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Surely if a machine is able to reproduce another machine systemati-
cally, we may say that it has a reproductive system. What is a repro-
ductive system, if it be not a system for reproduction? And how few
of the machines are there which have not been produced systematically
by other machines? But it is man that makes them do so. Yes; but it is
not insects that make many of the plants reproductive, and would not
whole families of plants die out if their fertilization was not affected by
a class of agents utterly foreign to themselves? Does anyone say that
the red clover has no reproductive system because the humble bee (and
the humble bee only) must aid and abet it before it can reproduce? No
one. The humble is part of the reproductive system of the clover. Each
one of ourselves has sprung from minute animalcules whose entity was
entirely distinct from our own, and which acted after their kind with
no thought or heed of what we might think about it. These little crea-
tures are part of our own reproductive system; then why not we part
of that of the machines?

– Samuel Butler, Erewhon
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English Abstract

Optimizing robots through the implementation of evolutionary processes
plays a key role in evolutionary robotics and artificial life. Challenges
that arise in the evolutionary optimization of robots are usually related to
an algorithm’s compromise between trying new solutions and improving
previously found solutions (the exploration vs. exploitation trade-off),
and whether to express genomic information directly or generatively
(genotype to phenotype mapping). An additional challenge is that there
is a discrepancy between simulation and reality (reality gap) where robots
‘evolved’ in simulation environments function differently when transferred
to the real world.

The exploration vs. exploitation trade-off is addressed through
describing and experimenting with the inclusion of biologically inspired
intrinsic mortality and how this affects the evolvability of populations.
The results contribute to our understanding of the relationship between
intrinsic mortality and mutation rate. The results further indicate how it
can be utilized to develop algorithms that can outperform state-of-the-art
algorithms.

This thesis continues by addressing the challenge of mapping the
genotype to the phenotype through investigating the influence of genera-
tive encodings on the evolution of simulated modular robots. It is investi-
gated how an L-System as a generative encoding can lead to the formation
of plant-inspired virtual creatures and shows that movement for tracking a
moving light source is not an emerging phenotypic trait. Afterwards, this
generative encoding is shown to better evolve modular robots for locomo-
tion compared to a direct encoding. The addition of real-world solar panel



modules demonstrates how modular robots can be evolved toward energy
autonomy.

The final part of the thesis describes the evolution of embodiment and
control of physical robots. As part of this, an automated process for
assembly and disassembly of modular robots is demonstrated, which can
be used to evaluate evolved individuals in the real world. A viable method
for implementing evolution directly is demonstrated through evolving
the behavior of a knifefish-inspired physical soft robot. Both approaches
represent strategies for addressing the reality gap.

The experimental results of this thesis contribute to the understanding
of biological phenomena and elucidate how improvements can be made
to existing methods in evolutionary robotics. It shows that we can utilize
concepts from evolutionary biology to advance our understanding of
evolutionary dynamics, encodings and physical designs that are valuable
for the automated design of robots.

Danish Abstract

Optimering af robotter gennem implementering af evolutionære processer
spiller en central rolle i evolutionær robotik og kunstigt liv. Udfordringer
der opstår i evolutionær optimering af robotter er normalt relateret til
en algoritmes kompromis mellem at prøve nye løsninger eller forbedre
tidligere fundne løsninger (søge kompromiet) og om at udtrykke genomisk
information direkte eller generativt (genetisk kodning). En yderligere
udfordring er, at der er en uoverensstemmelse mellem simulering og
virkelighed, hvorved robotter udviklet i simuleringsmiljøer fungerer
anderledes, når de overføres til virkeligheden (virkelighedsgabet).

Udforskningen af søge kompromiet behandles ved at beskrive og
eksperimentere med inddragelsen af biologisk inspireret dødelighed og
hvordan dette påvirker systemets evolutionsevne. Resultaterne bidrager til
vores forståelse af forholdet imellem dødelighed og mutationshastigheden.
Resultaterne viser yderligere, hvordan dette kan udnyttes til at udvikle
algoritmer der kan udkonkurrere state-of-the-art algoritmer.

Afhandlingen fortsætter med at kigge på udfordringen om genetisk
kodning ved at undersøge indflydelsen af generative kodninger på
udviklingen af simulerede modulære robotter. Det undersøges, hvordan
et L-system, som er en generativ kodning, kan føre til dannelsen af
planteinspirerede virtuelle væsner og viser, at bevægelse til sporing af en
bevægende lyskilde ikke er et fremtrædende fænotypisk træk. Derefter
vises denne generative kodning at være bedre til at udvikle modulære



robotter til bevægelse sammenlignet med en direkte kodning. Tilføjelsen af
virkelige solpanelmoduler demonstrerer, hvordan modulære robotter kan
udvikles mod energi autonomi.

Den afsluttende del af afhandlingen omhandler evolution af form og
kontrol af fysiske robotter. Som led i dette demonstreres en automatiseret
proces til samling og demontering af modulære robotter, som kan bruges til
at evaluere udviklede individer i den virkelige verden. En brugbar metode
til gennemførelse af direkte evolution demonstreres gennem udviklingen af
en knivfisk-inspireret, fysisk, og blød robot. Begge tilgange repræsenterer
strategier til løsning af udfordringen med virkelighedsgabet.

Resultaterne i afhandlingen bidrager til forståelsen af biologiske
fænomener og belyser, hvordan man kan forbedre eksisterende metoder
i evolutionær robotik. Afhandlingen viser, at vi kan udnytte koncepter fra
evolutionær biologi for at fremme vores forståelse af evolutionær dynamik,
kodninger og fysiske design, der også er værdifulde i forbindelse med
automatisk design af robot.
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Preface
This thesis is about evolution in the context of artificial life. Here, evolu-

tionary computation shapes the progression of usually in silico systems
toward user-specified goals through the artificial implementation of evolu-
tion. Since evolution has led to the many elegant adaptations observed in
organisms today, the implementation of evolutionary computation in robo-
tics is conducted with the aim to bring about artificial complexity using
the same evolutionary processes underlying billions of years of adaptation.
This is the paradigm of evolutionary robotics. As the resulting biological
machinery, organisms, have been analogized to the complexity of watches,
many have falsely attributed the emergence of organisms and species in this
world to a higher deity. The many works of Richard Dawkins assert that
the acclaimed watchmaker processes seen in nature are in fact the result
of the blind forces of physics. Evolution, as a result of these forces, elicits
the works of an apparent blind watchmaker. Since us evolutionary roboti-
cists try to nudge the evolutionary processes to engender effective features
in robots, we are the parody of the watchmaker for the creation of artifi-
cial life. We incorporate many biological features shown to be useful for the
evolutionary processes exhibited in nature and contemplate how to thereby
create beings of complexity rivaling nature’s emergent ‘design’.

The subtitle of this thesis explains its major constituents. Death
refers to the experiments on the potential evolutionary advantage of
programmed death, which has been heavily inspired by a guest lecture
from Justin Werfel that was partly about altruistic aging. Modularity
concerns the implementation of modular robots; in this case, it involves
subjecting modular robot conglomerates to simulated evolution. This work
builds on existing work of evolving modular robots done in collaboration
with Andrés Faíña. Physicality is discussed by the application of
evolutionary computation to physical robots; where Jonas Jørgenson and
I have collaborated to evolve the behavior of a physical knifefish-inspired
robot. Death, modularity, and physicality are discussed in the context of
evolutionary robotics, toward a better understanding of (artificial) life.
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Chapter 1

Introduction

It is interesting to contemplate an entangled bank, clothed with
many plants of many kinds with birds singing on the bushes, with
various insects flitting about, and with worms crawling through the
damp earth, and to reflect that these elaborately constructed forms, so
different from each other, and dependent on each other in so complex
a manner, have all been produced by laws acting around us. These
laws, taken in the largest sense, being Growth and Reproduction;
Inheritance which is almost implied by reproduction; Variability from
the indirect and direct action of the external conditions of life, and from
use and disuse; a Ratio of Increase so high as to lead to a Struggle for
Life, and as a consequence to Natural Selection, entailing Divergence
of Character and the Extinction of less-improved forms. Thus, from
the war of nature, from famine to death, the most exalted object which
we are capable of conceiving, namely, the production of the higher
animals, directly follows. There is grandeur in this view of life, with
its several powers, having been originally breathed into a few forms or
into one; and that, whilst this planet has gone cycling on according to
the fixed law of gravity, from simple a beginning endless forms most
beautiful and most wonderful have been, and are being, evolved.

– Charles Darwin, On the Origin of Species

Evolution is the ultimate explanation for life as we know it. The process
of descent with modification is not only fundamental to our understanding
of nature, but its merits are useful in computational models as well.
Its utilization is valuable for creating smart algorithms or robots, which
enables us to better understand evolution and explain phenomena that
we observe in nature. Artificial evolution, defined under the umbrella
term evolutionary computation, encompasses the algorithms mimicking
biological evolution. It sprouted from the many implementations in
computational models that were inspired by evolution. In evolutionary
robotics, evolutionary computation is implemented as the strategy for
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the automated design of intelligent robots (Harvey et al., 1992; Nolfi et
al., 2000). It has subsequently been demonstrated that research in this
paradigm can result in the creation of unique control systems and body
plans for simulated and physical robots.

If we could rerun the evolutionary process of life on earth, the emerging
entities would likely not resemble humans. Another branch of life could
well have dominated and outcompeted the ancestral branch humans
sprouted from. If the meteorite that killed the dinosaurs missed Earth,
preventing dinosaurs from going extinct, an intelligent dinosaur species
might be roaming the planet instead of us humans. This aspect is also
true for artificial systems; rerunning evolutionary robotics simulations will
almost never yield similar phenotypes, but rather will find unique solutions
for an objective, resulting in a creative optimization search process.

Using evolution as a tool can thereby also lead to the emergence of
complex robots by simply providing the fundamental building blocks. The
evolutionary process in turn generates efficient machines. As is shown
in this thesis, this can be done through evolving simulated robots, as
well as directly implementing evolutionary computation on robots. In
evolutionary robotics, we can select any stage of a robot’s ancestral branch
and run evolution from this point onward, designating the robot to conform
to a variety of objectives, environments, resources, body plans, and control
systems. Hence, an artificial evolutionary process could lead to life, but,
most likely, not as we know it (Eiben, 2014).

Many people believe in a deity and use this as an argument against
evolution. A classic argument used as proof for the existence of a deity
is the analogy of this deity to a watchmaker. The theologian William Paley
explained that finding a watch on the floor necessitates the inference that
it must have been designed and made by a watchmaker (Paley, 1802).
Organisms seemingly contain design elements that are complex, just like
a watch, as opposed to, say, a stone. Therefore, organisms must have
a ‘designer’ as well. This idea was formulated before Darwin’s On the
Origin of Species. Dawkins, 1986 has argued that such complex natural
design is simply an emergent property of evolution through descent with
modification—where “if it can be said to play the role of watchmaker
in nature, it is the blind watchmaker” (Dawkins, 1986). In evolutionary
robotics, the blind process of evolution is itself implemented to design
robots. Hence, us evolutionary roboticists being watchmakers, having
come into existence through a blind watchmaker, try to make watches using
a blind watchmaker’s approach.

Evolutionary computation is a branch of artificial intelligence, where
contemporary research in artificial intelligence has proven its prominence
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and applicability. Strategies like deep neural networks and Monte-Carlo
Tree Search have especially demonstrated to produce smart machines as in
the case of the recent defeat of the world’s best go player (Silver et al., 2017).
Despite the practical value, most research in the field of AI in general is
concerned with the creation of arbitrary notions of thought processes and
reasonings that are heavily inspired by how humans act and think, or by
how machines can be made to act rationally (Russell et al., 2010). It is
therefore also highly bio-inspired and usually takes an anthropomorphic
perspective. Robotics and AI not only focus on this mimicry, but research
also entails cognitive and motivational autonomy by investigating memory,
imagination, mental life, planning, thinking, dreaming, or hallucinating.
Although humans can serve as useful models for inspiration in artificial
intelligence, it could also be viewed as an over-complicated system that
developed its advanced cognitive processes based on maximum parsimony.
Maximum parsimony means that through natural evolution, the number of
state changes to find a solution is minimized. Humans happen to be the
solution thus far in this context.

Many of the physiological traits and structures seen in humans might
have served a completely different function in common ancestors. Thus,
the evolved functionalities we see today might thus not be the most efficient
ones to implement in an artificial system. Our intelligence is surely not
modeled with the sole aim of acquiring it; rather, it enables the survival and
reproduction of our genes. For example, there are behavioral and structural
commonalities between ourselves and neighboring species that sprouted
from a common ancestor. If we dissect the human body—say we split
up every compartment of the brain and try to make an artificial module
for the specific task allocated to the corresponding part of the brain—we
might find more efficient solutions to engender these functional feats
without being chained to our ancestral precursive solutions. Therefore, in
contrast to the anthropomorphic modeling of an artificial system inspired
by hominids, in evolutionary robotics we can reshape the entire collection
of functionalities and evolve them without relying on the process of
mimicking them. Evolutionary robotics thus allows us to evolve a general
bio-inspired artificial system potentially as a precursor to new branches of
intelligent systems and artificial life.

1.1 Challenges

Evolutionary computation is often implemented as an objective-based
problem solver, similar to existing AI techniques. The power of
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evolutionary computation is manifold, including its ability to optimize
discontinuous, non-differentiable functions. The correct parameter set is,
however, highly dependent on the fitness landscape. Simple hills can be
climbed through local search, whereas landscapes that are more difficult
necessitate more global search or diversification to find a desired optimum.
This is a problem in evolutionary computation called the exploration vs.
exploitation trade-off. The capability of traversing the fitness landscapes
efficiently through adjusting parameters that favor either exploration or
exploitation, is thus of great importance to evolutionary computation.
The capacity for traversing a fitness landscape and thereby finding better
solutions is called evolvability—the capacity to evolve. Evolvability in
evolutionary algorithms is discussed mainly in Chapter 3, where it is
promoted by implementing an indiscriminate intrinsic mortality factor.

The attributes seen in organisms that have led to the emergence of life
forms are also of interest in the field of evolutionary robotics. One of these
important attributes that changes an organism during its lifetime is called
development. Equivalent to development in evolutionary robotics are the
processes that change an agent during its lifetime and, of specific interest
to this thesis, the mapping from genotype to phenotype. The genotype to
phenotype mapping is another challenge in evolutionary robotics, which is
discussed in the context of evolving modular robots, mainly in Part II.

One final major challenge in evolutionary robotics is the reality gap, or
the discrepancy between simulated and real-world robots. In evolutionary
robotics, the simulator usually evolves the behavior in a three-dimensional
model of the robot that can be transferred to the real-world robot after
an adequate solution has been found. However, transferring the evolved
robot from the simulation to the real world always presents a performance
or reality gap (Jakobi et al., 1995). Contemporary research has not yet
created simulators that would allow morphologically complex evolved
robots to be transferred to the real world and expecting similar results.
However, certain abstractions can reduce this reality gap, as is discussed
briefly in Chapters 6 and 7. An alternative approach bypassing the
simulator altogether is discussed in Chapter 9. In this chapter, evolutionary
computation is implemented directly on a physical soft robot. This is an
efficient approach since a soft robot is difficult to simulate and control in
the real world.
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1.2 Structure and Contributions

This thesis conveys ideas and experiments regarding the process of shaping
artificial robotic systems without relying on engineered solutions or
detailed features derived from natural systems. The thesis is structured into
three general parts that address the topics, as the title implies: Evolutionary
Dynamics (Part I), Evolving Modular Robots (Part II) and Evolution of
Physical Robots (Part III). Though the parts are not strict distinctions, the
thesis is structured from theory to practice, every subsequent chapter being
more set in reality than the former.

In the first part, I discuss various concepts of natural systems related
to evolution and how these theoretical concepts can be implemented
in computational models. In Chapter 2, a general overview is given
of high-level concepts related to natural and artificial evolution. From
here, experiments on the evolutionary dynamics of genetic algorithms
and spatial models are performed in Chapter 3. This chapter specifically
investigates the theoretical concept of how senescence (aging) could
be an evolutionary advantageous trait in natural and artificial systems,
senescence being simulated by an intrinsic mortality parameter. This
chapter also describes the first major scientific contribution supported by
a paper published at the Artificial Life conference of 2018 (Veenstra et al.,
2018b). The chapter includes many details and additional experiments that
were excluded from the submitted paper. The hypothesis that is being
addressed in this chapter is:

Hypothesis 1 Intrinsic mortality benefits the evolvability of a population.

The results of this chapter indicate that there is a tight correlation
between the mutation rate and mortality rate that influences evolvability in
a specific manner. Experiments on various landscapes indicate that indis-
criminate mortality can enhance the performance of genetic algorithms
on benchmark tests and in spatial models. These experiments show that
factors influencing intrinsic mortality are actually an evolutionary advan-
tage for an evolving population.

The second part of this thesis addresses the main body of work done
on Evolving Modular Robots. In Chapter 4, an overview is given of
the evolutionary robotics simulator that was developed and used for the
experiments discussed in the subsequent chapters. The three chapters that
follow are based on three publications on the evolution of modular robots.
The first publication (Veenstra et al., 2016) regarded evolving plant-inspired
virtual creatures for function and aesthetics. It discussed whether evolved
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artificial plants would likely evolve movement in a given environment
(Chapter 5). This is formulated by the second hypothesis of the thesis:

Hypothesis 2 Actuation in evolving phytomorphologies is beneficial for optimi-
zing light absorption.

Chapter 5 illustrates that in fact movement, without any added cost for
movement, did not produce individuals better suited for tracking a light
source. It could therefore be that movement is simply not as useful to plants
as being able to create many leaves.

Chapter 6 veers the evolutionary robotics approach from optimizing for
light absorption to evolving locomotion in modular robots (Veenstra et al.,
2017a). The chapter discusses two approaches to generating the modular
robots and how this generation affects the evolutionary search process. It
therefore addresses the genotype to phenotype mapping. One approach
consists of a direct encoding and the other of a generative encoding, similar
to the one implemented in Chapter 5. This leads to the third hypothesis of
this thesis:

Hypothesis 3 A generative encoding increases the efficiency of evolving modular
robots compared to a direct encoding.

The results indicate that a generative encoding is indeed the better
encoding strategy for evolving modular robots. Moreover, the video that
was produced as supplementary material subsequently won the virtual
creatures contest held at GECCO 2017. 1

The real physical modules that were developed were used to evaluate
how to design energy-autonomous robots, as discussed in Chapter 7
(Veenstra et al., 2017b). Although genuine energy autonomy was too
difficult to achieve given the modules that were used, the main contribution
of this chapter is its description of a modular robotic system in which
energy harvesting modules can be integrated. This approach might be most
valuable for multi-robot systems, where some robots specialize in energy
harvesting while higher-order robots could utilize the energy gathered by
these primary energy-producing robots. The main hypothesis addressed in
this chapter is:

Hypothesis 4 Energy autonomy in modular robots can emerge from imple-
menting solar panel modules.

1The video on Evolving Modular Robots can be found here: https://www.youtube.
com/watch?v=HCDftic1AdA
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Results show that this implementation of evolution in modular robots
provides a stepping-stone toward developing legitimate energy autonomy
in modular robots. Moreover, it demonstrates an application in which the
reality gap is negligible.

The final part of this thesis discusses applying evolution in physical
systems. It opens with a rough outline of approaches to evolving physical
robots and describes a way to automatically assemble modular robots in
Chapter 8. Chapter 9 is a standalone experiment, in which a knifefish-
inspired, soft, swimming robot was created (Veenstra et al., 2018a). Its body
is quite complex and would be tedious to simulate. Therefore, a form of
evolution bypassing a simulator environment was used. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) was the algorithm implemented
to evolve the undulating swimming behavior of the robot. This experiment
led to final hypothesis of this thesis:

Hypothesis 5 Evolutionary computation finds better solutions for controlling a
designed soft swimming robot compared to manually encoded behaviors.

The results of the evolutionary experiments indicate that CMA-ES is
a viable method for optimizing the behavior of morphologically complex
robots outperforming the manually encoded behavior.

This thesis concludes with a brief discussion of the implemented work
and its prospects in Chapter 10. The general aim of the thesis is to convey
how and why evolutionary robotics can lead to the acquisition of functional
robots. This aim considers both the biological and artificial processes
related to evolution. The important common concepts in both natural
and artificial evolution—such as selection pressure, genotype to phenotype
mapping, evolvability, and models for evolutionary computation—are
therefore described in Chapter 2. This chapter contains information
essential for understanding concepts that are described later in the thesis,
but may not be a requirement for the reader knowledgeable in these
subjects.

1.3 Evolutionary Robotics

In evolutionary robotics, we are free to model any potentially useful traits
of morphologies and controllers that can be fed into an evolutionary
algorithm as building blocks. This modeling, through using modular
robots, forms the core of this thesis, as robots can adopt certain traits
that are useful for an objective and incrementally improve themselves
by altering the genetic information that encodes for their phenotype.
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Any traits and features we provide as building blocks could be viewed
as constituents of an artificial primordial soup. It contains all of the
ingredients that are useful or available to enable the emergence of
the robots. Complex robots can thus spontaneously form through the
evolutionary process by supplying functional precursors, building rules
and control mechanisms. The composition of our artificial primordial soup
entails a vast mixture of applicable theories, concepts, and algorithms that
evolutionary robotics covers, while the fundamental mechanisms giving
rise to our robots include reproduction and development. Reproduction
conveys how genetic information is propagated to the next generation,
whereas development describes the procedure of acquiring a phenotype
from this genetic information. Development is thus the mapping of the
genotype to the phenotype. In addition, development can convey plasticity
and learning in individuals during their lifetime.

Many of the mentioned challenges have already been considered, and
a popularized example implementing a simple genotype, an encoder, and
a user-guided evolutionary process (interactive evolution) can be seen in
Richard Dawkins’s blind watchmaker program (Figure 1.1; Dawkins 1988).

Dawkins created a genotype containing 16 variables that were in turn
interpreted by a Lindenmayer-system (L-system; Lindenmayer 1968a) to
create biomorphs—objects resembling living organism—based on simple
iterative rewriting rules. Dawkins emphasized the essential role of
developmental genes that encode for recursion expressed in the phenotype
of animals. Recursively expressed genes can lead to segmentation in
cells, tissues, and overall body plans. The resulting segmentation is a
phenomenon called serial homology, or similarity of structures repeated
along the body axis.

The genotype to phenotype mapping dictates the encoding that is used
to generate an entity from a string of information. In some cases, this string
of information is encoded as a generative (or indirect) encoding, in which
bits and pieces of the code are reused in a recursive process to form the
resulting phenotype of an individual. In contrast, in a direct encoding,
every parameter of the phenotype is defined. A fractal or grammar can
lead to incredibly complex patterns in the form of a drawing based on
just a few functions or rewriting rules. In this case, the simplicity of the
genotype and the complex emergent phenotype is an incredible result of a
developmental encoding. This type of encoding is also present in nature
and can be functionally utilized in artificial systems.

Karl Sims went a step further than Dawkins and implemented a similar
strategy of encoding the genotype to phenotype map for evolving three-
dimensional virtual creatures (Sims, 1994b). Subjecting the genomes that
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FIGURE 1.1: Biomorphs. Different biomorph phenotypes
evolved through interactive evolution. Taken from

Dawkins, 1988.

encode for the phenotypes to the evolutionary process (Figure 1.2a), many
different types of phenotypes emerged with the objective of swimming or
walking (Figure 1.2b). This is the first example of evolutionary computation
being used to create simulated, physics-based virtual creatures. Though at
the time a computer cluster was necessary to evolve the creatures, it has
become more and more computationally viable to evolve these types of
virtual creatures on a personal computer.

The typical approach taken in evolutionary robotics is similar to
Dawkins’s and Sims’s approach. Evolutionary computation takes care
of automatically adjusting a population of individuals through gathering
performance measures from resulting phenotypes. Considering the loop of
reproduction and evaluation that is essential for the correct implementation
of an evolutionary algorithm, a minimal schematic representation of the
important aspects in the evolutionary robotics approach is illustrated in
Figure 1.3. The agent in this case covers the pathway from a genotype
to a phenotype through development, the agent in biology being an
organism, and in the artificial context of this thesis, a robot. However, in an
evolutionary setting, the agents themselves are not optimized, but rather
their gene pool is. This can mean that many small robots might function
just as well as a large, complex, robot or vice versa.
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Genotype: directed graph. Phenotype: hierarchy of 3D parts.
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FIGURE 1.2: Evolving Virtual Creatures. The genotype to
phenotype mapping (a) and the two evolved phenotypes
(b) from Sims’s work (Sims, 1994b). The two evolved beha-
viors were optimized for swimming (top) and walking

(bottom).

1.4 Scope and Context

In contrast to conventional approaches in artificial intelligence, understan-
ding intelligence in evolutionary systems may be of lesser importance.
Instead of an intelligent thought process being evolved, other characte-
ristics in the morphology of robots could emerge, bypassing intelligent
control while still adhering to an objective (Pfeifer et al., 2006). More
abstract forms of intelligence, or emergent collective intelligence, could as
well suffice for artificial systems. Evolutionary robotics is therefore more
concerned with obtaining behavior adhering to specific objectives or self-
reproduction, rather than intelligence. This is also true for natural systems.
If a morphological change would be more evolutionarily advantageous
than intelligence, this would be selected for.

In ecosystems, there is usually an arms race within and between
populations that drives evolutionary progression, the arms race being
an emergent conflict between organisms for gathering finite resources.
In artificial systems, the agent’s goal could similarly be set by more
ultimate aims, such as energy acquisition. This goal should, after all, be
a requirement for reproduction. For a robotic ecosystem, primary energy
producers might simply be intelligently arranged solar panels from which
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FIGURE 1.3: Overview of fundamental steps in evolu-
tionary robotics. The adaptations in individuals can
be considered on two time-scales: ontogeny (during an
individual’s lifetime) and phylogeny (throughout evolu-
tionary history). The genomes of agents develop into
phenotypes of individuals, resulting in the organisms or
robots. Based on the performance of these individual
phenotypes, the genotype of the individuals reproduce.
Imperfections in the replication process result in evolu-

tion.

higher-order robots can gather their energy. In addition, more proximate
goals, such as the control of movement, can be set. Locomotion and energy
acquisition are intertwined behaviors in nature that can be isolated as single
objectives in artificial evolution, which has been done in Part II.

Though the type of optimization algorithm to be used can sometimes
be problem specific, evolution can often be implemented as a general
strategy. Parameter tuning of the algorithm can in turn be used to adapt the
algorithm’s functionality to different problems. This makes an evolutionary
algorithm a versatile optimization strategy. Many improvements have
been made on evolutionary algorithms to increase their performance.
These improvements usually address one or more of the mentioned major
challenges in evolutionary robotics: exploration vs. exploitation, genotype to
phenotype mapping, and the reality gap. From a problem-solving perspective,
these challenges are mainly be addressed in the various experiments of this
thesis. In addition, these problems can sometimes be related to equivalent



1

12 Chapter 1. Introduction

issues in biology. Hence, some aspects are taken into consideration from a
biological perspective.

The purpose of this thesis is to elucidate various aspects of evolution
in artificial systems. It will in part clarify why evolution works, how
additional concepts from evolutionary biology might actually increase the
efficiency of existing optimization strategies (Chapter 3), and why these
concepts are important when designing new robotic systems (Chapters 4,
5, 6, and 7). It is striving for a future where artificial life can emerge
through an automated process that transcends the current limitations of
the autonomy and technology of artificial systems, though conceptually
the hardware of the eventual system is elusive. Various strategies
easing the construction of a potentially variable robotic system have been
implemented. Throughout this thesis, some main intrinsic problems related
to the field of evolutionary robotics are addressed, with the predominant
experiments focusing on a specific type of robots called modular robots.
This is because modular robots are reconfigurable, making it easy to not
only implement different simulated robots, but also to adjust the hardware
configuration on demand. Using the modular robotics approach presented
in this thesis would allow any researcher, in theory, to design multiple
modules and automatically evolve their composition and behavior, for
either locomotion or energy acquisition, using the presented robotic
platform. Simulations are used to elucidate many aspects of robot design
and biology with the aid of strategies such as neural networks, evolutionary
computation, modular robotics, and a range of different objectives that are
discussed in the majority of this thesis.



Part I

Evolutionary Dynamics
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Chapter 2

Evolution

Different sorts of survival machine appear very varied on the outside
and in their internal organs. An octopus is nothing like a mouse, and
both are quite different from an oak tree. Yet in their fundamental
chemistry they are rather uniform, and, in particular, the replicators
that they bear, the genes, are basically the same kind of molecule in all
of us—from bacteria to elephants. We are all survival machines for the
same kind of replicator—molecules called DNA—but there are many
different ways of making a living in the world, and the replicators have
built a vast range of machines to exploit them. A monkey is a machine
that preserves genes up trees, a fish is a machine that preserves genes in
the water; there is even a small worm that preserves genes in German
beer mats. DNA works in mysterious ways.

– Richard Dawkins, The Selfish Gene

The origin of species—or the “mystery of mysteries, the first appearance
of new beings on this Earth” as Darwin wrote in his diary (Darwin,
1845)—has long been apocryphal until the emergence of Darwinian
evolutionary theory. As of today, it has been proven in many different
instances that natural selection and descent with modification are the
main factors promoting adaptive change in populations of organisms.
The self-adapting principles of evolution have in turn been adopted as
a metaheuristic optimization strategy in the paradigm of evolutionary
computation. The applicability of evolutionary computation as a general
problem-solver has been demonstrated in engineering for optimizing
satellite antennas (Lohn et al., 2003) to bioinformatics for the prediction of
RNA structures (Van Batenburg et al., 1995). Evolution is thereby not solely
a theory, but also a useful applicable optimization strategy.

Natural evolution does not have a predefined goal; it is a blind process
in which the only criteria are survival and reproduction (Dawkins, 1978).
However, we can still view the process itself as a stochastic problem
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solver, since populations are continuously adapting to their environments.
These adaptations in specific traits are selected for if they increase an
organism’s survival and reproductive success, w With some traits being
adaptive during an organism’s lifetime (acquired), whereas others are
inherently encoded in their genome (innate; Bolhuis et al. 2005). For
example, body plans are mostly defined by innate factors, while muscle
mass is influenced by mechanical stress and is thus in part an acquired
trait. Genes not only shape the individual organism, but their phenotypic
expression also shapes the environment that can assist in their replication,
a phenomenon more commonly known as the extended phenotype (Dawkins,
1978). The extended phenotype can change the ecological niche across
time; therefore, it encompasses cultural evolution as well (Cagnoni et
al., 2014). This is the case in ants and bees building hives, or monkeys
and crows using tools for capturing insects. The organisms that interact
with the environment are only the machinery of the expressed information
encoded in the genome. This machinery promotes complex behaviors for
locomotion, flying, digging, thinking, and even humanity. The resulting
machinery would not exist without the genome, and the genome could
not replicate without the machinery. All of these traits having emerged
from information-containing, reproducing entities subject to evolution by
natural selection.

Approach
Tinbergen (1963) has demonstrated that too often researchers described
animal behavior too vaguely, and descriptions between researchers were
not consistent. He proposed four different approaches to analyzing
behavior, using two proximate questions on how and two ultimate
questions on why behavior arises (Bolhuis et al., 2005). The two proximate
questions encompass the causation and development of the behavior of
the organism. Causation covers how the mechanisms of the underlying
structure, or machinery, of the organism function. Development describes
the conditions and factors important for the development of specific
structures of the organism that are responsible for behavior. The two
ultimate questions are used to explain the evolution and survival value of
behavior. Evolution involves the processes that have altered the behavior
across generations, while the survival value of the organism investigates
why the behavior is used by the organism.

In this chapter we consider Tinbergen’s reasoning and begin discussing
two proximate descriptions of the genome (Section 2.2) and development
(Section 2.3) with respect to the fitness landscape (Subsection 2.1.1).
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The ultimate questions of survival and evolution itself are considered
by discussing Evolvability (Section 2.5). This background information
motivates how and why we can implement evolutionary computation
(Section 2.6) and how spatial models can relate results from evolutionary
computation to biology (Section 2.7). To start off, the next section will boil
down the fundamentals of evolution.

2.1 Fundamentals of Evolutionary Theory

Natural selection through descent with modification is the primary driving
force allowing for evolution in natural systems. This sole mechanism
resulted in the grandeur of immensely diverse and unique creatures living
on this planet today. Selection shapes the trajectory towards certain features
present in the population, while variation through modification of the gene
pool—the set of all genes in a given population—allows for the emergence
of novel phenotypic traits. These novel traits are, for example, driven
by mutation, diploidy (chromosomes exist in pairs), and crossover that
promote diversity and variation in most organisms.

Even though evolution works, organisms are still riddled with
imperfections that are difficult to improve through evolution. A famous
example in mammals is the laryngeal nerve connecting the brain to the
larynx. This nerve takes a route from the brain, around the aorta, and
then to the larynx, instead of taking a shortcut by directly connecting
the brain to the larynx. Though this might not be an issue for most
animals, a giraffe’s neck can grow over 2 meters long, meaning that
signals from the brain to the larynx of the giraffe can take significantly
more time than they would when directly connected. Moreover, a direct
connection would also reduce the material, or number of cells, needed to
make the connection. This denotes the importance of evolution working
incrementally, where some changes in the design of organisms would
simply require leaps that might not be easily achievable from ancestral
precursors. Evolutionary adjustments are not sudden, but rather are
incremental steps towards better-adapted populations, species, or genes.
These incremental adjustments to a population contribute to the noticeable,
yet gradual, genotypic and phenotypic change that can be seen throughout
various phylogenetic trees. The incremental change is both the power and
the limitation of evolution and evolutionary computation.

For evolution to occur, there needs to be variation in the population. In
addition, for variation to emerge, there must be genetic change. Mutations
will allow offspring to be genetically different from their parent(s). These
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mutations can occur in the gametes of the organism during its lifetime and
be passed on to its offspring. Mutations are mainly caused by an inaccurate
duplication of a genome during cell division, but they can also be caused by
other factors such as mutagens. Moreover, if chance has it, a mutation can
lead to a new organism that will be better able to survive and reproduce
in its environment. Since selection works in favor of the better-adapted
individual, there is a higher probability that this individual is selected for
reproduction. Thus, evolution is simply an incremental process whereby a
population adapts to the conditions of a dynamic environment over time.

2.1.1 Performance Measure
The evolutionary optimization process in evolutionary computation
usually needs a measure of performance to acquire adequate functionality.
This measure of performance is usually denoted by a numerical value
called the fitness value. This performance measure can be a number,
or multiple numbers in the case of multi-objective approaches, directly
translating to the fitness value of an agent. In biology, a personal fitness
(Hamilton, 1964) value is commonly ascribed to the number of viable
offspring an individual is able to produce. Another measure, the inclusive
fitness (Hamilton, 1964) value, of an individual includes altruistic factors
that would enable the genes of an individual to propagate to the next
generation. An individual’s inclusive fitness is, for example, increased
when it is able to give its sibling, and thereby half of its own genes,
more viable offspring at the cost of producing offspring itself. However,
as noted by Dawkins (1988), the term inclusive fitness can be a cryptic
measure, since it is difficult to postulate how single organisms will affect
the population over time. The emergent properties of multiple individuals
could be measured considering the entire gene pool of a population, since
the behavior of a population is an aggregate, rather than merely the sum of
the actions of agents (Holland, 2012).

The fitness values that are given are an indirect result of an organism’s
ability to survive and reproduce in its environment. In evolutionary
robotics, fitness values are usually ascribed to the performance of robots on
specific tasks. Thereby the fitness value is usually not related to the number
of viable offspring an individual has produced, but rather the other way
around. A fitness value is given as a performance measure for an individual
in a particular environment, and this performance value will subsequently
determine the number of viable offspring an individual is able to produce
based on a selection operator. Ultimately, a fitness value is inferred from the
genotype and is thus an indirect mapping from genotype to fitness, with
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phenotype in-between. An exception to this approach can be seen in work
done trying to embody the evolutionary process itself, an approach called
‘embodied evolution’ as described by Watson et al. (1999) and Eiben (2014).
In this approach, robots do not have a fitness value, but evolution is an
emergent phenomenon through allowing robots to reproduce based on the
interactions they have with other robots in an environment.

Considering different possible genomes, naturally and artificially, a
fitness landscape can usually be formed to map the performance of a gene or
genome. This landscape can depict the reproductive rate of specific amino
acid sequences of proteins, as in Wright (1932) and Nowak (2006), though
the term in evolutionary computation usually conveys the performance of
different genotypes. However, producing many low-performing offspring
compared to producing a few high-performing offspring indicates that the
measure of reproductive rate might not be a good general performance
measure of a system, be it biological or artificial. Producing less, but better-
fit offspring as compared to other individuals in the population should
be considered. Therefore, not only reproduction, but also survival, is
important.

In evolutionary computation, an individual can be considered an
evaluation instance. If an evolutionary algorithm could implement
strategies to find a sufficient solution that requires less individuals to be
evaluated, it would perform more efficiently. Reproduction is therefore not
a logical measure of fitness, but rather a type of cost to an evolutionary
algorithm. Hence, the number of viable offspring or the reproductive rate
is not interesting in evolutionary computation when compared to other
performance measures.

2.2 The Genome and the Sequence Space

Genes cause the emerging phenotypes in nature, and therefore connect
evolutionary computation to biologically equivalent genetic representa-
tions. Genomes, in biology, are the four-letter sequences of deoxyribo-
nucleic acid (DNA) that forms the lexicon for information storage in life
as we know it. Deoxyribonucleic acid and ribonucleic acid (RNA) form
the blueprint for all biological life and enable the flow of genetic informa-
tion through heredity, DNA being the double-stranded variant of nucleo-
tides and RNA the single-stranded form. These strands are composed of
the nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T) in
DNA, whereas thymine is replaced with uracil (U) in RNA. These chains
of DNA and RNA can encode information that is eventually translated into
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proteins, which form the building blocks of life such as enzymes, hormones,
antibodies, etc. The sequence of nucleotides that contains the informa-
tion for life are the genes, which are functional sequences that encode for
proteins consisting of chains of typically up to 20 different types of amino
acids. Every amino acid in the protein is derived from a triplet of subse-
quent nucleotides. Since the genetic code can potentially account for 64
amino acids, the fact that there are only 20 amino acids present in most
organisms makes the genetic code redundant. Included in genes are signals
for proteins such as start and stop codons, eventually allowing for the
transcription and translation of the gene. The combined expression of genes
can form complex gene regulatory networks that include the promotion
and inhibition of other specific genes.

Mutations cause the DNA strand in mammals to change, the main
cause of mutation being errors during replication of the DNA. Various
types of mutations can either be detrimental, neutral, or, in very rare
instances, beneficial. It can occur through the insertion or deletion of
specific parts of the genome, or even the duplication of an entire genome
or chromosome. These random duplication events have been important for
speciation. For example, two rounds of whole-genome duplication events
in vertebrates were necessary before mammals could emerge (Reece et al.,
2010). Although events of gene duplication are rare, they have been crucial
for the generation of new functional proteins, as is likely to have happened
for red and green color cones of mammalian vision that spurred from a
duplication event in ancestral species (Dehal et al., 2005).

The Sequence Space
As first described by John Maynard Smith, the sequence space is a way to
describe the possible protein chains that can result from a fixed number of
amino acids. Every solution on this sequence space, in turn, may have a
representative performance value that can be related to the reproductive
success of the corresponding gene. When a gene, and thereby the resulting
protein, is better adapted, it allows for more copies of itself to be passed on
to the next generation. A fitness landscape can thereby be created based on
the reproduction rate of the genomic sequences (Wright, 1932; Eigen et al.,
1977). Considering the potential combinations of amino acid chains that
result from the triplets of base pairs, the sequence space is immense. For
example, since there are 20 possible amino acids, the sequence space of a
protein is 20L, where L is the number of amino acids of a protein. It is
therefore impossible to evaluate the entire sequence space of most proteins,
and as a result, the mapping of this entire sequence space on a fitness
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landscape is difficult. However, based on the functionality of a protein
when mutated, the neighborhood of different amino acid sequences can
be mapped to create a local fitness landscape.

A collection of similar genomic sequences is generally termed a
quasispecies. Not to be confused with biological definitions of a species,
the quasispecies refers to a similar set of genomic sequences that are
influenced by the mutation-selection process. The similarity of sequences
can be determined by their Hamming distance, which is a measure of the
minimum number of substitutions required to change one string into the
other. Therefore, there is an arbitrary distinction between a collection of
genomic sequences that can be mapped by genetic distance between two
individuals. The distinction is still useful since it can explain how the
fitness values of a quasispecies can vary over time. This usually results
in an adaptation of the quasispecies to local or global peaks in the fitness
landscape that vary in their stability depending on the environment.

The mutation rate in a quasispecies determines this stability and the
traversability of the population on the fitness landscape. Higher mutation
rates allow for more variation, and thus higher traversability of the fitness
landscape, though they also make certain regions in the landscape unstable.
As illustrated in Figure 2.1, a mutation rate (u) being above or below
certain mutation rate thresholds (u1 & u2) will determine the stability of
the population in a part of the fitness landscape (Nowak, 2006). In a
robust, stable equilibrium, the resulting quasispecies does not consist of
solely the fittest genomes, but rather a distribution of genomes around the
stable basin of attraction in the fitness landscape. These principles of stable
sequence spaces in relation to the mutation rate can shape evolutionary
progressions, which are discussed throughout this thesis.

In evolutionary computation, the genes are defined as mutable
parameters of a system. As has been introduced in genetic algorithms
(Holland, 1975), a binary string can be used to represent the genome
and sequence space of an agent in silico. This is the simplest analogy
to a DNA string, which is also a digital, as opposed to an analogue,
information storage mechanism. Since the binary genome is represented by
bits, the only difference is that DNA is equivalent to a quaternary numeral
system. Similar to biological measures of quasispecies and sequence spaces,
a binary genome can be directly mapped to form a fitness landscape,
where the fitness of genomes can be defined by specific functions that are
discussed in Section 2.6.

There are many factors in nature influencing the genetic information
present in a species. Mendel first described gene alternatives, known as
alleles. The genotype contains a set of alleles, while the phenotype is the
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Sequence Space

Sequence Space

Sequence Space

u < u1

u1 < u < u2

u2 < u

FIGURE 2.1: Fitness landscape with a peak and a hill.
u represents a mutation rate, u1 a critical value and u2

an error threshold. u’s value determines the region that
the quasispecies occupies as represented by the blue area.

Taken from Nowak (2006)

exhibited characteristic of these alleles in the organisms (Reece et al., 2010).
In diploid organisms, where individuals have two copies of the same gene,
segregation of two alleles from the genome of an individual lead to many
potential combinations of alleles in offspring. The random arrangement of
gene alleles in the offspring alters their fitness compared to their parents,
changing their phenotype. This combination accounts for some of the
sustained genetic variation within a population, since there can be several
combinations of various alleles in an individual. However, considering
only Mendelian mechanisms, and considering only one environmental
niche, the population would inevitably reside in a zero-evolvability state in
which no new genetic information enters the gene pool. Especially when
considering haploid organisms, the emergence of new genetic information
necessitates change in the genetic code. This change is not solely promoted
through mutations; it is also promoted by (imperfect) crossover events
that allow for the recombination of genomes. Moreover, factors like gene
duplication events have been important for the emergence of functional
paralogue genes, genes that share a common ancestor.
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Genetic diversity through mutation operators that change the genes
of artificial agents shapes the resulting potential phenotypes and the
robustness of solutions found by evolutionary computation. Although
quasispecies can be defined by measuring genetic difference in a
population, small population sizes in evolutionary computation usually
lead to the convergence of a population to a specific area on the fitness
landscape. The relationship between the variation and the ability of a
population of agents to traverse the fitness landscape is important to
consider in evolutionary computation, more so than other natural factors
that enable the evolution of natural systems.

2.2.1 Selection
Selection acts as the driving factor for which region in the fitness landscape
will be occupied by the quasispecies. Variation is necessary for the
population to traverse the fitness landscape and enable a quasispecies to
climb local hills or explore new regions in the sequence space. Selection
pressure can sometimes be negligible for specific areas in the sequence
space, and this can result in genetic drift. In this case, the genetic
information is changes randomly across generational time. This random
genetic change can result in neutral evolution, whereby change in the
genomic sequence does not affect the fitness. Genetic drift can also occur
in functional sequences when selection pressure is low or the mutation rate
is high. An advantage of this type of drift is that a gene can transform
into a new gene or find a unique sequence in the fitness landscape that
could not be reached under conditions of high selection pressure. Though
beneficial mutations are rare, a new, more suitable gene can potentially be
found due to drift. Genetic drift can play an especially important role in the
development of paralogue genes when gene duplication events occur.

For selection to work, at least two different types of genotypes with
different phenotypes need to be present in the gene pool of a specific
population. When considering that these two quasispecies reproduce
and die in a specific environment and have an exponential growth rate,
the quasispecies that contains most individuals in an environment will
normally take over the entire population. This is true when the fitness
values of both quasispecies are the same and lead to a concept called
survival of the first (Nowak, 2006). However, when the quasispecies have
different fitnesses, there will be a selective pressure towards the survival of
the fittest. Alternatively, if both populations have a sub-linear growth rate,
one quasispecies will never outcompete the other, leading to an equilibrium
known as the survival of all. Selection thus shapes the frequency of the genes
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in the gene pool but does not facilitate evolution on its own. It changes the
frequency of genotypes based on the phenotypic fitness of the individuals
and the number of individuals in a population. Since a variety of plants
and animals have emerged via the process of breeding through artificial
selection, evolutionary computation can be viewed as an equivalent, in
which breeding is done through setting objectives. Selection operators
usually determine the selection pressure on individuals in a population
and, together with variations in the genes, this shapes the evolutionary
trajectory of a population.

2.3 Development of the Phenotype

The phenotype entails the observable characteristics of an organism
(Wolpert et al., 2007). The genotype is inherited by the parent(s), whereas
the phenotype is the expression of the genes that can be influenced by
the environment (Nolfi et al., 2000). An important distinction is that the
environment shapes the eventual phenotype of an organism. The process
of how the genotype translates into the phenotype is called development. The
relationship between the genotype and phenotype is a mapping shaped by
the environment and the encoding of the genes themselves. In evolutionary
computation, this relationship between the genotype and phenotype is
usually called the genotype to phenotype mapping, where the genes of the
genotype determine the generative program for the development of the
agent. This genotype to phenotype mapping is important because it can
greatly influence the evolutionary progression in an artificial system. The
gestalt of all of the genes, proteins, and cells is what ultimately defines the
complexity of an individual. With pleiotropic genes, one gene can influence
multiple, seemingly unrelated phenotypic traits that are expressed in a
multitude of cells; we usually cannot attribute isolated functionalities to
specific proteins.

Development in humans is brought about by the intricate network of
only around 20,000 functional genes that shape the entire phenotype of
an individual. Considering the number of cells and cell types present
in a single human, this means that many proteins are reused in different
organs and tissues. This implies that the trillions of cells present in a
human exhibit recursion and redundancy. Moreover, organs and specific
components of organs tend to isolate parts of their functionality, which is
often called modularity in computer science and robotics (Stoy et al., 2010).
Both recursion and modularity are important concepts that can greatly
affect the evolutionary progression of artificial systems.
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In multicellular organisms, an organism develops from a single cell,
usually from a fertilized egg cell which contains a fused set of genes from
two haploid parent cells. The egg cell, in turn, gives rise to a multiplicity
of cell types. In this developmental process, many commonalities varying
from within species to within kingdoms of animals can be seen. For
example, all of the animals classified in the subphylum vertebrate contain
a developmental process that generates three germ layers that can already
be determined in the blastula stage, an initial developmental stage of an
organism containing a spherical layer of cells. Moreover, many substances
can act as a morphogen, as first described by Turing (1952), whose graded
distribution across cells varies and is involved in pattern formation in
organisms (Christian, 2012). A morphogen is thus an important substance
encoded in genes that influences the patterned expression of a variety
of traits, including germ layers (See Text Box 2.1 for an example). The
germ layers sprout from pole cells that are derived from the asymmetric
distribution of proteins and granules across the cytoplasm of cells. Any
disturbances that change the functionality of these morphogens result in
catastrophic changes in the development of the organisms.

Morphogens influence the genotype to phenotype mapping in orga-
nisms, determining, for example, the patterned expression of traits across
the developing organism. Computationally, having proteins that divide an
organism into expressed patterns is relevant for the emergence of complex
phenotypic traits in animals, and can therefore also be considered in the
realm of evolutionary computation, as has been done by Dawkins (1988)
and Sims (1994a). The process of artificially developing the morphology of
artificial systems is largely described by the paradigm of morphogenetic engi-
neering (Doursat et al., 2013), which tries to encompass the self-organization
of a complex system for shaping emerging phenotypic traits. The change
of the evolutionary progression brought about by implementing develop-
ment is therefore useful. This approach being derived from evolutionary
developmental biology is informally known as evo-devo.

There are, moreover, a variety of examples of development that allow
phenotypic change. Heterochrony, or the developmental timing that
influences the size and shape of morphological structures, is another
example of a trait that is adjustable and changes the scale of resulting
phenotypes (De Beer, 1940). Neural plasticity determines the change of the
neurons and synapses during an individual’s lifetime. Additionally, there
are factors such as regeneration and metamorphosis that also drastically
change an individual’s layout during its lifetime.

Not all solutions are limited to an organism’s ancestral history, and
many similar homologue phenotypes have emerged from different species.
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Text Box 2.1: Hedgehog

An example of an important gene that critically influences the development
in organisms is called hedgehog, which also acts as a morphogen. Hedgehog,
with its homologues and paralogues across species, is another example of
a conserved and robust gene that plays a crucial role in the segmentation
of parts of the body. In Drosophila it determines, along with other genes,
the segmentation process of parasegment boundaries (Wolpert et al., 2007).
Implementing a null-mutation results in the loss of this segmentation, as
can be seen in the expression of denticles in drosophila larva (Figure 2.2).
In other organisms, null-mutations in sonic hedgehog, a paralogue of
hedgehog, has a different effect in mammals. Here it has, for example, been
shown to be related to the development of the neural tube and somite and
foregut patterning (Varjosalo et al., 2008).

FIGURE 2.2: Denticle formation influenced by hedgehog.
Ventral view of denticles of a wild type (left) and
hedgehog knock-out (right) larval cuticle of a Drosophila.
In the knockout a ‘lawn’ of denticles without clear polarity
is shown, whereas the wildtype depicts the normal eight

belts of denticles. Adjusted from Desbordes (2003).

Flight, for example, is not solely evolved in birds, but it has also evolved in
mammals (i.e. bats). This could be considered as a form of non-bijective
mapping, many different genotypes can be translated into the same
phenotype. On the other hand, since many developmental mechanisms
are highly conserved, entire lineages of organisms can also be stuck in
local sub-optimal solutions. It could therefore be postulated that another
developmental strategy would be even more advantageous for developing
organisms—by, for example, having four initial germ layers instead of
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three. The stepping stones required towards this fourth germ layer might,
however, be too convoluted for mammals that have already evolved
efficient behaviors using only three germ layers. If we could do a hard
reboot of the evolution of life, we do not know whether organisms that
develop using four germ layers could emerge. More distally expressed
genes that might solely shape a single characteristic are likely more prone
to change if they do not affect early developmental mechanisms, hence
we do not see the developmental process change much on a phylogenetic
timescale. Moreover, since germ layers and morphogens are usually
highly conserved in the genome, it can be seen that developmental stages
recapitulate evolutionary stages (Mayr, 1994). Darwin already noted that
ancestral history could be derived from looking at the developmental stages
of an animal (Darwin, 1872).

The genotype to phenotype mapping, in addition to the genetic
operators, are important for the success of an evolutionary system
(Floreano et al., 2008). This mapping largely determines how well
the specific implementation of an evolutionary algorithm can traverse
the fitness landscape. Additionally, acquired behavior can also greatly
influence the evolutionary trajectory of a system, and this influence is
formally known as the Baldwin effect (Baldwin, 1896). A classic example
of how learning, a form of development resulting in acquired behavior,
can improve the performance in an evolutionary context can be seen in
Hinton et al. (1987), where learning has been shown to guide evolution
where seemingly no evolutionary paths led. In this simple example, Hinton
and Nowlan demonstrated that a learning population (based on binary
representations of individuals) is more efficient, since learning grants
additional adaptability of individuals during their lifetime and not only
on a phylogenetic timescale. However, this work has been critiqued since,
from a computational perspective, the individuals in Hinton et al. (1987)
were granted more evaluations and thus also explored more of the search
space (Santos et al., 2015). The concept of how learning over a lifetime can
discover certain aspects that make an individual fitter could still pose a
benefit, especially in environments that require continuous adaptation. In
a static environment, the previously acquired trait could lead to a genetic
determination whereby the trait will be incorporated genetically (Smith,
1987). Moreover, a fixed developmental sweep can enable individuals in
a population to discover and efficiently express specific phenotypic traits
(Kriegman et al., 2017). These traits might at first be expressed only shortly
during an individual’s lifetime, but can be selected for, which in turn
expands the time individuals spend in optimal developmental stages.

Imagine a needle in the haystack problem in a robotics simulator, where
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there is only one efficient gene with a value we denote by the integer 42.
Accepting that an individual agent can be simulated for 10 iterations before
its fitness value is measured, one can either test one variable during a
robot’s lifetime, or as in the experiments of Kriegman et al. (2017), decide to
evaluate multiple numbers between two points in the lifetime of the agent.
Optimizing static genomes to optimize on this landscape would then be
equivalent to random search. However, by stating for example that during
the 10 iterations the agent will change its phenotypically expressed value
by adding one number each iteration, it is able to explore 10 values instead
of one. This sweep thus makes it more probable that the number 42 will be
found in the evolutionary simulator. However, when the developmental
alternative finds 42, it will only exhibit this optimal state one-tenth of
the time of the non-developing agent. Being able to evolve the length of
expression of the gene in this hypothetical example can thus lead to initial
sweeps of the sequence space, followed by the encapsulation of the specific
efficient timed expression. The sweep thus allows for an increased search
breadth while allowing for subsequent encapsulation of beneficial traits.

We can view the development of agents as making a solution sweep of
across multiple phenotypes, learning behavior, and genotype to phenotype
mappings. A developing agent that exhibits these aspects might therefore
be better able to find specific solutions in the search space. Although
learning is not discussed in this thesis, the mapping and development
as a phenotypic sweep are important considerations and are discussed in
various chapters of this thesis.

2.4 Evolutionary Game Theory

The dynamic interactions of populations in their artificial and natural
environments are essential for understanding evolutionary dynamics. The
struggle for life is immensely influenced by the competition between
individuals and between species, and can be illustrated by simplifying
behaviors or phenotypes in games and contests. Contests in ecosystems
can be viewed as analogues to rock-paper-scissors style games, where
certain traits of individuals can have advantages with trade-offs. Though
the actual dynamics are much more complex, experimenting with variable
phenotypes can elucidate potential evolutionary trajectories and determine
overall stable or unstable phenotypes. Long vs. short-term adaptive
traits can lead to various equilibria, basins of attractions, oscillations etc.
(Hofbauer et al., 2003).
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Perhaps the most influential mathematical example of population
dynamics has been given by Vito Volterra and Alfred Lotka. The
mathematical model of predators and prey displays the interactions
between predators and preys over time in elegant equations (Equation 2.1)
for prey x and predator y. This has been essential in understanding
and depicting the stability and permanence of populations in a given
environment.

ẋ = x(a� by) (2.1)
ẏ = y(�c+ dx)

Simply put, x represents a population of prey and y the population
of predators, with ẋ representing the change in population x, a the
reproduction rate of prey, and b the death rate of prey x that is influenced
by y. In turn, ẏ encompasses the change in predators over time, with
c being the death rate of predators and d the reproduction rate that is
based on the prey population x. These equations can thus depict a change
in predator and prey frequencies over time, and usually lead to a stable
limit cycle where prey and predator populations sequentially exhibit stable
oscillations.

The main insight from this model is that predators and prey in a given
environment oscillate periodically. It has many types of extensions where
the equations can, for example, be adjusted to describe competition and
cooperation between species or for more than two populations. However,
the reliance on analyzing population dynamics mathematically can be
complex compared to simulating populations dynamics in a computer
simulation. In computer simulations, one can test multiple species that can
change and evolve over time in a dynamic environment. An example of
such computer simulations are agent-based models, or finite populations.
These simulations can be used to confirm mathematical concepts and test
new hypotheses to determine how selection and evolvability influence
evolutionary models.

To implement evolutionary games in spatial models, stable equilibria of
various strategies within populations can be easily simulated. For example,
depending on the sole neighborhood analysis of cellular automata, different
Prisoner’s Dilemma strategies can form equilibria in populations, resulting
in various emergent spatial phenomena. If defecting has a large pay-off
in a population of cooperating individuals, then defecting is a behavior
adhering to an environmental niche. This niche is, however, dynamic
since the benefits of defecting can be low if a population is filled with
defectors and high in populations only containing cooperators. Defectors
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and cooperators can be defined with one value for a cell in a spatial model.
To expand this type of evolutionary system, each cell could instead contain
an entire genome that can elucidate more about the evolutionary dynamics
of the evolutionary trajectory. This is done in Chapter 3 and described in
Section 2.7, where each cell in a spatial model is given a binary genome that
is evaluated by a specific fitness function.

2.5 Evolvability

One of the often-used definitions to explain how well a species is able to
adapt on a phylogenetic time scale is evolvability—the capacity to evolve.
Evolvability can mean the efficiency of finding solutions that make a
gene, an organism, or a population better adapted to their environment.
Evolvability greatly depends on the specific fitness landscape or fitness
functions for a given population. A major problem that limits the
evolvability of a population is the need for traversing regions of less-fit
solutions to acquire a better-fit solution in the long run. In this case,
an adaptive solution for a niche or environment requires a population
to traverse a local valley on the fitness landscape to acquire the better-
fit solution. Accepting a given mutation rate, or variability rate, in the
population, this valley is difficult to cross when there is selection pressure in
the opposing direction. However, since it is unknown how convoluted the
fitness landscape is for higher-order organisms like mammals, a common
mechanism that could allow for the traversability of these valleys would
be beneficial for a species, since this prevents it from getting stuck in a
local optimum and enables it to find better or unique solutions. Hence,
here we find overlap between the problem-solving nature of evolutionary
algorithms and the evolutionary advantage of species having a greater
evolvability than others.

In the scientific literature, there doesn’t seem to be a clear consensus
on the term evolvability, and it differs in meaning from researcher to
researcher. Smith (1970) mentions that for a protein to be able to evolve
into another protein, it needs to traverse the sequence space of that
protein without going through non-functional regions. Smith describes
this process by giving an example of changing the word ‘WORD’ to the
word ‘GENE’, the words being an analogy to a protein sequence. In the
optimal scenario, considering single mutation steps, the change of the word
WORD to GENE needs to follow a specific set of mutations that do not
allow any intermediate steps to be non-words. For example, an optimal
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evolutionary path for changing WORD to GENE would be: WORD-WORE-
GORE-GONE-GENE. In this sequence of mutations, the word has not gone
through non-functional regions in which the word would not be considered
a word. This transition has moreover taken the least possible steps, and
therefore obeys maximum parsimony. A problem arises when the transition
words are lesser-fit variants of the word WORD that necessitates the
evolutionary progression to traverse a local valley in the fitness landscape.
In this scenario, if we consider the word GENE to be the optimal solution,
this change requires the population to traverse regions of the landscape
with lesser selective pressure due to the decreased performance. In the long
run, finding the word GENE might enable the population to outcompete
another population that has not found the word GENE yet, illustrating the
importance of evolvability.

Although the term ‘evolvability’ is not mentioned in the original paper
by (Smith, 1970), the term has been attributed to his example as explained in
Haubold et al. (2006). However, as mentioned, the definition of evolvability
is somewhat loosely used in the literature. It is important to clarify
our meaning and argue why we did not use any other term. One of
the early definitions of evolvability in computer science was derived by
Altenberg (1994), who equated it to the variation in offspring produced by
a parent population. A follow-up paper by (Wagner, 1996) indicated that
evolvability is “the genome’s ability to produce adaptive variants when
acted upon by the genetic system”. Similar to Smith’s illustration of the
protein space, adaptive variation indicates that the variation has a chance
to produce a better-fit organism. In Wagner (2008), the term is still used
to describe the ability of the system to produce evolvable mutations, as it
has also been used in Floreano et al. (2008). However, despite the more
nuanced use of the word ‘system’, evolvability is still being measured
in Wagner (2008) by “how easily a blind random walk starting from a
given phenotype can find a pre-defined but otherwise arbitrary ‘target’
phenotype”. Robustness and evolvability were set as properties of one
individual genotype (or phenotype, as in the case of their experiment;
Wagner 2008).

A similar way of defining evolvability by Lehman (2012), who derived
it from Wagner (1996), defines an individual to be more evolvable when,
after mutating several copies of the individual, it can produce more
phenotypically varied offspring than other individuals can. One of the
ways of measuring evolvability, as mentioned in Lehman (2012), is that an
individual can be said to be more evolvable if, after mutating the offspring,
the individual is able to produce more varied, and perhaps more fit,
offspring. This measurement also takes the sole individual into account as
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Text Box 2.2: Locked in Imperfection

The human eye contains photoreceptors on the back of the eyeball that measure
light. There is, however, one main issue with the organization of the photoreceptors
since they are located behind a layer of ganglion cells (Bear et al., 2016). It could
be that for some yet unknown reason having the layer of ganglion cells in front
of the light receptors might be somehow beneficial, but considering the literature,
the consensus is that the layer is in front of the light receptors due to evolutionary
precursors. There are, however, animals, like cephalopods (Budelmann, 1995),
that have evolved their photoreceptors to be in front of this layer of neurons
(Figure 2.3). Intuitively, this seems to be the better option and this example
illustrates how evolution can be limited by ancestral precursors. Since the eye is
a highly conserved structure across species, it must be difficult to alter something
in the existing phenotypes to change the position of photoreceptors to the front of
the layer of cells. This might even necessitate a few generations of animals that
need to cross less functional areas, where they may be virtually blind. Mammals
that can traverse this landscape to enable the proper organization of cells and
photoreceptors might have a distinct benefit, improving their eyesight significantly,
and leading to outcompeting mammals that have not made this shift. Therefore,
considering eyesight as the sole performance measure, being able to find this proper
organization quicker would make a population more evolvable.

Cornea

Iris

Lens

Retina

Photoreceptors

Optic	Nerve

FIGURE 2.3: Configuration of the eye of cephalopods
(left) and vertebrates (right). Adjusted from Novella

(2008).

a measure of evolvability. However, having a varied population and not a
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high mutation rate can still lead to the population being able to find diverse
solutions and fit individuals. Therefore, I stress that it is the entire gene pool
as a whole that contributes to evolvability. Basing a measure of evolvability
on an individual should thus be similar to how Hamilton (1964) describes
inclusive fitness—taking not just the individual into account, but also the
population and the environment. Like inclusive fitness, evolvability being
measured from the individual level would be more accurately described
as personal evolvability. Using Hamilton’s lexicon, a better term that would
allow for a distinction would thus be inclusive evolvability, though it can be
hard to envision how an individual contributes to the evolvability of the
entire gene pool. The selection operator in this case can greatly influence
the existing variation in a population. Although Lehman’s and Wagner’s
measurement can explain the transition of proteins explained by Smith
(1970), the main disadvantage of these interpretations is that time and the
rest of the population are not included in the measurement. A population
could produce offspring that do not greatly vary. Measuring the change
in diversity over 10 generations might indicate that this population has
become more fit and more diverse than a more evolvable population as
described by Wagner and Lehman. The key concept is that if a population
or gene pool is better able to traverse a fitness landscape to find solutions
that are more efficient than the ones in existence, it is more evolvable.

Others, such as Valiant (2009), have used the term evolvability more
esoterically by equating evolvability to learning, as defined in Valiant
(1984), but with the inclusion of, for example, a polynomial set of
hypotheses and the toleration of a decrease in performance. Reisinger et
al. (2005) and König et al. (2009) have used the term evolvability more
arbitrarily and define it in terms of the genotype to phenotype mapping
being able to create phenotypes that are more favorable. Reisinger et
al. (2005) mentions that evolvability is “an adaptive organization of the
genotype-phenotype mapping such that the search operators can produce
more favorable phenotypes”. However, regardless of the genotype to
phenotype mapping, a population with individuals having no mutation
or crossover probability will never create a better phenotype. Therefore,
though the genotype to phenotype mapping can enhance the evolvability
of a system by, for example, decreasing the genome length, it is solely
a property of evolution. The same genotype to phenotype mapping
can produce different variations and improvements depending on the
parameters, such as the mutation rate, that are being set in an evolutionary
algorithm.

Natural evolution based on maximum parsimony is still prone to
premature convergence, in which a population stagnates in a local optimum,



2

2.5. Evolvability 33

locking itself in local regions of the search space (Text Box 2.2). Considering
benchmark tests for evolutionary algorithms, when global optima are
known, the most evolvable population would be able to find the global
optima quicker than others would. We can say that finding the global
optima is only possible through a change in the genotype; hence,
evolvability is directly determined by the gene pool of a population. In
this thesis I therefore define evolvability as:

Evolvability The ability of a population to create adaptive genetic diversity
across generations.1

Hereby, the entire population, or gene pool, is considered as opposed to
the individual, adaptive genetic diversity requires the genetic variation to
eventually produce fitter individuals, and across generations implies that
evolvability can be measured after a many generations, in contrast to after
one generation.

Evolvability, despite its several meanings, is important for an evolutio-
nary algorithm to properly be able to traverse the fitness landscape. There
are many factors in evolutionary algorithms that will allow a population to
traverse the fitness landscape more efficiently. Two of the factors discussed
in Chapter 3 are mortality and development. Other factors that influence
the evolvability of the system in evolutionary algorithms are the genotype
to phenotype mapping, the genome length, mutation rate, and selection
operators. Depending on the landscape, these factors should be taken into
account for quickly acquiring decently performing algorithms.

The robustness of the system is directly related to the evolvability. In
evolutionary computation, features like elitism, low mutation rates, and
smaller genomes allow for greater robustness of the system, since there is
a higher probability that the genotypic equivalent of the fittest individual
is also in the next generation. In the scenario in which the best possible
solution has already been found in a population, it is therefore beneficial to
keep these individuals in the population, favoring a robust population over
a changing one. However, since evolutionary algorithms can archive all
genomes of all individuals that have been simulated, robustness is of lesser
importance to evolutionary computation as compared to evolvability.

1To clarify how evolvability is interpreted in the remainder of this thesis, a definition of
evolvability has been added after the acceptance of the official thesis manuscript.
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2.6 Evolutionary Computation

As mentioned previously, evolutionary computation is the umbrella
term unifying all sub-fields related to evolutionary algorithms (De
Jong, 2006). The first popularized form of evolutionary computation
was by Bremermann (1962). From this initial approach, the subareas
of evolutionary programming (Fogel et al., 1966), genetic algorithms
(Holland, 1975) and evolution strategies (Rechenberg, 1973) emerged.
Nowadays, it is common that the terms are not strictly differentiated, since
there has been much crossbreeding in these paradigms. In this thesis, the
term evolutionary algorithm specifies the algorithmic implementation of
evolution, but genetic algorithm is still used in the experiments described
in Chapter 3 done with binary genomes, as it has been used classically.
However, an acronym for a steady-state genetic algorithm is SSGA, and
this acronym does not always refer to a binary genomic implementation
of evolutionary algorithms. The different techniques have been widely
used as optimization tools without specifically attempting to model biology
(Bongard, 2003). Many of the different types of evolutionary algorithms
contain subtle differences. There are, for example, many approaches
to encoding an evolutionary algorithm, but only a few aspects roughly
shape a minimal evolutionary algorithm (Figure 2.4). An evolutionary
algorithm is a population-based optimization strategy structured with an
iterative procedure. An evolutionary algorithm starts with an initialization
step, where genomes of a specific population size are usually randomly
initialized. After the initialization step the algorithm loops through a few
steps until a termination point has been reached. The phenotypes of the
population of genomes are evaluated to acquire fitness values for every
genome. From here on, the evolutionary algorithm loops through the
following steps:

1. Based on these fitness values, a selection operator is used to select
parents that can create offspring for the next generation.

2. In turn, the offspring are produced, and their genome is changed
based on mutation / crossover operators.

3. The fitness of the offspring is subsequently determined based on their
phenotype.

4. A replacement operator determines how offspring integrated into the
existing population.



2

2.6. Evolutionary Computation 35

Generate Initial 
Population

Replace Existing 
Population with 
New Offspring

Select Parents

Produce Offspring

Evaluate Offspring

Evaluate Population

FIGURE 2.4: Basic procedure of a generational evolutio-
nary algorithm

These four steps are repeated until the algorithm has reached some type
of terminal requirement, which is usually set by a maximum number of
generations or maximum number of evaluations.

There are two main variants of evolutionary algorithms: a generational
and a steady state evolutionary algorithm. A generational evolutionary
algorithm replaces the offspring of a population with the existing
population entirely (Vavak et al., 1996a). A steady state evolutionary
algorithm only replaces individuals in the existing population when they
are outcompeted by offspring (Syswerda, 1991). Thus, the implementations
vary only in their replacement operator. In a steady state implementation,
instead of discarding the existing population of individuals entirely and
replacing them with the offspring, the replacement operator compares the
fitness of specific offspring with individuals in the existing population
and only replaces an existing individual with an offspring if the fitness
value is higher. A steady state algorithm can thus be compared with a
population of immortal individuals that can only be replaced when they
are out-competed. There are, however, various ways in which steady state
algorithms can still get rid of certain ‘unwanted’ individuals, as in the
deletion of the worst individuals of the population (Syswerda, 1991).

Additionally, the selection operator of evolutionary algorithms can be
adjusted to give better individuals a higher chance of creating offspring
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compared to less fit individuals. Selection operators can be completely
random, but usually tournament selection or a sort of fitness proportionate
selection (also known as a roulette wheel sampling) is used (De Jong, 2006).
In addition, these techniques can also be implemented in the replacement
operator, where the offspring and the existing population can be subjected
to tournament or fitness proportionate selection in order to reduce the
population size back to the population limit. Elitism is another commonly
implemented feature in evolutionary algorithms. Elitism usually retains a
certain number of the best (elite) individuals in the next generation without
altering their genetic code. This generally increases the robustness of the
evolutionary algorithm since the best genome is not lost. Steady state
algorithms do not require an elitism operator, since the elite can only be
replaced when a better individual replaces it, thus inherently promoting
elites in the population.

Considering the exploration vs. exploitation trade-off, certain imple-
mentations clearly result in changing evolutionary trajectories. In essence,
elitism, or the deletion of the worst individuals, usually leads to a more
exploitative algorithm, while looser selective pressures lead to more explo-
ration. Too much exploitation usually leads to a population stagnating in a
local optimum, or premature convergence (Leung et al., 1997). To cope with
premature convergence, many different techniques have been implemented
to increase the diversity of individuals in a population. Classic imple-
mentations have usually considered niching (also described as speciation)
methods, such as crowding and fitness sharing. In crowding, the replace-
ment of individuals is restricted to other individuals that are similar, based
on the genotypic comparison of individuals (Mahfoud, 1995). Deterministic
crowding is an adaptation to crowding in which an initial step groups two
parents in a population and offspring are subsequently compared to one of
the parents (Mahfoud, 1995). In fitness sharing, the premise is that there
is an advantage for individuals to explore different niches when another
niche becomes too crowded (Holland, 1992). Here, the fitness of population
elements is altered by existing fitnesses. Moreover, evolutionary algorithms
can usually be tuned (before the evolutionary run) and controlled (during
an evolutionary run), which can drastically change the performance of
evolutionary algorithms (Eiben et al., 1999). In recent years, many new
methods have been introduced to improve diversification of populations,
as can be seen when using an Age-Layered Population Structure (ALPS)
(Hornby, 2006; Bongard et al., 2010), novelty search (Lehman, 2012), Age
Fitness Pareto Optimization (Schmidt et al., 2011) or developmental appro-
aches (Kriegman et al., 2017), to name a few.

However, considering the existing approaches to diversification, one



2

2.6. Evolutionary Computation 37

should also consider that this usually helps steady state approaches to
evolutionary algorithms, whereas generational algorithms tend to diversify
more on their own. Although only some of the mentioned diversity-
promoting methods are implemented in the experiments of this thesis,
it is useful to consider these methods when discussing the specific
implementation of an evolutionary algorithm and its relationship to the
evolvability of a system. Since evolutionary algorithms can be adjusted
in many ways, sometimes simple adjustments such as a lower selection
pressure or a higher mutation rate can already make a population more
diverse and potentially more evolvable, which sometimes makes it difficult
to compare novel implementations to genetic algorithms that are tuned to
solve a specific problem.

Computer simulations can serve as a tool for analyzing systems that are
much more complex than those analyzable mathematically (De Jong, 2006).
Accepting this premise, we can empirically investigate various models
of natural evolution that have classically been defined mathematically,
as described in Hofbauer et al. (2003) and Nowak (2006). Moreover,
implementing various strategies on different benchmark problems removes
the necessity for mathematical models when implementing new strategies.
To investigate the performance of variants of evolutionary algorithms,
fitness landscapes can be manually defined for a specific sequence space. It
is therefore commonplace to use benchmarks that might consist of functions
that translate the genome of an agent to a specific performance measure.
These functions can be defined in many ways, though the important
functions implemented as testbeds in this thesis are either continuous single
objective functions or binary functions. Through this approach, a basic
implementation of the evolutionary algorithm would just consist of the
problem function and the evolutionary algorithm itself. Although the
eventual aim of using benchmarks could be to find efficient algorithms
to implement in a robotics simulator, testing new algorithms directly on
a robotics simulator is of limited value since the fitness landscape is largely
unknown due to the large potential search space.

2.6.1 Binary Approach
In genetic algorithms (GAs), as classically defined by Holland (1975), the
genome of an individual is binary and is represented by a binary genome
or a bit string. To test how well an evolutionary algorithm performs, a
function can give the bit string a fitness value based on the sequence of bits
in its genome. For example, the one-max function (Figure 2.5) provides each
genome with a fitness value based on the number of bits with a value of
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FIGURE 2.5: Fitness landscape of one-max function.
Fitness landscape of a 64-bit sequence space. The global
optimum in this landscape is located at the absolute right
side of the landscape when the fitness is plotted as the

function of the number of ones in the genome.

one present in the genome. Since every possible gene can directly improve
itself based on the addition of a one to their genome or the replacement
of a zero with a one, the one-max function/problem is one of the most
basic functions on which exploitative algorithms work best. Due to the
random probability of bits in these bit strings being mutated, a normal
GA applied to this function quickly converges to a population of genomes
that have a genome that consists of solely ones. The one-max function is
hardly interesting for solving with evolutionary algorithms since, due to its
linearity, it is not at all representative of robotic systems or natural systems.
It is not a challenge for any optimization method.

There are a few binary fitness landscapes that are more challenging to
solve and have been designed to be convoluted and deceptive such as the
Chuang f1 (Chuang et al., 2010), Royal Road (Mitchell et al., 1991), or the
hierarchical if-and-only-if (H-IFF) function (Watson et al., 1998). H-IFF is
the landscape mainly used in this thesis. The H-IFF function creates a fractal
deceptive fitness landscape and can be used to evaluate the performance of
implementations of evolutionary algorithms. In H-IFF, a binary genome is
evaluated based on self-similarity. One can check for self-similarity in the
genome in multiple layers by initially checking the similarity of a pair of
bits across the genome, continuing in the next layer by checking a pair of
two bits, followed by checking a pair of four bits etc. In each layer, a fitness
value can be ascribed to the self-similarity score of the genome. This score
is usually derived from the number of self-similar parts in the genome and
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the layer depth that is being checked.
As an example, Table 2.1 illustrates how one can derive a fitness value

from a 16-bit genome that results in four layers on which to check for
self-similarity. Note that in the original implementation a null bit was
possible in the genome, which resulted in an additional fifth layer. This
null possibility has been omitted in this thesis to increase the computational
efficiency and ease the visualization of genetic change over time. The
omission of this null possibility makes the evolutionary progression easier
to visualize by plotting the fitness value over the number of ones in the
genome (Figure 2.6), similar to the representation of the one-max function
depicted in Figure 2.5. The gray area in Figure 2.6 illustrates the possible
fitness values an individual can achieve when having a certain number
of zeros in its genome. The landscape is, however, unchanged, with as
many local optima as the original implementation. The maximum fitness
of an individual with either only zeros or only ones is 192, and this is the
value of the global maxima on H-IFF. However, when half of the genome
is composed of zeros and the other half of ones, the fitness value of that
particular individual ranges somewhere between 4 and 160 depending on
the specific order of the bits.

For H-IFF there are two potential global maximums regardless of the
length of the genome. One global maximum contains a bit string of only
ones while the other contains only zeros. In between these extremes,
there are many local optima and one can generally state that there is a
local optimum between each two high optima. This makes the landscape
inherently fractal and deceptive. To understand how different sets of
genomes correspond to fitness values based on the landscape produced by
H-IFF, Figure 2.7 illustrates how four genomes are located on the fitness
landscape of Figure 2.6 using the explanation in Table 2.1. A score for self-
similarity in this illustration is simply denoted by a red color. The area of
the fields of the table being colored red directly translates into the fitness
value. In this case, the best fit genome is a bit string of only zeros.

Considering a binary genome that consists of 64 bits, there are a
total of 264 total possible configurations of a genome. This large search
space in turn makes it difficult for algorithms to solve binary functions.
Taking a brute force approach to solving the H-IFF function would take
a considerably long time, hence genetic algorithms have been employed
to ease the search process. Since unknown fitness landscapes of robotics
simulators might contain many local optima that may not be interesting to
explore, an evolutionary algorithm that is able to traverse the landscape
efficiently is essential. Though many factors influence the breadth of
exploration vs. the exploitation behavior of an evolutionary algorithm,
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TABLE 2.1: Example of the score of a 16-bit HIFF genome.
The table shows the fitness derived from the bit string
0001-1011-1111-1111. The genome has a fitness value of
14 (out of a maximum of 32). The explanation is based on

Watson et al. (1998).

row 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 tot
1 1 · 1 1 · 0 1 · 0 1 · 1 1 · 1 1 · 1 1 · 1 1 · 1 6
2 2 · 0 2 · 0 2 · 1 2 · 1 4
3 4 · 0 4 · 1 4
4 8 · 0 0

it would be ideal to have an algorithm that can be adjusted over time
or even be self-adjusting to deal with premature convergence. Moreover,
implementing strategies derived from population dynamics can feed back
as to why we see certain features in nature arise. A large chunk of the next
chapter discusses this issue in detail by showing how mortality as a bio-
inspired implementation influences the efficiency of traversing the fitness
landscape on H-IFF while comparing it to existing methods.

2.6.2 Continuous Single Objective Functions
In considering domains different from binary functions, we can look at
continuous single objective functions. In this case, it is a variable of the
genome that can be represented by one or more floating-point numbers.
In these implementations, a mutation operator does not change a bit,
but rather changes the value of the numbers slightly. Usually with a
mutation operator based on a Gaussian distribution (De Jong, 2006). An
objective function can in turn determine the fitness value of the specific
gene containing a floating-point number. Based on the specific parameters
implemented in the evolutionary algorithm, the efficiency at which the
algorithm can achieve the maximum fitness changes. Similar to the one-
max binary function, many other functions are available that have a
similar effect on continuous objective functions. Some specific evolutionary
algorithms are especially effective to be implemented on these types of
landscapes, such as Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES; Hansen et al. 2003). In CMA-ES, the algorithm is able to
predict mutations toward a specific basin of attraction. Covariance Matrix
Adaptation Evolutionary Strategy is usually superior to other evolutionary
algorithms on this landscape since mutations are not directed in normal
evolutionary algorithms. It is also able to efficiently traverse some types
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FIGURE 2.6: Fitness landscape of the adjusted H-IFF
function. The global optima in this landscape are at the
edges of the distribution and in there are local optima
fractally dispersed between every other two local optima.
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(A) Rastrigin (B) Schwefel

FIGURE 2.8: The Rastrigin (A) and Schwefel function
(B). Shown are is the fitness landscape of genomes of size
two that can be used for maximizing or minimizing n-
dimensional genomes containing real values (Fortin et al.,

2012).

of convoluted landscapes, such as the Rastrigin function (Figure 2.8a).
However, the implementation of CMA-ES becomes problematic on more
deceptive landscapes that are similar to H-IFF. One specific example of a
difficult-to-solve deceptive continuous objective in this case, is the Schwefel
function (Figure 2.8b). Covariance Matrix Adaptation Evolutionary
Strategy has more difficulty finding the global optima since there is no
gradient towards the optimum unless it contains a large enough population
to already sample the local area of the global peak (or valley, since it is a
minimization function). To emphasize, the control and creation of robots
is probably also deceptive in certain regions of the search space. Hence,
the ability of an algorithm to solve deceptive landscapes is important to
evolutionary robotics where the fitness landscape is largely unknown.

2.7 Spatial Models

To further investigate the performance of parameters of evolutionary
algorithms and to test biological hypotheses, spatial models can be used
to see how a population of agents performs in a minimal environment.
Predator-prey-like models can therefore be implemented to view how the
relationship between predator and prey changes over time and shapes the
evolutionary trajectories. Since H-IFF is a difficult function to solve for
a population of agents, it has therefore been implemented in the spatial
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model to evaluate how well a population of simulated agents is able to
traverse the search space.

The spatial model implemented in this thesis was originally based
on a Cellular Automata program architecture. 2 3 This is a C++
based application that has been modified to generate a predator-prey-
like spatial model. In the spatial model, it is possible to create cells
that are primary energy producers (plants), primary energy consumers,
(rabbits) and secondary energy consumers (foxes). It has been modeled
as an abstraction of energy flow in a natural ecosystem. Energy in
nature is acquired by autotrophic creatures such as plants that, through
the utilization of solar energy, create organic compounds. Considering
a food chain, heterotrophs gather energy by consuming autotrophs; they
cannot produce their own energy. Heterotrophs are in turn labeled primary
energy consumers, secondary energy consumer, tertiary energy consumers,
and so on, depending on their hierarchical level in the food web that is
determined by the trophic structure. Rabbits are autotrophs that consume
plants and convert the energy from plants into their own energy. Foxes,
being secondary energy consumers, in turn gather this energy from rabbits.

The different cell types are defined by the properties of each cell.
In the spatial model, each cell contains its own genome, its type, its
movement efficiency, and subsequent fitness values. The type determines
characteristics of movement and biomass. A type 0 cell is for example
considered equivalent to a plant cell. However, most of the experiments
done in this thesis focus on primary energy producers and primary energy
consumers. The plant cells steadily acquire energy or biomass at a fixed
rate (simulating light absorption) and each cell that is not occupied by
either a rabbit or a fox will automatically increase the biomass of that
specific cell. This biomass can in turn be consumed by the rabbit cells that
transform the plant biomass into usable rabbit biomass. If the rabbit has
accumulated enough biomass, it has a chance to reproduce, depending on
the reproduction rate. A simple pseudocode for this spatial model can be
seen in algorithm 1.

Though the spatial model is similar to others, a few more factors are
introduced in the model for studying complex evolutionary dynamics.
First, to make the cells in the spatial model evolvable, each cell contains
a genome and a corresponding fitness value. The fitness value represents
an efficiency measure with which the rabbit cells are able to consume plant

2Original code used as a template can be found at: https://github.com/Muzkaw/
Cellular-War/

3A minimal source code of the adjusted version used in this thesis can be found here:
https://github.com/FrankVeenstra/ALife2018
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Algorithm 1: Spatial Model Simple Pseudocode
initialize population P = {X1, ..., XN};
while g := 1 to Gmax do New Cycle

for n := 1 to Nmax do Update Cell
if Cells[n] != X then

Mass := Biomass Production Rate;
else

Mass := -Mass Loss Rate;
Move;
Eat;
Reproduce;

end
end

end

cells. The genome of the rabbit cells consists of a bit string either of size 8,
16, or 32. From this genome, the fitness value is computed by evaluating
the genome with the H-IFF function at the start of a new individual rabbit
cell. The model is now evolvable, and we can study how mutation rate,
population size, and mass acquisition influence the evolvability of the
rabbit population.

A model for development and mortality are implemented in the spatial
model and experimented with in Chapter 3. In the case of the mortality
experiments, the cells can have a maximum age or terminal age, a
probability of death, and the condition of being either mortal or immortal.
The terminal age has been changed in Chapter 3 to asses how this affects
the evolvability. For investigating development, the algorithm includes
multiple genomes that are expressed in different stages of their lifetime.
This implementation is also further described in Chapter 3. The full
algorithm of the spatial model can be seen in Appendix A.

The spatial model consists of a matrix that has the same width and
height specified by the user. Smaller worlds require less computational
power but also make the simulation more prone to extinction events.
Considering computational requirements, the spatial world has been
limited to a grid of cells that is 250 by 250 cells in width and height. In
order to equate relationships in evolutionary algorithms to biology, spatial
models are used as abstractions of ecosystems. Since spatial models can
contain inherent elements, such as local competition, this would better
represent changes in population dynamics than standard evolutionary



2

2.7. Spatial Models 45

algorithms. With this spatial model system, implementing and evaluating
existing biological concepts that are based on, for example, Lotka-Volterra
equations are feasible. Text Box 2.3 describes the implementation of the
spatial model to recreate predator-prey equations from the Lotka-Volterra
model.



2

Text Box 2.3: Simulating Predator-Prey Models

Population dynamics can contain counterintuitive elements that can be easily
evaluated by the aforementioned spatial model without the knowledge of the
mathematical formulation. Lotka-Volterra predator-prey state that in the absence of
a predator, the prey reaches a population size close to the carrying capacity. Adding
predators to the model influences the steady equilibrium, or stable or unstable limit
cycles, of the population model. In a spatial model, one can discover equilibria
to which the population size of predators and prey are converging. By simulating
a ‘rabbit’ and ‘fox’ population, the same dynamics as explained by the equations
arise. The population size of predators is greatly influenced by the reproduction
resources available to the prey. Considering a spatial model initially starting with
few predators and prey, one can see that there the population size of the predators
is completely regulated by the resources available to the prey.

In this predator-prey model, increasing the resource available to the prey does
not influence the population size much Figure 2.9. A slight drop in population size
can even be seen when more resources are available, which seems counterintuitive.
The prey population was steady around a population size of 750, even after
increasing the available resources ten-fold. The number of predators, however, do
vary greatly, as there were about 500 predators when the biomass production was
low, while there were around 1,250 predators when the biomass production was
high. Varying the energy acquisition for the primary energy producer yields various
equilibria and limit cycles, as represented in Figure 2.10. Some of these parameters
led to instability, as can be seen in the case of an energy accumulation rate of 0.064.
The spatial model in this case uses three hierarchical steps in the food chain: plants,
rabbits and foxes. Another surprising effect can be seen in the biomass of plants,
with the absence and presence of predators Figure 2.11. In the absence of predators,
the average plant and rabbit biomass reaches a rather low equilibrium. The average
plant biomass is increased again with the introduction of the predators, since the
foxes protect the plants by eating the rabbits Figure 2.11.
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FIGURE 2.9: Number of prey and predators when
varying the primary energy production. The predators
and prey reach a somewhat stable population size while
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stable limit cycle in the spatial models using different
biomass production rates ranging from 0.002 to 0.064.
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FIGURE 2.11: Biomass of simulated plants, rabbits and
foxes. Excluding foxes (A), and including foxes (B).

The addition of another predator complexifies the spatial model even more,
and one can now see that the prey population in turn grows larger with the
addition of the extra predator. From an ecological standpoint this means that one
cannot directly determine the health of an environment by looking at the plants
or rabbits, rather, one should look at the state of the apex predators. The number
of apex predators can thus determine how well the initial layer of preys, primary
energy producers, are able to acquire energy and produce the biomass that can
be distributed other layers of the strata. Hence, conservationists should not look
at the population size of prey to determine the health of an ecosystem, but at the
population size of the apex predators.
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2.8 Concluding Remarks

This chapter has given an overview of the important factors influencing
evolution in natural and artificial systems. These concepts are in turn
taken into consideration and form the foundation on which the remainder
of this thesis builds. These concepts should be taken into account in
evolutionary robotics since they can significantly shape the evolvability of
the simulated or real evolving entities. The importance of these concepts
can be summarized as follows:

• The sequence space and corresponding fitness landscapes are
important to consider for shaping evolutionary trajectories

• Mutation and selection operators determine both the robustness and
evolvability of a population

• A measure of evolvability is valuable in describing the efficiency of
an evolutionary algorithm

• Development can change the breadth of the search space by
abstracting the genotype to phenotype mapping and allows for
changes in behavior during the lifetime of an individual

• Simple evolutionary algorithms using binary or continuous objectives
can serve as test beds to elucidate the effectiveness of them

• Spatial models are required for equating observable evolutionary
dynamics to biology

In Chapter 3, the evolvability of populations is evaluated on benchmark
applications and the influence of mortality on the evolvability of a
simulated population is of key interest. It concerns an in silico
implementation not relying on any mathematical formulations. In
Chapter 3, both evolutionary algorithms and spatial models are used
as testbeds. Development, as discussed, also forms a small part of
the next chapter displaying some preliminary results of a developmental
approach to evolvability. Principles of development are implemented in
the form of generative encodings in Chapters 5, 6 and 7. Ultimately, the
evolvability of a population and the genotype to phenotype mapping of
the individuals largely determine the emergence of specific phenotypes in
an evolving population and are thus important for the effective design and
implementation of evolutionary computation in robotics.
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Chapter 3

Evolution and Longevity

The secrets of evolution are death and time—the deaths of enormous
numbers of lifeforms that were imperfectly adapted to the environment;
and time for a long succession of small mutations.

– Carl Sagan, Cosmos

Death is a seemingly frivolous property of life that is counterintuitive
to the evolutionary advantage old age has when considering classical
Darwinism. The older an individual can become, the more offspring it
potentially is able to produce. Hence, the personal fitness of an individual
is directly increased by living longer. Nature is, however, riddled with
mechanisms that seem to be silly restrictions to longevity. For instance,
senescence, the deterioration of function with age, is prevalent in a
multitude of species. Though the individual benefit is usually related to
fitness, Darwin (1872) already noted that longevity is likely a product of
the complex interactions between a species and its environment. Could
longevity itself somehow be a determinant for the evolutionary trajectories
we see in nature?

Considering complex fitness landscapes that can be convoluted
and deceptive, finding a good genotypic solution with evolutionary
computation often requires the implementation of additional exploration
operators. These types of operators are valuable for evolutionary
algorithms since they promote the evolvability of a population by
preventing the population from getting stuck in a local optimum. This
chapter discusses the potential influence that mortality has on evolvability
and why it could be a useful concept to implement in evolutionary
computation. It furthermore demonstrates a potential evolutionary
advantage of senescence in nature. In this chapter, I discuss some
curiosities and theories of senescence (Section 3.1), the impact of mortality
on genetic algorithms and spatial models (Section 3.2 & Section 3.3),
and consider the potential evolutionary advantage of mortality in general
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(Section 3.5). Moreover, some preliminary experiments were done to see
how developmental mechanisms influence evolvability in a similar manner.
These preliminary results on the influence of development on evolvability
and age in spatial models are therefore also discussed in Section 3.4.

Approach
Although many examples of evolution can be seen as a gradual change
over generational time, some might require evolutionary steps that would
make individuals worse than their ancestors, thereby descending the fitness
landscape. They would be required to cross valleys in the fitness landscape.
Crossing these valleys would enable progeny to find a solution in the search
space that is more distant, and perhaps more efficient than the ancestors’
solutions. As a testbed for this potential leap, I used a deceptive fitness
function: an adjusted version of the H-IFF function (Watson et al., 1998)
that was described in Subsection 2.6.1. This deceptive fitness function is
implemented on both an SSGA and a spatial grid model to simulate an
evolvable population of individuals. The main hypothesis that is being
addressed in this chapter therefore speculates on the nature of intrinsic
mortality and its benefit to evolving populations (Hypothesis 1).

Hypothesis 1 Intrinsic mortality benefits the evolvability of a population.

3.1 Theory on the Evolution of Senescence

Most octopuses are semelparous, reproducing only once in their lifetime.
Most types additionally only live around a year, an observation already
mentioned in Aristotle’s History of Animals (Aristotle, 1910). They “live
young and die fast” (O’Dor et al., 1986). The process of senescence
in the Enteroctopus dofleini for example, is regulated by secretions from
an endocrine gland that normally causes death by starvation after
reproduction (Anderson et al., 2002). After reproduction, the octopus
suddenly stops foraging and instead takes care of eggs and hatchlings,
followed by the eventual death of the octopus parent. However, by simply
removing the endocrine gland, octopuses seemingly live significantly
longer than usual, even being able to reproduce more than just once
(Wodinsky, 1977). Senescence in octopuses is particularly elusive, and
the true advantage of this type of senescence might be caused by various
phenotypic traits and selection pressures. Does a short life have an
evolutionary advantage? Or is the decreased life span a byproduct of the
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mechanism inhibiting foraging behavior, which enables the protection of
offspring with the dire side effect of mortality?

Other animals, such as particular salmon, undergo a similar process of
senescence: dying after having laid eggs. Some spiders are cannibals and
kill their male counterpart after sex (a feature also exhibited by octopuses).
Elephants run out of teeth, a form of mechanical senescence, while some
turtles express negligible senescence (not showing aging symptoms). Naked
mole rats grow significantly older than other rodents. Artificial selection
of drosophila can allow them to live 50% longer after a few generations
(Nusbaum et al., 1994), and the proteins DAF-2 and DAF-16 directly
regulate life span in C. elegans (Lin et al., 2001). As a final example, it
has been shown that long-lived yeast mutants are outcompeted by short-
lived wildtypes (Kyryakov et al., 2016). Longevity and aging thus seem
to emerge differently across species. But what is the evolutionary value of
senescence if there is any? We can ask ourselves whether aging is somehow
beneficial to a species or if it is simply chance that individuals undergo
senescence. To this day, this is a debated topic, as can be seen by the recent
publications by Kowald et al. (2016) and Goldsmith (2016).

3.1.1 Summary of Theories on Senescence
Mortality is a fundamental component of natural systems that is caused
either by intrinsic factors (senescence) or extrinsic factors such as predation,
disease, and accidents. It initially seemed that aging is an evolutionary
disadvantage for individuals since their personal fitness is lowered when
an individual dies from internal mechanisms. There are, however, several
theories explaining the cause and function of this biological phenomenon
as an alternative to being a direct disadvantage. Darwin already mentioned
in the Sixth Edition of On the Origin of Species (not in older editions)
that longevity is related to the scale of organization, expenditure, and
general activity of organisms, which has likely been determined by natural
selection (Darwin, 1872). Although having an evolutionary disadvantage
for the individual, it may have several advantages for the maintenance of
a species. Weismann. (1889) has claimed that aging is determined by the
“needs of the species”, which is subject to the same mechanical process of
regulation as to other structures and functions of organisms.

An alternative theory by Medawar (1952) proposes that aging could
just be a phenomenon that arises due to the simple neglect of selection
pressure on older organisms, and older organisms are by chance more
likely to have been prone to mortality-inducing factors that limit their
lifespan. Considering a steady probability of death for each individual
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FIGURE 3.1: Survivor curves. Considering a fixed number
of individuals entering the population every iteration, and
accepting that there is a 5%, 10% or 20% probability of
an individual dying by chance, it can be seen that after
a certain number of iterations there will simply not be
any survivors left in a specific age category. Based on

Medawar (1952).

in a specific population, a survivor curve can be created displaying how
many individuals in a specific age group are alive (Figure 3.1). Consider
a population of 100 individuals wherein every month there is a specific
chance for individuals to die—a fixed probability of death, or mortality rate.
This probability shapes the age range that evolutionary selection can act on.
In the case of a 20% mortality chance every month, the range of selection
is quite low, whereas this range is quadrupled when the chance is only
5% (Figure 3.1). Depending on this rate, the number of older individuals
in a population differs. Medawar proposed that a random accumulation
could lead to this type of survivor curve. An accumulation of mutations
leading to senescence could therefore be the result of a decline in selection
pressure on older individuals in the case that individuals die due to mere
chance or wear-and-tear processes. Genes beneficial in early life would
therefore have a higher selective advantage and thereby a higher chance
to propagate themselves into the next generation. Mere accumulation as an
explanation for senescence is difficult to hold for most species since single
genes that cause aging have been conserved throughout different species
over evolutionary time (Guarente et al., 2000).
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Genes could also have evolved to be beneficial early in life while being
potentially deleterious later in life. This is a theory known as antagonistic
pleiotropy (Williams, 1957). In this theory, a gene can have a pleiotropic effect
by promoting reproductive success and survival early in life, while being
detrimental later in life. Through this process, evolutionary biologists have
argued that this inherent trade-off makes it difficult for natural selection to
evolve old age in the first place. Although the scientific literature contains a
ubiquity of examples of pleiotropic genes, it is more difficult to see how
mutations in genes can improve the personal fitness in early life while
having a deleterious effect later in life. These genes are sometimes referred
to as “putative” disease alleles (Carter et al., 2011) since evidence that these
types of alleles really have a benefit early in life has yet to be acquired.

Another alternative theory to the accumulation of mutations and
antagonistic pleiotropy theories is the disposable soma hypothesis proposed by
Kirkwood (1977), which is one of the dominating theories today (Shefferson
et al., 2017). In the disposable soma theory, the body of an individual
organism can allocate limited resources to various cellular processes and
needs to make compromises between its metabolism, reproduction, repair
and maintenance functions. For example, a population only focusing
on repair can be outcompeted by a population that instead spends more
energy on growth. Combined with Medawar’s survival curve, which can
also be caused by extrinsic factors such as predation, this would suggest
that maintenance and repair are also of lesser importance later in life, since
the probability of an individual reaching old age by chance is already low.
Not allocating any resources to the repair of an organism with increasing
age would thus, in turn, lead to an organism’s deterioration with age as a
side effect.

Other more recent theories consider the potential altruistic effect of
senescence in which aging can be beneficial for coping with a changing
environment (Yang, 2013; Mitteldorf et al., 2014; Herrera et al., 2016). In
this case, it has been artificially shown that a terminal age is beneficial for
a population in rapidly changing environments that necessitate adaptive
changes in the genome. Similarly, a resulting benefit from senescence, or
intrinsic mortality, is the reduction of over-consumption of environmental
resources that gives a selective incentive for intrinsic mortality (Werfel et
al., 2017). In addition, Lehman et al. (2015) showed that extinction events
could lead to a better evolvable evolutionary algorithm, though in this
case the extinction events were discriminative and kept certain elites in the
population. From an optimization perspective, it seems that senescence, or
simply mortality, can be beneficial for a population in terms of evolvability
and altruistic aging.
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The evolvability theory of senescence claims that senescence increases
the evolvability of a population (Goldsmith 2014; see Section 2.5 for a
discussion on evolvability). As I see it, mortality may aid evolvability in
two ways:

1. When individuals die, a higher turnover rate of new individuals
arises in the population

2. Mortality reduces selective pressure on the best individuals in
the population and thereby decreases convergence, promoting
diversification

For the first reason, a greater number of individuals that can live in a
specific period leads to a larger proportion of acquired genetic adaptations
by a population. Or, more individuals that have been ‘evaluated’ in the
environment yield more individual fitness results from potentially differing
phenotypes. Mortal populations thus contain a higher turnover rate of
individuals as compared to immortal populations. For the second reason,
if older fit individuals are prevented from outcompeting younger, slightly
less fit individuals, the population can be stuck in a local optimum, or
in a state that is less evolvable. This is of great interest since it not only
has biological relevance, but can also change the efficiency of evolutionary
computation.

The actual mechanisms of senescence would most likely be a combina-
tion of the theories of senescence that have been described. However, by
considering the gene pool as a whole instead of thinking about the benefits
of the individual, there is no reason for individually detrimental phenotypic
traits to not pose an evolutionary advantage. Say mutations are the main
factor driving senescence—mutations also drive evolution due to the intro-
duction of new variations of genes in the population. A non-mutating
population with an immortal life would reside in a zero-evolvability state
(Goldsmith, 2008). The evolution of complex organisms can thus be a
compromise between evolvability of the species and personal benefit to the
individual (Goldsmith, 2008).

The antagonistic pleiotropy theory might surely be an explanation for
senescence, though if senescence turns out to be beneficial for a population,
this antagonistic effect would actually be an altruistic effect, or altruistic
antagonistic pleiotropy. If the personal fitness of an individual could
moreover be prolonged by adjusting the self-repair energy expenditure as
mentioned by the disposable soma theory, there are evolutionary pressures
towards better self-repair mechanisms. However, the lack in self-repair
might also simply lead to more mutations, making a population more
evolvable. Alternatively, the lack of self-repair mechanisms could lead to
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FIGURE 3.2: Theories of aging plotted as an advantage
and a disadvantage over time. Line 1 denotes the
advantage of longevity of an individual if longevity would
not lead to a decrease in personal or inclusive fitness.
Line 2 (solid red line) represents Medawar (1952), where
the advantage of longevity would decrease with age
but would not have a negative impact. Antagonistic
pleiotropy and disposable-soma theories are represented
by line 3 (dotted). In this case an increased lifespan does
have an advantage to the inclusive fitness of a population
but decreases with age. Weismann and Goldsmith
support concept 4 where there exists an optimum life-
span. Individuals that grow older than this lifespan will
have a negative impact on the population. The figure is

taken from Goldsmith (2014).

senescence, which could be advantageous as well. If there is a selection
pressure towards senescence, we can speak of programmed death.

3.1.2 Programmed vs. Non-programmed
The theories on senescence can be further categorized into non-
programmed and programmed theories. Considering recent publica-
tions by Kowald et al. (2016) and Goldsmith (2016), this is a debated
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topic. In Kowald et al. (2016), non-programmed senescence supports theo-
ries such as mutation accumulation, (Medawar, 1952), antagonistic pleio-
tropy, (Williams, 1957), and disposable-soma theory (Kirkwood, 1977). In
contrast, Goldsmith (2016) supports programmed aging theories on evol-
vability (Weismann., 1889; Goldsmith, 2016; Mitteldorf et al., 2014) and
altruistic aging (Yang, 2013; Werfel et al., 2017; Herrera et al., 2016) and
claims this to be corroborated by biological examples. It seems that suppor-
ters of the non-programmed theories generally exclude programmed theo-
ries (Kowald et al., 2016; Shefferson et al., 2017) whereas the programmed
senescence supporters do not specifically exclude non-programmed theo-
ries. The impact of the theories considering lifespan as an advantage or
disadvantage are summarized in Figure 3.2, where the increased age is only
considered to be a disadvantage in line 4 (supporting programmed senes-
cence), but not in lines 1 (classical no negative effect), 2 (mutation accumu-
lation) and 3 (antagonistic pleiotropy and disposable soma).

In Kowald et al. (2016), Figure 3.2 has been critiqued due to line 3
not representing the antagonistic pleiotropy and disposable soma theory
well. It is critiqued since the parameters of these theories lead to a specific
average lifespan that is optimal; hence, mortality is an emergent factor.
However, if there were a gene that, at no cost, would improve the lifespan
of the organism, it would have an advantage for both the antagonistic
pleiotropy and disposable soma theories, but not for the programmed aging
theories. Age itself is not the disadvantage, but rather the disadvantage
is the product of the pleotropic gene, or the trade-off between soma,
respectively. Therefore, the distinction is still valid but should be taken
lightly. The main distinction is the evolutionary advantage of the process
of senescence—or the evolutionary disadvantage of long life, which line 4
displays.

3.1.3 Why Mortality Promotes Evolvability
To illustrate why mortality could potentially work in favor of evolvability,
we should consider Nowak’s model on the quasispecies in the sequence
space again. As explained by Nowak (2006), when considering a sequence
space of a specific gene, there can be several optimal regions (Schuster et al.,
1988). Recall from Section 2.2 that the average mutation rate u shapes the
eventual region the population occupies based on the threshold mutation
rate values u1 and u2 (Figure 3.3). However, if genes in a population
of individuals already reside in the broader less-fit state, how can they
traverse the sequence space to end up in the narrow peak that is the
better-fit solution? Traversing this fitness landscape would either require
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an individual to drastically mutate into that region, or a population could
gradually move to the region through genetic drift. Nowak’s mutation rate
threshold values are, moreover, only valid for a population of mortals. If
immortality could occur, the immortal individual residing in the narrow
peak will always stay there (since it cannot be outcompeted) and eventually,
its offspring also have a chance to occupy the narrow region, no matter
how high the mutation rate is. Mortality in Nowak’s model is thus a
requirement. Therefore, if we consider � to be the mortality rate, I claim
that there exists a mortality rate threshold �1 and �2 similar to the mutation
rate thresholds (Figure 3.3). This is the initial hypothesis that has formed
the premise of why mortality promotes evolvability.

A common issue with genetic algorithms is that the parameters for
their optimal performance highly depend on the domain. Generational
genetic algorithms inherently implement a mortality mechanism since the
entire population is replaced by a new population of offspring every
generation when no elitism is implemented. Moreover, deletion in steady
state algorithms has also been investigated, for example, in dynamic
environments and has shown to perform similarly to generational genetic
algorithms (Vavak et al., 1996b). The application of a mortality rate
in genetic algorithms can therefore also inform whether one should
implement it in existing genetic algorithms to better traverse the fitness
landscape. If mortality influences evolvability, it is thus not only of value
to evolutionary biologists, but is also useful for optimization methods.

Accepting this premise that the mortality rate and mutation rate both
affect evolvability, the next section attempts to experimentally verify it.
Using H-IFF (Subsection 2.6.1) as the difficult-to-solve deceptive fitness
landscape on both an SSGA and a spatial model can help us understand
how this relationship influences the evolvability of a population. The
SSGA is used as an abstract model to view the general effects of mortality
on the evolutionary progression on this deceptive fitness landscape
(Subsection 3.2.1). Additionally, as described by Werfel et al. (2017), spatial
models can elucidate aspects of mortality that equate to natural systems
which is discussed in Subsection 3.2.2. The spatial model—that contains
an inherent extrinsic mortality rate emerging from local competition—is
used to isolate the influence of intrinsic mortality to see whether it affects
evolvability in natural systems. 1

1The source code for both the SSGA and spatial model implementing mortality can be
found at: https://github.com/FrankVeenstra/ALife2018
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FIGURE 3.3: Fitness landscape with one peak and a hill
based on the sequence space. u represents a mutation
rate as in Figure 2.1. � represents the mortality rate in a
given population. The two threshold values for u and �
are believed to have a similar result on the stable region

the population occupies on the fitness landscape.

3.2 Mortality and Mutation Rate Shape Evolvabi-
lity

Though evolvability has been suggested to be a determining factor
shaping longevity in nature, there have not been any artificial experiments
directly investigating longevity and evolvability in this respect, apart
from extinction events (Lehman, 2015; Lehman et al., 2015). Looking
at the evolution of a species as an optimization problem, we can define
fitness landscapes in simulation environments where simulated individuals
composed of binary genomes can be evolved to conform to the maximum
fitness. The experiments that back up the simulation results are divided
into a benchmark optimization implementation and a spatial agent-based
grid model. In both simulations, the fitness results from the H-IFF function
(Subsection 2.6.1). The selection/deletion operators in the spatial model are
inherent properties emerging from the interactions between the individuals
and their environment as they are defined in the SSGA. Including an
extrinsic mortality mechanic in the spatial model demonstrates whether
the mutation rate can alter the stable region in the sequence space of
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the genomes as explained by Nowak (2006) (Figure 3.3), as well as see
whether an additional intrinsic mortality rate influences the evolvability of
the population. The aim of the experiments in this section is to show how
mortality alters the evolutionary progression of a population and to check
whether this enables the population to traverse the fitness landscape more
efficiently. The code is kept to a minimum; no crossover operators and only
an asexual reproduction operator is used.

3.2.1 Mortality in the Steady State Genetic Algorithm

Methodology
The SSGA that includes a mortality rate uses a population of individuals
containing binary genomes of length 64. The initial genomes were
composed of a bit string of 1s and 0s that were randomly initialized. The
bits in the genome were mutated with a probability given by the mutation
rate. Note that mutating a gene randomly assigns a bit of 1 or 0, so the
gene swaps a bit with half the contingency in mutation events. A mutation
rate of 0.1 means that a gene is mutated with 10% probability, and thereby
changes with only a 5% probability. This has been implemented to ensure a
mutation rate of 1.0 would not produce offspring with the complementary
bit string of their parent’s genome, but rather an entirely random set of bits.

After initializing the population, each iteration of the SSGA is as
follows:

1. Choose a random individual
2. Copy the genome and subsequently mutate and evaluate it
3. Compare the new genome to a random individual in the existing

population and replace it when its fitness is higher

For a population size n, a generation consists of n iterations of this
process. After each generation, individuals were independently checked
for deletion with a probability given by the mortality rate. Deleted
individuals were marked with a fitness value of -1, but were kept in the
population to maintain the population size, though they were unable to
reproduce. The population was logged after each generation. No crossover
was implemented to isolate the effect of solely the mutation rate.

To see how mortality influences this SSGA, 20 evolutionary simulations
ran for 100,000 generations on populations of 50 individuals with different
values for the mortality rate and mutation rate. A mutation rate sweep from
0.0 to 1.0 was done, changing the mutation rate exponentially. A similar
sweep was done for the mortality rate, although the 0.64 and 1.0 mortality
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TABLE 3.1: Number of times the optimal solution
was found in the SSGA. Different combinations of the
mutation rate (u) and terminal age (�) were used in each
run. Results are taken from 20 runs of each set of
parameters on 64-bit H-IFF. The subscript values represent
the average number of generations (thousands) that had to
be simulated before finding the global optimum. Mutation
rates above 0.32 and below 0.01 have been omitted since

the global optima is never found in these scenarios

u \� .0 .005 .01 .02 .03 .04 .06 .08 .12 .16 .24 .32
.0 0 0 0 0 0 0 0 0 0 0 0 0
.005 0 0 0 0 0 0 0 0 0 0 0 0
.01 0 0 0 0 0 0 0 0 0 0 0 2
.02 0 0 0 0 0 0 0 0 0 0 2 2
.03 0 0 0 0 0 0 0 0 0 0 2026 0
.04 0 0 0 0 0 1 0 0 0 1443 3 0
.06 0 0 0 0 0 0 0 3 2017 1150 0 0
.08 0 0 0 0 0 1 1822 1919 3 0 0 0
.12 0 1 0 1518 1934 7 0 0 0 0 0 0
.16 2 1135 1735 3 0 0 0 0 0 0 0 0
.24 4 0 0 0 0 0 0 0 0 0 0 0
.32 4 0 0 0 0 0 0 0 0 0 0 0
.64 0 0 0 0 0 0 0 0 0 0 0 0
1.0 0 0 0 0 0 0 0 0 0 0 0 0

rates have been excluded since these values led to early extinction of the
population and did not convey any important results.

Results
The number of times the global maximum was found in each of the 20
evolutionary runs is presented in Table 3.1. In addition, the subscript
values in the table represent the average number of generations (·103) it
took the runs to find the global maximum, on average. As can be seen
in the table, the relationship between the mortality rate and the mutation
rate in the SSGA is very specific for finding the global maximum on 64-bit
H-IFF within the given simulation time. Moreover, the mutation rate and
mortality rate explain 89% of the variation seen in the ability to traverse to
the global optimum in H-IFF (Figure 3.4). The results of the 20 runs using
the SSGA are displayed in Figure 3.5 (top). To see how single runs are able
to traverse the fitness landscape, Figure 3.5 (middle and bottom) depicts
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FIGURE 3.4: Relationship between the mutation rate and
mortality rate. Mutation rate is shown in logarithmic
scale. Symbols represent the number of optimal solutions
found for 64-bit H-IFF. Darker colors represent more
solutions for those parameters (up to 100% success).
Exponential fit for the data: y = 0.1538 × e−7.28x, with

R2 = 0.89.

the fitness and diversity on the H-IFF landscape over generational time.
Depicted by blue dots on the graphs are the individuals of a population at
specific intervals.

Mortality rates or mutation rates that are too high lead to excessive
variation, and consequently to less fit individuals. In contrast, if the
mortality rate or mutation rate is too low, the population quickly stagnates
at a local optimum. The proper ratio of mutation rate and mortality
rate leads to a population residing in an unstable local optimum, but
still fit enough to traverse the top of the fitness landscape and explore
multiple peaks. Using the optimal mutation rate to mortality rate ratio,
the ability of a population to produce adaptive diversity over generational
time can be seen as creating diversity while still hugging the top of the
landscape. I have informally called this phenomenon hill hugging since the
genetic algorithm crosses valleys but does not steep low in the search space
compared to higher mutation/mortality rates.

Moreover, the experiments were done using 64-bit genomes on H-IFF.
However, though the optimal ratio between the mutation rate and the
mortality rate changes when varying the size of the genome, this optimal
ratio still exists. On 128-bit H-IFF, which contains an immense number of
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(A) (B) (C)

FIGURE 3.5: Evolutionary progress for different morta-
lity rates. (top) The average fitness and percentiles (25-75
dark grey; 0-100 light grey) of 20 runs using a mutation
rate of 0.08 and a mortality rate of 0.04 (A), 0.08 (B), and
0.16 (C). Also shown is a distribution of the population
across the H-IFF landscape of a single run in comparing
the distribution and fitness of individuals across the lands-
cape (middle) and a plot of the distribution and fitness

over generational time (bottom).

possible configurations almost 20 orders of magnitude larger than 64-bit H-
IFF, it is still able to find the global maximum within 100,000 generations
when a specific mutation rate to mortality rate ratio is used (Figure 3.6).
On 128-bit H-IFF, the maximum achievable fitness value is 448, rather than
192. Out of 20 evolutionary runs, the global maximum on H-IFF, though
highly unstable, was found 3 times in different runs when using a mutation
rate of 0.03 and a mortality rate of 0.12. It was also found 3 times using
a mutation rate of 0.06 and a mortality rate of 0.02, and it was found only
once when using a mutation rate of 0.02 and a mortality rate 0.16. The other
combinations of mutation and mortality rates that did not find the global
maxima used similar values as done for the sweep in Table 3.1.
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When performing 20 runs on only 32 H-IFF bit, the optimal mutation
rate to mortality rate ratio is much broader, as can be seen when
implementing a mutation rate of 0.1 and varying the mortality rate to 0.128
and 0.196 (Figure 3.7). Interestingly, implementing mortality in the form of
an optimal extinction events ratio, similar to the implementation of Lehman
et al. (2015), results in a similarly performing evolutionary run. In the case
of the optimal extinction events ratio, 90% of the individuals were removed
every 10 generations, as displayed in Figure 3.7.

In addition, the relationship between the evolvability and the mutation
and mortality rate has been tested on the Chuang f1 (Chuang et al.,
2010) function, as it has been implemented in Fortin et al. (2012). When
changing the fitness function to the Chuang f1 function for 64-bit genomes,
the optimal mutation ratio is comparable to 64-bit H-IFF as depicted in
Figure 3.8. In this case, a similar mutation rate and mortality rate was
required to find the global maximum in the evolutionary runs. Decreasing
or increasing these rates had an effect similar to what they had on the H-IFF
function.

When not implementing any type of mortality rate, the SSGA does
not produce genetic variety and converges quickly. As can be seen
in Figure 3.5a, the lower mortality rate clearly lessens the diversity of
solutions found during the evolutionary progression. When only doing
a mutation rate sweep on an SSGA, one might falsely conclude that the
problem is similar to a needle in a haystack scenario. In the case of a needle
in a haystack scenario, random search would be the best possible approach,
and one might therefore falsely set the mutation rate of the evolutionary
algorithm to 100%. However, as demonstrated by the mortality rate, this is
not a fair conclusion; hence, the use of steady state approaches in general
may be of limited value.

Though the relationship between a mortality rate and a mutation rate
is interesting, as it significantly changes the performance of an SSGA, it
is of limited interest to biologists since it does not represent a plausible
spatial ecosystem. Therefore, the implementation of mortality and H-IFF
on a spatial model is the main experiment conducted the next section.

3.2.2 Spatial Model
The spatial model is an agent-based grid model as discussed in Section 2.7.
Like the SSGA, the spatial model implements the H-IFF fitness function
producing the deceptive landscape. However, the genome size was
limited to a 32 bit string genome. The genomes were only composed of
32 bits to reduce computational requirements, which were considerably
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FIGURE 3.6: Relationship between mutation rate and
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mortality rate on 32-bit H-IFF. This figure shows the
evolutionary progression of 20 runs with a mutation rate
and mortality rate of 0.1 and 0.128 (A), and 0.1 and 0.192
(B). Using a mutation rate of 0.1 and removing 90% of the
individuals each generations as extinction events results

in a similar performance (C)
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FIGURE 3.8: Optimal mutation and mortality rate on
32-bit Chuang f1. This figure displays the evolutionary
progression of 20 runs (A) and the diversity off all
individuals in the 20 runs (B). The mortality rate was set

to 0.04 with a mutation rate of 0.1.

higher in comparison to the SSGA. Another difference to the steady state
implementation was that the population was initialized with genomes in
the middle local optimum of the H-IFF fitness landscape (i.e., 0000-0000-
0000-0000-1111-1111-1111-1111, with corresponding fitness values of 64).
From this starting genome, it is particularly challenging to find the global
optima since no individuals of the population are close to any of the global
optima, which could be the case when randomly initializing the genomes.
Moreover, when randomizing genomes, the fitness of random individuals
can by chance be so low that the population is never able to survive without
a manual increase in their fitness. Hence, the middle local optimum was
chosen as the initial genome of all individuals in the population.

The spatial model is similar to a predator-prey model and various
features that were included serve as an analogy to natural systems. The
experiments were performed on a 250 ⇥ 250 grid (same as in Kowald et
al., 2016) where cells were either type 0 (prey) or type 1 (predator). One
can imagine the prey and predators to be plants and rabbits, respectively,
where predators were subject to evolution and each rabbit cell contained a
binary genome. The fitness value derived from a rabbit’s genome translates
into food consumption efficiency, or metabolic efficiency. The ability to
acquire food from the environment efficiently enables rabbits to grow
faster, thereby producing more offspring. The spatial model is visualized
in Figure 3.9 where green cells denote plants cells (the intensity of the
color displaying how much biomass has been accumulated) and blue cells
represent rabbit cells.

In the experiments, some parameters were set that shaped the
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environmental dynamics of the system. These values were, however,
flexible, and could be altered to produce similar dynamics as seen in the
results. The specific values described here were set for computational
efficiency. For example, the environment was not too large or too small, not
too few or too many rabbit cells roamed around under certain conditions,
and food was not too scarce or too plentiful. Changing these values
with ± half of the respective value did not change the presented results
significantly.

At each iteration, all plant and rabbit cells were updated. A given
amount of biomass was added to plant cells according to a biomass
production rate, which was an absolute value of 0.0016. A plant cell from
here on could grow to contain a maximum biomass value of 1.0. Rabbit
cells attempted to move to a neighboring cell with an 8 in 9 chance at
each iteration. If the target position was occupied by another rabbit, the
rabbit would stay in position. For computational efficiency, the grid was
sequentially updated from left to right and top to bottom, and it was
ensured that rabbits moved only once per iteration. Furthermore, rabbit
cells reproduced with a 1 in 10 chance if their biomass exceeded twice the
reproduction cost (the reproduction cost being 0.4). The reproduction cost
was subtracted from the biomass of the parent rabbit. Offspring started
with a biomass equal to the reproduction cost multiplied by 0.8 (0.32). This
multiplication stood for an additional reproduction cost, where a value of
0.08 biomass was lost during a reproduction event.

When a rabbit cell moved on a plant cell, it consumed the plant’s
biomass with an efficiency rate of (fitness/maxfit). The rabbits could
not increase their biomass over the 1.0 limit; any unused plant biomass
was left in the plant cell and thus stayed available for consumption. At
every iteration, rabbit cells lost 0.02 biomass as a maintenance cost. Rabbits
with a biomass below 0.01 were removed from the population, expressing
extrinsic mortality through starvation (or local competition for food).

In contrast to the SSGA, the spatial model implements both intrinsic
and extrinsic mortality. For intrinsic mortality, a terminal age was
implemented and extrinsic mortality was thus the result from local
competition. To explore the relationship between intrinsic mortality and
mutation rate, different mutation rates and terminal ages were compared.
The main results indicate how often, and how quickly, the global maximum
was found on 32-bit H-IFF.
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FIGURE 3.9: Illustration of the spatial model. Green
represents plant biomass, blue rabbit biomass. Snapshot

taken after the first few cycles of the spatial model.

Results
Similar to the steady state implementation, the spatial model showed a tight
correlation between the mutation rate and mortality rate, as was revealed
in Table 3.2, for finding the maximum fitness on 32-bit H-IFF. Apart from
these optimal ratios, the speed of finding the global maximum could also
be determined (Figure 3.10). Though not tested for significance, a terminal
age of 120 with a mutation rate of 0.06, and a terminal age of 160 with a
mutation rate of 0.08, were optimal for finding the maxima the quickest.

Additionally, the optimal mortality rate to mutation rate ratio resulted
in a population that was less prone to losing the global optimum once it was
found (Figure 3.11). This might be because a better-fit population is able to
sustain more individuals than a less fit population (Figure 3.11). There is,
again, a specific ratio of mutation rate to terminal age that is optimal for the
population to traverse the fitness landscape (Figure 3.12). The population of
the spatial model, in contrast to the SSGA, was initialized with individuals
residing in the middle of the fitness landscape. The results illustrate that
despite being in a local optimum furthest away from the global optima,
the solution can still be quickly found under the right parameters, the
parameters being tuned to exhibit the optimal mutation rate and mortality
rate.

Looking at the individual runs when using a terminal age of 60
(Figure 3.11), we observe a phenomenon similar as to the SSGA, in which
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TABLE 3.2: Number of optimal solutions for 32-bit H-IFF
on a spatial model. Results are taken from 20 runs for each
combination of mutation rate (u) and terminal age (TA). ✏
marks combinations where the population went extinct in

all runs.

u \TA 40 50 60 80 120 160 500 1000 2000 -
0.01 5 0 0 0 0 0 0 0 0 0
0.015 19 8 0 0 0 0 0 0 0 0
0.02 ✏ 20 15 0 0 0 0 0 0 0
0.03 ✏ 10 20 20 0 0 0 0 0 0
0.04 ✏ 1 11 20 12 0 0 0 0 0
0.06 ✏ ✏ 2 6 20 20 0 0 0 0
0.08 ✏ ✏ 1 1 20 20 0 0 0 0
0.12 ✏ ✏ 0 0 2 9 20 3 2 0
0.16 ✏ ✏ ✏ 0 0 1 20 20 20 17
0.24 ✏ ✏ ✏ 0 0 0 1 13 15 14
0.32 ✏ ✏ ✏ 0 0 0 0 1 0 2
0.48 ✏ ✏ ✏ 0 0 0 0 0 0 0

a lower mutation rate leads to premature convergence more quickly while
a high mutation rate creates an unstable population. Moreover, the speed
of finding the global maximum in the spatial model also differs when using
different mutation rate and mortality rate variables (Figure 3.10). In this
case, the speed was derived from the number of cycles the spatial model
ran before finding the global maximum. A different measure of speed
would be to count the number of individuals that had been simulated
before the maximum had been found. For example, the only real difference
to Figure 3.10 when comparing a mutation rate of 0.02 and a terminal age
of 50 with mutation rate 0.16 and terminal age 500 is that the latter needs
to simulate significantly less individuals before the maximum is found
(two-sided Mann Whitney-u test p value 0.008). The difference in speed
of the number of cycles was not significant in this comparison (two-sided
Mann Whitney-u test; p value 0.2); i.e., the median number of individuals
simulated before finding the global maximum was 971,792 in the low
terminal age scenario and 188,148 in the high terminal age scenario. Thus, a
higher terminal age in this comparison needed to simulate less individuals.
Apart from this anomaly, the speed plot of using individuals as a measure
looks almost identical to Figure 3.10. For evolutionary algorithms in
general, the number of individuals simulated should be minimized, though
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FIGURE 3.10: Speed of solving H-IFF for the spatial
model. The figure displays the number of times the global
maximum was found divided by the average number of
iterations ·1000 the spatial model ran varying the mutation

rate (x-axis) and the maximum age.

simulation time in terms of cycles is what matters in real populations.
Another interesting result when using no terminal age is that although

the average age of the individuals in the population remains relatively fixed
across different mutation rates, the maximum age is significantly higher in
high mutation rate scenarios (two sided Mann Whitney-u p value of 7 ·
10−8). These results were interpreted as the fittest individual being unable
to produce many functional offspring due to the high mutation rates.
This meant that the older, fitter individuals had, in turn, a higher chance
to outcompete the other, likely less fit individuals in the populations.
The elite thus became much older in scenarios where there was a high
mutation rate—when looking at no terminal age, the maximum age of
the population under high mutation rates could grow as high as 20,000
cycles. As displayed in Table 3.2, as high mutation rates also lead to a
greater number of less-fit individuals in the population, the mutation rate is
necessarily low, otherwise the population would go extinct as denoted by ϵ
in Table 3.2. Both a mortality rate and a mutation rate could thus lead to an
error catastrophe, where a species goes extinct due to excessive mutations. In
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FIGURE 3.11: Individual runs on the spatial model. The
graphs show individual runs (illustrated with different
colors) display maximum fitness values across generati-
onal time when implementing a terminal age of 60 and
a mutation rate of 0.02 (A), 0.03 (B), 0.04 (C). Each cycle

represents 100 iterations of the spatial model.

conclusion, the mortality rate and mutation rate shape the evolvability of
the population simulated in the spatial model.

3.2.3 Comparison to Other Algorithms
Although the results in this section were somewhat preliminary, the
mortality rate implementation on the SSGA with H-IFF has been compared
to some other conventional implementations of genetic algorithms. In
particular, it has been compared with Age-Fitness Pareto Optimization
(AFPO) (Schmidt et al., 2011), generational implementations, extinction
events, and an SSGA containing a speciation operator as implemented in
Stanley et al. (2002b). The results from these experiments do not display a
miraculous efficiency of the mortality rate implementation, but they can
provide evidence as to why mortality works for increasing evolvability,
bolstering Hypothesis 1. This section therefore displays that types of
evolutionary algorithms may be less effective compared to tuning existing
algorithms.

Age Fitness Pareto Optimization

Since AFPO (Figure 3.13) has been used to create more diversity in
evolutionary algorithms, the main initial aim of the mortality rate
implementation was to beat this algorithm on a highly deceptive fitness
landscape. This was initially done to see whether implementing mortality
was indeed useful. Age-Fitness Pareto Optimization is a single population-
based evolutionary algorithm that utilizes the deletion and selection of
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FIGURE 3.12: Optimal mutation rate as a function of
terminal age. Note the logarithmic scale for terminal age.
The continuous line shows an exponential fit: 0.1903 �
0.1907 · e0.0028, with r2 = 0.9936 (values closer to one

indicate a better fit).

individuals based on Pareto dominance. Pareto dominance is based on
two factors: a fitness value and the age of an individual; a lower age
being advantageous. The different ages and fitness values in the population
create a Pareto front—a region yielding optimal solutions for both objectives
as displayed in Figure 3.13.

Age-Fitness Pareto Optimization, as implemented for the experiments2,
starts by initializing a population of random individuals. Each individual
has been assigned an age of 0, and these individuals and their asexually
produced offspring increment their age value by one after each generation.
After evaluating all of the individuals in this initial population, all fittest
individuals in all possible age categories are kept while the rest of the
individuals are discarded. Afterwards, all ages of all individuals are
incremented, and a random individual is inserted into the population.
This random individual has an age of 0, similar to the initial population.
The new population, including the random individual, is used to
generate an offspring population that is the same size as the maximum
population size. Afterwards, tournament selection (with tournament size

2Researchers at the University of Vermont would call it ‘AFPO-101’ since no additional
parameters were tuned
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FIGURE 3.13: Age Fitness Pareto Optimization. The
population in AFPO moves in a two-dimensional Age-
Fitness Pareto space. Adjusted from Schmidt et al. (2011).

2) determines which individuals from the offspring population and the
existing population will form the population in the next generation. This
tournament is, however, also steady state since offspring are set up to
compete with an individual in the original parent population sequentially.
An individual can only outcompete and replace another individual if its
fitness is higher and its age is lower, thus dominating on both fronts.

To compare how efficient AFPO is on H-IFF, an initial experiment was
conducted, evaluating it on 32-bit H-IFF. Compared to the normal steady
state implementation with and without mortality, it seemed to perform
similarly to the mortality SSGA. Increasing the size of the genomes to 64
bits quickly changed the outcome of the performance of AFPO compared
to the SSGA implementing mortality. A mutation rate sweep was done to
determine the optimal mutation rate for AFPO. This optimal mutation rate
was around 0.1 and was subsequently used in the experiments. The optimal
mortality rate was tuned using the 0.1 optimal mutation rate of AFPO and
was set to 0.05. The population size was, again, kept at 50 individuals,
similarly to the previous SSGA implementations.

As can be observed in a single evolutionary run of 100,000 generations
Figure 3.14, the mortality rate implementation seems to exhibit more
diversity while remaining at the top of the landscape. In contrast, many
individuals in AFPO reside in less-fit (lower) areas of the fitness landscape
space, likely due to too frequent insertions of random individuals at each
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generation. The evolutionary progression of the SSGA implementing
mortality should convey the informal principle of hill hugging that was
introduced in the previous sections since, especially compared to AFPO,
the steady state implementation does not seem to occupy low fit regions
of the fitness landscape. Two hundred of these evolutionary runs were
done to compare the efficiency of both algorithms; the measure of efficiency
was correlated to the number of times a global maximum has been found
after running 100,000 generations (Figure 3.15). Out of the 200 runs,
only one run of AFPO found the global maximum, whereas this number
was 190 out of 200 runs in the SSGA with a mortality rate. Age-Fitness
Pareto Optimization performs better than steady state algorithms when
no mortality is implemented, but for this landscape, the mortality rate
implementation was superior.

Other Conventional Implementations

There is a plethora of different algorithms that have been developed
over the years that could be compared with the mortality rate. Simply
looking at the difference between five strategies; an SSGA, a generational
genetic algorithm implementing 5% elitism, AFPO, speciation, and
extinction events, clearly shows how different strategies traverse the fitness
landscape, as can be seen in the 2D diversity plots of Figure 3.16. However,
elitism in generational genetic algorithms is known to increase the selective
pressure on the best individuals of the population and thus leads to less
diversity over time. Without elitism, the mutation rate needs to be quite low
in order to ensure that that the population does not lose the best solutions in
the next generation. This is especially the case when the selection operator
is not very strict.

To test whether generational genetic algorithms could exhibit the
same performance as the SSGA implementing mortality, two generational
algorithms were implemented, differing only in their selection operator.
One used tournament selection with a tournament size of three, and the
other used a roulette sampling method. With a sufficiently low mutation
rate, it can be seen that the generational genetic algorithm can perform
just as well as the SSGA that implemented mortality (Figure 3.17). The
mutation rate, due to the higher selection pressure on the best individuals,
needed to be 0.25% in the roulette wheel and 2.5% in the tournament
approach and was 10% in the steady state approach with a 5% mortality
rate.
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FIGURE 3.14: Single evolutionary runs comparing AFPO
and H-IFF. The graphs display the maximum fitness
(top), distribution of the population in 2d (middle), and
the distribution of the population in 3d (bottom) of a
single run. The blue dots represent individuals om the

population plotted at intervals.

3.3 Changing the Domain

Single-objective continuous functions can be used as an alternative to the
binary functions of H-IFF. The efficiency of evolutionary algorithms can
then be evaluated as to how well an implementation is able to evolve the
correct parameter sets. There are many different types of objective functions
that are used as benchmarks for evolutionary algorithms, but of specific
interest to this section are deceptive fitness landscapes where there is no
apparent gradient towards the global optima. The convoluted landscapes
with gradients (such as Rastrigin or Griewank functions) are comparatively
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FIGURE 3.15: 200 evolutionary runs are shown for
both AFPO and mortality rate. The solid black line
represents the average value of the maximum fitness of
each evolutionary run. Though it can be seen that the
average maximum fitness in AFPO is ever-increasing, the
average maximum fitness using the mortality rate stays
around the same value. The graph’s color is reddish due
to the order of the curves of the evolutionary runs being

plotted in the graph.

easy to solve, even with regular SSGAs, and thus not discussed. Since
a continuous function is used, more advanced strategies like Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES; Hansen et al. 2001)
can be implemented and compared with our implementations and can
convey how the different algorithms work.

The alterable parameters of the continuous functions implemented in
evolutionary algorithms are the mutation rate and the mutation spread.
This spread is usually controlled by a Gaussian mutation operator, as in the
case of the following experiments. The standard deviation of the Gaussian
mutation operator is usually denoted by a � value to indicate the spread.
The change of the value of a gene becomes larger when � is increased. In
the SSGA with mortality, the � value is thus additionally correlated with
both the mutation rate and the mortality rate.

The Schwefel function (Figure 2.8b) was used to create the deceptive
fitness landscape whose genomic values could range between -500 and 500.
A � value of 200 was therefore chosen as the mutation spread so that a gene
having a value of -500 would not likely be mutated into a value of 500.
Therefore, the landscape could not be directly crossed after one mutation
step. The � value of 200 means that a value that is being mutated has a
68.2% chance to be altered through the addition of a value between -200
and 200 (one standard deviation) and a 95.4% chance to be between -400
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FIGURE 3.16: Diversity on H-IFF using various genetic
algorithms. The blue dots represent individuals in the
population over time for representative single runs of
each strategy. Evolutionary runs contained a population
size of 50, a mutation rate of 0.1, and were simulated
for 1000 generations on 16-bit H-IFF. An SSGA (top
left), a generational GA with 5% elitism (top middle),
speciation implemented in an SSGA (top right), Age-
Fitness Pareto Optimization (bottom left), indiscriminate
extinction events (bottom middle), and a mortality rate

(bottom right).

and 400 (two standard deviations). In CMA-ES, the mutations are directed
and changed based on the spread of the population over generational
time (Hansen et al., 2001). Hence, in comparison to CMA-ES, no specific
mutation rate or sigma value was implemented.

For the experiment, a genome of size 8, containing 8 floating-point
numbers, was used. A mutation rate sweep was done for AFPO to see what
the best mutation rate to implement was. A mutation rate of approximately
20% yielded the best results. Using this mutation rate, the optimal
mortality rate was determined for the SSGA. The optimal mortality rate
was coincidentally also around 20%. These rates were however determined
for quite a short run and could be subjected to further tuning, though
they nicely illustrate how the genomes in the population change over time.
The optimal mutation rates for AFPO and the optimal mortality rate for
the SSGA were based on four evolutionary runs using different rates and
simulating a population size of 50 for 2000 generations. Afterwards, 12
evolutionary runs were conducted with these optimal mutation rates, again
for 2000 generations. Covariance Matrix Adaptation Evolution Strategy
implemented a population size of 1000 for 100 generations. This was
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FIGURE 3.17: Evolutionary progression on 64-bit H-
IFF of generational Genetic algorithms vs. the SSGA
implementing mortality. The graphs show the evolu-
tionary progression of 20 evolutionary runs for 100,000
generations on 64-bit H-IFF (top) and the genetic diver-
sity of all individuals in all runs (bottom). Results are
shown for the SSGA implementing mortality (A), the
generational genetic algorithm implementing tournament
selection (B), and the generational genetic algorithm using
roulette sampling (C). The optimal mutation and mortality

rates were used for each implementation.

done because larger populations are more efficient in CMA-ES, as smaller
populations converge very quickly to a local optimum. However, the
number of evaluations needed (100,000) stayed the same in all approaches.

Figure 3.18 depicts the difference in the evolutionary progressions of
the different runs (top) and shows the change in the values of individual
genes over time for a single representative run (bottom). As can be noted,
within the 2000 generations, the CMA-ES strategy was the only one to
find the global optimum in 2 out of the 12 runs. AFPO and the SSGA
did not find the global optima. Longer simulations and larger populations
sizes would most likely lead to the global optima being found eventually.
What is interesting to see in these plots is the genetic change of each
implementation over time. The SSGA implementing mortality is shown
to have varied the values of its genes over time, where a gene sometimes
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FIGURE 3.18: Comparison of evolutionary algorithms
on the Schwefel function. The top graphs show the
performance of 12 runs on the Schwefel function using
different evolutionary algorithms. The bottom graphs
show the change in the values of the 8 genes in the genome

over time.

changed its value from one side of the landscape (close to -300) to the other
side (close to 400). The SSGA implementing mortality thus retained genetic
variation. AFPO kept much more genetic variation, on average, in the
population due to the insertion of random individuals. The graph therefore
illustrates that average values of each of the genes in the population
drastically changes with time. Covariance Matrix Adaptation Evolution
Strategy began with much genetic variation due to the large population
size and converged to specific values quickly, after which time the genes no
longer changed. Two runs of CMA-ES found the global maximum after
approximately 60 generations. These effects on diversity are typical for
each optimization type shaping the evolutionary progression of each type
of genetic algorithm.

3.4 Development and Evolvability

Though mortality and mutation rate change the overall evolvability of
an evolutionary algorithm, these are most likely not the only mechanism
that increase evolvability. As mentioned in Section 2.3, organisms contain
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inherent developmental programs that enable the patterned expression and
recursion of cells, tissues, and organs. This relates to how the genotype is
mapped onto the phenotype. This section therefore focuses on the impact
of development on the evolvability of the spatial model and discusses how
this is similar to the addition of a mortality rate. In addition, an interesting
emerging dynamic on the age of the individuals in the system was noted
and included in the section. However, it should be taken into account that
these results are also preliminary.

Hinton et al. (1987) have demonstrated how developmental plasticity
could smooth the search space evolution operates in, but they considered
only an abstract control system and a one-to-one genotype to phenotype
mapping. In needle in a haystack problems, random search has been proven
to be the best search strategy (Hinton et al., 1987). Random search could
be seen as having a 100% mutation rate. It is therefore not viable in
nature since it would lead to an error catastrophe or to spending valuable
resources on sub-optimal individuals. A more gradual stepping stone
mechanism which includes intermediate sub-optimal fitness values, would
allow for individuals to more effectively traverse the search space by
keeping the population close to the top of the search space, as has been
shown by implementing mortality. As an alternative to increasing this
traversability, or evolvability, of a population, an individual could exhibit a
small genotypic sweep by evaluating multiple genes expressed at different
time intervals. This is what I consider to be a minimal developmental
representation in this section. The question posed here is: can this minimal
development model lead to an increase in evolvability?

Methodology
A fixed patterned change of the genome, through the developmental
processes of an individual, could increase the search of various phenotypic
expressions in an individual’s lifetime. To investigate how during the
lifetime of an individual, one can explore multiple phenotypic traits, a
spatial model was implemented again using H-IFF. The experimental
setup consisted of a predator prey like spatial model where a binary 16
bit genotype was translated into the phenotype of a cell as a metabolic
efficiency as has been implemented in Subsection 3.2.2. Note that
in previous experiments a 32-bit genotype was used. The only way
for individuals to be removed in this experimental setup was through
starvation.

Two experiments using the developmental stages were performed. The
first experiment evaluated the efficiency of finding the global maximum
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similar to the spatial experiment with the mortality rate (Subsection 3.2.2).
Instead of varying the mortality rate, the number of developmental phases
were altered. A timed developmental phase changed the expressed genome
of one cell to another. The number of developmental phases, as well as
the timing of these phases, were fixed, and the only mutable parameter
in this instance was the mutation rate. The timing of moving from one
developmental stage to another was set to 100 iterations. One hundred
iterations were chosen since a cell, on average, lived around 500 iterations.
An age of 500 iterations is thus enough for an individual to reside in
all (up to five) developmental phases during its lifetime. To investigate
how the population of cells in the spatial model is able to traverse the
H-IFF landscape, 50 simulations ran for 200,000 iterations (2000 cycles)
with differing parameters of mutation rate and number of developmental
phases.

Results
Since genomes with different developmental phases can evaluate multiple
genomes in one lifetime, it was expected that the developmental stages
would be directly correlated to the evolvability of the population. More
genomes mean more exploration; however, this might also mean a shorter
lifespan since genes that are deleterious later in life will limit the lifespan.
An elite that goes from an efficient developmental stage to a suboptimal
one would be quickly outcompeted by fitter cells, and thus the relationship
between the mutation rate and the number of developmental stages
would likely be skewed. In this setup, evaluating more than one set of
genomes could be considered equal to evaluating multiple individuals in
conventional evolutionary algorithms, though the speed of acquisition of
the global maximum in the spatial model might translate to evolutionary
algorithms as well. The aim is to determine how these developmental
phases can aid, or be a detriment to evolving spatial models.

Conventionally, in evolutionary robotics, the computational time for
evaluating an individual mostly depends on the physics simulator since
this requires the most computational power. The evolutionary algorithm
itself usually does not require much computational power, and measuring
the efficiency solely based on the number of individuals that have been
simulated is therefore a good measure when considering the efficiency
of the evolutionary algorithm. To evaluate whether development is
computationally more efficient, it is thus considered how many individuals
have been simulated until the global maximum was found. As depicted in
Figure 3.19, a clear relationship between the mutation rate, the number of
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developmental stages, and the times the global maximum has been found
can be seen. Though this relationship exists, it is not known how useful this
is for evolutionary computation.

In a second preliminary experiment, the timing of the developmental
stages itself was subject to evolution, where each developmental stage
could span between 10 and 1000 iterations. In this case, the global optima
can be found in different stages of development of the populations, and
this has an effect on the evolutionary progressions of the developing cells.
Namely, if a population of cells finds the global optimum in the initial stage,
it can be seen that the time the individuals spend in this stage is maximized
(Figure 3.20; right). In contrast, there is no selection pressure to maximize
this phase when the global maximum has not been found.

When comparing the different developmental times and mutation
rates, a clear relationship between the mutation rate and the number
of developmental phases can be seen, as shown in Figure 3.19. High
mutation rates are efficient when the cells do not have developmental
phases. However, with lower mutation rates, no developmental phase
is very inefficient for finding the global optima compared to developing
populations. When using mutation rates lower than 0.12, none of the non-
developing populations found the global maximum, while the developing
populations were still able to do so. Other than that, a 100% mutation
rate seems to work well in the spatial model. Producing many random
offspring is therefore still efficient on 16-bit H-IFF. This would, however,
not have a high probability of working using larger genomes, as can be
inferred from Table 3.2 where mutation rates larger than 0.32 do not yield
optimal solutions.

The developing populations of these experiments can be altered by a
timing mechanism as developmental change; single bits change in timed
expression in the genomes of the individual cells. This development
increases the breadth of the search, and in turn enhances the evolvability of
a population. In Figure 3.20 (right), the period during which the maximum
possible fitness is found alters the average age of the population. This limit
in age can be regarded as being the result of different bits changing that in
turn cause a deleterious effect. This change in bits causing a detrimental
effect could be an antagonistic pleiotropic effect since it lowers the age
of individuals, supporting the antagonistic pleiotropy theory. It could
also pose a dual benefit, where development both increases the breadth
of the search and limits the lifespan of individuals, further increasing the
evolvability of a system. Though no quantifiable data is shown, it is an
idea that might be worth investigating in the future. The negative effect
of pleotropic genes on the personal fitness might thus actually increase the
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FIGURE 3.19: Correlating developmental stages with
finding the global maximum. This figure displays
the results, for the four different experiments, using 1
developmental stage (no development), 2 developmental
stages, 3 developmental stages and 5 developmental
stages. Fifty evolutionary runs were conducted for each
parameter set and ran for 2000 cycles (200,000 iterations).
Decreasing the mutation rate requires the additional
developmental stages in order to find the global maxima

on H-IFF.

inclusive fitness.

3.5 Discussion

As shown, evolvability is greatly influenced by the mutation and mortality
rate ratio in both evolutionary algorithms and a spatial model. In particular,
the H-IFF function, despite its deceptiveness, can be traversed by an SSGA
through simply including an indiscriminate mortality rate. Since a fitness
landscape in nature is likely highly convoluted and possibly deceptive,
we speculate that programmed aging could be, as Goldsmith (2014) has
mentioned, beneficial for the evolvability of a population. The better a
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FIGURE 3.20: Single evolutionary runs in the developing
populations. The left and right side of the figure represent
developmental timings where no optimal strategy has
been found (A) and where the optimal strategy has
been found in the first developmental stage (B). The
specific timing of the evolutionary developmental stages is
displayed (top) as well as the average age (blue) and 25th-
75th percentiles (grey area) of the populations (middle).
The age of the oldest individual in the population is

depicted in the bottom two graphs.
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species can traverse the fitness landscape without going through low fitness
regions, the more plausible it is that the population finds more adaptive
traits. This, in turn, makes the population better and potentially increases
its ability to cope with changing environments.

In the presented experiments, the shortest path to the global maximum
of H-IFF from the center of H-IFF was to mutate individuals in the
appropriate lesser-fit local maxima. The results indicate that there is an
optimal mortality rate for a given mutation rate, which could be considered
to improve existing evolutionary algorithms, especially the steady state
variants. Steady state genetic algorithms with no chance of removing elite
individuals are prone to premature convergence, as demonstrated by the
few times the global maximum has been found when no mortality rate
was implemented. Nevertheless, the addition of indiscriminate mortality
enhances such algorithms and allow them to efficiently traverse the state
space landscape. It is further shown that this effect is likely transferable to
other domains and landscapes with preliminary results.

AFPO relies on a new random individual being inserted in a specific
region close the maximum fitness of the landscape by accident. From this
starting point, the new pareto efficient individuals in this age category need
to quickly find a good solution before they are outcompeted by a younger
strain climbing the local hill. A potential improvement to AFPO is thus
also to insert a new random individual at intervals, not every generation,
so the individuals in the new age category have time to climb a local
hill, preventing them from being outcompeted by chance. Despite the
occasional loss of the best individual in a population, the entire population
of individuals remains close to the top of the fitness landscape.

The correlation between the mutation rate and mortality rate indispu-
tably works on SSGAs and spatial models for solving deceptive fitness
landscapes. Even the most advanced optimization strategies have diffi-
culties with solving these types of landscapes. Aside from that, there is
something to be said for the ease of implementing a simple mortality rate
into a genetic algorithm—simply remove individuals from the population
at random to increase the performance.

3.5.1 Theoretical Implications
The mutation rate and mortality rate have an optimal ratio that
depends on multiple factors. However, factors such as reproduction
speed, development, population size, selection pressure, and crossover
likely influence the optimal parameter set as well. However, a few
essential factors that always shape evolvability include the mortality rate,
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FIGURE 3.21: Venn diagram depicting the relationship
between reproductive rate, mortality, and mutation
rate. Reproduction, mortality and mutation rate shape
evolvability. For a given sequence space, there exists
an optimal relationship between these factors which is
an overlap of the four elements. No mortality leads
to premature convergence, and no reproduction and
no mutation lead to a zero-evolvability state since no
new individuals or variation is being introduced in the

population.

reproductive rate, and mutation rate. This relationship is clarified in
the Venn diagram shown in Figure 3.21, where non-reproducing or non-
mutating populations reside in zero-evolvability states. In this case,
individuals are evaluated too long and genetic variation is low. I speculate
that, through changing the parameters of, for example, mutation and
mortality rate, one can map the deceptiveness of the landscape as shown
in the plots that depict diversity and fitness over generational time
(Figure 3.5). One could potentially change just one parameter without
taking the other into consideration, as long as the other parameters are
within certain bounds.

Species in natural environments suffer from both intrinsic (aging) and
extrinsic (predation, accidents and parasitism) mortality. Extrinsic
mortality is known to fluctuate, both in predictable ways (seasons) and
depending on external factors (diseases, variable predator pressure). As
there is a clear correlation between mortality and mutation rate for optimal
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evolvability, this means that such fluctuations in mortality rates could have
a negative or positive impact on the evolvability of populations. Evolving
an intrinsic mortality factor may alleviate this problem: when external
pressure is high, aging is not a dominant factor. If external mortality is
decreased, then intrinsic mortality prevents the death rate to mutation rate
equilibrium from being out of balance, preserving evolvability. Therefore,
this would be an advantage of an intrinsic mortality rate.

Though mortality has been shown to be beneficial for the evolvability
of a population, it is still difficult to see how mortality in itself would
evolve. In a prisoner’s dilemma scheme, one could define individuals that
exhibit mortality to be cooperators, and immortals to be defectors. Since an
immortal can produce more offspring than a mortal can during its lifetime,
its personal fitness would be higher. However, if all individuals in the
population are immortal (defectors), the overall benefit to the population
is less than when all individuals are mortals (cooperators). Hence, the
evolution of mortality could have a basin of attraction toward immortal
individuals, evolving older individuals over generational time. However,
if a population with mortals were more efficient, it would be more likely to
eventually outcompete an immortal population.

Another interesting detail may explain the evolvability of mortality.
Consider a population residing in a stable limit cycle. The number of
individuals in this population fluctuates depending on how much prey is
available to them, and how greatly predators decrease their population.
A periodic fluctuation would mean that the extrinsic mortality rate also
fluctuates. In a period when many individuals of the population are eaten,
the population can exhibit more genetic drift. Once less individuals of the
population are eaten again, this genetic drift will also decrease when we
accept that the mutation rate does not change. This change in evolvability
of a population could, however, be counteracted by continuously changing
the mutation rate. Lower mutations rates when many prey are eaten would
keep the evolvability the same. Similarly, lower predation rates would
require higher mutation rates. This process of altering the mutation rate
is likely cumbersome to evolutionary adaption. However, as mortality
has been shown to change the evolvability as well, this mortality rate
could instead have been evolved to provide a steady evolvability rate in
the presence and absence of high predation rates. This would keep the
evolvability of a population the same, and therefore the mutation rate
would not need to be altered. A possible benefit to senescence could be to
keep the evolvability of a population steady under conditions of fluctuating
extrinsic mortality rates. As discussed by Herrera et al. (2016), intrinsic
mortality seems to be beneficial in changing environments, and therefore
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a steady optimal evolvability rate might be required. Intrinsic mortality
could therefore be a mechanism that ensures a baseline evolvability rate in
a dynamic, changing environment.

There is a major argument to be made as to why mortality is likely
programmed by combining a changing environment, as in Mitteldorf et
al. (2014) and Herrera et al. (2016), and the experiments of H-IFF shown
here. Consider, for example, a H-IFF type function, and a changing
environment where the global maximum switches from one side of the H-
IFF landscape to the other side. How could one possibly hope to make a
population traverse this landscape efficiently? Either the mutation can be
increased to its maximum, or mortality could enable a drift across the top
of the landscape. I claim that mortality is a more plausible explanation in
natural systems since it gradually changes the genetic information in the
population instead of producing drastic changes in the genome. A high
mutation rate would produce many individuals that are non-functional,
these individuals might need to be brought into the world, which can
have a massive reproductive cost. Moreover, can such a potentially high
mutation rate really be achieved locally in germ cells, or would high
mutation rate mechanisms mean that the individual cells are also subject
to high mutation rates? This could result in many detrimental effects in the
individual and could lead to error catastrophes in species.

3.5.2 Hypothetical Explanation for the Benefit of Mortality
The issue of mortality also becomes more interesting when considering
multiple niches. Consider a hypothetical single population of finches on an
isolated island with different beaks. The population hasn’t yet resulted in
any speciation. Additionally, assume there are three types of food sources
we simply call food source a, b, and c. Say that these food sources require
appropriate beak shapes to optimize the consumption; these are called beak
A, B, and C, respectively. Clearly, depending on the steady food supply, the
beak frequency of beak types would roughly correspond to the availability
of a food type. However, when food source a and b are low, beak C
will begin to dominate. Say that this domination is so vast that all beaks
A and B have been out-competed after 100 generations—a phenomenon
in artificial life that can be termed catastrophic forgetting. The long-term
effects of beak C dominating have led to a decrease in food source c and
a subsequent increase in food source a and b. What is now the quickest
pathway to rediscover beaks A and B? If the path to beak A and B is slightly
deceptive, and the mutation rate is unalterable, a population of mortals will
simply allow for better adaptive radiation of the population to rediscover
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either beak A or beak B than a population of immortals. This hypothetical
dynamic shift of niches therefore promotes a population of mortals and
is arguably a conceivable logical explanation supporting the evolutionary
advantage of intrinsic mortality.

3.5.3 Application to Evolutionary Robotics
Undefined domains with potentially deceptive landscapes such as robotics
simulators may also have an optimal ratio between mutation rate and
mortality rate. It is likely that this optimal ratio changes in different parts of
the landscape. An additional feature of the mortality to mutation rate ratio
is that it determines the broadness of the hills in the landscape that can be
robustly occupied across generational time. This is derived from accepting
the relationships of mortality and mutation rate to stable sequence spaces,
as presented in Figure 2.1. A higher mutation rate or mortality rate would
then change the stable region the simulated population is occupying, and
a broader stable region might result in more abstract, generic phenotypes
that could better transfer to real robots; an unstable region might be a
narrow peak containing a phenotype that isn’t transferable. The field
of evolutionary robotics is thus a promising field for future applications.
It would be especially interesting to see whether an optimal ratio of
mortality and mutation rate can surpass existing algorithms like Age
Fitness Pareto Optimization (Schmidt et al., 2011), Age Layered Population
Structures (Hornby, 2006), and novelty search (Lehman, 2012) that have
been frequently applied to such simulators.

3.6 Conclusion

An explicit relationship between the mutation rate and mortality rate
for optimal evolvability on a deceptive fitness landscape in both spatial
and non-spatial evolutionary models has been presented. As an alter-
native to proposed theories on aging showing how intrinsic mortality
is advantageous for altruistic aging, we claim that intrinsic mortality
governs evolvability and that it is thereby a potentially evolvable trait,
ultimately supporting the theories on programmed death. Moreover, in
scenarios of fluctuating extrinsic mortality rates, an intrinsic mortality
rate would keep the evolvability the same, which may further support
why intrinsic mortality has an evolutionary benefit. Also, considering
potentially unrealistically high mutation rates to otherwise grant the same
level of evolvability, these high mutation rates in nature would likely lead



3

3.6. Conclusion 89

to an error catastrophe, leading to the extinction of the species altogether.
Senescence might therefore be a better explanation for evolvability. The
results not only increase our understanding of senescence, but hold
potential benefit in applications to evolutionary algorithms and robotics.
As it has been shown that the mortality to mutation rate ratio influences
evolvability on deceptive landscapes, one question that can now be posed
to bolster the significance of this chapter is:

Do natural systems contain deceptive dimensions that are traversable through
mortality-induced evolvability?
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Part II

Evolving Modular Robots
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Evolutionary Robotics

Platform

Everyone knows that a machine tool is more complicated than the
elements which can be made with it, and that, generally speaking,
an automaton A, which can make an automaton B, must contain
a complete description of B, and also rules on how to behave while
effecting the synthesis. So, one gets a very strong impression
that complication, or productive potentiality in an organization, is
degenerative, that an organization which synthesizes something is
necessarily more complicated, of a higher order, than the organization
it synthesizes. This conclusion, arrived at by considering artificial
automaton, is clearly opposite to our early conclusion, arrived at by
considering living organisms

– John von Neumann, Theory of Self Reproducing Automata

In Part I the importance of evolvability and the genotype to phenotype
map were discussed with respect to evolutionary dynamics. The part
conferred how evolutionary computation can be implemented to evaluate
theoretical hypothesis of biology and how its performance can be altered.
In contrast to the theoretical undertone of the previous part, this part of
the thesis illustrates scientific questions that arise from an engineering
perspective; i.e., it expresses the application of the types of evolutionary
computation on the creation and control of modular robots.

Three of the challenges of evolutionary robotics—exploration vs.
exploitation, genotype to phenotype mapping, and the reality gap—are
addressed in this part of the thesis. In particular, modular robots are
being used since the reconfiguration of robotic modules allows a change
in both the morphology and control systems of a robot. Non-modular
approaches can also allow for morphological change, though the use of
modular robot parts additionally enables the evolved robots to be easily
transferred to the real world, which expands the potential real-world
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solutions that can be evolved. Another advantage of using a modular
approach is that incremental improvements or the exchanges of modules
can alter the functionality of the modular robot through simply replacing
or adding modules to the system.

To gain more insight into how to evolve the behavior and control of a
modular robot, a large portion of this chapter is devoted to explaining the
evolutionary robotics plugin developed for the robotics platform: Virtual
Robot Experimentation Platform (V-REP; Rohmer et al. 2013). This plugin
covers much of the evolutionary algorithm and its parameters, the inclusion
of an encoder able to construct modular robots from a genome, and the
implementation of various controllers. The modules, environment, and
objective used can be changed in the plugin, allowing for the emergence
of a variety of modular robots. The plugin itself is not necessarily unique
since others have developed similar software platforms to evolve modular
robots, as can be seen in Faíña et al. (2013) and Auerbach et al. (2014).
The plugin was developed due to its ease of use, potential integration
with other projects, and having previous experience with it (Veenstra et al.,
2015). Though the plugin in its current form is unable to evolve real-world
modular robots directly, due to the lack of a standardized performance
feedback from a physical robot, the simulator can directly control a robot in
the real world and in the simulation simultaneously. The robots that were
transferred to reality in Chapter 7 were simply evolved in the simulation
environment. Part III of this thesis considers online evolution directly
applied to physical robots without using the plugin.

Modular robots are important since they can eventually give us insight
into how to construct various (reconfigurable) robotic morphologies. This
both eases the production of robots and allows for a feedback loop to
evaluate various developmental models and their relevance to robotics.
Chapter 5 and Chapter 6 implement a generative encoding and discuss
it concerning developing a robot morphology. Chapter 6 specifically
highlights the importance of genotype to phenotype mapping. Chapter 6
describes the evolution of modular robots evolved for locomotion, while
Chapter 7 utilizes the same modules with the addition of solar panel
modules, to evolve modular robots with energy autonomy.

The control of the modular robots described in Chapter 6 and Chapter 7
is based on neuroevolution. Each module could contain a neural network
that was evolvable. However, experiments in the next three chapters did
not implement neural networks to their full potential, due to the necessity
of keeping the control as simple as possible. Nevertheless, since it has
been implemented and shown to be useful, this chapter also gives a brief
overview of contemporary neuroevolution strategies (Section 4.1) and the
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manner in which neural networks were encoded for the evolutionary
robotics plugin (Section 4.1). Hence, a brief overview of the control
strategies that were implemented in the simulator (Subsection 4.2.3) is
presented. Afterwards, a high-level overview of the various features of the
plugin is given in Section 4.2. In Section 4.4, the real modules that were
developed are presented.

4.1 Neuroevolution

Neuroevolution, or the implementation of evolving neural networks
(ENNs), is a bio-inspired optimization strategy that is usually implemented
to investigate the acquisition of behavior in artificial creatures (Sims, 1994b)
and robots (Nolfi et al., 1994). A key question in neuroevolution is
which type of neural network to use as the basis for evolution. This
section therefore gives a brief overview of some prominent neuroevolution
strategies.

Evolving neural networks can be optimized without the strict forms of
learning algorithms such as backpropagation that are usually implemented
in neural networks. Many different types of neural networks with various
learning and evolutionary strategies have been developed over recent
decades with auspicious results. In Stanley et al. (2002b), the technique
Neuroevolution of Augmenting Topologies (NEAT) was introduced and
subsequently implemented in many instances as an effective strategy to
generate neural networks to control robots. Neuroevolution of Augmenting
Topologies is an efficient implementation of an ENN since it begins with
a population who’s networks contain basic connections from the input
neurons to the output neurons; it subsequently augments the network to
become more complex through artificial evolution. The mutation operators
facilitate the addition or deletion of neurons (nodes) and the connections
(edges) between the neurons. The mutation operators additionally alter the
activation function of the nodes and adjust the weights of the edges. One
more feature that has been implemented to protect innovation is speciation,
also known as niching (Stanley et al., 2002b). Speciation is made possible
in the population of neural networks through implementing historical
markings that track the historical origin of the evolved genes.

A prominent extension of NEAT is Compositional Pattern Producing
Networks (CPPNs; Stanley 2007). In this case, a collection of various types
of functions is employed to produce patterned outputs. This approach is
not only used for control, but also for outputting a spatial pattern for the
morphology of robots (Auerbach et al., 2011; Cheney et al., 2013). It has also
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been used to create static 2D images (Secretan et al., 2011) and 3D objects
(Clune et al., 2011). Another extension is the use of CPPNs to create the
neural network itself, an approach called HyperNEAT (Stanley et al., 2009).
This approach has been further extended by Risi et al. (2010) to evolve the
substrates of the neural network; i.e., specific regions of the network could
change the placement and densities of the neurons in that area.

The utilization of CPPNs as an abstraction of development is valuable
as a generative encoding. Multiple neurons can be created from a range
of input values. Other classical approaches of neural networks are
usually produced by direct encodings, as in the original NEAT version
and other approaches (Angeline et al., 1994; Yao et al., 1997). Moreover,
within the evolutionary loop, other machine-learning strategies, like
backpropagation, can be implemented in the neural network combining
evolutionary algorithms with other learning strategies. For example,
(Belew et al., 1992) have demonstrated that evolving the initial weights
enables back propagation to find better solutions compared to without
evolving the weights. An algorithm implementing both backpropagation
and neuroevolution would thus be similar to the approach of Hinton
et al. (1987), where development during an individual’s lifetime could
potentially increase the overall fitness. It should therefore be taken
into consideration that a learning strategy could always be additionally
implemented after a network has been evolved.

One more feature that is frequently implemented in neural networks
is central pattern generators (CPGs). CPGs mimic neural circuitry by
generating continuous activation loops within neurons. In most animals,
rhythmic activation of motor neurons enabling locomotion is regulated
by some sort of CPG (Bear et al., 2016). The activity patterns generated
by CPGs are important for locomotive gaits since they provide rhythmic
actuation of muscles (Still et al., 2006). As CPGs do not require any sensory
information, they may be of particular importance in evolving robots.
Therefore, patterned inputs to the simple neural networks used in Chapters
6 and 7 implement a patterned input to the neural networks of the modules
by simple sinusoidal functions.

Neural networks are usually implemented as centralized control
strategies in robots; one controller processes all the inputs and generates
all of the outputs across the entire robot. A neural network creates
outputs based on the network topology, internal activation, and the sensory
input. In the case of CPPNs, the network has also been used to create
the robots themselves, where control can be localized, producing a type
of decentralized control. Auerbach et al. (2011) and Cheney et al. (2013)
have shown how local body parts created by the CPPN also encoded for the
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FIGURE 4.1: Approaches to controlling a modular robot.
Illustration on how the generative and direct encodings
are used to ultimately create robots. The dark blue lines

represent the approach taken in this thesis.

control system in the robot. In modular robots, this type of decentralized
approach is already prevalent where individual modules can be assigned
“roles” and act accordingly (Støy et al., 2002). The ability of the change in
these roles further increases the adaptiveness of the robotic system (Pfeifer
et al., 2006).

As is described in Chapters 5,6, and 7, a Lindenmayer system (L-system;
Lindenmayer 1968b) has been implemented as the generative encoding to
create robot morphologies, an approach similar to Hornby et al. (2003).
The L-system was initially chosen as a plant-inspired approach to creating
robots. Additionally, each of the different modules was controlled by a
neural network where inputs and outputs could be distributed from one
module to the next. Each module exhibited its own role through its neural
network, modularity again being effective for isolating the functionality
in specific parts of the robot (Stoy et al., 2010). The basic approach to
controlling the modular robot is thus guided by a generative encoding and
results in a decentralized control, as illustrated by the dark blue arrow in
Figure 4.1. The other arrows in Figure 4.1 depict a few other potential
pathways one can take to create a decentralized or centralized approach
to controlling robots when implementing neural networks.

Though natural systems might seem to exhibit control in a centralized
manner, many organs and tissues also contain local control elements. One
of the most prominent examples is the nervous system of octopuses whose
neurons are largely distributed throughout their entire body. Each of their



4

4.1. Neuroevolution 97

Dependency on V-REP

Evolutionary 
Algorithm

V-REP Plugin

Modules

MorphologyNeural Network

Neurons

Genome

Environment
& Fitness Function

FIGURE 4.2: Overview of the evolutionary robotics
plugin. The plugin starts an evolutionary algorithm
which in turn incorporates an environment with a
fitness function, and a population containing randomized
genomes. A genome can, in turn, directly contain a
neural network (dashed orange line), but in the modular
approach, the neural network is actually included in the
modules themselves. The morphology and modules are
dependent on V-REP since they contain either specific
functions to be called in V-REP or need to load V-REP-
dependent model files. A full UML can be found in

Appendix B.

arms contains a staggering 3 million motor neurons (Levy et al., 2017).
This can have several advantages for octopuses. For example, reflexes
and reaction speed of arm movements are quicker when their control
is localized. The octopus has therefore also been an interesting model
in itself, as discussed by Laschi et al. (2012). The reflexes are similar
to how they are controlled in, for example, the lower body of humans
through a feedback loop from the spinal cord rather than the brain. In
contrast to the usual centralized controllers, a modular approach can lead
to decentralized control scheme where parts of the body are controlled
locally—a decentralized embodiment of robotic control.
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4.2 Overview of the Evolutionary Robotics
Plugin

The robotics simulator used in this thesis was Virtual Robot Experimenta-
tion Platform (V-REP; Rohmer et al. 2013). This simulator was chosen since
it is open-source and has many capabilities through which one can interface
with it using various coding languages. To potentially maximize the perfor-
mance, a C++ based plugin was developed and integrated with V-REP as
a Dynamically Linked Library (DLL) plugin. The DLL plugin commu-
nicated with V-REP continuously: at start up, and, most importantly, at
every simulation time-step. The DLL plugin was developed through using
a C++ based template provided by V-REP that communicated with V-REP
through functions that were called during the start, stop, and iteration of a
simulation.

For the evolutionary algorithm, a loop was integrated automatically,
starting and stopping the simulator based on a settings file that
was modifiable. The main function of the DLL was to instantiate
an evolutionary robotics class, which was linked to the evolutionary
algorithm. This class encapsulated the environment, morphology, and
control with three abstract factory patterns. The abstract morphology and
control classes could moreover contain class instances of modules and
neurons, respectively. The modules and neurons were also created using a
factory pattern and were instantiated whenever the settings file contained
information indicating that they should be used.

The total of five factory patterns created robots, with neural networks
and modules, in specific environments, which depended on the initial
settings. This approach enabled the quick replacement of a type of module
with another type of module by simply specifying in the settings file which
modules the factory pattern should instantiate. The aim of this approach
was to keep the simulator as flexible and accessible as possible. In theory,
another researcher could create and integrate another module to directly
incorporate it and evolve this new module with the existing modules by
either supplying a “.ttm” file (model file in V-REP) or a blueprint C++
class describing how the module should be constructed and controlled.
However, though potentially a useful tool for other researchers, the main
purpose of the simulator was to conduct scientific experiments, and
therefore the functionality and the flexibility of the simulator in this state
were obviously limited and contained messy code. Instead of a detailed
description that consumes numerous pages, some important highlights
are given to further explain its functionality. The basic functionality can
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be located in Figure 4.2, while a full UML description is provided in
Appendix B.

4.2.1 Evolutionary Algorithm
The evolutionary algorithm was implemented in two ways: (1) in the
main loop of the DLL plugin, and (2) as a server-client implementation.
In both cases it was initially written as an SSGA. It has been extended
to encompass other types of evolutionary algorithms, though these were
not implemented in the experiments in the remainder of this thesis. In
the first approach, where the evolutionary algorithm ran in the main loop
of V-REP, it simply initialized a random population of individuals by
instantiating a fixed number of genomes for a given population size. The
simulation subsequently began by sequentially evaluating the genomes in
the population through the following steps:

1. Construct the Robot and its control from the genome
2. Initialize its position
3. Start the simulation and update its control at every simulation time

step
4. Receive a measure of fitness based on, e.g., distance traveled or energy

acquired after a specified period

From here on, it followed the same steady state evolutionary loop as
explained in Section 2.6. After a specified number of generations, the
genetic algorithm elicited a stop function that shut down the simulator.

The later server-client implementation was used to evaluate multiple
individuals in parallel, speeding up the evolutionary progressions and
allowing parallelized single runs on computer clusters. This required one
processor of a node on a cluster to be responsible for the evolutionary
algorithm while a number of client applications (depending on the number
of processors available on a node) of V-REP applications booted and waited
for commands from the server. The server application ran the evolutionary
algorithm, created genomes, and stored the genomes in a shared folder.
Once a generation of genomes was created, the server sequentially assigned
a client instance to evaluate a specific genome. After the client was done
evaluating a genome, it sent a fitness value back to the server application
that was in turn stored in the client application. Since genomes could result
in different phenotypes, and thereby different computational requirements
per client, as soon as a client was done evaluating an individual, it received
a new genome from the server to evaluate. This process was repeated
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in every client until the entire generation was evaluated. Once every
individual in a generation was evaluated, the server incremented the
evolutionary algorithm by going through the selection, reproduction, and
replacement phases, producing a new generation of individuals. Based on
the fitness values, all elites of the genomes were stored in a specific shared
folder. The size of the robots that were simulated by the client applications
could vary in size, which impacted the computational requirements in each
different run. The runs that evolved smaller robots were therefore also
significantly quicker to evaluate since the computational requirement was
significantly reduced.

For testing the simulator, the plugin was used to directly evolve a
population on a single terminal with a windows operating system. The
server-client implementation was mainly used on a computer cluster,
though could also be used on in a windows operating system directly. This
server-client implementation is thereby still useful on a personal computer
when using multi-core processors.

4.2.2 Morphology
Each genome stores a base class reference to a morphology. The
morphology type, instantiated by the morphology factory, is acquired from
the settings file. This morphology type indicated that the genome should
load either a fixed or a modular morphology. This fixed morphology was
used in Veenstra et al. (2015), and the modular morphology is used in this
thesis. This modular morphology, construed by a generative encoding,
was randomly initialized for the initial generation. In the simulation
environment, each variable of the implemented L-system represents a
specific module state which encompasses all of the parameters of the
morphology, control, and attachment rules inherent to a module state. The
genome of the generative encoding is thus composed of a fixed number of
module states predefined before an individual is generated and evaluated
in the simulation environment. The mutable parameters of the module
state are used to create new types of attachment rules and connections of
the modules. The manner through which these rules produce the modular
robots is discussed in the next few chapters and is therefore not illustrated
here. It is illustrated in detail in Figures 5.4 and 6.3.

All modules have a male connector site and zero or multiple female
connector sites. When assembling a modular robot, the robot is constructed
from an initial module (axiom). This initial axiom of the L-system is always
the first module type that is defined in the settings file. Male connector sites
of other modules can potentially connect to the female connector sites of
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FIGURE 4.3: Illustration of the interface designed for
the evolutionary robotics plugin. The interface shows
a few adjustable parameters on the left with some menu
options to select different parameters used, for example,
for the modules, the type of controller or the environment.
The right side can be used to quickly see the evolutionary
progression. The interface is a standalone C# application
that creates a settings file and begins V-REP by passing

arguments to the application.

the initial module. Through this process, the modular morphology can be
represented by a tree, and hence the use of an L-system is further justified.
Each module type that has been elicited for use by the evolutionary robotics
plugin stores information about the child modules and their orientations
that specify how the modules are connected when incrementing the L-
system. However, when this incremental step causes a generated module
to collide with an existing structure, it will not be created. The outcome of
the structure is thus also influenced by the environment as in a context-
sensitive L-system (Prusinkiewicz et al., 1990). Each module is created
directly by an instantiation of a virtual module class. This module class
contains all of the instructions to construct and subsequently control the
module if it contains any actuators.
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FIGURE 4.4: Example of growth in the simulator. These
images display how the morphology can change after two
additional developmental iterations (right) from an initial

morphology (left), based on the L-system

4.2.3 Control
The control of the modules is regulated by neural networks that were
generated for each module. In Chapters 6 and 7, the neural networks used
for each module type were, however, simple and open-loop; the networks
didn’t utilize any sensory input other than predefined actuation functions.
The neural networks consisted of three layers: a feedforward input layer, a
potentially recurrent hidden layer, and an output layer. The input neurons
could be connected to sensory input such as light absorption or servo
position. The output neurons could be connected to available actuators in
the modules. The input neurons could give a time-dependent patterned
output that was defined by a sinusoidal function when specified. The
amplitude, frequency, and phase offset in the sinusoidal input neuron were
mutable parameters.

The neural network was initially developed to allow complex commu-
nication patterns to arise in the modular robot between modules. This was
done through allowing additional input and output neurons across diffe-
rent modules to influence one another. For example, an output neuron
could connect to the input neuron of an adjacent module directly. These
implementations are reserved for future experiments using the evolutio-
nary robotics plugin to evolve modular robots. This will hopefully shed
light on how to improve designs in robots and whether it is efficient to
control a robot in either a centralized or a decentralized manner.
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(A)

(B)

FIGURE 4.5: Two modular robots controlled by decen-
tralized neural networks. The color of the individual
modules represents the output of the neural networks

which ranged from -1 (black) to 1 (white).

4.3 Current State and Functionalities

The current state of the simulator permits the adjustment and control
of many parameters of the evolutionary robotics plugin. A small user
interface was developed to quickly see the effects of a specific evolutionary
approach (Figure 4.3). In this user interface, the parameters of the
evolutionary algorithm, the encoding, the environment, the control type,
and the fitness function can be specified.

Some noteworthy additional features were implemented to potentially
improve the effectiveness of the evolved modular robots. One of these
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features was online growth of the robot (Figure 4.4). This function was
implemented since growth was one of the objectives of the plant-inspired
approach to building modular robots, where the input of a light sensor
input could potentially guide the addition of new modules towards a light
source, similar as to Zahadat et al. (2017). However, growth is not used
since the current setup would require a human-in-the-loop (requiring a
human to physically adjust the robot during its lifetime) to adjust the
phenotype of the modular robot. This would make the acquisition of
modular robots more complex since a researcher would not only have to
evaluate an evolved robot in the real world by assembling and controlling
it, but also through adjusting it during its lifetime. A truly autonomous
approach would be to facilitate the modular robot to self-reconfigure.
One approach to accomplish this is through using a industrial robot arm
to construct the modular robots; this approach is briefly discussed in
Chapter 8.

Another feature not utilized but worth mentioning is the connectivity
of separate neural networks in each module whose activation could be
visualized as seen in Figure 4.5. The figure shows that neural networks
with a single output ranging from -1 to 1 can control the desired angle
of the servomotors. While an output of 0 keeps the servomotor in the
center (grey), an output of 1 moves the servomotor +90 degrees (white),
and a value of -1 moves the servo -90 degrees (black). The movements
were controlled by PID controllers that were similar to the implemented
Robotis AX-12a and AX-18a servomotors used in the real modules. Cheney
et al. (2013) have similarly visualized the voxels of a simulated soft
robot depending on their activation pattern useful to directly see how the
phenotype adjusts itself to input signals changing over time.

The implementation of communication between modules sprouted
from an investigation on the effect of the directionality of communication
between neural modules. In a decentralized control, communication from
the axiom module to the distant modules, vice versa, and communication in
both directions were possible. Here, the sensory input and motor output
can be transmitted across the modular robot. This approach may shed
light on whether a decentralized embodied control of modular robots is
advantageous. Which implementation is truly useful and whether any of
these implementations could explain signal propagation in nature remain
to be evaluated in future experiments.
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(A) (B)

FIGURE 4.6: Module connection site. (A) The connection
mechanism of the modules is composed of a female
connector (left and middle) and male connector (right).
Each module contains six channels through which
modules can distribute power (PWR), ground (GND) and
data (D1,D2,D3,D4) from one module to another. Both
the male connector and the female connector have copper
pads. Spring pins are attached to the pads on the male
PCB. These spring pins (right) allow for a current to
flow between modules (B). The connection sites contain
magnets through which male sites can be connected to
female sites. The blue (left) PCBs have places to connect
the spring pins and is used for the male connector sites
while the black (right) PCBs are used for the female

connector sites.

4.4 Real Modules

In conjunction with the modules designed for the simulator, some of the
modules were also created in reality. The modules that were used in
Chapter 6 were based on modules that were collaboratively developed. The
EMERGE module, which is a variation of the module used in this thesis,
is discussed in Moreno et al. (2017). 1 In the EMERGE module, PCBs
have been developed with additional infrared sensors that have not been
implemented here. Instead, I have designed PCBs with six, rather than 3
to 4 electrical channels. The six channels allow electricity to flow both to
and from a power source allowing for the potential automated charging
of a power source. However, more channels meant less space; hence, no
infrared sensor was integrated.

1An overview of the different module types and the parts needed to construct them can be
found here: https://sites.google.com/view/emergemodular/home
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FIGURE 4.7: Interface Connector. The picture displays
the connection site, USB cable and power hub that powers
and controls the modular robot. This connection site could
be connected anywhere on a female connection site of the

modular robot.

The connection mechanisms and the servomotors used where the same
in the different module types. The specific mechanism that connects the
two modules, and the PCBs attached to these connection sites, is depicted
in Figure 4.6. The real modules are connected to one another via magnet-
based connection sites (Figure 4.6a). The connection sites contained PCBs
with pads and spring pins that enabled electricity to be routed between
modules. As mentioned, the connection sites could be either male or
female. The male connector sites contained spring pins that were soldered
on the pads of the PCB (Figure 4.6b). The female connection site contained
3mm pads to ensure a connection with the spring pins on the male
connection site. The PCBs included six separate channels through which
electricity could be routed. 3D printed hulls housed four cylindrical NdFeB
(neodymium, iron and boron) magnets (12mm diameter, 3mm depth). Two
magnets could hold one another together with a force of roughly 13.5N. The
male connector hull had protrusions that ensured the fit and connection of
the male connector to the female connector.

Two solar panel modules have been designed for the modular robot
and were implemented in the experiments discussed in Chapter 7. One
“flower module” has been collaboratively designed with a MSc. intern,
Chloé Metayer. This flower contained an additional vibration sensor and
a servomotor that could open and close the module base on the sensory
input. In addition to the experiments in the next chapters, preliminary
results of the automated assembly of modular robots is also presented
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FIGURE 4.8: Collection of Modules. 5 solar panel
modules, 7 servo modules, and 3 structural modules are

depicted.

in Section 8.2 and spurred from a collaboration with Rodrigo Moreno
and Andrés Faíña. Since no evolutionary algorithm or three-dimensional
simulation was implemented in this approach, it is briefly discussed in
Part III of this thesis.

The modular robots created were connected to an external power source
and a laptop via an additional connection site (Figure 4.7). This connection
site could be connected to any open female connection site that would, in
turn, automatically power and control all modules. A personal computer
was connected to a central 3-pin power hub via a USB2AX interface. As
can be seen in Figure 4.8, the collection of modules was composed of servo
modules, solar panel modules, and structural modules. The simulator
could in turn limit the number of modules used based on the modules that
were available in reality. Therefore, it would always evolve robots that were
feasible to create in reality.

Figure 4.9 depicts how a modular robot containing five servo modules,
and a modular robot containing two servo modules and a solar panel,
could be controlled in simulation and reality. Through moving the servo
modules in reality, the real modular robot also adjusted its servomotors
accordingly. The rays that come out of the solar panel module represent
how the solar panels absorb light, the light absorption rate becoming lower
when the solar panel is not perpendicular to the light source. Ultimately,
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(A)

(B)

FIGURE 4.9: Modular robots connected to V-REP via the
plugin. A collection of five servo modules and one cube
module (B). The lines in the solar panel modular robot

depict its connection to a light source.

the connection of the simulator to the modular robot can lead to a feedback
loop of automated evolution, where multiple individuals can be evaluated
in the simulator, while some elites are evaluated in reality.
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4.5 Concluding Remarks

The evolutionary robotics plugin discussed in this chapter conveys a wide
variety of potential applications in the study of the evolution of modular
robots. The plugin implements an evolutionary algorithm, a morphology
constructed through a generative encoding, and a decentralized method of
controlling the modular robot with neural networks. It has been imple-
mented for the evolution of plant-inspired virtual creatures (Chapter 5),
comparing encoding strategies (Chapter 6) and evolving energy autonomy
in plant-inspired modular robots (Chapter 7). There are many preliminary
implementations that can shed more light on how to evolve and design
robots in the future, such as growth and decentralized control. The use
of modules is essential for the rapid prototyping of various morphologies
with corresponding control strategies, which can aid in our understanding
how to best create robots.



5

110

Chapter 5

Evolving Plant

Morphologies with

L-Systems

The chemical differences among various species and genera of animals
and plants are certainly as significant for the history of their origins
as the differences in form. If we could define clearly the differences in
molecular constitution and functions of different kinds of organisms,
there would be possible a more illuminating and deeper understanding
of question of the evolutionary reactions of organisms than could ever
be expected from morphological considerations.

– Edwin Ray Lankester

Plants are primary energy producers. Without them, we likely would
not see the higher order terrestrial organisms we see today. All organism
being tangled in a trophic structure, where organisms higher in the food
chain are solely dependent on the lowest. Where these food chains are
usually short due to inefficiencies of energy transfer across the chain (Reece
et al., 2010). For natural evolving systems, energy acquisition is therefore
most important. The design of an artificial entity can therefore start with
energy acquisition. And what better suitable model for this than plants?

In this chapter, we therefore verge in realm of phytomorphogenesis, the
acquisition of artificial plants optimized for the acquisition of light. Since
the evolved creatures are plant-inspired and have light absorption as their
fitness function, the morphologies are referred to as phytomorphologies
(plant morphologies). Although the initial aim of the presented research
was not directly related to modular robots, there are many features of plants
that make it relevant for modular robots and robots in general. This chapter
describes an approach, related to modular robots, to evolve the morphology
and a minimalistic control of plant-inspired robots. In order to achieve this,
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(A) (B)

FIGURE 5.1: Recursion and modularity in plants.
(A) Self-similarity as depicted in the fern. (B) How
self similarity can be modeled through recursion and

modularity (Prusinkiewicz, 2004).

a Lindenmayer-system (L-system; Lindenmayer 1968a; Lindenmayer et al.
1992) is implemented to see what type of morphologies emerge from the
platform. The use of L-systems for the creation of 3D robots is thereby
also used in other experiments using the robotics simulator as a generative
encoding.

Considering macro structures in different organisms, plants exhibit
many recursive patterns as self-similarity and modularity considering its
leaves and branches (Figure 5.1). As described in Section 2.3, many of
these characteristics are potentially beneficial for the evolution of any type
of agent. As plants are relatively simple organisms, investigating how to
evolve phytomorphologies might thus eventually lead to the creation of
complex robots that could display characteristics of higher order organisms
while also being ‘primary energy producers’. A curiosity that will be
investigated in this chapter is whether phytomorphologies that have been
evolved will exhibit movement to track a light source or not. Hereby
formulating our second hypothesis:

Hypothesis 2 Actuation in Evolving phytomorphologies is Beneficial for Opti-
mizing Light Absorption.
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FIGURE 5.2: Evolved Phytomorphologies. Eight of the
best evolved static individuals with their respective fitness

values.

5.1 Introduction

The development of phytomorphological elements of plants ultimately
arose from a dynamic interaction between genetic, ontogenetic, and
environmental forces. Phytomorphological traits have emerged through
the evolution and selection of plants, favoring those that were adequately
adapted to their environment. Different environments stimulate the
development and evolution of specific qualities in plants and contribute to
the adaptation of plants to specific environmental niches, light absorption



5

5.1. Introduction 113

being one of the most essential characteristics prevalent in almost all
plants. The resulting role of plants as primary consumers conveys their
fundamental impact on any terrestrial ecosystem.

Urban environments have replaced a large share of plant-rich environ-
ments, meaning that the potential energy uptake in these environments is
exposed and primed for solar exploitation. For an efficient, but still aest-
hetically pleasing, deployment of solar cells, the developmental processes
manifested by years of plant evolution is investigated. Hence, gaining
insight into how plant development works and how this can be mimicked
in intelligent robotic and autonomous systems is the main interest of this
chapter. For investigating how to properly embody such systems, an evolu-
tionary developmental model was used for investigating various factors
that have contributed to the emergence of phytomorphologies.

In plants, various signaling mechanisms have evolved to communicate
environmental factors to remote cells and tissues. Moreover, the cell walls
of plant cells contribute to the relative immobility, as well as the rigidity of
plants, limiting cell migration and thereby actuation. Lacking a nervous
system, plants are forced to utilize relatively slow signaling molecules
for communication. These molecules atone for the lack in efficient
communication mechanisms through various diffusion and transduction
pathways. The signaling molecules can be transported through an
apoplastic (through the cell wall) or symplastic (via the cytoplasm; through
plasmodesmata) pathway. Various molecules can also be transported over
long distances through the vasculature of the plant.

Although plants acquired efficient dynamic behavior that directly
influences morphogenesis, a complete modelling of plant signaling, as
conducted by Zahadat et al. (2016), was not done since this might over-
complicate the design process and the potential increased computational
requirement. Zahadat et al. (2016) have implemented a strategy that
is similar to the concept of morphogens (Wolpert, 1969), in this case
simulated hormones. Since actual robotic implementations of evolved
phytomorphologies are likely not able to grow or move once created,
grammars seem to be a suitable method to implement for generating
potential phytomorphologies. Convention approaches of these grammars
can be simulated by simple grammars have been popularized with
the use of Lindenmayer systems (L-systems; Lindenmayer et al. 1992).
Furthermore, since L-systems work with variables, they can easily be
extended to contain signal propagation algorithms, and even morphogens
themselves, if one chooses to do so. One could potentially also model
morphologies with direct encodings. A comparison of evolving robots
with these two methods is discussed in the next chapter (Chapter 6). In
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this chapter, an evolving context-sensitive L-system is implemented to
engender phytomorphogenesis of artificial plants.

5.1.1 Phytomorphogenesis
Variation in plant features is influenced by many factors, including
ecophysiological, phenological, morphological, and ontological traits.
Other important factors driving plant evolution include resource allocation,
biochemistry, metabolism, and leaf morphology and function (Ackerly et
al., 2000). All of the genes are in turn subject to evolution, and specific
genetic components are selected for across generations, where the absolute
fitness value of a plant is, in biology, determined by the number of viable
seeds it produces during its lifetime. Alternatively, as a more useful
measurement, its fitness can be represented by the amount of genetic
information it is able to propagate into the next generation. Both cases
involve a difficult-to-measure value.

However, it has been shown that the photosynthetic rate of leaves
in plants has a direct influence on the absolute fitness (the proportional
change in the abundance of a genotype over one generation) of arabidopsis
thaliana. One specific gene (Alt1g61800) causes leaves to produce more
chloroplasts when plants were placed in a different environment where
they were subjected to higher light intensity (Athanasiou et al., 2010). This
is an example of the importance of dynamic feedback to plants. Solar
cells do not have to worry about receiving too much light but a solar cells
capacity to acquire energy can be modeled as a trade-off between average
available light and amount of peak light intensity a solar panel is able to
capture. Since dynamic behavior in plants is, evolutionarily speaking, a
result of various compromises a plant takes to optimize its survival and
reproduction, this behavior might not be necessary for plant evolution
under controlled conditions. The experiments presented in this chapter
therefore focus more on investigating intrinsic properties of plants that
contribute to the generation of phytomorphologies.

Phyllotaxis is the main factor driving phytomorphogenesis (Cells, 1997).
The most common patterns formed in plants through phyllotaxis include
distichous, spiral, decussate and whorled patterns (Kuhlemeier, 2007).
Notably, the divergence angles of primordia, tissues containing cells capable
of triggering growth, of the plants differ usually by 180 90 137.5Fibonacci;
Newell et al. 2005) and some other more uncommon angles (Kuhlemeier,
2007). These mostly unimodal angles influence how well the leaves
sprouting from the primordia can absorb light and overshadow other
leaves (Falster et al., 2003). Leaves can also be positioned at a certain
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level of steepness that is advantageous for either preventing self-shading
or capturing light from the morning and evening sun (Falster et al.,
2003). Steeper angles of lamina (blade of the leaf) are also more beneficial
for plants that receive an amount of light higher than the maximum
photosynthetic potential of a plant. When the leaves are steeply oriented,
other leaves, which would otherwise be overshadowed, can receive more
light and thus the overall photosynthetic activity of the plant is increased.
Other evolutionary trade-offs that emerge in the leaves of plants include
e.g. mass-to-area ratio, sap flow versus heat processing, CO2 uptake to
water loss ratio, and the leaf size-to-number ratio (Nicotra et al., 2011).
Moreover, hormones, such as auxin, play an important role in embryonic
development, cellular elongation and phyllotaxis (Prasad et al., 2013). The
driving factors that induce phyllotaxis in plants can make the search space
of an evolutionary model quite convoluted, which artificial plants do not
necessarily have to take into account. As is discussed next, an L-system can
result in a patterned formation that is similar to phytomorphologies.

5.1.2 Simulated models
Computer models of plants have generally been implemented in computer
graphics (Habel et al., 2009) for accurate modelling of plant dynamics
(Cournède et al., 2008; Prusinkiewicz et al., 2012; Merks et al., 2013; Runions
et al., 2014) and for assessing the role of evolution on the emergence of plant
traits (Valladares et al., 2000). Moreover, evolutionary computations and
generative encodings have been implemented to efficiently simulate plant
models (Zamuda et al., 2012; Zamuda et al., 2014) with some biological
accuracy. In previous work on generating patterned morphologies, and
for keeping the morphological encoding simple, generative encoding
strategies, such as the parametric encoding used in the work of Sims
(Sims, 1994a), are usually implemented since they can recursively generate
body segments. Different types of generative encoding strategies have
been developed over the past two decades to abstract developmental
strategies towards generating both morphology and control of virtual
creatures (Eggenberger-Hotz, 1997; Yeom et al., 2010). One strategy for
generating artificial structures linked to neural networks is known as
artificial ontogeny (Bongard et al., 2001; Bongard, 2003). In this method,
an agent’s simulated spherical elements can grow by increasing in size and
splitting in two. As a result, repeated divisions can transit a single unit in
a fully developed agent. Each separately created unit contains up to six
joints and diffusion sites. These diffusion sites could in turn contain zero
or more sensory, motor, and interneurons. Despite a promising application
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of artificial ontogeny to produce plant-like structures, the implementation
of neural networks can result in a substantial increase of the search-space
making it a less attractive system to implement. Nonetheless, it would be
an interesting methodology to implement in the future.

A Lindenmayer system (L-system; Lindenmayer 1968a) is another
grammatical generative encoding approach originally used to mimic plant
development by iteratively rewriting variables and constants through a
set of rules (Lindenmayer et al., 1992). L-systems can be seen as a
developmental representation of a virtual plant. Like some other generative
encoding strategies, the similarity of L-systems to biology includes its
reuse of rules and variables comparable to how organisms reuse genes.
Further relevance L-systems have to biology can be derived from the
fact that cells, or parts of plants, can change their state, or cell fate.
This determines the behavior and ultimately the phytomorphogenesis
of plant form and structure. L-systems are thus an attractive method
to implement for creating artificial plants, both because they somewhat
mimic biological development, and because they are extremely simple
and efficiently encoded. L-systems have furthermore been used to create
the morphological structure of virtual creatures with reactive controllers
(Hornby et al., 2001). This approach can similarly be effective for the
generation of virtual plants.

5.2 Approach

Virtual Robot Experimentation Platform (V-REP; Rohmer et al. 2013) is used
as the simulator to create and evaluate plant-like robotic morphologies.
The simulated components are controlled via a C++ based DLL plugin
created with visual studio 2013 as described in Chapter 4. The plugin is
divided into three parts: a genetic algorithm, a morphology generator and
a control part. The genome of the morphology is encoded as the rules and
parameters of the L-systems. Two experiments were done to simulate 16
evolutionary runs for evolving static phytomorphologies as well as 16 runs
for evolving phytomorphologies, which contained joints that could rotate.

5.2.1 Genetic Algorithm
The implemented genetic algorithm is a steady state genetic algorithm
(SSGA; Wu et al. 1995). In our case, a random offspring is generated
asexually, without crossover, and evaluated against a random individual in
the population. Random selection and a population size of 100 individuals
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was used to keep the population somewhat diverse and to slow the
convergence of the evolving L-system to a local optimum. The genomes
of the initial population were further randomly initialized. The individuals
were evaluated based on their ability to absorb light in an environment
that only contained a flat surface, a light source, and the individual itself.
When comparing an evaluated offspring with a random individual of the
population, the offspring would only replace the selected individual if its
fitness value were higher. Based on preliminary experiments, the mutation
rate was set to 5%, meaning that each variable of the genome had a 5%
chance of being changed in an offspring. When mutating the variables,
either a completely random new variable could be assigned, or a local
mutation could cause the variable to change slightly. Where local mutations
cause a spread that used to explore the local search space, whereas the
random variable was intended to potentially promote diversity. To recall
a morphology without needing an L-system to construct it, the evaluated
morphologies were also stored.

Ten evaluation steps contributed to the eventual fitness value of a virtual
plant. At each timestep, the amount of light absorbed by the simulated
leaves of an individual was calculated. The orientation and surface area of
the leaves have a direct influence on the amount of light absorbed by the
leaves. The amount of light absorbed is calculated by the multiplication
of one light-sensitive surface area of the artificial leaf by the z-directional
vector of the leaf relative to the directional vector that is oriented from
the leaf’s origin to the origin of the light source. Furthermore, if there is
anything between the artificial leaf and the light source, the leaf does not
contribute to the overall fitness value of the individual. The light source
that directly influences the fitness of the virtual plants is moved at each
timestep. Starting at the Cartesian coordinate (2.0, -4.0, 10.0) and ending at
the coordinate (2.0, 5.0, 10.0), this light source moves in the direction of y
with a directional vector of (0.0, 1.0, 0.0) as illustrated in Figure 5.3.

The fitness function for each individual is given in Equation 5.1.

F =
nX

i=1

(
oX

j=1

↵� �
pX

k=1

�) (5.1)

The fitness F is the sum of the acquired fitness values at 10 timesteps. n
represents the upper bound of the number of timesteps. The total number
of leaves is given by o, and p represents the total number of objects formed
by the individual. ↵ represents the surface area of the artificial leaves,
which is multiplied by the z directional vector �. � represents the volume
of the objects.
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FIGURE 5.3: Movement of a light source with respect
to robot. This figure shows the top-down view of the
simulation environment with an omnidirectional light
source shown as a white dot in the bottom left corner.
The dashed blue line represents the movement of the light

source.

5.2.2 L-system
The implemented L-system was context-sensitive (Prusinkiewicz et al.,
1990). The context refers mainly to the simulated environment. For
example, in order to prevent objects from overlapping, a feedback loop to
the L-system ensures that the created morphology does not contain any
overlapping/colliding objects. The L-system contains a ten variables that
are referred to as the specific states of the objects that are created. Each
state of the object contains corresponding rule sets that define which child
objects are created. An example of how the states, rules and constants of
the L-system influence morphogenesis is displayed in Figure 5.4

The L-system generates morphologies by iterating seven times through
the state parameters of the morphology. Seven iterations were subjectively
chosen, as they seemed to display a good diversity of morphologies without
requiring too much computational power. The axiom of the L-system is a
state 0 object. Before the first iteration of the L-system, an object in state
0 is therefore created at the center of the environment on top of the floor.
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FIGURE 5.4: Three illustrations of the implemented
L-system. The genotypic representation shows how
the production rules result in the generation of the
morphology. The symbolic representation shows the
developmental instructions and the relationships between
states as similarly represented by the work of Sims (Sims,
1994a). The phenotype generated by the example is shown
on the right. Note that the + constant represents a three-
dimensional orientation to which a new object is rotated

relative to its parent.

Afterwards, the first iteration of the L-system will generate objects that the
rules in state 0 produce. Having only seven iterations, an object chain from
the initial object to the outermost child consists of a maximum of eight
objects. Some loopholes in the L-system can quickly result in a very high
computational demand, and thus specific constraints are implemented.
Every object in a given state can potentially create up to six new child
objects. The maximum number of objects that can be created is therefore
limited to 50. Likewise, the number of loops the L-system can make for
generating these objects is limited to 200 to further limit the calculation
time that would otherwise arise. To enable individuals to absorb light
from the environment, two object states of the L-system genome represent
artificial leaves that are expressed as rectangular cuboids. These leaves are
colored orange. All other states represent spherical objects that shape the
overall morphology. Spherical objects were chosen to effortlessly calculate
the position of new objects without needing to worry about collisions and
overlapping objects. The objects in four other object states are colored red,
blue, green, and yellow, while the remaining objects are colored black by
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FIGURE 5.5: Evolutionary progression of static and
actuated phytomorphologies The average fitness values
of the populations across generations. The runs are not
significantly different from one another (Mann-Whitney U

test p-value was 0.782).

default. Note that the first object created is always in state 0, which is
always colored red. An illustration of how the L-system generates the
phenotype from a specific genome is depicted in Figure 5.4.

Additional components are included in the L-system to enable
movement of the joints in simulation time. Whether a joint moves is
represented by one Boolean value. The angular rotation a joint can make
per timestep is limited to 36 degrees, meaning that a joint can rotate a
maximum of 360 degrees in a positive or negative direction during one
evaluation.

5.3 Results

As can be seen in Figure 5.5, the average acquired fitness values of the
population with static plants is similar to the fitness of the population of
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plants that could potentially actuate their joints. Since the evolutionary
runs were not normally distributed (confirmed by a Shapiro Wilk test)
a Mann-Whitney U Test was performed to see whether the results were
significantly different. As can be inferred by looking at the graph
(Figure 5.5), the Mann-Whitney U test confirms that the data is insufficient
to reject its null hypothesis. For the number of generations that we have
simulated the populations, no statistical difference between the efficiency
of static versus actuated phenotypes could be observed. Considering that
the runs shown in Figure 5.5 did not plateau, a difference might emerge
when simulating far more generations. Although a few phenotypes did
utilize moving parts (such as Figure 5.8), the majority of the phenotypes
that evolved did not move. Out of the 16 evolutionary runs of rotating
individuals, the best individuals of the final generations seldom utilized
any actuation in joints that would change the shape of the artificial plants
significantly.

The fitness values depicted in the graph of Figure 5.5 are quite arbitrary
at first sight. However, with some additional knowledge, the fitness
value can make sense. For example, the fitness value of the best-evolved
individual (Figure 5.6) was 23.841. Without the negative contribution of the
volume of the individual, its fitness would have been 31.9399. The division
of this value by the amount of timesteps results in the average surface
area of the artificial leaves that was exposed to the light source. This is
area is corrected by the relative angle the leaves had in respect to the light
source. 3.19399 m2 is thus the two-dimensional projection of the average
light-absorbing surface area of the artificial leaves. The total volume of an
individual could also be extracted by checking the negative contribution
of the volume. For the example, the total negative fitness contribution of
the volume of the individual discussed in this paragraph was 8.0989. The
total volume of the simulated individual was thus 0.80989 m3. Thus, the
phenotype seen in Figure 5.6 represents a structure with an average light
absorption area of 3.19399 m2 and a volume of 0.80989 m3.

The phenotypes of the evolved phytomorphologies are quite diverse,
and different spiral patterned morphologies can be seen (Figure 5.2). In
Figure 5.7, the best evolutionary run is mapped across different generations.
Looking at the top view of this figure, one can see that the total amount of
surface area exposed by the artificial leaves (orange rectangles) gradually
becomes larger.
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FIGURE 5.6: The phenotype of the best evolved indivi-
dual. Note that object chains are surrounded by artificial

leaves

5.4 Discussion

An evolutionary developmental algorithm was employed to engender
various phytomorphologies optimized to absorb light. As can be seen in
Figure 5.2, a wide variety of phytomorphologies evolved. Functionally,
these evolved morphologies do not look particularly optimal for light
absorption as one would expect all of the orange surfaces to point
somewhat upwards, instead of in the various directions shown in the
resulting morphologies. Making longer evolutionary runs could shed more
light on whether the evolutionary L-system can generate models that are
more efficient. Moreover, actuating the morhologies did not change the
population fitness values significantly when compared to the statically
simulated populations. Blind tracking of a moving light source may
have caused the search space to become more convoluted, making the
algorithm inept for finding solutions where actuation was more beneficial
than not actuating anything. Another explanation is that growing many
leaves is simply more useful than considering movement and actuation.
Considering that plants do not exhibit complex light tracking behavior in
most cases, the conditions set in the experiment were not enough to confirm
Hypothesis 2.

The evolved virtual plants were quite voluminous considering that
the volume has a negative effect on the fitness value. However,
making large objects and dispersing the morphology over a large area,
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FIGURE 5.7: Illustration of an evolutionary progression
A top view of individuals of one evolutionary run is
depicted to illustrate how evolution shapes new more
efficient individuals. The figures depict individuals from

generation (gen) 20, 120, 220, and 320.

while making leaves with a thin volume but large surface area, is an
intuitive result given the simulation environment. It is expected that
different phytomorphologies arise when artificial plants have an additional
restriction to grow horizontally. In biological environments, factors such
as the overshadowing of neighboring plants form an additional pressure
that stimulate specific types of plants to grow tall quickly. Co-evolving the
same L-system can therefore yield results that are more diverse than the
ones described in this chapter.

Considering the results, various future improvements of the evolutio-
nary algorithm may increase the efficiency of a population to traverse the
search space. Since no crossover function was implemented, this might
definitely increase the efficiency of the evolving L-system, considering that
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FIGURE 5.8: Evolution of movement? An individual that
rotated some of its joints during the simulation. T0, T2, T4

and T6 represent the respective timesteps 0, 2, 4 and 6

specific states and rules of the L-system can be recombined between indi-
viduals within the population. As mentioned earlier, the implementa-
tion of neural networks in addition to artificial development can be inte-
resting for developing more dynamic morphologies (as in Bongard et al.
2003). Moreover, morphogens (Wolpert, 1969) are also an attractive stra-
tegy to implement to mimic long-range communication in plants. An algo-
rithm that checks for diversity, besides quality, as has been implemented in
novelty search (Lehman et al., 2008), might also be useful to speed up the
search process. Moreover, novelty search can lead to the evolution of very
distinct morphologies making it more useful for people that possibly want
to generate phytomorphological structures for aesthetic purposes. Addi-
tional implementations that have not been published, but which might be
interesting for the reader, are displayed in Text Box 5.4.
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Text Box 5.4: Additional Implementations

Prior to the publication of the work shown, an approach that was more related
to Sims (1994a) was taken to create the actual morphologies. The difference
between the approach described in this chapter was that objects were able to collide
and simple rectangular shapes were used. Rectangular shapes were eventually
less computationally demanding. This approach was, however, altered with the
thought of crossing the reality gap in the future. The spherical approach was
therefore easier since collisions were easy to avoid. Aesthetically, the rectangular
phytomorphologies look more interesting, though this also depends on personal
taste (Figure 5.9).

FIGURE 5.9: Generated phytomorphologies. Collection
of various randomly created and evolved phytomorpho-

logies using the robotics simulator.



5

126 Chapter 5. Evolving Plant Morphologies with L-Systems

5.5 Conclusion

L-systems can be utilized to create a wide variety of three-dimensional
phytomorphologies that can be optimized for light absorption. These
phytomorphologies were generated with the aim of implementing them
in urban environments for both functional and aesthetic purposes.
Interestingly, evolution did not exploit possibly beneficial joint actuation
but instead converged on various types of static phytomorphologies. The
plots did seem to somewhat plateau and noticing that movement has
not evolved leads us to reject Hypothesis 2. In our system, it is more
likely to simply grow many leaves than to additionally actuate them.
This evolving L-system can be extended by implementing additional
algorithms to increase the effectiveness of traversing the fitness landscape
for acquiring both more efficient and unique phytomorphologies. It can
moreover include a potential dynamic feedback controller than might lead
to movement in leaves that aids the individual.
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Chapter 6

Comparing Encodings for

Evolving Locomotion in

Modular Robots

Today’s organisms are phylogenetically descended from others which
were vastly simpler than they are, so much simpler, in fact, that
it’s inconceivable, how any kind of description of the latter, complex
organism could have existed in the earlier one. It’s not easy to
imagine in what sense a gene, which is probably a low order affair,
can contain a description of the human being which will come from
it. But in this case you can say that since the gene has its effect
only within another human organism, it probably need not contain a
complete description of what is to happen, but only a few cues for a few
alternatives. However, this is not so in phylogenetic evolution. That
starts from simple entities, surrounded by an unliving amorphous
milieu, and produce, something more complicated. Evidently, these
organisms have the ability to produce something more complicated
than themselves.

– John von Neumann, Theory of Self Reproducing Automata

The use of physical modules in robots enables both the morphologies
and the controllers of robots to be subjected to evolution. The modular
robotics approach additionally allows us to potentially quickly create the
modular robot in the real world. It can then serve as a fast prototyping
mechanism to evaluate different phenotypes in the real world. However,
one major constraint is the modeling of the modular robot. To subject a
modular robot to evolutionary algorithms requires an encoding from the
genotype to the phenotype. This encoding greatly influences the emerging
phenotypes of the robotics platform and should be considered in order to
either explore or exploit specific parts of the search space.
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Andres Faina had already developed a system capable of evolving
modular robots originally developed for ROS (Robot Operating System).
Since we thought V-REP was a promising new robotics simulator, Andres
implemented the direct encoding he wrote for evolving modular robots
(Faiña et al., 2011; Faíña et al., 2013) to V-REP. This enabled us to
compare both the algorithmic implementation of the direct encoding and
the generative encoding of the L-system as developed in Chapter 5.
Although his API was written in Java, and mine in C++, the results of the
evolutionary experiments were observed in two separate implementations.
The modules, stored as .ttt files, were simply loaded by the algorithms.
For this implementation certain optimal parameters were set based on
evaluating the performance of various parameters (tuning mutation rate
etc.). These settings were afterwards fixed for our experiments. Since
a generative encoding creates a mapping from genotype to phenotype
that includes more recursiveness compared to than a direct encoding, the
expectation was that the generative encoding would be more efficient
than the direct encoding for evolving modular robots. Hence the third
hypothesis of this thesis:

Hypothesis 3 A generative encoding increases the efficiency of evolving modular
robots compared to a direct encoding.

6.1 Introduction

Evolutionary robotics has covered a vast amount of research on the
automated design of robotic entities via artificial evolution (Lipson et al.,
2000; Hornby et al., 2003; Eiben et al., 2013). To rapidly explore different
robotic morphologies and control systems that can be physically assembled
in the real world, robotic modules are useful as evolutionary building
blocks, a robotic module being an independent unit that encapsulates part
of its functionality (Stoy et al., 2010). This encapsulation is important for
the (re)configuration of modular robot compositions. In contrast to static
robotic entities, modular robots can be reconfigured to enable researchers
to quickly explore different morphologies.

However, it is difficult to design a representation of the genotype to
phenotype mapping of a modular robot, and we can either evolve all
parameters of every simulated module or reuse parts of the genome to
construct and control a modular robot. The latter approach—a generative
encoding—would require a smaller genome and could in turn evolve
decent morphologies and controllers more quickly. In contrast, evolving
all parameters of every robotic module enables us to fine-tune behavioral
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parameters, but also increases the search space. So, is it more efficient to
fine-tune or to have recursive morphologies and control? Both encodings
greatly influence the functionality of the evolutionary approach since being
able to fine-tune is more likely an exploitative evolutionary approach while
the abstractions taken in a generative encoding are likely more explorative.

In nature, most multicellular organisms develop from a zygote (Reece
et al., 2010). The zygote and its genome comprise the developmental
representation of the organism (Floreano et al., 2008). The resulting
developmental process allows for the reuse of genes, which can give rise to
recursive structures in the phenotype. Computational models representing
an artificial organism’s phenotype either use a direct or generative
encoding (also known as indirect encoding). A direct encoding constitutes
a one-to-one mapping of genotypic components into the phenotype,
meaning that the genes encode for every simulated module. In contrast,
generative encodings—similar to the development of an organism from
a zygote—reuse elements of the genome for constructing the phenotype.
Generative encodings have a smaller genotypic space due to this reuse of
genes.

Since the morphological search space in modular robots is limited to
the number of connection sites available on each module, encodings that
directly map the assembling process of modular building blocks have been
implemented for the generation of robot morphologies (Marbach et al.,
2005; Faíña et al., 2013; Guettas et al., 2014). Usually, these direct encodings
implement an additional symmetry operator that increases the effectiveness
of artificial evolution. A multitude of simple generative encodings have
been implemented to evolve robot morphologies and control (Sims, 1994b;
Hornby et al., 2001; Auerbach et al., 2011; Cheney et al., 2013) and discussed
how to quickly evolve useful robot morphologies. It is, however, unclear
whether designing platforms that evolve modular robot morphologies use
a direct or generative representation, and if the generative encoding is still
useful when just a few modules are being used. A generative encoding
should no longer have an advantage if the genetic sequence space in both
encodings is of similar size since the number of mutable parameters is
equal.

Whether a generative encoding or a direct encoding is more useful
for evolving modular robots for locomotion is the main concern of this
chapter. Moreover, the experiments that described use modular robots
of different sizes, only allowing a certain number of modules to be
simulated in an individual. Both encodings make use of evolutionary
algorithms to optimize the simulated robots. The direct encoding utilizes
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the “evolutionary designer of heterogeneous modular robots” (Edhmor; see
Subsection 6.2.2) system (Faíña et al., 2013). Edhmor contains a specific
evolutionary algorithm that evaluates robots through multiple mutation
phases, as explained in Subsection 6.2.2. The generative approach utilizes
a steady state evolutionary algorithm (Syswerda, 1991). The generative
encoding is based on a parallel rewriting system called a Lindenmayer
System (L-system; Lindenmayer 1968a) as discussed in Chapter 5. The
main difference between both implementations is the size of the search
space. The search space of the direct encoding grows exponentially with
the number of modules that determine the number of mutable parameters.
The search space of the generative encoding stays roughly the same
size. Although more variants in phenotype are available when allowing
more modules to be simulated, the genome of the individual stays the
same size. The ability of the direct encoding to mutate parameters of
individual modules enables more local, fine-tuning improvements. In
contrast, since small mutations in the generative encoding can lead to
drastic phenotypic changes, the generative encoding might be more prone
to stagnate in local optima. Though the scope of this chapter does not
encompass transferability, the implemented encodings serve as a stepping
stone towards evolving feasible modular robotic entities in reality.

6.2 Methodology

Many modular robotic systems make use of central pattern generators for
controlling the modules (Kamimura et al., 2005; Sproewitz et al., 2008;
Bonardi et al., 2014). These central pattern generators are derived from their
natural equivalents seen in biology (Still et al., 2006; Ijspeert, 2008). The
implementation of modifiable central pattern generators seems a logical
step toward evolving modular robots. However, this convolutes the search
space of the evolutionary system unnecessarily for the aim of this chapter.
To still achieve a patterned output in the modular system, sinusoidal
functions control each module individually in a decentralized manner. By
fixing the morphological parameters of the simulated modules and limiting
the control parameters of the modules to sinusoidal functions, we were able
to analyze how the different encodings can be implemented for evolving
robotic structures. For evolving simulated robot morphologies, two
evolutionary platforms were used to evaluate the direct and the generative
encoding. Both platforms employ the robotics simulator “Virtual Robot
Experimentation Platform” (V-REP; version 3.32; Rohmer et al. 2013). The
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(A) (B)

FIGURE 6.1: Illustration of simulated and real modules.
Modules in the real world (A) and in the simulator (B).

next sections discuss the common elements, as well as the differences for
each platform.

6.2.1 Common Elements for Both Platforms
Both encodings simulate the exact same modules modeled in V-REP. A cube
module and a servo module were designed for the platforms. The modules
are based on earlier designs of physical modules (Figure 6.1a). In turn,
the simulated modules (Figure 6.1b) are modeled according to the physical
properties of these modular units. The real modules can be attached to
one another via magnets, and the breaking force and torque parameters
resulting from these connections is modeled in the simulated modules.

The modules contain male and female connection sites that enable the
modules to connect. The connections are modeled with a force sensor
in V-REP. If the force on a connection site exceeds 1.7Nm of torque or
80.0N of force, the force sensor between the modules breaks leading to
fragmentation of the morphology. Ten consecutive threshold violations for
the force sensor had to be registered before a connection could break.

The cube module (dimensions x, y, z are 55mm, 55mm, 55mm; weight is
100g) is used as an initial building block for the modular robot to which
other modules are attached. This cube has five female connection sites
(top, right, left, front, back). The servo module (dimensions x, y, z are
55mm, 55mm, 80mm; weight is 160g) has three female connection sites
(top, right, left) and one male attachment site (bottom). The bottom male
connection site of the servo module is thus able to connect to any of the
female connection sites of other cube or servo modules.
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The joint of the servo module implements a PI controller (P is 0.1 and
I is 0.01) and could exert a maximum torque of 1.5Nm. A sinusoidal
wave function controls the position of the joint in the servo module. The
maximum amplitude of the sinusoidal wave function ranged from -90nd
+90egrees from its original position. The offset, phase, and amplitude of the
sinusoidal function are mutable parameters. When a new module is added
to the simulation, only the male connection site of the new module can be
connected to any female connection site of the robot. The new module has
four different orientations in which it can attach to a new connection site
(note that the number of orientations is a bit different in the direct encoding:
Subsection 6.2.2). The servo modules implemented the default simulation
material, while the cube module used the “rest_stack_grasp_material” as
material types simulated by V-REP.

The goal of the simulated robots was to move as far away from its
initial position in a horizontal direction as possible within 20 seconds of
simulation time. This distance is measured by the horizontal distance that
the initial cube module has traveled. Before starting a simulation in V-
REP, modules are joined together to form a robot morphology. The entire
robot is then shifted upwards so that its lowest point is 0.1 millimeter
above the simulated ground. To take into account the movement due to
the robot simply falling over, the distance traveled in the first 2.5 seconds
of the simulation is discarded. An additional cost function was added to
compensate for modules that were disconnected due to the breaking of a
connection site. The fitness value of each individual is directly correlated to
the horizontal distance traveled, multiplied by the number of connections
broken between the modules to the power 0.8, and can be derived from
Equation 6.1.

F =
p
(pex� p1x)2 + (pey � p1y)2 ⇤ ⌘0.8 (6.1)

F represents the fitness value obtained by calculating the eventual position
(pe) minus the position after 2.5 seconds (p1) traveled in both x and y
directions. ⌘ represents the number of broken module connections of the
morphology after 20 seconds of simulation time.

A simulation environment consisted of a default floor and was
simulated using the bullet dynamics engine (version 2.78). The dynamics
settings were set to accurate (default) with a timestep of 50ms. Six
experiments were done comparing the different encodings. Three of
the experiments ran 12 evolutionary runs whereby a maximum of 5, 10,
or 20 servo modules and one cube module were allowed. These three
experiments were done to see how the direct encoding performed. The
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other three experiments analyzed the efficiency of the generative encoding
and were composed of 12 evolutionary runs simulating a maximum of 5,
10 or 20 modules. The runs were limited to a fixed number of evaluations.
In the simulations that could simulate a maximum of five modules, 12,500
evaluations were done. The other runs were limited to 25,000 evaluations;
more evaluations were performed in these runs since the search space was
larger when increasing the number of simulated modules. Twenty five
thousand evaluations were chosen as a trade-off between performance and
computational requirements. Since a high-end physics simulator is used,
the computational requirements are considerable. The next sections cover
the direct and indirect encodings in more detail.

6.2.2 Direct Encoding
The “evolutionary designer of heterogeneous modular robots” (Edhmor;
Faiña et al. 2011; Faíña et al. 2013) system was used as the direct encoding
strategy to assemble and evaluate robot morphologies. The Edhmor
system is organized as a tree representation, where nodes represent control
parameters of a module and its type and edges represent how a module
is attached to a parent module. The direct encoding is used together
with a constructive algorithm. This algorithm starts building a random
population of robots with just a few modules. Afterwards, different
mutation phases are applied cyclically. The mutation phases of the
algorithm are:

• Add Module: Add a module into a morphology.

• Mutate morphology: Change the orientations or the place where some
modules are connected

• Mutate control: Change the control parameters of some modules

• Prune robot: Test all morphologies generated by removing a module
and its children

In every phase, a mutation operator was applied several times to produce
different random mutations of the same individual, which were tested in
the simulator. For example, when adding a new module to a robot, five
different robots were generated and each of them had a new module placed
in different positions and orientations. These phases revert to the previous
robot if the mutation did not increase the fitness of the robot, except in the
“add module” phase. This phase forces morphological evolution to take
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FIGURE 6.2: Representation of the direct encoding. (left)
Symbolic representation of the direct encoding: each
rectangle represents a module and each arrow represents
a connection between modules. There are two numbers
for each connection, which indicate the face of the parent
where the child node is attached and the orientation of
the child node. (right) The symbolic representation of the

direct encoding that encodes for a phenotype.

place, which has been shown to be advantageous when evolving virtual
creatures (Cheney et al., 2016).

The evolutionary algorithm of Edhmor was furthermore generational;
the 10% worst performing robots were removed from the population every
cycle. Half of them were replaced by random robots with a low number of
modules; the other half were generated by applying symmetry operators to
the best robots. The symbolic representation and its phenotype are depicted
in Figure 6.2. A more detailed overview of the system can be found in Faíña
et al. (2013).

6.2.3 Generative Encoding
The implemented generative encoding is based on a context-sensitive
Lindenmayer-system (L-system; Lindenmayer 1968a; Lindenmayer et al.
1992)—a parallel rewriting system. The variables used in the L-system
represent the modules employed to construct a robot (Figure 6.3), similar
to the L-system used Chapter 5 and as described in Chapter 4. The
generative encoding was limited to using five different module states. The
first state (the axiom) represents the cube module, and the four other states
represent the servo module. The four states that represent a servo module
encode for the same module but can differ in their mutable parameters
responsible for the sinusoidal function that controls the servo module. The
attachment rules of the cube module included the information for which
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module is connected to what connection site and in which orientation. The
same attachment rules are possible in the servo modules but the servo
modules only contain three attachment sites. The implemented attachment
rules are in essence similar to the rewriting rules of a normal context-
sensitive L-system (Lindenmayer et al., 1992). It is context-sensitive since a
module cannot be placed at an attachment site if another module is already
occupying it. Furthermore, modules cannot be created if this causes a
collision with other created modules.

The internal sinusoidal function that controlled the PI controller of the
modules could be mutated in the genome of the module states. This means
that the robot can actually not have more than four distinct sinusoidal
controllers. To illustrate the different object states, they are colored by
phenotype. The modules could be either red, yellow, blue or pink
depending on their state. Four iterations of the L-system were done to
create the robot phenotypes starting with the cube module as the axiom.

All parameters of the module states were subject to evolution. There
was a 15% chance of a morphological parameter being mutated and a
5% chance of a control parameter being mutated. A symmetry mutation
operator enabled an object state to arise at the opposite site of a module
where it originally was expressed. Though symmetry is an inherent trait to
an L-system, the symmetry operator enhanced the probability of creating
symmetrical phenotypes. Since the genome of an individual is represented
by different module states, a crossover operator enabled different states
to be exchanged between individuals. The crossover function had a 20%
chance that a module state of an individual came from a different individual
than its original parent.

6.3 Results

The results of the different evolutionary runs were divided in a perfor-
mance analysis and a phenotype analysis. The performance analysis was
done to obtain clear insight into the efficiency of the encodings. Knowing
what type of phenotypes resulted from the evolutionary runs gives us more
insight into what the prominent evolved characteristics were and how we
can ultimately improve the simulator for the design of actual modular
robots.
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FIGURE 6.3: Representation of the generative encoding.
(left) The L-system parameters form the genotype of
the morphology whereby the variables of L-system are
replaced by module states. The ‘+’ constant represents the
placing of the next module at the specific attachment sites
of a module. The symbolic representation of the genotype
(middle) serves as a visualization on how the genotype

constructs the phenotype (right).

6.3.1 Performance Analysis
As can be seen in Figure 6.5, the average fitness values—as well as the
averages of the maximum fitness values—of the evolutionary runs is quite
different per encoding. The generative encoding seems to be able to quickly
find decent behaviors that are rewarded with a high fitness value. A Mann-
Whitney U test was performed at specified intervals to check whether the
encodings performed significantly different. The performance difference
was measured using the average fitness values of the maximum fitness of
each individual evolutionary run at a specified time. The test resulted in a
significant difference between evolved populations after 6,250 evaluations
(p-value: 0.000612) and 12,500 evaluations (p-value: 0.003674) when
simulating a maximum of 5 modules. There was also a significant difference
between the two encodings at 6,250 evaluations (p-value: 0.00328), not at
12,500 evaluations (p-value: 0.0124106) but again at 25,000 evaluations (p-
value: 0.001617) when evolving a maximum of 10 modules. The runs of
the simulation evolving a maximum of 20 modules were also statistically
different at evaluation 6,250 (0.00332) but not at evaluation 12,500 (p-value:
0.177805) or at evaluation 25,000 (p-value: 0.209462). The maximum and
average fitness values of the individual runs can be seen in Figure 6.4.
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FIGURE 6.4: Evolutionary progression of individual
runs. The six graphs represent the direct encoding
simulating a maximum of 5 servo modules (a); generative
encoding simulating a maximum of 5 modules (b); direct
encoding simulating a maximum of 10 servo modules
(c); generative encoding simulating a maximum of 10
modules (d); direct encoding simulating a maximum of
20 servo modules (e); generative encoding simulating a
maximum of 20 modules (f). The bold black line represents
the average maximum fitness values for all runs, while
the black dotted line represents the average of the average
fitness values of all runs. The colored lines represent
individual runs; solid lines representing the maximum
fitness of the population and dotted lines representing the

average fitness.
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FIGURE 6.5: Evolutionary progressions of the direct
and generative encoding. The above graphs display
the average maximum fitness values of the different
evolutionary runs when simulating a maximum of 5
modules (a), 10 modules (b), and 20 modules (c). The
solid blue line marked with circles represents the average
maximum fitness value of all of the runs of the generative
encoding. The red solid line marked with triangles
represents the average maximum fitness values of the
direct encoding. The dotted lines represent the median of
the two types of encodings. The thick error bars depict
the 25th-75th percentiles and the thin error bars depict the

0-100th percentiles.

6.3.2 Phenotypes
Different distinct phenotypic behaviors emerged after a certain amount of
evolutionary time. The direct encoding evolved various kinds of strategies,
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though the generative encoding had evolved simpler, distinct types of
locomotion due to the similarity in behavior seen in several modules.
Caterpillar like behavior could be seen in evolved conglomerates that were
composed of a single chain of modules (Figure 6.7b). A single chain of
modules could also result in a different type of rolling locomotion, as seen
in Figure 6.6a and Figure 6.6b. For some evolved robots, there was no
apparent logic as to how they moved. Two robots tossed their weight
around which resulted in complex rolling (Figure 6.6c, 6.7c and 6.7d),
and one robot performed a crawling (Figure 6.7e) behavior. The types of
behavior should become more evident when consulting the supplementary
video 1.

The constructive strategy of the direct encoding tends to add modules
to the robot. This results in the best individual of all of the different
evolutionary runs to be composed of 5 modules when simulating a
maximum of 5 modules. In the case that the maximum number of modules
is 10, 8 out of 12 runs have reached the maximum number of modules, and
the average is 9 modules. When 20 modules are allowed, the average is
12.33, with a standard deviation of 2.87. In this experiment, the number
of modules was limited by the fact that the excess of torque breaks the
connections between the modules, which are heavily penalized by the
fitness function.

All of the robots with a maximum of five modules developed similar
morphologies, linear structures, with a rolling behavior. One of them being
shown in Figure 6.6a. With a limit of 10 modules, branches in the structure
of the robots appear. Despite the rolling behavior still being predominant,
a crawling behavior can be found in some individuals (Figure 6.6b). When
increasing the maximum number of modules to 20, some unspecified
conglomerates of modules are found but most of the behaviors roll or crawl,
as in Figure 6.6c.

In the generative encoding, there was a recurrence of simple friction-
based phenotype (Figure 6.7a) when simulating a maximum of 5 modules.
This friction-based phenotype seemed to exploit friction parameters of
the simulator. Exactly half of the evolutionary runs that allowed for a
maximum of 5 servo modules stagnated in a local optimum with this kind
of phenotype. This phenotype was, moreover, found when simulating
a maximum of 10 or 20 servo modules (Figure 6.5). The fitness values
of these individuals were quite low, while other simple, more effective
morphologies, such as the phenotype shown in Figure 6.7b, were possible
to evolve. Considering the number of modules of the resulting phenotypes,

1The video on Evolving Modular Robots can be found here: https://www.youtube.
com/watch?v=HCDftic1AdA
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the number of modules present in all robots was considerably smaller in the
generative encoding compared to the direct encoding. The average number
of modules in the best-evolved individuals of all runs was 3.5, 6.83 and
8.615 for the runs allowing 5, 10, and 20 modules max, respectively. Five out
of 12 runs, when simulating a maximum of 20 modules, led to the evolution
of morphologies composed of more than 10 modules; 10 out of 12 led to the
use of more than 5 modules. Seven out of 12 runs simulating a maximum
of 10 modules led to the evolution of using more than 5 modules.

In the generative encoding, not all genes of module states are
represented in the evolved phenotypes. On the contrary, it seems that the
evolutionary algorithm actively selects against the use of more modules.
Out of all of the evolutionary runs, the runs with a maximum of 5 modules
only evolved phenotypes with, on average, 1.33 expressed servo module
states. The runs simulating a maximum of 10 modules had an average of
2.66 expressed servo module states, and the runs of simulating a maximum
of 20 modules had on average 2.23 expressed servo module states. The
phenotypes seen in Figure 6.7d and Figure 6.7e are examples of large
phenotypes using only two types of servo module states.

6.4 Discussion

As can be derived from the graphs (Figure 6.4 and Figure 6.5), there is a
difference in performance between the generative and direct encoding. The
most striking difference in performance can be seen in the initial phase of
the generative encoding, where it outperforms the direct encoding. Over
time, the direct encoding was able to catch up with the generative encoding
and the performance differences were no longer statistically significant.
The generative encoding still had an advantage in the long run when
only a maximum of 5 modules could be simulated. This result was
counterintuitive since it was expected that the generative encoding would
perform better in the long run when more modules could be simulated.

A smaller portion of the genome of the generative encoding can lead
to modular robots containing more modules than the direct encoding. The
number of servo module states used in the generative encoding was 2.23 on
average in the final evaluations of the evolutionary runs of the generative
encoding. Since four servo module states could be stored in the genome
it is noteworthy to see that not all genetic information is expressed in the
phenotype of the generative encoding. This result illustrates the usefulness
of reusing the genome for creating modular robot morphologies. Being able
to evolve robots with just a few genotypic parameters is an advantage, and
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(A)

(B)

(C)

FIGURE 6.6: Phenotypes obtained through the direct
encoding. Resulting phenotypes simulated with a
maximum of 5 modules (A), 10 modules (B), and 20

modules (C).

it might lead to discovering abstract recursive mechanisms that are useful
for the specified objective.

All evolutionary runs of the direct encodings led to phenotypes that
utilized more modules compared to the generative encoding. This is due
to a strong pressure in the direct encoding for adding new modules to
the existing morphology. The mutations in the generative encoding can
lead to destructive genotypes more quickly, potentially posing a limiting
factor to the number of modules simulated for the individuals. Although
the generative encoding outperformed the direct encoding, the generative
encoding was still prone to premature convergence. This premature
convergence was not seen in the direct encoding due to other evolutionary
parameters that were used in the encoding. An improved version of the
evolutionary algorithm could implement methods to increase diversity
and evolvability, as done in speciation (Cook, 1906), as implemented in
Neuroevolution of Augmenting Topologies (NEAT; Stanley et al. 2002a),
novelty search (Lehman et al., 2008) or Age Layered Population Structure
(ALPS; Hornby 2006; Hornby 2009). Regarding the L-system, an alternative
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(A)

(B)

(C)

(D)

(E)

FIGURE 6.7: Phenotypes acquired through the generative
encoding. Resulting phenotypes simulated with a
maximum of five modules (A;B), ten modules (C), and 20

modules (D;E).

generative encoding, such as a Compositional Pattern Producing Network
(Stanley, 2007), can be a relevant alternative generative encoding for
evolving modular robots (as applied in Auerbach et al. 2015). Though as
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a subjective interpretation, the L-system did evolve robots that seem to
exhibit more generic behaviors that may well aid in their transfer to the
real world (Figure 6.5).

However, in the scope of this chapter, the presented data is of limited
use for robotic applications since it is not known how well the evolved
behaviors transfer to reality. However, I expect that a hybrid approach of
the two encodings would be a useful strategy to cope with the reality gap.
The generative encoding can be used to evolve the global morphology and
control of the robot, while the direct encoding would tweak morphological
and control parameters online or in a feedback loop with the simulator. This
would be beneficial since the generative encoding cannot locally change
parameters specific to individual modules. Nonetheless, it might also be
better to evolve phenotypes using the generative encoding and have an
online learning system—such as a form of local decentralized learning
(Christensen et al., 2013)—adjust the control of the modules accordingly.

The presented semi-homogeneous modular robot system presents a
promising step in the direction of evolving feasible modular robots.
Increasing the heterogeneity in the system would give us additional insight
into how the modules can be better modeled in the future to produce even
better robots. One could think of applying additional structural modules
that have a variable stiffness. Since many organisms exploit various
biomechanical attributes—be it elasticity, friction, or strength—adding this
type of module can enable evolution to come up with morphological
solutions (Pfeifer et al., 2005) and reduce the need for every part of the
robot morphology to be actuated. Additionally, sensory modules can be
implemented to extend the functionality of the system, giving the robot
inputs to its control system. The products of evolution of these potentially
evolved heterogeneous modular robots can become experimental platforms
that can be consulted before designing and building a non-modular
equivalent.
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Text Box 6.5: Generic Phenotypes

When considering Figure 6.6 and Figure 6.7, the generative encoding, through
looking at its more generic behaviors, are easier to see how they work. Figure 6.8
depicts two phenotypes from the direct and generative encoding. Since the top
robot does not use many modules to move, its workings are very easy to deduce.
The locomotive pattern is likely harder to imagine for the direct encoding.

FIGURE 6.8: Illustration of evolved phenotypes. Evolved
morphology using the generative encoding (top) and the

direct encoding (bottom)

Curiously, the phenotype frequently evolved as depicted in Figure 6.7a,
considerably altered the performance of the generative encoding when being able
to simulate up to 20 modules, as seen in Figure 6.9. Being unable to evolve a
new morphology was detrimental to the overall performance difference between
the encodings that might have well changed the statistical significance if it did not
evolve this phenotype.

FIGURE 6.9: Prematurely converged phenotype The
figure illustrates the low fitness solution at the end of the

evolutionary run and its corresponding phenotype.
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6.5 Conclusion

Much work in evolutionary robotics has been devoted to brain-body
optimization strategies, though few studies consider the transferability of
the evolved morphologies and control systems. This approach attempts to
decrease this gap and enable researchers to quickly evolve and evaluate
robots in simulation and in reality. The presented robotic platform that
evolves conglomerates of modules has shown that a generative encoding,
despite having less optimization freedom, is more effective for evolving
locomotion in simulated robots. The reuse of genes in the generative
encoding seems to work well for the evolution of robot morphologies
and control. This is a great advantage when constructing a robot out of
many modules since many of them can be assigned with the same control
parameters. To facilitate both exploration and exploitation, I conceive that
the generative encoding is able to evolve more abstract and simple robots,
and suspect that a hybrid system would be ideal for experimenting with
the reality gap of the evolved robots. This hybrid system can initially use
a generative encoding in simulation, followed by a direct encoding that
locally optimizes parameters in a real robot.
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Chapter 7

Toward Energy Autonomy

Through Evolving

Plant-Inspired Modular

Robots

I, on the other hand, am a finished product. I absorb electrical energy
directly and utilize it with an almost one hundred percent efficiency.
I am composed of strong metal, am continuously conscious, and can
stand extremes of environment easily. These are facts which, with the
self-evident proposition that no being can create another being superior
to itself, smashes your silly hypothesis to nothing.

– Isaac Asimov, I, Robot

As stated in Chapter 5, plants as primary energy consumers are
the initial source of energy that accumulates in higher-rder terrestrial
organisms. This chapter explores how to design a robotic system with
a similar objective as plants in a potential artificial ecosystem to act
as primary energy producers. In this case, the robotics simulator, as
implemented in Chapter 6, was used, and the solar panel modules as
described in Section 4.4 were implemented. The experiments convey how
modular robots can be optimized for energy autonomy and describes the
potential applications of solar panel modules in robotics. The current
modular robots make use of energy-intensive servomotors, but these
can potentially be replaced with other, less energy-demanding structural
modules. This chapter will have a more abstract hypothesis since there
is not much comparable preliminary work that has used solar panels to
evolve robots for optimal energy consumption. Hence, the title of this
chapter begets the use of the word ‘Toward’. The hypothesis that was
formulated to guide this chapter was therefore:
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Hypothesis 4 Energy autonomy in modular robots can emerge from imple-
menting solar panel modules.

7.1 Introduction

dec
Energy autonomy in artificial systems is beneficial for long-term

autonomous behavior in single or multi-robot applications required for,
for example, monitoring and exploration. However, it can be complicated
to design energy autonomous systems since this depends on the energy
demand and energy acquisition of the robot. In evolutionary robotics,
locomotion and object manipulation are among the most prominent
objectives for robots (Vargas et al., 2014). However, the same principles
in evolutionary robotics can be implemented for energy autonomy in
robotic systems. Energy autonomy is usually implemented on different
robotic systems where the robot can utilize energy from light (Noth et
al., 2006; Afarulrazi et al., 2011) or microbial fuel cells (Ieropoulos et
al., 2003; Philamore et al., 2015). Being able to automatically design
robotic systems that are geared towards energy autonomy could give
us unintuitive solutions that might be more effective than traditional
solutions. Since plants have mastered extracting energy from light
in terrestrial environments, they are taken as a source of inspiration.
Although plants have many unique features, we do not consider the
implementation of many of them since this is either impractical or
infeasible to implement in robotic systems. However, an abstraction of
plant development is implemented in the form of a generative encoding
(Subsection 7.2.3). Having a modular robotic system that conforms to
energy optimization could give rise to self-reconfigurable robots that
maximize energy acquisition.

The ultimate mechanisms that drive evolution in organisms are enacted
through the external energy influx into an open system that innately
works against its thermodynamic equilibrium. Considering the earth as
an open system, this energy influx is mainly acquired from the sun in the
form of light, and to a lesser degree in the form of heat and chemicals
from Earth. Being able to acquire this energy from the sun to generate
complex organisms is thus vital for evolution. The initial multicellular
organisms that roamed the planet acquired energy from their environment
in the form of chemicals and light (Reece et al., 2010). These carbon-
based life forms were the precursors to plants that became the expert
terrestrial organisms for acquiring energy from light. Although plants
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appear to be slow, they are highly optimized for gathering energy from their
environment. Many plants contain track and actuation mechanisms that
optimizes their productivity by absorbing light more efficiently (Ehleringer
et al., 1980). This tracking behavior emerges in the form of circumnation
through heliotropism (Graham et al., 2013). In phototropism, a form of
heliotropism, the plant actively grows towards a light source, as in the
case of the sunflower (Atamian et al., 2016; Kutschera et al., 2016). Some
other species of plants can adjust their leaves or flowers to bend towards
the light with a structure called the pulvinus. The pulvinus is a structure
below the leaves and flowers that twists and pivots them through adjusting
turgor pressure (Song et al., 2014). In general, leaves adjust their angle
and move their surface perpendicular to the sun when conditions are
optimal in a process called diaheliotropism. These are some general adaptive
mechanisms through which a plant can adapt its morphology based on
specific stimuli. Other morphological traits are hard-coded in the genome,
such as phyllotaxis (Cells, 1997), the arrangement of leaves on a plant. Since
the number of solar modules used in the robotic system is limited, as will
become apparent in the next sections, no fair comparison can be made with
the complex forms of phyllotaxis seen in plants. However, phyllotaxis
is mainly driven by innate factors requiring limited feedback from the
environment, which is similar to the open-loop control implemented in the
generative encoding and evolutionary algorithm.

A mechanism exactly like phototropism is a feat that we are unable
to implement in the robot since this would require some form of growth.
This could, however, be accomplished with soft robots (Sinibaldi et al.,
2014; Sadeghi et al., 2017; Heinrich et al., 2016; Vergara et al., 2017).
Although allowing for continual growth shows promising bio-inspired
applications in robotic systems (Sadeghi et al., 2014), this also brings forth
difficulties regarding the reconfigurability and reuse of robotic parts. The
modular robotics approach therefore does not allow continual growth, but
enables reuse and reconfigurability. The bio-inspiration of the implemented
robotic platform is motivated by the rotational movements of the pulvinus
since this structure allows for movement of the leaves without major
morphological change. With an open-loop control system, simple control
mechanisms allow the optimal energy absorption. While artificial plant
systems have been implemented in cellular automata (Hogeweg, 1988;
Balzter et al., 1998) as well as virtual creatures (Zamuda et al., 2014; Zahadat
et al., 2016; Veenstra et al., 2016; Corucci et al., 2016), they have rarely been
investigated in a three-dimensional embodied approach other than light-
tracking solar panels (Prinsloo et al., 2015). Many evolutionary robotics
experiments have focused on acquiring behavior typical of consumers
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(Sims, 1994b; Pfeifer et al., 2006; Vargas et al., 2014), whereas this
chapter looks at how primary energy producers can evolve in artificial
systems. Some robotic platforms have been designed to cope with energy
autonomy (Greenman et al., 2003; Ieropoulos et al., 2003; Philamore et
al., 2015) although research in this area is still limited. The evolutionary
system, instead of modeling nature, aims at implementing feasibly evolved
designs into real modular robots. The modules are therefore based on a
heterogeneous modular design, a robotic module being an independent
unit that encapsulates part of its functionality (Stoy et al., 2010). The
modular robotics approach eases the construction process of different
morphologies, as well as the capability of changing the morphologies on
the spot. By simply implementing the same connection mechanism on each
module of the modular robot, different modules can be joined together
to form unique and feasible robot phenotypes. The platform thus allows
for light-absorption in a robotic system that implements actuator with
similar degrees of freedom as the pulvinus with the aid of a plant-inspired
developmental algorithm.

7.2 Material and Methods

A simulation environment is used to evolve modular robots, and the
evolved phenotypes are transferred to the real world. The simulated
robots were optimized for harvesting energy from light using simulated
solar panels. The physical robot simply follows the parameters that have
been evolved by the simulator. Different environments were simulated
that in turn shaped the search space of the robot. Moreover, five
different types of modules were designed that could be simulated. These
modules could all be connected using the same connection mechanisms.
Enabling morphological change and open-loop evolution of the control
system allows the platform to evolve unique robot phenotypes that can be
transferred to reality. The simulated robots could never use more modules
of a type than was maximally allowed. Every evolved robot could thus
be created in reality. Varying the number of solar panels that we can
implement in the robotic system gave us an idea on the number of modules
we require to evolve sufficient robotic phenotypes. A modular robot was
constructed by attaching one module to another module manually. Since
the connection mechanism is based on magnets, the construction process is
a simple snap-on procedure.

Virtual Robot Experimentation Platform (V-REP; version 3.4.0; Rohmer
et al. 2013) was used as the robotics simulation platform and the
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evolutionary algorithm was implemented as a C++ based DLL plugin. The
simulation environment consisted of a default floor and was simulated
using the bullet dynamics engine (version 2.78). The dynamics settings
were set to accurate (default) with a timestep of 50ms. The modules used
for the simulator are based on the physical properties of the real modules
(Figure 7.1), approximating similarity in size and weight. The modules
consisted of a base module, a servo module, a cube module, and two types
of solar modules, as is discussed in the next section. All modules contained
connection sites that could be either male or female. The pairing of
these two connection sites established a connection between two modules,
allowing for the composition of a modular robot (Subsection 7.2.2). A list of
the materials used to construct these methods can be found on our website.
1

7.2.1 Modules
Five different types of modules were used: a cube module (Figure 7.1a),
a base module (Figure 7.1b), a servo module (Figure 7.1c) and two types
of solar modules. One of the solar modules simply contained two solar
panels that were joined (Figure 7.1d). The other, more elaborate, solar
panel module (flower module) was designed with the aim of allowing for
more plant-like adaptive behavior in the system (Figure 7.1e). However,
the increased complexity of this flower module also brings about increased
complexity in the simulator. Therefore, this flower module was not used
in the experiments described in this chapter, but rather serves the role
of informing the reader about potential future implementations of solar
modules. Throughout different modules, all custom parts were 3D printed
using polylactic acid (PLA).

The base module (Figure 7.1b) was composed of a simple custom
structure with three female connection sites. Three female connection sites
were used to reduce the number of possible connection sites limiting the
search space of the robot. However, more connection sites could make more
sense in a future implementation of the base module, though this makes the
state space landscape more convoluted due to more possible configurations
of the modules. This base module was simulated statically, meaning that its
physical properties were not simulated. Instead, the module was fixed in
place, ensuring that the structure stayed in the same position conforming
to the sessile nature of plants. The three female connection sites were 55
by 55mm and were placed next to each other at a 45 degree angle. The

1List of Materials can be found on our website at: https://sites.google.com/view/
emergemodular/projects/energy-autonomy



7

7.2. Material and Methods 151

(A) (B) (C)

(D) (E)

FIGURE 7.1: The modules used in the simulated and
physical robot. The cube module (A), base module (B),
servo module (C), solar panel module (D) and flower

module (E).

cube module (55mm by 55mm by 55mm; weight is 300g) was used as a
structural building block for the modular robot to which other modules
were attached. This cube had five female connection sites (top, right, left,
front, back) and one male connection site (bottom).

The servo module (80mm by 55mm by 55mm, weight is 160g) is based
on a module from the EMERGE modular robotic platform (Moreno et al.,
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2017). This module contains three female connection sites, attached to the
shaft, and one male connection site on the bottom, attached to the chassis
of the servomotor. It houses a dynamixel AX-18a servomotor. In the
experiments, the range of the servomotors was limited to +90nd -90 The
difference of the servo module used in this chapter is the attribute of having
four data channels, compared to the two data channels implemented in the
EMERGE module. In addition, infrared sensors that were present in the
EMERGE module are not implemented in the servo modules used. Infrared
sensors were not implemented since they take up additional space on the
PCBs and consume additional energy. At the location of the infrared sensor
in the emerge module there is simply a 3mm-wide hole that can be used
to adjust a screw to tighten the connection between the servo bracket and
the servomotor. This tightening can in turn lead to a stiffer joint that is
harder to actuate, but is also harder to move passively. This is beneficial to
adjust on the spot since we do not want an inactive servo joint to buckle
under the weight of the robot. Servomotors closer to the base of the robot
can therefore be tightened more while those at the end can be looser. The
dynamixel AX-18a servomotor is controlled via a PID controller that is
directly connected to the robotics simulator.

The first type of solar panel module (referred to as solar module)
implemented two simple solar panels (141mm by 124mm by 6mm,
weight is 66g) on a 3D printed bracket (Figure 7.1d). Two 0.8W, 5.5V
monocrystalline silicon solar panels (118mm by 63mm) were mounted on
the case of the solar module. These two solar panels were connected in
series and could output a voltage of 11V (Figure 7.2a). An additional diode
was attached to the solar module to prevent current flowing in the opposite
direction. The current acquired from the solar panels was converted to
12V using a step-up voltage regulator (not shown in the figures) to ensure
a 12V output. This output voltage was connected to two data channels,
connected to the base module. The solar module was simulated with a basic
morphology with similar dimensions and contained five proximity sensors
to determine light absorption. These proximity sensors were positioned at
each corner and in the middle of the solar module. Each proximity sensor
served as a ray tracer simply determining whether there was an object in-
between the starting position of the ray and a light source. Additionally,
the difference between the z-directional vector of the ray compared to the
orientation of the solar panel gives us the angle at which light impacts the
solar panel. This angle of attack linearly influenced the contribution of light
absorption to the fitness of an individual.

The flower module (Figure 7.1e) is composed of five SP3-37 flexible
solar panels. Each panel is mounted on a 3D printed petal. These artificial



7

7.2. Material and Methods 153

petals could not bend, making the use of the flexibility in the solar panels
redundant. The flexible solar panels thus effectively function the same as a
regular solar panel. The five petals are connected together through a system
of cranks and a small circular platform. A rack and pinion system combined
with a small servomotor pushes the platform and actuates the petals. Two
hinge joints connect the circular platform to the petals, one at the inner edge
of a petal (center of the flower) and closer to the middle of the petal. A hinge
joint on the edge of the petals is attached to the platform containing the
rack, while the hinge joint closer to the middle of the petal is connected to
the piston. When the piston moves the rack up and down, the petals actuate
and open or close the flower, respectively. The petals can open to a certain
degree and this position can be optimized depending on the solar intake.
The energy harvested is stored in a LiPo battery. This battery was used
to power the servomotor actuating the petals, making the flower module
(not the modular robot) energy-autonomous. Though the flower module
is not used in the evolutionary runs, it can also be connected to the same
power grid of the modular robot to charge the 12V battery. Additionally,
the flower module contained a MMA842Q accelerometer (3-axis), which
enables the flower module to detect movement. This sense of movement
can inform the flower module whether it should close or open its petals
under harsh or favorable conditions. For example, at night, during heavy
rain or in windy scenarios, it would be better for the flower module to close
and protect its solar panels. Especially if the solar panels can unfold in an
origami-like manner (the original intend of implementing the flexible solar
panels), the surface area would be relatively weak, highlighting the need for
the flower and solar panels to close. The flower module contained five solar
panels and five shapes were used to simulate them. Similar to the solar
module, each solar panel simulated five proximity sensors that were used
to measure the light absorption. This led to the increased computational
requirements since 25 proximity sensors and six shapes were used in the
flower module. Therefore, the flower module was excluded in the robot
simulator.

One base module, one cube module, eight servo modules, five solar
modules and two flower modules were created in reality, and the simulator
was thus restricted to use this number of modules. This limits the potential
resulting phenotypes of the evolutionary algorithm and constrains the
search space, but enables evolution of feasible modular robots. A direct
feedback from simulated modular robots and actual modular robots is thus
present. All of the morphological parameters of the individual modules
were fixed to represent their physical counterparts. The eventual physical
modular robot was constructed based on the phenotypes that evolved in
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(A) (B)

FIGURE 7.2: Schematic diagram of the modular robot
containing solar panels. The Solar panel module consists
of two solar panels that are connected to one another in
series 7.2a. A diode is attached to prevent current from
flowing in the reverse direction. As can be seen in 7.2b the
solar panel modules pass power down to the base module

where the battery is located.

the simulation environment. An implementation of the dynamixel protocol
(protocol used to communicate with the servomotors) in the plugin allowed
for the direct control of the actual robot in the simulation environment.
The dynamixel protocol utilizes serial communication to communicate with
the dynamixel AX-18a servomotors. Through sending instruction packets,
individual motors can be controlled using a single communication bus. The
values of the dynamixel servos needed to be transformed into hexadecimal
values that indicate parameters such as the desired speed and position
of the servomotors. The solar modules implemented in the evolutionary
algorithm did not have any type of actuation. Connecting a few modules
together to form a robotic entity enabled current to flow from a power
source towards the servo modules while also allowing for the flow of
current from the solar panels to the power source (Figure 7.2b). The solar
modules could directly charge a 12V lithium ion battery that was used,
though the efficiency of charging the batteries greatly depended on the light
saturation of the solar panels.
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7.2.2 Connectivity
The real modules are connected to one another via magnet-based
connection sites, as was presented in Figure 4.6. Two of the data channels
implemented in the PCBs were used to enable a current to flow from
solar panels back towards the initial power source. Three-dimensionally
printed hulls housed four cylindrical NdFeB (neodymium, iron and boron)
magnets (12mm diameter, 3mm depth). Two magnets could hold one
another together with a force of roughly 13.5N. The male connector hull
has protrusions that ensure the fit and connection of the male connector
to the female connector. The connectivity of the modules in the robotic
system is depicted in a block diagram (Figure 7.3). Two of the channels
were dedicated to power and ground, while the four other channels routed
data channels. Two of these data channels were used to enable a current to
flow from solar panels back towards the initial power source.

In the simulated modules, a force sensor was put in between two
connection sites to detect the torque and force between two modules.
Since the modules have not yet disconnected in the physical robot, the
modules could only break from one another if 100 consecutive threshold
violations occurred where the threshold was set to 10 000Nm of torque and
80 000.0N of force. The chosen values are incredibly high to ensure that
the modules stay connected to one another except in the case of a faulty
collision. When the simulated robot simulated modules that inaccurately
collided, disconnection between modules could occur. These inaccuracies
did not occur in the eventual simulator. As a failsafe, the fitness value
of individuals that contained broken force sensors was set to 0. The
construction of the modular robot occurred before the simulation started. A
generative encoding (Subsection 7.2.3) translated the genome and created
the robot phenotype. This genome consisted of simple morphological
parameters and an additional neural network (Section 7.2.4) for the servo
modules.

7.2.3 Generative Encoding
The generative encoding was based on a context sensitive Lindenmayer-
system (L-system; Lindenmayer 1968a; Lindenmayer et al. 1992)—a
parallel rewriting system—as implemented in Chapter 6 (Veenstra et
al., 2017a). The variables of the L-system represented the different
modules of the robot. A variable describes a state that is decoded as the
morphology, control and attachment rules of the modules. In the simulation
environment, these modules represent the cube, base, servo and solar
modules. One state was dedicated to the base module and was the axiom
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FIGURE 7.3: Block diagram of the modular robotics
platform. A terminal is connected to a central 3-pin power
hub via a USB2AX interface. A 12V power supply is
also connected to the same 3-pin power hub. The power
hub is in turn connected to a male or female connector
face of the modular robot. This connection distributes
power to all connected modules. The block diagram only
shows the Servo and the Solar module. The base and cube
module simply transfer all electrical current from their
male connection sites to their male connection face and
vice versa. Two of the channels are connected separately
to the solar panel modules which transfer power from
the solar panels to the power source. The red and
black connections indicate power and ground while the
green connection represents the communication wire. The
dotted lines represent the power and ground connections

to the solar panels.

of the L-system. Another state represented the cube module. Four states
represented the servo module and two states contained the parameters
of the solar module. Every state can assign unique attachment rules and
control parameters. The generative encoding does not necessarily lead
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to all genotypic parameters to be expressed in the phenotype. Instead,
some genotypic parameters could be dormant, which allowed genetic drift
to occur across generations. For example, eight servo modules could be
generated in the phenotype if one servo state is expressed eight times in
the phenotype, but this phenotype could also be the result of one state
being expressed six times and one state being expressed two times in the
phenotype. The phenotypic representation of the modules is determined
by the attachment rules of the L-system that were stored in the genome.
The attachment rules of the modules included the information of which
module is connected to what connection face in which orientation. The L-
system was moreover context-sensitive since a module cannot be placed
at an attachment site if another module already occupies it. Modules
cannot be created if this causes a collision with other created modules. The
different modules were colored in the phenotype based on their states so
that recursive expression could easily be detected. Five iterations of the
L-system were done to create the robot phenotypes, starting with the base
module as the axiom.

7.2.4 Evolutionary Algorithm
The implemented evolutionary algorithm was based on a steady-state
genetic algorithm (Syswerda, 1991). The simulations were limited to 46,000
evaluations per evolutionary run. 46,000 evaluations were chosen as a
trade-off between computational time and performance. A population
size of 92 individuals was used and was simulated for 500 generations.
The population size is a multiple of the 23 simulation instances that ran
in parallel on a cluster node containing 24 computing cores. One core
was dedicated to running the evolutionary algorithm itself, while the
remaining cores evaluated individuals in V-REP. For each experiment,
12 evolutionary runs were performed with different initial seeds. The
evolutionary algorithm was generational and randomly selected one parent
from the population to produce an offspring. The initial population
consisted of individuals created from randomized genomes. Though the
offspring were haploid, a crossover function allowed certain states of
another parent to be transferred to the offspring with a 20% chance. Up
to eight states were simulated. After crossover occurred, the offspring were
mutated with a morphological mutation rate of 0.15 and a control mutation
rate of 0.1. The morphological mutation accounted for any aspect of the
generative encoding replaced by a random value with a 15% chance. Only
the four states of the servo modules contained a neural network, and the
neural network had several mutation operators that could be activated with
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a 10% chance. There were four mutation operators working on the neural
networks: change connectivity that altered the edges between the neurons:
add neuron, remove neuron, and change neuron swapping an interneuron for a
new interneuron of another type (Section 7.2.4). The maximum amplitude
of the servo arm ranged from -90nd +90

Neural Network

In a previous experiment, simple sinusoidal wave functions were
implemented to control simulated servo modules (Veenstra et al., 2017a).
The same sinusoidal patterns are implemented here, though they are
implemented in a network of neurons. This artificial neural network,
implemented in the servo modules, consists of one input neuron, up
to six interneurons, and one output neuron. The input neuron is
always activated. A recurrent interneuron layer consisted of neurons that
simulated a fixed sinusoidal output pattern or a neuron with a binary step
function. The phase, amplitude and frequency of the sinusoidal neuron
could be altered, and the mutable parameters of the binary step neuron
were the threshold value (between -1.0 to 1.0) and the output weight (-1.0
to 1.0). The output neuron simply outputs a value between -1.0 and 1.0
based on its inputs. This value is in turn transformed into a value that
represents the absolute position of the servomotor of the module. In this
neural network, the connections were not weighted; instead, once a neuron
is activated, all of the neurons connected to the activated neuron receive
the same output. This was implemented due to the small size of the neural
network (one input and one output) and to limit the search space. A neural
network could be implemented in each state of the servo module. This
means that multiple servo modules could express the same neural network
if the generative encoding created these neural networks from the same
gene.

Fitness function

The goal of the simulated robots was to absorb light within five seconds of
simulation time. The simulation time was limited to five seconds since the
modules were able to appropriately adjust the positions of their joints to the
light source within the given simulation time. Approximating an actual day
cycle in the physical world depends on the transformation of the simulation
time that can be stretched according to a given environment. The fitness of
each individual was determined by the amount of light that was absorbed
by each ray of all the solar panels present on the robot, and can be derived
from Equation 7.1. The gathered light was calculated by subtracting the
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z directional vector of the z-axis of each ray on the solar panel from the z
directional vector of x-axis of the solar panel. An additional cost function
was added to represent an arbitrary energy expenditure of the robot.

F :=
mX

i=1

⇢i �
nX

j=1

✏j (7.1)

F represents the fitness value obtained by calculating the total amount of
light absorption that occurred within the 5 seconds of simulation time. The
‘:=’ operator represents an update of the fitness value with right hand side
at each timestep. ⇢ represents the amount of energy gathered by each ray i
at every timestep. For each servo module j, the amount of energy ✏ used by
all servo modules is subtracted. An additional cost function was added
to compensate for modules that were disconnected due to the breaking
of a connection site (not shown in equation). Breaking of modules never
occurred in experiments, though the initial fitness cost was implemented to
ensure we did not reward malfunctioning robots.

7.2.5 Experimental Setup
The evolutionary runs were performed in four different environments
(Figure 7.4). The first environment contained a light source located directly
above the modular robot. The second environment consisted of four walls
surrounding the modular robot constricting direct outward growth of the
phenotype of the modular robot. The third environment contained an
object that blocked the phenotype from receiving direct light absorption.
This was done in to motivate outward growth of the modular phenotype.
The last environment consisted of a moving light source that mimicked
the trajectory of the sun in winter in the northern hemisphere of Earth.
It was expected that the last environment would promote the evolution
of blind control systems that enabled solar panels to tilt towards the sun.
The position of the light source was calculated by two sinusoidal functions
that were transformed into Cartesian coordinates (Equation 7.2). The ‘:=’
operator represents an update of the left hand side variable with the term
on the right hand side as it is performed at each timestep.

Px := Px_start↵x + ⌧↵xPy := sin(⌧)↵yPz := sin(⌧)↵z (7.2)

↵ represents a specific scaling factor for transforming the position in
Cartesian coordinates. The x y and z positions of the light source are
updated at each timestep denoted with ⌧ .
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In the environment with the moving light source, the energy cost was a
custom value. This cost value was either 0.0, 0.1, 0.5, 2.0 or 8.0. For every
energy cost, 12 evolutionary runs were done. These values were chosen as
they changed the evolutionary trajectory of the different evolutionary runs
whereas above a cost of 8.0, no change in the evolutionary runs could be
seen. Additionally, for each simulated environment, twelve evolutionary
runs were performed when simulating a maximum of one, two, or five solar
modules. This was done to see whether movement evolves in environments
where a different number of solar panels can be simulated. It was expected
that when simulating a maximum of one solar panel, on average, more
angular movement would be detected in the solar panels compared to
simulating more solar modules. This hypothesis was tested by measuring
the difference in angular movement of each solar panel at each timestep.
This arbitrary measure of angular movement is stored together with the
fitness values of the individuals.

7.3 Results

The results shown in this section are separated by the resulting phenotypes
of the eventual population of robots in different environments and the
results on the impact of movement and energy cost on evolving the
modular robots. The phenotypes give a clear overview of the types of
robots that could be evolved, while the energy costs explain emergent
behaviors seen in the evolved robots.

7.3.1 Phenotypes Evolved in Different Environments
The four types of environments led to major differences in evolved
phenotypes (Figure 7.5). The individuals in the environment with the
stationary light source evolved simple morphologies where all solar
panels were pointing upwards avoiding, collision with one another. The
individuals in the constrained environment were more difficult to evolve,
as can be seen in the graph depicting the evolutionary progressions
(Figure 7.8). In particular, only three individuals in the last generation of
the evolutionary run displayed phenotypes that were different from the
top right and bottom right individuals seen in Figure 7.5. It can therefore
be said that the search space of this environment is much more rugged
than the search space in the other environments, making it harder for the
evolutionary algorithm to escape a local optimum. As expected, in the
environment where the light source was blocked directly from above, the
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FIGURE 7.4: Different simulated environments. Envi-
ronment with stationary light source (top left); an envi-
ronment where the initial base module is constrained (top
middle); an environment where direct light is blocked by
an object (top right); and an environment where the light
source is moving in an arc (bottom). The line represents is

an approximation of the path the light takes.

solar panel modules were located on the outside of the modular robots.
Some of these evolved phenotypes were easily implemented in the real
world since they did not actuate any servo modules (Figure 7.11). As can
be seen in Figure 7.7, the eventual population of the modular robots that
evolved in the environment with the moving light source were also easy to
transfer to the real robot. Although it is a conceptual model, the modular
robot that incorporates the flower modules is depicted in Figure 7.10.

7.3.2 Movement in Energy-Harvesting Modular Robots
As could be seen in the simulation environment with the moving light
source, movement can increase the fitness value of evolved robots as
compared to the evolutionary runs if the cost of moving is low enough
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FIGURE 7.5: Different evolved phenotypes. Four indi-
viduals of each simulation environment are shown. (A)
The top left individuals were evolved in the environment
with a stationary light source and no objects in the envi-
ronment. (B) The top right individuals were evolved in an
environment where the surroundings of the initial module
were blocked by four adjacent wall structures. (C) The
bottom left depicts individuals evolved in the environ-
ment where the light source was blocked by an additional
structure. (D) The bottom right individuals were evolved

in an environment where the light source moved.

(Figure 7.9). A statistically significant difference can be seen when
comparing the average movement angle of all solar panels when comparing
maximum and minimum energy cost. The difference in fitness for a
high energy cost versus a low energy cost for movement is highest when
simulating one module and lowest when simulating five modules. Based
on a Mann-Whitney U test, we can see that there is a significant difference
in the angular movement of the leaves when a large energy cost is
applied when simulating a maximum of 1 (p-value: 0.0000779), 2 (p-value:
0.0000300), and 5 (p-value: 0.0050966) solar panel modules. The difference
in angular movement between simulating a maximum of 1 and 5 solar
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FIGURE 7.6: Evolved phenotypes in different environ-
ments. Simulated (top) and real (bottom) modular robots
evolved in the open environment (left), the constrained
environment (middle) and the environment where the

light source was blocked.

modules without an energy cost was also significant (p-value: 0.0030495).
Similarly, the difference in angular movement when simulating a maximum
of 1 and 5 solar modules was significant, with the highest energy cost
(p-value: 0.0070689). When comparing the maximum of 2 solar modules
with the other maximum number of solar modules no significant difference
could be found. This is due to the angular movement of the solar panels
when simulating a maximum of 2 panels in-between simulating 1 and 5
solar panels. These differences indicate that less modules lead to increased
movement of solar modules. Based on these results, the number of solar
modules directly influences the amount of movement in the solar panels.

7.4 Discussion

The aim of this chapter was to provide a deeper understanding of
how evolution of modular robots could shape robotic entities towards
energy autonomy in different environments. The resulting phenotypes
of each environment indicate that the simulated individuals adjusted
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(A)

(B)

(C)

FIGURE 7.7: Various evolved phenotypes in the environ-
ment with the moving the light source. Simulating five
solar modules (A), a maximum of one solar module (B),
and a four solar module phenotype that has been trans-
ferred to the real world (C). The camera stayed in the same

location after each subsequent picture.

differently to optimize for light absorption. Some of the simulations led
to solutions in local optima, indicating a rugged search space for the
evolutionary algorithm, as was the case of the constrained environment.
The other environments typically evolved more varied and more complex
phenotypes. This demonstrates that our simulator is versatile in creating
novel robots using a fixed number of modules in different simulated
environments, though improvements to the evolutionary algorithm as well
as to the encoding, could be made.
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FIGURE 7.8: Evolutionary runs conducted in the diffe-
rent environments. The three graphs depict the indi-
vidual runs where bold solid line represent the average
maximum fitness value all evolutionary runs. The lightly
colored surrounding area represents the 25th-75th percen-
tiles while the less intense colored surrounding area repre-
sents the 0-100th percentiles. The evolutionary runs are
shown of the environment with a stationary light source
(left), the constrained environment (middle) and the indi-

rect light environment (right).

7.4.1 Light Tracking
When movement was costlier and when more solar panels were available
to be implemented in the modular robot, I expected to see a relative
decrease in angular movement of the leaves when compared to runs
without implementing cost of movement and simulating less solar panels.
Our results indicate that when less solar modules were allowed in the
evolutionary runs, more movement could observed in the phenotypes
that evolved. The reason that this difference occurred was due to the
increased search space of simulating more than one solar module, as well
as the constrained available positions for solar modules when simulating
a limited number of modules. Our results indicate that having more than
one solar panel does lead to robots tilting their solar panels towards the
light source. However, when only one solar panel was being used, the
robot evolved more movement, and movement has a clear evolutionary
advantage when it tilts the solar module towards the light. Similar to
Veenstra et al. (2016), evolution does not necessarily pick up movement
of solar panels, even when there is no cost for movement attributed to it.
A significant difference could, however, be seen when a large cost was
implemented for movement in the modular robots. Having more solar
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FIGURE 7.9: The effects of an additional energy cost. A
maximum of 1 solar panel (a), 2 solar panels (b) and 5
solar panels (c) were simulated. The black line depicts the
average of the maximum fitness values of 12 individual
runs. The lighter gray lines depict the average of the
maximum fitness of 12 individual runs where energy cost
was applied to the simulation. The lighter gray lines
represent higher energy cost. The box plot (d) depicts the
average movement of the solar panels in each simulation
with different energy costs. Though much disparity could
be seen between runs, a trend is present that when energy
cost is higher, the resulting phenotypes, on average, move
their solar panels less. This distinction can most clearly
be seen when a maximum of 1 solar panel was simulated
(blue). The different colors of the box plot represent the
different numbers of maximum solar panel modules that

could be generated.

modules may be more beneficial than requiring tracking a light source.
When robots are constructed in the real world, the actual movement costs
and solar uptake of the entire robot can be modeled and used as a feedback
mechanism for the simulation environment. In this scenario, we could
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FIGURE 7.10: Incorporation of the flower module. (Left)
different design stages of the flower module. (Right)
an example of an assembled modular robot with flower
modules. Note that the servo modules are an older version
with one data channel instead of four. Photograph by Phil

Ayres.

determine whether it is better to make small modular robots at different
locations only containing a few solar modules, or to create a single modular
robot containing many solar panels.

7.4.2 Challenges
One major challenge of the presented robotic modular platform is the
size and weight of the modules. Since the modules are only connected
via magnetized connector sites, the structure will become quite heavy,
which is especially detrimental at the extremities of the modular robot.
Modules connected to the base module would need to cope with more
force than the modules at the extremities. Similar to plants, the main
stem or tree trunk is usually the strongest and heaviest, while its branches
are lighter, and its leaves even lighter than the branches. Being unable
to distribute weight accordingly is, however, a common issue in modular
robotics, and one solution is to remove redundant connection sites. Another
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solution is to vary the shape, size, and weight of the modules. Such a
system might require modules that isolate their mechanical connections
and communications. Since every connection face of our modules contains
the same number of magnets, each connection between modules has the
same strength. A future implementation could allow for modules near the
base to be connected more forcefully and modules at the extremities to be
connected with less force.

Only a limited number of generations were simulated in the evolutio-
nary runs due to conversion of the evolutionary algorithm. Improvements
to the evolutionary algorithm itself would be valuable to cope with this.
These improvements could consist of implementing speciation (Stanley et
al., 2002b), novelty search (Lehman et al., 2011), and/or Pareto optimization
techniques (Schmidt et al., 2011; Brodbeck et al., 2015). However, doing
more evolutionary runs might lead to the discovery of better-performing
individuals by having an initial population that can be exposed to incre-
mental improvements. The demonstrated robotic platform has potential
for integrating interactive evolution (Sims, 1992; Graf et al., 1996). A
human-in-the-loop could, for example, design the modular robot by simply
connecting the modules to form a robot morphology. The simulator could
in turn evolve behaviors for that specific robot’s configuration in the simu-
lation environment, similar to Wagy et al. (2015) with potential continuous
self-modeling (Bongard et al., 2006). Although evolutionary algorithms
were used to generate the control and morphology of the modular robots,
online adaptation could be a more beneficial strategy, especially for real-
world robots. A hybrid approach of initially evolving arbitrary modular
robots followed by an online learning strategy could therefore lead to robots
that are more feasible. This would be especially valuable if the adaptive
control can be localized and its genetic information could be reused simi-
larly to the generative encoding.

The generative encoding abstracts the complexity of the genome and
has been shown to work well to quickly acquire decent performance.
However, as is common in evolutionary algorithms, some runs stagnate in a
local optimum, making it harder for the evolutionary algorithm to discover
novel strategies. However, the variety of modular robots that evolved in
each environment varied a great deal. It is unknown whether doing more
evolutionary runs will increase this variety of decent modular robots. The
generative encoding implemented might also be improved through using
more implementations that have been used as abstractions of development
such as compositional-pattern producing networks (Stanley, 2007).

The evolutionary system limited the number of usable modules to
the number of robotic counterparts in the real world. Simulating more
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modules could lead to phenotypes that are more effective. However,
simulating less modules could potentially lead to good solutions as well,
when considering that many modules that have been implemented in
the evolved robot did not seem to be of any particular advantage (See
Figure 7.7b). The implemented modules are also not ideal when optimizing
for light harvesting in modular robots. For example, the servo modules
contained a hinge-like joint, although it might be better to implement a
twisting joint in the environment with the moving light source. Moreover,
other modules with less energy-demanding actuation, or elastic and rigid
structural properties, could increase the performance of the evolutionary
algorithm to find more suitable solutions for absorbing light from the
environment. One possible new module type could be a soft-module
similar to Vergara et al. (2017). If a soft module could be used to inflate
multiple chambers, directed movement of solar panel modules towards a
light source could be implemented with ease. Such a soft module would be
similar to a pulvinus structure observed in many plants. Even the energy-
gathering system could potentially be combined with modules that gather
energy from different sources, such as microbial fuel cells. The robotics
platform does allow for the effortless integration of new modules in the
system—for both the hardware and the software—although explorations
of these systems is left for future work.

Four types of environments were used in the evolutionary runs to
optimize for light absorption, while the fitness function stayed the same
across environments. An additional approach could be to evolve a
population of individuals initially in one environment, and afterwards
in more advanced environments, which can either be done incrementally
(Bongard, 2008) or through encapsulation of behavior in specific evolved
environments (Lessin et al., 2013). The light source could also be used as a
stimulus in mobile modular robots. In this case, the evolutionary algorithm
could optimize the robot to locomote towards light as a main stimulus that
could potentially give rise to modular Braitenberg vehicles (Braitenberg,
1986). Evolving locomotion would add an additional reality gap that
was not present in our sessile modular robots. Additional experiments
could also include lattices with many solar panels, which greatly increase
the uptake of light. As seen in the evolutionary runs, modular robotic
structures with many solar panels would not necessarily give any freedom
for complex behavior to evolve. Moreover, the robotics platform can be
used to evolve any arbitrary task that evaluates compositions of robotic
modules. If the same connection sites are used for the modules, any type of
module could be implemented. For locomotion, it would be useful to have
additional modules that can act as feet or tendons. The robots evolved for
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different tasks could then be further evolved towards energy autonomy by
allowing solar panels to be implemented in the evolved individuals.

7.4.3 Multi-Robot Systems
Considering food chains in natural ecosystems, organisms higher up
the food chain extract the energy that has been harvested by primary
energy producers (Reece et al., 2010) simply through consuming and
reusing the molecules they have produced. Hence, most plants and
other photosynthetic organisms are known as primary energy producers.
Primary, secondary, tertiary, etc., energy consumers subsequently depend
on the acquisition of chemical energy that has been created by their prey.
The modular approach allows for a potential implementation of a multi-
robot system, where a robot specialized in absorbing light could share
its energy with other robots, potentially making robot energy autonomy
viable in environments that are off the electrical grid. Moreover, humanity’s
ecological footprint is already unsustainable and in overshoot (Toth et al.,
2016). This calls for an approach towards energy autonomy in robots that
will not increase our already existing ecological footprint. Rather than
relying on renewable energy sources to be implemented in our energy grid,
we can imagine a robotic system where robot entities can specialize in
gathering energy from the environment while higher-order robots can tap
into the power grid of these robot entities to recharge themselves—possibly
tapping into humanity’s existing electrical power grid to release their
energy. Since light in urban or desert environments is largely wasted,
as a limited number of plants grow in these locations, robots in these
environments can be greatly beneficial if they are able to gather solar energy
in say, windows, rooftops, or the like.

Since the task of our robotic platform is largely undetermined, it is
unclear what the eventual robotic entity will look like, and how it will
move, manipulate objects, and gather information from the environment.
Instead of having robotic entities created for specific functions, a range of
robotic modules can be implemented that can be optimized for a variety
of tasks. In an approach where multiple small modular robots are used to
gather energy, an additional modular robot could be used to extract energy
from the energy-harvesting modular robots simply by connecting a docking
module to the solar-harvesting modular robot. This docking module could
simply be a male connector face that attaches to a female connector face
of the energy harvesting robot. This can, in turn, give rise to an artificial
ecosystem whereby some robots are specialized in energy uptake, while
others can be specialized for different tasks. Such a system could enable
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Text Box 7.6: Transferring locomotion from simulation to reality

The modular robot has also been used for other objectives such as
locomotion. There is, however, a severe reality gap when testing the
evolved phenotypes in the simulator with reality. Although as Figure 7.11
depicts, the behavior of the real and physical modules is almost identical.
As illustrated in this chapter, the modules are both electrically and
mechanically connected by the connection sites. However, when the robot
performs a strong movement that causes it to forcefully slam on the ground,
the connections of the spring pins can temporarily or permanently be
lost. This loss in connection due to mechanical stress could therefore be
isolated by isolating the mechanical and electrical connections between the
modules.

FIGURE 7.11: Simulated and real modular robot beha-
vior. The figures A to F show the behavior of an individual
instance of a modular robot optimized for locomotion with
the simulator environment in the top right corner of each

figure.

symbiotic relationships between modular robots that are optimized to
harvest energy and other robots that are able to extract energy from the
energy-harvesting modular robot. The modular connection mechanisms
would allow the energy to flow directly from one modular robot to another
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without too much of a hassle. The advantage of energy autonomy in an
ecosystem of robots, instead of a single robot, is that some robots can
specialize for very specific tasks, not having to worry about expending large
amounts of energy. This division of labor in multi-robot systems conforms
to symbiotic energy exchange that can contribute to the survival of the
entire robotic system.

7.5 Conclusion

It has been shown how an evolutionary algorithm can evolve light-
harvesting robots that can easily be transferred to the real world using
a modular robotics approach. Furthermore, there is an advantage for
evolutionary algorithms to exploit movement when only one solar panel
module is simulated, but not when more are simulated, given the
constraints of the simulator. It has been demonstrated that the robotic
platform is able to evolve a variety of modular robots based on the various
objectives in the environment. This might prove especially advantageous
when evolving a multi-robot system that can form a stepping stone towards
an artificial ecosystem. This artificial ecosystem can consist of multiple
modular robotic entities that interact with one another based on energy.
The described platform was limited to the available types of modules,
and the flower module was not used in the evolutionary algorithms.
However, a robotic module containing more complex electronics could
simplify evolutionary search as a smart morphology and online learning
is implemented. All of the described experiments and proposed methods
can thus lead to an automated design of homeostasis in robots that can
potentially scale up to artificial ecosystems.



Part III

Evolving Physical Robots



8

174

Chapter 8

Evolutionary Approaches in

Physical Robots

It means that each factory will be making Robots of a different color,
a different nationality, a different tongue; they’ll all be different—as
different from one another as fingerprints; they’ll no longer be able to
conspire with one another; and we—we people will help to foster their
prejudices and cultivate their mutual lack of understanding, you see?
So that any given Robot, to the day of its death, right to the grave, will
forever hate a Robot bearing the trademark of another factory.

– Karel C̆apek, R.U.R. 1

Embodiment of robots conveys robots experiencing the world directly,
as opposed to simulated robots, where “the actions of robots have
an immediate feedback on the robot’s sensations” (Brooks, 1991). An
embodied robot is a real, physical robot whose behavior can be observed
in the environment (Pfeifer et al., 2006). Though already here, some sort of
embodiment can also take place in the simulator, since the “environment”
itself is also simulated. Pfeifer et al. (2006) especially advocate that
embodiment is a prerequisite for the emergence of intelligence. However, a
major problem with the application of evolutionary algorithms in physical
systems directly is that the evolutionary process can take a long time
to complete (Nolfi et al., 2000) as compared to a robotics simulator.
Hardware failures are common in the real world, which adds an additional
requirement of a robust robotic system when implementing evolution on
that system. There are therefore many ways to acquire evolved behaviors in
robotic systems. One pathway has been described in Chapter 7 by directly
building a modular robot based on the evolved simulated phenotype. In
this case, due to the sessile nature of the plant-inspired robot, the reality gap
was negligible. If the evolved robots would have looked more like the work

1This epigraph has been added after the acceptance of the official thesis manuscript.



8

8.1. Evolving Physical Robots 175

Reality Gap

Evolution uploads 
genotypes directly to the 

robot

Evolution Emerges 
through the Interactions 

of Physical Agents

Simulated Evolution

Embodied 
Evolution Virtual Phenotypes

Physical Phenotype

Evolution of 
Physical System

FIGURE 8.1: Evolutionary robotics approaches to acquire
a behavior. This can be brought about by first simulating
the robot, evolving the physical system directly or through

embodied evolution.

of Sims (1994b), or the phenotypes displayed in Figure 6.8, the transference
of the evolved phenotypes to the real world would be problematic.

An alternative strategy to circumvent the problem of the reality gap
is to directly evolve the robot in the real physical world. This bypass
of the simulation environment is especially beneficial for robots that
are hard to simulate, e.g., robots that contain many parts, springs, or
soft structures. This chapter therefore provides a brief overview of
evolutionary approaches in physical robots (Section 8.1) and discusses
an implementation of the automated assembly of a modular robot
(Section 8.2). The latter implementation would allow an autonomous robot
platform to automatically evolve and evaluate simulated and real world
robots that differ in their morphology. In Chapter 9, an experiment was
done to directly evolve a physical knifefish-inspired soft robot using the
strategy.

8.1 Evolving Physical Robots

Different evolutionary robotics approaches can be taken to evolve the
morphology or behavior of robots, as summarized in Figure 8.1. One
of the most direct approaches to evolving robot behavior is through
having a terminal run the evolutionary algorithm, and either uploading the
genomes, or directly controlling the robot itself. These types of approaches
are not common but are discussed by Floreano et al. (1994) and Zykov
et al. (2004). Alternatively, an evolutionary algorithm can first evolve
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simulated robots and afterwards transfer and further evolve the robots in
the physical world (Nolfi et al., 1994; Pollack et al., 2000). In this case, the
reality gap is present but is reduced by evolving the evolved behaviors
for a few generations in reality afterwards. However, this additional
evolutionary step might not be needed with the increasing accuracy of
simulation environments. Jakobi et al. (1995), for example, saw that
including noise in a simulation environment makes the evolved simulated
robots more transferable to reality. Furthermore, this approach relied on
the additional simplification of most behaviors to minimize the reality gap
(Jakobi, 1998). The reality gap can also be decreased through implementing
adaptive traits in the simulated models that can be adjusted in the real robot
through, for example, plasticity in neural networks (Floreano et al., 2001).
A feedback loop from the robot and the simulator has even been used to
reconstruct the parameters and the dynamics of a physical robot themselves
through continuous self-modeling (Bongard et al., 2006). In this case, an
evolutionary algorithm can self-adjust its simulation environment based on
the model it creates of itself. Even the simulator itself can be evolved based
on the acquisition of real data from the environment. Another strategy that
has been implemented is called Map-Elites (Mouret et al., 2015). In this
approach, elites with different characteristics are transferred to the real-
world and a heat map of behavioral traits that are efficiently transferred
can be constructed, which, in turn, illuminates the search space of the robot.
This map can inform the robot which behaviors are likely to be transferable
compared to others, as has been demonstrated in Cully et al. (2015).

Another type of implementation bypassing both the reality gap and
the evolutionary algorithm running on a terminal is known as embodied
(artificial) evolution. The term was originally proposed by Watson et al.
(1999) and embodies the evolutionary process itself in a population of
physical robots. As proposed by Eiben et al. (2012), embodied artificial
evolution is a specific form of embodiment where (1) physical units
are involved, as opposed to virtual ones, (2) real birth and death is
implemented, (3) the environment shapes the fitness of an individual, and
(4) individuals decide when and how to mate. This embodied evolutionary
approach is perhaps the most cumbersome to achieve, but could in a future
with autonomous robots be an emergent property of artificial life, since
robots that make robots would also be bound by evolutionary principles
in a struggle for artificial life.

As depicted in Figure 8.1, many approaches can be taken in evolutio-
nary robotics to acquire a physical phenotype. The simplest form, without
requiring a robotics simulator, is to directly evolve the behavior of a robot
in a physical system, as implemented in Floreano et al. (1994). This is the
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type of evolutionary strategy that is implemented on a knifefish-inspired
soft robot, as described in Chapter 9. Before discussing this approach to
evolving the soft robot, the next section presents a method for the auto-
mated reconfiguration of modular robots directly in the physical world,
which can allow for the automated evaluation of simulated and real robots
simultaneously. This is an approach toward autonomous evaluation and
self-reconfiguration of modular robots.

8.2 Automated Assembly of Modular Robots

In Brodbeck et al. (2015), an approach has been described for the automatic
generation of modular robots. The robots, composed of active and passive
modules, were picked up by grippers attached to a UR5 robot arm
and connected to other modules with hot glue adhesives. This process
allowed Brodbeck to automatically assemble and evaluate a variety of
modular robotic structures that were evolved. The main disadvantage
of this approach was the difficulty of removing the glue once a robot
had been constructed, and reconfiguring the morphology afterwards. The
implementation of a similar assembly strategy using the magnet-based
modular robotics system described in Chapter 4 and Chapter 7 would
allow for a versatile automated assembly, and disassembly, of robotic
modules, without the necessity of hot glue or other adhesives. This makes
the platform potentially resilient and enables robots to be sequentially
reconfigured and evaluated. This section describes a methodology for
automatically recognizing modules and how to subsequently pick and
place the modules to create a robot morphology.

8.2.1 Methods and Environment
For the assembling process of a modular robot, a robot arm and a webcam
were used in an environment where modules could be automatically
detected, connected, and disassembled. The environment consisted of
a rectangular plate with four fiducial markers (markers used as a point
of reference) on the corners. These four fiducial markers were used to
extrapolate the position of the modules in the environment. An affine
transform was used to translate the pixel coordinates in the positions in
the reference system of the robot. The modules themselves also contained
fiducial markers. These markers were oriented so that the male connector
site was always facing in the same direction. The positions and orientations
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of the fiducial markers on the modules were used to plan how the robot arm
would connect the modules to one another, similar to Faíña et al. (2017).

The robotic platform used a magnetic gripper attached to a Universal
Robotics UR5 robot manipulator. The gripper utilized permanent magnets
to detach and attach magnetic modules for the creation of the robot, as can
be seen in Figure 8.2. A module is attached to another by attaching the
male connector site to another specified female connector site of another
module. The gripper did not contain any moving parts, and thus relied on
the specific movement of the arm for connecting and disconnecting itself to
the modules. The end effector moved in an arc perpendicular to the male
connector site to disconnect itself from the modules. When detaching a
module from the modular robot containing several modules, the direction
of the movement was changed to produce an arc around the two connected
module sites.

The basic assembly steps are:

1. Move and align end effector above the marker
2. Move the end effector down until a force of 30N is applied; avoiding

jamming and ensuring that the module is well connected to the
gripper

3. Lift the module up to a safe distance above the floor
4. Move the end effector to align with a desired site to connect to
5. Move the end effector down, hovering above the floor
6. Move the end effector towards the site to attach
7. Perform the movements required to release the module that is

attached to the gripper.

With this system, various types of morphologies can easily be
constructed. However, the morphologies in this case could only be
assembled in 2D since the fiducial markers were only connected to one
connector site of the modules, which was identified by a camera from
a top view. Hence, only planar configurations (one layer of modules)
were considered. The process of assembling modular morphologies is
displayed in Figure 8.3. The assembly of the morphology was achieved
without difficulties due to the self-alignment properties of the connectors.
It was more challenging to disassemble the morphology where the robot
arm would sometimes jam. The main problem here was that the complex
movements of the end effector were sometimes near singularity points
leading to a safety stop, causing the jam. Additionally, the end effector
sometimes caused the attached module to be pressed against the arena floor
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FIGURE 8.2: Assembly (left) and disassembly process
(right) of modules

while rotating, also causing a jam. These challenges should be taken into
consideration in future implementations.

8.2.2 Prospects on the Automated Assembly of Modular
Robots

The process of creating modular robots discussed in this section allows
for the automated generation of modular robots that would be especially
useful for chain-type modular robots (Stoy et al., 2010), where some
self-reconfigurations are not possible due to kinematic restrictions. It is
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FIGURE 8.3: Sequence of automatically assembling
modular robots The bottom left images depict the
computer vision. The fiducial markers that are recognized

are marked with a blue circle.

moreover useful as a testbed for rapid prototyping. When combined with a
robotics simulator that can automatically optimize potential modular robot
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configurations, this platform would allow us to automatically generate
robots with a unique morphology and control. A fruitful prospect is to
combine the approach with the evolving modular robots, as discussed in
Chapters 456 and 7.

Some challenges remain to be addressed to improve the system to a state
in which continuous experiments can be done with reconfiguring robot
morphologies. Visual fiducial markers can currently only be attached to the
modules at specific parts occupying and obstructing a potential connection
site. A redesigned fiducial marker or another way of recognizing the robot
modules should be used in future implementations. Another limitation of
the current setup is that the robot is unable to be controlled and acquire
power without the help of an operator attaching a control cable to one
of the modules. This problem could simply be bypassed by adding a
docking station that the modular robot can be connected to. To have a
fully automatic assembly process, a base module that couples to a docking
station can be implemented. The base module/docking station assembly
can then be used as the initial module from which robot morphologies
are assembled. Battery modules with wireless capabilities can also be
added to the system when the assembled robot must move away from
the docking station. Three-dimensional configurations still represent a
challenge, as they would require more complex reconfiguration movements
and adjustments to the visual tracking system.

Automatic reconfiguration can be especially beneficial in fields that
optimize the morphology and control of robots. It can be specifically
well suited for evolutionary robotics experiments that are usually
time consuming due to the number of morphologies that need to be
tested. Although some approaches already show promising results by
implementing evolved robots in simulation environments and afterwards
transferring them to the real-world (Auerbach et al., 2015), they are still
time-consuming considering that all parts need to be glued or screwed
together. This is also addressed in Brodbeck et al. (2015) by using an
evolutionary algorithm to generate the robot morphologies; however, the
approach presented here allows for different robot morphologies to be
more quickly tested in an environment, and a combined approach of using
simulations to optimize the robots with the subsequent transference of the
evolved simulated robots to reality is therefore promising. Furthermore,
this can give insight into reality gap-related issues that would allow us to
improve simulators and evolutionary algorithms to minimize the gap.
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8.3 Concluding Remarks

In the first part of this chapter, an overview has been given on approaches
to evolve physical systems. This can be done in various manners,
either including a simulation environment or not. However, to rapidly
evaluate various robotic morphologies that can be evolved, as discussed
in Part II, an automated assembly process of these modular robots is
beneficial. Section 8.2 has shown how modular robots can be automatically
assembled and disassembled using a robot manipulator. Without the need
for power-consuming autonomous modules, the merit of the approach
would potentially alter the way we evolve robots. Otherwise, human-
approached prototyping can take many hours, whereas the assembly and
positioning of the robots with the robot arm spans only a few minutes.
The automatic reconfigurability thus enables fast prototyping of different
robotic morphologies and control systems, insightful for constructing an
efficient robotic end-product for a given task. The visual feedback system
could be improved by being able to identify modules in 3D, and the robot
arm can be improved by having an active gripper and a better positioning
algorithm. In addition, the potential integration of a docking system
could allow for the automated repositioning and recharging of modular
robot conglomerates. Many improvements can be made to engender the
automated design and creation of robot behavior and morphologies that
would truly allow us to evolve the simulated and physical robot in an
automated manner.
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Chapter 9

Evolution in a

Knifefish-inspired Soft

Robot

Many were increasingly of the opinion that they’d all made a big
mistake in coming down from the trees in the first place. And some
said that even the trees had been a bad move, and that no one should
ever have left the oceans.

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy 1

The physicality and embodiment of robots accompanies the morpholo-
gical complexity that can be difficult to simulate. One way to deal with the
limitation of not being able to simulate a robot is to directly implement the
optimization strategy on the robot. Bypassing the simulator ensures that
the strategies found conform to reality, not violating the laws of physics. In
this chapter, evolution is implemented directly on a bio-inspired soft robot
that was based on the black ghost knifefish. This knifefish species is inte-
resting since it has an undulating fin underneath its body responsible for
its movement Figure 9.1. The robot fish was made from soft materials used
to cast the entire body and included solid fin rays connected to servomo-
tors for actuating the fin. This chapter discusses the design, the algorithmic
implementation, and the resulting behaviors compared to natural knifefish.
The comparison of the robotic knifefish to the actual knifefish through evol-
ving its controllers combines the paradigms of biorobotics and evolutionary
robotics, also known as evolutionary biorobotics (Long, 2012). Through
evolving the robotic knifefish, we can learn how to better optimize soft
robots and start to understand the natural functionality of undulation in
knifefish. It is a step toward automatically generating the control for robotic

1This epigraph has been added after the acceptance of the official thesis manuscript.
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FIGURE 9.1: The black ghost knifefish. Vectorized image
taken from Youngerman et al. (2014). Images show the
apteronotus albifrons from a lateral (A) and ventral (B) view;
orange line depicting digitized points across the tip of anal
fin of the knifefish. Six digitized points are shown by
orange circles along the individual fin rays laterally (C)

and ventrally (D)

soft robots. Hence, this chapter brings us to the fifth and final hypothesis of
this thesis discussing evolution of a physical robot:

Hypothesis 5 Evolutionary computation finds better solutions for controlling the
designed soft swimming robot compared to manually encoded behaviors.

9.1 Introduction

Despite recent advances in evolutionary robotics, the reality gap (Jakobi et
al., 1995) is still a prevalent issue. Especially in the emerging field of soft
robotics, it becomes more difficult to simulate the physical properties of soft
materials accurately (Rus et al., 2015). In cases where this was accomplished
successfully, it has required high computational power and complex
algorithms (Coevoet et al., 2017). For aquatic robots, the integration of
flexible materials can lead to increased performance by the principle of
morphological computation; i.e., by exploiting that, dynamic interactions
with the environment can be useful for achieving a desired behavior
efficiently. The complex mechanics of silicone and its hydrodynamic
interactions are, however, computationally heavy to simulate, especially
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when the morphology is driven by multiple actuators. For these reasons,
an evolutionary approach was implemented in directly evolving physical
systems (Rieffel et al., 2017) as a feasible alternative method to evolve
efficient behavior of a bio-inspired soft robot.

Soft robots have been proposed for several applications that include
exploration and search and rescue operations. For such tasks, high
maneuverability is usually necessary. Since the family of ghost knifefish
(Apteronotidae) contain examples of dexterous aquatic animals capable
of high multidirectional maneuverability at low speeds (MacIver et al.,
2004), this fish was chosen as the model whose control was subjected to
evolution. Knifefish are able to produce thrust in many directions by
undulating a single anal fin located underneath the body. By generating
propagating waves across their fin, they can easily move backwards
and forwards depending on the directionality of the wave (Curet et
al., 2011a). Vertical thrust is accomplished through sending counter-
propagating waves towards and away from the center of the fin, canceling
out longitudinal forces. In undulatory swimming, the thrust is produced
through a reaction force on the fluid adjacent to the body or fin surface.
Bending of the body part, the fin, enables wave propagation. The
combination of the lateral forces produced on both side of the fin should
cancel each other out to produce a net forward thrust (Biewener, 2003).

9.1.1 Evolution of Soft Robots
The evolutionary robotics approach to soft robotics has thus far only
been implemented in simulation environments such as VoxCad (Cheney
et al., 2013; Cheney et al., 2016; Kriegman et al., 2017) or off-the-
shelf physics engines where morphologies are represented by tetrahedral
meshes and the controls and morphology have been evolved (Rieffel et al.,
2013). Computational power is, however, a major constraint when using
simulations. Computational requirements usually scale proportionally
to the number of tetrahedra or voxels simulated, usually exponentially.
Morphologies found through the VoxCad approach have only been
replicated physically by means of soft volumetrically expanding materials
that require changes in the pressure of the surroundings for actuation
(Hiller et al., 2012), though these results are again taken from evolving the
soft robot in a simulator and transferring its phenotype to the real world
afterwards.

Controllers for simulations of existing partially soft morphologies have
also been evolved and in some cases transferred to hardware. A genetic
algorithm with a “lumped” dynamic model simulation has been used
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to evolve the gait of a soft caterpillar-inspired robot and has resulted
in an increase in performance of a physical prototype (Saunders et al.,
2011). In another instance, both an objective-based and a novelty-driven
(novelty search; Lehman et al. 2011) approach have been utilized to optimize
the design of a crawling octopus by discovering self-stabilizing dynamic
gaits (Corucci et al., 2015). A differential evolution algorithm was used
to optimize a model-free adaptive controller (MFAC) in a simulation of
a robotic fish with a flexible caudal fin (Clark et al., 2015a). For the
same morphology, an evolutionary multiobjective optimization technique
(NSGA-II algorithm) found morphological and control parameters in
simulation that maximize the swimming speed and minimize the power
usage with subsequent validation in hardware (Clark et al., 2015b).
However, in this approach it was found that the “best speed” parameters
of the evolved simulated model were considerably faster than those seen in
the experiments due to hardware limitations. This illustrates that although
reasonable performance can be transferred from the simulation to reality,
discrepancies are still persistent. In the above examples, the evolution of
soft robot morphologies and controllers was made possible by confining
the search space to highly abstracted morphologies (i.e., only a simple
tail is present as a flexible, caterpillar-like shape) or by decomposing the
morphologies into a finite number of voxels. While such approaches have
yielded interesting results, they are still lacking in relation to realizing the
full potential of soft robotics technology as they limit the design space to
very simple or highly abstracted shapes. By evolving the controller in the
physical hardware instead, an effective strategy can be attained through
(1) a bio-inspired design that mimics a natural model closely and (2) the
automated discovery of its most optimal behavior.

9.1.2 Knifefish-inspired Swimming Robots
Due to their unique morphology, knifefish have served as inspiration for a
number of research robots. Building on the work of Low et al. (Low et al.,
2006; Low, 2009), Siahmansouri et al. constructed an untethered robot with
six fin rays capable of regulating the direction and depth of swimming by
moving the fin relative to a buoyancy tank (Siahmansouri et al., 2011). Curet
et al. built a knifefish-inspired robot with 32 individually actuated fin rays
and were able to show that its optimal actuation parameters were similar
to the ones of the black ghost knifefish (Curet et al., 2011b). They were
also able to generate upward forces on the robot with counter-propagating
undulation waves (Curet et al., 2011a). Sfakiotakis et al. (2015) devised a



9

9.2. Methodology 187

FIGURE 9.2: Experimental setup for evolving the
knifefish. (A) Ultrasonic distance sensor, (B) plastic plate
for bouncing back the sound of the ultrasonic sensor (C)
T-slot linear slide, (D) plastic plate connecting the robot
(E) to the cart (F). The evolutionary goal was to move the
robot as fast as possible along the slide from the left to the

right side of the aquarium.

linear slide equipped with a fin composed of eight individual fin rays and
implemented open-loop velocity control and closed-loop position control.

A common denominator of the previous work on knifefish-inspired
robots is the use of sinusoidal functions as an undulation pattern for the
fin. This occurs even though a sine function is only an approximation of the
actual undulation pattern of the species, which could be reproduced more
accurately (Youngerman et al., 2014). The design of our robot also departs
from the earlier work as it is an integrated silicone morphology constructed
through contemporary soft robotics fabrication techniques. This approach
simplifies the fabrication of the fin and fin rays significantly. Moreover,
elasticity is added to the fin, which has been hypothesized to be a means of
increasing energy efficiency (Low, 2009).
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9.2 Methodology

A soft swimming robot with a single undulating fin inspired by the
anatomy of the black ghost knifefish was designed.2 To evaluate its
swimming speed with different motion patterns, the experimental setup
illustrated in Figure 9.2 was constructed. As only the forward swimming
speed was evolved, the robot was fixed on a linear slide. It was not
submersible and kept at a level of neutral buoyancy. The robot (E) is placed
in the water surface of a 100cm ⇥ 40cm ⇥ 40cm aquarium. It was tethered
with power and signal cables for its 6 servomotors. It was attached to a cart
(F) with four ball-bearing wheels that were mounted on a T-slot beam linear
slide (C) atop the aquarium. A plastic attachment piece (D) connected the
cart to the linear slide and prevented the robot from turning. The slide was
equipped with two IR sensors to measure when the beginning and end of
the slide had been reached. For the evaluation of an undulation pattern,
the robot started on the left side of the track at the first IR sensor. During
evaluation a swimming pattern was played on the robot and an ultrasonic
distance sensor (A) measured the distance to a plastic plate (B) on the cart.
The cumulative sum of the distance readings was used directly as the fitness
value for the undulation pattern that was evaluated.

9.2.1 Mechanical Design of the Robot

The main parts of the robot are its hull, frame, and fin rays (Figure 9.3).3
The hull and fin of the robot were constructed from Ecoflex 00-30 silicone
(Young’s modulus approx. 0.1 MPa, Shore A hardness 00-30; Mosadegh et
al. 2014). The uncured material was degassed after mixing and poured into
a three-part 3D printed mold (two sides and one inner part). The inner mold
part holds the fin rays in place during casting and blocks out a compartment
for the rigid inner frame, which was mounted after casting. The inner frame
was constructed from laser-cut acrylic parts that were glued together. The
servomotors are held in place with bolts and nuts.

Six bamboo sticks (approx. diameter 3mm) serve as fin rays. With 6 fin
rays it is theoretically possible for the robot to hover and to move forward,
backward, up, and down by generating traveling and counter-propagating
waves (Curet et al., 2011a). Each fin ray is attached to a servomotor via a
servo bracket. The servomotors used were initially six H-KING HK 15148

2A video of the robot can be found here: https://www.youtube.com/watch?v=
3XjgZbs0t2g

3The CAD files can be accessed at: https://cad.onshape.com/documents/
51d2c0394f6e3aa7b3fc06b3
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FIGURE 9.3: CAD design of the robotic knifefish. The
white parts represent the laser cut acrylic parts, the blue
part is the silicone part (top), and the black parts depict the
6 servomotors that were used for each fin ray. The bamboo
sticks that serve as the fin rays are displayed in green. The
robot’s full dimensions are 272x60x136mm, and the fin is
70mm high and 210mm long. The fin rays are each spaced

40mm apart.

mini servomotors. Due to malfunctions three of them were replaced with
two tower Pro SG90 micro servos and one EMAX ES08AII servomotor. The
servomotors are connected to the fin rays with a crank-like mechanism
(Figure 9.4). The angle of a fin ray as a function of the servo angle is given
by:

↵ = tan�1

✓
sin () · 21

30� cos () · 21

◆
(9.1)

where the constant 21 is the distance (in mm) from the center of rotation
of the servo to the piston that connects to the fin ray, and the constant 30
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FIGURE 9.4: Cross section of the fish design. (left) A
photo of the servo mechanism. (right) The red arc depicts
the range of motion from the center of rotation of the
servomotor to the plastic part that is connected to the
crank mechanism. The red dot at the bottom in the hull

depicts the approximate center of rotation of the fin ray.

is the distance from the center of rotation of the servo to the approximate
center of rotation of the fin ray (see Figure 9.4). The change in the bamboo
angle based on the angle of the servo is displayed in Figure 9.6.

This equation, however, does not take into account the additional
angular deflection caused by slack between the pistons and the fin ray, the
elasticity of the soft body resisting rotation (see Figure 9.5), and the tilt of
the soft body when actuating the fin rays. The average maximum angular
excursion was therefore close to 28 degrees, instead of the approximately
45 degrees that was calculated when not taking into consideration these
issues.

9.2.2 Evolutionary Experiments
In the pre-experiments, a generational evolutionary algorithm without
crossover was implemented to create the genome for our robot controller.
Due to the long evaluation time of the generational evolutionary algorithm,
and servos being prone to overheating, we decided to implement
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES; Hansen et
al. 1997; Hansen et al. 2003) instead, to quickly find the basin of attraction
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FIGURE 9.5: Angular deflection of the fin. Front view of
the robot showing the angular deflection of the fin. The
actual maximum angle of the fin can be seen to be less than

the calculated angle (red dashed lines).

and thereby speed up the evolutionary process.4

Encoding

The genome created for an individual is composed of a string of 15 bytes.
Each group of three bytes translates into a sinusoidal function with a
specific frequency, phase, and amplitude. The five sine functions are
summed to yield the first five terms of a standard Fourier series. With this
function, an arbitrary continuous periodic function can be approximated
and used as a fin undulation pattern on the robot to be evaluated. The
mutable parameters were the amplitude, phase, and frequency of each
sinusoidal function. These parameters are converted into servo angles ↵n

for the 6 servomotors with the following function:

↵n(t) = (
g1
255

· ✓max) · sin((g3 · t) + (g2 · sn)) (9.2)

where g1, g2 and g3 represent the mutable parameters of a genome triple
as bytes. ✓max is the maximum angle that the servomotors can move.

4Our full implementation and the source code of the evolutionary algorithm and Arduino
code can be found at https://github.com/FrankVeenstra/Knifefish_GECCO2018
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FIGURE 9.6: Change in angle of fin rays. The calculated
angle of the fin ray based on the angle of the servomotors
is shown on the left. The right side depicts the angle of the
fin ray based on a simple sinusoidal input. he wave is not

a perfect sine wave, but approximates one.

sn stands for adjacent servomotor numbers (values from 0 to 5), and t
represents the timesteps.

In the second experiment, the wave patterns that have evolved using
the Fourier series were evaluated. In this case, the mutable parameters are
transformed into outputs through summing up 5 sinusoidal functions of
the type in Equation 9.2.

Evolutionary algorithm

The evolutionary approach was divided into a control system and an
evolutionary algorithm. The evolutionary algorithm made use of functions
from the Distributed Evolutionary Algorithms in Python (DEAP) library,
which included an implementation of CMA-ES (Fortin et al., 2012). The
CMA-ES implementation implemented a population size of 10 and ran for
20 generations. Covariance Matrix Adaptation Evolution Strategy was able
to find solutions in 20 generations similar to running a normal generational
evolutionary algorithm for 100 generations, which was advantageous for
limiting the duration of the experiments. Our CMA-ES implementation
included an initial standard deviation value of 50 and a centroid value of
125 for every gene (half the maximum value of the bytes in the genome).
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Controller system

An Arduino Mega 2560 controlled the robot by actuating the servomotors
and received the sensor readings of the ultrasonic distance and infrared
sensors. Through serial communication, a genome was uploaded from a
PC running the evolutionary algorithm to the Arduino Mega. The Arduino
Mega evaluates an individual using the genome it received. This evaluation
consists of:

1. Move robot to the starting position (by using a manually coded
swimming behavior)

2. Move the servos to a central position and wait for six seconds (this
delay was implemented to prevent the overheating of servos and
reduce waves in the tank)

3. Evaluate genome for 10 seconds

4. Send back a fitness value based on the distance the robot has traveled
within the 10 seconds

All steps take roughly between 20-30 seconds for one individual,
depending on how far the robot was able to swim. When the same genome
was evaluated multiple times, the error difference in fitness was negligible
(standard deviation of samples of size 4 was less than 1% for each run).
Each individual was therefore only evaluated once.

There was a 20 ms delay inserted between each timestep for updating
the servo angles. Five hundred timesteps were done for each individual.
The fitness value of each individual is calculated as a summation of the
ultrasound distance measurements at every consecutive update of the servo
positions. At each timestep, the ultrasonic distance sensor initiates a sound
pulse and measures the time difference between the pulse and echo. This
time interval becomes higher the further the robot moves away from its
initial position. The fitness value for a controller that is not moving robot
lies at around 100 ·104. At the start of the evaluation of a genome, the
entire wave pattern for each servo was calculated for each timestep. This
required six arrays to store 500-byte values derived from the genome.
Although this occupies significant memory on the Arduino Mega board,
it circumvents doing calculations on the spot that might have caused an
additional delay between every timestep. Such a delay was, however,
caused by the ultrasound sensor, which required an 8 microsecond delay
for measuring the distance.
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Experiments

Since earlier examples of robotic knifefish have been able to swim with only
a single sinusoidal wave function as a control signal for the fin, experiments
were conducted where the genome was reduced to three bytes that translate
into the frequency, phase and amplitude of a single sine function. We tested
whether evolution is able to efficiently optimize these three parameters for
increased swimming speed. Our second set of evolutionary experiments
evaluate functions that are generated from all 15 mutable parameters and
yield the first five terms of a Fourier series. This is done to see whether
an arbitrary periodic function can increase the performance compared to
a single sine wave. For both sets of experiments, whether evolution will
find swimming behaviors similar to the ones of actual knifefish, and if the
performance of the evolved controllers can rival a manually programmed
controller, were also tested.

For both the sinusoidal and the Fourier series approach, 5 evolutionary
runs were done with the exact same hardware setup. Since the slightest
change in hardware and the environment can influence evolutionary runs
drastically, all 10 runs were done consecutively. A manually coded
swimming behavior is used as a baseline to compare with the evolved
controllers. This behavior was the fastest swimming behavior we were able
to find by manually adjusting the genome parameters during a two-hour
trial session with the platform. Its control function is:

↵n = 40 · sin((64 · t) + (100 · sn)) (9.3)

These control parameters correspond to a genome with the following three
bytes: 255 for the amplitude, 64 for the phase, and 100 for the frequency.

9.2.3 Comparing Behaviors of the Robot with Actual
Knifefish

Bale et al. (2015) found that diverse groups of aquatic animals that use
median/paired fin swimming, including knifefish, have evolved a similar
optimal swimming strategy. More specifically, the result of dividing the
length of an undulation on the fin by the mean amplitude of undulations
along the fin, during steady swimming, consistently yields around 20.
This wavelength, which maximizes the force generated by the body and
the swimming speed, is referred to as the optimal specific wavelength
(OSW). The specific wavelength (SW) of the evolved undulation patterns
was therefore calculated to compare them with the swimming behaviors
of the knifefish. The SW was calculated by dividing the wavelength of
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FIGURE 9.7: Evolutionary progressions of 5 runs. The
sinusoidal approach (a) and the Fourier series approach
(b) showing the maximum fitness (hall of fame) of the

evolutionary runs.

undulation � by the average amplitude of oscillation ã. In general, this
average amplitude ã is given by

ã = hmean sin(✓
avg
max)/2 (9.4)

where ✓avgmax is the mean maximum angle of excursion of the fin rays and
hmean is the mean height of the fin.

9.3 Results

9.3.1 Performance Analysis
After running CMA-ES for 20 generations using the sinusoidal and the
Fourier series approaches, different wave patterns were acquired. Both
evolutionary progressions of the 5 runs of each approach (Figure 9.7)
evolved decent swimming behaviors, though the Fourier series evolutio-
nary progressions seem to have more variation in performance and did not
plateau as clearly as the sinusoidal evolutionary progression. This corre-
sponds to a larger, perhaps more convoluted, search space when evolving
Fourier series.

The periodic control signals that have evolved in the sinusoidal
approach are similar to each other, while the best individuals of the Fourier
series exhibit more erratic wave patterns (Figure 9.8). Investigating the
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(A) (B)

FIGURE 9.8: The best-evolved wave patterns in 5 distinct
evolutionary runs using the sinusoidal approach (a) and
the Fourier series approach (b). The graphs display two
seconds of a resulting wave from each genome. The blue
line represents the trajectory of the first servomotor, while
the green dotted and red dashed lines depict the positions
of servos 2 and 3, respectively. The trajectories of servo
4, 5 and 6 are not depicted. The difference in the wave of
different servos visible in some of the Fourier series is due
to including potentially high frequencies and querying the

function every 20ms.

individual wave patterns and their corresponding fitness values, the best
individual evolved in the Fourier series has a significantly higher fitness
value than the others.

In Table 9.1, the evolved swimming behaviors of the best candidates
were compared to see whether the OSW ratio also applies here. The
approximate wavelengths of the traveling waves were obtained from
ventral-view video recordings of the robot with the best candidates and
the manually coded behavior controlling its swimming. The average
amplitude of oscillation was calculated from Equation 9.4 using a
maximum angular excursion of 28 degrees (derived from video recordings),
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as was that the fin height is 7 cm. The average travel speeds were also
measured from video recordings of the manual behavior and the best-
evolved individuals being replayed on the robot (Bale et al., 2015). The
black ghost knifefish that was the inspiration for our robot has an SW
of around 18 (Bale et al., 2015). From Table 9.1 it can be seen that the
best-evolved sinusoidal controller has a specific wavelength of 16, i.e., it
approximates, but is lower than, the optimal specific wavelength found by
Bale et al. (2015). Although our manually programmed controller has a
SW of 17 and comes closest to the actual knifefish, in reality it performed
considerably worse than most of the evolved controllers (see Table 9.1).

TABLE 9.1: Specific wavelengths and travel speeds of
behaviors. The evolved behaviors resulted in wave
patterns with varied wavelengths and speeds. (Wave-
length of Four. (Run 4) has been omitted as the wave

function was too erratic for it to be measured)

Genome Wavelength SW Speed (cm/s)
Manual 28 cm 17 3
Sine (Run 1) 26 cm 16 8
Sine (Run 2) 23 cm 14 6
Sine (Run 3) 26 cm 16 6
Sine (Run 4) 23 cm 14 6
Sine (Run 5) 24 cm 15 8
Four. (Run 1) 26 cm 16 4
Four. (Run 2) 26 cm 16 2
Four. (Run 3) 24 cm 15 5
Four. (Run 4) - - 5
Four. (Run 5) 22 cm 13 1

Being able to evolve wave patterns to control the swimming behavior of
the robot is of limited use if their phenotype cannot be reproduced. Since
the robot was slightly worn down after many different experiments, and
after having replaced several malfunctioning servomotors, we evaluated
the performance of the evolved wave patterns again. When comparing
the evolved Fourier series wave patterns with the evolved sinusoidal wave
patterns, it can be seen that the sinusoidal wave patterns also outperform
the manually encoded wave pattern significantly in terms of fitness value
(Figure 9.9). Though this could have been caused by many factors, it seems
that a sinusoidal function is a more robust general approach that might be
suboptimal but resilient to morphological/environmental change
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FIGURE 9.9: Performance difference between the best-
evolved sinusoidal and Fourier series individuals. The
box plot displays the quartiles of the best individuals of
the 5 runs of the sinusoidal approach and the Fourier
series approach. These results were obtained from
replaying the best genomes of the different approaches
using a patched-up version of the robotic fish (i.e., where
the servomotors had been replaced). The blue dotted
line represents the baseline performance of our manually

encoded genome.

9.3.2 Phenotypic Analysis
To analyze the type of behaviors that evolved, the position of the tip of
the fin rays was tracked in the best-evolved individuals using footage
taken from a ventral view of the robot (Figure 9.10). This tracking
was done to analyze the actual undulation patterns across the fin as
opposed to the calculated control patterns. Looking at the best-evolved
individuals from both the Fourier series and the sinusoidal approach, the
wave propagates strikingly similar along the fin of both individuals. The
phase and frequency between these two individuals are different, though
the sinusoidal wave pattern generates the same wavelength with a higher
frequency. The sinusoidal wave pattern makes roughly six undulations,
while the Fourier series makes five.
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FIGURE 9.10: Evolved wave patterns. The wave patterns
of the best (highest fitness) evolved sine wave and Fourier
series as seen from below. Both waves are almost identical
to one another, having a wavelength that is slightly larger
than the length of the fin. The blue dots illuminate
the tips of the fin rays, while the red arrows depict the
motion of the individual fin rays. The function plots
below correspond to the fin undulations depicted above
and are the best reproducible evolved wave patterns shown

in Figure 9.8 (Sine [Run 1] and Fourier [Run 3])

9.4 Discussion

Covariance Matrix Adaptation Evolution Strategy proved to be an efficient
method for automatically evolving the swimming behavior of our soft
swimming robot inspired by the ghost knifefish. Although the search
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space was quite small, failing hardware is usually a problem that makes
evolving physical robots arduous. Predefining the controller by only
utilizing periodic wave functions and only running CMA-ES for a brief
period was enough to generate efficient swimming behavior. One of
the main challenges when evolving physical robots is how to deal with
malfunctioning hardware. Considering a death toll of 17 servomotors
during these experiments, using CMA-ES seemed much more viable
compared to initial experiments with a generational evolutionary algorithm
that took almost five times longer to get similar results to the CMA-ES
approach. Covariance Matrix Adaptation Evolution Strategy was, however,
not completely resistant to the hardware failures of the servomotors, as
discussed in Text Box 9.7.

The robotic platform presented in this chapter was constrained by
predefined functions and the limited movement sets acquired in the
evolutionary runs. However, the presented robot fish could evolve many
different behaviors that the knifefish is also capable of. This could make it
a viable option for autonomous underwater vehicles. A next submersible
iteration of the fish could evolve vertical thrust through sending counter-
propagating waves towards and away from the center of the fin, canceling
out longitudinal forces, as discussed by (Curet et al., 2011a). A selection of
these behaviors can be evolved and encapsulated in a fixed environment,
removing manual programming of the behavioral repertoire.

Zoological studies of knifefish kinematics have shown that the
wavelength of the propagating wave varies across the fin during steady
swimming (Youngerman et al., 2014). Given that the swimming behavior of
the knifefish has been optimized through natural evolution, implementing
this feature in the encoding of the controller could lead to better
performance. Additionally, this could be accomplished by using a
compositional pattern-producing network (CPPN; Stanley 2007) with servo
number and time as inputs. A similar approach has previously been
used successfully to generate the oscillatory controller for a quadruped
robot (Morse et al., 2013). To discover a greater variety of controllers
that perform well, novelty search (Lehman et al., 2011) or other diversity-
enhancing methods can also be applied instead of a goal-directed approach
that is often prone to premature convergence or over-fitting. Another
aspect worthy of further inquiry is the materials used for the fin. It is
possible that a material with another elastic modulus will better exploit the
interactions with the water to facilitate the emergence of dynamics that aid
in swimming.

With this robotic platform, we were able to automatically evolve the
behavior of an intuitively functional soft robot using CMA-ES. Considering
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the increasing advances of automated manufacturing methods and readily
available materials to create detailed robots with various features, we think
this evolutionary approach on physical soft robots can become viable as a
tool for directly optimizing the behavior of the physical systems.
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Text Box 9.7: Servo malfunctions

One of the main issues of the experiments demonstrated here was the
malfunctioning of the servomotors as described by the ‘death toll’ of 17
servomotors. It should be considered for any future implementations that the
servomotors are robust enough to survive the evolutionary progression. Meaning
that we should have bought more resilient servomotors for the experiments.
However, considering this limitation, CMA-ES was an essential implementation
since other implementations took longer to be achieve similar fit individuals. The
implementation of CMA-ES relieved us from having to tweak the parameters of the
evolutionary algorithm to get the correct results. In order to have comparable results
of multiple evolutionary runs, it was a requirement that the same set of servomotors
survived for all the ten evolutionary runs of the sinusoidal approach and the fourier
approach. However, in many cases a servo failure actually occured. When plotting
the percentiles and the average fitness values of the population in this run the
resulting evolutionary progression contains a sudden change in performance as
depicted in Figure 9.11.

FIGURE 9.11: The evolutionary progression of a Fourier
Series with a servo malfunction occurring around
generation 10. The grey area represents the 25-75
percentiles of the population, the upper and lower solid
lines the maximum and minimum fitness values in the
population, the blue line the average fitness value of the
population and the white line is the median fitness value

of the population.
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9.5 Conclusion

This chapter has demonstrated that evolving the controller for a knifefish-
inspired soft robot is feasible directly on the physical robot. The majority of
the evolved behaviors outperformed a hand-designed controller in terms of
speed. Additionally, evolution was able to exploit the dynamic properties
of the flexible material to produce feasible swimming strategies for the
robot that have similar phenotypes but different genomes. Evolutionary
experiments on physical robots, which have so far only been applied to
traditional non-soft robots, are especially relevant for soft robots that are
difficult to simulate computationally. In the future, the presented approach
could be combined with more explorative search methods, such as novelty
search and different fish models, to solve tasks for which even a simple
hand-designed controller is an infeasible option.
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Chapter 10

Discussion

Complex now [the mechanical reproductive system], but how much
simpler and more intelligibly organized may it not become in another
hundred thousand years? or in twenty thousand? For man at present
believes that his interest lies in that direction; he spends an incalculable
amount of labour and time and thought in making machines breed
always better and better; he has already succeeded in effecting much
that at one time appeared impossible, and there seem no limits to the
results of accumulated improvements if they are allowed to descend
with modification from generation to generation. It must always be
remembered that man’s body is what it is through having been moulded
into its present shape by the chances and changes of many millions of
years, but that his organisation never advanced with anything like the
rapidity with which that of the machines is advancing. This is the most
alarming feature of the case, and I must be pardoned for insisting on it
so frequently.

– Samuel Butler, Erewhon

Artificial life—the paradigm concerned with the recreation of biological
phenomena observed in life—is slowly progressing as a field, enabling its
emergence. From the perspective of artificial life, this thesis has provided
an overview on theory of evolutionary dynamics and displayed both
simulated (Chapters 3, 5, 6 and 7) and physical (Chapters 7, 8 and 9)
experiments that attempted to engender the recreation of phenomena of
life using an evolutionary approach. The results of these experiments
not only teach us about life, but also promote the development of
future technologies. Researchers of evolutionary robotics simply try to
nudge the evolutionary search process to give rise to a potentially wide
spectrum of robots—making us the watchmakers. We allocate building
blocks and divide laborious tasks across isolated functionalities of robots.
Some functionalities have straightforward solutions, like rotating a wheel
through a DC motor, while others require crossing convoluted fitness
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landscapes. Machines have already been designed to, for example, exhibit
optimal arithmetic, and these attributes could simply be implemented as
a module, forming one more building block in our artificial system. The
composition of the various theories, methods, and materials together can
build a cascade of incremental steps engendering the emergence of a robotic
conglomerate that can be optimized toward any objective. Toward this
objective, this thesis has discussed the role of death on the evolvability
of a population, the evolution of modular robots, and using evolutionary
computation to directly evolve behavior on a physical robot.

10.1 Evolutionary Dynamics of Intrinsic Morta-
lity

To improve our understandings of life and its emergent phenomena, it is
important that we understand as much as we can about its evolutionary
dynamics. For evolutionary robotics, this particularly means the manners
in which we can traverse fitness landscapes. For robotics applications there
may be many landscapes that are interconnected and could potentially
be isolated. Additionally, some landscapes might be dependent on
others, where a seemingly unrelated stepping stone needs to be found
before the population can be further evolved (Stanley et al., 2015). For
example, a robot might need to see before it is able to grasp objects.
Although sight might be a direct evolutionary advantage when discovered,
other potential strategies can emerge from precursors that had different
functionalities when they initially appeared, such as the feathers that
gave rise to flight in birds. Evolution therefore has a seemingly random
explorative nature, and thus has the capacity to exploit any type of property
that deems sufficient. The competence of a population to traverse the
fitness landscapes empowers evolvability but is likely produced due to
happenstance.

Chapter 3 has specifically shown that one factor, mortality, drastically
changes the evolvability of a population when implemented on deceptive
fitness landscapes. I contemplate that deceptive landscapes in particular
are the most important analogy to natural systems. In nature, these
deceptive landscapes are dynamically shaped by the environment. This
dynamic aspect can come from us changing, removing, or adding an
objective to the artificially simulated environment or physical robot. The
mortality implementation shows how a population can traverse the top
of the fitness landscape. This hill-hugging phenomenon—emergent from a
simple decrease in selective pressure on the fittest individuals—might well
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be a powerful way through which artificial systems can find solutions by
means of apparent drift. Most algorithmic implementations instead rely
on diversification methods through the insertion of random individuals
(Schmidt et al., 2011), or the active search for novelty (Lehman, 2012).
Though diversification is promoted when using mortality, we could
postulate that this implementation is functional novelty through death, or
mortality-induced adaptive radiation.

As discussed in Kowald et al. (2016), senescence might well be emergent
through a trade-off between advantageous cellular machinery (disposable
soma) or a coincidental effect of genes that are early-life fitness promoters
and detrimental later in life (antagonistic pleiotropy). Proving that
senescence increases algorithmic performance does solicit the advocates
of non-programmed aging to take into account that a mortal population
might simply be more effective on a time-scale of hundreds of generations.
A difficult question still remains is still: when is senescence an evolvable
feature, rather than merely a feature that increases evolvability? To answer
this question, future experiments should make the parameters of mortality
themselves evolvable. Depending on the fitness landscapes that are being
used, intrinsic mortality is likely not advantageous on landscapes with an
obvious gradient towards a maximum. Even when there is a landscape that
makes mortality advantageous, individuals exhibiting no mortality could
certainly take over the population in the long run. When considering aging
individuals to be cooperators, and immortals to be defectors, the defectors
likely have a direct advantage over cooperators creating a prisoner’s
dilemma scenario. A prematurely converged population stuck in a local
optima has the chance to outcompete mortal populations that have not
yet found better-fit solutions in the landscape, though is likely in trouble
when the environmental niche it occupies changes. Nevertheless, intrinsic
mortality affects evolutionary search and is thereby likely an evolvable trait.

10.2 Evolving Modular Robots

The importance of using modularity in robots is the isolation of the
functionality in specific parts of a robot. Additionally, implementing
generative encodings can engender a recursive succession of modules. This
recursion of simple parts could in turn give rise to complex phenotypic
traits. This process of recursion, or genotype to phenotype mapping, has
been implemented in Chapter 5 for creating artificial plant morphologies.
Its specific importance has subsequently been discussed in Chapter 6 for
the acquisition of locomotion in modular robots. Although the L-Systems
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that were implemented may not be the most efficient type of generative
encoding, they are a simple method to quickly generate a patterned
phenotype that can be represented as a hierarchical tree.

To ensure that the robots evolved in a simulator are feasible, the type
and number of modular parts available can be specified to determine
the morphological bounds of the evolutionary search process. This
evolutionary search process can furthermore be altered by simply adding
modules with their own unique attributes to the same modular system
with a different objective. The addition of solar panel modules is an
example of changing the objective and building blocks of the evolutionary
search process (Chapter 7). The application of solar panel modules could
potentially be extended in artificial settings through implementing various
solar panels that are optimal for different light intensities, potentially
maximizing light absorption while minimizing resource requirements.

In a future simulation environment implementing different types of
modules, specific modules of the robots could be subjected to evolution
while others remain fixed. For example, if a bipedal robot has been
constructed, the leg modules could be subjected to evolution potentially
changing the size and control mechanisms of various parts. In turn,
when a bigger brain or additional arms are incorporated into a robot, the
evolutionary algorithm could specifically re-evolve the structure of the legs
to compensate for the added mass and shifted center of mass. Hence, a
feedback loop of quickly tweaking local parts of a robot can be achieved at
various scales.

The methods that were presented were, however, limited by the
mechanical properties and requirements of the modules. In the case
of the presented modules, the mechanical and electrical connections
were distributed through the same connector site. From an engineering
perspective this approach is flawed since a disconnection—even if
temporary—of two modules would result in the inactivation of the
modules, which in turn briefly lose power and communication. The future
design of modules for a modular robot could consider this by separating
the electrical wiring and the mechanical connections. This can be done
through additionally having magnet-based wires distribute power and
communication to other modules. However, this implementation would
also make the robot more difficult to construct, especially automatically.
In addition, mechanical connections close to the center of the robot would
require more power and mechanical strength to actuate parts of the body
as compared to parts that are more distant. Recursive modules that change
in scale and strength are therefore likely contributors to more efficient
modular robots. Despite the aforementioned limitations of the presented
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work, the modular approach to evolving robots is an efficient way in which
morphological designs can quickly be altered and explored in robotics.

The use of generative encodings can lead to phenotypes that are more
transferable to the real world. As generative encodings can allow the same
behavior to occur in multiple modules in a system, this recurrence can mean
that the solutions found are transferable because the result of the patterned
behavior is likely more generic. It is not fine-tuned to its environment,
as would be more likely the case in a direct encoding. Fine-tuning in the
simulator, in contrast, may lead to the evolution of a behavior that is not
transferable. In addition, a generative encoding is able to make a wider
sweep across the search space, while a direct encoding increments more
locally. This wider sweep might also contribute to the generative encoding
finding strategies that are more generic. Combining the approaches might
however be an even better method for designing robots: initially making a
somewhat large sweep with a generative encoding to find generic solutions
and afterwards fine-tuning the phenotypes using a direct encoding. By this
approach, a generative encoding can evolve the robots in a simulator, while
the direct encoding can be implemented to tune the real robot.

The presented approach to evolving modular robots has demonstrated
that modular robots can automatically emerge by giving the simulator a
specific objective, be it energy acquisition or locomotion. With the addition
of being able to reconfigure the modular robot physically, the approach
considers a genotype to phenotype mapping emphasizing the morphology
and decentralized control while also working toward a minimizing the
reality gap. Being able to correctly abstract the morphology and control
of robots, as well as being able to efficiently traverse the search space, has
potential to yield a plethora of robot types optimized for any objective. This
could potentially be transferred to real world scenarios in which a user
specifies the environment and the objective and the evolutionary plugin
automatically evolves the morphology and control based on the available
modules.

10.3 Evolution of Physical Systems

Chapter 8 has given a brief example of a methodology to automatically
assemble modular robots using fiducial markers and a UR5 robot arm.
The results depicted in this approach are preliminary, but are aimed
towards the automated production and evaluation of modular robots. Since
the modules presented in this chapter were not active, some additional
hurdles need to be overcome before a complete autonomous modular robot
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assembler can be created. Moreover, though easy to use by researchers,
the reconfiguration of modular robots can be difficult since disconnecting
modules requires some force due to the strong magnetic connections
between modules. Many improvements can still be made. These include,
for example: using active grippers, having mechanical connectors, adding
a power source module perhaps with wireless communication capabilities,
and adding a docking station to automatically charge the robot and reset its
position.

The evolution of the soft robot inspired by the black ghost knifefish has
been presented in Chapter 8. In this case, due to hardware limitations,
it became apparent why the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) was so efficient. Implementing sinusoidal wave
functions that were mutable quickly led to the discovery of various
undulation controls. Evolving a Fourier series and a regular single sine
wave function showed a similar evolutionary progression, the Fourier
series being a bit slower. After replacing all of the servos with new ones,
a drastic change in performance was noted. On average, solutions found
by the Fourier series performed worse than the solutions found by the
sinusoidal controller. The sinusoidal approach being simpler probably
indicates that a more generic solution is more robust and is not likely to
exploit specific behavioral characteristics that the Fourier series may have
done. However, the resulting behavior in the Fourier series might also
have emerged due to the exploitative nature of CMA-ES. Implementing
another strategy, like the mortality rate, might be less exploitative and
instead promote diversity.

There is an argument to be made for bypassing the simulator and
implementing evolutionary approaches on robots directly, taking the
embodied robotics approach. For bioroboticists, an organism can be
physically reconstructed and its behavior can subsequently be evolved.
This would elucidate not only principles of biological (perhaps extinct)
organisms, but also aid in the construction of effective robots (Long, 2012).
Moreover, the embodied approach—either implementing evolutionary
computation directly on robots or the embodiment of the evolutionary
algorithm itself in embodied evolution—does not have a reality gap.
Simulators frequently exploit inaccurate dynamics/physics that constitute
a major problem when dealing with the reality gap. Having efficient
evolutionary methods that can adequately explore the fitness landscapes
is thus a prominent technique for acquiring behavior in robots directly.
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10.4 Concluding Remarks

This thesis has discussed death, modularity, and physicality for the ultimate
acquisition of robot morphologies and control through evolutionary
computation. Programmed death induces evolvability on deceptive fitness
landscapes and might thereby be an explanation for senescence. Beyond
being a mere explanation, it can prevent populations in evolutionary
computation from prematurely converging, enabling more solutions to be
found. Generative encodings in modular robots increase the performance
of evolving modular robots and illustrate the importance of the genotype
to phenotype mapping and how development is beneficial. While the
behavior in robots can be transferred from the simulator when the
phenotypes are simple, directly evolving behavior is also feasible in the
absence of simulation models, bypassing the simulator. The exploration
vs. exploitation trade-off, genotype to phenotype mapping, and physicality
are interlinked concepts that, in conjunction, can be implemented in the
generation of even better-adapted robots.

Moreover, the issues presented in this thesis are relevant to the general
paradigm of AI. Conventional methods used in artificial intelligence
implement learning strategies that update control parameters usually in
a directed manner, following gradients and promoting novelty. Since
evolutionary computation mainly works on the phylogenetic time scale, the
incorporation of concepts in artificial intelligence on the ontogenetic time-
scale can provide us with a toolset for improving existing machines and
algorithms in general. The implementation of evolutionary computation
can be beneficial for a wide range of applications, but especially for the
generation of complex robots from mere building blocks.

All biological machinery has evolved through the blind process of
evolution. The elegant evolutionary dynamics have in turn formed the
backbone of this thesis, where they have been utilized with the aim to create
robots by defining the environment, the task, the building blocks, and the
encodings. The presented methodology is valuable for both science and
engineering, where self-adaptation through evolution is key. Prospective
improvements on the presented methodologies may alleviate the design
burdens of watchmakers, such that instead of being designed, robots are
evolved.
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Appendix A

Full Spatial Model

Pseudocode

The spatial model updates the biomass of all cells at every iteration1,
where g represents the cycles and n all of the cells on the grid. If the cell
that is being checked is not part of the evolvable population (!= X) then the
biomass of the cell is updated depending on the biomass production rate set
by the initial parameters. The cells that are part of the evolvable population
can have a developmental trigger and a mortality trigger. If the cell should
develop, its genome is swapped with another one that is stored in the
subsequent developmental phase. If the cell is mortal, and the terminal age
is reached or a random death factor function returns true, the cell is deleted
and part of its biomass is left as plant biomass. After the developmental
and mortality triggers, the cell can move, eat, and reproduce. The data of
the entire grid is saved every 100 cycles.

1The full implementation can be found here: https://github.com/FrankVeenstra/
ALife2018
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Algorithm 2: Spatial Model Extended Pseudocode
Initialize and Evaluate population P = {X1, ..., XN};
while g := 1 to Gmax do New Cycle

for n := 1 to Nmax do Update Cell
if Cells[n] != X then

Mass := Biomass Production Rate;
else

Mass := -Mass Loss Rate;
if Developmental Trigger then

Develop Cell;
end
if Cell[n] != immortal then

if Cell[n].age > Cell[n].maxAge || Cell[n] = Selected by
Probability then

Remove Cell[n];
end

end
Move;
Eat;
if Reproduction then

Reproduce;
Mutate Offspring;
Evaluate Offspring;

end
end

end
if Cycle % 100 == 0 then

Log State
end

end
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Appendix B

UML Evolutionary Robotics

Plugin

The UML of the robotics plugin is presented in Figure B.1. The
UML illustrates the relationships between the genetic algorithm, genome,
morphology, modules, control, neurons, environment, and V-REP. Five
factory patterns, from which two were dependent on V-REP, were
implemented.
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VREP DEPENDENCIES

Genetic Algorithm

+population of genomes: vector<Genome>
+Simulators: vector<Simulator>

+initialization(initialPopulation)
+evaluation(amountGenerations)
+InitializeAmountVREPSimulators(amountProcessors)

Genome

+Morphology*
+Control*: vector<Controllers>

+CreateNewMorphology()
+CreateNewControl()

Morphology

+initialization()
+mutation()
+create()

Control

+initialization()
+update()
+mutation()

BaseMorphology

+initialization()
+mutation()
+create()

ModularMorphology

MorphologyFactory
+Ontogenetic

«dataType»
Settings

ControlFactory

VREPplugin

FixedMorphology

+DefineInOut()

Robot

+Control

NeuralNetwork

+Layers

+initialization()
+update()
+mutation()

NeuronType1

+update()

BasicControl

+initialization()
+update(moveJointsToPositionZero)
+mutation()

+Ontogenetic

AbstractNeuron

+connections
+weights
+input
+threshold

+update()

NeuronType2

+update()

«dataType»
Settings

RecurrentLayer

InputLayer

Sensor Input Actuation

+Here and Now

NeuronFactory

ModuleFactory

Module1

+Control

Module2

+Control

EnvironmentFactory

+FitnessFunction()

EnvironmentType1

+FitnessFunction()

EnvironmentType2

+FitnessFunction()

OutputLayer

LSystem

VREPClient

ModuleGenome

VREPServer

MorphologyFactoryVREP

DefaultGenomeVREP

GeneticAlgorithmVREP

FIGURE B.1: The UML diagram of the Evolutionary
Robotics Plugin. The dark blue boxes with white letters
depict the main functions. The white boxes are the features
of the genetic algorithms which were the evolutionary
algorithm and the genome. To the left of the genome,
in yellow, the classes relevant to the morphology are
depicted. On the other side, blue depicts the control
architecture of the neural network that was implemented
in the modules/robots. Finally, in green the environment
and corresponding fitness functions are defined. Dark
grey boxes additionally present the factories enabling

factory patterned instantiation of classes.
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