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Abstract

We study the problem of approximate near neighbor (ANN) search
and show the following results:

• An improved framework for solving the ANN problem using
locality-sensitive hashing, reducing the number of evaluations
of locality-sensitive hash functions and the word-RAM com-
plexity compared to the standard framework.

• A framework for solving the ANN problem with space-time
tradeoffs as well as tight upper and lower bounds for the space-
time tradeoff of framework solutions to the ANN problem
under cosine similarity.

• A novel approach to solving the ANN problem on sets along
with a matching lower bound, improving the state of the
art. A self-tuning version of the algorithm is shown through
experiments to outperform existing similarity join algorithms.

• Tight lower bounds for asymmetric locality-sensitive hashing
which has applications to the approximate furthest neighbor
problem, orthogonal vector search, and annulus queries.

• A proof of the optimality of a well-known Boolean locality-
sensitive hashing scheme.

We study the problem of efficient algorithms for producing high-
quality pseudorandom numbers and obtain the following results:

• A deterministic algorithm for generating pseudorandom num-
bers of arbitrarily high quality in constant time using near-
optimal space.

• An randomized construction of a family of hash functions
that outputs pseudorandom numbers of arbitarily high quality
with space usage and running time nearly matching known
cell-probe lower bounds.
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Resumé

Vi undersøger et grundlæggende problem indenfor approksima-
tiv søgning: tilnærmelsesvis nær nabo (TNN) problemet, og viser
følgende resultater:

• En forbedret generel løsning af TNN problemet som reducerer
antal evalueringer af afstandsfølsomme spredefunktioner.

• En generel løsning af TNN problemet som giver mulighed for
tid-plads afvejning samt tætte øvre og nedre grænser for TNN
problemet med tid-plads afvejning under kosinuslighed.

• En ny tilgang til løsning af TNN problemet på mængder samt
en matchende nedre grænse. En adaptiv version af algoritmen
til approksimativ sammenføjning vises ved eksperimenter at
være konkurrencedygtig.

• Tætte nedre grænser for asymmetrisk afstandsfølsom spred-
ning som har anvendelser til approksimativ søgning efter
fjerne naboer, ortogonale vektorer, og annulus forespørgsler.

• Et optimalitetsbevis for en velkendt familie af Boolske afstands-
følsomme spredefunktioner.

Vi undersøger problemet at finde effektive algoritmer til produktion
af pseudotilfældighed af høj kvalitet og opnår følgende resultater:

• En deterministisk algoritme til generation af pseudotilfældige
tal af vilkårlig høj kvalitet i konstant tid og med tæt på optimalt
pladsforbrug.

• En randomiseret konstruktion af en familie af spredefunktio-
ner som afbilder til pseudotilfældige tal af vilkårlig høj kvalitet,
med evalueringstid og pladsforbrug tæt på den nedre grænse.
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All that is gold does not glitter,
Not all those who wander are lost;
The old that is strong does not wither,
Deep roots are not reached by the frost.

From the ashes, a fire shall be woken,
A light from the shadows shall spring;
Renewed shall be blade that was broken,
The crownless again shall be king.

J. R. R. Tolkien (1892–1973)
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Chapter 1

Introduction

1.1 Part I: Similarity search

Similarity search in large collections of high-dimensional objects is a
problem that is well-motivated by a numerous applications. Consider
for example the representation of an image by a d-dimensional feature
vector x, where each entry xi denotes the fraction of pixels of color i
in the image. Given a collection of images P and a query image q, we
could for example be interested in finding the nearest neighbor of q: the
image x ∈ P such that the distance dist(q, x) is minimized, for some
appropriate choice of distance function. Applications of near neighbor
search include:

• Classification: Given a collection P of labelled objects and an un-
labelled object q, classify q according to the label of its nearest
neighbor in P.

• Recommender systems: Find similar users, movies, songs, books
etc. to be used for recommendation.

• Duplicate detection: Remove near-identical objects from a collection,
for example duplicate web pages from the index of a search engine.

The trivial solution to the near neighbor problem would be to iterate
through every x ∈ P and compute dist(q, x) while keeping track of the
nearest neighbor found so far. If we let n = |P| denote the size of our
collection and assume that it takes time O(d) to compute the distance
between a pair of objects, then the trivial solution uses time O(dn).
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Suppose we are interested in preprocessing the collection P into a
data structure that supports answering queries faster than the trivial
solution. In two-dimensional Euclidean space there exists a solution
based on the Voronoi diagram of P with space usage O(n) and query
time O(log n) [68]. In higher dimensions, the best known solutions to
the nearest neighbor problem either suffer from space usage or query
time that is exponential in d [86]. This phenomenon is known as the
“curse of dimensionality” and has recently been substantiated by condi-
tional hardness results [6, 67, 171, 140], showing for example that the
problem of finding all nearest neighbors in a collection of n points in
d-dimensional Euclidean space cannot be solved in time subquadratic
in n when d = ω(log n) unless the Strong Exponential Time Hypothesis
(SETH) is false [170].

In order to efficiently solve similarity search problems in high dimen-
sional spaces, researchers and practitioners have turned to approximate
solutions. Instead of finding the exact nearest neighbor of a query point,
we settle for finding a point that is some approximation factor c > 1
times further away than the nearest neighbor. The algorithms and data
structures for similarity search in this thesis are primarily aimed at pro-
viding efficient solutions to the approximate near neighbor problem defined
as follows:

Definition 1.1. Let P ⊆ X be a collection of |P| = n points in a distance
space (X, dist). A solution to the (r, cr)-near neighbor problem is a data
structure that supports the following query operation: Given a query
q ∈ X if there exists x ∈ P with dist(q, x) ≤ r return x′ ∈ P with
dist(q, x′) < cr.

The (r, cr)-near neighbor problem differs from the nearest neighbor
problem by searching for any point within a fixed radius r of the query
point and allowing us to return points at distance up to cr even though
better candidates exist. It will be convenient to also define the (s1, s2)-
similarity problem as the natural equivalent of the (r, cr)-near neighbor
problem where we measure similarities rather than distances, i.e., we
wish to report find a point with similarity sim(q, x) ≥ s1 and we are
willing to accept points with similarity s2 < s1.

By allowing an approximation factor c > 1 it is possible to solve
the (r, cr)-near neighbor problem in Euclidean space (and many other
spaces) with query time that is sublinear in n and polynomial in d using
space polynomial in d and n [91, 66]. However, even approximation
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has its limits when it comes to alleviating the curse of dimensionality.
Rubinstein [140] has recently shown that unless SETH is false, for every
choice of constants γ, δ > 0 there exists ε > 0 such that a solution to the
(1 + ε)-approximate near neighbor problem with O(nγ) preprocessing
time must use query time Ω(nδ).

1.1.1 Locality-sensitive hashing

One of the most successful approaches for finding solutions to the ap-
proximate near neighbor problem in various spaces is known as locality-
sensitive hashing, commonly abbreviated as LSH (see [12, 166] for more
information). The idea behind locality-sensitive hashing is to construct
a distribution H over functions h : X → R that are used to partition the
space X. This randomized partitioning scheme is locality-sensitive in the
sense that close points x, y ∈ X are more likely to hash to the same part
of a randomly sampled partition.

Definition 1.2 (Locality-sensitive hashing [91]). Let (X, dist) be a distance
space and let H be a distribution over functions h : X → R. We say that
H is (r, cr, p1, p2)-sensitive if for x, y ∈ X and h ∼ H we have that:

• If dist(x, y) ≤ r then Pr[h(x) = h(y)] ≥ p1.

• If dist(x, y) ≥ cr then Pr[h(x) = h(y)] ≤ p2.

We can speed up approximate near neighbor searches at the cost of
some additional preprocessing by partitioning the set of points P accord-
ing to L randomly sampled locality-sensitive hash functions h1, . . . , hL. A
query for a point q proceeds by considering the points of P that collide
with q under h1, . . . , hL. Intuitively we want to sample enough hash
functions such that the ball of radius r around every potential query
point q ∈ X is covered by the union of the parts h−1

1 (q), . . . , h−1
L (q). This

approach yields the following general LSH framework for solving the
approximate near neighbor problem (for more details see Chapter 2).

Theorem 1.1 (Indyk-Motwani [91, 86], simplified). Let H be (r, cr, p1, p2)-
sensitive and let ρ =

log(1/p1)
log(1/p2)

, then there exists a solution to the (r, cr)-near

neighbor problem using O(n1+ρ) words of space and with query time dominated
by O(nρ log n) evaluations of functions from H.
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1.1.2 Examples

To further introduce locality-sensitive hashing and the approach to solv-
ing the approximate near neighbor problem used in this thesis, we will
present three simple and powerful families of locality-sensitive hash func-
tions: Bit-sampling by Indyk and Motwani [91], MinHash by Broder [35],
and SimHash by Charikar [47]. Indyk, Broder, and Charikar received
the 2012 ACM Paris Kanellakis Theory and Practice Award “for their
groundbreaking work on Locality-Sensitive Hashing that has had great impact
in many fields of computer science including computer vision, databases, infor-
mation retrieval, machine learning, and signal processing” [1]. We proceed by
describing each of these families in turn, introducing relevant notation
as we go along.

Bit-sampling. Indyk and Motwani introduced a simple family of
locality-sensitive hash functionsHH for the d-dimensional Boolean hyper-
cube {0, 1}d under Hamming distance distH(x, y) = |{i ∈ [d] | xi 6= yi}|
where [d] denotes the set {1, 2, . . . , d}. We sample a function h ∼ H by
sampling i uniformly at random [d] and setting h(x) = xi. It is easy to
see that a pair of points fail to collide under a random hash function
h(x) = xi if and only if i is sampled from the set of coordinates where x
and y differ.

Pr
h∼HH

[h(x) = h(y)] = 1− Pr
h∼HH

[h(x) 6= h(y)] = 1− distH(x, y)/d.

Suppose we want to use this function to solve the (r, cr)-near neighbor
problem in Hamming space ({0, 1}d, distH). Then, from Theorem 1.1 we
optain a query exponent of

ρ =
log(1/(1− r/d))
log(1/(1− cr/d))

≤ 1/c

where the details behind the last inequality can be found in [86]. In
conclusion, bit-sampling gives a solution to the (r, cr)-near neighbor
problem in Hamming space with query time roughly n1/c and space
usage and preprocessing time roughly n1+1/c.

MinHash. MinHash is a family of locality-sensitive hashing with ap-
plications to similarity search and similarity estimation on sets under
Jaccard similarity. Given sets x, y ⊆ [d] their Jaccard similarity is defined
by simJ(x, y) = |x ∩ y|/|x ∪ y|.
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A random hash function h from the MinHash family HJ is specified
by a random permutation of [d] and hashes a set x to the first element of
x in this permutation. The permutation can be specified by a uniformly
random hash function f : [d] → [0, 1] where [0, 1] denotes the closed
interval from 0 to 1. Specifically, we sample a random from h ∼ HJ from
the MinHash family by sampling a uniformly random hash function
f : [d]→ [0, 1] and setting

h(x) = arg min
i∈x

f (i).

Two sets x and y collide under a random hash function h ∼ HJ if and
only if the smallest element of x ∪ y is contained in x ∩ y. Otherwise, the
smallest element of x is in x\y or the smallest element of y is in y\x and
there is no way the sets hash to the same element. Since the smallest
element of x ∪ y is uniformly distributed we get that

Pr
h∼HJ

[h(x) = h(y)] =
|x ∩ y|
|x ∪ y| = simJ(x, y).

MinHash gives a solution to the (s1, s2)-similarity problem with exponent
ρ = log(1/s1)/ log(1/s2).

SimHash. SimHash is a family of Boolean-valued locality-sensitive
hash functions for Rd under cosine similarity simC(x, y) = cos(θ(x, y))
where θ(x, y) denotes the angle between x and y. We sample a function
h ∼ HC by sampling a d-dimensional standard normal random variable
z ∼ N d(0, 1) and setting

h(x) = sign(〈x, z〉).
Intuitively, we sample a random hyperplane that goes through the origin
and hash points depending on which side of the hyperplane they are
on (the sign of the inner product 〈x, y〉 = ∑i xizu). Due to the rotational
invariance of the standard normal distribution the properties of this
scheme can be analyzed in two dimensions. The probability that two
points on the unit circle are separated by a random line through the
origin is exactly

Pr
h∼HC

[h(x) = h(y)] = 1− θ(x, y)/π.

This scheme yields a solution to the (s1, s2)-similarity problem under
cosine similarity with ρ = log(1− arccos(s1)/π)/ log(1− arccos(s2)/π).
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1.1.3 Lower bounds

Given a space (X, dist) and distance thresholds r, cr we are inter-
ested in finding a (r, cr, p1, p2)-sensitive family with a value of ρ =
log(1/p1)/ log(1/p2) that is as small as possible. The primary technique
for deriving locality-sensitive hashing lower bounds has been Fourier
analysis of Boolean functions under noisy inputs (see the excellent book
by O’Donnell for a comprehensive introduction [120]). Lower bounds
for locality-sensitive hashing schemes (distributions over functions) of-
ten follow from lower bounds on the behaviour of a single function
f : {−1, 1}d → R under randomly α-correlated inputs, defined as fol-
lows:

Definition 1.3. For −1 ≤ α ≤ 1 and x, y ∈ {−1, 1}d we say that (x, y) is
randomly α-correlated if x is uniformly distributed over {−1, 1}d and
each component of y is i.i.d. according to

yi =

{
xi with probability 1+α

2 ,
−xi with probability 1−α

2 .

If two vectors (x, y) are randomly α-correlated their expected cosine
similarity is α, and their expected Hamming distance is given by (1−
α)d/2. As the dimensionality increases, the empirical correlation between
x and y will be tightly concentrated around α.

Let 0 ≤ β < α < 1 and consider a ((1− α)d/2, (1− β)d/2, p1, p2)-
sensitive family H for Hamming space ({−1, 1}d, distH). Combining
lower bounds by O’Donnell et al. [122] and Andoni and Razenshteyn [19]
(building on work by Motwani et al. [114]), we have that

ρ =
log(1/p1)

log(1/p2)
≥ max

(
log(1/α)

log(1/β)
,

1− α

1 + α− 2β

)
− od(1). (1.1)

The lower bounds require that p2 is not too small as a function of d. In
particular, they start breaking down if p2 is exponentially small in d, but
such families are typically not of interest for high-dimensional similarity
search where we want p2 ≈ 1/n. For a more comprehensive discussion
of this issue see [122].

Compared against different constructions of locality-sensitive hash
families, the two lower bounds comprising equation (1.1) reveal inter-
esting properties of the Boolean hypercube. As α, β approach 1 the
lower bound of log(1/α)/ log(1/β) is the larger of the two bounds.
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If we convert the lower bound to Hamming distance we get that
ρ ≥ log(1/(1 − 2r/d))/ log(1/(1 − 2cr/d) ≈ 1/c for an (r, cr, p1, p2)-
sensitive family when r, cr � d. This lower bound is tight against the
bit-sampling LSH of Indyk and Motwani. The bit-sampling family can
be described as randomly partitioning the Boolean hypercube into sub-
cubes, so in a sense subcubes are an optimal “shape” for distinguishing
between very short random walks and slightly longer random walks in
the Boolean hypercube. The lower bound of 1/c in Hamming space gives
a lower bound of 1/cp for `d

p-spaces (vectors in Rd under the `p-norm
‖x− y‖p = (∑i |xi − yi|p)1/p). This follows from a direct embedding of
the Boolean hypercube in `p-space.

As β approaches 0 the lower bound of (1− α)/(1+ α− 2β) dominates.
Converted to Hamming distance this bound becomes ρ ≥ 1/(2c− 1). For
β = 0 this is tight against existing constructions that use balls to partition
the hypercube [73, 14, 13]. Loosely speaking, in this regime we see
that balls in Hamming space are optimal for simultaneously minimizing
volume (capturing 0-correlated points) while maximizing the probability
of capturing positively correlated points.

In Hamming space, the family of locality-sensitive hash functions
that give the best known upper bound on the ρ-value can essentially
be described as follows: We sample a function h ∼ H by sampling
a sequence of d balls of radius slightly below d/2 with the center of
each ball being sampled uniformly at random from {−1, 1}d. A point
x ∈ {−1, 1}d is then hashed to the index of the first ball in the sequence
that contains x. As we increase d and decrease the radius of the balls,
this scheme has a ρ-value for the ((1− α)d/2, (1− β)d/2)-near neighbor
problem of

ρ =
1− α

1 + α

/
1− β

1 + β
+ od(1). (1.2)

This scheme also works on the unit sphere if we replace the balls by
spherical caps [157, 13]. The size of the gap between the lower bound in
equation (1.1) and the upper bound (1.2) is shown in Figure 1.1. Since
the gap is less than 0.06 it is difficult to argue that closing the gap would
have huge practical implications, especially since the lower order terms
in existing constructions exceed this for most realistic applications [13].
Nevertheless, considering the tools that have gone into proving the
existing lower bounds, we believe that it is of fundamental mathematical
interest to understand how to best separate β-correlated points from
α-correlated points.
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Figure 1.1: The gap in the ρ-value between the best known upper and lower bounds for families of
((1− α)d/2, (1− β)d/2, p1, p2)-sensitive hash functions in d-dimensional Hamming space.

1.1.4 Beyond locality-sensitive hashing

A common theme among recent advances in the area of theoretical
approximate similarity search has been to move beyond standard locality-
sensitive hashing [14, 100, 150, 24, 16, 54, 56, 22]. The results in this
direction usually modify part of the framework, for example by con-
structing the locality-sensitive family by looking at the data, but the
underlying approach of using locality-sensitive mappings from points
to buckets remains the same. This thesis explores several variations of
standard locality-sensitive hashing and we therefore briefly introduce
some of this work here.

Data-dependent locality-sensitive hashing. A sequence of papers [14,
17, 19, 18, 16] has explored the idea of data-dependent locality-sensitive
hashing: If we allow the construction of H to depend on the set of data
points P, how fast can we then solve the approximate near neighbor prob-
lem? Andoni and Razenshteyn was able to show matching upper and
lower bounds of ρ = 1/(2c2− 1) + od(1) in Euclidean space [17, 19]. This
matches standard LSH upper and lower bounds in the case of random
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instances on the unit sphere, and indeed the construction by Andoni
and Razenshteyn is based on a reduction to this case. Unfortunately the
construction and its analysis is complicated and suffer from large lower
order terms [16], although recent work has found some success in strik-
ing a balance between algorithmic simplicity and theoretical optimality
using data-dependence in Hamming space [18].

Asymmetric locality-sensitive hashing. Asymmetric locality-sensitive
hashing extends the concept of standard locality-sensitive hashing to
cover distributions over pairs of functions (h, g) ∼ A and studies how the
probability of collision between pairs of points can be made to depend on
the distance/similarity between the points [150, 22]. This modification to
standard locality-sensitive hashing opens up new applications such as
approximate search for furthest neighbors, orthogonal vectors [164], and
annulus queries (see [22] for an overview). In Chapter 6 we show lower
bounds for asymmetric locality-sensitive hashing.

Space-time tradeoffs. The standard locality-sensitive hashing frame-
work offers a balanced space-time tradeoff that is the result of a sym-
metric query and update procedure: Every data point is stored in O(nρ)
buckets and during queries we probe O(nρ) buckets. A line of work
has investigated how the query and update parts of the algorithm can
be modified to yield different tradeoffs between space usage and query
time [130, 106, 9, 95, 100, 54, 16]. Typically the performance of such
solutions is expressed by two exponents: ρu and ρq. During updates
we store points in O(nρu) buckets and during queries we probe O(nρq)
buckets.

Early work in this area focused on how to modify the standard locality-
sensitive hashing query and update algorithms using an idea known as
multi-probing [106]. Regular locality-sensitive hashing uses L = O(nρ)
hash functions h1, . . . , hL. Suppose hl(q) denotes the lth bucket to be
probed during the standard LSH query algorithm. By inspecting buckets
in the neighborhood of hl(q), for example by adding some noise z to q
and probing h(q + z), we can increase the probability of finding a near
neighbor of q, which in turn allows us to reduce L while maintaining
correctness.

Recent breakthroughs in this area have come by abandoning the
locality-sensitive hashing framework in favor of a more direct approach
based on locality-sensitive filtering [100, 54]. Finally, Andoni et al. [16]
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have combined their data-dependent approach to locality-sensitive hash-
ing with the best known space-time tradeoff solutions for random data to
obtain optimal space-time tradeoffs, as shown by matching lower bounds.
The optimal trade-off between ρq, ρu ≥ 0 for the (r, cr)-near neighbor
problem in Euclidean space can be described by the equation

c2√ρq + (c2 − 1)
√

ρu =
√

2c2 − 1.

For a balanced tradeoff this collapses to 1/(2c2 − 1) which is tight for
data-dependent locality-sensitive hashing, but the bound has been shown
to be tight for every choice of ρq, ρu that satisfies the equation.

Locality-sensitive filters and maps. Locality-sensitive filtering [24] dif-
fers from locality-sensitive hashing in that it uses locality-sensitive subsets
of space (filters) rather than locality-sensitive partitions (hash functions)
to solve the approximate near neighbor problem. An example of a
locality-sensitive filter family is the distribution over balls of some fixed
radius in Hamming space. This idea is further extended to allow asym-
metry by using different filters for queries and updates [100, 54]. It turns
out that the filter family of consisting of pairs of concentric balls in Ham-
ming space can be used to solve the approximate near-neighbor problem
with optimal space-time tradeoffs, matching the lower bound of Andoni
et al. [16] for random data. Chapter 3 further introduces locality-sensitive
filtering and space-time tradeoffs.

In even greater generality we can think of locality-sensitive hashing
and filtering as being approaches to constructing randomized mappings
M : X → 2R (where 2R denotes the power set of R) from a space (X, dist)
to a collection of |R| buckets that satisfy certain properties. Recent work
on set similarity search (Chapter 4) and improvements to the standard
locality-sensitive hashing framework (Chapter 2) explores these ideas
and obtains efficient search algorithms by deviating from the standard
approach.

1.2 Part II: Pseudorandom hashing and generators

The second part of this thesis contains results on efficient pseudorandom
hash functions and pseudorandom number generators. We are interested
in replacing the use of true randomness in randomized algorithms and
data structures with the output of a pseudorandom hash function or
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generator, stretching a small random seed into a much larger output of
pseudorandom values, while retaining guarantees on the performance of
these algorithms. For a primer on the general study of pseudorandom
generators see [79].

Universal hashing. The pseudorandomness part of this thesis focuses
on one specific type of pseudorandomness known as k-wise indepen-
dence or k-independence, first introduced to the field of computer science
through the concept of universal hashing by Carter and Wegman [40].

Definition 1.4. Let k be a positive integer and let F be a family of
functions from U to R. We say that F is a k-independent family of
functions if for every choice of k distinct keys x1, . . . , xk and arbitrary
values y1, . . . , yk we have that

Pr
f∼F

[ f (x1) = y1 ∧ f (x2) = y2 ∧ · · · ∧ f (xk) = yk] = |R|−k.

Furthermore, we say that f is k-independent when it is selected uniformly
at random from a family of k-independent functions.

We can sample a k-independent hash function f (x) = ∑k−1
i=0 aixi mod

p by sampling each ai uniformly at random from the set {0, 1, . . . , p− 1}
where p is prime. In fact, the family of polynomials of degree at most
k− 1 over a finite field is k-independent [92]. We are typically interested
in applications where the size of the universe u = |U| is much larger
than the degree of independence k.

Different types of hashing-based dictionaries work for k-independent
hash functions with k much smaller than the number of elements in
the dictionary which we denote by n. For example, it was shown that
5-independence suffices for linear probing to ensure expected constant
time per operation [125]. It is known that Θ(log n)-independence suffices
for Cuckoo hashing [128], but 5-independence is not enough to ensure
constant amortized cost per operation [63]. For a brief introduction to
the use of random hashing in algorithms and data structures see [69].

Fast hashing and lower bound. For applications that require super-
constant independence, the time to evalute the hash function can be
a performance bottleneck. A k-independent polynomial hash function
can be stored using O(k) words and evaluated using time O(k) on a
word-RAM, assuming constant time arithmetic over the finite field. What
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if we are willing to use more space to represent a k-independent hash
function f ∼ F in order to reduce the evaluation time? Siegel [152] gave
a powerful cell-probe lower bound for this problem, showing that for a
k-independent hash function with domain size u, even if we use space
roughly O(ku1/t) for some t ≥ 1 the evaluation time has to be Ω(t).

Siegel also showed the existence of a matching upper bound based
on highly unbalanced bipartite expander graphs G = (U ∪ V, E) with
left vertex set U corresponding to the domain of the hash function, right
vertex set V of size |V| = O(ku1/t), and left outdegree d = O(t). Given
an appropriate expander graph G we can sample a k-independent hash
function f : U → R by associating each vertex v ∈ V with a random
element from R where we assume that (R,+) is an abelian group, such
as the the integers under modular arithmetic. To compute f (x) we take
the sum of the random elements associated with the neighbors of the
vertex x ∈ U and return the result.

Unfortunately we only know of the existence of such optimal ex-
pander graphs by the probablistic method: a random bipartite graph has
the right properties for optimal k-independent hashing with overwhelm-
ing probability if we parameterize the graph generation process correctly.
Several works, Siegel’s original paper included, attempt to approach
the performance of such optimal bipartite expander graph by the use
of probabilistic constructions [72, 124, 159, 58]. In Chapter 9 we show
a probablistic construction with space usage and evaluation time that
almost matches the lower bound. Finding optimal explicit constructions
remains a major open problem.

Other approaches to the problem of finding fast hash functions with
theoretical guarantees include the study of tabulation hashing and its
variations which has guarantees beyond what can be derived from the
degree of k-independence [160], to simulate uniformly random hashing
in constant time on a subset of the universe [124], reusing randomness
by splitting the problem into sub-problems that share a single highly
random hash function [71], or extracting additional randomness from
the input to the hash function [59].

Generating k-independent random variables. The generation of k-
independent random variables differs from random hashing by allowing
the algorithm designer to specify where to evaluate a k-independent func-
tion f in order to generate a sequence of variables f (x1), f (x2), . . . that is
k-independent. The problem of generating a sequence of k-independent
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random variables is therefore easier than the problem of constructing a
data structure to represent a random k-independent hash function that
an adversary can choose to evaluate in an arbitrary point.

We can take a standard k-independent polynomial hash function
and evaluate it in k points in time k poly log k using fast multipoint
evaluation algorithms [27, 165], giving us a generator of k-independent
random variables with generation time poly log k per variable that uses
space O(k). This in itself shows that the task of generation is easier
than hashing, as it would be impossible to evaluate a k-independent
hash function in time poly log k using space O(k), if for example k =
Θ(log u). In Chapter 8 we show how to generate k-independent variables
in constant time, independent of k, using space k poly log k.

1.3 Overview and contributions

This thesis is divided into two parts. The first part presents algorithms
and lower bounds for various problems related to similarity search. The
second part presents algorithms for the efficient generation of high-
quality pseudorandom numbers, as well as efficient hash functions. The
chapters are based on the following papers:

I. Similarity search.

2. Tobias Christiani: Fast locality-sensitive hashing frameworks for
approximate near neighbor search [53]. 2017. Unpublished.

3. Tobias Christiani: A Framework for Similarity Search with Space-
Time Tradeoffs using Locality-Sensitive Filtering [54]. SODA 2017.

4. Tobias Christiani and Rasmus Pagh: Set similarity search beyond
MinHash [56]. STOC 2017.

5. Tobias Christiani, Rasmus Pagh and Johan Sivertsen: Scalable and
robust set similarity join [57]. ICDE 2018.

6. Martin Aumüller, Tobias Christiani, Rasmus Pagh and Francesco
Silvestri: Distance-sensitive hashing [22]. PODS 2018.

7. Tobias Christiani: Optimal Boolean locality-sensitive hashing. 2018.
Unpublished.

II. Pseudorandomness.
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8. Tobias Christiani and Rasmus Pagh: Generating k-independent
variables in constant time [55]. FOCS 2014.

9. Tobias Christiani, Rasmus Pagh and Mikkel Thorup: From Inde-
pendence to Expansion and Back Again [58]. STOC 2015.

We proceed by giving a brief description of the contribution of each
chapter.

1.3.1 Part I: Similarity search

Chapter 2: Fast locality-sensitive hashing frameworks. This chapter
begins by surveying different techniques for constructing a solution to the
approximate near neighbor problem from a family of locality-sensitive
hash functions. Given a family H of locality-sensitive hash functions, the
standard Indyk-Motwani framework (Theorem 1.1) uses O(nρ log n) func-
tions from H to solve the approximate near neighbor problem. During
a query all of these hash functions are evaluated, dominating the query
time. For many LSH schemes the time to evaluate a single function is
O(d) or greater, as witnessed for example by SimHash or MinHash, fur-
ther exacerbating the problem. Building on recent work by Dahlgaard et
al. [64] we show that the number of locality-sensitive hash functions can
be reduced to O(log2 n) in general, yielding an improved LSH framework.
We combine this result with a technique from another LSH framework
by Andoni and Indyk [10] to reduce the word-RAM complexity of this
improved framework by a logarithmic factor to O(nρ).

Chapter 3: Space-time tradeoffs for similarity search. This chapter
introduces a framework for solving the approximate near neighbor prob-
lem with space-time tradeoffs using locality-sensitive filtering. We show
concrete solutions on the unit sphere under cosine similarity with ex-
tensions to `p-space for every 0 < p ≤ 2. These results improve and
generalize prior work [100, 95]. We also include a lower bound on space-
time tradeoff that is tight, but suffers from some important restrictions.
A paper by Andoni et al. [16] has since shown a strengthened lower
bound and an improved upper bound through the use of data-dependent
techniques. An early version of the paper behind this chapter formed
part of my master’s thesis. At the end of the chapter we have added an
improved locality-sensitive filtering framework compared to the one in
the main text, building on ideas introduced in Chapter 2 and 4.
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Chapter 4: Set similarity search beyond MinHash. In this chapter
we consider the problem of set similarity search under Braun-Blanquet
similarity simB(x, y) = |x ∩ y|/ max(|x|, |y|). We show that the (s1, s2)-
similarity problem in this setting can be solved with an exponent of
ρ = log(1/s1)/ log(1/s2) and that this is tight among solutions based on
data-independent locality-sensitive maps. The upper bound is based on
a novel construction inspired by branching processes and interestingly,
although it is data-independent, it outperforms the best known data-
dependent techinques for a large portion of the parameter space 0 ≤
s2 < s1 < 1. The lower bound follows from a reduction to the standard
(r, cr)-near neighbor problem in Hamming space for r, cr � d/2. In
this setting the lower bound by O’Donnell et al. [122] is tight and we
are able to show that it extends to Braun-Blanquet similarity for every
choice of 0 ≤ s2 < s1 < 1. This is interesting in the light of the gap in
our knowledge when it comes to the usual (α, β)-similarity problem for
cosine similarity, as explained in the introduction.

Chapter 6: Lower bounds for asymmetric locality-sensitive hashing.
In this chapter we derive lower bounds (on the ρ-value) for asymmetric
locality-sensitive hashing. Our lower bound covers the case of asymmet-
ric families for approximate near neighbor search, as well as the case of
approximate furthest neighbor search where we are interested in having
the collision probability of (h, g) ∼ A increase in the distance between
points. We show that our lower bounds are tight against existing symmet-
ric constructions in the case of the application to near neighbor search,
and that this construction can easily be modified to yield an optimal
asymmetric construction for furthest neighbor search.

Chapter 7: Optimal Boolean locality-sensitive hashing. In this chap-
ter we show that, among the class of Boolean locality-sensitive hash func-
tions h : {−1, 1}d → {−1, 1}, bit-sampling is an optimal LSH (minimizes
the ρ-value) for the ((1− α)d/2, (1− β)d/2)-near neighbor problem in
Hamming space for every choice of 0 ≤ β < α < 1. This stands in
contrast to the lower bound by O’Donnell et al. [122] which is unre-
stricted with respect to the range of the locality-sensitive hash functions.
Bit-sampling only matches this unrestricted lower bound in the case
where α, β approach 1. Our result settles the question of optimal Boolean
locality-sensitive hashing for Hamming space and shows that we have to
look towards families of hash functions with a larger range in order to
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further improve the ρ-value compared to bit-sampling. Andoni et al. [13]
have shown lower bounds on the ρ-value on the unit sphere as a function
of the size of the range of the hash function.

1.3.2 Part II: Pseudorandom hashing and number generation

Chapter 8: Generating k-independent random variables in con-
stant time. We investigate the problem of efficiently generating k-
independent random variables and give an explicit generator of k-
independent random variables with constant generation time, indepen-
dent of k. The explicit construction combines multipoint evaluation of
polynomials over finite fields with a cascading construction of explicit
bipartite expander graphs by Capalbo et al. [39]. The space usage of this
construction is k poly log k with a very large exponent in the polynomial.
We also show a randomized version of the same construction that uses a
randomly generated bipartite graph. This reduces the space overhead to
O(log3 k) at the cost of introducing an error probability (the generated
sequence may fail to be k-independent) that is polynomially small in
k. We implement a version of the generator that combines a random
bipartite expander with fast multipoint evaluation of polynomials over
F264 and show that it scales well, even for generating k = 220-independent
variables.

Chapter 9: Near-optimal k-independent hashing. In this chapter we
attack the problem of constructing fast k-independent random hash func-
tions. We use the fact that there is a sort of duality between randomized
bipartite expander graphs and k-independent random hash functions. A
bipartite expander graph that expands on subsets of size k can be used
to construct a k-independent family of functions, and a k-independent
function is likely to represent a bipartite expander that expands on sub-
sets of size k. We take a small bipartite expander graph and apply an
inefficient graph product that preserves its expansion properties while
increasing the size of the left vertex set (the size of the domain of the
resulting hash function). Then we use this resulting bipartite expander
graph to construct a k-independent random hash function that now rep-
resents a new expander on a larger domain with optimal properties. By
applying this strategy recursively using different graph products we are
able to give randomized constructions of k-independent hash functions
in the word-RAM model that almost match Siegel’s cell probe lower
bound [152].
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1.4 Conclusion and open problems

1.4.1 Similarity search

We have shown new upper and lower bounds for problems related to
approximate similarity search in high-dimensional spaces, showing im-
proved locality-sensitive hashing frameworks, lower bounds for Boolean
locality-sensitive hashing, and going beyond locality-sensitive hashing in
several different directions with asymmetric locality-sensitive hashing,
space-time tradeoffs through locality-sensitive filtering, and locality-
sensitive maps for set similarity search.

Optimal data-independent locality-sensitive hashing. It remains
open to close the gap between the upper and lower bounds on the
ρ-value of ((1− α)d/2, (1− β)d/2, p1, p2)-sensitive families in Hamming
space (shown in Figure 1.1). Existing lower bounds seem to have explored
the limits of what can be shown with our current understanding of hy-
percontractive inequalities and Fourier analysis of Boolean functions. We
conjecture that the ball-based LSH construction with the ρ-value given in
equation 1.2 is asymptotically optimal for every choice of 0 ≤ β < α < 1.

Orthogonal search. Suppose we are interested in an asymmetric
locality-sensitive hashing scheme for the unit sphere under cosine sim-
ilarity that can be used to search for orthogonal vectors. For this pur-
pose we want the probability of collison to be as high as possible for
0-correlated (orthogonal) vectors and have the probability of collision
decrease at the correlation becomes positive or negative. Let p(α) de-
note the probability of collision of the asymmetric locality-sensitive
hashing scheme for a pair of α-correlated vectors. The current best up-
per bound on ρ = log(1/p(0))/ log(1/ max(p(α), p(−α))) is given by
(1− α2)/(1 + α2) [22]. The lower bound presented in Chapter 6 only
implies ρ ≥ (1− |α|)/(1 + |α|). Obtaining a “two-sided” lower bound
that simultanously relates p(0) to both p(α) and p(−α) has close ties to
the open symmetric Gaussian problem [119]. It is conjectured that the
upper bound is tight.

Simple data-dependent constructions. It is an important open prob-
lem to find simpler data-dependent solutions to approximate near neigh-
bor search. Despite the intuitive appeal of using the data to inform the
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construction of the solution, relatively few people have succeded in mak-
ing theoretical progress in this area [14, 17, 18]. Perhaps by relaxing the
problem slightly, for example by only requiring that queries that follow a
specific distribution succeed with constant probability, progress can be
made. An example of such a query distribution could be to sample one
of the n data points uniformly at random and sample the query from a
ball around the data point. Attacking the problem for data structures
that use near-linear space in n also seems like a promising approach.

1.4.2 k-independent hashing and generation

We have shown near-optimal results for k-independent hashing and
generation.

Optimal explicit unbalanced bipartite expander graphs. The main
open problem in this area is the explicit construction of highly unbal-
anced bipartite expander graphs with optimal properties. We would like
to be able to evaluate the neighbor function Γ : U → Vd of a left d-regular
bipartite expander graph with optimal parameters (matching Siegel’s
lower bound for k-independent hashing) using time that is at most poly-
nomial in the bit-length of the input. For the application to random
hashing we would furthermore like to be able to list the d neighbors of a
vertex in time O(d). The construction in Chapter 9 is essentially able to
solve this task in time O(d log d), so it would require a very clean explicit
construction to yield an improvement to the efficiency of random hashing
in practice. Results on the construction of explicit bipartite expanders
by Guruswami et al. [84] and preprocessing polynomials [96] are based
directly on results such as the fundamental theorem of algebra and the
Chinese remainder theorem and give hope that there exists a simple
explicit construction.

Constant time generators with minimal space. The fast generators
in Chapter 8 uses polynomials over finite fields and require space
k poly log k. Through the sequential evaluation of hash functions pre-
sented in Chapter 9 we can remove the need for arithmetic over finite
fields, but it seems that if we want to use minimal space the evalution
time will still be O(log u) with space usage k poly(log u, log k). Is it pos-
sible to get constant-time generation in a restricted word-RAM model
without multiplication using space O(k)?
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Similarity search





Chapter 2

Fast locality-sensitive hashing frameworks
‘Renewed shall be blade that was broken’

The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC
1998) is a general technique for constructing a data structure to an-
swer approximate near neighbor queries by using a distribution H over
locality-sensitive hash functions that partition space. For a collection of n
points, after preprocessing, the query time is dominated by O(nρ log n)
evaluations of hash functions from H and O(nρ) hash table lookups and
distance computations where ρ ∈ (0, 1) is determined by the locality-
sensitivity properties of H. It follows from a recent result by Dahlgaard
et al. (FOCS 2017) that the number of locality-sensitive hash functions
can be reduced to O(log2 n), leaving the query time to be dominated
by O(nρ) distance computations and O(nρ log n) additional word-RAM
operations. We state this result as a general framework and provide
a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework. Using ideas
from another locality-sensitive hashing framework by Andoni and Indyk
(SODA 2006) we are able to reduce the number of additional word-RAM
operations to O(nρ).

2.1 Introduction

The (r1, r2)-approximate near neighbor problem is the problem of prepro-
cessing a collection P of n points in a space (X, dist) into a data structure
that after preprocessing supports the following query operation: Given
a query point q ∈ X, if there exists a point x ∈ P with dist(q, x) ≤ r1,
then the data structure is guaranteed to return a point x′ ∈ P such that
dist(q, x′) < r2.
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Indyk and Motwani [91] introduced a general framework for con-
structing solutions to the approximate near neighbor problem using a
technique known as locality-sensitive hashing (LSH). The framework
takes a distribution over hash functions H with the property that near
points are more likely to collide under a random h ∼ H. During prepro-
cessing a number of locality-sensitive hash functions are sampled from
H and used to hash the points of P into buckets. The query algorithm
evaluates the same hash functions on the query point and looks into the
associated buckets to find an approximate near neighbor.

The locality-sensitive hashing framework of Indyk and Motwani has
had a large impact in both theory and practice (see surveys [12] and [166]
for an introduction), and many of the best known (data-independent)
solutions to the approximate near neighbor problem in high-dimensional
spaces, such as Euclidean space [11], the unit sphere under inner product
similarity [13], and sets under Jaccard similarity [33] come in the form
of families of locality-sensitive hash functions that can be plugged into
the Indyk-Motwani LSH framework. Recent work on data-dependent
locality-sensitive hashing has further improved solutions for `p-spaces
and cosine similarity [14, 17, 16], but these solutions typically do not
come directly in the form of a distribution over locality-sensitive hash
functions and as such it is unclear whether the techniques in this paper
can yield further speedups to these results.

Definition 2.1 (Locality-sensitive hashing [91]). Let (X, dist) be a distance
space and let H be a distribution over functions h : X → R. We say that
H is (r1, r2, p1, p2)-sensitive if for x, y ∈ X and h ∼ H we have that:

• If dist(x, y) ≤ r1 then Pr[h(x) = h(y)] ≥ p1.

• If dist(x, y) ≥ r2 then Pr[h(x) = h(y)] ≤ p2.

The Indyk-Motwani framework takes a (r1, r2, p1, p2)-sensitive family H
and constructs a data structure that solves the approximate near neighbor
problem for parameters r1 < r2 with some positive constant probability
of success. We will refer to this randomized approximate version of the
near neighbor problem as the (r1, r2)-near neighbor problem, where we
require queries to succeed with probability at least 1/2 (see Definition 2.2).
To simplify the exposition we will assume throughout the introduction,
unless otherwise stated, that 0 < p1 < p2 < 1 are constant, that a
hash function h ∈ H can be stored in n/ log n words of space, and for
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ρ = log(1/p1)/ log(1/p2) ∈ (0, 1) that a point x ∈ X can be stored in
O(nρ) words of space. The assumption of a constant gap between p1
and p2 allows us to avoid performing distance computations by instead
using the 1-bit sketching scheme of Li and König [103] together with
the family H to approximate distances (see Section 2.4.1 for details). In
the remaining part of the paper we will state our results without any
such assumptions to ensure, for example, that our results hold in the
important case where p1, p2 may depend on n or the dimensionality of
the space [11, 13].

Theorem 2.1 (Indyk-Motwani [91, 86], simplified). LetH be (r1, r2, p1, p2)-
sensitive and let ρ =

log(1/p1)
log(1/p2)

, then there exists a solution to the (r1, r2)-near

neighbor problem using O(n1+ρ) words of space and with query time dominated
by O(nρ log n) evaluations of functions from H.

The query time of the Indyk-Motwani framework is dominated by
the number of evaluations of locality-sensitive hash functions. To make
matters worse, almost all of the best known and most widely used
locality-sensitive families have an evalution time that is at least linear in
the dimensionality of the underlying space [33, 47, 66, 11, 13]. Significant
effort has been devoted to the problem of reducing the evaluation com-
plexity of locality-sensitive hash families [157, 75, 65, 13, 97, 148, 149, 64],
while the question of how many independent locality-sensitive hash
functions are actually needed to solve the (r1, r2)-near neighbor problem
has received relatively little attention [10, 64].

This paper aims to bring attention to, strengthen, generalize, and
simplify results that reduce the number of locality-sensitive hash func-
tions used to solve the (r1, r2)-near neighbor problem. In particular,
we will extract a general framework from a technique introduced by
Dahlgaard et al. [64] in the context of set similarity search under Jaccard
similarity, showing that the number of locality-sensitive hash functions
can be reduced to O(log2 n) in general. Reducing the number of locality-
sensitive hash functions allows us to spend time O(nρ/ log2 n) per hash
function evaluation without increasing the overall complexity of the
query algorithm — something which is particularly useful in Euclidean
space where the best known LSH upper bounds offer a tradeoff between
the ρ-value that can be achieved and the evaluation complexity of the
locality-sensitive hash function [11, 13, 97].

The main technical contribution of this paper is to reduce the word-
RAM complexity of the general LSH framework from O(nρ log n) to
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O(nρ) by combining techniques from Dahlgaard et al. and Andoni and
Indyk [10].

2.1.1 Related work

Indyk-Motwani. The Indyk-Motwani framework uses L = O(nρ) in-
dependent partitions of space, each formed by overlaying k = O(log n)
random partitions induced by k random hash functions from a locality-
sensitive family H. The parameter k is chosen such that a random parti-
tion has the property that a pair of points x, y ∈ X with dist(x, y) ≤ r1
has probability n−ρ of ending up in the same part of the partition, while
a pair of points with dist(x, y) ≥ r2 has probability n−1 of colliding. By
randomly sampling L = O(nρ) such partitions we are able to guarantee
that a pair of near points will collide with constant probability in at
least one of them. Applying these L partitions to our collection of data
points P and storing the result of each partition of P in a hash table we
obtain a data structure that solves the (r1, r2)-near neighbor problem as
outlined in Theorem 2.1 above. Section 2.3 and 2.3.1 contains a more
complete description of LSH-based frameworks and the Indyk-Motwani
framework.

Andoni-Indyk. As previously mentioned, many locality-sensitive hash
functions happen to have a super-constant evaluation time. This mo-
tivated Andoni and Indyk to introduce a replacement to the Indyk-
Motwani framework in a paper on substring near neighbor search [10].
The key idea is to re-use hash functions from a small collection of size
m � L by forming all combinations of (m

t ) hash functions. This tech-
nique is also known as tensoring and has seen some use in the work
on alternative solutions to the approximate near neighbor problem, in
particular the work on locality-sensitive filtering [73, 24, 54]. By apply-
ing the tensoring technique the Andoni-Indyk framework reduces the
number of hash functions to O(exp(

√
ρ log n log log n)) = no(1) as stated

in Theorem 2.2.

Theorem 2.2 (Andoni-Indyk [10], simplified). Let H be (r1, r2, p1, p2)-
sensitive and let ρ =

log(1/p1)
log(1/p2)

, then there exists a solution to the (r1, r2)-near

neighbor problem using O(n1+ρ) words of space and with query time dominated
by O(exp(

√
ρ log n log log n)) evaluations of functions from H and O(nρ)

other word-RAM operations.
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The paper by Andoni and Indyk did not state this result explicitly as a
theorem in the same form as the Indyk-Motwani framework; the analysis
made some implicit restrictive assumptions on p1, p2 and ignored integer
constraints. Perhaps for these reasons the result does not appear to
have received much attention, although it has seen some limited use in
practice [153]. In Section 2.3.2 we present a slightly different version of the
Andoni-Indyk framework together with an analysis that satisfies integer
constraints, providing a more accurate assessment of the performance of
the framework in the general, unrestricted case.

Dahlgaard-Knudsen-Throup. The paper by Dahlgaard et al. [64] intro-
duced a different technique for constructing the L hash functions/par-
titions from a smaller collection of m hash functions from H. Instead
of forming all combinations of subsets of size t as the Andoni-Indyk
framework they instead sample k hash functions from the collection to
form each of the L partitions. The paper focused on a particular appli-
cation to set similarity search under Jaccard similarity, and stated the
result in terms of a solution to this problem. In Section 2.3.3 we provide
a simplified and tighter analysis to yield a general framework:

Theorem 2.3 (Dahlgaard-Knudsen-Thorup [64], simplified). Let H be
(r1, r2, p1, p2)-sensitive and let ρ =

log(1/p1)
log(1/p2)

, then there exists a solution to the

(r1, r2)-near neighbor problem using O(n1+ρ) words of space and with query
time dominated by O(log2 n) evaluations of functions from H and O(nρ log n)
other word-RAM operations.

The analysis of [64] indicates that the Dahlgaard-Knudsen-Thorup
framework, when compared to the Indyk-Motwani framework, would
use at least 50 times as many partitions (and a corresponding increase in
the number of hash table lookups and distance computations) to solve
the (r1, r2)-near neighbor problem with success probability at least 1/2.
Using elementary tools, the analysis in this paper shows that we only
have to use twice as many partitions as the Indyk-Motwani framework
to obtain the same guarantee of success.

Number of hash functions. To provide some idea of the number of
hash functions H used by the different frameworks, Figure 2.1 shows
the value of log2 H that is obtained by the Indyk-Motwani (IM), Andoni-
Indyk (AI), and Dahlgaard-Knudsen-Thorup (DKT) frameworks accord-
ing to the analysis in Section 2.3 for p1 = 1/2 and every value of
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Figure 2.1: Upper bounds on the number of locality-sensitive hash functions from a (r1, r2, 0.5, p2)-
sensitive family used by different frameworks to solve the (r1, r2)-near neighbor problem on a collection
of 230 points according to the analysis in this paper.

0 < p2 < 1/2 for a solution to the (r1, r2)-near neighbor problem on a
collection of n = 230 points with success probability at least 1/2. Note
that Figure 2.1 shows an upper bound on the number of hash functions
used by the frameworks according to the analysis in order to provide
a solution with theoretical guarantees to the approximate near neigh-
bor problem for any data set, and not the actual setting required for a
particular data set (we haven’t actually performed an experiment on 230

points). In the analysis behind Figure 2.1 we have attempted to minimize
H within each respective framework.

Figure 2.1 reveals that the number of hash functions used by the Indyk-
Motwani framework exceeds 230, the size of the collection of points P,
as p2 approaches p1. In addition, locality-sensitive hash functions used
in practice such as Charikar’s SimHash [47] and p-stable LSH [66] have
evaluation time O(d) for points in Rd. These two factors might help
explain why a linear scan over sketches of the entire collection of points
is a popular approach to solve the approximate near neighbor problem
in practice [169, 80]. The Andoni-Indyk framework reduces the number
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of hash functions by several orders of magnitude, and the Dahlgaard-
Knudsen-Thorup framework presents another improvement of several
orders of magnitude. Since the word-RAM complexity of the DKT
framework matches the the number of hash functions used by the IM
framework, the gap between the solid line (DKT) and the dotted line
(IM) gives some indication of the time we can spend on evaluating a
single hash function in the DKT framework without suffering a noticeable
increase in the query time.

2.1.2 Contribution

Improved word-RAM complexity. In addition to our work on the
Andoni-Indyk and Dahlgaard-Knudsen-Thorup frameworks as men-
tioned above, we show how the word-RAM complexity of the DKT
framework can be reduced by a logarithmic factor. The solution is a
simple combination of the DKT sampling technique and the AI tensoring
technique: First we use the DKT sampling technique twice to construct
two collections of

√
L partitions. Then we use the AI tensoring technique

to form L =
√

L×
√

L pairs of partitions from the two collections. Below
we state our main Theorem 2.4 in its general form where we make no
implicit assumptions about H (p1 and p2 are not assumed to be constant
and can depend on for example n) or about the complexity of storing
a point or a hash function, or computing the distance between pairs of
points in the space (X, dist).

Theorem 2.4. Let H be (r1, r2, p1, p2)-sensitive and let ρ =
log(1/p1)/ log(1/p2), then there exists a solution to the (r1, r2)-near
neighbor with the following properties:

• The query complexity is dominated by O(log2
1/p2

(n)/p1) evaluations of
functions from H, O(nρ) distance computations, and O(nρ/p1) other
word-RAM operations.

• The solution uses O(n1+ρ/p1) words of space in addition to the space
required to store the data and O(log2

1/p2
(n)/p1) functions from H.

Under the same simplifying assumptions used in the statements of
Theorem 2.1, 2.2, and 2.3, our main Theorem 2.4 can be stated as Theorem
2.3 with the word-RAM complexity reduced by a logarithmic factor to
O(nρ). This improvement in the word-RAM complexity comes at the
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cost of a (rather small) constant factor increase in the number of hash
functions, lookups, and distance computations compared to the DKT
framework. By varying the size m of the collection of hash functions
from H and performing independent repetitions we can obtain a tradeoff
between the number of hash functions and the number of lookups. In
Section 2.5 we remark on some possible improvements in the case where
p2 is large.

Distance sketching using LSH. Finally, we combine Theorem 2.4 with
the 1-bit sketching scheme of Li and König [103] where we use the locality-
sensitive hash family to create sketches that allow us to leverage word-
level parallelism and avoid direct distance computations. This sketching
technique is well known and has been used before in combination with
LSH-based approximate similarity search [57], but we believe there is
some value in the simplicity of the analysis and in a clear statement of
the combination of the two results as given in Theorem 2.5, for example
in the important case where 0 < p2 < p1 < 1 are constant.

Theorem 2.5. Let H be (r1, r2, p1, p2)-sensitive and let ρ =
log(1/p1)/ log(1/p2), then there exists a solution to the (r1, r2)-near
neighbor with the following properties:

• The complexity of the query operation is dominated by O(log2(n)/(p1 −
p2)

2) evaluations of hash functions from H and O(nρ/(p1 − p2)
2) other

word-RAM operations.

• The solution uses O(n1+ρ/p1 + n/(p1− p2)
2) words of space in addition

to the space required to store the data and O(log2(n)/(p1 − p2)
2) hash

functions from H.

2.2 Preliminaries

Problem and dynamization. We begin by defining the version of the
approximate near neighbor problem that the frameworks presented in
this paper will be solving:

Definition 2.2. Let P ⊆ X be a collection of |P| = n points in a distance
space (X, dist). A solution to the (r1, r2)-near neighbor problem is a data
structure that supports the following query operation: Given a query
point q ∈ X, if there exists a point x ∈ P with dist(q, x) ≤ r1, then, with
probability at least 1/2, return a point x′ ∈ P such that dist(q, x′) < r2.
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We aim for solutions with a failure probability that is upper bounded
by 1/2. The standard trick of using η independent repetitions of the data
structure allows us to reduce the probability of failure to 1/2η. For the
sake of simplicity we restrict our attention to static solutions, meaning
that we do not concern ourselves with the complexity of updates to the
underlying set P, although it is simple to modify the static solutions pre-
sented in this paper to dynamic solutions where the update complexity
essentially matches the query complexity [123, 86]

LSH powering. The Indyk-Motwani framework and the Andoni-Indyk
framework will make use of the following standard powering technique
described in the introduction as “overlaying partitions”. Let k ≥ 1 be an
integer and let H denote a locality-sensitive family of hash functions as
in Definition 2.1. We will use the notation Hk to denote the distribution
over functions h′ : X → Rk where

h′(x) = (h1(x), . . . , hk(x))

and h1, . . . , hk are sampled independently at random from H. It is easy
to see that Hk is (r1, r2, pk

1, pk
2)-sensitive. To deal with some special cases

we define H0 to be the family consisting of a single constant function.

Model of computation. We will work in the standard word-RAM
model of computation [85] with a word length of Θ(log n) bits where
n denotes the size of the collection P to be searched in the (r1, r2)-near
neighbor problem. During the preprocessing stage of our solutions we
will assume access to a source of randomness that allows us to sample
independently from a family H and to seed pairwise independent hash
functions [41, 42]. The latter can easily be accomplished by augmenting
the model with an instruction that generates a uniformly random word
in constant time and using that to seed the tables of a Zobrist hash
function [174].

2.3 Frameworks

Overview. We will describe frameworks that take as input a
(r1, r2, p1, p2)-sensitive family H and a collection P of n points and con-
structs a data structure that solves the (r1, r2)-near neighbor problem. The
frameworks described in this paper all use the same high-level technique
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of constructing L hash functions g1, . . . , gL that are used to partition space
such that a pair of points x, y with dist(x, y) ≤ r1 will end up in the same
part of one of the L partitions with probability at least 1/2. That is, for
x, y with dist(x, y) ≤ r1 we have that Pr[∃l ∈ [L] : gl(x) = gl(y)] ≥ 1/2
where [L] is used to denote the set {1, 2, . . . , L}. At the same time we
ensure that the expected number of collisions between pairs of points
x, y with dist(x, y) ≥ r2 is at most one in each partition.

Preprocessing and queries. During the preprocessing phase, for each
of the L hash functions g1, . . . , gL we compute the partition of the collec-
tion of points P induced by gl and store it in a hash table in the form
of key-value pairs (z, {x ∈ P | gl(x) = z}). To reduce space usage we
store only a single copy of the collection P and store references to P in
our L hash tables. To guarantee lookups in constant time we can use
the perfect hashing scheme by Fredman et al. [76] to construct our hash
tables. We will assume that hash values z = gl(x) fit into O(1) words.
If this is not the case we can use universal hashing [40] to operate on
fingerprints of the hash values.

We perform a query for a point q as follows: for l = 1, . . . , L we
compute gl(q), retrieve the set of points {x ∈ P | gl(x) = gl(q)}, and
compute the distance between q and each point in the set. If we encounter
a point x′ with dist(q, x′) < r2 then we return x′ and terminate. If after
querying the L sets no such point is encountered we return a special
symbol ∅ and terminate.

We will proceed by describing and analyzing the solutions to the
(r1, r2)-near neighbor problem for different approaches to sampling,
storing, and computing the L hash functions g1, . . . , gL, resulting in the
different frameworks as mentioned in the introduction.

2.3.1 Indyk-Motwani

To solve the (r1, r2)-near neighbor problem using the Indyk-Motwani
framework we sample L hash functions g1, . . . , gL independently at
random from the family Hk where we set k = dlog(n)/ log(1/p2)e
and L = d(ln 2)/pk

1e. Correctness of the data structure follows from
the observation that the probability that a pair of points x, y with
dist(x, y) ≤ r1 does not collide under a randomly sampled gl ∼ Hk

is at most 1− pk
1. We can therefore upper bound the probability that

a near pair of points does not collide under any of the hash functions
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by (1 − pk
1)

L ≤ exp(−pk
1L) ≤ 1/2 using a standard bound stated as

Lemma 2.3 in Appendix 2.7.
In the worst case, the query operation computes L hash functions from

Hk corresponding to Lk hash functions from H. For a query point q the
expected number of points x′ ∈ P with dist(q, x′) ≥ r2 that collide with q
under a randomly sampled gl ∼ Hk is at most npk

2 ≤ nplog(n)/ log(1/p2)
2 =

1. It follows from linearity of expectation that the total expected number
of distance computations during a query is at most L. The result is
summarized in Theorem 2.6 from which the simplified Theorem 2.1
follows.

Theorem 2.6 (Indyk-Motwani [91, 86]). Given a (r1, r2, p1, p2)-sensitive
familyH we can construct a data structure that solves the (r1, r2)-near neighbor
problem such that for k = dlog(n)/ log(1/p2)e and L = d(ln 2)/pk

1e the data
structure has the following properties:

• The query operation uses at most Lk evaluations of hash functions from
H, expected L distance computations, and O(Lk) other word-RAM opera-
tions.

• The data structure uses O(nL) words of space in addition to the space
required to store the data and Lk hash functions from H.

Theorem 2.6 gives a bound on the expected number of distance
computations while the simplified version stated in Theorem 2.1 uses
Markov’s inequality and independent repetitions to remove the expecta-
tion from the bound by treating an excessive number of distance compu-
tations as a failure.

2.3.2 Andoni-Indyk

In 2006 Andoni and Indyk, as part of a paper on the substring near neigh-
bor problem, introduced an improvement to the Indyk-Motwani frame-
work that reduces the number of locality-sensitive hash functions [10].
Their improvement comes from the use of a technique that we will refer
to as tensoring: setting the hash functions g1, . . . , gL to be all t-tuples
from a collection of m functions sampled from Hk/t where m� L. The
analysis in [10] shows that by setting m = nρ/t and repeating the entire
scheme t! times, the total number of hash functions can be reduced to
O(exp(

√
ρ log n log log n)) when setting t =

√
ρ log n

log log n . This analysis ig-
nores integer constraints on t, k, and m, and implicitly place restrictions
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on p1 and p2 in relation to n (e.g. 0 < p2 < p1 < 1 are constant). We
will introduce a slightly different scheme that takes into account integer
constraints and analyze it without restrictions on the properties of H.

Assume that we are given a (r1, r2, p1, p2)-sensitive family H. Let
η, t, k1, k2, m1, m2 be non-negative integer parameters. Each of the L
hash functions g1, . . . , gL will be formed by concatenating one hash
function from each of t collections of m1 hash functions from Hk1 and
concatenating a last hash function from a collection of m2 hash functions
from Hk2 . We take all mt

1m2 hash functions of the above form and repeat
η times for a total of L = ηmt

1m2 hash functions constructed from a
total of H = η(m1k1t + m2k2) hash functions from H. In Appendix 2.8
we set parameters, leaving t variable, and provide an analysis of this
scheme, showing that L matches the Indyk-Motwani framework bound of
O(1/pk

1) up to a constant where k = dlog(n)/ log(1/p2)e as in Theorem
2.6.

Setting t. It remains to show how to set t to obtain a good bound on
the number of hash functions H. Note that in practice we can simply
set t = arg mint H by trying t = 1, . . . , k. If we ignore integer constraints
and place certain restrictions of H as in the original tensoring scheme
by Andoni and Indyk we want to set t to minimize the expression ttnρ/t.
This minimum is obtained when setting t such that t2 log t = ρ log n. We
therefore cannot do much better than setting t =

√
ρ log(n)/ log log n

which gives the bound H = O(exp(
√

ρ log(n) log log n)) as shown in
[10]. To allow for easy comparison with the Indyk-Motwani framework
without placing restrictions on H we set t = d

√
ke, resulting in Theorem

2.7.

Theorem 2.7. Given a (r1, r2, p1, p2)-sensitive family H we can construct
a data structure that solves the (r1, r2)-near neighbor problem such that for
k = dlog(n)/ log(1/p2)e, H = k(

√
k/p1)

√
k, and L = d1/pk

1e the data
structure has the following properties:

• The query operation uses O(H) evaluations of functions from H, O(L)
distance computations, and O(L + H) other word-RAM operations.

• The data structure uses O(nL) words of space in addition to the space
required to store the data and O(H) hash functions from H.
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Thus, compared to the Indyk-Motwani framework we have gone from
using O(k(1/p1)

k) locality-sensitive hash functions to O(k(
√

k/p1)
√

k)
locality-sensitive hash functions. Figure 2.1 shows the actual number of
hash functions of the revised version of the Andoni-Indyk scheme as
analyzed in Appendix 2.8 when t is set to minimize H.

2.3.3 Dahlgaard-Knudsen-Thorup

In a recent paper Dahlgaard et al. [64] introduce a different technique
for reducing the number of locality-sensitive hash functions. The idea
is to construct each hash value gl(x) by sampling and concatenating k
hash values from a collection of km pre-computed hash functions from H.
Dahlgaard et al. applied this technique to provide a fast solution the
approximate near neighbor problem for sets under Jaccard similarity. In
this paper we use the same technique to derive a general framework
solution that works with every family of locality-sensitive hash functions,
reducing the number of locality-sensitive hash functions compard to the
Indyk-Motwani and Andoni-Indyk frameworks.

Let [n] denote the set of integers {1, 2, . . . , n}. For i ∈ [k] and j ∈ [m]
let hi,j ∼ H denote a hash function in our collection. To sample from the
collection we use k pairwise independent hash functions [42] of the form
fi : [L]→ [m] and set

gl(x) = (h1, f1(l)(x), . . . , hk, fk(l)(x)).

To show correctness of this scheme we will use make use of an elementary
one-sided version of Chebyshev’s inequality stating that for a random
variable Z with mean µ > 0 and variance σ2 < ∞ we have that Pr[Z ≤
0] ≤ σ2/(µ2 + σ2). For completeness we have included the proof of this
inequality in Lemma 2.5 in Appendix 2.7. We will apply this inequality
to lower bound the probability that there are no collisions between close
pairs of points. For two points x and y let Zl = 1{gl(x) = gl(y)} so that
Z = ∑L

l=1 Zl denotes the sum of collisions under the L hash functions. To
apply the inequality we need to derive an expression for the expectation
and the variance of the random variable Z. Let p = Prh∼H[h(x) = h(y)]
then by linearity of expectation we have that µ = E[Z] = Lpk. To bound
σ2 = E[Z2] − µ2 we proceed by bounding E[Z2] where we note that
Zl = Πk

i=1Yl,i for Yl,i = 1{hi, fi(l)(x) = hi, fi(l)(x)} and make use of the
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independence between Yl,i and Yl′,i′ for i 6= i′.

E[Z2] = ∑
l,l′∈[L]

l 6=l′

E[ZlZl′ ] +
L

∑
l=1

E[Zl]

= (L2 − L)E[ZlZl′ ] + µ

≤ L2 E
[
Πk

i=1Yl,iYl′,i

]
+ µ

= L2 (E[Yl,iYl′,i])
k + µ.

We have that E[Yl,iYl′,i] = Pr[ fi(l) = fi(l′)]p + Pr[ fi(l) 6= fi(l′)]p2 =
(1/m)p + (1− 1/m)p2 which follows from the pairwise independence
of fi. Let ε > 0 and set m = d1−p1

p1
k

ln(1+ε)
e then for p ≥ p1 we have that

(E[Yl,iYl′,i])
k ≤ (1 + ε)p2k. This allows us to bound the variance of Z by

σ2 ≤ εµ2 + µ resulting in the following lower bound on the probability
of collision between similar points.

Lemma 2.1. For ε > 0 let m ≥ d 1−p1
p1

k
ln(1+ε)

e, then for every pair of points
x, y with dist(x, y) ≤ r1 we have that

Pr[∃l ∈ [L] : gl(x) = gl(y)] ≥
1 + εµ

1 + (1 + ε)µ
.

By setting ε = 1/4 and L = d(2 ln(2))/pk
1e we obtain an upper

bound on the failure probability of 1/2. Setting the size of each of the k
collections of pre-computed hash values to m = d5k/p1e is sufficient to
yield the following solution to the (r1, r2)-near neighbor problem where
provide exact bounds on the number of lookups L and hash functions H:

Theorem 2.8 (Dahlgaard-Knudsen-Thorup [64]). Given a (r1, r2, p1, p2)-
sensitive familyH we can construct a data structure that solves the (r1, r2)-near
neighbor problem such that for k = dlog(n)/ log(1/p2)e, H = kd5k/p1e, and
L = d(2 ln(2))/pk

1e the data structure has the following properties:

• The query operation uses at most H evaluations of hash functions from
H, expected L distance computations, and O(Lk) other word-RAM opera-
tions.

• The data structure uses O(nL) words of space in addition to the space
required to store the data and H hash functions from H.
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Compared to the Indyk-Motwani framework we have reduced the
number of locality-sensitive hash functions H from O(k(1/p1)

k) to
O(k2/p1) at the cost of using twice as many lookups. To reduce the
number of lookups further we can decrease ε and perform several inde-
pendent repetitions. This comes at the cost of an increase in the number
of hash functions H.

2.4 Reducing the word-RAM complexity

One drawback of the DKT framework is that each hash value gl(x) still
takes O(k) word-RAM operations to compute, even after the underlying
locality-sensitive hash functions are known. This results in a bound
on the total number of additional word-RAM operations of O(Lk). We
show how to combine the DKT universal hashing technique with the
AI tensoring technique to ensure that the running time is dominated
by O(L) distance computations and O(H) hash function evaluations.
The idea is to use the DKT scheme to construct two collections of re-
spectively L1 and L2 hash functions, and then to use the AI tensoring
approach to form g1, . . . , gL as the L = L1 × L2 combinations of func-
tions from the two collections. The number of lookups can be reduced
by applying tensoring several times in independent repetitions, but for
the sake of simplicity we use a single repetition. For the usual set-
ting of k = dlog(n)/ log(1/p2)e let k1 = dk/2e and k2 = bk/2c. Set
L1 = d6(1/p1)

k1e and L2 = d6(1/p1)
k2e. According to Lemma 2.1 if we

set ε = 1/6 the success probability of each collection is at least 3/4 and
by a union bound the probability that either collection fails to contain a
colliding hash function is at most 1/2. This concludes the proof of our
main Theorem 2.4.

2.4.1 Sketching

The theorems of the previous section made no assumptions on the word-
RAM complexity of distance computations and instead stated the number
of distance computations as part of the query complexity. We can use
a (r1, r2, p1, p2)-sensitive family H to create sketches that allows us to
efficiently approximate the distance between pairs of points, provided
that the gap between p1 and p2 is sufficiently large. In this section we
will re-state the results of Theorem 2.4 when applying the family H to
create sketches using the 1-bit sketching scheme of Li and König [103].
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Let b be a positive integer denoting the length of the sketches in bits. The
advantage of this scheme is that we can use word level parallelism to
evaluate a sketch of b bits in time O(b/ log n) in our word-RAM model
with word length Θ(log n).

For i = 1, . . . , b let hi : X → R denote a randomly sampled locality-
sensitive hash function from H and let fi : R→ {0, 1} denote a randomly
sampled universal hash function. We let s(x) ∈ {0, 1}b denote the sketch
of a point x ∈ X where we set the ith bit of the sketch s(x)i = fi(h(x)).
For two points x, y ∈ X the probability that they agree on the ith bit is 1
if the points collide under hi and 1/2 otherwise.

Pr[s(x)i = s(y)i] = Pr[hi(x) = hi(y)] + (1− Pr[hi(x) = hi(y)])/2
= (1 + Pr[hi(x) = hi(y)])/2.

We will apply these sketches during our query procedure instead of
direct distance computations when searching through the points in the
L buckets, comparing them to our query point q. Let λ ∈ (0, 1) be a
parameter that will determine whether we report a point or not. For
sketches of length b we will return a point x if ‖s(q)− s(x)‖1 > λb. An
application of Hoeffiding’s inequality gives us the following properties
of the sketch:

Lemma 2.2. Let H be a (r1, r2, p1, p2)-sensitive family and let λ = (1 +
p2)/2 + (p1 − p2)/4, then for sketches of length b ≥ 1 and for every pair
points x, y ∈ X:

• If dist(x, y) ≤ r1 then Pr[‖s(x)− s(y)‖1 ≤ λb] ≤ e−b(p1−p2)
2/8.

• If dist(x, y) ≥ r2 then Pr[‖s(x)− s(y)‖1 > λb] ≤ e−b(p1−p2)
2/8.

If we replace the exact distance computations with sketches we want
to avoid two events: Failing to report a point with dist(q, x) ≤ r1 and
reporting a point x with dist(q, x) ≥ r2. By setting b = O(ln(n)/(p1 −
p2)

2) and applying a union bound over the n events that the sketch fails
for a point in our collection P we obtain Theorem 2.5.

2.5 The number of hash functions in corner cases

When the collision probabilities of the (r1, r2, p1, p2)-sensitive family H
are close to one we get the behavior displayed in Figure 2.2 where we have
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Figure 2.2: The number of locality-sensitive hash functions from a (r1, r2, 0.9, p2)-sensitive family
used by different frameworks to solve the (r1, r2)-near neighbor problem on a collection of 230 points.

set p1 = 0.9. Here it may be possible to reduce the number of hash func-
tions by applying the DKT framework to the family Hτ for some positive
integer τ. That is, instead of applying the DKT technique directly to H
we first apply the powering trick to produce the family Hτ. The number
of locality-sensitive hash functions from H used by the DKT framework
is given by H = O((log(n)/ log(1/p2))

2/p1). If we instead use the fam-
ily Hτ the expression becomes H = O(τ(log(n)/ log(1/pτ

2))
2/pτ

1) =
O((log(n)/ log(1/p2))

2/τpτ
1). Ignoring integer constraints, the value of

τ that maximizes τpτ
1 , thereby minimizing H, is given by τ = 1/ ln(1/p1).

Discretizing, the resulting number of hash functions when setting
τ = d1/ ln(1/p1)e is given by H = O(ρ(log n)2/(p1 log(1/p2))). For
constant ρ and large p2 this reduces the number of hash functions by a
factor 1/ log(1/p2). The behavior for small values of p1 is displayed in
Figure 2.3 where we have set p1 = 0.1.
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Figure 2.3: The number of locality-sensitive hash functions from a (r1, r2, 0.1, p2)-sensitive family
used by different frameworks to solve the (r1, r2)-near neighbor problem on a collection of 230 points.

2.6 Conclusion and open problems

We have shown that there exists a simple and general framework for solv-
ing the (r1, r2)-near neighbor problem using only few locality-sensitive
hash functions and with a reduced word-RAM complexity matching
the number of lookups. The analysis in this paper indicates that the
performance of the Dahlgaard-Knudsen-Thorup framework is highly
competitive compared to the Indyk-Motwani framework in practice, es-
pecially when locality-sensitive hash functions are expensive to evaluate,
as is often the case.

An obvious open problem is to provide a framework that uses fewer
than O(k2/p1) locality-sensitive hash function. Another direction would
be to find a lower bound on the number of independent locality-sensitive
hash functions required to solve the ANN problem using LSH in a
suitably restricted model.
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2.7 Appendix: Inequalities

We make use of the following standard inequalities for the exponential
function. See [111, Chapter 3.6.2] for more details.

Lemma 2.3. Let n, t ∈ R such that n ≥ 1 and |t| ≤ n then e−t(1− t2/n) ≤
(1− t/n)n ≤ e−t.

Lemma 2.4. For t ≥ 0 we have that e−t ≤ 1− t + t2/2.

We make use of a one-sided version of Chebyshev’s inequality to
show correctness of the Dahlgaard-Knudsen-Thorup LSH framework.

Lemma 2.5 (Cantelli’s inequality). Let Z be a random variable with E[Z] =
µ > 0 and Var[Z] = σ2 < ∞ then Pr[Z ≤ 0] ≤ σ2/(µ2 + σ2).

Proof. For every s ∈ R we have that

Pr[Z ≤ 0] = Pr[−(Z− µ) + s ≥ µ + s] ≤ Pr[(−(Z− µ) + s)2 ≥ (µ + s)2].

Next we apply Markov’s inequality

Pr[(−(Z− µ) + s)2 ≥ (µ + s)2] ≤ E[(−(Z− µ) + s)2]/(µ + s)2

= (σ2 + s2)/(µ + s)2

Set s = σ2/µ and use that σ2 = sµ to simplify

(σ2 + s2)/(µ + s)2 = (sµ + s2)/(µ + s)2 = σ2/(µ2 + σ2).

To analyze the 1-bit sketching scheme by Li and König we make use
of Hoeffding’s inequality:

Lemma 2.6 (Hoeffding [88, Theorem 1]). Let X1, X2, . . . , Xn be independent
random variables satisfying 0 ≤ Xi ≤ 1 for i ∈ [n]. Define X̄ = (X1 + X2 +
· · ·+ Xn)/n and µ = E[X̄], then:

- For 0 < ε < 1− µ we have that Pr[X̄− µ ≥ ε] ≤ e−2nε2
.

- For 0 < ε < µ we have that Pr[X̄− µ ≤ −ε] ≤ e−2nε2
.
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2.8 Appendix: Analysis of the Andoni-Indyk framework

Let ϕ denote the probability that a pair of points x, y with dist(x, y) ≤ r1
collide in a single repetition of the scheme. A collision occurs if and only
if there there exists at least one hash function in each of the underlying
t + 1 collections where the points collide. It follows that

ϕ = (1− (1− pk1
1 )m1)t(1− (1− pk2

1 )m
2 ).

To guarantee a collision with probability at least 1/2 it suffices to set
η = dln(2)/ϕe.

We will proceed by analyzing this scheme where we let t ≥ 1 be
variable and set parameters as followers:

k = dlog(n)/ log(1/p2)e
k1 = bk/tc
k2 = k− tk1

m1 = d1/tpk1
1 e

m2 = d1/pk2
1 e

η = dln(2)/ϕe.

To upper bound L we begin by lower bounding ϕ. The second part of
ϕ can be lower bounded using Lemma 2.3 to yield (1− (1− pk2

1 )m2) ≥
1 − 1/e. To lower bound (1 − (1 − pk1

1 )m1)t we first note that in the
case where pk1

1 > 1/t we have m1 = 1 and the expression can be lower
bounded by pk1t

1 = (pk1
1 m1)

t ≥ (pk1
1 m1)

t/2e. The same lower bound holds
in the case there t = 1. In the case where pk1

1 ≤ 1/t and t ≥ 2 we make
use of Lemma 2.3 and 2.4 to derive the lower bound.

1− (1− pk1
1 )m1 ≥ 1− e−p

k1m1
1

≥ 1− (1− pk1
1 m1 + (pk1

1 m1)
2/2)

≥ pk1
1 m1(1− pk1

1 (1/tpk1
1 + 1)/2)

≥ pk1
1 m1(1− 1/t).

Using the bound (pk1
1 m1(1− 1/t))t ≥ (pk1

1 m1)
t/2e we have that

ϕ ≥ (pk1
1 m1)

t/4e ≥ (1/t)t/4e.
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We can then bound the number of lookups and the expected number of
distance computations

L = ηmt
1m2 ≤ (4e/(pk1

1 m1)
t + 1)mt

1(1/pk2
1 + 1) ≤ 16e(1/pk

1).

Note that this matches the upper bound of the Indyk-Motwani LSH
framework up to a constant factor.

To bound the number of hash functions from H we use that k1 ≤
k/t ≤ k and k2 < t.

H = η(m1k1t + m2k2) ≤ 8ett

(
k

tpk/t
1

+
t− 1
pt−1

1

)
.





Chapter 3

Space-time tradeoffs for similarity search
‘All that is gold does not glitter’

We present a framework for similarity search based on Locality-Sensitive
Filtering (LSF), generalizing the Indyk-Motwani (STOC 1998) Locality-
Sensitive Hashing (LSH) framework to support space-time tradeoffs.
Given a family of filters, defined as a distribution over pairs of subsets of
space that satisfies certain locality-sensitivity properties, we can construct
a dynamic data structure that solves the approximate near neighbor
problem on a collection of n points in d-dimensional space with query
time dnρq+o(1), update time dnρu+o(1), and space usage dn + n1+ρu+o(1).
The space-time tradeoff is tied to the tradeoff between query time and
update time (insertions/deletions), controlled by the exponents ρq, ρu
that are determined by the filter family.
Locality-sensitive filtering was introduced by Becker et al. (SODA 2016)
together with a framework yielding a single, balanced, tradeoff between
query time and space, further relying on the assumption of an efficient
oracle for the filter evaluation algorithm. We extend the LSF framework
to support space-time tradeoffs and through a combination of existing
techniques we remove the oracle assumption.
Laarhoven (arXiv 2015), building on Becker et al., introduced a family
of filters with space-time tradeoffs for the high-dimensional unit sphere
under inner product similarity and analyzed it for the important special
case of random data. We show that a small modification to the family of
filters gives a simpler analysis that we use, together with our framework,
to provide guarantees for worst-case data. Through an application of
Bochner’s Theorem from harmonic analysis by Rahimi & Recht (NIPS
2007), we are able to extend our solution on the unit sphere to Rd under
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the class of similarity measures corresponding to real-valued character-
istic functions. For the characteristic functions of s-stable distributions
we obtain a solution to the (r, cr)-near neighbor problem in `d

s -spaces

with query and update exponents ρq =
cs(1+λ)2

(cs+λ)2 and ρu = cs(1−λ)2

(cs+λ)2 where
λ ∈ [−1, 1] is a tradeoff parameter. This result improves upon the space-
time tradeoff of Kapralov (PODS 2015) and is shown to be optimal in the
case of a balanced tradeoff, matching the LSH lower bound by O’Donnell
et al. (ITCS 2011) and a similar LSF lower bound proposed in this paper.
Finally, we show a lower bound for the space-time tradeoff on the unit
sphere that matches Laarhoven’s and our own upper bound in the case
of random data.

3.1 Introduction

Let (X, dist) denote a space over a set X equipped with a symmetric
measure of dissimilarity dist (a distance function in the case of metric
spaces). We consider the (r, cr)-near neighbor problem first introduced by
Minsky and Papert [110, p. 222] in the 1960’s. A solution to the (r, cr)-
near neighbor problem for a set P of n points in (X, dist) takes the form
of a data structure that supports the following operation: given a query
point x ∈ X, if there exists a data point y ∈ P such that dist(x, y) ≤ r
then report a data point y′ ∈ P such that dist(x, y′) ≤ cr. In some
spaces it turns out to be convenient to work with a measure of similarity
rather than dissimilarity. We use sim to denote a symmetric measure of
similarity and define the (α, β)-similarity problem to be the (−α,−β)-near
neighbor problem in (X,− sim).

A solution to the (r, cr)-near neighbor problem can be viewed as a
fundamental building block that yields solutions to many other similarity
search problems such as the c-approximate nearest neighbor problem
[89, 86]. In particular, the (r, cr)-near neighbor problem is well-studied
in `d

s -spaces where the data points lie in Rd and distances are measured
by dist(x, y) = ‖x− y‖s = (∑d

i=1 |xi − yi|s)1/s. Notable spaces include
the Euclidean space (Rd, ‖·‖2), Hamming space ({0, 1}d, ‖·‖1), and the d-
dimensional unit sphere Sd = {x ∈ Rd | ‖x‖2 = 1} under inner product
(cosine) similarity sim(x, y) = 〈x, y〉 = ∑d

i=1 xiyi.

Curse of dimensionality. All known solutions to the (r, cr)-near neigh-
bor problem for c = 1 (the exact near neighbor problem) either suffer
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from a space usage that is exponential in d or a query time that is linear
in n [86]. This phenomenon is known as the “curse of dimensionality”
and has been observed both in theory and practice. For example, Alman
and Williams [6] recently showed that the existence of an algorithm for
determining whether a set of n points in d-dimensional Hamming space
contains a pair of points that are exact near neighbors with a running
time strongly subquadratic in n would refute the Strong Exponential
Time Hypothesis (SETH) [170]. This result holds even when d is rather
small, d = O(log n). From a practical point of view, Weber et al. [168]
showed that the performance of many of the tree-based approaches to
similarity search from the field of computational geometry [68] degrades
rapidly to a linear scan as the dimensionality increases.

Approximation to the rescue. If we allow an approximation factor of
c > 1 then there exist solutions to the (r, cr)-near neighbor problem
with query time that is strongly sublinear in n and space polynomial
in n where both the space and time complexity of the solution depends
only polynomially on d. Techniques for overcoming the curse of di-
mensionality through approximation were discovered independently by
Kushilevitz et al. [99] and Indyk and Motwani [91]. The latter, classical
work by Indyk and Motwani [91, 86] introduced a general framework for
solving the (r, cr)-near neighbor problem known as Locality-Sensitive
Hashing (LSH). The introduction of the LSH framework has inspired an
extensive literature (see e.g. [12, 166] for surveys) that represents the state
of the art in terms of solutions to the (r, cr)-near neighbor problem in
high-dimensional spaces [91, 47, 66, 130, 11, 12, 9, 13, 17, 95, 19, 24, 100].

Hashing and filtering frameworks. The LSH framework and the more
recent LSF framework introduced by Becker et al. [24] produce data
structures that solve the (r, cr)-near neighbor problem with query and
update time dnρ+o(1) and space usage dn + n1+ρ+o(1). The LSH (LSF)
framework takes as input a distribution over partitions (subsets) of space
with the locality-sensitivity property that close points are more likely to
be contained in the same part (subset) of a randomly sampled element
from the distribution. The frameworks proceed by constructing a data
structure that associates each point in space with a number of memory
locations or “buckets” where data points are stored. During a query
operation the buckets associated with the query point are searched by
computing the distance to every data point in the bucket, returning the
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first suitable candidate. The set of memory locations associated with
a particular point is independent of whether an update operation or a
query operation is being performed. This symmetry between the query
and update algorithm results in solutions to the near neighbor problem
with a balanced space-time tradeoff. The exponent ρ is determined
by the locality-sensitivity properties of the family of partitions/hash
functions (LSH) or subsets/filters (LSF) and is typically upper bounded
by an expression that depends only on the aproximation factor c. For
example, Indyk and Motwani [91] gave a simple locality-sensitive family
of hash functions for Hamming space with an exponent of ρ ≤ 1/c. This
exponent was later shown to be optimal by O’Donnell et al. [122] who
gave a lower bound of ρ ≥ 1/c − od(1) in the setting where r and cr
are small compared to d. The advantage of having a general framework
for similarity search lies in the reduction of the (r, cr)-near neighbor
problem to the, often simpler and easier to analyze, problem of finding
a locality-sensitive family of hash functions or filters for the space of
interest.

Space-time tradeoffs. Space-time tradeoffs for solutions to the (r, cr)-
near neighbor problem is an active line of research that can be motivated
by practical applications where it is desirable to choose the tradeoff
between query time and update time (space usage) that is best suited
for the application and memory hierarchy at hand [130, 106, 9, 95, 100].
Existing solutions typically have query time dnρq+o(1), update time (inser-
tions/deletions) dnρu+o(1), and use space dn+ n1+ρu+o(1) where the query
and update exponents ρq, ρu that control the space-time tradeoff depend
on the approximation factor c and on a tradeoff parameter λ ∈ [−1, 1].

This paper combines a number of existing techniques [24, 100, 73]
to provide a general framework for similarity search with space-time
tradeoffs. The framework is used to show improved upper bounds on
the space-time tradeoff in the well-studied setting of `s-spaces and the
unit sphere under inner product similarity. Finally, we show a new lower
bound on the space-time tradeoff for the unit sphere that matches an
upper bound for random data on the unit sphere by Laarhoven [100]. We
proceed by stating our contribution and briefly surveying the relevant
literature in terms of frameworks, upper bounds, and lower bounds as
well as some recent developments. See table Table 3.1 for an overview.
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Table 3.1: Overview of data-independent locality-sensitive hashing (LSH) and filtering (LSF) results

Reference Setting ρq ρu

LSH [91, 86], LSF [24]
(X, dist), (X, sim)

log(1/p)
log(1/q)

Theorem 3.1
log(pq/p1)

log(pq/p2)

log(pu/p1)

log(pq/p2)

Cross-poly. LSH [13] (α, β)-sim., (Sd, 〈·, ·〉) 1− α

1 + α

/
1− β

1 + β

Spherical cap LSF [100] (α, od(1))-sim., (Sd, 〈·, ·〉) (1− α1+λ)2

1− α2
(αλ − α)2

1− α2

Theorem 3.2 (α, β)-sim., (Sd, 〈·, ·〉) (1− α1+λ)2

1− α2

/
(1− αλβ)2

1− β2
(αλ − α)2

1− α2

/
(1− αλβ)2

1− β2

Ball-carving LSH [11]

(r, cr)-nn. in `d
2

1/c2

Ball-search LSH* [95]
c2(1 + λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2
c2(1− λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2

Theorem 3.3
c2(1 + λ)2

(c2 + λ)2
c2(1− λ)2

(c2 + λ)2

Lower bound [122] LSH in `d
2 ≥ 1/c2

Theorem 3.4 LSF in `d
2 ≥ 1/c2

Lower bound [114, 19] LSH in (Sd, 〈·, ·〉) ≥ 1− α

1 + α

Theorem 3.5, [16] LSF in (Sd, 〈·, ·〉) ≥ (1− α1+λ)2

1− α2 ≥ (αλ − α)2

1− α2

Table notes: Space-time tradeoffs for dynamic randomized solutions to similarity search prob-
lems in the LSH and LSF frameworks with query time dnρq+o(1), update time dnρu+o(1) + dno(1)

and space usage dn + n1+ρu+o(1). Lower bounds are for the exponents ρq, ρu within their re-
spective frameworks. Here ε > 0 denotes an arbitrary constant and λ ∈ [−1, 1] controls the
space-time tradeoff. We have hidden on(1) terms in the upper bounds and od(1) terms in the
lower bounds.
*Assumes c2 ≥ (1 + λ)2/2 + λ + ε.

3.1.1 Contribution

Before stating our results we give a definition of locality-sensitive filtering
that supports asymmetry in the framework query and update algorithm,
yielding space-time tradeoffs.

Definition 3.1. Let (X, dist) be a space and let F be a probability distribu-
tion over {(Q, U) | Q ⊆ X, U ⊆ X}. We say that F is (r, cr, p1, p2, pq, pu)-
sensitive if for all points x, y ∈ X and (Q, U) sampled randomly from F
the following holds:
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• If dist(x, y) ≤ r then Pr[x ∈ Q, y ∈ U] ≥ p1.

• If dist(x, y) > cr then Pr[x ∈ Q, y ∈ U] ≤ p2.

• Pr[x ∈ Q] ≤ pq and Pr[x ∈ U] ≤ pu.

We refer to (Q, U) as a filter and to Q as the query filter and U as the
update filter.

Our main contribution is a general framework for similarity search
with space-time tradeoffs that takes as input a locality-sensitive family of
filters.

Theorem 3.1. Suppose we have access to a family of filters that is
(r, cr, p1, p2, pq, pu)-sensitive. Then we can construct a fully dynamic data
structure that solves the (r, cr)-near neighbor problem with query time dnρq+o(1),
update time dnρu+o(1), and space usage dn + n1+ρu+o(1) where ρq =

log(pq/p1)

log(pq/p2)

and ρu =
log(pu/p1)
log(pq/p2)

.

We give a worst-case analysis of a slightly modified version of
Laarhoven’s [100] filter family for the unit sphere and plug it into our
framework to obtain the following theorem.

Theorem 3.2. For every choice of 0 ≤ β < α < 1 and λ ∈ [−1, 1] there
exists a solution to the (α, β)-similarity problem in (Sd, 〈·, ·〉) that satisfies the

guarantees from Theorem 3.1 with exponents ρq = (1−α1+λ)2

1−α2

/
(1−αλβ)2

1−β2 and

ρu = (αλ−α)2

1−α2

/
(1−αλβ)2

1−β2 .

We show how an elegant and powerful application of Bochner’s
Theorem [141] by Rahimi and Recht [139] allows us to extend the solution
on the unit sphere to a large class of similarity measures, yielding as a
special case solutions for `s-space.

Theorem 3.3. For every choice of c ≥ 1, s ∈ (0, 2], and λ ∈ [−1, 1] there
exists a solution to the (r, cr)-near neighbor problem in `d

s that satisfies the
guarantees from Theorem 3.1 with exponents ρq =

cs(1+λ)2

(cs+λ)2 and ρu = cs(1−λ)2

(cs+λ)2 .

This result improves upon the state of the art for every choice of
asymmetric query/update exponents ρq 6= ρu [130, 11, 9, 95]. We con-
jecture that this tradeoff is optimal among the class of algorithms that
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independently of the data determine which locations in memory to probe
during queries and updates. In the case of a balanced space-time tradeoff
where we set ρq = ρu our approach matches existing, optimal [122],
data-independent solutions in `s-spaces [91, 66, 11, 117].

The LSF framework is very similar to the LSH framework, especially
in the case where the filter family is symmetric (Q = U for every filter in
F ). In this setting we show that the LSH lower bound by O’Donnell et al.
applies to the LSF framework as well [122], confirming that the results of
Theorem 3.3 are optimal when we set ρq = ρu.

Theorem 3.4 (informal). Every filter family that is symmetric and
(r, cr, p1, p2, pq, pu)-sensitive in `d

s must have ρ =
log(pu/p1)
log(pq/p2)

≥ 1/cs − od(1)

when r = ωd(1) is chosen to be sufficiently small.

Finally we show a lower bound on the space-time tradeoff that can
be obtained in the LSF framework. Our lower bound suffers from two
important restrictions. First the filter family must be regular, meaning
that all query filters and all update filters are of the same size. Secondly,
the size of the query and update filter cannot differ by too much.

Theorem 3.5 (informal). Every regular filter family that is ((1 −
α)d/2, (1− β)d/2, p1, p2, pq, pu)-sensitive in d-dimensional Hamming space
with asymmetry controlled by λ ∈ [−1, 1] cannot simultanously have that
ρq <

(1−α1+λ)2

1−α2 − od(1) and ρu < (αλ−α)2

1−α2 − od(1).

Together our upper and lower bounds imply that the filter family of
concentric balls in Hamming space is asymptotically optimal for random
data.

Techniques. The LSF framework in Theorem 3.1 relies on a careful
combination of “powering” and “tensoring” techniques. For positive
integers m and τ with m� τ the tensoring technique, a variant of which
was introduced by Dubiner [73], allows us to simulate a collection of (m

τ )
filters from a collection of m filters by considering the intersection of all
τ-subsets of filters. Furthermore, given a point x ∈ X we can efficiently
list the simulated filters that contain x. This latter property is crucial as
we typically need poly(n) filters to split our data into sufficiently small
buckets for the search to be efficient. The powering technique lets us
amplify the locality-sensitivity properties of a filter family in the same
way that powering is used in the LSH framework [91, 12, 122].
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To obtain results for worst-case data on the unit sphere we analyze
a filter family based on standard normal projections using the same
techniques as Andoni et al. [13] together with existing tail bounds on
bivariate Gaussians. The approximate kernel embedding technique by
Rahimi and Recht [139] is used to extend the solution on the unit sphere
to a large class of similarity measures, yielding Theorem 3.3 as a special
case.

The lower bound in Theorem 3.4 relies on an argument of contra-
diction against the LSH lower bounds by O’Donnell [122] and uses a
theoretical, inefficient, construction of a locality-sensitive family of hash
functions from a locality-sensitive family of filters that is similar to the
spherical LSH by Andoni et al. [14].

Finally, the space-time tradeoff lower bound from Theorem 3.5 is ob-
tained through an application of an isoperimetric inequality by O’Donnell
[121, Ch. 10] and is similar in spirit to the LSH lower bound by Motwani
et al. [114].

3.1.2 Related work

The LSH framework takes a distribution H over hash functions that
partition space with the property that the probability of two points
landing in the same partition is an increasing function of their similarity.

Definition 3.2. Let (X, dist) be a space and let H be a probability distri-
bution over functions h : X → R. We say that H is (r, cr, p, q)-sensitive if
for all points x, y ∈ X and h sampled randomly from H the following
holds:

• If dist(x, y) ≤ r then Pr[h(x) = h(y)] ≥ p.

• If dist(x, y) > cr then Pr[h(x) = h(y)] ≤ q.

The properties of H determines a parameter ρ < 1 that governs the
space and time complexity of the solution to the (r, cr)-near neighbor
problem.

Theorem 3.6 (LSH framework [91, 86]). Suppose we have access to a
(r, cr, p, q)-sensitive hash family. Then we can construct a fully dynamic
data structure that solves the (r, cr)-near neighbor problem with query time
dnρ+o(1), update time dnρ+o(1), and with a space usage of dn+ n1+ρ+o(1) where
ρ =

log(1/p)
log(1/q) .
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The LSF framework by Becker et al. [24] takes a symmetric
(r, cr, p1, p2, pq, pu)-sensitive filter family F and produces a data structure
that solves the (r, cr)-near neighbor problem with the same properties
as the one produced by the LSH framework where instead we have

ρ =
log(pq/p1)

log(pq/p2)
. In addition, the framework assumes access to an oracle

that is able to efficiently list the relevant filters containing a point x ∈ X
out of a large collection of filters. The LSF framework in this paper
removes this assumption, showing how to construct an efficient oracle as
part of the framework.

In terms of frameworks that support space-time tradeoffs, Panigrahy
[130] developed a framework based on LSH that supports the two ex-
tremes of the space-time tradeoff. In the language of Theorem 3.1,
Panigrahy’s framework supports either setting ρu = 0 for a solution
that uses near-linear space at the cost of a slower query time, or setting
ρq = 0 for a solution with query time no(1) at the cost of a higher space
usage. To obtain near-linear space the framework stores every data point
in no(1) partitions induced by randomly sampled hash functions from
a (r, cr, p, q)-sensitive LSH family H. In comparison, the standard LSH
framework from Theorem 3.6 uses nρ such partitions where ρ is deter-
mined by H. For each partition induced by h ∈ H the query algorithm
in Panigrahy’s framework generates a number of random points z in
a ball around the query point x and searches the parts of the partition
h(z) that they hash to. The query time is bounded by nρ̂+o(1) where
ρ̂ = I(h(z)|x,h)

log(1/q) and I(h(z)|x, h) denotes conditional entropy, i.e. the query
time is determined by how hard it is to guess where z hashes to given
that we know x and h. Panigrahy’s technique was used in a number
of follow-up works that improve on solutions for specific spaces, but to
our knowledge none of them state a general framework with space-time
tradeoffs [106, 9, 95].

Upper bounds. As is standard in the literature we state results in `s-
spaces in terms of the properties of a solution to the (r, cr)-near neighbor
problem. For results on the unit sphere under inner product similarity
(Sd, 〈·, ·〉) we instead use the (α, β)-similarity terminology, defined in the
introduction, as we find it to be cleaner and more intuitive while aligning
better with the analysis. The `s-spaces, particularly `1 and `2, as well as
(Sd, 〈·, ·〉) are some of most well-studied spaces for similarity search and
are also widely used in practice [166]. Furthermore, fractional norms (`s
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for s 6= 1, 2) have been shown to perform better than the standard norms
in certain use cases [2] which motivates finding efficient solutions to the
near neighbor problem in general `s-space.

In the case of a balanced space-time tradeoff the best data-
independent upper bound for the (r, cr)-near neighbor problem in `d

s are
solutions with an LSH exponent of ρ = 1/cs for 0 < s ≤ 2. This result is
obtained through a combination of techniques. For 0 < s ≤ 1 the LSH
based on s-stable distributions by Datar et al. [66] can be used to obtain
an exponent of (1 + ε)/cs for an arbitrarily small constant ε > 0. For
1 < s ≤ 2 the ball-carving LSH by Andoni and Indyk [11] for Euclidean
space can be extended to `s using the technique described by Nguyen
[117, Section 5.5]. Theorem 3.3 matches (and potentially improves in
the case of 0 < s < 1) these results with a single unified technique and
analysis that we find to be simpler.

For space-time tradeoffs in Euclidean space (again extending to `s
for 1 < s < 2) Kapralov [95], improving on Panigrahy’s results [130]
in Euclidean space and using similar techniques, obtains a solution

with query exponent ρq =
c2(1+λ)2

(c2+λ)2−c2(1+λ2)/2−λ2 and update exponent

ρu = c2(1−λ)2

(c2+λ)2−c2(1+λ2)/2−λ2 under the condition that c2 ≥ (1 + λ)2/2 +

λ + ε where ε > 0 is an arbitrary positive constant. Comparing to our
Theorem 3.3 it is easy to see that we improve upon Kapralov’s space-time
tradeoff for all choices of c and λ. In addition, Theorem 3.3 represents
the first solution to the (r, cr)-near neighbor problem in Euclidean space
that for every choice of constant c > 1 obtains sublinear query time
(ρq < 1) using only near-linear space (ρu = 0). Due to the restrictions
on Kapralov’s result he is only able to obtain sublinear query time for
c >
√

3 when the space usage is restricted to be near-linear. It appears
that our improvements can primarily be attributed to our techniques
allowing a more direct analysis. Kapralov uses a variation of Panigrahy’s
LSH-based technique of, depending on the desired space-time tradeoff,
either querying or updating additional memory locations around a point
x ∈ X in the partition induced by h ∈ H. For a query point x and a
near neighbor y his argument for correctness is based on guaranteeing
that both the query algorithm and update algorithm visit the part h(z)
where z is a point lying between x and y, possibly leading to a loss of
efficiency in the analysis. More details on the comparison of Theorem
3.3 to Kapralov’s result can be found in Appendix 3.11.

In terms of space-time tradeoffs on the unit sphere, Laarhoven [100]
modifies a filter family introduced by Becker et al. [24] to support space-
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time tradeoffs, obtaining a solution for random data on the unit sphere
(the (α, β)-similarity problem with β = od(1)) with query exponent

ρq =
(1−α1+λ)2

1−α2 and update exponent ρu = (αλ−α)2

1−α2 . Theorem 3.2 extends
this result to provide a solution to the (α, β)-similarity problem on the
unit sphere for every choice of 0 ≤ β < α < 1. This extension to worst
case data is crucial for obtaining our results for `s-spaces in Theorem 3.3.
We note that there exist other data-independent techniques (e.g. Valiant
[163, Alg. 25]) for extending solutions on the unit sphere to `2, but they
also require a solution for worst-case data on the unit sphere to work.

Lower bounds The performance of an LSH-based solution to the near
neighbor problem in a given space that uses a (r, cr, p, q)-sensitive family
of hash functions H is summarized by the value of the exponent ρ =
log(1/p)
log(1/q) . It is therefore of interest to lower bound ρ in terms of the
approximation factor c. Motwani et al. [114] proved the first lower bound
for LSH families in d-dimensional Hamming space. They show that
for every choice of c ≥ 1 then for some choice of r it must hold that
ρ ≥ 0.462/c as d goes to infinity under the assumption that q is not too
small (q ≥ 2−o(d)).

As part of an effort to show lower bounds for data-dependent locality-
sensitive hashing, Andoni and Razenshteyn [19] strengthened the lower
bound by Motwani et al. to ρ ≥ 1/(2c− 1) in Hamming space. These
lower bounds are initially shown in Hamming space and can then be
extended to `s-space and the unit sphere by the fact that a solution
in these spaces can be used to yield a solution in Hamming space,
contradicting the lower bound if ρ is too small. Translated to (α, β)-
similarity on the unit sphere, which is the primary setting for the lower
bounds on LSF space-time tradeoffs in this paper, the lower bound by
Andoni and Razenshteyn shows that an LSH on the unit sphere must
have ρ ≥ 1−α

1+α which is tight in the case of random data [13].
The lower bound uses properties of random walks over a partition

of Hamming space: A random walk starting from a random point x ∈
{−1, 1}d is likely to “walk out” of the the part identified by h(x) in the
partition induced by h. The space-time tradeoff lower bound in Theorem
3.5 relies on a similar argument that lower bounds the probability that
a random walk starting from a subset Q ends up in another subset U,
corresponding nicely to query and update filters in the LSF framework.

Using related techniques O’Donnell [122] showed tight LSH lower
bounds for `s-space of ρ ≥ 1/cs. The work by Andoni et al. [15] and



54 Chapter 3. Space-time tradeoffs for similarity search

Panigrahy et al. [131, 132] gives cell probe lower bounds for the (r, cr)-
near neighbor problem, showing that in Euclidean space a solution with
a query complexity of t probes require space at least n1+Ω(1/tc2). For
more details on these lower bounds and how they relate to the upper
bounds on the unit sphere see [16, 100].

Data-dependent solutions The solutions to the (r, cr)-near neighbor
problems considered in this paper are all data-independent. For the LSH
and LSF frameworks this means that the choice of hash functions or filters
used by the data structure, determining the mapping between points
in space and the memory locations that are searched during the query
and update algorithm, is made without knowledge of the data. Data-
independent solutions to the (r, cr)-near neighbor problem for worst-
case data have been the state of the art until recent breakthroughs by
Andoni et al. [14] and Andoni and Razenshteyn [17] showing improved
solutions to the (r, cr)-near neighbor problem in Euclidean space using
data-dependent techniques. In this setting the solution obtained by Andoni
and Razenshteyn has an exponent of ρ = 1/(2c2 − 1) compared to the
optimal data-independent exponent of ρ = 1/c2. Furthermore, they show
that this exponent is optimal for data-dependent solutions in a restricted
model [19].

Recent developments Recent work by Andoni et al. [16], done inde-
pendently of and concurrently with this paper, shows that Laarhoven’s
upper bound for random data on the unit sphere can be combined
with data-dependent techniques [17] to yield a space-time tradeoff in
Euclidean space with ρu, ρq satisfying c2√ρq + (c− 1)

√
ρu =

√
2c2 − 1.

This improves the result of Theorem 3.3 and matches the lower bound in
Theorem 3.5. In the same paper they also show a lower bound matching
our lower bound in Theorem 3.5. Their lower bound is set in a more
general model that captures both the LSH and LSF framework and they
are able to remove some of the technical restrictions such as the filter
family being regular that weaken the lower bound in this paper. In spite
of these results we still believe that this paper presents an important
contribution by providing a general and simple framework with space-
time tradeoffs as well as improved data-independent solutions to nearest
neighbor problems in `s-space and on the unit sphere. We would also like
to point out the simplicity and power of using Rahimi and Recht’s [139]
result to extend solutions on the unit sphere to spaces with similarity
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measures corresponding to real-valued characteristic functions, further
described in Appendix 3.9.

3.2 A framework with space-time tradeoffs

We use a combination of powering and tensoring techniques to amplify
the locality-sensitive properties of our initial filter family, and to simulate
a large collection of filters that we can evaluate efficiently. We proceed
by stating the relevant properties of these techniques which we then
combine to yield our Theorem 3.1.

Lemma 3.1 (powering). Given a (r, cr, p1, p2, pq, pu)-sensitive filter family
F for (X, dist) and a positive integer κ define the family F κ as follows: we
sample a filter F = (Q, U) from F κ by sampling (Q1, U1), . . . , (Qκ, Uκ) inde-
pendently from F and setting (Q, U) = (

⋂κ
i=1 Qi,

⋂κ
i=1 Ui). The family F κ is

(r, cr, pκ
1, pκ

2, pκ
q , pκ

u)-sensitive for (X, dist).

Let F denote a collection (indexed family) of m filters and let Q and
U denote the corresponding collections of query and update filters, that
is, for i ∈ {1, . . . , m} we have that Fi = (Qi, Ui). Given a positive integer
τ ≤ m (typically τ � m) we define F⊗τ to be the collection of filters
formed by taking all the intersections of τ-combinations of filters from F,
that is, for every I ⊆ {1, . . . , m} with |I| = τ we have that

F⊗τ
I = (

⋂
i∈IQi,

⋂
i∈IUi)

The following properties of the tensoring technique will be used to
provide correctness, running time, and space usage guarantees for the
LSF data structure that will be introduced in the next subsection. We
refer to the evaluation time of a collection of filters F as the time it takes,
given a point x ∈ X to prepare a list of query filters Q(x) ⊆ Q containing
x and a list of update filters U(x) ⊆ U containing x such that the next
element of either list can be reported in constant time. We say that a pair
of points (x, y) is contained in a filter (Q, U) if x ∈ Q and y ∈ U.

Lemma 3.2 (tensoring). Let F be a filter family that is (r, cr, p1, p2, pq, pu)-
sensitive in (X, dist). Let τ be a positive integer and let F denote a collection of
m = dτ/p1e independently sampled filters from F . Then the collection F⊗τ of
(m

τ ) filters has the following properties:
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• If (x, y) have distance at most r then with probability at least 1/2 there
exists a filter in F⊗τ containing (x, y).

• If (x, y) have distance greater than cr then the expected number of filters
in F⊗τ containing (x, y) is at most pτ

2(
m
τ ).

• In expectation, a point x is contained in at most pτ
q (

m
τ ) query filters and

at most pτ
u(

m
τ ) update filters in F⊗τ.

• The evaluation time and space complexity of F⊗τ is dominated by the time
it takes to evaluate and store m filters from F .

Proof. To prove the first property we note that there exists a filter in F⊗τ

containing (x, y) if at least τ filters in F contain (x, y). The binomial
distribution has the property that the median is at least as great as the
mean rounded down [93]. By the choice of m we have that the expected
number of filters in F containing (x, y) is at least τ and the result follows.
The second and third properties follow from the linearity of expectation
and the fourth is trivial.

3.2.1 The LSF data structure

We will introduce a dynamic data structure that solves the (r, cr)-near
neighbor problem on a set of points P ⊆ X. The data structure has access
to a (r, cr, p1, p2, pq, pu)-sensitive filter family F in the sense that it knows
the parameters of the family and is able to sample, store, and evaluate
filters from F in time dno(1).

The data structure supports an initialization operation that initializes a
collection of filters F where for every filter we maintain a (possibly empty)
set of points from X. After initialization the data structure supports three
operations: insert, delete, and query. The insert (delete) operation
takes as input a point x ∈ X and adds (removes) the point from the set of
points associated with each update filter in F that contains x. The query

operation takes as input a point x ∈ X. For each query filter in F that
contains x we proceed by computing the dissimilarity dist(x, y) to every
point y associated with the filter. If a point y satisfying dist(x, y) ≤ cr is
encountered, then y is returned and the query algorithm terminates. If
no such point is found, the query algorithm returns a special symbol “∅”
and terminates.

The data structure will combine the powering and tensoring tech-
niques in order to simulate the collection of filters F from two smaller
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collections: F1 consisting of m1 filters from F κ1 and F2 consisting of
m2 filters from F κ2 . The collection of simulated filters F is formed by
taking all filters (Q1 ∩ Q2, U1 ∩U2) where (Q1, U1) is a member of F⊗τ

1
and (Q2, U2) is a member of F2. It is due to the integer constraints on
the parameter τ in the tensoring technique and the parameter κ in the
powering technique that we simulate our filters from two underlying
collections instead of just one. This gives us more freedom to hit a target
level of amplification of the simulated filters which in turn makes it
possible for the framework to support efficient solutions for a wider
range of parameters of LSF families.

The initialization operation takes F and parameters m1, κ1, τ, m2, κ2
and samples and stores F1 and F2. The filter evaluation algorithm used by
the insert, delete, and query operation takes a point x ∈ X and computes
for F1 and F2, depending on the operation, the list of update or query
filters containing x. From these lists we are able to generate the list of
filters in F containing x.

Setting the parameters of the data structure to guarantee correctness
while balancing the contribution to the query time from the filter evalu-
ation algorithm, the number of filters containing the query point, and
the number of distant points examined, we obtain a partially dynamic
data structure that solves the (r, cr)-near neighbor problem with failure
probability δ ≤ 1/2 + 1/e. Using a standard dynamization technique by
Overmars and Leeuwen [123, Thm. 1] we obtain a fully dynamic data
structure resulting in Theorem 3.1. The details of the proof have been
deferred to Appendix 3.7.

3.3 Gaussian filters on the unit sphere

In this section we show properties of a family of filters for the unit sphere
Sd under inner product similarity. Later we will show how to make use of
this family to solve the near neighbor problem in other spaces, including
`s for 0 < s ≤ 2.

Lemma 3.3. For every choice of 0 ≤ β < α < 1, λ ∈ [−1, 1], and t > 0 let G
denote the family of filters defined as follows: we sample a filter (Q, U) from G
by sampling z ∼ N d(0, 1) and setting

Q = {x ∈ Rd | 〈x, z〉 > αλt},
U = {x ∈ Rd | 〈x, z〉 > t}.
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Then G is locality-sensitive on the unit sphere under inner product similarity
with exponents

ρq ≤
(
(1− α1+λ)2

1− α2 +
ln(2π(1 + t/α)2)

t2/2

)/
(1− αλβ)2

1− β2 ,

ρu ≤
(
(αλ − α)2

1− α2 +
ln(2π(1 + t/α)2)

t2/2

)/
(1− αλβ)2

1− β2 .

Laarhoven’s filter family [100] is identical to G except that he nor-
malizes the projection vectors z to have unit length. The properties of G
can easily be verified with a simple back-of-the-envelope analysis using
two facts: First, for a standard normal random variable Z we have that
Pr[Z > t] ≈ e−t2/2. Secondly, the invariance of Gaussian projections 〈x, z〉
to rotations, allowing us to analyze the projection of arbitrary points
x, y ∈ Sd with inner product 〈x, y〉 = α in a two-dimensional setting
x = (1, 0) and y = (α,

√
1− α2) without any loss of generality. The proof

of Lemma 3.3 as well as the proof of Theorem 3.2 has been deferred to
Appendix 3.8.

3.4 Space-time tradeoffs under kernel similarity

In this section we will show how to combine the Gaussian filters for the
unit sphere with kernel approximation techniques in order to solve the
(α, β)-similarity problem over (Rd, S) for the class of similarity measures
of the form S(x, y) = k(x− y) where k : Rd ×Rd → R is a real-valued
characteristic function [162]. For this class of functions there exists a
feature map ψ into a (possibly infinite-dimensional) dot product space
such that k(x, y) = 〈ψ(x), ψ(y)〉. Through an elegant combination of
Bochner’s Theorem and Euler’s Theorem, detailed in Appendix 3.9,
Rahimi and Recht [139] show how to construct approximate feature
maps, i.e., for every k we can construct a function v with the property
that 〈v(x), v(y)〉 ≈ 〈ψ(x), ψ(y)〉 = k(x− y). We state a variant of their
result for a mapping onto the unit sphere.

Lemma 3.4. For every real-valued characteristic function k and every positive
integer l there exists a family of functions V ⊆ {v | v : Rd → Sl} such that for
every x, y ∈ Rd and ε > 0 we have that

Pr
v∼V

[|〈v(x), v(y)〉 − k(x, y)| ≥ ε] ≤ e−Ω(lε2).

Theorem 3.10 in Appendix 3.9 shows that Theorem 3.2 holds with the
space (Sd, 〈·, ·〉) replaced by (Rd, k).
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3.4.1 Tradeoffs in `d
s -space

Consider the (r, cr)-near neighbor problem in `d
s for 0 < s ≤ 2. We solve

this problem by first applying the approximate feature map from Lemma
3.4 for the characteristic function of a standard s-stable distribution [175],
mapping the data onto the unit sphere, and then applying our solution
from Theorem 3.2 to solve the appropriate (α, β)-similarity problem on
the unit sphere. The characteristic functions of s-stable distributions take
the following form:

Lemma 3.5 (Lévy [102]). For every positive integer d and 0 < s ≤ 2 there
exists a characteristic function k : Rd ×Rd → [0, 1] of the form

k(x, y) = k(x− y) = e−‖x−y‖s
s .

A result by Chambers et al. [46] shows how to sample efficiently from
an s-stable distributions.

To sketch the proof of Theorem 3.3 we proceed by upper bounding
the exponents ρq, ρu from Theorem 3.2 when applying Lemma 3.4 to get
α ≥ e−rs − ε and β ≤ e−csrs − ε. We make use of the following standard
fact (see e.g. [143]) that can be derived from the Taylor expansion of the
exponential function: for x ≥ 0 it holds that 1− x ≤ e−x ≤ 1− x + x2/2.
Scaling the data points such that rs = o(1) and inserting the above values
of α ≈ 1− rs and β ≈ 1− csrs into the expressions for ρq, ρu in Lemma
3.3 we can set parameters t and l such that Theorem 3.3 holds.

3.5 Lower bounds

We begin by stating the lower bound on the LSH exponent ρ =
log(1/p)/ log(1/q) by O’Donnell et al. [122].

Theorem 3.7 (O’Donnell et al. [122]). Fix d ∈ N, 1 < c < ∞, 0 < s < ∞
and 0 < q < 1. Then for a certain choice of r = ωd(1) and under the
assumption that q ≥ 2−o(d) we have that every (r, cr, p, q)-sensitive family of
hash functions for `d

s must satisfy

ρ =
log(1/p)
log(1/q)

≥ 1
cs − od(1).

The following lemma shows how to use a filter family F to construct
a hash family H.
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Lemma 3.6. Given a symmetric family of filters that is (r, cr, p1, p2, pq, pu)-
sensitive in (X, dist) we can construct a (r, cr, p1/(2pq), p2/pq)-sensitive
family of hash functions in (X, dist).

Proof. Given the filter family F we sample a random function h from
the hash family H taking an infinite sequence of independently sampled
filters (Fi)

∞
i=0 from F and setting h(x) = min {i | x ∈ Fi}. The probability

of collision is given by

Pr
h∼H

[h(x) = h(y)] =
PrF∼F [x ∈ F ∧ y ∈ F]
PrF∼F [x ∈ F ∨ y ∈ F]

and the result follows from the properties of F .

If the LSH family in Lemma 3.6 had p = p1/pq and q = p2/pq then
the lower bound would follow immediately. We apply the powering
technique from Lemma 3.1 to the underlying filter family in order make
the factor 2 in p1/(2pq) disappear in the statement of ρ as d tends to
infinity.

Theorem 1.4. Every symmetric (r, cr, p1, p2, pq, pu)-sensitive filter family F
for `d

s must satisfy the lower bound of Theorem 3.7 with p = p1/pq and
q = p2/pq.

Proof. Given a family F that satisfies the requirements from Theorem
3.7 there exists an integer κ = ωd(1) such the hash family H that results
from applying Lemma 3.6 to the powered family F κ also satisfies the
requirements from Theorem 3.7. The constructed family H is (r, cr, p, q)-
sensitive for p = (1/2) · (p1/pq)κ and q = (p2/pq)κ. By our choice of κ

we have that log(1/p)/ log(1/q) = log(pq/p1)/ log(pq/p2) + od(1) and
the lower bound on log(1/p)/ log(1/q) from Theorem 3.7 applies.

3.5.1 Asymmetric lower bound

The lower bound is based on an isoperimetric-type inequality that holds
for randomly correlated points in Hamming space. We say that the
pair of points (x, y) is α-correlated if x is a random point in {−1, 1}d

and y is formed by taking x and independently flipping each bit with
probability (1− α)/2. We are now ready to state O’Donnell’s generalized
small-set expansion theorem. Notice the similarity to the value of p1 for
the Gaussian filter family described in Section 3.3 and Appendix 3.8.
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Lemma 3.7 ([121, p. 285]). For every 0 ≤ α < 1, −1 ≤ λ ≤ 1, and
Q, U ⊆ {−1, 1}d satisfying that |Q|/2d = (|U|/2d)α2λ

we have

Pr
(x,y)

α-correlated

[x ∈ Q, y ∈ U] ≤ (|U|/2d)
1+α2λ−2α1+λ

1−α2 .

The argument for the lower bound assumes a regular
(r, cr, p1, p2, pq, pu)-sensitive filter family F for Hamming space where we
set r = (1− α)d/2 and cr = (1− β)d/2 for some choice of 0 < β < α < 1.
We then proceed by deriving constraints on p1, p2, pq, pu, and minimize
ρq and ρu subject to those constrains. The proof of Theorem 1.5 is
provided in Appendix 3.10.

Theorem 1.5. Fix 0 < β < α < 1. Then for every regular ((1− α)d/2, (1−
β)d/2, p1, p2, pq, pu)-sensitive filter family in d-dimensional Hamming space
with and |Q|/2d = (|U|/2d)α2λ

where λ satisfies α + 2
√

ln(d)/d ≤ αλ ≤
1/(α− 2

√
ln(d)/d) it must hold that

ρq =
log(pq/p1)

log(pq/p2)
≥ (1− α1+λ)2

1− α2 − od(1),

ρu =
log(pu/p1)

log(pq/p2)
≥ (αλ − α)2

1− α2 − od(1)

when pq is set to minimize ρq and we assume that |U|/2d ≥ 2−od(1).

3.6 Open problems

An important open problem is to find simple and practical data-
dependent solutions to the (r, cr)-near neighbor problem. Current solu-
tions, the Gaussian filters in this paper included, suffer from o(1) terms
in the exponents that decrease very slowly in n. A lower bound for the
unit sphere by Andoni et al. [13] indicates that this might be unavoidable.

Another interesting open problem is finding the shape of provably
exactly optimal filters in different spaces. In the random data setting in
Hamming space, this problem boils down to maximizing the number of
pairs of points below a certain distance threshold that is contained in a
subset of the space of a certain size. This is a fundamental problem in
combinatorics that has been studied by among others [94], but a complete
answer remains elusive. The LSH and LSF lower bounds [114, 122, 19],
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along with classical isoperimetric inequalities such as Harper’s Theorem
and more recent work summarized in the book by O’Donnell [121] hints
that the answer is somewhere between a subcube and a generalized
sphere.

A recent result by Chierichetti and Kumar [49] characterizes the set of
transformations of LSH-able similarity measures as the set of probability-
generating functions. This seems to have deep connections to result
of this paper that uses characteristic functions that allow well-known
kernel transformations. It seems possible that this paper can be viewed
as a semi-explicit construction of their result, or that their result can be
described as an application of Bochner’s Theorem.
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3.7 Appendix: Framework

We state a version of Theorem 3.1 where the parameters of the filter
family are allowed to depend on n.

Theorem 3.1. Suppose we have access to a filter family that is
(r, cr, p1, p2, pq, pu)-sensitive. Then we can construct a fully dynamic data
structure that solves the (r, cr)-near neighbor problem. Assume that 1/p1,
1/ log(pq/p2), and exp(log(1/p1)/ log(min(pq, pu)/p1)) are no(1), then
the data structure has

– query time dnρq+o(1),

– update time nρu+o(1) + dno(1),
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– space usage n1+ρu+o(1) + dn + dno(1)

where

ρq =
log pq/p1

log pq/p2
, ρu =

log pu/p1

log pq/p2
.

To prove Theorem 3.1, we begin by setting the parameters mentioned
in the description of the LSF data structure in Section 3.2.1.

κ1 =

⌈
min(ρq, ρu) log n

log(1/p1)

⌉
τ =

⌊
log n

κ1 log(pq/p2)

⌋
≤ log(1/p1)

log(min(pq, pu)/p1)

m1 = dτ/pκ1
1 e

κ2 = max(0, dlog(n)/ log(pq/p2)e − τκ1)

m2 = d1/pκ2
1 e

We will now briefly explain the reasoning behind the parameter settings.
Begin by observing that the powering and tensoring techniques both
amplify the filters from F . Let m = (m1

τ ) · m2 denote the number of
simulated filters in our collection F and let a = τκ1 + κ2 be an integer
denoting the number of times each filter has been amplified. Ignoring the
time it takes to evaluate the filters, the query time is determined by the
sum of the number of filters that contain a query point and the number
of distant points associated with those filters that the query algorithm
inspects. The expected number of activated filters is given by mpa

q while
the worst case expected number of distant points to be inspected by the
query algorithm is given by nmpa

2. Balancing the contribution to the
query time from these two effects (ignoring the O(d) factor from distance
computations) results in a target value of a = dlog(n)/ log(pq/p2)e.
Compared to having an oracle that is able to list the filters from a
collection that contains a point, there is a small loss in efficiency from
using the tensoring technique due to the increase in the number of
filters required to guarantee correctness. The parameters of the LSF data
structure are therefore set to minimize the use of tensoring such that
the time spent evaluating our collection of filters roughly matches the
minimum of the query and update time.

Consider the initialization operation of the LSF data structure with
the parameters setting from above. We have that κ2 ≤ κ1 implying that
m2 = O(m1). The initialization time and the space usage of the data
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structure prior to any insertions is dominated by the time and space used
to sample and store the filters in F1. By the assumption that a filter from
F can be sampled in O(d) operations and stored using O(d) words, we
get a space and time bound on the initialization operation of

O(dκ1m1) = O
(

dnmin(ρq,ρu) p1 log(n)
log(pq/p2)

)
.

Importantly, this bound also holds for the running time of the filter
evaluation algorithm, that is, the preprocessing time required for constant
time generation of the next element in the list of filters in F containing
a point. In the following analysis of the update and query time we will
temporarily ignore the running time of the filter evaluation algorithm.

The expected time to insert or delete a point is dominated by the
number of update filters in F that contains it. The probability that a
particular update filter in F contains a point is given by pa

u. Using a
standard upper bound on the binomial coefficient we get that m =
O(eτ/pa

1) resulting in an expected update time of

O(mpa
u + d) = O(nρu(pu/p1)eτ + d).

In the worst case where every data point is at distance greater than cr
from the query point and has collision probablity p2 the expected query
time can be upper bounded by

O(mpa
q + dnmpa

2) = O(nρq eτ(pq/p1 + d)).

With respect to the correctness of the query algorithm, if a near neighbor
y to the query point x exists in P, then it is found by the query algorithm
if (x, y) is contained in a filter in F⊗τ

1 as well as in a filter in F2. By
Lemma 3.2 the first event happens with probability at least 1/2 and
by the choice of m2, the second event happens with probability at least
1− (1− pκ2

1 )pκ2
1 ≥ 1− 1/e. From the independence between F1 and F2

we can upper bound the failure probability δ ≤ (1/2)(1 + 1/e). This
completes the proof of Theorem 3.1.

3.8 Appendix: Gaussian filters

In this section we upper and lower bound the probability mass in the
tail of the bivariate standard normal distribution when the correlation
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between the two standard normals is at most β (upper bound) or at least
α (lower bound). We make use of the following upper and lower bounds
on the univariate standard normal as well as an upper bound for the
multivariate case.

Lemma 3.8 (Follows Szarek & Werner [154]). Let Z be a standard normal
random variable. Then, for every t ≥ 0 we have that

1√
2π

1
t + 1

e−t2/2 ≤ Pr[Z ≥ t] ≤ 1√
π

1
t + 1

e−t2/2.

Lemma 3.9 (Lu & Li [104]). Let z be a d-dimensional vector of i.i.d. standard
normal random variables and let D ⊂ Rd be a closed convex domain that does
not contain the origin. Let ∆ denote the Euclidean distance to the unique closest
point in D, then we have that

Pr[z ∈ D] ≤ e−∆2/2.

Lemma 3.10 (Tail upper bound). For α, λ, t, β satisfying 0 < α < 1, −1 ≤
λ ≤ 1, t > 0, and −1 < β < α every pair of standard normal random variables
(X, Y) with correlation β′ ≤ β satisfies

Pr[X ≥ t ∧Y ≥ αλt] ≤ e−∆2/2

where ∆2 = (1 + (αλ−β)2

1−β2 )t2.

Proof. For β′ = −1 the result is trivial. For values of β′ in the range
−1 < β′ ≤ β we use the 2-stability of the normal distribution to analyze a
tail bound for (X, Y) in terms of a Gaussian projection vector z = (Z1, Z2)
applied to unit vectors x, y ∈ R2. That is, we can define X = 〈z, x〉 and
Y = 〈z, x〉 for some appropriate choice of x and y. Without loss of
generality we set x = (1, 0) and note that for E[XY] = β′ we must have
that y = (β′,

√
1− β′2). If we consider the region of R2 where z satisfies

X ≥ t ∧Y ≥ αλt we get a closed domain D defined by z = (Z1, Z2) such
that Z1 ≥ t and Z2 ≥ (αλt− β′Z1)/(

√
1− β′2). The squared Euclidean

distance from the origin to the closest point in D at least ∆2 as can be
seen by the fact that ∆2 decreasing in β. Combining this observation with
Lemma 3.9 we get the desired result.
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Lemma 3.11 (Tail lower bound). For α, λ, t satisfying 0 < α < 1, −1 ≤
λ ≤ 1, and t > 0 every pair of standard normal random variables (X, Y) with
correlation α′ ≥ α satisfies

Pr[X ≥ t ∧Y ≥ αλt] ≥ e−∆2/2

2π(1 + t/α)2

where ∆2 = (1 + (αλ−α)2

1−α2 )t2.

Proof. For α′ = 1 the result follows directly from Lemma 3.8. For α′ < 1
we use the trick from the proof of Lemma 3.10 and define X = 〈z, x〉 and
Y = 〈z, x〉 where x = (1, 0) and y = (α,

√
1− α2) and z = (Z1, Z2) is a

vector of two i.i.d. standard normal random variables. This allows us to
rewrite the probability as follows:

Pr[Z1 ≥ t ∧ αZ1 +
√

1− α2Z2 ≥ αλt]

= Pr[Z1 ≥ t]Pr[αZ1 +
√

1− α2Z2 ≥ αλt | Z1 ≥ t]

≥ Pr[Z1 ≥ t]Pr[αt +
√

1− α2Z2 ≥ αλt]

By the restrictions on α and λ we have that (αλ − α)t/
√

1− α2 ≤ t/α.
The result follows from applying the lower bound from Lemma 3.8 and
noting that the bound is increasing in α.

3.8.1 Space-time tradeoffs on the unit sphere

Summarizing the bound from the previous section, the family G from
Lemma 3.3 satisfies that

p1 ≥
e−(1+

(αλ−α)2

1−α2 )t2/2

2π(1 + t/α)2

p2 ≤ e
−(1+ (αλ−β)2

1−β2 )t2/2

pq ≤ e−α2λt2/2

pu ≤ e−t2/2.

We combine the Gaussian filters with Theorem 3.1 to show that we
can solve the (α, β)-similarity problem efficiently for the full range of
space/time tradeoffs, even when α, β are allowed to depend on n, as long
as the gap α− β is not too small.
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Theorem 3.2. For every choice of 0 ≤ β < α < 1 and λ ∈ [−1, 1] we
can construct a fully dynamic data structure that solves the (α, β)-similarity
problem in (Sd, 〈·, ·〉). Suppose that α − β ≥ (ln n)−zeta for some constant
zeta < 1/2, that satisfies the guarantees from Theorem 3.1 with exponents

ρq =
(1−α1+λ)2

1−α2

/
(1−αλβ)2

1−β2 and ρu = (αλ−α)2

1−α2

/
(1−αλβ)2

1−β2 .

Proof. Assuming that α− β ≥ (ln n)−zeta there exists a constant ε > 0

where by setting the parameter t of G such that t2/2 = 1−β2

(1−αλβ)2 (ln n)ε

the family of filters satisfies the assumptions in Theorem 3.1 while guar-
anteeing that the second term in ρq and ρu from Lemma 3.3 are o(1).

Remark 3.1. Theorem 3.2 aims for simplicity and generality while allowing
α and β to depend on n. For specific values of α, β, λ it is easy to find
better bounds on the probabilties (e.g. the bounds by Savage [143]) and
to adjust t in Lemma 3.3 to avoid powering (setting κ1 = 1, κ2 = 0) in the
LSF framework.

3.9 Appendix: Approximate feature maps, characteristic
functions, and Bochner’s Theorem

We begin by defining what a characteristic function is and listing some
properties that are useful for our application. More information about
characteristic functions can be found in the books by Lukacs [105] and
Ushakov [162].

Lemma 3.12 ([105, 162]). Let Z denote a random variable with distribution
function µ. Then the characteristic function k(∆) of Z is defined as

k(∆) =
∫ ∞

−∞
µ(t)ei∆tdt

and it has the following properties:

- A distribution function is symmetric if and only if its characteristic
function is real and even.

- Every characteristic function k(∆) is uniformly continuous, has k(0) = 1,
and |k(∆)| ≤ 1 for all real ∆.

- Suppose that k(∆) denotes the characteristic function of an absolutely
continuous distribution then lim∆→∞ |k(∆)| = 0.
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- Let X and Y be independent random variables with characteristic functions
kX and kY. Then the characteristic function of Z = (X, Y) is given by
k(x, y) = kX(x)kY(y).

Bochner’s Theorem reveals the relation between characteristic func-
tions and the class of real-valued functions k(x, y) that admit a feature
space representation k(x, y) = 〈φ(x), φ(y)〉

Theorem 3.8 (Bochner’s Theorem [141]). A function k : Rd ×Rd → [0, 1]
is positive definite if and only if it can be written on the form

k(x, y) =
∫

Rd
µ(v)ei〈v,x−y〉dv

where µ is the probability density function of a symmetric distribution.

Rahimi & Recht’s [139] family of approximate feature maps V is
constructed from Bochner’s Theorem by making use of Euler’s Theorem
as follows:

k(x, y) =
∫

Rd
µ(v)ei〈v,x−y〉dv

=
∫

Rd
µ(v)(cos(〈v, x− y〉) + i sin(〈v, x− y〉))dv

= E
v
[cos(〈v, x− y〉)]

= E
v,b
[cos(〈v, x− y〉) + cos(〈v, x〉+ 〈v, y〉+ 2b)]

= 2 E
v,b
[cos(〈v, x〉+ b) · cos(〈v, y〉+ b)].

Where the third equality makes use of the fact that k(x, y) is real-valued
to remove the complex part of the integral and the fifth equality uses that
2 cos(x) cos(y) = cos(x + y) + cos(x− y).

Now that we have an approximate feature map onto the sphere
for the class of shift-invariant kernels, we will take a closer look at
what functions this class contains, and what their applications are for
similarity search. Given an arbitrary similarity function, we would like
to be able to determine whether it is indeed a characteristic function.
Unfortunately, there are no known simple techniques for answering this
question in general. However, the machine learning literature contains
many applications of different shift-invariant kernels [145] and many
common distributions have real characteristic functions (see Appendix
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B in [162] for a long list of examples). Characteristic functions are also
well studied from a mathematical perspective [105, 162], and a number
of different necessary and sufficient conditions are known. A classical
result by Pólya [136] gives simple sufficient conditions for a function to
be a characteristic function. Through the vectorization property from
Lemma 3.12, Pólya’s conditions directly imply the existence of a large
class of similarity measures on Rd that can fit into the above framework.

Theorem 3.9 (Pólya [136]). Every even continuous function k : R → R

satisfying the properties

- k(0) = 1

- lim∆→∞ k(∆) = 0

- k(∆) is convex for ∆ > 0

is a characteristic function.

Based on the results of Section 3.4.1 one could hope for the exis-
tence of characteristic functions of the form k(∆) = e−|∆|

s
for s > 2

but it is known that such functions cannot exist [25, Theorem D.8].
Furthermore, Marcinkiewicz [108] shows that a function of the form
k(∆) = exp(−poly(∆)) cannot be a characteristic function if the degree
of the polynomial is greater than two.

We state a more complete, constructive version of Lemma 3.4 as well
as the proof here.

Lemma 3.13. Let k be a real-valued characteristic function with associated
distribution function µ and let l be a positive integer. Consider the family
of functions V ⊆ {v | v : Rd → Sl} where a randomly sampled function
v is defined by, independently for j = 1, . . . , l, sampling v from µ and b
uniformly on [0, 2π], letting v̂(x)j =

√
(2/l) cos(〈v, x〉+ b) and normalizing

v(x)j =
v̂(x)
‖v̂(x)‖ . The family V has the property that for every x, y ∈ Rd and

ε > 0 we have that

Pr
v∼V

[|〈v(x), v(y)〉 − k(x, y)| ≥ ε] ≤ 6e−lε2/128.

Proof. Since l · v̂(x)jv̂(y)j is bounded between 2 and −2, and we have
independence for different values of j, Hoeffding’s inequality [88] can be
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applied to show that for every fixed pair of points x, y and ε̂ > 0 it holds
that

Pr[|〈v̂(x), v̂(y)〉 − k(x, y)| ≥ ε̂] ≤ 2e−lε̂2/8.

From the properties of characteristic functions we have that k(x, x) = 1
and k(x, y) ≤ 1. The bound on the deviation of

〈v(x), v(y)〉 = 〈v̂(x), v̂(y)〉√
〈v̂(x), v̂(x)〉〈v̂(y), v̂(y)〉

from k(x, y) follows from setting ε̂ = ε/4 and using a union bound over
the probabilities that the deviation of one of the inner products is too
large.

Combining the approximate feature map onto the unit sphere with
Theorem 3.2 we obtain the following:

Theorem 3.10. Let k : Rd → R be a characteristic function and define the
similarity measure S(x, y) = k(x− y). Assume that we have access to samples
from the distribution associated with k, then Theorem 3.2 holds with (Sd, 〈·, ·〉)
replaced by (Rd, S).

Proof. According to Lemma 3.13, we can set l = no(1) to obtain a map
v : Rd → Sl such that the the inner product on Sl preserves the pairwise
similarity between nO(1) points with additive error ε = o(1). This map
has a space and time complexity of O(dl) = dno(1). After applying v
to the data we can solve the (α, β)-similarity problem on (Rd, k(x− y))
by solving the (α − ε, β + ε)-similarity problem on (Sd, 〈·, ·〉). We can
use Theorem 3.2 to construct a fully dynamic data structure for solving
this problem, adjusting the parameter λ so that it continues to lie in the
admissible range. The space and time complexities follow.

3.10 Appendix: Proof of tradeoff lower bound

Consider ρq =
log(pq/p1)

log(pq/p2)
. Subject to the (implicit) LSF constraint that

pq, pu > p1 > p2 > 0 we see that ρq is minimized by setting pq, p2 as
small as possible and p1 as large as possible. We will therefore derive
lower bounds on pq, p2 and an upper bound on p1. For every value of p1
and p2 we minimize ρq, ρu by choosing pq as small as possible.

For a random point x ∈ {−1, 1}d it must hold that PrF [x ∈ Q] =
|Q|/2d. This implies the existence of a fixed point y ∈ {−1, 1}d with
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the property that PrF [y ∈ Q] ≥ |Q|/2d. A regular filter family must
therefore satisfy that pq ≥ |Q|/2d and pu ≥ |U|/2d. Let λ be defined as
in Lemma 3.7 then by a similar argument we have that p2 ≥ (U/2d)1+α2λ

.
In order to upper bound p1 we make use of Lemma 3.7 together

with the following lemma that follows directly from an application of
Hoeffding’s inequality [88].

Lemma 3.14. For every 0 < ε < (1− α)/2 we have that

Pr
(x,y)

α+ε-correlated

[
1
d

d

∑
i=1

xiyi ≤ α

]
≤ e−ε2d/2.

In the following derivation, assume that α, ε satisfies 0 < ε < (1−
α)/2, let x, y denote randomly (α + ε)-correlated vectors in {−1, 1}d, and
assume that α + ε ≤ αλ ≤ 1/(α + ε), then

(|U|/2d)
1+α2λ−2αλ(α+ε)

1−(α+ε)2 ≥ Pr[x ∈ Q, y ∈ U]

≥ Pr[x ∈ Q, y ∈ U | 〈x, y〉 ≥ α]Pr[〈x, y〉 ≥ α]

≥ p1(1− e−ε2d/2)

Summarizing the bounds:

p1 ≤
(|U|/2d)

1+α2λ−2αλ(α+ε)

1−α2

1− e−ε2d/2

p2 ≥ (|U|/2d)1+α2λ

pq ≥ |Q|/2d

pu ≥ |U|/2d.

When minimizing ρq we have that log(pq/p2) = − log(|U|/2d). Set-

ting ε = 2
√

ln(d)/d results in log(1/p1) ≥ −1+α2λ−2αλ(α+ε)
1−α2 log(|U|/2d)−
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O(1/d2). Putting things together:

log(pq/p1)

log(pq/p2)
≥ −α2λ log(|U|/2d)

log(|U|/2d)

+

1+α2λ−2αλ(α+ε)
1−α2 log(|U|/2d) + O(1/d2)

log(|U|/2d)

=
(1− α1+λ)2 − 2αλε

1− α2 +
O(1/d2)

log(|U|/2d)

=
(1− α1+λ)2

1− α2 −O(
√

log(d)/d).

The derivation of the lower bound for ρu is almost the same and the
resulting expression is

log(pu/p1)

log(pq/p2)
≥ (αλ − α)2

1− α2 −O(
√

log(d)/d).

3.11 Appendix: Comparison to Kapralov

Kapralov uses α to denote a parameter controlling the space-time trade-
off for his solution to the (r, cr)-near neighbor problem in Euclidean
space. For every choice of tradeoff parameter α ∈ [0, 1], assuming that
c2 ≥ 3(1− α)2 − α2 + ε for arbitrarily small constant ε > 0, Kapralov [95]
obtains query and update exponents

ρq =
4(1− α)2

c2 + (1− α)2 − 3α2 ,

ρu =
4α2

c2 + (1− α)2 − 3α2 .

We convert Kapralov’s notation to our own by setting λ = 1− 2α. To
compare, Kapralov sets α = 0 for near-linear space and we set λ = 1. We
want to write Kapralov’s exponents on the form

ρq =
c2(1 + λ)2

(c2 + λ)2 + x
, ρu =

c2(1− λ)2

(c2 + λ)2 + x

for some x that we will proceed to derive. We have that (1− α)2 = (1 +
λ)2/4 and α2 = (1− λ)2/4. Multiplying the numerator and denominator
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in Kapralov’s exponents by c2 we can write Kapralov’s exponents as

ρq =
c2(1 + λ)2

c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4
,

ρu =
c2(1− λ)2

c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4
.

We have that

x = c4 + c2(1 + λ)2/4− 3c2(1− λ)2/4− (c2 + λ)2

= −c2(1 + λ2)/2− λ2.

For every choice of λ ∈ [−1, 1], and under the assumption that c2 ≥
(1 + λ)2/2 + λ + ε for an arbitrarily small constant ε > 0, this allows us
to write Kapralov’s exponents as

ρq =
c2(1 + λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2 ,

ρu =
c2(1− λ)2

(c2 + λ)2 − c2(1 + λ2)/2− λ2 .

To compare Kapralov’s result against our own for search in `s-spaces we
consider the exponents from Theorem 3.3, ignoring additive o(1) terms:

ρq =
cs(1 + λ)2

(cs + λ)2 , ρu =
cs(1− λ)2

(cs + λ)2 .

Setting λ = 1 we obtain a data structure that uses near-linear space and
we get a query exponent ρq = 16/25 while Kapralov obtains an exponent
of ρq = 16/20, ignoring o(1) terms. At the other end of the tradeoff,
setting λ = −1, we get a data structure with query time no(1) and update
exponent ρu = 16/9 while Kapralov gets an update exponent of ρu = 4,
again ignoring additive o(1) terms.

The assumption made by Kapralov that c2 ≥ (1+λ)2/2+λ+ ε means
that in the case of a near-linear space data structure (λ = 1) sublinear
query time can only be obtained for c >

√
3. In contrast, Theorem 3.3

gives sublinear query time for every constant c > 1.
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3.12 Appendix: Details about dynamization and the model of
computation

In order to obtain fully dynamic data structures we apply a powerful
dynamization result of Overmars and Leeuwen [123] for decomposable
searching problems. Their result allows us to turn a partially dynamic
data structure into a fully dynamic data structure, supporting arbitrary
sequences of queries and updates, at the cost of a constant factor in the
space and running time guarantees. Suppose we have a partially dynamic
data structure that solves the (r, cr)-near neighbor problem on a set of n
points. By partially dynamic we mean that, after initialization on a set P
of n points, the data structure supports Θ(n) updates without changing
the query time by more than a constant factor. Let Tq(n), Tu(n), and Tc(n)
denote the query time, update time, and construction time of such a
data structure containing n points. Then, by Theorem 1 of Overmars and
Leeuwen [123], there exists a fully dynamic version of the data structure
with query time O(Tq(n)) and update time O(Tu(n) + Tc(n)/n) that uses
only a constant factor additional space. The data structures presented in
this paper, as well as most related constructions from the literature, have
the property that Tc(n)/n = O(Tu(n)), allowing us to go from a partially
dynamic to a fully dynamic data structure “for free” in big O notation.

In terms of guaranteeing that the query operation solves the (r, cr)-
near neighbor problem on the set of points P currently inserted into the
data structure, we allow a constant failure probability δ < 1, typically
around 1/2, and omit it from our statements. We make the standard as-
sumption that the adversary does not have knowledge of the randomness
used by the data structure. Say we have a data structure with constant
failure probability and a bound on the expected space usage. Then, for
every positive integer T we can create a collection of O(log T) indepen-
dent repetitions of the data structure such that for every sequence of
T operations it holds with high probability in T that the space usage
will never exceed the expectation by more than a constant factor and no
query will fail.

3.12.1 Model of computation

We use the standard word RAM model as defined by Hagerup [85]
with a word size of Θ(log n) bits. Unless otherwise stated, we make
the assumption that a point in (X, D) can be stored in d words and
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that the dissimilarity between two arbitrary points can be computed
in d operations where d is a positive integer that corresponds to the
dimension in the various well-studied settings mentioned in the main
text. Furthermore, when describing framework-based solutions to the
(r, cr)-near neighbor problem, we make the assumption that we can
sample, evaluate, and represent elements from F and H with neglible
error using space and time dno(1).

Many of the LSH and LSF families rely on random samples from
the standard normal distribution. We will ignore potential problems
resulting from rounding due to the fact that our model only supports
finite precision arithmetic. This approach is standard in the literature
and can be justified by noting that the error introduced by rounding is
neglible. Furthermore, there exists small pseudorandom standard normal
distributions that support sampling using only few uniformly distributed
bits as noted by Charikar [47]. In much of the related literature the model
of computation is left unspecified and statements about the complexity
of solutions to the (r, cr)-near neighbor problem are usually made with
respect to particular operations such as the hash function computations,
distance computations, etc., leaving out other details [91, 86].

3.13 Addendum: An improved framework

The LSF framework in Theorem 3.1 suffers from large lower-order terms
that depend on the (r, cr, p1, p2, pq, pu)-sensitivity properties of F . With
the parameterization in Appendix 3.7 the framework uses O(τnmin(ρq,ρu))
filters from F where τ ≤ log(1/p1)/ log(min(pq, pu)/p1). In addition,
the query and update time have a multiplicative factor eτ which can
potentially be very large and where we have to assume explicitly that
eτ = no(1). We will use a combination of techniques in recent work on set
similarity search [56] and fast locality-sensitive hashing frameworks [64,
53] to give an improved LSF framework with more precise complexity
bounds.

The data structure produced by the framework follows the high-level
approach as outlined in Section 3.2.1: queries and updates are mapped
to a collection of buckets that are searched for similar points in the case
of a query, or updated to store a reference to the point in the case of
an update. Let V : X → R denote the mapping from query points to
buckets and W : X → R denote the corresponding map for updates. The
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set of buckets V(x) will be identified by the “survivors” of w branching
processes through k collections of m filters, similarly to the Chosen Path
algorithm [56].

The data structure is initialized by sampling k collections of m filters.
We will use the notation Qi,j (Ui,j) to denote the jth query (update)
filter in the ith collection. For i = 1, . . . , k let hi : [w] × [m]i → [0, 1]
denote a pairwise independent random hash function. Let λ ∈ [0, 1] be a
parameter to be determined later and let ◦ denote vector concatenation,
then the locality-sensitive map V is defined recursively as follows:

Vi(x) =

{
{p ◦ j | p ∈ Vi−1(x) ∧ hi(p ◦ j) < λ ∧ x ∈ Qi,j} if i > 0
[w] if i = 0.

The map W is defined in the same way except it uses Ui,j instead of Qi,j.

Properties. To show that the maps V, W provide an efficient solution
to the (r, cr)-near neighbor problem we need to show the following:

• An upper bound on the expected size of V(x) and W(x) to bound
the expected number of buckets probed during queries/updates.

• An upper bound on the expected size of V(x) ∩W(y) when
dist(x, y) > cr to bound the expected number of distant points
that will be encountered during the linear scan part of the query
algorithm.

• That V(x) ∩W(y) is non-empty with constant probability when
dist(x, y) ≤ r to guarantee that the query algorithm encounters a
point at distance at most r with constant probability, provided such
a point exists.

By the independence between the different levels i = 1, . . . , k in the
branching process we have that

E[|Vi(x)|] = E[|Vi−1(x)|]mλpq = w(mλpq)
i.

Given x, y ∈ X define Zi = Vi(x) ∩Wi(y). Define p = Pr[x ∈ Q, y ∈ U]
where (Q, U) is sampled from F . The expected number of collisions
between x and y at level i is then given by

E[|Zi|] = E[|Zi−1|]mλp = w(mλp)i.
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To show correctness of the scheme we will use Chebyshev’s inequality to
show that with constant probability we have |Zi| > 0 for points x, y with
dist(x, y) ≤ r. We proceed by upper bounding E[|Zi|2] in order to bound
the variance Var[|Zi|] = E[|Zi|2]− E[|Zi|]2. To ease the derivation we
define Yp,j = 1{hi(p ◦ j) < λ ∧ (x, y) ∈ (Qi,j, Ui,j)} where we suppress
the subscript i. Without loss of generality we can assume that p = p1
since dist(x, y) ≤ r.

E[|Zi|2] = E


 ∑

p∈Zi−1

∑
j∈[m]

Yp,j

2


= E

[
∑

p 6=p′

(
∑
j 6=j′

Yp,jYp′,j′ + ∑
j=j′

Yp,jYp′,j′

)]

+ E

[
∑

p=p′

(
∑
j 6=j′

Yp,jYp′,j′ + ∑
j=j′

Yp,jYp′,j′

)]
= E[|Zi−1|2 − |Zi−1|]((m2 −m)λ2p2

1 + mλ2p1)

+ E[|Zi−1|]((m2 −m)λ2p2
1 + mλp1)

≤ E[|Zi−1|2](1 + 1/mp1)(mλp1)
2 + E[|Zi−1|]mλp1.

Since i ≤ k if we set m ≥ ln(1 + ε)k/p1 we have that

E[|Zi|2] ≤ (1 + ε)w2(mλp1)
2i + (1 + ε)E[|Zi|]

i−1

∑
s=0

(mλp1)
s.

We will set the parameters in order to give a simple upper bound the
worst-case performance of the data structure. The constants can be
improved.

ε = 1/10,
k = dlog(n)/ log(pq/p2)e,

m = dln(1 + ε)k/p1e,
λ = 1/(m min(pq, pu)),

w = d10k(min(pq, pu)/p1)
ke.
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We can now bound the variance of |Zk| as follows:

Var[|Zk|] = E[|Zk|2]−E[|Zk|]2

≤ E[|Zk|]2/10 + (1 + 1/10)E[|Zk|]
k−1

∑
s=0

(p1/ min(pq, pu))
s

≤ E[|Zk|]2/10 + (1 + 1/10)k E[|Zk|]

where we use the fact that p1 ≤ min(pq, pu). By Chebyshev’s inequality
we have that

Pr[|Zk| < 0] ≤ Var[|Zk|]/ E[|Zk|]2
≤ 1/10 + (1 + 1/10)k/ E[|Zk|]

By our parameter setting we have E[|Zk|] = w(mλp1)
k ≥ 10k so x, y

collide with probability at least 7/10 under V, W, ensuring correctness.

3.13.1 Fast evaluation

We will use a hashing trick to compute Vk(x) in expected time
O(k E[|Vk(x)|]). This technique is only briefly mentioned in [56]. Observe
that for the correctness argument to hold, it suffices that the hash func-
tions h1, . . . , hk are sampled independently from a pairwise independent
family [41, 42]. At the ith step in the computation of Vk(x) we wish to
determine, for each p ∈ Vi−1(x) the set of j ∈ [m] satisfying hi(p ◦ j) < λ

and x ∈ Qi,j. In order to answer this efficiently we will make use of the
property that a pairwise independent hash function can be decomposed
as

hi(p ◦ j) = gi(p)⊕ fi(j)

where gi, fi are pairwise independent and ⊕ denotes addition in an
abelian group. For concreteness assume that gi, fi map to b-bit strings
and let ⊕ denote the exclusive-or operator. If we view the b-bit output
of hi(p ◦ j) as an integer in the set 0, 1, . . . , 2b − 1 using the standard
base two representation, the original condition hi(p ◦ j) < λ can be
transformed into the condition hi(p ◦ j) < λM where M = 2b − 1. By
choosing b = Θ(log n) we can with high probability determine whether
the condition is satisfied without reading more than b bits, so we can
effectively treat the output of the hash function as a real number at the
cost of a small increase in the failure probability of the data structure.
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Continuing with the new representation, in order for hi(p ◦ j) < λM
we must have that the leading κ = b− dlog2(λM)e − 1 bits of the output
of gi(p)⊕ fi(j) is all zeroes. Given the leading κ bits of gi(p) we can
restrict our attention to j ∈ [m] with the same value in the leading κ

bits of fi(j). At the beginning of the query algorithm, for each i ∈ k we
determine the subset J ⊆ [m] such that x ∈ Qi,j We then create a table
with 2κ linked lists and for each j ∈ J we append j to the linked list at
the table entry given by the leading κ bits of fi(j). The running time and
space usage of preparing these additional data structures is dominated
by the complexity of evaluating and storing O(k2/p1) filters from F .

Now, given Vi−1(x) we can compute Vi(x) in expected time
O(mλpq|Vi−1(x)|) by, for each p ∈ Vi(x), looking up the relevant ta-
ble entry (given by the leading κ bits of gi(p)) and verifying whether the
elements of the linked list satisfy the hashing condition. Every element
of the linked list found in this way satisfies the hashing condition with
constant probability by our setting of κ. To implement gi and fi we can
use simple tabulation hashing [174].

One problem remains: long paths p ∈ [w] × [m]i can take super
constant time to hash. To prevent this we again use hashing to cre-
ate O(log n)-bit fingerprints of the paths that we work on instead. A
conservative upper bound on the expected time to compute Vk(x) is
O(k E[|Vk(x)|]) since E[|Vi(x)|] is non-decreasing in i and the expected
time spent at level i is upper bounded by O(E[|Vi(x)|]). We use the same
approach to compute Wk(x).

3.13.2 Framework

We are now ready to state the properties of the new framework.

Theorem 3.11. Given a (r, cr, pq, pu, p1, p2)-sensitive family F we can con-
struct a fully dynamic data structure that solves the (r, cr)-near neighbor
problem. Define k = dlog(n)/ log(pq/p2)e, then:

• The data structure uses O(kn(pu/p1)
k) words of space in addition to the

space required to store n data points and O(k2/p1) filters from F .

• The query operation uses O(k2(pq/p1)
k)) word-RAM operations,

O(k(pq/p1)
k) distance computations, and O(k2/p1) filter evaluations.

• The update operation uses O(k2(pu/p1)
k)) word-RAM operations and

O(k2/p1) filter evaluations.
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Compared to the usual formulation where the query time is stated as
nρq+o(1) Theorem 3.11 offers a more precise statement of the complexity
and can be converted to the other formulation. The lower order terms are
now confined to the multiplicative factor k which is a standard expression
that also appears in the LSH framework as k = dlog(n)/ log(1/p2)e
where p2 is an upper bound on the collision probability between pairs
of points x, y with dist(x, y) > cr. The analysis can be tightened further
by not using k as an upper bound for ∑k−1

s=0(p1/ min(pq, pu))s when
bounding the variance, but removing the multiplicative dependence on k
entirely as in the improved LSH framework [53] is an interesting open
problem.



Chapter 4

Set similarity search beyond MinHash
‘From the ashes, a fire shall be woken’

We consider the problem of approximate set similarity search under
Braun-Blanquet similarity B(x, y) = |x ∩ y|/ max(|x|, |y|). The (b1, b2)-
approximate Braun-Blanquet similarity search problem is to preprocess
a collection of sets P such that, given a query set q, if there exists x ∈ P
with B(q, x) ≥ b1, then we can efficiently return x′ ∈ P with B(q, x′) > b2.

We present a simple data structure that solves this problem with space
usage O(n1+ρ log n + ∑x∈P |x|) and query time O(|q|nρ log n) where n =
|P| and ρ = log(1/b1)/ log(1/b2). Making use of existing lower bounds
for locality-sensitive hashing by O’Donnell et al. [122] we show that this
value of ρ is tight across the parameter space, i.e., for every choice of
constants 0 < b2 < b1 < 1.

In the case where all sets have the same size our solution strictly
improves upon the value of ρ that can be obtained through the use of state-
of-the-art data-independent techniques in the Indyk-Motwani locality-
sensitive hashing framework [91] such as Broder’s MinHash [35] for
Jaccard similarity and Andoni et al.’s cross-polytope LSH [13] for cosine
similarity. Surprisingly, even though our solution is data-independent,
for a large part of the parameter space we outperform the currently best
data-dependent method by Andoni and Razenshteyn [17].

4.1 Introduction

In this paper we consider the approximate set similarity problem or,
equivalently, the problem of approximate Hamming near neighbor search
in sparse vectors. Data that can be represented as sparse vectors is
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ubiquitous — a typical example is the representation of text documents
as term vectors, where non-zero vector entries correspond to occurrences
of words (or shingles). In order to perform identification of near-identical
text documents in web-scale collections, Broder et al. [30, 36] designed
and implemented MinHash (a.k.a. min-wise hashing), now understood
as a locality-sensitive hash function [86]. This allowed approximate
answers to similarity queries to be computed much faster than by other
methods, and in particular made it possible to cluster the web pages of
the AltaVista search engine (for the purpose of eliminating near-duplicate
search results). Almost two decades after it was first described, MinHash
remains one of the most widely used locality-sensitive hashing methods
as witnessed by thousands of citations of [30, 36] as well as the ACM
Paris Kanellakis Theory and Practice Award that Broder shared with
Indyk and Charikar in 2012.

A similarity measure maps a pair of vectors to a similarity score in
[0, 1]. It will often be convenient to interpret a vector x ∈ {0, 1}d as the
set {i | xi = 1}. With this convention the Jaccard similarity of two vectors
can be expressed as J(x, y) = |x ∩ y|/|x ∪ y|. In approximate similarity
search we are interested the problem of searching a data set P ⊆ {0, 1}d

for a vector of similarity at least j1 with a query vector q ∈ {0, 1}d, but
allow the search algorithm to return a vector of similarity j2 < j1. To
simplify the exposition we will assume throughout the introduction that
all vectors are t-sparse, i.e., have the same Hamming weight t.

Recent theoretical advances in data structures for approximate near
neighbor search in Hamming space [17] make it possible to beat the
asymptotic performance of MinHash-based Jaccard similarity search
(using the LSH framework of [86]) in cases where the similarity threshold
j2 is not too small. However, numerical computations suggest that
MinHash is always better when j2 < 1/45.

In this paper we address the problem: Can similarity search using
MinHash be improved in general? We give an affirmative answer in
the case where all sets have the same size t by introducing Chosen

Path: a simple data-independent search method that strictly improves
MinHash, and is always better than the data-dependent method of [17]
when j2 < 1/9. Similar to data-independent locality-sensitive filtering
(LSF) methods [24, 100, 54] our method works by mapping each data (or
query) vector to a set of keys that must be stored (or looked up). The
name Chosen Path stems from the way the mapping is constructed:
As paths in a layered random graph where the vertices at each layer is
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x x'y

Figure 4.1: Chosen Path uses a branching process to associate each vector x ∈ {0, 1}d with a set
Mk(x) ⊆ {1, . . . , d}k of paths of lengtk k (in the picture k = 3). The paths associated with x are
limited to indices in the set {i | xi = 1}, represented by an ellipsoid at each level in the illustration.
In the example the set sizes are: |M3(x)| = 4 and |M3(y)| = |M3(x′)| = 3. Parameters are
chosen such that a query y that is similar to x ∈ P is likely to have a common path in x ∩ y (shown
as a bold line), whereas it shares few paths in expectation with vectors such as x′ that are not similar.

identified with the set {1, . . . , d} of dimensions, and where a vector x is
only allowed to choose paths that stick to non-zero components xi. This
is illustrated in Figure 4.1.

4.1.1 Related Work

High-dimensional approximate similarity search methods can be charac-
terized in terms of their ρ-value which is the exponent for which queries
can be answered in time O(dnρ), where n is the size of the set P and d
denotes the dimensionality of the space. Here we focus on the “balanced”
case where we aim for space O(n1+ρ + dn), but note that there now exist
techniques for obtaining other trade-offs between query time and space
overhead [16, 54].

Locality-sensitive hashing methods. We begin by describing results
for Hamming space, which is a special case of similarity search on the
unit sphere (many of the results cited apply to the more general case). In
Hamming space the focus has traditionally been on the ρ-value that can
be obtained for solutions to the (r, cr)-approximate near neighbor problem:
Preprocess a set of points P ⊆ {0, 1}d such that, given a query point
q, if there exists x ∈ P with ‖x− q‖1 ≤ r, then return x′ ∈ P with
‖x′ − q‖1 < cr. In the literature this problem is often presented as the
c-approximate near neighbor problem where bounds for the ρ-value are
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stated in terms of c and, in the case of upper bounds, hold for every
choice of r, while lower bounds may only hold for specific choices of r.

O’Donnell et al. [122] have shown that the value ρ = 1/c for c-
approximate near neighbor search in Hamming space, obtained in the
seminal work of Indyk and Motwani [91], is the best possible in terms of
c for schemes based on Locality-Sensitive Hashing (LSH). However, the
lower bound only applies when the distances of interest, r and cr, are
relatively small compared to d, and better upper bounds are known for
large distances. Notably, other LSH schemes for angular distance on the
unit sphere such as cross-polytope LSH [13] give lower ρ-values for large
distances. Extensions of the lower bound of [122] to cover more of the
parameter space were recently given in [16, 54]. Until recently the best
ρ-value known in terms of c was 1/c, but in a sequence of papers Andoni
et al. [14, 17] have shown how to use data-dependent LSH techniques to
achieve ρ = 1/(2c− 1) + on(1), bypassing the lower bound framework
of [122] which assumes the LSH to be independent of data.

Set similarity search. There exists a large number of different measures
of set similarity with various applications for which it would be desirable
to have efficient approximate similarity search algorithms [51]. Given
a measure of similarity assume that we have access to a family H of
locality-sensitive hash functions (defined in Section 4.2) such that for
every pair of sets x, y it holds that

Pr[h(x) = h(y)] = sim(x, y).

when h is sampled randomly from H. We will refer to a family of
locality-sensitive hash functions with this specific property as a similarity-
sensitive family. Given a similarity-sensitive family we can use the LSH
framework to construct a solution for the (s1, s2)-approximate similarity
search problem with exponent ρ = log(1/s1)/ log(1/s2).

Regarding the existence of similarity-sensitive families it was shown
by Charikar [47] that if the similarity measure sim(x, y) admits a
similarity-sensitive LSH, then 1− sim(x, y) must be a metric. Recently,
Chierichetti and Kumar [49] showed that, given a similarity ∼ that ad-
mits a similarity-sensitive LSH, the transformed similarity f (∼) will
continue to admit an LSH if f (·) is a probability generating function.
The existence of an LSH that admits a similarity measure sim will there-
fore give rise to the existence of solutions to the approximate similarity



4.1. Introduction 85

search problem for the much larger class of similarities f (sim). However,
this still leaves open the problem of finding efficient explicit construc-
tions, and as it turns out, the property of similarity-sensitive families
Pr[h(x) = h(y)] = sim(x, y), while intuitively appealing and useful for
similarity estimation, does not necessarily imply that the LSH is optimal
for solving the approximate search problem. In fact, it was recently
shown [50] that for Braun-Blanquet there does not exist a LSH scheme
with Pr[h(x) = h(y)] = B(x, y) = |x ∩ y|/ max(|x|, |y|). Moreover, it was
shown that MinHash achieves a two-approximation to Braun-Blanquet
similarity and that this is optimal for LSH schemes.

The problem of finding tight upper and lower bounds on the ρ-value
that can be obtained through the LSH framework for data-independent
(s1, s2)-approximate similarity search across the entire parameter space
(s1, s2) remains open for two of the most common measures of set sim-
ilarity: Jaccard similarity J(x, y) = |x ∩ y|/|x ∪ y| and cosine similarity
C(x, y) = |x ∩ y|/

√
|x||y|.

A random function from the MinHash family Hminhash hashes a set
x ⊆ {1, . . . , d} to the first element of x in a random permutation of the
set {1, . . . , d}. For h ∼ Hminhash we have that Pr[h(x) = h(y)] = J(x, y),
yielding an LSH solution to the approximate Jaccard similarity search
problem. For cosine similarity the SimHash family Hsimhash, introduced
by Charikar [47], works by sampling a random hyperplane in Rd that
passes through the origin and hashing x according to what side of
the hyperplane it lies on. For h ∼ Hsimhash we have that Pr[h(x) =
h(y)] = 1− arccos(C(x, y))/π, which can be used to derive a solution
for cosine similarity, although not the clean solution that we could have
hoped for in the style of MinHash for Jaccard similarity. There exists a
number of different data-independent LSH approaches [157, 14, 13] that
improve upon the ρ-value of SimHash. Perhaps surprisingly, it turns out
that these approaches yield lower ρ-values for the (j1, j2)-approximate
Jaccard similarity search problem compared to MinHash for certain
combinations of (j1, j2). Unfortunately, while asymptotically superior
these techniques suffer from a non-trivial on(1)-term in the exponent that
only decreases very slowly with n. In comparison, both MinHash and
SimHash are simple to describe and have closed expressions for their
ρ-values. Furthermore, MinHash and SimHash both have the advantage
of being efficient in the sense that a hash function can be represented
using space O(d) and the time to compute h(x) is O(|x|). In Table 4.1
we show how the upper bounds for similarity search under different
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Table 4.1: Overview of ρ-values for similarity search with Hamming vectors of equal weight t.

Ref.

Measure Hamming
r1 < r2

Braun-Blanquet
b1 > b2

Jaccard
j1 > j2

Bit-sampling [91] r1/r2
1−b1
1−b2

1−j1
1+j1 / 1−j2

1+j2

MinHash [30] log 1−r1
1+r1

/ log 1−r2
1+r2

log b1
2−b1

/ log b2
2−b2

log(j1)/ log(j2)

Cross-poly. [13] r1
r2

1−r2/2
1−r1/2

1−b1
1+b1

/ 1−b2
1+b2

1−j1
1+3j1 / 1−j2

1+3j2

Data-dep. [17] r1
r2

1
2−r1/r2

1−b1
1+b1−2b2

(1−j1)(1+j2)
1−j1 j2+3(j1−j2)

Theorem 4.1 log(1− r1)/ log(1− r2) log(b1)/ log(b2) log 2j1
1+j1 / log 2j2

1+j2

Notes: While most results in the literature are stated for a single measure, the fixed weight
restriction gives a 1-1 correspondence that makes it possible to express the results in terms of
other similarity measures. Hamming distances are normalized by a factor 2t to lie in [0, 1].
Lower order terms of ρ-values are suppressed, and for bit-sampling LSH we assume that the
Hamming distances are small relative to the dimensionality of the space, i.e., that 2r1t/d = o(1).

measures of set similarity relate to each other in the case where all sets
are t-sparse. In addition to Hamming distance and Jaccard similarity, we
consider Braun-Blanquet similarity [28] defined as

B(x, y) = |x ∩ y|/ max(|x|, |y|), (4.1)

which for t-sparse vectors is identical to cosine similarity. When the
query and the sets in P can have different sizes the picture becomes
muddled, and the question of which of the known algorithms is best
for each measure of similarity is complicated and can depend on (s1, s2).
In Section 4.5 we treat the problem of different set sizes and provide a
brief discussion for Jaccard similarity, specifically in relation to our upper
bound for Braun-Blanquet similarity.

Similarity search under set similarity and the batched version often
referred to as set similarity join [20, 23] have also been studied extensively
in the information retrieval and database literature, but mostly without
providing theoretical guarantees on performance. Recently the notion of
containment search, where the similarity measure is the (unnormalized)
intersection size, was studied in the LSH framework [151]. This is a
special case of maximum inner product search [151, 5]. However, these
techniques do not give improvements in our setting.
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Similarity estimation. Finally, we mention that another application of
MinHash [30, 36] is the (easier) problem of similarity estimation, where
the task is to condense each vector x into a short signature s(x) in such
a way that the similarity J(x, y) can be estimated from s(x) and s(y). A
related similarity estimation technique was independently discovered
by Cohen [60]. Thorup [158] has shown how to perform similarity
estimation using just a small amount of randomness in the definition
of the function s(·). In another direction, Mitzenmacher et al. [112]
showed that it is possible to improve the performance of MinHash for
similarity estimation when the Jaccard similarity is close to 1, but for
smaller similarities it is known that succinct encodings of MinHash such
as the one in [103] comes within a constant factor of the optimal space
for storing s(x) [129]. Curiously, our improvement to MinHash in the
context of similarity search comes when the similarity is neither too large
nor too small. Our techniques do not seem to yield any improvement for
the similarity estimation problem.

4.1.2 Contribution

We show the following upper bound for approximate similarity search
under Braun-Blanquet similarity:

Theorem 4.1. For every choice of constants 0 < b2 < b1 < 1 we can solve the
(b1, b2)-approximate similarity search problem under Braun-Blanquet similarity
with query time O(|q|nρ log n) and space usage O(n1+ρ log n + ∑x∈P |x|)
where ρ = log(1/b1)/ log(1/b2).

In the case where the sets are t-sparse our Theorem 4.1 gives the first
strict improvement on the ρ-value for approximate Jaccard similarity
search compared to the data-independent LSH approaches of MinHash
and Angular LSH. Figure 4.2 shows an example of the improvement
for a slice of the parameter space. The improvement is based on a new
locality-sensitive mapping that considers a specific random collection of
length-k paths on the vertex set {1, . . . , d}, and associates each vector x
with the paths in the collection that only visits vertices in {i | xi = 1}.
Our data structure exploits that similar vectors will be associated with a
common path with constant probability, while vectors with low similarity
have a negligible probability of sharing a path. However, the collection
of paths has size superlinear in n, so an efficient method is required
for locating the paths associated with a particular vector. Our choice of
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Figure 4.2: Exponent when searching for a vector with Jaccard similarity j1 with approximation factor 2
(i.e., guaranteed to return a vector with Jaccard similarity j1/2) for various methods in the setting where
all sets have the same size. Our new method is the best data-independent method, and is better than
data-dependent LSH up to about j1 ≈ 0.3.

the collection of paths balances two opposing constraints: It is random
enough to match the filtering performance of a truly random collection of
sets, and at the same time it is structured enough to allow efficient search
for sets matching a given vector. The search procedure is comparable in
simplicity to the classical techniques of bit sampling, MinHash, SimHash,
and p-stable LSH, and we believe it might be practical. This is in contrast
to most theoretical advances in similarity search in the past ten years that
suffer from o(1) terms in the exponent of complexity bounds.

Intuition. Recall that we will think of a vector x ∈ {0, 1}d also as a set,
{i | xi = 1}. MinHash can be thought of as a way of sampling an element
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ix from x, namely, we let ix = arg mini∈x h(i) where h is a random hash
function. For sets x and y the probability that ix = iy equals their Jaccard
similarity J(x, y), which is much higher than if the samples had been
picked independently. Consider the case in which |x| = |y| = t, so
J(x, y) = |x∩y|

2t−|x∩y| . Another way of sampling is to compute Ix = x ∩ b,
where Pr[i ∈ b] = 1/t, independently for each i ∈ [d]. The expected size
of Ix is 1, so this sample has the same expected “cost” as the MinHash-
based sample. But if the Jaccard similarity is small, the latter samples are
more likely to overlap:

Pr[Ix ∩ Iy 6= ∅] = 1− (1− 1/t)|x∩y| ≈ 1− e−|x∩y|/t ≈ |x ∩ y|/t,

nearly a factor of 2 improvement. In fact, whenever |x ∩ y| < 0.6 t we
have Pr[Ix ∩ Iy 6= ∅] > Pr[ix = iy]. So in a certain sense, MinHash is not
the best way of collecting evidence for the similarity of two sets. (This
observation is not new, and has been made before e.g. in [62].)

Locality-sensitive maps. The intersection of the samples Ix does not
correspond directly to hash collisions, so it is not clear how to turn
this insight into an algorithm in the LSH framework. Instead, we will
consider a generalization of both the locality sensitive filtering (LSF)
and LSH frameworks where we define a distribution M over maps
M : {0, 1}d → 2R. The map M performs the same task as the LSH data
structure: It takes a vector x and returns a set of memory locations
M(x) ⊆ {1, . . . , R}. A randomly sampled map M ∼M has the property
that if a pair of points x, y are close then M(x)∩M(y) 6= ∅ with constant
probability, while if x, y are distant then the expected size M(x) ∩M(y)
is small (much smaller than 1). It is now straightforward to see that
this distribution can be used to construct a data structure for similarity
search by storing each data point x ∈ P in the set of memory locations
or buckets M(x). A query for a point y is performed by computing the
similarity between y and every point x contained in the set buckets M(y),
reporting the first sufficiently similar point found.

Chosen Path. It turns out that to most efficiently filter out vectors of low
similarity in the setting where all sets have equal size, we would like to
map each data point x ∈ {0, 1}d to a collection M(x) of random subsets
of {0, 1}d that are contained in x. Furthermore, to best distuinguish
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similar from dissimilar vectors when solving the approximate similarity
search problem, we would like the random subsets of {0, 1}d to have
size Θ(log n). This leads to another obstacle: The collection of subsets
of {0, 1}d required to ensure that M(x) ∩M(y) 6= ∅ for similar points,
i.e., that M maps to a subset contained in x ∩ y, is very large. The space
usage and evaluation time of a locality-sensitive map M to fully random
subsets of {0, 1}d would far exceed n, rendering the solution useless.
To overcome this we create the samples in a gradual, correlated way
using a pairwise independent branching process that turns out to yield
“sufficiently random” samples for the argument to go through.

Lower bound. On the lower bound side we show that our solution
for Braun-Blanquet similarity is best possible in terms of parameters b1
and b2 within the class of solutions that can be characterized as data-
independent locality-sensitive maps. The lower bound works by showing
that a family of locality-sensitive maps for Braun-Blanquet similarity with
a ρ-value below log(1/b1)/ log(1/b2) can be used to construct a locality-
sensitive hash family for the c-approximate near neighbor problem in
Hamming space with a ρ-value below 1/c, thereby contradicting the LSH
lower bound by O’Donnell et al. [122]. We state the lower bound here in
terms of locality-sensitive hashing, formally defined in Section 4.2.

Theorem 4.2. For every choice of constants 0 < b2 < b1 < 1 any
(b1, b2, p1, p2)-sensitive hash family HB for {0, 1}d under Braun-Blanquet
similarity must satisfy

ρ(HB) =
log(1/p1)

log(1/p2)
≥ log(1/b1)

log(1/b2)
−O

(
log(d/p2)

d

)1/3

.

The details showing how this LSH lower bound implies a lower bound
for locality-sensitive maps are given in Section 4.4.

4.2 Preliminaries

As stated above we will view x ∈ {0, 1}d both as a vector and as a
subset of [d] = {1, . . . , d}. Define x to be t-sparse if |x| = t; we will
be interested in the setting where t ≤ d/2, and typically the sparse
setting t � d. Although many of the concepts we use hold for general
spaces, for simplicity we state definitions in the same setting as our
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results: the boolean hypercube {0, 1}d under some measure of similarity
sim: {0, 1}d × {0, 1}d → [0, 1].

Definition 4.1. (Approximate similarity search) Let P ⊂ {0, 1}d be a set
of |P| = n data vectors, let sim: {0, 1}d × {0, 1}d → [0, 1] be a similarity
measure, and let s1, s2 ∈ [0, 1] such that s1 > s2. A solution to the (s1, s2)-
similarity search problem is a data structure that supports the following
query operation: on input q ∈ {0, 1}d for which there exists a vector
x ∈ P with sim(x, q) ≥ s1, return x′ ∈ P with sim(x′, q) > s2.

Our data structures are randomized, and queries succeed with prob-
ability at least 1/2 (the probability can be made arbitrarily close to 1
by independent repetition). Sometimes similarity search is formulated
as searching for vectors that are near q according to the distance mea-
sure dist(x, y) = 1− sim(x, y). For our purposes it is natural to phrase
conditions in terms of similarity, but we compare to solutions originally
described as “near neighbor” methods.

Many of the best known solutions to approximate similarity search
problems are based on a technique of randomized space partitioning.
This technique has been formalized in the locality-sensitive hashing
framework [91] and the closely related locality-sensitive filtering frame-
work [24, 54].

Definition 4.2. (Locality-sensitive hashing [91]) A (s1, s2, p1, p2)-sensitive
family of hash functions for a similarity measure sim: {0, 1}d×{0, 1}d →
[0, 1] is a distribution Hsim over functions h : {0, 1}d → R such that for
all x, y ∈ {0, 1}d and random h sampled according to Hsim:

• If sim(x, y) ≥ s1 then Pr[h(x) = h(y)] ≥ p1.

• If sim(x, y) ≤ s2 then Pr[h(x) = h(y)] ≤ p2.

The range R of the family will typically be fairly small such that
an element of R can be represented in a constant number of machine
words. In the following we assume for simplicity that the family of
hash functions is efficient such that h(x) can be computed in time O(|x|).
Furthermore, we will assume that the time to compute the similarity
∼ (x, y) can be upper bounded by the time it takes to compute the size
of the intersection of preprocessed sets, i.e., O(min(|x|, |y|)).

Given a locality-sensitive family it is quite simple to obtain a solution
to the approximate similarity search problem, essentially by hashing
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points to buckets such that close points end up in the same bucket while
distant points are kept apart.

Lemma 4.1 (LSH framework [91, 86]). Given a (s1, s2, p1, p2)-sensitive fam-
ily of hash functions it is possible to solve the (s1, s2)-similarity search problem
with query time O(|q|nρ log n) and space usage O(n1+ρ + ∑x∈P |x|) where
ρ = log(1/p1)/ log(1/p2).

The upper bound presented in this paper does not quite fit into the
existing frameworks. However, we would like to apply existing LSH
lower bound techniques to our algorithm. Therefore we define a more
general framework that captures solutions constructed using the LSH
and LSF framework, as well as the upper bound presented in this paper.

Definition 4.3 (Locality-sensitive map). A (s1, s2, m1, m2)-sensitive family
of maps for a similarity measure sim: {0, 1}d × {0, 1}d → [0, 1] is a
distribution Msim over mappings M : {0, 1}d → 2R (where 2R denotes
the power set of R) such that for all x, y ∈ {0, 1}d and random M ∈ Msim:

1. E[|M(x)|] ≤ m1.

2. If sim(x, y) ≤ s2 then E[|M(x) ∩M(y)|] ≤ m2.

3. If sim(x, y) ≥ s1 then Pr[M(x) ∩M(y) 6= ∅] ≥ 1/2.

Once we have a family of locality-sensitive mapsM we can use it to
obtain a solution to the (s1, s2)-similarity search problem.

Lemma 4.2. Given a (s1, s2, m1, m2)-sensitive family of mapsM we can solve
the (s1, s2)-similarity search problem with query time O(m1 + nm2|q|+ TM)
and space usage O(nm1 + ∑x∈P |x|) where TM is the time to evaluate a map
M ∈ M.

Proof. We construct the data structure by sampling a map M fromM and
use it to place points in P into buckets. To run a query for a point q we
proceed by evaluating M(q) and computing the similarity between q and
the points in the buckets associated with M(q). If a sufficiently similar
point is found we return it. We get rid of the expectation in the guarantees
by independent repetitions and applying Markov’s inequality.
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Model of computation. We assume the standard word RAM model
[85] with word size Θ(log n), where n = |P|. In order to be able to draw
random functions from a family of functions we augment the model with
an instruction that generates a machine word uniformly at random in
constant time.

4.3 Upper Bound

We will describe a family of locality-sensitive mapsMB for solving the
(b1, b2)-similarity search problem under Braun-Blanquet similarity (4.1).
After describingMB we will give an efficient implementation of M ∈ MB
and show how to set parameters to obtain our Theorem 4.1.

4.3.1 Chosen Path

The Chosen Path family MB is defined by k random hash functions
h1, . . . , hk where hi : [w]× [d]i → [0, 1] and w is a positive integer. The
evaluation of a map Mk ∈ MB proceeds in a sequence of k + 1 steps that
can be analyzed as a Galton-Watson branching process, originally devised
to investigate population growth under the assumption of identical and
independent offspring distributions. In the first step i = 0 we create a
population of w starting points

M0(x) = [w]. (4.2)

In subsequent steps, every path that has survived so far produces off-
spring according to a random process that depends on hi and the element
x ∈ {0, 1}d being evaluated. We use p ◦ j to denote concatenation of a
path p with a vertex j.

Mi(x) =
{

p ◦ j | p ∈ Mi−1(x) ∧ hi(p ◦ j) <
xj

b1|x|

}
. (4.3)

Observe that hi(p ◦ j) <
xj

b1|x| can only hold when xj = 1, so the paths
in Mi(x) are constrained to j ∈ x. The set M(x) = Mk(x) is given by
the paths that survive to the kth step. We will proceed by bounding the
evaluation time of M ∈ MB as well as showing the locality-sensitive
properties of MB. In particular, for similar points x, y ∈ {0, 1}d with
B(x, y) ≥ b1 we will show that with probability at least 1/2 there will be
a path that is chosen by both x and y.
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Lemma 4.3 (Properties of Chosen Path). For all x, y ∈ {0, 1}d, integer
i ≥ 0, and random M ∈ MB:

1. E[|Mi(x)|] ≤ (1/b1)
iw.

2. If B(x, y) < b2 then E[|Mi(x) ∩Mi(y)|] ≤ (b2/b1)
iw.

3. If B(x, y) ≥ b1 then Pr[Mi(x) ∩Mi(y) 6= ∅] ≥ w/(i + w).

Proof. We prove each property by induction on i. The base cases i = 0
follow from (4.2). Now consider the inductive step for property 1. Let
1{P} denote the indicator function for predicate P . Using independence
of the hash functions hi we get:

E[|Mi(x)|] = E

 ∑
p∈Mi−1(x)

∑
j∈[d]

1

{
hi(p ◦ j) <

xj

b1|x|

}
= E

 ∑
p∈Mi−1(x)

1

E

 ∑
j∈[d]

1

{
hi(p ◦ j) <

xj

b1|x|

}
≤ E[|Mi−1(x)|]/b1

≤ (1/b1)
iw .

The last inequality uses the induction hypothesis. We use the same
approach for the second property where we let Xi = Mi(x) ∩Mi(y).

E[|Xi|] = E

 ∑
p∈Xi−1

∑
j∈[d]

1

{
hi(p ◦ j) <

xj

b1|x|
∧ hi(p ◦ j) <

yj

b1|y|

}
= E

[
∑

p∈Xi−1

1

]
∑

j∈[d]
Pr
[

hi(p ◦ j) <
min(xj, yj)

b1 max(|x|, |y|)

]
≤ E[|Xi−1|](B(x, y)/b1)

≤ (B(x, y)/b1)
iw .

To prove the third property we bound the variance of |Xi| and apply
Chebyshev’s inequality to bound the probability of Xi = ∅. First consider
the case where |x| ≤ 1/b1 and |y| ≤ 1/b1. Here it must hold that Xi > 0
as intersecting paths exist (b1 > 0) and always activate. In all other cases
we have that

E[|Xi|] = (B(x, y)/b1)
iw .
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Knowing the expected value we can apply Chebyshev’s inequality once
we have an upper bound for Var[|Xi|] = E[|Xi|2]−E[|Xi|]2. Specifically
we show that E[|Xi|2] ≤ wi(B(x, y)/b1)

2i, by induction on i. To simplify
notation we define the indicator variable

Yp,j = 1

{
hi(p ◦ j) <

xj

b1|x|
∧ hi(p ◦ j) <

yj

b1|y|

}
where we suppress the subscript i. First observe that

E[Yp,j] = 1/(b1 max(|x|, |y|)) .

By (4.3) we see that |Xi| = ∑p∈Xi−1 ∑j∈[d] Yp,j, which means:

E[|Xi|2] = E


 ∑

p∈Xi−1

∑
j∈[d]

Yp,j

2


= E

 ∑
p∈Xi−1

∑
j∈[d]

Y2
p,j

+ E

 ∑
p,p′∈Xi−1

∑
j,j′∈[d]

Yp,jYp′,j′1{(p, j) 6= (p′, j′)}


< E[|Xi−1|](B(x, y)/b1) + E[|Xi−1|2](B(x, y)/b1)
2

≤
i

∑
s=1

E[|Xi−s|](B(x, y)/b1)
2s−1 + E[|X0|]2(B(x, y)/b1)

2i

= E[|Xi|]
i−1

∑
s=0

(B(x, y)/b1)
s + E[|Xi|]2

≤ wi(B(x, y)/b1)
2i + E[|Xi|]2 .

The third property now follows from a one-sided version of Chebychev’s
inequality applied to |Xi|.

4.3.2 Implementation details

Lemma 4.3 continues to hold when the hash functions h1, . . . , hk are
individually 2-independent (and mutually independent) since we only
use bounds on the first and second moment of the hash values. We can
therefore use a simple and practical scheme such as Zobrist hashing
[174] that hashes strings of Θ(log n) bits to strings of Θ(log n) bits in
O(1) time using space, say, O(n1/2). It is not hard to see that the domain
and range of h1, . . . , hk can be compressed to O(log n) bits (causing a
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neglible increase in the failure probability of the data structure). We
simply hash the paths p ∈ Mi(x) to intermediate values of O(log n) bits,
avoiding collisions with high probability, and in a similar vein, with
high probability O(log n) bits of precision suffice to determine whether
hi(p ◦ j) <

xj
b1|x| .

We now consider how to parameterize MB to solve the (b1, b2)-
similarity problem for Braun-Blanquet similarity on a set P of |P| = n
points for every choice of constant parameters 0 < b2 < b1 < 1, inde-
pendent of n. Note that we exclude b1 = 1 (which would correspond to
identical vectors that can be found in time O(1) by resorting to standard
hashing) and b2 = 0 (for which every data point would be a valid answer
to a query). We set parameters

k = dlog(n)/ log(1/b2)e,
w = 2k

from which it follows that MB is (b1, b2, m1, m2)-sensitive with m1 =
nρw/b1 and m2 = nρ−1w where ρ = log(1/b1)/ log(1/b2). To bound
the expected evaluation time of Mk we use Zobrist hashing as well as
intermediate hashes for the paths as described above. In the ith step in
the branching process the expected number of hash function evaluations
is bounded by |q| times the number of paths alive at step i− 1. We can
therefore bound the expected time to compute Mk(q) by

k−1

∑
i=0

E[|q||Mi(q)|] ≤
b−k

1 − 1

b−1
1 − 1

|q|w = O(|q|nρw). (4.4)

This completes the proof of Theorem 4.1.1

4.3.3 Comparison

We will proceed by comparing our Theorem 4.1 to results that can be
achieved using existing techniques. Again we focus on the setting where
data points and query points are exactly t-sparse. An overview of
different techniques for three measures of similarity is shown in Table 4.1.

1We know of a way of replacing the multiplicative factor |q| in equation (4.4) by an
additive term of O(|q|k) by choosing the hash functions hi carefully, but do not discuss
this improvement here since |q| can be assumed to be polylogarithmic and our focus is
on the exponent of n.
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To summarize: The Chosen Path algorithm of Theorem 4.1 improves
upon all existing data-independent results over the entire 0 < b2 < b1 < 1
parameter space. Furthermore, we improve upon the best known data-
dependent techniques [17] for a large part of the parameter space (see
Figure 4.5). The details of the comparisons are given in Appendix 4.8.

MinHash. For t-sparse vectors there is a 1-1 mapping between Braun-
Blanquet and Jaccard similarity. In this setting J(x, y) = B(x, y)/(2−
B(x, y)). Let b1 = 2j1/(j1 + 1) and b2 = 2j2/(j2 + 1) be the
Braun-Blanquet similarities corresponding to Jaccard similarities j1
and j2. The LSH framework using MinHash achieves ρminhash =

log
(

b1
2−b1

)
/ log

(
b2

2−b2

)
; this should be compared to ρ = log(b1)/ log(b2)

achieved in Theorem 4.1. Since the function f (z) = log( z
2−z )/ log z

is monotonically increasing in [0, 1] we have that ρ/ρminhash =
f (b2)/ f (b1) < 1, i.e., ρ is always smaller than ρminhash. As an exam-
ple, for j1 = 0.2 and j2 = 0.1 we get ρ = 0.644... while ρminhash = 0.698....
Figure 4.3 shows the difference for the whole parameter space.

Angular LSH. Since our vectors are exactly t-sparse Braun-Blanquet
similarities correspond directly to dot products (which in turn correspond
to angles). Thus we can apply angular LSH such as SimHash [47] or
cross-polytope LSH [13]. As observed in [54] one can express the ρ-value
of cross-polytope LSH in terms of dot products as ρangular =

1−b1
1+b1

/ 1−b2
1+b2

.
Since the function f ′(z) = (1 + z) log(z)/(1− z) is negative and mono-
tonically increasing in [0, 1] we have that ρ/ρangular = f ′(b1)/ f ′(b2) < 1,
i.e., ρ is always smaller than ρangular. In the above example, for j1 = 0.2
and j2 = 0.1 we have ρangular = 0.722... which is about 0.078 more than
Chosen Path. See Figure 4.4 for a visualization of the difference for the
whole parameter space.

Data-dependent Hamming LSH. The Hamming distance between two
t-sparse vectors with Braun-Blanquet similarity b is 2t(1− b), since the
intersection of the vectors has size tb. This means that (b1, b2)-similarity
search under Braun-Blanquet similarity can be reduced to Hamming
similarity search with approximation factor c = (2t(1− b1))/(2t(1−
b2)) = (1− b1)/(1− b2). As mentioned above, the data dependent LSH
technique of [17] achieves ρ = 1/(2c− 1) ignoring on(1) terms. In terms
of b1 and b2 this is ρdatadep = 1−b1

1+b1−2b2
, which in incomparable to the ρ
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Figure 4.3: The difference ρ− ρminhash comparing Chosen Path and MinHash in terms of Braun-Blanquet
similarities 0 < b2 < b1 < 1.

of Theorem 4.1. In Appendix 4.8 we show that ρ < ρdatadep whenever
b2 ≤ 1/5, or equivalently, whenever j2 ≤ 1/9. Revisiting the above
example, for j1 = 0.2 and j2 = 0.1 we have ρdatadep = 0.6875 which is
about 0.043 more than Chosen Path. Figure 4.5 gives a comparison
covering the whole parameter space.

4.4 Lower bound

In this section we will show a locality-sensitive hashing lower bound
for {0, 1}d under Braun-Blanquet similarity. We will first show that LSH
lower bounds apply to the class of solutions to the approximate similarity
search problem that are based on locality-sensitive maps, thereby includ-
ing our own upper bound. Next we will introduce some relevant tools
from the literature, in particular the LSH lower bounds for Hamming
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Figure 4.4: The difference ρ− ρangular comparing Chosen Path and angular LSH in terms of Braun-
Blanquet similarities 0 < b2 < b1 < 1.

space by O’Donnell et al. [122] which we use, through a reduction, to
show LSH lower bounds under Braun-Blanquet similarity.

Lower bounds for locality-sensitive maps. Because our upper bound
is based on a locality-sensitive map MB and not LSH-based we first
show that LSH lower bounds apply to LSM-based solutions. This is not
too surprising as both the LSH and LSF frameworks produce LSM-based
solutions. We note that the idea of showing lower bounds for a more
general class of algorithms that encompasses both LSH and LSF was used
by Andoni et al. [16] in their list-of-points data structure lower bound
for the space-time tradeoff of solutions to the approximate near neighbor
problem in the random data regime. We use the approach of Christiani
[54] to convert an LSM family into an LSH family using MinHash.
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Figure 4.5: The difference ρ− ρdatadep comparing Chosen Path and data-dependent LSH in terms of
Braun-Blanquet similarities 0 < b2 < b1 < 1. In the area of the parameter space that is colored
blue we have that ρ ≤ ρdatadep while for the red area it holds that ρ > ρdatadep.

Lemma 4.4. Suppose we have a (s1, s2, m1, m2)-sensitive family of mapsM.
Then we can construct a (s1, s2, p1, p2)-sensitive family of hash functions H
with p1 = 1/8m and p2 = m2/m where m = d8m1e.

Proof. We sample a function h from H by sampling a function M from
M, modify M to output a set of fixed size, and apply MinHash to the
resulting set. For M ∈ M we define the function M̃ where we ensure
that the size of the output set is m. We note that the purpose of this step
is to be able to simultaneously lower bound p1 and upper bound p2 for
H when we apply MinHash to the resulting sets.

M̃(x) =

{
{(x, 1), . . . , (x, m)} if |M(x)| ≥ m,
{(x, 1), . . . , (x, m− |M(x)|)} ∪M(x) otherwise.



4.4. Lower bound 101

We proceed by applying MinHash to the set M̃(x). Let π denote a
random permutation of the range of M̃ and define

h(x) = arg min
z∈M̃(x)

π(z).

We then have

Pr[h(x) = h(y)] = ∑
ξ

Pr[J(M̃(x), M̃(y)) = ξ] · ξ

summing over the finite set of all possible Jaccard similarities ξ = a/b
with a, b ∈ {0, 1, . . . , 2m}. It is now fairly simple to lower bound p1 and
upper bound p2. Assume that x, y satisfy that sim(x, y) ≥ s1. To lower
bound p1 we use a union bound together with Markov’s inequality to
bound the following probability:

Pr[M̃(x) ∩ M̃(y) = ∅]

≤ Pr[M(x) ∩M(y) = ∅ ∨ |M(x)| ≥ m ∨ |M(y)| ≥ m]

≤ Pr[M(x) ∩M(y) = ∅] + Pr[|M(x)| ≥ m] + Pr[|M(y)| ≥ m]

≤ 1/2 + 1/8 + 1/8

We therefore have that Pr[M̃(x) ∩ M̃(y) 6= ∅] ≥ 1/4. In the event of a
nonempty intersection the probability of collision is given by J(M̃(x) ∩
M̃(y)) ≥ 1/2m allowing us to conclude that p1 ≥ 1/8m.

Bounding the collision probability for distant pairs of points x, y with
∼ (x, y) ≤ s2 we get

∑
ξ

Pr[J(M̃(x), M̃(y)) = ξ] · ξ ≤ (1/m)
∞

∑
i=1

Pr[|M̃(x) ∩ M̃(y)|] · i = m2

m
.

We are now ready to justify the statement that LSH lower bounds
apply to LSM, allowing us to restrict our attention to proving LSH lower
bounds for Braun-Blanquet similarity.

Corollary 4.1. Suppose that we have an LSM-based solution to the (s1, s2)-
similarity search problem with query time O(nρ). Then there exists a family H
of locality-sensitive hash functions with ρ(H) = ρ + O(1/ log n).

Proof. The existence of the LSM-based solution implies that for every n
there exists a (s1, s2, m1, m2)-sensitive family of mapsMwith m1 = O(nρ)
and nm2 = O(nρ). The upper bound on ρ follows from applying Lemma
4.4.
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LSH lower bounds for Hamming space. There exist a number of
powerful results that lower bound the ρ-value that is attainable by
locality-sensitive hashing and related approaches in various settings
[114, 133, 122, 19, 54, 16]. O’Donnell et al. [122] showed an LSH lower
bound of ρ = log(1/p1)/ log(1/p2) ≥ 1/c − od(1) for d-dimensional
Hamming space under the assumption that p2 is not too small compared
to d, i.e., log(1/p2) = o(d). The lower bound by O’Donnell et al. holds for
(r, cr, p1, p2)-sensitive families for a particular choice of r that depends
on d, p2, and c, and where r is small compared to d (for instance, we
have that r = Θ̃(d2/3) when c and p2 are constant).

We state a simplified version of the lower bound due to O’Donnell
et al. where r =

√
d that we will use as a tool to prove our lower bound

for Braun-Blanquet similarity. The full proof of Lemma 4.5 is given in
Appendix 4.7.

Lemma 4.5. For every d ∈N, 1/d ≤ p2 ≤ 1− 1/d, and 1 ≤ c ≤ d1/8 every
(
√

d, c
√

d, p1, p2)-sensitive hash family H for {0, 1}d under Hamming distance
must have

ρ(H) =
log(1/p1)

log(1/p2)
≥ 1

c
−O(d−1/4). (4.5)

In general, good lower bounds for the entire parameter space (r, cr)
are not known, although the techniques by O’Donnell et al. appear to
yield a bound of ρ & log(1− 2r/d)/ log(1− 2cr/d). This is far from tight
as can be seen by comparing it to the bit-sampling [91] upper bound of
ρ = log(1− r/d)/ log(1− cr/d). Existing lower bounds are tight in two
different settings. First, in the setting where cr ≈ d/2 (random data),
lower bounds [114, 73, 19] match various instantiations of angular LSH
[157, 14, 13]. Second, in the setting where r � d, the lower bound by
O’Donnell et al. [122] becomes ρ & log(1− 2r/d)/ log(1− 2cr/d) ≈ 1/c,
matching bit-sampling LSH [91] as well as Angular LSH.

4.4.1 Braun-Blanquet LSH lower bound

We are now ready to prove the LSH lower bound from Theorem 4.2.
The lower bound together with Corollary 4.1 shows that the ρ-value
of Theorem 4.1 is best possible up to od(1) terms within the class of
data-independent locality-sensitive maps for Braun-Blanquet similarity.
Furthermore, the lower bound also applies to angular distance on the
unit sphere where it comes close to matching the best known upper
bounds for much of the parameter space as can be seen from Figure 4.4.
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Proof sketch. The proof works by assuming the existence of a
(b1, b2, p1, p2)-sensitive family HB for {0, 1}d under Braun-Blanquet simi-
larity with ρ = log(1/b1)/ log(1/b2)− γ for some γ > 0. We use a trans-
formation T from Hamming space to Braun-Blanquet similarity to show
that the existence of HB implies the existence of a (r, cr, p′1, p′2)-sensitive
family HH for D-dimensional Hamming space that will contradict the
lower bound of O’Donnell et al. [122] as stated in Lemma 4.5 for some
appropriate choice of γ = γ(d, p2).

We proceed by giving an informal description of a simple “tensor-
ing” technique for converting a similarity search problem in Hamming
space into a Braun-Blanquet set similarity problem for target similarity
thresholds b1, b2. For x ∈ {0, 1}d define

x̃ = {(i, xi) | i ∈ [d]}

and for a positive integer τ define x⊗τ = {(v1, . . . , vτ) | vi ∈ x̃}. We have
that |x⊗τ| = |x̃|τ = dτ and

B(x⊗τ, y⊗τ) = |x̃ ∩ ỹ|τ/|x̃|τ = (1− r/d)τ

where r = ‖x− y‖1. For every choice of constants 0 < b2 < b1 <
1 we can choose d, τ, r, and c ≥ 1 such that (1 − r/d)τ ≈ b1 and
(1− cr/d)τ ≈ b2. Now, given an LSH family for Braun-Blanquet with
ρ < log(1/b1)/ log(1/b2) we would be able to obtain an LSH family for
Hamming space with

ρ <
log(1/b1)

log(1/b2)
=

log(1/(1− r/d))
log(1/(1− cr/d))

≤ 1/c.

For appropriate choices of parameters this would contradict the
O’Donnell et al. LSH lower bound of ρ & 1/c for Hamming space.
The proof itself is mostly an exercise in setting parameters and applying
the right bounds and approximations to make everything fit together
with the intuition above. Importantly, we use sampling in order to map
to a dimension that is much lower than the dτ from the proof sketch in
order to make the proof hold for small values of p2 in relation to d.

Hamming distance to Braun-Blanquet similarity. Let d ∈ N and let
0 < b2 < b1 < 1 be constant as in Theorem 4.2. Let ε ≥ 1/d be a param-
eter to be determined. We want to show how to use a transformation
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T : {0, 1}D → {0, 1}d from Hamming distance to Braun-Blanquet simi-
larity together with our family HB to construct a (r, cr, p′1, p′2)-sensitive
family HH for D-dimensional Hamming space with parameters

D = 2d

r =
√

D

c =
ln(1/(b2 − ε))

ln(1/(b1 + ε))

where p′1 and p′2 remain to be determined.
The function T takes as parameters positive integers t, l, and τ. The

output of T consists of t concatenated l-bit strings, each of of Hamming
weight one. Each of the t strings is constructed independently at random
according to the following process: Sample a vector of indices i =
(i1, i2, . . . , iτ) uniformly at random from [D]τ and define xi ∈ {0, 1}τ as
xi = xi1 ◦ xi2 ◦ · · · ◦ xiτ . Let z(x) ∈ {0, 1}2τ

be indexed by j ∈ {0, 1}τ and
set the bits of z(x) as follows:

z(x)j =

{
1 if xi = j,
0 otherwise.

Next we apply a random function g : {0, 1}τ → [l] in order to map
z(x) down to an l-bit string r(z(x)) of Hamming weight one while
approximately preserving Braun-Blanquet similarity. For i ∈ [l] we set

r(z(x))i =
∨

j:g(j)=i

z(x)j.

Finally we set

T(x) = r1(z1(x)) ◦ r2(z2(x)) ◦ · · · ◦ rt(zt(x))

where each ri(zi(x)) is constructed independently at random.
We state the properties of T for the following parameter setting:

τ = b
√

D ln(1/(b1 + ε))c
l = d8/εe
t = bd/lc.

Lemma 4.6. For every d ∈ N and D = 2d there exists a distribution over
functions of the form T : {0, 1}D → {0, 1}d such that for all x, y ∈ {0, 1}D

and random T:
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1. |T(x)| = t.

2. If ‖x− y‖1 ≤ r then B(T(x), T(y)) ≥ b1 with probability at least
1− e−tε2/2.

3. If ‖x− y‖1 > cr then B(T(x), T(y)) < b2 with probability at least
1− 2e−tε2/32.

Proof. The first property is trivial. For the second property we consider
x, y with ‖x− y‖1 ≤ r where we would like to lower bound

B(T(x), T(y)) =
|T(x) ∩ T(y)|

max(|T(x)|, |T(y)|) .

We know that |T(x)| = |T(y)| = t so it remains to lower bound the size
of the intersection |T(x) ∩ T(y)|. Consider the expectation

E[|T(x) ∩ T(y)|] = t Pr[z(x) = z(y)].

We have that z(x) = z(y) if x and y take on the same value in the τ

underlying bit-positions that are sampled to construct z. Under the
assumption that ε ≥ 1/d, then for d greater than some sufficiently large
constant we can use a standard approximation to the exponential function
(detailed in Lemma 4.10 in Appendix 4.7) to show that

Pr[z(x) = z(y)] ≥ (1− r/D)τ

≥ (1− 1/
√

D)
√

D ln(1/(b1+ε))

≥ eln(b1+ε)(1− (ln(b1 + ε))2/
√

D)

≥ b1 + ε/2.

Seeing as |T(x) ∩ T(y)| is the sum of t independent Bernoulli trials we
can apply Hoeffding’s inequality to yield the following bound:

Pr[|T(x) ∩ T(y)| ≤ b1t] ≤ e−tε2/2.

This proves the second property of T.
For the third property we consider the Braun-Blanquet similarity

of distant pairs of points x, y with ‖x− y‖1 > cr. Again, under our
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assumption that ε ≥ 1/d and for d greater than some constant we have

Pr[z(x) = z(y)] ≤ (1− cr/D)τ

≤

(
1− ln(1/(b2−ε))√

D ln(1/(b1+ε))

)√D ln(1/(b1+ε))

1− c/
√

D
≤ (1 + 2c/

√
D)(b2 − ε)

≤ b2 − ε/2.

There are two things that can cause the event B(T(x), T(y)) < b2 to
fail. First, the sum of the t independent Bernoulli trials for the event
z(x) = z(x′) can deviate too much from its expected value. Second, the
mapping down to l-bit strings that takes place from z(x) to r(z(x)) can
lead to an additional increase in the similarity due to collisions. Let
Z denote the sum of the t Bernoulli trials for the events z(x) = z(x′)
associated with T. We again apply a standard Hoeffding bound to show
that

Pr[Z ≥ (b2 − ε/4)t] ≤ e−tε2/8.

Let X denote the number of collisions when performing the universe
reduction to l-bit strings. By our choice of l we have that E[X] ≤ (ε/8)t.
Another application of Hoeffding’s inequality shows that

Pr[X ≥ (ε/4)t] ≤ e−tε2/32.

We therefore get that

Pr[|T(x) ∩ T(x′)| ≥ b2t] ≤ 2e−tε2/32.

This proves the third property of T.

Contradiction. To summarize, using the random map T together with
the LSH family HB we can obtain an (r, cr, p1

′, p2
′)-sensitive family HH

for D-dimensional Hamming space with p1
′ = p1 − δ and p2

′ = p2 + δ

for δ = 2e−tε2/32. For our choice of c = ln(1/(b2−ε))
ln(1/(b1+ε))

we plug the family

HH into the lower bound of Lemma 4.5 and use that O(D−1/4) = O(ε)
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which follows from our constraint that ε ≥ 1/d.

ρ(HH) ≥ 1/c−O(D−1/4)

=
ln(1/(1 + ε/b1)) + ln(1/b1)

ln(1/(1− ε/b2)) + ln(1/b2)
−O(ε)

≥ ln(1/b1)− ε/b1

ln(1/b2) + 2ε/b2
−O(ε)

=
ln(1/b1)

ln(1/b2)
−O(ε)

Under our assumed properties of HB, we can upper bound the value of ρ

for HH. For simplicity we temporarily define λ = 2δ/p2 and assume that
λ/ ln(1/p2) ≤ 1/2 and ln(1/p2) ≥ 1. The latter property holds without
loss of generality through use of the standard LSH powering technique
[91, 86, 122] that allows us to transform an LSH family with p2 < 1 to a
family that has p2 ≤ 1/e without changing its associated ρ-value.

ρ(HH) =
ln(1/p1

′)
ln(1/p2′)

=
ln(1/p1) + ln(1/(1− δ/p1))

ln(1/p2) + ln(1/(1 + δ/p2))

≤ ln(1/p1) + λ

ln(1/p2)− λ
=

ln(1/p1) + λ

(ln 1/p2)(1− λ/(ln 1/p2))

≤ ln(1/p1) + λ

ln(1/p2)
(1 + 2λ/(ln 1/p2)) =

ln(1/p1)

ln(1/p2)
+ O(δ/p2)

≤ ln(1/b1)

ln(1/b2)
− γ + O(δ/p2).

We get a contradiction between our upper bound and lower bound for
ρ(HH) whenever γ violates the following relation that summarizes the
bounds:

ln(1/b1)

ln(1/b2)
−O(ε) ≤ ρ(HH) ≤

ln(1/b1)

ln(1/b2)
− γ + O(δ/p2).

In order for a contradiction to occur, the value of γ has to satisfy

γ > O(ε) + O(δ/p2).

By our setting of t = bd/lc and l = d8/εe we have that δ = e−Ω(dε3). We
can cause a contradiction for a setting of ε3 = K ln(d/p2)

d where K is some
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constant and where we assume that d is greater than some constant. The
value of γ for which the lower bound holds can be upper bounded by

γ = O
(

ln(d/p2)

d

)1/3

.

This completes the proof of Theorem 4.2.

4.5 Equivalent set similarity problems

In this section we consider how to use our data structure for Braun-
Blanquet similarity search to support other similarity measures such
as Jaccard similarity. We already observed in the introduction that a
direct translation exists between several similarity measures whenever
the size of every sets is fixed to t. Call an (s1, s2)-similarity search
problem (t,t′)-regular if P is restricted to vectors of weight t and queries
are restricted to vectors of weight t′. Obviously, a (t, t′)-regular similarity
search problem is no harder than the general similarity search problem,
but it also cannot be too much easier when expressed as a function of the
thresholds (s1, s2): For every pair (t, t′) ∈ {0, . . . , d}2 we can construct a
(t,t′)-regular data structure (such that each point x ∈ P is represented in
the d + 1 data structures with t = |x|), and answer a query for q ∈ {0, 1}d

by querying all data structures with t′ = |q|. Thus, the time and space
for the general (s1, s2)-similarity search problem is at most d + 1 times
larger than the time and space of the most expensive (t,t′)-regular data
structure. This does not mean that we cannot get better bounds in terms
of other parameters, and in particular we expect that the difficulty of
(t, t′)-regular similarity search problems depends on parameters t and t′.

Dimension reduction. If the dimension is large a factor of d may be
significant. However, for most natural similarity measures a (s1, s2)-
similarity problem in d � (log n)3 dimensions can be reduced to a
logarithmic number of (s′1, s′2)-similarity problems on P′ ⊆ {0, 1}d′ in d′ =
(log n)3 dimensions with s′1 = s1−O(1/ log n) and s′2 = s2 +O(1/ log n).
Since the similarity gap is close to the one in the original problem,
s′1 − s′2 = s1 − s2 − O(1/ log n), where s1 and s2 are assumed to be
independent of n, the difficulty (ρ-value) remains essentially the same.
First, split P into log d size classes Pi such that vectors in class i have
size in [2i, 2i+1). For each size class the reduction is done independently
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and works by a standard technique: sample a sequence of random sets
Ij ⊆ {1, . . . , d}, i = 1, . . . , d′, and set x′j = ∨`∈Ij x`. The size of each set Ij

is chosen such that Pr[x′j = 1] ≈ 1/ log(n) when |x| = 2i+1. By Chernoff
bounds this mapping preserves the relative weight of vectors up to size
2i log n up to an additive O(1/ log n) term with high probability. Assume
now that the similarity measure is such that for vectors in Pi we only
need to consider |q| in the range from 2i/ log n to 2i log n (since if the
size difference is larger, the similarity is negligible). The we can apply
Chernoff bounds to the relative weights of the dimension-reduced vectors
x′, q′ and the intersection x′ ∩ q′. In particular, we get that the Jaccard
similarity of a pair of vectors is preserved up to an additive error of
O(1/ log n) with high probability. The class of similarity measures for
which dimension reduction to (log n)O(1) dimensions is possible is large,
and we do not attempt to characterize it here. Instead, we just note
that for such similarity measures we can determine the complexity of
similarity search up to a factor (log n)O(1) by only considering regular
search problems.

Equivalence of regular similarity search problems. We call a set sim-
ilarity measure on {0, 1}d symmetric if it can be written in the form
S(q, x) = fd,|q|,|x|(|q∩ x|), where each function fd,|q|,|x| : N→ [0, 1] is non-
decreasing. All 59 set similarity measures listed in the survey [51], nor-
malized to yield similarities in [0, 1], are symmetric. In particular this is
the case for Jaccard similarity (where J(q, x) = |q∩ x|/(|q|+ |x| − |q∩ x|))
and for Braun-Blanquet similarity. For a symmetric similarity measure,
the predicate sim(q, x) ≥ s1 is equivalent to the predicate |q ∩ x| ≥ i1,
where i1 = min{i | fd,t′,t(i) ≥ s1}, and sim(q, x) > s2 is equivalent to
the predicate |q ∩ x| ≥ i2, where i2 = min{i | fd,t′,t(i) > s2}. This means
that every (t,t′)-regular (s1, s2)-similarity search problem on P ⊆ {0, 1}d

is equivalent to an (i1/d, i2/d)-similarity search problem on P, where
sim(q, x) = |x ∩ q|/d. In other words, all symmetric similarity search
problems can be translated to each other, and it suffices to study a single
one, such as Braun-Blanquet similarity.

Jaccard similarity. We briefly discuss Jaccard similarity since it is the
most widely used measure of set similarity. If we consider the problem
of (j1, j2)-approximate Jaccard similarity search in the (t, t′)-regular case
with t 6= t′ then our Theorem 4.1 is no longer guaranteed to yield the
lowest value of ρ among competing data-independent approaches such
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as MinHash and Angular LSH. To simplify the comparision between
different measures we introduce parameters β and b defined by |y| = β|x|
and b = |x ∩ y|/|x| (note that 0 ≤ b ≤ β ≤ 1). The three primary
measures of set similarity considered in this paper can then be written as
follows:

B(x, y) = b

J(x, y) =
b

1 + β− b

C(x, y) =
b√
β

As shown in Figure 4.6 among angular LSH, MinHash, and Chosen

Path, the technique with the lowest ρ-value is different depending on the
parameters (j1, j2) and asymmetry β. We know that Chosen Path is opti-
mal and strictly better than the competing data-independent techniques
across the entire parameter space (j1, j2) when β = 1, but it remains open
to find tight upper and lower bounds in the case where β 6= 1.

4.6 Conclusion and open problems

We have seen that, perhaps surprisingly, there exists a relatively simple
way of strictly improving the ρ-value for data-independent set similarity
search in the case where all sets have the same size. To implement the
required locality-sensitive map efficiently we introduce a new technique
based on branching processes that could possibly lead to more efficient
solutions in other settings.

It remains an open problem to find tight upper and lower bounds on
the ρ-value for Jaccard and cosine similarity search that hold for the entire
parameter space in the general setting with arbitrary set sizes. Perhaps a
modified version of the Chosen Path algorithm can yield an improved
solution to Jaccard similarity search in general. One approach is to
generalize the condition hi(p ◦ j) < xj/b1|x| to use different thresholds
for queries and updates. This yields different space-time tradeoffs when
applying the Chosen Path algorithm to Jaccard similarity search.

Another interesting question is if the improvement shown for sparse
vectors can be achieved in general for inner product similarity. A similar,
but possibly easier, direction would be to consider weighted Jaccard
similarity.
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Figure 4.6: Solution with lowest ρ-value for the (j1, j2)-approximate Jaccard similarity search problem
for different values of β. Blue is angular LSH. Green is MinHash. Red is Chosen Path. Note the difference
in the axes for different values of β as it must hold that 0 ≤ j2 ≤ j1 ≤ β.
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4.7 Appendix: Details behind the lower bound

4.7.1 Tools

For clarity we state some standard technical lemmas that we use to derive
LSH lower bounds.

Lemma 4.7 (Hoeffding [88, Theorem 1]). Let X1, X2, . . . , Xn be independent
random variables satisfying 0 ≤ Xi ≤ 1 for i ∈ [n]. Define X = X1 + X2 +
· · ·+ Xn, Z = X/n, and µ = E[Z], then:

- For µ̂ ≥ µ and 0 < ε < 1− µ̂ we have that Pr[Z− µ̂ ≥ ε] ≤ e−2nε2
.

- For µ̂ ≤ µ and 0 < ε < µ̂ we have that Pr[Z− µ̂ ≤ −ε] ≤ e−2nε2
.

Lemma 4.8 (Chernoff [113, Thm. 4.4 and 4.5]). Let X1, . . . , Xn be indepen-
dent Poisson trials and define X = ∑n

i=1 Xi and µ = E[X]. Then, for 0 < ε < 1
we have

- Pr[X ≥ (1 + ε)µ] ≤ e−ε2µ/3.

- Pr[X ≤ (1− ε)µ] ≤ e−ε2µ/2.

Lemma 4.9 (Bounding the logarithm [161]). For x > −1 we have that
x

1+x ≤ ln(1 + x) ≤ x.

Lemma 4.10 (Approximating the exponential function [115, Prop. B.3]).
For all t, n ∈ R with |t| ≤ n we have that et(1− t2

n ) ≤ (1 + t
n )

n ≤ et.

4.7.2 Proof of Lemma 4.5

Preliminaries. We will reuse the notation of Section 3. from O’Donnell
et al. [122].

Definition 4.4. For 0 ≤ λ < 1 we say that (x, y) are (1− λ)-correlated if
x is chosen uniformly at random from {0, 1}d and y is constructed by
rerandomizing each bit from x independently at random with probability
λ.
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Let (x, y) be e−t-correlated and let H be a family of hash functions on
{0, 1}d, then we define

KH(t) = Pr
h∼H

(x,y) e−t- corr’d

[h(x) = h(y)].

We have that KH(t) is a log-convex function which implies the following
property that underlies the lower bound:

Lemma 4.11. For every family of hash functions H on {0, 1}d, every t ≥ 0,
and c ≥ 1 we have

ln(1/KH(t))
ln(1/KH(ct))

≥ 1
c

. (4.6)

The idea behind the proof is to tie p1 to KH(t) and p2 to KH(ct)
through Chernoff bounds and then apply Lemma 4.11 to show that
ρ & 1/c.

Proof. Begin by assuming that we have a family H that satisfies the
conditions of Lemma 4.5. Note that the expected Hamming distance
betwee (1− λ)-correlated points x and y is given by (λ/2)d. We set
λp1/2 = d−1/2 − d−5/8 and λp2/2 = cd−1/2 + 2cd−5/8 and let (x, y)
denote (1− λp1)-correlated random strings and (x, x′) denote (1− λp2q)-
correlated random strings. By standard Chernoff bounds we get the
following guarantees:

Pr[‖x− y‖1 ≥ r] ≤ e−Ω(d1/4),

Pr[
∥∥x− x′

∥∥
1 ≤ cr] ≤ e−Ω(d1/4).

We will establish a relationship between KH(tp1) and p1 on the one
hand, and KH(tp2) and p2 on the other hand, for the following choice of
parameters tp1 and tp2 :

tp1 = − ln(1− 2(d−1/2 − d−5/8))

tp2 = − ln(1− 2c(d−1/2 + 2d−5/8)).

By the properties of H and from the definition of KH we have that

KH(tp1) ≥ p1(1− Pr[‖x− y‖1 > r]) ≥ p1 − Pr[‖x− y‖1 ≥ r]
KH(tp2) ≤ p2(1− Pr[

∥∥x− x′
∥∥

1 ≤ cr]) + Pr[
∥∥x− x′

∥∥
1 ≤ cr]

≤ p2 + Pr[
∥∥x− x′

∥∥
1 ≤ cr].
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Let δ = max{Pr[‖x− y‖1 ≥ r], Pr[‖x− x′‖1 ≤ cr]} = e−Ω(d1/4). By
Lemma 4.11 and our setting of tp1 and tp2 we can use the bounds on the
natural logarithm from Lemma 4.9 to show the following:

ln(1/KH(tp1))

ln(1/KH(tp2))
≥ tp1

tp2

=
ln(1− 2(d−1/2 − d−5/8))

ln(1− 2c(d−1/2 + 2d−5/8))

≥ 2(d−1/2 − d−5/8)

2c(d−1/2 + 2d−5/8)
− 2(d−1/2 − d−5/8)

≥ 1− d−1/4

c + 2d−1/4 − 2(d−1/2 − d−5/8)

=
1
c
−O(d−1/4).

We proceed by lower bounding ρ where we make use of the inequalities
derived above.

KH(tp2)− δ ≤ p2 < p1 ≤ KH(tp1) + δ.

By Lemma 4.11 combined with the restrictions on our parameters, for
d greater than some constant we have that KH(tp2) ≥ KH(tp1)

2c ≥
(p1/2)2c ≥ (2d)−2c ≥ (2d)−2d1/8

. Furthermore, we lower bound
ln(1/KH(tp2)) by using that KH(tp2) ≤ p2 + δ together with the re-
striction that p2 ≥ 1− 1/d and the properties of δ. For d greater than
some constant it therefore holds that KH(tp2) ≤ 1− 1/2d from which it
follows that ln(1/KH(tp2)) ≥ 1/2d.

ln(1/p1)

ln(1/p2)
≥ ln(1/(KH(tp1) + δ))

ln(1/(KH(tp2)− δ))

=
ln(1/KH(tp1))− ln(1 + δ/KH(tp1))

ln(1/KH(tp2)) + ln(1/(1− δ/KH(tp2)))

≥ ln(1/KH(tp1))− δ/KH(tp1)

ln(1/KH(tp2)) + 2δ/KH(tp2)

≥ ln(1/KH(tp1))

ln(1/KH(tp2))
− 3δ

KH(tp2) ln(1/KH(tp2))
.

By the arguments above we have that

3δ

KH(tp2) ln(1/KH(tp2))
= e−Ω(d1/4) = O(d−1/4).

Inserting the lower bound for
ln(1/KH(tp1 ))

ln(1/KH(tp2 ))
results in the lemma.
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4.8 Appendix: Comparisons

For completeness we state the proofs behind the comparisons between
the ρ-values obtained by the Chosen Path algorithm and other LSH
techniques.

4.8.1 MinHash

For data sets with fixed sparsity and Braun-Blanquet similarities 0 <
b2 < b1 < 1 we have that ρ/ρminhash = f (b2)/ f (b1) where f (x) =
log(x/(2 − x))/ log(x). If f (x) is monotone increasing in (0, 1) then
ρ/ρminhash < 1. For x ∈ (0, 1) we have that sign( f ′(x)) = sign(g(x))
where g(x) = ln(x) + (2− x) ln(2− x). The function g(x) equals zero at
x = 1 and has the derivative g′(x) = ln(x)− ln(2− x) which is negative
for values of x ∈ (0, 1). We can thefore see that f ′(x) is positive in the
interval and it follows that ρ < ρminhash for every choice of 0 < b2 < b1 <
1.

4.8.2 Angular LSH

We have that ρ/ρangular < 1 if f (x) = ln(x)1+x
1−x is a monotone increas-

ing function for x ∈ (0, 1). For x ∈ (0, 1) we have that sign( f ′(x)) =
sign(g(x)) where g(x) = (1− x2)/2 + x ln x. We note that g(1) = 0 and
g′(x) = 1− x + ln x. Therefore, if g′(x) < 0 for x ∈ (0, 1) it holds that
g(x) > 0 and f (x) is monotone increasing in the same interval. We have
that g′(1) = 0 and g′′(x) = −1 + 1/x > 0 implying that g′(x) < 0 in the
interval.

4.8.3 Data-dependent LSH

Lemma 4.12. Let 0 < b2 < b1 < 1 and fix ρ = 1/2 such that b1 =
√

b2.
Then we have that ρ < ρdatadep for every value of b2 < 1/4.

Proof. We will compare ρ = log(b1)/ log(b2) and ρdatadep = 1−b1
1+b1−2b2

when ρ is fixed at ρ = 1/2, or equivalently, b1 =
√

b2. We can solve
the quadratic equation 1/2 = 1−√b2

1+
√

b2−2b2
to see that for 0 < b2 < 1 we

have that ρ = ρdatadep only when b2 = 1/4. The derivative of ρdatadep

with respect to b2 is negative when b1 =
√

b2. Under this restriction
we therefore have that ρ < ρdatadep for b2 < 1/4 which is equivalent to
j2 < 1/7 in the fixed-weight setting.
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To compare ρ-values over the full parameter space we use the follow-
ing two lemmas.

Lemma 4.13. For every choice of fixed 0 < ρ < 1 let b2 = b1/ρ
1 . Then

ρdatadep = 1−b1
1+b1−2b2

is decreasing in b1 for b1 ∈ (0, 1).

Proof. The sign of the derivative of ρdatadep with respect to b1 is equal
to the sign of the function g(x) = −ρx−1/ρ + ρ− 1 + x−1 for x ∈ (0, 1).
We have that g(1) = 0 and g′(x) = x−1/p− 1− x−2 > 0 for x ∈ (0, 1)
which shows that g(x) < 0 in the interval.

Lemma 4.14. For 1/5 = b2 < b1 < 1 we have that ρ < ρdatadep.

Proof. For fixed b2 = 1/5 consider f (b1) = ρ− ρdatadep as a function of b1
in the interval [1/5, 1]. We want to show that f (b1) < 0 for b1 ∈ (1/5, 1).
In the endpoints the function takes the value 0. Between the endpoints
we find that f ′(b1) =

1
ln(5)b1

+ 8/5
(3/5+b1)2 and that f ′(b1) = 0 is a quadratic

form with only one solution b∗1 in [1/5, 1]. By Lemma 4.12 we know
that that for b2 = 1/5 and b1 = 1/

√
5 it holds that f (b1) < 0. Since

f (1/5) = f (1) = 0, f ′(b1) = 0 only in a single point in [1/5, 1], and
f (1/
√

5) < 0 we can conclude that the lemma holds.

Corollary 4.2. For every choice of b1, b2 satisfying 0 < b2 ≤ 1/5 and b2 <
b1 < 1 we have that ρ < ρdatadep.

Proof. If b2 = 1/5 the property holds by Lemma 4.14. If b2 < 1/5 we
define new variables b̂2, b̂2, setting b̂1 = b̂ρ(b1,b2)

1 and initially consider
b̂2 = 1/5. In this setting we again have that ρ(b̂1, b̂2) < ρdatadep(b̂1, b̂2).
According to Lemma 4.13 it holds that ρdatadep is decreasing in b2 for
fixed ρ. Therefore, as b̂2 decreases to b̂2 = b2 where b̂1 = b1 we have that
ρ(b̂1, b̂2) = ρ remains constant while ρdatadep increases. Since it held that
ρ < ρdatadep at the initial values of b̂1, b̂2 it must also hold for b1, b2.

Numerical comparison of MinHash and Data-dep. LSH. Comparing
ρminhash to ρdatadep we can verify numerically that even for b2 fixed as
low as b2 = 1/23 we can find values of b1 (for example b1 = 0.995 such
that ρminhash > ρdatadep.



Chapter 5

Adaptive similarity join
‘A light from the shadows shall spring’

Set similarity join is a fundamental and well-studied database operator.
It is usually studied in the exact setting where the goal is to compute all
pairs of sets that exceed a given similarity threshold (measured e.g. as
Jaccard similarity). But set similarity join is often used in settings where
100% recall may not be important — indeed, where the exact set similarity
join is itself only an approximation of the desired result set.

We present a new randomized algorithm for set similarity join that
can achieve any desired recall up to 100%, and show theoretically and
empirically that it significantly improves on existing methods. The
present state-of-the-art exact methods are based on prefix-filtering, the
performance of which depends on the prevalence of rare elements in
the sets. Our method is robust against the absence of such structure
in the data. At 90% recall our algorithm is often more than an order
of magnitude faster than state-of-the-art exact methods, depending on
how well a data set lends itself to prefix filtering. Our experiments on
benchmark data sets also show that the method is several times faster
than comparable approximate methods. Our algorithm makes use of
recent theoretical advances in high-dimensional sketching and indexing.

5.1 Introduction

It is increasingly important for data processing and analysis systems to be
able to work with data that is imprecise, incomplete, or noisy. Similarity
join has emerged as a fundamental primitive in data cleaning and entity
resolution over the last decade [21, 48, 142]. In this paper we focus on set
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similarity join: Given collections R and S of sets the task is to compute

R ./λ S = {(x, y) ∈ R× S | sim(x, y) ≥ λ}

where sim(·, ·) is a similarity measure and λ is a threshold parameter.
We deal with sets x, y ⊆ {1, . . . , d}, where the number d of distinct tokens
can be naturally thought of as the dimensionality of the data.

Many measures of set similarity exist [51], but perhaps the most
well-known such measure is the Jaccard similarity,

J(x, y) = |x ∩ y|/|x ∪ y| .

For example, the sets x = {IT, University, Copenhagen} and y =
{University, Copenhagen, Denmark} have Jaccard similarity J(x, y) =
1/2 which could suggest that they both correspond to the same entity.
In the context of entity resolution we want to find a set T that contains
(x, y) ∈ R× S if and only if x and y correspond to the same entity. The
quality of the result can be measured in terms of precision |(R ./λ S) ∩
T|/|T| and recall |(R ./λ S) ∩ T|/|R ./λ S|, both of which should be as
high as possible. We will be interested in methods that achieve 100%
precision, but that might not have 100% recall. We refer to methods with
100% recall as exact, and others as approximate.

5.1.1 Our Contributions

We present a new approximate set similarity join algorithm: Chosen
Path Similarity Join (CPSJoin). We cover its theoretical underpinnings,
and show experimentally that it achieves high recall with a substantial
speedup compared to state-of-the-art exact techniques. The key ideas
behind CPSJoin are:

• A new recursive filtering technique inspired by the recently pro-
posed ChosenPath index for set similarity search [56], adding new
ideas to make the method parameter-free, near-linear space, and
adaptive to a given data set.

• Apply efficient sketches for estimating set similarity [103] that take
advantage of modern hardware.

We compare CPSJoin to the exact set similarity join algorithms in
the comprehensive empirical evaluation of Mann et al. [107], using the
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same data sets, and to other approximate set similarity join methods
suggested in the literature. We find that CPSJoin outperforms other
approximate methods and scales better than exact methods when the
sets are relatively large (100 tokens or more) and the similarity threshold
is low (e.g. Jaccard similarity 0.5) where we see speedups of more than
an order of magnitude at 90% recall. Our experiments on benchmark
datasets show that exact methods are faster in the case of high similarity
thresholds, when the average set size is small, and when sets have many
rare elements, whereas approximate methods are faster in the case of low
similarity thresholds and when sets are large. This finding is consistent
with theory and is further corroborated by experiments on synthetic
datasets.

5.1.2 Related Work

For space reasons we present just a sample of the most related previous
work, and refer to the book of Augsten and Böhlen [21] for a survey of
algorithms for exact similarity join in relational databases, covering set
similarity joins as well as joins based on string similarity.

Exact Similarity Join. Early work on similarity join focused on the
important special case of detecting near-duplicates with similarity close
to 1, see e.g. [31, 142]. A sequence of results starting with the seminal
paper of Bayardo et al. [23] studied the range of thresholds that could be
handled. Recently, Mann et al. [107] conducted a comprehensive study
of 7 state-of-the-art algorithms for exact set similarity join for Jaccard
similarity threshold λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. These algorithms all use
the idea of prefix filtering [48], which generates a sequence of candidate
pairs of sets that includes all pairs with similarity above the threshold.
The methods differ in how much additional filtering is carried out. For
example, [172] applies additional length and suffix filters to prune the
candidate pairs.

Prefix filtering uses an inverted index that for each element stores a
list of the sets in the collection containing that element. Given a set x,
assume that we wish to find all sets y such that |x ∪ y| > t. A valid result
set y must be contained in at least one of the inverted lists associated
with any subset of |x| − t elements of x, or we would have |x ∪ y| ≤ t. In
particular, to speed up the search, prefix filtering looks at the elements of
x that have the shortest inverted lists.
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The main finding by Mann et al. is that while more advanced filtering
techniques do yield speedups on some data sets, an optimized version of
the basic prefix filtering method (referred to as “ALL”) is always com-
petitive within a factor 2.16, and most often the fastest of the algorithms.
For this reason we will be comparing our results against ALL.

Locality-sensitive hashing. Locality-sensitive hashing (LSH) is a the-
oretically well-founded randomized method for generating candidate
pairs [78]. A family of locality-sensitive hash functions is a distribution
over functions with the property that the probability that similar points
(or sets in our case) are more likely to have the same function value.
We know only of a few papers using LSH techniques to solve similarity
join. Cohen et al. [61] used LSH techniques for set similarity join in a
knowledge discovery context before the advent of prefix filtering. They
sketch a way of choosing parameters suitable for a given data set, but we
are not aware of existing implementations of this approach. Chakrabarti
et al. [44] improved plain LSH with an adaptive similarity estimation
technique, BayesLSH, that reduces the cost of checking candidate pairs
and typically improves upon an implementation of the basic prefix filter-
ing method by 2–20×. Our experiments include a comparison against
both methods [61, 44]. We refer to the survey paper [126] for an overview
of newer theoretical developments on LSH-based similarity joins, but
point out that these developments have not matured sufficiently to yield
practical improvements.

Distance estimation. Similar to BayesLSH [44] we make use of algo-
rithms for similarity estimation, but in contrast to BayesLSH we use
algorithms that make use of bit-level parallelism. This approach works
when there exists a way of picking a random hash function h such that

Pr[h(x) = h(y)] = sim(x, y) (5.1)

for every choice of sets x and y. Broder et al. [35] presented such a hash
function for Jaccard similarity, now known as “minhash” or “minwise
hashing”. In the context of distance estimation, 1-bit minwise hashing
of Li and König [103] maps minhash values to a compact sketch, often
using just 1 or 2 machine words. Still, this is sufficient information to be
able to estimate the Jaccard similarity of two sets x and y just based on
the Hamming distance of their sketches.
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Locality-sensitive mappings. Several recent theoretical advances in
high-dimensional indexing [16, 54, 56] have used an approach that can
be seen as a generalization of LSH. We refer to this approach as locality-
sensitive mappings (also known as locality-sensitive filters in certain set-
tings). The idea is to construct a function F, mapping a set x into a set of
machine words, such that:

• If sim(x, y) ≥ λ then F(x) ∩ F(y) is nonempty with some fixed
probability ϕ > 0.

• If sim(x, y) < λ, then the expected intersection size E[|F(x)∩ F(y)|]
is “small”.

Here the exact meaning of “small” depends on the differ-
ence λ− sim(x, y), but in a nutshell, if it is the case that almost
all pairs have similarity significantly below λ then we can expect
|F(x) ∩ F(y)| = 0 for almost all pairs. Performing the similarity join
amounts to identifying all candidate pairs x, y for which F(x)∩ F(y) 6= ∅
(for example by creating an inverted index), and computing the similarity
of each candidate pair. To our knowledge these indexing methods
have not been tried out in practice, probably because they are rather
complicated. An exception is the recent paper [56], which is relatively
simple, and indeed our join algorithm is inspired by the index described
in that paper.

5.2 Preliminaries

The CPSJoin algorithm solves the (λ, ϕ)-similarity join problem with a
probabilistic guarantee on recall, formalized as follows:

Definition 5.1. An algorithm solves the (λ, ϕ)-similarity join problem
with threshold λ ∈ (0, 1) and recall probability ϕ ∈ (0, 1) if for every
(x, y) ∈ S ./λ R the output L ⊆ S ./λ R of the algorithm satisfies
Pr[(x, y) ∈ L] ≥ ϕ.

It is important to note that the probability is over the random choices
made by the algorithm, and not over a random choice of (x, y). This
means that for any (x, y) ∈ S ./λ R the probability that the pair is not
reported in r independent repetitions of the algorithm is bounded by
(1− ϕ)r. For example if ϕ = 0.9 it takes just r = 3 repetitions to bound
the recall to at least 99.9%.
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5.2.1 Similarity Measures

Our algorithm can be used with a broad range of similarity measures
through randomized embeddings. This allows it to be used with, for
example, Jaccard and cosine similarity thresholds.

Embeddings map data from one space to another while approximately
preserving distances, with accuracy that can be tuned. In our case we
are interested in embeddings that map data to sets of tokens. We can
transform any so-called LSHable similarity measure sim, where we can
choose h to make (5.1) hold, into a set similarity measure by the following
randomized embedding: For a parameter t pick hash functions h1, . . . , ht
independently from a family satisfying (5.1). The embedding of x is the
following set of size t:

f (x) = {(i, hi(x)) | i = 1, . . . , t} .

It follows from (5.1) that the expected size of the intersection f (x) ∩ f (y)
is t · sim(x, y). Furthermore, it follows from standard concentration in-
equalities that the size of the intersection will be close to the expectation
with high probability. For our experiments with Jaccard similarity thresh-
olds ≥ 0.5, we found that t = 64 gave sufficient precision for > 90%
recall.

In summary we can perform the similarity join R ./λ S for any
LSHable similarity measure by creating two corresponding relations
R′ = { f (x) | x ∈ R} and S′ = { f (y) | y ∈ S}, and computing R′ ./λ S′

with respect to the similarity measure

B( f (x), f (y)) = | f (x) ∩ f (y)|/t . (5.2)

This measure is the special case of Braun-Blanquet similarity where the sets
are known to have size t [51]. Our implementation will take advantage
of the set size t being fixed, though it is easy to extend to general Braun-
Blanquet similarity.

The class of LSHable similarity measures is large, as discussed in [49].
If approximation errors are tolerable, even edit distance can be handled by
our algorithm [45, 173].

5.2.2 Notation

We are interested in sets S where an element, x ∈ S is a set with ele-
ments from some universe [d] = {1, 2, 3, · · · , d}. To avoid confusion we
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sometimes use “record” for x ∈ S and “token” for the elements of x.
Throughout this paper we will think of a record x both as a set of tokens
from [d], as well as a vector from {0, 1}d, where:

xi =

{
1 if i ∈ x
0 if i /∈ x

It is clear that these representations are equivalent. The set {1, 4, 5} is
equivalent to (1, 0, 0, 1, 1, 0, · · · , 0), {1, d} is equivalent to (1, 0, · · · , 0, 1),
etc.

5.3 Overview of approach

Our high-level approach is recursive and works as follows. To compute
R ./λ S we consider each x ∈ R and either:

1. Compare x to each record in S (referred to as “brute forcing” x), or

2. create several subproblems Si ./λ Ri with x ∈ Ri ⊆ R, Si ⊆ S, and
solve them recursively.

The approach of [56] corresponds to choosing option 2 until reaching a
certain level k of the recursion, where we finish the recursion by choosing
option 1. This makes sense for certain worst-case data sets, but we
propose an improved parameter-free method that is better at adapting
to the given data distribution. In our method the decision on which
option to choose depends on the size of S and the average similarity
of x to the records of S. We choose option 1 if S has size below some
(constant) threshold, or if the average Braun-Blanquet similarity of x and
S, 1
|S| ∑y∈S B(x, y), is close to the threshold λ. In the former case it is

cheap to finish the recursion. In the latter case many records y ∈ S will
have B(x, y) larger than or close to λ, so we do not expect to be able to
produce output pairs with x in sublinear time in |S|.

If neither of these pruning conditions apply we choose option 2 and
include x in recursive subproblems as described below. But first we
note that the decision of which option to use can be made efficiently for
each x, since the average similarity of pairs from R× S can be computed
from token frequencies in time O(t|R|+ t|S|). Pseudocode for a self-join
version of CPSJoin is provided in Algorithm 1 and 2.
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5.3.1 Recursion

We would like to ensure that for each pair (x, y) ∈ R ./λ S the pair is
computed in one of the recursive subproblems, i.e., that (x, y) ∈ Ri ./λ Si
for some i. In particular, we want the expected number of subproblems
containing (x, y) to be at least 1, i.e.,

E[|{i | (x, y) ∈ Ri ./λ Si}|] ≥ 1. (5.3)

To achieve (5.3) for every pair (x, y) ∈ R ./λ S we proceed as follows: for
each i ∈ {1, . . . , d} we recurse with probability 1/(λt) on the subproblem
Ri ./λ Si with sets

Ri = {x ∈ R | i ∈ x}
Si = {y ∈ S | i ∈ y}

where t denotes the size of records in R and S. It is not hard to check
that (5.3) is satisfied for every pair (x, y) with B(x, y) ≥ λ. Of course,
expecting one subproblem to contain (x, y) does not directly imply a good
probability that (x, y) is contained in at least one subproblem. But it
turns out that we can use results from the theory of branching processes
to show such a bound; details are provided in section 5.4.

5.4 Chosen Path Similarity Join

The CPSJoin algorithm solves the (λ, ϕ)-set similarity join (Definition 5.1)
for every choice of λ ∈ (0, 1) and with a guarantee on ϕ that we will
lower bound in the analysis.

To simplify the exposition we focus on a self-join version where we
are given a set S of n subsets of [d] and we wish to report L ⊆ S ./λ S.
Handling a general join S ./λ R follows the overview in section 5.3 and
requires no new ideas: Essentially consider a self-join on S ∪ R but
make sure to consider only pairs in S× R for output. We also make the
simplifying assumption that all sets in S have a fixed size t. As argued in
section 5.2.1 the general case can be reduced to this one by embedding.

5.4.1 Description

The CPSJoin algorithm (see Algorithm 1 for pseudocode) works by recur-
sively splitting the data set on elements of [d] that are selected according
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to a random process, forming a recursion tree with S at the root and
subsets of S that are non-increasing in size as we get further down the
tree. The randomized splitting has the property that the probability of
a pair of sets (x, y) being in a random subproblem is increasing as a
function of |x ∩ y|.

Before each recursive splitting step we run the BruteForce subproce-
dure (see Algorithm 2 for pseudocode) that identifies subproblems that
are best solved by brute force. It has two parts:

1. If S is below some constant size, controlled by the parameter limit,
we report S ./λ S exactly using a simple loop with O(|S|2) distance com-
putations (BruteForcePairs) and exit the recursion. In our experiments
we have set limit to 250, with the precise choice seemingly not having a
large effect as shown experimentally in Section 5.6.2.

2. If S is larger than limit the second part activates: for every
x ∈ S we check whether the expected number of distance computations
involving x is going to decrease by continuing the recursion. If this
is not the case, we immediately compare x against every point in S
(BruteForcePoint), reporting close pairs, and proceed by removing x
from S. The BruteForce procedure is then run again on the reduced set.

This procedure where we choose to handle some points by brute force
crucially separates our algorithm from many other approximate similarity
join methods in the literature that typically are LSH-based [127, 61]. By
efficiently being able to remove points at the “right” time, before they
generate too many expensive comparisons further down the tree, we
are able to beat the performance of other approximate similarity join
techniques in both theory and practice. Another benefit of this approach
is that it reduces the number of parameters compared to the usual LSH
setting where the depth of the tree has to be selected by the user.

Algorithm 1: CPSJoin(S, λ)

1 For j ∈ [d] initialize Sj ← ∅.
2 S← BruteForce(S, λ)
3 r ← SeedHashFunction()
4 for x ∈ S do
5 for j ∈ x do
6 if r(j) < 1

λ|x| then Sj ← Sj ∪ {x}

7 for Sj 6= ∅ do CPSJoin(Sj, λ)
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Algorithm 2: BruteForce(S, λ)

Global parameters : limit ≥ 1, ε ≥ 0.
1 Initialize empty map count[ ] with default value 0.
2 if |S| ≤ limit then
3 BruteForcePairs(S, λ)
4 return ∅
5 for x ∈ S do
6 for j ∈ x do
7 count[j]← count[j] + 1

8 for x ∈ S do
9 if 1

|S|−1 ∑j∈x(count[j]−1)/t > (1− ε)λ then
10 BruteForcePoint(S, x, λ)
11 return BruteForce(S \ {x}, λ)

12 return S

5.4.2 Comparison to Chosen Path

The CPSJoin algorithm is inspired by the Chosen Path algorithm [56] for
the approximate near neighbor problem and uses the same underlying
random splitting tree that we will refer to as the Chosen Path Tree. In
the approximate near neighbor problem, the task is to construct a data
structure that takes a query point and correctly reports an approximate
near neighbor, if such a point exists in the data set. Using the Chosen

Path data structure directly to solve the (λ, ϕ)-set similarity join problem
has several drawbacks that we avoid in the CPSJoin algorithm. First,
the Chosen Path data structure is parameterized in a non-adaptive way
to provide guarantees for worst-case data, vastly increasing the amount
of work done compared to the optimal parameterization when data is
not worst-case. Our recursion rule avoids this and instead continuously
adapts to the distribution of distances as we traverse down the tree.
Secondly, the data structure uses space O(n1+ρ) where ρ > 0, storing
the Chosen Path Tree of size O(nρ) for every data point. The CPSJoin

algorithm, instead of storing the whole tree, essentially performs a depth-
first traversal, using only near-linear space in n in addition to the space
required to store the output. Finally, the Chosen Path data structure only
has to report a single point that is approximately similar to a query point,
and can report points with similarity < λ. To solve the approximate



5.4. Chosen Path Similarity Join 127

similarity join problem the CPSJoin algorithm has to satisfy reporting
guarantees for every pair of points (x, y) in the exact join.

5.4.3 Analysis

The Chosen Path Tree for a set x ⊆ [d] is defined by a random process:
at each node, starting from the root, we sample a random hash function
r : [d] → [0, 1] and construct children for every element j ∈ x such that
r(j) < 1

λ|x| . Nodes at depth k in the tree are identified by their path
p = (j1, . . . , jk). Formally, the set of nodes at depth k > 0 in the Chosen
Path Tree for x is given by

Fk(x) =
{

p ◦ j | p ∈ Fk−1(x) ∧ rp(j) <
xj

λ|x|

}
where p ◦ j denotes vector concatenation and F0(x) = ∅. The subset of
the data set S that survives to a node with path p = (j1, . . . , jk) is given
by

Sp = {x ∈ S | xj1 = 1∧ · · · ∧ xjk = 1}.
The random process underlying the Chosen Path Tree belongs to the
well studied class of Galton-Watson branching processes [87]. Originally
these where devised to answer questions about the growth and decline of
family names in a model of population growth assuming i.i.d. offspring
for every member of the population across generations [167]. In order
to make statements about the properties of the CPSJoin algorithm we
study in turn the branching processes of the Chosen Path Tree associated
with a point x, a pair of points (x, y), and a set of points S. Note that we
use the same random hash functions for different points in S.

Brute forcing. The BruteForce subprocedure described by Algorithm
2 takes two global parameters: limit ≥ 1 and ε ≥ 0. The parameter
limit controls the minimum size of S before we discard the CPSJoin al-
gorithm for a simple exact similarity join by brute force pairwise distance
computations. The second parameter, ε > 0, controls the sensitivity of
the BruteForce step to the expected number of comparisons that a point
x ∈ S will generate if allowed to continue in the branching process. The
larger ε the more aggressively we will resort to the brute force procedure.
In practice we typically think of ε as a small constant, say ε = 0.05, but
for some of our theoretical results we will need a sub-constant setting of
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ε ≈ 1/ log(n) to show certain running time guarantees. The BruteForce

step removes a point x from the Chosen Path branching process, instead
opting to compare it against every other point y ∈ S, if it satisfies the
condition

1
|S| − 1 ∑

y∈S\{x}
|x ∩ y|/t > (1− ε)λ.

In the pseudocode of Algorithm 2 we let count denote a hash table that
keeps track of the number of times each element j ∈ [d] appears in S.
This allows us to evaluate the condition in equation (5.4.3) for an element
x ∈ S in time O(|x|) by rewriting it as

1
|S| − 1 ∑

j∈x
(count[j]− 1)/t > (1− ε)λ.

We claim that this condition minimizes the expected number of com-
parisons performed by the algorithm: Consider a node in the Chosen
Path Tree associated with a set of points S while running the CPSJoin

algorithm. For a point x ∈ S, we can either remove it from S immediately
at a cost of |S| − 1 comparisons, or we can choose to let continue in the
branching process (possibly into several nodes) and remove it later. The
expected number of comparisons if we let it continue k levels before
removing it from every node that it is contained in, is given by

∑
y∈S\{x}

(
1
λ

|x ∩ y|
t

)k

.

This expression is convex and increasing in the similarity |x ∩ y|/t be-
tween x and other points y ∈ S, allowing us to state the following
remark:

Remark 5.1 (Recursion). Let ε = 0 and consider a set S containing a point
x ∈ S such that x satisfies the recursion condition in equation (5.4.3).
Then the expected number of comparisons involving x if we continue
branching exceeds |S| − 1 at every depth k ≥ 1. If x does not satisfy the
condition, the opposite is observed.

Tree depth. We proceed by bounding the maximal depth of the set of
paths in the Chosen Path Tree that are explored by the CPSJoin algorithm.
Having this information will allow us to bound the space usage of the
algorithm and will also form part of the argument for the correctness
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guarantee. Assume that the parameter limit in the BruteForce step is
set to some constant value, say limit = 100. Consider a point x ∈ S and
let S′ = {y ∈ S | |x ∩ y|/t ≤ (1− ε)λ} be the subset of points in S that
are not too similar to x. For every y ∈ S′ the expected number of vertices
in the Chosen Path Tree at depth k that contain both x and y is upper
bounded by

E[|Fk(x ∩ y)|] =
(

1
λ

|x ∩ y|
t

)k

≤ (1− ε)k ≤ e−εk.

Since |S′| ≤ n we use Markov’s inequality to show the following bound:

Lemma 5.1. Let x, y ∈ S satisfy that |x∩ y|/t ≤ (1− ε)λ then the probability
that there exists a vertex at depth k in the Chosen Path Tree that contains x and
y is at most e−εk.

If x does not share any paths with points that have similarity that falls
below the threshold for brute forcing, then the only points that remain
are ones that will cause x to be brute forced. This observation leads to
the following probabilistic bound on the tree depth:

Lemma 5.2. With high probability the maximal depth of paths explored by the
CPSJoin algorithm is O(log(n)/ε).

Correctness. Let x and y be two sets of equal size t such that B(x, y) =
|x ∩ y|/t ≥ λ. We are interested in lower bounding the probability that
there exists a path of length k in the Chosen Path Tree that has been
chosen by both x and y, i.e. Pr [Fk(x ∩ y) 6= ∅]. Agresti [3] showed an
upper bound on the probability that a branching process becomes extinct
after at most k steps. We use it to show the following lower bound on the
probability of a close pair of points colliding at depth k in the Chosen
Path Tree.

Lemma 5.3 (Agresti [3]). If sim(x, y) ≥ λ then for every k > 0 we have that
Pr[Fk(x ∩ y) 6= ∅] ≥ 1

k+1 .

The bound on the depth of the Chosen Path Tree for x explored by
the CPSJoin algorithm in Lemma 5.2 then implies a lower bound on ϕ.

Lemma 5.4. Let 0 < λ < 1 be constant. Then for every set S of |S| = n
points the CPSJoin algorithm solves the set similarity join problem with ϕ =
Ω(ε/ log(n)).
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Remark 5.2. This analysis is very conservative: if either x or y is removed
by the BruteForce step prior to reaching the maximum depth then it
only increases the probability of collision. We note that similar guarantees
can be obtained when using fast pseudorandom hash functions as shown
in the paper introducing the Chosen Path algorithm [56].

Space usage. We can obtain a trivial bound on the space usage of the
CPSJoin algorithm by combining Lemma 5.2 with the observation that
every call to CPSJoin on the stack uses additional space at most O(n).
The result is stated in terms of working space: the total space usage
when not accounting for the space required to store the data set itself
(our algorithms use references to data points and only reads the data
when performing comparisons) as well as disregarding the space used to
write down the list of results.

Lemma 5.5. With high probability the working space of the CPSJoin algorithm
is at most O(n log(n)/ε).

Remark 5.3. We conjecture that the expected working space is O(n) due to
the size of S being geometrically decreasing in expectation as we proceed
down the Chosen Path Tree.

Running time. We will bound the running time of a solution to the
general set similarity self-join problem that uses several calls to the
CPSJoin algorithm in order to piece together a list of results L ⊆ S ./λ S.
In most of the previous related work, inspired by Locality-Sensitive
Hashing, the fine-grainedness of the randomized partition of space, here
represented by the Chosen Path Tree in the CPSJoin algorithm, has been
controlled by a single global parameter k [78, 127]. In the Chosen Path
setting this rule would imply that we run the splitting step without
performing any brute force comparison until reaching depth k where we
proceed by comparing x against every other point in nodes containing x,
reporting close pairs. In recent work by Ahle et al. [4] it was shown how
to obtain additional performance improvements by setting an individual
depth kx for every x ∈ S. We refer to these stopping strategies as global
and individual, respectively. Together with our recursion strategy, this
gives rise to the following stopping criteria for when to compare a point
x against everything else contained in a node:

• Global: Fix a single depth k for every x ∈ S.



5.4. Chosen Path Similarity Join 131

• Individual: For every x ∈ S fix a depth kx.

• Adaptive: Remove x when the expected number of comparisons is
non-decreasing in the tree-depth.

Let T denote the running time of our similarity join algorithm. We aim
to show the following relation between the running time between the
different stopping criteria when applied to the Chosen Path Tree:

E[TAdaptive] ≤ E[TIndividual] ≤ E[TGlobal].

First consider the global strategy. We set k to balance the contribution to
the running time from the expected number of vertices containing a point,
given by (1/λ)k, and the expected number of comparisons between pairs
of points at depth k, resulting in the following expected running time for
the global strategy:

O

min
k

n(1/λ)k + ∑
x,y∈S
x 6=y

(sim(x, y)/λ)k

 .

The global strategy is a special case of the individual case, and it must
therefore hold that E[TIndividual] ≤ E[TGlobal]. The expected running time
for the individual strategy is upper bounded by:

O

∑
x∈S

min
kx

(1/λ)kx + ∑
y∈S\{x}

(sim(x, y)/λ)kx

 .

We will now argue that the expected running time of the CPSJoin algo-
rithm under the adaptive stopping criteria is no more than a constant
factor greater than E[TIndividual] when we set the global parameters of
the BruteForce subroutine as follows:

limit = Θ(1),

ε =
log(1/λ)

log n
.

Let x ∈ S and consider a path p where x is removed in from Sp by the
BruteForce step. Let k′x denote the depth of the node (length of p) at
which x is removed. Compared to the individual strategy that removes x
at depth kx we are in one of three cases, also displayed in Figure 5.1.
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1. The point x is removed from p at depth k′x = kx.

2. The point x is removed from p at depth k′x < kx.

3. The point x is removed from p at depth k′x > kx.

Case 1 Case 2 Case 3

kx k′x

k′x

k′x

Figure 5.1: Path termination depth in the Chosen Path Tree

The underlying random process behind the Chosen Path Tree is not
affected by our choice of termination strategy. In the first case we
therefore have that the expected running time is upper bounded by the
same (conservative) expression as the one used by the individual strategy.
In the second case we remove x earlier than we would have under the
individual strategy. For every x ∈ S we have that kx ≤ 1/ε since for
larger values of kx the expected number of nodes containing x exceeds
n. We therefore have that kx − k′x ≤ 1/ε. Let S′ denote the set of points
in the node where x was removed by the BruteForce subprocedure.
There are two rules that could have triggered the removal of x: Either
|S′| = O(1) or the condition in equation (5.4.3) was satisfied. In the first
case, the expected cost of following the individual strategy would have
been Ω(1) simply from the 1/λ children containing x in the next step.
This is no more than a constant factor smaller than the adaptive strategy.
In the second case, when the condition in equation (5.4.3) is activated
we have that the expected number of comparisons involving x resulting
from S′ if we had continued under the individual strategy is at least

(1− ε)1/ε|S′| = Ω(|S′|)
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which is no better than what we get with the adaptive strategy. In the
third case where we terminate at depth k′x > kx, if we retrace the path to
depth kx we know that x was not removed in this node, implying that the
expected number of comparisons when continuing the branching process
on x is decreasing compared to removing x at depth kx. We have shown
that the expected running time of the adaptive strategy is no greater than
a constant times the expected running time of the individual strategy.

We are now ready to state our main theoretical contribution, stated
below as Theorem 5.1. The theorem combines the above argument that
compares the adaptive strategy against the individual strategy together
with Lemma 5.2 and Lemma 5.4, and uses O(log2 n) runs of the CPSJoin

algorithm to solve the set similarity join problem for every choice of
constant parameters λ, ϕ.

Theorem 5.1. For every LSHable similarity measure and every choice of con-
stant threshold λ ∈ (0, 1) and probability of recall ϕ ∈ (0, 1) we can solve the
(λ, ϕ)-set similarity join problem on every set S of n points using working space
Õ(n) and with expected running time

Õ

∑
x∈S

min
kx

 ∑
y∈S\{x}

(sim(x, y)/λ)kx + (1/λ)kx

 .

5.5 Implementation

We implement an optimized version of the CPSJoin algorithm for solving
the Jaccard similarity self-join problem. In our experiments (described in
Section 5.6) we compare the CPSJoin algorithm against the approximate
methods of MinHash LSH [78, 35] and BayesLSH [44], as well as the
AllPairs [23] exact similarity join algorithm. The code for our experiments
is written in C++ and uses the benchmarking framework and data sets
of the recent experimental survey on exact similarity join algorithms
by Mann et al. [107]. For our implementation we assume that each set
x is represented as a list of 32-bit unsigned integers. We proceed by
describing the details of each implementation in turn.

5.5.1 Chosen Path Similarity Join

The implementation of the CPSJoin algorithm follows the structure of
the pseudocode in Algorithm 1 and Algorithm 2, but makes use of a few
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heuristics, primarily sampling and sketching, in order to speed things
up. The parameter setting is discussed and investigated experimentally
in section 5.6.2.

Preprocessing. Before running the algorithm we use the embedding
described in section 5.2.1. Specifically t independent MinHash functions
h1, . . . , ht are used to map each set x ∈ S to a list of t hash values
(h1(x), . . . , ht(x)). The MinHash function is implemented using Zobrist
hashing [174] from 32 bits to 64 bits with 8-bit characters. We sample
a MinHash function h by sampling a random Zobrist hash function g
and let h(x) = argminj∈x g(j). Zobrist hashing (also known as simple
tabulation hashing) has been shown theoretically to have strong MinHash
properties and is very fast in practice [135, 160]. We set t = 128 in our
experiments, see discussion later.

During preprocessing we also prepare sketches using the 1-bit min-
wise hashing scheme of Li and König [103]. Let ` denote the length in
64-bit words of a sketch x̂ of a set x ∈ S. We construct sketches for a
data set S by independently sampling 64× ` MinHash functions hi and
Zobrist hash functions gi that map from 32 bits to 1 bit. The ith bit of the
sketch x̂ is then given by gi(hi(x)). In the experiments we set ` = 8.

Similarity estimation using sketches. We use 1-bit minwise hashing
sketches for fast similarity estimation in the BruteForcePairs and Brute-
ForcePoint subroutines of the BruteForce step of the CPSJoin algo-
rithm. Given two sketches, x̂ and ŷ, we compute the number of bits in
which they differ by going through the sketches word for word, com-
puting the popcount of their XOR using the gcc builtin _mm_popcnt_u64
that translates into a single instruction on modern hardware. Let Ĵ(x, y)
denote the estimated similarity of a pair of sets (x, y). If Ĵ(x, y) is below
a threshold λ̂ ≈ λ, we exclude the pair from further consideration. If the
estimated similarity is greater than λ̂ we compute the exact similarity
and report the pair if J(x, y) ≥ λ.

The speedup from using sketches comes at the cost of introducing
false negatives: A pair of sets (x, y) with J(x, y) ≥ λ may have an
estimated similarity less than λ̂, causing us to miss it. We let δ de-
note a parameter for controlling the false negative probability of our
sketches and set λ̂ such that for sets (x, y) with J(x, y) ≥ λ we have that
Pr[ Ĵ(x, y) < λ̂] < δ. In our experiments we set the sketch false negative
probability to be δ = 0.05.
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Splitting step. In the recursive step of the CPSJoin algorithm (Algo-
rithm 1) the set S is split into buckets Sj using the following heuristic:
Instead of sampling a random hash function and evaluating it on each
element j ∈ x, we sample an expected 1/λ elements from [t] and split S
according to the corresponding minhash values from the preprocessing
step. This saves the linear overhead in the size of our sets t, reducing the
time spent placing each set into buckets to O(1). Internally, a collection
of sets S is represented as a C++ std::vector<uint32_t> of set ids. The
collection of buckets Sj is implemented using Google’s dense_hash hash
map implementation from the sparse_hash package [81].

BruteForce step. Having reduced the overhead for each set x ∈ S to
O(1) in the splitting step, we wish to do the same for the BruteForce step
(described in Algorithm 2), at least in the case where we do not call the
BruteForcePairs or BruteForcePoint subroutines. The main problem
is that we spend time O(t) for each set when constructing the count hash
map and estimating the average similarity of x to sets in S \ {x}. To get
around this we construct a 1-bit minwise hashing sketch ŝ of length 64× `
for the set S using sampling and our precomputed 1-bit minwise hashing
sketches. The sketch ŝ is constructed as follows: Randomly sample 64× `
elements of S and set the ith bit of ŝ to be the ith bit of the ith sample from
S. This allows us to estimate the average similarity of a set x to sets in S
in time O(`) using word-level parallelism. A set x is removed from S if
its estimated average similarity is greater than (1− ε)λ. To further speed
up the running time we only call the BruteForce subroutine once for
each call to CPSJoin, calling BruteForcePoint on all points that pass the
check rather than recomputing ŝ each time a point is removed. Pairs of
sets that pass the sketching check are verified using the same verification
procedure as the AllPairs implementation by Mann et al. [107]. In our
experiments we set the parameter ε = 0.1. Duplicates are removed by
sorting and performing a single linear scan.

Repetitions. In theory, for any constant desired recall ϕ ∈ (0, 1) it suf-
fices with O(log2 n) independent repetitions of the CPSJoin algorithm. In
practice this number of repetitions is prohibitively large and we therefore
set the number of independent repetitions used in our experiments to
be fixed at ten. With this setting we were able to achieve more than 90%
recall across all datasets and similarity thresholds.
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5.5.2 MinHash LSH

We implement a locality-sensitive hashing similarity join using MinHash
according to the pseudocode in Algorithm 3. A single run of the Min-
Hash algorithm can be divided into two steps: First we split the sets
into buckets according to the hash values of k concatenated MinHash
functions h(x) = (h1(x), . . . , hk(x)). Next we iterate over all non-empty
buckets and run BruteForcePairs to report all pairs of points with
similarity above the threshold λ. The BruteForcePairs subroutine is
shared between the MinHash and CPSJoin implementation. MinHash

therefore uses 1-bit minwise sketches for similarity estimation in the
same way as in the implementation of the CPSJoin algorithm described
above.

The parameter k can be set for each dataset and similarity threshold
λ to minimize the combined cost of lookups and similarity estimations
performed by algorithm. This approach was mentioned by Cohen et
al. [61] but we were unable to find an existing implementation. In practice
we set k to the value that results in the minimum estimated running time
when running the first part (splitting step) of the algorithm for values of
k in the range {2, 3, . . . , 10} and estimating the running time by looking
at the number of buckets and their sizes. Once k is fixed we know that
each repetition of the algorithm has probability at least λk of reporting
a pair (x, y) with J(x, y) ≥ λ. For a desired recall ϕ we can therefore
set L = dln(1/(1− ϕ))/λke. In our experiments we report the actual
number of repetitions required to obtain a desired recall rather than
using the setting of L required for worst-case guarantees.

Algorithm 3: MinHash(S, λ)

Parameters : k ≥ 1, L ≥ 1.
1 for i← 1 to L do
2 Initialize hash map buckets[ ].
3 Sample k MinHash fcts. h← (h1, . . . , hk)
4 for x ∈ S do
5 buckets[h(x)]← buckets[h(x)] ∪ {x}
6 for S′ ∈ buckets do
7 BruteForcePairs(S′, λ)
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5.5.3 AllPairs

To compare our approximate methods against a state-of-the-art exact
similarity join we use Bayardo et al.’s AllPairs algorithm [23] as recently
implemented in the set similarity join study by Mann et al. [107]. The
study by Mann et al. compares implementations of several different exact
similarity join methods and finds that the simple AllPairs algorithm
is most often the fastest choice. Furthermore, for Jaccard similarity, the
AllPairs algorithm was at most 2.16 times slower than the best out of
six different competing algorithm across all the data sets and similarity
thresholds used, and for most runs AllPairs is at most 11% slower than
the best exact algorithm (see Table 7 in Mann et al. [107]). Since our
experiments run in the same framework and using the same datasets
and with the same thresholds as Mann et al.’s study, we consider their
AllPairs implementation to be a good representative of exact similarity
join methods for Jaccard similarity.

5.5.4 BayesLSH

For a comparison against previous experimental work on approximate
similarity joins we use an implementation of BayesLSH in C as provided
by the BayesLSH authors [44, 43]. The BayesLSH package features a
choice between AllPairs and LSH as candidate generation method. For
the verification step there is a choice between BayesLSH and BayesLSH-
lite. Both verification methods use sketching to estimate similarities be-
tween candidate pairs. The difference between BayesLSH and BayesLSH-
lite is that the former uses sketching to estimate the similarity of pairs
that pass the sketching check, whereas the latter uses an exact similarity
computation if a pair passes the sketching check. Since the approximate
methods in our CPSJoin and MinHash implementations correspond to
the approach of BayesLSH-lite we restrict our experiments to this choice
of verification algorithm. In our experiments we will use BayesLSH to
represent the fastest of the two candidate generation methods, combined
with BayesLSH-lite for the verification step.

5.6 Experiments

We run experiments using the implementations of CPSJoin, MinHash,
BayesLSH, and AllPairs described in the previous section. In the
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Table 5.1: Dataset size, average set size, and average number of sets that a token is contained in.

Dataset # sets / 106 avg. set size sets / tokens

AOL 7.35 3.8 18.9
BMS-POS 0.32 9.3 1797.9
DBLP 0.10 82.7 1204.4
ENRON 0.25 135.3 29.8
FLICKR 1.14 10.8 16.3
LIVEJ 0.30 37.5 15.0
KOSARAK 0.59 12.2 176.3
NETFLIX 0.48 209.8 5654.4
ORKUT 2.68 122.2 37.5
SPOTIFY 0.36 15.3 7.4
UNIFORM 0.10 10.0 4783.7
TOKENS10K 0.03 339.4 10000.0
TOKENS15K 0.04 337.5 15000.0
TOKENS20K 0.06 335.7 20000.0

experiments we perform self-joins under Jaccard similarity for similarity
thresholds λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. We are primarily interested in
measuring the join time of the algorithms, but we also look at the number
of candidate pairs (x, y) considered by the algorithms during the join
as a measure of performance. Note that the preprocessing step of the
approximate methods only has to be performed once for each set and
similarity measure, and can be re-used for different similarity joins, we
therefore do not count it towards our reported join times. In practice the
preprocessing time is at most a few minutes for the largest data sets.

Data sets. The performance is measured across 10 real world data sets
along with 4 synthetic data sets described in Table 5.1. All datasets except
for the TOKENS datasets were provided by the authors of [107] where
descriptions and sources for each data set can also be found. Note that
we have excluded a synthetic ZIPF dataset used in the study by Mann
et al.[107] due to it having no results for our similarity thresholds of
interest. Experiments are run on versions of the datasets where duplicate
records are removed and any records containing only a single token are
ignored.

In addition to the datasets from the study of Mann et al. we add
three synthetic datasets TOKENS10K, TOKENS15K, and TOKENS20K,
designed to showcase the robustness of the approximate methods. These
datasets have relatively few unique tokens, but each token appears in
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many sets. Each of the TOKENS datasets were generated from a universe
of 1000 tokens (d = 1000) and each token is contained in respectively,
10, 000, 15, 000, and 20, 000 different sets as denoted by the name. The sets
in the TOKENS datasets were generated by sampling a random subset of
the set of possible tokens, rejecting tokens that had already been used in
more than the maximum number of sets (10, 000 for TOKENS10K). To
sample sets with expected Jaccard similarity λ′ the size of our sampled
sets should be set to (2λ′/(1 + λ′))d. For λ′ ∈ {0.95, 0.85, 0.75, 0.65, 0.55}
the TOKENS datasets each have 100 random sets planted with expected
Jaccard similarity λ′. This ensures an increasing number of results for
our experiments where we use thresholds λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The
remaining sets have expected Jaccard similarity 0.2. We believe that
the TOKENS datasets give a good indication of the performance on
real-world data that has the property that most tokens appear in a large
number of sets.

Recall. In our experiments we aim for a recall of at least 90% for the
approximate methods. In order to achieve this for the CPSJoin and
MinHash algorithms we perform a number of repetitions after the
preprocessing step, stopping when the desired recall has been achieved.
This is done by measuring the recall against the recall of AllPairs and
stopping when reaching 90%. In practice this approach is not feasible as
the size of the true result set is not known. However, it can be efficiently
estimated using sampling if it is not too small. Another approach is
to perform the number of repetitions required to obtain the theoretical
guarantees on recall as described for CPSJoin in Section 5.4.3 and for
MinHash in Section 5.5.2. Unfortunately, with our current analysis of
the CPSJoin algorithm the number of repetitions required to guarantee
theoretically a recall of 90% far exceeds the number required in practice
as observed in our experiments where ten independent repetitions always
suffice. For BayesLSH using LSH as the candidate generation method,
the recall probability with the default parameter setting is 95%, although
we experience a recall closer to 90% in our experiments.

Hardware. All experiments were run on an Intel Xeon E5-2690v4 CPU
at 2.60GHz with 35MB L3,256kB L2 and 32kB L1 cache and 512GB of
RAM. Since a single experiment is always confined to a single CPU
core we ran several experiments in parallel [156] to better utilize our
hardware.
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Table 5.2: Join time in seconds for AllPairs (ALL) and CPSJoin (CP) with recall≥ 90%.

Threshold 0.5 Threshold 0.6 Threshold 0.7 Threshold 0.8 Threshold 0.9

Dataset CP ALL CP ALL CP ALL CP ALL CP ALL

AOL 483.5 362.1 117.8 113.4 13.7 42.2 4.2 34.6 1.6 21.0
BMS-POS 62.5 27.0 20.9 7.1 5.6 2.7 1.3 2.0 0.2 0.9
DBLP 127.9 9.2 63.8 2.5 27.4 1.1 7.8 0.6 0.8 0.3
ENRON 78.0 6.9 23.2 4.4 6.0 2.4 1.6 1.6 0.4 0.7
FLICKR 17.2 48.6 6.0 30.9 2.5 13.8 1.0 6.3 0.3 3.4
KOSARAK 73.1 377.9 14.4 62.7 1.6 7.2 0.5 3.9 0.1 1.2
LIVEJ 571.7 131.3 145.3 48.7 30.6 28.2 7.1 16.2 1.5 9.2
NETFLIX 1354.7 25.3 520.4 8.2 177.3 4.8 46.2 2.4 5.4 1.6
ORKUT 359.7 26.5 106.4 15.4 36.3 8.0 12.2 7.4 3.7 4.8
SPOTIFY 0.5 2.5 0.3 1.5 0.2 1.0 0.1 1.0 0.1 0.5
TOKENS10K 312.1 3.4 236.8 2.9 164.0 1.5 114.9 0.6 63.2 0.2
TOKENS15K 688.4 4.4 535.3 4.0 390.4 1.8 258.2 0.7 140.0 0.2
TOKENS20K 1264.1 5.7 927.0 4.0 698.4 2.1 494.3 0.8 273.4 0.3
UNIFORM005 54.1 3.9 27.6 1.6 10.5 0.9 3.6 0.5 0.4 0.1

5.6.1 Results

Join time. Table 5.2 shows the average join time in seconds over five
independent runs, when approximate methods are required to have at
least 90% recall. We have omitted timings for BayesLSH since it was
always slower than all other methods, and in most cases it timed out after
20 minutes when using LSH as candidate generation method. The join
time for MinHash is always greater than the corresponding join time for
CPSJoin except in a single setting: the dataset KOSARAK with threshold
λ = 0.5. Since CPSJoin is typically 2− 4× faster than MinHash we can
restrict our attention to comparing AllPairs and CPSJoin where the
picture becomes more interesting.

Figure 5.2 shows the join time speedup that CPSJoin achieves over
AllPairs. We achieve speedups of between 2− 50× for most of the
datasets, with greater speedups at low similarity thresholds. For a
number of the datasets the CPSJoin algorithm is slower than AllPairs

for the thresholds considered here. Comparing with Table 5.1 it seems
that CPSJoin generally performs well on most data sets where tokens are
contained in a large number of sets on average (NETFLIX, UNIFORM,
DBLP), but is beaten by AllPairs on datasets that have a lot of “rare”
tokens (SPOTIFY, FLICKR, AOL). This is logical because rare tokens are
exploited by the sorted prefix-filtering in AllPairs. Without rare tokens
AllPairs will be reading long inverted indexes. This is a common theme
among all the current state-of-the-art exact methods examined in [107],
including PPJoin. CPSJoin is robust in the sense that it does not depend
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Figure 5.2: Join time of CPSJoin with at least 90% recall relative to AllPairs.

on the presence of rare tokens in the data to perform well. This difference
is showcased with the synthetic TOKEN data sets.

BayesLSH. The poor performance of BayesLSH compared to the other
algorithms (BayesLSH was always slower) can most likely be tracked
down to differences in the implementation of the candidate generation
methods of BayesLSH. The BayesLSH implementation uses an older
implementation of AllPairs compared to the implementation by Mann et
al. [107] which was shown to yield performance improvements by using
a more efficient verification procedure. The LSH candidate generation
method used by BayesLSH corresponds to the MinHash splitting step,
but with k (the number of hash functions) fixed to one. Our technique
for choosing k in the MinHash algorithm, aimed at minimizing the
total join time, typically selects k ∈ {3, 4, 5, 6} in the experiments. It
is therefore likely that BayesLSH can be competitive with the other
techniques by combining it with other candidate generation procedures.
Further experiments to compare the performance of BayesLSH sketching
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to 1-bit minwise sketching for different parameter settings and similarity
thresholds would also be instructive.

TOKEN datasets. The TOKENS datasets clearly favor the approximate
join algorithms where CPSJoin is two to three orders of magnitude faster
than AllPairs. By increasing the number of times each token appears
in a set we can make the speedup of CPSJoin compared to AllPairs

arbitrarily large as shown by the progression from TOKENS10 to TO-
KENS20. The AllPairs algorithm generates candidates by searching
through the lists of sets that contain a particular token, starting with rare
tokens. Since every token appears in a large number of sets every list
will be long.

Interestingly, the speedup of CPSJoin is even greater for higher sim-
ilarity thresholds. We believe that this is due to an increase in the gap
between the similarity of sets to be reported and the remaining sets that
have an average Jaccard similarity of 0.2. This is in line with our theo-
retical analysis of CPSJoin and most theoretical work on approximate
similarity search where the running time guarantees usually depend on
the approximation factor.

Candidates and verification. Table 5.4 compares the number of pre-
candidates, candidates, and results generated by the AllPairs and CP-
SJoin algorithms where the desired recall for CPSJoin is set to be greater
than 90%. For AllPairs the number of pre-candidates denotes all pairs
(x, y) investigated by the algorithm that pass checks on their size so
that it is possible that J(x, y) ≥ λ. The number of candidates is simply
the number of unique pre-candidates as duplicate pairs are removed
explicitly by the AllPairs algorithm.

For CPSJoin we define the number of pre-candidates to be all pairs
(x, y) considered by the BruteForcePairs and BruteForcePoint sub-
routines of Algorithm 2. The number of candidates are pre-candidate
pairs that pass size checks (similar to AllPairs) and the 1-bit minwise
sketching check as described in Section 5.5.1. Note that for CPSJoin the
number of candidates may still contain duplicates as this is inherent to
the approximate method for candidate generation. Removing duplicates
though the use of a hash table would drastically increase the space usage
of CPSJoin. For both AllPairs and CPSJoin the number of candidates
denotes the number of points that are passed to the exact similarity
verification step of the AllPairs implementation of Mann et al. [107].



5.6. Experiments 143

Table 5.3: Parameters of the CPSJoin algorithm, their setting during parameter experiments, and their
setting for the final join time experiments

Parameter Description Test Final

limit Brute force limit 100 250
` Sketch word length 4 8
t Size of MinHash set 128 128
ε Brute force aggressiveness 0.0 0.1
δ Sketch false negative prob. 0.1 0.05

Table 5.4 shows that for AllPairs there is not a great difference
between the number of pre-candidates and number of candidates, while
for CPSJoin the number of candidates is usually reduced by one or two
orders of magnitude for datasets where CPSJoin performs well. For
datasets where CPSJoin performs poorly such as AOL, FLICKR, and
KOSARAK there is less of a decrease when going from pre-candidates
to candidates. It would appear that this is due to many duplicate pairs
from the candidate generation step and not a failure of the sketching
technique.

5.6.2 Parameters

To investigate how parameter settings affect the performance of the
CPSJoin algorithm we run experiments where we vary the brute force
parameter limit, the brute force aggressiveness parameter ε, and the
sketch length in words `. Table 5.3 shows the parameter settings used
during theses experiments and the final setting used for our join time
experiments. Figure 5.3 shows the CPSJoin join time for different
settings of the parameters. By picking one parameter at a time we are
obviously ignoring possible interactions between the parameters, but the
stability of the join times lead us to believe that these interactions have
limited effect.

Figure 5.3 (a) shows the effect of the brute force limit on the join time.
Lowering limit causes the join time to increase due to a combination
of spending more time splitting sets into buckets and due to the lower
probability of recall from splitting at a deeper level. The join time is
relatively stable for limit ∈ {100, 250, 500}.

Figure 5.3 (b) shows the effect of brute force aggressiveness on the join
time. As we increase ε, sets that are close to the other elements in their
buckets are more likely to be removed by brute force comparing them to
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Figure 5.3: Relative join time for CPSJoin with at least 80% recall and similarity threshold λ = 0.5 for
different parameter settings of limit, ε, and w.
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all other points. The tradeoff here is between the loss of probability of
recall by letting a point continue in the Chosen Path branching process
versus the cost of brute forcing the point. The join time is generally
increasing with ε, but it turns out that ε = 0.1 is a slightly better setting
than ε = 0.0 for almost all data sets.

Figure 5.3 (c) shows the effect of sketch length on the join time. There
is a trade-off between the sketch similarity estimation time and the
precision of the estimate, leading to fewer false positives. For a similarity
threshold of λ = 0.5 using only a single word negatively impacts the
performance on most datasets compared to using two or more words.
The cost of using longer sketches seems neglible as it is only a few extra
instructions per similarity estimation so we opted to use ` = 8 words in
our sketches.

5.7 Conclusion

We provided experimental and theoretical results on a new randomized
set similarity join algorithm, CPSJoin, and compared it experimentally to
state-of-the-art exact and approximate set similarity join algorithms. CP-
SJoin is typically 2− 4 times faster than previous approximate methods.
Compared to exact methods it obtains speedups of more than an order
of magnitude on real-world datasets, while keeping the recall above 90%.
Among the datasets used in these experiments we note that NETFLIX and
FLICKR represents two archetypes. On average a token in the NETFLIX
dataset appears in more than 5000 sets while on average a token in the
FLICKR dataset appears in less than 20 sets. Our experiments indicate
that CPSJoin brings large speedups to the NETFLIX type datasets, while
it is hard to improve upon the perfomance of AllPairs on the FLICKR
type.

A direction for future work could be to tighten and simplify the
theoretical analysis. We conjecture that the running time of the algorithm
can be bounded by a simpler function of the sum of similarities between
pairs of points in S. We note that recursive methods such as ours lend
themselves well to parallel and distributed implementations since most
of the computation happens in independent, recursive calls. Further
investigating this is an interesting possibility.
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Table 5.4: Number of pre-candidates, candidates and results for ALL and CP with at least 90% recall.

Dataset Threshold 0.5 Threshold 0.7
ALL CP ALL CP

8.5E+09 7.4E+09 6.2E+08 2.9E+09
AOL 8.5E+09 1.4E+09 6.2E+08 3.1E+07

1.3E+08 1.2E+08 1.6E+06 1.5E+06
2.0E+09 9.2E+08 2.7E+08 3.3E+08

BMS-POS 1.8E+09 1.7E+08 2.6E+08 4.9E+06
1.1E+07 1.0E+07 2.0E+05 1.8E+05
6.6E+09 4.6E+08 1.2E+09 1.3E+08

DBLP 1.9E+09 4.6E+07 7.2E+08 4.3E+05
1.7E+06 1.6E+06 9.1E+03 8.5E+03
2.8E+09 3.7E+08 2.0E+08 1.5E+08

ENRON 1.8E+09 6.7E+07 1.3E+08 2.1E+07
3.1E+06 2.9E+06 1.2E+06 1.2E+06
5.7E+08 2.1E+09 9.3E+07 9.0E+08

FLICKR 4.1E+08 1.1E+09 6.3E+07 3.8E+08
6.6E+07 6.1E+07 2.5E+07 2.3E+07
2.6E+09 4.7E+09 7.4E+07 4.2E+08

KOSARAK 2.5E+09 2.1E+09 6.8E+07 2.1E+07
2.3E+08 2.1E+08 4.4E+05 4.1E+05
9.0E+09 2.8E+09 5.8E+08 1.2E+09

LIVEJ 8.3E+09 3.6E+08 5.6E+08 1.8E+07
2.4E+07 2.2E+07 8.1E+05 7.6E+05
8.6E+10 1.3E+09 1.0E+10 4.3E+08

NETFLIX 1.3E+10 3.1E+07 3.4E+09 6.4E+05
1.0E+06 9.5E+05 2.4E+04 2.2E+04
5.1E+09 1.1E+09 3.0E+08 7.2E+08

ORKUT 3.9E+09 1.3E+06 2.6E+08 8.1E+04
9.0E+04 8.4E+04 5.6E+03 5.3E+03
5.0E+06 1.2E+08 4.7E+05 8.5E+07

SPOTIFY 4.8E+06 3.1E+05 4.6E+05 2.7E+03
2.0E+04 1.8E+04 2.0E+02 1.9E+02
1.5E+10 1.7E+08 8.1E+09 4.9E+07

TOKENS10K 4.1E+08 5.7E+06 4.1E+08 1.9E+06
1.3E+05 1.3E+05 7.4E+04 6.9E+04
3.6E+10 3.0E+08 1.9E+10 8.1E+07

TOKENS15K 9.6E+08 7.2E+06 9.6E+08 1.9E+06
1.4E+05 1.3E+05 7.5E+04 6.9E+04
6.4E+10 4.4E+08 3.4E+10 1.0E+08

TOKENS20K 1.7E+09 8.8E+06 1.7E+09 1.9E+06
1.4E+05 1.4E+05 7.9E+04 7.4E+04
2.5E+09 3.7E+08 6.5E+08 1.3E+08

UNIFORM005 2.0E+09 9.5E+06 6.1E+08 3.9E+04
2.6E+05 2.4E+05 1.4E+03 1.3E+03
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Chapter 6

Lower bounds for asymmetric
locality-sensitive hashing

‘Deep roots are not reached by the frost’

A locality-sensitive hashing (LSH) scheme [91] for a set of objects X
equipped with a pairwise measure of similarity sim: X × X → R is a
distribution H over functions h : X → R such that the probability that
a pair of points in X collide under a randomly sampled h ∼ H is a
function of their similarity. That is, there exists a collision probability
function (CPF) f : R → [0, 1] such that for every x, y ∈ X we have
Prh∼H[h(x) = h(y)] = f (sim(x, y)).

To apply locality-sensitive hashing to solve the problem of approxi-
mate (s1, s2)-similarity search we are interested in finding the distribution
H with a CPF f that magnifies the gap between the collision probability
f (s1) of points with similarity at least s1 and the collision probability
f (s2) of points with similarity at most s2 < s1 where we assume that f is
non-decreasing. The performance of the solution will be governed by the
parameter ρ defined by f (s1) = f (s2)

ρ.
Asymmetric locality-sensitive hashing [150] extends locality-sensitive

hashing by using a distribution A over pairs of functions h, g : X → R
such that Pr(h,g)∼A[h(x) = g(y)] = f (sim(x, y)). The use of asymmetry
allows us to construct schemes where the probability of collision between
identical points is less than 1. Applications of asymmetric locality-
sensitive hashing include maximal inner product search [150], orthogonal
vector search [164], annulus queries [22], privacy-preserving similarity
estimation [22], and spherical range reporting [22].
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Contribution. We show lower bounds for asymmetric locality-sensitive
hashing schemes for the Boolean hypercube {−1, 1}d under cosine sim-
ilarity sim(x, y) = 〈x, y〉/d. Specifically, we will both upper and lower
bound the probability of randomly α-correlated points x, y ∈ {−1, 1}d

colliding under (h, g) ∼ A as a function of α and the probability that
randomly 0-correlated points collide under (h, g) ∼ A.

Theorem 6.1. Let A be a distribution over function pairs h, g : {−1, 1}d → R,
and define f̂ : [−1, 1] → [0, 1] as f̂ (α) = Pr[h(x) = g(y)] where x, y are
randomly α-correlated and (h, g) ∼ A. Then, for every α ∈ (−1, 1) we have

f̂ (0)
1+|α|
1−|α| ≤ f̂ (α) ≤ f̂ (0)

1−|α|
1+|α| .

As d increases the empirical correlation of a pair of randomly α-
correlated points will be concentrated around α. Theorem 6.1 can there-
fore be used to show that for α ≥ 0, asymmetric locality-sensitive hashing
for (α, 0)-cosine similarity search must have ρ = log( f (α))/ log( f (0)) ≥
1−α
1+α up to lower order terms. This lower bound on the ρ-value matches
an existing lower bound for standard locality-sensitive hashing [114, 19]
and matches the upper bound of cross-polytope LSH [13], showing that
asymmetry cannot help provide better hashing schemes for this problem.
Implicitly, this extension of the standard LSH lower bound to asymmetric
LSH for (α, 0)-cosine similarity search already follows from the space-
time tradeoff lower bounds for similarity search shown independently
by Andoni et al. [16] and Christiani [54].

Let α ≥ 0 and suppose we are interested in solving the (0,−α)-
similarity search problem under negative cosine similarity, i.e. we want
to report points with cosine similarity at most 0 while avoiding points
with cosine similarity greater than α. Theorem 6.1 lower bounds the ρ-
value of asymmetric locality-sensitive hashing schemes for this problem
by ρ = log( f (0))/ log( f (α)) ≥ 1−α

1+α up to lower order terms. This can
again be matched by a simple asymmetric version of cross-polytope LSH:
Let H denote the cross-polytope LSH, then we sample (h, g) ∼ A by
sampling h′ ∼ H and setting h(x) = h′(x) and g(x) = h′(−x). For more
details and related work see [22].

Techniques. The proof of Theorem 6.1 combines the small-set expan-
sion theorems by O’Donnell [120] with techniques inspired by the LSH
lower bound of Motwani et al. [114]. The (reverse) small-set expansion
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theorem (lower) upper bounds the probability that randomly α-correlated
points (x, y) end up in a pair of subsets A, B of the Boolean hypercube,
as a function of the size of these subsets. We are able to extend these
bounds for pairs of subsets of the Boolean hypercube to distributions
over pairs of functions through a sequence of applications of primarily
Jensen’s inequality.

6.1 Preliminaries

We begin by introducing the required tools from [120], starting with the
definition of randomly α-correlated pairs of points.

Definition 6.1. For −1 ≤ α ≤ 1 and x, y ∈ {−1, 1}d we say that (x, y) is
randomly α-correlated if x is uniformly distributed over {−1, 1}d and
each component of y is i.i.d. according to

yi =

{
xi with probability 1+α

2 ,
−xi with probability 1−α

2 .

Next we define a probabilistic version of the CPF for cosine similarity
on the Boolean hypercube. Theorem 6.1 provides upper and lower
bounds on the probabilistic CPF.

Definition 6.2 (Probabilistic CPF). Let A be a distribution over pairs
h, g : {−1, 1}d → R. We define the probabilistic CPF f̂ : [−1, 1] → [0, 1]
by

f̂ (α) = Pr
(h,g)∼D

(x, y) α-corr.

[h(x) = g(y)].

The proof of the lower bound will make use of the following technical
inequality that follows from two applications of Jensen’s inequality.

Lemma 6.1. Let p, q denote discrete probability distributions, then for every
c ≥ 1 we have that

∑
i
(piqi)

c ≥
(

∑
i

piqi

)2c−1

with reverse inequality for c ≤ 1.
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Proof. Assume c ≥ 1. By Jensen’s inequality, using the fact that x 7→ xc

and x 7→ x2−1/c are convex we have that

∑
i
(piqi)

c = ∑
i

pi(p1−1/c
i qi) ≥

(
∑

i
p2−1/c

i qi

)c

≥
(

∑
i

piqi

)2c−1

.

For c ≤ 1 we have that x 7→ xc and x 7→ x2−1/c are concave and the
inequality is reversed.

6.2 Lower bounding the collision probability

The reverse small-set expansion theorem lower bounds the probability
that random α-correlated points (x, y) end up in a pair of subsets A, B
of the Hamming cube, as a function of the size of these subsets. In the
following, for A ⊂ {−1, 1}d we refer to the quantity |A|/2d as the volume
of A.

Theorem 6.2 (Rev. Small-Set Expansion [120]). Let 0 ≤ α ≤ 1. Let A, B ⊆
{−1, 1}d have volumes exp(−a2/2), exp(−b2/2), respectively, where a, b ≥
0. Then we have that

Pr
(x,y)

α-corr.

[x ∈ A, y ∈ B] ≥ exp
(
−1

2
a2 + 2αab + b2

1− α2

)
.

In the following lemma we convert the lower bound in Theorem 6.2
into a lower bound on the probabilistic CPF.

Lemma 6.2. For every distribution A over function pairs h, g : {−1, 1}d → R
and α ∈ [0, 1) we have that f̂ (α) ≥ f̂ (0)

1+α
1−α .

Proof. For a function h : {−1, 1}d → R define its inverse image h−1 : R→
2{−1,1}d

by h−1(i) = {x ∈ {−1, 1}d | h(x) = i}. For a pair of functions
(h, g) ∈ D and i ∈ R we define ah,i, bg,i ≥ 0 such that |h−1(i)|/2d =

exp(−a2
h,i/2) and |g−1(i)|/2d = exp(−b2

g,i/2). For fixed (h, g) define

f̂h,g(α) = Pr(x, y) α-corr.[h(x) = g(y)]. We obtain a lower bound on f̂ (α) as
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follows:

f̂ (α) = E
(h,g)∼A

[
∑
i∈R

Pr
(x, y) α-corr.

[h(x) = g(y) = i]

]
(1)
≥ E

(h,g)∼A

[
∑
i∈R

exp

(
−1

2

a2
h,i + 2αah,ibg,i + b2

g,i

1− α2

)]
(2)
≥ E

(h,g)∼A

[
∑
i∈R

exp

(
−1

2

a2
h,i + b2

g,i

1− α

)]
(3)
≥ E

(h,g)∼A
f̂h,g(0)

1+α
1−α

(4)
≥
(

E
(h,g)∼A

f̂h,g(0)
) 1+α

1−α

= f̂ (0)
1+α
1−α .

Here, (1) is due to Theorem 6.2, (2) follows from the fact that (1+ α)(a2 +
b2) ≥ a2 + 2αab + b2, (3) follows from Lemma 6.1 with c = 1/(1− α),
and (4) follows from a standard application of Jensen’s Inequality.

6.3 Upper bounding the collision probability

We can re-apply the techniques behind Lemma 6.2 to upper bound
the probabilistic CPF. This is similar to the well-studied problem of
constructing LSH lower bounds and our results match known LSH
bounds [114, 19], showing that the asymmetry afforded by A does not
help us when we wish to maximize the gap in the collision probability
between random and α-correlated points as measured by the ρ-value.
As with Lemma 6.2, the following theorem by O’Donnell [120] is the
foundation of our upper bound on the probilistic CPF.

Theorem 6.3 (Gen. Small-Set Expansion). Let 0 ≤ α ≤ 1. Let A, B ⊆
{−1, 1}d have volumes exp(−a2/2), exp(−b2/2) and assume 0 ≤ αb ≤ a ≤
b. Then,

Pr
(x,y)

α-corr.

[x ∈ A, y ∈ B] ≤ exp
(
−1

2
a2 − 2αab + b2

1− α2

)
.

In the proof of the upper bound on the probabilistic CPF we can
without loss of generality assume that the family A satisfies the volume
restrictions that 0 ≤ αb ≤ a ≤ b from Theorem 6.3 on the parts of
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(h, g) ∼ A. The reason is that for a = αb the upper bound becomes
Prx∈{−1,1}d [x ∈ B] which is an upper bound for every 0 ≤ a < αb as well.
For completeness we include the proof of the upper bound.

Lemma 6.3. For every distribution A over function pairs h, g : {−1, 1}d → R
and α ∈ [0, 1) we have that f̂ (α) ≤ f̂ (0)

1−α
1+α .

Proof. Using the same notation as in the proof of Lemma 6.2 we derive
the upper bound as follows:

f̂ (α) = E
(h,g)∼A

[
∑
i∈R

Pr
(x, y) α-corr.

[h(x) = g(y) = i]

]
(1)
≤ E

(h,g)∼A

[
∑
i∈R

exp

(
−1

2

a2
h,i − 2αah,ibg,i + b2

g,i

1− α2

)]
(2)
≤ E

(h,g)∼A

[
∑
i∈R

exp

(
−1

2

a2
h,i + b2

g,i

1 + α

)]
(3)
≤ E

(h,g)∼A
f̂h,g(0)

1+α
1−α

(4)
≤
(

E
(h,g)∼A

f̂h,g(0)
) 1−α

1+α

= f̂ (0)
1−α
1+α .

Here, (1) is due to Theorem 6.3, (2) follows from the fact that (1− α)(a2 +
b2) ≤ a2 − 2αab + b2, (3) follows from Lemma 6.1 with c = 1/(1 + α),
and (4) follows from a standard application of Jensen’s Inequality.

6.4 Extension to negative correlation

We can extend the bounds from Lemma 6.2 and Lemma 6.3 to negative
values of α, essentially mirroring the bounds around α = 0, by showing
that an asymmetric LSH scheme A with a value of f̂ (α) that is too low or
too high for negative values of α will contradict the bounds we have for
positive values of α. The extension of the bounds to negative correlation
uses the following lemma to show contradictions:

Lemma 6.4. Suppose we have an asymmetric LSH A′ for {−1, 1}d with
probabilistic CPF f̂ ′, then the we can construct an asymmetric LSH A for
{−1, 1}d with probabilistic CPF f̂ (α) = f̂ ′(−α).



6.5. Conclusion and open problems 155

Proof. We sample (h, g) ∼ A by sampling (h′, g′) ∼ A′ and setting
h(x) = h′(x) and g(y) = g′(−y). The property that f̂ (α) = f̂ ′(−α)
follows from the fact that if (x, y) are randomly α-correlated then (x,−y)
are randomly −α-correlated.

We can now extend the bounds on the probabilistic CPF to prove
Theorem 6.1. For the upper bound, suppose for α ∈ [0, 1) that there
exists a family A′ with f̂ ′(−α) > f̂ ′(0)

1−α
1+α . According to Lemma 6.4 this

implies the existence of a family A with f̂ (α) > f̂ (0)
1−α
1+α , contradicting

Lemma 6.3. The argument for extending the lower bound is identical,
completing the proof of Theorem 6.1.

6.5 Conclusion and open problems

We have shown upper and lower bounds on the collision probability of
asymmetric locality-sensitive hashing schemes. The bounds are tight up
to lower order terms and match an existing symmetric LSH scheme on
the unit sphere and its natural asymmetric extension. An interesting
consequence of the upper bound is that asymmetry cannot improve the
ρ-value for the standard similarity search problem for random instances
in the Boolean hypercube.

The application of asymmetric locality-sensitive hashing to or-
thogonal vector search seeks a family A with a CPF f that peaks
at f (0) and is decreasing in |α| [164]. Currently the best known
upper bound on the ρ-value for orthogonal vector search is ρ =

log( f (0))/ log(max( f (−α), f (α))) = 1−α2

1+α2 which can be achieved by ten-
soring the input (squaring the cosine similarity between pairs of points)
and applying the standard cross-polytope LSH family, or by combining
standard cross-polytope LSH and its negated asymmetric version [22]
using the same technique as in Lemma 6.4. We conjecture that the current
upper bound is tight implying that the following bound must hold:

max( f̂ (−α), f̂ (α)) ≥ f̂ (0)
1+α2

1−α2 .

This bound can be characterized as a two-sided bound whereas Theorem
6.1 only provides one-sided upper and lower bounds. The problem of
obtaining a two-sided lower bound is related to the open symmetric
Gaussian problem [119].





Chapter 7

Optimal Boolean locality-sensitive hashing
‘The crownless again shall be king’

Theorem 7.1. For 0 ≤ β < α < 1 the distribution H over Boolean functions
h : {−1, 1}d → {−1, 1} that minimizes the expression

ρα,β =

log(1/ Pr h∼H
(x,y) α-corr.

[h(x) = h(y)])

log(1/ Pr h∼H
(x,y) β-corr.

[h(x) = h(y)])

assigns nonzero probability only to members of the set of dictator functions
h(x) = ±xi.

7.1 Introduction

We will be studying Boolean functions, i.e., functions that for a positive
integer d can be written in the form

h : {−1, 1}d → {−1, 1}.
We are concerned with the behavior of such Boolean functions on input
pairs x, y ∈ {−1, 1}d that are randomly generated.

Definition 7.1. For −1 ≤ α ≤ 1 and x ∈ {−1, 1}d we let Nα(x) denote
the distribution over {−1, 1}d where each component of y ∼ Nα(x) is
i.i.d. according to

yi =

{
xi with probability 1+α

2 ,
−xi with probability 1−α

2 .

We say that (x, y) is randomly α-correlated if x is uniformly distributed
over {−1, 1}d and y ∼ Nα(x).
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Let H denote a distribution over functions h : {−1, 1}d → R where R
is a finite set and define

pα = Pr
h∼H

(x,y) α-corr.

[h(x) = h(y)].

For 0 ≤ β < α ≤ 1 we wish to characerize the distributions that minimize
the expression

ρα,β =
log(1/pα)

log(1/pβ)
(7.1)

when we restrict H to be a distribution over Boolean functions
h : {−1, 1}d → {−1, 1}. The expression for ρα,β in equation (7.1) is a
well-known quantity in the study of approximate near neighbor search
governing the query time and space usage of solutions based on locality-
sensitive hashing [91].

7.2 Related work

Indyk and Motwani [91] introduced the uniform distribution over the set
of dictator functions as a family of locality-sensitive hash functions for
the Boolean hypercube. O’Donnell et al. [122] showed that for general
families H it must hold that ρα,β ≥ log(1/α)/ log(1/β). This matches the
upper bound of Indyk and Motwani [91] when α, β approach 1. Another
line of work[131, 19] using hypercontractive inequalities showed that
ρα,0 ≥ (1− α)/(1 + α), matching the upper bound of Andoni et al. [17].

The question of finding lower bounds for ρα,β for every choice of
0 ≤ β < α ≤ 1 is still open. In this note we answer the question for
distributions over Boolean functions, showing that the upper bound of
Indyk and Motwani is optimal. The resulting ρ-value is given by

ρα,β =
log((1 + α)/2)
log((1 + β)/2)

.

7.3 Preliminaries

We will be using tools from the Fourier analysis of Boolean functions to
find the minimum of ρα,β. For a more detailed overview we refer to the
book by O’Donnell [120]. We will be using the fact that Boolean functions
can be uniquely expressed as multilinear polynomials:
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Theorem 7.2. Every function f : {−1, 1}d → R can be uniquely expressed as
a multilinear polynomial

f (x) = ∑
S⊆[d]

f̂ (S)xS

where f̂ (S) ∈ R and xS = ∏i∈S xi.

For S ⊆ [d] we refer to f̂ (S) as the Fourier coefficient of f on S.
The two following Theorems define an inner product between Boolean
function and shows how it relates to their Fourier coefficents.

Theorem 7.3 (Plancherel’s Theorem). For any f , g : {−1, 1}d → R

〈 f , g〉 = E
x∼{−1,1}d

[ f (x)g(x)] = ∑
S⊆[d]

f̂ (S)ĝ(S).

The concept of Fourier weight will be useful when characterizing the
how Boolean functions behave on noisy inputs:

Definition 7.2. Let f : {−1, 1}d → R then we define the Fourier weight
of f at degree k ∈ [d] by

Wk[ f ] = ∑
S⊆[d]
|S|=k

f̂ (S)2.

When f = g is Boolean-valued we get that the sum of the squared
Fourier weights of f equals 1. This result is known as Parseval’s Theorem
and we will make use of it to determine where to place to Fourier weight
of f in order to minimize ρ.

Theorem 7.4 (Parseval’s Theorem). For any f : {−1, 1}d → {−1, 1}

〈 f , f 〉 = E
x∼{−1,1}d

[ f (x)2] = ∑
S⊆[d]

f̂ (S)2 =
d

∑
i=0

W i[ f ] = 1.

In order to study the behavior of Boolean functions under noise we
introduce the noise operator Tα.

Definition 7.3. For α ∈ [−1, 1] the noise operator with parameter α is the
linear operator Tα on functions f : {−1, 1}d → R defined by

Tα f (x) = E
y∼Nα(x)

[ f (y)].
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The Fourier expansion of Tα f (x) is given by ∑S⊆[d] α|S| f̂ (S)xS and it
follows from Plancherel’s Theorem that

〈 f , Tαg〉 = E
x∼{−1,1}d

[ f (x) E
y∼Nα(x)

[g(y)]]

= E
(x,y) α-corr.

[ f (x)g(y)] = ∑
S⊆[d]

α|S| f̂ (S)ĝ(S). (7.2)

In the analysis of our problem the following inequality will be used
several times. For the remainder of this Chapter we will use log x to
denote the natural logarithm of x.

Lemma 7.1. For x > 0 we have log x ≤ x − 1 with equality if and only if
x = 1.

7.4 Bit-sampling is optimal

Our approach will be to minimize ρα,β subject to the constraint that
members of H are Boolean functions h : {−1, 1}d → {−1, 1}. We begin
by making some observations to simplify the problem. For h ∼ H we
can directly relate the noise-sensitivity under random α-correlated inputs
to the collision probability.

E
h∼H

(x,y) α-corr.

[h(x)h(y)] = Pr
h∼H

(x,y) α-corr.

[h(x) = h(y)]− Pr
h∼H

(x,y) α-corr.

[h(x) 6= h(y)]

= pα − (1− pα)

= 2pα − 1.

Using Equation (7.2) we can write pα as follows:

pα = (1 + E
h∼H

(x,y) α-corr.

[h(x)h(y)])/2 = (1 +
d

∑
i=0

αiwi)/2

where we use wi to denote the expected Fourier weight of h ∼ H at
degree i defined by wi = Eh∼H ∑d

i=0 W i[h]. From Plancherel’s Theorem
we have that ∑d

i=0 wi = 1. We will now consider how to set w0, w1, . . . , wd
to minimize the expression

ρα,β =
log((1 + ∑d

i=0 αiwi)/2)

log((1 + ∑d
i=0 βiwi)/2)

.
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An optimal solution w∗0 , . . . , w∗d for this problem will yield an optimal
solution to the original problem, provided there actually exists a Boolean-
valued function satisfying the weight assignment. We will show that the
assignment w∗1 = 1 and w∗i = 0 for i 6= 1 minimizes ρα,β. The distribution
H therefore only assigns positive probability to functions h that have all
their Fourier weight concentrated at degree 1. It turns out that a Boolean
function satisfies this weight assignment if and only if it is a dictator
function.

Lemma 7.2. Let f : {−1, 1}d → {−1, 1} and suppose that W1[ f ] = 1, then
f (x) = ±xi.

Proof. From Parseval’s Theorem we know that ∑i W i[ f ] = 1 and it follows
that f̂ (S) = 0 for |S| 6= 1. The function f can therefore be written
on the form f (x) = ∑d

i=1 f̂ixi where f̂i = f̂ (S) for S = {i}. By the
condition W1[ f ] = 1 there exists j ∈ [d] such that f̂ j 6= 0. Fix the d− 1
components xi 6=j of x and note that since f maps to {−1, 1} the sum
f (x) = f̂ jxj + ∑i 6=j f̂ixi must satisfy f (x) = ±1 when xj = ±1. For
f̂ j 6= 0 this is only possible when f̂ j = ±1 which implies that f̂i = 0
for i 6= j. It follows that f must be one of the 2d functions of the form
f (x) = ±xi.

7.4.1 Optimal Fourier weight at degree zero

We begin by arguing that we can restrict our attention to showing that
dictator functions are optimal in the case where 0 < β < α < 1. If α = 1
then for w1 = 1 we have that ρ = 0 which is the best we can hope for
(but this could also be achieved by other weight assignments, hence the
statement of the main theorem is for α < 1.). For β = 0 the following
Lemma showing that w∗0 = 0 combined with the fact that for this setting
we maximize pα by setting w1 = 1 shows that the dictator functions are
optimal. We will now show that an optimal solution has no Fourier
weight at degree zero.

Lemma 7.3. w∗0 = 0.

Proof. If w0 = 1 we have ρ = 1 and it is clear that ρ < 1 if we set
w1 = 1. Suppose that 0 < w∗0 < 1. We will show that in this case we
can move some weight from w0 to w1 and decrease the value of ρ. For
a given weight assignment define s(α) = ∑i αiwi and write w1 as w1 =
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1− ∑j 6=i wj. The partial derivative of ρ = log((1 + s(α))/2)/ log((1 +
s(β))/2) with respect to w0 is given by

∂ρ

∂w0
=

∂s(α)/∂w0
1+s(α) log 1+s(β)

2 − ∂s(β)/∂w0
1+s(β)

log 1+s(α)
2

log2 1+s(β)
2

.

By rearranging and using that ∂s(α)/∂w0 = 1− α we find that ∂ρ
∂w0

> 0 is
equivalent to

1 + s(β)

1− β
log

1 + s(β)

2
>

1 + s(α)
1− α

log
1 + s(α)

2
.

It suffices to show that the function g(x) = 1+s(x)
1−x log 1+s(x)

2 is decreasing
for 0 < x < 1.

∂g
∂x

=
s′(x)(1− x) + (1 + s(x))

(1− x)2 log
1 + s(x)

2
+

s′(x)
1− x

.

Rewriting, this is equivalent to showing that

(s′(x)(1− x) + 1 + s(x)) log
1 + s(x)

2
+ (1− x)s′(x) < 0.

By the assumption that 0 < w0 < 1 we have that 0 < s(x) < 1 and using
Lemma 7.1 we get that log((1 + s(x))/2) < (s(x) − 1)/2. The above
condition then simplifies to showing that s′(x)(1− x) + s(x) ≤ 1. The
function s(x) = ∑i wixi is a weighted sum of simple monomials where the
weights sum to one. It therefore suffices to show that the inequality holds
for every monomial sk(x) = xk where k = {0, 1, . . . , d}. For k = 0 and
k = 1 we have s′k(x)(1− x) + sk(x) = 1 satisfying the desired inequality.
For k ≥ 2 we have s′k(x)(1− x) + sk(x) = kxk−1 + (k− 1)xk. We see that
sk(0) = 0 and sk(1) = 1 and by inspecting the derivative of sk(x) we see
that it is increasing for x ∈ (0, 1). It follows that the inequality is satisfied,
completing the proof.

7.4.2 A continuous optimization problem

In order to simplify the problem of minimizing ρ we will optimize over
a larger space. In particular we will let W denote a collection of pairs
(w, k) such that ∑w∈W w = 1 where we restrict k ∈ R to satisfy k ≥ 1.
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We define s(x) = ∑(w,k)∈W wxk and we will now attempt to specify the
function s that minimizes

ρα,β =
log 1+s(α)

2

log 1+s(β)
2

subject to the constraint that s(β) = b ≤ β is fixed. The constraint that
s(β) ≤ β follows from the restrictions on s. We can therefore write
b = βγ for some γ ≥ 1. For fixed s(β) it is clear that we minimize ρ by
maximizing s(α).

Lemma 7.4. For fixed s(β) = βγ we maximize s(α) by setting s(x) = xγ.

Proof. Let w denote the weight on the exponent γ in the specification W
of s. We will prove that if w < 1 then we can increase s(α) by rearranging
the weights of s to put more weight onto (w, γ). Note that if w < 1 and
we have a valid configuration there must exist exponents γ0 < γ < γ1
such that there is positive weight on γ0 and γ1. If all the remaining
weight was concentrated to either side of γ the condition s(β) = βγ

would be violated. We will now move ε0 weight from w0 to w and ε1
weight from w1 to w where we set ε0, ε1 to ensure that s(β) = βγ after
the move. It turns out that this condition is satisfied for the following
ratio

ϕ(β) = ε1/ε0 =
βγ0 − βγ

βγ − βγ1
> 0.

The change in s(α) due to the rearrangement of weights can be shown
to be positive if ϕ(α) < ϕ(β). Therefore, it suffices to show that ϕ(x)
is decreasing for 0 < x < 1 when γ0 < γ < γ1. To simplify further,
we define λ0 = γ0 − γ and λ1 = γ1 − γ which satisfy λ0 < 0 < λ1.
Rewriting ϕ(x) = −(1− xλ

0 )/(1− xλ
1 ) and differentiating we get

∂ϕ

∂x
= λ0xλ0(1− xλ1 − λ1xλ1(1− xλ0) < 0

⇐⇒ λ0xλ0

1− xλ0
>

λ1xλ1

1− xλ1
.

It suffices to show that ψ(x) = xax

1−ax is decreasing in x for a ∈ (0, 1). We
have that ψ′(x) = ax(1− ax)+ ax log ax. Define z = ax and note that z > 0
and z 6= 1. We have that z(1− z) + z log z < 0 ⇐⇒ (1− z) + log z < 0
and by Lemma 7.1 we see that log z < z− 1, completing the proof.
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7.4.3 Univariate analysis

According to Lemma 7.4 we can now restrict our attention to the problem
of finding γ ≥ 1 that minimizes the function

ρ(γ) =
log 1+αγ

2

log 1+βγ

2

.

We will show the derivative of ρ is positive, implying that it is minimized
when γ = 1.

Lemma 7.5. ρ′(γ) > 0.

Proof. From inspecting the derivative of ρ with respect to γ we see that

∂ρ

∂γ
> 0

⇐⇒ αγ log α

1 + αγ
log

1 + βγ

2
− βγ log β

1 + βγ
log

1 + αγ

2
> 0

⇐⇒ 1 + βγ

βγ log β
log

1 + βγ

2
>

1 + αγ

αγ log α
log

1 + αγ

2
.

Therefore it suffices to show that the function g(x) = 1+xγ

xγ log x log 1+xγ

2 is
decreasing for 0 < x < 1 and γ ≥ 1. From inspecting g′(x) we see that
the condition that g′(x) < 0 is equivalent to

−(1 + xγ + γ log x) log
1 + xγ

2
+ γxγ log x < 0

If 1 + xγ + γ log x ≥ 0 then the condition is satisfied and we are done.
Otherwise we can use the fact that −(1 + xγ + γ log x) > 0 together with
Lemma 7.1 to produce following derivation:

− (1 + xγ + γ log x) log
1 + xγ

2
+ γxγ log x

< −(1 + xγ + log xγ)
xγ − 1

2
+ xγ log xγ

= 1− x2γ + (1 + xγ) log xγ

Reapplying Lemma 7.1 we see that (1 + xγ) log xγ < (1 + xγ)(xγ − 1) =
−(1− x2γ) completing the proof.
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7.4.4 Stating the result

We will now summarize how the results from the previous subsections
yield Theorem 7.1. To find the the distribution over Boolean functions
minimizing ρ we first considered the optimal weight assignment in
the expression s(x) = ∑i wiα

i subject to the constraint that ∑i wi = 1.
Finding an optimal assignment does not guarantee that we have solved
the problem, because there may not exist a Boolean function with a
given weight assignment, but if one or more Boolean functions that
satisfy the optimal assignment exists we will have solved the problem. In
Lemma 7.3 we showed that an optimal solution w∗0 , w∗1 , . . . w∗d must have
w∗0 = 0. Therefore the optimal solution can only have non-zero weight
on exponents k ≥ 1. Next, in Lemma 7.4, we argued that if we allow
continuous exponents k ∈ R with k ≥ 1 in s(x) then the problem of
minimizing ρ becomes the problem of selecting γ ≥ 1 where s(x) = xγ.
Lemma 7.5 showed that ρ(γ) is decreasing, so to minimize ρ we want
to set γ = 1. The conclusion from these optimization problems is that
we minimize ρ by setting w∗1 = 1. Finally Lemma 7.2 shows that the
subset of the Boolean functions with w1 = 1 is exactly the set of dictator
functions f (x) = ±xi. Together with the fact that w∗1 = 1 is a unique
minimum of ρ in the weight assignment problem we get Theorem 7.1

7.5 Open problems

Orthogonal search. It appears that the same techniques can be used
to show that pairs of functions of the form f (x) = xixj, g(y) = −xixj
minimize the function

log(1/ min(pα, p−α))

log(1/ max(pβ, p−β))
.

Extension to negative correlation. It seems likely that the dictator func-
tions or bit-sampling minimizes ρ for the entire interval −1 ≤ β < α ≤ 1.
Unfortunately the current proof breaks down in places.

General hash functions. Showing tight bounds for hash function with
an arbitrary range is an interesting open problem. For orthogonal search
this is an open problem even in the case of ρα,0. For more information
see the symmetric Gaussian problem in [119].



166 Chapter 7. Optimal Boolean locality-sensitive hashing

Investigating what the implications of the results in this paper for
functions with an arbitrary range through the use of 1-bit hashing is an
interesting problem.

Simpler proof. The current proof seems needlessly complicated and
inelegant. Perhaps some properties of the ratio of logarithms could be
established and a simple proof would follow.

Exact relation to standard LSH. Find out when an LSH for Hamming
space in the standard formulation violates the lower bound in this paper.

Asymmetric LSH and set similarity search. Investigate whether the
same techniques can be used to show optimal 1-bit schemes for a boolean
anti-LSH and for set similarity search.



Part II

Pseudorandomness





Chapter 8

Generating k-independent random variables
in constant time

‘The old that is strong does not wither’

The generation of pseudorandom elements over finite fields is funda-
mental to the time, space and randomness complexity of randomized
algorithms and data structures. We consider the problem of generat-
ing k-independent random values over a finite field F in a word RAM
model equipped with constant time addition and multiplication in F,
and present the first nontrivial construction of a generator that outputs
each value in constant time, not dependent on k. Our generator has
period length |F|poly log k and uses k poly(log k) log |F| bits of space,
which is optimal up to a poly log k factor. We are able to bypass Siegel’s
lower bound on the time-space tradeoff for k-independent functions by a
restriction to sequential evaluation.

8.1 Introduction

Pseudorandom generators transform a short random seed into a longer
output sequence. The output sequence has the property that it is indis-
tinguishable from a truly random sequence by algorithms with limited
computational resources. Pseudorandom generators can be classified
according to the algorithms (distinguishers) that they are able to fool.
An algorithm from a class of algorithms that is fooled by a generator
can have its randomness replaced by the output of the generator, while
maintaining the performance guarantees from the analysis based on
the assumption of full randomness. When truly random bits are costly
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to generate or supplying them in advance requires too much space, a
pseudorandom generator can reduce the time, space and randomness
complexity of an algorithm.

This paper presents an explicit construction of a pseudorandom gen-
erator that outputs a k-independent sequence of values in constant time
per value, not dependent on k, on a word RAM [85]. The generator
works over an arbitrary finite field that allows constant time addition
and multiplication over F on the word RAM.

Previously, the most efficient methods for generating k-independent
sequences were either based on multipoint evaluation of degree k− 1
polynomials, or on direct evaluation of constant time hash functions.
Multipoint evaluation has a time complexity of O(log2 k log log k) field
operations per value while hash functions with constant evaluation time
use excessive space for non-constant k by Siegel’s lower bound [152]. We
are able to get the best of both worlds: constant time generation and
near-optimal seed length and space usage.

Significance. In the analysis of randomized algorithms and in the hash-
ing literature in particular, k-independence has been the dominant frame-
work for limited randomness. Sums of k-independent variables have
their jth moment identical to fully random variables for j ≤ k which
preserves many properties of full randomness. For output length n,
Θ(log n)-independence yields Chernoff-Hoeffding bounds [144] and ran-
dom graph properties [7], while Θ(poly log n)-independence suffices to
fool AC0 circuits [29].

Our generator is particularly well suited for randomized algorithms
with time complexity O(n) that use a sequence of k-independent variables
of length n, for non-constant k. For such algorithms, the generation of
k-independent variables in constant time by evaluating a hash function
over its domain requires space O(nε) for some constant ε > 0. In
contrast, our generator uses space O(k poly log k) to support constant
time generation. Algorithms for randomized load balancing such as
the simple process of randomly throwing n balls into n bins fit the
above description and presents an application of our generator. Using
the bounds by Schmidt et al. [144, Theorem 2] it is easy to show that
Θ(log n/ log log n)-independence suffices to obtain a maximal load of
any bin of O(log n/ log log n) with high probability. This guarantee on
the maximal load is asymptotically the same as under full randomness.
Using our generator, we can allocate each ball in constant time using
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space O(log n poly log log n) compared to the lower bound of O(nε) of
hashing-based approaches to generating k-independence. In Section
8.7 we show how our generator improves upon existing solutions to a
dynamic load balancing problem.

The generation of pseudorandomness for Monte Carlo experiments
presents another application. Limited independence between Monte
Carlo experiments can be shown to yield Chernoff-like bounds on the
deviation of an estimator from its expected value. Consider a randomized
algorithm A(Y) that takes m random elements from F encoded as a
string Y and returns a value in the interval [0, 1]. Let µA > 0 denote the
expectation of the value returned by A(Y) under the assumption that Y
encodes a truly random input. Define the estimator

µ̂A =
1
t

t

∑
i=1
A(Yi).

Due to a result by Schmidt et al. [144, Theorem 5], for every choice
of constants ε, α > 0, it suffices that Y1, . . . , Yt encodes a sequence of
Θ(m log t)-independent variables over F to yield the following high
probability bound on the deviation of µ̂A from µA.

Pr[|µ̂A − µA| ≥ εµA] ≤ O(t−α).

We hope that our generator can be a useful tool to replace heuristic meth-
ods for generating pseudorandomness in applications where theoretical
guarantees are important. In order to demonstrate the practicality of our
techniques, we present experimental results on a variant of our gener-
ator in Section 8.8. Our experiments show that k-independent values
can be generated nearly as fast as output from heuristic pseudorandom
generators, even for large k.

Methods. Our construction is a surprisingly simple combination of
bipartite unique neigbor expanders with multipoint polynomial eval-
uation. The basic, probabilistic construction of our generator pro-
ceeds in two steps: First we use multipoint evaluation to fill a table
with Θ(k)-independent values from a finite field, using an average of
poly log k operations per table entry. Next we apply a bipartite unique
neighbor expander with constant outdegree and with right side nodes
corresponding to entries in the table and a left side that is poly log k times
larger than the right side. For each node in the left side of the expander
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we generate a k-independent value by returning the sum of its neighbor-
ing table entries. Our main result stated in Theorem 1 uses the same
idea, but instead of relying on a single randomly constructed expander
graph, we employ a cascade of explicit constant degree expanders and
show that this is sufficient for constant time generation.

Relation to the literature. Though the necessary ingredients have been
known for around 10 years, we believe that a constant time generator
has evaded discovery by residing in a blind spot between the fields of
hashing and pseudorandom generators. The construction of constant
time k-independent hash functions has proven to be a difficult task, and
a fundamental result by Siegel [152] shows a time-space tradeoff that
require hashing-based generators with sequence length n to use O(nε)
space for some constant ε > 0. On the other hand, from the point
of view of pseudorandom generators, a generator of k-independent
variables, for super-constant k, can not be used as an efficient method
of derandomization: A lower bound by Chor et al. [52] shows that the
sample space of such generators must be superpolynomial in their output
length. Specifically, a k-independent generator that outputs n bits must
have a seed length of Ω(k log n) bits. Consequently, research shifted
towards generators that produce other types of outputs such as biased
sequences or almost k-independent variables [8, 116, 79].

It is relevant to ask whether there already exist constructions of
constant time pseudorandom generators on the word RAM that can
be used instead of generators that output k-independent variables. For
example, Nisan’s pseudorandom generator [118] uses constant time to
generate a pseudorandom word and has remarkably strong properties:
Every algorithm running in space(s) that uses n random words can have
its random input replaced by the output of a constant time generator
with seed length O(s log n). The probability that the outcome of the
algorithm differs when using pseudorandomness as opposed to statistical
randomness is exponentially decreasing in the seed length.

In spite of this strong result, there are many natural applications
where the restrictions on Nisan’s model means that we cannot use his
generator directly to replace the use of a k-generator. An example is
the analysis that uses a union bound over all subsets of k words of a
randomly generated structure described by n words. Algorithms shown
to be derandomized by Nisan’s generator are restricted to one-way
access to the output of the generator. Therefore the output of Nisan’s
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generator can not be used to derandomize an algorithm that tests for the
events of the union bound without using excessive space. In this case,
k-independence can directly replace the use of full randomness without
changing the analysis.

8.1.1 Our contribution

We present three improved constructions of k-generators, formally defined
in Section 8.2, that are able to generate a sequence of k-independent
values over a finite field F. Our results are stated in a word RAM model
equipped with constant time addition and multiplication in F. Our main
result is a fully explicit generator:

Theorem 8.1. For every finite field F with constant time arithmetic there
exists a data structure that for every choice of k is an explicit constant time
k-generator with range F, period |F|poly log k, and seed length, space usage
and initialization time k poly log k.

We further investigate how the space usage and seed length may
be reduced by employing a probabilistic construction that has a certain
probability of error:

Theorem 8.2. For every finite field F with constant time arithmetic and every
choice of constants ε, δ > 0 there exists a data structure that for every choice of k
is a constant time k-generator with failure probability δ, range F, period |F|, seed
length O(k), space usage O(k log2+ε k), and initialization time O(k poly log k).

Finally, we improve existing k-generators with optimal space com-
plexity:

Theorem 8.3. For every finite field F that supports computing the discrete
Fourier transform of length k in O(k log k) operations, there exists a data
structure that, for every choice of k and given a primitive element ω, is an
explicit O(log k) time k-generator with range F, period |F|, seed length k, space
usage O(k), and initialization time O(k log k).

Table 8.1 summarizes our results along with previous methods of
generating sequences of k-independent values over F. The length of the
output is at least |F| for all the different methods.
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Construction Time Space Comment

Polynomials [92, 42] O(k) O(k)
Multipoint [165] O(log2 k log log k) O(k log k)
Multipoint [27] O(log k log log k) O(k) Requires ω.
Siegel [152] O(1) O(|F|ε) Probabilistic.
Theorem 8.1 O(1) k poly log k Explicit.
Theorem 8.2 O(1) O(k log2+ε k) Probabilistic.
Theorem 8.3 O(log k) O(k) Requires ωk, FFT.

Table 8.1: Overview of generators that produce a k-independent sequence over a finite field F. We use
ε to denote an arbitrary positive constant and ω and ωk to denote, respectively, a primitive element
and a k-th root of unity of F. The unit for space is the number of elements of F that need to be stored,
i.e., a factor log2 |F| from the number of bits. Probabilistic constructions rely on random generation of
objects for which no explicit construction is known, and may fail with some probability.

Overview of paper In Section 8.2 we define k-generators and related
concepts and review results that lead up to our main results. Section 8.3
presents the details of our explicit construction of constant time gener-
ators. In Section 8.4 we apply the same techniques with a probabilistic
expander construction to obtain generators with improved space and
randomness complexity. Section 8.5 presents an algorithm for evaluating
a polynomial over all elements of F that improves existing generators
with optimal space. Section 8.6 shows how arithmetic over Fp can be
implemented in constant time on a standard word RAM with integer
multiplication and also reviews algorithms and the state of hardware
support for F2w . Section 8.7 applies our generator to improve the time-
space tradeoff of previous solutions to a load balancing problem. Section
8.8 presents experimental results on the generation time of different
k-generators for a range of values of k.

8.2 Preliminaries

We begin by defining two fundamental concepts:

Definition 8.1. A sequence (X1, X2, . . . , Xn) of n random variables with
finite range R is an (n, k)-sequence if the variables at every set of k posi-
tions in the sequence are independent and uniformly distributed over
R.
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Definition 8.2. A family of functions F ⊆ { f | f : U → R} is k-
independent if for every set of k distinct inputs x1, x2, . . . , xk it holds
that f (x1), f (x2), . . . , f (xk) are independent and uniformly distributed
over R when f is selected uniformly at random from F . We say that
a function f selected uniformly at random from F is a k-independent
function.

We now give a formal definition of the generator data structure.

Definition 8.3. A k-generator with range R, period n and failure probabil-
ity δ is a data structure with the following properties:

• It supports an initialization operation that takes a random seed s as
input.

• After initialization it supports an emit() operation that returns a
value from R.

• There exists a set B such that Pr[s ∈ B] ≤ δ and conditioned on
s 6∈ B the sequence (X1, X2, . . . , Xn) of values returned by emit()
is an (n, k)-sequence.

A k-generator is explicit if the initialization and emit operation has time
complexity poly k and the probability of failure is zero. We refer to a
k-generator as a constant time k-generator if the emit() operation has
time complexity O(1), not dependent on k.

A k-generator differs from a data structure for representing a k-
independent hash function by only allowing sequential access to the
underlying (n, k)-sequence. It is this restriction on generators that allows
us to obtain a better time-space tradeoff for the problem of generating
k-independent variables than is possible by using a k-independent hash
function directly as a generator. We are interested in the following pa-
rameters of k-generators: seed length, period, probability of failure, space
needed by the data structure, the time complexity of the initialization
operation and the time complexity of a single emit() operation.

Model of computation. Our results are stated in the word RAM model
of computation with word length w = Θ(log |F|) bits. In addition to the
standard bit manipulation and integer arithmetic instructions, we also
assume the ability to perform arithmetic operations (+,−,×) over F in
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constant time. In the context of our results that use abelian groups (A,+)
we assume that an element of A can be stored in a constant number of
words and that addition can be performed in constant time.

Let Fq denote a field of cardinality q = pz for p prime and z a positive
integer. Constant time arithmetic in Fp is supported on a standard word
RAM with integer multiplication [82]. Section 8.6 presents additional
details about the algorithms required to implement finite field arithmetic
over Fp and F2w and how they relate to a standard word RAM with
integer multiplication.

8.2.1 k-independent functions from the literature

We now review the literature on k-independent functions and how they
can be used to construct k-generators. We distinguish between a k-
independent function f : U → R and a k-independent hash function by
letting the latter refer to a data structure that after initialization supports
random access to the (n, k)-sequence defined by evaluating f over U.
There exists an extensive literature that focuses on how to construct
k-independent hash functions that offer a favorable tradeoff between
representation space and evaluation time [69]. We note that a family of
k-independent hash functions can be used to construct a k-generator by
setting the seed to a random function in the family.

Constant time k-independent hash functions. A fundamental cell
probe lower bound by Siegel [152] shows that a data structure to sup-
port constant time evaluation of f on every input in U cannot use less
than Ω(|U|ε) space for some constant ε > 0. This bound holds even
for amortized constant evaluation time over functions in the family and
elements in the domain. From Siegel’s lower bound, it is clear that we
cannot use k-independent hash functions directly to obtain a constant
time k-generator that uses only O(k poly log k) words of space.

Known constructions of k-independent hash functions with constant
evaluation time are based on expander graphs. Siegel [152] gave a
probabilistic construction of a family of k-independent hash functions in
the word RAM model based on an iterated product of bipartite expander
graphs. Thorup [159] showed that a simple tabulation hash function
with high probability yields the type of expander graphs required by
Siegel’s construction. Unfortunately only randomized constructions of
the expanders required by these hash functions is known, introducing a
positive probability of error in k-generators based on them.
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Polynomials. Here we briefly review the classic construction of k-
independent functions based on polynomials over finite fields.

Lemma 8.1 (Joffe [92], Carter and Wegman [42]). For every choice of finite
field F and every k ≤ |F|, let Hk ⊂ F[X] be the family of polynomials of degree
at most k − 1 over F. Hk ⊂ { f | f : F→ F} is a family of k-independent
functions.

An advantage of using families of polynomials as hash functions is
that they use near optimal randomness, allow any choice of k ≤ |F|,
and have no probability of failure. It can also be noted that in the
case where k = O(log |F|) and we are restricted to linear space O(k),
polynomial hash functions evaluated using Horner’s scheme are optimal
k-independent hash functions [101, 152].

Using slightly more space and for sufficiently large k, a data structure
by Kedlaya and Umans [96] supports evaluation of a polynomial of
degree k over F. The space usage and preprocessing time of their data
structure is k1+ε log1+o(1) |F| for constant ε > 0. After preprocessing a
polynomial f , the data structure can evaluate f in an arbitrary point of F

using time poly(log k) log1+o(1) |F|.

Multipoint evaluation. Using algorithms for multipoint evaluation of
polynomials we are able to obtain a k-generator with poly log k genera-
tion time and space usage that is linear in k. Multipoint evaluation of a
polynomial f ∈ F[X] of degree at most k− 1 in k arbitrary points of F

has a time complexity of O(k log2 k log log k) in the word RAM model
that supports field operations [165, Corollary 10.8]. Bostan and Schost
[27] mention an algorithm for multipoint evaluation of f over a geomet-
ric progression of k elements with running time O(k log k log log k). In
order to use this method to construct a k-generator with period |F| it
is necessary to know a primitive element ω of Fq so we can perform
multipoint evaluation over F∗ = {ω0, ω1, . . . , ωq−2}. Given the prime
factorization of q− 1 there exists a Las Vegas algorithm for finding ω

with expected running time O(log4 q) [147, Chapter 11]. In the following
lemma we summarize the properties of k-generators based on multipoint
evaluation of polynomials over finite fields.

Lemma 8.2 (Gathen and Gerhard [165, Corollary 10.8], Bostan and Schost
[27]). For every finite field F there exists for every k ≤ |F| and bijection
π : [|F|] → F an explicit k-generator with period |F| and seed length k.
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The space required by the generator and the initialization and generation time
depends on the choice of π and multipoint evaluation algorithm.

• For arbitrary choice of π there exists a k-generator with generation time
O(log2 k log log k), intialization time O(k log2 k log log k) and space us-
age O(k log k).

• Given a primitive element ω of F and a bijection π(i) = ωi there exists
a generator with generation time O(log k log log k), initialization time
O(k log k log log k) and space usage O(k).

Space lower bounds. Since randomness can be viewed as a resource
like time and space, we are naturally interested in generators that can
output long k-independent sequences using as few random bits as pos-
sible. Families of k-independent functions f : U → R with U = R and
k ≤ |U| will trivially have to use at least k log |U| random bits — a
bound matched by polynomial hash functions. We are often interested in
generators with |U| � |R|, for example if we wish to use a generator for
randomized load balancing in the heavily loaded case. A lower bound
by Chor et al. [52] shows that even in this case the minimal seed length
required for k-independence is Ω(k log |U|) for every |R| ≤ |U|.

8.2.2 Expander graphs

All graphs in this paper are bipartite with cm vertices on the left side, m
vertices on the right side and left outdegree d. Graphs are specified by
their edge function Γ : [cm]× [d]→ [m] where the notation [n] is used to
denote the set {0, 1, . . . , n− 1}. Let S be a subset of left side vertices. For
convenience we use Γ(S) to denote the neighbors of S.

Definition 8.4. The bipartite graph Γ : [cm] × [d] → [m] is
(c, m, d, k)-unique (k-unique) if for every S ⊆ [cm] with |S| ≤ k there
exists y ∈ Γ(S) such that y has a unique neighbor in S. An expander
graph is explicit if it has a deterministic description and Γ is computable
in time polynomial in log cm + log d.

The performance of our generator constructions are directly tied to
the parameters of such expanders. In particular, we would like explicit
expanders that simultanously have a low outdegree d, are highly un-
balanced and are k-unique for k as close to m as possible. A direct
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application of a result by Capalbo et al. [39, Theorem 7.1] together
with an equivalence relation between different types of expander graphs
from Ta-Shma et al. [155, Theorem 8.1] yields explicit constructions of
unbalanced unique neighbor expanders.1

Lemma 8.3 (Capalbo et al. [39, Theorem 7.1]). For every choice of c and
m there exists a (c, m, d, k)-unique expander with d = poly log c and k =
Ω(m/d). For constant c the expander is explicit.

We note the following simple technique for constructing a larger
k-unique expander from a smaller k-unique expander.

Lemma 8.4. Let Γ be a (c, m, d, k)-unique expander with cm× m adjacency
matrix M. For any positive integer b define Γ(b) as the bipartite graph with
block diagonal adjacency matrix M(b) = diag(M, . . . , M) with b blocks in the
diagonal. Then Γ(b) is a (c, bm, d, k)-unique expander.

From expanders to independence. By associating each right vertex in
a (c, m, d, k)-unique expander with a position in a (m, dk)-sequence over
an abelian group (A,+), we can generate a (cm, k)-sequence over A.
This approach was pioneered by Siegel and has been used in different
constructions of families of k-independent hash functions [152, 159].

Lemma 8.5 (Siegel [152, Lemma 2.6, Corollary 2.11]). Let Γ : [cm]× [d]→
[m] be a k-unique expander and let h : [m]→ A be a dk-independent function
with range an abelian group. Let g : [cm]→ A be defined as

g(x) = ∑
y∈Γ({x})

h(y).

Then g is a k-independent function.

8.3 Explicit constant time generators

In this section we show how to obtain a constant time k-generator by
combining an explicit poly k-generator with a cascading composition
of unbalanced unique neighbor expanders. Our technique works by
generating a small number of highly independent elements in an abelian

1We state the results here without the restriction from [39] that c and m are powers
of two. We do this to simplify notation and it only affects constant factors in our results.
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group and then successively applying constant degree expanders to
produce a greater number of less independent elements. We continue
this process up until the point where the final number of elements is
large enough to match the cost of generating the smaller batch of highly
independent elements.

The generator has two components. The first component is an explicit
m-generator g0 : [n] → A with period n and range an abelian group
A. The second component is an explicit sequence (Γi)

t
i=1 of unbalanced

unique neighbor expanders. The expanders are constructed such that
the left side of the ith expander matches the right side of the (i + 1)th
expander. By Lemma 8.3, for every choice of imbalance c, target indepen-
dence k and length of the expander sequence t there exists a sequence of
expanders with the property that

Γi is (c, ci−1m, d, dt−ik)-unique, (8.1)

for m = O(dtk) and d = poly log c. For constant c each expander in the
sequence is explicit.

We now combine the explicit m-generator g0 and the sequence of
expanders (Γi)

t
i=1 to define the k-independent function gt. Let b =

m/n and assume for simplicity that m divides n. For each Γi we use
the technique from Lemma 8.4 to construct a (c, ci−1n, d, dt−ik)-unique
expander Γ(b)

i . Let xi denote a number in [cin] corresponding to a vertex

in the right side of Γ(b)
i . We are now ready to give a recursive definition

of gi : [cin]→ A.

gi(xi) = ∑
xi−1∈Γ(b)

i ({xi})
gi−1(xi−1), 1 ≤ i ≤ t. (8.2)

Lemma 8.6. gi is dt−ik-independent.

Proof. We proceed by induction on i. By definition, g0 : [n] → A is
dtk-independent. Assume by induction that gi : [cin] → A is dt−ik-
independent. By definition Γ(b)

i+1 is a (c, cin, d, dt−(i+1)k)-unique expander.
Applying Lemma 8.5 we have that gi+1 : [ci+1n] → A is dt−(i+1)k-
independent.

We will now show that gt supports fast sequential evaluation and
prove that we can use gt to construct an explicit constant time k-generator
from any explicit m-generator, for an appropriate choice of m. Divide the
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domain of each gi evenly into b = n/m batches of size cim corresponding
to each block of the adjacency matrix of Γi used to construct Γ(b)

i and
index the batches by j ∈ [b]. In order to evaluate gi+1 over batch number
j it suffices to know Γi+1 and the values of gi over batch number j. Fast
sequential evaluation of gt is achieved in the following steps. First we
tabulate the sequence of expanders (Γi)

t
i=1 such that Γi({xi}) can be

read in d operations. Secondly, to evaluate gt over batch j, we begin by
tabulating the output of g0 over batch j and then successively apply our
tabulated expanders to produce tables for the output of g1, g2, . . . , gt over
batch j.

Given tables for the sequence of expanders and assuming that the
generator underlying g0 has been initialized, we now consider the average
number of operations used per output when performing batch-evaluation
of gt. The number of values output is ctm. The cost of emitting m
values from g0 is by definition at most poly(m). The cost of producing
tables for the output of g1, g2, . . . , gt for the current batch is given by
∑t

i=1 dcim = O(dctm) for c > 1. The average number of operations used
per output when performing batch-evaluation of gt is therefore bounded
from above by

O(dctm) + poly m
ctm

= O(d) +
poly m

ct . (8.3)

The following lemma states that we can obtain a constant time k-generator
from every explicit m-generator by setting t = O(log k) and choosing c
to be an appropriately large constant.

Lemma 8.7. Let A be an abelian group with constant time addition. Suppose
there exists an explicit m-generator with range A, period n and space usage
poly m. Then there exists a positive constant ε such that for every k ≤ mε there
exists an explicit constant time k-generator with range A, period n, and seed
length, space usage and initialization time poly k.

Proof. The sequence of expanders (Γi)
t
i=1 with the properties given in (8.1)

exists for m = O(dtk) and d = poly log c and is explicit for c constant.
By inserting m = O(dtk) into equation (8.3) it can be seen that the
average number of operations is constant for c = O(1) and t = O(log k)
with constants that depend on the parameters of the m-generator. The
k-generator is initialized by initializing the m-generator, finding and
tabulating the sequence of expanders and producing the first batch
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of values, all of which can be done in poly k time and space. After
initialization, each call to emit() will return a value from the current
batch and use a constant number of operations for the task of preparing
the next batch of outputs.

We now show our main theorem about explicit constant time k-
generators over finite fields. The construction uses an explicit m-generator
based on multipoint evaluation. Combined with the approach of Lemma
8.7 this yields a near-optimal time-space tradeoff for k-generation.

Theorem 8.1 (Repeated). For every finite field F with constant time arithmetic
there exists a data structure that for every choice of k is an explicit constant time
k-generator with range F, period |F|poly log k, and seed length, space usage
and initialization time k poly log k.

Proof. Fix the choice of finite field F. By Lemma 8.2 there exists an explicit
m-generator in F for m ≤ |F| with period |F| that uses time O(m log3 m)
to emit m values. Fix some constant c > 1 and let (Γi)

t
i=1 denote an

explicit sequence of constant degree expanders with the properties given
by (8.1). The average number of operations per k-independent value
output by gt when performing batch evaluation is given by

O(dctm) + O(m log3 m)

ctm
= O(d) +

O(log3 dtk)
ct . (8.4)

Setting t = O(log log k) and following the approach of Lemma 8.7 we
obtain a k-generator with the stated properties.

Based on the discussion in a paper by Capalbo [38] that introduces
unbalanced unique neighbor expanders for concrete values of c and d, it
appears likely that the constants hidden in Theorem 8.1 for the current
best explicit constructions make our explicit generators unsuited for
practical use since c is close to 1 when d is reasonably small. The next
section explores how randomly generated unique neighbor expanders
can be used to show stronger existence results and yield k-generators
with tractable constants.

8.4 Constant time generators with optimal seed length

Randomly constructed expanders of the type used in this paper have
stronger properties than known explicit constructions, and can be gener-
ated with an overwhelming probability of success. There is no known
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efficient algorithm for verifying whether a given graph is a unique neigh-
bor expander. Therefore randomly generated expanders cannot be used
to replace explicit constructions without some probability of failure.

In this section we apply the probabilistic method to show the existence
of k-generators with better performance characteristics than those based
on known explicit constructions of expanders. We are able to show the
existence of constant time generators with optimal seed length that use
O(k log2+ε k) words of space for any constant ε > 0. Furthermore, such
generators can be constructed for any choice of constant failure probabil-
ity δ > 0. The generators we consider in this section use only a single
expander graph but are otherwise identical to the generators described
in Section 8.3. Using a single expander graph suffices for constant time
generation because the probabilistic constructions are powerful enough
to support an imbalance of c = poly log k while maintaining constant
degree. This imbalance is enough to amortize the cost of multipoint eval-
uation in a single expansion step as opposed to the sequence of explicit
expanders employed in Theorem 8.1. Our arguments are a straightfor-
ward application of the probabilistic method, but we include them for
completeness and because we are interested in somewhat nonstandard
parameters.

We consider the following randomized construction of a (c, m, d, k)-
unique expander Γ. For each vertex x in [cm], we add an edge between
x and each distinct node of d nodes selected uniformly at random from
[m]. By a standard argument, the graph can only fail to be unique
neighbor expander if there exists a subset S of left hand side vertices with
|S| ≤ k such that |Γ(S)| ≤ bd|S|/2c [152, Lemma 2.8]. In the following
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we assume that kd ≤ m.

Pr[Γ is not a unique neighbor expander]
≤ Pr[∃S ⊆ [cm], |S| ≤ k : |Γ(S)| ≤ bd|S|/2c]
≤ ∑

S⊆[cm]
|S|≤k

Pr[|Γ(S)| ≤ bd|S|/2c]

≤
k

∑
i=1

(
cm
i

)(
m

bid/2c

)(bid/2c
m

)id

≤
k

∑
i=1

( cme
i

)i
(

me
id/2

)id/2 ( id/2
m

)id

=
k

∑
i=1

(
ec(i/m)d/2−1(de/2)d/2

)i
(8.5)

If the expression in the outer parentheses in (8.5) can be bounded from
above by 1/2 for i = 1, 2, . . . , k, then the expander exists. We also note
that the randomized expander construction can be performed using dk-
independent variables without changing the result in (8.5). Let γ > 1
be a number that may depend on k and let δ denote an upper bound
on the probability that the randomized construction fails. By setting
m = O(dkγ) we are able to obtain the following expression for the
relation between δ, the imbalance c and the left outdegree bound d.

δ =
cd

γd/2−1 (8.6)

Equation (8.6) reveals tradeoffs for the parameters of the randomly con-
structed k-unique expander graphs. For example, increasing γ makes it
possible to make the graph more unbalanced while maintaining the same
upper bound on the probability of failure δ. The increased imbalance
comes at the cost of an increase in m, the size of the right side of the
graph. Similarly it can be seen how increasing d can be used to reduce
the probability of error. Setting the parameters to minimize the space
occupied by the expander while maintaining constant outdegree and by
extension constant generation time, we obtain Theorem 8.2.

Theorem 8.2 (Repeated). For every finite field F with constant time arithmetic
and every choice of constants ε, δ > 0 there exists a data structure that for every
choice of k is a constant time k-generator with failure probability δ, range F,
period |F|, seed length O(k), space usage O(k log2+ε k), and initialization time
O(k poly log k).
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Proof. Let ε̃ < ε be a constant and set γ = logε̃ k. Choosing d to be a
sufficiently large constant (dependent on ε̃), equation (8.6) shows that
for every δ > 0 there exists a (c, m, d, k)-unique expander Γ with c =
Ω(log2+ε k) and m = O(kγ). Using multipoint evaluation, the right side
vertices of Γ can be associated with Θ(k)-independent variables over
F using O(k log2+ε k) operations. By the properties of Γ and applying
Lemma 8.5 we are able to generate batches of k-independent variables of
size Ω(k log2+ε k) using O(k log2+ε) operations. The seed length of O(k)
holds by the observation that randomized construction of the expander
only requires O(k)-independence. The O(k poly log k) initialization time
is obtained by using multipoint evaluation to construct a table for Γ.

8.5 Faster multipoint evaluation for k-generators

This section presents an improved generator based directly on multipoint
evaluation of a polynomial hash function h ∈ Hk over a finite field. For
our purpose of generating an (n, k)-sequence from h, we are free to
choose the order of elements of F in which to evaluate h. We present an
algorithm for the systematic evaluation of h over disjoint size k subsets of
F using Fast Fourier Transform (FFT) algorithms. Our technique yields a
k-generator over F with generation time O(log k), and space usage and
seed length that is optimal up to constant factors. The algorithm depends
upon the structure of F, similarly to other FFT algorithms over finite
fields [26].

The nonzero elements of F form a multiplicative cyclic group F∗ of
order q− 1. The multiplicative group has a primitive element ω which
generates F∗.

F∗ = {ω0, ω1, ω2, . . . , ωq−2}.
For k that divides q− 1, we can construct a multiplicative subgroup S∗k,0
of order k with ωk = ω(q−1)/k as the generating element. S∗k,0 contains k
distinct elements of F. Define for j = 0, 1, . . . , (q− 1)/k− 1,

S∗k,j = ω jSk,0 = {ω jω0
k , ω jω1

k , . . . , ω jωk−1
k }.

Viewed as subsets of F∗ the sets S∗k,j form an exact cover of F∗. We now
consider how to evaluate a degree k− 1 polynomial h(x) ∈ F[X] in the
points of S∗k,j. The polynomial takes the form

h(x) = a0x0 + a1x1 + · · ·+ ak−1xk−1.
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Rewriting the polynomial evaluation over S∗k,j in matrix notation:


h(ω jω0

k)
h(ω jω1

k)
h(ω jω2

k)
...

h(ω jωk−1
k )

 =



ω0·0
k ω0·1

k . . . ω
0·(k−1)
k

ω1·0
k ω1·1

k . . . ω
1·(k−1)
k

ω2·0
k ω2·1

k . . . ω
2·(k−1)
k

...
...

...
ω

(k−1)·0
k ω

(k−1)·1
k . . . ω

(k−1)·(k−1)
k




ω j·0a0
ω j·1a1
ω j·2a2

...
ω j·(k−1)ak−1


We assume that the coefficients of h and ω j are given and consider
algorithms for efficient evaluation of the matrix-vector product. The
coefficients ãj,i = ω j·iai for i = 0, 1, . . . , k − 1 can be found in O(k)
operations and define a polynomial h̃j(x) = ∑k−1

i=0 ãi,jxi. Evaluating h̃0(x)
over S∗k,0 corresponds to computing the Discrete Fourier Transform over
a finite field.

Theorem 8.3 (Repeated). For every finite field F that supports computing the
discrete Fourier transform of length k in O(k log k) operations, there exists a
data structure that, for every choice of k and given a primitive element ω, is
an explicit O(log k) time k-generator with range F, period |F|, seed length k,
space usage O(k), and initialization time O(k log k).

Proof. Evaluation of h̃j(x) over S∗k,j takes O(k log k) operations by assump-
tion. For every batch j starting at j = 0, the value of ω j is stored and
used to compute the coefficients of h̃j+1(x) in O(k) operations.

We now discuss the validity of the assumption that we are able to
compute the DFT over a finite field in O(k log k) operations. Assume
that k | (q − 1) and that ωk is known. If k is highly composite there
exist Fast Fourier Transforms for computing the DFT in O(k log k) field
operations [74]. If k is not highly composite there exists an algorithm
for computing the DFT in O(kz log kz) operations for fields of cardinality
q = pz in our model of computation [137]. For q = pO(1) this reduces to
the desired O(k log k) operations.

8.6 Finite field arithmetic on the word RAM

Throughout the paper we have used as our model of computation a
modified word RAM with constant time arithmetic (+,−,×) over a
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finite field F. In this section we show how our model relates to the more
standard multiplication model defined as a word RAM with constant time
arithmetic (+,−,×) over the integers [2w] for w-bit words [85].

Arithmetic over Fp for prime p is integer arithmetic modulo p. We
now argue that arithmetic operations over Fp can be performed in O(1)
operations in the multiplication model. Every integer x can be written
on the form x = qp + r for non-negative integers q, r with r < p. Assume
that x can be represented in a constant number of words. The problem
of computing r = x mod p can be solved by an integer division and O(1)
operations in the multiplication model due to the identity r = x−bx/pcp.
An algorithm by Granlund and Montgomery [82] computes bx/pc for
any constant p using O(1) operations in the multiplication model which
gives the desired result.

Another finite field of interest is F2w due to the correspondence be-
tween field elements and bit vectors of length w. We will argue that a
word RAM model that supports constant time multiplication over F2w is
not unrealistic considering current hardware. Addition in F2w has direct
support in standard CPU instruction sets through the XOR operation.
A multiplication of two elements x and y in F2w can be viewed as a
two-step process. First, we perform a carryless multiplication z = x · y of
the representation of x and y as polynomials in F2[X]. Second, we use
a modular reduction to bring the product x · y back into F2w , similarly
to modular arithmetic over Fp. Recently, hardware manufacturers have
included partial support for multiplication in F2w with the CLMUL in-
struction for carryless multiplication [83]. The modular reduction step is
performed by dividing x · y by an irreducible polynomial g and returning
the remainder. Irreducible polynomials g that can be represented as
sparse binary vectors with constant weight results in a constant time
algorithm for modular reduction as presented by Gueron and Kounavis
[83]. We briefly introduce the computation underlying the algorithm
to show that its complexity depends on the number of 1s in the binary
representation of g. Let Lw and Mw be functions that return the w least,
respectively most, significant bits of their argument as represented in
F22w . The complexity of Gueron and Kounavis’ algorithm for modular
reduction of z = x · y is determined by the complexity of evaluating the
expression

Lw(Lw(g) ·Mw(Mw(z) · g)). (8.7)

Evaluating Lw and Mw is standard bit manipulation. For g of constant
weight, the carryless multiplications denoted by · in equation (8.7) can
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be implemented as a constant number of bit shifts and XORs. For
every w ≤ 10000 an irreducible trinomial or pentanomial (g of weight at
most 5) has been found [146]. Together with the hardware support for
convolutions this allows us to implement fast multiplication over fields
of practical interest.

8.7 A load balancing application

We next consider how our new generator yields stronger guarantees for
load balancing. Our setting is motivated by applications such as splitting
a set of tasks of unknown duration among a set of m machines, in order
to keep the load as balanced as possible. Once a task is assigned to a
machine, it cannot be reassigned, i.e., we do not allow migration. For
simplicity we consider the unweighted case where we strive to keep the
number of tasks on each machine low, and we assume that m divides |F|
for some field F with constant time operations on a word RAM. Suppose
that each machine has capacity (e.g. memory enough) to handle b tasks
at once, and that we are given a sequence of t tasks T1, . . . , Tt, where we
identify each task with its duration (an interval in R). Now let k = mb
and suppose that we use our constant time k-generator to determine for
each i = 1, . . . , t which machine should handle Ti. (We emphasize that
this is done without knowledge of Ti, and without coordination with
the machines.) Compared to using a fully random choice this has the
advantage of requiring only k poly log k words of random bits, which in
turn may make the algorithm faster if random number generation is a
bottleneck. Yet, we are able to get essentially the same guarantee on load
balancing as in the fully random case. To see this let L(x) = {i | x ∈ Ti}
be the set of tasks active at time x, and let Lq(x) be the subset of L(x)
assigned to machine q using our generator. We have:

Lemma 8.8. For ε > 0, if |L(x)|(1 + ε) < mb then Pr[maxq |Lq(x)| > b] <
m exp(−ε2b/3).

Proof. Since |L(x)| < mb = k we have that the assignment of tasks in
L(x) to machines is uniformly random and independent. This means
that the number of tasks assigned to each machine follows a binomial
distribution with mean b/(1 + ε), and we can apply a Chernoff bound
of exp(−ε2b/3) on the probability that more than b tasks are assigned
to a particular machine. A union bound over all m machines yields the
result.
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Lemma 8.8 allows us to give a strong guarantee on the probability
of exceeding the capacity b of a machine at any time, assuming that the
average load is bounded by b/(1 + ε). In particular, let S ⊆ R be a set of
size at most 2t such that every workload L(y) is equal to L(x) for some
x ∈ S. The existence of S is guaranteed since the t tasks are intervals,
and they have at most 2t end points. This means that

sup
x∈R

max
q
|Lq(x)| = max

x∈S
max

q
|Lq(x)|,

so a union bound over x ∈ S gives

Pr[sup
x∈R

max
q
|Lq(x)| > b] < 2tm exp(−ε2b/3) .

For constant ε and whenever b = ω(log k) and tm = 2o(b) we get
an error probability that is exponentially small in b. Such a strong
error guarantee can not be achieved with known constant time hashing
methods [152, 124, 72, 159] in reasonable space, since they all have an
error probability that decreases polynomially with space usage. Even if
explicit constructions for the expanders needed in Siegel’s hash functions
were found, the resulting space usage would be polynomially higher
than with our k-generator.

8.8 Experiments

This section contains experimental results of an implementation of a
k-generator over F264 . There are two main components to the generator:
an algorithm for filling a table of size m with dk-independent variables
and a bipartite unbalanced expander graph.

For the first component, we use an implementation of Gao-Mateer’s
additive FFT [77, Algorithm 2.]. Utilizing the Gao-Mateer algorithm we
can generate a batch of k elements of an (|F|, k)-sequence using space
O(k) and O(k log2 k) operations on a word RAM that supports arithmetic
over F. The additive complexity of the FFT algorithm is O(k log2 k)
while the multiplicative complexity is O(k log k). Addition in F264 is
implemented as an XOR-operation on 64-bit words. Multiplication is
implemented using the PCLMUL instruction along with the techniques
for modular reduction by Gueron et al. [83] outlined in Section 8.6.

For the second component we introduce a slightly different type of
expander graphs that only work in the special case of fields of char-
acteristic two. Let F2w be a field of characteristic two and let M be a
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cm×m adjacency matrix of a graph Γ where each entry of M is viewed
as an element of F2w . By a similar argument to the one used in Lemma
8.5 the linear system Mx defines a (cm, k)-sequence if x is a vector of
dk-independent variables over F2w and M has row rank at least k. We
consider randomized constructions of M over F2 with at most d 1s in
each row and row rank at least k. It is easy to see that a matrix M over
F2 with these properties also defines a matrix with the same properties
over F2w . Since k-uniqueness of Γ implies that M has row rank k, but not
the other way around, we are able to obtain better performance charac-
teristics of generators over F2w by focusing on randomized constructions
of M.

The matrix M is constructed in the following way. Independently, for
each i ∈ [cm] sample d integers uniformly with replacement from [m]
and define the ith row of M as the vector constructed by taking the zero
vector and adding 1s in the d positions sampled for row i. Observe that
if M does not have row rank at least k then some non-empty subset of
at most k rows of M sum to the zero vector. In order for a non-empty
set of vectors over Fm

2 to sum to the zero vector, the bit-parity must
be even in each of the m positions of the sum. The sum of any i rows
of M corresponds to a balls and bins process that distributes id balls
into m bins, independently and uniformly at random. Let id be an even
number. Then there are (id− 1)!! ways of ordering the balls into pairs
and the probability that the outcome is equal to any particular pairing is
(1/m)id/2. This yields the following upper bound on the probability that
a subset of i rows sums to zero:

βpair(i, d, m) = (id− 1)!!
(

1
m

)id/2

. (8.8)

A comparison between this bound and the bound for k-uniqueness from
equation (8.5) shows that, for each term in the sum, the multiplicative
factor applied to the binomial coefficient (cm

i ) is exponentially smaller in
id for the bound in (8.8).

The pair-based approach which yields the bound βpair overestimates
the probability of failure on subsets of size i, increasingly as id grows
large compared to m. We therefore introduce a different bound based
on the Poisson approximation to the binomial distribution: the number
of balls in each of the m positions can approximately be modelled as
independent Poisson distributed variables [113, Ch. 5.4]. The probability
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that that the parity is even in each of the m positions in a sum of i rows
is bounded by

βpoisson(i, d, m) = e
√

id

(
1 + e−2 id

m

2

)m

, (8.9)

where we use the same approach as Mitzenmacher et al. [112]. For any
given subset of rows of M, we are free to choose between the two bounds.
The probability that a randomly constructed matrix M fails to have rank
at least k can be bounded from above using a union bound over subsets
of rows of M.

δ ≤
k

∑
i=1

(
cm
i

)
min(βpair(i, d, m), βpoisson(i, d, m)). (8.10)

We now consider the generation time of our implementation. Let
FFTdk denote the time taken by the FFT algorithm to generate a dk-
independent value and let RAd,m denote the time it takes to perform d
random accesses in a table of size m. The time taken to generate a value
by the implementation of our generator is then given by

T =
FFTdk

c
+ RAd,m. (8.11)

In our experiments, the choice of parameters for the expander graphs
were based on a search for the fastest generation time over every combi-
nation of imbalance c ∈ {16, 32, 64} and outdegree d ∈ {4, 8, 16}. Given
choices of d, c and independence k, the size of the right side of the
expander m was increased until existence could be guaranteed by the
bound in (8.10). The generator in the experiments had the restriction that
m ≤ 226 and we have measured RAd,m assuming that the expander is
read sequentially from RAM. The experiments were run on a machine
with an Intel Core i5-4570 processor with 6MB cache and 8GB of RAM.

Table 8.2 shows the generation time in nanoseconds per 64-bit output
using Horner’s scheme, Gao-Mateer’s FFT and the implementation of
our generator (FFT + Expander). For the implementation of the generator,
we also show the parameters of the randomly generated expander that
yielded the fastest generation time among expanders in the search space.

The generation time for Horner’s scheme is approximately linear
in k and logarithmic in k for the FFT, as predicted by theory. The FFT
is faster than using Horner’s scheme already at k = 64 and orders of
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magnitude faster for large k. Using our implementation of Gao-Mateer’s
FFT algorithm we are able to evaluate a polynomial of degree 220 − 1
in 220 points in less than a second. The same task takes over an hour
when using Horner’s rule, even with both algorithms using the same
underlying implementation of algebraic operations in the field.

For small values of k, our generator is an order of magnitude faster
than the FFT and comes close to the performance of the 64-bit C++11
implementation of the popular Mersenne Twister. Our generator uses
25 nanoseconds to output a 1024-independent value. This is equivalent
to an output of over 300MB/s. The Mersenne Twister uses around 4
nanoseconds to generate a 64-bit value.

In practice, the memory hierarchy appears to be the primary obstacle
to maintaining a constant generation time as k increases. Our generator
reads the expander graphs sequentially and performs random lookups
into the table of dk-independent values. As k grows large, the table can
no longer fit into cache and for large imbalance c, the expander can no
longer be stored in main memory. Searching a wider range of expander
parameters could easily yield a faster generation time, potentially at the
cost of a larger imbalance c or higher probability of failure δ.
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k Horner FFT FFT + Expander
ns ns c m d δ ns

25 177 243 64 213 8 10−7 15
26 361 294 64 214 8 10−8 16
27 730 338 64 215 8 10−9 19
28 1470 375 64 216 8 10−10 23
29 2950 412 64 217 8 10−11 24

210 5902 449 64 218 8 10−12 25
211 11808 487 32 218 8 10−12 35
212 23627 523 64 218 16 10−29 43
213 47183 561 32 218 16 10−29 54
214 94429 599 64 222 8 10−15 68
215 188258 638 64 223 8 10−16 69
216 376143 678 64 224 8 10−17 77
217 751781 719 64 225 8 10−18 85
218 1505016 765 64 226 8 10−19 93
219 3015969 808 32 226 8 10−19 110
220 6082313 864 64 226 16 10−46 175

Table 8.2: Generation time in nanoseconds per 64-bit value using Horner’s scheme, Gao-Mateer’s FFT
and an implementation of our constant-time generator





Chapter 9

Near-optimal k-independent hashing
‘Not all those who wander are lost’

We consider the following fundamental problems:

• Constructing k-independent hash functions with a space-time trade-
off close to Siegel’s cell-probe lower bound (SICOMP 2004).

• Constructing representations of unbalanced expander graphs hav-
ing small size and allowing fast computation of the neighbor func-
tion.

It is not hard to show that these problems are intimately connected in
the sense that a good solution to one of them leads to a good solution
to the other one. In this paper we exploit this connection to present
efficient, recursive constructions of k-independent hash functions (and
hence expanders with a small representation). While the previously most
efficient construction (Thorup, FOCS 2013) needed time quasipolynomial
in Siegel’s lower bound, our time bound is just a logarithmic factor from
the lower bound.

9.1 Introduction

The problem of designing explicit unbalanced expander graphs with
near-optimal parameters is of major importance in theoretical computer
science. In this paper we consider bipartite graphs with edge set E ⊂
U ×V where |U| � |V|. Vertices in U have degree d and expansion is
desired for subsets S ⊂ U with |S| ≤ k for some parameter k. Such
expanders have numerous applications (e.g. hashing [152], routing [34],



196 Chapter 9. Near-optimal k-independent hashing

sparse recovery [90], membership [37]), yet coming up with explicit
constructions that have close to optimal parameters has proved elusive.
At the same time it is easy to show that choosing E at random will give
a graph with essentially optimal parameters. This means that we can
efficiently and with a low probability of error produce a description of
an optimal unbalanced expander that takes space proportional to |U|.
Storing a complete description is excessive for most applications that,
provided access to an explicit construction, would use space proportional
to |V|. On the other hand, explicit constructions can be represented
using constant space, but the current best explicit constructions have
parameters d and |V| that are polynomial in the optimal parameters
of the probabilistic constructions [84]. Furthermore, existing explicit
constructions have primarily aimed at optimizing the parameters of the
expander, with the evaluation time of the neighbor function being of
secondary interest, as long as it can be bounded by poly log u. This
evaluation time is excessive in applications that, provided access to the
neighbor function of an optimal expander, would use time proportional
to d, where d is typically constant or at most logarithmic in |U|.

In this paper we focus on optimizing the parameters of the expander
while minimizing the space usage of the representation and the evalua-
tion time of the neighbor function. We present randomized constructions
of unbalanced expanders in the standard word RAM model. Our con-
structions have near-optimal parameters, use space close to |V|, and
support computing the d neighbors of a vertex in time close to d.

Hash functions and expander graphs. There is a close connection be-
tween k-independent hash functions and expanders. A k-independent
function with appropriate parameters will, with some probability of fail-
ure, represent the neighbor function of a graph that expands on subsets
of size k. We refer to this as going from independence to expansion, and
the fact follows from the standard union bound analysis of probabilistic
constructions of expanders. Going in the other direction, from expansion
to independence, was first used by Siegel [152] as a technique for show-
ing the existence of k-independent hash functions with evaluation time
that does not depend on k. We follow in Siegel’s footsteps and a long
line of work (see e.g. [69] for an overview) that focuses on the space-time
tradeoff of k-independent hash functions over a universe of size u = |U|.

Ideally, we would like to construct a data structure in the word
RAM model that takes as input parameters u, k, and t, and returns
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a k-independent hash function over U. The hash function should use
space k(u/k)1/t and have evaluation time O(t), matching up to constant
factors the space-time tradeoff of Siegel’s cell probe lower bound for k-
independent hashing [152]. We present the first construction that comes
close to matching the space-time tradeoff of the cell probe lower bound.

Method. Our work is inspired by Siegel’s graph powering approach
[152] and by recent advances in tabulation hashing [159], showing that it
is possible to efficiently describe expanders in space much smaller than u.
Our main insight is that it is possible to make simple, recursive expander
constructions by alternating between strong unbalanced expanders and
highly random hash functions. Similarly to previous work, we follow the
procedure of letting a k-independent function represent a bipartite graph
Γ that expands on subsets of size k. We then apply a graph product to Γ
in order to increase the size of the universe covered by the graph while
retaining expander properties. At each step of the recursion we return to
k-independence by combining the graph product with a table of random
bits, leaving us with a new k-independent function that covers a larger
universe. By combining the technique of alternating between expansion
and independence with a new and more efficient graph product, we
can improve upon existing randomized constructions of unbalanced
expanders.

9.1.1 Our contribution

Table 9.1 compares previous upper and lower bounds on k-independent
hashing with our results, as presented in Corollaries 1, 2, and 3. As
can be seen, most results present a trade-off between time and space
controlled by a parameter t. Tight lower and upper bounds have been
known only in the cell probe model, but our new construction nearly
matches the cell probe lower bound by Siegel [152].

The time bound for the construction using explicit expanders [84]
uses the degree of the expander as a conservative lower bound, based
on the possibility that the neighbor function in their construction can be
evaluated in constant time in the word RAM model. The time bound
that follows directly from their work is poly log u. While the constant
factors in the exponent of the space usage of [152, 159] have likely not
been optimized, their techniques do not seem to be able to yield space
close to the cell probe lower bound.
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Table 9.1: Space-time tradeoffs for k-independent hash functions

Reference Space Time

Polynomials [92, 42] k O(k)

Preprocessed polynomials [96] k1+ε(log u)1+o(1) (poly log k)(log u)1+o(1)

Expanders [84] + [152] k1+εd2 d = O(log(u) log(k))1+1/ε

Expander powering [152] k(1−ε)tuε + u1/t O(1/ε)t

Double tabulation [159] k5t + u1/t O(t)

Recursive tabulation [159] poly k + u1/t O(tlog t)

Corollary 9.1 ku1/tt3 O(t2 + t3 log(k)/ log(u))

Corollary 9.2 k2u1/tt2 O(t log t + t2 log(k)/ log(u))

Corollary 9.3 ku1/tt O(t log t)

Cell probe lower bound [152] k(u/k)1/t t < k probes

Cell probe upper bound [152] k(u/k)1/tt O(t) probes

Table notes: Space-time tradeoffs for k-independent hash functions from a domain of size u, with
the trade-off controlled by a parameter t. Time bounds in the last two rows are number of cell
probes, and remaining rows refer to the word RAM model with word size Θ(log u). Leading
constants in the space bounds are omitted. We use t to denote an arbitrary positive integer
parameter that controls the trade-off, and We use ε to denote an arbitrary positive constant.
*Corollary 3 relies on the assumption k = uO(1/t).

As can be seen our construction polynomially improves either space
or time compared to each of the previously best trade-offs. We also
find our construction easier to describe and analyze than the results
of [84, 96, 159], with simplicity comparable to that of Siegel’s influential
paper [152].

Like all other randomized constructions our data structures come
with an error probability, but this error probability is universal in the
sense that if the construction works then it provides independent hash
values on every subset of at most k elements from U. This is in contrast to
other known constructions [72, 124] that give independence with high
probability on each particular set of at most k elements, but will fail
almost surely if independence for a superpolynomial number of subsets
is needed.

Applications. Efficient constructions of highly random functions is of
fundamental interest with many applications in computer science. A
k-independent function can, without changing the analysis, replace a
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fully random function in applications that only rely on k-subsets of
inputs mapping to random values. We can therefore view k-independent
functions as space and randomness efficient alternatives to fully random
functions, capable of providing compact representations of complex
structures such as expander graphs over very large domains. Apart
from the construction of expander graphs with a small description, as
an example application, k-independent functions with a universal error
probability can be used to construct “real-time” dictionaries that are able
to handle extremely long (in expectation) sequences of insertion and
deletion operations in constant time per operation before failing.

Let τ > 1 be a constant parameter. We use a k-independent hash
function with k = wO(τ) to split a set of n machine words of w bits into
O(n) subsets such that each subset has size at most k, with probability at
least 1− 2−wτ

. Handling each subset with Thorup’s recent construction of
dictionaries for sets of size wO(τ) using time O(τ) per operation [138] we
get a dynamic dictionary in which, with high probability, every operation
in a sequence of length ` < 2O(wτ) takes constant time. In comparison
the hash functions of [70, 72, 124] can only guarantee that sequences
of length ` < poly(n) operations, where n < 2w, succeed with high
probability. The splitting hash function needs space uΩ(1), which might
exceed the space usage of an individual dictionary, but this can be seen
as a shared resource that is used for many dictionaries (in which case we
bound the total number of operations before failure).

9.2 Background and overview

In the analysis of randomized algorithms we often assume access to a
fully random function of the form f : [u]→ [r] where [n] denotes the set
{0, 1, . . . , n− 1}. To represent such a function we need a table with u
entries of log r bits. This is impractical in applications such as hashing
based dictionaries where we typically have that u � r and the goal is
to use space O(r) to store r elements of [u]. Fortunately, the analysis
that establishes the performance guarantees of a randomized algorithm
can often be modified to work even in the case where the function f has
weaker randomness properties.

One such concept of limited randomness is k-independence, first
introduced to computer science in the 1970s through the work of Carter
and Wegman on universal hashing [40]. A family of functions from [u]
to [r] is k-independent if, for every subset of [u] of cardinality at most
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k, the output of a random function from the family evaluated on the
subset is independent and uniformly distributed in [r]. Trivially, the
family of all functions from [u] to [r] is k-independent, but representing
a random function from this family uses too much space. It was shown
in [92] that for every finite field F the family of functions that consist
of all polynomials over F of degree at most k− 1 is k-independent. A
function from this family can be represented using near-optimal space
[52] by storing the k coefficients of the polynomial. The mapping defined
by a function f from a k-independent polynomial family over F =
{x1, x2, . . . , xu} takes the form

f (x1)
f (x2)

...
f (xu)

 =


x0

1 x1
1 . . . xk−1

1
x0

2 x1
2 . . . xk−1

2
...

...
...

...
x0

u x1
u . . . xk−1

u




a0
a1
...

ak−1

 . (9.1)

The k-independence of the polynomial family follows from properties of
the Vandermonde matrix: every subset of k rows is linearly independent.
The problem with this construction is that the Vandermonde matrix is
dense, resulting in an evaluation time of Ω(k) if we simply store the
coefficients of the polynomial. The lower bounds by Siegel [152], and
later Larsen [101], as presented in Table 1, show that a data structure
for evaluating a polynomial of degree k− 1 using time t < k must use
space at least k(u/k)1/t. The data structure of [96] presents a step in
this direction, but is still far from the lower bound for k-independent
functions.

The quest for k-independent families of functions with evaluation time
t < k can be viewed as attempts to construct compact representations of
sparse matrices that fill the same role as the Vandermonde matrix. We
are interested in compact representations that support fast computation
of the sparse row associated with an element x ∈ [u]. An example of a
sparse matrix with these properties is the adjacency matrix of a bipartite
expander graph with sufficiently strong expansion properties. For the
purposes of constructing k-independent hash functions we are primarily
interested in expanders that are highly unbalanced.

Expander hashing. Prior constructions of fast and highly random hash
functions has followed Siegel’s approach of combining expander graphs
with tables of random words. If Γ is a k-unique expander graph (see Defi-
nition 9.1) then we can construct a k-independent function by composing
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it with a simple tabulation function h. This approach would yield opti-
mal k-independent hash functions if we had access to explicit expanders
with optimal parameters that could be evaluated in time proportional to
the left outdegree. Unfortunately, no explicit construction of a k-unique
expander with optimal parameters is known.

Siegel [152] addresses this problem by storing a smaller randomly
generated k-unique expander, say, one that covers a universe of size
u1/t. By the k-independent hashing lower bound, if an expander with
|U| = u1/t has degree d, then in order for it to be k-unique it must have
a right hand side of size |V| ≥ k(u1/t/k)1/d. To give a space efficient
construction of a k-unique expander that covers a universe of size u, Siegel
repeatedly applies the Cartesian product to the graph. Applying the
Cartesian product t times to a k-unique expander results in a graph that
remains k-unique but with the left degree and size of the left and right
vertex sets raised to the power t. Using space u1/t to store an expander
with degree t, it follows from the lower bound that the expander resulting
from repeatedly applying the Cartesian product must have

|V′| ≥ (k(u1/t/k)1/d)t = k(1−1/d)tu1/d.

Setting d = 1/ε, the randomly generated k-unique expander that forms
the basis of the construction has degree O(1/ε), leading to the expression
in Table 1. Since we need to store |V′| random words in a table in order to
create a k-independent hash function, Siegel’s graph powering approach
offers a space-time tradeoff that is far from the lower bound from our
perspective where both u, k, and t are parameters to the hash function.

Thorup [159] shows that, for the right choice of parameters, a simple
tabulation hash function is likely to form a compact representation
of a k-unique expander. A simple tabulation function takes a string
x = (x1, x2, . . . , xc) of c characters from some input alphabet 〈n〉 =
{0, 1}n, and returns a string of d characters from some output alphabet
〈m〉 = {0, 1}m. The simple tabulation function h : 〈n〉c → 〈m〉d is
evaluated by taking the exclusive-or of c table-lookups

h(x) = h1(x1)⊕ h2(x2)⊕ · · · ⊕ hc(xc)

where hi : 〈n〉 → 〈m〉d is a random function. The advantage of a simple
tabulation function compared to a fully random function is that we only
need to store the random character tables h1, h2, . . . , hc. Thorup is able
to show that for d ≥ 6c a simple tabulation function is k-unique with
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a low probability of failure when k ≤ (2m)1/5c. Setting n = m and
composing the k-unique expander resulting from a single application of
simple tabulation with another simple tabulation function, Thorup first
constructs a hash function with space usage u1/c, independence uΩ(1/c2),
and evaluation time O(c). He then presents a second trade-off with
space u1/c, independence uΩ(1/c), and time O(clog c) that comes from ap-
plying simple tabulation recursively to the output of a simple tabulation
function. Similar to Siegel’s upper bound, the space usage of Thorup’s
upper bounds with respect to k is much larger than the lower bound as
can be seen from Table 9.1 where the space-time tradeoff of his results
have been parameterized in terms of the independence k.1

Explicit constructions. The literature on explicit constructions has
mostly focused on optimizing the parameters of the expander, with
the evaluation time of the neighbor function being of secondary interest,
as long as it is bounded by poly log u. As can be seen from Siegel’s cell
probe lower and upper bounds, optimal constructions of k-independent
hash functions have evaluation time in the range t = 1 to t = log u.
Therefore, an explicit construction, even if we had one with optimal
parameters, would without further guarantees on the running time not
be enough to solve our problem of constructing efficient expanders. Here
we briefly review the construction given by Guruswami et al. [84]. It is,
to our knowledge, currently the best explicit construction of unbalanced
bipartite expanders in terms of the parameters of the graph. Their con-
struction and its analysis is, similarly to the polynomial hash function in
equation (9.1), algebraic in nature and inspired by techniques from cod-
ing theory, in particular Parvaresh-Vardy codes and related list-decoding
algorithms [134]. In their construction, a vertex x is identified with its
Reed-Solomon message polynomial over a finite field F. The ith neighbor
of x is found by taking a sequence of powers of the message polynomial
over an extension field, evaluating each of the resulting polynomials in
the ith element of F, and concatenating the output. In contrast, the con-
structions presented in this paper only use the subset of standard word
RAM instructions that can be implemented in AC0. In Table 1 we have
assumed that we can evaluate their neighbor function in constant time
as a conservative lower bound on the performance of their construction

1 It should be noted that Thorup’s analysis is not tuned to optimize the polyno-
mial dependence on k, and that he gives stronger concrete bounds for some realistic
parameter settings.
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in the word RAM model. Other highly unbalanced explicit construc-
tions given in [39, 155] offer a tradeoff where either one of d or |V| is
quasipolynomial in the lower bound. In comparison, the construction by
Guruswami et al. is polynomial in both of these parameters.

9.3 Our constructions

In this section we present three randomized constructions of efficient
expanders in the word RAM model. Each construction offers a different
tradeoff between space, time, and the probability of failure. We present
our constructions as data structures, with the randomness generated
by the model during an initialization phase. The initialization time of
our data structures is always bounded by their space usage, and to
simplify the exposition we therefore only state the latter. Alternatively,
our constructions could be viewed directly as randomized algorithms,
taking as input a list of parameters, a random seed, and a vertex x ∈ [u]
and returning the list of neighbors of x. The hashing corollaries presented
in Table 1 follow directly from our three main theorems using Siegel’s
expander hashing technique.

9.3.1 Model of computation

The algorithms presented in this paper are analyzed in the standard word
RAM model with word size w as defined by Hagerup [85], modeling
what can be implemented in a standard programming language like
C [98]. In order to show how our algorithms benefit from word-level
parallelism we use w as a parameter in the analysis. To simplify the
exposition we impose the natural restriction that, for a given choice of
parameters to a data structure, the word size is large enough to address
the space used by the data structure. In other words, our results are
stated with w as an unrestricted parameter, but are only valid when we
actually have random access in constant time.

The data structures we present require access to a source of ran-
domness in order to initialize the character tables of simple tabulation
functions. To accomodate this we augment the model with an instruction
that uses constant time to generate a uniformly random and independent
integer in [r] where r ≤ 2w. We note that our constructions use only
the subset of arithmetic instructions required for evaluating a simple
tabulation function, i.e, standard bit manipulation instructions, integer
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addition, and subtraction. Our results therefore hold in a version of the
word RAM model that only uses instructions that can be implemented in
AC0, known in the literature as the restricted model [85] or the Practical
RAM [109].

9.3.2 Notation and definitions

Let 〈n〉 = {0, 1}n denote the alphabet of n-bit strings, and let x =
(x1, x2, . . . , xc) ∈ 〈n〉c denote a string of n-bit characters of length c. We
define a concatenation operator ‖ that takes as input two characters
x ∈ 〈n〉 and y ∈ 〈m〉, and concatenates them to form x ‖ y ∈ 〈n + m〉.
The concatenation operator can also be applied to strings of equal length
where it performs component-wise concatenation. Given strings x ∈ 〈n〉c
and y ∈ 〈m〉c the concatenation x ‖ y is an element of 〈n + m〉c with the
ith component of x ‖ y defined by (x ‖ y)i = xi ‖ yi. We also define a
prefix operator. Given x ∈ 〈n〉 and a positive integer m, in the case where
m ≤ n we use x[m] ∈ 〈m〉 to denote the m-bit prefix of x. In the case
where m > n we pad the prefix such that x[m] ∈ 〈m〉 denotes x[n] ‖ 0m−n

where 0m−n is the string of m− n bits all set to 0.
We will present word RAM data structures that represent functions

of the form Γ : 〈n〉c → 〈m〉d. The function Γ defines a d-regular bipartite
graph with input set 〈n〉c and output set {1, 2, . . . , d}× 〈m〉. For S ⊆ 〈n〉c
we overload Γ and define Γ(S) = {(i, Γ(x)i) | x ∈ S}, i.e., Γ(S) is the set
of outputs of S.

We are interested in constructing functions where every subset S of
inputs of size at most k contains an input that has many unique neighbors,
formally:

Definition 9.1. Let Γ : 〈n〉c → 〈m〉d be a function satisfying the following
property:

∀S ⊆ 〈n〉c, |S| ≤ k, ∃x ∈ S : |Γ({x})\Γ(S\{x})| > l.

Then, for l > 0 we say that Γ is k-unique. If further l > d/2 we say that Γ
is k-majority-unique.

For completeness we define the concept of k-independence:

Definition 9.2. Let k be a positive integer and let F be a family of func-
tions from U to R. We say that F is a k-independent family of functions if,
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for every choice of k distinct keys x1, . . . , xk and arbitrary values y1, . . . , yk,
then, for f selected uniformly at random from F we have that

Pr[ f (x1) = y1 ∧ f (x2) = y2 ∧ · · · ∧ f (xk) = yk] = |R|−k.

We say that f is k-independent when it is selected uniformly at random
from a family of k-independent functions.

Simple tabulation functions are an important tool in our constructions.
Our data structures can be made to consist entirely of simple tabulation
functions and our evaluation algorithms can be viewed as a sequence of
adaptive calls to this collection of simple tabulation functions.

Definition 9.3. Let (R,⊕) denote an abelian group. A simple tabulation
function h : 〈n〉c → R with k-independent character tables is defined by

h(x) =
c⊕

i=1

hi(xi)

where each character table hi : 〈n〉 → R is a k-independent function.

In this paper we consider simple tabulation functions with character
tables that operate either on bit strings under the exclusive-or operation,
R = (〈m〉,⊕), or on sets of non-negative integers modulo some integer r,
R = ([r],+). For our constructions of k-independent functions we will
generally assume that r = uO(1).

9.3.3 From k-uniqueness to k-independence

In his seminal paper Siegel [152] showed how a k-unique function can
be combined with a table of random elements in order to define a
k-independent family of functions. In his paper on the expansion proper-
ties of tabulation hash functions, Thorup [159, Lemma 2] used a slight
variation of Siegel’s technique that makes use of the position-sensitive
structure of the bipartite graph defined by Γ : 〈n〉c → 〈m〉d. This is the
version we state here.

Lemma 9.1 (Siegel [152], Thorup [159]). Let Γ : 〈n〉c → 〈m〉d be k-unique
and let h : 〈m〉d → R be a simple tabulation function with k-independent
character tables. Then h ◦ Γ defines a family of k-independent functions. We
sample a function from the family by sampling the character tables of h.



206 Chapter 9. Near-optimal k-independent hashing

9.3.4 From k-independence to k-uniqueness

A k-independent function has the same properties as a fully random
function when considering k-subsets of inputs. We can therefore use the
standard analysis of randomized constructions of bipartite expanders to
show that, for the right choice of parameters, a k-independent function is
likely to be k-unique. For completeness we provide an analysis here. In
our exposition it will be convenient parameterize the k-uniqueness or k-
majority-uniqueness of our constructions in terms of a positive integer κ

such that k = 2κ.

Lemma 9.2. For every choice of positive integers c, n, κ let Γ : 〈n〉c → 〈m〉d
be a 2κ-independent function. Then,

– for m ≥ n + κ + 1 and d ≥ 4c we have that Γ is 2κ-unique with
probability at least 1− 2−dn/2.

– for m ≥ n + κ + 4 and d ≥ 8c we have that Γ is 2κ-majority-unique with
probability at least 1− 2−dn/4.

Proof. We will give the proof for k-majority-uniqueness. The proof for
k-uniqueness uses the same technique. By a standard argument based
on the pigeonhole principle, for Γ to be k-majority-unique it suffices
that for all S ⊆ 〈n〉c with |S| ≤ k we have that |Γ(S)| > (3/4)d|S|.
Given that Γ is k-independent, we will now bound the probability that
there exists a subset S with |S| ≤ k such that |Γ(S)| ≤ (3/4)d|S|. For
every pair of sets (S, B) satisfying that S ⊆ 〈n〉c with |S| ≤ k and B ⊆
{1, 2, . . . , d} × 〈m〉 with |B| = (3/4)d|S|, the probability that Γ(S) ⊆ B is
given by ∏d

i=1(|Bi|/2m)|S| where Bi = {(i, y) ∈ B}. By the inequality of
the arithmetic and geometric means we have that

d

∏
i=1

( |Bi|
2m

)|S|
≤
( |B|

d2m

)d|S|
.

This allows us to ignore the structure of B, and obtain a union bound
that matches that of the standard non-compartmentalized probabilistic
construction of bipartite expanders. The probability that Γ fails to be
k-majority-unique is upper bounded by

k

∑
i=2

(
2cn

i

)(
d2m

(3/4)di

)(
(3/4)di

d2m

)di

.

For every choice of positive integers c, n, κ, for m ≥ n + κ + 4 and d ≥ 8c
we get a probability of failure less than 2−2cn.



9.3. Our constructions 207

9.3.5 A recursive construction of a k-unique function

In this section we introduce a recursive construction of a k-unique func-
tion of the form Γ : 〈n〉c → 〈m〉d. We obtain Γ as the last in a sequence
Γ1, Γ2, . . . , Γc of k-unique functions Γi : 〈n〉i → 〈m〉d. Each Γi for i > 1 is
defined in terms of Γi−1. At the bottom of the recursion we tabulate a
k-independent function Γ1 : 〈n〉 → 〈m〉d. In the general step we apply
Γi−1 to the length i − 1 prefix of the key (x1, x2, . . . , xi−1), concatenate
the result vector component-wise with the ith character xi, and apply
a simple tabulation function hi : 〈m + n〉d → 〈m〉d. The recursion is
therefore given by

Γi((x1, x2, . . . , xi)) = hi(Γi−1((x1, x2, . . . , xi−1)) ‖ (xi, xi, . . . , xi)) (9.2)

where (xi, xi, . . . , xi) denotes the string of xi repeated d times. The fol-
lowing theorem summarizes the properties of Γ in the word RAM model.

Theorem 9.1. There exists a randomized data structure that takes as input
positive integers c, n, κ and initializes a function Γ : 〈n〉c → 〈n + κ + 1〉4c. In
the word RAM model with word size w the data structure satisfies the following:

• The space usage is O(22n+κc3(n + κ)/w) words.

• The evaluation time of Γ is O(c2 + c3(n + κ)/w).

• Γ is 2κ-unique with probability at least 1− 2−cn.

Proof. Set m = n + κ + 1 and d = 4c. We initialize Γ by tabulating a
k-independent function Γ1 : 〈n〉 → 〈m〉d and simple tabulation functions
h2, h3, . . . , hc : 〈m + n〉d → 〈m〉c. In total we need to store c functions
that each have O(c) character tables with O(22n+κ) entries of O(c(n + κ))
bits. The space usage is therefore O(22n+κc3(n + κ)/w) words. The same
bound holds for the time to initialize the data structure.

The evaluation time of Γ can be found by considering the recursion
given in equation (9.2). At each of the c steps we perform O(c) lookups
and take the exclusive-or of O(c) bit strings of length O(c(n + κ)). The
total evaluation time is therefore O(c2 + c3(n + κ)/w).

Conditioned on Γi−1 being k-unique, it is easy to see that Γi is k-
unique, and by Lemma 9.1 we have that Γi is k-independent. For our
choice of parameters, according to Lemma 9.2 the probability that Γi fails
to be k-unique is less than 2−2cn. Therefore, Γ is k-unique if Γ1, Γ2, . . . , Γc
are k-unique. This happens with probability at least 1− c2−2cn ≥ 1−
2−cn.
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Combining Theorem 9.1 and Lemma 9.1, we get k-independent hash-
ing in the word RAM model. We state our result in terms of a data
structure that represents a family of functions F . The family is defined
as in Lemma 9.1 and is represented by a particular instance of a function
Γ, constructed using Theorem 9.1, together with the parameters of a
family of simple tabulation functions.

Corollary 9.1. There exists a randomized data structure that takes as input
positive integers u, r, k, t and selects a family of functions F from [u] to [r]. In
the word RAM model with word size w the data structure satisfies the following:

• The space used to represent F , as well as a function f ∈ F , is
O(ku1/tt2(log u + t log k)/w) words.

• The evaluation time of f is O(t2 + t2(log u + t log k)/w).

• F is a k-independent family with probability at least 1− 1/u.

Proof. We apply Theorem 9.1, setting c = 2t, n = d(log u)/2te, κ =
dlog ke. This gives a function Γ : 〈n〉c → 〈n + κ + 1〉4c that is k-unique
over [u] with probability at least 1− 1/u. To sample a function from
the family we follow the approach of Lemma 9.1 and compose Γ with
a simple tabulation function h : 〈n + κ + 1〉4c → [r]. The space used to
store Γ follows directly from Theorem 9.1 and dominates the space used
by h. Similarly, the evaluation time of h ◦ Γ is dominated by the time it
takes to evaluate Γ.

Remark 9.1. For every integer τ ≥ 1 we can construct a family F (τ) that is
k-independent with probability at least 1− u−τ at the cost of increasing
the space usage and evaluation time by a factor τ. The family is defined
by

F (τ) = { f =
τ⊕

i=1

fi | fi ∈ Fi}

where each Fi is constructed independently.

Remark 9.2. The recursion in equation (9.2) is well suited for sequential
evaluation where the task is to evaluate Γ in an interval of [u] in order to
generate a sequence of k-independent random variables. To see this, note
that once we have evaluated Γ on a key x = (x1, x2, . . . , xc), a change in
the last character only changes the last step of the recursion. It follows
that we can generate k-independent variables using amortized time O(t)
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and space close to O(ku1/t). To our knowledge, this presents the best
space-time tradeoff for the generation of k-independent variables in the
case where we do not have access to multiplication over a suitable finite
field as in [55].

9.3.6 A divide and conquer recursion

In this section we introduce a data structure for representing a k-
majority-unique function that offers a faster evaluation time at the
cost of using more space. As in the construction from Theorem 9.1
we use the technique of alternating between expansion and indepen-
dence, but rather than reading a single character at the time, we view
the key as composed of two characters x = (x1, x2) and recurse on
each. In the previous section we increased the size of the domain
of our k-unique function by concatenating part of the key. If we use
only a few large characters this approach becomes very costly in terms
of the space required to store the simple tabulation function hi in
the composition hi(Γi−1((x1, x2, . . . , xi−1)) ‖ (xi, xi, . . . , xi)). To be able
to efficiently recurse on large characters we show that the function
Υ((x1, x2)) = Γ(x1) ‖ Γ(x2) is k-unique when Γ is k-majority-unique.

Lemma 9.3. Let Γ : 〈n〉c → 〈m〉d be a k-majority-unique function. Then the
function Υ : 〈n〉c × 〈n〉c → 〈2m〉d defined by Υ((x1, x2)) = Γ(x1) ‖ Γ(x2) is
k-unique.

Proof. Let x = (x1, x2) denote an element of 〈n〉c × 〈n〉c. For S ⊆ 〈n〉c ×
〈n〉c define S1,a = {x ∈ S | x1 = a}. The following holds for every
x = (x1, x2) ∈ S.

|Υ({x})\Υ(S\{x})| = |Υ({x})\(Υ(S\S1,x1) ∪ Υ(S1,x1\{x}))|
= |(Υ({x})\Υ(S\S1,x1)) ∩ (Υ({x})\Υ(S1,x1\{x}))|
≥ |Υ({x})\Υ(S\S1,x1)|+ |Υ({x})\Υ(S1,x1\{x})|
− |Υ({x})|. (9.3)

We will show that for every S ⊆ 〈n〉c × 〈n〉c with |S| ≤ k there exists a
key (x1, x2) ∈ S such that |Υ({x})\Υ(S\{x})| > 0. We begin by choosing
the first component of x. Let πj(S) = {xj | x ∈ S} denote the set of
jth components of elements of S. By the k-majority-uniqueness of Γ,
considering the set π1(S), we have that

∃x1 ∈ π1(S) : ∀x ∈ S1,x1 : |Υ({x})\Υ(S\S1,x1)| > d/2.
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Fix x1 with this property and consider the choice of x2. By the k-majority-
uniqueness of Γ, considering the set π2(S), we have that

∀x1 ∈ π1(S) : ∃x2 ∈ π2(S1,x1) : |Υ({x})\Υ(S1,x1\{x})| > d/2.

We can therefore always find a key (x1, x2) ∈ S such that both
|Υ({x})\Υ(S\S1,x1)| > d/2, |Υ({x})\Υ(S1,x1\{x})| > d/2 are satis-
fied. The result follows from equation (9.3) where we use the fact that
|Υ({x})| = d.

We will give a recursive construction of a k-majority-unique function
of the form Γi : 〈n〉2i → 〈m〉2i+3

. Let hi : 〈2m〉2i+2 → 〈m〉2i+3
be a simple

tabulation function. For i > 0 the recursion takes the following form.

Γi((x1, . . . , x2i)) = hi(Γi−1((x1, . . . , x2i−1)) ‖ Γi−1((x2i−1+1, . . . , x2i))).

At the bottom of the recursion we tabulate a k-independent function Γ0.

Theorem 9.2. There exists a randomized data structure that takes as input
positive integers λ, n, κ and initializes a function Γ : 〈n〉2λ → 〈n + κ + 4〉2λ+3

.
In the word RAM model with word size w the data structure satisfies the
following:

• The space usage is O(22(n+κ+λ)(n + κ)/w) words.

• The evaluation time of Γ is O(2λ(λ + 2λ(n + κ)/w)).

• Γ is 2κ-majority-unique with probability at least 1− 2−2n+1.

Proof. Let m = n + κ + 4. We initialize Γ by tabulating Γ0 and the
character tables of the simple tabulation functions h1, h2, . . . , hλ where
hi : 〈2m〉2i+2 → 〈m〉2i+3

. In total we have O(2λ) character tables with
O(22(n+κ)) entries of O(2λ(n + κ)) bits, resulting in the space bound.

Let T(i) denote the evaluation time of Γi. For i = 0 we can evaluate
Γ0 by performing a single lookup in O(1) time. For i > 0 evaluating
hi ◦ (Γi−1 ‖ Γi−1) takes two evalutions of Γi−1 followed by evaluating hi
on their concatenated output using O(2i(1 + 2i(n + κ)/w)) operations.
The recurrence takes the form

T(i) ≤
{

2T(i− 1) + O(2i(1 + 2i(n + κ)/w)) if i > 0
O(1) if i = 0

The solution to the recurrence is O(2i(i + 2i(n + κ)/w)).
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We now turn our attention to the probability that Γi = hi ◦ (Γi−1 ‖ Γi−1)
fails to be k-majority-unique. Conditional on Γi−1 being k-majority-
unique, by Lemma 9.3 we have that (Γi−1 ‖ Γi−1) is k-unique and com-
posing it with hi gives us a k-independent function. For our choice of
parameters, according to Lemma 9.2 the probability that Γi fails to be
k-majority-unique is less than 2−2i+1n. Therefore, Γ is k-majority-unique
if Γ0, Γ1, . . . , Γλ are k-majority-unique. This happens with probability at
least 1−∑λ

i=0 2−2i+1n ≥ 1− 2−2n+1.

Remark 9.3. The recursion behind Lemma 9.2 is well suited for paral-
lelization. If we have c processors working in lock-step with some small
shared memory we can evaluate Γ with domain 〈n〉c in time O(c).

Corollary 9.2. There exists a randomized data structure that takes as input
positive integers u, r, k, t and selects a family of functions F from [u] to [r]. In
the word RAM model with word size w the data structure satisfies the following:

• The space used to represent F , as well as a function f ∈ F , is
O(k2u1/tt(log u + t log k)/w) words.

• The evaluation time of f is O(t log t + t(log u + t log k)/w).

• F is k-independent with probability at least 1− u−1/t.

Proof. Apply Theorem 9.2 with parameters λ = dlog te + 1, n =
d(log u)/2te + 1, and κ = dlog ke. This gives is a function Γ that is
k-unique over [u] with probability at least 1− u−1/t. The family F is de-
fined by the composition of Γ with a suitable simple tabulation function
following the approach of Lemma 9.1.

Remark 9.4. If we have access to a standard t-independent polynomial
hash function that outputs elements of [r] then the error probability can
be reduced to 1/u at no additional cost provided that the evaluation time
of such a function does not exceed the evaluation time of f ∈ F . The
trick is to add (modulo r) the output of such a guaranteed t-independent
function to the output of our original function from F . The reason is
that most of the error probability comes from the “small sets” in the
union bound in Lemma 9.2 and these will now be dealt with by our
t-independent function.
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9.3.7 Balancing time and space

Theorem 9.1 yielded a k-unique function over 〈n〉c with an evaluation
time of about O(c2) while using linear space in k. Theorem 9.2 resulted
in an evaluation time of about O(c log c), using quadratic space in k.
Under a mild restriction on k, the two techniques can be combined to
obtain an evaluation time of O(c log c) and linear space in k. We take
the construction from Theorem 9.2 as our starting point, but instead of
tabulating the character tables of h1, . . . , hλ we replace them with more
space efficient k-independent functions that we construct using Theorem
9.1.

Theorem 9.3. There exists a randomized data structure that takes as input
positive integers λ, n, κ = O(n) and initializes a function Γ : 〈n〉2λ →
〈n + κ + 4〉2λ+3

. In the word RAM model with word size w the data structure
satisfies the following:

• The space usage is O(2n+κ+2λn/w) words.

• The evaluation time of Γ is O(2λ(λ + 2λn/w)).

• Γ is 2κ-majority-unique with probability at least 1− 2−n+1.

Proof. At the top level, the recursion underlying Γ takes the same form
as in Theorem 9.2.

Γi = hi ◦ (Γi−1 ‖ Γi−1).

The functions hi : 〈2m〉2i+2 → 〈m〉2i+3
are simple tabulation functions

with m = n + κ + 4. Each hi is constructed from 2i+2 character tables
hi,j : 〈2m〉 → 〈m〉2i+3

. Theorem 9.2 only assumes that the character
tables hi,j are k-independent functions. We will apply Theorem 9.1 to
construct a function Υ that we for each character table hi,j compose with a
simple tabulation function gi,j in order to construct hi,j. By the restriction
that κ = O(n) we have that m = O(n). We set the parameters of Υ
to ĉ = O(1), n̂ = dn/2e, κ̂ = κ such that 〈2m〉 can be embedded in
〈n̂〉ĉ. Furthermore, Υ uses O(2n+κn/w) words of space, can be evaluated
in O(1) operations, and is k-unique with probability at last 1− 2−n−1.
Because Υ has O(1) output characters, the time to evaluate hi,j = gi,j ◦ Υ
is no more than a constant times the word length of the output of hi,j. The
time to evaluate Γ therefore only increases by a constant factor compared
to the evaluation time in Theorem 9.2.
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The probability of failure of Γ to be k-majority-unique is the same as
in Theorem 9.2, provided that Υ does not fail to be k-unique. This gives
a total probability of failure of less than 2−2n+1 + 2−n−1 < 2−n+1.

We only store a single Υ and the character tables of gi,j that we use to
simulate the character tables hi,j. From the parameters of Υ we have that
gi,j uses O(1) character tables with O(2n+κ) entries of O(2in/w) words.
The space usage is dominated by the O(2λ) character tables of hλ that
use space O(2n+κ+2λn/w) in total.

Corollary 9.3. There exists a randomized data structure that takes as input
positive integers u, r, t, k = uO(1/t) and selects a family of functions F from [u]
to [r]. In the word RAM model with word length w the data structure satisfies
the following:

• The space used to represent F , as well as a function f ∈ F , is
O(ku1/tt(log u)/w) words.

• The evaluation time of f is O(t log t + t(log u)/w).

• F is k-independent with probability at least 1− u−1/t.

Proof. Apply Theorem 9.3 with parameters λ = dlog te, n = d(log u)/te+
1, and κ = dlog ke. This gives is a function Γ that is k-unique over [u] with
probability at least 1− u−1/t. The family F is defined by the composition
of Γ with a suitable simple tabulation function following the approach of
Lemma 9.1.

9.3.8 An improvement for space close to k

In this section we present a different space efficient version of the divide-
and-conquer recursion. The new recursion is based on an extension of the
ideas behind the graph product from Lemma 9.3. In Lemma 9.3 we use
expansion properties over subsets of size k and concatenate the output
characters of Γ, resulting in an output domain of size at least k2. By using
stronger expansion properties and modifying our graph concatenation
product to fit the structure of the key set, we are able to reduce the space
usage at the cost of using more time. We now introduce a property of
d-regular bipartite graph that we call k-super-majority-uniqueness: More
than half the input vertices have more than d/2 unique neighbors.
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Definition 9.4. Let Γ : 〈n〉c → 〈m〉d be a function satisfying the following
property:

∀S ⊆ 〈n〉c, |S| ≤ k : |{x ∈ S | |Γ({x})\Γ(S\{x})| > d/2}| > |S|/2.

Then we say that Γ is k-super-majority-unique.

Overview of approach. The exposition is quite technical but the under-
lying idea is simple: Suppose we have a set S of k keys of the form (x1, x2).
Then the set of first components π1(S) = {x1 | (x1, x2) ∈ S} has size
|π1(S) = kε for some ε ∈ (0, 1). By the pigeonhole principle there must
exist a subset A ⊆ π1(S) of size at at least kε/2 such that for every a ∈ A
we have that |{(a, x2) ∈ S}| ≤ 2k1−ε, otherwise we would have more than
k keys! Therefore, the function Γ((x1, x2)) = Γ1(x1) ‖ Γ2(x2) is k-unique
on the set S provided that Γ1 is kε-super-majority-unique and Γ2 is 2k1−ε-
majority-unique. By forming these combinations for O(log k) choices of
ε we can cover all possible structures of two-character keys, ensuring
that Γ is k-unique while keeping the size of the right-hand side close to
O(k). For a given choice of ε we obtain Γ1 and Γ2 by componentwise
concatenation of differently sized prefixes of the output a k-independent
function. Based on this idea we can then build a divide-and-conquer
recursion similar to the one behind Theorem 9.2. The technical details
behind this idea is deferred to Appendix 9.5

9.4 Conclusion

We have presented new constructions of k-independent hash functions
that come close to Siegel’s lower bound on the space-time tradeoff for
such functions. An interesting open problem is whether the gap to the
lower bound can be closed. From the perspective of efficient expanders
it would be very interesting to achieve space o(k) while preserving
computational efficiency. Of course, such a result is not possible via
k-independence.
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9.5 Appendix: Details behind the prefix technique

The following lemma shows how we can construct a k-unique function
over U2 from a set of k-super-majority-unique functions over U.

Lemma 9.4. Let q be a positive integer. For j = 1, 2, . . . , q let Γj :
〈κ〉c → 〈mj〉d be min(2kj/q, k)-super-majority-unique and set m = maxj(mj +

mq−j+1). Then the function Γ : 〈κ〉c × 〈κ〉c → 〈m〉dq defined for (j, l) ∈
{1, . . . , q} × {1, . . . , d} by

Γ(x1, x2)(j−1)d+l = (Γj(x1)l ‖ Γq−j+1(x2)l)[m]

is k-unique.

Proof. Consider a set of keys S ⊆ 〈n〉c × 〈n〉c with |S| ≤ k. We will
show that there exists an index j ∈ {1, . . . , q} and a key x = (x1, x2) ∈ S
such that x has a unique neighbor with respect to S and Γj ‖ Γq−i+1.
Consider the set of first components of the set of keys π1(S). For some
j ∈ {1, . . . , q} we must have that k(j−1)/q ≤ |π1(S)| ≤ kj/q. By the
super-majority-uniqueness properties of Γj there must exist more than
k(j−1)/q/2 first components x1 ∈ π1(S) such that Γj(x1) has more than
d/2 unique neighbors with respect to π1(S). Furthermore, because
|S| ≤ k, there exists at least one such x1 that is a component of at most
min(2k(q−j+1)/q, k) keys. Following a similar argument to the proof of
Lemma 9.3, by the majority-uniqueness properties of Γq−j+1 there exists
x2 ∈ S1,x1 such that we get a unique neighbor.

In the following lemma we use a single k-independent function to
represent a set of k-super-majority-unique functions such that the con-
catenated product of these functions is k-unique. The proof of the lemma
is omitted since it follows from using the approach of Lemma 9.2 to
obtain expansion |Γ(S)| > (7/8)d|S|, and then applying Lemma 9.4 to
obtain the k-uniqueness property.

Lemma 9.5. For every choice of positive integers c, q, κ, let f : 〈κ〉c →
〈2κ + 12〉16cq be a 2κ-independent function. For j = 1, . . . , q define Γj : 〈κ〉c →
〈d((j + 1)/q)κe+ 12〉16cq by

Γj(x)l = f (x)l[d((j + 1)/q)κe+ 12] for l ∈ {1, . . . , 16cq}.
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Let m = d(1 + 3/q)κe+ 26. Then the function Γ : 〈κ〉c × 〈κ〉c → 〈m〉16cq2

defined for (j, l) ∈ {1, . . . , q} × {1, . . . , 16cq} by

Γ(x1, x2)(j−1)16cq+l = (Γj(x1)l ‖ Γq−j+1(x2)l)[m]

is k-unique with probability at least 1− 2−2cκ .

We remind the reader that the notation x[m] is used to denote the zero-
padded m-bit prefix of x. Taking the prefix of the concatenated output
characters of Γj and Γq−j+1 is done with the sole purpose of padding the
output characters of Γ to uniform length.

We now define a randomized recursive construction of a k-unique
function similar to the one in Theorem 9.2. The parameters of the data
structure are λ, κ, and q. The parameters λ and κ determine the size
of the universe and the desired k-uniqueness. The parameter q controls
the space-time tradeoff of the character tables used in the recursion. At
the outer level of the recursion, for i = 1, . . . , λ, we repeatedly square
the size of the domain, constructing k-unique functions of the form
Γi : 〈κ〉2i → 〈2κ + 26〉144·2i

. At level i of the recursion, we obtain a k-
independent function by composing Γi with a simple tabulation function
hi+1 : 〈2κ + 26〉144·2i → 〈2κ + 12〉48·2i+1

. The output of this function is
then used to construct Γi+1, following the approach of Lemma 9.5 with
the parameter q set to 3. For i = 1, 2, . . . , λ the recursion is described by
the following set of equations

Γi(x1, x2)(j−1)48·2i+l = (Γi,j(x1)l ‖ Γi,4−j(x2)l)[2κ + 26]

Γi,j(xs)l = hi(Γi−1(xs))l[d((j + 1)/3)κe+ 12]

Γ0(xs)l = I(48)(xs)l[2κ + 26]

where the indices are j ∈ {1, 2, 3}, l ∈ {1, . . . , 48 · 2i}, and s ∈ {1, 2}.
We have defined Γ0 by simply repeating the input 48 times, padded to
length 2κ + 26, to ensure that it fits into the recursion. In practice we
only require h1 ◦ Γ0 be be k-independent over domain 〈κ〉.

To further reduce the space usage we apply the technique from
Lemma 9.5 to implement the character tables of hi. Each charac-
ter table has domain 〈2κ + 26〉. We view this domain as consist-
ing of two characters of length κ′ = κ + 13. We apply Lemma
9.5 with parameters c = 1, q, and κ = κ′ to construct a function
Υ : 〈κ′〉2 → 〈d(1 + 3/q)κ′e+ 26〉16q2

that is k-unique with probability at
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least 1− 2−2κ′ . To facilitate fast evaluation we tabulate the k-independent
function f ′ : 〈κ′〉 → 〈d(1 + 1/q)κ′e+ 12〉16q used to construct Υ. The jth
character table of hi is constructed by composing Υ with an appropriate
simple tabulation function,

hi,j = Υ ◦ gi,j,

where gi,j : 〈d(1 + 1/q)κ′e+ 12〉16q → 〈2κ + 12〉48·2i
is tabulated.

Theorem 9.4. There exists a randomized data structure that takes as input
positive integers λ, κ, q, and initializes a function Γ : 〈κ〉2λ → 〈2κ + 26〉48·2λ

.
In the word RAM model with word length w the data structure satisifes the
following:

• The space usage is O(2(1+3/q)κ+2λq2κ/w).

• The evaluation time of Γ is O(2λq2(λ + 2λκ/w)).

• With probability at least 1− 2−2(κ−1) we have that Γ is 2κ-unique.

Proof. The total space usage is dominated by the simple tabulation func-
tions used to implement the character tables of hλ. There are O(2λ)
simple tabulation functions gi,j. Each of these has O(q2) character ta-
bles with a domain of size O(2(1+3/q)κ) that map to bit strings of length
O(2λκ). This gives a total space usage of O(2(1+3/q)κ+2λ)q2κ/w).

Let T(i) denote the evaluation time of Γi. For i = 1 we can evaluate
Γ1 by performing a constant number of lookups into h0 and combine
prefixes of the output in O(1) time. For i > 1 evaluating Γi takes two
evaluations of Γi−1 and an additional amount of work combining prefixes
that is only a constant factor greater than the time required to read the
output of hi ◦ Γi−1. Evaluating hi is performed by O(2i) evaluations of
character tables of the form gi,j ◦ Υ. The degree of Υ is O(q2) and it
has an evaluation time that is proportional to the degree. We therefore
perform O(q2) lookups into the character tables of gi,j where we read bit
strings of length O(2iκ). The recurrence describing the evaluation time
of Γi takes the form

T(i) ≤
{

2T(i− 1) + O(2iq2(1 + 2iκ/w)) if i > 1
O(1) if i = 1.

The solution to the recurrence is O(2iq2(i + 2i(n + κ)/w)).
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The construction fails if Υ fails to be k-unique or if Γ1, . . . , Γλ fails to
be k-unique. According to Lemma 9.5 this happens with probability less
than 2−2κ′ + ∑λ

i=1 2−2iκ < 2−2(κ−1)

Corollary 9.4. There exists a randomized data structure that takes as input
positive integers u, r = uO(1), t, k and selects a family of functions F from [u]
to [r]. In the word RAM model with word length w the data structure satisfies
the following:

• The space used to represent F , as well as a function f ∈ F , is
O(ku1/tt2 log(k)/w) words.

• The evaluation time of f is O(t2(log(k)/ log u)(log(log(u)/ log k) +
log(u)/w)).

• F is k-independent with probability at least 1− k−2.

Proof. Assume without loss of generality that k ≤ u and apply Theorem
9.4 with parameters λ = dlog(log(u)/ log k)e+ 1, κ = dlog ke+ 1, and
q = d3t log(k)/ log ue. This gives is a function Γ that is k-unique over [u]
with probability at least 1− k−2. We compose Γ with a suitable simple
tabulation function h that maps to elements of [r]. Implementing h using
Υ we get the same bounds on the space usage, evaluation time, and
probability of failure as for the data structure used to represent Γ.

Remark 9.5. The construction in Corollary 9.4 presents an improvement in
the case where we wish to minimize the space usage. For w = Θ(log u)
and t = dlog ue we get a space usage of O(k log(u) log(k)) and an eval-
uation time of O(log(u) log(k) log(log(u)/ log(k))). In comparison, for
these parameters Corollary 9.1 gives a space usage of O(k log2 u) and an
evalution time of O(log2(u) log(k)).
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