how cultural mythology shapes theory and practice involving 
ML (p. 79).

ML also factors into cybernetic tendencies in thinking about visual tech-
nologies, and a general curiosity within the art world toward posthuman-
ism (Wolfe 2009), which concerns the continuum of relations between the 
human and the nonhuman, and between the biological and the technical. 
These historical and theoretical ties are important as we consider notions 
of the autonomy of machines, both in the production of images and in au-
tomating their interpretation. This leads to two inter-related issues: the 
difficulty in understanding ML-produced images in comparison to human 
vision; and how ML exerts influence on the production of images. The dis-
parity between how images appear to humans and the processes involved 
in their manifestation is especially important in situations in which there 
are noticeable differences in how these are either visualised or interpreted. 
This is a primary reason, for instance, that adversarial approaches have 
captivated the attention of artists (discussed in greater detail on p. 36 and 
p. 88).

Cybernetic ideas about relations between human and machine ability, in-
telligence and vision surface repeatedly within research on visual applica-
tions of ML and in many of the cases discussed in this thesis. This tenden-
cy is not exclusive to ML, and it draws on common ways of understanding 
older forms of visual media. In photography, for example, the camera may 
be seen as participating in the fusion of human and machine intentionali-
ty into a hybrid expression of agency (Verbeek 2008; Beloff and Jørgensen 
2016). In this sense, the apparatus (Agamben 2006) acts as not only a phys-
iological adaptation to better interact with the environment, but also as a 
modification of the sensory environment by providing new potentialities of 
perception (Beloff 2014). In such a machinic assemblage (Deleuze and Guatta-
ri 1980, 89), various components — including biological and inanimate ele-
ments — function symbiotically together. Tools can thereby be understood 
not solely as extensions of perception and ability, as described by Marshall 
McLuhan (1964), but also as interactants entangled within a complex per-
ceptual system.

There are three main learning paradigms in ML: supervised learning; un-
supervised learning; and reinforcement learning, which refer to the ap-
proach to data in how ML models are trained.

In supervised learning, a system is trained using labelled data from which it 
is able to make informed determinations or predictions when new data is 
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encountered. For example, a model trained on images labelled with their 
respective image class (e.g. an image of a dog, cat, table, etc.) can be used to 
identify which class new example images fall into.

On the other end of the spectrum, unsupervised learning involves training a 
model using examples that are not assigned labels, meaning that the clas-
sification task is based on analysis of the properties of the input data alone. 
This kind of approach enables the structuring of unstructured data without 
explicit direction. An example of an unsupervised learning task is cluster 
analysis, which groups inputs together according to relative similarity.

Semi-supervised learning falls in a middle ground between supervised and 
unsupervised approaches, employing a combination of labelled and unla-
belled data so that only a limited amount of labelled examples are necessary 
for training. In what is referred to as self-supervised learning, algorithms 
may even be evaluated by other algorithms, enabling a greater degree of 
automation.

Reinforcement learning differs from these approaches by requiring an auton-
omous agent to “learn to perform a task by trial and error, without any guid-
ance from the human operator” (Goodfellow, Bengio and Courville 2016, 
25). This is relevant to the use of ML to simulate the behaviour of artificial 
agents, common applications of which can be found in robotics or challeng-
ing AI to play games.

Visual applications of ML abound, such as the automated generation of im-
ages with particular visual attributes based on the analysis of a dataset. Our 
focus here is on the use of ML in processes of image production, but there 
is a great deal of interplay between generative approaches, which can be used 
to create images, and discriminative approaches, such as the classification of 
existing images. It is therefore also necessary to understand how discrimi-
native processes contribute to the creation of images using ML. ML systems 
have proven highly successful at generating images of believable human 
faces (Wang 2019), applying the style of one image to another (Gatys, Eck-
er and Bethge 2015), or transforming users’ doodles into cats (Hesse 2017). 
Discriminative applications of ML can be found in such situations as the 
use of facial recognition and image classification.
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1.2 Neural Networks

Fig. 2. Example of image classification showing weighted connections in a neural 
network (ml4a 2018).

Artificial neural networks (ANNs) (1943), or neural networks (NNs), are a high-
ly influential and common kind of ML algorithm, which is inspired by the 
distribution of information processing performed by biological neurons. In 
the brain, information is processed through interconnected neurons, and 
the influence of individual neurons is adjusted in relation to others. Like-
wise, artificial “neurons”, or nodes, in neural networks output values that 
are determined by weighted connections learned from data encountered 
during training. What this means is that each node governs the computa-
tional relationship between inputs and outputs in the system.

Given an input, an ML system may focus on different aspects, which togeth-
er form representations of that data. A representation, in this case, is quite 
different than what the same word may mean in humanistic contexts. Here 
representation refers to a combination of learned attributes fitting a given 
class of image. To demonstrate, let’s consider an ML system trained to cat-
egorise digital images of handwritten numerals. We input an image of the 
number “9”, as in fig. 2. Each pixel value in the image is a feature, or a piece 
of information, about the image. In turn, the ML system may learn a rep-
resentation, composed of several features, of the object or event being ana-
lysed (Goodfellow, Bengio and Courville 2016, 3). This could take the form, 
for example, of learning relationships between certain pixel values within 
the image, and the association of those pixel values with the label “9”.
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Fig. 3: Schematic diagram of single-layer perceptron (Shi 2019).

NNs have become more powerful and complex since the early stages of their 
development in the 1940s and 1950s, but they function on roughly the same 
principles. The historical experiment, the perceptron (Rosenblatt 1958), for 
example, could only differentiate between two categories of inputs, but the 
simplicity of the perceptron structure makes it helpful to demonstrate how 
NNs work. Fig. 3, above, offers a simple visualisation of a perceptron in or-
der to illustrate the general concepts and processes entailed in a NN.

The input can be, for example, the brightness values of the pixels in an 
image. Each input value (x1, x2 … xn) is connected to the single neuron 
through weights (w). The neuron takes the sum (a) of the products of all the 
input values multiplied by the weights of the connections. Next, an activa-
tion function is applied, which is, basically, a linear classifier determining 
which class the input falls into. Depending on which side of the threshold 
the output (y) falls on, it is placed in one of two classes (0 or 1). The weights 
of the connections between nodes and inputs are adjusted based on the re-
sults of this process.

Fig. 4: Schematic diagram of multilayer perceptron (Shi 2019).
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In recent years, deep learning and deep neural networks (DNNs) have become 
especially important terms within ML. DNNs expand upon the simple NNs 
previously discussed and are composed of several layers of neurons. The 
multilayer perceptron (MLP) in fig. 4, for example, builds upon the perceptron 
model with the inclusion of multiple layers. The “deep”, in this case, refers 
to the feeding of data through sometimes many layers of neurons. Data may 
even be passed backwards through a NN in a process called backpropaga-
tion.2

Fig. 5: Illustration of a deep learning model (Goodfellow, Bengio and Courville 2016, 6).

The layers within DNNs are divided into input, hidden and output layers (fig. 
5). The visible layer or input layer receives the data that is put into the system, 
which in the case of image processing refers to the pixel values of the im-
age being put into the DNN. The output layer is the result given at the end of 
the process. In between the input layer and the output layer, there may be 
one or several hidden layers of neurons within the DNN. It’s also noteworthy 
that the number of connections may vary between the various layers. To 
say that a layer is fully connected means that every neuron in that layer is 
connected to every neuron in another layer of a NN.

2:  Backpropagation involves feeding information from the loss, or cost, back through the network during train-
ing. This is used to derive the gradient, which may be used to identify various critical points in the output of the 
network, and to adjust the network according to such thresholds.
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What makes deep learning especially useful is that it enables each hidden 
layer in a DNN to extract increasingly abstract features from input data 
(Goodfellow et al. 2016, 6). This enables DNNs to extract hierarchies of in-
formation, building concepts upon one another to develop complex rep-
resentations. To illustrate this idea, imagine that each successive layer of 
a DNN builds on the information of the previous one. Simple representa-
tions may be learned in some layers, such as visual patterns among a small 
group of pixels, which are then combined to detect more complex patterns 
and, ultimately, categories of images.

Fig. 6: Examples illustrating deep visualisation. Deep Visualisation Toolbox (Yosinski et 
al. 2015).

Because of the fact that the intermediary layers of a DNN may be hidden, 
it can be difficult to understand the processes which go on between input 
and output. Addressing this problem, Deep Visualisation Toolbox3 (Yosinski 

3:  This is an example of a deep convolutional neural network (CNN/convnet). CNNs use parameter sharing, 
enabling “the same feature (a hidden unit with the same weights) [to be] computed over different locations in 
the input. This means that we can find a cat with the same cat detector whether the cat appears at column i or 
column i + 1 in the image.” (Goodfellow, Bengio and Courville 2016, 254)
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et al. 2015) (fig. 6) visualises the way in which DNNs function in a particu-
larly understandable way by showing the activations of the neurons in each 
layer. It is thereby possible to see how each neuron is attuned to a different 
kind of feature. For example, a given neuron may learn to pick up horizon-
tal, vertical or diagonal lines, or particular colour combinations, becoming 
activated when they are present in an image. In combination, these enable 
images to be analysed, with the activations become more fine-tuned from 
one layer to the next, moving upwards in fig. 6. It is also visible in some 
cases that these activations display a vague resemblance to their respective 
image class.

Common terms for describing the accuracy of ML models are the loss, or 
cost, of an algorithm. These indicate a measure of how well a model is suited 
to the performance of a given task. During training, the model is adjusted 
in relation to its loss with the intention of improving (i.e. minimising) this 
score. This means that in the case of Deep Visualisation Toolbox (Yosinski 
et al. 2015), the model would be improving at performing its objective (i.e. 
correctly predicting the labels of new examples) and therefore receiving 
a better score for performing that task. What results from this process of 
training is a trained model capable of distinguishing particular patterns in 
data that enable it to perform a given task with a high degree of accuracy. In 
the case of a discriminative task such as image categorisation, this would 
mean that the model may be used to effectively categorise new images. The 
overall score at the end of testing gives an indication of the accuracy of the 
algorithm — how well it was able to learn a representation of the example 
data.

In order to train a learning algorithm to correctly produce images that fit 
into a particular class, or category of images, it is necessary to provide 
the algorithm with a controlled set of examples fitting the characteristics 
of what it is expected to produce. This is referred to as a training dataset, 
which may be composed of natural images or generated images. This differ-
entiates, respectively, between “image(s) that might be captured by a cam-
era in a reasonably ordinary environment, as opposed to a synthetically 
rendered image, a screenshot of a webpage, etc.” (Goodfellow, Bengio and 
Courville 2016, 550). Natural images offer a particular challenge for ML sys-
tems, enabling them to be tested on real-world image data, such as digital 
photographic images. Generated images give increased control over the 
composition of a training dataset, enabling many images fitting particular 
parameters to be produced.
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Many image databases now exist, covering categories such as faces, fin-
gerprints, everyday objects and many others. For example, the well-known 
MNIST database (LeCun, Cortes and Burges 1998) (seen on the left side of 
fig. 2, p. 31) consists of handwritten digits. Introduced in 1998, it remains 
a commonly-used image database. Its relative simplicity, involving only 
10 image categories and low requirements in terms of resolution, makes 
it suitable for performing simple tasks and for demonstrating the basics of 
ML.

Image datasets have increased in size over time, from datasets containing 
hundreds of examples in the 1990s, to thousands of instances in the 2000s. 
ImageNet (Deng et al. 2009), for example, is an openly accessible, widely 
used dataset of more than 14 million images at the time of writing. It con-
tains more than 20,000 different categories of labelled images. This has to 
do with a number of factors, including increased processing power and oth-
er resources devoted to ML, as well as the transmissibility and open-source 
material facilitated by the internet. The increased availability of high qual-
ity example images has been useful for ML applications due to the fact that 
training typically requires many examples, often in the thousands, as well 
as saving the time-consuming work to preprocess images.

1.3 Adversarial Approaches

Several aspects of an ML system’s design may affect its overall performance. 
For example, a small group of low-resolution images of random objects 
does not give sufficient data to learn from and is therefore inadequate for 
the task of training a model to generate high-resolution images. A sufficient 
quantity of high-quality training examples is therefore necessary in order 
to train a model to perform accurately. For example, the production of Anna 
Ridler’s (2019a) Mosaic Virus required the artist to painstakingly photograph 
10,000 tulips to create a substantial amount of training data (p. 122).

The composition of a training dataset can be another factor which affects an 
algorithm’s accuracy at performing a task. Datasets are often homogenous 
in factors such as size, shape and composition so that those factors do not 
have an influence on the outcome of training. Failure to properly prepare 
the training data may throw off the results, causing a model to incorrectly 
focus on aspects of an image that are not desired. Errors may also originate 
from aspects of training datasets, which may unintentionally throw off the 
results, which is discussed later in relation to built-in bias (p. 127).
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While ereror is generally to be avoided, situations of error are also an im-
portant aspect of ML for the purpose of measuring a system’s accuracy, and 
often to better understand its inner workings. For example, adversarial ap-
proaches aim to trigger errors in ML systems and can be used for a variety 
of different purposes, including genuine malicious attacks seeking to com-
promise an ML system and attacks employed for the purpose of testing and 
even strengthening a system by identifying its weaknesses.

Fig. 7: Diagram showing image classification of real images (left) and fooling images 
(right). “Deep Neural Networks are Easily Fooled” (Nguyen, Yosinski and Clune 2015).

Noteworthy examples of adversarial approaches include the “One Pixel At-
tack” (Su, Vargas, and Kouichi 2017) (fig. 8), a 3D-printed turtle classified 
by ML algorithms as a rifle (Athalye et al. 2017) and a paper entitled “DNNs 
are Easily Fooled” (Nguyen, Yosinski and Clune 2015) (fig. 7). In each pro-
ject, researchers demonstrate that an otherwise successful algorithm can 
be caused to make classification errors when given adversarial examples. 
Such fooling images are generated with the intention of appearing as a differ-
ent class of image to humans than they are classified by an algorithm.
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Fig. 8: Examples showing image classification of an image (right), in which one pixel has 
been modified to cause it to be misclassified as 9 different target classes. “One Pixel 
Attack for Fooling Deep Neural Networks” (Su, Vargas and Kouichi 2017).

Fooling images often play on the gaps between how images are perceived by 
humans and the way in which data is processed by an ML system. Human 
vision accommodates and compensates for visual noise in ways in which 
many CV systems are ill-adept, making this a potent weak spot to exploit. 
This kind of logic is used in many adversarial approaches, including the 
one-pixel attack (Su, Vargas and Kouichi 2017). While the alteration of a sin-
gle pixel in an image may not be a significant hindrance for human viewers, 
it can mean the difference between two different image classes for a com-
puter.

Fig. 9: Unintelligible reCAPTHCA (outonlimbs.com 2012).

The Completely Automated Public Turing test for Telling Computers and 
Humans Apart (CAPTCHA; reCAPTCHA) (von Ahn et al. 2008) is an impor-
tant and familiar example of the instrumentalisation of differences be-
tween human and machine visual processing. This strategy involves the 
implementation of tasks that are easy for humans to perform, but which 
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are difficult for computers to perform. This includes, for example, the dis-
tortion of images of text, which aim to remain readable to most humans, but 
which rendered the same images illegible to most computer systems at the 
time. reCAPTCHA has been a successful gatekeeper technology to limit ac-
cess to websites to human users and not bots, for example, and has become 
an iconic fixture of the internet. 

What is interesting about reCAPTCHA, in this respect, is that it relies upon 
the interplay between the interpretive abilities of humans and computers, 
neither of which are fixed. The creators of reCAPTCHA explicitly acknowl-
edge the continual improvement in computational systems’ ability to per-
form such tasks as image identification by emphasising their focus on the 
abilities of “current technologies” (von Ahn et al. 2008). Yet in spite of this 
insight, the reCAPTCHA system fails to acknowledge the diversity of hu-
man ability to perform the tasks presented to them by reCAPTCHA. This is 
especially evident in more recent versions of reCAPTCHA, which have also 
become difficult for humans to solve (see fig. 9).

The divide between the visual tasks performed by ML systems and human 
vision is made especially apparent in the case of adversarial examples. 
Many artists have seized upon this aspect of errors of interpretation per-
formed by ML, including Adam Harvey (2017), Zach Blas (2011–2014), Tre-
vor Paglen (2017) and Hito Steyerl (2013), who have each worked with the 
issue of computers failing to decipher human faces (pp. 88–91). In each of 
these artists’ projects on this topic, provocative, adversarial approaches 
are adopted as a way of visualising the inability of machines to perform 
visual processing tasks in the same way that humans see.

1.4 Generative Adversarial Networks

Introduced by Ian Goodfellow et al. in 2014, generative adversarial net-
works (GANs) have proven to be especially successful at the generation of 
believable photographic digital images. For this reason, GANs have become 
an influential approach employed by many artists and computer scientists 
working with graphical media. The GAN is a central ML architecture ap-
plied currently in the artistic use of ML, as well as being the primary tech-
nique explored in the cases covered in this thesis. This section introduces 
the technique, relevant examples and several variations on GANs.

GANs involve two distinct parts: a generator and a discriminator. These are 
often described metaphorically as opponents playing a game against one 
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another to discern “real”4 images (from the training dataset) from “fake” 
images (which have been generated). In this scenario, the generator pro-
duces sample images with the goal of fooling the discriminator. The dis-
criminator, on the other hand, is a binary classifier, which must discern 
whether sample images come from the generator or from a database of ex-
isting sample images.

The generator and the discriminator are each given a score based on their 
ability to perform their respective task. Each time the discriminator suc-
ceeds in correctly identifying a sample image as real or fake, its loss score 
is reduced. But each time it incorrectly labels an image, for example identi-
fying a fake image as real, its loss increases. Likewise, the generator’s loss 
is decreased each time it succeeds in having the image it generated clas-
sified as a real image, and its loss is increased each time it fails to fool the 
discriminator.

The generator is given a noise input, from which it is to generate an image. 
The discriminator is given the fake sample images from the generator and 
real sample images from the dataset in an unpredictable order. This is im-
portant because if the training images and the generated images are given 
to the discriminator in a defined pattern, the discriminator could simply 
learn the pattern in sample images occur in order to determine which im-
ages are training images or generated images.

Gradients are then adjusted based on these positive and negative rewards 
to the generator and discriminator, and the weights of the network are ad-
justed accordingly. As the network is trained, the generator improves at its 
task of generating images that can pass for images from the training data-
set. And on the other side, the discriminator improves at its task of correctly 
identifying images as either having been generated or having come from 
the set of sample images. As the discriminator and the generator each get 
better at their respective tasks, the more accurately the images produced 
come to more accurately reflect the attributes of the dataset employed.

Each part of the network gets better at its respective aim, while also increas-
ing the challenge to its counterpart. The closer the generator gets to produc-
ing an image that will fool the discriminator, the higher the score it receives, 
and the better the discriminator gets at correctly identifying images, the 
higher its score will be. Over time, the two parts of the network tend to con-

4: It’s important to note here that the distinction between “real” and “fake” images is not an inherent quality 
of the images, but is instead relative (or positional) within a system. For example, the real images in a given 
system may be generated, not natural, images, but they are distinguished from the fake images within the 
same setup by how they are used.
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verge towards the optimum, in which the discriminator cannot distinguish 
between real and fake sample images. The GAN’s structure enables each 
part of the network to help adjust the other, making it a powerful approach 
to unsupervised learning. This makes GANs capable of producing highly 
realistic images from unlabelled data, as opposed to more supervised ap-
proaches, which can be more brittle and reliant on labels.

The approach outlined in the original 2014 GAN paper may now be seen as 
rudimentary compared to today’s capacities, but it has nonetheless had a 
very influential effect within the field of ML, as well as image creation with-
in art. More recent projects have outpaced the GAN approach that was first 
introduced, in terms of resolution, parameters and ultimately, effective-
ness. This is also related to an overall increase in the computational power 
of ML systems, which has improved dramatically in recent years. 

Other projects that have expanded upon GANs in notable ways. For exam-
ple, a deep convolutional GAN (DCGAN) (Radford, Metz and Chintala 2015) 
incorporates convolutional layers. The benefit of this approach is that it al-
lows unsupervised learning to be performed on image datasets, making it 
possible to work with unlabelled data.

BigGAN (Brock Donahue and Simonyan 2018), enables the production of 
larger images than had previously been produced using GANs. In the paper 
in which BigGAN is introduced, new techniques have proven to be effective 
for working with higher resolutions of images than had previously been ex-
perimented with. In addition to resolution, BigGAN also allows the imple-
mentation of more parameters than the previous state of the art, giving the 
images produced in this fashion higher levels of visual complexity.

Due to the technical possibilities available, it is becoming difficult for hu-
man viewers to differentiate between real images and those which have 
been generated using ML. This Person Does Not Exist (Wang 2019), for in-
stance, is a well-known example involving the use of a StyleGAN (Karras, 
Laine and Aila 2018) is another variation of GAN architecture, which ap-
plies the idea of style-transfer to GANs. The highly photorealistic images 
of human faces, which are displayed on thispersondoesnotexist.com (Wang 
2019) demonstrate the deceptive power of generative algorithms. Other re-
lated examples include deepfakes (p. 123), visualisations using “synthetic 
training data” (Forensic Architecture 2017) (p. 121) or visually-ambiguous 
generated images  which are not neatly individuated into conceptual class-
es of images (melip0ne 2019) (p. 120).

http://thispersondoesnotexist.com
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Fig. 10: Diagram of deep image reconstruction process. (Shen et al. 2019).

An approach called deep image reconstruction (Shen et al. 2019) is used by 
Pierre Huyghe (2018) in his work UUmwelt (p. 106), which incorporates func-
tional magnetic resonance imaging (fMRI).5 Deep image reconstruction is 
based on the idea that recordings of subjects’ neural activity while they 
think about a previously seen image or object may be decoded and recom-
posed into a representation of that mental image.

For each image produced in UUmwelt (Huyghe 2018), an individuals’ brain 
activity is recorded in two phases: while subjects look at images from dif-
ferent categories, one at a time; and while they are told to think about each 
item they just saw after receiving a cue word.

Next, the data is pre-processed and a DNN is then trained with the labelled 
fMRI data. The fMRI signals are smoothed to increase the ratio of signal to 
noise and feature extraction techniques are also applied. The “region of in-
terest” (Shen et al. 2019) is identified using a DNN to establish the location 
of the visual cortex in subjects’ brains, where the processing of visual infor-
mation is concentrated. This allows the data to be more clearly interpreted, 
by focusing on signals from that isolated area of the brain which is related 
to processing visual information.

5:  This technique involves the use of a combination of techniques including fMRI, a technique for measuring 
and visualising neural activity. It involves mapping out the location and intensity of blood flow in the brain, in 
which increased blood flow in one area indicates increased cognitive activity in that area.
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The recordings of the subjects’ brain activity, while looking at a set of ob-
jects and while thinking of those same objects with eyes closed, are labelled 
with the object associated with them. For example, recordings made while 
a person is looking at a picture of a cat and those recordings made while 
that same person thinks about the picture of a cat are both labelled with 
the category “cat”. Neural networks are trained to match the data from the 
fMRIs to its respective category. Coarse-level classification, meaning clas-
sification based on more general types, is then applied. This means that the 
neural network learns to identify which one of the larger categories a signal 
corresponds to. After an image category has been identified, a finer-level 
classification is applied to recognise more specific object types.

In the final stages of the process of deep image reconstruction, the fMRI 
data is interpreted into the form of an image using a GAN. A DNN is used to 
generate an image from the fMRI data, matching it to learned representa-
tions from the training period. Finally, a trained GAN is used to reinterpret 
those images into more human-interpretable images. 
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1.5 Artbreeder Experiment

ML affords not only new methods but may also act as a complement to 
the creative process of producing images. For example, ML may be used 
to identify potentially useful areas for further exploration within a large 
search space of potential solutions. The fact that ML also has a tendency to 
produce unpredictable results (Lehman and et al. 2018) enables it to play a 
dynamic role in explorative image-making processes.

Fig. 11: Example of evolution using Picbreeder. (Secretan et al. 2007).

Fig. 12: Illustration demonstrating the mixing together of attributes of a Maltese dog 
with a bubble, using Artbreeder. (Simon 2019).

Interactive evolution, for example, applies the concept of biological evolution 
to computation. This may take the form of generating a group of example 
images, from which a smaller group is selected to breed, producing a new 
generation reflecting the qualities of the combined examples. A fitness func-
tion is employed to evaluate the outcomes’ success at solving a given prob-
lem. Artbreeder6 (Simon 2018) offers a useful example of interactive image 
evolution, building upon the simpler, more graphical approach of Picbreeder 
(Secretan et al. 2007) (fig. 11). The Artbreeder system enables images to be 
merged, combining selected image classes in various ways. This results 
in images that may have the properties of several distinct kinds of images, 
such as in fig. 12, in which images of a bubble and a dog are bred to produce 
an image that has attributes of each.

6:  Formerly Ganbreeder.
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Fig. 13: Five Vase Forms (Andy Lomas 2017).

As a technique for image production, interactive evolution makes it possible 
to generate a set of outcomes and to fine-tune attributes of those outcomes 
in a non-linear fashion, offering a method for developing novel content in 
a relatively intuitive way. For example, artist and computer scientist Andy 
Lomas (2017) has employed interactive evolution to evolve and combine at-
tributes of sculptural 3D forms in his project Vase Forms (fig. 13).

Fig. 14: Illustration of image evolution. Artbreeder Experiment (Lee 2019a).

In experimentation with Artbreeder (Simon 2018), I explored how human 
decisions may influence outcomes when using such a system to produce 
images. When using Artbreeder, one may only see one set of results at a time, 
meaning that one only has a partial idea of what might be produced, but 
this lacks breadth showing all possible outcomes that one might choose 
among. To get around this issue and to develop an idea of the diversity of 
images produced by the Artbreeder system, I gathered together all possible 
outcomes descending from an initial starting image over several genera-
tions. In so doing, I was able to visualise how an individual user’s choic-
es might change the final outcome from repeatedly “breeding” images to 
produce new “offspring” images. The result of this process is something 
akin to a family-tree of images from a starting image to its many potential 
outcomes, as generated using Artbreeder.
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Fig. 15: Images evolved using Artbreeder, detail of fig. 14. Artbreeder Experiment. (Lee 
2019a).
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Fig. 16: Images evolved using Artbreeder. Artbreeder Experiment. (Lee 2019a).

What I found was disappointing is that the Artbreeder system demonstrated 
a lack of diversity among the different lineages of images. While there was 
some variation among the different sets of images, the overall aesthetics of 
what was produced tended toward certain similar sets of traits. From sev-
eral attempts at experimenting with this system, I found that it was possible 
to produce interesting outcomes by using Artbreeder as intended. While this 
does not offer the user a comprehensive overview, it does enable a more 
explorative approach than painstakingly considering all possible outcomes 
associated with a given starting combination.

Fig. 17: Images evolved using Artbreeder. Artbreeder Experiment. (Lee 2020).

The Artbreeder system has subsequently changed to enable users greater 
control on the genome used for producing images. One may combine, for 
example: african grey parrot; turnstile; church; plastic bag; dam; and cha-
os, to produce the image above (fig. 17). This affords users greater control 
to over the process than was possible previously, combining various kinds 
of images together.



2. Algorithmic Image Processes

2.1 Algorithmic Procedures

Due to the increasing influence of machine learning (ML) algorithms, it has 
become commonplace to refer to visual as being algorithmic, but it is not 
always clear what qualities this refers to. Jamie Bianco (2018, 24) defines 
an algorithm as “a set of modular or autonomous instructions – in execu-
tion — for the doing or making of something”. The algorithmic character 
of a process or artefact may thereby be understood as tied to the method 
employed, as opposed to being bound to a particular technology, such as 
the digital computer. As such, algorithmic qualities can also be found in 
instances that vastly predate contemporary digital imaging technologies 
involving the use of digital computers and ML. 

It has been argued by Hoelzl and Marie (2015) and Kittler (2007) that al-
gorithmic processes are linked to much older — even ancient — forms of 
image-making, employing the systematic use of mathematical principles 
in the creation of images. Such artefacts may involve quite different techno-
logical means than those employed in current examples of algorithmic me-
dia, but nonetheless share important modalities in common with them. In 
such cases, the algorithmic quality of images has little to do with the highly 
automated tasks performed by present-day digital computers but rather re-
fers to the manual execution of algorithmic processes. The word “algorith-
mic” may thus apply to simple analogue processes performed by humans, 
such as the systematic use of geometry and optics to inform the creation of 
images, instead of being limited to those that are performed by machines.

Fig. 18: The Development of the Egyptian Grid System (Legon 1996).
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Processes related to the use of algorithms today are recognisable in the 
creation of images according to strictly formalised rules and procedures, 
such as the geometric canons of representation employed in ancient times 
(Hoelzl and Marie 2015). For example, in ancient Egyptian art, canonical 
representation constrained the proportions of visual components in ac-
cordance with standardised units, such as the cubit1 (c. 3000 BCE). Based 
on the length of the forearm from the elbow to the middle fingertip, the cu-
bit is an anthropometric2 system of measurement, which has been used in 
2D compositions, as well as in architecture. Though the cubit entails a level 
of variability according to whose body is used as the basis of the measure-
ment, it lends an internal consistency to constrain the relative size of visual 
elements within a composition when used systematically.

Fig. 19: The Vitruvian Man (da Vinci 1490).

Fig. 20: Le Modulor (Le Corbusier 1945).

A similar system of geometrical canon of bodily proportions is laid out by 
Vitruvius (c. 30 BCE) in De architectura. Best known for its use by Leonardo 
Da Vinci (1490) in his Vitruvian Man, Vitruvius’s system is effectively written 
out as instructions for the execution of a drawing of the human body. The 
size of each component part is defined relative to each of the other compo-
nents: for example, the length of the face is one-tenth of the height of the 
body, the length of the open hand is the same as that of the face, and so on. 
(Vitruvius c. 30 BCE). The proportions laid out by Vitruvius were informed 
by observation of human proportions, in combination with ideas concern-
ing what were to be regarded as “ideal” proportions, according to the golden 
ratio. A modern example of a similar approach is the Modulor system of Le 
Corbusier (1945) (fig. 20), which has also been applied as a tool in design and 

1:  The cubit was a a standard unit of measure in ancient times. Several variations of the cubit have been used 
across different cultures and time periods.
2:  Referring to the systematic measurement of the human body.
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architecture. These proportional systems demonstrate the capacity of the 
same formulaic quality to be applied not only to 2D compositions but also to 
the design of dimensional structures and the built environment.

Another poignant use of algorithmic instructions and internal proportional 
relations within an image can be found in the history of cartography. Geo-
graphia was an atlas of the known world at the time it was written by Ptole-
my in c. 150 CE, compiling data from many sources into a written index of 
coordinates. Ptolemy provided detailed instructions for others to be able 
to interpret his coordinates and to draw out maps from that data. This was 
an answer to the laborious task of copying maps by sight alone, by making 
it easier to faithfully reproduce a map by relying on data. The fact that the 
Ptolemaic maps could be transcribed as an index of mathematical infor-
mation also proved critical to their survival through history. Any existing 
maps from Ptolemy’s era have been lost, but the detailed and systematic co-
ordinates transcribed by Ptolemy made it possible for the maps to be plot-
ted centuries after the atlas was originally composed.

When the Ptolemaic atlas was translated from Greek to Latin in 1407, it up-
ended the methods of medieval cartography. Instead of basing the relative 
size of countries on power relation, which was the cartographic tradition at 
the time, Geographia employed a system of coordinates that catalogued the 
locations of geographical features and their proportional spatial relations. 
This gave rise to a greater degree of accuracy in mapmaking by basing de-
pictions of the world on real-world measurements, as opposed to in accord-
ance with ideological notions regarding the relative importance of the ter-
ritory represented. Not only did this have an aesthetic impact, but it also 
changed the maps’ referential relation to the world, presumably rendering 
the resulting maps more accurate as navigational tools (see figs. 21–22).

Rigorous attention to real-world measurements in Ptolemy’s — and to a 
certain extent, Vitruvius’s — data-based images thereby portended the de-
velopment of a view of the world based on mathematic and scientific prin-
ciples, as opposed to the more ideologically-based and symbolic forms of 
representation that had been in place up to that point. In contrast, the pro-
portional relations of ancient Egyptian art do not necessarily correspond 
to the relative size of objects in the real world and instead rely on a highly 
symbolic form of representation. In addition to making images more com-
patible with how they are perceived in real life, the Ptolemaic atlas also 
demonstrates a shift from the view of images as representations of the 
world to images taking the form of a dataset (Hoelzl and Marie 2015), “a 
structured collection of data” (Manovich 2001, 218).
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Fig. 21: Latin world map according to Ptolemy’s 2nd projection, the first known to the 
West (Germanus 1467).

Fig. 22: Ebsdorf world map (Ebstorf c. 1235).
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Fig. 23: La Cosmographie de Claude Ptolemée (Clavus 1411—1426, 42-43).

… every text, even a very abstract one, means, in the last analysis, an 
image. (Flusser 2002, 64)

Both Vitruvius’s and Ptolemy’s methods allowed precise instructions for a 
visual depiction to be formulaically transcribed in written form so that, by 
following the instructions, one can produce the prescribed image. One may 
resize, reinterpret or misinterpret the instructions for creating an algorith-
mic artefact, with virtually endless possibilities. The potential for multi-
ple readings from a given set of instructions adds to our understanding of 
the algorithmic image, making a case for a mutability usually reserved for 
thinking about computational media. This makes it possible for images to 
be read or to be expressed in more than one way, across a variety of differ-
ent media. For example, the instructions for a given algorithmic image may 
be performed manually, using simple equipment, or it may be interpreted 
into digital form.

The capacity for data-based images to be transcoded between various 
forms recalls the quality of conceptual artworks, such as Kosuth’s (1965) 
One and Three Chairs, to exist between a variety of different media. The work 
presents three instantiations of the concept “chair”: a wooden chair; a pic-
ture of the chair; and a printed dictionary definition of the word “chair”. 
It illustrates how a concept may maintain continuity between its various 
instances, which may take on a diversity of material forms. Applying this 
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understanding to images separates the physical instantiation of the image 
from its conceptual form.

This highlights the unique temporal and material qualities found in algo-
rithmic media. If we are to think of Ptolemy’s atlas as an index of image 
data, an algorithmic image (each map) exists in unarticulated — virtual — 
form until it is drawn out in the form of a map. Echoes of the same idea can 
be found in Lawrence Weiner’s (1968) statement that “the piece need not be 
built”, allowing the possibility that an artwork — or image — may exist in a 
state of latency without ceasing to exist. Latency (Cubitt, Palmer and Tkacz 
2015, 16), refers to the temporal suspension of image processes as they are 
transferred from one form to another. In digital photography, says Cubitt 
(2018), the term latency refers to the temporal delay between the reception 
of photons onto a digital camera’s sensor and their subsequent transmis-
sion in the form of digital signals. This offers an interesting example, in 
which latency involves the material processing of light into digital code by 
the sensor of a digital camera.

Fig. 24: Family tree of images. (Mitchell 1986, 10).

According to Mitchell’s “family of images” (1986, 9) (fig. 24), images are un-
derstood as transcending the specificity of any single medium. They may 
be instantiated in various ways across various media, whether taking on 
a graphical, optical, mental, or verbal form. For example, a verbal image 
(Mitchell 1986, 27) such as a written description of an object may conjure a 
mental image (Mitchell 1986, 13) of that object in the mind. We thereby un-
derstand images to have a degree of consistency between instantiations, 
whether in pictorial, written, spoken or other form.

A contemporary example which demonstrates this idea well is the File Room 
by artist group Ardnode (2017) (fig. 25), in which data in various different 
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file formats (including images and sound) is translated into a series of 3D 
printed objects. The capacity for data-based images to be articulated as di-
mensional forms helps to stretch our understanding of images beyond sole-
ly 2D surfaces, as they are traditionally understood.

Fig. 25: 3D printed sculpture. File room (Artnode 2017).

Modalities and concepts related to the analogue algorithmic processes cov-
ered here have also been explored within contemporary art contexts, often 
involving the construction of an image according to a programmatic set of 
instructions. Such approaches have been especially notable in the work of 
conceptual artists, in which ideas and interpretive processes take prece-
dence over the specific visual or material qualities of an artwork.

Vera Molnár, an early proponent of computer art, explored the artistic and 
aesthetic potential of computational processes in paintings created accord-
ing to what the artist referred to as an imaginary machine, or “machine 
imaginare” (1960). Following algorithmic instructions to execute the paint-
ings, the artist took on the conceptual role of a computer — one that (or 
whom) computes. The computational dimension of these works is attrib-
utable, thus, not to a digital computer, but to computation as a procedure 
enacted in order to produce the work.
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Fig. 26: Interruptions (Molnár 1969).

Many other artists have worked with highly structured processes and sets 
of instructions to be interpreted or orchestrated, often entailing the de-
liberate forfeiting of a degree of agency, deferring it either to other people, 
machines or the orchestration of an algorithmic procedure. Important ex-
amples of performative, instruction-based works include the chance-based 
compositions of John Cage,3 the Instruction Paintings of Yoko Ono (1964) and 
On Kawara’s Date Paintings (1966–2014).

3:  Described in his lecture “Experimental Music”. (Cage 1957)
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Fig. 27: “A Wall Divided Vertically into Fifteen Equal Parts, Each with a Different Line 
Direction and Colour, and All Combinations”. Wall Drawing 47 (LeWitt 1970).

Fig. 28: Diagram for Wall Drawing 49 (Sol LeWitt 1970).
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The instructional wall drawings of Sol LeWitt (1968) (figs. 27–28) engage 
with variability of execution within a set of strictly defined constraints by 
giving sets of instructions that may be interpreted differently each time 
they are enacted.

Fig. 29: {Software} Structures (Reas et al. 2016).

LeWitt’s wall drawings have been reimagined by Casey Reas, a generative 
artist and co-founder of the Processing programming language, in the work 
{Software} Structures (2016). In Reas’ version, custom software creates draw-
ing-like, dynamic patterns and structures based on LeWitt’s instructions.

Marcel Duchamp’s final work, Étant Donnés (1946–1966) (figs. 30–31) relies 
on a program of instructions written explicitly to be carried out by some-
one other than the artist upon the event of his death. Considered to be 
Duchamp’s magnum opus, the artist specifically gives licence to others to 
produce a work according to a meticulously composed instruction manual. 
The built installation engages visitors to peek through a set of peepholes 
in a door, which offers a highly constrained view of an intricate diorama. 
Framing the gaze thus, the field of view is constricted and the dimensional 
space of the work is effectively flattened into a plane. In this sense, it may 
even be argued that this artwork can be thought of in terms of an expanded 
image, exceeding the image surface in similar fashion to how expanded cin-
ema (Youngblood 1970) stretched the medium of cinema beyond the screen. 
Duchamp’s engagement with the game of chess in the later years of his life 
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is also anecdotally relevant here, expressing a preoccupation with algorith-
mic systems, related to game-like structures in procedural art.

 
Figs. 30–31: Étant Donnés (Duchamp 1946–1966).

Procedural practices (Carvalhais 2016, 145) have been employed by artists, 
using a great variety of different techniques and systems to draw influence 
from processes and systems. This has a strong historical relation to the de-
velopment of generative art, exploring the potential for autonomous systems 
to in turn create emergent behaviour. Chance-based, or aleatory, proce-
dures, such as the roll of a die or the use of cards have been popular tech-
niques of using randomisation to direct artistic decision-making, bringing 
together variability within a set of constraints.

Early experimentation with such ideas can be found in the Surrealist no-
tion of automatism (Bauduin 2014), which has been an especially influen-
tial analogue approach to artistic creation through generative processes. In 
the wake of WWI (1914–1918), many artists sought to combat the rational-
ism they blamed for the devastating consequences of the war by seeking 
to evade their own consciousness within the artistic process. To this end, 
highly systematised, rule-based techniques were used to surrender crea-
tive control by handing over agency, intentionality, or control to a process, 
machine or system.

Recombination (Carvalhais 2016, 146), rearranging components of an initial 
starting state, is another important modality of many generative approach-
es. One example of this is the cut-up method, used by Dadaists (c. 1922) and 
which Brion Gysin and William S. Burroughs are well known for using in 
the 1950s and into the 1970s. The cut-up method is a process in which an 
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initial object — a text or image, for example — is cut up at random and rear-
ranged by the artist, influencing the creation of a new work from the rear-
rangement of an existing one.

Fig. 32: Bibliomechanics (Bök 2012).

Fig. 33: Cents mille milliards de poèmes (Queneau 1961).

Automatic literature and visual art had a particularly strong connection to 
this modality, the influence of which is tangible in the “bookish artware” 
Bibliomechanics by the experimental poet Christian Bök (2012). The work 
engages aleatory processes in a novel way, stacking together 27 Rubik’s 
Cubes into a writing-machine of sorts. All sides of the resultant oversized 
Rubik’s Cube are black, but each facet bears a word on its face. A reader may 
reassemble the cube at will, revealing a sentence 81 words long. Rearrange-
ment of the cube allows for 4.3 x 627 permutations, though not all of them 
are sensical.

This work has been referred to by the poet as a 3D version of Cents mille 
milliards de poèmes by Raymond Queneau (1961), who was a member of the 
avant-garde literature group OuLiPo. Known for their approach, which in-
volved the imposition of highly constrictive sets of formal rules, the mem-
bers of OuLiPo sought to discover new patterns and structures, effectively 
expanding the potential possibilities of literature. Cents mille milliards de 
poèmes is a book composed of 10 sonnets, in which the pages are cut into 
strips bearing one sonnet each. By flipping the pages, readers may combine 
the sonnets as they wish to produce a new reading of the text, with 1014 
possible outcomes.
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2.2 image machine / machine image

Fig. 34–35: Image determined by the flip of a coin. (Lee 2019c).

Taking a close view of image generation itself, I developed a series of draw-
ings, image machine / machine image (Lee 2019c) that reflect the algorithmic 
qualities of image production. The work seeks to break down the digital im-
age to its most basic level: pixel values, which are determined by algorith-
mic processes. To that end, I explored several modalities discussed thus 
far in this research, seeking to build up from simple analogue, aleatory 
processes, toward those that are more complex, automated and involve ML. 
Each “post-digital image” (Cox 2019) is composed of a hand-written matrix 
of numbers representing the pixel-values for an image that may be pro-
duced by entering those values into a computer.
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Fig. 36–37: Image determined by the roll of a die. (Lee 2019c).

The series plays upon the idea of transcribing a computational image as a 
form of writing, rather than drawing. What is made visible to the viewer is 
akin to instructions which could be employed in the production of images. 
The pixel values of each image have been determined by processes involv-
ing various degrees of complexity. Each image is composed of a 32 x 32 grid, 
each cell representing a pixel. Each pixel value in the images is arrived at 
using one of five procedures: the flip of a coin; the roll of a die; the RAND 
function in Microsoft Excel; averaging pixel-values from a database of im-
ages; and using Google Reverse Image Search to retrieve a new image based 
on the previous image in the series and translating it into pixel values.
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Fig. 38–39: Image determined by RAND function in Excel. (Lee 2019c).

Although the images in the series were generated through the use of unpre-
dictable algorithmic processes, I found that there is a fine balance between 
producing novelty and interesting outcomes. While the progression from 
very simple procedures toward those that are more complicated provided 
more interesting results than those employing randomness alone, unpre-
dictability on its own proves insufficient to make images that could qualify 
as art or even sustain more than rudimentary critical discussion. Though it 
has been argued that ML has the capacity to consistently produce surpris-
ing results (Lehman and et al. 2018), this does not necessarily offer much to 
artistic production other than tools to direct exploration.
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Fig. 40–41: Image determined by averaging images together. (Lee 2019c).
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Fig. 42–43: Image determined using Google reverse image search on previous image in 
series. (Lee 2019c).
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2.3 Softimage

In addition to the procedural quality discussed thus far, the use of scientific 
methods and apparatus to produce images offered the potential to make 
images more compatible with human visual perception and to automate 
production processes. The systematic implementation of optical principles 
had a number of effects on how images are viewed — both in terms of their 
aesthetic qualities, and in terms of their significance. The design of visual 
technologies also had the effect of mediating and repositioning the human 
gaze, which is a recurring theme in many examples covered in the contin-
uation of this thesis.

Fig. 44: A Reconstruction of Brunelleschi’s First Experiment (Parronchi 1964).

Artists were likely aware of optics in much earlier periods than the Italian 
Renaissance (c. 1400—1600), but Filippo Brunelleschi (c. 1415) is credited 
for its systematic implementation through the technique of linear perspec-
tive. Like the implementation of image composition according to sets of 
instructions already covered here, linear perspective is connected to al-
gorithmic processes in image production because it enables the internal 
proportions of images to be structured according to geometric principles 
that are governed by optics. In addition to his perspectival techniques, 
Brunelleschi also designed an apparatus that could be used to verify the 
accuracy of perspectival images (fig. 44). The apparatus involves creating a 
peephole in the centre of an image, through which one may view a mirrored 
reflection of the image and thereby compare it directly with the real object 
or view that it is intended to represent. This seemingly simple intervention 
is in fact rather momentous, as it places the viewpoint directly at the inter-
stices between the viewer, the image and the world.
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Fig. 45: Woodcut showing Alberti’s optical device. Draughtsman Drawing a Recumbent 
Woman (Dürer 1525).

Leon Battista Alberti (c. 1425) expanded upon Brunelleschi’s techniques 
with his own inventions, including the use of a gridded window or frame, 
which imposed a matrix on what was viewed through it (seen in fig. 45). The 
grid acted as a guide for observational drawing or painting, which enabled 
artists to better estimate spatial relations between elements in a compo-
sition. Alberti’s window device also had the effect of flattening the field of 
view, enabling unseen parts of objects, such as those hidden behind oth-
er objects, to be inferred rather than visually represented in the resulting 
image. Imposing a pictorial plane upon representations of the world there-
by gave them greater compliance with human optical perception. It’s also 
noteworthy that the segmentation of the image that occurs in Alberti’s win-
dow technique bears a resemblance to the pixel grid of the much later dig-
ital image.

Fig. 46: Detail of Altarpiece from Thuison-les-Abbeville: The Ascension (Unknown c. 
1490–1500).

The implementation of optical principles through the use of linear perspec-
tive, optical apparatus, and the flattening of the pictorial plane enabled 
spatial relations and proportions to be constrained by geometry and op-
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tics, more so than subjective interpretations of appearances. The impact of 
such techniques is especially apparent when contrasted with the relative 
compositional flatness of pre-perspectival paintings, which often contain 
blunders such as misunderstandings of foreshortening, as in fig. 46, or the 
then-common practice of portraying babies with the bodily proportions of 
adults, only smaller in scale.

The tendency towards naturalistic representation, which optical media 
played a part in, signalled a change from images playing a largely sym-
bolic role, as previously discussed to images based upon the mediation of 
the perceptual experience of the world through science and technology. 
Through the previously described examples, we see how visual technolo-
gies mediate perception and pictorial representation of the world in a way 
that is interlinked. The devices of Brunelleschi and Alberti demonstrate 
quite directly how technical apparatuses mediate relations between the 
viewing subject, an object of representation and the production of an image. 
Not only does each device mediate the point of view, but its use also aids the 
viewer in adjusting their image to be more compatible with what is seen. In 
this way, the technical mediation of human perception comes to modulate 
the production of images.

As a result of these changes, it became possible to make images that had 
greater correspondence with human spatial perception, giving images a 
more realistic illusion of depth. Optical media (Kittler 1999) thereby caused 
the appearance of the image to become more compatible — even visually 
interchangeable — with the world around it. By holding a mirror to reality 
(in a direct sense in the case of Brunelleschi’s mirror technique) images 
started to become more faithful reflections of the qualities of optics so that 
the eye perceives two-dimensional surfaces as equivalents of real-world 
three-dimensional objects.

Though at first primarily focused on text, the invention of moveable type 
(c. 1455) contributed to the mass-replicability of texts, as well as images. In 
comparison to older forms of print media, such as lithography or wood-cuts, 
moveable type allowed the recombinant rearrangement of components 
within a composition. This accelerated the production and reproduction 
of print media, facilitating the “Gutenberg Revolution”,4 a considerable in-
crease in the number of books printed in Europe, which in turn led to in-
creased dissemination of knowledge.

4:  This refers to how the invention of moveable type by Johannes Gutenberg in 1455 enabled the mass pro-
duction of print media.
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Reproducibility (Benjamin 1935) rendered mechanically produced images 
commonplace in comparison to the scarcity of one-of-a-kind, manually 
produced images. Technically reproducible images were therefore seen as 
inferior to painting, due to their deviation from existing conventions that 
treated art objects as singular entities. Seriality was already possible before 
the mechanisation of printmaking processes, but higher degrees of auto-
mation took its possibilities to greater degrees.

Mechanised printing expanded upon older forms of printmaking process-
es, which were also capable of producing multiples, albeit more slowly. In 
addition to the acceleration of image production and its replicability, the 
modularity of moveable type also treated textual components and images 
interchangeably. This made images mechanically programmable, for ex-
ample by treating a text-based composition as a single image, composed 
of modular elements. The punchcard loom is another interesting example 
that predates the digital computer, in which a mechanical program enables 
a machine to produce specific visual patterns — in this case, in the weaving 
of cloth.

The advent of photography, too, caused the incorporation of automated me-
chanical processes in such a way that Vilém Flusser (1983, 26) likened the 
function of the camera to the performance of a mechanical programme. In 
yet another incremental shift, optical relationships were embedded in the 
image-making process through the execution of the camera’s mechanised 
procedure. Like the printing press, the camera also enabled the production 
of multiple images from a single photographic negative. We may thereby 
think of the analogue, in-camera photographic process as akin to encoding 
the source-code of images into film through the performance of mechani-
cal algorithmic processes.

Though the processes involved in digital photographs are quite different 
from those of analogue photography, they nonetheless have certain algo-
rithmic modalities in common. In digital photography, images are also cre-
ated using highly systematic digital processes that are performed automat-
ically by the camera. Digital cameras now also often include ML-informed 
features such as face detection, autofocus, lighting correction or the addi-
tion of digital lenses or filters, making the end result the product of a host 
of algorithmic processes, not all of which are necessarily visualised in the 
final image.
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Consider the case of Wikipedia, a singular (data) image produced by 
thousands and thousands of end-users on their laptops. (Galloway 
2011, 94)

The digital computer’s capacity to function as a metamedium (Kay and Gold-
berg 1977, 394) has made it possible to simulate a great array of previously 
discrete forms of visual media, computationally. Digital imaging thereby 
adds to many of the qualities of earlier forms of image production, further 
increasing their speed, potential for mass dissemination and the degree of 
automation involved.

Expanding upon the issues raised by Benjamin (1935) regarding reproduc-
ibility of print media, the same quality in digital images may also have an 
impact on their materiality. Multiples often lack the material as well as the 
symbolic worth of materials traditionally associated with traditional art 
forms like painting or sculpture, such as the use of lapis lazuli and gold, or 
oil on canvas, as opposed to the use of common materials, such as prints 
on paper. The highly technologically mediated, algorithmically governed 
and participatory context of the internet (since Web 2.0, c. 2000) takes this 
even further. It enables the possibility to access, duplicate and disseminate 
images at will. As a result, it has become commonplace to distribute digital 
media without regard to legal restrictions and to treat images as forms of 
intellectual property rather than visual or physical objects.

Hito Steyerl (2009) describes the fleeting quality of digital artefacts through 
her concept of the poor image (1), which she says prioritises speed and trans-
missibility over traditional views, which champion resolution and scarcity. 
Poor images place value on an image’s performance, rather than the com-
plexity of its composition, prizing communicability over bandwidth. Sarah 
Kember and Joanna Zylinska (2012) similarly emphasise a transition “from 
thinking about ‘new media’ as a set of discrete objects” (1) to understanding 
media predominantly in terms of processes of mediation and remediation 
(8).

It’s relevant to note that there is an interpretive dimension in decoding the 
instructions of transcribed visual data into the form of an image. Though it 
is possible to transcode an image between many different forms, it is rein-
terpreted at each stage of that transformation. In their examination of data 
compression, Ingrid Hoelzl and Rémi Marie (2015, 63–80) demonstrate 
how a digital image may be compressed and decompressed or transcoded 
between file formats with variable degrees of faithfulness to the original 
image file. Compression artefacts visually attest to this in Thomas Ruff’s 
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(2007) jpegs series, whereby images are visibly degraded through a process 
of repeated compression and decompression.

The relation between images and data in networked media has been ex-
plored explicitly in relation to search engines in Mohammed Salemy’s 
(2016) curatorial project and associated publication, For Machine Use Only. 
Examining the human-machine cooperation that occurs on an ever more 
frequent basis in current algorithmic media, Salemy invited a group of 
artists and theorists to submit original works that reflected upon Google’s 
reverse image search. Image search renders images and search terms ef-
fectively interchangeable, except that for each query, there may be multiple 
results.

While algorithms have influenced pictorial representation for a long time, 
the responsiveness of algorithmically-determined visual phenomena aims 
toward a reactivity that is unprecedented in other forms of media. Not 
only are algorithmic images, themselves, highly variable, but so too are 
the modes of access that determine their display. What becomes visible in 
browsers, apps, search engines or social media platforms is often depend-
ent upon vast amounts of previous data, both from the individual viewing 
the content and from millions of other users. 

The reading of a media artefact can thereby be seen to be informed not only 
by its inherent properties but also by the modalities by which it is mediat-
ed. This means that not only are individual media artefacts subject to the 
influence of algorithmic procedures in the processes that have been used 
in their production, as well as that of the interfaces through which they are 
accessed, in their display and transmission: it also points to the fact that 
networked media is not uniform, and may show different things to different 
individual viewers at different times.
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Fig. 47: Comparison of Google Search ‘personalized’ and Tor Browser ‘anonymized’ 
search results with keywords ‘postdigital’, ‘performativity’ and ‘contemporaneity’ Green 
represents ‘identical’ URLs. White represents ‘unique’ URLs. Against a Personalisation of 
the Self (Ridgway 2017).

Networked content is often algorithmically “personalised”, creating a pro-
file of a given user based on past browsing habits, demographics, location 
and previously viewed content, as well as social connections to other users. 
In Against a Personalisation of the Self, Renée Ridgway (2017) examines how 
the personalisation of visual media lends itself to a high degree of variability 
in terms of what content is made accessible to individual users. This makes 
networked content highly contextual and subject to algorithmic processes 
that are often inaccessible to users. In her experiments, Ridgway compares 
the results displayed for an “anonymous” — or control — computer with 
search results that are given for a computer which has been “personalised”. 
In so doing, she demonstrates the lack of impartiality in networked media, 
given the algorithmic tailoring of results toward user profiles.

This also has to do with what has come to be known as “surveillance cap-
italism” (Zuboff 2019), in which the mass-collection of user data is imple-
mented in coercive digital media practices in which algorithmic systems 
are used to track, monitor and monetise the behaviour of individuals. Not 
only has this led to privacy concerns, regarding the handling of users’ per-
sonal data, it also contributes to a feedback loop in which particular content 
is displayed based on previously viewed content. It also polarises discourse 
by siloing users into media bubbles in which they are grouped together with 
others with — presumably — similar media preferences or habits.
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Fig. 48: Unerasable Images (Soon 2018).

Demonstrating the volatile nature of internet content, Soon’s Unerasable Im-
ages (2018) documents the censorship in China of particular internet con-
tent related to the student-led Tiananmen Square Protest in Beijing in 1989. 
To produce the work, Soon conducted daily Google image searches for a 
particular search term, “六四” (“64”), a reference to the date of the protest. 
Documenting the results that appeared in the form of a screenshot, she 
then deleted all the resulting images except for a particular image of a Lego 
version of the iconic “Tank Man” photograph, the best-known image related 
to the Tiananmen Square protest. The original image shows a man stand-
ing in the way of a line of advancing tanks, which in this version is recreated 
out of Lego.

The reason for focusing on the reinterpretation of this particular image is 
that it has shown an ability to overcome the Chinese campaign of censor-
ship of any reference to the protest, written or visual. The Lego tank man 
images, in contrast, disappear eventually but remain online longer than 
direct copies of the original image, which are taken down immediately. Re-
interpreting images into unexpected forms thereby endows some visual 
content with a greater capacity to resist censorship than direct representa-
tions, because they can be more difficult to automatically detect. This and 
the previous example make visible how the mechanics not only of individ-
ual artefacts of visual media but also of their modes of transmission and 
visualisation, may be subject to algorithmic processes.

This focus placed on process and procedure has led to the development of 
alternative value systems for the appraisal of digital artefacts, fitting with 
Hoelzl and Marie’s (2015) assertion that “ the algorithmic image is no longer 
governed by algorithmic projection, but by algorithmic processing.” (5) 
Rather than materially-fixed, stable objects, algorithmic processes reveal 
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a tendency towards a lack of media specificity, which applies to digital im-
ages, and which is further expanded in current implementation of ML to 
perform similar visual tasks. 

“While the digital revolution erodes both the technique (geometry, 
projection) and the philosophy (transparency, truth) that 
underpinned it, the photographic paradigm seems to remain intact 
on the level of visual perception, so that today the photographic 
image occupies the entire field of representation as well as the one 
of vision.” (Hoelzl and Marie 2015, 3)

Hoelzl and Marie’s rethinking of the image, the softimage,5 informs the per-
spective of this thesis. Not only does it enable us to understand the modali-
ties particular to algorithmic media – new or old – but it also emphasises a 
connection to historical image-making paradigms which continue to shape 
discourse.

The images explored thus far in this chapter recall Manovich’s (2001) prin-
ciples of new media: numerical representation; modularity; automation; varia-
bility; and transcoding. As Manovich states, these tendencies are difficult to 
differentiate from “what new media is not” (49), not by definitively altering 
the defining qualities of images, but rather by expanding them incremen-
tally. This brief overview of algorithmic qualities in images through the 
examples covered in this chapter demonstrates how the possibilities for 
producing various effects are built upon over time. This is not to say that 
image-making processes become inherently more complex over time, but 
that the abundance of visual technologies available is a marker of current 
media which may be contrasted with those of the past.

The implementation of algorithmic procedures in the production of images 
enables images to take on transmedial qualities, in which non-visual pro-
cesses play an important role in addition to the visual properties of images. 
Many of the image-making processes discussed here consider the interre-
lation between objects, texts and images, and their potential to be enacted 
through various forms of mediation.

5: Hoelzl also uses the term “postimage”.
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Later, owing to advances in automation, image makers became 
ever more superfluous, so that today fully automatic apparatuses 
produce, reproduce, and distribute images. Although this cannot 
be called “art” in the modern sense of the word, it is about powerful 
models of experience. (Flusser 2002, 128)

3.1 Machine Mythology

The highly automated processing of visual information exhibited in imag-
es produced using machine learning (ML) is often compared with the per-
formance of similar processes by humans. Not only does this lend itself to 
metaphorical connections between biological vision and the interpretation 
of visual information by machines, but it also raises questions as to the au-
tonomy of machines from human influence. The automation of image pro-
duction processes has thereby given rise to ideas of images as a reflection of 
nonhuman agency and ability, or as being closer representations of reality 
as a result of the presumed autonomy — and therefore, it is assumed, objec-
tivity — of technically produced images. In such cases, the role of machines 
relative to humans is often unduly diminished or overestimated.

The Industrial Revolution (c. 1760–1840) was marked by the automation of 
many production processes, including those of visual media. Mechanical 
apparatus enabled what had previously been laborious tasks to be per-
formed quickly, easily and cheaply. As discussed previously (p. 69), this led 
to the devaluation of mechanically reproducible images (Benjamin 1935). 
Automation also had immediate ramifications for labour, allowing process-
es that had formerly been exclusive to manual production processes to be 
delegated to machines. The resulting cultural backlash against automation 
placed machines at odds with human ability. For example, in the Luddite 
rebellion (1812–1816), workers destroyed industrial machines, which they 
perceived as a threat to their livelihoods.

But machines were not a threat so much as they were part of a systemat-
ic re-evaluation of human labour in relation to machines. Because indus-
trial machines could be operated by unskilled, lower-paid labourers, they 
threatened to take priority away from highly skilled — and higher paid 

— craftsmen and artisans. As a consequence, automated labour — and its 
products — often came to be devalued in comparison to human labour. This 
was partly because automation meant that similar products could be pro-
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duced at a lower cost, but the products of automated labour were also seen 
as lacking the craftsmanship of less automated production processes. 

Fig 49: Criminal composite photographs. Tableau synoptic des traits physionomiques: 
pour servir a l’étude du “portrait parlé” (Bertillon c. 1909).

A presumed lack of skill and effort entailed in photography, for instance, 
caused a long-fought struggle for its legitimacy against entrenched ide-
as regarding painting as a higher form of art. The presumed autonomy of 
mechanised image production led to the belief that the visual verisimili-
tude — the appearance of being true or real — of the photographic aesthet-
ic could be taken at face value. Photography indeed proved effective as a 
form of evidence, such as in crime-scene photography and biometric photo-
graphs. Alphonse Bertillon’s (c. 1905) standardised system for photograph-
ing and of cataloguing images of the human face and its features, called 

“portrait parlé”, or “spoken portraits”, derived from the use of the same 
term for oral descriptions of perpetrators in criminal investigations. The 
technique — now known as a mugshot — enabled the faces and individual 
features of criminal suspects to be compared easily against one another. 
This built on existing techniques of forensic portraiture, collecting anthro-
pometric measurements and highly systematic photographs in addition to 
qualitative descriptions from witness testimony.

But at the same time that photography proved its potential to reveal the 
truth, it also quickly demonstrated its potential for illusion. The staging 
of appearances was zealously grasped from the early days of photography, 
cinema and pre-cinema (Mannoni 2000). Pre-cinematic devices — precur-
sors to cinema involving related concepts or modalities — often employed 
optical tricks to achieve movement, illumination, projection and immer-

Tableau synoptic des traits 
physionomiques: pour servir a 
l'étude du "portrait parlé"
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sive effects. Notable examples of pre-cinematic devices include the magic 
lantern, zoetrope, panorama, peepshow and stereoscope. These were of-
ten shown as public spectacles, in which they were publicised as technical 
marvels, but also forms of entertainment.

Fig. 50: Stereoscopic image of a ghost, for use in stereoscope. (London Stereoscopic 
Company c. 1856).

Many pre-cinematic devices involve peepholes that place a visual spectacle 
in front of the viewer’s eye or eyes, recalling the construction of the mirror 
device designed by Brunelleschi (p. 65), which carefully mediated the view-
er’s point of view. The stereoscope, for instance, requires the viewer to peer 
through a set of lenses at a pair of images, which are merged by humans’ 
natural binocular vision, giving the person the illusion that they are view-
ing a single 3D image. The device’s placement of the eyes in a particular 
orientation in relation to the images is crucial to the optical effect, demon-
strating directly how visual apparatus may be used to shape perception.

The manipulation of appearances has also been applied towards dubious 
ends under the guise of scientific accuracy. For example, the appropriation 
of the mugshot technique by the Nazis sought to prop up discriminatory 
ideals through the differentiation of kinds of bodies. In phrenology, as well, 
similar visual cataloguing and differentiation of physiological features was 
used in order to purportedly “diagnose” those who deviated from a sup-
posed norm. In such cases, attempts were made to identify human intel-
lect, inherent criminality, hysteria, and other qualities merely “by looking 
alone”.1 (Elkins 1999, 155) In one example given by Elkins (fig. 51), photo-
graphs of nostrils are compared, supposedly as an indication of the sub-
ject’s sensuality.

1:  Elkins (1999) describes approaches to the visual differentiation of bodies as “metamorphosis by looking 
alone”, which he argues is “one of the deepest bases of racist and sexist imagery.” (155)
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Fig 51: Nostrils, indicating degrees of sensuality (Burger-Villingen and Nöthling 1958).

Examples such as these reveal that the assumption of an inherent truth val-
ue in images that are subject to technological mediation has serious ram-
ifications. The notion that seeing is believing — especially when technical 
apparatus is involved — has to do with the turn towards a view of visual ar-
tefacts as empirical evidence. This may explain why, in spite of the proven 
capacity for visual media to be used to create illusions, there is an equally 
long tradition of tacit confidence in technically produced images. In such 
cases, science and technology are used to legitimise visual artefacts as pre-
senting a level of inherent truthfulness resultant from the technical meth-
ods of their production. For example, the difference between a portrait and 
a mugshot lies in the rigorous nature of how the latter photograph is ob-
tained, as well as the structures through which it is taken to be visual proof.
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Fig. 52: Cottingley Fairies (Wright and Griffiths 1917).

Uncritical belief in the scientific nature of visual technologies — combined 
with the often complex or specialised processes involved — often lends it-
self to a suspension of judgement when assessing technically produced im-
ages. A particularly poignant instance of this involves a set of photographs 
called the “Cottingley Fairies”(Wright and Griffiths 1917) that were staged 
by two young girls, using cardboard cutouts to give the appearance that 
the girls were surrounded by fairies. It is immediately clear to present-day 
viewers that these are fabricated images, but when the photos were taken, 
photography was still in its early days. Because of the general public’s unfa-
miliarity with photography, there was initially a degree of contention over 
whether these images were real or not. This instance demonstrates how 
changing cultural expectations and technological literacy impact the way 
in which images are received.

The belief that technologically produced images are closer to the truth than 
other forms of visual media by virtue of being produced by a machine is not 
isolated to the past. Like the Cottingley Fairies incident a century ago, ML 
and artificial intelligence (AI) still provoke a suspension of disbelief, due 
not only due to popular mythology but also to a lack of sufficient under-
standing of the limits of the technology. Understanding the processes be-
hind the production of images may thereby be likened to a form of visual 
and technological literacy, in which one’s reading of images may be influ-
enced by taking the technical conditions of an image’s production into con-
sideration. But while including the mediating role played by visual tech-
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nologies as a factor may help to better understand images, discourse has 
often been polarized into extremes: either delegitimising the products of 
automated processes, as seen in the devaluation of mechanically produced 
images or emphasising the autonomy of machines from the humans who 
design, build, program and operate them.

The involvement of machines in image production gave rise to fears around 
the “death of the author” (Barthes 1967), which continue to shape discours-
es on art today. Many apparatuses, including the printing press, the cam-
era and the computer have each come under scrutiny at various points in 
history for potentially eclipsing the role of the artist. The myth of the “ma-
chine as artist” (Broeckmann 2019) has therefore been an enduring theme 
in technologically centred art, seeking to address concerns of authorship 
by simplifying it into binary terms. At times it is used to make the case for 
machine authorship, but it may also take less obvious forms, such as the 
use of technical systems to play down the role of human decision-making 
in the production of visualisations.

Fig 53: Computer-generated drawing with hand colouring. AARON (Cohen 1974).

In early exploration of the idea of machine authorship, Harold Cohen 
worked on an AI system, which he named AARON, from the late 1960s until 
his death in 2016. AARON was designed to produce images, beginning with 
simple abstract plotter drawings, which grew to be more complex and even 
figurative over time. Cohen’s relationship to AARON is said to have become 
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strained when he began to perceive AARON’s creations as overshadowing 
his own role as an artist (Reichardt 2018). At that point, Cohen went so far 
as colouring on top of AARON’s drawings (see fig. 53) in an apparent effort to 
prevent his importance from being eclipsed by that of the machine he had 
designed. Evidence of Cohen’s internal struggle for authorship is evident 
in his alternation between signing images with his own signature, AARON’s 
signature or a combination of both.

Fig. 54: Portrait of Edmond de Belamy (Obvious 2018).

More than 40 years later, the myth of the machine as artist persists, with 
the now infamous sale of Portrait of Edmond de Belamy by a group named 
Obvious (2018). The work was widely panned by the art world for its lack 
of artistic merit, yet it sold at auction for over $400,000. Using a dataset of 
European paintings as training examples, the resulting image, produced by 
a generative adversarial network (GAN), appears similar to a smudged oil 
painting, complete with what appear to be simulated brush strokes. These 
are an interesting touch, as they transfer the technical qualities of painting 
into a medium in which they are not necessary.

The work also stirred controversy due to the degree to which it intentional-
ly obscured the human labour behind the supposedly “machine-produced” 
image. Obvious’s images from that series bear a striking resemblance to 
images produced — and already made public — by Robbie Barrat (2018), then 
aged 19, from whom Obvious has now acknowledged that they borrowed 
the code for their project. It is unclear to what extent Obvious did anything 
that would differentiate their creations from those of Barrat. Additionally, 
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the algorithm for creating this portrait — or rather, a simplified version of it 
— is inscribed in a handwriting-style font in the bottom right-hand corner of 
the image, as if to indicate this as the algorithm’s signature on its creation.

Currently, international law either prohibits or does not acknowledge cop-
yrights for the creations of machines. According to the World Intellectual 
Property Organization, “traditionally, the ownership of copyright in com-
puter-generated works was not in question because the program was mere-
ly a tool that supported the creative process” (Guadamuz 2017). While the 
code employed by Obvious was written by Barrat, the images using that 
code are legally considered equivalent to those created using any other kind 
of tool. This means that protections for the intellectual property produced 
by algorithms could become difficult to define, as the use of algorithms to 
produce visual content – or to even write other algorithms to in turn pro-
duce images – becomes more commonplace.

What this means for the use of ML in art contexts is that it is an instance in 
which assumptions about the relation between art and technology greatly 
shape the potential of its outcomes. In the same way that technology facil-
itates new possibilities for image-making, it also has limiting aspects. As 
with any tool used in art, the technology itself exerts its own parameters on 
the process. In the case of GANs, this means that not only are many artists 
using the same kind of ML architecture but also they are often using the 
same or similar code or image datasets. As a result, many ML-produced im-
ages have a great deal of visual resemblance to one another. For example, 
comparing several GAN images side by side, similar compositional, chro-
matic, stylistic tendencies become apparent. And the use of common image 
datasets such as ImageNet also imbues the results with visual particulari-
ties that give them a distinct aesthetic that is noticeable in the outcomes of 
models trained on such datasets.

The debacle around the Portrait of Edmond de Belamy (Obvious 2018) is in-
dicative of more than just its dubious claims to machine authorship, as it 
speaks to the neutralisation of many human design decisions that have not 
only gone into the ML systems themselves but also their applications. Print-
ed in oil on canvas, placed in a pompous gold frame, displaying a non-virtu-
osic rendition of European portraiture showing a male sitter, which is then 

“signed” by an algorithm, the work distils multiple traditional assumptions 
about value in art into a single image.
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3.2 Nonhuman Photography

Fig. 55: Example of nonhuman photography from the series Active Perceptual Systems 
(Zylinska 2014).

Joanna Zylinska (2017) has referred to highly automated forms of image 
production, such as CCTV, drone media, medical body scans, satellite im-
aging, depopulated landscapes and QR codes, as examples of what she calls 
nonhuman photography. These express a displacement of the human from 
playing anything more than a marginal role as subject, author or viewer. 
Nonhuman photography, she says, is not principally of the human, by the 
human, nor for the human (2017, 5).

In this sense, nonhuman photography leads us to an enduring paradox of 
the posthumanist drive to de-anthropomorphise the human gaze. Attempts 
to step outside of the human perspective are continually thwarted by the 
fact that whatever means are used to do so nevertheless impose elements of 
the human upon that which is viewed. The persistent normalisation of the 
human point of view that is found in attempts towards a nonhuman pho-
tography lead, ultimately, to the conclusion that modes of nonhuman pho-
tography are only nonhuman to a certain extent. Like automation, we may 
understand nonhuman forms of visual processing by degrees, but never 
in-itself nor as separable from human influence.

Calling highly automated visual technology “nonhuman” is not to say that 
they do not involve humans at various stages. It is meant to denote visual 
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technologies that are radically indifferent to the human, rather than exclu-
sive of it entirely. This means that a given instance of nonhuman photogra-
phy may involve human elements, but that the human contribution therein 
is considered to be inconsequential.

In such a way, the image-making process and its outputs are framed as am-
bivalent to the viewer. But, we may ask, what is an image without a (human) 
viewer? What role do images play if we cannot perceive nor interpret them? 
As such, the nonhuman image defies our very understanding of what an 
image may be because we have no — or very little — access to it. Considering 
the production of images without the direct intervention of humans — as 
subjects, producers or audience — radically shifts our expectations of what 
images are and do. The indifference of the process, that the image is not be-
holden to its audience for validation, thereby places the image in a position 
of sovereignty from the act of viewership.

But although it is aimed away from human subjects in its subject-matter 
and is orchestrated outside the direct control of humans, it would be hard 
to say that nonhuman photography ever escapes the influence of human 
intentionality. Even when visual technologies are automated to the degree 
that they no longer act directly in the service of human ends, it does not an-
swer the question of who nonhuman photography is for, if not for humans. 
On the one hand, claims for crediting machines or computational process-
es with the autonomous creation of images fail to grasp the importance of 
the creation of the systems that in turn produce an artefact. Yet crediting a 
human or humans alone would be to leave out the significance of machines 
and machinic processes in the production of images.

As we understand from looking at various kinds of human-machine coop-
eration, it is often difficult to draw a line between human agency and the 
performance of machines. These perspectives are often interlinked, as 
technological apparatuses have a highly variable degree of influence over 
processes of image production. This is in opposition to the assumption 
that automated technologies efface human action from the process. Rather, 
the automated production of images involves degrees of cooperation and 
a sharing of agency between humans and machines. Thus, variable levels 
of agency may be attributed to a device, itself, in human interaction with 
machines.
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Fig. 56: Phenotypes/Limited Forms (Linke and Hanappe 2008).

For example, Armin Linke and Peter Hanappe’s (2008) Phenotypes/Limited 
Forms  presents a mostly autonomous image production system that engag-
es visitors to participate in the production of a personalised picture book. 
The installation affords user interaction, yet it causes an unusual dynamic 
between the visitor and the technical system. While the system appears to 
exist purely to meet the aesthetic desires of humans, it also requires them 
to act in particular ways in order to make it perform as intended.

Upon entering the space, visitors are invited to select from an archive of 
1000 images, grouping a selection of 10 images together for display on spe-
cially-designed wall ledges. When satisfied with their curatorial selection, 
a visitor may place their images in a designated area, from which sensors 
identify the respective images by means of RFID chips and they are prompt-
ed to give a title to their creation. A printer then prints out a unique edition 
of a book containing the visitor’s selected images, and its title is projected 
on a wall in the exhibition space. The highly automated process in which 
visitors thus participate overturns the role of the curator by inviting the 
visitor to make selections from a large archive of possible images that can 
then be displayed, as well as involving the visitor in the editorial process in 
the publication of their own book. 

What may not be immediately apparent to those who experience this work 
is the seamlessness and indifference of interactions between humans and 
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machines during the image-making process. The system is so highly au-
tomated that it gives the feeling that the visitor is subjugated to the system 

— entering into its space, participating in its fulfilment of a task. On the one 
hand, the machine is put to work for humans, producing images for them. 
But we may also think of it as the machine merely cooperating with hu-
mans, who assist in the performance of its image-making program. Linke 
and Hanappe place the individual viewer in the curious position of being 
at once included and excluded from the narrative, possessing at the same 
time as dispossessed of agency. Phenotypes/Limited Forms (Linke and Han-
appe 2008) thereby offers an angle into the autonomy of the art-as-system 
from the artist(s) as well as from the viewer. The work gives the sense that 
the viewer enters the space of the artwork, in which the system or ecosys-
tem reacts to — but does not necessarily yield to — the human presence.

In this example, not only is it difficult to differentiate the role of the human 
from that of the machine in image production, but the human-machine 
relation may also vary in degree at different stages of interaction. Expres-
sions of agency between humans and machines are thereby understood not 
as fixed dynamics but as being in flux and subject to temporal change. The 
variable positions of human-machine cooperation that arise at different 
stages of image production may be thought of in terms of preprocessing, 
coprocessing, and postprocessing (Aarseth 1997, 135).

Preprocessing is exemplified by forms of automation in which a machine or 
system is set up and run to produce an outcome. Human intervention is 
necessary at the beginning of the process but is not required after the pro-
cess has begun. The examples of nonhuman photography given by Zylinska 
(2017), for instance, primarily involve preprocessing, after which they run 
by themselves. Coprocessing involves a higher degree of interplay and col-
laboration between the human and machine. This occurs, for instance, in 
situations where artists respond to the actions of a machine, which in turn 
influences the creation of a resultant image. Finally, postprocessing refers to 
the processes and curatorial actions applied to media artefacts after those 
performed by machines have been completed.

These positions in image processing are not mutually exclusive. That is to 
say that coprocessing, for example, may apply to the cooperation that oc-
curs in other stages, such as preprocessing or postprocessing. They may 
also refer to the respective roles played by human and machine at different 
times in a single encounter. Thus, even when a human is not present or is 
not in direct control of a process, there is still a degree of human participa-
tion that may have gone on in the preprocessing phase: in the design, pro-
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gramming and setup of visual technologies. Long-term, unmanned video 
feeds present such an example in which human intervention is minimised, 
yet present. Even in the case that such a system might continue to produce 
images beyond a doomsday scenario in which all humans are wiped out, 
the system owes its existence to the actions of humans, whether or not they 
continue to participate in its enactment.

For example, a GAN involves the input of visual data in its initial stages, 
in the training of a model. This occurs in parallel to non-visual processes 
that intermittently involve the output of images. GANs also involve levels of 
human participation that vary at different stages of the process, primari-
ly requiring higher levels of intervention during preprocessing, but also in 
some cases involving a considerable amount of postprocessing. Although 
the processing stage is itself performed by a computer, that is also subject 
to the agency and intentionality of human subjects who orchestrate and 
oversee it.

Nonhuman agents, such as animals, may also participate in the production 
of an image, in the case of some of Zylinska’s (2017) examples of nonhuman 
photography. But these scenarios fall victim to the same logical problem 
discussed previously, that such circumstances are presumably derivative 
of human intervention, whether directly or in a diluted form. Animals trig-
gering photo snares or even intentionally pushing the shutter release of a 
camera could, for example, be considered tertiary human-controlled im-
age-making processes in the sense that they may involve nonhuman agen-
cy, but nonetheless involve human intentionality in an indirect manner.

In contrast to approaches prioritising the idea of the machine either as 
merely a tool or as a sole author, some artists have also worked with the 
idea of sharing agency between themselves and the technologies they work 
with. This includes explorations of the possibility for a digital tool to play 
an interpretive, and even creative, role in the production of images. Adrian 
Ward’s Autoshop (1999), which could be described as a subversive take on 
Photoshop, uses AI to react to user behaviour and to vary the visual out-
come accordingly. This means that the program thus plays an increased 
role in deciding how the resulting image will appear in comparison with 
traditional photo-editing software. Similar ideas have been explored in a 
number of technical online interactive demos, such as edges2cats (Hesse 
2017), GauGAN (NVIDIA 2019), and Magic Sketchpad (Dinculescu 2019). In 
each of these examples, users’ simple drawings are interpreted and elabo-
rated upon by neural networks (NNs).
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The recent wave of interest around sharing agency with AI has also includ-
ed a number of performative or interactive projects. Some of these, such as 
Holly Herndon’s PROTO (2019) and Actress’s Young Paint (2019), continue to 
mythologise an AI performer with which the artists collaborate with. Mario 
Klingeman (2018), for example, describes his work The Butcher’s Son as “a 
neural network’s interpretation of the human form” and an “image [that] 
has been generated entirely by a machine using a chain of GANs”. Yet in-
herent aspects of the process contradict those statements. In the same art-
ist statement from which the previous quotations derive, Klingeman (2018) 
goes on to describe the process he employed, saying “I control this process 
indirectly by training the model on selected data sets, the model’s hyperpa-
rameters and eventually by making a curatorial choice, by picking among 
the thousands of variations produced by the models the one that speaks to 
me most.”

While acknowledging his own role in the process, Klingeman attempts to 
play down the degree of human intervention in producing the final image. 
Not only has he been involved in the preprocessing, setting up the system, 
he has also engaged in coprocessing of training the model and its hyper-
parameters, he also participated in postprocessing by selecting one of the 
many images that were produced as the final outcome. Andy Lomas (2018) 
(fig. 13, p. 45) similarly asserts the role of the computer in the production 
of his Vase Forms, while also acknowledging making similarly subjective se-
lections among large amounts of generated content. While unproblematic 
in itself, this is part of a greater tendency for artists to play down their own 
role in using ML in their practice.

Anna Ridler’s Drawing with Sound (2017) relies less on the idea of AI as a 
character in a narrative about the work, treating it instead as a modality of 
interaction. Drawing with Sound involves the artist wearing a special set of 
glasses with a built-in camera so that the system modulates sound based on 
her drawing. A feedback loop is then produced between the artist’s inter-
pretation of the sound as a score to perform to and the system’s interpreta-
tion of that performance. This ultimately influences the visual result in the 
drawing produced.

Ian Cheng takes a slightly different approach in his work, often creating vid-
eo installations that exist more as ecosystems for an AI system to inhabit. 
His work BOB (Bag of Beliefs) (2018), for example, is an interactive installa-
tion in which users can influence the development of an artificial life form 
through an app. This approach treats the ML as less of an agent in the artis-
tic process, instead framing the system as an artefact of AI.
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Laura Beloff’s (2014-2016) Fly Printer demonstrates the idea of hybrid inten-
tionality between the artist and nonhuman agents — biological as well as 
technical. The work takes the form of a small ecosystem in which fruit flies 
live and are provided pigment-laden food to eat. Over time, the flies’ colour-
ful excrement builds up patterns on the base of their enclosure, which are 
interpreted by a NN. The neural network attempts to assign categories to 
the arrangements of fruit fly waste, applying a technoscientific approach to 
a disorderly biological process.

3.3 Adversarial Approaches in Art

Approaches which disrupt the usual application of science and technolo-
gy, such as in adversarial approaches, are particularly relevant for the way 
that they demonstrate differences in the interpretive processes performed 
by humans and machines. Designed to be interpreted — or rather, misin-
terpreted — by machines, fooling images have been a source of inspiration 
for many artists. In a capacity similar to the optical tricks of pre-cinema, 
adversarial images often instrumentalise the fact that they are capable 
of being read in more than one way. As such, adversarial images help to 
visualise the differences between biological vision and the visual process-
es performed by machines. Producing an image with the express intention 
of fooling a computer uses differences between the way in which humans 
and machines process visual information in an effort to probe the robust-
ness of an ML system.

Such adversarial images have no obligation to look like what they are be-
cause effectively, they are what they do — the operation that they perform, 
which in this case is to appear as one thing to human subjects while being 
read as something else by an ML system. Therefore, an object that has been 
designed to look like a turtle to humans and that is classified as a rifle by 
a computer (Athalye et al. 2017) is successful or valuable to the degree it 
performs its task.

You are a set of coordinates — the unique contours of your very own 
face — their virtual cipher. (Malick 2019)

Many artists have sought to appropriate and to break the typical power dy-
namics ML engages in by responding to the increasingly widespread use 
of biometric surveillance that employs facial recognition, with designs and 
techniques for evading this control. Unsurprisingly, the face has been the 
subject of numerous artworks, many of which involve elaborate strategies 
to regain one’s privacy and camouflage oneself from surveillance cameras. 
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In this sense, the face has become a battlefield, with various interests seek-
ing to capture or to obscure it.

Fig. 57: Example of counter-CV styling. CV Dazzle (Harvey 2011—2017).

A well-known artistic example of an adversarial approach to surveillance 
is a look-book of suggested styling tips for evading face detection, entitled 
CV2 Dazzle (Harvey 2011–2017). The strategy employed involves make-up 
and hairstyles that break up the features of the face in order to thwart fa-
cial recognition. The makeup and hairstyles presented in the project dec-
orate models’ faces with colourful, angular lines, patterns and tufts of hair 
in unexpected places. By disrupting the symbols that constitute a face for 
computer vision, these styles render the wearer’s face undetectable to fa-
cial recognition systems.

Other approaches to camouflaging the face include Harvey’s (2016) Hyper-
face, which consists of a fabric printed with a pattern that is read by CV as 
numerous faces. This allows the wearer to disguise their face by hiding it 
within a sea of other faces. Aram Bartholl and Kyle McDonald’s (2012) How 
To Avoid Facial Recognition or YOU GOTTA FIGHT FOR YOUR RIGHT TO PAAARTY 
(ANONYMOUSLY!!) suggests a simple hack. By simply tilting one’s head to the 
side, one could ward off facial recognition — at least with the level of facial 
recognition software commonly used at that time.

Zach Blas (2011–2014) has created several projects concerned with facial 
biometric data and surveillance, including Facial Weaponisation Suite. In 
the various iterations of the project, he used the aggregated facial data of 
groups of people, which were then turned into physical masks worn by par-
ticipants in performances. For example, the facial data of people who iden-
2:  Computer vision (CV)
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tified as homosexual was made into composite 3D-printed “fag face masks” 
(2012). The idea behind this approach is that by creating a representation 
mixing the biometric information of different people together, the masks 
make the wearers untraceable to biometric surveillance technology. Ster-
ling Crispin’s (2015) Data-Masks were created by reverse engineering facial 
recognition and detection algorithms to produce a 3D-printed representa-
tion of a face. The bulging surfaces of these masks resemble some of the 
masks from Blas’s Facial Weaponisation Suite and employ a similar approach 
by turning biometric facial data into 3D forms.

Hito Steyerl’s work related to this topic, How Not to be Seen — A Fucking Di-
dactic MOV File (2013), looks at the dependence of technologically mediat-
ed visibility on registration. It also proposes different approaches for not 
being seen by computers, including, for instance, becoming the size of a 
pixel (Steyerl 2013). By conflicting with the registration of a visual technol-
ogy, we may conclude, one becomes unreadable to it. The piece prominently 
features a military aerial registration mark, used to calibrate cameras in 
aeroplanes, among several other registration technologies such as green 
screens. Visibility, Steyerl asserts, is tied as much to ones overt relationship 
with systems of visibility in the sense of surveillance technologies as it is 
with one’s social visibility and status within a society. This work introduces 
registration as a necessity for the legibility of algorithmic images.

       
Fig. 58: Adversarial images produced using direct encoding. DNNs are Easily Fooled 
(Nguyen, Yosinski, and Clune 2015).
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Fig. 59: Adversarial images produced using indirect encoding. DNNs are Easily Fooled 
(Nguyen, Yosinski, and Clune 2015).

Various kinds of adversarial image examples exhibit different degrees of 
visual perturbation, referring to the human-visible impact of modifying 
images for an adversarial attack. At one end of the spectrum are images 
that modify the human-interpretable image as little as possible, such as the 
one-pixel attack (Su, Vargas and Kouichi 2017). At the other end lie imag-
es that are modified to the extent that they do not resemble anything for 
human viewers, such as the noisy images produced in the DNNs are Easily 
Fooled (Nguyen, Yosinski and Clune 2015) paper (fig. 58). It is notable that in 
the indirectly encoded images from the same paper (fig. 9), some of the im-
ages bear a strong visual resemblance to their target class, in spite of being 
generated to be visually abstract.
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3.4 Identifying Abstract Art

Though the examples in the DNNs are Easily Fooled (Nguyen, Yosinski and 
Clune 2015) paper have been gathered together by the authors for the pur-
pose of proving how easily fooled deep neural networks (DNNs) are, these 
images instead give the impression that DNNs are curiously skilled at inter-
preting abstractions of a wide class of objects. Noting the degree to which 
DNNs were able to accurately label abstracted images for a wide range of 
different image classes, I conducted explorations looking at how abstrac-
tion is addressed in image classification algorithms.

The experiment focused on the fact that non-representational images can 
be a great challenge for algorithms to classify. In order to test this idea, I 
compiled a data set of digital images of abstract paintings. This was done by 
collecting the first 100 results for ‘abstract’ in the Metropolitan Museum of 
Art’s online database, based on the museum’s own system of tagging items. 
Each of the images was then subjected to analysis using the Wolfram image 
identifier (Wolfram 2015), a successful online image classification system. 
The reason for using this particular program is that it is a tool that makes 
ML accessible to the general public.

Fig. 60: Documentation from experiment with Wolfram Image Identifier. Identifying 
Abstract Art (Lee 2018).
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The results of the experiment showed that the program was unsuccessful 
in identifying abstract paintings. A total of 98% of the abstract images were 
categorised incorrectly as a wide variety of different classes of objects. Only 
2% of the images were correctly categorised as paintings, which may be 
attributable to the fact that the images that were successfully classified in-
cluded frames. The experiment provided a few insights into the relation-
ship between abstraction and representation in algorithmic image systems 
concerning the levels of meaning and interpretation that are involved in 
viewing images, which are not the same for humans and machines. Rather 
than framing the miscategorisations that occurred as failures, as they are 
on a technological level, their ambiguities can lead to new ways of under-
standing the cooperation between human and machine visual interpreta-
tion.

Fig. 61: Documentation from experiment with Wolfram Image Identifier. Identifying 
Abstract Art (Lee 2018).

Although the abstract paintings analysed in this experiment bore little 
or no visual resemblance to the classes assigned to them by the comput-
er, each misclassification could be interpreted as adding layers of poetic 
meaning to the respective image. For example, a hazy black and white im-
age labelled as “atmospheric phenomenon”, and a composition of dabbling 
brush strokes labelled “imaginary being” take on different connotations 
when associated with those words. The label “memory device” applied to 
a painting by Piet Mondrian, too, suggests conceptual connotations that 
viewers may not necessarily connect to this image based on looking alone, 
but which nonetheless add to the experience of the work.
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Fig. 62: Documentation from experiment with Wolfram Image Identifier. Identifying 
Abstract Art (Lee 2018).

Abstract images are not designed to function as adversarial examples, but 
the results of this experiment suggest that they are nevertheless success-
ful at fooling otherwise successful classification algorithms. Achieving a 
98% misclassification rate is close to that of expressly designed adversar-
ial examples. This may be due to a tendency of classification algorithms to 
assume that there are image classes for each kind of input image. There-
fore, the results of the experiment suggest that adversarial images may owe 
their success not to being specially designed to trick algorithms, but rather 
to being abstractions for which there is no image class in a system that in-
sists that all images belong in a category.

The ability of an ML system to pick up a semantic cue, like the picture 
frames in Identifying Abstract Art (Lee 2018), demonstrates an interesting 
capacity to associate patterns with meanings. This is much the same as any 
use of language, but if we move beyond the anthropomorphising tenden-
cies that often prevent deeper discourse on this subject, this is an inter-
esting development related to conceptual art. Pattern, and not just in the 
visual sense but also in the sense of frequency or other associations, may be 
associated with virtually any system of types or categories. Therefore, the 
detection of the pattern that “picture frames — whatever they are surround-
ing — mean painting”, while straightforward, offers an interesting insight 
into the structures that may be overlooked as externalities, but that greatly 
influence a given interpretive system.
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Recalling the epigraph by Vilém Flusser (1983) from the beginning of this 
chapter (p. 74), the examples covered here share an emphasis on how tech-
nical processes colour our view of images. The common belief in the auton-
omy of visual processing tasks which are performed by machines offers a 
better understanding of lingering ideas which inform discourses on cur-
rent ML applications. While it is generally understood that machines, ML 
and AI are created by humans, there is nonetheless a recurring desire to 
think of them as separate from human intervention. This is responsible at 
times for attempts at measuring the legitimacy of artistic works by the de-
gree to which they have been mediated through technoscientific processes.

Technically produced images are no less subject to error and manipulation 
than those that are produced manually, but the association with technical 
and scientific processes is often used to legitimise visual media. The im-
plementation of technical processes in the production of images does not 
necessarily lend them an inherent truth value. Instead of a reflection of a 
neutral view of the world from the perspective of a machine, technically 
produced images should rather be viewed as representations of the inter-
pretive and mediating processes applied to certain source material. The 
next chapter examines this phenomenon from the angle of the technologi-
cal mediation of perception and the production of images.



4. Images, Machines and the Limits of Perception

But the human eye perhaps finds itself in a moment of 
misapprehension. The machine constructs the image and we 
construct another image out of what we think we are seeing. 
(Pohflepp 2017)

Algorithmic forms of media often entail the influence of processes that may 
or may not be visible to humans, while enabling visual processing tasks to 
be performed by machines, making it possible for there to be a substantial 
divide between the computational and visual attributes of an image. Vari-
ous theories covered thus far in this thesis have addressed aspects of this, 
including the algorithmic and procedural qualities of the softimage (Hoelzl 
and Marie 2015), contrasting between optical and non-optical media (Kit-
tler 1999, 225), the interfacing that occurs between an image’s surface and 
its subface (Nake 2008) and nonhuman photography (Zylinska 2017). 

As we understand from the previous chapter, the emphasis placed on algo-
rithmic procedures and on automation in theories on current visual media 
often problematise the role of machines in relation to that of humans. The 
complex interplay between visual and non-visual processes, and between 
human and machine expressions of agency, is commonly understood either 
through cybernetic metaphors or by way of dichotomies that oversimplify 
what is at stake therein. Cybernetic comparisons facilitate an understand-
ing of the similarities and differences between diverse systems, but they 
may also contribute to misunderstandings. Attempts at distinguishing the 
role of human from machine forms of agency have often led to thinking of 
these in terms of binary oppositions that do not capture the levels of nuance 
therein. Through the lens of Harun Farocki’s (2004) “operative image” (17)  
and Jakob von Üexküll’s (1934) Umwelt, we examine how machines mediate 
visual perception and agency.

4.1 Operative Image

Harun Farocki’s (2004) operative image has been a highly influential the-
ory in redefining what images are, how they behave and how they relate 
to human perception and ability. Operative — or operational — images are 
“images that do not represent an object, but rather are part of an operation” 
(Farocki 2004, 17). This conception of the image as processual in nature, 
and “not primarily visual” (Farocki), facilitates a ground-breaking reimag-
ination of the image in relation to machine vision (MV).



974. Images, Machines and the Limits of Perception: 4.1 Operative Image

Farocki’s trio of video installations, Eye/Machine I—III (2001–2003) demon-
strates what is meant by the term “operative images”. Scenes feature a 
robot performing tasks autonomously, cutting between shots of the robot 
moving around in a room and shots taken from the robot’s point of view, 
highlighting written numbers in various colours, as if to indicate the robot 
is “reading” those as salient features. Other video clips show what appears 
to be a navigational assistance system overlaid with markings indicating 
what appears to be the system’s assessment of features in its environment. 
Colourful, crudely drawn, pixelated marks on the video designate the edges 
of a road and various obstructions in the path of a vehicle, as interpreted by 
MV. Footage taken by drones navigating autonomously in search of targets 
is alternated with those of a human operator tasked with watching the foot-
age and overseeing remote missile strikes. 

The automatic performance of visual processing tasks by computers, ro-
bots and drones in Eye / Machine I—III (Farocki 2001–2003) highlights the 
contrast between human and machine vision, and it underscores the es-
trangement of the mediated point of view from its typical positioning in 
place of the human eye into the performance of visual — or rather, spatial 
— operations. In these clips, one sees that the machine is at times more an 
interpreter of visual information than a producer of images. The machines 
in these videos are unconcerned with their visual output and its eventual 
viewing by humans, indifferently following the procedures they are pro-
grammed to execute.

In his well-known text, Phantom Images (2004), Farocki reflects upon the 
video works of Eye / Machine I-III (2001–2003) and examines how autono-
mous systems for visual interpretation act as analogues for human vision. 
Drawing inspiration from “phantom shots” in cinema, “film recordings 
taken from a position that a human cannot normally occupy” (13), Farocki 
(2004) examines how technical capacities have enabled cameras to visual-
ise phenomena in a way that had previously been impossible. Citing situa-
tions such as attaching cameras to bombs dropped out of warplanes, on the 
underside of trains or simulating the flight of bullet through the air, Faro-
cki describes the capacity of visual technology to offer the point of view a 
degree of autonomy from biological vision, often tinged with the threat of 
death.

Lev Manovich (2001) recounts a related example of the physical distancing 
of photography from the standard human point of view, in which the at-
tachment of a photographic plate to a hot air balloon enabled the invention 
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of aerial photography1 (98). The technology was quickly co-opted for mili-
tary surveillance, a connection paralleled in Farocki’s overt focus on how in 
the context of the Gulf War, technologies such as unmanned drones, robots 
and remotely monitored machine vision systems brought the automation of 
visual processes to unprecedented levels. Virilio (1994) refers to the auto-
mation of perception through cameras controlled by computers in terms of 
a “sightless vision” and ultimately a “splitting of viewpoint, the sharing of 
perception of the environment between the animate (the living subject) and 
the inanimate (the object, the seeing machine).” (59)

In such cases, the camera takes the human point of view to situations where 
it is otherwise unable to go, adding alternative perspectives to what may be 
seen and how. It is not only the physical distancing of the point of view from 
that of the human position but also the difference in modality that occurs 
as a result, which is central to Farocki’s reformulation of the image. The 
operative image emphasises that in the autonomous processing of visual 
information by machines, the visual may be subjugated to the performance 
of spatial operations. Treating the production of operative images as inde-
pendent of human vision, the “image”, as such, may be played out in the spa-
tial navigation of a robot in a room, without a human-visible output. Such 
an exercise involves ML in the interpretation of visual information, which 
enables the operation — that is, the operative image — to be performed.

The plane of human vision is thus exchanged for the performance of spa-
tial tasks such as navigation or object detection and the operative aspect of 
images takes on more than one meaning. The operative image may result 
from the performance of operations, or it may be defined by its capacity to 
operate upon the world, as in the sense of “operative language” described 
by Roland Barthes (1957, 146), from which Farocki drew the term “operative 
image”(17). Explicitly examining sensory automation, Barthes points out 
how visual technologies function as part of the war apparatus, embodying a 
political agenda with his idea of the “image-at-one’s-disposal”,2 (146) which 
also contributed to Farocki’s coining of the term operative image.

In a passage invoked by Farocki (2004) to describe the programmatic use 
of images, Barthes (1957) describes the potential for images and words to 
function in an instrumental capacity:

“I ‘speak the tree’, I do not speak about it. This means that my 
language is operative, transitively linked to its object; between the 

1:  Invented by Félix Tournachon Nadar in 1858.
2:  This concept was an initial inspiration behind Farocki’s operative image.
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tree and myself, there is nothing but my labour, that is to say, an 
action.” (146)

Rather than representing something other than itself, we recall that the op-
erative image is connected to the real through the enactment of a spatial 
procedure. Through this connection to Barthes, another dimension is add-
ed, in which we see that images are also implemented to act in a particular, 
communicative, way. As we understand from Vilém Flusser (1983, 26), de-
scribes technical images as performing a program in the form of an image, 
which is orchestrated by technical apparatus. The operator of the machine 
thus participates in a program performed by the camera to produce an im-
age, which in turn acts upon the world or its audience.

The human operators overseeing the performance of drones, which are 
shown in Eye / Machine I-III (Farocki 2001–2003), take on a passive role, 
mostly watching but also having the possibility to push a button to fire a 
missile. This cooperation between human and machine incorporates hu-
man vision only to the extent that it is necessary to perform the tasks at 
hand. The video clips comprising the artwork are taken from one context 
and placed in an art context in order to make certain aspects visible. In this 
sense, images are not only programmed but also program their viewers, as 
they are explicitly designed to be received in a particular manner.

For Farocki, the autonomy of machines gives rise to operative images, 
which do not need to be visualised, and that are orchestrated as manoeu-
vres, or spatial operations. This is a radical form of autonomy, of the ma-
chine from the agency of humans, but also of the image from human visual 
perception. Farocki’s operative image thereby subjugates the image to the 
performance of technology. The image, for Farocki, is merely the side-effect 
of the operation, not the overt end goal of the operation. Kittler describes 
this as a paradigm shift from optical media (1999) to the prioritisation of 
computation (225). As we recall, optical media such as photography embed 
optical relations in the surface of the image. In contrast, what is visualised 
in non-optical media is the product of computational processes.

There is a degree of ambiguity between these designations, as, for exam-
ple, in the use of optical techniques described previously. Such methods 
employ both optical and non-optical processes, often using mathematics to 
systematically simulate optical effects. This is also the case in digital imag-
es, which may be based in computation, but nonetheless adhere to the con-
straints of human optical perception. A digital photograph is a reflection of 
optical relations that have been captured by a digital camera. The image 



1004. Images, Machines and the Limits of Perception: 4.1 Operative Image

itself, in digital format, may not be inherently subject to the constraints of 
optical principles, yet it is nonetheless the product of finely tuned optical 
technology. 

While images produced using ML may not necessarily engage optics in a 
direct sense, they still bear its influence indirectly, even if only in its output. 
This is apparent in the compatibility between some ML-produced images 
and human vision, for example, which do not appear to us as photographic 
images by accident, but because they have been designed to be that way. 
As a result of embedded optical relationships in the surface of the image, 
the optical nature of an image persists beyond the algorithmic turn toward 
non-optical media because optics is a assumed as a prerequisite, whether 
or not it is directly implemented.

“Computer images are more than visualisations of a computation, and they 
are more than computations of an image.” says Frieder Nake (2008, 105). 
He refers to the processes that lie, metaphorically speaking, “behind” the 
visible surface of an image as its subface. The visible surface of an image 
displayed on a screen, for instance, involves computational processes that 
are interpreted into an intelligible visual form. The image does not exist 
merely as a surface, coupled together with its subface, but also includes the 
mediation or interfacing that occurs between these parts — or rather, states 
— of the image.

It may also be argued that such a dichotomy exists between the surface and 
the subface of all images in which the process for producing an image is not 
considered identical to or reducible to its visible attributes. Regardless of 
the mode of production employed, even very simple, analogue techniques 
such as drawing involve processes that are not included as a visible element 
of the image. The pencil or ink brush drawn across paper by a human hand 
could be viewed as the subface of a drawing, in spite of the fact that it occurs 
physically in front of its surface.

The operative image can be seen as a departure from such dichotomies be-
tween visual and non-visual, or optical and non-optical, media, in which 
the image is the operation, not its product. In the context of ML-produced 
images, this can also be understood to be the case in adversarial images, 
which are demonstratively technical. That is to say that, while ML-generat-
ed images may or may not bear visual evidence of their production process, 
they frequently rely on a degree of technical literacy in order to grasp their 
meaning.



1014. Images, Machines and the Limits of Perception: 4.2 Umwelt

Therefore, regardless of whether or not the production process of an image 
is perceptually accessible to viewers, the role played by technical appara-
tus and processes in image-making contributes significantly to the way in 
which they are framed, from a cultural and theoretical standpoint. This is 
especially noticeable in the commonplace differentiation between images 
that may be similar in appearance but entail radically different technical 
processes in their execution. As such, we understand the algorithmic qual-
ities of images to be tied to the execution of spatial — and not necessarily 
visual — operations.

4.2 Umwelt

But in fact, map and territory, world and database, engender 
each other in what we would call, drawing on Jacques Lacan, a 
speculative feedback loop. …

If the world exists, that is, if the world exists in our experience, it is 
not as a datum, but as a heterogeneous ensemble of both physical 
and digital data. (Hoelzl and Marie 2015, 98)

There is a paradoxical interconnection and at times incompatibility be-
tween human biological vision and imaging processes performed by ma-
chines. Though attempts at distinguishing between the visual and non-
visual attributes of images, and between human and nonhuman authorship, 
these are nevertheless a recurring theme in discourses surrounding the 
technical nature of images. Understanding images instead in terms of the 
mediating role played by visual technology offers a vital perspective on the 
dynamic qualities of images.

Technology has the capacity not only to act as an extension of human ability 
and perceptual experience, as examined by Maurice Merleau-Ponty (1945) 
and Martin McLuhan (1964), but also to impact the way those are interpret-
ed. Postphenomenology holds that technology plays a hermeneutic (Ihde 
2009, 43) role in augmenting but also altering that experience. Far from 
faithfully representing reality in an impartial manner, as has been suggest-
ed regarding photographic and other forms of technical media, producing 
images intercedes in the mediation of experience. Technological imple-
ments may thereby extend our abilities to see in ways we have not seen be-
fore, but the act of translation between forms causes a qualitative altering 
of the perceptual phenomena involved.
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The technological mediation of human perception thereby results in a feed-
back loop between how humans perceive the world and the visual media 
we in turn produce. In this sense, the image is less a reflection of an art-
ist’s representation of the world as the artist’s perception of the world as 
mediated through scientific instruments. In so doing, the viewer’s gaze 
is positioned in the perspective of the author, machine, and processes in-
volved. To think about this in terms of image-making, the modulation of the 
perceivable through technology, as described by Merleau-Ponty (1945) and 
McLuhan (1964), may tangibly affect the images that are in turn produced. 
For example, devices that enable us to see in new ways, or to produce new 
visual effects, also alter the role played by the resulting visual media. In 
the same way that visual technologies play a hermeneutic role in mediating 
perception (Ihde 1990), images, too, may take on a mediating capacity be-
tween viewers and objects in the world. 

Our ability to build technologies that then in turn mediate relations with the 
world (Heidegger 1977) is understood as positional and limited by our place 
as subjects in that relation. According to María Antonia González Valerio 
(2018), such technological mediation of reality not only shapes our ability to 
interact with the world but actually plays a deeper role in our construction 
and understanding of reality. This means that not only may we build tools, 
which in turn allow us to shape the world around us, but this also has a re-
verberating effect on our relation to the world we construct.

Verbeek (2005) asserts that agency is not exclusive to the human, and that 
“mediation always involves several actants that jointly perform an action” 
(156). According to this perspective, a tool may assert its own level of inten-
tionality on the process in which it is used. Such instances of cyborg, hybrid 
or compound intentionality, to use Verbeek’s (2008) terms, address various 
kinds of interrelation between human and machine intentionality as a mat-
ter of degrees. Though Verbeek’s classifications open up several different 
ways for shared intentionality to occur, they attempt to split hairs in such a 
way that these terms are rendered rather clumsy to put into practice. Nev-
ertheless, they offer alternatives to sharp distinctions between human and 
machine forms of vision and image-making, instead considering these as 
intermingled, even indissociable.

This is not to say that human vision and machine vision (MV) are com-
pletely compatible. As we understand from the examples in the previous 
chapter, adversarial approaches have the capacity to highlight instances in 
which human and machine visual processing are misaligned. The use of 
such methods in artistic practice is revealing of longstanding tendencies to 
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draw comparisons between human and machine forms of vision, as well as 
between the image production processes employed. At the same time that 
such cases make apparent the differences between the various perceptual 
systems employed, they also underscore the difficulty in making hard and 
fast distinctions between human or machine vision or ability.

Fig. 63: Illustration Based on Early Scheme for a Circular Feedback Circle (von 
Üexküll 1920).

The concept of Umwelt (von Üexküll 1934) from sensory ecology offers in-
sight into the mediating role played by machine learning (ML), and its en-
tanglement between visual and non-visual, human and nonhuman. The 
term Umwelt refers to an organism’s sensory perception and its contingent 
ability to react to its surroundings. That is to say that an organism’s abil-
ity to perceive directly conditions its engagement with its environment. 
Though it specifically addresses biological organisms, the notion of Umwelt 
also gives us a particular gateway to understanding nonhuman processes 
of sensory perception. It also enables an understanding of how one’s expe-
riential environment may be mediated through the use of technology.

Von Uexküll pioneered thinking about the sensory abilities and agency of 
nonhumans, such as the sensory world of the humble tick (1934). The rel-
atively limited sensory abilities of the tick make it a useful subject for the 
study of sensory perception. Within von Uexküll’s framework, the perceiv-
able world of an organism is bound in a circular relation between its organs 
of perception and its ability to act upon the sensory information it takes in. 
As such, the Umwelt has a two-fold nature, defined by an organism’s per-
ceptual apparatus and by its situation as an agent within its environment. 
For example, in the absence of its perceptual signifiers, the tick ceases to 
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exhibit behaviour linked to respective stimulus. Demarcating the limits of 
the tick’s perceptual apparatus in such a way enables the establishment of 
a clear link between sense and agency.

Older reCAPTCHA (von Ahn et al. 2008) images composed of distorted text, 
for example, reveal an intimate knowledge of the differences between hu-
man and computer vision, which has been implemented in order to make 
images that are human-readable but difficult to read for computers. In this 
sense, the image is framed as a computational problem to be solved, more 
so than a visual representation of the world. This is the case, for example, 
in reCAPTCHA images, which, intended as a Turing test, pit human ability 
against that of “current computers” (von Ahn et al. 2008). With this phras-
ing, the creators of reCAPTCHA emphasise the fact that computer ability is 
continually changing. This contributes to a need for the continual adapta-
tion of systems like reCAPTCHA against an onslaught of attempts to beat 
them.

While it accounts for the variability of the ability of machines to perform 
various tasks, the one-size-fits-all approach of reCAPTCHA is also under-
mined by the fact that human ability is also highly variable. At the point at 
which a computer outstrips human ability at interpreting images, the sys-
tem of measurement no longer functions, because the inability to perform 
the task is the sole criteria of distinguishing human from machine. For this 
reason, reCAPTCHA has largely gone invisible, analysing other data in the 
background instead of requiring users to assert their humanity.

One of Them is a Human by Maija Tammi (2017) is a good example of the un-
canniness of attempting to distinguish the human from the nonhuman and 
the real from the hyperreal. In the exhibition, the artist exhibits one por-
trait of a human sitter among several portraits of hyperrealistic androids, 
challenging viewers to identify which is which. In so doing, the work also 
points out the level of difficulty that exists in differentiating between hu-
man qualities and those ascribed to robots or to inanimate objects.

Traditions of labelling image-production technologies as entailing more or 
less visual properties or more or less human intervention distract from the 
fact that images involve both visual and non-visual properties as well as be-
ing the product of technologically mediated action on the part of humans. 
Not only does this falsely assert that the distinctions between such catego-
ries are more distinct than they are in reality, but it fails to grasp the impor-
tance of why such a lack of distinction exists. The technological mediation 
of perception that occurs in ML images concerns not only the perceptual 
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itself but also the position of technological apparatus within that mediation. 
Technological mediation of the image causes a rift between the processes 
that are visible on its surface and those that are not. That said, in many of 
the examples covered here, the role played by ML is interpretive, determin-
ing actions based on analysis of visual data.

Machines may perform visual tasks in a semi-autonomous capacity, yet 
they are inseparable from the influence of human perception and agen-
cy. The interplay between human and machine forms of visual processes 
places emphasis on the mediation of biological perception, as well as draw-
ing attention to the fact that such mediation qualitatively alters experience 
in the process. Metaphorical comparisons between human and machine 
forms of vision have led to the tendency to consider visual technologies as 
extensions of or even stand-ins for the eye. Yet in spite of the fact that ma-
chines may expand the realm of human perceptual ability and experience, 
there remains a noticeable gulf between our ways of seeing (Berger 1973) 
and ways of machine seeing (Cox 2016). Machine forms of vision may take 
the eye to new places, but they also impose their own — machinic — logic 
onto the process. 

Relations between human visual perception and the visual technologies 
used to augment it hold particular fascination for theorists and artists alike. 
There are many examples of ML projects explicitly claiming, whether com-
ically or seriously, to teach machines to see. Amy Alexander’s What the Ro-
bot Saw (2019) has an artificial intelligence (AI) create captions for YouTube 
clips as they play. To a human viewer, this entails either a poetic redundan-
cy by captioning the obvious or by comically erring in ways that reveal it is 
a computer — not a human — performing the task of applying these labels. 
Memo Akten’s (2017) Learning to See has a deep neural network (DNN) make 
associations between analysed video and visual information it has encoun-
tered previously.

Trevor Paglen’s (2017) exhibition A Study of Invisible Images presents works 
that peek into the processes at work in ML systems. In his related essay, 
Invisible Images (Your Images are Looking at You) (2016), Paglen argues that the 
human eye is being rendered obsolete by the machine vision systems, which 
are displacing it. Invisible images, similar to the operative image of Farocki, 
are made by and for machines (Paglen 2014), with no necessity to be intel-
ligible to a human audience. For example, the installation Machine-Readi-
ble Hito (Paglen 2017) features hundreds of images of the artist Hito Steyerl 
contorting her face into various expressions, along with readouts of how 
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each grimace or smile was then classified by a computer according to four 
categories of emotions: neutral, surprise, sadness, and fear.

Works in this vein often impose a teacher-pupil power dynamic recalling 
the “I forced a bot to watch 1000 hours” meme, in which internet users post 
texts purporting to be written by AIs. The comedy lies in a human panto-
mime of computers performing — or failing to perform — behaviour consid-
ered to be human-specific, or in the case of Machine-Readable Hito (Paglen 
2017), quantifying qualities, such as emotions, which humans take to be 
unquantifiable. Such works reveal a similar drive to defend the territory of 
the human from encroachment by machines.

Fig. 64: Installation view of UUmwelt. (Huyghe 2018).

Referencing the theory of Umwelt in its title, Pierre Huyghe’s (2018) UUm-
welt focuses on the idea of conveying mental images through a complex pro-
cess of mediation, in which ML assists in the interpretation of a person’s 
neural activity into a visualisation. Presented on large-scale LED-screens 
within dimly-lit gallery space, the images in the work flicker and morph 
between unplaceable forms, without ever becoming overtly recognisable as 
anything in particular. To produce each image in the work, the artist began 
by communicating the idea of a particular object to an individual through 
speech alone. Next, the subject was asked to think of their respective ob-
ject, functional magnetic resonance imaging (fMRI) was used to record 
their brain activity. The fMRI data was then interpreted by a generative ad-
versarial network (GAN), producing several iterations (see pp. 42–43). The 
resulting images are animated on video screens, using sensors to modify 
their appearance based on the presence or absence of viewers in the exhi-
bition space.
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Fig. 65: Detail of UUmwelt. (Huyghe 2018).

Several elements suggestive of nonhuman perception and agency are in-
cluded in the installation. It includes a technical system of sensors, which 
make the work reactive to the atmospheric conditions of rooms, and a pop-
ulation of black flies, which lives in the gallery space throughout the dura-
tion of the exhibition. The presence of the insects, often clustered together 
on the surface of an illuminated screen or other light-source, lends the work 
an eerie feeling, a feeling that one may never truly be alone in the space.

An interesting takeaway from this piece is that the process of transcoding 
an image from one medium to another is not one-to-one, entailing a form 
of translation. This is perhaps most notable in the processing that occurs 
in translating fMRI data into GANs. There is firstly a significant amount of 
interpretation in preprocessing the signal into a form that can then be used 
to generate images using a GAN. 

In the way that it ties together conceptualism with the visualisation of cog-
nitive activity, the work is suggestive of the idea of cognitive transfer from 
one person to another through various forms of mediation. The phrase 
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“mental image” is used frequently during the discussion and also in sup-
porting materials related to the exhibition, referring to the representations 
that appear on the screens of the exhibition. Additionally, the use of neu-
ral networks is suggested as being connected to the human imagination. 
The fact that the images in this work have been graced by AI is fetishised, 
overtly relying on the concept of AI to imbue what are, on their own, fairly 
uninteresting images with greater importance.

Huyghe’s commentary on the work asserts that such forms of mediation 
may endow humans with new modes of connecting with the nonhuman. 
The artist asserts that his work is not for “us”, alluding to a similar relation 
between human and nonhuman. He regards his work not in terms of expos-
ing something to an audience, as art is traditionally thought of, but rather as 
an act of facilitating an exposure of the audience to “something” (Serpen-
tine Galleries 2018). This not only raises issues regarding the cybernetic 
systems this view relies upon, it also touches on notions of intelligence in 
regards to the human and the nonhuman.

The artist has described the work as communicating an idea between hu-
man and nonhuman through thinking: 

It is an instant of collective production of imagination between two 
types of intelligences, human and artificial. Human imagination 
has been externalised without the subject predetermining the 
outcome, bypassing all modes of expression such as language or 
the senses, and is visualised using a brain-computer interface. 
(Serpentine Galleries 2019)

To think of this work in terms of the Umwelt concept, we must first enquire 
as to the subject in this case: the Umwelt of whom — or of what — are we 
considering? Could this refer to the droves of human visitors who visit the 
space on a daily basis? Should we focus on the nonhuman elements of the 
exhibition: the flies, sensors, or screens? Or is this representative of the 
Umwelt of those involved in the creation of the work?

Regarding the nonhuman dimension of UUmwelt, Huyghe explicitly makes 
the case that human audiences are not his primary concern, touching on 
the autonomy of image-making systems — and their products — from hu-
mans. He makes the following comment during his interview with Hans-Ul-
rich Obrist: “The work does not need the public. It’s not made for us. It’s not 
addressed to us. It doesn’t need the gaze to exist. It can live its life as a work 
without that need.” (Huyghe 2018)
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Fig. 66: Installation view of UUmwelt, detail of screen with flies. (Huyghe 2018).

Considering machines as interpreters and producers of visual information, 
such as in instances that could be considered operative images, frequently 
brings up differences between the visual processing of humans and that of 
machines. One of the defining aspects of the concept of Umwelt is that the 
perceptual worlds of different beings do not necessarily coincide with one 
another. There may be situations of overlap between different perceptual 
systems, while they may also be, as Agamben puts it, “absolutely uncom-
municating” (2004, 42).

But if all beings are locked in their own perceptual worlds, how may one 
ever become aware of the perceptual world of others? Trying to engage the 
Umwelt of an AI, if this is what Huyghe is trying to achieve, is a trouble-
some idea in the sense that it is looking toward an intelligence that is itself 
defined by the human. Machines now participate in the interpretation and 
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creation of visual information to such an extent that the technological me-
diation of perceptual experience is often an integral part of the human Um-
welt (Lee 2018). This may even be the case to such an extent that it comes to 
be seen as naturalised. 

To disentangle a work of art from the human gaze requires overlooking 
many of the legitimating structures of art. The first of these is that by virtue 
of labelling something “art”, or an image for that matter, one is placing it 
in a particular relation to the world and calling for it to be viewed — meta-
phorically or literally. The artist’s explicit statement that the work does not 
need the audience to exist brings up a number of questions regarding the 
status of machines and the art object. UUmwelt (2018) was created by one of 
the world’s most acclaimed artists Pierre Huyghe, presented in the Serpen-
tine Gallery, and discussed with the internationally famous curator of that 
space, Hans Ulrich Obrist, in front of an audience of hundreds of visitors. If 
an artwork were ever to be indifferent to its audience, it would be difficult 
for it to do so in such a high-profile context constructed around visibility.

Yet, if we are to treat this idea with the seriousness it deserves, the tech-
nological side of the piece is also in need of scrutiny. At every stage of the 
process, the technology employed has been tailored to fit human percep-
tual, communicative and representational norms: language, fMRI, GAN, 
and photographic digital media on screen. Visual media have been tailored 
precisely to the human perceptual framework that even nonhuman pho-
tography (Zylinska 2017) is anthropocentric to the extent that the very hu-
man parameters of visual technologies are so embedded as to efface them-
selves. The fact that it can be overlooked that digital video may be framed 
as anything other than human attests to this, raising the question of wheth-
er there are anything other than human-centric modes of communication 
and mediation. 

The feedback loop between technological mediation of experience is mir-
rored by the presence of various sensors throughout the exhibition space, 
which affect the display of the images based on the presence of viewers. 
These appear to contradict the idea of the work as apathetic to viewership 
and instead support a conception of the machine as indifferent to the ac-
tions of humans but nonetheless influenced by human activity. At the same 
time, this does indeed add to the feeling of the artwork as an ecosystem, a 
complex system of reacting elements that in a sense may take on a life of 
their own.
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You set conditions, but you cannot define the outcome, how a given 
entity will interact with another... there is a set of elements, the way 
they collide, confront and respond to each other is unpredictable... I 
don’t want to exhibit something to someone, but rather the reverse: 
to exhibit someone to something. (Huyghe 2018)

The Umwelt is constructed as a contingent connection between senso-
ry perception and the capacity of an agent to act upon that input. This is 
illustrative of the role played by technology in acting as an intermediary 
between human sensory perception within the technological production of 
images. For our purposes, this refers to what can then be understood as a 
contingent relationship between human vision and the interrelated expres-
sions of agency and perceptual mediation exerted by human and machine 
within a perceptual encounter.

The human Umwelt is often mediated by technology, extending the abilities 
and sensory capacities through the use of technical apparatus. We recall 
that technical mediation of perception tends to augment sensory percep-
tion while also altering it in the process (Ihde 1990). That is to say that, while 
a perceptual technology may improve or amplify a sensory experience, 
it does so while imposing a particular interpretation of that experience 
through the technology implemented.

The projects and ideas discussed in this and the previous chapter demon-
strate various perspectives on the ways in which images produced using 
ML relate to, simulate or interact with human vision and agency. Rather 
than considering them in a one-to-one fashion, as direct stand-ins for bio-
logical vision or authorship in image-making, we understand from this ex-
ploration that there is a much more complex entanglement between visual 
technologies and sight.

Framing ML-produced images as primarily the work of machines typically 
overestimates the role of computers, with one of several goals in mind. One 
of these is to propose such images as the product of machine intelligence, 
in which case they may be seen as inherently more or less valuable, based 
on whether such a system of appraisal views computers as capable of ge-
nius and authority. Technologies are often given either too much or too lit-
tle credit for their performance, framing them as more powerful or more 
autonomous than they truly are. This is the case in both techno-positive 
and techno-pessimistic views, which interchangeably view technologies as 
overly capable or under-capable of the tasks they propose to perform.
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In this sense, notions of image production, including those proposed by 
artists working with ML, reveal an enduring cultural preoccupation with 
the role of technology in art. This, much like theories of the image itself, 
remains unreconciled, without consensus concerning what it means for 
machines to produce — or to interpret or analyse — images. The technical 
dimensions of visual art remain tied to two competing notions: that of tech-
nique as in method and the of technique as in skill or virtuosity. Technolog-
ical image-making may situationally be a means to an end, or it may mean-
ingfully contribute to the work’s interpretation. But determining which is 
the case in a given visual artefact is also highly contextual. For example, 
using analogue photography today has different meanings than it did 10, 50 
or 100 years ago. In similar fashion, the use of ML and AI in art has different 
significance now than it did when Cohen first began working with AARON 
(1973–2016) (p. 79–80). 

Far from acting as a one-to-one stand-in for human vision, the computa-
tional nature of MV at times proves fairly brittle. A given ML system may be 
extremely good at performing, image classification, for example, but may 
be prone to error due to a variety of engrained design problems such as 
engrained human bias. Working with data, as we understand from the pre-
vious two chapters, entails a great deal of decisions, which ultimately affect 
the outcome of algorithmic processes. For this reason, we now look at how 
the analysis of data can be used in various different ways.



5. Data and Representation

In similar fashion to the operative image (p. 96), which encourages thinking 
about images not in terms of what they look like but in terms of what they do, 
many artists have considered the complex processes and histories behind 
the visible surface of an image. While analysis of images employing ma-
chine learning (ML) may become highly developed, there are aspects of im-
ages that are contextual, external to the image itself. In the same way that 
images involving optical tricks may be seen in more than one way, images 
in general tend to have multiple avenues for interpretation. The use of ML 
as a way of producing simulations making sense of data has been employed 
by a number of artists, ranging from approving to critical and even comical. 
It also touches on the fact that data may be interpreted in many ways and is 
therefore less reliable than it may appear on face value. With this in mind, 
we approach the mediating role played by ML in the generation of images 
and its influence on the resulting interpretation of those artefacts.

5.1 Deconstructing Representation

Fig. 67: Deconstructing Representation (Lee 2019b).

Addressing the visual mediation of data, Deconstructing Representation (Lee 
2019b) employs ML as an explorative approach to interpret and to visual-
ise patterns within a dataset of images. The goal of the project was to see 
what happens when a dataset of images is subjected to interpretation by a 
DCGAN. For this purpose, I adapted a Pytorch DCGAN tutorial (Inkawhich 
2017) and trained it on a dataset of my own visual source material, which 
was compiled by downloading all images saved to my Instagram account. 
The resulting images were then composed into a larger image with the ear-
lier outputs on the left and later outputs on the right. This allows all outputs 
to be viewed at once and allows the viewer to follow the training process of 
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the DCGAN from its early stages, at the left side of the print, to the end of the 
process, at the right.

Fig. 68: Detail of Deconstructing Representation (Lee 2019b).

Fig.  69: Installation view of Deconstructing Representation (Lee 2019b).

The work shows the gradual build-up and breakdown of computational 
representations and visual affinities. What one sees when looking at this 
work is a progression from visual noise, produced at the early stages of the 
training process, which gradually becomes more distinct and reminiscent 
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of real-world objects before finally dissolving into over-saturated, over-
ly-contrasted, indistinguishable images. The algorithm determines what 
will be visualised and what will not, interpreting patterns within a dataset 
into new images.

The project acts as a reflection on ways of making sense of unstructured 
data using ML. Rather than using a structured dataset in order to train a 
model to learn representations from similar images, the use of a highly 
unstructured dataset seeks to force the analysis of indirect patterns. This 
means that instead of training a model to create successful representations 
of different kinds of images of a particular class, it is hoped that by em-
ploying diverse images it will enable unexpected affinities to be found or 
developed between aspects of the original dataset. Automating processes of 
interpretation of data also seeks to build a cooperative interpretive process 
that functions in balance between my own artistic and aesthetic sensibili-
ties and the processes performed by the computer.
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Fig. 70: Detail of Deconstructing Representation (Lee 2019b).

What ML contributes to the process is the performance of a computational 
interpretation and creation of images based on an initial dataset. This has 
to do with using the generative model as a tool to derive less human-direct-
ed insights from an initial set of images. In a similar sense to the aleatory 
practices employed by artists and poets over the course of the 20th century, 
this kind of approach seeks to use technology in such a way as to mediate 
perception but is less specifically concerned with the individual outcome. 
This experimental exercise is mostly concerned with revealing aspects 
of how the model functions through the way it performs the task at hand. 
Thus, the output images may have their own inherent aesthetic qualities, 
but they are also deeply linked to the process of their production and to the 
interpretation of a dataset into attempts at reproducing it.
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5.2 The Illusive Quality of Images

The lack of fixed interpretations of images also comes into play in the diffi-
culties that have arisen in attempts to police the circulation of particularly 
troublesome kinds of images in digital milieux. Many companies, includ-
ing Facebook and Twitter, have faced increasing scrutiny for their failure to 
detect and to restrict the posting of manipulative content, as well as their 
refusal to restrict hate speech on their respective platforms.

Contributing to this challenge is the fact that a given symbol, or a given 
word, may take on radically different meanings, depending on context. 
What’s more, these meanings are themselves highly mercurial and may 
change rapidly and unpredictably. For example, the Pepe the Frog (2005) 
character, originally drawn by Matt Furie as an apolitical comic, was ap-
propriated first by far-right hate groups in the US, and then, naïvely, as a 
cute mascot for protests in Hong Kong in 2019. These radically different 
meanings that became associated with the same image of a green cartoon 
frog demonstrate how symbolic meaning has to do with other factors than 
visual appearance. Attempting to detect and prevent the circulation of hate 
speech by censoring images including green frogs would be very difficult 
to do without stifling the posts of political protestors using the same symbol 
for a different reason.

Similar issues come up in the #Freethenipple (Esco 2012) campaign, in re-
sponse to censorship of female nipples on social media platforms. While the 
intention of that censorship was to prevent the circulation of pornograph-
ic images of women, the result has been received as an oppressive move 
against women’s bodies and expression. Numerous workarounds have 
been developed for this problem, including photoshopping male nipples 
onto the female nipples in an image, to prevent detection and to allow the 
posting of images that contain female nipples.

These issues are especially critical given the current media landscape, of-
ten labelled as “post-truth”, within which it is commonplace to sling allega-
tions of “fake news” regardless of truth-value. In practice, misleading im-
ages may still have a potent effect in the world, in spite of being fabrications. 
Measures such as watermarks or verification by websites, education about 
the potential for spreading false information on social media and unscru-
pulous news outlets may be helpful, but determining the authenticity of an 
ML-generated artefact remains an issue. Given the lack of materiality of da-
ta-based images, forensic analysis of such artefacts often comes down to 
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scrutinising data and metadata, and not necessarily on the visual dimen-
sion of media artefacts.

Fig. 71—72: Detail photographs showing the two opposite ends of the exhibition hall in 
The City of Broken Windows (Steyerl 2019b). Photographs (Lee 2019).

The potential for differing interpretations of visual content also speaks to 
the ambiguity inherent to representation. Not only is there a variety of dif-
ferent schools of thought as to what representation is, there are also many 
ways of enacting them. Steyerl’s The City of Broken Windows (2019b) depicts 
two opposing regimes of representation — that of perfect verisimilitude and 
that of symbolism — through a tale of two cities: the city of broken windows 
and the city of unbroken windows. In the city of broken windows, artificial 
intelligence (AI) is used to detect and monetise the sound of broken win-
dows, in reference to “broken windows” policing, a conservative political 
policy that asserts that fewer broken windows in an area will lower crime 
and increase property values. The city of unbroken windows, for its part, 
seeks to preserve its wealth by covering up broken windows with paintings. 
This is representative of the symbolic capacity of paintings to act as a stand-
in for other things, whether or not they are believably realistic.

The two polarities of The City of Broken Windows (Steyerl 2019b) are demon-
strated especially well in two components of its large-scale installation. At 
one end of the exhibition hall, a large plate glass window with a gunshot 
through it represents the city of broken windows; at the other end, a board-
ed-up window is painted to appear as if it is whole. Each demonstrates a 
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different ideal of value, and also of aesthetics, which form opposite sides of 
the same coin, so to speak.

Taken to its furthest extent, verisimilitude in representation brings us to 
the interplay between map and territory, problematised by Jorge Luis Borg-
es (1946, 325) in a fable recounting attempts to plot the most accurate map 
possible of an empire, escalating to the production of a 1:1 scale “map” of the 
very empire itself. This leaves us with the problem of redundancy, placing 
the upward limit of realism somewhere before the veritable recreation of 
the original object of representation itself. For example, the ultra-high-res-
olution BigPixel (Big Pixel Team 2019) image allows viewers to zoom seem-
ingly endlessly into a bird’s eye view of Shanghai. While it may be to some 
degree a technological marvel, it is easily reduced to a gimmick.

But interestingly, the fact that images do not have a one-to-one relation to 
reality is key to their ability to function as representations. According to 
Anna Nacher (2016), the very act of pointing at the world, a foundational at-
tribute of the representationalist paradigm, assumes an ontological divide 
between the image and its referent. That means, for example, that if a giv-
en object is represented in an image, its portrayal is implicitly understood 
as separate from the thing it represents. We therefore arrive at a delicate 
balance in representation: the image must be distinguished from what it 
portrays, yet maintain a relation to that referent, whether comprehensibly 
or not.

How a drawing looks isn’t what it logically means. (Morton 2018, 93)

In cases in which an image bears little or no visual resemblance to what it 
is intended to represent, the process involved may play a defining role in 
mediating that referential connection, in lieu of visual likeness. The refer-
ential capacity of ML-generated images is often taken in a pragmatic sense 
in technical contexts: quantitatively measurable and reliant on its perfor-
mance. What this means is that the experiment-based approach of comput-
er science (CS) of applying discriminative and generative ML tasks involv-
ing images must be falsifiable in order for the exercise to have any efficacy. 
That is, the results must be testable, and if the measure of that testing is 
computational, the image is tested in a quantitative fashion. This is demon-
strated well in adversarial examples, which can be made to be consistently 
categorised as a given target class, that may or may not align with the im-
age’s human-designated — “correct” — target class.
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But while an image may not conclusively be said to be necessarily “of” a 
particular class of item as opposed to any other on a computational level, in 
practice an image may be agreed upon to represent that image class with a 
high degree of human consensus, or certainty. The difference between one 
class or the other —computationally, or based on human consensus — is 
not necessarily connected to any inherent essential qualities of a given im-
age. While ML systems may be made to effectively categorise or to generate 
images fitting particular image classes, the question of whether or not an 
image “is”, conclusively, one kind of thing or another, comes down to hu-
man consensus. This is especially the case as generated images have only a 
tangential relationship to their referent, if they are referential at all.

Fig. 73: Name one thing in this photo (melip0ne 2019).

For instance, in the circulation of “real or fake” memes on the internet, 
viewers are challenged to determine whether an image has been doctored 
or not. Often such images contain elements that are either visually or con-
ceptually ambiguous, even presenting a form of visual paradox. In similar 
fashion, the example in fig. 73 confronts the viewer with a photographic 
image that does not contain a single identifiable object. Its caption prompts 
viewers to name one thing that is represented in the image, which at first 
appears to be a simple task. But although it contains many familiar attrib-
utes, it is not composed of differentiable objects.
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The collective, Forensic Architecture, works with data-based images in a 
way that also reveals the fine line between appearance, the real, and the 
fabricated. The group researches, for example, how spatial information 
may be visualised in such a way that it may act as a form of evidence, espe-
cially in the context of human rights cases. In order to address the problem 
that there is often a lack of physical evidence of human rights violations, 
Forensic Architecture develops and implements digital methods and tools, 
which can help maximise whatever documentation exists regarding a giv-
en incident.

In Computer Vision in Triple Chaser (Forensic Architecture 2018), for example, 
witness testimony and a small number of teargas canisters gathered from 
the scene were the only proof of the alleged illegal use of teargas on mi-
grants at the border between the United States and Mexico. Sorting through 
videos that could potentially prove what had occurred proved a daunting 
task, and not enough documentation existed in order to train an ML system 
to automatically detect the teargas canisters.

Therefore, Forensic Architecture used the existing canisters to produce 
simulated training examples, or “synthetic training data” (Harvey and 
LaPlace 2018), using the Unreal Engine.1 These enabled a search engine to 
be developed, which was designed to detect the particular teargas canis-
ters in question in video footage. In this case, simulation is used as a way 
of procuring evidence of actual events, rather than acting as an imposter 
attempting to stand in for the real. Much as we have seen before in other 
projects, the methodology and approach to the interpretation of data also 
plays an important role in its relation to events and objects in the real world. 
Forensic Architecture’s simulations are thus informed projections about 
actual situations based on known facts and data.

1:  A powerful game engine, or software environment for video game development. (Epic Games 1998)
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Fig. 74: Mosaic Virus (Anna Ridler 2019a).

Fig. 75: Myriad (Anna Ridler 2019b).

Anna Ridler’s Mosaic Virus (2019a) (fig. 74) demonstrates another facet of the 
curious relationship between real-world objects and images generated us-
ing ML. To create the work, Ridler meticulously photographed 10,000 actual 
tulips (Shown in Myriad (Ridler 2019b), fig. 75), in order to produce the da-
taset a model was trained from. The resulting images of flowers are believ-
able, although their relation to actual flowers is highly mediated. Similarly, 
thispersondoesnotexist.com (Wang 2019) generates photorealistic digital 
images of faces of non-existent people. This points out the illusiveness of 
generated images, and how well they can simulate appearances. These 
likenesses embody Baudrillard’s (2010) concept of “simulacra of simulation, 
founded on information, the model, the cybernetic game-total operational-
ity, hyperreality, aim of to  tal control.” (121) Instead, they are akin to the ex-
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ample of Ptolemy’s maps, based on the compilation of numerous measure-
ments of the world, and orchestrated according to the computation of data 
based on sets of instructions. As such, a single generated image of a tulip is 
based on far more information content than is contained in a straightfor-
ward digital photograph of a tulip.

Fig. 76: Deepfake of Steve Buscemi’s face on Jennifer Lawrence’s body (Unknown 2019).

Deepfakes2 are notorious for the way they demonstrate the fine line between 
artistic expression and the manipulation of appearances. The technique al-
lows the face of one person to be substituted for that of another, animating 
the person’s facial features as if controlling a puppet. The deepfake tech-
nique was quickly adopted by internet users for what may be considered the 
obvious applications for such technology, making videos in which public 
figures appear to say or do things they would not be expected to, for exam-
ple, splicing the faces of celebrities onto the bodies of actors in pornograph-
ic films and manipulating the words and actions of political figures. Often 
technical issues make deepfakes easy to spot, but the potential danger that 
deepfakes pose within visual media is that technical improvements may 
blur the boundaries between real and simulation.

While deepfakes and other forms of algorithmically-generated visual me-
dia may present new possibilities to facilitate the fabrication of believable 
images, this is ultimately an expansion of already existing possibilities to 
modify visual content. It plays upon expectations for images to be truthful 
representations of reality in spite of the fact that they merely act as media-
tors of visual perception and representation.

2: Which are now synonymous with the username of a Redditor known for posting them, “deepfakes”, c. 2017.
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ML has also been used as a speculative methodology for analysing the 
oeuvre of an artist and projecting patterns from the findings or to tailor the 
production of images to the statistically determined aesthetic preferences 
of an audience. The research project Next Rembrandt (2016), speculates on 
what the next painting of Rembrandt van Rijn may have looked like, had 
the artist lived — and painted — longer. The process of creating the image 
involved intensive interdisciplinary research, which paired qualitative art 
historical knowledge with technical expertise. The resulting portrait is a 
projection based on a statistical analysis of Rembrandt’s existing paintings. 
A dataset was amassed from digital images and 3D scans of Rembrandt’s 
known works, which were analysed to determine the most likely qualities 
a painting by Rembrandt would have: “a portrait of a Caucasian male with 
facial hair, between the ages of thirty and forty, wearing black clothes with 
a white collar and a hat, facing to the right.” (The Next Rembrandt 2016).

The gender, age, race, dress and social status of the average sitter Rem-
brandt painted does indeed owe much to the context in which he lived and 
painted. Yet, generating an image from these tendencies does not produce 
new knowledge. Given that art has historically been a demonstration of the 
wealth and power of its patrons, it’s hard to consider Next Rembrandt (2016) 
as anything other than a similarly biased reflection of wealth and power, as 
it is financed in large part by a bank (ING) and a software company (Micro-
soft). This is cause for concern because it allows the configuration of past 
and present wealth and power to stake claims on the reformulation and in-
terpretation of culture.

While it is based on data, the hypothetical exercise of attempting to produce 
the next Rembrandt can neither be validated nor authoritatively discredit-
ed. It is the result of informed speculation, yet it is framed by its creators 
as the result of what would happen if the great master could “be brought 
back to create one more painting” (The Next Rembrandt 2016). As such, the 
portrait begs the question of whether a similar exercise may be performed 
upon the oeuvre of any artist, living or dead, rendering the artist obsolete. 

Not only does this further complicate the question of authorship of ML-pro-
duced artefacts, but it also reduces the life’s work of an artist to a visual 
style. One victim of this has been Vincent Van Gogh, whose paintings have 
been appropriated, using style transfers, to many netizens’ snapshots to 
imbue them with a Starry Night (1889) style, for example. Reducing art to 
the level of a visual filter or style that may be applied at will risks missing 
a great deal of what is at stake in an artwork. A Van Gogh-styled selfie los-
es some of the qualities that make his original paintings significant, ma-
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America’s Least Wanted
Paperback-book-size (47%)

Paintings that are “different looking” (30%) and feature imaginary objects (36%)

 Gold, orange, peach, teal (1%)

        Thick, textured surfaces (40%)

        Geometric patterns (30%)

        Darker shades (22%)

  Colors kept separate (18%)   Sharp angles (22%) and bold, stark designs (39%)

terially, aesthetically, and in terms of the context within which they were 
produced. This also assumes that what is at stake in an image is primarily, 
or even solely, visual, in opposition to the procedurally oriented images dis-
cussed previously.

While ML provides a wealth of digital tools for image production or modi-
fication, many of them do not go any further than providing what may be 
categorised as visual effects. For the same reason that photography was in-
itially regarded as a lower art than painting, allowing anyone with a camera 
to create a realistic image, tools such as digital lenses and filters do not go 
further than applying a particular style to an image. Style, in this sense, can 
be understood as a generalised combination of visual attributes, which may 
then be applied to existing content.

America’s Most Wanted
Dishwasher-size (67%)

Paintings that are “realistic looking” (60%)

           Blue (44%)  Outdoor scenes (88%) featuring lakes, rivers, oceans, and seas (49%)

Brush strokes (53%) 

                      More vibrant shades (36%)
Colors blended (68%) 

           Wild animals (51%)
           in their natural setting (89%)

Soft curves (66%)
and playful, whimsical
designs (49%)

         Fall scene (33%)    Persons in group (48%), fully clothed (68%), and at leisure (43%)

                   Ordinary people or famous – makes no difference (50%)

Fig. 77: America’s most wanted painting. (Komar and Melamid 1994).

Fig. 78: America’s most unwanted painting. (Komar and Melamid 1994).
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Because of the degree of research involved in the production of Next Rem-
brandt (2016), it qualifies as more than the vacuous application of a style, but 
it is nonetheless unwittingly reminiscent of Komar and Melamid’s (1997) 
take on scientifically determining the creation of art. The duo produced 
what they deemed the “most wanted” and “least wanted” (1994) paintings 
based on the results of opinion polling. The artists commissioned surveys 
through a professional marketing agency in order to develop statistics re-
garding the personal tastes of the inhabitants of various countries. This 
included the use of simple questionnaires regarding visual preferences 
and dislikes in regard to colour, style, and subject matter. The artist duo 
then produced a pair of paintings for each set of preferences representing a 
given country, purporting to reflect what each nationality wants most and 
least in paintings.

The results make an effective counterexample to the idea of producing an 
art based purely on the averaging of opinions (see fig. 77–78). Komar and 
Melamid show, in tongue-in-cheek fashion, how reducing art to a formula 
may reveal something other than an average image. The “most unwanted” 
paintings, indeed, tend to be bad in a sense most people could agree upon, 
but the “most wanted” paintings, themselves, are innocuous, erring on the 
side of hilarity with their trite subject matter and clumsy, formulaic com-
positions. 

American respondents, Komar and Melamid concluded, tended to “prefer, 
for instance, traditional styles over more modern designs; they also express 
a strong preference for paintings that depict landscapes or similar outdoor 
scenes. In addition, most Americans tend to favour artists known for a re-
alistic style over those whose artworks are more abstract or modernistic.” 
(Komar and Melamid 1997). The resulting pair of paintings oppose a banal 
pastoral scene and a composition of garish colours, reminiscent of many 
avant-garde paintings from the early 21st century. The dichotomy it pre-
sents is extremely polarising, limiting the scope of art to what the majority 
of people can agree upon at the disavowal of art desired by statistically few-
er people.

While the illusive capacity of images is inherent to their role as signifying 
media, the modalities of the influence of ML on images takes this to a high 
degree. In the case of projects such as Next Rembrandt (The Next Rembrandt 
2016), the image produced involves the analysis of vast amounts of  qualita-
tive and quantitative information, which is performed by both humans and 
machines. Yet while the end result is the product of a great deal of informed 
analysis, it remains a speculative projection. Projects such as Komar and 
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Melamid’s tongue-in-cheek attempts to create appealing and unappealing 
images based on tendencies identified through opinion polling playfully 
undermine blind confidence in data-based approaches to image-making.

5.3 Speculative Images

In spite of the fact that ML has shown to err on the side of reinforcing, not 
eliminating, bias (Aga 2019), it is often framed in terms of a presumed neu-
trality — and autonomy — on the part of the machine. This issue is of central 
relevance to reconsidering the assumed veracity of photographic images, 
and the role of the machine therein. Other examples, including Komar and 
Melamid’s (1997) farcical attempts at scientifically deriving the most desir-
able and most undesirable images, lend an interesting contrast to projects 
such as The Next Rembrandt (2016), which espouse a genuine belief in the 
same endeavour.

It remains important to distinguish between the various processes and 
structures of visibility involved in image production and how they play out 
in the resulting images. Yet care must be taken not to impose existing hier-
archical relations onto assessments of images. The mystique of ML and AI 
may lie in the fact that they are often regarded as highly “black box”. Con-
trary to this perspective, while aspects of ML remain obscure, there is a 
great deal that is indeed knowable about the processes involved in using 
ML to generate images.

The necessity of monitoring the datasets behind ML systems becomes es-
pecially apparent due to the recurring issue of algorithmic bias. Basic as-
sumptions which are built into ML approaches, such as basing predictions 
for the future upon data from the past, are also examined in critical light. 
This ultimately enables us to develop new perspectives on what ML-pro-
duced images represent – if anything – and how they relate to the interpre-
tation of data.

Joy Buolamwini and Timnit Gebru (2018), Birgitte Aga (2019), Harvey and 
Jules LaPlace 2019, and Trevor Paglen and Kate Crawford (2019) are just a 
few among many who have demonstrated how bias may become embedded 
in ML systems. There may be a number of reasons for this, but a common 
problem is the use of datasets that are not representative of the data to be 
analysed. Many facial identification systems have, for example, demon-
strated a systematic inability to recognise or to classify the faces of women 
and those with darker skin. This may be caused by the fact that the train-
ing datasets employed have proven to be statistically over-representative of 
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white male subjects and, conversely, under-representative of women and 
racial minorities (Harvey and LaPlace 2019). 

Situations of engrained bias consistently demonstrate the reiteration of ex-
isting prejudices, revealing a larger tendency in which ML has been shown 
to err on the side of reinforcing — rather than neutralising — existing dy-
namics. Not only does this lead to a lower degree of accuracy in the mod-
els that have been trained using biased datasets, for example. It also re-
flects the problematic assumption that the results of ML are scientifically 
accurate. As a consequence of embedded bias, ML has often been found to 
strengthen existing social and power dynamics, in which identity politics 
and socioeconomic factors may greatly influence an ML application from 
its design upwards. Many of its applications have proven to be highly biased, 
including so-called “predictive policing” (RAND Corporation 2013), algo-
rithmically generated mugshots of suspects or the use of ML to determine 
whether individuals should be granted a loan. Each of these instances has 
not only proven to be inaccurate but also based upon the flawed assump-
tion that the future will reiterate the past.

Aside from concerns of bias, many have pointed out the problem posed by 
the widespread use of ML for the purpose of surveillance. The use of bi-
ometric surveillance has been taken up by a number of artists (see Ch 3, 
p. 74) such as Harvey and Laplace (2019) as well as Crawford and Paglen 
(2019), who point out that personal data may be harvested without consent. 
The internet has made images easily accessible, often with few or no re-
strictions or barriers against misuse. Mass-harvested images from social 
media accounts, for example, can be used to train models in order to gather 
information on, and even politically target, individuals. The Microsoft Cel-
eb (MS-Celeb-1M) database, for example, appears to target “journalists, art-
ists, musicians, activists, policymakers, writers, and academics”, including 
many who are “even vocal critics of the very technology Microsoft is using 
their name and biometric information to build” (Harvey and LaPlace 2019).

ML is often used to make statistical predictions about the likelihood of vari-
ous outcomes, based on existing data. For example, predicting the next item 
in a sequence is a common probabilistic task that ML may be used to solve. 
Given the sequence 1, 2, 3, 4 and 5, for instance, a model would be trained 
to predict that the next value in the sequence would be 6. Expanding upon 
the general idea employed in this quite simple example of sequence predic-
tion, much more complex tasks may be achieved, such as the performance 
of classification or even generation based on an initial input. The latter ap-
proach has been especially popular for the purposes of text generation, but 
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it is also applicable to images, taking one sequence of pixels and generating 
another sequence of pixels from it.

While it is logical to make conjectures about the future based on known 
information, it may also lead to a problematic feedback loop. By reinforcing 
statistical data, it can create a self-fulfilling prophecy: as it has been, so it 
will be. This approach also spills over into the increasing reliance on ML in 
wider contexts of decision-making, which in many cases have proven to be 
inequitable. Many applications in which real-world outcomes are based on 
algorithmic assessments, such as the much-debated use of predictive po-
licing (RAND Corporation 2013), in “crime forecasting” or the algorithmic 
determination of bank loans, are rife with the possibility for inherent bias. 
The founding assumptions these techniques are built upon are highly prob-
lematic, and the association of demographic markers such as race, income, 
and location with criminality, in the case of predictive policing, has been 
demonstrated to overestimate the importance of these factors.

Many ethical concerns have come to light in which originate in the design 
and implementation of ML systems, but Luciana Parisi (2018) criticises ML 
and AI on a more foundational basis: the expectation for the world to be 
compliant with human logic. The logic of differentiation, which is exhibited 
in ML, Parisi argues, has also affected appraisals of value based on a similar 
logic of division, between classes, races, gender, kinds of bodies, and intelli-
gence, which have been used in the service of socially oppressive practices 
such as colonialism.

In similar fashion to the expectations of photography’s association with ve-
racity in images, discussed previously, ML has also been framed as having 
inherent truth-value due to the presumed autonomy — and therefore, neu-
trality — of the machine. She also asserts that there is a differential logic 
embedded in ML, which ultimately sways its outcomes towards that which 
may be easily differentiated, which can be credited to Rationalism. This is 
reflective of a turn away from expectations of deriving truth from faith to-
wards deriving truth from reasoning. While this led to a great change in 
terms of the production and appraisal of knowledge, in some cases, it has 
proven problematic for merely presenting a displacement of a religious 
kind of faith — and also power — into science and technology.

This is related to the “two cultures” (Snow 1956) divide polarising science 
and technology from the arts and humanities. The kind of instrumen-
tality and differentiation described by Parisi can be seen not only in the 
transformation of images into operative images (Farocki), but also in the 
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finer-grained logic of differentiation that goes into determining the visual 
content of digital images generated using ML.

Fig. 79: This is the Future (Steyerl 2019c).

But as the future was predicted, the present became unpredictable.

…

Prediction takes the place of production. (Steyerl 2019c)

The assumption that all things may be differentiated computationally, 
which is embedded in ML, also resonates with Hito Steyerl’s (2019a) criti-
cism of the reliance of ML upon “past data” to make predictions about the 
future. Steyerl has been a vocal critic of many aspects of AI, pointing to-
wards the danger that lies in the tendency toward a normalisation of tech-
nologies of prediction. This is the Future (Steyerl 2019c) centres around vid-
eos of “future plants”, flowers that have been generated to anticipate the 
growth of plants. But rather than producing images of new kinds of plants 
with unique characteristics, these are instead made from recombining and 
repeating components of existing ones. The seemingly otherworldly plants 
behave in ways normal plants would not, and, Steyerl mythologises, are en-
dowed with special properties. The imaginary plants are grown to produce 
cures for the ailments of current society including social media addiction, 
brains susceptible to hate speech and austerity propaganda, poisoning au-
tocrats and reminding humans to take time to do nothing (Steyerl 2019c).
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Steyerl applies a similar approach in several other works, including the 
performance Political Pyromancy (Steyerl 2019a), in which the artist gener-
ates a video attempting to predict the movement of a flame a split-second 
into the future. The results of this experiment can be seen as a cautionary 
tale, as the flame disastrously spirals out of control. It is significant to con-
sider the fact that although algorithmic approaches are able to produce new 
visual content, they do so by making conjectures from past content. This 
means that while they have a degree of novelty, it is restricted, effectively, to 
projecting the future from what has occurred in the past. The nature of ML, 
itself, hovers between the goal of prediction and its basis in previous data, 
meaning that the images created are in some aspects new, while also being 
reiterations of existing patterns.

In many instances, the use of adversarial approaches in art employs criti-
cal tactics, which respond to MV by adapting to its parameters. The struc-
tures of mediation, in this case, become the most visible attributes, while 
all others fade between visibility and invisibility. This involves getting to 
know these systems and attacking them from the “inside”, so to speak, by 
adopting the kinds of registration on which they function. But an enduring 
issue is that the aspect of invisibility in technical systems makes it difficult 
to see, access, interpret or contest the structures at work in the media we 
interact with. For this reason, ML and AI systems are often referred to as 

“black box”, overlooking certain obvious avenues to understanding their in-
ner workings (Bucher 2019).

Kate Crawford and Vladan Joler’s Anatomy of an AI System (2018) address-
es this fallacy, exhaustively detailing the many hidden factors behind the 
seemingly innocuous Amazon Echo. Crawford and Paglen’s (2019) Training 
Humans focuses on the history of ML training images and how they have 
changed over time. In the exhibition, training examples from the 1960s to 
the present are displayed, enabling human viewers to inspect and scruti-
nise the invisible images with which Paglen is fascinated. This visual ma-
terial, not meant for human eyes, but rather intended to be processed by 
computers, also gives insight into the invisible power structures behind the 
collection of that biometric data.

One way to compensate for algorithmic bias would be to have more repre-
sentative datasets, but, as Parisi (2018) has problematised, does one actu-
ally want to be included, and therefore better tracked? The desire for inclu-
sion in more representative databases for biometric identification amounts 
to inclusion in more accurate and effective surveillance, control, and ma-
nipulation (Parisi 2018). Inclusivity, in the case of attempting to overcome 
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the bias inherent to facial recognition technologies, would mean to have 
one’s face co-opted, commodified, consumed into a database of other faces, 
all the better to track, trace and find them and others who look like them.

Rather than relying on existing datasets, some artists critique or bypass 
their embedded problems by constructing their own. In Mosaic Virus, for 
example, Anna Ridler (2019a) photographed thousands of tulips. Her work 
often centres on the painstaking production of bespoke datasets, which 
can also be seen in her piece Fall of the House of Usher II (Ridler 2017). One 
may also employ a tactical — adversarial — approach, arguing for the con-
tamination of training data. This enables the accuracy of a system to be 
degraded by introducing error and polluting ML systems with incoherent 
data. The same idea has been used by activists to thwart data mining by 
providing their personal data along with useless data that they hope will 
render the data less useful.

Steyerl’s (2019a) criticism of the predictive aspect of ML has to do not with 
ML as a technological approach but rather with the misplaced faith in it as 
a scientific — and therefore presumably accurate — projection. Treating ML 
as such, she argues, has the potential for dangerous consequences, as evi-
denced by the host of engrained inaccuracies and biases that have already 
come to light in connection with ML. The predictive aspect of ML assumes 
that the past is an accurate reflection of the future. The future may closely 
resemble patterns from the past, but this neglects — even hinders — the po-
tential for change. Additionally, certain phenomena are more easily mod-
elled than others. Simply because ML may produce accurate models of giv-
en phenomena does not ensure its ability to function accurately for other 
applications.

The unstable relation between images and data, which is examined in this 
chapter, demonstrates how easily data may misrepresent, falsify or distort 
appearances. While ML may act as a tool to enable statistically informed 
projections to be made, there are many factors that determine its accuracy 
in doing so. Deepfakes make this especially apparent, by using ML to ma-
nipulate visual content. In other cases, such as basing predictions about the 
future on events of the past, it is the logic of the process, not so much the 
express intention, which causes inaccuracy. This is the case in many situa-
tions of proven bias in visual applications of ML, but it may be more difficult 
to spot such errors in cases which are less obvious.

Visual representation is already a highly complex and nuanced topic, on 
which there are many conflicting viewpoints. In addition to the existing 
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complexity of discourse on representation, ML offers its own representa-
tional modalities, in which what is visualised in images is a reflection of 
learned patterns in data, rather than a direct visual depiction of objects 
or ideas. This quality in images produced using ML bears a perhaps unex-
pected connection to the tradition of painting. It is commonplace, for ex-
ample, for a single painting to be composed from detailed examination of 
its various parts, which are almalgamated into a whole which is equivalent 
to more than the sum of its parts. For example, in a still life painting, nu-
merous studies of the objects represented contribute to a composite view of 
the painting’s subject. And, recalling earlier discussion of the machine as 
artist, many of the master works of painting are attributable to workshops, 
as opposed to singular master artists.

This emphasis on the multiplicity behind, or in, ML-produced images offers 
an interesting lens through which to view what is at stake in images. Images 
may still function in traditional fashion, with straightforward representa-
tional relations between aesthetic and communicative qualities. But with 
the wealth of possibilities opened up, not only by ML but many other visual 
technologies as well, it is clear that what is visible on the surface of an im-
age may not coincide with its information content. Just as it is possible to 
create an image that does not contain any identifiable objects, highly spe-
cific images can be produced, with no direct connection to reality.



Conclusion

Recent explorations with machine learning (ML) in art contexts have probed 
various aspects of the image, posing thought-provoking challenges to exist-
ing discourse. These are examined from three primary angles, considering 
how algorithmic processes have led to a re-evaluation of how images are 
defined, how they participate in the mediation of human agency and per-
ceptual experience and, ultimately, how images are interpreted. In the pro-
cess of addressing these issues, various interrelated notions are explored. 
Not only does the highly automated, algorithmic nature of ML-generated 
images undermine traditional understandings of what images are, how 
they behave and how they relate to the world, but it also calls into question 
certain deeply-entrenched conceptual divisions between the human and 
the nonhuman, and the visual and the non-visual in the process. Instead 
of seeking to delineate aspects of image production into such categories, 
this thesis draws together aspects which cut across a variety of different 
visual media, and that enrich an understanding of the complexity entailed 
in current image cultures. To this end, a survey of relevant examples from 
interdisciplinary practices offers a wealth of different notions that shape 
the role played by images in contemporary art and how it is theorised.

New forms of visual technology have enriched understandings of the image 
over time by demonstrating its potential through a variety of diverse attrib-
utes. This is especially notable in the use of ML in the production of images, 
in which dynamic computational processes inform the resulting outputs. 
As a result, artists and theorists alike have recently emphasised a view of 
images which is inclusive of the performance of algorithmic procedures 
instead of primarily focusing on their visual qualities, as has traditional-
ly been the case. But rather than negating or invalidating previously-held 
notions for the appraisal of images, technology has expanded the field to 
accommodate both new and old forms of visual media.

The development of algorithmic image production processes has brought 
about an important interrelation between images and data. Central attrib-
utes of how images are defined also underwent a shift towards considering 
the importance of process in addition to visual aesthetics, and towards the 
establishment of notions of images as scienticially accurate depictions of 
the world. This is reflected in the systematic production of images accord-
ing to mathematical and scientific principles, involving the use of special-
ised apparatus and techniques.



135Conclusion 

Newer forms of image production highlight the processual, ephemeral qual-
ity of data-based visual media, which also sheds light on similar attributes 
in existing image-making techniques, which had been regarded according 
to different principles in the past. The image is made interchangeable with 
its transcription as a dataset, emphasising the perspective of the image as 
a view of the world based on data, treating the image and text, and the im-
age and the world, as interchangeable. The relation between the image and 
measurements of the world is important to understanding not only the rela-
tion between the image and computational processes, but also the cultural 
assumption of technologically produced images as scientifically accurate 
representations.

Creating images from a studious and focused observation of phenomena in 
the world reflects an empirical view of the world. As we understand from 
looking at examples from long ago in comparison to the present, such a 
perspective caused an aesthetic change, as well as affecting the the way 
that images were viewed. For example, in the Renaissance implementation 
of linear perspective not only made images more compliant with the pa-
rameters of human vision, it also meant that they came to hold a position 
of being more accurate representations than those that are more symbolic. 
The appearance of images thus became more representative of the world as 
it is perceived by human viewers, as opposed to being an ideological rep-
resentation of the world as we think it is or should be.

This also meant that images came to be considered forms of empirical evi-
dence, such as in the case of crime-scene or biometric photography, which 
enabled images to stand as visual evidence of real artefacts or events. In 
ML, the blanket association of technological image-making with accuracy 
comes under scrutiny. Developing visualisations from data has the contra-
dictory impact of encouraging a kind of realism that is deeply tied to tech-
nological mediation. Firstly, a great deal of human intervention is required 
in order to produce accurate or believably realistic results, contrary to the 
proposed autonomy of machines in processes of visual mediation.

The incorporation of optical principles into image-making technologies 
changed the role of images relative to human vision. This means that visual 
media have been designed to be compatible with human vision by imple-
menting optical principles. Rigorous perspectival techniques systematical-
ly implemented geometrical relations between objects in relation to human, 
optical perception of space. This expanded upon the scientific perspective 
on the world, or the image, as a database (Hoelzl and Marie 2015, 96), to 
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incorporate the perceptual apparatus of the viewing subject as a central 
component of the image.

By assisting in the exploration of visual possibilities and the synthesis and 
interpretation of data, ML enables novel understandings of the word “rep-
resentation”. Forming an ML representation of a dataset, for example, ena-
bles the model to interpret new data in a desired way. It thus becomes a lens 
through which to interpret other information. What is remarkable about 
this is that it facilitates a statistically informed modality for the production 
of new visual content.

Tracing the integration of algorithmic processes into image production to 
much earlier examples, this research begins by examining how present 
visual media builds upon simpler techniques and modalities. The empha-
sis on the role of procedural and data-based approaches to the creation of 
images proposes a view of imaging technologies that is inclusive of ana-
logue algorithmic processes that offer insight into the more complex pro-
cesses involved in current visual media. By considering the way in which 
such processes have impacted understandings of the central attributes of 
images, we are better able to understand the foundations upon which cur-
rent theories of the image are built. In so doing, the complexity of relations 
between the visual and the non-visual that arises in image-making is in-
troduced and examined through a variety of examples. We also begin to 
consider how the execution of algorithmic procedures — either by human 
or by machine — influences how images are understood. Through an explo-
ration of various technical approaches to the relationship between human 
vision and the visual processing tasks performed by machines, we devel-
op an account of how visual media complement, augment and remediate 
visual perception, lending visual aesthetics that range from hyper-realistic 
simulacra to the non-visualised computation of data.

Treating the performance of visual processing tasks by machine as if it 
were autonomous from human agency has a long history. It lends itself to 
inaccuracies in how visual technologies and visual media are understood. 
Such notions tend to normalise either the human or the machine as the 
primary point of view. At one end of that spectrum, images are associated 
with expressions of the human intellect through visual media. At the oth-
er, autonomous machines produce images, which are indifferent to human 
agency, perception and values.

The diversity of visual artefacts falling between these polarities is at odds 
with theoretical tendencies that overestimate the degree of division be-
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tween human and machine participation in image production. Considering 
images as the product of nonhuman vision and intentionality, as numerous 
theories have done, tends to overlook the important influence of human 
values have in shaping conceptions of the image. Whether this takes the 
form of considering images to be a reflection of human intellect and expres-
sion or of a scientifically accurate depiction of the world has a great deal of 
influence on the evaluation of what images are taken to represent.

The shared intentionality expressed through the use of ML to create im-
ages can thus be understood as a composite mediation of data through al-
gorithmic processes but is ultimately understood through the parameters 
of human perceptual experience and understanding. It also underscores 
the interrelation of human and machine forms of intentionality, which is 
often minimised in theories that overlook the importance of the role played 
by humans. This falls at both ends of the spectrum between anthropomor-
phising and posthuman perspectives, but nonetheless prevents accuracy 
in discourse on ML-produced images.

This connects even highly technical image production processes in which, 
for instance, digital computers play a larger role in determining visual out-
comes than older forms of visual media. There has been a noticeable ten-
dency to minimise the role played by machines in image production, and 
this role is often treated as autonomous from human intervention or infe-
rior to it.

Situations such as adversarial examples, or the great deal of evidence of 
inherent bias in ML systems, point out how much these systems are reliant 
on the subjective decisions of humans. This extends from the composition 
of datasets to the design and application of algorithms and the tweaking of 
parameters, each of which plays a vital role in the resulting images. Various 
approaches to that interpretation of data lend themselves to different re-
sults, as does the make-up of the data employed. This makes ML subject to a 
high degree of human intervention, primarily in the pre-production phase.

Not only are visual technologies inextricably tied to the human perceptu-
al framework, but the degrees of mediation performed therein also make 
them subject to high levels of interpretive processes. Images are by design 
made to be suitable to the parameters of human vision. Visual media there-
by enable us to communicate perceptually, but also conceptually, through 
the attachment of ideas and aesthetic characteristics.
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Additionally, the degree to which images are intended to be interpreted by 
human eyes, as opposed to being deciphered through analysis performed 
by machines, colours their representational capacity. This contributes to a 
form of visual literacy in which assessments of images exceeds their visible 
attributes and entails the consideration of how a knowledge of the technical 
processes behind images adds to the way they are understood.

The popularity of adversarial approaches, especially centring on criticality 
towards the use of ML in biometric surveillance, is revealing of several im-
portant factors. Firstly, adversarial approaches acknowledge the complex 
interplay between human vision and visual processing tasks such as facial 
recognition, which are performed by machines. They also exemplify the ca-
pacity of technology to work against the expressed intentions for which it 
was designed. In this sense, this asserts a stance towards ML that has both 
the capacity to attack, undermine or elucidate its inner workings. In such a 
way, artistic use of adversarial ML approaches in image-making also vis-
ualises the processes that lie in the subface of images.

There is a persistent inclination either to consider highly automated im-
age-making processes as autonomous from human control or to consid-
er human ability the measure of machines. This is especially significant 
when considering the extent to which human subjective experience comes 
to define many aspects of how imaging technologies are designed, experi-
enced and theorised. Rather than fitting into strictly defined categories of 

“human” and “machine” image production, the unstable interplay between 
various forms of agency in the production of images by, or rather, with, ma-
chines may be better described through more nuanced terms.

As a way of describing the at times conflicting yet deeply interconnected 
processes and modalities of MV as compared to human vision, the opera-
tional image plays a significant role in reshaping discourse on the image. 
Instead of holding a mirror up to the world, as many of the early visual tech-
nologies covered here have aimed to do, operational images act upon it. Pri-
oritising the execution of spatial procedures over strictly visual processes 
reformulates what may be defined, ontologically speaking, as an image. By 
pointing to the lack of reliable relation between the image as a visual arte-
fact, the process of its production and its representational capacity, the op-
erational image runs counter to the association between visual observation 
and empirical evidence of reality. 

The synthesis of data into images, such as in several of the examples covered 
in this thesis, demonstrates the variability of relations between representa-
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tion and referent. Images do not always bear a direct visual resemblance to 
what they are intended to represent. If operational images may be under-
stood as lacking a divide between being and appearance, post-representa-
tional (Nacher 2016) images may or may not bear visual resemblance to, or 
even point to, an identifiable referent.

Because algorithmically-produced images are highly focused on procedure 
over their visual content alone, this could be seen as causing a breakdown in 
the relation between image and referent. But such images do indeed convey 
referential relationships. What is learned in ML-produced images is gov-
erned not only by interfacing with an algorithmic system itself but also by 
the composition of data, which together serves as its empirical foundation. 
As such, ML facilitates an approach to the automated interpretation as well 
as the generation of visual information by inferring patterns in data. Rather 
than referring to individual objects — conceptual or physical — such images 
refer more to databases (Hoelzl and Marie 2015, 96). Representations and 
their referents are tied together not primarily by visual resemblance, but 
instead by data, technical processes and apparatus.

For example, in ML-generated images, the visual surface is not exclusive-
ly tied to representing a visual resemblance of a referent. It may instead 
champion the adherence to the execution of an algorithmic process. In 
such a case, the truth value of the image is tied to the method employed, 
more so than its visual appearance. This is key to the empirical role played 
by technically produced images, in which they are taken as reflections of 
reality informed by the scientific nature of their production process.

How this differs from earlier approaches to image-making is that ML con-
tributes a greater degree of agency on the part of machines to determine 
visual outcomes. Yet the human in the loop plays a substantial role in struc-
turing the potentiality of a generative system. Visual media such as digital 
photography may be automated, but they merely implement a straightfor-
ward program. ML is commonly understood to be capable of producing sur-
prising outcomes, which are statistically difficult — even impossible — to 
accurately predict. But, as can be seen in several examples here, unpredict-
ability on its own is not a sufficient criterion for the production of art.

In current theory on image-making, as well as artistic practice, echoes of 
deeply entrenched, yet unresolved, notions continue to arise in relation to 
the role played by various visual technologies. This includes the tendency 
to anthropomorphise machines or consider them as wholly autonomous 
from human influence, as well as other issues, like the belief in the inherent 
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veracity of technically produced images by virtue of their relation to data. 
While they respond to important aspects of the technical character of cur-
rent image-making, the uncritical continuation of these ideas leads many 
people to overlook crucial aspects of what is currently at stake in images.

ML contributes a new understanding of representation informed primari-
ly by relations in data, instead of in terms of visual representations of ob-
jects and ideas. Such data may have variable relations to objects and ideas, 
but these are connected through levels of technological mediation. By no 
means neutral, it is rather a different way of approaching visual content. 
ML may therefore reveal different visual outcomes based on the modality 
through which visualisation occurs.

Applying ML thereby acts in an analytical capacity, influencing visual out-
comes to a greater degree than in other forms of image-making that have 
a more one-to-one relation between input and output. Printmaking, for ex-
ample, has a considerably more straightforward relation between its mech-
anism and the resulting image. But ML, and even early analogue process-
es that place higher degrees of control outside the direct agency of human 
image producers, enables machines and processes to play a greater role in 
determining visual outcomes.

How this differs from forms of visual media, such as photography, that 
prioritise verisimilitude, is that it instead prioritises the hermeneutic role 
of the computer to interpret visual information. The role of the images 
as a form of evidence thereby comes into conflict with its corresponding 
capacity for illusion. If it were not for images’ capacity to deceive the eye, 
they could not act as simulations. This is in contrast to operational images, 
which do not simulate, but instead operate.

Acknowledgement of the speculative nature of technically produced imag-
es has a large presence in the sceptically oriented discourses of art and the 
humanities. But in spite of their criticality, these discourses nonetheless 
perpetuate some misconceptions as to what ML is, does and means. Tech-
nosceptical positions, while often pointing to valid concerns regarding a 
given technology, at times lacks precision as to whether it is the technology 
itself, or the constructs it participates in, which is at issue.

While image production involving ML differs in some respects from more 
traditional forms of visual technology, it nonetheless shares critical fea-
tures with them. For example, the production of an image using a generative 
adversarial network (GAN) is in some ways more similar to the approach of 
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painting than that of photography. In both GANs and paintings, a great deal 
of visual information informs the production of the image, while analogue 
photography captures a particular view at a given time. A GAN learns from 
given information and is able to then implement a working knowledge of 
what patterns of pixel values appear to humans as a face or some other kind 
of representation.

Artists working with ML in their practice have developed useful perspec-
tives on how images act as intermediaries between human vision and the 
algorithmic procedures performed by machines. In so doing, these investi-
gations expose the often-contradictory ideas that hold that technical modes 
of production both result in the image being a form of empirical evidence 
and are the product of nonhuman intentionality. These have arisen in rela-
tion to various forms of visual technology, often invested in the legitimation 
or delegitimisation of particular methods as opposed to others.

Artistic perspectives on this topic have contributed a rich understanding 
of the image, which accounts for not only the aesthetic but also the techno-
logical and communicative qualities of visual media. The artistic examples 
covered here are bound together by their focus on the interplay between 
aesthetics and procedure, exploring not only the aesthetic dimensions, 
but also the technological modalities of ML and their cultural significance. 
While they engage a variety of different media and technical approaches, 
each demonstrates an attention to how algorithmic procedures may impact 
visual outcomes. This extends from simple algorithmic approaches, which 
exhibit related modalities, to more recent forms of visual media and highly 
complex works of art.

Looking at practical examples through the lens of several different the-
ories enables a rich view to be developed of the value systems at work in 
thinking about images. Across the spectrum of practical examples covered 
here, several themes arise repeatedly, which are linked to ongoing dis-
crepancies concerning the role played by technology in image production. 
This includes the reformulation of images in terms of the execution of al-
gorithmic procedures, the increasing role played by automation using ma-
chines, the interplay between human perception and visual media, and the 
interpretive processes involved in image production that arise as a result. 
Such themes act as axes in the evaluation of images, in which they come to 
inform visual and processual aspects of how visual media are in turn de-
signed and understood. 
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The technical potential of image-making technology often leads to difficulty 
in discerning fact from fiction. In some cases, the potential of ML has been 
used in a highly scientific way, to produce visual evidence of situations in 
which only non-visual data exists. Using ML in an interpretive capacity ena-
bles the existing data to be understood in new ways, through the generation 
of images. It can also be used in a speculative fashion, to create informed 
projections about past or future events. Hard and fast distinctions, such 
as between truth and illusion or between human and machine intention-
ality and visual processing, are incompatible with the nuance involved in 
current image production. This means that certain aspects of visual media 
may challenge a given theory of the image while enforcing others, develop-
ing a heterogeneous view of the image.

The interpretation of images is tied to context, but also understanding of the 
technical processes involved. This means that ML-produced images tend to 
require higher degrees of technical knowledge in order to apprehend them 
than those in which the process plays a lesser role. There is a discrepancy 
regarding the importance of media to works of art, and whether the medi-
um is merely a method for conveying the content or if it is also seen as an 
integral part of the message. The problem often boils down to a contention 
between revealing and hiding the technical conditions behind a work of art, 
and whether the technology is a means to an end or an end in itself. The 
gimmicks achieved by “black box” technology and the technology itself laid 
bare represent polarities between understanding how a visual technology 
works and appreciating its effect. These are, importantly, not exclusive of 
one another. For example, our enjoyment of a pre-cinematic optical trick 
may be increased either by not knowing what goes on “behind the curtain” 
or precisely because we understand how it works.

The history of art is filled with a spectrum of simulation and dissimula-
tion (Baudrillard 2010, 3), but the kinds of visibility and invisibility brought 
about by ML images take this to higher degrees than in the past. There are 
layers of information in images that are mostly inaccessible to humans but 
that nonetheless play a substantial role in our visual media. For example, 
a simple pencil drawing on paper makes the process of production rela-
tively accessible to viewers, and the average person would have a good 
understanding of the process involved. At the other end of the spectrum, 
generative adversarial network (GAN) images make the process relative-
ly inaccessible, and the general public has little understanding of the pro-
cess involved. The levels of mediation that occur between the surface of an 
image and its subface may entail variable degrees of interpretation, mean-
ing that technical implements and methods may play a substantial role in 
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determining the outcome of the production of an image without this being 
visually apparent in the final product.

Image-making technologies involve both visual and non-visual processes, 
and the combined agency of human subjects, with the technique or appa-
ratus employed. Yet false dichotomies between visual and non-visual, hu-
man and nonhuman within image production continue to haunt current 
discourses. These findings ultimately support the conclusion that while ML 
offers certain novel capacities for the generation of images, theories have 
tended to overstate their differences from previous visual technologies. Fo-
cusing on the mediating role played by ML in the production of images en-
ables the interrelation between visual and non-visual qualities of images 
and the participation of machines therein to be better understood.

Within art contexts, the modalities of the technology play a part in the art-
work’s meaning, to varying degrees. In more technically oriented projects, 
such as that of Klingemann’s The Butcher’s Son (2018) or the Portrait of Ed-
mond De Belamy (Obvious 2018), the mystique surrounding the technology 
plays a large role in justifying its artistic merit. Such projects have achieved 
popular notoriety but have been generally snubbed by the art community 
for their lack of something beyond either highly developed visual effects 
or a perpetuation of the myth of the machine as artist (Broeckmann 2019). 
In other cases, the technique becomes integrated into the meaning of the 
work itself. For example, the work of the central figures explored in this re-
search, Farocki, Huyghe and Steyerl, tends to consider how the function of 
visual technologies changes the meaning of the resulting images.

The separation of technical methods for the creation of visual content from 
their ties to human visual perception and intention often fails to address 
the deeply nuanced nature of visual media. While ML and other forms of 
highly automated image-making significantly alter the range of possibili-
ties available for the production of images, they also remain tied to the ref-
erential quality of images. The point at which referential relations between 
images, data and the world become unintelligible to humans, either by be-
ing non-visual, illegible or otherwise inaccessible, poses a significant chal-
lenge to understandings about what significance they hold.

Grasping such problematic formulations of the image through such the-
ories as the operational image, nonhuman photography, the Umwelt and 
others, we are able to relate better to instances in which human vision and 
intentionality play a secondary role, at best. Not only may images be or-
chestrated with little participation on the part of human perceptual experi-
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ence, effort or mastery, but the ambivalence of such forms of visual media 
leave little with which to engage. We may challenge ourselves to conceive of 
the image without measuring it against anthropocentric value systems, but 
this tends to present itself as the conceptual limit for how we understand 
images.

Contrasting historical examples with those from the present enables us to 
understand how ideas surrounding current practices have been influenced 
by their precursors. It is particularly notable how similar ways of thinking 
about imaging technologies have endured over time in regard to quite dis-
parate kinds of apparatus and techniques.

Looking at historical examples, we understand that cultural responses to 
visual technologies at their introduction varied from responses to them 
when they became more commonplace. The importance of the magic lan-
tern, for example, was explicitly tied to its status as a public spectacle, in 
which the means of its orchestration were obscured from view. In the early 
days of photography and cinema, too, a lack of understanding of the pro-
cesses behind images lent them a particular aura. Now that photography 
and moving images — at least in their digital forms — are extremely com-
monplace, there is a more normalised relation to such images, whether or 
not one has much knowledge of how such visual media work. 

One may argue that the ubiquity of digital media acts as a factor in visual lit-
eracy with its artefacts, at least to the degree that most would ascribe their 
aesthetic qualities to the function of the apparatus involved, whether or not 
that function is accessible or understandable to them. For example, there 
is a growing popular understanding that algorithms affect visual media, 
especially forms of social media. While the exact processes are generally 
opaque to the average user of such media, they are nonetheless considered 
important when assessing images.

Taken together, the appearance of images and what we may call its technic-
ity — among other factors — contribute to its overall appraisal. This includes 
contextual information external to the image itself, or not visually apparent 
to the viewer. Many works covered in this thesis reveal an attention to the 
relation between visual aesthetics and an aesthetics inclusive of the pro-
cess involved. Overall, this may be seen as a procedural aesthetic, which 
champions ties between the visual and processual aspects of images. Such 
a view insists upon an interrelation between how images appear, how they 
are orchestrated technically and the combined meaning of these aspects. 
Current ML artefacts thus can be expected to change in significance as 



145Conclusion 

technological shifts occur in the future. And as ML becomes further nor-
malised, for example, considering visual media in relation to its actual pro-
cesses may enable the shedding of mythology related to misunderstand-
ings of the processes involved.

Technologies of visual media, and the many ideas that have accompanied 
them, have been compounded over history, making theorising the image a 
complex endeavour. As we understand through the approach of media ar-
chaeology, technological artefacts are linked to larger tendencies that have 
played out over long periods of time. Traversing the history of image-mak-
ing technologies enables us to develop a background against which to com-
pare current visual media. The complex web of theories and practical ex-
amples covered in this research demonstrates the diversity of modalities 
and media though which an image may be articulated. While defining the 
image remains a complicated theoretical endeavour, we understand tech-
nological developments to have expanded, rather than drastically altered, 
understandings of the relation of images to their technological means of 
production.

ML can be understood as expanding, rather than fundamentally altering, 
understandings of the image. It adds to ongoing tendencies and technical 
developments which necessitate theorising images in new ways. This en-
courages focusing on the diverse and dynamic range of qualities images 
may take on, as opposed to treating them according to criteria specific to 
other media, such as painting or photography. Images produced using ML 
emphasise considering more than binary distinctions between visual and 
nonvisual, human and machine, perceptual and intellectual, instead offer-
ing insight into the interplay between these conceptual categories, which 
are engaged through current visual media.
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Continuation of Research

Moving forward from this research, I have several potential avenues to ex-
plore, including working together with other researchers and pursuing my 
own independent research.

I have been included as a named postdoc in a funding application to the 
Independent Research Fund Denmark (IRFD) for the research project Play-
ing with Data (PlayData): Visualizations as mediated interactions with data. The 
project is organised by PI Assoc. Prof. Christina Neumayer with Assoc. Prof. 
Miguel Sicart and Prof. Irina Shklovski. If the funding application is suc-
cessful, I will carry out a 2-year postdoc at the Department of Communica-
tion at Copenhagen University starting September 2021. My role within the 
research project is to organise a series of three workshops inviting artists 
to engage with how data visualisations might be created and deployed dif-
ferently through artistic speculation. The output from these workshops will 
be curated into an exhibition.

I plan to continue to investigate how ML and AI shape discourse on visual 
media. The present research demonstrates the unsteady foundations upon 
which theories of the image and of art are grounded. Though we may con-
ceive of images that do not comply with the rigid constraints of traditional 
conceptions of the image, art struggles to offer alternative structures that 
meaningfully depart from them. Instead of viewing this as a failure to deliv-
er answers, I suggest that the entanglement between how we see, what we 
take it to mean and how images participate in perceptual mediation offer 
vital insights into visual culture as a form of knowledge.

In seeking to embody theories such as the operational image, nonhuman 
photography or the Umwelt in an artwork, one is met with the paradox that 
the structures inherent to artistic evaluation rely on the assumption that 
art is primarily situated in its sensible, communicative and human-intel-
ligible attributes. Yet defiance of such traditions of art-making leaves audi-
ences with little to grasp, raising several provocative questions including 
the following:

Can an image be conceived of as invisible to humans, orchestrated 
entirely out of reach of our perceptual experience and 
understanding?
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Could such an image err on the side of hyper-visibility, in which 
viewers may perceive all an image has to offer on its surface, yet be 
unable to grasp any meaning from it?

How do science and technology shape understandings of the 
production and visualisation of information?

I intend to continue examining these issues in greater depth concerning the 
interplay between the operational aspects of images, their execution and 
their presentation. In many of the artistic examples I have examined, there 
is a tendency to focus solely on phenomena that are visualisable or under-
standable through relation to human perception. For example, although 
much of the work that has been done with adversarial images focuses on 
their invisible qualities, the contrast of interpretations that occurs in such 
images is in fact visually understandable to viewers. 

In similar fashion to the PlayData project, I intend to examine how artistic 
explorations offer insight into relations between data and its visualisation. 
Seeking alternative approaches to the problem of presenting invisibility 
within visual art, I would like to further examine how scientific methodol-
ogies act as a conceptual bridge between seeing and knowing. The empha-
sis that is currently placed on the technical and scientific dimensions of 
visual media offers insights into the view of images as a form of empirical 
evidence.
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Appendix

In addition to the written thesis, numerous other research activities and 
outputs have contributed significantly to the overall development of this 
PhD project and to my own development as a researcher. Documentation of 
these components of the project are included here as a complement to the 
monograph. This includes a record of completed academic coursework and 
dissemination of research through talks, research papers, and exhibitions.
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Masterclass with Bernard Stiegler: “Simondon and His Notion of Informa-
tion”, Aarhus University, Aarhus – 2,0 ECTS
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   Center for Advanced Internet Studies (CAIS) 
   Bochum
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   [online]
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