Algorithms for Similarity Search and Pseudorandomness

Tobias Christiani

Advisor: Rasmus Pagh

Submitted: May 2018 IT UNIVERSITY OF COPENHAGEN

Abstract

We study the problem of approximate near neighbor (ANN) search
and show the following results:

An improved framework for solving the ANN problem using
locality-sensitive hashing, reducing the number of evaluations
of locality-sensitive hash functions and the word-RAM com-
plexity compared to the standard framework.

A framework for solving the ANN problem with space-time
tradeoffs as well as tight upper and lower bounds for the space-
time tradeoff of framework solutions to the ANN problem
under cosine similarity.

A novel approach to solving the ANN problem on sets along
with a matching lower bound, improving the state of the
art. A self-tuning version of the algorithm is shown through
experiments to outperform existing similarity join algorithms.

Tight lower bounds for asymmetric locality-sensitive hashing
which has applications to the approximate furthest neighbor
problem, orthogonal vector search, and annulus queries.

A proof of the optimality of a well-known Boolean locality-
sensitive hashing scheme.

We study the problem of efficient algorithms for producing high-
quality pseudorandom numbers and obtain the following results:

A deterministic algorithm for generating pseudorandom num-
bers of arbitrarily high quality in constant time using near-
optimal space.

An randomized construction of a family of hash functions
that outputs pseudorandom numbers of arbitarily high quality
with space usage and running time nearly matching known
cell-probe lower bounds.

Resumé

Vi undersoger et grundleeggende problem indenfor approksima-
tiv sogning: tilneermelsesvis neer nabo (TNN) problemet, og viser
folgende resultater:

En forbedret generel losning af TNN problemet som reducerer
antal evalueringer af afstandsfelsomme spredefunktioner.

En generel losning af TNN problemet som giver mulighed for
tid-plads afvejning samt teette ovre og nedre graenser for TNN
problemet med tid-plads afvejning under kosinuslighed.

En ny tilgang til losning af TNN problemet pa meengder samt
en matchende nedre graense. En adaptiv version af algoritmen
til approksimativ sammenfojning vises ved eksperimenter at
veere konkurrencedygtig.

Teette nedre graenser for asymmetrisk afstandsfelsom spred-
ning som har anvendelser til approksimativ segning efter
fijerne naboer, ortogonale vektorer, og annulus foresporgsler.

Et optimalitetsbevis for en velkendt familie af Boolske afstands-
felsomme spredefunktioner.

Vi underspger problemet at finde effektive algoritmer til produktion
af pseudotilfeeldighed af hej kvalitet og opnar felgende resultater:

En deterministisk algoritme til generation af pseudotilfeeldige
tal af vilkarlig hej kvalitet i konstant tid og med teet pa optimalt
pladsforbrug.

En randomiseret konstruktion af en familie af spredefunktio-
ner som afbilder til pseudotilfeeldige tal af vilkarlig hej kvalitet,
med evalueringstid og pladsforbrug tet pa den nedre greense.

Acknowledgements

I am very grateful to Rasmus Pagh for advising me for the past
almost five years. Most of my favorite results have come through
my collaboration with Rasmus where his overview and technical
strength complements my intuition. I always feel that Rasmus is
ready to listen to my ideas, and to encourage me and guide my
research in the right direction. I cannot imagine a better advisor.

I would like to thank my collegues in the 4B corridor at ITU for
creating a friendly academic environment where I enjoy spending
my time. In particular I would like to thank my current and for-
mer office mates Johan Sivertsen, Matteo Dusefante, Thomas Ahle,
Martin Aumiiller, Morten Stockel, and Ninh Pham. Thore Husfeldt
also deserves special thanks for his stimulating lunch discussions
on issues ranging from superintelligence to immigration policy.

I would like to thank Greg Valiant for hosting my stay at Stan-
ford in the fall of 2015 and Michael Mitzenmacher for hosting my
stay at Harvard in the fall of 2017. Specifically I would like to thank
Josh Alman, Michael Kim, Zhao Song, and Aviad Rubinstein for
making my time spent abroad a pleasant and social experience.

Finally I want to thank my parents Tom and Kirsten for support-
ing me, my brother Anders for tolerating living with a somewhat
disorganized PhD student, and my girlfriend Elisabeth for listening
to me and helping me through difficult times.

All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.

From the ashes, a fire shall be woken,

A light from the shadows shall spring;
Renewed shall be blade that was broken,
The crownless again shall be king.

J. R. R. Tolkien (1892-1973)

Contents

Contents

1 Introduction
1.1 Partl:Similaritysearch L
1.2 Partll: Pseudorandom hashing and generators
1.3 Overviewand contributions L.
14 Conclusionandopenproblems

I Similarity search

2 Fast locality-sensitive hashing frameworks

3

2.1
2.2
23
24
2.5
2.6
2.7
2.8

Introduction
Preliminaries
Frameworks L
Reducing the word-RAM complexity
The number of hash functions in cornercases
Conclusionand openproblems
Appendix: Inequalities L
Appendix: Analysis of the Andoni-Indyk framework

Space-time tradeoffs for similarity search

3.1
3.2
33
34
3.5
3.6
3.7

Introduction
A framework with space-time tradeoffs
Gaussian filters on the unit sphere oL
Space-time tradeoffs under kernel similarity
Lowerbounds
Openproblems.
Appendix: Framework

vii

10
13
17

19

21
21
28
29
35
36
38
39
40

viii

Contents

3.8 Appendix: Gaussianfilters L. L.
3.9 Appendix: Approximate feature maps, characteristic functions, and Bochner’s
Theorem
3.10 Appendix: Proof of tradeoff lowerbound
3.11 Appendix: ComparisontoKapralov
3.12 Appendix: Details about dynamization and the model of computation . . .
3.13 Addendum: Animproved framework

Set similarity search beyond MinHash

41 Introduction
4 Preliminaries. L.
43 UpperBound.
44 lowerbound
4.5 Equivalent set similarity problems
46 Conclusionandopenproblems
4.7 Appendix: Details behind the lowerbound
48 Appendix: Comparisons

Adaptive similarity join

51 Introduction
52 Preliminaries.
53 Overviewofapproach.
54 Chosen Path SimilarityJoin
55 Implementation
56 Experiments
57 Conclusion. L

Lower bounds for asymmetric locality-sensitive hashing

6.1 Preliminaries.
6.2 Lower bounding the collision probability
6.3 Upper bounding the collision probability
6.4 Extensionto negative correlation
6.5 Conclusionand openproblems

Optimal Boolean locality-sensitive hashing

71 ntroduction
72 Relatedwork
73 Preliminaries.
74 Bit-samplingisoptimalo
75 Openproblems.

81
81
90
93
98
108
110
112
115

117
117
121
123
124
133
137
145

149
151
152
153
154
155

Contents

Il Pseudorandomness

8 Generating k-independent random variables in constant time
8.1 Introduction
82 Preliminaries.
8.3 Explicit constant time generators
8.4 Constant time generators with optimal seed length
8.5 Faster multipoint evaluation for k-generators
8.6 Finite field arithmeticonthewordRAM
8.7 Aload balancing application
8.8 Experiments

9 Near-optimal k-independent hashing
9.1 Introduction
9.2 Backgroundandoverview
9.3 Qurconstructions
94 Conclusion.
9.5 Appendix: Details behind the prefix technique

Bibliography

167

169
169
174
179
182
185
186
188
189

195
195
199
203
214
215

219

Chapter 1

Introduction

1.1 Part I: Similarity search

Similarity search in large collections of high-dimensional objects is a
problem that is well-motivated by a numerous applications. Consider
for example the representation of an image by a d-dimensional feature
vector x, where each entry x; denotes the fraction of pixels of color i
in the image. Given a collection of images P and a query image g, we
could for example be interested in finding the nearest neighbor of g: the
image x € P such that the distance dist(g, x) is minimized, for some
appropriate choice of distance function. Applications of near neighbor
search include:

¢ (lassification: Given a collection P of labelled objects and an un-
labelled object g, classify g according to the label of its nearest
neighbor in P.

* Recommender systems: Find similar users, movies, songs, books
etc. to be used for recommendation.

* Duplicate detection: Remove near-identical objects from a collection,
for example duplicate web pages from the index of a search engine.

The trivial solution to the near neighbor problem would be to iterate
through every x € P and compute dist(g, x) while keeping track of the
nearest neighbor found so far. If we let n = |P| denote the size of our
collection and assume that it takes time O(d) to compute the distance
between a pair of objects, then the trivial solution uses time O(dn).

2 Chapter 1. Introduction

Suppose we are interested in preprocessing the collection P into a
data structure that supports answering queries faster than the trivial
solution. In two-dimensional Euclidean space there exists a solution
based on the Voronoi diagram of P with space usage O(n) and query
time O(logn) [68]. In higher dimensions, the best known solutions to
the nearest neighbor problem either suffer from space usage or query
time that is exponential in d [86]. This phenomenon is known as the
“curse of dimensionality” and has recently been substantiated by condi-
tional hardness results [6, 67, 171, 140], showing for example that the
problem of finding all nearest neighbors in a collection of n points in
d-dimensional Euclidean space cannot be solved in time subquadratic
in n when d = w(logn) unless the Strong Exponential Time Hypothesis
(SETH) is false [170].

In order to efficiently solve similarity search problems in high dimen-
sional spaces, researchers and practitioners have turned to approximate
solutions. Instead of finding the exact nearest neighbor of a query point,
we settle for finding a point that is some approximation factor ¢ > 1
times further away than the nearest neighbor. The algorithms and data
structures for similarity search in this thesis are primarily aimed at pro-
viding efficient solutions to the approximate near neighbor problem defined
as follows:

Definition 1.1. Let P C X be a collection of |P| = n points in a distance
space (X, dist). A solution to the (r, cr)-near neighbor problem is a data
structure that supports the following query operation: Given a query
g € X if there exists x € P with dist(g,x) < r return ¥’ € P with
dist(g,x") < cr.

The (r, cr)-near neighbor problem differs from the nearest neighbor
problem by searching for any point within a fixed radius r of the query
point and allowing us to return points at distance up to cr even though
better candidates exist. It will be convenient to also define the (sq,s7)-
similarity problem as the natural equivalent of the (r, cr)-near neighbor
problem where we measure similarities rather than distances, i.e., we
wish to report find a point with similarity sim(g,x) > s; and we are
willing to accept points with similarity s, < s;.

By allowing an approximation factor ¢ > 1 it is possible to solve
the (7, cr)-near neighbor problem in Euclidean space (and many other
spaces) with query time that is sublinear in # and polynomial in d using
space polynomial in d and n [91, 66]. However, even approximation

1.1. Part I; Similarity search 3

has its limits when it comes to alleviating the curse of dimensionality.
Rubinstein [140] has recently shown that unless SETH is false, for every
choice of constants 7y, > 0 there exists € > 0 such that a solution to the
(1 4 ¢)-approximate near neighbor problem with O(n7) preprocessing
time must use query time Q(n?).

1.1.1 Locality-sensitive hashing

One of the most successful approaches for finding solutions to the ap-
proximate near neighbor problem in various spaces is known as locality-
sensitive hashing, commonly abbreviated as LSH (see [12, 166] for more
information). The idea behind locality-sensitive hashing is to construct
a distribution H over functions h: X — R that are used to partition the
space X. This randomized partitioning scheme is locality-sensitive in the
sense that close points x,y € X are more likely to hash to the same part
of a randomly sampled partition.

Definition 1.2 (Locality-sensitive hashing [91]). Let (X, dist) be a distance
space and let H be a distribution over functions i: X — R. We say that
H is (r,cr, p1, p2)-sensitive if for x,y € X and h ~ H we have that:

e If dist(x,y) <r then Pr[h(x) = h(y)] > p1.
e If dist(x,y) > cr then Pr[h(x) = h(y)] < pa.

We can speed up approximate near neighbor searches at the cost of
some additional preprocessing by partitioning the set of points P accord-
ing to L randomly sampled locality-sensitive hash functions hy, ..., hr. A
query for a point g proceeds by considering the points of P that collide
with g under hy,...,hr. Intuitively we want to sample enough hash
functions such that the ball of radius r around every potential query
point g € X is covered by the union of the parts h;l(q), ..., h 1(q). This
approach yields the following general LSH framework for solving the
approximate near neighbor problem (for more details see Chapter 2).

Theorem 1.1 (Indyk-Motwani [91, 86], simplified). Let H be (r,cr, p1, p2)-
log(1/p1)
log(1/p2)
neighbor problem using O(n'*f) words of space and with query time dominated

by O(nf logn) evaluations of functions from H.

sensitive and let p = , then there exists a solution to the (r,cr)-near

4 Chapter 1. Introduction

1.1.2 Examples

To further introduce locality-sensitive hashing and the approach to solv-
ing the approximate near neighbor problem used in this thesis, we will
present three simple and powerful families of locality-sensitive hash func-
tions: Bit-sampling by Indyk and Motwani [91], MinHash by Broder [35],
and SimHash by Charikar [47]. Indyk, Broder, and Charikar received
the 2012 ACM Paris Kanellakis Theory and Practice Award “for their
groundbreaking work on Locality-Sensitive Hashing that has had great impact
in many fields of computer science including computer vision, databases, infor-
mation retrieval, machine learning, and signal processing” [1]. We proceed by
describing each of these families in turn, introducing relevant notation
as we go along.

Bit-sampling. Indyk and Motwani introduced a simple family of
locality-sensitive hash functions H for the d-dimensional Boolean hyper-
cube {0,1}¥ under Hamming distance disty (x,vy) = |{i € [d] | x; # y:}|
where [d] denotes the set {1,2,...,d}. We sample a function h ~ H by
sampling i uniformly at random [d] and setting h(x) = x;. It is easy to
see that a pair of points fail to collide under a random hash function
h(x) = x; if and only if i is sampled from the set of coordinates where x
and y differ.
Pr [h(x) = h(y)] =1— Pr [h(x) # h(y)] = 1 — distss(x,) /d.
h~Hy h~Hy

Suppose we want to use this function to solve the (7, cr)-near neighbor
problem in Hamming space ({0,1}%,disty). Then, from Theorem 1.1 we
optain a query exponent of

_ log(1/(1—r/d))
p= log(1/(1—cr/d))

where the details behind the last inequality can be found in [86]. In
conclusion, bit-sampling gives a solution to the (r,cr)-near neighbor
problem in Hamming space with query time roughly n'/¢ and space
usage and preprocessing time roughly n!*1/¢,

<1/c

MinHash. MinHash is a family of locality-sensitive hashing with ap-
plications to similarity search and similarity estimation on sets under
Jaccard similarity. Given sets x,y C [d] their Jaccard similarity is defined
by simy(x,y) = |x Ny|/]xUyl.

1.1. Part I; Similarity search 5

A random hash function / from the MinHash family H; is specified
by a random permutation of [d] and hashes a set x to the first element of
x in this permutation. The permutation can be specified by a uniformly
random hash function f: [d] — [0,1] where [0,1] denotes the closed
interval from 0 to 1. Specifically, we sample a random from h ~ H; from
the MinHash family by sampling a uniformly random hash function
f:[d] = [0,1] and setting

h(x) = argmin f(i).
ex
Two sets x and y collide under a random hash function h ~ H; if and
only if the smallest element of x U y is contained in x N y. Otherwise, the
smallest element of x is in x\y or the smallest element of y is in y\x and
there is no way the sets hash to the same element. Since the smallest
element of x U y is uniformly distributed we get that

Pr [h(x) = h(y)] = XY

= =simj(x,y).
I~ x Uy 1 (%, y)

MinHash gives a solution to the (s1, s2)-similarity problem with exponent
p =log(1/s1)/log(1/s2).

SimHash. SimHash is a family of Boolean-valued locality-sensitive
hash functions for RY under cosine similarity sim¢(x,y) = cos(6(x,y))
where 6(x,y) denotes the angle between x and y. We sample a function
h ~ Hc by sampling a d-dimensional standard normal random variable
z ~ N%(0,1) and setting

h(x) = sign({x,z)).

Intuitively, we sample a random hyperplane that goes through the origin
and hash points depending on which side of the hyperplane they are
on (the sign of the inner product (x,y) = Y, x;z,). Due to the rotational
invariance of the standard normal distribution the properties of this
scheme can be analyzed in two dimensions. The probability that two
points on the unit circle are separated by a random line through the
origin is exactly
Pr [h(x)=h(y)]=1-0(x,y)/m.
h~Hc

This scheme yields a solution to the (s1,sp)-similarity problem under
cosine similarity with p = log(1 — arccos(s1)/7)/ log(1 — arccos(sz) / 7r).

6 Chapter 1. Introduction

1.1.3 Lower bounds

Given a space (X,dist) and distance thresholds r, ¢r we are inter-
ested in finding a (7, cr, p1, p2)-sensitive family with a value of p =
log(1/p1)/1og(1/p2) that is as small as possible. The primary technique
for deriving locality-sensitive hashing lower bounds has been Fourier
analysis of Boolean functions under noisy inputs (see the excellent book
by O’Donnell for a comprehensive introduction [120]). Lower bounds
for locality-sensitive hashing schemes (distributions over functions) of-
ten follow from lower bounds on the behaviour of a single function
f:{-1,1}¥ — R under randomly a-correlated inputs, defined as fol-
lows:

Definition 1.3. For -1 <a <1land x,y € {—1,1}d we say that (x,vy) is
randomly a-correlated if x is uniformly distributed over {—1,1} and
each component of y is i.i.d. according to

)X with probability 1%,
a —x; with probability 15%.

If two vectors (x,y) are randomly a-correlated their expected cosine
similarity is &, and their expected Hamming distance is given by (1 —
a)d/2. As the dimensionality increases, the empirical correlation between
x and y will be tightly concentrated around «.

Let 0 < B < a < 1and consider a ((1—wa)d/2,(1—B)d/2,p1,p2)-
sensitive family H for Hamming space ({—1,1}%,disty). Combining
lower bounds by O’Donnell et al. [122] and Andoni and Razenshteyn [19]
(building on work by Motwani et al. [114]), we have that

_ log(1/p1) log(1/a) 1-—ua
* ™ Tog(1/p2) = max (log(l/ﬁ)’1+a—25> —0a(1). (1.1)

The lower bounds require that p; is not too small as a function of 4. In
particular, they start breaking down if p; is exponentially small in d, but
such families are typically not of interest for high-dimensional similarity
search where we want p, ~ 1/n. For a more comprehensive discussion
of this issue see [122].

Compared against different constructions of locality-sensitive hash
families, the two lower bounds comprising equation (1.1) reveal inter-
esting properties of the Boolean hypercube. As a, approach 1 the
lower bound of log(1/«)/log(1/pB) is the larger of the two bounds.

1.1. Part I; Similarity search 7

If we convert the lower bound to Hamming distance we get that
p > log(1/(1 —2r/d))/log(1/(1 —2cr/d) ~ 1/c for an (r,cr, p1, p2)-
sensitive family when r,cr < d. This lower bound is tight against the
bit-sampling LSH of Indyk and Motwani. The bit-sampling family can
be described as randomly partitioning the Boolean hypercube into sub-
cubes, so in a sense subcubes are an optimal “shape” for distinguishing
between very short random walks and slightly longer random walks in
the Boolean hypercube. The lower bound of 1/¢ in Hamming space gives
a lower bound of 1/c? for K‘f,-spaces (vectors in R? under the {p-norm
[x —yll, = (X |xi — y;|P)/P). This follows from a direct embedding of
the Boolean hypercube in /,-space.

As B approaches 0 the lower bound of (1 —«)/(1+ &« —2p) dominates.
Converted to Hamming distance this bound becomes p > 1/(2c —1). For
B = 0 this is tight against existing constructions that use balls to partition
the hypercube [73, 14, 13]. Loosely speaking, in this regime we see
that balls in Hamming space are optimal for simultaneously minimizing
volume (capturing 0-correlated points) while maximizing the probability
of capturing positively correlated points.

In Hamming space, the family of locality-sensitive hash functions
that give the best known upper bound on the p-value can essentially
be described as follows: We sample a function i ~ H by sampling
a sequence of 4 balls of radius slightly below d/2 with the center of
each ball being sampled uniformly at random from {—1,1}%. A point
x € {—1,1}* is then hashed to the index of the first ball in the sequence
that contains x. As we increase d and decrease the radius of the balls,
this scheme has a p-value for the ((1 —a)d/2, (1 — B)d/2)-near neighbor

problem of
1-a /1-P
p = 1 -I-Dé/ —|—0d(1). (1.2)

This scheme also works on the unit sphere if we replace the balls by
spherical caps [157, 13]. The size of the gap between the lower bound in
equation (1.1) and the upper bound (1.2) is shown in Figure 1.1. Since
the gap is less than 0.06 it is difficult to argue that closing the gap would
have huge practical implications, especially since the lower order terms
in existing constructions exceed this for most realistic applications [13].
Nevertheless, considering the tools that have gone into proving the
existing lower bounds, we believe that it is of fundamental mathematical
interest to understand how to best separate p-correlated points from
a-correlated points.

8 Chapter 1. Introduction

1.00-
0.75-
Difference
(0,0.01]
(0.01,0.02)
@ 0.50- (0.02,0.03]

(0.03,0.04]

. (0.04,0.05]

. (0.05,0.06]

0.00-

0.00 0.25 0.50 0.75 1.00
a

Figure 1.1: The gap in the p-value between the best known upper and lower bounds for families of
(1 —wa)d/2,(1— B)d/2, p1, p2)-sensitive hash functions in d-dimensional Hamming space.

1.1.4 Beyond locality-sensitive hashing

A common theme among recent advances in the area of theoretical
approximate similarity search has been to move beyond standard locality-
sensitive hashing [14, 100, 150, 24, 16, 54, 56, 22]. The results in this
direction usually modify part of the framework, for example by con-
structing the locality-sensitive family by looking at the data, but the
underlying approach of using locality-sensitive mappings from points
to buckets remains the same. This thesis explores several variations of
standard locality-sensitive hashing and we therefore briefly introduce
some of this work here.

Data-dependent locality-sensitive hashing. A sequence of papers [14,
17, 19, 18, 16] has explored the idea of data-dependent locality-sensitive
hashing: If we allow the construction of H to depend on the set of data
points P, how fast can we then solve the approximate near neighbor prob-
lem? Andoni and Razenshteyn was able to show matching upper and
lower bounds of p = 1/(2¢? — 1) + 04(1) in Euclidean space [17, 19]. This
matches standard LSH upper and lower bounds in the case of random

1.1. Part I; Similarity search 9

instances on the unit sphere, and indeed the construction by Andoni
and Razenshteyn is based on a reduction to this case. Unfortunately the
construction and its analysis is complicated and suffer from large lower
order terms [16], although recent work has found some success in strik-
ing a balance between algorithmic simplicity and theoretical optimality
using data-dependence in Hamming space [18].

Asymmetric locality-sensitive hashing. Asymmetric locality-sensitive
hashing extends the concept of standard locality-sensitive hashing to
cover distributions over pairs of functions (4, g) ~ A and studies how the
probability of collision between pairs of points can be made to depend on
the distance/similarity between the points [150, 22]. This modification to
standard locality-sensitive hashing opens up new applications such as
approximate search for furthest neighbors, orthogonal vectors [164], and
annulus queries (see [22] for an overview). In Chapter 6 we show lower
bounds for asymmetric locality-sensitive hashing.

Space-time tradeoffs. The standard locality-sensitive hashing frame-
work offers a balanced space-time tradeoff that is the result of a sym-
metric query and update procedure: Every data point is stored in O(n”)
buckets and during queries we probe O(n”) buckets. A line of work
has investigated how the query and update parts of the algorithm can
be modified to yield different tradeoffs between space usage and query
time [130, 106, 9, 95, 100, 54, 16]. Typically the performance of such
solutions is expressed by two exponents: p, and p;. During updates
we store points in O(nf*) buckets and during queries we probe O(n1)
buckets.

Early work in this area focused on how to modify the standard locality-
sensitive hashing query and update algorithms using an idea known as
multi-probing [106]. Regular locality-sensitive hashing uses L = O(n”)
hash functions h,...,h;. Suppose h;(q) denotes the Ith bucket to be
probed during the standard LSH query algorithm. By inspecting buckets
in the neighborhood of /;(g), for example by adding some noise z to g
and probing /(g + z), we can increase the probability of finding a near
neighbor of g, which in turn allows us to reduce L while maintaining
correctness.

Recent breakthroughs in this area have come by abandoning the
locality-sensitive hashing framework in favor of a more direct approach
based on locality-sensitive filtering [100, 54]. Finally, Andoni et al. [16]

10 Chapter 1. Introduction

have combined their data-dependent approach to locality-sensitive hash-
ing with the best known space-time tradeoff solutions for random data to
obtain optimal space-time tradeoffs, as shown by matching lower bounds.
The optimal trade-off between p4, 0, > 0 for the (r,cr)-near neighbor
problem in Euclidean space can be described by the equation

c\/pq+ (2 —1)\/pu = V22 — 1.

For a balanced tradeoff this collapses to 1/(2c?> — 1) which is tight for
data-dependent locality-sensitive hashing, but the bound has been shown
to be tight for every choice of p,, p, that satisfies the equation.

Locality-sensitive filters and maps. Locality-sensitive filtering [24] dif-
fers from locality-sensitive hashing in that it uses locality-sensitive subsets
of space (filters) rather than locality-sensitive partitions (hash functions)
to solve the approximate near neighbor problem. An example of a
locality-sensitive filter family is the distribution over balls of some fixed
radius in Hamming space. This idea is further extended to allow asym-
metry by using different filters for queries and updates [100, 54]. It turns
out that the filter family of consisting of pairs of concentric balls in Ham-
ming space can be used to solve the approximate near-neighbor problem
with optimal space-time tradeoffs, matching the lower bound of Andoni
et al. [16] for random data. Chapter 3 further introduces locality-sensitive
filtering and space-time tradeoffs.

In even greater generality we can think of locality-sensitive hashing
and filtering as being approaches to constructing randomized mappings
M: X — 2R (where 2R denotes the power set of R) from a space (X, dist)
to a collection of |R| buckets that satisfy certain properties. Recent work
on set similarity search (Chapter 4) and improvements to the standard
locality-sensitive hashing framework (Chapter 2) explores these ideas
and obtains efficient search algorithms by deviating from the standard
approach.

1.2 Part ll: Pseudorandom hashing and generators

The second part of this thesis contains results on efficient pseudorandom
hash functions and pseudorandom number generators. We are interested
in replacing the use of true randomness in randomized algorithms and
data structures with the output of a pseudorandom hash function or

1.2. Part II: Pseudorandom hashing and generators 11

generator, stretching a small random seed into a much larger output of
pseudorandom values, while retaining guarantees on the performance of
these algorithms. For a primer on the general study of pseudorandom
generators see [79].

Universal hashing. The pseudorandomness part of this thesis focuses
on one specific type of pseudorandomness known as k-wise indepen-
dence or k-independence, first introduced to the field of computer science
through the concept of universal hashing by Carter and Wegman [40].

Definition 1.4. Let k be a positive integer and let F be a family of
functions from U to R. We say that F is a k-independent family of
functions if for every choice of k distinct keys x1,...,x; and arbitrary
values vy, ...,y we have that

Frlf) =pnnfla) =y n A fla) =yl = IR

Furthermore, we say that f is k-independent when it is selected uniformly
at random from a family of k-independent functions.

We can sample a k-independent hash function f(x) = Zi.‘;& a;x' mod
p by sampling each a; uniformly at random from the set {0,1,...,p — 1}
where p is prime. In fact, the family of polynomials of degree at most
k — 1 over a finite field is k-independent [92]. We are typically interested
in applications where the size of the universe u = |U| is much larger
than the degree of independence k.

Different types of hashing-based dictionaries work for k-independent
hash functions with k much smaller than the number of elements in
the dictionary which we denote by n. For example, it was shown that
5-independence suffices for linear probing to ensure expected constant
time per operation [125]. It is known that ®(log n)-independence suffices
for Cuckoo hashing [128], but 5-independence is not enough to ensure
constant amortized cost per operation [63]. For a brief introduction to
the use of random hashing in algorithms and data structures see [69].

Fast hashing and lower bound. For applications that require super-
constant independence, the time to evalute the hash function can be
a performance bottleneck. A k-independent polynomial hash function
can be stored using O(k) words and evaluated using time O(k) on a
word-RAM, assuming constant time arithmetic over the finite field. What

12 Chapter 1. Introduction

if we are willing to use more space to represent a k-independent hash
function f ~ F in order to reduce the evaluation time? Siegel [152] gave
a powerful cell-probe lower bound for this problem, showing that for a
k-independent hash function with domain size u, even if we use space
roughly O(ku'/t) for some t > 1 the evaluation time has to be Q(¢).

Siegel also showed the existence of a matching upper bound based
on highly unbalanced bipartite expander graphs G = (U U V, E) with
left vertex set U corresponding to the domain of the hash function, right
vertex set V of size |V| = O(ku!/*), and left outdegree d = O(t). Given
an appropriate expander graph G we can sample a k-independent hash
function f: U — R by associating each vertex v € V with a random
element from R where we assume that (R, +) is an abelian group, such
as the the integers under modular arithmetic. To compute f(x) we take
the sum of the random elements associated with the neighbors of the
vertex x € U and return the result.

Unfortunately we only know of the existence of such optimal ex-
pander graphs by the probablistic method: a random bipartite graph has
the right properties for optimal k-independent hashing with overwhelm-
ing probability if we parameterize the graph generation process correctly.
Several works, Siegel’s original paper included, attempt to approach
the performance of such optimal bipartite expander graph by the use
of probabilistic constructions [72, 124, 159, 58]. In Chapter 9 we show
a probablistic construction with space usage and evaluation time that
almost matches the lower bound. Finding optimal explicit constructions
remains a major open problem.

Other approaches to the problem of finding fast hash functions with
theoretical guarantees include the study of tabulation hashing and its
variations which has guarantees beyond what can be derived from the
degree of k-independence [160], to simulate uniformly random hashing
in constant time on a subset of the universe [124], reusing randomness
by splitting the problem into sub-problems that share a single highly
random hash function [71], or extracting additional randomness from
the input to the hash function [59].

Generating k-independent random variables. The generation of k-
independent random variables differs from random hashing by allowing
the algorithm designer to specify where to evaluate a k-independent func-
tion f in order to generate a sequence of variables f(x1), f(x2),... thatis
k-independent. The problem of generating a sequence of k-independent

1.3. Overview and contributions 13

random variables is therefore easier than the problem of constructing a
data structure to represent a random k-independent hash function that
an adversary can choose to evaluate in an arbitrary point.

We can take a standard k-independent polynomial hash function
and evaluate it in k points in time kpolylogk using fast multipoint
evaluation algorithms [27, 165], giving us a generator of k-independent
random variables with generation time poly log k per variable that uses
space O(k). This in itself shows that the task of generation is easier
than hashing, as it would be impossible to evaluate a k-independent
hash function in time poly logk using space O(k), if for example k =
O(logu). In Chapter 8 we show how to generate k-independent variables
in constant time, independent of k, using space k poly log k.

1.5 Overview and contributions

This thesis is divided into two parts. The first part presents algorithms
and lower bounds for various problems related to similarity search. The
second part presents algorithms for the efficient generation of high-
quality pseudorandom numbers, as well as efficient hash functions. The
chapters are based on the following papers:

I. Similarity search.

2. Tobias Christiani: Fast locality-sensitive hashing frameworks for
approximate near neighbor search [53]. 2017. Unpublished.

3. Tobias Christiani: A Framework for Similarity Search with Space-
Time Tradeoffs using Locality-Sensitive Filtering [54]. SODA 2017.

4. Tobias Christiani and Rasmus Pagh: Set similarity search beyond
MinHash [56]. STOC 2017.

5. Tobias Christiani, Rasmus Pagh and Johan Sivertsen: Scalable and
robust set similarity join [57]. ICDE 2018.

6. Martin Aumiiller, Tobias Christiani, Rasmus Pagh and Francesco
Silvestri: Distance-sensitive hashing [22]. PODS 2018.

7. Tobias Christiani: Optimal Boolean locality-sensitive hashing. 2018.
Unpublished.

II. Pseudorandomness.

14 Chapter 1. Introduction

8. Tobias Christiani and Rasmus Pagh: Generating k-independent
variables in constant time [55]. FOCS 2014.

9. Tobias Christiani, Rasmus Pagh and Mikkel Thorup: From Inde-
pendence to Expansion and Back Again [58]. STOC 2015.

We proceed by giving a brief description of the contribution of each
chapter.

1.3.1 Part I: Similarity search

Chapter 2: Fast locality-sensitive hashing frameworks. This chapter
begins by surveying different techniques for constructing a solution to the
approximate near neighbor problem from a family of locality-sensitive
hash functions. Given a family H of locality-sensitive hash functions, the
standard Indyk-Motwani framework (Theorem 1.1) uses O(n” logn) func-
tions from H to solve the approximate near neighbor problem. During
a query all of these hash functions are evaluated, dominating the query
time. For many LSH schemes the time to evaluate a single function is
O(d) or greater, as witnessed for example by SimHash or MinHash, fur-
ther exacerbating the problem. Building on recent work by Dahlgaard et
al. [64] we show that the number of locality-sensitive hash functions can
be reduced to O(log? 1) in general, yielding an improved LSH framework.
We combine this result with a technique from another LSH framework
by Andoni and Indyk [10] to reduce the word-RAM complexity of this
improved framework by a logarithmic factor to O(n?).

Chapter 3: Space-time tradeoffs for similarity search. This chapter
introduces a framework for solving the approximate near neighbor prob-
lem with space-time tradeoffs using locality-sensitive filtering. We show
concrete solutions on the unit sphere under cosine similarity with ex-
tensions to £,-space for every 0 < p < 2. These results improve and
generalize prior work [100, 95]. We also include a lower bound on space-
time tradeoff that is tight, but suffers from some important restrictions.
A paper by Andoni et al. [16] has since shown a strengthened lower
bound and an improved upper bound through the use of data-dependent
techniques. An early version of the paper behind this chapter formed
part of my master’s thesis. At the end of the chapter we have added an
improved locality-sensitive filtering framework compared to the one in
the main text, building on ideas introduced in Chapter 2 and 4.

1.3. Overview and contributions 15

Chapter 4: Set similarity search beyond MinHash. In this chapter
we consider the problem of set similarity search under Braun-Blanquet
similarity simg(x,y) = |x Ny|/ max(|x|, |y|). We show that the (sq,s,)-
similarity problem in this setting can be solved with an exponent of
p =log(1/s1)/log(1/sz) and that this is tight among solutions based on
data-independent locality-sensitive maps. The upper bound is based on
a novel construction inspired by branching processes and interestingly,
although it is data-independent, it outperforms the best known data-
dependent techinques for a large portion of the parameter space 0 <
sy < s1 < 1. The lower bound follows from a reduction to the standard
(r,cr)-near neighbor problem in Hamming space for r,cr < d/2. In
this setting the lower bound by O’Donnell et al. [122] is tight and we
are able to show that it extends to Braun-Blanquet similarity for every
choice of 0 < s, < s; < 1. This is interesting in the light of the gap in
our knowledge when it comes to the usual («, §)-similarity problem for
cosine similarity, as explained in the introduction.

Chapter 6: Lower bounds for asymmetric locality-sensitive hashing.
In this chapter we derive lower bounds (on the p-value) for asymmetric
locality-sensitive hashing. Our lower bound covers the case of asymmet-
ric families for approximate near neighbor search, as well as the case of
approximate furthest neighbor search where we are interested in having
the collision probability of (h,g) ~ A increase in the distance between
points. We show that our lower bounds are tight against existing symmet-
ric constructions in the case of the application to near neighbor search,
and that this construction can easily be modified to yield an optimal
asymmetric construction for furthest neighbor search.

Chapter 7: Optimal Boolean locality-sensitive hashing. In this chap-
ter we show that, among the class of Boolean locality-sensitive hash func-
tions 1: {—1,1}¥ — {—1,1}, bit-sampling is an optimal LSH (minimizes
the p-value) for the ((1 —a)d/2, (1 — B)d/2)-near neighbor problem in
Hamming space for every choice of 0 < B < a < 1. This stands in
contrast to the lower bound by O’Donnell et al. [122] which is unre-
stricted with respect to the range of the locality-sensitive hash functions.
Bit-sampling only matches this unrestricted lower bound in the case
where «, 8 approach 1. Our result settles the question of optimal Boolean
locality-sensitive hashing for Hamming space and shows that we have to
look towards families of hash functions with a larger range in order to

16 Chapter 1. Introduction

further improve the p-value compared to bit-sampling. Andoni et al. [13]
have shown lower bounds on the p-value on the unit sphere as a function
of the size of the range of the hash function.

1.3.2 Part Il: Pseudorandom hashing and number generation

Chapter 8: Generating k-independent random variables in con-
stant time. We investigate the problem of efficiently generating k-
independent random variables and give an explicit generator of k-
independent random variables with constant generation time, indepen-
dent of k. The explicit construction combines multipoint evaluation of
polynomials over finite fields with a cascading construction of explicit
bipartite expander graphs by Capalbo et al. [39]. The space usage of this
construction is k poly log k with a very large exponent in the polynomial.
We also show a randomized version of the same construction that uses a
randomly generated bipartite graph. This reduces the space overhead to
O(log’ k) at the cost of introducing an error probability (the generated
sequence may fail to be k-independent) that is polynomially small in
k. We implement a version of the generator that combines a random
bipartite expander with fast multipoint evaluation of polynomials over
IF,6+ and show that it scales well, even for generating k = 2?%-independent
variables.

Chapter 9: Near-optimal k-independent hashing. In this chapter we
attack the problem of constructing fast k-independent random hash func-
tions. We use the fact that there is a sort of duality between randomized
bipartite expander graphs and k-independent random hash functions. A
bipartite expander graph that expands on subsets of size k can be used
to construct a k-independent family of functions, and a k-independent
function is likely to represent a bipartite expander that expands on sub-
sets of size k. We take a small bipartite expander graph and apply an
inefficient graph product that preserves its expansion properties while
increasing the size of the left vertex set (the size of the domain of the
resulting hash function). Then we use this resulting bipartite expander
graph to construct a k-independent random hash function that now rep-
resents a new expander on a larger domain with optimal properties. By
applying this strategy recursively using different graph products we are
able to give randomized constructions of k-independent hash functions
in the word-RAM model that almost match Siegel’s cell probe lower
bound [152].

1.4. Conclusion and open problems 17

1.4 Conclusion and open problems

1.4.1 Similarity search

We have shown new upper and lower bounds for problems related to
approximate similarity search in high-dimensional spaces, showing im-
proved locality-sensitive hashing frameworks, lower bounds for Boolean
locality-sensitive hashing, and going beyond locality-sensitive hashing in
several different directions with asymmetric locality-sensitive hashing,
space-time tradeoffs through locality-sensitive filtering, and locality-
sensitive maps for set similarity search.

Optimal data-independent locality-sensitive hashing. It remains
open to close the gap between the upper and lower bounds on the
p-value of ((1 —w)d/2,(1— B)d/2, p1, p2)-sensitive families in Hamming
space (shown in Figure 1.1). Existing lower bounds seem to have explored
the limits of what can be shown with our current understanding of hy-
percontractive inequalities and Fourier analysis of Boolean functions. We
conjecture that the ball-based LSH construction with the p-value given in
equation 1.2 is asymptotically optimal for every choice of 0 < f < a < 1.

Orthogonal search. Suppose we are interested in an asymmetric
locality-sensitive hashing scheme for the unit sphere under cosine sim-
ilarity that can be used to search for orthogonal vectors. For this pur-
pose we want the probability of collison to be as high as possible for
0-correlated (orthogonal) vectors and have the probability of collision
decrease at the correlation becomes positive or negative. Let p(«a) de-
note the probability of collision of the asymmetric locality-sensitive
hashing scheme for a pair of a-correlated vectors. The current best up-
per bound on p = log(1/p(0))/log(1/ max(p(«), p(—a))) is given by
(1 —a?)/(1 + «?) [22]. The lower bound presented in Chapter 6 only
implies p > (1 — |a|)/(1 + |«|). Obtaining a “two-sided” lower bound
that simultanously relates p(0) to both p(a) and p(—«) has close ties to
the open symmetric Gaussian problem [119]. It is conjectured that the
upper bound is tight.

Simple data-dependent constructions. It is an important open prob-
lem to find simpler data-dependent solutions to approximate near neigh-
bor search. Despite the intuitive appeal of using the data to inform the

18 Chapter 1. Introduction

construction of the solution, relatively few people have succeded in mak-
ing theoretical progress in this area [14, 17, 18]. Perhaps by relaxing the
problem slightly, for example by only requiring that queries that follow a
specific distribution succeed with constant probability, progress can be
made. An example of such a query distribution could be to sample one
of the n data points uniformly at random and sample the query from a
ball around the data point. Attacking the problem for data structures
that use near-linear space in 7 also seems like a promising approach.

1.4.2 k-independent hashing and generation

We have shown near-optimal results for k-independent hashing and
generation.

Optimal explicit unbalanced bipartite expander graphs. The main
open problem in this area is the explicit construction of highly unbal-
anced bipartite expander graphs with optimal properties. We would like
to be able to evaluate the neighbor function I': U — V¥ of a left d-regular
bipartite expander graph with optimal parameters (matching Siegel’s
lower bound for k-independent hashing) using time that is at most poly-
nomial in the bit-length of the input. For the application to random
hashing we would furthermore like to be able to list the d neighbors of a
vertex in time O(d). The construction in Chapter 9 is essentially able to
solve this task in time O(d logd), so it would require a very clean explicit
construction to yield an improvement to the efficiency of random hashing
in practice. Results on the construction of explicit bipartite expanders
by Guruswami et al. [84] and preprocessing polynomials [96] are based
directly on results such as the fundamental theorem of algebra and the
Chinese remainder theorem and give hope that there exists a simple
explicit construction.

Constant time generators with minimal space. The fast generators
in Chapter 8 uses polynomials over finite fields and require space
kpolylogk. Through the sequential evaluation of hash functions pre-
sented in Chapter 9 we can remove the need for arithmetic over finite
tields, but it seems that if we want to use minimal space the evalution
time will still be O(log u) with space usage k poly(log u,logk). Is it pos-
sible to get constant-time generation in a restricted word-RAM model
without multiplication using space O(k)?

Part |

Similarity search

Chapter 2

Fast locality-sensitive hashing frameworks

‘Renewed shall be blade that was broken’

The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC
1998) is a general technique for constructing a data structure to an-
swer approximate near neighbor queries by using a distribution H over
locality-sensitive hash functions that partition space. For a collection of n
points, after preprocessing, the query time is dominated by O(nf logn)
evaluations of hash functions from # and O(n”) hash table lookups and
distance computations where p € (0,1) is determined by the locality-
sensitivity properties of H. It follows from a recent result by Dahlgaard
et al. (FOCS 2017) that the number of locality-sensitive hash functions
can be reduced to O(log?n), leaving the query time to be dominated
by O(nf) distance computations and O(nf logn) additional word-RAM
operations. We state this result as a general framework and provide
a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework. Using ideas
from another locality-sensitive hashing framework by Andoni and Indyk
(SODA 2006) we are able to reduce the number of additional word-RAM
operations to O(n?).

2.1 Introduction

The (71, r)-approximate near neighbor problem is the problem of prepro-
cessing a collection P of n points in a space (X, dist) into a data structure
that after preprocessing supports the following query operation: Given
a query point g € X, if there exists a point x € P with dist(g, x) < rq,
then the data structure is guaranteed to return a point x’ € P such that
dist(g, x") < rp.

22 Chapter 2. Fast locality-sensitive hashing frameworks

Indyk and Motwani [91] introduced a general framework for con-
structing solutions to the approximate near neighbor problem using a
technique known as locality-sensitive hashing (LSH). The framework
takes a distribution over hash functions H with the property that near
points are more likely to collide under a random h ~ H. During prepro-
cessing a number of locality-sensitive hash functions are sampled from
H and used to hash the points of P into buckets. The query algorithm
evaluates the same hash functions on the query point and looks into the
associated buckets to find an approximate near neighbor.

The locality-sensitive hashing framework of Indyk and Motwani has
had a large impact in both theory and practice (see surveys [12] and [166]
for an introduction), and many of the best known (data-independent)
solutions to the approximate near neighbor problem in high-dimensional
spaces, such as Euclidean space [11], the unit sphere under inner product
similarity [13], and sets under Jaccard similarity [33] come in the form
of families of locality-sensitive hash functions that can be plugged into
the Indyk-Motwani LSH framework. Recent work on data-dependent
locality-sensitive hashing has further improved solutions for £,-spaces
and cosine similarity [14, 17, 16], but these solutions typically do not
come directly in the form of a distribution over locality-sensitive hash
functions and as such it is unclear whether the techniques in this paper
can yield further speedups to these results.

Definition 2.1 (Locality-sensitive hashing [91]). Let (X, dist) be a distance
space and let H be a distribution over functions /: X — R. We say that
H is (r1, 72, p1, p2)-sensitive if for x,y € X and h ~ H we have that:

e If dist(x,y) < ry then Pr[h(x) = h(y)] > p1.
e If dist(x,y) > rp then Pr[h(x) = h(y)] < pa.

The Indyk-Motwani framework takes a (71,72, p1, p2)-sensitive family ‘H
and constructs a data structure that solves the approximate near neighbor
problem for parameters r; < r, with some positive constant probability
of success. We will refer to this randomized approximate version of the
near neighbor problem as the (rq,7;)-near neighbor problem, where we
require queries to succeed with probability at least 1/2 (see Definition 2.2).
To simplify the exposition we will assume throughout the introduction,
unless otherwise stated, that 0 < p; < p» < 1 are constant, that a
hash function & € H can be stored in 1/ logn words of space, and for

2.1. Introduction 23

p =log(1/p1)/log(1/p2) € (0,1) that a point x € X can be stored in
O(nf) words of space. The assumption of a constant gap between p;
and p; allows us to avoid performing distance computations by instead
using the 1-bit sketching scheme of Li and Konig [103] together with
the family H to approximate distances (see Section 2.4.1 for details). In
the remaining part of the paper we will state our results without any
such assumptions to ensure, for example, that our results hold in the
important case where pj, po may depend on n or the dimensionality of
the space [11, 13].

Theorem 2.1 (Indyk-Motwani [91, 86], simplified). Let H be (71,2, p1, p2)-

log(1/p1)
log(1/p2)
neighbor problem using O(n*f) words of space and with query time dominated

by O(n®logn) evaluations of functions from H.

sensitive and let p = , then there exists a solution to the (r1, ry)-near

The query time of the Indyk-Motwani framework is dominated by
the number of evaluations of locality-sensitive hash functions. To make
matters worse, almost all of the best known and most widely used
locality-sensitive families have an evalution time that is at least linear in
the dimensionality of the underlying space [33, 47, 66, 11, 13]. Significant
effort has been devoted to the problem of reducing the evaluation com-
plexity of locality-sensitive hash families [157, 75, 65, 13, 97, 148, 149, 64],
while the question of how many independent locality-sensitive hash
functions are actually needed to solve the (71, r2)-near neighbor problem
has received relatively little attention [10, 64].

This paper aims to bring attention to, strengthen, generalize, and
simplify results that reduce the number of locality-sensitive hash func-
tions used to solve the (rq,72)-near neighbor problem. In particular,
we will extract a general framework from a technique introduced by
Dahlgaard et al. [64] in the context of set similarity search under Jaccard
similarity, showing that the number of locality-sensitive hash functions
can be reduced to O(log? 1) in general. Reducing the number of locality-
sensitive hash functions allows us to spend time O(n°/ log? 1) per hash
function evaluation without increasing the overall complexity of the
query algorithm — something which is particularly useful in Euclidean
space where the best known LSH upper bounds offer a tradeoff between
the p-value that can be achieved and the evaluation complexity of the
locality-sensitive hash function [11, 13, 97].

The main technical contribution of this paper is to reduce the word-
RAM complexity of the general LSH framework from O(nflogn) to

24 Chapter 2. Fast locality-sensitive hashing frameworks

O(n”) by combining techniques from Dahlgaard et al. and Andoni and
Indyk [10].

2.1.1 Related work

Indyk-Motwani. The Indyk-Motwani framework uses L = O(n”) in-
dependent partitions of space, each formed by overlaying k = O(log n)
random partitions induced by k random hash functions from a locality-
sensitive family H. The parameter k is chosen such that a random parti-
tion has the property that a pair of points x,y € X with dist(x,y) < r
has probability n~° of ending up in the same part of the partition, while
a pair of points with dist(x,y) > r; has probability n~! of colliding. By
randomly sampling L = O(nf) such partitions we are able to guarantee
that a pair of near points will collide with constant probability in at
least one of them. Applying these L partitions to our collection of data
points P and storing the result of each partition of P in a hash table we
obtain a data structure that solves the (71, r2)-near neighbor problem as
outlined in Theorem 2.1 above. Section 2.3 and 2.3.1 contains a more
complete description of LSH-based frameworks and the Indyk-Motwani
framework.

Andoni-Indyk. As previously mentioned, many locality-sensitive hash
functions happen to have a super-constant evaluation time. This mo-
tivated Andoni and Indyk to introduce a replacement to the Indyk-
Motwani framework in a paper on substring near neighbor search [10].
The key idea is to re-use hash functions from a small collection of size
m < L by forming all combinations of (') hash functions. This tech-
nique is also known as tensoring and has seen some use in the work
on alternative solutions to the approximate near neighbor problem, in
particular the work on locality-sensitive filtering [73, 24, 54]. By apply-
ing the tensoring technique the Andoni-Indyk framework reduces the
number of hash functions to O(exp(+/plognloglogn)) = n°(1) as stated
in Theorem 2.2.

Theorem 2.2 (Andoni-Indyk [10], simplified). Let H be (r1,12, p1, p2)-

log(1/p1)
log(1/p2)
neighbor problem using O(n') words of space and with query time dominated

by O(exp(\/plognloglogn)) evaluations of functions from H and O(n®)
other word-RAM operations.

sensitive and let p = , then there exists a solution to the (r1,1y)-near

2.1. Introduction 25

The paper by Andoni and Indyk did not state this result explicitly as a
theorem in the same form as the Indyk-Motwani framework; the analysis
made some implicit restrictive assumptions on py, p2 and ignored integer
constraints. Perhaps for these reasons the result does not appear to
have received much attention, although it has seen some limited use in
practice [153]. In Section 2.3.2 we present a slightly different version of the
Andoni-Indyk framework together with an analysis that satisfies integer
constraints, providing a more accurate assessment of the performance of
the framework in the general, unrestricted case.

Dahlgaard-Knudsen-Throup. The paper by Dahlgaard et al. [64] intro-
duced a different technique for constructing the L hash functions/par-
titions from a smaller collection of m hash functions from . Instead
of forming all combinations of subsets of size t as the Andoni-Indyk
framework they instead sample k hash functions from the collection to
form each of the L partitions. The paper focused on a particular appli-
cation to set similarity search under Jaccard similarity, and stated the
result in terms of a solution to this problem. In Section 2.3.3 we provide
a simplified and tighter analysis to yield a general framework:

Theorem 2.3 (Dahlgaard-Knudsen-Thorup [64], simplified). Let H be

log(1/p1)
log(1/p2)
(11, r2)-near neighbor problem using O(n'*f) words of space and with query

time dominated by O(log® n) evaluations of functions from H and O(nf logn)
other word-RAM operations.

, then there exists a solution to the

(1,72, p1, p2)-sensitive and let p =

The analysis of [64] indicates that the Dahlgaard-Knudsen-Thorup
framework, when compared to the Indyk-Motwani framework, would
use at least 50 times as many partitions (and a corresponding increase in
the number of hash table lookups and distance computations) to solve
the (r1,r2)-near neighbor problem with success probability at least 1/2.
Using elementary tools, the analysis in this paper shows that we only
have to use twice as many partitions as the Indyk-Motwani framework
to obtain the same guarantee of success.

Number of hash functions. To provide some idea of the number of
hash functions H used by the different frameworks, Figure 2.1 shows
the value of log, H that is obtained by the Indyk-Motwani (IM), Andoni-
Indyk (AI), and Dahlgaard-Knudsen-Thorup (DKT) frameworks accord-
ing to the analysis in Section 2.3 for p; = 1/2 and every value of

26 Chapter 2. Fast locality-sensitive hashing frameworks

30 -

0.00 0.25 0.50 0.75 1.00
P2/py

DKT

Figure 2.1: Upper bounds on the number of locality-sensitive hash functions from a (71, 2, 0.5, p2)-
sensitive family used by different frameworks to solve the (71, 72)-near neighbor problem on a collection
of 230 points according to the analysis in this paper.

0 < p2 < 1/2 for a solution to the (r1,2)-near neighbor problem on a
collection of n = 230 points with success probability at least 1/2. Note
that Figure 2.1 shows an upper bound on the number of hash functions
used by the frameworks according to the analysis in order to provide
a solution with theoretical guarantees to the approximate near neigh-
bor problem for any data set, and not the actual setting required for a
particular data set (we haven't actually performed an experiment on 23
points). In the analysis behind Figure 2.1 we have attempted to minimize
H within each respective framework.

Figure 2.1 reveals that the number of hash functions used by the Indyk-
Motwani framework exceeds 239, the size of the collection of points P,
as pp approaches p;. In addition, locality-sensitive hash functions used
in practice such as Charikar’s SimHash [47] and p-stable LSH [66] have
evaluation time O(d) for points in R?. These two factors might help
explain why a linear scan over sketches of the entire collection of points
is a popular approach to solve the approximate near neighbor problem
in practice [169, 80]. The Andoni-Indyk framework reduces the number

2.1. Introduction 27

of hash functions by several orders of magnitude, and the Dahlgaard-
Knudsen-Thorup framework presents another improvement of several
orders of magnitude. Since the word-RAM complexity of the DKT
framework matches the the number of hash functions used by the IM
framework, the gap between the solid line (DKT) and the dotted line
(IM) gives some indication of the time we can spend on evaluating a
single hash function in the DKT framework without suffering a noticeable
increase in the query time.

2.1.2 Contribution

Improved word-RAM complexity. In addition to our work on the
Andoni-Indyk and Dahlgaard-Knudsen-Thorup frameworks as men-
tioned above, we show how the word-RAM complexity of the DKT
framework can be reduced by a logarithmic factor. The solution is a
simple combination of the DKT sampling technique and the Al tensoring
technique: First we use the DKT sampling technique twice to construct
two collections of \/L partitions. Then we use the Al tensoring technique
to form L = v/L x /L pairs of partitions from the two collections. Below
we state our main Theorem 2.4 in its general form where we make no
implicit assumptions about H (p; and p; are not assumed to be constant
and can depend on for example 1) or about the complexity of storing
a point or a hash function, or computing the distance between pairs of
points in the space (X, dist).

Theorem 24. Let H be (ry,r2, p1, p2)-sensitive and let p =
log(1/p1)/log(1/p2), then there exists a solution to the (ri,ry)-near
neighbor with the following properties:

* The query complexity is dominated by O(log% /12 (n)/p1) evaluations of
functions from H, O(nf) distance computations, and O(nf/p,) other
word-RAM operations.

* The solution uses O(n'*°/py) words of space in addition to the space
required to store the data and O(log? /(1) / p1) functions from H.

Under the same simplifying assumptions used in the statements of
Theorem 2.1, 2.2, and 2.3, our main Theorem 2.4 can be stated as Theorem
2.3 with the word-RAM complexity reduced by a logarithmic factor to
O(nf). This improvement in the word-RAM complexity comes at the

28 Chapter 2. Fast locality-sensitive hashing frameworks

cost of a (rather small) constant factor increase in the number of hash
functions, lookups, and distance computations compared to the DKT
framework. By varying the size m of the collection of hash functions
from ‘H and performing independent repetitions we can obtain a tradeoff
between the number of hash functions and the number of lookups. In
Section 2.5 we remark on some possible improvements in the case where
p2 is large.

Distance sketching using LSH. Finally, we combine Theorem 2.4 with
the 1-bit sketching scheme of Li and Konig [103] where we use the locality-
sensitive hash family to create sketches that allow us to leverage word-
level parallelism and avoid direct distance computations. This sketching
technique is well known and has been used before in combination with
LSH-based approximate similarity search [57], but we believe there is
some value in the simplicity of the analysis and in a clear statement of
the combination of the two results as given in Theorem 2.5, for example
in the important case where 0 < p, < p; < 1 are constant.

Theorem 2.5. Let H be (r,7, p1,p2)-Sensitive and let p =
log(1/p1)/1log(1/p2), then there exists a solution to the (ri,ry)-near
neighbor with the following properties:

e The complexity of the query operation is dominated by O(log?(n)/ (p1 —
p2)?) evaluations of hash functions from H and O(n® / (p1 — pa)?) other
word-RAM operations.

* The solution uses O(n'™ /p1 +n/(p1 — p2)?) words of space in addition
to the space required to store the data and O(log?(n)/(p1 — p2)?) hash
functions from H.

2.2 Preliminaries

Problem and dynamization. We begin by defining the version of the
approximate near neighbor problem that the frameworks presented in
this paper will be solving:

Definition 2.2. Let P C X be a collection of |P| = n points in a distance
space (X, dist). A solution to the (r1,7)-near neighbor problem is a data
structure that supports the following query operation: Given a query
point g € X, if there exists a point x € P with dist(g, x) < rq, then, with
probability at least 1/2, return a point x’ € P such that dist(g, x") < 5.

2.3. Frameworks 29

We aim for solutions with a failure probability that is upper bounded
by 1/2. The standard trick of using # independent repetitions of the data
structure allows us to reduce the probability of failure to 1/2". For the
sake of simplicity we restrict our attention to static solutions, meaning
that we do not concern ourselves with the complexity of updates to the
underlying set P, although it is simple to modify the static solutions pre-
sented in this paper to dynamic solutions where the update complexity
essentially matches the query complexity [123, 86]

LSH powering. The Indyk-Motwani framework and the Andoni-Indyk
framework will make use of the following standard powering technique
described in the introduction as “overlaying partitions”. Let k > 1 be an
integer and let H denote a locality-sensitive family of hash functions as
in Definition 2.1. We will use the notation ¥ to denote the distribution
over functions #’: X — R where

W(x) = (hi(x),..., h(x))

and hy, ..., h; are sampled independently at random from H. It is easy
to see that HF is (r1,72, p’{, pé)-sensitive. To deal with some special cases
we define H' to be the family consisting of a single constant function.

Model of computation. We will work in the standard word-RAM
model of computation [85] with a word length of ®(logn) bits where
n denotes the size of the collection P to be searched in the (r1,7;)-near
neighbor problem. During the preprocessing stage of our solutions we
will assume access to a source of randomness that allows us to sample
independently from a family H and to seed pairwise independent hash
functions [41, 42]. The latter can easily be accomplished by augmenting
the model with an instruction that generates a uniformly random word
in constant time and using that to seed the tables of a Zobrist hash
function [174].

2.3 Frameworks

Overview. We will describe frameworks that take as input a
(r1, 72, p1, p2)-sensitive family H and a collection P of n points and con-
structs a data structure that solves the (71, 72)-near neighbor problem. The
frameworks described in this paper all use the same high-level technique

30 Chapter 2. Fast locality-sensitive hashing frameworks

of constructing L hash functions g1, ..., g1 that are used to partition space
such that a pair of points x, y with dist(x, y) < r; will end up in the same
part of one of the L partitions with probability at least 1/2. That is, for
x,y with dist(x,y) < r; we have that Pr[3] € [L]: g;(x) = g(y)] > 1/2
where [L] is used to denote the set {1,2,...,L}. At the same time we
ensure that the expected number of collisions between pairs of points
x,y with dist(x,y) > r; is at most one in each partition.

Preprocessing and queries. During the preprocessing phase, for each
of the L hash functions g1, ..., g1 we compute the partition of the collec-
tion of points P induced by g; and store it in a hash table in the form
of key-value pairs (z, {x € P | gi(x) = z}). To reduce space usage we
store only a single copy of the collection P and store references to P in
our L hash tables. To guarantee lookups in constant time we can use
the perfect hashing scheme by Fredman et al. [76] to construct our hash
tables. We will assume that hash values z = g;(x) fit into O(1) words.
If this is not the case we can use universal hashing [40] to operate on
fingerprints of the hash values.

We perform a query for a point g as follows: for [= 1,...,L we
compute g;(q), retrieve the set of points {x € P | ¢;(x) = g(9)}, and
compute the distance between g and each point in the set. If we encounter
a point x’ with dist(g, x’) < r, then we return x” and terminate. If after
querying the L sets no such point is encountered we return a special
symbol @ and terminate.

We will proceed by describing and analyzing the solutions to the
(r1,72)-near neighbor problem for different approaches to sampling,
storing, and computing the L hash functions g, ..., gr, resulting in the
different frameworks as mentioned in the introduction.

2.3.1 Indyk-Motwani

To solve the (r1, rp)-near neighbor problem using the Indyk-Motwani
framework we sample L hash functions gi,...,¢r independently at
random from the family H* where we set k = [log(n)/log(1/p2)]
and L = [(In2)/p]. Correctness of the data structure follows from
the observation that the probability that a pair of points x,y with
dist(x,y) < r; does not collide under a randomly sampled g; ~ H*
is at most 1 — p¥. We can therefore upper bound the probability that
a near pair of points does not collide under any of the hash functions

2.3. Frameworks 31

by (1 —p5)E < exp(—ptL) < 1/2 using a standard bound stated as
Lemma 2.3 in Appendix 2.7.

In the worst case, the query operation computes L hash functions from
H* corresponding to Lk hash functions from H. For a query point g the

expected number of points x’ € P with dist(g, x’) > r; that collide with g

under a randomly sampled g; ~ HF is at most nph < nplzog(")/ log(1/p2) _

1. It follows from linearity of expectation that the total expected number
of distance computations during a query is at most L. The result is
summarized in Theorem 2.6 from which the simplified Theorem 2.1
follows.

Theorem 2.6 (Indyk-Motwani [91, 86]). Given a (rq,t2, p1, p2)-sensitive
family H we can construct a data structure that solves the (rq, ro)-near neighbor
problem such that for k = [log(n)/log(1/p2)] and L = [(In2)/pX] the data
structure has the following properties:

* The query operation uses at most Lk evaluations of hash functions from
H, expected L distance computations, and O(Lk) other word-RAM opera-
tions.

® The data structure uses O(nL) words of space in addition to the space
required to store the data and Lk hash functions from H.

Theorem 2.6 gives a bound on the expected number of distance
computations while the simplified version stated in Theorem 2.1 uses
Markov’s inequality and independent repetitions to remove the expecta-
tion from the bound by treating an excessive number of distance compu-
tations as a failure.

2.3.2 Andoni-Indyk

In 2006 Andoni and Indyk, as part of a paper on the substring near neigh-
bor problem, introduced an improvement to the Indyk-Motwani frame-
work that reduces the number of locality-sensitive hash functions [10].
Their improvement comes from the use of a technique that we will refer
to as tensoring: setting the hash functions gj,..., g to be all t-tuples
from a collection of m functions sampled from H*/* where m < L. The
analysis in [10] shows that by setting m = n°/! and repeating the entire
scheme t! times, the total number of hash functions can be reduced to
O(exp(y/plognloglogn)) when setting t = 4/ %. This analysis ig-

nores integer constraints on ¢, k, and m, and implicitly place restrictions

32 Chapter 2. Fast locality-sensitive hashing frameworks

on p; and p; in relation to n (e.g. 0 < p» < p1 < 1 are constant). We
will introduce a slightly different scheme that takes into account integer
constraints and analyze it without restrictions on the properties of H.

Assume that we are given a (ry, 72, p1, p2)-sensitive family H. Let
1n,t,ki,ky, my, my be non-negative integer parameters. Each of the L
hash functions gi,...,g; will be formed by concatenating one hash
function from each of t collections of m; hash functions from ' and
concatenating a last hash function from a collection of m, hash functions
from 2. We take all m‘m; hash functions of the above form and repeat
1 times for a total of L = ym{m, hash functions constructed from a
total of H = 15 (m1kit + mpky) hash functions from . In Appendix 2.8
we set parameters, leaving ¢ variable, and provide an analysis of this
scheme, showing that L matches the Indyk-Motwani framework bound of
O(1/pX) up to a constant where k = [log(n)/log(1/p2)] as in Theorem
2.6.

Setting t. It remains to show how to set t to obtain a good bound on
the number of hash functions H. Note that in practice we can simply
set t = argmin, H by trying t = 1,..., k. If we ignore integer constraints
and place certain restrictions of H as in the original tensoring scheme
by Andoni and Indyk we want to set ¢ to minimize the expression #n/*.
This minimum is obtained when setting t such that t*logt = plogn. We
therefore cannot do much better than setting t = \/plog(n)/ loglogn
which gives the bound H = O(exp(+/plog(n)loglogn)) as shown in
[10]. To allow for easy comparison with the Indyk-Motwani framework
without placing restrictions on H we set t = [v/k], resulting in Theorem
2.7.

Theorem 2.7. Given a (11,12, p1, p2)-sensitive family H we can construct
a data structure that solves the (rq,r;)-near neighbor problem such that for

k = log(n)/log(1/p2)], H = k(vk/p1)V¥, and L = [1/pX] the data
structure has the following properties:

* The query operation uses O(H) evaluations of functions from H, O(L)
distance computations, and O(L + H) other word-RAM operations.

* The data structure uses O(nL) words of space in addition to the space
required to store the data and O(H) hash functions from H.

2.3. Frameworks 33

Thus, compared to the Indyk-Motwani framework we have gone from
using O(k(1/p1)¥) locality-sensitive hash functions to O(k(v/k/p1)VF)
locality-sensitive hash functions. Figure 2.1 shows the actual number of
hash functions of the revised version of the Andoni-Indyk scheme as
analyzed in Appendix 2.8 when t is set to minimize H.

2.3.3 Dahlgaard-Knudsen-Thorup

In a recent paper Dahlgaard et al. [64] introduce a different technique
for reducing the number of locality-sensitive hash functions. The idea
is to construct each hash value g;(x) by sampling and concatenating k
hash values from a collection of km pre-computed hash functions from H.
Dahlgaard et al. applied this technique to provide a fast solution the
approximate near neighbor problem for sets under Jaccard similarity. In
this paper we use the same technique to derive a general framework
solution that works with every family of locality-sensitive hash functions,
reducing the number of locality-sensitive hash functions compard to the
Indyk-Motwani and Andoni-Indyk frameworks.

Let [n] denote the set of integers {1,2,...,n}. Fori € [k] and j € [m]
let h; ; ~ H denote a hash function in our collection. To sample from the
collection we use k pairwise independent hash functions [42] of the form
fit [L] — [m] and set

gi1(x) = (.17 (%), -+ By (1) (%))

To show correctness of this scheme we will use make use of an elementary
one-sided version of Chebyshev’s inequality stating that for a random
variable Z with mean u > 0 and variance 02 < oo we have that Pr[Z <
0] < 02/ (u® + 0?). For completeness we have included the proof of this
inequality in Lemma 2.5 in Appendix 2.7. We will apply this inequality
to lower bound the probability that there are no collisions between close
pairs of points. For two points x and y let Z; = 1{g;(x) = g;(y)} so that
Z = Zlel Z; denotes the sum of collisions under the L hash functions. To
apply the inequality we need to derive an expression for the expectation
and the variance of the random variable Z. Let p = Prj, .y [h(x) = h(y)]
then by linearity of expectation we have that u = E[Z] = Lp. To bound
0? = E[Z?] — u® we proceed by bounding [E[Z?] where we note that
Z =11k, for V), = Hhi g0y (x) = hif)(x)} and make use of the

34 Chapter 2. Fast locality-sensitive hashing frameworks

independence between Y;; and Yy » for i # i'.

L
E[Z*) = Y E[ZZ)])+) E[Z]
LI'e[L] I=1
11
= (L* = L) E[Z1Zy] + p

<L*’E [HiF:lYl,in’,i] +u
k
= L? (E[Y;, Yy])" + .

We have that E[Y}; Y] = Pr(fi(I) = fi(I)]p + Pr[fi(I) # fi(l')]p* =
(1/m)p + (1 — 1/m)p? which follows from the pairwise independence

of f;. Lete > 0 and set m = (%ﬁ} then for p > p; we have that

(E[Y7:Yy])k < (1 + &) p?*. This allows us to bound the variance of Z by
02 < ey? + u resulting in the following lower bound on the probability
of collision between similar points.

Lemma 2.1. For e > 0 let m > (1;1“ ln(1k—|—s)—" then for every pair of points

x, y with dist(x,y) < r1 we have that

Pr(3l € [L]: gi(x) = gi(y)] > Hl(ir—ffw

By setting ¢ = 1/4 and L = [(2In(2))/p}] we obtain an upper
bound on the failure probability of 1/2. Setting the size of each of the k
collections of pre-computed hash values to m = [5k/p;] is sufficient to
yield the following solution to the (1, 72)-near neighbor problem where
provide exact bounds on the number of lookups L and hash functions H:

Theorem 2.8 (Dahlgaard-Knudsen-Thorup [64]). Given a (11,12, p1, p2)-
sensitive family H we can construct a data structure that solves the (r1,1;)-near
neighbor problem such that for k = [log(n)/log(1/p2)|, H = k[5k/p1], and
L = [(2In(2))/p] the data structure has the following properties:

* The query operation uses at most H evaluations of hash functions from
H, expected L distance computations, and O(Lk) other word-RAM opera-
tions.

* The data structure uses O(nL) words of space in addition to the space
required to store the data and H hash functions from H.

2.4. Reducing the word-RAM complexity 35

Compared to the Indyk-Motwani framework we have reduced the
number of locality-sensitive hash functions H from O(k(1/p;)¥) to
O(k?/p1) at the cost of using twice as many lookups. To reduce the
number of lookups further we can decrease ¢ and perform several inde-
pendent repetitions. This comes at the cost of an increase in the number
of hash functions H.

2.4 Reducing the word-RAM complexity

One drawback of the DKT framework is that each hash value g;(x) still
takes O(k) word-RAM operations to compute, even after the underlying
locality-sensitive hash functions are known. This results in a bound
on the total number of additional word-RAM operations of O(Lk). We
show how to combine the DKT universal hashing technique with the
Al tensoring technique to ensure that the running time is dominated
by O(L) distance computations and O(H) hash function evaluations.
The idea is to use the DKT scheme to construct two collections of re-
spectively L and L, hash functions, and then to use the Al tensoring
approach to form gi,...,g1 as the L = L1 x L, combinations of func-
tions from the two collections. The number of lookups can be reduced
by applying tensoring several times in independent repetitions, but for
the sake of simplicity we use a single repetition. For the usual set-
ting of k = [log(n)/log(1/p2)] let ky = [k/2] and k, = |k/2]. Set
L1 = [6(1/p1)"1] and L, = [6(1/p1)*2]. According to Lemma 2.1 if we
set € = 1/6 the success probability of each collection is at least 3/4 and
by a union bound the probability that either collection fails to contain a
colliding hash function is at most 1/2. This concludes the proof of our
main Theorem 2.4.

24.1 Sketching

The theorems of the previous section made no assumptions on the word-
RAM complexity of distance computations and instead stated the number
of distance computations as part of the query complexity. We can use
a (11,72, p1, p2)-sensitive family H to create sketches that allows us to
efficiently approximate the distance between pairs of points, provided
that the gap between p; and p; is sufficiently large. In this section we
will re-state the results of Theorem 2.4 when applying the family H to
create sketches using the 1-bit sketching scheme of Li and Konig [103].

36 Chapter 2. Fast locality-sensitive hashing frameworks

Let b be a positive integer denoting the length of the sketches in bits. The
advantage of this scheme is that we can use word level parallelism to
evaluate a sketch of b bits in time O(b/ logn) in our word-RAM model
with word length ®(logn).

Fori=1,...,blet hj: X — R denote a randomly sampled locality-
sensitive hash function from H and let f;: R — {0,1} denote a randomly
sampled universal hash function. We let s(x) € {0, 1} denote the sketch
of a point x € X where we set the ith bit of the sketch s(x); = f;(h(x)).
For two points x,y € X the probability that they agree on the ith bit is 1
if the points collide under h; and 1/2 otherwise.

Prls(x); = s(y)i] = Prlhi(x) = hi(y)] + (1 — Pr[hi(x) = hi(y)]) /2
= (1 + Pr(hi(x) = hi(y)]) /2.

We will apply these sketches during our query procedure instead of
direct distance computations when searching through the points in the
L buckets, comparing them to our query point 4. Let A € (0,1) be a
parameter that will determine whether we report a point or not. For
sketches of length b we will return a point x if ||s(g) —s(x)|; > Ab. An
application of Hoeffiding’s inequality gives us the following properties
of the sketch:

Lemma 2.2. Let H be a (rq,r2, p1, p2)-sensitive family and let A = (1 +
p2)/2+ (p1 — p2)/4, then for sketches of length b > 1 and for every pair
points x,y € X:

e Ifdist(x,y) < rq then Pr[||s(x) —s(y)|l; < Ab] < e b(p1=p2)*/8,
o If dist(x,y) > ry then Pr[||s(x) — s(y)|l; > Ab] < e b(P1=P2)*/8,

If we replace the exact distance computations with sketches we want
to avoid two events: Failing to report a point with dist(g,x) < r; and
reporting a point x with dist(g, x) > r,. By setting b = O(In(n)/(p1 —
p2)?) and applying a union bound over the n events that the sketch fails
for a point in our collection P we obtain Theorem 2.5.

2.5 The number of hash functions in corner cases

When the collision probabilities of the (1,72, p1, p2)-sensitive family H
are close to one we get the behavior displayed in Figure 2.2 where we have

2.5. The number of hash functions in corner cases 37

30-

0.00 0.25 0.50 0.75 1.00
pz/p1

DKT

Figure 2.2: The number of locality-sensitive hash functions from a (71, 2, 0.9, p2)-sensitive family
used by different frameworks to solve the (4, 72)-near neighbor problem on a collection of 237 points.

set p1 = 0.9. Here it may be possible to reduce the number of hash func-
tions by applying the DKT framework to the family H* for some positive
integer 7. That is, instead of applying the DKT technique directly to H
we first apply the powering trick to produce the family H*. The number
of locality-sensitive hash functions from H used by the DKT framework
is given by H = O((log(n)/ log(1/p2))?/p1)- If we instead use the fam-
ily H7 the expression becomes H = O(t(log(n)/log(1/p%))?/pl) =
O((log(n)/ log(1/p2))*/tp}). Ignoring integer constraints, the value of
T that maximizes Tp7, thereby minimizing H, is givenby 7 = 1/In(1/p1).
Discretizing, the resulting number of hash functions when setting
T = [1/In(1/py1)] is given by H = O(p(logn)?/(p1log(1/p>))). For
constant p and large p» this reduces the number of hash functions by a
factor 1/ log(1/p2). The behavior for small values of p; is displayed in
Figure 2.3 where we have set p; = 0.1.

38 Chapter 2. Fast locality-sensitive hashing frameworks

30 -

25 -

log,H
nN
o

15 ... I

—_1
10- __;—’—l—'—'—

DKT

Figure 2.3: The number of locality-sensitive hash functions from a (71, r2, 0.1, p2)-sensitive family
used by different frameworks to solve the (1, 72)-near neighbor problem on a collection of 23° points.

2.6 Conclusion and open problems

We have shown that there exists a simple and general framework for solv-
ing the (r1, rp)-near neighbor problem using only few locality-sensitive
hash functions and with a reduced word-RAM complexity matching
the number of lookups. The analysis in this paper indicates that the
performance of the Dahlgaard-Knudsen-Thorup framework is highly
competitive compared to the Indyk-Motwani framework in practice, es-
pecially when locality-sensitive hash functions are expensive to evaluate,
as is often the case.

An obvious open problem is to provide a framework that uses fewer
than O(k?/p1) locality-sensitive hash function. Another direction would
be to find a lower bound on the number of independent locality-sensitive
hash functions required to solve the ANN problem using LSH in a
suitably restricted model.

2.7. Appendix: Inequalities 39

Acknowledgement

I want to thank Rasmus Pagh commenting on an earlier version of this
manuscript and for making me aware of the application of the tensoring
technique in [153] that led me to the Andoni-Indyk framework [10].

2.7 Appendix: Inequalities
We make use of the following standard inequalities for the exponential
function. See [111, Chapter 3.6.2] for more details.

Lemma 2.3. Let n,t € R such that n > 1 and |t| < n then e=*(1 —t>/n) <
(1—t/n)" <e

Lemma 2.4. For t > 0 we have that et <1 —t + 2/2.

We make use of a one-sided version of Chebyshev’s inequality to
show correctness of the Dahlgaard-Knudsen-Thorup LSH framework.

Lemma 2.5 (Cantelli’s inequality). Let Z be a random variable with [E[Z] =
i > 0and Var[Z] = 02 < oo then Pr[Z < 0] < ¢/ (u? + 0?).

Proof. For every s € R we have that
PrZ <0 =Pr[—(Z—p)+s > p+s] <Prl(—(Z—p)+5)* = (u+5)°).
Next we apply Markov’s inequality
Pr{(—(Z—p) +5)* 2 (n+5)*) SE[(=(Z—p) +5)°]/ (4 +5)?
= (7" +57)/(p +5)°
Set s = 02/ and use that ¢ = sy to simplify
(02 +8%)/ (p+35)" = (sp+57)/ (p+9)" = o/ (1 + 7).
O

To analyze the 1-bit sketching scheme by Li and Konig we make use
of Hoeffding’s inequality:

Lemma 2.6 (Hoeffding [88, Theorem 1]). Let X1, X», ..., X, be independent
random variables satisfying 0 < X; < 1 for i € [n]. Define X = (X1 + Xa +
<o+ Xy)/nand p = E[X], then:

- For0 < & < 1 — y we have that Pr[X — u > €] < e=21¢",

- For 0 < & < y we have that Pr[X — u < —¢] < o= 2ne,

40 Chapter 2. Fast locality-sensitive hashing frameworks

2.8 Appendix: Analysis of the Andoni-Indyk framework

Let ¢ denote the probability that a pair of points x, y with dist(x,y) < r
collide in a single repetition of the scheme. A collision occurs if and only
if there there exists at least one hash function in each of the underlying
t + 1 collections where the points collide. It follows that

k k
p=0-(0-p")")1Q-0-pp)).
To guarantee a collision with probability at least 1/2 it suffices to set

= [In(2)/¢].
We will proceed by analyzing this scheme where we let t > 1 be
variable and set parameters as followers:

k = [log(n)/log(1/p2)]
ki = [k/t]
ky = k — thy
my = [1/tp}!]
my = (1/79];2]
n=[In(2)/¢].

To upper bound L we begin by lower bounding ¢. The second part of
¢ can be lower bounded using Lemma 2.3 to yield (1 — (1 — plf)mz) >
1—1/e. To lower bound (1 — (1 — plil)ml)t we first note that in the
case where p’lcl > 1/t we have m; = 1 and the expression can be lower
bounded by plilt = (pllqml)t > (p’{lml)t/ 2e. The same lower bound holds

in the case there t = 1. In the case where p’lcl <1/tand t > 2 we make
use of Lemma 2.3 and 2.4 to derive the lower bound.

klml

L-(1—p)z1-eh
>1— (1= piimy + (py'm)?/2)
> piim (1= it (1/tph1 +1)/2)
> plimy(1-1/1).

Using the bound (p’flml(l —1/t)t > (plflml)t/Ze we have that

¢ > (plflml)t/éle > (1/t)!/4e.

2.8. Appendix: Analysis of the Andoni-Indyk framework 41

We can then bound the number of lookups and the expected number of
distance computations

L = ymimy < (4e/(py'ma)t + 1)mh (1/p2 +1) < 16e(1/p}).

Note that this matches the upper bound of the Indyk-Motwani LSH
framework up to a constant factor.

To bound the number of hash functions from H we use that k1 <
k/t <kandk, < t.

H = ;7(m1k1t + mzkz) < 8et! (% + %) .
tpy P1

Chapter 3

Space-time tradeoffs for similarity search

"All that is gold does not glitter’

We present a framework for similarity search based on Locality-Sensitive
Filtering (LSF), generalizing the Indyk-Motwani (STOC 1998) Locality-
Sensitive Hashing (LSH) framework to support space-time tradeoffs.
Given a family of filters, defined as a distribution over pairs of subsets of
space that satisfies certain locality-sensitivity properties, we can construct
a dynamic data structure that solves the approximate near neighbor
problem on a collection of n points in d-dimensional space with query
time dnfit°(1), update time dnf«*°(1), and space usage dn + n'+euto(l),
The space-time tradeoff is tied to the tradeoff between query time and
update time (insertions/deletions), controlled by the exponents p,, o,
that are determined by the filter family.

Locality-sensitive filtering was introduced by Becker et al. (SODA 2016)
together with a framework yielding a single, balanced, tradeoff between
query time and space, further relying on the assumption of an efficient
oracle for the filter evaluation algorithm. We extend the LSF framework
to support space-time tradeoffs and through a combination of existing
techniques we remove the oracle assumption.

Laarhoven (arXiv 2015), building on Becker et al., introduced a family
of filters with space-time tradeoffs for the high-dimensional unit sphere
under inner product similarity and analyzed it for the important special
case of random data. We show that a small modification to the family of
filters gives a simpler analysis that we use, together with our framework,
to provide guarantees for worst-case data. Through an application of
Bochner’s Theorem from harmonic analysis by Rahimi & Recht (NIPS
2007), we are able to extend our solution on the unit sphere to RY under

44 Chapter 3. Space-time tradeoffs for similarity search

the class of similarity measures corresponding to real-valued character-
istic functions. For the characteristic functions of s-stable distributions
we obtain a solution to the (7, cr)-near neighbor problem in /?-spaces
c(14A)2 (1-1)2
(c5+A)? (c54+A)?
A € [—1,1] is a tradeoff parameter. This result improves upon the space-
time tradeoff of Kapralov (PODS 2015) and is shown to be optimal in the
case of a balanced tradeoff, matching the LSH lower bound by O’Donnell
et al. (ITCS 2011) and a similar LSF lower bound proposed in this paper.
Finally, we show a lower bound for the space-time tradeoff on the unit
sphere that matches Laarhoven’s and our own upper bound in the case
of random data.

with query and update exponents p; = and p, = where

3.1 Introduction

Let (X, dist) denote a space over a set X equipped with a symmetric
measure of dissimilarity dist (a distance function in the case of metric
spaces). We consider the (7, cr)-near neighbor problem first introduced by
Minsky and Papert [110, p. 222] in the 1960’s. A solution to the (7, cr)-
near neighbor problem for a set P of n points in (X, dist) takes the form
of a data structure that supports the following operation: given a query
point x € X, if there exists a data point y € P such that dist(x,y) < r
then report a data point ¥’ € P such that dist(x,y’) < c¢r. In some
spaces it turns out to be convenient to work with a measure of similarity
rather than dissimilarity. We use sim to denote a symmetric measure of
similarity and define the (&, B)-similarity problem to be the (—a, —pB)-near
neighbor problem in (X, — sim).

A solution to the (7, cr)-near neighbor problem can be viewed as a
fundamental building block that yields solutions to many other similarity
search problems such as the c-approximate nearest neighbor problem
[89, 86]. In particular, the (7, cr)-near neighbor problem is well-studied
in ¢?-spaces where the data points lie in R? and distances are measured
by dist(x,y) = ||x —yll, = (X%, |x; — y:]*)'/°. Notable spaces include
the Euclidean space (R?, ||-||,), Hamming space ({0,1}¢, ||-||,), and the d-
dimensional unit sphere $¢ = {x € R? | ||x||, = 1} under inner product
(cosine) similarity sim(x,y) = (x,y) = Y%, x;y;.

Curse of dimensionality. All known solutions to the (r, cr)-near neigh-
bor problem for ¢ = 1 (the exact near neighbor problem) either suffer

3.1. Introduction 45

from a space usage that is exponential in d or a query time that is linear
in n [86]. This phenomenon is known as the “curse of dimensionality”
and has been observed both in theory and practice. For example, Alman
and Williams [6] recently showed that the existence of an algorithm for
determining whether a set of n points in d-dimensional Hamming space
contains a pair of points that are exact near neighbors with a running
time strongly subquadratic in n would refute the Strong Exponential
Time Hypothesis (SETH) [170]. This result holds even when 4 is rather
small, d = O(logn). From a practical point of view, Weber et al. [168]
showed that the performance of many of the tree-based approaches to
similarity search from the field of computational geometry [68] degrades
rapidly to a linear scan as the dimensionality increases.

Approximation to the rescue. If we allow an approximation factor of
¢ > 1 then there exist solutions to the (r,cr)-near neighbor problem
with query time that is strongly sublinear in 7 and space polynomial
in n where both the space and time complexity of the solution depends
only polynomially on d. Techniques for overcoming the curse of di-
mensionality through approximation were discovered independently by
Kushilevitz et al. [99] and Indyk and Motwani [91]. The latter, classical
work by Indyk and Motwani [91, 86] introduced a general framework for
solving the (7, cr)-near neighbor problem known as Locality-Sensitive
Hashing (LSH). The introduction of the LSH framework has inspired an
extensive literature (see e.g. [12, 166] for surveys) that represents the state
of the art in terms of solutions to the (r, cr)-near neighbor problem in
high-dimensional spaces [91, 47, 66, 130, 11, 12, 9, 13, 17, 95, 19, 24, 100].

Hashing and filtering frameworks. The LSH framework and the more
recent LSF framework introduced by Becker et al. [24] produce data
structures that solve the (7, cr)-near neighbor problem with query and
update time dn?+°() and space usage dn + n'+#+°(). The LSH (LSF)
framework takes as input a distribution over partitions (subsets) of space
with the locality-sensitivity property that close points are more likely to
be contained in the same part (subset) of a randomly sampled element
from the distribution. The frameworks proceed by constructing a data
structure that associates each point in space with a number of memory
locations or “buckets” where data points are stored. During a query
operation the buckets associated with the query point are searched by
computing the distance to every data point in the bucket, returning the

46 Chapter 3. Space-time tradeoffs for similarity search

first suitable candidate. The set of memory locations associated with
a particular point is independent of whether an update operation or a
query operation is being performed. This symmetry between the query
and update algorithm results in solutions to the near neighbor problem
with a balanced space-time tradeoff. The exponent p is determined
by the locality-sensitivity properties of the family of partitions/hash
functions (LSH) or subsets/filters (LSF) and is typically upper bounded
by an expression that depends only on the aproximation factor c. For
example, Indyk and Motwani [91] gave a simple locality-sensitive family
of hash functions for Hamming space with an exponent of p < 1/c. This
exponent was later shown to be optimal by O’Donnell et al. [122] who
gave a lower bound of p > 1/¢ —04(1) in the setting where r and cr
are small compared to d. The advantage of having a general framework
for similarity search lies in the reduction of the (r,cr)-near neighbor
problem to the, often simpler and easier to analyze, problem of finding
a locality-sensitive family of hash functions or filters for the space of
interest.

Space-time tradeoffs. Space-time tradeoffs for solutions to the (7, cr)-
near neighbor problem is an active line of research that can be motivated
by practical applications where it is desirable to choose the tradeoff
between query time and update time (space usage) that is best suited
for the application and memory hierarchy at hand [130, 106, 9, 95, 100].
Existing solutions typically have query time dnf1°(1), update time (inser-
tions/deletions) dnf«+°(1), and use space dn + n' (1) where the query
and update exponents p4, 0, that control the space-time tradeoff depend
on the approximation factor ¢ and on a tradeoff parameter A € [—1,1].
This paper combines a number of existing techniques [24, 100, 73]
to provide a general framework for similarity search with space-time
tradeoffs. The framework is used to show improved upper bounds on
the space-time tradeoff in the well-studied setting of /s;-spaces and the
unit sphere under inner product similarity. Finally, we show a new lower
bound on the space-time tradeoff for the unit sphere that matches an
upper bound for random data on the unit sphere by Laarhoven [100]. We
proceed by stating our contribution and briefly surveying the relevant
literature in terms of frameworks, upper bounds, and lower bounds as
well as some recent developments. See table Table 3.1 for an overview.

3.1. Introduction 47

Table 3.1: Overview of data-independent locality-sensitive hashing (LSH) and filtering (LSF) results

Reference Setting 0q Ou
LSH [91, 86], LSF [24] log(1/p)
(X, dist), (X, sim) log(1/q)
1
Theorem 3.1 M w
log(pq/p2) log(pg/p2)
Cross-poly. LSH [13] (e, B)-sim., (5%, (-,-)) 1 ; z /%
_ altA)2 A _)2
Spherical cap LSF [100] | (&, 04(1))-sim., (8¢, {-,-)) % (rxl — :‘2)
} 1—al4M2 /(1= arB)2 A —)2 /(1= arB)?
Theorem 3.2 (&, B)-sim., (S%, (-,-)) (T2) /(T ﬁf) (. “2) /(T ﬁf)
Ball-carving LSH [11] 1/c?
. i pd 2(1+A)? c2(1—A)?
Ball-scarch LSH" [35] (rieryam. in & (@A) -1+ 15/2- A2 | (A2 - 21+ A2)/2— A2
2(1+A)? c2(1—A)?
Theorem 3.3 m m
Lower bound [122] LSH in (g >1/c?
Theorem 3.4 LSF in Eg >1/c%
Lower bound [114,19] | LSH in (8¢, (-, -)) > ;Z
_ p1+AN2 A)2
Theorem 3.5, [16] LSF in (84, (-,-)) > % > %

TABLE NOTES: Space-time tradeoffs for dynamic randomized solutions to similarity search prob-
lems in the LSH and LSF frameworks with query time dnPato(l), update time dnPutol) 4 gpo()
and space usage dn + n!tP«+°(1) Lower bounds are for the exponents Pq,0u within their re-
spective frameworks. Here ¢ > 0 denotes an arbitrary constant and A € [—1,1] controls the
space-time tradeoff. We have hidden 0,(1) terms in the upper bounds and 0,4(1) terms in the

lower bounds.
*Assumes ¢2 > (14+A)2/2+ A+«

3.1.1 Contribution

Before stating our results we give a definition of locality-sensitive filtering
that supports asymmetry in the framework query and update algorithm,
yielding space-time tradeoffs.

Definition 3.1. Let (X, dist) be a space and let F be a probability distribu-
tion over {(Q,U) | Q C X, U C X}. We say that F is (,cr, p1, p2, Pg, Pu)-
sensitive if for all points x,y € X and (Q, U) sampled randomly from F
the following holds:

48 Chapter 3. Space-time tradeoffs for similarity search

e If dist(x,y) <rthenPr[x € Q,y € U] > p;.
e If dist(x,y) > cr then Pr[x € Q,y € U] < p».
* Prix € Q] < pgand Prix € U] < py.

We refer to (Q,U) as a filter and to Q as the query filter and U as the
update filter.

Our main contribution is a general framework for similarity search
with space-time tradeoffs that takes as input a locality-sensitive family of
filters.

Theorem 3.1. Suppose we have access to a family of filters that is
(r,cr, p1, P2, Py, Pu)-sensitive. Then we can construct a fully dynamic data

structure that solves the (r, cr)-near neighbor problem with query time dnato(1),

log(pq/p1)

update time di’lp”+o(1), and space usage dn + n1+Pu+0(1) where Pq = Tog(pg/p2)

_ log(pu/p1)

and py log(pq/p2)"

We give a worst-case analysis of a slightly modified version of
Laarhoven’s [100] filter family for the unit sphere and plug it into our
framework to obtain the following theorem.

Theorem 3.2. For every choice of 0 < B < o < 1and A € [—1,1] there
exists a solution to the («, B)-similarity problem in (S%,{-,-)) that satisfies the

guarantees from Theorem 3.1 with exponents p; = (1_1"11;)2 / “;j‘;f 2 and
_ (@) /(1-atp)?
Pu = 1—a2 / 1— ‘32 .

We show how an elegant and powerful application of Bochner’s
Theorem [141] by Rahimi and Recht [139] allows us to extend the solution
on the unit sphere to a large class of similarity measures, yielding as a
special case solutions for /;-space.

Theorem 3.3. For every choice of ¢ > 1, s € (0,2], and A € [—1,1] there
exists a solution to the (r,cr)-near neighbor problem in ¢ that satisfies the
¢S (14+A)? cS(1—7)?
(c+A)? (c+A)2"

guarantees from Theorem 3.1 with exponents p; = and py, =

This result improves upon the state of the art for every choice of
asymmetric query/update exponents p; # p, [130, 11, 9, 95]. We con-
jecture that this tradeoff is optimal among the class of algorithms that

3.1. Introduction 49

independently of the data determine which locations in memory to probe
during queries and updates. In the case of a balanced space-time tradeoff
where we set p; = p, our approach matches existing, optimal [122],
data-independent solutions in ¢s-spaces [91, 66, 11, 117].

The LSF framework is very similar to the LSH framework, especially
in the case where the filter family is symmetric (Q = U for every filter in
F). In this setting we show that the LSH lower bound by O’Donnell et al.
applies to the LSF framework as well [122], confirming that the results of
Theorem 3.3 are optimal when we set p; = py.

Theorem 3.4 (informal). Every filter family that is symmetric and

—sensitive in 04 _ log(pu/p1) s _
(v, cr, p1, P2, Py, Pu)-sensitive in £ must have p = Tog (py7p2) >1/c¢" —o04(1)

when v = wy(1) is chosen to be sufficiently small.

Finally we show a lower bound on the space-time tradeoff that can
be obtained in the LSF framework. Our lower bound suffers from two
important restrictions. First the filter family must be regular, meaning
that all query filters and all update filters are of the same size. Secondly,
the size of the query and update filter cannot differ by too much.

Theorem 3.5 (informal). Every regular filter family that is ((1 —
w)d/2,(1—B)d/2, p1, p2, g, pu)-sensitive in d-dimensional Hamming space

with asymmetry controlled by A € [—1,1] cannot simultanously have that

pg < 0 (1) and p, < E=3E — 0,(1).

1—a2

Together our upper and lower bounds imply that the filter family of
concentric balls in Hamming space is asymptotically optimal for random
data.

Techniques. The LSF framework in Theorem 3.1 relies on a careful
combination of “powering” and “tensoring” techniques. For positive
integers m and T with m >> T the tensoring technique, a variant of which
was introduced by Dubiner [73], allows us to simulate a collection of (T)
filters from a collection of m filters by considering the intersection of all
T-subsets of filters. Furthermore, given a point x € X we can efficiently
list the simulated filters that contain x. This latter property is crucial as
we typically need poly(n) filters to split our data into sufficiently small
buckets for the search to be efficient. The powering technique lets us
amplify the locality-sensitivity properties of a filter family in the same
way that powering is used in the LSH framework [91, 12, 122].

50 Chapter 3. Space-time tradeoffs for similarity search

To obtain results for worst-case data on the unit sphere we analyze
a filter family based on standard normal projections using the same
techniques as Andoni et al. [13] together with existing tail bounds on
bivariate Gaussians. The approximate kernel embedding technique by
Rahimi and Recht [139] is used to extend the solution on the unit sphere
to a large class of similarity measures, yielding Theorem 3.3 as a special
case.

The lower bound in Theorem 3.4 relies on an argument of contra-
diction against the LSH lower bounds by O’Donnell [122] and uses a
theoretical, inefficient, construction of a locality-sensitive family of hash
functions from a locality-sensitive family of filters that is similar to the
spherical LSH by Andoni et al. [14].

Finally, the space-time tradeoff lower bound from Theorem 3.5 is ob-
tained through an application of an isoperimetric inequality by O’Donnell
[121, Ch. 10] and is similar in spirit to the LSH lower bound by Motwani
et al. [114].

3.1.2 Related work

The LSH framework takes a distribution H over hash functions that
partition space with the property that the probability of two points
landing in the same partition is an increasing function of their similarity.

Definition 3.2. Let (X, dist) be a space and let H be a probability distri-
bution over functions h: X — R. We say that # is (r, cr, p, q)-sensitive if
for all points x,y € X and h sampled randomly from H the following
holds:

e If dist(x,y) < r then Pr[h(x) = h(y)] > p.
e If dist(x,y) > cr then Pr[h(x) = h(y)] < g.

The properties of ‘H determines a parameter p < 1 that governs the
space and time complexity of the solution to the (r, cr)-near neighbor
problem.

Theorem 3.6 (LSH framework [91, 86]). Suppose we have access to a
(r,cr, p,q)-sensitive hash family. Then we can construct a fully dynamic
data structure that solves the (r,cr)-near neighbor problem with query time
dnf o) update time dnP+°(), and with a space usage of dn + n* o) where

_ log(1/p)
— log(1/9)"

3.1. Introduction 51

The LSF framework by Becker et al. [24] takes a symmetric
(r,cr, p1, P2, Pg, pu)-sensitive filter family F and produces a data structure
that solves the (r, cr)-near neighbor problem with the same properties

as the one produced by the LSH framework where instead we have

_ log(pg/p1)
log(pq/p2)
that is able to efficiently list the relevant filters containing a point x € X

out of a large collection of filters. The LSF framework in this paper
removes this assumption, showing how to construct an efficient oracle as
part of the framework.

In terms of frameworks that support space-time tradeoffs, Panigrahy
[130] developed a framework based on LSH that supports the two ex-
tremes of the space-time tradeoff. In the language of Theorem 3.1,
Panigrahy’s framework supports either setting p, = 0 for a solution
that uses near-linear space at the cost of a slower query time, or setting
pq = 0 for a solution with query time n° (1) at the cost of a higher space
usage. To obtain near-linear space the framework stores every data point
in n°(1) partitions induced by randomly sampled hash functions from
a (r,cr, p,q)-sensitive LSH family #. In comparison, the standard LSH
framework from Theorem 3.6 uses n° such partitions where p is deter-
mined by H. For each partition induced by h € ‘H the query algorithm
in Panigrahy’s framework generates a number of random points z in
a ball around the query point x and searches the parts of the partition
h(z) that they hash to. The query time is bounded by nf*°(1) where

p= % and I(h(z)|x,h) denotes conditional entropy, i.e. the query
time is determined by how hard it is to guess where z hashes to given
that we know x and h. Panigrahy’s technique was used in a number
of follow-up works that improve on solutions for specific spaces, but to
our knowledge none of them state a general framework with space-time

tradeoffs [106, 9, 95].

. In addition, the framework assumes access to an oracle

Upper bounds. As is standard in the literature we state results in /-
spaces in terms of the properties of a solution to the (r, cr)-near neighbor
problem. For results on the unit sphere under inner product similarity
(89, (-,-)) we instead use the (&, B)-similarity terminology, defined in the
introduction, as we find it to be cleaner and more intuitive while aligning
better with the analysis. The /s-spaces, particularly ¢; and /5, as well as
(S, {,-)) are some of most well-studied spaces for similarity search and
are also widely used in practice [166]. Furthermore, fractional norms (/s

52 Chapter 3. Space-time tradeoffs for similarity search

for s # 1,2) have been shown to perform better than the standard norms
in certain use cases [2] which motivates finding efficient solutions to the
near neighbor problem in general /s-space.

In the case of a balanced space-time tradeoff the best data-
independent upper bound for the (r, cr)-near neighbor problem in ¢¢ are
solutions with an LSH exponent of p = 1/¢® for 0 < s < 2. This result is
obtained through a combination of techniques. For 0 < s <1 the LSH
based on s-stable distributions by Datar et al. [66] can be used to obtain
an exponent of (1+ ¢)/c® for an arbitrarily small constant ¢ > 0. For
1 <'s < 2 the ball-carving LSH by Andoni and Indyk [11] for Euclidean
space can be extended to /s using the technique described by Nguyen
[117, Section 5.5]. Theorem 3.3 matches (and potentially improves in
the case of 0 < s < 1) these results with a single unified technique and
analysis that we find to be simpler.

For space-time tradeoffs in Euclidean space (again extending to /s
for 1 < s < 2) Kapralov [95], improving on Panigrahy’s results [130]
in Euclidean space and using similar techniques, obtains a solution
with query exponent p; = (62+A)2i(21(41r¢))\22)
ou = (C2+A)2i2§21(;i);2)/2_)\2 under the condition that ¢ > (1 +A)%/2 +
A+ e where ¢ > 0 is an arbitrary positive constant. Comparing to our
Theorem 3.3 it is easy to see that we improve upon Kapralov’s space-time
tradeoff for all choices of ¢ and A. In addition, Theorem 3.3 represents
the first solution to the (r, cr)-near neighbor problem in Euclidean space
that for every choice of constant ¢ > 1 obtains sublinear query time
(0g < 1) using only near-linear space (0, = 0). Due to the restrictions
on Kapralov’s result he is only able to obtain sublinear query time for
¢ > /3 when the space usage is restricted to be near-linear. It appears
that our improvements can primarily be attributed to our techniques
allowing a more direct analysis. Kapralov uses a variation of Panigrahy’s
LSH-based technique of, depending on the desired space-time tradeoff,
either querying or updating additional memory locations around a point
x € X in the partition induced by h € H. For a query point x and a
near neighbor y his argument for correctness is based on guaranteeing
that both the query algorithm and update algorithm visit the part /1(z)
where z is a point lying between x and y, possibly leading to a loss of
efficiency in the analysis. More details on the comparison of Theorem
3.3 to Kapralov’s result can be found in Appendix 3.11.

In terms of space-time tradeoffs on the unit sphere, Laarhoven [100]
modifies a filter family introduced by Becker et al. [24] to support space-

73— and update exponent

3.1. Introduction 53

time tradeoffs, obtaining a solution for random data on the unit sphere
(the («, B)-similarity problem with B = o04(1)) with query exponent
pg = % and update exponent p,, = (“f__:;)z. Theorem 3.2 extends
this result to provide a solution to the (a, f)-similarity problem on the
unit sphere for every choice of 0 < 8 < a < 1. This extension to worst
case data is crucial for obtaining our results for /;-spaces in Theorem 3.3.
We note that there exist other data-independent techniques (e.g. Valiant
[163, Alg. 25]) for extending solutions on the unit sphere to ¢, but they
also require a solution for worst-case data on the unit sphere to work.

Lower bounds The performance of an LSH-based solution to the near
neighbor problem in a given space that uses a (r, cr, p, q)-sensitive family

of hash functions H is summarized by the value of the exponent p =

log(1/p)
log(1/49) "
approximation factor c. Motwani et al. [114] proved the first lower bound

for LSH families in d-dimensional Hamming space. They show that
for every choice of ¢ > 1 then for some choice of r it must hold that
p > 0.462/c as d goes to infinity under the assumption that g is not too
small (g > 27°(@)),

As part of an effort to show lower bounds for data-dependent locality-
sensitive hashing, Andoni and Razenshteyn [19] strengthened the lower
bound by Motwani et al. to p > 1/(2¢ — 1) in Hamming space. These
lower bounds are initially shown in Hamming space and can then be
extended to /;-space and the unit sphere by the fact that a solution
in these spaces can be used to yield a solution in Hamming space,
contradicting the lower bound if p is too small. Translated to («, §)-
similarity on the unit sphere, which is the primary setting for the lower
bounds on LSF space-time tradeoffs in this paper, the lower bound by
Andoni and Razenshteyn shows that an LSH on the unit sphere must
have p > L;g which is tight in the case of random data [13].

The lower bound uses properties of random walks over a partition
of Hamming space: A random walk starting from a random point x €
{—1,1}% is likely to “walk out” of the the part identified by k(x) in the
partition induced by h. The space-time tradeoff lower bound in Theorem
3.5 relies on a similar argument that lower bounds the probability that
a random walk starting from a subset Q ends up in another subset U,
corresponding nicely to query and update filters in the LSF framework.

Using related techniques O’Donnell [122] showed tight LSH lower

bounds for /;-space of p > 1/c®. The work by Andoni et al. [15] and

It is therefore of interest to lower bound p in terms of the

54 Chapter 3. Space-time tradeoffs for similarity search

Panigrahy et al. [131, 132] gives cell probe lower bounds for the (r, cr)-
near neighbor problem, showing that in Euclidean space a solution with
a query complexity of t probes require space at least n'+C(1/ ') For
more details on these lower bounds and how they relate to the upper

bounds on the unit sphere see [16, 100].

Data-dependent solutions The solutions to the (7, cr)-near neighbor
problems considered in this paper are all data-independent. For the LSH
and LSF frameworks this means that the choice of hash functions or filters
used by the data structure, determining the mapping between points
in space and the memory locations that are searched during the query
and update algorithm, is made without knowledge of the data. Data-
independent solutions to the (r,cr)-near neighbor problem for worst-
case data have been the state of the art until recent breakthroughs by
Andoni et al. [14] and Andoni and Razenshteyn [17] showing improved
solutions to the (7, cr)-near neighbor problem in Euclidean space using
data-dependent techniques. In this setting the solution obtained by Andoni
and Razenshteyn has an exponent of p = 1/(2¢? — 1) compared to the
optimal data-independent exponent of p = 1/¢?. Furthermore, they show
that this exponent is optimal for data-dependent solutions in a restricted
model [19].

Recent developments Recent work by Andoni et al. [16], done inde-
pendently of and concurrently with this paper, shows that Laarhoven’s
upper bound for random data on the unit sphere can be combined
with data-dependent techniques [17] to yield a space-time tradeoff in
Euclidean space with py, p; satisfying ¢, /o5 + (¢ — 1)/pu = V22 — 1.
This improves the result of Theorem 3.3 and matches the lower bound in
Theorem 3.5. In the same paper they also show a lower bound matching
our lower bound in Theorem 3.5. Their lower bound is set in a more
general model that captures both the LSH and LSF framework and they
are able to remove some of the technical restrictions such as the filter
family being regular that weaken the lower bound in this paper. In spite
of these results we still believe that this paper presents an important
contribution by providing a general and simple framework with space-
time tradeoffs as well as improved data-independent solutions to nearest
neighbor problems in /s-space and on the unit sphere. We would also like
to point out the simplicity and power of using Rahimi and Recht’s [139]
result to extend solutions on the unit sphere to spaces with similarity

3.2. A framework with space-time tradeoffs 55

measures corresponding to real-valued characteristic functions, further
described in Appendix 3.9.

3.2 Aframework with space-time tradeoffs

We use a combination of powering and tensoring techniques to amplify
the locality-sensitive properties of our initial filter family, and to simulate
a large collection of filters that we can evaluate efficiently. We proceed
by stating the relevant properties of these techniques which we then
combine to yield our Theorem 3.1.

Lemma 3.1 (powering). Given a (r,cr, p1, p2, g, Pu)-Sensitive filter family
F for (X, dist) and a positive integer x define the family F* as follows: we
sample a filter F = (Q, U) from F* by sampling (Q1,U1), ..., (Qx, Uy) inde-
pendently from F and setting (Q,U) = (M=, Qi, Ny U;). The family F* is
(r,cr, ¥, p5, pg, p¥)-sensitive for (X, dist).

Let F denote a collection (indexed family) of m filters and let Q and
U denote the corresponding collections of query and update filters, that
is, for i € {1,...,m} we have that F; = (Q;, U;). Given a positive integer
T < m (typically T < m) we define F®7 to be the collection of filters
formed by taking all the intersections of T-combinations of filters from F,
that is, for every I C {1,...,m} with |I| = T we have that

F7"= (NierQi, NiesUi)

The following properties of the tensoring technique will be used to
provide correctness, running time, and space usage guarantees for the
LSF data structure that will be introduced in the next subsection. We
refer to the evaluation time of a collection of filters F as the time it takes,
given a point x € X to prepare a list of query filters Q(x) C Q containing
x and a list of update filters U(x) C U containing x such that the next
element of either list can be reported in constant time. We say that a pair
of points (x,) is contained in a filter (Q,U) if x € Qand y € U.

Lemma 3.2 (tensoring). Let F be a filter family that is (v, cr, p1, p2, Pg, Pu)-
sensitive in (X, dist). Let T be a positive integer and let F denote a collection of
m = [t/ p1] independently sampled filters from F. Then the collection F®7 of
(7) filters has the following properties:

56 Chapter 3. Space-time tradeoffs for similarity search

e If (x,y) have distance at most r then with probability at least 1/2 there
exists a filter in 7 containing (x,y).

e If (x,y) have distance greater than cr then the expected number of filters
in F®7 containing (x,y) is at most p ().

* In expectation, a point x is contained in at most pg(’?) query filters and
at most py, (") update filters in F*.

* The evaluation time and space complexity of F®7is dominated by the time
it takes to evaluate and store m filters from F.

Proof. To prove the first property we note that there exists a filter in F*7
containing (x,y) if at least 7 filters in F contain (x,y). The binomial
distribution has the property that the median is at least as great as the
mean rounded down [93]. By the choice of m we have that the expected
number of filters in F containing (x, y) is at least T and the result follows.
The second and third properties follow from the linearity of expectation
and the fourth is trivial. O

3.2.1 The LSF data structure

We will introduce a dynamic data structure that solves the (7, cr)-near
neighbor problem on a set of points P C X. The data structure has access
to a (7, cr, p1, p2, Pg, pu)-sensitive filter family F in the sense that it knows
the parameters of the family and is able to sample, store, and evaluate
filters from JF in time dn°(1).

The data structure supports an initialization operation that initializes a
collection of filters F where for every filter we maintain a (possibly empty)
set of points from X. After initialization the data structure supports three
operations: INSERT, DELETE, and QUERY. The INSERT (DELETE) operation
takes as input a point x € X and adds (removes) the point from the set of
points associated with each update filter in F that contains x. The QUERY
operation takes as input a point x € X. For each query filter in F that
contains x we proceed by computing the dissimilarity dist(x,y) to every
point y associated with the filter. If a point y satisfying dist(x,y) < cr is
encountered, then y is returned and the query algorithm terminates. If
no such point is found, the query algorithm returns a special symbol “&”
and terminates.

The data structure will combine the powering and tensoring tech-
niques in order to simulate the collection of filters F from two smaller

3.3. Gaussian filters on the unit sphere 57

collections: F; consisting of m; filters from F*! and F; consisting of
my filters from F*2. The collection of simulated filters F is formed by
taking all filters (Q; N Qy, Uy N Uz) where (Qy, Uj) is a member of F{"
and (Qy, Uy) is a member of Fy. It is due to the integer constraints on
the parameter 7 in the tensoring technique and the parameter « in the
powering technique that we simulate our filters from two underlying
collections instead of just one. This gives us more freedom to hit a target
level of amplification of the simulated filters which in turn makes it
possible for the framework to support efficient solutions for a wider
range of parameters of LSF families.

The initialization operation takes F and parameters my, k1, T, m2, k2
and samples and stores F; and F,. The filter evaluation algorithm used by
the insert, delete, and query operation takes a point x € X and computes
for F; and F;, depending on the operation, the list of update or query
filters containing x. From these lists we are able to generate the list of
filters in F containing x.

Setting the parameters of the data structure to guarantee correctness
while balancing the contribution to the query time from the filter evalu-
ation algorithm, the number of filters containing the query point, and
the number of distant points examined, we obtain a partially dynamic
data structure that solves the (r, cr)-near neighbor problem with failure
probability 6 <1/2+1/e. Using a standard dynamization technique by
Overmars and Leeuwen [123, Thm. 1] we obtain a fully dynamic data
structure resulting in Theorem 3.1. The details of the proof have been
deferred to Appendix 3.7.

3.3 Gaussian filters on the unit sphere

In this section we show properties of a family of filters for the unit sphere
S¢ under inner product similarity. Later we will show how to make use of
this family to solve the near neighbor problem in other spaces, including
ls for 0 < s < 2.

Lemma 3.3. For every choiceof 0 < f<a <1, A€ [-1,1],andt >0let G
denote the family of filters defined as follows: we sample a filter (Q, U) from G
by sampling z ~ N'(0,1) and setting

Q={xeR| (xz) >a’t},

U={xeR?|(x,z) >t}

58 Chapter 3. Space-time tradeoffs for similarity search

Then G is locality-sensitive on the unit sphere under inner product similarity
with exponents

_ N2 n 2)2 _ 4 B2
pq§<(1) 1(27t(1+t/))>/(1 B)

- 2/2 1-p2
(e —)2 In(27(1+t/a)?) (1—arB)?
p”§< 1—a? 2/2 >/ 1—g

Laarhoven’s filter family [100] is identical to G except that he nor-
malizes the projection vectors z to have unit length. The properties of G
can easily be verified with a simple back-of-the-envelope analysis using
two facts: First, for a standard normal random variable Z we have that
Pr[Z > t] = e /2, Secondly, the invariance of Gaussian projections (x, z)
to rotations, allowing us to analyze the projection of arbitrary points
x,y € S with inner product (x,y) = a in a two-dimensional setting
x = (1,0) and y = («, V1 — a?) without any loss of generality. The proof
of Lemma 3.3 as well as the proof of Theorem 3.2 has been deferred to
Appendix 3.8.

5.4 Space-time tradeoffs under kernel similarity

In this section we will show how to combine the Gaussian filters for the
unit sphere with kernel approximation techniques in order to solve the
(a, B)-similarity problem over (IR%, S) for the class of similarity measures
of the form S(x,y) = k(x —y) where k: R x R? — R is a real-valued
characteristic function [162]. For this class of functions there exists a
feature map ¥ into a (possibly infinite-dimensional) dot product space
such that k(x,y) = (¢(x),¥(y)). Through an elegant combination of
Bochner’s Theorem and Euler’s Theorem, detailed in Appendix 3.9,
Rahimi and Recht [139] show how to construct approximate feature
maps, i.e., for every k we can construct a function v with the property
that (v(x),v(y)) = (P(x),¥(y)) = k(x —y). We state a variant of their
result for a mapping onto the unit sphere.

Lemma 3.4. For every real-valued characteristic function k and every positive
integer | there exists a family of functions V C {v | v: R? — S!} such that for
every x,y € RY and & > 0 we have that

Pr[[(o(x),0(y) —k(x,y)| = €] < e 0.

Theorem 3.10 in Appendix 3.9 shows that Theorem 3.2 holds with the
space (8¢, (-,-)) replaced by (R, k).

3.5. Lower bounds 59

3.4.1 Tradeoffs in £%-space

Consider the (7, cr)-near neighbor problem in ¢4 for 0 < s < 2. We solve
this problem by first applying the approximate feature map from Lemma
3.4 for the characteristic function of a standard s-stable distribution [175],
mapping the data onto the unit sphere, and then applying our solution
from Theorem 3.2 to solve the appropriate (&, B)-similarity problem on
the unit sphere. The characteristic functions of s-stable distributions take
the following form:

Lemma 3.5 (Lévy [102]). For every positive integer d and 0 < s < 2 there
exists a characteristic function k: R? x R? — [0, 1] of the form

k(x’y) — k(x — y) — efoi‘]/”z'

A result by Chambers et al. [46] shows how to sample efficiently from
an s-stable distributions.

To sketch the proof of Theorem 3.3 we proceed by upper bounding
the exponents p,, 0y, from Theorem 3.2 when applying Lemma 3.4 to get
a>e " —¢gand B < e~ " — ¢. We make use of the following standard
fact (see e.g. [143]) that can be derived from the Taylor expansion of the
exponential function: for x > O itholdsthat1 —x <e¢™* <1—x+ x2/2.
Scaling the data points such that 7* = 0(1) and inserting the above values
of x ®1—7°and B ~ 1 — c°r® into the expressions for p;, o, in Lemma
3.3 we can set parameters t and / such that Theorem 3.3 holds.

3.5 Lower bounds

We begin by stating the lower bound on the LSH exponent p =
log(1/p)/log(1/q) by O'Donnell et al. [122].

Theorem 3.7 (O’Donnell et al. [122]). Fixd € N, 1 < ¢ < 00,0 < s < o0
and 0 < q < 1. Then for a certain choice of r = wy(1) and under the
assumption that g > 27°@) we have that every (r,cr, p, q)-sensitive family of
hash functions for ¢4 must satisfy

log(1/p) _ 1

p= log(1/9) = cs —04(1).

The following lemma shows how to use a filter family F to construct
a hash family H.

60 Chapter 3. Space-time tradeoffs for similarity search

Lemma 3.6. Given a symmetric family of filters that is (r,cr, p1, p2, Py Pu)-
sensitive in (X, dist) we can construct a (r,cr, p1/(2py), p2/ pq)-sensitive
family of hash functions in (X, dist).

Proof. Given the filter family F we sample a random function & from
the hash family H taking an infinite sequence of independently sampled
filters (F;)$>, from F and setting i(x) = min {i | x € F;}. The probability
of collision is given by

B _ Prroglx € FAy € F]
ws M) =Wl = 5 e vy e

and the result follows from the properties of F. O

If the LSH family in Lemma 3.6 had p = p1/p, and q = p>/p, then
the lower bound would follow immediately. We apply the powering
technique from Lemma 3.1 to the underlying filter family in order make
the factor 2 in p;/(2p,) disappear in the statement of p as d tends to
infinity.

Theorem 1.4. Every symmetric (r,cr, p1, p2, Pq, Pu)-sensitive filter family F
for ¢4 must satisfy the lower bound of Theorem 3.7 with p = p1/ pq and

q = p2/pg-

Proof. Given a family F that satisfies the requirements from Theorem
3.7 there exists an integer k¥ = w;(1) such the hash family A that results
from applying Lemma 3.6 to the powered family F* also satisfies the
requirements from Theorem 3.7. The constructed family H is (r,cr, p, q)-
sensitive for p = (1/2) - (p1/pq)* and q = (p2/pq)*. By our choice of
we have that log(1/p)/ log(1/q) = log(ps/p1)/ log(ps/p2) + 04(1) and
the lower bound on log(1/p)/log(1/g) from Theorem 3.7 applies. [

3.5.1 Asymmetric lower bound

The lower bound is based on an isoperimetric-type inequality that holds
for randomly correlated points in Hamming space. We say that the
pair of points (x,y) is a-correlated if x is a random point in {—1,1}4
and y is formed by taking x and independently flipping each bit with
probability (1 —a)/2. We are now ready to state O’'Donnell’s generalized
small-set expansion theorem. Notice the similarity to the value of p; for
the Gaussian filter family described in Section 3.3 and Appendix 3.8.

3.6. Open problems 61

Lemma 3.7 ([121, p. 285]). For every 0 <a <1, -1 < A < 1, and
QU C {—1,1}¥ satisfying that |Q|/2% = (|u)/24)*" we have
1+a2A 4142
ProlreQyells (ujz2?)
X,
uc—correylated
The argument for the lower bound assumes a regular

(r,cr, p1, 2, P, pu)-sensitive filter family F for Hamming space where we
setr = (1—a)d/2and cr = (1 — B)d/2 for some choice of 0 < B < a < 1.
We then proceed by deriving constraints on p1, p2, pg, pu, and minimize
p; and p, subject to those constrains. The proof of Theorem 1.5 is
provided in Appendix 3.10.

Theorem 1.5. Fix 0 < B < a < 1. Then for every regular ((1 —a)d/2, (1 —
B)d/2, p1, p2, Py, pu)-sensitive filter family in d-dimensional Hamming space
with and |Q|/2% = (|U|/2”l)"‘ZA where A satisfies a +2+/In(d)/d < a <
1/(a —2+/In(d)/d) it must hold that

log(pg/p1) _ (1—alth)?
Oq log(pq/pz) 1— a2 04(1),
log(pu/p1) (ot —a)?
0= Sog(py/p) = 1—az 4

when py is set to minimize pg and we assume that |U| /24 > 2-0a(1),

5.6 Open problems

An important open problem is to find simple and practical data-
dependent solutions to the (r, cr)-near neighbor problem. Current solu-
tions, the Gaussian filters in this paper included, suffer from o(1) terms
in the exponents that decrease very slowly in n. A lower bound for the
unit sphere by Andoni et al. [13] indicates that this might be unavoidable.

Another interesting open problem is finding the shape of provably
exactly optimal filters in different spaces. In the random data setting in
Hamming space, this problem boils down to maximizing the number of
pairs of points below a certain distance threshold that is contained in a
subset of the space of a certain size. This is a fundamental problem in
combinatorics that has been studied by among others [94], but a complete
answer remains elusive. The LSH and LSF lower bounds [114, 122, 19],

62 Chapter 3. Space-time tradeoffs for similarity search

along with classical isoperimetric inequalities such as Harper’s Theorem
and more recent work summarized in the book by O’Donnell [121] hints
that the answer is somewhere between a subcube and a generalized
sphere.

A recent result by Chierichetti and Kumar [49] characterizes the set of
transformations of LSH-able similarity measures as the set of probability-
generating functions. This seems to have deep connections to result
of this paper that uses characteristic functions that allow well-known
kernel transformations. It seems possible that this paper can be viewed
as a semi-explicit construction of their result, or that their result can be
described as an application of Bochner’s Theorem.

Acknowledgment

I would like to thank Rasmus Pagh for suggesting the application of
Rahimi & Recht’s result [139] and the MinHash-like [32] connection be-
tween LSF and LSH used in Theorem 1.4. I would also like to thank
Gregory Valiant and Udi Wieder for useful discussions about locality-
sensitive filtering and the analysis of boolean functions during my stay
at Stanford. Finally, I would like to thank the Scalable Similarity Search
group at the IT University of Copenhagen for feedback during the writ-
ing process, and in particular Martin Aumtdiller for pointing out the
importance of a general framework for locality-sensitive filtering with
space-time tradeoffs.

5.7 Appendix: Framework

We state a version of Theorem 3.1 where the parameters of the filter
family are allowed to depend on n.

Theorem 3.1. Suppose we have access to a filter family that is
(r,cr, p1, P2, Py, Pu)-sensitive. Then we can construct a fully dynamic data
structure that solves the (r,cr)-near neighbor problem. Assume that 1/p,
1/log(py/p2), and exp(log(1/p1)/ log(min(pg, pu)/p1)) are n°Y, then
the data structure has

— query time dnPato(l),

— update time nfx°() 4 dpo(M),

3.7. Appendix: Framework 63

— space usage n' P« o) 4 dp 4 dno(t)

where

_logpg/pr - logpu/p1
logpg/p2’ " logpg/pa’

To prove Theorem 3.1, we begin by setting the parameters mentioned
in the description of the LSF data structure in Section 3.2.1.

q

o [min(pq,pu)logn"‘
! log(1/p1)
_ { logn J log(1/p1)
k1 log(pg/p2) | ~ log(min(py, pu)/p1)
my = [t/p)']
x2 = max(0, [log(n)/ log(pq/p2)| — TK1)
my = [1/py’]

We will now briefly explain the reasoning behind the parameter settings.
Begin by observing that the powering and tensoring techniques both
amplify the filters from F. Let m = (") - mp denote the number of
simulated filters in our collection F and let 2 = T«x; + k3 be an integer
denoting the number of times each filter has been amplified. Ignoring the
time it takes to evaluate the filters, the query time is determined by the
sum of the number of filters that contain a query point and the number
of distant points associated with those filters that the query algorithm
inspects. The expected number of activated filters is given by mpg while
the worst case expected number of distant points to be inspected by the
query algorithm is given by nmp3. Balancing the contribution to the
query time from these two effects (ignoring the O(d) factor from distance
computations) results in a target value of a = [log(n)/log(p,/p2)].
Compared to having an oracle that is able to list the filters from a
collection that contains a point, there is a small loss in efficiency from
using the tensoring technique due to the increase in the number of
filters required to guarantee correctness. The parameters of the LSF data
structure are therefore set to minimize the use of tensoring such that
the time spent evaluating our collection of filters roughly matches the
minimum of the query and update time.

Consider the initialization operation of the LSF data structure with
the parameters setting from above. We have that x; < x; implying that
my = O(my). The initialization time and the space usage of the data

64 Chapter 3. Space-time tradeoffs for similarity search

structure prior to any insertions is dominated by the time and space used
to sample and store the filters in F;. By the assumption that a filter from
F can be sampled in O(d) operations and stored using O(d) words, we
get a space and time bound on the initialization operation of

i log(n)
O(d =0|(d mln(Pq/Pu)pl—g))
(drcymy) < n iog(pe/ 7]

Importantly, this bound also holds for the running time of the filter
evaluation algorithm, that is, the preprocessing time required for constant
time generation of the next element in the list of filters in F containing
a point. In the following analysis of the update and query time we will
temporarily ignore the running time of the filter evaluation algorithm.

The expected time to insert or delete a point is dominated by the
number of update filters in F that contains it. The probability that a
particular update filter in F contains a point is given by pf. Using a
standard upper bound on the binomial coefficient we get that m =
O(e"/pf) resulting in an expected update time of

O(mpy +d) = O (pu/p1)e’ +d).

In the worst case where every data point is at distance greater than cr
from the query point and has collision probablity p, the expected query
time can be upper bounded by

O(mpg + dnmpj) = O(nf1e™ (pg/p1 + d)).

With respect to the correctness of the query algorithm, if a near neighbor
y to the query point x exists in P, then it is found by the query algorithm
if (x,y) is contained in a filter in F{’" as well as in a filter in F,. By
Lemma 3.2 the first event happens with probability at least 1/2 and
by the choice of m;, the second event happens with probability at least

1-(1- p’fz)p? > 1—1/e. From the independence between F; and F;
we can upper bound the failure probability § < (1/2)(1+ 1/e). This
completes the proof of Theorem 3.1.

5.8 Appendix: Gaussian filters

In this section we upper and lower bound the probability mass in the
tail of the bivariate standard normal distribution when the correlation

3.8. Appendix: Gaussian filters 65

between the two standard normals is at most B (upper bound) or at least
« (lower bound). We make use of the following upper and lower bounds
on the univariate standard normal as well as an upper bound for the
multivariate case.

Lemma 3.8 (Follows Szarek & Werner [154]). Let Z be a standard normal
random variable. Then, for every t > 0 we have that

1 L ep L 1 —