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A core task in social network analysis is to recover communities; that is, to meaning-

fully partition the network into groups of nodes such that nodes within a group share

common behaviors, traits or properties. Driven by the motivation that different types of

relationships/interactions among social actors do not exist in isolation but they might

depend on each other such that one can lead to the other one, advances on social network

analysis suggested that providing meaningful insights about networks should consider

these inter-dependencies to avoid misleading or incomplete findings. This leads to the

emergence of multi-layer network analysis; that is, an approach where a single network

models different types of interactions among a set of actors. This generalization pro-

posed by the multi-layer framework for modelling social networks has introduced new

challenges to the community detection problem. There has been a general tendency

by researchers to cope with this complexity by extending some of the already existent

methods used with mono-relational networks. While the logic behind these methods

seems to be sound, I claim that the patterns they identify in multi-layer networks are

not thoughtfully investigated yet, which makes their definition of multi-layer communi-

ties quite vague and hence providing qualitative interpretation for the outputs becomes

not an easy task, especially with real-world data. In my thesis, I investigate commu-

nity detection from a practical perspective while being equally distant from the different

disciplines that researched this topic. I adopt a critical stance towards community de-

tection in multi-layer networks in some cases when the methods used seem to inherit

their success and popularity from their original mono-relational implementations rather

than their ad-hoc competency in recovering complex patterns in multi-layer networks. I

propose different models for multi-layer communities and challenge popular community

detection methods to recover these models. I conclude by pointing out to limitations in

these methods and the available layer-coupling mechanisms to recover the ground truth

communities in multi-layer networks.
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En kerneopgave i analyse af det sociale netværk er at gendanne samfund; det vil sige at

meningsfuldt opdele netværket i grupper af noder, s̊a noder inden for en gruppe deler

fælles opførsel, træk eller egenskaber. Drevet af motivationen om, at forskellige typer af

relationer / interaktioner mellem sociale aktører ikke eksisterer isoleret, men de kan være

afhængige af hinanden, s̊a den ene kan føre til den anden, antydede fremskridt med anal-

yse af det sociale netværk, at det at give meningsfuld indsigt om netværk bør overvejes

disse indbyrdes afhængigheder for at undg̊a vildledende eller ufuldstændige fund. Dette

fører til fremkomsten af flerlags netværksanalyse; det vil sige en tilgang, hvor et enkelt

netværk modellerer forskellige typer interaktioner mellem et sæt aktører. Denne gen-

eralisering, der er foresl̊aet af flerlagsrammen til modellering af sociale netværk, har

indført nye udfordringer for samfundsdetekteringsproblemet. Der har været en generel

tendens fra forskere til at tackle denne kompleksitet ved at udvide nogle af de allerede

eksisterende metoder, der bruges med mono-relationelle netværk. Selvom logikken bag

disse metoder synes at være forsvarlig, hævder jeg, at de mønstre, de identificerer i

multilagsnetværk, ikke er eftertænksomt undersøgt endnu, hvilket gør deres definition

af flerskiktssamfund ganske vage og dermed at give kvalitativ fortolkning af outputene

ikke bliver en nem opgave, især med data fra den virkelige verden. I min afhandling un-

dersøger jeg samfundsdetektion fra et praktisk perspektiv, mens jeg er lige langt væk fra

de forskellige discipliner, der undersøgte dette emne. Jeg indtager en kritisk holdning til

detektion af lokalsamfund i flere lags netværk i nogle tilfælde, n̊ar de anvendte metoder

ser ud til at arve deres succes og popularitet fra deres oprindelige mono-relationelle im-

plementeringer snarere end deres ad hoc-kompetence til at genvinde komplekse mønstre

i flerlags-netværk . Jeg foresl̊ar forskellige modeller til flerlagssamfund og udfordrer pop-

ulære fællesskabsdetektionsmetoder til at gendanne disse modeller. Jeg afslutter med at

pege p̊a begrænsninger i disse metoder og de tilgængelige lag-koblingsmekanismer til at

gendanne sandhedssamfundene i flere lag i netværket.
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Research Context

This research is supported by the VIRT-EU project funded by the European Union’s

Horizon 2020 research and innovation program under grant agreement No 727040.

VIRT-EU project aimed to analyze and map the ethical practices of European hardware

and software entrepreneurs, maker and hacker spaces, and community innovators. The

expected outcome from that project has been discussed to be: (i) understanding how

IoT innovators enact ethics as they design future devices, (ii) generate a new framework

for Privacy, Ethical and Social Impact Assessment (PESIA) and (iii) develop tools to

support ethical reflection and self-assessment as part the design and development process

for IoT technologies.

The research conducted by VIRT-EU qualitative team provided a seed dataset of Eu-

ropean actors who were considered particularly important in the IoT field. Starting

from that list, the project had access to Twitter data about actors in that list, their

followers and those they follow. This data included the following/follower network,

the reply network, the retweet network and the mentioning network. In this context,

whether or not the development ethics in IoT shape the formation of online communities

seemed to be a very relevant question for the project. With the availability of multiple

networks among the same set of actors, a natural choice for a social network analysis

tool to answer that question seemed to be multi-layer community discovery. The multi-

layer network to analyze in this context is the one that considers all the aforementioned

Twitter networks and the dependencies among them. In that regard, there has been

many challenging questions, most of which inspired the content of this thesis, which

the literature in multi-layer network analysis did not provide clear answers for. First,

which multi-layer community discovery to use? The literature in community discovery

in multi-layer networks provides a plethora of such methods without any guidance on

the differences among these methods . Second, which layers to include in the analysis? is

it that the more information we have the more complete the findings are? what if some

of these layers are just noise? and is there a way to quantify this noise in multi-layer

networks?. Third, what is it actually that we are looking for when we use multi-layer

community discovery? In other words, what is the definition of a multi-layer community

from a conceptual perspective and does the output of these methods map to that defi-

nition, if exists?. In many cases, the complicated mathematical formulations of some of

these methods made it quite challenging to give the patterns they recover in multi-layer

networks a conceptual definition that can be communicated to the VIRT-EU qualitative

team. These challenges have mainly inspired the ideas and the discussions proposed in

this thesis.
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Chapter 1

Introduction to Social Network

Analysis

Social network analysis investigates properties, patterns and dynamics in social networks

that are represented as nodes (corresponding to social actors) and links between these

nodes (corresponding to social relations or interactions among the actors such as friend-

ship, collaboration, or leisure). The detection of cohesive subgroups in social networks,

also referred to as “community discovery”, received a great deal of attention in the liter-

ature, since these patterns formalize the very important concept of ‘social groups’ used

in social sciences, particularly sociology and social psychology. This could be extended

to other types of networks that are not necessarily social, for example biological net-

works, where community discovery helps break down large and complex networks into

smaller building blocks, making it easier to understand the structure of the network and

provides a better overview of the role or functionality each group plays in it. This chap-

ter provides the reader with a brief introduction to social network analysis in Section

1.1, followed by a definition of the community discovery problem in networks in Section

1.2. Three important community recovery methods are then highlighted in section 1.3,

and a discussion about community discovery evaluation is presented in Section 1.4. A

general similarity analysis among different community discovery methods is reported in

Section 1.5. To shed a light on the importance and relevance of community discovery

in the field, the chapter concludes by discussing applications of community discovery in

Section 1.6.

1
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1.1 Background in Social Network Analysis (SNA)

SNA is a data analysis strategy that makes use of mathematical tools and models,

like graph theory, to investigate structures, patterns and dynamics in social networks

[1]. The term social comes from the fact that the use of SNA arose as a research

topic in sociology and social psychology, going back to the early 20th century where

some attempts were made to quantify reciprocity in social networks (i.e., the tendency

to reciprocate a relationship/interaction in a system) [2]. The fundamental difference

between SNA and other data analysis tools is that SNA involves the intuition that links

among social actors are important [3]. Despite the term ‘social’, the methods and tools

developed for social network analysis can be seen abstractly as graph analysis tools.

That is to say that while they are useful at providing insights about social phenomena

when applied to social networks, they are equally useful in other fields where networks

do not necessary capture social relationships among social actors but connections of

any type between a set of objects (e.g., protein-protein interaction networks in biology).

Unless mentioned otherwise, I keep the focus in this thesis on the application of network

analysis to social networks.

The major mathematical model used in SNA is the graph model from graph theory.

A graph is a way to model pairwise relationships, interactions or flows of information

among objects, usually referred to as nodes or vertices [4]. Depending on what the

graph models, these nodes might refer to cities, people, organizations, biological species,

airports, etc. The relationships among these nodes are usually represented as links,

also called edges. These edges can be directional to model a flow of information in a

specific direction, or to model non-reciprocated relationships or interactions. An edge

can also be assigned a weight - that is a real value which, depending on what the edge

represents in the real-world, may reflect a strength, a capacity or a size when it is

positive, or a cost when it is negative. Figure 1.1 illustrates a toy graph constituted

of 16 nodes and unidirectional unweighted edges among these nodes. Unless mentioned

otherwise, I adopt the terms actor throughout this thesis to refer to the actual/physical

correspondent of a node in the real-world (e.g., a person or a city), and the term node to

refer to the mathematical representation of an actor in the graph model. I also adopt the

term relationship to refer to the actual relationship, interaction or flow of information

between two actors in the real-world, and the term edge to refer to the mathematical

representation of a ‘relationship’ in the graph model. The terms ‘graph’ and ‘network’

will be used interchangeably to refer to the same thing.

As social network analysis adopted the graph model from graph theory to model social

relationships, it has also made use of some graph theory concepts to explain social

phenomena. For example, a node with a high degree, in graph theory terms (i.e., incident
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Node

Edge

Figure 1.1: An illustration of a graph modeling information flows, i.e edges, among
16 nodes

to high number of edges), corresponds to a central, important or an influential actor in

the network. Finding the minimum cut, in graph theory terms, corresponds to a high-

level partitioning of the network actors into two more homogeneous groups of actors,

and repeating that on each subgraph induced from a single partition recursively can

reveal different hierarchies of a community structure in the network. Network analysts

have also responded to the need of quantifying more complicated social phenomena by

providing new metrics. For example, interpreting the most influential/central actor in a

network simply as the node with the highest degree in the corresponding graph can be

problematic in cases like the one shown in Figure 1.2. As shown in the figure, the most

influential node according to the highest degree approach would be node 6 (the red one).

However, while node 7 (the blue one) has a significantly lower degree in the graph, it

seems to have a more central role in this network as it connects two different components

of the network together, and hence a new perspective on quantifying centrality of a node

is needed. The result is a new measure of centrality called the ‘betweenness centrality’

[5]. This concept quantifies the centrality of an actor in a network as the normalized

number of shortest paths that go through the corresponding node, normalized by the

number of all the shortest paths between all pairs of nodes in the graph. According

to this measure, node 7 would be recognized as the most central in the graph. This

is to say that social network analysis has evolved as one of the most interdisciplinary

topics in the field and most of its basic concepts are the result of collaborative efforts

and bouncing conversations among researchers from different disciplines including social

science, mathematics, physics and more recently computer science.

Another branch of mathematics that is very present in SNA is algebra. An undirected
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Figure 1.2: A visual illustration for the difference between degree-centrality and
betweenness centrality

unweighted graph modeling the relationships among n actors, for example, can be repre-

sented as an n×n two-dimensional symmetric matrix, usually referred to as the adjacency

matrix A, where the indices of A are actors and the entries are binary values (0s and

1s) referring to the absence and presence of edges respectively. An entry (i, j) has the

value 1 if there is an edge between the two nodes i and j in the graph, and 0 otherwise.

These entries can be substituted by edge weights in the case of a weighted graph. With

directed graphs, the corresponding adjacency matrix A is not necessarily symmetric,

and a non-zero value in the entry (i, j) refers to an edge starting at node i and ending

at node j. Figure 1.3 shows different assignments for the adjacency matrix A based on

the type of the graph.

Social networks can be analyzed in different scales based on the question of interest –

i.e., the micro-scale, the macro-scale and the meso-scale levels [6]. At the micro level,

social network analysis begins with an individual (or a small group of individuals) and

snowballs as the social relationships are traced [7]. In this level, SNA can answer ques-

tions about the social settings of an individual (i.e., ego networks), or questions about

small groups of two (dyads) or three individuals (triads). Such questions can be about

tendencies toward reciprocity and level of transitivity, just to mention a few examples.

On the meso-scale, networks answer questions concerning groups of nodes. Such ques-

tions can be whether a certain interaction triggers the formation of communities in a

network, or divides the network into a set of disconnected components. On the macro

level, network analysis looks at the network as a whole and provides global indicators
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Figure 1.3: Adjacency matrices of three different graphs

about its properties. Figure 1.4 illustrates the relationship among these levels. The

focus of this thesis is on the use of social network analysis on the meso-scale level, and

more specifically the community detection task.

Micro

Meso

Macro

- Ego Networks

Individuals, Dyads, and 
Triads

- Transitivity
- Reciprocity
...

Groups of nodes, and 
Community level 

- Subgroups
- Components
- Communities
...

Network level 

- Distributions of 
micro-scale properties
...

Figure 1.4: The three scales of analysis in social network analysis and few examples
of the questions that can be asked at each level
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1.2 Community discovery in social networks

The notion of social groups has been one of the most studied topics in social sciences.

Friedkin [8] used cohesion in social groups as a variable through which some social

dynamics, like reaching a consensus in a group, can be explained. Collins, one of the

most notable sociologists, stated in his review of sociological theory that the more tightly

a group of individuals are connected, the more they are influenced by the group standards

which results in homogeneous beliefs within the group [9]. Therefore, the identification

of such groups has always been important in sociology to understand the social forces

operating through members of the group and the impact of that on influencing behaviors,

values and/or beliefs of social actors. With that being said, it is not surprising that

one of the problems a tool that investigates social dynamics in networks is expected

to investigate is the recovery of such groups, which in social network terms is usually

referred to as “community discovery”.

Community discovery is one of the core meso-level tasks in social network analysis. When

used in social networks, it recovers network patterns that are believed to formalize the

very important concept of ‘social groups’ in social sciences. The importance of this

task extends to recovering meaningful network structures when applied to other types

of networks that are not necessarily social, like brain networks, where the recovered

communities might refer to different functional areas in the brain. Generally speaking,

community discovery helps break down large and complex networks into smaller building

blocks so it becomes easier to understand the structure of the network and provides a

better overview of the role or the functionality each group plays in the network. As a

result, communities, also referred to as clusters, partitions, cohesive groups or meso-scale

structures, are groups of nodes that share common traits, properties or behaviors in a

given context.

In mathematical terms, a community detection solution is usually represented as a clus-

tering C where C = {C1, C2, C3, ... Ck} , and C1, C2, . . . , Ck are disjoint or non-disjoint

groups of nodes. Figure 1.5 illustrates the difference between those two types of commu-

nity structures. Unless otherwise mentioned, those two types are referred as partitioning

and overlapping clusterings respectively throughout this thesis. I also adopt the term

clustering to refer to the groups of nodes recovered by a community detection task on a

network, and community to refer to a single group of nodes in a clustering.

Given a social network whose corresponding graph is G (V, E), where V is a set of nodes

and E is the set of edges among them, a community discovery task involves using the

information provided by E in order to perform a clustering over V into meaningful groups

of nodes. By “meaningful” I mean that there exists an evident qualitative explanation,
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C3

C2

C1

(a) Partitioning (disjoint) communities

C3

C2

C1

(b) Overlapping (non-disjoint) communities

Figure 1.5: Partitioning vs overlapping communities

in addition to the mathematical one, for what brings the nodes of a recovered clustering

together in this particular way.

While the notion of social groups has been extensively studied in social sciences, re-

searchers usually used the term without giving it a precise restrictive definition [10]. On

a practical level, this allowed for multiple conceptualizations into social network patterns

and that in turn resulted in a plethora of community detection methods for recovering

social groups in social networks. Based on my readings in the literature of community

detection in social networks, and my experience with different implementations of this

task, I chose to mention only a few of these community detection methods, and I refer

to their implementations of the algorithms. My choice for these methods comes from

their ability to recover implanted clusterings in synthetically generated networks and the

availability of scalable implementations that can be efficiently used in large and complex
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networks. I refer the reader to [11] and [12] for more comprehensive classification of com-

munity detection methods from a theoretical and a practical perspectives respectively.

Without loss of generality, I keep the focus within this thesis on community detection

methods that produce partitioning clusterings.

1.3 Community discovery methods

Three of the different community detection methods stood out for their ability to re-

cover ground truth communities in networks and the availability of scalable and efficient

implementations to be used with large and complex networks. These are i) modular-

ity maximization, ii) information flow mapping and iii) statistical inference using block

modeling. In this section, I provide the reader with a high-level overview of the logic

behind each of these methods. Here I choose to provide the most general mathematical

formulations, when needed, to keep the focus on the intuition behind these methods

rather than the digging into the interpretation of that with mathematical formulas.

Throughout this thesis, the term method is used in the context of community detec-

tion to refer to the logic, or the mathematical tool adopted by a community detection

technique, and the term algorithm is used to refer to a possible implementation of that

method.

1.3.1 Modularity maximization

In modularity maximization methods, community detection is accomplished by par-

titioning the graph into sparsely connected groups of densely connected nodes. The

main logic behind this is that individuals of a community tend to interact more densely

with other individuals belonging to the same community and less often with external

individuals in other communities.

Modularity has been firstly proposed by [13] as an index to quantify the quality of com-

munities identified by community detection methods. It takes two parameters, a graph

G(V, E) and a clustering C over V, and calculates the extent to which the distribution

of edges with respect to C is far from being random. By “random” I mean that the dis-

tribution of edges within and across groups in C does not follow a pattern where edges

are denser within these groups than across them. This can be calculated as follows:

Q =
1

2|E|
∑

C∈C

∑

(i,j)∈C

[
A(i,j) − P(i,j)

]
(1.1)
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where |E| is the number of edges in the network. The summation is performed only over

pairs of nodes that belong to the same community C ∈ C. P(i,j) is the probability of

having an edge between nodes i and j in a random network that preserves some of the

properties and features of G. Values of Q are in the range [-1,1] and the closer it is to 1

the more modular C in G is.

The value of modularity itself is not informative enough, though, and it becomes more

informative when comparing two clusterings over the same network. In fact, modular-

ity has been used in [13] to define which method, between two community detection

methods, is the better one. That is, the one that returns more modular clusterings is

defined as a better method than the other. Short after that review, modularity has been

proposed as an objective function [14], allowing for a new class of community detection

algorithms that aimed at finding a clustering over the network such that the modularity

is maximized. Figure 1.6 illustrates an ordering of a clustering C = {C1, C2, C3} from

less modular (left-most) to most modular (right-most) as a function of different distri-

butions of the edges in the graph. Note that a clustering is less modular when there

exists more edges across its communities and/or less edges within its communities.

Computationally speaking, modularity maximization in graphs is very expensive as it

requires trying all the possible clusterings in that graph to return the one with the

highest modularity. Even in small networks, maximizing modularity using this greedy

approach can be infeasible. Hence, social network practitioners usually use approxima-

tion algorithms that can be scalable to large and complex networks. Among the many

approximation algorithms existent in the literature for maximizing modularity, the Lou-

vain method [15] [16] is the most popular for its accuracy and performance in recovering

communities in large and complex networks.

1.3.2 Information flow mapping

This method translates community discovery in social networks into an information-

theoretic problem that aims to compress the description of the flow of information in a

network [17]. It uses the path traversed by a random walker in a graph as a proxy for

the flow of information in the network. The goal is to provide a minimal descriptive code

to that path so the description length, an information theoretic index, is minimal. The

intuition here is that important structures in the networks will represent bottlenecks,

where the random walker will get stuck for a while and will revisit the same nodes

multiple times. Rather than giving a unique code to each node in the graph, minimizing

the description length of information flow, that is the path traversed by a random walker,

results in giving the unique codes to the important structures in the graph instead, so
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More modular
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Figure 1.6: An ordering of a the clustering C = {C1, C2, C3} from the less modular
(to the left) to the more modular (to the right) as a function of different distributions

of the edges in the graph

the codes given to the nodes within these structure can be shorter, and can be reused

across different structures.

Imagine that you have to explain to a friend the sequence of your last year’s movements

across different bars you have been to between Paris and Copenhagen. Assume that

you went back and forth between these countries and visited the same bars multiple

times. There are many options for you to code your path referring to the sequence of

bars you have been to, but in order to save your friend’s time and listening capabilities,

one of the best ways to do that could be to group the important structures in your path

together. That is, using a two-level coding where in the first level you refer to important

structures in your map (in this case countries) and in the second level you refer to the

name of the bar. This way, instead of saying:

“I went from bara in Copenhagen to barb in Copenhagen then to barc in Copenhagen

then bara in Paris then barb in Paris then bara in Copenhagen to barb in Copenhagen

...etc”,
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You would rather say:

“I went to Copenhagen then bara , barb and barc then left Copenhagen to Paris and went

to bara and barb then left Paris to Copenhagen and went to bara and barb ..etc”.

This is actually the main logic behind minimizing the description length of the infor-

mation flow as it reveals important structures in the network, which in this context

correspond to communities. To have a clearer idea, Figure 1.7 illustrates a path tra-

versed by a random walker in a graph, together with two different codings of that path

based on different strategies used to name the nodes - one by giving each node a unique

code, and the other one by using a two-level coding where the first level gives unique

entry/exit codes to important structures in the network and the second level guarantees

unique codes for the nodes within each of these structures.

To find an optimal code, the method searches for a clustering C of k communities that

minimises the description length of a random walker. The average description length of

a random walker given C can be calculated using the so called map equation:

L(C) = q y H(Q)︸ ︷︷ ︸
term 1

+
∑

C∈C
pC � H(PC)

︸ ︷︷ ︸
term 2

(1.2)

The first term of this equation measures the entropy of movement between modules

and it is minimal if the clustering C captures a partitioning where an infinite random

walker does the minimal amount of travelling across communities of C. The second

term captures the entropy of movement within communities of C and the longer these

communities trap a random walker within them, the more minimal the value of this this

term is.

For all but the very small networks, it is infeasible to try all possible clusterings over the

network and choose the one that minimizes the description length. An approximation

algorithm, Infomap [18], is provided for this method and scales to large and complex

networks very well.

1.3.3 Statistical inference and stochastic block models

To understand the logic behind statistical inference as a method for recovering commu-

nities, we have to first introduce the concept of stochastic block model. A stochastic

block model (SBM) is a simple generative process that generates graphs with the notion

of communities [19]. Assuming a partition of nodes C into k groups (i.e., communities),

a stochastic block model takes as an input a clustering C and a k × k matrix of edge



12

(a) An illustration of a path traversed by a random walker in
a graph
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counts e, where ers is the number of edges between two communities r and s (we will

refer to this matrix as S), and produces a graph where edges are placed randomly such

that the constraints of the edge counts matrix are respected. Figure 1.8 shows three

possible outputs for the same input parameters, C and S, given to a stochastic block

model.
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Figure 1.8: Three different graphs a , b and c produced by the same stochastic block
model ( i.e., same edge counts matrix and same clustering C)

Statistical inference converts the community detection in a graph into finding the pa-

rameters of the stochastic block model, specifically C, that most probably generated the

graph. Given a graph G, there might exist multiple assignments of C and S given to a

stochastic block model to generate G. Figure 1.9, for example, shows only three of all

of possible assignments of C and S that, when given to a stochastic block model, might

generate the graph G illustrated in the same figure. However, some of these assignments

are better than others where “better” here means “more likely” to be the ones responsi-

ble for generating the graph G. Think of the three possible assignments shown in figure

1.9. Clearly the probability that the graph G has been generated by assignment a is

higher than the same probability had assignments b and c been used. This is because

assignments b and c can generate many other graphs in addition to G, while the number

of graphs that can be generated using assignment a is smaller, thus more likely to be

the right one.
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Figure 1.9: Three different guesses, a, b and c for a a stochastic block model param-
eters, C and S, that might have generated the graph G (on the left)

By finding the parameters of the stochastic block model that most probably generated

the graph, namely C and S, statistical inference recovers the community structure in

a network. Since trying all possible parameter assignments can be expensive, some

approximation algorithms can be used to infer a solution close to the optimal one. One

of these approximations is the Monte Carlo Markov Chain (MCMC) algorithm proposed

by [20] which does not require an upfront knowledge about the number of communities

in the network. A comparison among different inference methods is proposed by [21])

and an implementation of the reviewed methods is available in [22].

1.4 Evaluation of Community Detection

Given a social network whose corresponding graph is G (V, E), where V is a set of

nodes and E is the set of edges among them, a community discovery task involves using

the information provided by E in order to perform a clustering over V into meaningful

groups of nodes. By “meaningful” I mean that there exists an evident qualitative expla-

nation, in addition to the mathematical one, for what brings the nodes of a recovered

clustering together in this way. A common approach to quantify this meaningfulness
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is by providing another clustering G over V which supposedly represents the correct

answer, and hence is referred to as the ground truth, and then measuring the distance,

using some similarity index, between C and G. The ground truth clustering G is usually

constructed based on some meta-data about the network’s actors (for example, their

political affiliation in a political network). This practice in quantifying the effectiveness

of a community detection method assumes that the closer a clustering C recovered by a

community detection method is to G, the more accurate C is and the better the commu-

nity detection method is as a result. This is inherited from the fact that synthetically

generated networks that are usually used to evaluate community detection methods are

generated in such a way that edges of the network are explicitly placed according to a

ground truth clustering, also called implanted clustering in this case. The efficacy of

a community detection method is then measured based on its ability to recover these

implanted clusterings. Authors in [23], however, provide a good argument that with

real-world networks, both the implanted partition (i.e the ground truth) and the actual

network generator are typically unknown, which implies that providing objective evalu-

ation for community detection methods performance with real-world networks is not an

easy task.

When the chosen evaluation practice is to compare the resulted clustering with a ground

truth clustering, multiple normalized similarity indices have been used in the literature

to quantify the level of agreement between two clusterings such that the score is 1

when the two clusterings are identical and 0 when the two clusterings are dissimilar.

While the meaning of similar seems to be quite intuitive when the similarity score is

1, it is unclear what is perceived as less similar or completely dissimilar (when the

score is 0) according to these similarity indices. Figure 1.10, for example, reports the

values of three similarity metrics usually used in the evaluation of community discovery,

namely Omega index, Normalized Mutual Information (NMI) and Adjusted Mutual

Information (AMI). The values are calculated for six different clusterings when compared

to the ground truth clustering shown in Figure 1.10a. As the figure shows, the different

metrics not only have different values in some cases but also different sensitivities to

different types of dissimilarities. We address this issue in our paper, appendix C, which

has been published in the proceeding of ASONAM 2019. In that paper, we provide a

taxonomy of the similarity indices commonly used for evaluating community detection

solutions. We elaborate on the meaning of clusterings dissimilarity and the types of

possible dissimilarities that can exist among two clusterings in the context of community

detection. We perform extensive evaluation to study the behaviour of the different

similarity indices as a function of the dissimilarity type with both disjoint and non-

disjoint clusterings. We, based on the outcome of our experiments, provide practitioners

https://dl.acm.org/doi/proceedings/10.1145/3341161
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with some insights on which similarity indices to use for the task at hand and how to

interpret their values.

A1 A2 A3 A4 A5 A6 A7

C1 C3C2

(a) Ground Truth

A1 A2 A3 A4 A5 A6 A7

C1 C3C2

(b) Omega = 1 , NMI = 1, AMI = 1. A dis-
joint clustering that is identical to the ground

truth.

A1 A2 A3 A4 A5 A6 A7

C1

(c) Omega = 0 , NMI = 0, AMI = 0. A
disjoint clustering constituted of a single com-
munity that is the union of all communities in

the ground truth

A1 A2 A3 A4 A5 A6 A7

C1 C3C2

(d) Omega = 0.4750 , NMI = 0.7472, AMI
= 0.5702. A disjoint clustering that is similar
to the ground truth with only one misplaced

node.

A1 A2 A3 A4A5A6 A7

C2 C4C3C1

(e) Omega = -0.2174 , NMI = 0.4015, AMI
= -0.1950. A disjoint clustering resulted by a
random reordering of nodes in the ground truth

communities.

A1 A2 A3 A4 A5 A6 A7

C1 C2

(f) Omega = 0.4425 , NMI = 0.7446, AMI =
0.4437. A disjoint clustering resulted by merg-
ing two of the communities in the ground truth

into one community

A1 A2 A3 A4 A5 A6 A7

C1 C2 C3 C4 C5

(g) Omega = 0.5039 , NMI = 0.8344, AMI =
0.3906. A disjoint clustering resulted by split-
ting two of the communities in the ground truth

into two communities each

Figure 1.10: Numerical values of NMI, AMI and Omega-Index resulted by comparing
the ground truth illustrated in 1.10a and other clusterings constituted of some variations

of the ground truth.

1.5 Similarity analysis among different community discov-

ery methods

The availability of different community methods, and consequently algorithms, provides

practitioners with different options to choose from based on the available computational

resources and the logic they want to adopt for defining a community. A valid question,

however, is whether different community detection methods recover similar network
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patterns (i.e., communities) and if not, how can we choose the one most relevant to our

problem. While a precise answer to this question requires a deep investigation of the

differences that might arise among these methods based on the research question and the

type of network used, here I provide practitioners with a high level distinction between

these three different community discovery techniques - both theoretically (Section 1.5.1),

and experimentally (Sec 1.5.2). In the former, I map the logic behind each method into

a possible interpretation of a community in networks, while in the latter, I test the

similarity between these methods as a function of three parameters – namely whether

the network is directed or not, whether the network is weighted or not, and the level of

noise in the network.

1.5.1 Theoretical analysis

The fact that the patterns identified by community detection methods in networks are

usually referred to using the same term (i.e., communities) does not necessarily imply

they recover similar patterns. Indeed, the lack of research on mapping the outputs of

these methods to possible community definitions conceptually allowed for misleading and

fuzzy interpretations for these patterns on a qualitative level. In this section, I analyze

the logic behind each of the three community detection methods presented above and

map each of them into a possible definition of communities.

Communities produced by modularity maximization are based on the idea of maximizing

the number (or the total sum of weights) of edges within a community. In its essence,

this definition of communities is static and does not look at the community as a result

of possible dynamics in the network. This implicitly ignores the evolutionary aspect of

the networks and the fact that edges in a network evolve over time. In addition, it is not

clear when the amount of edges (or the total weight) within a group of nodes is ‘dense’

enough for it to be identified as a community, as this amount is relative to the level

of sparsity of the edges across communities. Depending on what an edge between two

nodes means, say that there was an interaction between them, all we can claim about a

community resulted by modularity maximization is that the relative frequency (or the

total weight) of interactions among members of this community is relatively higher than

the total interactions of these members with the rest of the network.

Communities produced by Information flow mapping are the result of a dynamic process

in the network. Therefore, the definition of a community is not directly based on how

dense the edges within communities are in relation to the rest of the network, but rather

on how the edges are placed. Here, the directionality of edges plays an important role

even if the method works with undirected networks. In order to recover the communities,
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an information flow mapping method simulates the creation of edges in the network using

a random walker that is constrained by the transitioning probabilities induced by the

network edges. A community, as a result, is a set of nodes in which the edge creation

simulator (i.e., the random walker) gets “stuck in” for a while before leaving. While the

sparsely connected groups of densely connected nodes can increase the probability that a

random walker would get stuck in each of these groups, this definition of community can

be generalized more than that, as the random walker may get stuck by forcing a specific

directionality among edges within a group of nodes, for example, instead of forcing a

specific density of edges. In [18], the authors show an example of a toy network where

modularity maximization and information flow mapping identify two different clusterings

in the network.

Communities resulted by statistical inference are resulted by recovering the clustering C
over the network with the highest probability of being responsible for edge creation in the

network. This probability is maximized when the number of possible networks that can

be generated by C is smaller. The number of possible networks that can be generated

by C is smaller when edge creation probabilities within communities of C is higher,

thus resulting in communities where the within-community edge creation probabilities

are maximized. This method also provides a statistical significance to the meaning

of a community as it guarantees, with a certain significance (that can be accepted or

rejected), that there is no other solution better than the one provided.

1.5.2 Experimental analysis

To get a general idea about the level of agreement and disagreement among different

community detection methods (modularity maximization, information flow maps and

statistical inference) in practice, I perform some experiments to study the similarity

among patterns identified by these methods on two different types of synthetically gen-

erated networks. The first is generated using LFR benchmarks [24], which maintains

a power-law degree distribution in the resulted networks, while the second is generated

using stochastic block modeling (SBM) [19] without forcing any degree distribution on

the output networks. In this section, I refer to these two types of networks as LFR

networks and SBM networks respectively. The goal of choosing these two different gen-

erative processes is not necessarily to study the effect of the degree distribution on the

level of agreement between the different methods, but to consider the different generative

models that have been used in the literature to generate networks with implanted com-

munities. While I still invite more research on studying the similarity and dissimilarity

among different community methods by considering more types of networks, including

real-world networks, I claim that these experiments, as they are designed and presented,
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are sufficient to get a general idea about the level of agreement among the methods

discussed above.

1.5.2.1 Results and observations

Figures 1.11 and 1.12 each report the pairwise similarity together with the accuracy

(ability to recover the ground truth communities) among the different community de-

tection methods with the two types of networks, LFR and SBM respectively. The three

methods, modularity Maximization, statistical Inference and information Flow are re-

ferred to as M, I and F respectively in these figures. For each type of network, the

patterns were analyzed in four cases: 1) when the network is undirected and unweighted

(UD-UW), 2) when the network is undirected and weighted (UD-W), 3) when the

network is directed and unweighted (D-UW) and 4) when the network is directed and

weighted (D-W). In addition, table 1.1 reports the accuracy values achieved by different

community detection methods when averaged by experiments on LFR networks, SBM

networks, and all networks ( AvgAccLFR, AvgAccSBM , and AvgAcc respectively).

Experiments were repeated for different assignments of the mixing parameter µ, which

controls the percentage of cross-community edges in the generated network. General

observations about the results are summarized in the following:

• Different community detection methods do not always agree in the clusterings

they recover from the networks. Moreover, the similarity patterns among them

are not necessarily maintained across the different settings of the network’s direc-

tionality/weight, across different assignments of the mixing parameter µ, or across

different network typologies (LFR and SBM). This finding is important as it sheds

a light on the importance of understanding the logic behind each method and how

that translates in each typology to provide more consistent interpretations of the

patterns identified by each method.

• With networks that are generated using LFR benchmarks (Figure 1.11), there is

a perfect agreement among the three methods with directed-unweighted networks

(D-UW), and their abilities to recover ground truth communities, in this case, is

not affected by the level of noise µ in the network. This agreement is relatively

maintained with directed-weighted networks (D-W), as well as with undirected-

unweighted networks (UD-UW), as long as the level of noise in the network is

moderate (less than 0.25), at which point modularity maximization starts to be-

come an outlier. With undirected-weighted networks, statistical inference shows a
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AvgAccLFR AvgAccSBM AvgAcc

Information flow mapping 0.99 0.6 0.8
Statistical Inference 0.61 0.89 0.7
Modularity maximisation 0.84 0.23 0.5

Table 1.1: Average accuracy values of different community detection methods where
NormAccLFR is the average accuracy value in all experiments on LFR networks,
NormAccSBM is the average accuracy value in all experiments on SBM networks and

NormAcc is the average accuracy value with all experiments

very poor ability in recovering ground truth communities, while modularity maxi-

mization and information flow maps demonstrate a similar behavior in recovering

the ground truth communities.

• With networks that are generated using stochastic block modeling SBM, both

statistical inference and information flow mapping show a good level of agreement

and ability to recover ground truth communities with weighted networks, whether

directed or not (figure 1.12). With non-weighted networks that are generated using

stochastic block modeling, both modularity maximization and information maps

show poor abilities to recover ground truth communities, while statistical inference

demonstrates a good accuracy with moderate levels of noise in the network (less

than 0.25).

• On average, statistical inference seems to outperform other methods in recover-

ing ground truth communities when the networks are generated using stochastic

block modeling, while information flow mapping and modularity maximization

methods outperform statistical inference with networks that are generated using

LFR benchmarks. Generally speaking, information flow mapping method seems

to outperform other methods in its ability to recover ground truth communities in

different types of networks and different levels of noise in the network (table 1.1).

1.5.2.2 Experimental settings

Networks used in these experiments are constituted of 1000 nodes. The parameters used

for generating LFR networks [24] are: minimum degree = 15, maximum degree = 50

, minimum number of communities = 20, maximum number of communities = 50 and

mixing parameter for the weights in weighted networks = 0.1. The process of generating

SBM networks takes as an input a clustering C over the network nodes and a probability

matrix which specifies the edge creation probabilities within and across communities of

C. In these experiments, C was chosen to be constituted of 10 communities where the

community memberships were sampled from a categorical distribution, and community
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 = 0.05  = 0.2  = 0.45

(a) Pairwise similarity among community detection methods with three values of the mixing parameter
µ ∈ {0.05, 0.2, 0.45}

(b) Accuracy of different community detection methods as a function of the mixing parameter µ

Figure 1.11: Accuracy and pairwise similarity among three community detection
methods, namely modularity maximization (M), information flow maps (F) and statis-
tical inference (I), with networks generated using the LFR benchmark in four different
cases: when the network is undirected and unweighted (UD-UW), when the network
is undirected and weighted (UD-W), when the network is directed and unweighted

(D-UW) and when the network is directed and weighted (D-W)

sizes were sampled from Dirichlet distribution (as used by [25]). Edge probabilities were

chosen to be between 0.5 and 0.7 for the within-community edges and µ (the value of the

mixing parameter) for the cross-community edges. To generate weighted networks (as

the model used does not provide that possibility) , I started by generating non-weighted

networks, then weights were placed randomly such that they take higher values when

they connect two nodes of the same community and lower values otherwise.

For each of the three methods, a representative algorithm that provides a good ap-

proximation in implementing the logic behind the method was chosen. This resulted
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 = 0.05  = 0.2  = 0.45

(a) Pairwise similarity among community detection methods with three values of the mixing parameter
µ ∈ {0.05, 0.2, 0.45}

(b) Accuracy of different community detection methods as a function of the mixing parameter µ

Figure 1.12: Accuracy and pairwise similarity among three community detection
methods, namely modularity maximization (M), information flow maps (F) and sta-
tistical inference (I), with networks generated using stochastic block modeling in four
different cases: when the network is undirected and unweighted (UD-UW), when the
network is undirected and weighted (UD-W), when the network is directed and un-

weighted (D-UW) and when the network is directed and weighted (D-W)

in choosing Louvain [15], Infomap [18] and MCMC [22] algorithms as representatives of

modularity maximization, information flow mapping and statistical inference methods

respectively. For calculating the similarity and accuracy values, the adjusted mutual

information was used for its sensitivity to capture different types of dissimilarities and

its consideration for the by-chance agreement among clusterings as we discussed in a

previous study [26] reported in Appendix C.

With weighted networks, modularity maximization translates into maximizing the total

sum of weights (rather than the number edges) within communities and minimizing
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that amount across communities. The same method (i.e., Louvain) can guarantee that

if we assign weights to the entries in the adjacency matrix A, rather than 0s/1s for the

absences/existences of edges. However, with directed networks, a variant of Louvain that

accounts for the direction of edges is used [27]. As to the other algorithms (Infomap and

MCMC), the directionality and accounting for edge weights is naturally implemented in

them.

1.6 Applications of community discovery

Community detection has been applied in a wide variety of real-world scenarios, and for

a systematic review of these applications, I refer the reader to [28]. In the following, I

point out a few of these applications to showcase how this tool has been used in practice

and to highlight the usefulness of community detection.

• Bot Detection: Bots are automated software that can be implanted in social

network platforms (Twitter, for example) to perform specific actions (retweeting

a specific content, or sending direct messages to other account). A specific type of

these bots, referred to as social bots, can play the role of automated social actors

in a social network, and hence can be maliciously used to infiltrate human conver-

sations, disseminate fake news, impersonate other social actors, or manipulate the

stock market. The analysis of the network topology is a way for the detection of

some of these bots (referred to as Sybil accounts), which are defined to be multi-

ple accounts that are controlled by an adversary. As discussed in [29], the Sybil

detection problem can be regarded as a community detection problem as these

accounts form many peripherally small communities rather than constructing one

big community.

• Analysis of brain graphs: The human brain can be represented as a graph where

nodes represent brain cells or small volumes of tissue, and edges among these nodes

represent structural or functional links among the corresponding brain areas. In

[30], authors discuss how community detection in brain networks can correspond

to areas in the brain that are activated by the performance of specific cognitive and

behavioral tasks. Community detection in this area has also revealed changes in

the community structure in brain networks of a set of participants while learning

a simple motor skill across several days [31].

• Topic discovery: Community detection has applications in the are of topic detec-

tion in social networks. For example, authors in [32] applied community detection

on a YouTube graph where different nodes refer to different videos and a weighted
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edge between two nodes captures the level of similarity between them. The result

is communities that refer to different topics based on the content of the video.

• Observational political studies: Community detection in political networks

can provide insights on the level to which political ideologies, affiliations or coali-

tions influence certain dynamics in the network. For example, our analysis of

the Twitter interactions among Danish politicians during the parliamentary elec-

tions of 2015 has revealed communities that resemble, to a good extent, the main

political affiliations in Denmark [33].

• Link prediction: Link prediction is a network task that is usually used to predict

future links among social actors or missing links during data collection. There are

different approaches to assign the probabilities to these missing links and commu-

nity detection has been used as one of those approaches. The intuition is that

missing links among members of the same community have higher probabilities to

be missing (or to appear in the future) [34].

• Recommendation systems and targeted advertising: In its essence, the task

of community detection in social networks is supposed to group like-minded people

together in communities. This information can be used to improve targeted ad-

vertising and recommender systems for more community-personalized suggestions

[30].

In Brief

- Social network analysis investigates properties, patterns and dynamics in social

networks that are represented as graphs, where nodes correspond to social actors

and edges among these nodes refer to social relations, interactions or flows of

information.

- Community discovery in social networks is a very relevant task in the analysis of

social networks for its ability to identify patterns that formalize the very important

concept of ‘social groups’ used in social sciences.

- The notion of social groups in social sciences is not defined in the literature which

resulted in different interpretations of the problem of community discovery in social

networks.

- Three methods for community discovery in social networks stood out for their

abilities to recover implanted clusterings in synthetically generated networks and
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their scalability to large and complex networks. These interpretations are con-

ceptualized into the following three community discovery methods: i) modularity

maximization, ii) information flow mapping and iii) statistical inference using block

modeling.

- Preliminary similarity analysis among patterns identified by the three methods

showed that the different community detection methods (modularity maximiza-

tion, information flow mapping and statistical inference using block modeling), do

not always agree in the patterns they recover in networks and their agreement

patterns are not necessarily maintained across different types networks – that is,

whether the network is directed or not, whether the network is weighted or not,

and across different levels of noise in the network.

- Community detection has been applied in a wide variety of areas including but not

limited to social bot detection, analysis of brain graphs, topic discovery in social

networks, link prediction and recommendation systems.



Chapter 2

Does community discovery in

social networks discover

Communities?

Despite the term ‘community’ in community discovery, a brief review of the definition of

Community in social sciences suggests that the network patterns identified by community

discovery are much more general. Indeed, these patterns are closer in their properties to

the notion of ‘social groups’, rather than the notion of ‘Community’. This chapter starts

off by providing a review of the notions of ‘Community’ and ‘social groups’ from social

sciences in Section 2.1. In Section 2.2, the chapter discusses different conceptualizations

of community discovery in social networks into specific edge patterns.

2.1 Communities versus social groups

- “An elephant is like a rope.”, said the one who touched its trunk.

- “No that is not true.”, replied the one who touched the side, “an elephant is just

like a wall.”

- “You are both wrong.”, another who touched the leg said, “an elephant is like a

column holding a rooftop.”

- ‘Seriously, guys!? Does it require much intelligence to realize the similarity between

an elephant and a chapati (roti)?”, the one who touched the ear said.

And on and on the four blind men kept arguing.

26
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Indeed, many concepts in social sciences are like the ‘elephant’ in that story, quite

hard to find a consensus on a precise definition for in the literature. The notions of

‘community’ and ‘social groups’ are apparently few examples of such concepts. Despite

the widespread attention the study of these constructs has received in many disciplines,

researchers have always used the terms without providing a precise definition. In the

following, I review how these concepts - ‘community’ and ‘social group’ - were defined

respectively in social sciences.

The concept of “community” emerged in classical sociology as a product of the ideolog-

ical conflict between conservatism and liberalism which took place in the 19th century.

During the democratic political revolutions of North America and France, and the shift

in economics towards industrialization, the concept of community emerged as a way to

refer to ideologies of the past and the present. At the beginning, it was not used as an

analytic concept, meaning that what community is was not clear. Instead it was used

as a normative concept to refer to what a community should be [35].

Generally speaking, this concept has been developed in social sciences in two directions.

The first sees a community from the perspective of the relationship type – the sense of

identity, the common traits, or the spirit among a group of people. The second puts em-

phasis on the geographical sense of community, that of a particular territory, to refer to a

local social system or a variety of social relations among a group of people in a particular

bounded area [36]. According to Ferdinand Tonnies [37], a social community resembles

the natural community of a living organism. It involves an underlying consensus based

on many factors including kinship, common residence, and friendship. Tonnies makes

a distinction between the social status ascribed by birth and that ascribed by personal

achievements, education, and properties. To him, being part of a ‘community’ is a status

ascribed by birth, and therefore a community is homogeneous.

A review that goes back to 1955 found no less than 94 definitions of community with

only one common denominator: all the definitions deal with people [38]. Another review

by Collin [39] pointed out important differences in the dynamics of a rural versus urban

communities. The social interactions in rural communities are more familial – they

involve intimate face-to-face relationships, they have minimal specializations or division

of labor and they are permanent, strong and durable. In these communities there exists

an intense cohesion and a deep commitment to shared values. In urban settings, however,

the societal interactions can be casual, superficial and short-lived.

Clearly, a consensus about one definition of communities is non-existent. However, they

all express a level of commonality in traits, behaviors, values, ideologies, or geographical

space among members of a group. Here I quote a few definitions of “community” as

they were reviewed by [35].
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• “A community is a set of interrelationships among social institutions in a locality.”

• “A community is, first, a place, and second, a configuration as a way of life, both

as to how people do things and to what they want, to say, their institutions and

goals.”

• “Community refers to a structure of relationships through which a localized pop-

ulation provides its daily requirements.”

• “A community is a collection of people who share a common territory and meet

their basic physical and social needs through daily interaction with one another.”

• “A community is a social group with a common territorial base; those in the group

share interests and have a sense of belonging to the group.”

• “A community is a body of people living in the same locality. Alternatively, a

sense of identity and belonging shared among people living in the same locality,

or the set of social relations found in a particular bounded area.”

Even though “everybody knows what it means”, as claimed by Freeman [40], the concept

of ‘social groups’ is yet another heavily researched and not precisely defined concept in

sociology. As discussed by [41], a social group can be defined as two or more people

who perceive themselves to be members of the same social category. It reflects a certain

level of social or psychological interdependence among members of the group. This

interdependence can be for the attainment of goals, the validation of values and attitudes,

or the satisfaction of needs. According to [42], a social group is a set of two or more

persons who are interacting with each other in a way such that one gets influenced by

and/or influences the other one. In [43], a social group is defined as the group of people

who identify themselves as part of the group. Some researchers in social psychology

has defined the social group to be a set of people interacting with each other based on

common motives and goals, an accepted division of roles in the group, accepted norms

and values with respect to issues that matter to the group, and an accepted code for

praise/punishment when values of the group are respected or violated [44]. Examples of

social groups can be: couples, families, cliques, gangs and communities.

The revolution of technology and the availability of various social communication means

have made social interactions no longer dependent on geographical proximity. Instead,

they can literally be with anyone and anywhere [45]. This allowed for the formation of

social groups that make use of online social platforms in order to substitute the absence

of a common geographical territory. Indeed, the openness of the term ‘community’

and the lack of agreement among sociologists on how this definition should be updated

allowed researchers to consider such online groups as a special type of communities [46]
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. These are communities that use online means to interact with one another, and hence

can be called “online communities”, while the previous notion of community began

to be referred to as “offline community”. The term “online community” is yet another

notion that suffers from the lack of consensus among researchers on its precise definition.

However, the intuition is always the same – an aggregation of individuals who interact

around a shared interest, where the interaction is fully, or at least partially, supported or

mediated by technology (or both), and guided by some protocols or norms [47]. The main

distinction between online communities and offline ones, therefore, is the geographical

reach. Today, an online community may have members from Denmark, the US, Japan,

Australia, and Syria. In fact, members can be from anywhere in the world as long as

they have access to the Internet.

While the list of possible definitions for the concepts of ‘social group’ , ‘offline com-

munity’ and ‘online community’ can be easily expanded, it is not hard from what is

discussed above to spot a few distinctions among them. A first impression one can get

by comparing these notions is that the concept of ‘social group’ is much more general

and relaxed compared to the other concepts – so no geographical constraints, restrictions

on the communications means or some sense of belonging are forced among members to

identify as a social group. In addition, despite the fact that the notion of community

did not explicitly force any restrictions on the number of members in its definitions, it

is implied somehow that a group of two people can not identify as a community, while

two persons can still form a social group.

2.2 Conceptualizations of community discovery in social

networks

It comes as no surprise that the relatively fuzzy concepts of ‘community’ and ‘social

groups’ in social sciences would result in multiple conceptualizations of these concepts

into specific patterns in social networks. This starts from the variety of social-network

terms that were given to such constructs (like communities, cohesive groups, cohesive

subgroups, meso-scale structures, modules, and modular structures), and ends with as

many community discovery methods as the number of social network analysts working

in the field. Even though it is more commonly known as community discovery, I claim

that this task in social networks does not aim to recover structures that map directly

to the ‘community’ concept from sociology, but rather to the more general concept of

‘social groups’ which can be seen as a relaxation of the ‘community’ concept with regards

to its size, geographical constraints, communication means and the sense of belonging.

While I still use the terms ‘community discovery’ and ‘communities’ in this thesis for
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consistency, I assume that the task of community discovery in social networks is not

restricted to communities as defined in social sciences but can also be seen as a task to

identify social groups.

Despite the plethora of conceptualizations of social groups in networks, there are four

main properties that influenced the formalization of this concept into social network

patters according to [10]. These properties are:

1) Mutuality of ties, which requires that all pairs of members in a group to choose

each other.

2) The closeness or reachability of members of the group. This does not necessar-

ily force each pair of the group members to be directly connected, but at least

reachable to each other.

3) The frequency of ties among members of the group. This requires each member of

the group to have many ties with other members within the group.

4) The relative frequency of ties with members within the group with respect to ties

with members outside of the group. This requires groups to be relatively cohesive

when compared to the rest of the network.

In the following, I discuss the mapping of each of the previous properties into network

patterns. Most of the theoretical content about these properties, but not their mappings,

in this section is based on the book by Stanley Wasserman and Katherine Faust, “Social

Network Analysis: methods and applications” [10].

2.2.1 Social groups based on mutuality of ties

Mutuality of ties in a social group maps to a very well-established and precisely defined

concept in graph theory – the clique. A clique is a maximal complete subgraph of three

or more nodes, where each pair of nodes is connected via a non-directional relationship.

In figure 2.1, the group of nodes 1, 2, and 3 form a clique of size 3 because each pair

of nodes in this group are connected. Many community discovery methods have the

idea of ‘clique’ in their essence. Clique percolation method, for example, conceptualizes

community discovery in social networks into finding groups of nodes that consist of

highly overlapping cliques [48]. More clearly, given a parameter k, the method tries to

find groups of nodes such that each group consists of cliques of size k that overlap with

each other in k-1 nodes. For example, in figure 2.1, there are two cliques of size 3 (one

constituted of nodes 1, 2 and 3, and another one constituted of nodes 1, 3 and 4) which
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overlap together in two nodes (1 and 3). If k is set to 3 in the clique percolation method,

the group of nodes 1, 2, 3 and 4 will be identified as a single community.

Clique (b) 

Clique (a) 

1 
2 

3 

4 

Figure 2.1: An illustration of two overlapping cliques of size 3

2.2.2 Social groups based closeness and reachability

In graph theory, there might exist many paths between two nodes. The shortest of these

paths in terms of the number of nodes it must travel through is referred to, as the name

suggests, the ‘shortest path’ between those two nodes. Reachability or closeness among

members of a social group can be quantified in graph theory terms as the length of the

shortest path in the graph between those two members. Groups that are based on the

idea of reachability can be seen as a relaxation of the very strict definition of cliques

which require each pair of members in the group to be directly connected. Rather than

forcing a direct connection, reachability groups require each pair of nodes in the group to

be closely reachable by requiring the shortest path length between each pair of members

in the group to be small. In this context, small can be chosen as a threshold that the

shortest path length among each pair of nodes does not exceed. Figure 2.2 illustrates a

group of 4 nodes that are closely reachable to each other with a threshold of 2.

One community detection method that seems to be based on the idea of reachability is

the information flow mapping method mentioned in Section 1.3.2. This method benefits

from the duality between recovering important structure in the network, and minimizing

the code of a random walker traversing the network. The code of such random walker

is minimal for a clustering that divide the network into groups of nodes that are highly

reachable by other nodes belonging to their group and hardly reachable by nodes from

other groups. Another method can be the one proposed by [49]. In their algorithm, the

authors assume that nodes with high betweenness centrality in the network represent
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Figure 2.2: A group of 4 nodes closely reachable with a threshold of 2

bridges in the network that, when removed, can reveal boundaries of a community

structure. Therefore, the algorithm proceeds by calculating the betweenness centrality

of the nodes of the graph, removing edges of the nodes with the highest betweenness

centrality, and re-calculating the betweenness centrality of the nodes until there are no

edges in the graph. Each round in this interactive process can identify a level of division

in the network into communities.

2.2.3 Social groups based on frequency of connections with group

members

Groups that are identified based on the within-group frequency can be seen as another

relaxation of the strict concept of ‘cliques’. Rather than forcing a direct link between

each pair of members, this approach assumes a minimum number of links between each

member and the rest of the group members. This minimum can be defined as a threshold

k which, when it is equal to the number of members in the group, results in a clique. A

group of nodes that satisfies the condition that each member of the group is connected

directly to at least k other members of the group is called k-plex. Figure 2.3 illustrate

a k-plex of 5 nodes with k = 2.

Intuitively, the higher the value of k is in a k-plex, the more cohesive the group can be.

Based on that idea, a class of community discovery methods consider the problem to be

equivalent to the maximum k-plex problem in graphs [50]. In simple terms, the maxi-

mum k-plex problem guarantees partitioning the graph into k-plexes with the maximum

possible k such that there is no clustering with a higher value for k.
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Figure 2.3: An illustration of a k-plex among 5 members with k=2

2.2.4 Social groups based on relative frequency

Based on the idea that some forms of social groups can express a tendency to interact

more with members of their group than with outsiders, this approach identifies the

social group in terms of its relative frequency of ties within the group as compared

to the frequency of interactions with members outside of their group. The higher this

relative frequency is, the more cohesive the group. Indeed, this perception of what

a social group is seems to be the most common way of defining a community social

network. As discussed in Section 1.3.1, modularity maximization community discovery

methods aim to find such groups in networks. Another method that seems to implicitly

find similar patterns is the statistical inference method mentioned in Section 1.3.3.

In Brief

- While the concepts of ‘community’ and ‘social group’ have plenty of not completely

aligned definitions in social sciences, they are also clearly distinguishable. The

former often puts emphasis on geographical commonality, communication means

(in the case of online communities), and the sense of identity and belonging. The

latter is more general and puts emphasis on common influences, interests, and

interdependence on each other.

- Despite the name community discovery, the patterns recovered by this task in social

networks are closer in their nature and properties to the ‘social group’ concept than

to the ‘community’ concept in social science.
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- There are plenty of conceptualizations of social groups in social networks. Four

properties have influenced the formalization of these conceptualizations, namely

mutuality of ties, closeness and reachability of members within the group, fre-

quency of ties with members of the group, and relative frequency of ties within

the group compared to that with members out of the group.

- Communities resulted by the information flow mapping method are based on close-

ness and reachability across nodes of a group. Modularity maximization and statis-

tical inference, on the other hand, recover patterns based on the relative frequency

of ties among members within the group relative to ties with members outside the

group.

.



Chapter 3

The Multi-Layer Network

Framework

Multi-layer networks aim to model inter-dependencies among different relationships in

a social context, in addition to the relationship ties themselves among the social actors.

This chapter starts off with an introduction to the multi-layer network framework in

Section 3.1. In Section 3.2, the definition of community detection in multi-layer networks

is pointed out, followed by a discussion of some community detection methods in multi-

layer networks in Section 3.3. I continue in Section 3.4 by proposing some important

multi-layer community models, followed by a commentary on our systematic review

of community detection methods in multi-layer networks in Section 3.5. Finally, the

chapter presents two use cases for the use of multi-layer community detection in the

real-world in Section 3.6.

3.1 The multi-layer network framework

The graph model has provided a useful mathematical tool to model certain social re-

lationships among social actors. This allowed computational methods developed for

analysing graph data to provide useful insights about social phenomena that might arise

from certain social relationships. Social relationships, however, do not exist in isolation

and they influence each other such that one may depend on, or lead to, another one.

Being a friend on Facebook with someone, for example, is more probable to happen if

they already had some off-line activity beforehand (like going to the gym together or

meeting in an event). Studies on Twitter user behaviour showed some level of depen-

dency between retweeting behaviour and mentioning behaviour, meaning that users who

have been mentioned by other users showed a higher tendency to re-tweet their posts

35
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[51]. Considering only one type of relationship in the study of complex networks risks

either defining a world where different kinds of relationships are equivalent, or over-

looking the invisible relationships emerging from the interactions among different types

of relationships [52]. It has become indeed clear in the last few years that character-

izing these inter-dependencies is essential for understanding most complex networks -

including economical networks, brain networks, cellular networks in addition to social

networks [53]. Given that the graph model as is can not leverage this information, an

extension of graphs into multi-layer graphs has been proposed.

Multi-layer networks, also referred to as layered, multivariate, multidimensional, multi-

slice, or multi-relational networks, are a generalization of the notion of the graph to

model different aspects of a connection between some actors, such as different types

of relationships, or different points in time when a relationship happens [25]. Each

relationship is characterized by a layer, i.e., single-graph, and two nodes in a layer are

connected via an intra-layer edge if the corresponding actors are connected through

the relationship modeled by that layer. Inter-layer edges are used to couple nodes

across different layers, and they are called diagonal if they connect only nodes of the

same actor. Figure 3.1 provides an illustration of a toy single-aspect two-layer network

modeling connections among 15 actors.

Layer 1
Actors

Inter-layer 
edge

Intra-layer edge

Layer 2
A15_L2

A15

Multilayer Network Example

A1_L1

A1_L2

A node for actor A1 
in Layer 1

A1

Figure 3.1: A layered representation of a single-aspect two-layer network modelling
connections among 15 actors.
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The highest abstraction in the multi-layer model is the aspect [54]. Aspects represent the

high-level features that we want to model between actors, such as time, relationships,

and so forth. The second level of abstraction is the layer which decomposes an aspect

into multiple states, categories, types, points in time, etc. Figure 3.2 illustrates a two-

aspect multi-layer network where the studied aspects are relationship and time. The

relationship aspect is decomposed into two layers, namely friends and work. The time

aspect decomposes each of the relationship aspect layers into three layers, one for each

of the years 2018, 2019 and 2020. The resulted multi-layer network is constituted of 6

layers as shown in the figure.

2018 2019 2020 

Friends

Work

Relationship

Time

Figure 3.2: A visual illustration for a two-aspect multi-layer network. The aspects are
relationship and time. The relationship aspect is decomposed into two layers, namely
work and friends, and the time aspect decomposes each of the relationship layers into

three layers, one for each of the years 2018, 2019 and 2020.

All inter-layer edges in figure 3.2 are diagonal as they only connect nodes of the same

actor. The inter-layer edges connecting nodes across different relationships (the red

ones) are said to be categorical as there is no specific order for the layers that these

edges connect, and hence they are also usually undirected. Inter-layer edges connecting

nodes across different times (the blue ones), however, are said to be ordinal as they

connect layers that have a specific order forced by time, and are therefore directed in

order to capture the successive order of a relationship.

In algebraic terms, multi-layer networks have been represented in several ways in the

literature. Assuming a multi-layer network M (V , L, VM , EM ) with n = |V | actors and

l = |L| layers, where VM is the set of nodes and EM ⊆ VM ×VM is the set of edges. Here

I refer to three different representations, namely, i) the multiple matrices representation
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used by [55], ii) the supra adjacency matrix representation used by [56] and iii) the

adjacency tensor representation used by [25]. In the following, I provide a definition for

each representation:

The multiple matrices representation: In this representation, each layer s is

represented as a n × n adjacency matrix As. To represent the inter-layer edges,
l∗(l−1)

2 matrices, referred to as the coupling matrices, are used so that the inter-

layer edges between each pair of layers are captured. A single coupling matrix

Cs,r between two layers s and r, is a n × n matrix, and an entry (i,j) which is

not 0 is used to couple node i from layer s to node j from layer r. If inter-layer

edges are diagonal, entries of the coupling matrices will be 0 in all cases except

for those in the main diagonal. Figure 3.3 provides an illustration of this type of

representation on a toy multi-layer network example.

The supra adjacency matrix: This representation integrates matrices of the

previous representation into one matrix called the supra adjacency matrix A .

Nodes are given unique identifiers so that the existence of an actor in one layer

is represented by a universally unique node identifier rather than the combination

(actor, layer), as was the case in the previous representation. This results in a

(n ∗ l)× (n ∗ l) matrix. This matrix is comprised of l× l blocks where the diagonal

blocks are the adjacency matrices of the different layers, and an off-diagonal block

(s,r) is the coupling matrix between layers s and r. Figure 3.4 illustrates the supra

adjacency matrix of the same network used in the previous representation.

The adjacency tensor representation: A tensor, in simple terms, is an Al-

gebraic generalisation to represent multi-dimensional arrays. Multi-layer network

information can be represented using an adjacency tensor A that has four dimen-

sions - two of them are used to refer to the actors, while the other two are used

to refer to the layers. An entry As,r
i,j is equal to 1 (or a given weight) if there is

an edge between actor i in layer s and actor j in layer r, otherwise it is equal

to 0. Figure 3.5 illustrates the adjacency tensor of the same network used in the

previous representation.

The key difference between the multi-layer graph model and other previous graph gen-

eralisations that consider assigning properties to edges/nodes of the graph is the in-

troduction of inter-layer edges - that is, the fact the connection patterns in one layer

might depend on another layer. Multi-graph model, for example [57], which precedes the

multi-layer one, allows for multiple parallel edges between two nodes in a graph where

each edge can be assigned a different property (a relationship type or a timestamp for
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L2 L4
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(a) A 4-layer 3-actor example of a multi-layer.
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(b) A representation of the multi-layer network illustrated in 3.3a using multiple adjacency matrices A1,
A2, A3, and A4 for layers L1, L2, L3, L4 respectively, and coupling matrices Ci,j for each pair (i,j) of

layers.

Figure 3.3: Representing a multi-layer network using multiple matrices
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Figure 3.4: Representing the multi-layer network illustrated in figure 3.3a using a
(n ∗ l)× (n ∗ l) supra adjacency matrix. Nodes are given unique identifiers so that the
existence of an actor in a layer is represented by a universally unique node identifier

rather than the combination (actor, layer) like in the previous representation.
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example). However, it does not allow for modelling inter-dependencies among these

nodes across different properties.

Two special applications of the multi-layer model that received a great deal of attention

in the literature are multiplex networks–that is, networks that model different types of

relationships among a set of actors [58], and time-dependent (or temporal) networks–

that is, networks in which the interactions among actors change over time [59]. When

the multi-layer model is used to model the former, layers correspond to different types

of relationships and are thus categorical, while in the latter, layers represent different

time-points of a relationship, and thus are ordinal. Multiplex networks have been used

in a variety of different applications including, to mention a few, ecological networks

(which model different types of interactions among species) [60], and social networks

(where different layers can be used to model different types of interactions provided by a

social media platform or different relationships across different social media platforms)

[61]. Temporal networks have been used to model brain network dynamics (where layers

capture the interaction among different areas in the brain over time) [62], and citation

networks (where layers refer to different time points in which the citation happened )

[63]. Unless mentioned otherwise, I keep the focus within this thesis on those two cases

of multi-layer networks. I refer to graphs that model a single relationship among a set

of actors as mono-layer networks, and to community discovery task in such networks as

mono-layer community discovery, and to community resulted by such task as mono-layer

community. Similarly I call a multi-layer community discovery the task of clustering

nodes of a multi-layer network into communities, and to a community resulted by such

clustering as a multi-layer community.

3.2 Multi-layer community detection

As discussed before, the term ‘community’ has been conceptualized in various ways in

mono-layer networks. The conceptualization of that in multi-layer networks, however,

seems to be missing in most of the research that proposed new multi-layer community

discovery methods. For example, it is common to accept the conceptualization of mono-

layer communities based on the relative frequency as discussed in Section 2.2.4, but no

extension of this is provided in the literature for multi-layer networks. On a higher

level, the motivation for using multi-layer community discovery seems to be sound.

Nonetheless, it is not always clear what patterns in multi-layer networks is a multi-layer

community discovery method able to reveal, and in which way that maps to qualitatively

meaningful communities. Surprisingly enough, the literature about community discovery

in multi-layer networks provides a plethora of multi-layer community discovery methods.
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I claim that the reason for this gap between the lack of ad-hoc conceptualizations for

multi-layer communities and the abundance of methods that recover what is claimed

to be multi-layer communities is two-fold. First, multi-layer community discovery as a

tool emerged as a response to the generalization of graphs into multi-layer graphs, and

not to the generalization of communities into multi-layer communities. Second, most

multi-layer community detection methods are mathematical extensions of mono-layer

community discovery methods, which made it possible to provide such methods without

having to investigate a precise extension of their original conceptualizations.

From a structural perspective, authors in [25] argue that there are two primary dif-

ferences between a multi-layer community and a mono-layer one. First, as the name

suggests, a multi-layer community expands over multiple layers. Second, edges of a

multi-layer community in one layer depend on, or lead to, edges in another layer. For

example, in a 2-layer multiplex network that models different Twitter interactions among

a set of Twitter users Following and Retweeting, it might be the case that the retweet

edges among a set of users are largely dependent on whether these users follow each

other or not, which might be responsible for the existence of multi-layer communities

that expand over the two layers. In the following, I discuss the extensions of the three

mono-layer community discovery methods discussed in Section 1.3 into multi-layer com-

munity discovery methods.

Based on the definition of a multi-layer community proposed above, a multi-layer com-

munity detection task is not only expected to use the intra-layer information to provide

a meaningful grouping of the nodes in their layers, but to also use the dependencies

among edge patterns in different layers to provide a meaningful aggregation of them

into multi-layer communities as illustrated in Figure 3.6.

L1

L2

L3

L1

L2

L3

Figure 3.6: An aggregation of dependent edge patterns across different layers of a
multi-layer network into multi-layer communities
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3.3 Multi-layer community detection methods

As mentioned above, the attention multi-layer community discovery received from social

network analysis has produced a plethora of methods to recover the so called multi-layer

communities. In this section, I will refer to only three of these methods, which are ex-

tensions of the methods discussed in 1.3 to multi-layer networks. The original methods

are modularity maximisation, information flow mapping, and statistical inference. I re-

fer to their extensions to multi-layer methods as multi-layer modularity maximisation,

multi-layer information flow mapping, and multi-layer statistical inference respectively.

On one hand, the choice to discuss these three methods in this section stems from the

popularity and success their original mono-layer versions previously had. On the other

hand, I think of these choices as random picks from multi-layer community discovery

methods to investigate their mathematical formulations and how multi-layer communi-

ties are defined accordingly. Later, in Section 3.5, I refer to our more comprehensive

review and similarity analysis of community discovery in multi-layer networks.

3.3.1 Multi-layer modularity maximization

A generalization of the modularity formula 1.1 has been proposed by [55] for it to apply

to multi-layer networks. In this generalisation, the authors introduced a new parameter,

the coupling strength ω, to the modularity equation. The coupling strength is a weight

assigned to the inter-layer edges connecting nodes of an actor across different layers. On

the layer level, it has been interpreted as the closeness among different layers [56]. On

the actor level, it has been claimed that this parameter reflects information about the

extent to which an actor tends to have the same behaviour across layers (corresponding

to high values for ω), or a different behaviour in different layers (corresponding to low

values for ω) [64]. With this introduction of ω, the modularity score does not only reward

density/sparsity of intra-layer edges within/across the communities but also rewards the

existence of coupling edges (i.e., inter-layer edges) within communities, and this reward is

proportional to the value given to ω. This means that if two nodes nix, niy which refer to

the same actor i, and hence are coupled, happen to appear in the same community, this

contributes positively to the multi-layer modularity score with an amount proportional

to ωxy - that is, the coupling strength assigned to the coupling edge between nix, niy.

Given a multi-layer M (V , L, VM , EM ) that is represented using multiple matrices (as

shown in section 3.1), the multi-layer modularity of a multi-layer clustering C = {C1,

C2, C3, ... Ck} in M can be calculated as follows:
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Q =
1

2µ

(∑

C∈C

∑

(is,js)∈C

[
As

(i,j) − P(i,j)

] )

︸ ︷︷ ︸
part 1

+
1

2µ

(∑

C∈C

∑

(is,jr)∈C

[
Cs,r
i,j ∗ δ(is, jr)

])

︸ ︷︷ ︸
part 2

(3.1)

Where As is the adjacency matrix of layer s. Cs,r is the coupling matrix that captures

inter-layer edges between layers s, r so the entry Cs,r
i,j corresponds to the value of the

coupling strength ωi,j between nodes i and j from layers s and r respectively. δ(is, jr) is

a Kronecker delta, and its value equals 1 if nodes is and jr refer to the same actor, and

0 otherwise. µ is a normalisation factor.

The first part of equation 3.1 is the same used to calculate mono-layer modularity

in equation 1.1. This part alone reaches its maximum when nodes in each layer are

grouped according to their optimal mono-layer modularity. The second part of this

equation is the added multi-layer ingredient to the modularity score. This part alone

is maximised when the mono-layer optimised groupings are cross-merged across the

layers such that all the overlapping mono-layer groupings appear together in the same

multi-layer community. Accordingly, there are two forces that drive the partitioning in

multi-layer networks using multi-layer modularity maximisation. The first tries to keep

the node in its optimal mono-layer modularity grouping, and the second tries to group

the node together with other nodes that refer to the same actor.

With that being said, the result of maximising modularity in multi-layer networks is not

necessarily a clustering that groups all the nodes of an actor in one community, and at

the same time does not guarantee that nodes fall in their optimal mono-layer groupings.

Generally speaking, assigning low values to ω uniformly across layers produces communi-

ties such that nodes in each layer where the community expands are grouped according

to their optimal mono-layer modularity. Large values given to ω will allow the gain

achieved by the second part of equation 3.1 to compensate for the penalty in the first

part resulted by not grouping nodes according to their optimal mono-layer modularity

grouping. This allows for multi-layer communities where nodes do not necessarily fall

in their optimal mono-layer grouping. In both cases, a multi-layer community resulted

by maximising modularity corresponds to a community of actors where subsets of these

actors interacted densely with each other but sparsely with the rest of the network in a

subset of layers, and these subsets of actors overlap with each other. This means that a

multi-layer community that expands over multiple layers does not necessarily correspond

to a set of actors that were all involved in a community behaviour in all the layers where

the community expands. For more details about the assumptions behind multi-layer

modularity and the impact of that on the resulted communities, I refer the reader to a
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preprint of our paper “Unspoken Assumptions Behind Multi-layer Modularity” in ap-

pendix B. This article is under review by the Scientific Reports journal editors. In that

article, I show how the ability of multi-layer modularity maximization based community

discovery to recover ground truth communities is conditioned by a specific coupling of

the nodes across different layers.

3.3.2 Multi-layer information flow mapping

The Information flow mapping method mentioned in Section 1.3.2 has been extended by

[65] so it can be used to reveal multi-layer communities. In this extension, the goal is still

to provide a two-level coding in order to minimise the description length of a random

walker traversing the multi-layer network. On the surface, the map equation 1.2 remains

the same; however, the random walker corresponds to a multi-layer dynamic as it can

move between layers proportional to the weights (i.e., the coupling strength) assigned to

the inter-layer links. The movements between nodes within the same layer are said to

be Markovian as the position of a random walker at time t depends only on its previous

position at time t− 1. Nonetheless, movements across layers are non-Markovian as the

fact that a random walker is at layer Li does not necessarily depend on which layer it

was in before. In the absence of empirical inter-layer weights, a relax rate r is used

(similarly to the teleportation rate parameter used in PageRank algorithm adopted by

Google to rank web pages [66]) to allow the random walker to move across layers. In a

given step, the random walker stays in the same layer with a probability equal to (1-r),

or moves to another layer with a probability r.

Similarly to the original method, this approach suggests a natural concept of commu-

nities in multi-layer networks as groups of nodes that capture flows within and across

layers for a relatively long time. The only difference between this extension and the

original method is that nodes belonging to the same actor will be assigned the same

code when they appear in the same community. This implies that placing nodes that

correspond to the same actor in the same community contributes positively (i.e., it is

favored) to the minimisation process.

As discussed by the authors, assigning low values for r overstates the constraints set

by each layer, which might result in multi-layer communities such that nodes in each

layer fall in their optimal layer grouping (the one resulted by executing the method on

each layer independently). On the other hand, assigning high values for the relaxation

rate r washes out the constraints set by the edges of each layer for the random walker,

which might favour having nodes of the same actor in the same community rather than

keeping nodes in each layer in their optimal grouping. The way this parameter impacts

https://www.nature.com/srep/
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the aggregation of mono-layer groupings seems to resemble the effect of ω in multi-layer

modularity.

The intuition behind this method is that there might be multiple interests, relationships,

interactions ..etc (depending on what the multi-layer network models) that bring a social

group closely together. When that is the case, the random walker is expected to spend

longer time within that group in the layers referring to these relationships. That leads to

identifying this group as a multi-layer community that expands over these layers. When

edge patterns across layers are not aligned, the resulted multi-layer communities by this

method are similar, conceptually, to those discussed in the previous section (Sec 3.2).

3.3.3 Multi-layer statistical inference

An extension of community discovery using statistical inference for edge-valued, multi-

plex and time-dependent networks has been provided by [67]. In their extension, the

authors argue that most community detection methods fail to address two substantial

points: i) whether the multi-layer representation of the network is indeed important, and

ii) how to separate actual structure in multi-layer networks from stochastic fluctuations.

Similar to the logic behind the original method, the goal here is to find the stochastic

block model SBM that is the most probable to be the generative model for the network,

in this case being the multi-layer network. In order to select a stochastic block model

that both satisfies that and avoids over-fitting, the authors assume that a multi-layer

network can be generated using two alternatives which they call “edge covariates” and

“independent layers” respectively. The former assumes that a multi-layer network can

be generated by first generating the collapsed graph and then assigning the layer mem-

bership of each edge randomly from a distribution. The latter, however, assumes that

layers can be generated independently from each other. Since empirical data might fol-

low a specific degree distribution dynamic in addition to the community dynamic, an

additional consideration is given to whether the stochastic block model should consider

that or not. This results in 4 different variants of stochastic block models for multi-layer

networks, namely, non-degree-corrected edge covariates SBM, degree-corrected edge co-

variate SBM, non-degree-corrected independent layers SBM and degree-corrected inde-

pendent layers SBM. The proper way to select between the alternatives is to perform

model selection based on statistical significance and select one of the 4 alternatives based

on sufficient evidence available in the data.

To decide whether the layered representation is important or not, the authors consider

layers to be informative of the network structure if their incorporation into the stochastic

block model yields a more detailed description of the data when compared to a model
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that is only based on the collapsed structure of the network. This can be done by

considering a null model where the edges are distributed among the layers in a manner

that is entirely independent of the group structure, and is constrained only by the total

number of edges in each layer. We can then compare the description length of this null

model with any of the other layered variants, and decide if there is enough evidence to

justify the incorporation of layers that are correlated with the group structure. Since

the layer variants consider groupings across layers to be relatively aligned, communities

resulted by this method are constituted of actors who interacted more significantly with

each other in all layers (in each one separately or in total depending on the chosen

layered variant) than they did with the rest of the network.

3.4 Different models for multi-layer communities

Despite this variety of existing generative models for multi-layer communities in multi-

layer networks [25, 67–75], they focus on a limited amount of structures for multi-layer

communities. Indeed, many of these models produce synthetic multi-layer communities

that are not straightforwardly mappable to real-world scenarios in multi-layer networks.

Here I hypothesize some real-world scenarios for multi-layer communities and interpret

them into different multi-layer community models. These models are possible to exist

in multiplex and time-dependent networks under different conditions. While I do not

claim that this list of models is exhaustive to all possible communities that can exist in

multi-layer networks, I claim that they provide a good categorization of types of multi-

layer communities for future work to investigate further generalizations. I refer to the

nodes of an actor a in different layers with a non-zero degree in their layers as the active

nodes of a. For a multi-layer community C that expands over multiple layers, I refer

to the set of nodes of C in a single layer L as the induced nodes of C in L, and to the

set of actors resulted by mapping each of the induced nodes of C in a layer L to their

actors as the induced actors of C in L. These models are:

[M1] Pillar communities: We call a multi-layer community C a pillar community

if there exists a set of actors A = {a1, a2, ...ak} such that C is constituted only

of the active nodes of all the actors in A in all layers of the multi-layer network.

Pillar communities result from a very high dependency in the connectivity patterns

across all layers of the multi-layer network, which results in an aligned grouping

of nodes across all layer.

[M2] Semi-pillar layer-adjacent communities: We call a multi-layer community

C a semi-pillar layer-adjacent community if there exists a set of actors A =
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{a1, a2, ...ak} such that C is constituted only of the active nodes of all the ac-

tors in A in a subset of layers of the multi-layer network, and these layers are

adjacent to each other. Semi-pillar layer-adjacent communities usually evolve in

time-dependent networks where layers refer to specific time-windows. In these

networks, a set of actors might engage in the same community for a limited time

and then engage in other groups in subsequent time-windows. This might result in

semi-pillar communities that expand over an subset of the layers that are adjacent

to each other.

[M3] Semi-pillar non-layer-adjacent communities: Similar to [M2], the difference

with semi-pillar non-layer-adjacent communities is that the layers where the com-

munity expands are not adjacent to each other. These communities might evolve

in multiplex networks where layers are categorical. These communities might also

evolve in time-dependent networks if a group of actors engage in a community

for a couple of consecutive time-windows, then engage in other groups at some

windows, then engage again in the same grouping.

[M4] Partially overlapping communities: A multi-layer community C that expands

over multiple layers is partially overlapping if the sets of the induced actors of C

in each layer where the community expands, partially, but not completely, overlap.

These communities evolve in cases when the community membership of a set of

actors in one layer L1 influences the community membership of only a subset

of these actors in another layer L2, while the membership of the rest of these

actors in L2 does not necessarily depend on their membership in L1. Think of an

example where the network is a three-layer multiplex network modelling twitter

interactions (following, retweeting and replying) among a set of actors. It might

be the case that the community membership of a set of actors in the ‘following’

layer influences the community membership of only a subset of these actors in the

‘retweet’ or ‘reply’ layers (i.e., user a1 retweets user a2 because they follow each

other) while the community membership of the rest of these actors on these layers

does not really depend on the ‘following’ layer.

[M5] Hierarchical communities: A multi-layer community C that expands over mul-

tiple layers is hierarchical if there is a hierarchy among the sets of the induced

actors of C in the layers where it expands. A hierarchical community happens

when the grouping of a set of actors in a layer L1 still depends on the community

membership of these actors in another layer L2 but additional non-layer specific

dependencies might result on different divisions of this grouping across the layers,

which breaks the perfect cross-layer group alignment that happens in the pillar

model. Think of the 3-layer multiplex modelling Twitter interactions mentioned
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above. A grouping of a set of actors in the ‘retweeting’ layer might still depend

on whether they follow each other or not (i.e., user a1 retweets user a2 only if

they follow each other), but some other user-specific properties (political affilia-

tion for example) might result on multiple divisions of their groupings across the

two layers.

Figure 3.7 provides a colored illustration of the distribution of community memberships

in each of the models described above. Different colors refer to different community

memberships. NS in figures 3.7b and 3.7c means that the community membership

of these actors in the corresponding layers is not specified in this illustration as it is

independent from the community membership in other layers.

3.5 Review of community detection in multi-layer networks

Here I refer to our review of community detection methods in a multiplex networks

reported in Appendix A. In this article, which has been submitted to Computing Surveys

journal (CSUR) and is still under review, we provide the following contributions to the

literature:

• On a theoretical level, it provides the reader with a viable taxonomy of multiplex

community detection methods based on the way they handle the multiplexity

problem and the mathematical tools used to identify multiplex communities.

• On a practical level, it reports the results of an extensive evaluation and a compar-

ative analysis among the most relevant state-of-the-art methods trying to answer

three main questions: a) to what extent are the evaluated methods able to detect

ground truth communities, b) to what extent do different methods identify similar

community structures, and c) to what extent are the evaluated methods scalable.

• It elaborates on the definition of multiplex communities on a structural level by

providing eight different types of multiplex communities that can exist in network,

and then tries to answer which of these structures is poorly considered by the

available methods.

Our main finding in this survey is that “pillar” communities, where all nodes representing

the same entity on different layers/relations are grouped within the same community, can

be well detected with the methods we have available, with information flow mapping and

modularity maximization achieving very good results. Nevertheless, the more we move

https://dl.acm.org/journal/csur
https://dl.acm.org/journal/csur
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Figure 3.7: Different models of multi-layer communities, illustrated using colors re-
ferring to the actors’ community memberships across different layers. NS in figures
3.7b and 3.7c means that the community membership of these nodes is not specified in
this illustration as it is independent from the community membership in other layers.
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away from that ideal model of multiplex community structure, the more the accuracy

drops and the differences between various algorithms become apparent. Based on our

review of the literature and our activities in the field, we think that this article is timely

and opportune as it will both help existing research as well as generate future research.

3.6 Applications of multi-layer community detection

The multi-layer network model has been applied to investigate many real-world complex

systems. Here I refer to two of our contributions in that direction, reported in Appen-

dices D and E. The first is titled “From Interaction to Participation: The Role of the

Imagined Audience in Social Media Community Detection and an Application to Po-

litical Communication on Twitter” and was published in the proceedings of ASONAM

2018. The second is titled “An Innovative Way to Model Twitter Topic-Driven In-

teractions Using Multiplex Networks” and was published in a workshop proceedings

of the 13th International AAAI Conference on Web and Social Media. Both papers

test the proposed models on a dataset of Twitter content generated by Danish politi-

cians during the month leading to the 2015 Danish parliamentary elections. I will re-

fer to this dataset as the DkPol dataset, and it can be found at the following link

[https://github.com/obaidaITU/dkpol]. In the following, I briefly explain both contri-

butions in Section 3.6.1 and Section 3.6.2 respectively.

3.6.1 Modeling Interactions and Participation on Twitter

A common way to model the multiple types of relationships supported by a social media

platform is to use multiplex networks where different layers refer to different interactions

provided by that platform (for example, replying and retweeting). As discussed in Sec-

tion 2.1, members of a social group are expected to share similar interests in addition to

their frequent interactions over time. With that idea in mind, we add a layer represent-

ing the users’ interests. This layer, which we call the Topical Audience Model (TAM),

aims at modeling the shared interests among users based on their participation in public

discussions. We build that layer in two steps. In the first step, the discussions among

the users of interest are modeled as a multiplex of n layers, where n is the number of

topical discussions to be considered in the model. In the context of this paper, we use

the explicit hashtag as a proxy for the topic of the shared conversation as suggested by

[76]. Each discussion adds a layer to that multiplex and is modeled as a single clique

that ties all the users who were part of the discussion – that is, those who included

the same hashtag in their messages. In the second phase, we compute a single network

by applying a weighted flattening [77]. A threshold θ can be used here to filter out

https://ieeexplore.ieee.org/xpl/conhome/8488381/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8488381/proceeding
https://www.frontiersin.org/research-topics/9706/workshop-proceedings-of-the-13th-international-aaai-conference-on-web-and-social-media#articles
https://github.com/obaidaITU/dkpol
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edges with less then a specific weight. We perform community discovery on the DkPol

dataset in two cases, one by considering only the retweets among the politicians, and

the other is by considering retweet, reply and the shared interests layers we propose.

Figure 3.8 provide an illustration for the proportion of political coalitions (Red Block

and Blue Block) within the communities detected on both cases. As the figure shows,

the first case (only the retweet) produced 9 communities that are more homogeneous in

their composition of political coalitions, while in the case of the multiplex we have 10

communities some of which are less homogeneous.

Figure 3.8: Proportion of political coalitions (Red Block and Blue Block) within the
communities detected on both a) only the retweet network b) the multiplex network

including retweets, replies and the TAM with θ = 0.2

.

3.6.2 Modeling topic-driven interactions on Twitter

In this work we propose a way to model topic-based implicit interactions among Twitter

users. This model relies on grouping Twitter hashtags into themes/topics, and then

using the multiplex network model to construct a multiplex network (we call it the

thematic multiplex), where each layer corresponds to a topic or theme, and users within

a layer are connected if and only if they have used the same hashtag. By testing our

model on the DkPol dataset, we show that applying multi-layer community detection

on the thematic multiplex can reveal different types of communities that differ from

those observed when modeling Twitter interactions. Figure 3.9 illustrates the difference

between communities resulting from two different multiplex networks.
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(a) Coloring based on political parties

(b) Coloring based on political coalitions

Figure 3.9: The resulted communities by applying multi-layer community detection
on two different multiplex networks over the DkPol dataset: (A) the multiplex consist-
ing of the three layers (following/follower, retweet and reply), and (B) the thematic
multiplex. Each bar refers to a different community, while the colors in each bar (i.e.,
community) refer to the composition of each community with respect to the political

affiliation (3.9a) or the political coalition (3.9b) of the members constituting it.

We use the thematic multiplex to perform a longitudinal analysis of the communities

formed based on the topical interests. That is achieved by dividing the data into four

time windows of length equal to one week, then constructing a thematic multiplex out

of the data within each time window. We perform multi-layer community detection

on the resulting multiplex networks separately, and we study the frequency of each

topic/theme in each community over the month leading to the elections. Figure 3.10

illustrates the relationship between the topics and the thematic communities resulted

by applying discovery detection on the 4 thematic multiplex networks.
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(A) (B)

(C)
(D)

Figure 3.10: The relationship between the topics and the thematic communities
resulted by applying community detection on 4 thematic multiplex networks that cap-
tured the Twitter interactions of Danish politicians during the month leading the par-
liamentary elections of 2015 (one per week). (A) week 1, (B) week 2, (C) week 3, (D)

week 4

.

In Brief

• The multi-layer network model is a generalization of the notion of the graph to

model different aspects of a connection between some actors, such as different types

of relationships, or different points in time when a relationship happens.

• The key difference between the multi-layer graph model and other previous graph

generalisations that consider assigning properties to edges/nodes of the graph is

the introduction of inter-layer edges - that is, the fact the connection patterns in

one layer might depend on another layer.

• Two special applications of the multi-layer model that received a great deal of

attention in the literature are modeling multiplex networks–that is, networks that

capture different types of relationships among a set of actors, and modeling time-

dependent (or temporal) networks– that is, networks in which the interactions

among actors change over time.
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• A multi-layer community detection task in multi-layer networks is not only ex-

pected to use the intra-layer information to provide a meaningful grouping of the

nodes in their layers, but to also use the dependencies among edge patterns in

different layers to provide a meaningful aggregation of them into multi-layer com-

munities.

• Despite the plethora of multi-layer community discovery methods, it not always

clear what patterns in multi-layer networks is a multi-layer they reveal, and in

which way these patterns map to qualitatively meaningful communities.

• Pillar communities, where all nodes representing the same entity on different lay-

ers/relations are grouped within the same community, can be well detected with

the methods we have available, with information flow mapping and modularity

maximization achieving very good results. Nevertheless, the more we move away

from that ideal model of multiplex community structure ( i.e., the pillar one) the

more the accuracy drops and the differences between various algorithms become

apparent.



Chapter 4

Discussion and Future work

In the light of what has been presented in this thesis, this chapter provides a discussion

about community discovery in social networks in general and in multi-layer networks in

particular in Section 4.1. Based on that, some suggestions to generate future research

are provided in Section 4.2.

4.1 Discussion

This thesis provides a critical and practical look at the problem community discov-

ery in social networks in general, and in multi-layer networks in particular. It reviews

the similarity metrics used in the literature for evaluating community discovery solu-

tions, analyses their sensitivities to different types of dissimilarities among clusterings

and gives useful guidelines on which metric to use for the task at hand (Section 1.4

and Appendix C). It provides a theoretical and experimental similarity analysis among

three popular mono-layer community discovery methods, namely, modularity maximiza-

tion, information flow mapping and statistical inference using stochastic block models

(Sections 1.5.1 and 1.5.2). The similarity has been studied as a function of three dif-

ferent parameters, whether or not the network is directed, whether or not the network

is weighted and the level of noise in the network. To be equally distanced from the

different disciplines that studied the notion of community in social contexts, the thesis

provides a review of the definitions of ‘Community’ and ‘Social Group’ in social sciences

(Section 2.1) and point out to different conceptualizations for community discovery in

social networks and their mapping to some community discovery methods (Section 2.2).

It discusses community discovery in multi-layer networks and problematizes the ab-

sence of conceptualizations for multi-layer communities into specific and well-defined

multi-layer network patterns (Section 3.2). It unfolds the mathematical formulations of

56
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three popular multi-layer community discovery methods, namely, multi-layer modularity

maximization, multi-layer information mapping and multi-layer statistical inference to

understand their implied definition of multi-layer communities (Section 3.3). Being one

of the extensively used methods for multi-layer community discovery, the thesis inves-

tigates hidden assumptions behind multi-layer modularity maximization in Appendix

B. By hypothesizing some real-world scenarios for multi-layer communities, the thesis

proposes different multi-layer community models that can be used to test and compare

the performance of multi-layer community detection methods (Section 3.4). Because

multiplex networks have received a good deal of attention for their application in many

disciplines, a systematic review and an extensive similarity analysis of community discov-

ery methods in multiplex networks is performed in this thesis (Section 3.5 and Appendix

A). The thesis benefits from the multi-layer framework and its applications in multiplex

networks to suggest an innovative model for topic-based interactions on Twitter (Section

3.6.2 and Appendix E). It also shows a possible incorporation of users’ participation in

public discussions on social media into a multiplex network that models direct inter-

actions among users in addition to their topical interests (Section 3.6.1 and Appendix

D).

As shown throughout the thesis, the task of community discovery in social networks is

not completely parameterless. On the contrary, there are plenty of decisions to make

throughout that process and each of these decisions may largely affect the recovered

patterns and the way they can be interpreted. As shown in Figure 4.1, a community

discovery task typically goes through four phases, namely, (i) the modeling phase, (ii)

the community discovery phase, (iii), the evaluation phase, and (iv) the interpretation

phase. In each of these phases, there are plenty of available choices in the literature

without clear guidance on why choosing one and neglecting the others is preferred.

On one hand, this sheds a light on the importance of investigating a clear and precise

reasoning behind each choice and the impact that has on what can be claimed about

the recovered patterns qualitatively. On the other hand, one might question, to which

extent this availability of choices without a clear guidance affects the reliability of com-

munity discovery as a tool for testing hypothesis?. In my personal humble opinion, the

availability of such choices at each step provided, to some extent, a tunable black box,

the community discovery tool, which, in many cases, can be tuned to support certain

hypothesis and reject others.

A possible choice in the modeling phase is the multi-layer model. This model is mo-

tivated by the fact that different relationships/interactions in complex systems are in-

terdependent on each other and neglecting these dependencies can yield to misleading

or incomplete findings. The question, however, is whether the multi-layer model really
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Figure 4.1: A pipeline of the main phases a community discovery task typically goes
through

leverages information about these dependencies as it promises, and/or whether multi-

layer network analysis tools are designed to take into consideration different levels of

dependencies across layers other than the uniform full dependency (i.e., the one that

results the pillar community structure). For example, assume a multiplex network con-

stituted of two layers L1, L2 that are not completely dependent on each other but with

a dependency p equals to 0.5 (meaning that the existence of an edge between two actors

in one layer might cause an edge between them in the other layer with a probability

equals to 0.5). This means that part of the edges in L1 are caused by edges in L2 and

the rest are independent, and vice versa. For an accurate recovery for the ground truth

communities in this case, a multi-layer community discovery task should be able to dif-

ferentiate between the two types of edges. Here I ask whether the inter-layer edges in the

multi-layer model are meant to leverage such information about the dependencies and if

yes whether multi-layer community discovery treats inter-layer edges as such. This is to

say that it is of great importance for future research to investigate the meaning of inter-

layer edges in the multi-layer model, what information they convey about the modeled

system and whether that is aligned with how different multi-layer network analysis tools

in general and community discovery in particular process them.

As shown in our review of multiplex community discovery, the more we move away from

the pillar community model, the more the accuracy drops and the differences between

various algorithms become apparent. Indeed, the lack of clear conceptualizations of

multi-layer communities into multi-layer edge patterns and lack of research on which

layers to include in a multi-layer network for community discovery tasks makes it hard

to tell whether this disagreement comes from different interpretations for multi-layer

communities, or different responses to the existence of layers that do not positively

contribute to the community structure.
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Multi-layer community discovery has provided a tool to reveal community structures

that can not recovered by analyzing the layers separately or in a collapsed graph. While

research on synthetically generated multi-layer networks provided multiple examples to

support that claim, there is no enough evidence yet that patterns recovered by multi-

layer community discovery in real-world data correspond to qualitatively meaningful

clustering of the nodes. Most of the research on real-world multi-layer networks provided

a ground truth clustering and showed that the layered representation is better compared

to the other variants in its ability to recover patterns that are closer to the ground truth.

Apart from the fact the ground truth assumption itself can be questionable as discussed

by [23], this approach does not consider the by-chance factor that might favor the layered

representation only because its ability to recover the ground truth communities is by

chance.

4.2 Future work

The multi-layer model has provided a useful tool to model a variety of complex systems.

This allowed the task of community discovery to reveal network patterns that can not

be revealed by analyzing the layers separately or integrating them in a collapsed graph.

In the light of what is discussed in the previous section, I invite more research in the

following areas

Layer selection in multi-layer networks: While the layered representation

may reveal community structures that can not be revealed should the relationships

had been analyzed separately or integrated in a collapsed graph, it can also obscure

the community structure in some cases where the layered representation is not

necessary as discussed by [67]. The work proposed by the authors provides a

significance test to help deciding whether the layered representation is preferred

over the collapsed one or not. More research in this direction can be done to select

the layers that contribute positively to a community structure (not necessarily a

pillar one) before rejecting the layered representation assumption.

Conceptualizing multi-layer communities to multi-layer edge patterns:

More importantly than proposing new multi-layer community discovery methods,

it is very important to conceptualize what a multi-layer community is first in terms

of multi-layer edges patterns (as done in section 2.2 for mono-layer communities).

This step is trivial to be able to provide consistent qualitative interpretations for

the outputs of multi-layer community discovery methods.
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Customized coupling strategies The fact that most multi-layer community

discovery methods reward the co-occurrence of two connected nodes of an actor in

one community makes the coupling type chosen to couple nodes across different

layers of great importance. Two types of coupling strategies have been used in

the literature, namely, complete coupling, which is usually used with multiplex

networks and it couples each pair of nodes of an actor together, and adjacent

coupling that is used with time-dependent networks and it couples each node with

its replica in the previous layer. While this way of coupling seems to be intuitive,

when the community structure is different from the pillar model, these uniform

coupling strategies can force communities to expand over multiple non-dependent

layers and the resulted communities would be an artifact of the model rather than

actual multi-layer communities. More research on proposing more complex non-

uniform coupling strategies is needed so it prevents the multi-layer model from

forcing/favoring specific community structures.
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A multiplex network models different modes of interaction among same-type entities. A great deal of attention
has been devoted to the community detection problem in multiplex networks, that is, revealing meaningful
patterns of node groupings into communities by considering different types of interactions among them. In
this article, we provide the reader with a taxonomy on the community detection algorithms in multiplex
networks. We characterize the different algorithms based on various properties and we discuss the type of
communities detected by each method. We then provide an extensive evaluation of the reviewed methods
according to different criteria trying to answer three main questions - to what extent the evaluated methods
are able to detect ground truth communities, to what extent different methods produce similar community
structures and to what extent the evaluated methods are scalable. The ultimate goal of this survey is to drive
scholars and practitioners in choosing the right method for the data and the task at hand.
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1 INTRODUCTION
. Multiplex network analysis emerged as a promising approach to investigate complex systems in

the real world. A multiplex network is a compact network model used to represent multiple modes
of interaction or different relationships among entities of the same type (e.g. people). These models
have been used to study a large variety of complex systems across different disciplines ranging
from living organisms and human societies to transportation systems and critical infrastructures.
For example, a reasonably effective description of the full protein-protein interactom1 in the human
body requires, for some organisms, up to seven distinct modes of interaction among thousands
of protein molecules [12]. Another example is in air transportation systems when modeling the

1an interactom is the totality of protein–protein interactions that happen in a cell, an organism or a specific biological
context
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connections between airports through direct flights; here, the different commercial airlines can be
seen as different modes of connections among airports [9].

Figure 1 shows a typical layered representation of a multiplex network, where each of the layers
corresponds to a type of interaction, and nodes in different layers can be associated to the same
actor, e.g. the same person or the same airport. Here, we adopt the term actor from the field of social
network analysis, where multiplex networks have been first applied, and the term layer from recent
generalizations of the original multiplex model [13]. Let A = {a1,a2, . . . ,am} be a set of actors and
L = {l1, l2, . . . , ln} be a set of layers, where each layer represents a different type of relationship
among actors in A. Layers are not required to contain all actors. The existence of an actor in a layer
is represented as a unique node in that layer. When an actor is existent in two or more layers, this
is represented as distinct nodes (one per layer), with inter-layer edges that connect them to denote
that they belong to the same actor. A multiplex network is defined as a graph G = (V ,E) where
V ⊆ A× L is the set of nodes and E is a set of intra-layer edges connecting nodes on the same layer.

Fig. 1. A toy-example of a multiplex network with two types of interaction among five actors. This is
represented as five nodes replicated in two layers. The two nodes representing the same actor (e.g. the same
person) are linked by a dotted line

. A core task in social network analysis is to identify and understand communities, also known as
clusters or cohesive groups; that is, to explain why groups of entities (actors) belong together based
on the explicit ties among them and/or the implicit ties induced by some similarity measures given
some attributes of these entities. Since members of a community tend to generally share common
properties, revealing the community structure in a network can provide a better understanding of
the overall functioning of the network. Community detection methods on simple graphs are not
sufficient to deal with the complexity of the multiplex model. Thus, multiplex community detection
was introduced to leverage various interaction modes among the studied entities when grouping
them into communities and give more qualitatively interpretable results.

. Given the emergence of multiplex networks and the importance of the community detection
task in network analysis, several community detection algorithms for multiplex networks have
been recently proposed, based on different definitions of community and different computational
approaches. This article provides a systematic review and experimental comparison of existing
methods to simplify the choice and the set up of the most appropriate algorithm for the task at
hand. At the same time, our review will highlight weaknesses and strengths of specific methods
and of the current state-of-the-art as a whole.

ACM Computing Surveys, Vol. 42, No. , Article . Publication date: January 2019.
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. Recent works have provided a partial overview of the field. [22] proposed some criteria to
compare multi-layered community detection algorithms, but without providing experimental
evaluation. Similarly, [6] highlighted the conceptual differences among different clustering methods
over attributed graphs, including edge-labeled graphs that can be used to represent multiplex
networks, but only provided a taxonomy of the different algorithms without any experimental
analysis. [28] instead performed a pairwise comparison of the different clusterings produced by
some existing algorithms.

. In this work we provide a theoretical as well as experimental comparison of existing multiplex
community detectionmethods, including several algorithms and approaches not covered by previous
studies. Multiplex community detection algorithms are organized into a taxonomy and characterized
by various properties making it easier for practitioners to decide which algorithm to use for the
data and task at hand. We also analyze the accuracy of the different methods with respect to a given
ground-truth on both synthetic and real-world networks and we study their scalability in terms of
the size of the multiplex vertically (i.e., number of layers) and horizontally (i.e. number of actors).

. The focus of this survey is on algorithms explicitly designed to discover communities in
multiplex networks through the analysis of the network structure. Several community detection
algorithms have been proposed that deal with multi-relational network models which, however,
are not compliant with the multiplex model we are taking into account. Notable examples include
algorithms designed to deal with networks that allow different types of actors, e.g., Heterogeneous
Information Networks [37–39, 45] and Bipartite Networks [2, 17]. Since we focus on methods
exploiting networks’ topology, graph clustering on attributed multi-layer networks [5, 27, 32, 34,
35, 43, 46] will not be included in our analysis. For a survey on attributed graph clustering we refer
the reader to [6].

. The rest of this work is organized as follows. In Section 2 we introduce a taxonomy of existing
multiplex community detection methods. Section 3 discusses different types and properties of
multiplex communities. Section 4 presents the experimental settings and the evaluation datasets
used in our experiments for which the results are provided in Section 5. We summarize our main
findings and indicate usage guidelines emerged from our experiments in Section 6. Finally, Section 7
concludes the survey.

2 A TAXONOMY OF THE REVIEWED ALGORITHMS
In this section we provide a taxonomy of multiplex community detection methods. We classify the
main existing algorithms according to this taxonomy. Figure 2 and Table 1 show an overview of
the related methods.

. Our taxonomy is constituted of three levels of comparison among multiplex community de-
tection methods. The top-level distinction answers whether the method is global or local. Global
methods are designed to discover all possible communities in a network, thus requiring knowledge
on the whole network structure. Conversely, local methods (also known as node-centric) are query-
dependent, i.e., they are designed to discover the (local) community of a set of query nodes as an
input.

. The second level of distinction concerns how the method solves the multiplexity problem.
Three main approaches, illustrated in Figure 3, have been used to solve this problem. The first
approach, flattening, consists of simplifying themultiplex network into a simple graph bymerging its
layers, then applying a traditional (i.e., designed for simple graph) community detection algorithm.
The second approach, layer-by-layer, consists of processing each layer of the multiplex network

ACM Computing Surveys, Vol. 42, No. , Article . Publication date: January 2019.
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Fig. 2. A taxonomy of multiplex community detection algorithms

separately, then aggregating the resulting solutions. The third class of algorithms, multi-layer,
operates directly on the multiplex network model.

. The third level in our taxonomy corresponds to a fine-grained distinction that defines the
mathematical tools used to identify the multiplex communities. Flattening branch distinguishes
between non-weighted flattening and weighted flattening. The latter reflects some structural proper-
ties of the multiplex network in the form of weights assigned to the output simple-graph edges,
and then uses a traditional community detection method for weighted graphs. Layer-by-layer
has four branches: pattern mining, matrix composition, consensus matrix and spectral clustering.

ACM Computing Surveys, Vol. 42, No. , Article . Publication date: January 2019.
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Table 1. Multiplex community detection algorithms covered in this survey

Algorithm Notation Reference
Non-Weighted Flattening NWF [3]
Weighted Flattening (Edge Count) WF_EC [3]
Weighted Flattening (Neighbourhood) WF_N [3]
Weighted Flattening (Differential) WF_Diff [23]
Cluster-Based Similarity Partitioning Algorithm CSPA [42]
Canonical Correlations Analysis CCA [42]
Frequent pattern mining-based community discovery ABACUS [4]
Subspace Analysis on Grassmann Manifolds SC-ML [14]
Ensemble-based Multi-layer Community Detection EMCD [40]
Principal Modularity Maximization PMM [41]
Generalized Louvain GLouvain [21]
Locally Adaptive Random Transitions LART [24]
Multi Layer Clique Percolation Method ML-CPM [1]
Modular Flows on Multilayer Networks Infomap [11, 15]
Multi Dimentional Label Propagation MLP [7]
Multilayer local community detection ML-LCD [19]
Andersen-Chung-Lang cut ACLcut [20]

The former detects communities in each layer separately using a simple-graph community detec-
tion, then makes use of pattern mining algorithms to aggregate the resulting communities. The
matrix-composition-based methods identify structural features from each layer of the network
via modularity analysis, and then integrate them to identify community structure among actors.
The consensus-matrix-based methods combine multiple solutions over the various layers to infer a
single community structure that is representative of the set of layer-specific community structures.
Finally, the spectral-clustering-based methods combine the characteristics of individual graph layers
to form a low dimensional representation of the original data, then makes use of spectral clustering
to identify the multiplex communities. Multi-layer includes clique-based methods, which exploit
the concept of multi-layer clique to identify multiplex communities, random walk-based methods,
which introduce a multi-layer random walker that can traverse interlayer edges, modularity-based
methods, which define a multi-layer modularity function and optimize it to produce the community
structure solution, label propagation methods, which utilize a multi-layer affinity measure among
actors given their connections on different layers and then use a labeling method for the actors
controlled by these affinity scores, and within-group connectivity for local methods, which define a
multi-layer within-group connectivity function for the multiplex community and try to maximize
that function.

3 DEFINITION OF MULTIPLEX COMMUNITY
The output of a community detection algorithm for multiplex networks is a set of communities C
= {C1,C2, . . . ,Ck } such that each community contains a non-empty subset of V . We will also use
cluster as a synonym of community, when it is clear from the context that we are referring to the
set of nodes assigned to a community, not to the subgraph underlying a community; an analogous
remark applies to clustering as a set of communities. Figure 4 illustrates different possible types of
clusterings on a multiplex network.
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(a)

(b)

(c)

Fig. 3. Three main global approaches to discover communities in multiplex networks. a) Flattening approach,
b) layer by layer approach, and c) multi-layer approach

. A clustering C is total if every node in V belongs to at least one community, and it is partial
otherwise.We also call a clusteringnode-overlapping if there is at least a node that belongs tomore
than one cluster, otherwise the clustering is called node-disjoint. Analogously, if there is at least
an actor belonging to more than one cluster we call the clustering actor-overlapping, otherwise
it is called actor-disjoint. Notice that a node-overlapping clustering is also actor-overlapping,
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(a) Total (b) Partial

(c) Node-overlapping (d) Node-disjoint

(e) Actor-overlapping (f) Actor-disjoint

Fig. 4. Different types of clustering on a multiplex network

while an actor-overlapping clustering may or may not be node-overlapping. Table 2 reports the
type of clustering produced by each reviewed method. In addition, a multiplex community is called
pillar if all the nodes of each actor included in the community are covered by that community and
semi-pillar if the majority (but not all) of the nodes of each actor included in a community belong
to that community (Figure 5).

. In their survey work, [22] discussed a classification framework based on a set of desired
properties for multilayer community detection methods. These properties are: multiple layer
applicability, consideration of each layer’s importance, flexible layer participation (i.e., every
community can have a different coverage of the layers’ structure), no-layer-locality assumption
(e.g., independence from initialization steps biased by a particular layer), independence from the
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(a) Pillar communities (b) Semi-pillar communities

Fig. 5. Pillar and semi-pillar multiplex community structures

Table 2. Types of clustering featured by the reviewed methods. (*) indicates that the answer depends on the
single-layer clustering algorithm used by the method.

Algorithm Actors Nodes Coverage
NWF * * *
WF_N * * *
WF_Diff * * *
CSPA Disjoint Disjoint Total
CCA Disjoint Disjoint Total
ABACUS Overlapping Disjoint Partial
SC-ML Disjoint Disjoint Total
EMCD Disjoint Disjoint Total
PMM Disjoint Disjoint Total
GLouvain Overlapping Disjoint Total
LART Overlapping Disjoint Total
ML-CPM Overlapping Overlapping Partial
Infomap Overlapping Overlapping Total
MLP Disjoint Disjoint Total

order of layers, algorithm insensitivity, and overlapping layers (e.g., two or more communities can
share substructures over different layers).

. We observe that the first of the above listed properties (i.e., multiple layer applicability) should
be true for all methods, therefore we do not elaborate on this further. By contrast, the second
property (i.e., consideration of each layer’s importance) deserves a clarification. Also, both properties
about independence from node/layer order express a non-deterministic behavior of the community
detection method, therefore we will treat them as a single property. The insensitivity property (i.e.,
independence or robustness against main tunable input parameters) is instead specialized into two
properties: one referring to whether the number of communities is automatically derived or is an
input parameter, and one about whether an output multiplex community may contain a subset of
the layer-relations (instead of just being an induced subgraph of the community node set).
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In light of the above considerations, we next define four properties in addition to the characteristics
previously discussed in Section 3. Table 3 organizes the reviewed methods according to the four
properties.

• P1: Layer relevance weight distribution. Some methods may take into consideration each
layer’s importance, thus allowing the assignment of different weights to the layers in order
to control their contribution to the computation of the multiplex community structure. Such
layer weights could be learned based on the layer characteristics, or could be user-provided
based on a-priori knowledge (e.g., user preferences).

• P2: Determinism. This refers to whether a method has a deterministic behavior, i.e., its
output is independent from the order of examination of the nodes and/or layers.

• P3: Auto-detection of the number of communities. Some methods expect the number
of communities to be decided ahead of time while other methods can automatically define
the number of communities.

• P4: Community structure inference. The default is that the structure of the communities
corresponds to the multiplex subgraph induced by the communities’ node-sets, i.e., the
internal and external links of the communities coincide with all links from the multiplex
graph. Nevertheless, a method might detect communities such that the set of layers is only
partially exploited to infer the community structure solution, e.g., in order to optimize the
multilayer-modularity of the solution [40].

Table 3. Algorithmic properties featured by the reviewed methods. (*) indicates that the answer depends on
the single-layer clustering algorithm used by the method. (-) indicates that this feature is not measurable

Algorithm P1 P2 P3 P4
NWF × * * *
WF_N × * * *
WF_EC × * * *
WF_Diff ✓ * * *
CSPA × ✓ × ✓
CCA × ✓ ✓ ✓
ABACUS × * ✓ ×
SC-ML ✓ ✓ × ×
EMCD ✓ ✓ × ✓
PMM × × ✓ ×
GLouvain ✓ × ✓ ×
LART × ✓ ✓ ×
ML-CPM × ✓ ✓ ×
InfoMap × ✓ ✓ ×
MLP × × ✓ ×
ML-LCD ✓ ✓ - ×
ACLcut × ✓ - ×

4 EXPERIMENTAL EVALUATION
We devised an experimental evaluation to pursue two main goals in comparing the various methods:
one relating to the quality of the produced communities, the other to efficiency aspects. More
specifically, our experiments were carried out to answer the following research questions:
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Q1 To what extent do the evaluated methods produce similar community structures?
Q2 To what extent are the evaluated methods able to detect ground truth communities?
Q3 To what extent are the evaluated methods scalable?
We used three types of datasets: (i) a selection of real datasets widely used in the literature,

whereby two of which are associated with available ground-truth, (ii) benchmark datasets generated
using themLFR framework [8], and (iii) synthetic datasets generated after forcing specific community
structures (Figure 6). General information about the used multiplex networks including the mean
and standard deviation over the layers for density, degree, average path length and clustering
coefficients are reported in Table 4. More detailed information about the evaluation datasets used
in the experiments are provided the Appendix.

Table 4. Summary of structural characteristics of the evaluation networks: number of layers (#l),
number of actors (#a), number of nodes (#n), number of edges (#e), and mean/std over the layers of density
(a_den), node degree (a_deg), average path length (a_p_len), and clustering coefficient (ccoef)

Network #l #a #n #e a_den a_deg a_p_len ccoef
1 Airports 37 417 2034 3588 0.0603±0.0194 3.53±7.22 2.25±0.34 0.07±0.08
2 Aucs 5 61 224 620 0.124±0.0725 5.54±4.12 2.43±0.73 0.43±0.1
3 Dkpol 3 493 839 20226 0.068±0.0827 48.21±68.1 3.43±1.32 0.24±0.26
4 Rattus 6 2640 3263 3956 0.052±0.0697 2.42±15.35 2.75±2.22 0.03±0.08

(a) Real datasets

Network #l #a #n #e a_den a_deg a_p_len ccoef
1 PEP 3 100 300 1305 0.07 ±0 7.28 ±0.1 3.33 ±0.06 0.53 ±0.01
2 PEO 3 100 300 1891 0.11 ±0 11.11 ±0.39 2.54 ±0.06 0.47 ±0.03
3 PNP 3 100 300 2051 0.12 ±0 12.31 ±0.27 2.93 ±0.05 0.62 ±0.01
4 PNO 3 100 300 2724 0.17 ±0 16.63 ±0.31 2.31 ±0.07 0.59 ±0.01
5 SEP 3 100 300 1238 0.07 ±0.01 6.93 ±0.57 3.37 ±0.26 0.53 ±0.03
6 SEO 3 100 300 1592 0.09 ±0.02 9.17 ±1.96 2.91 ±0.36 0.49 ±0.04
7 NNM 3 100 300 1108 0.07 ±0.05 6.85 ±5.35 2.42 ±0.48 0.42 ±0.36
8 NHN 3 100 300 2525 0.16 ±0.09 15.39 ±8.61 2.63 ±0.53 0.61 ±0.07

(b) Synthetic datasets with a controlled community structure

Two main stages of evaluation were devised: one for global methods (Sect. 5.1), whose output
is a set of communities covering the whole network, and one for local methods (Sect. 5.2), whose
output is a single community centered around a node (or set of nodes). Due to their structural
differences, these two tracks had to be evaluated separately and by means of different criteria.

Selection of the methods: For flattening and layer-by-layer categories, we chose to carry out
our experiments only on representative methods for each class. The reason behind this is that these
approaches still try to map the problem of multiplex community discovery to either an aggregation
of single-layer solutions or a community discovery on an aggregated representation of the multiplex
to simple graph like representations. More specifically, we made the subsequent choices:

• Concerning Flattening approaches, to stay within the scope of this survey, we tried to focus
mainly on the flattening as a concept rather than on the choice of the underlying single-layer
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(a) Pillar Equal Partitioning (PEP) (b) Pillar Equal Overlapping (PEO)

(c) Pillar Non-Equal Partitioning (PNP) (d) Pillar Non-Equal Overlapping (PNO)

(e) Semi-pillar Equal Partitioning (SEP) (f) Semi-pillar Equal Overlapping (SEO)

(g) Non-pillar Hierarchical Non-Equal
(NHN)

(h) Non-Pillar Non-Equal Mixed (NNM)

Fig. 6. An illustration of 8 synthetic multiplex networks generated for different possible multiplex community
structures
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algorithm. Thus, we then include two flattening methods [3], namely non-weighted flattening
(NWF), and edge-count weighted flattening (WF_EC). We used label-propagation [33] and
InfoMap [11, 15] for non-weighted and weighted community detection, respectively.

• As for layer-by-layer approaches, we chose ABACUS [4] which is one of the earliest methods
in this class; for the aggregation step, we used label-propagation as suggested by the authors.

Conversely, we preferred to focus on multi-layer approaches, covering the most relevant state-
of-the-art methods in literature.

Parameter setting.We used the default values proposed by the original works. In some specific
cases, where the parameter setting is known to have a higher bias on the results (i.e., GLouvain,
ML-CPM, ABACUS, ACLcut, ML-LCD, and Infomap), we made the following choices for the input
parameters:

• GLouvain: we defined two settings, GLouvain(hOm) to denote high weight assigned to the
inter-layer edges (ω = 1), and GLouvain(lOm) to refer to low value for the inter-layer edge
weight (ω = 0.1). The motivation is that high values for ω favor the identification of pillar
communities and may prevent the identification of actor-overlapping communities that the
algorithm can retrieve with a low ω.

• ML-CPM: two main parameters could bias the results and have a huge impact on the compu-
tational complexity of the algorithm, namely, the minimum number of actors that form a
multi-layer clique (min-m), and the minimum number of layers to be considered when count-
ing the multi-layer cliques (min-n). To be more inclusive, we defined two settings for these
parameters,ML-CPM(31) with (min-m=3, min-n=1) which allows single-layer communities
but could be computationally very expensive with large networks, and ML-CPM(42) with
(min-m=4, min-n=2) which is less expensive computationally, but forces the communities to
be expanded over at least two layers.

• ABACUS: two main parameters have effect on filtering out possible multiplex communities
during the aggregation phase, namely, the minimum number of actors in a community (min-
m) and the minimum number of single-layer communities in which the actors must have
been grouped together (min-k). We use this algorithm with two settings, one ABACUS(31)
with (min-m=3, min-k=1) and ABACUS(42) with (min-k=4, min-k=2) which filters out the
communities that are not expanded over multiple layers.

• Infomap: this can be used to find both overlapping and non-overlapping communities. Conse-
quently, we included it twice in our experiments, i.e., forcing a non-overlapping community
discovery Infomap(no), and accepting overlapping communities Infomap(o).

• ACLcut: two settings were used. One with a classical random walker ACLcut(c), and another
with a relaxed random walker ACLcut(r ).

• ML-LCD: settings referred to the three different definitions to optimize the LC function
during the selection of nodes to join a local community, namely, ML-LCD(lwsim), for the
layer-weighted similarity based LC , ML-LCD(wlsim) for the within-layer similarity based LC ,
andML-LCD(clsim) for the cross-layer similarity based LC .

Assessment criteria. In order to measure pairwise similarity between two global community
structures, we use the Omega-index which is a well known measure [10] that can be applied
to situations where both, one, or neither of the clusterings being compared is non-disjoint (i.e.,
overlapping) [31]. It does so by simply averaging the number of agreements on both clusterings
and then adjusting that by the expected agreement between both clusterings in case they were
generated at random. An agreement is when a pair of nodes are grouped together for the same
number of times j in both clusterings. The values of j starts from 0, meaning that if a pair does not
appear together in either clustering, this still counts as an agreement. Given two clusterings C1, C2,
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the similarity between them using Omega index is given by

Omega (C1,C2) =
Observed (C1,C2) − Expected (C1,C2)

1 − Expected (C1,C2)
(1)

Observed (C1,C2) =
1
N

l∑
j=0

Aj (2)

Expected (C1,C2) =
1
N 2

l∑
j=0

N(j,1) ∗ N(j,2) (3)

Where Observed (C1,C2) refers to the observed agreement represented by the average number of
agreements between C1 and C2, l is the maximum number of times a pair appears together in both
C1 and C2 at the same time, N is the total number of possible pairs, Aj is the number of pairs that
are grouped together j times in both clusterings, and N(j,1), N(j,2) is the number of pairs that have
been grouped together j times in C1, C2 respectively. Theoretically, omega-index values are in the
range [-1,1]. However, in practice, Omega-index returns 1 for two identical clusterings, and values
close to 0 when one of the two input clusterings is a totally random reordering of the other one.
The reason why we choose the Omega-index for this purpose is that it is, by definition, a valid

measure when one, both or none of the two clusterings is non-disjoint as we discuss in a previous
study for community evaluation metrics [18]. In addition, Omega-index is an adjusted similarity
measure that accounts for the by-chance agreements that might still exist between any two random
clusterings over the same node-set.

For measuring similarity between two local communities s1, s2, we use Jaccard coefficient as:

JC =
N (s1, s2)

N (s1) + N (s2) − N (s1, s2) (4)

where N (s1) refers to the number of actors in solution s1 and N (s1, s2) refers to the number of
common actors between two solutions s1, s2. The values of Jaccard coefficient lie in the range [0,1]
where 1 means perfect similarity and 0 means perfect dissimilarity.

In order to measure the accuracy of the solutions obtained by global methods with respect to a
ground truth (Section 5.1.3), we resort again to Omega-index. Note that for the real-world networks
we used, the provided ground-truth is a complete node-partitioning, i.e., every node in the multiplex
is assigned to only one community. Since this would introduce a bias in the accuracy obtained
by some methods (i.e., overlapping methods and methods which allow nodes with no community
memberships), we computed two accuracy scores for each method: full accuracy (F), which refers to
the similarity between the original community structure produced by a method and a ground truth,
and intersection accuracy (I), in which all nodes that are not assigned to at least one community
have been removed from both the community structure and the ground truth.
The accuracy of local community detection methods (Section 5.2.2)) has been evaluated by

comparing pairwise similarities (using Jaccard-index) between a given actor (i.e., seed node) and
the ground truth community it belongs to. The average Jaccard-index over all actors is then used
as the final accuracy score.

5 RESULTS
In this section we will present the experimental results of our comparative evaluation. Results of
the comparative evaluation of global methods are reported in Section 5.1, while results related to
the evaluation of local methods are reported in Section 5.2.
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5.1 Global Methods
In this section we will report the experimental results of the comparative evaluation of global
multiplex community detection methods. The section is structured as follows: Section 5.1.1 reports
on the main structural properties of the community structures detected by the evaluated methods in
different datasets. Section 5.1.2 discusses the results of the pairwise comparison between different
methods. Section 5.1.3 presents the results of the accuracy analysis, while finally Section 5.1.4
focuses on scalability.

5.1.1 Basic descriptive statistics. As the first step of our comparative analysis, we analyzed the
structural properties of the different community structures identified by the evaluated methods.
Table 5 reports on the statistics concerning the community structures obtained on the smallest
(Aucs) and largest (Airports) of the real-world multiplex networks taken into account; statistics
for the other real-world networks are reported in the Appendix. In Table 5, we denote with #c the
number of communities, with sc1 the size of the largest community, with sc2/sc1 the ratio between
the size of the largest community to the second largest, with %n the percentage of nodes assigned
to at least one community, with %p the percentage of pillars, with %ao the percentage of actors in
more than one community, with %no the percentage of nodes in more than one community and
with %s the percentage of singleton communities.

These statistics should be observed bearing in mind that some of them are not significant in
all cases, i.e., depending on the properties of each algorithm reported in Table 3. For instance,
flattening methods will always return pillar communities, while some algorithms are forced to
assign each node to at least one community. Properties also act as an indirect bias, e.g., the number
of communities detected by methods allowing overlapping solutions is likely to be higher than that
of algorithms producing disjoint communities (in terms of nodes and/or actors).
While we show results averaged over 10 runs, in order not to clutter the results visualization,

we do not show standard deviation. We do this since it does not apply to deterministic methods
(i.e., it is always zero). Moreover, even for the non-determistic ones, it does not bring any relevant
information to the discussion.
It can be observed how LART generates a number of communities which is higher than that of

most other methods on all real networks. However a large percentage of these communities appear
to be singletons, indicating that this algorithm mostly fails in aggregating nodes into communities.
Other algorithms which appear to generate a relatively high number of communities regardless of
the network structure areMLP and ABACUS(31). Interestingly, whileMLP still identifies a significant
number of singletons, the number of singletons for ABACUS(31) is always zero. As regards to the
size of the largest community, higher values correspond to WF_EC and Infomap (both variants) on
all networks, while LART, ABACUS andML-CPM (except on Arxiv) tend to show smaller values.
Concerning sc2/sc1, we can observe how the values tend to be all relatively high for the smallest
(Aucs) and largest (Airports) network, indicating that in these cases the larger communities for
each identified community structure have comparable sizes. Interestingly, strong imbalances can
arise in the community structures identified for medium-sized networks: values both close to zero
and close to one can be observed for Airports, Dkpol and Rattus, however no particular trends can
be identified in the different methods’ behavior (except for a tendency towards higher values for
ABACUS andML-CPM).

The percentages of %n, %p, %ao and %no mostly depend on the properties of each method.
• With regards to the percentage %n of nodes assigned to at least one community, as we
discussed in Section 3, certain methods1 are forced to provide a community assignment for

1NWF, WF_ECGLouvain (both variants), LART, Infomap (both variants)
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each node: in these cases the value of %n will be always 1.00. As regards the other methods, we
can observe how ML-CMP(42) and ABACUS(42) are unable to detect community assignments
for a majority of nodes on almost all networks: same observation applies to MLP on smaller
networks (i.e., Airports and Aucs).

• The percentage %p of pillars, both flattening methods always return pillar communities
(that is trivial, since the information about layers is lost during the flattening process). Both
variants of Infomap also always return pillar communities, and, in most cases, both variants
of GLouvain (with some exception for Dkpol and Aucs).

• The percentage of actors (%ao) and nodes (%no) mainly depends on the properties of the
specific methods whether they allow overlapping (on the node level or the actor level) or not.

• The percentage of singleton communities %s appears to be extremely high in the case of
LART, as discussed earlier, and significant (but reasonable) in the cases of NWF and MLP.

5.1.2 Pairwise comparison analysis. In order to answerQ1 (i.e., “To what extent do the evaluated
methods produce similar community structures?”, cf. Section 4), we set up an evaluation stage based
on pairwise comparison between the selected methods, i.e., in order to determine the similarity
between the community structures produced by each couple of methods on each network.

We structured the analysis on different sub-stages, depending on the nature of the method and of
the network. More specifically:2

• Figures 7–8 report on the results of pairwise analysis among node-partitioning methods on
real-world and synthetic networks, respectively;

• Figures 9– 10 report on the results of pairwise analysis among node-overlapping methods on
real-world and synthetic networks, respectively.

All results are organized as heatmaps reporting the Omega-index values for the pairwise similar-
ities.3 We show Omega-index values in the main paper for a matter of homogeneity, i.e., since
NMI cannot be applied to overlapping solutions. We provide NMI values for the node-partitioning
methods on real-world and synthetic networks in the Appendix.

Figure 7 reports results regarding node-partitioning methods using real-world networks. On the
smallest network (Aucs), we can observe significant similarities between the community structures
identified by Infomap(no) and the two variants of GLouvain (with higher values forGLouvain(hOm));
some significant similarities also arise between Infomap(no) and MLP. As for Airports, significant
similarities can only be identified between the two variants of GLouvain - possibly indicating that
a high number of layers can emphasize differences between the methods. On Dkpol, we observe a
perfect correspondence between Infomap(no) and WF_EC, that can be explained with the fact that
Infomap(no) is the algorithm used to detect communities on the flattened network (cf. Section 4).
Similarity between the two variants of GLouvain is confirmed also in this case. A different behavior
can be observed on Rattus, where major similarities arise among the two variants of GLouvain,
NWF andMLP.
A completely different scenario can be observed for synthetic networks (Figure 8), which are

produced with controlled community structures. Similarities are generally much higher than the
ones observed for real-world networks, indicating that artificial communities are less noisy and
more recognizable than real ones, as will be confirmed by the accuracy analysis in Section 5.1.3,
resulting in similar outputs from different methods.

2The executions were stopped if not terminated within 24 hours. These cases are left blank in the reported heatmaps.
3We do not show results for the Arxiv network, since computation of Omega-index was too computationally expensive in
this case.
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Table 5. Statistics about the community structures obtained on the Aucs (upper table) and Airports (lower
table) networks (results averaged over 10 runs). We denote with #c the number of communities, with sc1 the
size of the largest community, with sc2/sc1 the ratio between the size of the largest community to the

second largest, with %n the percentage of nodes assigned to at least one community, with %p the percentage
of pillars, with %ao the percentage of actors in more than one community, with %no the percentage of nodes

in more than one community and with %s the percentage of singleton communities

method #c sc1 sc2/sc1 %n %p %ao %no %s
NWF 10.60 94.20 0.54 1.00 1.00 0.00 0.00 0.42
WF_EC 6.00 53.00 0.96 1.00 1.00 0.00 0.00 0.00
MLP 19.60 27.80 0.63 0.50 0.16 0.00 0.00 0.41
GLouvain(hOm) 5.00 60.80 0.87 1.00 0.99 0.00 0.00 0.00
GLouvain(lOm) 5.09 59.60 0.89 1.00 0.53 0.29 0.00 0.00
LART 45.00 33.00 0.66 1.00 1.00 0.00 0.00 0.91
Infomap(no) 6.00 59.00 0.89 1.00 1.00 0.00 0.00 0.00
Infomap(o) 21.00 69.00 0.86 1.00 1.00 0.70 0.74 0.00
ML-CPM(31) 41.00 59.00 0.61 0.83 0.03 0.95 0.76 0.00
ML-CPM(42) 11.00 18.00 0.88 0.37 0.15 0.67 0.40 0.00
ABACUS(31) 50.60 20.70 0.87 0.79 0.03 0.93 0.65 0.00
ABACUS(42) 16.10 18.89 0.88 0.44 0.07 0.58 0.50 0.00

Aucs

method #c sc1 sc2/sc1 %n %p %ao %no %s
NWF 75.40 1482.20 0.07 1.00 1.00 0.00 0.00 0.47
WF_EC 10.00 1846.00 0.04 1.00 1.00 0.00 0.00 0.00
MLP 88.40 30.60 0.72 0.18 0.41 0.00 0.00 0.29
GLouvain(hOm) 9.50 1052.40 0.43 1.00 1.00 0.00 0.00 0.00
GLouvain(lOm) 9.69 1027.90 0.42 1.00 0.99 0.00 0.00 0.00
LART 1822.00 213.00 0.00 1.00 0.09 0.59 0.00 0.99
Infomap(no) 10.00 1855.00 0.03 1.00 1.00 0.00 0.00 0.00
Infomap(o) 35.00 1471.00 0.77 1.00 1.00 0.63 0.92 0.00
ML-CPM(31) 62.00 93.00 0.72 0.44 0.08 0.53 0.13 0.00
ML-CPM(42) 3.00 8.00 1.00 0.01 0.00 0.00 0.00 0.00
ABACUS(31) 20250.80 92.10 0.95 0.88 0.00 0.63 0.78 0.00
ABACUS(42) 11955.50 89.30 0.95 0.66 0.00 0.69 0.84 0.00

Airports

Generally high similarities (i.e., Omega-index above 0.75) can be observed for PEP, PNP and
NHN multiplex networks. The variants of GLouvain, Infomap(no) and Lart produce identical so-
lutions for PEP and identical or nearly identical for PNP. On NHN, Infomap(no), LART andMLP
produce identical communities, while similarities of these methods w.r.t. GLouvain are lower but
still significant. The situation is much different when taking into account semi-pillar community
structures (SEP), where the only identity is between Infomap(no) and GLouvain(hOm). Some signifi-
cant similarities can be observed between MLP, WF_EC and the solution produced by Infomap(no)
and GLouvain(hOm), while other values are less significant.
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Fig. 7. Pairwise comparison among node-partitioning community detection methods using Omega-index, on
real-world networks

With regards to node-overlapping methods, pairwise similarities were relatively low on both
real-world networks (Figure 9) and synthetic ones (Figure 10). The only significant similarities can
be observed on synthetic networks, more specifically betweenML-CPM(42) and ABACUS(42) (on
SEO and NNM) and between Infomap(o) and ABACUS(42) on PNO.
Summing up, we observed that node-partitioning methods may produce similar community

structures on specific cases (i.e., depending on the methods and the target network), suggesting
that, when multiple community memberships are not allowed, some communities will often be
unambiguously recognized in the network topology. Conversely, multiple community memberships
allowed by overlappingmethods end up in extremely variate solutions, i.e., relatively low similarities
are observed regardless of the selected network and pair of methods.

5.1.3 Accuracy analysis. With the aim of answering Q2 (i.e., “To what extent are the evaluated
methods able to detect ground truth communities?”, cf. Section 4), we perform here an extensive
quantitative analysis about the accuracy obtained by each method with respect to ground truth
communities. For real-world networks, only two of them have an available ground truth - specifically
Aucs (i.e., affiliations to research groups) and Dkpol (i.e., affiliation to political parties). All synthetic
networks naturally come with controlled ground truth communities. Please recall that we compute
full (F) and intersection (I) accuracy in order to take into account the bias coming from different
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Fig. 8. Pairwise comparison among node-partitioning community detection methods using Omega-index, on
synthetic networks with node-partitioning communities

constraints in the ground truth and the obtained community structure (i.e., overlapping and
unassigned nodes, cf. Section 4).
Figure 11 reports on the accuracy obtained by the evaluated methods on real-world networks.

It can be observed how accuracy values are relatively low on both networks for all methods, i.e.,
with Omega-index always below 0.8 and often below 0.5. On Aucs, the best performing method is
Infomap(no) (0.61), followed by GLouvain(hOm) (0.56), while noting how some methods reach a near
zero accuracy (i.e., WF_EC, ML-CPM(31)). It is interesting to observe how, even on a small network
like Aucs, the average accuracy is extremely low (0.29), indicating that the size of the network is not
necessarily a factor that influences the methods’ performance in terms of accuracy. The results are
even more variable on Dkpol, where most methods show zero 4 or near zero values. An exception to
this are the two variants of GLouvain, both of which reach accuracies of 0.68 (GLouvain(hOm)) and
0.53 (GLouvain(lOm)) respectively. Moreover, the relatively high values obtained byML-CPM(42)
(0.74) and ABACUS(42) (0.48) for the I accuracy largely depends on the fact that they are calculated
on an extremely small sample of the nodeset, i.e., most nodes do not have a community assigned,
and F accuracies are near zero in both cases.

4Zero values are a result of either identifying a clustering constituted of only one giant component (i.e with NW_EC and
Infomap(no)) or the long execution time that exeeded 24 hours (i.e withML-CPM(31))
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Fig. 9. Pairwise comparison among node-overlapping community detection methods using Omega-index, on
real-world networks

Looking at the results of the node-partitioning methods on the synthetic networks (Figure 12), it
can be noted how accuracies are high (i.e., 1 or close to 1) for most methods on networks with pillar
community structures (PEP and PNP) - with Infomap, LART and GLouvain performing slightly
better than other methods. A drop in accuracy values can be observed in networks with semi-pillar
(SEP) and non-pillar (NHN) community structures, with maximum values around 0.7. However,
Infomap, LART and GLouvain are still the best performing methods, followed by MLP (while both
flattening approaches show lower accuracies).

Different behaviors can be observed when we take into account the node-overlapping methods
on synthetic networks (Figure 13). Accuracy values are generally much lower than in the node-
partitioning case, on all four networks. It is interesting to note how Infomap is the best performing
method on networks with pillar community structure (0.68 on PEO and 0.86 on PNO), while
it shows near zero values for the other two cases. On the networks with semi-pillar (SEO) and
non-pillar (NNM) community structures, ABACUS(31) seems to perform generally better than the
other methods.

Summarizing the conclusions drawn from the analysis on synthetic networks, we observed that
detecting semi-pillar and non-pillar communities appears to be extremely difficult for all methods,
both on node-partitioning and node-overlapping cases. These results may indicate that, even though
multiplex methods are generally able to profitably exploit the information coming from different
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Fig. 10. Pairwise comparison among node-overlapping community detection methods using Omega-index,
on synthetic networks with Node-Overlapping communities

layers (e.g., performing better than flattening methods), they are still not able to fully cope with
“non-standard” multiplex community structures.

As a final remark, the difference in performance between real-world and synthetic networks
confirms how the “ideal” concept of community, i.e., the one based on topological density that is
used to build the synthetic ones and to drive the detection process of the methods, is often far from
the ground truth communities observed in real cases (which are, in turn, often questionable and
subjective). This is a well known problem in the community detection field, and poses challenges
in both ways, i.e., concerning the need to design both more powerful methods and more reliable
ground truths.

5.1.4 Scalability Analysis. In order to answer Q3 (“To what extent are the evaluated methods
scalable?”, cf. Section 4), we tested the scalability of the selected methods with respect to number of
actors and number of layers. We generated 2 groups of synthetic multiplex networks using mLFR
benchmark [8]. More details about these datasets are provided in the Appendix. Figures 14–15
report the scalability of each method with respect to an increment in the number of actors and the
number of layers respectively. Note that in both cases the scalability of the flattening algorithms
largely depends on the one of the community detection method used at the final step, since the
computational cost of the flattening process is irrelevant. Therefore, we chose not to include
flattening methods in our scalability analysis. We chose also not to include different variations of
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Fig. 11. Accuracy with respect to a ground-truth for real-world networks, measured using omega-index.

the same algorithm when they show similar trends in their scalability (for example Infomap(o) and
Infomap(no) are both referred to as Infomap).
For scalability in the number of actors (Figure 14), we performed tests by varying the number
of layers l = 2, 5, 10. Some methods proved to be extremely scalable, more specifically, ABACUS,
Infomap andMLP - all of which could run in a few seconds on networks containing up to 10000
actors for all values of l . Similar results were obtained by GLouvain for l = 2 and l = 5, while
running time increased for l = 10 and a number of actors higher than 5000.ML-CMP and LART
proved to be much less scalable, with a running time strongly dependent on the number of layers.
Moreover, in several cases they were not able to terminate in anreasonable time (i.e., less then an
hour) when increasing the number of actors. The only exception is ML-CMP(42) with l = 2, which
maintains reasonable running times up to 10000 actors.
As regards to the scalability in the number of layers (Figure 15), Infomap, GLouvain andMLP

proved to be extremely scalable, showing running times of a few seconds on networks containing
up to 50 layers. The same thing does not hold for ABACUS, whose scalability is good only up to 20
layers. As for the previous case,ML-CPM and LART confirmed to be the worse algorithms in terms
of scalability.

5.2 Local Methods
In this section we will report the experimental results of the comparative evaluation of local
multiplex community detection methods. The section is structured as follows: Section 5.2.1 reports
on the results of the pairwise comparison between different methods, Section 5.2.2 presents the
results of the accuracy analysis, while Section 5.2.3 discusses scalability issues.

5.2.1 Pairwise comparison. As seen in Section 5.1.2 for global methods, we set up an equivalent
evaluation stage based on pairwise comparison between the local methods. In this case, we resorted
to Jaccard-index to measure the similarity of the community solutions produced by two local
methods. Since these methods are query-dependent (i.e., they return the local community of a
given query/seed node), we computed the Jaccard similarity between each pair of communities
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Fig. 12. Accuracy of node-partitioning methods with respect to a ground-truth, for synthetic networks with
node-partitioning community structure, measured using omega-index.

obtained using the same actor as seed, and then averaged the results over all actors. The standard
deviation of these average values is provided in the Appendix.
Figure 16 reports on the results obtained on real-world networks. On most of these networks

(i.e. Dkpol, Airports, and Rattus), we can note that communities identified by different variants
of ML-LCD and ACLcut tend to be very different. However, by looking at Aucs, the communities
identified by all variants of bothML-LCD and ACLcut tend to be less different and a higher similarity
can be observed among the three variants of ML-LCD.
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Fig. 13. Accuracy of node-overlapping methods with respect to a ground-truth, for synthetic networks with
node-overlapping community structure, measured using omega-index.

For synthetic networks (Figure 17), it can be noted how similarities are higher for networks
based on pillar community structures. In some cases (i.e., PEP and PNP) all methods are practically
interchangeable, with all similarities equal or near to 1.0. In other networks with pillar (i.e., PEO and
PNO), semi-pillar (i.e., SEP and SEO) or both (NNM and NHN) community structures, similarities are
stronger between the different variants of each method. Summing up, we observed some similarities
in the behavior of all local methods on some real-world and synthetic networks, with an expected
tendency of the variants of a same method to identify similar local communities. Nevertheless, this
cannot be taken as a general rule, since we also observed specific cases where all methods behaved
differently from each other, both on real-world and synthetic networks.
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Fig. 14. Group I: Scalability of different community detection methods with respect to the number of actors
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Fig. 15. Group II: Scalability of different community detection methods with respect to the number of layers
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Fig. 16. Average pairwise similarity among the different local methods when the same seed is used as an
input, on real-world networks

5.2.2 Accuracy analysis. We performed an accuracy analysis on the local community detection
methods, by comparing the local community of each actor to the one that same actor belongs to in
the ground truth. As per the previous section, pairwise similarity is computed using Jaccard, while
the final accuracy value is the average over all actors.
Figure 18 shows results on real world networks. On Aucs, accuracy is in the range of 0.5–0.7

for 4 out f 5 methods, withML-LCD(wlsim) being the best performer (0.7). Much lower accuracy
values were obtained on Dkpol, where the best performing method was ML-LC(lwsim) (0.27).

Concerning synthetic networks (Figure 19), the analysis is limited to networks with pillar actor
partitioning community structure (i.e., PEP and PNP), for compatibility with the methods’ output
(i.e, both return actor communities). It is evident how accuracy values are much higher than the
ones observed for real-world networks, with all values in the range of 0.8–1.0. ML-LCD(clsim)
is the best performing method, since it is able to perfectly identify the ground truth community
structure on both networks.

Summarizing, while all methods proved to be able to identify synthetic pillar community struc-
tures, their performance was much worse on real world networks. These results confirm the
behavior observed for global methods (cf. Section 5.1.3). Moreover, it should be pointed out that
comparing a global community structure (i.e., the ground truth) to a set of local ones (i.e., the results
obtained by local methods on all actors) may not be completely fair, but unfortunately no networks
with an associated ground truth of multiplex local communities are available at the time of writing.
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Fig. 17. Average pairwise similarity among the different local methods when the same seed is used as an
input, on synthetic networks

5.2.3 Scalability Analysis. We tested the scalability of local community detection methods in
terms of number of actors and number of layers. To carry out the experiment we used the synthetic
networks already used for the global case (cf. Section 5.1.4). For each network, we present average
execution times obtained on 100 random seeds. For each method, we choose the least scalable
variant as a representative of that method’s scalability.

Figures 20–21 show results related to scalability in terms of number of actors and of layers
respectively. In both cases, ACLcut showed good scalability up to 10000 actors and 50 layers, with
fairly linear trends. On the other hand,ML-LCD was scalable just up to 8000 actors for networks
with 10–layers network. Moreover, its scalability trend with respect to the number of layers seems
to be extremely variable.

6 DISCUSSION
As mentioned in Section 4, the main goal of our experimental study on a high level was to assess
the accuracy, the scalability with respect to the multiplex network size, and the pairwise similarity
of multiplex community detection methods. This allowed us to provide a few guidelines on the
relatively most appropriate method for the data and the task at hand. At the same time, observing in
which cases the selected methods have consistently failed in identifying the communities accurately
allowed us to identify the multiplex community structures that are challenging with the currently
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Fig. 17. Average pairwise similarity among the different local methods when the same seed is used as an
input, on synthetic networks
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Fig. 18. Average accuracy of the local methods with respect to a ground-truth, on real-world networks
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Fig. 19. Average accuracy of the local methods with respect to a ground-truth, on synthetic networks with
actor-partitioning community structures
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Fig. 20. Average scalability of local methods with respect to the number of actors in the multiplex network
for three variants of the number of layers (l=2, l=5, and l=10)
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Fig. 21. Average scalability of local methods with respect to the number of layers in the multiplex network
(standard deviation provided)
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available community detection algorithms. This proposes a set of open problems for community
detection methods in multiplex networks.

Accuracy analysis on synthetic multiplex networks, which were generated after forcing a specific
community structure, has revealed that the various different methods can achieve relatively high
performance when the community structure in the input multiplex is a pillar structure. In this
type of multiplex networks, Infomap appears to outperform other global methods by discovering
community structures that are closer to the ground-truth, whereas ML-LCD(clsim) appears to be
the best choice among the local methods.

With regard to non-pillar community structures, we have observed a considerable reduction in
the achieved accuracy scores for almost all methods. This observation raises the following question:
what kind of assumptions are considered by different methods when multiplex communities are
identified? It is clear that there is a tendency, even if not explicitly declared, to assume that multiplex
communities are pillar communities expanding over all the layers of the multiplex network. For
instance, multi-slice modularity [30] rewards pillar communities when calculating the modularity
score, meaning that any community structure that is not pillar is less optimal, or of lower quality,
than pillar communities. While pillar community structures are perfectly reasonable and can be
observed in many relevant scenarios, we claim that they also represent a simplification of many
real-world scenarios. Assuming that multiplex approaches have been developed and are used
mainly to overcome the oversimplification of monoplex networks, relying on a single type of ideal
community structure seems, at least, a missed opportunity. Thus, more work has to be done on
improving the accuracy of community detection methods for non-pillar community structures.

A second set of considerations can be drawn by looking at the results obtained by the evaluated
methods when applied to real-world datasets. Our experiments have shown that, on real-world
datasets, the community structures detected largely differ from the ground-truth. This raises two
interesting questions: the first question is to which extent is the assumed ground-truth itself a valid
assumption? In other words, does the ground-truth given for a real dataset always describe the
community structures identified by a community detection method, or does it capture only one
part of the whole picture? The answer to this question is never trivial even in monoplex networks.
Nevertheless it is easy to see how adding additional layers of relations makes it further complicated.
For example, both Dkpol and Aucs ground-truths group together individuals belonging to the same
”organization" (political parties in one case and research groups in the other). The question then
becomes whether it is reasonable to assume that the selected relations, observed in the multiplex
networks, will produce a community structure corresponding to this formal grouping, and to some
extent, how different relations (thus different layers) can be more or less aligned with the hypothesis
described above. Will members of the same research group work together, or publish together?
Have lunch and fun together? Will members of the same political party retweet each other on
Twitter, and reply to each other? Indeed, looking at the accuracy of the community structures
identified for the real world dataset, especially in the case of Dkpol, one might ask whether we
are observing a generalized failure of the community detection methods, or conversely, whether
the community detection methods were actually able to observe relevant structures that just were
different from the community structures assumed in the ground-truth.

The second question, which is strongly related to the first one, is whether all the layers included
in these datasets positively contribute to an accurate identification of the community structure in
these datasets, or whether some of them add more noise that heavily affect the identification process.
Indeed, the fact that a community detection method always (or mostly always) gives an output —
no matter what layers are included in the input multiplex network — does not make adding more
layers to the model a good choice. Layers, besides being defined by a specific internal topology, are
also defined by internal logic that might or might not be coherent with those of the other layers.
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The Dkpol dataset represents a good example of this problem since some in-detail analysis of the
three layers composing the multiplex network has shown that retweets and following/follower
interactions follow a relatively associative dynamic for political parties. The replies, however, follow
a negative associative dynamic for political parties. Here we think that more efforts have to be
made in the modelling phase of the multiplex network and some layer-specific measures should be
developed to lead the choice of the layers that contribute to the identification of the communities.
A final consideration should be made about the similarities of the obtained results. Focusing,

for the above-mentioned reason, mainly on the results obtained from the synthetic networks, it
is possible to observe some general patterns. Global partitioning methods show a remarkable
level of similarity in detecting community structures based on a pillar-like model. Semi-pillar
and hierarchical community structures show a lower degree of similarity between the retrieved
community structures. Overlapping methods are less stable and while they still perform better on
pillar communities than on other types of structures, they still show a higher level of diversity on
every different configuration we have tested.

Local methods show a behavior that is, to some extent, similar to the global partitioning methods.
When tested on pillar-communities they show a remarkable similarity between the produced
communities, which can easily lead to calling them interchangeable. Nevertheless, the less pillar-
like the community structure in the data is, the higher the differences seem to be at first between
ACLcut and ML-LCD and then also between the same algorithm.

Scalability analysis of global methods, like ABACUS, Infomap and MLP proved to be extremely
scalable with respect to number of actors in the multiplex network. As regards scalability with
respect to the number of layers, Infromap, GLouvain and MLP proved to be extremely scalable. As
for local methods, ACLcut seems to be extremely scalable.

It should be clear the this extensive overview cannot easily answer the question: "Which algorithm
should I use?". Nevertheless, it is possible to list a set of considerations that should be asked when
a specific algorithm is selected. Considerations like: "What kind of community am I interested in?
What is its structure in the multiplex network? How far is my expected community structure from
a pillar model?" As we have shown, pillar-like communities can be well detected with the methods
we have available, with Infomap and GLouvain achieving very good results. However, the more
we move away from that ideal model of multiplex community structure, the more the expected
accuracy drops and the differences between various algorithms become more pronounced.

7 CONCLUSION
In this work, we have provided a taxonomy of approaches for the problem of multiplex community
detection, which covers the most relevant methods in the literature that deal with this problem. We
have characterized the different algorithms based on several properties and discussed the type of
communities detected by each method. Upon this, we have theoretically compared the methods
under study. A major contribution of this work is in an extensive evaluation of the reviewed
methods according to different criteria, including accuracy with respect to given ground-truth on
both synthetic and real-world multiplex networks, scalability in terms of the size of the multiplex
network, and robustness against their model parameters.

A APPENDIX: EVALUATION DATASETS
We selected three types of datasets: (i) real networks widely used in the literature, for two of
which the ground truth is available, (ii) networks generated using the mLFR benchmark [8], and
(iii) community structure-controlled synthetic networks generated by forcing specific community
structures. The following is a description of the evaluation networks supported by our motivation
of choice for each of them.
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A.1 Real networks
For real networks, a selection of publicly available multiplex networks have been chosen to cover
different properties and domains of multiplex networks. More specifically, we selected the following
networks:

• Aucs: In this multiplex network, the multiple layers refer to different relationships between
61 employees/PhD students at a University department. The relationships are (i) Being friends
on Facebook, (ii)Having lunch together at the university, (iii) Co-working, (iv) Co-authoring,
(v) Offline friendship [29]. The ground truth of this dataset reports the affiliation of actors to
research groups.

• Dkpol: This is a Twitter interaction network among 490 danish politicians during the month
leading up to the parliamentary elections of 2015. The three layers model the different Twitter
interactions follow, reply, and retweet among these politicians. A ground truth for this dataset
is available in the form of pairs ⟨politician name, political affiliation⟩. The political affiliation
is one of the major ten political parties in Denmark (i.e., Alternativet, Radikale Venstre, Enhed-
slisten, Socialdemokratiet and Socialistisk Folkeparti,Dansk Folkeparti, KristenDemokraterne,
Liberal Alliance, Venstre, or Det Konservative Folkeparti).

• Airports. This multiplex network models the connections between 417 European airports
on a certain day. Each of the 37 layers in this dataset models the connections made by one
commercial airline [9].

• Rattus. This is a multiplex network that models different types of genetic interactions for
organisms in the Biological General Repository for Interaction Datasets (BioGRID, thebi-
ogrid.org) - a public database that archives and disseminates genetic and protein interaction
data from humans and model organisms. We used BioGRID 3.2.108 (updated 1 Jan 2014)
which concerns Rattus Norvegicus that makes use of the following layers: physical associa-
tion, direct interaction, colocalization, association, additive genetic, interaction defined by
inequality and suppressive genetic interaction defined by inequality [36]

A.2 Benchmark networks
For single-layer networks, there is a number of widely accepted benchmarks to generate artificial
graphs. GN benchmark [16] is used to generate fixed size graphs (128 nodes) with nodes of the
same degree (approximately 16) and communities of the same size (four 32-node communities).
LFR benchmark [25, 26] is used to generate more realistic graphs with built-in community structure
such that both the degree of the nodes and the community size distributions follow a power law
distribution. An extension of LFR benchmark proposed by the same authors gives the possibility to
generate weighted and directed graphs with overlapping communities. RB-LFR benchmark [44] is
an extension of LFR benchmark used to generate graphs with hierarchical community structure.

As for multiplex networks, to the best of our knowledge, the only available benchmark is mLFR
benchmark [8], which is an extension of the LFR benchmark that considers the multi-layer aspect of
multiplex networks. This extension first creates one layer using the LFR benchmark then uses that
layer as a template (base) to generate the other layers by distributing edges of the same group on
the different layers. mLFR benchmark introduces several parameters of which the most important
for our experiments are: number of layers (#l ), number of actors (#a - the number of nodes in each
layer), and mixing parameter (µ), which expresses the proportion between the external degree of a
node (number of connections with nodes from other communities) to the total degree of a node.
To test the scalability of different community detection algorithms, two groups of synthetic

multiplex networks were generated. The mixing parameter in both groups was fixed to µ = 0.2 as
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the default value recommended by the author to guarantee a community structure. The two groups
are:

• Group I: Aimed at testing the scalability with respect to the number of actors. To analyze
the effect of increasing the number of layers, 12 multiplex networks were generated for each
of three different values of #l (#l = 2, #l = 5, and #l = 10 layers) with #a ∈ {100, 500, 1000, 2000,
3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}.

• Group II: Aimed at testing the scalability with respect to the number of layers. For this
purpose, 50 different multiplex networks were generated with 50 different values of #l in
the range (1,50). To keep the focus on the number of layers, the number of actors in these
networks was fixed to #a = 1000 as used in [8].

Since it is not possible to force different types of multiplex community structures using the mLFR
benchmark, we used the multiplex networks generated by this benchmark only for assessing the
scalability of the different methods. Conversely, in order to assess the accuracy, we considered the
real datasets associated with a ground truth or other artificially created multiplex networks with a
controlled community structure.

A.3 Community structure-controlled synthetic networks
Different multiplex community detection methods have different underlying assumptions about
what a multiplex community is. To shed light on these assumptions, we generated 8 different
multiplex networks with 8 different built-in community structures. To keep the focus on the
community structure, each of the 8 multiplex networks is comprised of 3 layers, 100 actors, and
300 nodes (100 per layer). After forcing a specific community structure on each multiplex, the
edges were generated with a probability Pin = 0.7 to be internal (within a community) and a
probability Pext = 0.01 to be external (among communities). The following is a brief description of
each multiplex network:

• Pillar Equal Partitioning (PEP): The community structure in this multiplex is a set of
pillar non-overlapping communities that are approximately equal in size. (Figure 6a).

• Pillar Equal Overlapping (PEO): Similar to PEP in terms of the size of the communities
and the pillar structure. The communities in PEO are however overlapping (Figure 6b).

• Pillar Non-Equal Partitioning (PNP): The community structure in this multiplex is a set
of pillar non-overlapping communities. As to the size distribution of the communities, there
are few big pillar communities and many small pillar communities (Figure 6c).

• Pillar Non-Equal Overlapping (PNO): Similar to PNO in terms of the community size
distribution and the pillar structure. The communities in PNO are however overlapping
(Figure 6d).

• Semi-pillar Equal Partitioning (SEP): The community structure in this multiplex is a set
of semi-pillar non-overlapping communities that are approximately equal in size and a set of
single-layer communities (Figure 6e).

• Semi-pillar Equal Overlapping (SEO): Similar to SEP except that the semi-pillar commu-
nities are overlapping (Figure 6f).

• Non-pillar Hierarchical Non-equal (NHN): The community structure in this multiplex
reflects some hierarchy among communities on the actor level. Some big node-level com-
munities (like C7 in Figure 6g) on a layer L3 are constituted of smaller communities (on the
actor-level but not the node-level) on layer L2.

• Non-pillar Non-equal Mixed (NNM): The community structure in this multiplex is a set
of single-layer communities some of which are overlapping (Figure 6h).
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Table 6. Basic statistics about the communities in the Synthetic multiplex networks with controlled
community structure. #c: number of communities, sc1: size, in nodes, of the biggest community, sc2/sc1:
ratio between size of the second largest to the size of the largest community, %n: percentage of nodes assigned
to a community, %p: percentage of pillars assigned to a community (a pillar is all nodes of an actor), %ao
percentage of actors appeared in more than one community, and %no percentage of nodes appeared in more
than one community

mutliplex #c sc1 sc2/sc1 %n %p %ao %no
PEP 10 (all pillar) 30 1.00 1.00 1.00 0.00 0.00
PEO 10 (all pillar) 39 0.77 1.00 1.00 0.27 0.27
PNP 10 (all pillar) 90 0.67 1.00 1.00 0.00 0.00
PNO 10 (all pillar) 99 0.70 1.00 1.00 0.26 0.26
SEP 19 (10 semi-pillar) 20 0.50 0.97 0.00 0.90 0.00
SEO 19 (10 semi-pillar) 26 0.77 0.97 0.00 0.90 0.19
NHN 18 (10 small, 5 medium, 3 big) 40 0.75 1.00 0.00 1.00 0.00
NNM 6 30 0.67 0.35 0.00 0.40 0.14

Table 6 provides information about the communities in these multiplex networks and Figure 6
illustrates the different types of multiplex community structures.

B APPENDIX: COMMUNITY STRUCTURE STATISTICS ON REAL DATASETS
Statistics of each method occupy one row in each a table (multiple settings of the input parameters
for some methods are represented as separated entries for the same method). Since some of the
methods are non-deterministic, we carried out each of such methods multiple times (10 times), and
provided the average values. Moreover, each method was given an upper limit of 24 hours of the
machine time to give an output, else the execution was suppressed. Therefore, we use "NA" row if
the execution was suppressed because of the long execution time (longer than 24 hours). Here we
present the general statistics about the communities detected using multiplex community detection
methods on Dkpol and Rattus datasets (Table 7)

C APPENDIX: STANDARD DEVIATION OF THE AVERAGE JACCARD INDEX USED
FOR PAIRWISE ANALYSIS AMONG LOCAL METHODS

Figures 22, 23 report the standard deviation of the average pairwise similarity among local methods
on real-world datasets and synthetic datasets reported in Section 5.2.1
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Table 7. Basic statistics for real datasets

method #c sc1 sc2/sc1 %n %p %ao %no %s
NWF 27.30 782.50 0.01 1.00 1.00 0.00 0.00 0.74
WF_EC 1.00 839.00 1.00 1.00 1.00 0.00 0.00 0.00
MLP 51.60 585.10 0.07 0.89 0.83 0.00 0.00 0.63
GLouvain(hOm) 8.30 179.80 0.88 1.00 0.90 0.04 0.00 0.00
GLouvain(lOm) 12.40 144.60 0.94 1.00 0.59 0.23 0.00 0.01
LART 427.00 102.00 0.40 1.00 0.93 0.03 0.00 0.95
Infomap(no) 1.00 839.00 1.00 1.00 1.00 0.00 0.00 0.00
Infomap(o) 22.00 839.00 0.23 1.00 1.00 0.26 0.44 0.45
ML-CPM(31) NA NA NA NA NA NA NA NA
ML-CPM(42) 9.00 24.00 0.91 0.12 0.16 0.07 0.07 0.00
ABACUS(31) 52.70 437.80 0.11 0.83 0.41 0.47 0.42 0.00
ABACUS(42) 28.00 45.60 0.80 0.41 0.40 0.23 0.12 0.00

Real dataset ( Dkpol )

method #c sc1 sc2/sc1 %n %p %ao %no %s
NWF 486.60 563.60 0.41 1.00 1.00 0.00 0.00 0.21
WF_EC 113.00 2400.00 0.05 1.00 1.00 0.00 0.00 0.05
MLP 504.70 573.20 0.42 0.80 0.84 0.00 0.00 0.20
GLouvain(hOm) 140.80 575.40 0.46 1.00 1.00 0.00 0.00 0.04
GLouvain(lOm) 147.10 595.60 0.49 1.00 0.89 0.05 0.00 0.04
LART 3237.00 11.00 0.54 1.00 0.65 0.19 0.00 0.99
Infomap(no) 116.00 2081.00 0.08 1.00 1.00 0.00 0.00 0.05
Infomap(o) 295.00 2157.00 0.19 1.00 1.00 0.18 0.41 0.04
ML-CPM(31) 63.00 219.00 0.03 0.12 0.46 0.11 0.06 0.00
ML-CPM(42) NA NA NA NA NA NA NA NA
ABACUS(31) 314.00 520.29 0.41 0.77 0.69 0.12 0.03 0.00
ABACUS(42) 4.20 10.00 0.80 0.01 0.90 0.00 0.00 0.00

Real dataset (Rattus)
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Fig. 22. Standard deviation for average pairwise similarity among the different local method when the same
seed is used as an input (Real networks)
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Fig. 23. Standard deviation for average pairwise similarity among the different local method when the same
seed is used as an input (Synthetic networks)
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ABSTRACT

A principled approach to recover communities in social networks is to find a clustering of the network nodes into modules
(i.e groups of nodes) for which the modularity over the network is maximal. This guarantees partitioning the network nodes
into sparsely connected groups of densely connected nodes. A popular extension of modularity has been proposed in the
literature so it applies to multi-layer networks, that is, networks that model different types/aspects of interactions among a set
of actors. In this extension, a new parameter, the coupling strength ω, has been introduced to couple different copies (i.e
nodes) of the same actor with specific weights across different layers. This allows two nodes that refer to the same actor to
reward the modularity score with an amount proportional to ω when they appear in the same community. While this extension
seems to provide an effective tool to detect communities in multi-layer networks, it is not always clear what kind of patterns
maximising the generalised modularity can identify in multi-layer networks and whether these patterns are inclusive to all
possible community structures prone to evolve in multi-layer networks. In addition, it has not been thoroughly investigated yet
how to interpret ω in real-world scenarios, and whether a proper tuning of ω, if exists, is enough to guarantee an accurate
recoverability for different types of multi-layer community structures. In this article, we investigate the meaning of ω in the
generalised modularity formula and provide a review of the different ways used in the literature to tune that parameter. We
analyse the different patterns that can be identified by maximising the generalised modularity in relation to ω. We propose
different models for multi-layer communities in multiplex and time-dependent networks and test if they are recoverable by
modularity-maximization community detection methods under any assignment of ω. Our main finding is that only few simple
models of multi-layer communities in multiplex and time-dependent networks are recoverable by modularity maximisation
methods while more complex models are not accurately recoverable under any assignment of ω.

Introduction
Community detection is one of the core tasks in the analysis of complex networks. It involves partitioning the network into
groups of nodes, also known as communities, partitions, cohesive groups or clusters. The importance of this task comes from its
ability to break large networks into smaller building blocks so it becomes easier to understand the structure of the network and
of the role played by each node. Applications of community detection algorithms are ubiquitous, including social media group
detection1, thematic community detection2, second-order flow analysis in human mobility3, and topic detection in information
networks4. A community detection solution is usually represented as a clustering C where C = {C1,C2, . . . ,Ck} , and C1, C2,
. . . , Ck are disjoint or non-disjoint groups of nodes.

Although there is no one agreed-upon definition for communities in networks, it is widely accepted in mono-layer networks
to consider a community, loosely speaking, the group of nodes that are more densely connected with each other than with the
rest of the network5. This definition is mainly inspired by the quality function modularity6, 7, which is a function f (C ) that
produces values in the range [−1,1] and for a given clustering C over a network, it measures the extent to which the network
provides a good fit for C with respect to the definition of communities mentioned above. In other words, it measures the
extent to which the network nodes are more densely connected within the communities {C1,C2, . . . ,Ck} ∈ C than across these
communities. While modularity was firstly proposed as a quality measure to evaluate the accuracy of community detection
methods at the time6, it gave birth to a new class of community detection methods that interpreted the community detection
problem into finding a clustering with the maximal modularity over the network. When applied on mono-layer networks, one
expects to retrieve groups of nodes where the within-group edges are denser than those connecting nodes from different groups.

In response to the advances on complex network analysis, the multi-layer network model has been proposed as an efficient
tool to consider different types and/or different time-windows of interactions in a given system8. The intuition behind such
generalisation is that interactions among a set of actors do not happen in isolation. Instead, they inherit certain dependencies
among each other such that one might cause the other one, or one can be used as predictor for the other one. Think of an example
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Figure 1. A toy-example of a multiplex network with two types of interaction represented by Layer 1 and Layer 2 among 15
actors. The two nodes existing in both layers and representing the same actor (e.g. the same person) are linked by a dotted line
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where two people are friends on Facebook. The probability of having those two connected via other means of communication
(i.e, Twitter, Whatsapp, ect) is much higher than if they were not connected via any communication mean. Hence, studying
these interactions separately without accounting for any dependencies among them might yield into misleading results. Two
special cases of multi-layer networks are multiplex networks and time-dependent networks. In the former, different layers refer
to different types of interactions among a set of actors while in the latter, different layers refer to different time-windows of
an interaction among a set of actors. While the general multi-layer framework can consider both aspects in one model, we
keep our focus in this article on those two special cases for simplicity. Unless mentioned otherwise, we will refer to those two
cases as multi-layer networks throughout the article. Figure 1 shows a typical layered representation of a multiplex network
where each of the layers corresponds to a different type of interaction, and nodes in different layers can be associated to the
same actor (the same person for example). The same figure can also be seen as a time-dependent network if layers were to
refer to time-windows of an interaction instead. Here, we adopt the term actor from the field of social network analysis, where
multiplex networks and time-dependent networks have been first applied, and the term layer from recent generalizations of
these models8.

In spite of the plethora of methods developed for detecting communities in multi-layer networks, there is very little work
on proposing a definition for multi-layer communities, like the mono-layer community definition. Recent work9 argues that
there are two primary differences between a mono-layer community and a multi-layer one. First, a multi-layer community
can expand over multiple layers. Second, edges of a multi-layer community in one layer might depend on the connectivity
patterns in another layer. For example, in a multiplex network that models different Twitter interaction among a set of users (i.e,
Following and Retweeting each represented as a layer in a 2-layer multiplex network), it might be the case that the re-tweet
edges among a set of actors are largely dependent on whether these actors follow each other or not, which might explain the
existence of multi-layer communities that expand over the two layers.

Undoubtedly, the generalisation proposed by the multi-layer framework has introduced new challenges to the community
detection problem. While some researchers worked on that by tailoring new community detection methods for multi-layer
networks10, there has been more tendency to extend some of the already existent methods used with mono-layer networks like
collapsing the multiple layers into a mono-layer network and then use any of the mono-layer community detection methods11,
extended label propagation12 and extended clique percolation13 just to mention few. A popular extension from mono-layer to
multi-layer is the extension of the quality function modularity into the generalised modularity14. In that extension, the authors
introduce a new parameter, the coupling strength ω , to the modularity function. The new proposed parameter, ω , assumes
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that nodes of the same actor in different layers are coupled via coupling edges and these coupling edges are weighted with an
amount equals to ω . With that extension, a modularity maximisation method does not only maximise the within-community
intra-layer edges and minimise the cross-community intra-layer edges, but also maximises the sum of coupling edges weights,
i.e nodes that belong to the same actor, within a community given ω . Indeed, with ω being the only multi-layer ingredient in the
generalised modularity formula, there has been few tries in the literature to tune ω such that it reflects some of the inter-layer
information across different layers (i.e closeness between layers, common neighbour across layers, etc.). It is not clear, however,
how these different interpretations affect multi-layer community detection using modularity maximisation and whether the
modularity function responds to these interpretations by providing clusterings that support the intuition behind them. For
example, the intuition behind tuning ω such that it reflects the percentage of common neighbours among nodes in different
layers is that it makes more sense for multi-layer communities to group nodes of the same actor in one community only if they
have similar neighbourhoods across the layers15. The question is whether modularity responds to that tuning by clustering the
network nodes into communities that respect that intuition. We claim that methods that maximise the generalised modularity
inherited the popularity and the success mono-layer modularity maximisation methods had before, yet the patterns identified by
these methods are not thoughtfully investigated enough. The interpretation of coupling edges and coupling strength is not well
elaborated on in the literature, which makes tuning these parameters in real-world scenarios a cumbersome task. In addition,
with the absence of a precise definition of multi-layer communities, it is not clear whether different patterns identified by
maximising multi-layer modularity under all possible assignments of ω in a multi-layer network are inclusive to all community
structures that are prone to evolve in multi-layer networks.

The goal of this article is to analyse the assumptions behind the generalised modularity and the effect of that on the possible
patterns that can be identified in multi-layer networks as a result of maximising that quality function. We investigate the meaning
of ω in the generalised modularity and review different ways used in the literature to tune that parameter. We provide different
models for communities in multi-layer networks and test the ability of modularity maximisation based methods to recover
these community models under any possible parameter tuning. We conclude from our experiments that only few simple models
of multi-layer communities in multiplex and time-dependent networks are recoverable by modularity maximisation methods
while more complex models are not accurately recoverable under any parameter tuning. The novelty of this article comes in
the community models it proposes to model different community structures which can exist in multi-layer networks, and the
discussion about the limitations of the highly popular and extensively referenced methods based on modularity maximisation
for recovering some patterns in multi-layer networks. It is worth mentioning that we chose to opt out from digging deeply into
the mathematical representation of different concepts in this article so we provide the most general and abstract mathematical
representation when needed. The aim is to keep our focus on the intuition behind some concepts rather than the interpretation
of that into mathematical formulae. Unless mentioned otherwise, we will refer to the generalised modularity as modularity, and
to the modularity applicable only on mono-layer networks as mono-layer modularity.

Our article is structured as follows. Since understating the generalised modularity requires a very good understanding of
mono-layer modularity, we first start by defining modularity in mono-layer networks (section 1) followed by the extension of
mono-layer modularity into the generalised modularity in section 2. We study the patterns that can be identified by maximising
modularity in multi-layer networks as a function of ω in section 3 and then provide models of multi-layer communities possible
to evolve in multiplex and time-dependent networks in section 4. We report the results of our experiments on the recoverability
of these models using modularity maximisation based community detection methods in section 5. We discuss our findings in
section 6, and report the methods used for our experiments in section 7 .

1 Modularity in Mono-layer Networks

As firstly proposed by6, 7, the modularity of a clustering C over a mono-layer network characterized by an adjacency matrix A,
where A(i, j) is 1 if there is an edge between nodes i and j and zero otherwise, can be written as:

Q =
1

2|E| ∑
C∈C

∑
(i, j)∈C

[
A(i, j)−P(i, j)

]
(1)

where |E| is the number of edges in the network. The summation is performed only over pairs of nodes that belong to the same
community C ∈ C . P(i, j) is the probability of having an edge between nodes i and j in a null model.

Away from its mathematical representation, the intuition behind modularity is to measure the extent to which the distribution
of edges in a network is far from what one would expect shall the edges were distributed in a community-less manner. It can be
seen as a normalised distance between a network N that has a specific edge distribution and an equivalent network, usually
referred to as the null model, where edges are distributed randomly. Two common choices for the null model are: the uniform
random model, where the probability of having an edge among any pair of nodes in the network is fixed, or the non-uniform
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random model, where the probability of having an edge among two nodes depends on their degrees (also called a null model
with preferential attachment dynamic).

Modularity assumes that nodes within a community tend to interact more densely with each other than with the rest of
the network. Hence, the quality of a community, from a modularity perspective, is in the percentage of within-community
edges out of all edges incident to nodes of that community. With that being said, we stress out the fact that modularity is not a
property of the network, but rather a property of a clustering over the network. It is common, however, to describe a network
as modular and that is to refer to the existence of a significantly modular clustering over that network. The modularity of a
clustering C in a network can be translated into calculating the normalised sum of the network edges contributions to C . While
iterating through network edges, some edges come as a surprise (they exist in the network, but not highly probable to appear in
the null model), and others are expected (highly probable in the null model). Surprising edges contribute more to the final score
when they happen to be within a community. Equation 1 therefore guarantees:

[P1] Rewarding existent edges within communities. Each edge connecting two nodes i and j in a community Cx ∈C contributes
positively to the total sum with an amount equals the difference (1−Pi, j). Clearly, edges that come as a surprise, i.e are
not expected in the null model and hence result in a very low value of Pi, j, contribute more to the final modularity than
the expected ones.

[P2] Punishing non-existent edges within communities. If two nodes i, j happened to be in the same community Cx ∈ C and
they are not directly connected (i.e Ai, j = 0), this contributes negatively to the modularity score. The negative contribution
equals (−Pi, j). Meaning that highly expected edges contribute more negatively when they are absent than the lowly
expected ones.

[P3] Punishing existing edges among communities. Even though it is not straightforward to see that in the equation, clusterings
with less cross-community edges score higher modularity than those with more cross-community edges. The reason
is that modularity counts only the contribution of edges lying within communities. The existence of edges among two
communities will result on a larger number of edges in the network (larger 2|E| in the equation) and zero contribution to
the modularity score. This will result on a lower modularity than if edges did not exist across communities.

[P4] Rewarding non-existing edges among communities. Following the same reasoning discussed in P3, non-existent edges
among communities means smaller |E| which results in a higher modularity.

Figure 2 illustrates the effect of within-community and cross-community edges on the modularity score.

2 From Mono-layer Modularity to Generalized Modularity

Authors in14 proposed a generalization of modularity so it applies to multi-layer networks. In this generalisation, the authors
propose a new parameter ω to the modularity equation. ω , also called the coupling strength, is a weight assigned to the
coupling edges connecting nodes of an actor across different layers. On the layer level, it has been interpreted as the closeness
among different layers16. On the actor level, it has been claimed that this parameter should reflect information about the
extent to which an actor tends to have the same behavior across layers (high ω) or a different behaviour in different layers
(low ω)15. With this introduction of ω to the generalisation of mono-layer modularity, the modularity score does not only
reward existent within-community intra-layer edges and absent cross-community intra-layer edges, and penalise the absent
within-community intra-layer edges and existent cross-community intra-layer edges in each layer, but also rewards the coupling
edges (i.e inter-layer edges) within communities with an amount proportional to ω . This means that if two nodes nix, niy which
refer to the same actor i, and hence are coupled, happen to appear in the same community, this contributes to the multi-layer
modularity score with an amount proportional to ωxy, that is the coupling strength assigned to the coupling edge between
nix, niy. With that being said, the result of maximising modularity in multi-layer network is not necessarily a clustering that
groups all the nodes of an actor in one community. There are two forces that drive the partitioning in multi-layer networks
using modularity maximisation. The first tries to keep the node in its optimal mono-layer modularity grouping, and the second
tries to group the node together with other nodes that refer to the same actor. To have an idea about modular structures in
multi-layer networks according to multi-layer modularity, we report the multi-layer modularity scores (Figure 3) of three
different clusterings over a toy multiplex network constituted of 3 layers and 15 actors and three cliques in each layer. The
figure shows that even though the three clusterings equally optimise the distribution of intra-layer edges within and across the
communities, the generalised modularity favors clusterings that maximise the coupling edges within communities in addition
(Figure 3.a).
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Figure 2. The effect of within-community and cross-community edges on the modularity score of the clustering
C = {C1,C2,C3} over the mono-layer network illustrated in figures (a) and (b)
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Figure 3. Modularity scores, calculated using multi-layer modularity, for three different clusterings over the same toy
multiplex network constituted of 3 layers and 15 actors and edges that are distributed across three cliques per layer

The generalization form of equation 1 as proposed by14 can be written as :

Q =
1

2µ
(

∑
C∈C

∑
(is, js)∈C

[
As
(i, j)−P(i, j)

])

︸ ︷︷ ︸
part 1

+
1

2µ
(

∑
C∈C

∑
(is, jr)∈C

[
W s,r

i, j ∗δ (is, jr)
])

︸ ︷︷ ︸
part 2

(2)

Where As
i, j is the adjacency matrix of layer s, W s,r is the coupling matrix that describes inter-layer edges between layers s,

r 1 and W s,r
i, j therefore equals the value of the coupling strength ωi, j assigned to the coupling edge connecting nodes i from

layer s and j from layer r. δ (is, jr) is a Kronecker delta and it equals 1 if nodes is and jr refer to the same actor, else 0. µ is a
normalisation factor.

The first part of equation 2 is the same used to calculate mono-layer modularity in equation 1. This part alone reaches
its maximum when nodes in each layer are grouped according to their optimal mono-layer modularity. The second part of
this equation is the added multi-layer ingredient to the modularity score. This part alone is maximised when the mono-layer
optimised groupings are cross-merged across the layers such that all the overlapping mono-layer groupings appear together in
the same multi-layer community. The main difference between the two parts is that the first part penalises any other grouping
of the nodes that does not respect the optimal mono-layer modularity grouping, while the second part (assuming ω > 0 ) does
not penalise but only rewards the co-existence of the same actor nodes in one community. If the contribution of the second
part of equation 2 is small (i.e ω is small), optimising modularity will keep nodes in each layer grouped according to their
optimal mono-layer modularities so the first part of equation 2 is optimised to its maximum value. At the same time if the
contribution added by the second part is big enough (i.e ω is large), this might not guarantee that nodes in each layer will be
grouped according to their optimal mono-layer modularity as the contribution of the coupling edges added to the total sum
might become big enough to compensate for the penalties resulted by grouping nodes not according to their optimal mono-layer
modularity.

The type of coupling chosen to connect nodes of the same actor across layers is of great importance for studying any
dynamic in multi-layer networks especially for community detection using modularity maximisation. When layers are ordinal,
i.e they have a specific order like in the case of time-dependent networks, coupling edges connect each layer s with the
successive layer s+1 and the previous layer s-1. When layers are categorical, i.e they do not follow a specific order like the case
of multiplex networks, coupling edges connect all pairs of layers. We refer to these two types of couplings as adjacent coupling,
and complete coupling for time-dependent and multiplex networks respectively. Figure 4 illustrates the two different types of
coupling strategies and the effect of that on a process like community detection in multi-layer networks.

The original authors where the generalised modularity was firstly proposed did not discuss much about ω . In their paper,
coupling edges where uniformly assigned to values greater then or equal to 0. In16 authors suggested that coupling edges can
convey more information and hence, they do not necessary have to be uniformly assigned across layers. They can express the

1We use W instead of C , as mentioned in its original paper, to refer to the coupling matrix not to confuse it with our notation of a community which we
chose to be C

vi/xvi



Layer 1

Layer 2

Layer 3

Adjacent

Complete

(a) The two styles of coupling nodes in multi-layer networks

C1 C2 C3 C1 C2 C3

C4

Complete coupling 
communitie

Adjacent coupling 
communitie

L1

L2

L3

L1

L2

L3
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Figure 4. Styles of coupling nodes in multi-layer networks
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closeness among layers and hence closer layers are assigned larger values of ω and larger otherwise, and absent couplings
among two layers should be expressed as couplings with a negative coupling strength (ω < 0). This allows the second part
of equation 2 to penalise the co-existence of two nodes that refer to the same actor if the nodes are in two un-coupled layers.
In15, the authors argued that couplings should be looked at from even a lower level, that is, the actor-level so nodes of an actor
with similar neighbourhood over the layers should be maximally coupled (i.e assigned a large ω), while those with different
neighborhoods across the layers should be minimally coupled. Figure 5b, for example, reports the multi-layer modularity
scores using uniform coupling Qu with ω = 1 versus those using customised coupling Qc for three different clusterings over
the network illustrated in Figure 5a. The figure shows that assigning uniform coupling strength to all couplings might lead to
favoring communities that expand over multiple layers even if actors nodes have different neighborhoods across the layers (Qu
is higher in cases (b) and (c)).

L1

L2

(a) A toy example of a multiplex network where actors change neighborhood over layers

L1

L2

L1

L2

Qu  
Qc 

L1

L2

C1 C2

C3

C1 C2
C3 C1 C2

= 0.36  
= 0.36  

Qu  
Qc 

= 0.52  
= 0.35  

Qu  
Qc 

= 0.53  
= 0.36  

(b)(a) (c)

(b) Modularity scores using customized coupling strength Qc and uniform coupling strength Qu for three different clusterings over the
network illustrated in figure 5a.

Figure 5. Effect of using customised coupling strength on the modularity scores.

3 The Patterns Identified by Maximizing Multi-Layer Modularity
In this section, we will refer to the clustering of a single layer nodes resulted by maximising the mono-layer modularity on that
layer as the optimal mono-layer groups, and to the clustering resulted by maximising the generalised modularity on the whole
multi-layer network as multi-layer communities. We consider two groups of nodes in two different layers overlapping, if there
exist at least two nodes (one in each group) that refer to the same actor. When two different groups of nodes in two different
layers merge together, we refer to that as cross-merging, to differentiate it from the within-layer merging possible to happen
between two gropes of nodes belonging to the same layer. As to the two parts in equation 2, we refer to the first part as the
intra-layer gain, and to the second part as the coupling gain.
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A multi-layer community detection task that maximizes multi-layer modularity involves partitioning the multi-layer network
nodes into a clustering C that maximizes both parts of equation 2, as shown before. The intra-layer gain pushes nodes
towards being partitioned into their optimal mono-layer groups. The coupling gain pushes the overlapping optimal mono-layer
groups belonging to different layers towards cross-merging so to constitute multi-layer communities. The patterns identified
by maximising both parts together largely depend on the value given to ω which seems to play the role of cross-merging
orchestrator in the maximisation process (assuming that nodes are scanned in each layer separately first then across layers).
Remember that for any solution not to partition the nodes according to their optimal mono-layer groups, this results in a
punishment in the intra-layer gain in equation 2. However, if this punishment can be compensated by the coupling gain, this
gives some freedom (even if limited) to produce clustering that does not firmly respect the mono-layer optimal modularity
constraints.

Let us assume that community labeling by multi-layer modularity maximisation happens in an order such that it scans the
network nodes as follows. First, it scans pairs of nodes belonging to the same layer to maximise only the intra-layer gain, so
nodes are labeled according to their optimal mono-layer groups, and then it scans pairs of nodes belonging to different layers so
their community labels can be updated such that the coupling gain is maximised. During the re-labeling phase, a node might
face two types of relabeling: (i) free re-labeling, that is the one that results only on a larger coupling gain without affecting the
intra-layer gain. The result of this is cross-merging the overlapping optimal mono-layer groups across layers without altering
their mono-layer grouping (i.e without having to put two nodes that belong to two different mono-layer groups in one layer
together in the same multi-layer community), and we will refer to that as free cross-merging. (ii) expensive re-labeling, that is
when adopting the new label requires the node to give up its optimal mono-layer grouping and having to co-exist with nodes
that will punish the intra-layer gain. The result of this is cross-merging overlapping groups across layers and altering their
mono-layer grouping, and we will refer to that as expensive cross-merging. Figure 6 illustrates the difference between free
cross-merges and expensive cross-merges.

Free cross-merges

L1

L2

L1

L2

Expensive cross-merges

(b)(a)

C2
C1

C1

Figure 6. Example of free cross-merges, (a), which does not alter the optimal mono-layer grouping specified by the colors of
the nodes in each layer, and expensive cross merges, (b), which alters the optimal mono-layer grouping (i.e it forces the blue
and green nodes in layer L2 to appear together in one community). Nodes in each layer are colored according to their optimal
mono-layer grouping.

Assuming a multi-layer network constituted of modular layers, assigning the smallest non-zero value to ω uniformly across
layers results in performing all the possible free cross-merges across these layers such that the maximise the coupling gain. That
is because the free cross-merges results in a positive coupling-gain which can be too small to compensate for any punishment
resulted by altering the optimal mono-layer groupings. Hence, the resulted multi-layer communities are those where nodes in
each layer are densely connected within the community and sparsely connected with the rest of the network. The larger ω
gets, the larger the coupling gain can be till it gets to a point when it becomes large enough to compensate for some intra-layer
penalties, and this gives space to perform expensive cross-merges. The result is multi-layer communities where not all nodes
necessarily fall into their optimal mono-layer groups, but at least in one layer they do. Figure 7 provides a colored illustration
of the grouping of nodes in a 3-layer 400-actor multiplex network for different assignments of ω . The value ω = 0 shows
the implanted grouping assigned to the nodes in each layer where each different color refers to a different group label. The
multi-layer community structure resulted by maximising modularity is shown for ω = 0.0001, ω = 1 and when ω is customised
based on the common neighbours across layers. As shown in the figures, low ω resulted in multi-layer communities constituted
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(a) ω = 0

(b) ω = 0.0001 (c) ω = 1 (d) ω is customised

Figure 7. A colored representation of the community assignment resulted by maximizing the generalised modularity as a
function of ω in a 3-layer 400-actor multiplex network. The x axes represent the actor id, while the y axes represent the layer,
and different colors represent different community assignments

of free cross-merges among optimal mono-layer groups, while larger ω resulted on expensive cross-merges.
Understanding the effect of ω on the resulted multi-layer community structure is very important for the interpreteablity of

thees communities. In general, when the coupling style used to couple nodes across layers is adjacent or complete, low ω results
on multi-layer communities where nodes in each layer are in their optimal mono-layer grouping (i.e densely connected with
each other in their layer and sparsely connected with the rest of the network), and high ω results on multi-layer communities
where nodes fall in their optimal mono-layer groups at least in one layer but not necessarily all of them. When the optimal
mono-layer groups are not aligned across layers, there is less to claim about these multi-layer communities on the actor level.
Think of the clustering illustrated in figure 6.a which is resulted by maximising modularity on that network for any positive
assignment of ω > 0. For community C1, these is a set of actors that are grouped together in one community only because
they are constituted of two groups with one common actor in both. Another example is community C1 in Figure 6.b which
is resulted by maximising modularity on that network with ω = 1. That community is constituted of a group of actors that
densely interacted with each other in one layer, but were divided into two groups on another. In a time-dependent network
where layers refer to different time-windows, interpreting such multi-layer community might be problematic.

4 Models for Communities in Multiplex and Time-dependent Networks
In this section, we propose different models for disjoint multi-layer communities possible to evolve in multiplex and time-
dependent networks under different conditions. We claim that the five models we propose provide a good coverage for the
types of patterns (i.e multi-layer communities) possible to evolve in multiplex and time-dependent networks. Later, we use
these models to test the ability of modularity maximisation methods on recovering different patterns in multi-layer networks. In
this section, we refer to the nodes of an actor a in different layers with a non-zero degree in their layers as the active nodes of a.
For a multi-layer community C that expands over multiple layers, we refer to the set of nodes of C in a single layer l as the
induced nodes of C in l, and to the set of actors resulted by mapping each of the induced nodes of C in a layer l to their actors
as the induced actors of C in l. These models are:

[M1] Pillar communities: We call a multi-layer community C a pillar community if there exists a set of actors A =
{a1,a2, ...ak} such that C is constituted of only the active nodes of all the actors in A in all layers of the multi-layer
network. Pillar communities result from a very high dependency among actors connectivity patterns on all layers of the
network, which results in an aligned grouping of the relevant nodes in each layer.
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[M2] Semi-pillar layer-adjacent communities: We call a multi-layer community C a semi-pillar layer-adjacent community
if there exists a set of actors A = {a1,a2, ...ak} such that C is constituted of only the active nodes of all the actors in A
in a subset of layers of the multi-layer network and these layers are adjacent to each other. Semi-pillar layer-adjacent
communities usually evolve in time-dependent networks where layers refer to specific time-windows. In these networks,
a set of actors might engage in the same community for a limited time and then dissolve or engage in other groups in
subsequent time-windows. This might result in semi-pillar communities that expand over an subset of the layers that are
adjacent to each other.

[M3] Semi-pillar non-layer-adjacent communities: Similar to [M2] except that the layers where the community expands are
not adjacent to each other. These communities might evolve in multiplex networks where layers do not necessarily have
an order and the layers where the semi-pillar communities expand are not adjacent to each other. These communities
also might evolve in time-dependent networks if a group of actors engage in a community for a couple of consecutive
time-windows then dissolve at some windows, then engage again in the same community.

[M4] Partially overlapping communities: A multi-layer community C that expands over multiple layers is partially overlap-
ping if the sets of the induced actors of C in each layer where the community expands partially (but not completely)
overlap. These communities evolve in cases when the community membership of a set of actors in one layer l1 influences
the community membership of only a subset of these actors in another layer l2 while the membership of the rest of
these actors in l2 does not necessarily depend on their membership in l1. Think of an example where the network is a
three-layer multiplex network modelling twitter interactions (following, retweeting and replying) among a set of actors.
It might be the case that the community membership of a set of actors in the ’following’ layer influences the community
membership of only a subset of these actors in the ’retweet’ or ’reply’ layers (i.e user a1 retweets user a2 because they
follow each other) while the community membership of the rest of these actors on these layers does not really depend on
the ’following’ layer.

[M5] Hierarchical communities: A multi-layer community C that expands over multiple layers is hierarchical if there is a
hierarchy among the sets of the induced actors of C in the layers where it expands. A hierarchical community evolves
when the grouping of a set of actors in a layer l1 still depends on the community membership of these actors in another
layer l2 but additional non-layer specific dependencies might result on different divisions of this grouping across the
layers which breaks the perfect cross-layer group alignment that happens in the pillar model. Think of the 3-layer
multiplex modelling Twitter interactions mentioned above. A grouping of a set of actors in the ’retweeting’ layer might
still depend on whether they follow each other or not (i.e user a1 retweets user a2 only if they follow each other), but
some other user-specific properties (political affiliation for example) might result on multiple divisions of their groupings
across the two layers.

5 Results

From a multi-layer modularity perspective, inter-layer coupling edges are not perceived as identity edges
but edges that couple nodes of the same community
Together with the adjacent and the complete coupling styles usually used in the literature to couple nodes in multiplex and
time-dependent networks, we tested the accuracy of modularity maximization with an additional coupling style, we refer to as
community-based style, where we coupled nodes across layers only if they belong to the same multi-layer community which
resulted in a non-uniform coupling. Our experiments show that the highest accuracy of community discovery is always achieved
when the coupling style is community-based which suggest that multi-layer modularity maximization treats inter-layer coupling
edges as community edges and when coupling-edges are used as identity-edges, the accuracy of modularity maximization
seems to drop down.

Less accurate does not necessarily imply less modular according to multi-layer modularity
While the accuracy scores fluctuate as a function of both the coupling style and the value of the coupling strength (figure 9),
modularity scores seem to be stable. This suggests that less accurate clusterings are not necessarily less modular.

Pillar communities are accurately recoverable under all coupling styles and a very small positive assign-
ment of ω
As shown in figure 9a, a very small positive assignment of ω (ω = 10−13) set uniformly across layers guarantees a very high
accuracy for recovering pillar communities independently from the coupling styles (complete, adjacent, or community based)
used to couple nodes across layers.
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(a) ω = 0

(b) ω = 0.0001 (c) ω = 1 (d) ω is customised

Figure 8. A colored representation of the community assignment resulted by maximizing the generalised modularity as a
function of ω in a 3-layer 400-actor multiplex network. The x axes represent the actor id, while the y axes represents the layer,
and different colors represent different community assignments

Semi-pillar communities and partially overlapping communities cannot be accurately recovered using ad-
jacent or complete coupling styles and a uniform positive assignment of ω
As the community model gets more complex compared to the pillar model, modularity maximization seems to fail at accurately
recovering the ground truth communities when the coupling style is the adjacent or the complete one independently from
the value given to the coupling strength ω (Figures 9b, 9c, 9d). However, if coupling edges are placed only among nodes
belonging to the same multi-layer community, multi-layer modularity maximization seems to be able to recover the ground
truth communities and shows a stable behavior with respect to the value given to ω .

With hierarchical communities, the value ω controls the granularity of community detection
With hierarchical community model (M5) it is not clear what should be the ground truth. Hence we study the structure of
the detected communities, instead of their accuracy, as a function of ω . Figures 8b, 8c, 8d illustrates the structure of the
detected multi-layer communities using modularity maximization. We show only the results when the coupling type is complete
since the other types do not significantly change the output in this model. We can see that using high values of ω forces the
community membership of the highest level in the hierarchy across the layers. Nonetheless, using lower values of ω does not
force the community membership of the highest level of the hierarchy across all the nodes across the layers but only part of
them such that the mono-layer optimal groupings are guaranteed.

6 Discussion
In this article, we investigated multi-layer modularity maximization, the extensively used tool for community discovery in
multi-layer networks. We infer unspoken assumptions that condition the ability of multi-layer modularity maximization to
recover ground truth communities by investigating the role of ω and coupling edges introduced in multi-layer modularity. Our
main findings can be summarized as follows: (1) the high accuracy of multi-layer modularity maximization is conditioned by a
coupling style that couples only nodes of the same community together, (2) when a proper coupling is chosen in a multi-layer
network generated using one of the models (M1-M4), the value of ω assigned to the coupling edges has no impact on the
accuracy of community detection using multi-layer modularity maximization (as long as ω > 0) , (3) less accurate does not
necessarily mean less modular according to multi-layer modularity, and (4) with hierarchical multi-layer communities, ω
controls the granularity of the detected patterns and the qualitative interpretation of the identified patterns is not always clear.

The fact that the accuracy of multi-layer modularity maximization with more complex multi-layer community models is
conditioned by coupling nodes of the same community together (rather than the same actor) sheds a light on the importance of
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(a) Pillar communities

(b) Semi-Pillar layer-adjacent communities

(c) Semi-Pillar non-layer-adjacent communities

(d) Partially overlapping communities in a multiplex network

Figure 9. Accuracy using omega-index and modularity scores of community detection using multi-layer modularity
maximization as a function of the coupling type and the value of the coupling strength
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coupling style for a successful recovery of the communities and hints to limitations in the coupling strategies available in the
literature to couple nodes in multi-layer networks. While some heuristics can be developed to predict whether two nodes of an
actor belong to the same community or not, and a community-based coupling can be built on top of that, a valid question can
be: why should the accurate recovery of multi-layer communities be conditioned by knowing which nodes of the same actor
fall in the same community, which is what the community detection method itself is supposed to infer?

The reason why networks should be analyzed in a multi-layer manner is that there are dependencies among different
interactions/relationships and providing any analysis by considering only one of these interactions might give misleading or
incomplete findings. This means that for the formation of multi-layer communities, different dependencies among the layers
might result on different structures of multi-layer communities (a very high dependency among all layers for example results
in pillar communities). While this motivation is sound, the question becomes whether it is always possible to reflect these
inter-dependencies in the tools used for multi-layer network analysis, especially community detection. Thinking of multi-layer
modularity, the coupling strength ω (as suggested by the original authors14) is a binary variable that takes one of the two values:
either 0 to refer to the non-existence of a coupling edge between two nodes of an actor, or a positive value ω > 0 to refer to the
existence of that coupling edge. When the proper coupling is provided, our experiments showed that the positive value assigned
to the existent couplings does not affect the accuracy of community detection. This means that this parameter with models
(M1-M4) has no role more than referring to existent (ω > 0) or non-existent (ω <= 0) couplings. This adds another limitation
to modularity maximization based methods because with this limited interpretation of ω , the only multi-layer ingredient in the
generalized modularity, there is no way to reflect different levels of inter-dependencies among the different layers and/or nodes
of an actor and to take these inter-dependencies into account in community discovery.

As shown in our experiments, multi-layer modularity scores do not necessarily follow the same trends the accuracy of
the recovered communities follow. Indeed, the modularity scores of the accurately recovered clusterings are not necessarily
higher than those with lower accuracy. This raises another important question that we invite more research to investigate on, is
multi-layer modularity maximization a valid proxy for finding complex multi-layer communities? Or is the idea of it being as
such mostly inherited from the success and the popularity the mono-layer implementation had before?

The qualitative interpretation of the recovered patterns in networks generated using one the community models (M1-M4)
does not change much from those identified using the mono-layer modularity. If edges were created such that nodes of the
same community are densely connected within the community and sparsely connected with the rest of the network, the patterns
identified by maximizing multi-layer modularity satisfy that condition. With the hierarchical community model, however,
it is not clear how to interpret the identified patterns for values of ω other than 0 (the lowest granularity of the hierarchy),
and large ω (the highest level of the hierarchy). The question is whether using multi-layer community detection in this case
provides any additional information the single-layer community detection for each layer separately cannot provide and we tend
to believe that multi-layer community detection here using multi-layer modularity maximization can give misleading results
from a qualitative perspective.

7 Methods

For recovering the multi-layer communities that maximise multi-layer modularity, we chose Generalised Louvain method17 as
a representative method for the class of modularity maximisation community detection methods. The choice of this method
comes for both being a well-referenced method in the literature and serving as one of the best approximation methods among
other modularity-maximisation methods in terms of its accuracy and performance. Since communities resulted by this method
might vary from one execution to another because the order by which the nodes are scanned by this method is chosen at random,
we provide the final result of community detection after 10 executions and choosing the one with the maximum modularity as
an output.

For each of the community models (M1-M4) we calculate the accuracy of the resulted communities as a function of the
coupling style (adjacent, complete, and community based) and the value of the coupling strength ω assigned to the coupling
edges. between the dependency p among layers chosen. For measuring accuracy, we chose omega-index for its sensitivity to
different types of dissimilarities among clusterings and its ability to remove the by-chance agreement from the final score as we
discussed in a previous study18.

As regards the generation of the multi-layer networks, we refer to the generative model in9. To the best of our knowledge,
this provides the most general platform in the literature for generating synthetic multi-layer communities that takes into
consideration different types of multi-layer networks. The generation of a multi-layer community using this model goes through
the following three steps. First, assuming a multi-layer network of n actors and m layers and initial number of communities
k to be planted in each layer, the model starts by assigning nodes in each layer randomly to k community memberships (a
categorical distribution can be used for this step). At the end of this phase, nodes in each layer will be distributed over k not
necessarily equal in size groups. In the second phase, nodes start to propagate their community memberships across layers with
a probability equals to the dependency between the layers. The type of multi-layer network we want to generate, i.e multiplex
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or time-dependent, controls the order and the way this propagation of community labels across layers happen. At the end of
this phase, community memberships that were set in the first phase might be updated based on the assumed dependency p set
among layers. At the third phase, a multi-layer edge generation model can be used to create edges of the multi-layer network
given the implanted community assignments resulted from the previous step. In our experiments, we generate out toy examples
using a variant of the degree-corrected SBM benchmark that avoid the creation of self-loops and parallel edges9. We chose to
fix the mixing parameter in edge generation phase in our experiments to a very small value (µ = 0.05). That is because our
main goal from the experiments is not to test the ability of multi-layer modularity maximisation to recover noisy patterns, but to
test the ability to recover complex multi-layer patterns.

We chose our multi-layer toy networks to be 4-layer networks of 1000 actors (i.e 4000 nodes). To generate pillar communities
(M1), we use the aforementioned generative model and we generate a temporal network with a very high dependency across
the layers (p=1). To generate the semi-pillar layer-adjacent communities (M2), we generate two sets of pillar partitions on
two 2-layer temporal networks. We use the resulted partitions to generate a 4-layer multi-layer network where in the first two
layers we plant the first set of partitions and the last two layers we plant the second set of partitions. For (M3), we do the same
except that the 4-layer multi-layer network is resulted by implanting the first set of partitions in the first and the third layer,
while in the second and the fourth we plant the second set of partitions. As to partially overlapping communities, we generate
multiplex networks with a moderate dependency among layers (p = 0.3). This, according to the used generative model, results
in communities that are not perfectly pillar but partially overlapping.
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Abstract—Evaluating a community detection method involves
measuring the extent to which the resulted solution, i.e clustering,
is similar to an optimal solution, a ground truth. Different
normalized similarity indices have been proposed in the literature
to quantify the extent to which two clusterings are similar where
1 refers to a perfect agreement between them (i.e the two cluster-
ings are identical) and 0 refers to a perfect disagreement. While
interpreting the similarity score 1 seems to be intuitive, it does not
seem to be so when the similarity score is otherwise suggesting
a level of disagreement between the compared clusterings. That
is because there is no universal definition of dissimilarity when
it comes to comparing two clusterings. In this paper, we address
this issue by first providing a taxonomy of similarity indices
commonly used for evaluating community detection solutions.
We then elaborate on the meaning of clusterings dissimilarity
and the types of possible dissimilarities that can exist among two
clusterings in the context of community detection. We perform an
extensive evaluation to study the behaviour of different similarity
indices as a function of the dissimilarity type with both disjoint
and non-disjoint clusterings. We finally provide practitioners with
some insights on which similarity indices to use for the task at
hand and how to interpret their values.

I. INTRODUCTION

Community detection is one of the core tasks in the analysis
of complex networks. It involves clustering the network nodes
into groups, also known as communities or clusters, based on
the properties they share and/or the way they are connected
together. Since members of a community tend to generally
share some properties, revealing the community structure of a
network helps breaking it into its smaller building blocks and
provides a better understanding of the overall functioning of
the network. This has many applications in social media group
detection [1], second-order flow analysis in human mobility

[2], and topic detection in information networks [3], just to
cite a few.

A lot of effort has been devoted in the last decade to
develop community detection algorithms to cope with different
properties and complexities in social networks. While this
resulted in a plethora of community detection methods that
might differ from one another in the way they define what
a community is, the ultimate goal is always the same - to
produce a clustering C over the network nodes where C =
{C1, C2, . . . , Ck} , and C1, C2, . . . , Ck are disjoint or non-
disjoint groups of nodes. To maintain consistency in the used
terms over the paper, we will refer to a community detection
solution as a clustering, and to a single community in a
clustering as a cluster unless mentioned otherwise. We will
also use the term dissimilarity to refer to a disagreement
between two clusterings.

With the growing number of available community detection
methods, an urgent need has arisen for tools to evaluate
the resulted clusterings of these methods such that we can
either compare these clusterings against a reference clustering,
usually referred to as the ground truth, or we compare the
different clusterings resulted by different community detection
methods on the same data. Multiple normalized similarity
indices have been proposed or borrowed from other disciplines
to quantify the level of agreement between two clusterings
such that the score is 1 when the two clusterings are identical
and 0 when they are perfectly dissimilar. While the meaning of
similar seems to be quite intuitive when the similarity score is
1, it is unclear what is perceived as less similar or completely
dissimilar according to these similarity indices and whether
there is an agreement among the different indices on that.
To the best of our knowledge, no previous work has tackled
this question and its impact on interpreting the outputs of
community detection methods. In this paper, we contribute
to the literature by:
• Providing a taxonomy of the similarity indices commonly

used for evaluating community detection solutions.
• Elaborating on the meaning of clustering dissimilarity and

the types of possible dissimilarities that can exist among
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two clusterings in the context of community detection.
• Performing an extensive evaluation to study the behaviour

of the different similarity indices as a function of the
dissimilarity type with both disjoint and non-disjoint
clusterings.

• Providing practitioners with insights on which similarity
indices to use for the task at hand, and how to interpret
their values.

II. A TAXONOMY OF SIMILARITY INDICES USED IN
EVALUATING COMMUNITY DETECTION SOLUTIONS

Here we provide a taxonomy for similarity indices com-
monly used to quantify similarity among clusterings identified
by community detection methods (Figure 1). The top-level in
the proposed taxonomy specifies whether the similarity index
is used for comparing disjoint clusterings, i.e clusterings where
clusters do not overlap among each other, or for comparing
non-disjoint clusterings, i.e clusterings where clusters might
overlap. We will refer to these two types as disjoint indices
and non-disjoint indices respectively.

Fig. 1. A taxonomy for similarity indices commonly used to quantify
similarity among clusterings identified by community detection methods. *
refers to different ways of normalization (max, min, sqrt, mean, and joint)

The second level focuses on whether or not the similarity
index is adjusted for the by-chance agreement. Take any
two random clusterings over the same set of objects - there
might always be a level of agreement between them. This
agreement is usually referred to as the by-chance agreement,
and adjusting indices is the practice of removing the effect
of this by-chance agreement from the final score such that the
score reflects only the actual similarity among two clusterings.
The general formula used for adjustment is suggested by [4]
to be:

Adjusted Index =
Index V alue− Expected V alue

Max V alue− Expected V alue
(1)

Where Index V alue refers to the non-adjusted similarity
score calculated by the index, Max V alue refers to the
upper bound of the non-adjusted similarity score of that index,

and Expected index is a quantification for the by-chance
agreement.

The third level in our taxonomy is to differentiate among
three different practices used in the literature to define sim-
ilarity among clusterings, namely (1) pair counting which
calculates similarity on the level of node-pairs, i.e it considers
the existence of two nodes together in the same cluster in both
clusterings as an agreement and then averages the number
of agreements among the two clusterings to calculate the
final score, (2) set matching which calculates similarity on
the set-level, i.e it considers clusters as sets, and it defines
similarity as an average of the similarity among clusters (sets)
of the first clustering with those of the second one, and (3)
information theoretic which is borrowed from the information
theory discipline. These measures treat each clustering C as
a random variable X such that X is the vector of the nodes’
community-memberships , which it then maps calculating the
similarity between the two clusterings C, C′ into calculating
the mutual information among their relevant community mem-
bership vectors I(XC , YC′ ).

The leaves in our taxonomy tree are the chosen similarity
indices for our evaluation. Since the clustering problem is
much more general than the community detection problem, we
do not claim inclusiveness of all the similarity indices used to
compare clusterings in general. For the sake of this paper, we
chose to focus only on the similarity indices that are commonly
used to evaluate community detection solutions. As regards
the disjoint indices, we chose to consider Rand Index RI [5],
Adjusted Rand Index ARI [4], Normalized Mutual Information
NMI [6], Adjusted Mutual Information AMI [6], Fair Nor-
malized Mutual Information F-NMI [7] which is a version of
NMI that penalizes the NMI score when differences in the
number of clusters exist among the compared clusterings, and
Jaccard index [8]. We implemented a clustering-level Jacquard
index by averaging the Jacquard coefficient of each cluster in
the first clustering when compared with the cluster with the
highest intersection from the second clustering. As regards the
non-disjoint indices, we chose to consider O-NMILFK [9], O-
NMI with the different normalization options proposed by [10]
(i.e, Min, Max, Mean, and Sqrt), and Omega index [11] which
is an generalization of the Adjusted Rand Index to compare
non-disjoint clusterings.

III. TYPES OF DISSIMILARITY AMONG CLUSTERINGS

When it comes to comparing two disjoint clusterings G and
C, five types of dissimilarity are possible to exist among them.
Those are: (1) misplaced nodes dissimilarity, i.e a fraction of
nodes that are not placed in the right cluster in C according
to G, (2) missing nodes dissimilarity, i.e some nodes that do
not exist in any cluster in C but they do in G, (3) merging
dissimilarity, that is when a cluster in C is constituted of
some clusters from G that are merged together, (4) splitting
dissimilarity, that is when a cluster in G is split into multiple
clusters in C, and (5) random dissimilarity, that is when
a random combination of the aforementioned dissimilarities



happen between G and C. We will refer to these dissimilarities
as disjoint dissimilarities.

As regards to the dissimilarity among non-disjoint clus-
terings (non-disjoint dissimilarities), we refer to two types
of overlappings (Figure 2) mentioned in [12], namely crisp
overlapping where the node belongs with a certainty equals 1
to a cluster, and fuzzy overlapping where the node belongs
to a cluster with a given probability. For the sake of this
paper, we chose to focus only on crisp overlapping. On a
structural level, crisp overlapping can happen in various ways.
It can be (1) hierarchical, where the overlapping within a
clustering is represented by the existence of bigger clusters
that are constituted of other smaller clusters - this corresponds
to hierarchical overlapping dissimilarity, (2) non-hierarchical,
where the overlapping within a clustering is represented by
partial intersections among different clusters and/or by repli-
cated clusters within the clustering - those correspond to
partial overlapping dissimilarity and replicated overlapping
dissimilarity respectively, or (3) mixed overlapping, where
both hierarchical and non-hierarchical overlapping exist - this
corresponds to mixed overlapping dissimilarity.

Fig. 2. Types of overlapping in non-disjoint clusterings

IV. EXPERIMENTS

The main goal of our experiments is to study the behaviour
of different similarity indices commonly used to evaluate com-
munity detection solutions. More specifically, we are interested
in answering the following questions:
Q1 Do the different similarity indices have the same trends

in any condition and can they, as a result, be used inter-
changeably to evaluate community detection solutions?

Q2 Are the different clustering similarity indices equally
sensitive to the different types of dissimilarity between
two clusterings?

Q3 Are the different clustering similarity indices on an
agreement regarding what is considered dissimilar when
comparing clusterings?

Q4 Given that these indices are normalized, is the relation-
ship between the similarity score of each of these indices
and the amount of dissimilarity between the compared
clusterings linear?

To answer these questions, two main stages of evaluation
were devised: one for comparing disjoint indices (section
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Fig. 3. Cluster size distribution for the two ground truth clusterings G, G′

used for our experiments

IV-A), and another for comparing non-disjoint indices (section
IV-B). We report our observations in section IV-C.

Our experiments make use of two synthetically generated
ground truth clusterings G, G′ as roots to generate the amount
of clusterings needed for each experiment. To make sure
that our experiments on these indices are in the scope of
community detection, the first ground truth clustering G is
generated by detecting communities using a well known com-
munity detection method (Louvain [13]), on a representative
benchmark for social networks (LFR benchmark [14]) with
10000 nodes. 1. This resulted in a ground truth G clustering
with 57 clusters (i.e communities). To consider also clusterings
with more clusters and different cluster size distribution, we
construct the second ground truth clustering G′ by creating
a random clustering over 10000 nodes. This resulted in a
ground truth clustering G′ with 493 clusters. The cluster size
distribution of both G, G′ is illustrated in Figure 3. While it
was not possible to perform our experiments on significantly
larger node-sets because of the computational complexity of
pair-counting indices, we think that our choices are sufficient
to get useful insights and to generalize our findings about the
behaviour of different indices in different conditions .

A. Comparing disjoint indices

Given the disjoint dissimilarities discussed in Section III,
we construct a separate experiment for each dissimilarity type.
Each of these experiments starts with comparing two identical
clusterings, the ground truth clustering and a copy of it C,
then at each step i a new different disjoint clustering Ci is
constructed and compared with the ground truth clustering.
To improve the readability of the resulted figures in these
experiments, we use only one type of normalization with the
information theoretic indices (NMI, AMI, F-NMI) which is
the MAX normalization as recommended by [15]. The disjoint
clusterings for each experiment were constructed as follows:

1The benchmark was generated using networkx Python package with the
following parameters: number of nodes n = 10000, power law exponent for
the degree distribution = 2.6, power law exponent for the community size
distribution =1.7, minimum degree = 2, maximum degree =n, minimum size
of communities = 40, and maximum size of communities = n



• For the misplaced nodes dissimilarity experiment, a clus-
tering Ci was constructed at step i by randomly choosing
i nodes from the ground truth clustering and moving them
from their original clusters into another randomly selected
cluster.

• For the merging dissimilarity experiment, at each step i
a new clustering Ci was constructed by merging two ran-
domly selected clusters from the previous step clustering
Ci−1.

• As regards the splitting dissimilarity experiment, at each
step i a new clustering Ci was constructed by picking a
cluster from the previous step clustering Ci−1 randomly
and splitting it into two clusters whose sizes are also
chosen at random.

• For the missing nodes dissimilarity experiment, at each
step i a clustering Ci was derived from the ground truth
clustering by randomly selecting i nodes and removing
them from their original clusters. Since the information
theoretic indices do not account for missing nodes by
definition and they require the two input clusterings node-
sets to be of the same size, we assign a unique community
membership for each of the missing nodes instead of
totally removing the node. As a result, each missing node
results in a singleton cluster (i.e, a cluster with only one
node in it)

• For the random disjoint dissimilarity, at each step i, a
clustering Ci is constructed by applying a sequence of
randomly selected disjoint dissimilarities from the afore-
mentioned ones. The number of disjoint dissimilarities
per step is chosen at random (up to 20). The goal of
this experiment is to test if disjoint indices have similar
trends in general. The scores of all the indices in this
experiment are ordered based on the ascending order of
the AMI scores.

Figure 4 reports the effect of misplaced nodes, missing nodes,
merging, splitting, and random disjoint dissimilarities respec-
tively on the disjoint indices. G in the figure refers to the small
ground truth clustering (57 clusters) resulted by detecting
communities on a LFR benchmark, and G′ refers to the big
ground truth clustering (493 clusters) resulted by a random
clustering of the node-set. Note that both G, G′ are on the
same node-set (10000 nodes).

B. Non-Disjoint clusterings

To consider the different non-disjoint dissimilarities men-
tioned in section III, we devise four different experiments
to study the behaviour of non-disjoint indices in each case.
For these experiments, we create non-disjoint ground truth
clusterings Go, G′o starting from the disjoint ground truth
clusterings G, G′ used in the previous experiments by randomly
creating overlappings among the clusters. Each experiment
starts with comparing the ground truth clustering with an
identical clustering C, then at each step i a new non-disjoint
clustering Ci is constructed by applying a non-disjoint dissimi-
larity. The resulted clustering at each step is compared with the
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Fig. 4. Effect of misplaced nodes dissimilarity (A), missing nodes dissimi-
larity (B), merging dissimilarity (C), splitting dissimilarity (D), and random
disjoint dissimilarity (E) on the disjoint indices. Each experiment is executed
twice for two 10000-node ground truth disjoint clusterings different in terms
of the number of clusters constituting them, a small ground truth clustering
(G constituted of 57 clusters), and a big one ( G′ constituted of 493 clusters).



ground truth clustering. Clusterings of each experiment were
created starting from the ground truth clustering as follows:
• For the hierarchical overlapping dissimilarity experiment,

at each step i we construct a clustering Ci by copying
the previous step clustering Ci−1 and then adding a new
cluster to Ci that is the result of merging two randomly
chosen clusters from Ci−1.

• For the partial overlapping dissimilarity experiment, we
construct a non-disjoint clustering Ci at step i by copying
Ci−1 then randomly choosing two different clusters from
Ci−1 and creating a random intersection among them.

• For the replicated overlapping dissimilarity experiment,
at each step i, a clustering Ci is generated by copying Ci−1
then replicating a randomly chosen cluster from Ci−1.

• For the mixed overlapping dissimilarity experiment, at
each step i a clustering Ci is generated by applying a
sequence of randomly selected non-disjoint dissimilarities
on the ground truth clustering. The number of non-
disjoint dissimilarities per step is chosen at random (up
to 30 with the experiments on Go, and up to 400 with the
experiments on G′o)

Figure 5 reports the effect of hierarchical overlapping,
partial overlapping, replicated overlapping and mixed over-
lapping dissimilarities respectively on non-disjoint indices.
Go, G′o in the figure refer to the non-disjoint ground truth
clusterings resulted by randomly creating overlappings within
G, G′ clusters respectively.

C. Observations

A general observation on the disjoint indices is that rand
index (RI), in all cases, fails at quantifying dissimilarity
among clusterings. Thus, when we refer to disjoint indices
in our observations, we exclude rand index unless mentioned
otherwise.

As shown in Figure 4, both the dissimilarity type and the
clustering size, in terms of the number of clusters, contribute
to the existence of different trends among the disjoint indices.
More specifically, misplaced nodes dissimilarity reveals sim-
ilar trends amongst the disjoint indices when the compared
clusterings are relatively small (4-A (G)), with AMI being
more linear than other indices. However, with bigger clus-
terings (4-A (G′)), both NMI and F-NMI seems to fail at
accurately reflecting the amount of disagreement among the
compared clusterings while ARI, AMI and Jaccard maintain
their similar trends. When it comes to the missing nodes
dissimilarity, figures 4-B (G), 4-B (G′) show that NMI is the
least sensitive to this type of dissimilarity with both small
and big clusterings. While ARI, F-NMI and Jaccard indices
seem to be more sensitive, AMI shows a more intuitive linear
behaviour with respect to the number of missing nodes.

As regards to the merging dissimilarity, F-NMI seems to
be the most sensitive with this type of dissimilarity with both
small and big clusterings (figures 4-C (G), 4-C (G′)). While
NMI, AMI and Jaccard indices have similar trends among each
other and seem to be less sensitive to this type of dissimilarity,
ARI seems to be the closest to F-NMI and shows a more linear
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Fig. 5. Effect of hierarchical overlapping dissimilarity (A), partial overlapping
dissimilarity (B), replicated overlapping dissimilarity (C) and mixed overlap-
ping dissimilarity (D) respectively on the non-disjoint indices. Go, G′

o refer
to the non-disjoint ground truth clusterings resulted by randomly creating
overlappings within G, G′ clusters respectively.

behaviour with respect to the amount of cluster merges in
big clusterings. Similarly to the merging dissimilarity, F-NMI
seems to be the most sensitive with the splitting dissimilarity
with both small and big clusterings (figures 4-D (G), 4-D (G′)).
While Jaccard index seems to be the closest to F-NMI in its
sensitivity to the number of cluster splits and NMI is the least
sensitive, ARI and AMI have almost the same behaviour.

The random disjoint dissimilarity experiment (figures 4-E
(G), 4-E (G′)) shows that ARI, Jaccard and AMI have similar
trends and show almost the same behaviour on average. NMI
and F-NMI, however, do not seem to have the same trends
like the other disjoint indices.

As to the experiments on non-disjoint indices, figure 5
shows that Omega index is the most sensitive regarding non-
disjoint dissimilarities in general. Another observation is that
with large clusterings, non-disjoint indices are generally less
sensitive to non-disjoint dissimilarities than with small clus-
terings. Experiments on hierarchical overlapping dissimilarity
(figures 5-A (Go), 5-A (G′o)) show that ONMIMIN is the



worst among other normalizations of ONMI to reflect this
type of non-disjoint dissimilarity. The replicated overlapping
dissimilarity experiment (figures 5-C (Go), 5-C (G′o)) shows
that ONMILFK and all normalizations of ONMI fail at
reflecting this type of non-disjoint dissimilarity. The mixed
overlapping dissimilarity experiment (figures 5-D (Go), 5-D
(G′o)) confirms that Omega index is the most sensitive to non-
disjoint dissimilarities in general with ONMIMAX being the
closest of ONMI alternatives to it. The experiment shows
also that with big clusterings, ONMILFK and all normaliza-
tions of ONMI have the same behaviour on average.

V. DISCUSSION

As mentioned in Section IV, the main goal of our ex-
periments is to study the behaviour of different similarity
quantification approaches used to compare clusterings iden-
tified by community detection methods. More specifically, we
are interested in observing whether the different similarity
indices have the same trends (Q1), analyzing their sensitivity
to different types of dissimilarities (Q2), verifying whether
or not they agree on what is considered dissimilar (Q3), and
checking if the relationship between these indices and the level
of dissimilarity between the compared clusterings is linear
(Q4). Our ultimate goal is to provide practitioners with some
insights on which indices to use for the task at hand and how
to interpret their values.

As regards to (Q1), the different experiments show that
similarity indices do not always follow the same trends and
that largely depends on the type of dissimilarity between the
two compared clusterings and their sizes as well. With disjoint
indices for example, AMI, ARI and Jaccard indices seem to be
equivalent on average. Thus, they can be used interchangeably
when there is no knowledge in advance about the type of
dissimilarity between the compared clusterings. When the type
of dissimilarity among the compared clusterings is known
upfront, a good choice is F-NMI for merging or splitting
disagreements, and AMI for missing nodes and misplaced
nodes disagreements. With non-disjoint indices, Omega index
seems to be the best choice. Since Omega index can be
computationally expensive with clusterings on large node-sets,
ONMIMAX can serve as the best available alternative.

As regards to (Q2), it is clear based on our experiments
that different indices have different sensitivities with respect
to the type of dissimilarity between the compared clusterings.
Hence, one should be careful when using these indices to draw
conclusions about community detection solutions. At the same
time, this can be used to anticipate the type of disagreement
among the compared clusterings. For example, if F-NMI score
is very low while AMI score is still relatively high, one can
expect that the two compared clusterings have merging or
splitting dissimilarities.

Whether different indices are on an agreement regarding
what is considered dissimilar (Q3), it is evident that this is
not the case as they do not always hit the score 0 together, for
example, and some of them do not even hit 0. As to (Q4), the
experiments showed that the relationship between similarity

indices and the amount of disagreement is not necessarily
linear as they do have different sensitivities with respect to
the type of dissimilarity between the compared clusterings.
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Abstract—In the context of community detection in online
social media, a lot of effort has been put into the definition of
sophisticated network clustering algorithms and much less on the
equally crucial process of obtaining high-quality input data. User-
interaction data explicitly provided by social media platforms has
largely been used as the main source of data because of its easy
accessibility. However, this data does not capture a fundamental
and much more frequent type of participatory behavior, where
users do not explicitly mention others but direct their messages to
an invisible audience following a common hashtag. In the context
of multiplex community detection, we show how to construct
an additional data layer about user participation not relying
on explicit interactions between users, and how this layer can
be used to find different types of communities in the realm of
Twitter political communication.

I. INTRODUCTION

Community detection is one of the most studied topics in
social network analysis. While effective community detection
algorithms are certainly necessary to identify meaningful com-
munities, another equally crucial aspect is the definition of
which connections should form the input data. However, it
is generally recognized today that online social media are
complex communication systems where different types of
interactions are supported, and different network datasets can
be built depending on the type of interaction to be studied.
If we focus on Twitter, different types of data and different
combinations of them have been considered when looking
for communities. A common approach is to build a network
based on following/follower relations [1], that can be easily
obtained from the Twitter API. Researchers have soon realized
that interaction networks are also directly available from the
tweets, either defined by retweets [2] or by explicit mentions
indicated by the @ character [3]. More recently, advances in
multiplex social network analysis have led to the application
of multiplex community detection methods, motivated by the
hypothesis that analyzing these three types of connections

together can reveal new types of communities. More recent
work [4] has also suggested the organization of interactions
(e.g., @ mentions) between users into multiple layers based
on the topic in the exchanged text.

We claim that a strong limitation of the aforementioned
approaches is that they only focus on the explicit interac-
tions among users that take place within the social media:
following, retweeting, and mentioning. However, much of
Twitter contemporary interaction takes place within the space
of polyadic conversations defined by hashtags. By adding a
specific hashtag to their tweets, users do not only label the
content of the tweet declaring its general topic but also identify
the imagined audience [5]. This participation in a shared
discussion, taking place on this hashtag-defined topical space,
is largely ignored when Twitter data is used for community
detection purposes [6], [4]. In our opinion, the reason why
this data has been ignored is that, as opposed to explicit inter-
actions where specific users are directly mentioned in tweets,
imagined audiences are not explicitly available from social
media APIs - being in most cases not precisely known by the
users when they are tweeting [7]. Our claim is that the implicit
connections among users adopting common hashtags would
be a valuable and natural input to a community detection
algorithm.

In this paper, we provide the following contributions. First,
we discuss the different choices to model Twitter interactions
for community detection tasks, claiming that the connections
explicitly provided by the Twitter platform omit a fundamental
portion of the complex communication patterns happening on
this platform, and specifically hide participation dynamics in
favor of interaction dynamics. Then, we provide a way to
capture this additional social layer about user participation.

II. TOPICAL AUDIENCE MODEL

A common way to model the multiple types of relationships
supported by a social media platform is to use multiplexIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain

978-1-5386-6051-5/18/$31.00 c© 2018 IEEE
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Fig. 1: An example of a multiplex network modeling two
modes of interaction among five actors. This is modeled as
five replicated nodes in two layers. A node and its replica are
linked by a dotted line, to denote that they refer to the same
actor, e.g., the same Twitter user

.

networks (Fig. 1). Existing work has already used multiplex
networks where layers represent explicit interactions between
users. Here we add a layer representing users participation.
This layer, that we call topical audience model (TAM), aims
at modeling the shared interests among users based on their
participation in public discussions. We build the TAM layer
in two phases. In the first phase, the discussions among the
users of interest are modeled as a multiplex of n layers where
n is the number of the topical discussions to be considered
in the model. In the context of this paper, we use the explicit
hashtag as a proxy for the topic of the shared conversation
as suggested by [8]. Each discussion adds a layer to the
multiplex and is modeled as a single clique that ties all the
users who were part of the discussion by including the same
hashtag in their messages. The intuition behind this is that the
hashtag functions as a shared channel for discussions about
a specific topic where one aims at broadcasting his/her views
and opinions to everyone else in the channel.

In the second phase we compute a single network from
these topical layers by applying a weighted flattening [9]. In
our model, an edge e between u1 and u2 in the flattened graph
has a weight we defined using the Jaccard coefficient as:

we =
N(u1, u2)

N(u1) +N(u2)−N(u1, u2)
(1)

where N(u1) refers to the number of topical layers user u1
has been part of and N(u1, u2) refers to the number of topical
layers users u1 and u2 have been both part of.

Once the weights have been computed, we can either keep
them if we want to apply a weighted community detection
algorithm, or we can use a threshold θ to create a TAM which
considers only edges with weights exceeding θ. We do the
latter in the case study described in the next section where we
also show the effect of using different thresholds.
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Fig. 2: The two phases in the formation of the Topical
Audience Model (TAM). In this example, two actors are
connected in Phase 2 if they are connected at least twice in
Phase 1

III. A CASE STUDY

The data we use in our case study was collected during the
month leading up to the 2015 Danish parliamentary election.
Starting from a list of all the Danish politicians running for
parliament and with a Twitter account, we collected all their
Twitter content produced during the 30 days leading to the
election. The initial dataset was formed by 490 politicians
distributed across 10 parties, 5985 original tweets, 633 replies
and 3993 retweets. Together with their Twitter activity, we also
registered the political affiliation of the 490 politicians. Given
the complexity of the Danish multi-party system, the parties
have also been grouped according to their actual coalitions:
Red Block and Blue Block.

layer #nodes #edges density ccoef
1 Retweet 212 484 0.0007 0.011
2 Reply 127 169 0.0020 0.175
3 TAM.2 132 1594 0.0065 0.564
4 TAM.5 121 427 0.0017 0.738
5 TAM.7 68 152 0.0006 1.000

TABLE I: Layers used in the analysis. ccoef is clustering
coefficient

The main focus in our experiments is to execute community
detection on different multiplexes constituted of different com-
binations of Twitter interactions (retweet, reply, and topical
interactions represented by TAM) so we can study the nature
of the resulted communities on each multiplex. Table I shows
the main descriptive data about the layers used to constitute
these multiplexes. To build the TAM, the hashtags used by the
politicians in the DKPol dataset were listed and qualitatively
analyzed. We then excluded the hashtags used for the election
campaign and those referring to political TV debates. After
this filtering, we were left with only 23 hashtags used to
refer to specific topics. The TAM was then constructed in two



Fig. 3: Nominal assortativity of TAM with respect to the
threshold θ

phases. In the first phase, a multiplex of 23 layers (layer per
hashtag) was built as detailed in section II. In the second phase,
the multiplex has been flattened into a TAM using a threshold
θ to filter out all edges with a weight less than θ. We observed
the impact of various thresholds on the nominal assortativity
[10] of the TAM layer, measured on the political affiliation
and the political coalition of the politicians (Fig 3). We built
the TAM layer for 3 different values of θ (0.2, 0.5, and 0.7)

We performed our community detection by using Gener-
alized Louvain on 1) only the retweet layer, 2) the multiplex
constituted of both the retweet and the reply layers, and 3) the
multiplex constituted of retweet, reply and TAM layer (one
multiplex per threshold). Compared with other community
detection methods, Generalized Louvain detected communities
that are the closest to the groupings of politicians into political
parties. While we do not use this as an evaluation criterion
for how good a community detection method is, it is a good
starting point to observe how the addition of other layers might
affect the resulted communities. The results of community
detection using this method on the same multiplex varied
slightly from one execution to another, based on the order
in which the nodes are scanned by the algorithm. Therefore,
we have run the algorithm 1000 times for each experiment. To
investigate the social dynamics behind the observed commu-
nities beside the structural elements, the communities were
evaluated against the groupings of politicians in political
parties using the normalized mutual information metric (NMI)
[11]. Within the context of this paper, we do not interpret
NMI as a “quality“ measure of the proposed community
structure but as a measure of similarity between the proposed
community structure and how the politicians are grouped into
political parties.

IV. RESULTS AND DISCUSSION

Fig. 4 shows that the highest level of NMI is observed when
the communities are detected from the single layer network

Fig. 4: (NMI) index of clusterigns identified by gLouvain and
the political affiliation of ploticians

containing the retweets. Both the multiplex network including
the replies, as well as those including the topical layer, score
a lower value of NMI when communities are detected. This
means that while the retweet layer contains communities that
reflect the political affiliation of the politicians, this is no
longer clearly visible when communities are detected together
with the other relations. This suggests the existence of two
different dynamics behind the connections existing on the
various layers of the multiplex structure: that of political
homophily in the case of the retweet layer and that of different
nature for the other layers. Fig. 5 shows the proportion of
members belonging to each one of the two coalitions (Blue
Block and Red Block) assigned to each one of the communities
identified in (a) the retweet network (9 communities) and in the
multiplex constituted of the retweet, the reply and the TAM
with θ= 0.2 (10 communities). Looking at this figure, it is
evident that while the retweet network communities are largely
politically homogeneous, the multiplex network including the
TAM shows a significant number of communities that are
actually formed by the members of both coalitions. This
suggests that adding the TAM to the multiplex network allows
us to observe interactions between political members that not
only belong to different parties but also to different coalitions.
While the users on the topical layer were connected because
they used the same hashtag to refer to discussion topic during
the same political campaign, it is hard to claim that they were
not participating in the same conversation. On the contrary,
we claim that even if they were not explicitly referring to
each other, they were very aware of each other’s presence as
they were debating in the public topical space defined by the
hashtags [12]. While this interaction is not easily captured
since it is not readily available through the Twitter API, the
proposed approach quantitatively captures the idea of users
dealing with their imagined audience as repeatedly observed



in qualitative studies of Twitter use [13]. From a political point
of view, these results show how Twitter works as a public
sphere and how topical debates gathered politicians from
opposite parties. This raises the question whether the levels
of polarization that have been previously observed in political
social media data [14], [2] were actual social dynamics, or the
result of the inherently biased data available that was unable
to observe non-explicit interactions among users.

While originally introduced by Twitter, the idea of using
hashtags to gather communication of users that are not other-
wise connected has been adopted in various platforms. These
platforms have thus evolved into a form of digital public space
where discussions about the news, casual conversations and
also political participation take place [15]. While the study
of these participatory processes is more and more relevant
to understand contemporary society, network approaches have
only looked at direct and explicit interactions. By introducing
the topical model to study hashtag-based interaction, we pro-
pose to extend the range of phenomena that can be fruitfully
studied with a network approach. Moreover, we suggest that
this model should not be limited to Twitter data and that it
could easily be applied to other hashtag-based communicative
contexts (e.g. Instagram) as well as to other conceptually
similar digital contexts (e.g. participation in Facebook pages).

A future extension to the proposed topical model should
include the temporal aspects of interaction into the multiplex
network model. While the current implementation assumes
a topical stability, it is obvious that topics, as well as the
association between actors and topics, change over time. Users
might want to discuss a specific issue when it is highly relevant
in society and then switch to another topic a few days or
even hours later. Twitter itself acknowledges this dynamic
through the identification of ever changing trending topics
that describe what is being discussed in a specific moment
in time, in a specific geographical context. Recent contribu-
tions in multiplex networks [4] have proposed to model the
temporal dimension as layers of a multiplex structure to be
subsequently used for community detection approaches that
include temporal information. Such an approach, combined
with the topical model we have introduced, could address more
of the complexity we encounter in social media, where groups
of users discuss within topical spaces constantly moving from
one topic to the next one, in an ever evolving network of
actors, moments and themes.

V. CONCLUSIONS

In this paper we have introduced a novel approach to model
the participation in hashtag-based Twitter conversations. We
have done this by modelling the participation into a hashtag-
based discussion as a layer of a multiplex network where users
are connected together if their shared participation is above a
given threshold θ. We have also applied this approach in the
context of Twitter data collected in 2015 in Denmark during
the month leading the the general election.

Fig. 5: Proportion of political coalitions (Red Block and Blue
Block) within the communities detected on both a) only the
retweet network b) the multiplex network including retweets,
replies and the TAM θ = .2 (color figure)
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An Innovative Way to Model Twitter
Topic-Driven Interactions Using
Multiplex Networks
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We propose a way to model topic-based implicit interactions among Twitter users. Our

model relies on grouping Twitter hashtags, in a given context, into themes/topics and

then using the multiplex network model to construct a thematic multiplex where each

layer corresponds to a topic/theme, and users within a layer are connected if and only

if they used the same hashtag. We show, by testing our model on a real-world Twitter

dataset, that applyingmultiplex community detection on the thematic multiplex can reveal

new types of communities that were not observed before using the traditional ways of

modeling Twitter interactions.

Keywords: multiplex networks, multiplex community detection, thematic communities, thematic clusters,

thematic multiplex, social network analysis, social media data analysis

1. INTRODUCTION

The unprecedented amount of data that is produced, on a daily base, on social media has provided
to researchers and practitioners a new opportunity to study, in depth, complex social dynamics
at a large scale. Within this context, Twitter can easily claim the award for the most researched
social media platform. Thanks to the large user-base and a relatively generous API policy, this
micro-blogging platform has quickly evolved into the de-facto standard platform for multiple
studies on social media dynamics.

The detection of cohesive subgroups in social networks, also called as community detection,
has been perceived as one of the most valuable tools to better understand social networks
(Papadopoulos et al., 2012). Given that members of the same community tend to share
some properties, the community structure of a network can provide a better understanding
of the overall functioning of this network. The application of this on social media data has
provided useful insights about some of the dynamics and phenomena that take place in such
systems (Silva et al., 2017).

A common approach to model Twitter interactions for community detection tasks is to build
a network based on following/follower relations (Kwak et al., 2010), or networks based on either
retweets (Conover et al., 2011) or explicit mentions indicated by the @ character (Yang and Counts,
2010). Advances on multiplex community detection have suggested that looking at more than one
of these types of connections together can provide some insights that cannot be observed by looking
at each of them separately. As to the content generated by Twitter users, it has been mostly used for
topic detection tasks (Ibrahim et al., 2018) and sentiment analysis (Ceron et al., 2014). To the best
of our knowledge, no previous work has addressed extracting network-like information from the
content generated by users on social media platforms for community detection tasks.

Much of Twitter contemporary interactions happen in the form of conversations in
many-to-many polyadic spaces defined by hashtags (Bruns and Burgess, 2011). In this type of
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interactions, Twitter users are not necessarily retweeting,
replying to, or mentioning each other but engaging directly
with specific issues. This suggests that analyzing Twitter data
by considering only the direct interactions among users (i.e.,
following/follower, retweet, and mention networks) is still far
from providing a complete picture of Twitter-based interactions.
In this paper, we address this gap by proposing an innovative
way to model topic-driven interactions of Twitter users using
the multiplex network model (Dickison et al., 2016). We test
our model, the thematic multiplex, on a real-world dataset
capturing the Twitter interactions of the Danish politicians
during the parliamentary elections of 2015. We show that
detecting communities on the thematic multiplex can reveal
different dynamics than those observed by analyzing only
explicit interactions. For example, we observed, using thematic
multiplex community detection, that while some themes/topics
were discussed by almost all the parties within the month leading
to the election day, left and right-wing parties, at the same time,
have also focused on themes that were politically closer to their
traditional ideologies.

The rest of this paper is organized as follows. In section 2
we introduce the thematic multiplex and the thematic multiplex
community detection. This is followed by our analysis of a real-
world use case (section 3) which captures the Twitter interactions
among Danish politicians during the parliamentary elections of
2015. We discuss our results in section 4 and conclude our
findings in section 5

2. THE THEMATIC MULTIPLEX

On platforms like Twitter, when a user uses a specific hashtag in
a tweet, he/she is not only increasing the visibility of that tweet,
but also implicitly, even if not directly, communicating with other
Twitter users who are using the same hashtag. This concept has
been referred to as the imagined audience in the literature (Litt,
2012). Thus, we can assume a social tie (an edge) between two
users who used the same hashtag and this is the main idea behind
the thematic multiplex. The thematic multiplex, as the name
suggests, is a multiplex network where each layer corresponds
to a topic/theme and users within a layer are connected via a
clique, if and only if, they used the same hashtag. An edge among
two actors in the resulted thematic multiplex does not necessarily
imply a direct interaction among them yet it suggests that they
share a topical-interest. Figure 1 illustrates a thematic multiplex
where each layer represents a specific topic/theme (for example,
refugees, education, etc..), and users who used the same hashtag
within a topic are connected via a clique, which might result
in multiple cliques within a layer (for example, the education
theme). Figure 2 illustrates a possible output for community
detection on the thematic multiplex.

We claim that detecting communities on the thematic
multiplex network using multiplex community detection can
reveal different dynamics than those observed by analyzing the
direct interactions among users. The reason is two folded: on
one side, direct interactions are often driven by heterogeneous
behavior from the users, e.g., Retweets can represent a form of

FIGURE 1 | An example of a thematic multiplex.

endorsement or just a way to spread an information deemed
to be relevant, Replies can equally be produced by amused
conversations or endless fights between users. On the other side,
direct interactions are just part of the whole Twitter data, thus
any approach focusing solely on those will loose potentially
relevant information. Thematic multiplex community detection,
on the opposite, results in thematic communities were users
are grouped together if they tend to discuss/be involved in the
same topics/themes through direct or indirect interactions. More
over, given that the qualitative analysis is added in the modeling
phase, this intrinsically contributes to the qualitative power of
community detection on the thematic multiplex network.

3. A CASE STUDY

We describe the dataset in section 3.1, then we discuss the
construction of the correspondent thematic multiplex and some
choices for our analysis tools in section 3.2. We report our
observations on the results in section 3.3.

3.1. The DkPol Dataset
The data we use to test our model is collected during the
month leading to the 2015 Danish parliamentary election.
Starting from a list of all the Danish politicians running for
the parliament who also had a Twitter account, we collected all
the tweets written during the 30 days leading to the election.
The initial dataset was formed by 490 politicians distributed
across 10 parties, 5,985 original tweets, 633 replies, and 3,993
retweets. Together with their Twitter activity, we noted also the
political affiliation of the 490 politicians. Given the complexity
of the Danish multi-party system, the parties have also been

Frontiers in Big Data | www.frontiersin.org 2 June 2019 | Volume 2 | Article 9
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FIGURE 2 | A possible output for applying community detection on a thematic

multiplex.

grouped into two main coalitions existing at the time: Red
Block, currently at the opposition, and the Blue block, currently
in government1. In order to use the hashtag contained in
the tweets to build a thematic multiplex, some initial data
cleaning was necessary. The hashtags were first qualitatively
analyzed. We then excluded the hashtags that were just about
the election campaign as such (like #dkpol) and those referring
to political TV debates (like #tv2valg and #DRdinstemme). After
this filtering we were left with only 23 hashtags used to refer
to specific topics (12 topics). Table 1 shows the grouping of
these hashtags into topics. While our suggested grouping can
be further discussed as hashtags can be grouped in many other
ways, we chose to keep our focus on the correspondent thematic
multiplex and the resulted communities for the sake of this
paper.

3.2. Experimental Settings
Given the DkPol dataset, we constructed a twelve-layer thematic
multiplex (layer per theme/topic). A topic/theme with k hashtags
is interpreted as k cliques in the correspondent layer (a clique
per hashtag) among all the users who used the same hashtag.
We first show that detecting communities on the thematic
multiplex reveals communities that are largely different from
those detected using the traditional ways of modeling twitter

1The red block coalition groups the following parties: Alternativet, Radikale

Venstre, Enhedslisten, Socialdemokratiet, and Socialistisk Folkeparti, while the

blue block coalition groups: Dansk Folkeparti, KristenDemokraterne, Liberal

Alliance, Venstre, and Det Konservative Folkeparti.

TABLE 1 | The main themes discussed on Twitter by the danish politicians during

the parliamentary elections of 2015.

Theme Hashtag

1 Children #dajegvar12

2 Climate #dkgreen – #talklima – #verdensvildesteforskel

3 Economy #talop – #dkain – #socialdumping – #nulv

4 Education #skolechat – #uddpol

5 Election’s Practices #nypolitiskkultur

6 Europe #eurdk

7 Government Interference #frihed

8 Health #sundpol – #sundhed

9 IT #itpol – #itvalg

10 Refugees #nuloverdeigen – #engangvarjegflygtning

11 Woman’s Rights #100aaret

12 Work #arbejde – #dksocial – #dagpenge

interactions. Figures 3, 4 illustrate the communities detected
on the multiplex constituted of the following/follower layer,
the retweet layer and the reply layer (A), and those detected
on the thematic multiplex (B). The two solutions are largely
different in terms of the number of detected communities
(8 in the first multiplex, and 3 in the second one), and the
composition of each community in terms of the political coalition
and the political affiliation of the members constituting each
community.

As to the selection of the community detection method for
our multiplex networks in this paper, we chose a modularity-
maximization based community detection method, Generalized
Louvain (Jutla et al., 2017) for this task. The reason is that
we consider, by assumption, our networks to be undirected
networks and our initial focus is on analyzing the communities
resulted by the structural features of the network rather than
the information flow. For that reason, we chose Generalized
Louvain given that it is a well referenced method in the
literature to detect this type of communities. The method define
communities by optimizing the modularity of the network. In
simple graphs, i.e., one layer networks, this translate to finding
the best partitioning of nodes into groups, i.e., communities,
that maximize the amount of edges within these groups and
minimize the number of edges among them. As to the multi-
layer extension of this method, it finds the best partitioning
that maximize the multi-layer modularity function which is an
extension of the simple modularity defined for simple networks.
The extended version of modularity introduces a new parameter
to the modularity function that is the coupling parameter ω

among nodes that belong to the same actor (i.e., the same
Twitter user in our case). When ω = 1 (the default case),
this means that the coupling among nodes that belong to the
same actor is strong. As a result, a partitioning where multiple
nodes that belong to the same user (a node represents the
existence of a user in a specific layer) lie in the same community
contributes intrinsically to the final score of the extended-
modularity. In the rest of this paper, we will refer to the output of
a community detection method (which is a set of communities)
as a clustering.

Frontiers in Big Data | www.frontiersin.org 3 June 2019 | Volume 2 | Article 9
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FIGURE 3 | The resulted communities by applying community detection using Generalized Louvain on two different multiplex networks over the DkPol dataset: (A)

the multiplex constituted of the three layers (following/follower, retweet, and reply) and (B) the thematic multiplex. Each bar refers to a different community and the

colors in each bar (i.e., community) refer to the composition of each community in terms of the political affiliation of the members constituting it.

FIGURE 4 | The resulted communities by applying community detection using Generalized Louvain on two different multiplex networks over the DkPol dataset: (A)

the multiplex constituted of the three layers (following/follower, retweet, and reply) and (B) the thematic multiplex. Each bar refers to a different community and the

colors in each bar (i.e., community) refer to the composition of each community in terms of the political coalition (red, blue) of the members constituting it.

To better understand the topical dynamics during the month
leading to the elections, we chose to create 4 thematic multiplex
networks (one for each week content during the month leading
the election day). The reason behind choosing “1 week” as a time-
window based on which we split the data is that during themonth
leading to the elections, politicians had to debate on a public TV
show once per week.

As illustrated in Figure 2, the resulted communities do not
necessarily expand over all the layers, meaning that some topics
can be absent in some communities. In addition, nodes may not
be evenly distributed over layers (for example, community C1

in Figure 2 is constituted of 3 nodes in each of the Refugees
layer and the Education layer and 4 nodes in the Economy
layer). This suggests that topics have different weights, and as
a result priorities, in each community which can be interpreted

as: some communities, for example, discuss the topic Economy
more intensely than they do with the topic Education. To
clearly illustrate this, we construct a bipartite network from each
clustering. The goal from these bipartite networks is to visualize
the relationship between the communities of each clustering and
the topics. The width of an edge in the bipartite network between
a community and a topic reflects the extent to which that topic is
prioritized in that community.

Figure 5 shows the resulted bipartite networks, one per
week. We invite our reader to look at this figure together with
Figure 6 which reports , in the form of colored mini-tables , the
composition of each community in terms of political coalitions.
The existence of a party in a community is represented as a
colored cell in the relevant column in that table. The color of that
cell can either be red (if the party is from the red Block) or blue (if

Frontiers in Big Data | www.frontiersin.org 4 June 2019 | Volume 2 | Article 9
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FIGURE 5 | The relationship between the topics and the thematic communities resulted by applying community detection on 4 thematic multiplex newtorks that

captured the Twitter interactions of Danish politicians during the month leading the parliamentary lections of 2015 (one per week). (A) week 1, (B) week 2, (C) week 3,

(D) week 4.

FIGURE 6 | The compositions of the communities reported in Figure 5 in terms of their political affiliation/party and political coalition/block. (A) week 1, (B) week 2,

(C) week 3, (D) week 4.

the party is from the blue block). A cell that is neither blue nor red
implies the absence of that party (identified by the correspondent
column) in the community identified by its row.

3.3. Observations
By looking at Figure 5A together with Figure 6A, we see that
applying community detection on the thematic multiplex of the
first week resulted in three communities. Two communities,

com_1,com_3, that focus more on economic issues (economy
theme and work theme) are composed solely of left-wing (red
block) parties. In addition, one community, com_1, constituted

of almost all the red block and the blue block parties, tackled all

topics with more focus on children, climate, work, and economy
themes. Only one of the 12 themes (woman’s rights) is absent in
all the online debates happened with the first week. The analysis
of Figures 5A, 6A shows how during the first week of the election
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campaign there was a set of bipartisan topics, that were deemed
to be central and worth debating, from both political blocks and
other themes that were part of political messages of only one of
the two blocks.

This scenario seems to change during the second week
as Figure 5B together with Figure 6B report the absence of
single-coalition communities. However, the differences among
the communities can be observed on the level of their topical
interests. For example, com_1 has more focus on woman’s rights
and climate issues, com_2 equally prioritized refugees, health and
economy issues, while com_3 had focused on work, education,
work, and economy. It is also interesting to observe how some
of the topics that were, during the previous week, part of a single
coalition community (e.g., “economic issues” in com_3 during
the first week but part of a bipartisan community - com_2 - in
the second week), are now part of the bipartisan conversation.
While the detailed study of this dynamic process is outside the
goal of this paper, this seems to suggest that opposite coalition
might follow each others’ themes in order to be present in the
topical debate.

During the third week can observe a new polarization of
the picture. Figures 5C, 6C show, com_1, com_2, constituted of
only blue block parities with interests in refugees, government
interference, and health issues. One community, com_5, is
constituted of only red block parties with interests on economical
issue (work and economy themes). One community, com_3,
constituted of almost mostly red block parties (with only one
blue block party) with interests in both climate and economy. A
debate among almost all parties is still present in the third week
represented by com_3 with more focus on climate. These topical
division seems very much aligned with the core political values of
the two blocks at the time of the election.

This topical difference is largely maintained into the fourth
week, the week of election, where we can see—Figures 5D, 6D—
four thematic communities. Com_1 which is constituted of only
right-wing parties (blue block) with interests in refugees and
government interference issues, com_2 which is constituted of
only left wing parties (red block) with interests only in economy,
and both com_3, com_4 which are mixed in terms of the
coalitions, and with main interests in (work/education/climate)
and climate, respectively.

4. DISCUSSION

A clear difference has been shown when analyzing the
communities on the thematic multiplex versus those detected on
a multiplex constituted of the following/follower, retweet, and
reply layers. This strongly suggests that community detection
on the thematic multiplex reveals different dynamics than those
observed using traditional ways of modeling twitter interactions.
This is not to say that the thematic multiplex can substitute the
traditional ways of modeling Twitter activities, but just to shed a
light on different dynamics that can be observed using this way
of modeling.

Applying longitudinal community detection on the thematic
multiplex network obtained from Twitter data allowed us to
observe several interesting dynamics. Given that the dataset
captured the interactions among Danish politicians during the

month leading the parliamentary elections of 2015, we were
able to capture the interest of a political party (or coalition) in
specific issues, regardless of the fact that the issue produced an
explicit interaction with other users through retweets or replies.
During a political campaign, when much of the communication
is aimed at promoting the party’s agenda to the potential voters,
which does not necessarily involve retweeting or replying actions
, this type of implicit communication is of key importance.
Nevertheless, the thematic multiplex network approach was
also able to observe the topics that were more contentious
between the parties as well as the topics highly polarized.
Moreover, the combination between multiplex thematic analysis
and longitudinal data allowed us to show how the political debate,
and resulting political communities, are highly dynamic and
driven by the ongoing events or campaign themes.

While there might exist other ways to model topic driven
implicit interactions on Twitter for clustering tasks, we still think
that using multiplex network model offers clear advantages. First,
the multiplex network model is a well-developed and widely used
model for modeling complex systems (Cardillo et al., 2013; De
Domenico et al., 2015) and therefore, provides a powerful, and at
the same time flexible, modeling tool that allows for translating
properties and variables of complex systems into multi-layer
graph proprieties. Second, the plethora of community detection
methods developed to detect communities in multiplex networks
provides practitioners withmore power to choose what works the
best for the context of their data.

The idea of moving the qualitative analysis to the modeling
phase in the thematic multiplex adds lots of power to the
interpretability of the output of a community detection task on
this multiplex network. While a fully automated approach to
group hashtag into themes/topics could seem a tempting idea,
the real complexity behind social media hashtagging is still far
from being fully understandable by natural language processing
tools and text mining technologies currently at hand. An example
are two of the hashtags in our collection: #engangvarjegflygtning
(translated: one day I was a migrant) and #dajegvar12 (translate:
when I was twelve). In both cases an emotional hashtag is used
to discuss specific issues, the refugee crisis with the first and
children policies with the latter. The connection between the
topic and the hashtag is not explicit, and while both hashtags
are clearly topical hashtags (thus referring to a specific topic or
event and suggesting the desire of the user to participate to an
ongoing larger conversation Bruns and Moe, 2014) they also
contain an emotional layer that, as well as the specific topic,
is hard to understand if taken out of the specific cultural and
societal context.

A future iteration on this work should consider testing the
thematic multiplex on other datasets. An important extension
should also consider the scalability problem with large scale
datasets. The main complexity of this model comes from the
greedy approach of connecting the user with his imagined
audience via a clique. This means that by using a hashtag for only
one time, a user is adding to the model a number of edges equals
to the number of all other users who used the same hashtag.
While a naive approach to minimize the size of these cliques
could be to apply a threshold on the number times a user should
use a hashtag before being part of the clique, we still think that
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further research should be carried out to find other alternatives
for the clique concept in the thematicmultiplex without any loose
in the information.

Even though the idea of using hashtags to gather
communications of users that are not otherwise connected
(e.g., not following each other) was originally introduced by
Twitter, many other platforms such as Facebook and Instagram
have adopted this idea in various ways. Thus, we suggest that
this model should not be limited to Twitter data as it could be
easily applied to other hashtag-based communicative contexts
(e.g., Instagram) as well as to other conceptually similar digital
contexts (e.g., participation in Facebook pages).

On a separate note, we would like to mention the fact
the resulted communities may largely depend on the chosen
community detection method. Indeed, weather or not the
thematic communities will be significantly different among
different community detection methods can be a research
question on its own and we think that answering this question
is out of the scope of this paper.

5. CONCLUSION

In this paper we propose an innovative model, the thematic
multiplex, to model topic-driven interactions on Twitter.
The thematic multiplex is a multi-layer network where each

layer corresponds to a different topic, and users (nodes)
within a layer will be connected via a clique if and only
if they used the same hashtag. We explain the motivation

behind the thematic multiplex which is the fact that it
considers implicit interactions among users on Twitter that
are usually neglected in other models. We construct the
thematic multiplex of a real-world Twitter dataset describing
the Twitter interactions among the danish politicians during
the parliamentary elections of 2015. We show that applying
multiplex community detection on the thematic multiplex allows
us to observe different dynamics than those we would observe on
other models.
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[28] Arzum Karataş and Serap Şahin. Application areas of community detection: A

review. pages 65–70, 12 2018. doi: 10.1109/IBIGDELFT.2018.8625349.
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