
Systematic Reuse and Ad Hoc Forking to Develop Software Variants

by

Ştefan Stănciulescu

Advisor: Andrzej Wąsowski

Co-Advisor: Kasper Østerbye

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in Software Engineering

at

IT University of Copenhagen,

Rued Langgaards Vej 7, 2300

Copenhagen, Denmark.

August, 2017

1

Abstract

A common way to implement variability in C/C++ systems is to use preprocessor
annotations to allow software to be configurable. Source code is annotated by devel-
opers, who can then use preprocessor tools to exclude or include code fragments at
compilation time. Although annotations such as #ifdef and #endif increase efforts in
maintenance, clutter the code, and challenge program comprehension, they are easy
to use, scalable, and therefore heavily used in practice. An alternative for developing
software variants is to reuse existing code by forking an existing project. In its simplest
form, forking is the process of copying an existing project and then having complete
freedom to modify the fresh copy. This is a quick, effective, and common method used
in open source and industrial software projects because of its low costs. However, this
method does not scale and increases maintenance efforts due to multiple copies of the
same artifacts that need to be maintained in multiple places.

In this dissertation I explore the advantages and disadvantages of using these two
techniques to develop software variants in practice. The main goal is to understand
how to leverage their benefits while reducing the associated costs and issues. I analyze
a complex and popular 3D printer firmware and its community, to understand how
variants are developed using preprocessor annotations and forking. I explore the idea
of combining the two techniques to have the advantages of both, while reducing some
drawbacks. As a way to achieve this, I propose and show the feasibility of a variation
control system that combines and unifies the usage of preprocessor annotations and
forking, leveraging their benefits. Developers work on specific projections (variants)
of the code, make changes and push their changes back to the repository. The variation
control system also offers support for independent development through forking.

Often, forked variants need to be reintegrated into an integrated platform, though
it is not a trivial process. I argue that the integration should be supported by specific
tools that are not based on the classical diff tools. To this end, I propose to abstract
from code and lift the process to more common integration intentions. To achieve this,
I developed a set of generic integration intentions that guide the developer through the
integration process. Developers have two views showing the differences between the
mainline and the forked variant, can make changes that they can see in those two views
(while the views are simultaneously synchronized), and can preview the result of their
changes and intentions in the preview view. This allows them to explore different inte-
gration goals and quickly apply and undo intentions. Through a series of simulations
and a controlled experiment, I show that users using a specialized tool do less mis-
takes compared to traditional merging tool, while they are using just a few operations
to achieve their integration goal.

2

3

Resumé

Den almindelige måde at implementere variabilitet på i C/C++ er ved at bruge
præprocessorannotationer, hvilket tillader software at være konfigurerbart. Kildekode
er annoteret af udviklere, som kan derefter bruge værktøjer til præprocessering til at
udelukke eller inkludere fragmenter af kode på oversættelsestidspunktet. Selvom an-
noteringer som #ifdef og #endif øger vedligeholdelsesarbejdet, gør koden mindre læs-
bar, og formindsker programforståelsen er de nemme at bruge og skalérbare, hvilket
gør at de er stærkt anvendt i praksis. Et alternativ til udvikling af softwarevarianter
er at genbruge eksisterende kode ved at forke et eksisterende projekt. Forking er
forstået som kopiering af et eksisterende projekt, hvilket giver programmøren fuld-
stændig frihed til at modificere den friske kopi. Denne metode er hurtig og effektiv,
og er udbredt i både open source og industrielle software projekter på grund af sine
lave Omkostninger. Denne metode skalerer dog imidlertid ikke, og øger også vedlige-
holdelsesindsatsen fordi at der skal holdes styr på flere kopier af de samme genstande
på samme tid. I denne afhandling undersøger jeg fordele og ulemper ved at bruge
disse to teknikker til udvikling af softwarevarianter i praksis. Hovedformålet er at
forstå hvordan man kan udnytte deres fordele samtidig med at de forbundne omkost-
ninger og proble- mer reduceres. Jeg analyserer en kompleks og populær 3D-printer
firmware og udviklermiljøet omkring det, for at forstå hvordan softwarevarianter er
udviklet ved brug af præprocessorannoteringer og forking. Jeg undersøger hvordan
man kombinerer de to teknikker for at opnå de fordele der findes i begge systemer,
samtidig med at prøve at reducere nogle af ulemperne. For at opnå dette, foreslår jeg
et softwarevariant kontrolsystem, som gør det muligt at kombinere og forene brugen af
præprocessorannotationer og forking, og derved gør brug af deres fordele. Udviklere
kan arbejde med specifikke projekteringer (varianter) af koden, foretage ændringer og
gemme deres ændringer tilbage i lageret. Softwarevariant kontrolsystemet tilbyder
også støtte til uafhængig udvikling gennem forking. Ofte skal forket varianter geninte-
greres i en integreret platform, selvom dette ikke er en triviel proces. Jeg argumenterer
for at integrationen skal støttes af specifikke værktøjer, der ikke er baseret på de klas-
siske ‘diff’ værktøjer. Til dette formål foreslår jeg at abstrahere væk fra kode og i
stedet benytte en højniveausproces der understøtter almen brugte intentioner til inte-
grering af kode. For at opnå dette, Har jeg udviklet et sæt generiske integreringsinten-
tioner, der styrer udvikleren gennem integrationsprocessen. Udviklere arbejder med to
visninger der viser forskellene mellem hovedvarianten og varianten som er forket, de
kan foretage ændringer som vises direkte i disse to visninger (som synkroniserer med
hinanden på samme tid), og kan se resultatet af deres ændringer og intentioner i en
forhåndsvisning. Dette giver dem mulighed for at udforske forskellige integrationsmål
og hurtigt anvende og fortryde hensigter. Gennem en række simuleringer og et kon-
trolleret eksperiment viser jeg, at brugere der bruger et specialiseret værktøj laver færre
fejl, når man sammenligner med traditionelle fusionsværktøjer, og samtidig bruger de
færre operationer for at nå deres integrationsmål.

4

i

Acknowledgments

A Ph.D. is a difficult endeavor and this one is no exception. I would like to thank
my advisors Andrzej Wąsowski and Kasper Østerbye for their wonderful guidance.
Andrzej has always given me the freedom to choose my path, while offering sugges-
tions and criticism in the most needed moments. Thank you for being patient with me,
trusting me, and mentoring me throughout the past 4 years. Many things that I have
learned, I owe them to you. Kasper, thank you for always showing and putting things
in a different perspective. I tremendously enjoyed our Friday morning meetings, from
which I gathered a lot of wisdom. Finally, many thanks to everyone I met at ITU
(you know who you are). A special thanks goes to Thorsten. I enjoyed learning and
collaborating with you.

I am extremely grateful to for the chance of visiting the Generative Software De-
velopment Lab at University of Waterloo in Canada, where I was hosted by prof.
Krzysztof Czarnecki. This was the place where I learned many things about research
and software engineering, and the most important of all: to question everything and
ask questions. I would also like to thank the many wonderful people that I met there
during my stay. A sincere thanks goes to Leo and Lorin; I have deeply enjoyed the
evenings discussing interesting things and drinking beer. I hope we can do it again!

Life sometimes gives you the most unexpected gifts. I am fortunate to have been
given the opportunity to visit Carnegie Mellon University for a longer period of time.
This was possible through the EliteForsk Stipendium awarded by the Danish Ministry
of Higher Education and Research, to which I am extremely grateful. During my time
at CMU, I have met wonderful people with whom I have truly enjoyed spending time
and working together. Christian, thank you for having me in your group. Your insights,
critical thinking, and always pushing for excellent and insightful results have shaped
me as a researcher. Shurui, Gabriel, Chu-Pan and Miguel, thank you for the hospitality
and for making me feel welcome there. A big thanks goes also to everyone else that I
met at CMU.

My stay in Pittsburgh would have not been the same without a few other people.
Specifically, I am grateful for having met Martin, Ivan and Jens, and starting the Pilsner
club together with them. I cherish all the moments that we spent together and I am
happy that we were able to create such a strong friendship. It was awesome, thank
you, and see you soon for a reunion!

The past few months would have been much harder without my amazing and lovely
fiancée, Mei. Thank you for your patience, trust, and being with me in these diffi-
cult moments. Also thank you for introducing me to the world of clothes hangers. I
promise that I will use them from now on, and I am looking forward to having lifetime
adventures with you.

Finally, I would like to thank to all my family. My siblings and my parents have
supported me and my crazy ideas, particularly when moving to five countries in less
than six years. I could have not done it without you. This dissertation is for you.

ii

Contents

Contents iii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Systematic Reuse . 1
1.2 Ad-hoc Reuse . 4
1.3 Objectives and Contributions . 7
1.4 Outline . 8

2 Background 11
2.1 The Marlin Firmware . 11
2.2 Git . 12
2.3 Github . 13
2.4 Feature Models . 15
2.5 Choice Calculus . 16

3 Methodology 19

4 Flexible Product Line Engineering - Paper A 21
4.1 Introduction . 21
4.2 Adoption Levels . 22
4.3 Marlin, Github and Virtual Platform 25

5 Practices of Systematic and Ad hoc Reuse - Paper B 27
5.1 Introduction . 27
5.2 Study Design . 29
5.3 Results and Analysis . 30
5.4 Summary . 40

6 Variation Control Systems - Paper C 43

iii

Contents

6.1 Introduction . 43
6.2 Background . 45
6.3 Variation Control System Design . 47
6.4 Study Design . 50
6.5 Edit Operations . 52
6.6 Evaluation . 56
6.7 Variation Control System with Forking Support 58
6.8 Discussion . 61
6.9 Summary . 62

7 Variant Integration using Intentions - Paper D 65
7.1 Introduction . 65
7.2 The Integration Process . 67
7.3 Intentions . 68
7.4 Evaluation . 73
7.5 Summary . 81

8 Related Work 83
8.1 Forking . 83
8.2 Software Product Line Engineering 86
8.3 Projectional Editing . 88

9 Conclusion 91

A Appendix 93
A.1 Paper A . 93
A.2 Paper B . 98
A.3 Paper C . 109
A.4 Paper D . 120
A.5 Marlin Survey Active Forks . 132
A.6 Marlin Survey Inactive Forks . 137
A.7 Intentions Examples . 142
A.8 Variant Integration Exit Questionnaire 153
A.9 Variant Integration Exit Questionnaire Answers 157
A.10 Controlled Experiment Answers . 161

Bibliography 167

iv

List of Figures

2.1 Printing process in a 3D printer . 11

2.2 Git commands at local level and between local and remote repository . . . 12

2.3 Client and server repositories. Internal and external collaborators, using
original and forked repositories. 13

2.4 Fork of the Marlin project in which the Delta variant was developed. On
top left corner there is the tag that this repository was forked from Marlin-
Firmware/Marlin, which indicates that this is a formal fork. In compari-
son, in Fig. 2.5 this tag does not exist, but we can quickly deduct that the
repository is an informal fork of Marlin. 14

2.5 An informal fork of Marlin to support Delta printers with autocalibration.
This was done by simply copy pasting the code and creating a repository
from scratch, which was then pushed to Github. 15

2.6 Feature model with cross tree constraints. 16

2.7 #ifdef block (top) and its corresponding choice expression (bottom), where
the numbers 2 and 4 represent the strings at those lines in the top box. . . 16

2.8 Choice calculus syntax . 17

4.1 Recording traceability . 22

4.2 Annotating and adding new features in a clone 23

4.3 Derivation of variants by selecting/deselecting desired features 24

5.1 Marlin’s active and inactive forks, and forks’ levels (percentages show the
relative size in the set of all forks). The 1st level forks were created by
forking main Marlin repository, the 2nd level forks were created by forking
1st level forks of Marlin, and similarly for 3rd and 4th level. 29

5.2 Number of active forks used for configuration, developing features or bug-
fixes (overlapping categories, percentages show the relative size in the set
of active forks) . 32

v

List of Figures

5.3 Quantitative data regarding synchronization of forks. The three columns
represent the forks that 1) are inactive and never synchronized with the
main Marlin repository, 2) are active (made changes) but did not synchro-
nize, and 3) are active and synchronized with the main Marlin repository.
These are non-overlapping groups, and percentages show the relative size
in the set of all forks . 34

5.4 Reasons for not merging pull requests. The numbers represent how many
pull requests were rejected in each category. Other includes: closed by the
pull request author (no reason), bad patch, pull request created on wrong
repository, or not fixing anything. 37

5.5 Synchronization of active forks for patches. The sum of the two represents
existing active forks at the time creation of that patch. 39

6.1 Projection-based variational editing workflow and relationships. Symbol
r represents the repository that contains source code, p is the projection
that specifies how to obtain the view v from r using the get function. The
ambition a specifies how should the changes from the edited view v′ be
applied to the repository using the put function. Both p and a are Boolean
expressions over features. 48

6.2 The Variation Control System commands from the command line interface. 50
6.3 P4 AddIfdefWrapElse editing workflow. 54
6.4 P9 RemIfdef editing workflow. 55
6.5 P11 WrapCode editing workflow. 55
6.6 Reduction factors for LOC and NVAR for the view 57
6.7 Variation control system editing workflow. 58

7.1 Code excerpts from Marlin’s main codebase (left) and the corresponding
fork (right). Colors indicate differences. 66

7.2 The common integrated codebase for the mainline/fork of Fig. 7.1 68
7.3 INCLINE showing the common integrated codebase of Fig. 7.1. Four

views are shown. The top two views are projections of the integrated code-
base; the top left is the code that exists in the mainline variant, and the top
right is the code from the fork variant. The bottom left view shows the
common integrated codebase, with side-by-side differences (gray boxes).
The bottom right is a pre-view, showing how the future common integrated
codebase will be affected by the intentions applied. 69

7.4 Keep intention (left) and result (right) 70
7.5 Remove intention (left) and result (right) 71
7.6 KeepAsFeature intention (left) and result (right) 71
7.7 The edit operations/intentions needed to execute the BusyBox and Vim

tasks using Eclipse and respectively INCLINE 78

vi

List of Figures

7.8 The time needed to execute the BusyBox and Vim tasks using Eclipse and
respectively INCLINE . 79

7.9 Post experiment survey answers on likert-scale in a heatmap representa-
tion. The X-axis represents the likert values: 1 being Strongly Disagree
and 5 being Strongly Agree. The Y axis shows all the questions in the
questionnaire. The stronger color indicates agreement among the partici-
pants. 80

vii

List of Tables

1.1 Summary of the advantages and disadvantages of integrated platform us-
ing preprocessor annotations and forking 6

5.1 Pull request contributions from forks to the parent repository. The last row
refers to deleted forks whose level is unknown 35

6.1 The 14 edit patterns identified by the classifier. The #Multi column indi-
cates the number of patches that match the given pattern and also one or
more other patterns. The #Only column indicates the number of patches
that match only that pattern. The last column provides a brief illustration
of the pattern using the choice calculus. 53

6.2 loc and nvar metrics with the min, max, and median values for the 33
changes for our put function. Repository update represents the change
done by the developer in the original git repository of the project. 57

7.1 Latin square design. Each developer executes in a random order the P1 or
P2 task, with the two treatments: Eclipse CDT or INCLINE (INC). 77

viii

1. Introduction

Today’s software is becoming increasingly complex requiring even more substantial
efforts to develop, maintain and test. Developers have to deliver a high quality prod-
uct and to cope with increasing demands to provide sufficient security, performance,
reliability and allow the software to be configured.

Configurability adds complexity and increases the efforts of development and main-
tenance. Companies often need to configure their products to the customer require-
ments. Developers need to build the software with the configurability aspect in mind,
mainly to allow their products to reuse as much code as possible. However, this is
more costly, harder to get correct and inherently challenging to maintain and develop.

In the past few decades, researchers and practitioners have developed a number
of techniques and methods to mitigate this problem. Among these, systematic reuse
and ad-hoc reuse techniques have been preferred for developing families of software
programs.

1.1 Systematic Reuse

Techniques for systematic reuse have been proposed both in academia and industry
to tackle many of the challenges that emerge from the need of developing families of
software programs. These techniques include and are not limited to: component-based
development [Czarnecki and Eisenecker, 2000], frameworks [Johnson and Foote,
1988], aspect-oriented programming [Kiczales et al., 1997], feature-oriented program-
ming [Prehofer, 1997, Batory et al., 2004], language preprocessors [Kernighan and
Ritchie, 1988] and software product lines [Kang et al., 1990, Clements and Northrop,
2002].

A particular successful model, the software product line paradigm, has been shown
to decrease costs and efforts of developing families of programs [Dubinsky et al.,
2013], while increasing return-on-investment [Hetrick et al., 2006] and the quality of
the code [Pohl et al., 2005]. While software product lines deal with many aspects
of the business (processes, requirements, feature models), there is one category of
software systems that is closely related: highly configurable systems (HCS). These
systems are simpler and usually have no explicit feature models, but are widespread

1

1 Introduction

119 // LCD selection
120 #ifdef U8GLIB_ST7920
121 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
122 U8GLIB_ST7920_128X64_RRD u8g(0);
123 #elif defined(MAKRPANEL)
124 // The MaKrPanel display, ST7565 controller as well
125 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
126 #elif defined(VIKI2) || defined(miniVIKI)
127 // Mini Viki and Viki 2.0 LCD, ST7565 controller as well
128 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
129 #elif defined(U8GLIB_LM6059_AF)
130 // Based on the Adafruit ST7565 (http://www.adafruit.com/products/250)
131 U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0);
132 #else
133 // for regular DOGM128 display with HW-SPI
134 U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
135 #endif

Listing 1.1: Marlin excerpt (dogm_lcd_implementation.h at commit a83bf18)

both in open source and industrial environments. In this dissertation I will focus only
on highly configurable systems implemented in C/C++.

A common technique used to implement highly configurable systems as well as
industrial software product lines [Dubinsky et al., 2013] is the language preprocessor
(e.g., C preprocessor (CPP)). In the case of preprocessor, source code is annotated us-
ing the tokens #ifdef-#endif. These annotations define configuration options that, in
general, are strings or logical expressions given by developers (e.g., CONFIG_WIN32
or CONFIG_WIN32 || CONFIG_UNIX). The end result is an integrated platform that
contains a single codebase from which different variants can be derived by enabling or
disabling these configuration options. Examples of configurable systems include many
diverse open source projects: Linux Kernel (operating system), Busybox (Unix tools),
Berkeley DB (databases), Marlin (3D printer firmware), Vim (text editor), Apache
(webserver), and others, as well as industrial embedded systems. For example, Dan-
foss’s frequency converters contain over 200 features and have more than 1000 config-
urable parameters [Jepsen and Beuche, 2009], used to derive over 45 variants [Zhang
et al., 2013]. HP’s configurable software system for printers has been developed for
more than 15 years, and can be configured to more than 30 product variants [Mebane
and Ohta, 2007]. Other examples include the NASA flight software [Ganesan et al.,
2009] and Wilkon’s remote control systems [Pech et al., 2009].

In Listing 1.1, an example from the open source project Marlin shows the usage
of preprocessor. Marlin is a 3D printer firmware developed in C++ that uses CPP to
allow its users to configure the firmware according to their hardware components and
preferences.

The code snippet is from the dogm_lcd_implementation.h header file, where many
variables are defined to be used when the LCD configuration option is enabled. In
lines 120, 123, 126, 129 several configuration options are used to annotate fragments
of the code. There are in total five configuration options (U8GLIB_ST7920, MAKR-

2

1.1. Systematic Reuse

PANEL, VIKI2, miniVIKI, U8GLIB_LM6059_AF) used in only 17 lines of code. For
each configuration option, a different constructor is used to set the correct parameters.
For example, in line 125 the U8GLIB_NHD_C12864 constructor and two variables,
DOGLCD_CS and DOGLCD_A0 (defined in another header file which represent spe-
cific pins of the ST7565 controller) are used to initialize the graphical library with the
correct values for that particular hardware display. Concretely, from this code snippet
five variants can be derived.

Advantages and disadvantages of an integrated platform using the
preprocessor
In this section I describe in more details the advantages (+) and disadvantages (-) of
using the preprocessor to develop an integrated platform for developing software vari-
ants.

(+) Known and used by developers Generally, developers are familiar with the pre-
processor (CPP) language. It is used extensively in C/C++ languages, not only to im-
plement variability but also to define macros (e.g., constants) that are later expanded
before the code is compiled. This kind of annotaion mechanism usually exists in sev-
eral other languages than C/C++ via extensions or other ways; e.g., Antenna prepro-
cessor for Java, a subset of CPP for C#, Visual Basic, Adobe Flex, and others [Kästner,
2010].

(+) Easy to use One of the main benefits of using the preprocessor is that it has a
low learning curve and it is easy to use, particularly in legacy systems where flexibility
may be required. Consider the example where in order to introduce a variant we can
annotate a line of code with an #if annotation for the configuration option. Removing
the preprocessor annotation is also very simple, by deleting that particular annotation
from code.

(+) Flexible Preprocessor annotations are simple to use. They allow developers to
apply annotations at token or even character level without needing to respect the un-
derlying language’s structure. This makes it a flexible and powerful mechanism.

(+) Scalable Preprocessor annotations can be used to annotate code to be included
or excluded at compilation. These annotations can be used in large codebases without
having a formal limit on their usage. Therefore, many variants can be derived from the
same codebase that uses preprocessor. One such example is the Linux Kernel system
comprising several million lines of code and more than 15.000 configuration options
that are used in #ifdef annotations throughout its codebase. This is one of the largest

3

1 Introduction

open source projects that successfully uses the preprocessor to implement variability
and support the development of a large number of software variants.

(-) Challenges program comprehension One inherent drawback of the preproces-
sor is that developers work with all the variant space at once. They need to work,
understand and modify codebase from which a large number of variants can be de-
rived. The increasing number of variants that need to be supported, managing and
evolving configurable software systems using preprocessor annotations poses many
challenges. Working on all possible variants of the system at once is known to neg-
atively impact the comprehension of source code [Melo et al., 2016]. Moreover, it
is inherently harder to follow the control flow of the program due to the usage of the
preprocessor. Code is impacted negatively through the usage of preprocessor, which
lessens code quality [Spencer and Geoff, 1992, Favre, 1996, Pohl et al., 2005].

(-) Scattered and tangled code When using preprocessor annotations, the code be-
comes quickly tangled and clogged by many fine-grained annotations. Although the
preprocessor is versatile and flexible, features’ implementation code likely gets scat-
tered among files. Separation of concerns becomes difficult if the technique is not cor-
rectly managed, as the code becomes more scattered and tangled [Kästner and Apel,
2009, Kästner, 2010].

(-) Subtle errors and little tool support Type errors and syntax errors are also com-
mon due to its usage, particularly because of its flexibility that sometimes leads to
undisciplined annotations (on tokens or characters and not on AST elements). De-
velopers have a limited set of tools that are variability aware and can support easy
development and maintenance of their integrated platform. A few academic tools have
tried to address some of the problems, but none have been widely adopted in industry.
Beyond syntax highlighting and code folding, no major IDE supports editing variant
subsets while ensuring the consistency of the whole system.

Summary
Though there are considerable drawbacks in using CPP annotations, it is still the most
common used mechanism to implement highly configurable systems mainly due to its
simplicity, low learning curve and easy usage, and being highly flexible.

1.2 Ad-hoc Reuse

An alternative to using an integrated platform implemented via #ifdef annotations
is to copy an existing project, modify it to comply with the new requirements and

4

1.2. Ad-hoc Reuse

continue to maintain and evolve it as a variant. This process is known as clone-and-
own, or forking [Faust and Verhoef, 2003, Dubinsky et al., 2013, Rubin and Chechik,
2013a, Stănciulescu et al., 2015].

Advantages and disadvantages of forking
In this section I explain some of the advantages (+) and disadvantages (-) of this tech-
nique. There are many advantages and disadvantages that make forking an attractive
technique to use on the short term, but that can be extremely costly in the long term.

(+) Reuse tested code In general, forking requires little effort for the initial devel-
opment, making it an attractive technique. Forking is preferred when reusing existing
tested code. One of the main reasons for reusing tested code is that it raises confidence
in product reliability [Dubinsky et al., 2013] and potentially the cloned code is more
stable [Krinke, 2008]. In some domains, i.e. finance, this is preferred for complex
algorithms that deal with financial aspects. Not only that it increases confidence, but it
does decrease the time and cost of delivery [Kapser and Godfrey, 2006a] as well.

(+) Easy to use It is a lightweight reuse method that does not require any specialized
tools or processes. Cut-and-paste has existed as a method of reuse long before comput-
ers, particularly in the area of manuscript-editings. In the era of computers, copy-paste
can be executed on almost any kind of artifact, from a line of code or text, to a file,
folder or entire project. Software projects that are versioned using version control sys-
tem can also be copy pasted and further developed as a variant, either by creating a
branch or simply by copy pasting the entire versioned repository. Its simplicity is one
of the main reasons is a popular mechanism among open source developers and in-
dustrial developers alike. It is clearly the right strategy if it is known upfront that the
copied artifact will not be merged into its parent.

(+) Quick and cost-effective on short-term Developers use this mechanism even
in industrial projects where a systematic reuse policy is generally enforced [Dubin-
sky et al., 2013], mainly because it is simple, fast and cheap. Forking allows quick
prototyping and experimenting to develop a different variant of a software program,
without affecting the stability of the main project [Kapser and Godfrey, 2006a,Stănci-
ulescu et al., 2015]. The owner of the clone has now full control over the code, making
any needed changes without requiring to not break the code from where it was cloned.

(-) Increases maintenance efforts Forking decreases code quality and increases the
maintenance burden [Faust and Verhoef, 2003, Juergens et al., 2009]. For example, a
bug found in one of the clones might exist in the system from which the clone origi-
nated. A developer must investigate if indeed the bug manifests in the original system,

5

1 Introduction

Integrated platform via #ifdef annotations Forking

(+) Known by developers (+) Reuse tested code
(+) Easy to adopt (+) Easy to use
(+) Flexible (+) Quick and cost-effective on short term
(+) Scalable
(-) Challenges program comprehension (-) Increases maintenance efforts
(-) Scattered and tangled code (-) Difficult to migrate to systematic reuse
(-) Subtle errors (-) Does not scale

Table 1.1: Summary of the advantages and disadvantages of integrated platform using
preprocessor annotations and forking

and developing a fix for that system as well. Clone traceability is usually not enforced
and developers rely on their memory to find the parent of the clone [Dubinsky et al.,
2013]. Finally, managing more than a few variants developed with this technique be-
comes unmanageable due to the increased efforts and costs.

(-) Difficult to migrate to systematic reuse Switching to a systematic reuse mech-
anism (e.g., an integrated platform) is very challenging. A first step to tackle this
challenge this problem is to detect how different the codebases are, how much com-
mon code they share and understand how the products will evolve in the short and long
term [Kapser and Godfrey, 2006a]. Re-engineering cloned variants poses itself several
challenges, particularly as there is little tool support and most of the previous work is
tailored for specific projects.

(-) Does not scale Variants developed using forking are usually kept in separate
branches of a version control system. This technique does not scale if there are many
variants of the system, each of them unique for a customer, as merging them to re-
duce redundancy is difficult. Version control systems such as CVS, SVN or Git, do
not scale to developing many variants (e.g., merging variants, propagating features or
bug-fixes). Only very recently commercial version control systems have started con-
sidering ‘native’ support for product lines [McVoy, 2015].

Summary

Table 1.1 summarizes the advantages and disadvantages of developing software vari-
ants using preprocessor annotations and forking.

Preprocessor annotations are in general known and used, easy to adopt. They are
flexible with respect to the underlying language and developing software variants is

6

1.3. Objectives and Contributions

highly scalable using this technique. On the other hand, they challenge program com-
prehension, lead for scattered and tangled code, and can introduce subtle errors that
are hard to debug, decreasing the code quality. While the main advantages of fork-
ing are its simplicity, cost and trust of reusing tested code, it also suffers from many
drawbacks: it increases maintenance effort, makes it difficult to migrate the cloned
variants to a systematic reuse mechanism, existing tools and version control systems
do not support well this method and usually do not maintain any traceability between
the clones and the original systems.

1.3 Objectives and Contributions
In this dissertation I have the following two main objectives:

O1. Investigate challenges in the development (evolution and maintenance) of soft-
ware variants, developed both independently and as a family of programs,

O2. Design, develop, and evaluate tools tailored for evolving, maintaining and in-
tegrating variants of software programs, regardless of how these are developed
(independently as clones or as a family).

Following these two objectives, this dissertation’s contributions are twofold: first, it
provides an in-depth understanding of combining preprocessor annotations and forking
techniques for developing software variants and the challenges associated with them,
and second, it shows that a specialized version control system can leverage some of the
advantages of the two techniques, while minimizing some of their drawbacks. Con-
cretely, this dissertation contributes the following:

C1. A vision for developing software variants that proposes to use incremental ef-
forts in preparing the software programs for systematic reuse. Developing soft-
ware variants can be done either by using forking and incrementally engaging
reuse efforts for preparing the system towards an integrated platform and finally
to have a software product line. This vision consists of different levels of in-
cremental reuse strategies, including traceability of assets between these levels.
The two techniques can be freely used and combined to satisfy the current needs
and variants which are to be developed.

C2. A list of empirically supported reasons for using an integrated platform with
preprocessor annotations or forking. I analyze in-depth an open source firmware
project to understand how preprocessor annotations and forking are combined
to develop variants of the firmware. I conduct two interviews with maintainers
of the project and survey over 50 developers and users from the ecosystem. We
learn that both techniques are used due to their flexibility and simplistic usage,
that preprocessor annotations is required for flexibility of including or excluding

7

1 Introduction

code and prototyping small features, but that forking has major drawbacks with
regards to propagating changes and keeping an overview of the ecosystem in
terms of what functionality exists, where, and who is developing it.

C3. A variation control system prototype that addresses some of the known draw-
backs of preprocessor annotations usage, such as working on the complete con-
figuration space (all variants) at once. I present an extended variant of the projec-
tional editing model developed by Walkingshaw [Walkingshaw and Ostermann,
2014], that allows developers to work on concrete configurations on the system,
make changes to the code and propagate those changes to specific configurations.
By design this editing model has several desirable properties, e.g., consistency
of changes. I further show the feasibility of this variation control system by
replaying a set of changes from Marlin, using the specific editing workflow.

C4. A tool (INCLINE) for integrating software variants developed from the same
codebase into an integrated platform. The tool leverages the idea of projec-
tional views and intentions. Projectional views allow the developer to work on
specific variants and to see how one particular integration action will affect the
end-result, in a preview view. Intentions are used to provide high level guidance
for the developer, by offering straightforward choices (i.e., keep or discard code
change) to be applied on the integration scenario. Five intentions were designed
and applied on several integration scenarios. Furthermore, through a controlled
experiment with graduate students I show that 1) INCLINE produces the cor-
rect result and it scales to large files, 2) that the five intentions suffice for most
integrations scenarios, and 3) users do much fewer mistakes compared to users
using a general diff tool, while being only slightly slower.

1.4 Outline

This dissertation consists of six chapters. Chapters 4-7 are each related to a paper that
analyzes in depth the hypotheses and research questions, and provides empirical data
to support the findings.

In Chapter 2, I introduce definitions and notations that are used throughout the
dissertation.

In Chapter 3, I present a brief overview of research questions and hypotheses, and
detail how the empirical evaluations were conducted throughout this work.

In Chapter 4 - paper A [Antkiewicz et al., 2014], I present the joint effort of
several researchers, students and myself, of designing the Virtual Platform framework
that allows to combine forking with other mechanisms for variability, providing several
layers of development for increasing reuse and seamlessly advance to an integrated
platform.

8

1.4. Outline

In Chapter 5 - paper B [Stănciulescu et al., 2015] I describe a study on how pre-
processor annotations and forking are used and combined in a real-world open source
project to develop variants. The study brings evidence as when developers prefer or
are forced to use preprocessor annotations and when they fork to create a variant.

In Chapter 6 - paper C [Stănciulescu et al., 2016a], I present a background on vari-
ation control systems, their shortcomings and my variant of a variation control system
based on the projectional editing idea by Walkingshaw [Walkingshaw and Ostermann,
2014]. I show the feasibility of using a variation control system to develop and main-
tain Marlin, by successfully replaying a set of changes from the project’s repository.

In Chapter 7 - paper D [Lillack et al., 2017] – submitted and under review –, I
describe the idea of using projectional views and intentions for variant integration. This
was developed and implemented using JetBrains MPS IDE. In this chapter I explore
how intentions can support integration tasks, and how do they compare against generic
diff tools when executing integrations.

In Chapter 8, I present related work in the area of cloning, software product lines
and re-engineering variants into a product line, and variation control systems.

In Chapter 9, I present the conclusion and outline future work.

Several papers that I authored or co-authored are not part of this thesis:

• To connect or not to connect: experiences from modeling topological variabil-
ity. Thorsten Berger, Ştefan Stănciulescu, Ommund Øgård, Øystein Haugen, Bo
Larsen, Andrzej Wąsowski. In 18th International Software Product Line Con-
ference, Florence, Italy 2014 [Berger et al., 2014b]

• A technology-neutral role-based collaboration model for software ecosystems.
Ştefan Stănciulescu, Daniela Rabiser, Christoph Seidl. In Proceedings of the
7th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, Corfu, Greece, 2016 [Stănciulescu et al., 2016b]

• Variability Bugs in Highly Configurable Systems: A Qualitative Analysis. Iago
Abal, Jean Melo, Ştefan Stănciulescu, Márcio Ribeiro, Claus Brabrand, Andrzej
Wąsowski. In Transactions on Software Engineering and Methodology Journal,
2017 [Abal et al., 2017].

• –Submitted and under review– INFOX: Identifying Features from Forks. Shurui
Zhou, Ştefan Stănciulescu, Olaf Lessenich, Yingfey Xiong, Christian Kästner,
Andrzej Wąsowski [Zhou et al., 2018].

• –Work incomplete– Detecting (and Preventing) Duplicates in Fork-Based De-
velopment Projects. Ştefan Stănciulescu, Shurui Zhou, Christian Kästner, An-
drzej Wąsowski. 2017.

9

2. Background

In this chapter I introduce the system that I used throughout this dissertation to pursue
the objectives set previously. In addition, I shortly present Git and Github, two soft-
ware systems that are widely used to work with code repositories and which offered
strong support for the open source software movement. Finally, I briefly present a
calculus that I use in later chapters to describe variational source code formally. This
chapter can be read either now or can be referred to when reading the later chapters.

2.1 The Marlin Firmware

Throughout this dissertation, I use the Marlin open source software project as my main
subject system to conduct experiments, analyze code, interview, and survey develop-
ers, and to answer the research questions formulated in Ch. 3.

Marlin is a 3D printer firmware designed to work with Atmega microcontrollers.
It has been created by reusing parts of two existing firmwares, Sprinter and Grbl, to
which new original code was added. The firmware computes and controls the move-
ments of the printer, by interpreting a sliced model as seen in Fig. 2.1. The sliced
model is designed using a CAD tool.

The project was initiated by one person, Erik Zalm, in August 2011. It gained
attention and popularity due to several improvements over Sprinter, and due to the fact
that it supports many hardware platforms for 3D printers. Over time, more than 100
developers contributed to the project. Several other firmware projects are inspired by,

Figure 2.1: Printing process in a 3D printer

11

2 Background

working
directory

local
repository

remote
repository

Local Remote

git commit

git push

git fetch
git checkout

git merge

Git commands

Figure 2.2: Git commands at local level and between local and remote repository

or forked from, Marlin.1 Besides hobbyists, several manufacturers of 3D printers use
the firmware in their products. The 3D printer community uses several forums and
IRC channels devoted to Marlin, in which specific Marlin related issues are discussed.

Marlin is flexible enough to deal with different hardware and printer types. It
has around 140 features which can be controlled using compile-time parameters. At
the time of my initial data retrieval (November 2014), the main Marlin repository
contained more than 1500 commits, and it has been forked 1588 times. The high
number of forks and the fact that Marlin has explicit variability, makes it a good choice
to study our objectives.

Marlin is released under the GPL license. The project and its formal forks are
hosted on Github.2 In early 2015 the repository was transferred to a Github organiza-
tion MarlinFirmware. In the dissertation I point to both, the new repository Marlin-
Firmware/Marlin and to the old one ErikZalm/Marlin (presently listed just as a fork of
MarlinFirmware/Marlin).

2.2 Git

Git is a distributed version control system that allows for creating local repositories,
that can be set to point to a remote repository (Fig. 2.2). The local repository can be
used at full capacity and capability that Git provides, independent of a network infras-
tructure or a remote server. Git uses a command-line interface and the user normally
works in a directory. To store any changes made, the user has to commit the changes
made. This results in recording changes that exist in the working directory to the local
repository. A commit resembles a Unix patch, and adds a message with the description
of the change. Commits are identified by computing an SHA-1 value of the change. Git

1http://reprap.org/wiki/List_of_Firmware
2https://github.com/MarlinFirmware/Marlin

12

https://github.com/MarlinFirmware/
https://github.com/MarlinFirmware/Marlin
https://github.com/MarlinFirmware/Marlin
https://github.com/ErikZalm/Marlin
http://reprap.org/wiki/List_of_Firmware
https://github.com/MarlinFirmware/Marlin

2.3. Github

Original
Repository

Forked
Repository

Local
Repository

Working
Directory

F
O
R
K

local (internal collaborator)

local (mine)

Working
Directory

local external collaborator

Working
Directory

P
U
L
L

P
U
L
L
R
E
Q
U
E
S
T

Local
Repository

Local
Repository

Push

Fetch

Client side Server side

Figure 2.3: Client and server repositories. Internal and external collaborators, using
original and forked repositories.

employs a lightweight and simple branching system, with each branch being nothing
more than a label attached to a commit. Merging branches in Git is fast and has several
heuristics to deal with conflicts. Heavily merging of many trees is done successfully,
for example, in the Linux Kernel project, for which Git was originally developed.

When needed, changes can be pushed to the remote repository via the git push
command. The remote repository resembles a copy of the local one; it stores commits
and branch labels and contains all the data that exists in the local repository.

2.3 Github

Github is a hosting service for Git repositories, offering a platform for collaborative
development. Unlike Git, which is a command line tool, Github is a web-based graph-
ical interface for code management. It offers facilities such as wikis, task manage-
ment, bug-tracking, and small scale social media activities such as following users
or repositories. Most importantly, Github allows for copying repositories in a struc-
tured way. This mechanism, known as forking, creates a traceability link between the
copied repository, the fork, and the original project. The usual workflow is presented
in Fig. 2.3. An original repository resides on the server side (e.g. Github). The owner
of that repository can retrieve the repository and store it on the local machine by using
the git clone command shown in Fig. 2.2. From thereon, the owner of that repository
can work locally on his computer without accessing the server repository. When work-
ing in a team the original repository is shared between multiple internal collaborators.
If an external collaborator wants to contribute with patches, the collaborator must fork
the original repository. For example, Fig. 2.4 shows a fork of the Marlin project. This
operation creates a new repository on the collaborator’s account, and links the forked

13

2 Background

Figure 2.4: Fork of the Marlin project in which the Delta variant was developed. On
top left corner there is the tag that this repository was forked from MarlinFirmware/-
Marlin, which indicates that this is a formal fork. In comparison, in Fig. 2.5 this tag
does not exist, but we can quickly deduct that the repository is an informal fork of
Marlin.

repository to the original one. The forked repository has a forked-from relationship
with the original repository. The owner of the fork can create a pull request from
the fork to the original repository. A pull request is similar to a change request as it
is known in software configuration management (SCM) [Babich, 1986]. In its sim-
plest form, a pull request consists one or several commits, a comment describing the
change. The pull request can be itself commented upon, updated, and accepted into
the project’s repository.

A pull request can be created either in the same repository, e.g. to allow a team to
discuss the change, or from a fork to the original project. Each pull request consists
of a description, possible comments from users and a set of commits. A pull request
can be merged automatically if there are no merge conflicts detected by Github’s pull
request service, otherwise it must be merged manually. If a pull request cannot be
merged automatically, it is often required by the maintainer of the repository to fix
the conflict on the fork side by pulling the latest changes from the source and then
updating the pull request.

Definitions

Repository. A repository is a structured storage for a project. The content is organized
by a version control system.
Branch. We refer to a branch as being a line of development that has a label. In Git’s
terminology, a branch is just a pointer to a commit, and it has a label attached to the
tip of the branch. In practice, a branch is used to separate lines of development, e.g.,
developing a variant of a software program. In this respect, forking and branching are
usually used for the same purpose, but in this dissertation I focus on forks as defined
in this chapter.

14

2.4. Feature Models

Figure 2.5: An informal fork of Marlin to support Delta printers with autocalibration.
This was done by simply copy pasting the code and creating a repository from scratch,
which was then pushed to Github.

Commit. A commit is an atomic change that was applied to a repository. It uses a
similar syntax to UNIX patches, with a message attached that describes the change.
Fork. A fork is a copy of a project created by cloning in-the-large.
Formal fork. A formal fork is a fork that has been created using Github’s forking
mechanism.
Informal fork. An informal fork is a copy of an existing repository created simply by
copying files elsewhere, without any automatic traceability links.
Active fork. An active fork is a fork that has either synchronized with the origin after
its creation, or has had changes applied to it. An inactive fork displays no activity in
the repository after the creation date.
Variant. A variant is a project that was cloned and modified to satisfy certain require-
ments. Variants can also be created by derivation from an integrated platform, given a
configuration.
Pull request. A pull request is a change request that contains commits and information
about the change. A pull request can exist in one of the following three states: open—
when the pull request is created and awaits to be accepted, merged—the pull request
is accepted into the target repository, and closed—the pull request has been rejected.

2.4 Feature Models

A feature model is a representation of the features that exist in a system, and the rela-
tions between them. Feature models were first introduced by Kang et al [Kang et al.,
1990], and they are usually represented using feature diagrams. However, using feature
diagrams for systems that have thousands of features is infeasible, thus a textual repre-
sentation is usually used for such systems (e.g. Linux has its own variability language,
Kconfig [She et al., 2010]). A feature model consists of a AND\OR tree and cross
tree constraints. A simple feature model of a fictional phone product line is presented
in Fig 2.6. The filled black dot means that the feature is mandatory, the unfilled dot

15

2 Background

Figure 2.6: Feature model with cross tree constraints.

represents a feature that is optional, and the arc between the three subfeatures ARM,
OMAP, and Snapdragon and their parent, Processor, represents an exclusive OR (only
of the three subfeatures can be selected).

2.5 Choice Calculus

Choice calculus is a formal notation for specifying variability [Erwig and Walking-
shaw, 2011a, Walkingshaw, 2013]. It is a simple and concise notation that I use to
describe formally code with preprocessor annotations. I use the choice calculus nota-
tion in later sections to describe the Variation Control System and show examples.

For example, Fig. 2.7 shows a simplified snippet of the #ifdef block from List-
ing 1.1 (top) and its representation as a choice calculus expression (bottom). As the
reader can observe, choice calculus is a more compact and concise representation.
Similarly to #ifdef, choices can be nested. An important aspect is that using choice
calculus I can specify meta-operations on it, for example rewriting or editing the tree,
which are useful later in the dissertation. The code can be resolved as following: if
U8GLIB_ST7920 is set to true, the choice will resolve to U8GLIB_ST7920_128X64_RRD
u8g(0); during configuration. If U8GLIB_ST7920 is set to false, then it will
resolve to U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0);. Finally, complex
presence conditions can also be expressed in choice calculus, as I will show next.

Figure 2.7: #ifdef block (top) and its corresponding choice expression (bottom),
where the numbers 2 and 4 represent the strings at those lines in the top box.

1 #ifdef U8GLIB_ST7920
2 U8GLIB_ST7920_128X64_RRD u8g(0);
3 #else
4 U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0);
5 #endif

A〈2, 4〉

16

2.5. Choice Calculus

Figure 2.8: Choice calculus syntax

B ::= I | true | false
F ::= B | ¬F | F ∨ F | F ∧ F
e ::= F 〈e, e〉 Choice
| e · e Append
| a Token
| ι Identity

I ::= String Identifier

The choice calculus’ syntax used in this dissertation is presented in Fig. 2.8. The
metavariable e denotes a choice calculus expression (i.e., code). An expression can
consist of a choice, the concatenation of one expression to another using the monoid
append operation (·), an arbitrary token, or the monoid identity element (ι). Usually,
tokens are arbitrary strings, the append operation is string and line concatenation, and
the identity element is empty string. Throughout this dissertation I will consider tokens
to be arbitrary strings.

A choice represents a variation point in-place as a choice between alternatives,
written F 〈e1, e2〉. The associated condition F is the choice’s presence condition.
When configuring a choice calculus expression, each feature is set to true or false,
then each choice is replaced by either alternative e1 if F evaluates to true, or alterna-
tive e2 otherwise.

17

3. Methodology

In this dissertation, I followed a two step method. First, I studied how preprocessor
annotations and forking are used to develop cost-efficient software variants. Second, I
designed, developed and evaluated tools that were inspired based on insights obtained
in the first step.

In the following part of this chapter, I will detail the research method, starting with
the research questions and hypotheses.

Research Questions

The following two research questions drove my research forward and led to the con-
tributions mentioned in Sec. 1.3.

RQ1 What are the main challenges and advantages of preprocessor annotations and
forking to develop software variants?
The goal of this research question is to analyze in-depth how these two tech-
niques are used for developing software variants, from the perspective of their
advantages and disadvantages. Importantly, these two techniques are not used
together usually, but are independent of each other. Understanding the interplay
of these two techniques will lead to developing a set of requirements for design-
ing and developing a system to support the development of software variants,
maximizing the advantages of the two techniques. This is directly related with
the first objective of this dissertation(O1.).

RQ2 How can a specialized variation control system leverage the advantages of pre-
processor annotations and forking to support the development, maintenance and
integration of software variants, while minimizing some of their drawbacks?
This question is aimed at providing evidence that a variation control system has
the potential of improving on some drawbacks of the preprocessor usage and
forking, while retaining the benefits of both. The second objective O2. of this
dissertation relates to this research question.

19

3 Methodology

Hypotheses
Previous work and industrial projects point us to the importance of having flexible,
straightforward and cost-efficient mechanisms for developing software variants [Duc
et al., 2014, Dubinsky et al., 2013]. To support and investigate the research questions
defined previously, I formulate the following hypotheses.

H1 : The preprocessor and forking are used and combined by developers due to their
flexibility, low cost, and straightforward usage.

H2 : A variation control system can 1) support the editing of configurable systems
and combine the preprocessor and forking in a uniform way, and 2) with special-
ized integration support forked variants can be re-integrated into the integrated
platform.

Method
To analyze and evaluate how the preprocessor and forking can be combined to de-
velop, maintain and integrate software variants, and evaluate the tools developed in
this dissertation, I use several techniques.

To test H1, I study the usage of the preprocessor and forking on an open source
software system. I used the 3D printer firmware Marlin, that uses preprocessor and
forking to develop variants. I execute the study using mixed methods. I combine
artifact studies, studying history of the project and understanding how forks contribute
to the project, as well as surveying developers from that community and interviewing
maintainers of the project [Stănciulescu et al., 2015]. I run two surveys targeted at
active and inactive fork owners of Marlin (see Appendix A.5 and Appendix A.6), after
analyzing the forks of Marlin. For the interview part, I conduct two semi structured
interviews with two maintainers of Marlin, in open writing.

To test H2, I design and implement a variation control system prototype with fork-
ing support. I conduct an empirical study to understand the edit patterns that occur
when developers do variability-related edits. I then re-execute a number of variant ed-
its using the prototype tool, and show that it is feasible to use the tool to maintain and
develop a configurable system.

To test the integration part of H2, together with colleagues I designed and de-
veloped a dedicated integration tool with UI support (INCLINE). We run a series of
simulations with real integration scenarios to test the completeness, correctness and
the scalability of the tool. We then conduct a controlled experiment with students
to assess the capabilities of INCLINE in a realistic setting. In the controlled exper-
iment, each participant performs two tasks, using two treatments: Eclipse CDT, and
INCLINE(INC) on two programs, in a random order to reduce learning effects.

20

4. Flexible Product Line Engineering
Paper A

This chapter presents a vision idea that emerged during a workshop that I at-
tended, held at University of Waterloo in 2013, soon after I started my Ph.D.
studies. The outcome of this workshop was an idea paper that was a joint effort
of several professors, researchers and students, including myself. Although I am
not the main author of this work and my contribution is minor, this initial work
has been the foundation stone upon which I built my research. Therefore, I think it
is worth presenting it as a context for my research, while the results presented in
this dissertation are one attempt at realizing this vision. Some parts of this chap-
ter are borrowed from the following paper "Flexible Product Line Engineering
with a Virtual Platform" [Antkiewicz et al., 2014], and I adapted them to align
with the goals of this dissertation.

4.1 Introduction

Developing variants of software products is necessary to satisfy different requirements,
to adapt products to different geographical areas, and to support different usage condi-
tions. Very often, product variants are created using forking, to reuse existing code or
variant. As I have described in Ch. 1, both forking and the integrated platform through
the usage of preprocessor annotations have significant advantages. In this chapter, I
present a vision on how to have the benefits of an integrated platform but without re-
quiring the high-risk transition processes, while retaining the flexibility and benefits
of forking. This vision strives to explore the two development models and the tools
needed to reconcile both methods.

Virtual platform [Antkiewicz et al., 2014] is an idea of a framework for supporting
the mixed development of variants, not unlike in the presented case study of Marlin
firmware. Virtual platform intends of using integrated variability and forking as the
mechanisms for reuse. The main idea is to use explicit traceability for reusable arti-
facts that can be shared between projects. Moreover, the framework should support
automatic and manual propagation of changes in a controlled process. The frame-

21

4 Flexible Product Line Engineering - Paper A

Asset

Asset

Cloned project Gamma

Project 1

Project 2

Asset A from P1

Asset B from P2

Figure 4.1: Recording traceability

work enforces traceability between clones, features and other artifacts using specific
meta-data, the assets being, initially, distributed across projects.

The novelty of the virtual platform consists not only in supporting both develop-
ment styles, but also supporting a transition from fork-based development to a software
product line. The idea is to aggregate existing source code into one integrated platform
from which different variants can be generated. The key point is that integrated plat-
forms are usually mature architectures, while ad hoc forking may lead to an ad hoc
organization of variability. We distinguish between several adoption levels, which are
suitable for different phases (maturity levels) of a project’s lifecycle with intensive
variability.

4.2 Adoption Levels

The levels of adoption are meant to guide an organization on deciding when and how
to invest more into reuse. We distinguish six adoption levels, and the standard forking
mechanism.

Standard Forking. This is the level when organizations do not have a strategy for
reuse, and develop related projects by freely copying and modifying existing ones.
Consider an organization that has one initial project, Project 1 and Project 2. The two
projects themselves are developed via forking. The organization has to deliver a new
product, project Gamma, thus it forks Project1, and copies some assets from Project
2. This ad-hoc reuse mechanism does not enforce any specific reuse or traceability.
The user is left with all the decision on what assets to copy and reuse. The advantages
of forking are well understood [Dubinsky et al., 2013, Kapser and Godfrey, 2006a].

22

4.2. Adoption Levels

Cloned project
Gamma

+Feature 1
+Feature 2

Asset A from P1

Asset B from P2

Cloned project Gamma

Asset A from P1

Asset B from P2

Start annotating
new features in

source code

Figure 4.2: Annotating and adding new features in a clone

However, if not carefully managed, forking cannot scale and increases the costs of
developing and maintaining the related projects. Ad hoc forking can be successfully
used if the reuse frequency is low and maintaining consistency among assets is not
important.

Level 1. Forking with traceability. This level is the state when an organization
starts keeping traceability of assets that are being copied and their origins. Providing
just simple traces of which assets were copied and their origin, can improve mainte-
nance of the clones (see Fig.4.1). Using traceability links reduces efforts for propagat-
ing extensions and bug-fixes to cloned assets, as information about the origin of the
clone is kept. Developers can notify cloned asset’s owners about changes and modifi-
cations done to the artifacts. The notified teams can decide if they need the change or
not, and act accordingly.

Level 2. Forking with features. This level is the state when organization are devel-
oping features with focus on reusability. An organization may need to add new features
that will be later reused in other projects (see Fig.4.2). Now it should be the appro-
priate time to invest more efforts in developing reusable features. Development teams
declare features and map them to source code fragments that implement them by using
preprocessor annotations. Teams benefit from a better overview of the functionality,
but also can propagate features easier as the relevant fragments can be located easily.

Level 3. Forking with configuration This level is the state when teams add the
capability to enable or disable features, and derive a variant through feature selec-
tion (see Fig.4.3). Feature constraints can be added to exclude invalid combinations.
This is suitable when frequent derivations of similar variations are important, together

23

4 Flexible Product Line Engineering - Paper A

Variant of Gamma

Feature 1

Asset A from P1

Asset B from P2

Cloned project Gamma

Cloned project Gamma

Feature 1
Feature 2

Asset A from P1

Asset B from P2

Disable feature
2. Results in
New Variant

Figure 4.3: Derivation of variants by selecting/deselecting desired features

with maintaining consistency between projects. On the other hand, deriving variants
reduces the need for forking, and encourages more systematic reuse.

For example, the Marlin ecosystem can be seen to exist at three levels: L1, L2 and
partially L3. The traceability links that are enforced in L1 are present in Marlin, but at
a much coarse granularity level (repository) than L1 suggests. Marlin is however much
better integrated with L2 of the virtual platform, as it uses conditional compilation to
annotate features in the source code. L3 refers to being able to create new variants
by simply selecting or deselecting certain features. While this capability exists in the
main Marlin project (e.g., derive a variant from the main codebase), it is not possible to
fork a project with only some features selected. Therefore, users do copy paste features
implemented in other repositories.

Level 4. Forking with feature model This level is the state when an organization
creates a central feature model. The feature model covers all projects and all the im-
plement features. New projects are created by reusing an existing project, and then
propagating any needed features from other projects as allowed by the central feature
model. The idea here is to have distributed assets among different projects, but to
centralize the information regarding those assets.

This level is appropriate when frequency of reuse becomes high, thus facilitating
the developers on creating new projects by taking an existing one as basis, and adding
the needed features as allowed by the central feature model. The main disadvantage
is that the feature model has to be maintained. However, this is an important step
in realizing an overview of what functionality exists and specifically, features that are

24

4.3. Marlin, Github and Virtual Platform

shared between projects. This information is beneficial for the next step in the adoption
ladder, to create an integrated platform and its respective feature model.

However, there are many systems that do not have a formal description of their
features, for example a feature model. Marlin also does not have one, less alone a
feature model that represents its forks. Although several solutions have been proposed
to this problem [She, 2013, Bécan, 2016], extracting feature models from source code
is not the main focus of this dissertation.

Level 5. Product line with integrated variability and forking This level is the state
when a company uses both the integrated platform as well as forking, to maintain the
core assets and respectively to customize features or functionality for specific users in
forks. Need of frequent reuse accelerates the process of developing the platform. The
platform increases scalability, reduces redundancy and improves change propagation,
and allows to derive products from it. Moreover, forking is still used as in the previous
levels or to support customer specific requirements. Both flexibility and systematic
reuse is achieved at this level.

As a remark, migrating to a product line is a challenge that has been researched to
some extent [Hetrick et al., 2006, Jepsen et al., 2007, Jepsen and Beuche, 2009]. In
this context, as a project with a lot of functionality developed and maintained in forks,
Marlin is an interesting project. Researchers can use the Marlin ecosystem to develop
and test techniques, methods or tools for advancing the state of the art in re-engineering
and migrating legacy systems to software product lines.

Level 6. Full product line This level is the state when an organization has a fully
integrated platform, consisting of core assets and variable assets, as well as a fea-
ture model. These systems are called highly configurable systems [Kästner and Apel,
2009]. An example of a highly configurable system is the Linux Kernel.

While having a fully integrated platform is desired, in practice, there will often be
forks of highly configurable systems where new functionality is developed, either for
management reasons, for technical reasons or to experiment with the codebase. The
added benefit of doing some development in forks of the system is that it maintains the
integrated platform stable.

4.3 Marlin, Github and Virtual Platform
The Marlin firmware together with the hosting and usage of Github as a collaboration
kit, resembles to some extent the idea of the virtual platform. However, there are a few
improvements that virtual platform has in comparison.

1. Github’s forking only allows to clone at the repository granularity. The virtual
platform improves this by allowing to clone assets and imposing a traceability

25

4 Flexible Product Line Engineering - Paper A

link at a finer granularity than repository as in case of Github’s forking. Improv-
ing traceability is a first step on having a better management of incoming and
outgoing changes, and change impact analysis.

2. Decentralization of information is a problem in Github due to the large amount
of forks created. The virtual platform proposes to improve decentralization by
creating a central feature model of the existing projects. While this may be a
costly investment, it is needed for successfully realizing the integrated platform,
and it tackles the decentralization issue. Moreover, having an overview of the
existing functionality at the moment, can reduce redundant development that is
present both in open source and industrial projects [Berger et al., 2014a,Dubin-
sky et al., 2013, Duc et al., 2014].

3. Propagating changes and bug-fixes to Marlin’s forks is low, as I will show in
Ch. 5. The virtual platform addresses this issue first by having a finer granularity
in traceability links between clones (and their assets). As such, these traceability
links can be used by an automatic or semi-automatic change propagation system
that automates the transfer of changes between clones. Schmorleiz et al. (ini-
tial collaborators of virtual platform) have created a tool that can synchronize
fragments of code that are similar, using several types of annotations for specific
use cases (maintaining clone in sync, allowing some differences between clones,
restoring equality of one clone to its linked asset etc.) [Schmorleiz, 2015]. Sec-
ond, by combining preprocessor annotations and forking in a unified system, we
can avoid this synchronization of changes problem, as I will show in Ch. 6.

Summary
The virtual platform is an idea of a decentralized platform with distributed assets. One
of the goals of the virtual platform is to incrementally increase reuse throughout the
project’s lifecycle.

Increased reuse can be achieved through the guidance of several adoption levels.
These levels guide towards reaching an fully integrated platform, that consists of core
and variable assets. Products can be derived from the integrated platform.

In this dissertation I explore two things: 1) combining the integrated platform and
forking to enhance variant development (L1+L2), and 2) support the integration of
forked variants or features into the integrated platform.

26

5. Practices of Systematic and Ad hoc Reuse
Paper B

This chapter shares content with paper "Forked And Integrated Variants in an
Open Source Firmware Project" published in ICSME 2015 [Stănciulescu et al.,
2015]. For complete details, refer to the paper in Appendix A.2

In the previous chapter I introduced a framework for developing software variants
using both an integrated platform and forking. These two techniques are often inter-
mixed, both in open source systems and in industrial projects. In this chapter, I present
a case study to understand 1) how these two techniques are combined, when one is
used in detriment of the other, or why both of them are used by developers, and 2) to
derive detailed requirements for developing tools to support this development method.

5.1 Introduction

Historically, forking had sometimes a negative antisocial connotation. It denoted
sometimes a community schism, when a project is split and an independent devel-
opment starts in a diverging direction [Raymond, 1999]. The term has acquired a less
negative meaning since the arrival of distributed version control systems and, in par-
ticular, of collaborative and code hosting platform, Github. In Github’s terms, a fork
is a new repository that is traced as being a fork of an existing repository from some
other user than the fork’s owner. Github’s forking mechanism introduced traceabil-
ity and easy propagation of commits between the fork and fork’s main parent. The
fork’s owner has full control over this duplicated repository (the fork). Any commits
pushed to the fork can be further propagated via a pull request to the parent of that
fork. This pull-based development mechanism allows developers to easily collaborate,
review changes, and gives them full control over their own forks but also over the main
project’s roadmap.

The main goal of forking is to reuse code by creating a copy of an existing reposi-
tory. Reusing code decreases costs and allows for customization, for example to create
a specific variant for a specific customer. The fork is traced back to the repository

27

5 Practices of Systematic and Ad hoc Reuse - Paper B

from which was copied, which is important for long-term documentation and trace-
ability. Therefore, forking can be seen as a software reuse mechanism next to estab-
lished examples such as object-oriented reuse patterns, aspect-oriented programming,
or software product line architectures.

In this chapter I investigate how preprocessor annotations and forking are com-
bined to develop software variants. Specifically, I am interested in validating H1 —
The preprocessor and forking are used and combined by developers due to their flex-
ibility, low cost, and straightforward usage; and answering RQ1 – What are the main
challenges and advantages of preprocessor annotations and forking to develop soft-
ware variants?

Due to the fact that RQ1 is formulated as a broad research question, I split the
question into several questions, each targeted to one concrete topic of interest:

• What are the criteria to introduce variants using preprocessor annotations instead
of forking?

• What are the main reasons for creating forks?

• How do ongoing project development and maintenance benefit from existence
of many forks?

• Under what circumstances is forking preferred over integrated variability for
creating and maintaining variants?

• What other challenges arise in fork-based development projects?

• What are the criteria that lead to integrating a forked variant into an integrated
platform using preprocessor annotations?

To answer these questions, I investigate forking practices in Marlin, an open source
3D printer firmware project. Marlin is an appropriate study subject due to an unprece-
dented amount of forks created in a very short period. The Marlin project has been
forked over 4000 times (1588 times at the time of the original study, in the period of 3
years and 3 months). Also, the project itself was created by reusing parts of two exist-
ing firmware projects, Sprinter and Grbl, to which new code was added. The firmware
computes and controls the movements of the printer, by interpreting a series of codes
specific to CNC machines. It has about 140 features, which can be controlled using
compile-time parameters.

The Marlin project is of interest in this context as it uses preprocessor annotations
(in the role of the integrated platform) and intensive forking (for more ad hoc volatile
changes). As such, Marlin and Github can be seen as a spartan prototype of the virtual
platform idea.

28

5.2. Study Design

562(35%)
632(40%)

105(6%)
175(11%)

30(2%)
78(5%)

3(0.2%) 3(0.2%)

1st level 2nd level 3rd level 4th level

Active forks Inactive forks

Figure 5.1: Marlin’s active and inactive forks, and forks’ levels (percentages show the
relative size in the set of all forks). The 1st level forks were created by forking main
Marlin repository, the 2nd level forks were created by forking 1st level forks of Marlin,
and similarly for 3rd and 4th level.

5.2 Study Design

To get insights why users use preprocessor annotations and forking, I proceed in two
steps. First, I classify the forks into two categories; purpose of the fork, and fork
activity and nesting depth (Fig 5.1). Commit messages (using key word search) of all
forks are used to classify the forks by their main purpose (i.e., why a particular fork has
been created). To obtain qualitative data, I analyzed rejected pull requests to retrieve
information about reasons for rejecting proposed changes from forks.

Second, I developed two short surveys directed towards active (made changes after
forking) and inactive (no changes since forking) fork owners (see Appendix A.5 and
respectively Appendix A.6 for the actual surveys). The surveys contained both closed
and open questions. They were available for ten days, after which were closed. The
survey specifically asked for the reasons of using preprocessor annotations and fork-
ing to develop Marlin; what are the challenges encountered in getting their patches
accepted; why they do not retrieve changes from Marlin and if they do it, how of-
ten they synchronize. This gives a broader view of the development and maintenance
practices in Marlin, from the developers’ perspective.

I distributed the survey invitation via email to 336 developers that had public email
addresses (the others do not have an email address linked to their Github account),
185 belonging to owners of active forks and 151 to inactive ones. The response rate
was 18.3% (34 respondents) for active fork owners, and 15.2% (23 respondents) for
inactive forks. Finally, I interviewed two active maintainers of Marlin (in writing, open
answers).

The database, survey questions, and other artifacts are available athttp://bitbucket.
org/modelsteam/2015-marlin.

29

http://bitbucket.org/modelsteam/2015-marlin
http://bitbucket.org/modelsteam/2015-marlin

5 Practices of Systematic and Ad hoc Reuse - Paper B

5.3 Results and Analysis

What are the criteria to introduce variants using preprocessor
annotations instead of forking?

This is a question I ask in the context of Marlin, as the community uses both the pre-
processor and forked variants. The accumulated experience sheds light on the choice
between the two mechanisms. I approach the question by qualitatively analyzing forks
that developed changes involving preprocessor annotations, excluding those that mod-
ify only the configuration files (configuration changes involve changing preprocessor
annotations, and are the most common type of changes among users). This data is
supplemented with answers from the survey and interviews with the maintainers. The
answer to this question is presented in the following observation box.

Marlin developers prefer preprocessor annotations over forking in following sit-
uations:

T1. The flexibility to use several variants is needed.

T2. Project maintainers require conditional compilation for new features sub-
mitted to main Marlin repository.

In the following text, I present in detail each of the finding and the data that sup-
ports it. There are 261 forks (37% of active forks) that introduced preprocessor an-
notations in their commits. Preprocessor is used in these forks for the same reasons
as in other system level software [Berger et al., 2013]: to reduce use of memory, to
disable functionality that is incompatible with current hardware, or to control inclusion
of experimental code. Seven out of 11 developers report use of the preprocessor for
managing memory limitations (e.g., Not all boards have enough space to run all the
features so my feature was only compiled into larger chips). Marlin supports print-
ers based on 8-bit ATmega micro-controllers that have limited flash memory, usually
4–256kB. In general, developers use preprocessor to guard functionality that is op-
tional, allowing it to be switched off either for themselves or for other users. Hence,
flexibility of integrated variants (T1) is needed to meet memory requirements of differ-
ent use cases and different hardware in the same fork. This aligns well with previous
work [Kästner and Apel, 2009] that acknowledges the advantage of using preprocessor
for its fine granularity.

Interestingly, also forks that do not contribute any changes to main Marlin do still
use the preprocessor. Only 83 out of the 261 forks using this mechanism actually cre-
ated pull requests (32%). Through an exploratory analysis of some of these changes, it
is clear that the developers might have needed the flexibility for their own printers or to
experiment with the code (T1). For example, malx122/Marlin - commit #69052359 added

30

https://github.com/malx122/Marlin/commit/6905235982eadfb3074c15b45e17311803eaa3a0

5.3. Results and Analysis

support for a second serial communication using preprocessor annotations to experi-
ment on a customized version of Marlin intended to be used on a RepRap printer.

Another interesting aspect of using preprocessor annotations is that if a developer
plans to contribute a feature to the main repository, Marlin’s coding guidelines must
be followed. One of the main project maintainers states in the interview: Every new
feature contribution requires conditionals in some amount. New features that don’t do
this will be deferred until they do (T2). For example, the pull request P594, was initially
rejected because it did not properly consider the preprocessor annotations. Obviously,
the Marlin maintainers enforce this rule, because the broad Marlin community needs
the flexibility prescribed by criterion T1 and it is also a mechanism to protect existing
users from installing on their printers unnecessary features (new features are disabled
by default in the configuration files).

Although there is a general agreement among developers for the reasons of using
preprocessor annotations, one mentions that this mechanism makes the code hard to
read: I didn’t have time to re-architect their code, thus the usage of preprocessor anno-
tations. In this system, preprocessor annotations are heavily used throughout the code
in an ad hoc manner, challenging program comprehension and increasing the overall
complexity of the system. Recall the example from Listing 1.1, where there are more
annotations than actual code.

What are the main reasons for creating forks?
This questions is important for understanding the main reasons for creating forks. The
previous question looks at using the two main techniques from the technical perspec-
tive, while this question switches focus on understanding why forking is used. Due
to the magnitude of hundreds of forks, classifying the forks’ purposes is not possible
through a manual analysis. Therefore, I establish the purpose of forks through a term-
based classification of forks’ commit messages. I initially group the forks into two
categories; purpose of the fork, and fork activity and nesting depth (Fig 5.1). Commit
messages (using key word search) of all forks are used to classify the forks by their
main purpose (i.e., why a particular fork has been created). To verify the classification,
I randomly sampled 40 active forks and checked if the changes in the commits corre-
spond to the automatic classification. The results show over 94% match between the
manual classification and the automatic one, which indicates that the data from Fig. 5.2
is reliable. In addition, I substantiate and complement the results with a quantitative
questionnaire distributed to fork owners.

Heuristic classification of forks. The classifier was run on 700 active forks (Fig. 5.1),
and I used the following terms for classifying forks in three categories:

• Configuration forks are forks that change the configuration of the firmware.
Firmware users simply make changes to the configuration files of the firmware,

31

https://github.com/MarlinFirmware/Marlin/pull/594

5 Practices of Systematic and Ad hoc Reuse - Paper B

526

306
225

Configuration forks

Feature forks

Bug-fixes forks
75% 43% 32%

Figure 5.2: Number of active forks used for configuration, developing features or bug-
fixes (overlapping categories, percentages show the relative size in the set of active
forks)

according to their needs, and push their changes to their own fork. These are
detected by checking if the main configuration files (configuration.h and config-
uration_adv.h) are modified.

• Development forks are used to add new functionality. These are detected by
matching the following search terms: add, support, feature, new, added, imple-
mented.

• Bug-fix forks are used to fix defects. These are identified using these terms:
corrected, fix, bugfix, bug, fixed, replace.

Commit messages of a single fork may match search terms of more than one category.
In such case the fork is classified as belonging to all matching categories.

Figure 5.2 summarizes the results of the heuristic categorization. As many as 75%
of active forks do changes to their configuration files. This is needed to be able to
run the firmware on each user’s hardware and printer, according to their needs with
respect to feature or parameters. Detailed inspection shows that some need to change
the configuration to test a functionality that they are working on. Examples of con-
figuration forks include: 3DPrintFIT #6343044c, jmil #04b8ef41, and Makers-Tool-Works
#651b99d1. Using Github and the forking mechanism to store configurations of the
system is somewhat surprising. Nevertheless, it is the principal reason for forking in
Marlin. The other two categories are expected and cover development of new func-
tionality (43%) and bug-fixes (32%).

Surveying Developers To validate the data from the heuristic classification, I asked
fork owners what were the reasons for creating their forks. Among the active fork
owners, 62% (21 responses) report that they had originally intended to configure the
firmware. This fraction is smaller than 75% of the actual number of configuration forks
(Fig. 5.2). The intention to just configure the firmware was even more dominating
among inactive fork owners (74% or 17 responses). The situation is the opposite for
the non-configuration forks: 68% of active fork owners report that their intention was
to contribute new functionality or modify the existing one. This is more than the

32

https://github.com/3DPrintFIT/Marlin/commit/6343044ce53affc37bed717fc5b8980ca506058a
https://github.com/jmil/Marlin/commit/04b8ef41055ed03da99f61732c388538a611a2c9
https://github.com/Makers-Tool-Works/Marlin/commit/651b99d1d6ddc8ee323653606ac244364bded30e

5.3. Results and Analysis

actual number established heuristically: 54% of forks are used for new functionality
or bug-fixes, which is the sum of the last two columns in Fig. 5.2, corrected for the
intersection.

Forking is used to develop features and fix bugs, but also to store variant configu-
ration data, which makes it a lightweight and effective configuration maintenance
mechanism.

This confirms partially H1, that is, forking is a simple, cheap and easy to use mech-
anism for starting the development on a software variant.

Maintaining variant configurations in forks of entire projects is a very simple and
effective mechanism. It does not require specialized configuration management or
variability management tools. The fork owner has a reliable backup copy of the con-
figuration, and the configuration can always be easily reconciled with upstream, if that
becomes desirable. The Marlin community is extremely successful using this mech-
anism for the purpose. As mentioned above, some developers end up following this
practice, even though this is not what they initially expected. In general, storing con-
figurations of systems as forks or in branches is not an established technique. Overall,
this mechanism can be used with the purpose of maintaining configurations of the
systems, as it is flexible, cheap, and does not require specialized tools.

How do ongoing project development and maintenance benefit
from existence of many forks?
This question aims at investigating if the project benefits in any way from the existence
of forks. For example, forks may fix bugs and introduce new features. If these these
changes are propagated to the main project, then the whole ecosystem benefits from
this fork and its development.

I investigate this question through two focused questions to understand to what
extent there is a flow of contributions between the forks and main Marlin.
To what extent do forks retrieve changes from their origins? To answer this question,
I use a script to verify if commits in Marlin that were created after the fork’s creation
date, do exist in forks. Only 238 forks (15% of all forks) have synchronized at least
once with the main Marlin repository (Fig. 5.3), which amounts to only 34% of active
forks.

Most forks do not retrieve new updates from the main Marlin repository.

Marlin developers fork significantly more often than merge. This is a striking obser-
vation, given that merging of concurrent development is the key purpose of distributed
version control systems, and in particular of Git. The forks in the Marlin ecosystem
are characterized by a short maintenance lifetime (101 days on average). Once a fork
achieves the desired functionality (the printer operates as expected) the incentives to

33

5 Practices of Systematic and Ad hoc Reuse - Paper B

888

462

238

Inactive forks and never synced

Total active forks that did not sync

Total active forks that synced56% 29% 15%

Figure 5.3: Quantitative data regarding synchronization of forks. The three columns
represent the forks that 1) are inactive and never synchronized with the main Marlin
repository, 2) are active (made changes) but did not synchronize, and 3) are active and
synchronized with the main Marlin repository. These are non-overlapping groups, and
percentages show the relative size in the set of all forks

maintain the fork decrease, and it becomes inactive (32% of active forks did not re-
ceive any commits between January 2014 and November 2014). Thus the period in
which upstream changes are relevant for many developers is relatively short. The im-
plication of not retrieving updates from the main project is twofold: first, users do not
benefit from latest development and bug-fixes (I later show that this is an important
aspect), and second, if changes are done in forks and might be pushed back into the
main project at a later time, the integration process will be challenging (due to potential
large merge conflicts) because of not synchronizing. Unfortunately, Github does not
offer a simple mechanism to synchronize a fork with its main parent, or to selectively
accept upstream changes. This can be done through Git, e.g., using cherry-picking,
but the average user could benefit from a much simpler interface, without requiring to
be a Git expert.

In comparison, in the survey responses, only 18% of active fork owners synchro-
nize monthly, and 6% synchronize weekly. Others do not synchronize at all, or syn-
chronize irregularly. When asked, they state that the upstream changes are uninter-
esting for them, or that they do not wish to take in new changes as integrating them
costs additional work. Merging new changes from upstream can be difficult and time
consuming. One inactive fork owner explained that I fear that my settings/calibra-
tion could change, sometimes I stay 1–3 months without changing the firmware of my
printer.

At the same time, the altruist developers that want to contribute to the commu-
nity synchronize more frequently. From 306 development forks, 142 have retrieved
changes from the main Marlin repository. Moreover, 87% of pushed patches from de-
velopment forks, come from those that synchronized. Being up-to-date with the main
repository is key for producing clean up-to-date patches. Furthermore, it makes inte-
gration of changes and variants much easier due to smaller and less complex merge
conflicts that may arise.

34

5.3. Results and Analysis

Forks Number of pull requests

fork level #forks total open merged closed

1 197 389 56 245 88
2 5 7 3 3 1
3 and 4 0 0 0 0 0
unknown 51 92 2 51 39

Table 5.1: Pull request contributions from forks to the parent repository. The last row
refers to deleted forks whose level is unknown

To what extent do forks contribute changes to their origins? In the set of active
forks, only 202 forks (253 with forks that were deleted before our retrieval, and they
are represented as unknown in pull requests on Github) contributed with patches to the
main Marlin repository, so not even all feature development forks (306 in Fig. 5.2) have
contributed pull requests upstream. Nevertheless, 714 commits have been integrated
in main Marlin by merging pull requests, representing 58% of all commits in the main
Marlin repository (excluding empty commits that acknowledge merges).

The ability to fork gives developers control over the code base, which encour-
ages innovation. More than half of the commits in the main Marlin repository
come from forks of Marlin. Although forking allows for isolated development, it is
important that changes are frequently propagated in the ecosystem (in both direc-
tions). This brings visibility to new features and bug-fixes, and eases the overall
maintenance of the system.

Another benefit of easy forking for developers is showing up in testing and debug-
ging. Testing 3D printer firmware is difficult, because maintainers do not have access
to all the supported hardware. Hence, changes that are related to new hardware are
usually tested by users having the corresponding hardware (e.g. P335, P572). During
the life of the project, many users debugged problems, reported bugs, and contributed
fixes developed in their own forks (e.g. P335, P594).

Forking facilitates a gradual involvement of contributors. Fork owners gain experi-
ence working on their own forks. Once they gain reputation, they become committers
in the main project. We have identified such cases both in our survey and in the inter-
views with the maintainers of the main project.

In summary, the development and maintenance of Marlin benefited from the mul-
titude of forks in the following ways:

• Forks contribute new features and new hardware support.

• Fork owners test and improve the firmware on different hardware and configu-
rations.

35

https://github.com/MarlinFirmware/Marlin/pull/335
https://github.com/MarlinFirmware/Marlin/pull/572
https://github.com/MarlinFirmware/Marlin/pull/335
https://github.com/MarlinFirmware/Marlin/pull/594

5 Practices of Systematic and Ad hoc Reuse - Paper B

• Working on forks grooms new maintainers for the project.

Under what circumstances is forking preferred over integrated
variability for creating and maintaining variants?
In order to understand why developers prefer forking over the preprocessor, I inves-
tigated scenarios in Marlin’s history that are typical of fork-based development. This
qualitative analysis included forks that are used to manage configurations and forks
that develop features, but do not push changes upstream. I disregarded forks that push
changes upstream as these have to wrap their changes using preprocessor annotations.
Since Marlin itself was created as a fork, I investigated its origin and the initial ratio-
nale for creating Marlin. There are four main reasons as why forking is preferred over
preprocessor annotations, presented in the following observation.

Marlin developers preferred forking over preprocessor annotations under the
following reasons:

S1. The maintenance time span for the developed code is expected to be short.

S2. The external developer has no control over the upstream project.

S3. A developer wants to create experimental code.

S4. An active project provides a good skeleton for adding new functionality.

Next, I detail the above reasons using concrete examples. Overall, there are 526 forks
that did modifications to the configuration files. There are 316 forks (45% of active
forks) that modified only the configuration files and made no other changes. For in-
stance, 33d/marlin-i3 #abaec3b3 configures the firmware to comply with a specific hard-
ware. Some other forks mix configuration changes with other development changes
0xPIT/Marlin #70c7dde7, which makes it difficult to create pull requests containing just
the new code and no configuration noise. Both previous examples have not been up-
dated afterward. Once the firmware is configured and running on the printer, new
changes are not desired and no further maintenance is associated with these forks (S1).

Forks commonly develop features for their own use, which may be highly exper-
imental. For instance, martinxyz/Marlin #a8d59b1a modifies the IRQ functionality of
the software and even adds an alternative IRQ code (#2a1c0766) for the stepper motor
control in the firmware (non-standard IRQs are unlikely to be used). In this case, ex-
perimenting with code and adding new features that the original project lacks are the
main reasons for forking (S3).

The fork jcrocholl/Marlin is a first level fork of main Marlin. It adds support for
a new type of printer, a so called delta, that works differently than the normal Carte-
sian printers. Delta printers use spherical geometry and compute the location of the

36

https://github.com/33d/marlin-i3/commit/abaec3b3c82acaf5a4266efb87d500ae01a096ea
https://github.com/0xPIT/Marlin/commit/70c7dde7fe49d35b0d8d9d86692acbf11f0a0420
https://github.com/martinxyz/Marlin/commit/a8d59b1a1327c4bd2fc3978d33b71343923a6cc4
https://github.com/martinxyz/Marlin/commit/2a1c0766006221f7291fc6a3c387866bf87c9c6f
https://github.com/jcrocholl/Marlin/tree/deltabot

5.3. Results and Analysis

23

26

18

61

Manually merged

Outdated

Concurrent Development

Other

Figure 5.4: Reasons for not merging pull requests. The numbers represent how many
pull requests were rejected in each category. Other includes: closed by the pull request
author (no reason), bad patch, pull request created on wrong repository, or not fixing
anything.

movements using trigonometric functions, such that the nozzle is not moved along the
Cartesian planes. Before this extension, Marlin provided already support for some
existing hardware and most of the needed software , which made it easy to introduce
the extension. From user’s perspective this was a large qualitative leap, almost a new
project though, as it supported hardware with completely different design. The main
Marlin project was not affected in any way by these changes. Moreover, the developer
had complete control (S2) over his fork allowing him to progress fast.

Originally, Marlin itself was created by cloning and extending parts of klimen-
t/Sprinter and grbl/grbl. The Sprinter firmware was itself a fork of tonokip/Tonokip-
Firmware, which was based on Hydra-MMM firmware. So heavy forking in this com-
munity predates Marlin’s time. These earlier projects provided a good skeleton, from
which Marlin could evolve into a solid standalone variant (S4).

What other challenges arise in fork-based development projects?

I approach this question in the following way: (i) study the reasons for rejecting con-
tributions, (ii) analyze if bug-fixes for important problems are propagated in the repos-
itories and (iii) ask fork owners about importance and challenges of receiving and
contributing bug-fixes from upstream. All of these aspects can potentially reveal in-
formation about frictions in project management on the boundary of forks. I organize
the discussion along the identified challenges starting with redundant development and
reasons for rejecting contributions, then moving to difficulties in propagating changes,
and decentralization of information in forks.

Redundant development. The analysis of rejected pull requests showed that 18 pull
requests (14% of all rejected pull requests) are rejected because of concurrent devel-
opment (Fig. 5.4). The requested change either contained a feature or a bug-fix that
already existed, or it was developed in parallel by two developers. This is a challenge
not only for the contributors (e.g. P1087 or P223) but also for the maintainer who needs
to have a good overview of all open pull requests to resolve the conflicts in the best

37

https://github.com/kliment/Sprinter
https://github.com/kliment/Sprinter
https://github.com/grbl/grbl
https://github.com/tonokip/Tonokip-Firmware
https://github.com/tonokip/Tonokip-Firmware
http://sourceforge.net/projects/hydra-mmm/
https://github.com/MarlinFirmware/Marlin/pull/1087
https://github.com/MarlinFirmware/Marlin/pull/223

5 Practices of Systematic and Ad hoc Reuse - Paper B

possible way (e.g. P594). Berger et al. [Berger et al., 2014a] confirm that concurrent
development is a similar issue in industrial projects using clone-and-own.

Challenges in change propagation. The fact that forks do not retrieve changes from
the main repository is problematic as fixes and new features are not propagated. To
understand this phenomenon, I selected eight patches fixing important bugs (in an
exploratory way using the gained knowledge of Marlin). The patches were created
between January 2014 and November 2014. Thereafter, I checked if those patches
were propagated to the forks. Figure 5.5 shows to what extent these patches have been
adopted in forks. The light color part of the bar represents the number of active forks
that have not pulled the patch, while the darker grey part represents active forks that
have the patch (this only considers the active forks that existed before the patch was
committed). For example, patch 1 in ErikZalm/Marlin #8a5eaa3c fixes a bug in a feature
that may damage the printer. All the considered patch adoptions exhibit the same
pattern.

Propagation of bug-fixes is a problem for forking, even though git offers facilities
for selective download of patches from upstream (cherry picking).

At the same time, forks do not push changes back, so important fixes from the forks
may never make it to the main repository. As many as 447 forks (63% of active forks)
did not submit any patches to the main Marlin project. The survey data shows that one
of the challenges is to prepare a robust pull request that does not break other features.
A developer who works on his own fork, may find it difficult to take into account
how his fix will affect configurations of all the other users. See for example a case
of pull request P594 mentioned above, where a developer proposes to fix the problem
for one hardware configuration, by removing the code that is necessary to make other
configurations work. It is easier to maintain this general view on the variants, when
integrated variability is used.

Decentralization of information. Decentralization of information is an issue that is
specific to forking. Modifications and extensions to Marlin are not kept in one neatly
organized repository but in several hundreds of forks. For example, malx122/Marlin
#69052359 added support for a second serial communication, and also support for fast
SD card transfer malx122/Marlin #326c59f6. These two features are not in the main
Marlin repository, but they were actually taken from a fork (pipakin/Sprinter) of an-
other firmware (kliment/Sprinter). Finding such features in the multitude of forks is
extremely hard for the community members. This is consistent with an observation of
Berger et al. [Berger et al., 2014a] that an excessive use of clone-and-own to create
variants in industrial projects leads to loss of overview of the available functionality.
The same work of [Berger et al., 2014a] mentions that centralized information is a key
advantage of integrated variability management and feature modeling over fork-based

38

https://github.com/MarlinFirmware/Marlin/pull/594
https://github.com/ErikZalm/Marlin/commit/8a5eaa3c9b53548337306f34077d27aed0a69391
https://github.com/MarlinFirmware/Marlin/pull/594
https://github.com/malx122/Marlin/commit/6905235982eadfb3074c15b45e17311803eaa3a0
https://github.com/malx122/Marlin/commit/326c59f660a590a2e770bdf8c22258784712fd7f
https://github.com/pipakin/Sprinter
https://github.com/kliment/Sprinter

5.3. Results and Analysis

59 68 64 66 60 59 49 20

416 407 409 443 449 466
537 590

#Forks that do
not have the
patch

#Forks that
have the
patch

Figure 5.5: Synchronization of active forks for patches. The sum of the two represents
existing active forks at the time creation of that patch.

management. Also diverged codebases make it hard for individual teams to know who
is doing what, and what features exist elsewhere [Duc et al., 2014]. This is a problem
in Marlin as well, even though, usually, individual forks do not depart far from the
mainline. The sheer amount of forks makes it difficult to navigate and find interesting
code.

Decentralization of information is a challenge in fork-based development.

What are the criteria that lead to integrating a forked variant into
an integrated platform using preprocessor annotations?
Often forks and features developed in forks need to be integrated into the main project.
However, this is a challenging, error-prone and time consuming process. I explore
the question of when, why, and what are the criteria to integrate a variant into an
integrated platform to understand how can integrations can be executed, and under
what conditions. This step helps with designing the requirements for a tool that should
support development and integration of variants. Analyzing how a few variants (e.g.,
alexborro/Marlin-BedAutoLev, jcrocholl/Marlin – deltabot) were integrated into the
main Marlin, and how they evolved after the integration I find that:

Marlin fork owners consider integrating their forks into the main platform for
the following reasons:

U1. Integrating widely used variants that need to be kept in sync with upstream
reduces effort and evolution cost.

U2. Integrated features are more visible and attract more users.

39

5 Practices of Systematic and Ad hoc Reuse - Paper B

Furthermore, through the interviews with the maintainers of Marlin I conclude that:

A fork-based variant is integrated into the main Marlin platform under the fol-
lowing conditions:

U3. The quality of the feature is within standards. It has been tested and is
known to work as expected.

U4. Project maintainers accept to take over the maintenance, and the feature is
aligned with project goals.

The Auto Bed Leveling feature (#253dfc4b), was developed in a fork, later updated
in another fork and finally integrated into the main repository. The integration took
place after the feature has been tested and widely recognized1 as well functioning (U3).
On the other hand, if a feature is not working as expected and may introduce bugs or
affect functionality, then it is not integrated. One such example is thinkyhead/Marlin
#de725bd4, that adds support for SD card sorting functionality. This feature was devel-
oped by one of Marlin’s maintainers, but was not accepted in the main project. The
reason for not integrating this feature is that it causes problems in some specific cases
(U4). Although it was not integrated at the time, the maintainer kept it in his fork
because it is demanded by users.

The deltabot fork developed by jcrocholl/Marlin was integrated into the main Mar-
lin repository (#c430906d, #6f4a6e53). Once integrated into the main project, visibility
of new features and the variant was increased (U2) and it was easier to maintain it
(U1). One of the maintainers stated that deltabot was merged "because it was clear
and we knew it had been well-tested" (U3). Additionally, developers started to con-
tribute changes to deltabot (P511,P568). During its existence as a standalone variant,
in the deltabot repository there were only nine pull requests created and only one got
accepted. Once it was integrated into Marlin, there were 20 pull requests related to it in
ErikZalm/Marlin (55% more), out of which 14 were accepted (U2, U4). Interestingly,
jcrocholl/Marlin remains a separate fork where the experimental development (S3) con-
tinues. This allows the owner to continue development outside the control of Marlin
project maintainers (S2).

5.4 Summary
In this chapter I have shown through an empirical study the advantages and challenges
of using preprocessor annotations and forking to develop software variants. It is clear
that both mechanisms are flexible and preferred by developers under specific condi-
tions. Using preprocessor annotations and forking is cheap (at least on short term),

1Forum discussion: "Bed Auto Leveling.. check this out": http://forums.reprap.org/
read.php?151,246132

40

https://github.com/ErikZalm/Marlin/commit/253dfc4bc139d9cfc170ce0c829716e81c81bbe8
https://github.com/thinkyhead/Marlin/commit/de725bd408f68f072d44147197fac80723fcca0e
https://github.com/jcrocholl/Marlin/commit/c430906d3b4e49044494fa6c1ea76ec2354b1100
https://github.com/ErikZalm/Marlin/commit/c430906d3b4e49044494fa6c1ea76ec2354b1100
https://github.com/ErikZalm/Marlin/commit/6f4a6e531ce806cd2643767b955bac492efa9404
https://github.com/MarlinFirmware/Marlin/pull/511
https://github.com/MarlinFirmware/Marlin/pull/568
https://github.com/jcrocholl/Marlin
http://forums.reprap.org/read.php?151,246132
http://forums.reprap.org/read.php?151,246132

5.4. Summary

and does not require specialized tools. This confirms the first hypothesis (H1) and an-
swers RQ1. This chapter provides insights on how to combine the two techniques to
get the best of both worlds.

Forking is a good reuse mechanism for quick development and experimentation,
but it is problematic with regards to maintenance and propagating changes if not ap-
propriate measures are taken. Furthermore, forking leads to decentralized information,
which is a challenge observed also in industrial systems [Duc et al., 2014,Berger et al.,
2014a, Dubinsky et al., 2013]. Unfortunately, decentralization of information is more
and more common [Gousios et al., 2014].

The ability to fork gives developers control over the code base, which encour-
ages innovation. Although forking allows for isolated development, it is important
that changes are frequently propagated in the ecosystem (in both directions). This
brings visibility to new features and bug-fixes, and eases the overall maintenance of
the system. As we have seen in the deltabot variant, synchronizing often with the main
repository translates into small maintenance effort chunks instead of one large merge.
This allowed the developer to quickly experiment with the deltabot variant, while not
diverging too far from the main repository. The end result was a clean and effortless
integration of this variant into the main project, which led to more pull requests and
changes to the new variant. To this end, I believe that forking is a viable mechanism for
reuse in the context of developing software variants, but it has to be carefully used and
managed. In particular, synchronizing often and merging features or variants increases
visibility and reduces maintenance costs.

Preprocessor annotations are also a cheap reuse mechanism and are heavily used
in embedded systems. Unfortunately, an uncontrolled usage of preprocessor annota-
tions inhibits program comprehension due to code cluttering and makes maintenance
more difficult. Although their negative effects are known, these are broadly used in
practice. The main reasons for using preprocessor annotations is their flexibility, fine
granularity and that developers know how to use them. Using preprocessor annotations
software systems with limited resources can be configured according to a specific con-
figuration, thus giving flexibility for deriving many variants from one common code-
base.

An important lesson is to be conscious of when and how often to use preproces-
sor annotations. When code becomes cluttered with annotations and maintenance is
hindered by them, it is important to re-architect and refactor the code to improve com-
prehension and ease the maintenance. While this is usually a manual and error prone
practice, in recent years more tools are supporting automated refactoring of code with
preprocessor annotations. Transforming compile time variability into runtime variabil-
ity [Liebig, 2015, Iosif-Lazar et al., 2017] is useful to use off the shelf static analysis
tools. Detecting variability code smells [Fenske et al., 2015, Fenske and Schulze,
2015] can help in identifying potential problems due to usage of preprocessor annota-
tions. Nevertheless, preprocessor annotations are a cheap, easy and fast reuse mecha-
nism used in thousands of systems in open source and industry alike.

41

6. Variation Control Systems
Paper C

This chapter shares content with paper "Concepts, Operations and Feasibility
of a Variation Control System" published in ICSME 2016 [Stănciulescu et al.,
2016a]. For complete details, refer to the paper in Appendix A.3.

In the previous chapter, I discussed the advantages and disadvantages of developing
variants using preprocessor annotations and forking in the highly configurable Marlin
system. In this chapter, I present a variation control system that is designed to han-
dle the development of software variants. The advantage of using a variation control
system is that it can alleviate some of the disadvantages of using preprocessor annota-
tions. Through an empirical study, I identify what kind of edit operations are common
when developing and maintaining highly configurable systems. Based on these identi-
fied edit operations, I analyze how and if these are supported by the proposed variation
control system. Finally, this chapter presents how forking can be integrated in the
variation control system to support quick and low cost initial reuse.

6.1 Introduction
Various methods and tools that allow working on dedicated subsets of all variants
have been proposed in the literature [Walkingshaw and Ostermann, 2014, Le et al.,
2011, Atkins et al., 2002, Kruskal, 1984, Kästner et al., 2008, Schwägerl et al., 2015].
To some degree, these systems can ease the engineering of highly configurable sys-
tems by providing views that only show the code related to specific variants or feature
code, while hiding irrelevant code. However, none of them has found widespread
adoption. In fact, little empirical data is available that shows how exactly they can be
used to engineer real-world systems, and what their specific benefits and challenges
are. Furthermore, it is needed to understand what edit operations users need and how
a specialized variant development tool could support these operations.

In this chapter, I present a variation control system designed to cope with some of
the challenges of preprocessor annotations. In an empirical study I extract a set of edit
patterns that are related to variability changes.

43

6 Variation Control Systems - Paper C

1 // LCD selection
2 #ifdef U8GLIB_ST7920
3 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
4 U8GLIB_ST7920_128X64_RRD u8g(0);
5 #elif defined(MAKRPANEL)
6 // The MaKrPanel display, ST7565 controller as well
7 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
8 #elif defined(VIKI2) || defined(miniVIKI)
9 // Mini Viki and Viki 2.0 LCD, ST7565 controller as well

10 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
11 #elif defined(U8GLIB_LM6059_AF)
12 // Based on the Adafruit ST7565 (http://www.adafruit.com/products/250)
13 U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0);
14 #else
15 // for regular DOGM128 display with HW-SPI
16 U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
17 #endif

Listing 6.1: Marlin excerpt (dogm_lcd_implementation.h at commit a83bf18)

Then I assess the feasibility of using a variation control system in supporting the
identified edit patterns. Specifically, the prototype is used to replay parts of the history
of the highly configurable software, Marlin. To give an intuition of how a variation
control system works, I use the the example shown in Listing 6.1.

A variation control system allows us to checkout a subset of all the variants from
our code repository. That is, the source code that is generated by the variation control
system is a subset of the initial code, according to a given projection. Let us use
the projection U8GLIB_ST7920. In its simplest form, a projection is a propositional
formula. The projection specifies a concrete variant to be visualized, yielding the
following (temporary) code.

1 // LCD selection
2 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
3 U8GLIB_ST7920_128X64_RRD u8g(0);

Listing 6.2: The view created by the variation control system that is specific for the
U8GLIB_ST7920 variant

The generated view, that is a projection of the code, can be edited with any tool
a developer desires, e.g., a text editor or an IDE. In the view we can observe that the
code has no preprocessor annotations and it is simpler to read and understand. Let us
now delete line 2, and modify line 3 to call a different constructor, as following.

1 // LCD selection
2 U8GLIB_256X128_RRD u8g(0);

Listing 6.3: The edited view after we performed the desired changes

Once the code changes have been done, we can update the original code with
the changes. This is specified through the checkin operation and uses an ambition.

44

6.2. Background

1 // LCD selection
2 #ifdef U8GLIB_ST7920

3 U8GLIB_256X128_RRD u8g(0);

4 #elif defined(MAKRPANEL)
5 // The MaKrPanel display, ST7565 controller as well
6 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
7 #elif defined(VIKI2) || defined(miniVIKI)
8 // Mini Viki and Viki 2.0 LCD, ST7565 controller as well
9 U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

10 #elif defined(U8GLIB_LM6059_AF)
11 // Based on the Adafruit ST7565 (http://www.adafruit.com/products/250)
12 U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0);
13 #else
14 // for regular DOGM128 display with HW-SPI
15 U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
16 #endif

Listing 6.4: Updated variant code (shown in blue) after the checkin operation

The ambition is dual to the projection and specifies which variants should be affected
by this change. For this example, we assume that we only wanted to modify the
U8GLIB_ST7920 variant, so that becomes our ambition. The variation control system
now updates the platform and yields the code in Listing 6.4. The updated code does not
contain line 3, and the previous line 4 now becomes the modified line 3 (highlighted
with blue).

Through this sequence of operations, a variation control system supports the fol-
lowing workflow:

Checkout the source code according to a given projection that yields a version
of the code with less variability,

Edit the source code shown in the view generated by the given projection,

Checkin the edited code, which updates the underlying variational code.

The variation control system presented in this dissertation combines and extends
concepts from prior work [Walkingshaw and Ostermann, 2014, Lie et al., 1989]. To
describe it, I use choice calculus [Erwig and Walkingshaw, 2011b,Walkingshaw, 2013,
Walkingshaw and Erwig, 2012], a concise and formal notation that avoids dealing with
intricate preprocessor annotations syntax and semantics, and allows reasoning about
highly configurable systems.

6.2 Background
In the beginning of the 1980s there has been some advancement on improving the com-
prehension of source code that uses preprocessor annotations to implement variability.
One of the first tools was the P-Edit, developed by V. Kruskal, in 1984 [Kruskal,

45

6 Variation Control Systems - Paper C

1984]. A similar idea was introduced in the Change Oriented Versioning by [Lie
et al., 1989] which led to an actual tool developed in Munch’s Ph.D. [Munch, 1993].
Recently, Walkingshaw [Walkingshaw and Ostermann, 2014] developed the projec-
tional editing model, that is as well similar to the previous two ones. A few other
similar ideas exist [Blendinger, 2010, Kästner and Apel, 2009] as well, though none
got any traction in practice.

In general, all these ideas and tools rely on variability realized using annotations
embedded in code, similar to preprocessor annotations. These annotations carry a
Boolean expression over features, called presence condition in the remainder of this
chapter. The P-Edit system and the CoV system are not available anymore and there is
hardly any evidence on their usefulness. The third one has not been empirically eval-
uated and no publicly available tool exists. The first two approaches unify versioning
and variability. P-Edit is realized on top of an editor, while CoV is similar to a version-
control system with control over which variants are checked out and in. In the rest of
the section, I will describe in more detail the previous variation control systems.

P-Edit - 1984 Kruskal [Kruskal, 1984,Kruskal, 2000] presents an editor that realizes
both concurrent versioning (variability) and sequential versioning (evolution in time)
relying on variability annotations. Similar to conditional compilation, code lines are
mapped to Boolean presence conditions, representing both the variant and the version
to which the lines belong to. The editor creates views based on a partial configuration
(a conjunction of features) called mask, supporting workflows where developers start
with a relatively broad mask (e.g., projecting on just one feature), potentially restricting
the mask by conjoining other features (e.g., “push” more masks on a stack), editing
code in the views belonging to the more restricted masks, and then returning to more
broad masks (e.g., “pop” masks from a stack). Code lines with presence conditions
that do not contradict the mask are visible for editing. Several convenience commands
are available to the user for iterating through variants and for manipulating presence
conditions. The editor is not available anymore, and no empirical data on its use exists.

Change Oriented Versioning - CoV 1993 Lie, Munch and Westfechtel [Lie et al.,
1989, Munch, 1993, Westfechtel et al., 2001] present and evaluate an alternative ver-
sioning model based on logical changes: change oriented versioning (CoV). It also
unifies concurrent and sequential versioning, by attaching Boolean presence conditions
to file fragments. It follows a classical checkout/checkin cycle, where a configuration
(conjunction of features) determines both the version and the variant available in the
view (e.g., the workspace), which can be edited. It decouples the projection (called
“choice”) from the expression used to checkin the edited view (called “ambition”) to
denote to which variants a change applies to. In an empirical study the authors trans-
late existing C/C++ source code files of gcc into CoV representation in a database
(EPOSDB-II [Gulla et al., 1991]), and compare the performance against RCS [Tichy,

46

6.3. Variation Control System Design

1985] when doing a full checkin of version 2.4.0 of gcc. The experiment does not
show how feasible it is to actually engineer a real-world system, and how exactly the
checkout/checkin cycles using choices and ambitions can be used by developers.

Projectional Editing - 2014 Walkingshaw et al. [Walkingshaw and Ostermann, 2014]
present a model for a variation control system called projectional editing.1 They
present a formal specification of the model with the get (create a view using a pro-
jection) and put (update the underlying program with changes done within the view)
functions at its core. Examples are provided that show how to create the view and how
an update executes the changes done to the view. However, in contrast to CoV, the
definition of put is founded on an edit isolation principle that ensures that the only
variants that change in the underlying program are those that can be reached from the
view. In other words, when we use put to perform the update, the edits made on the
view are guaranteed not to affect code that was hidden by the get function. Given this
limitation, and since it was not evaluated on a real-world system, it is not clear whether
this model can handle the engineering of real-world, highly configurable systems.

6.3 Variation Control System Design
The variation control system prototype presented next is a generalization of the one
described before [Walkingshaw and Ostermann, 2014]. In addition to the original
projectional editing, it uses the concept of ambition from CoV [Munch, 1993], which
specifies what variants are affected by the change when updating the code.

Workflow
Figure 6.1 shows the intended workflow of the system. Symbols r and r′ refer to the
highly configurable software source code stored in a repository, and v and v′ refer to
working copies of the source code that are viewable and editable by the developer. The
source code (r, r′, v, v′) is represented by a choice calculus expression (e in Fig. 2.8).
The operation get is used to checkout a particular working copy from the repository,
and put is used to checkin any changes back to the repository. The workflow is inde-
pendent of the type of storage used to contain the source code (e.g., version control
systems or just folders).

In step (1) the developer obtains a simplified view v from the initial repository r.
The parameter p, the projection, defines how v is obtained from r. More specifically, p
describes a partial or complete configuration of r, eliminating all of the variability that
is irrelevant to the current editing task. In step (2) the developer edits v into v′ using

1Not to be confused with projectional editing [Voelter et al., 2014, Berger et al., 2016] used in
the Meta Programming System [mps,] or the Intentional Domain Workbench [Christerson and Kolk,
2009]

47

6 Variation Control Systems - Paper C

r r′

v v′

derived edit

(1) get(p, r)
get(p∧ a, r′)

(2) actual edit

put(p, p, r, v)
(3) put(p, a, r, v′)

Figure 6.1: Projection-based variational editing workflow and relationships. Symbol
r represents the repository that contains source code, p is the projection that specifies
how to obtain the view v from r using the get function. The ambition a specifies how
should the changes from the edited view v′ be applied to the repository using the put
function. Both p and a are Boolean expressions over features.

whatever standard tools they prefer. In step (3) an additional parameter a, the ambition,
is introduced, which specifies how the developer’s changes should be integrated into
the repository. Note that the put operation takes into account the initial repository, the
updated working copy, the projection, and the ambition when producing the updated
repository r′.

The two dashed edges in the diagram describe some basic consistency principles
that get and put should satisfy. These are derived from the lens laws developed in re-
search on bidirectional transformations [Foster et al., 2007] and constrain the potential
definitions of get and put .

The left dashed line requires that a get followed by a put is idempotent. Specifi-
cally, if a simplified version is retrieved v with some projection p and then immediately
it is checked back in with the same ambition a = p, then the repository should remain
unchanged. This enforces that the get operation is not effectful from the perspective
of the repository.

The right dashed edge requires that a put followed by a get (with an appropriately
structured projection) is idempotent. Specifically, immediately after applying the put
function to checkin changes from the edited view v′, that same working copy can be
obtained by doing a checkout using the conjunction of p and a as the projection. This
enforces that the put operation is always reversible.

Get and Put Function
Specifying and implementing get is straightforward (e.g., using partial or full prepro-
cessing). We chose partial preprocessing to allow projections that are partial configura-
tions. In practice, it might be unlikely that a developer has to work on a full configured
product at once. The function get obtains a view using the following process. It iter-
ates through all top-level choices in the AST. It takes the right alternative if the choice’s
presence condition contradicts the projection. It takes the left alternative if the negated
presence condition contradicts the projection. Contradictions are checked using a SAT
solver. If neither the presence condition nor its negation contradict the projection, get

48

6.3. Variation Control System Design

keeps the choice as it is. For each not eliminated alternative, get repeats this process
descending into each alternative’s sub-tree.

In the previous projectional editing work [Walkingshaw and Ostermann, 2014],
these functions relied on an edit isolation principle: when doing a put in (3), the
edits made in (2) cannot affect code hidden by get in (1). Although this principle is
somewhat restrictive, it leads naturally to a definition that satisfies the requirements
derived from the lens laws. Generalizing the edit isolation principle, we obtain a put
operation that is less restrictive than in the previous work, while still retaining the
properties.

This generalized edit isolation principle can be defined as follows. Let C be the
set of all configurations of r and r′, and r′ = put(p, a, r, v′) as defined in Fig. 6.1.
The get function obtains all choices whose presence condition does not contradict the
projection. If the presence condition contradicts the projection p, then get returns the
projection from the original source.

∀c ∈ C. get(c, r′) =
{
get(c, v′) if SAT(c ∧ p)
get(c, r) otherwise

The put update function consists of constructing a new choice with the updated
view v′ in the left branch, and the original source r in the right branch:

put(p, a, r, v‘′) = minimize(F 〈v′, r〉)
F = (p ∧ a)

The next step is done by the minimizing function, which minimizes the choice
expressions to a more compact representation. The goal is to reduce redundancy in the
newly created choice. The minimize function uses several reduction rules (see Fig.3
from paper A.3 for full details). Note that they can change the syntax of a choice, but
preserve its semantics.

Implementation
The variation control system is implemented in Scala, comprising of a parser, get and
put function, minimization rules, and pretty printer. The prototype is programming-
language independent (line-based), but the parser and pretty printer recognize and
write variability annotations in C preprocessor syntax (e.g., #if, #ifdef, #endif).
The tool is command-line based (see Fig. 6.2), similar to Git. It has a few simple
commands such as

• checkout - used to get a view on the code through a given projection. One or
multiple files can be checked out.

• checkin - used to put the changes back into the integrated platform with the
specified ambition. One or multiple files that were checked out can be checked
in.

49

6 Variation Control Systems - Paper C

INITIALIZATION

CHECKOUT

STATUS

CHECKIN

Figure 6.2: The Variation Control System commands from the command line interface.

• status - used to show which files are projected out and the projection used.

6.4 Study Design

Now that the variation control system has been described in detail, the question is
how to test and evaluate the system. A first challenge that arises is that there is no
understanding of what kind of changes can be performed with this variation control
system and its dedicated workflow. Therefore, in this section I describe the steps taken
and the design of the study to answer RQ2 — How can a specialized variation control
system leverage the advantages of preprocessor annotations and forking to support
the development, maintenance and integration of software variants, while minimizing
some of their drawbacks?

I split the research question into two subquestions:

RQ2a What edit operations should a variation control system support? To answer this
question, I analyze the commits of Marlin to identify variability-related editing
patterns. These edit patterns are used to understand the kind of changes that
are done to a configurable system, as well as verifying which of them can be
executed with the variation control system.

RQ2b Can a variation control system be used to maintain and evolve a highly config-
urable system? In an experiment, parts of the history of Marlin are replayed us-
ing the variation control system prototype. The motivation for replaying changes
is to understand if indeed a variation control system can support the development
of software variants. The specific scope of the experiment is to determine how
well editing cases are supported and which are not trivial to support.

50

6.4. Study Design

RQ2a: Identification of Edit Operations

First step is to identify edit-related changes and extract edit patterns. To achieve this,
3747 commits (without merge commits) from Marlin’s history are used. Each commit
is split into a patch per changed file, excluding those files that were added, removed or
renamed, resulting in 5640 patches. The removed or renamed files are ignored because
they have already OS supported operations, and a variation control system does not
require first class support for them. Adding new (large) files is too complicated to
support with a variation control system if the file has specific code to many variants.
Usually, a new file contains many code blocks that are added manually and then the
whole file is added to the repository.

Patches are classified into patterns in three steps. First, manual inspection is done
on 50 random commits that add or remove #ifdef directives in code using grep, to
understand the change and recognize patterns. Second, several regular expressions
that represent the patterns are created to automatically classify to which edit pattern a
patch belongs to. Next, a check if all patches have been classified is performed. For
patches that remain unclassified, the respective regular expressions are added, and the
classifier is executed again. These steps are repeated until each patch is classified by
at least one pattern (note that a patch can belong to multiple patterns).

To cross-validate the patterns the classifier is applied on Busybox project, a larger
project with 175 KLOC. The project’s git repository2 was downloaded at commit
a83e3ae, and contains 13,700 commits excluding merge commits. These commits are
also split into a patch per file, yielding 34,018 patches. Running the classifier on this
set yields a recall of 97%, meaning that 97% of the patches fall into one of the cate-
gories determined in the Marlin set. The high recall gives confidence that the classifier
is working as expected.

RQ2b: Replaying a Sample of Marlin’s History

To replay changes already executed in Marlin to understand if the edit patterns can
be well supported, 2322 patches were considered for sampling. These patches only
modify files containing only Boolean presence conditions. This is justified as analyz-
ing the complexity of Marlin’s presence conditions is not the main goal here. Other
kinds of presence conditions could be handled using an SMT or CSP solver, without
affecting the variation control system’s main design features. From the 2322 patches,
three patches are selected for each identified edit pattern. Some patterns did not have
any purely Boolean representative in the selection. For these patches from the whole
pool of 5640 (Boolean and non-Boolean) patches were selected randomly, and trans-
formed their non-Boolean expressions into Boolean ones by introducing new variables
for non-Boolean sub-expressions (a simple form of predicate abstraction).

2https://git.busybox.net/busybox

51

https://git.busybox.net/busybox

6 Variation Control Systems - Paper C

For each randomly selected patch, the projection and ambition are manually con-
ceived by looking at the code and the patch, and respectively at the end result of the
change. Each change is executed according to the workflow: S1 and S3 are done by
our prototype, and S2 is done manually in a text editor.

S1 Checkout the original source code file using the projection,

S2 Edit the view to apply changes from the patch,

S3 Checkin changes using the ambition.

Metrics Two metrics are computed during the execution of the replay. The metrics
are computed for: original source code (r), view on source code (v), and updated
source code by our system (r’). To compare the latter to the updated original source
code, metrics for the original update (r’) from Marlin’s Git repository are computed.
The two metrics are:

• LOC: lines of code in a file, including comments but excluding blank lines. This
metric is used to verify if the projection could improve the program comprehen-
sion by eliminating unnecessary code that is not needed when executing a given
editing task.

• NVAR: number of variation points; more precisely: choices (represented by #if,
#ifdef, #ifndef, etc.) in a file. A high NVAR challenges code comprehension.
I hypothesize that using a projection, the number of code blocks wrapped by
presence conditions is reduced in the view.

To get a better representation of how useful is the projection, a reduction factor is
computed for LOC and NVAR. Its value is computed by dividing the value in the view
to the value before checkout. The reduction factor is aimed to visualize the effect and
positive or negative impact of views compared to the original source code.

6.5 Edit Operations
To identify the edit operations, the classifier ran on the set of 2322 patches several

times until all patches were classified. This execution led to the identification of 14
edit patterns, shown in Tbl. 6.5.

RQ1a: There are 12 patterns representing edit operations that a projection-based
variation control system needs to support.

I split the 14 edit patterns into three categories: code-adding patterns, code-removing
patterns and other kind of patterns. I show how they can be turned into specific vari-
ation control system edits, that are executed with its workflow. For each category, I

52

6.5. Edit Operations

Name #Multi #Only Example

P1 AddIfdef 969 129 ι→ F 〈e, ι〉
P2 AddIfdef∗ 424 32 (ι→ F 〈e, ι〉)∗
P3 AddIfdefElse 271 4 ι→ F 〈e1, e2〉
P4 AddIfdefWrapElse 43 17 e2 → F 〈e1, e2〉
P5 AddIfdefWrapThen 13 3 e1 → F 〈e1, e2〉
P6 AddNormalCode 4683 871 ι→ e
P7 AddAnnotation 293 12 not applicable
P8 RemNormalCode 3932 209 e→ ι
P9 RemIfdef 534 24 F 〈e1, e2〉 → ι
P10 RemAnnotation 228 2 not applicable
P11 WrapCode 77 29 e→ F 〈e, ι〉
P12 UnwrapCode 12 2 F 〈e, ι〉 → e
P13 ChangePC 225 74 F1〈e1, e2〉 → F2〈e1, e2〉
P14 MoveElse 5 2 F 〈e1, e2 · e3〉 → F 〈e1 · e2, e3〉

Table 6.1: The 14 edit patterns identified by the classifier. The #Multi column indicates
the number of patches that match the given pattern and also one or more other patterns.
The #Only column indicates the number of patches that match only that pattern. The
last column provides a brief illustration of the pattern using the choice calculus.

show one pattern in detail. The rest of the patterns are detailed in Appendix A.3, Sec.
V.

To represent changes, I use a stripped notation of the unified diff program. A plus
(+) in front of a line indicates that the line is to be added, a minus (-) that the line is
to be removed. A line without plus or minus remains unmodified.

Code-Adding Patterns
P4 AddIfdefWrapElse. This pattern represents cases where some existing code be-
comes the #else branch of a new #ifdef block. The pattern is presented below.

1 + #ifdef ULTRA_LCD
2 + lcd_setalertstatuspgm(lcd_msg);
3 + #else
4 alertstatuspgm(msg);
5 + #endif

Listing 6.5: Add #ifdef and wrap existing code in else branch

This pattern can be executed with the variation control system workflow, as illus-
trated in Fig. 6.3. In this figure, and the rest of the section, I simplify the code and

53

6 Variation Control Systems - Paper C

replace the actual code lines with the first word or characters of that line. For example,
line 2 in this listing is represented as lcd, while line 4 is represented as alert. This
makes it simpler to draw the examples through the workflow, and keeps it concise.
The presence condition is represented using its initial character, e.g., ULTRA_LCD to
U.

The first step is to perform a checkout with a trivial projection (e.g., true). The true
is used as a projection because the existing previous code exists in all configurations
(mandatory code). Once we have the view, we can replace the old code with new
code that we want (e.g., line 2 from the patch). Finally, the changes are applied via a
checkin with the ambition ULTRA_LCD, resulting in the same code as the change in
the pattern.

r = alert r′ = U〈lcd, alert〉

v = alert v′ = lcd

get(true, r)

actual edit

put(true, U, r, v′)

Figure 6.3: P4 AddIfdefWrapElse editing workflow.

Note that a checkout with projection U would yield the same result, but the ad-
vantage of this workflow is that we can decide after making the edits how they are be
applied to the repository.

Code-Removing Patterns
The code-removing patterns are represented by P8, P9 and P10 patterns.

P9 RemIfdef. This pattern captures cases where code blocks guarded by presence
conditions are removed. This pattern covers the removal of both simple #ifdef blocks
and those containing an #else branch. The pattern is presented below:

1 - #ifdef ULTRA_LCD
2 - lcd_setalertstatuspgm(lcd_msg);
3 - #else
4 - alertstatuspgm(msg);
5 - #endif

Listing 6.6: Remove Ifdef code

This edit can be supported either by doing a trivial projection, where the code is simply
deleted, or in a idiomatic way through a sequence of two edits as illustrated in Fig. 6.4.

Executing the change in two sequences is the idiomatic way of using the workflow,
even though one extra step is required compared to a traditional text editing case.

54

6.5. Edit Operations

U〈lcd, alert〉 U〈ι, alert〉 ι

lcd ι alert ι

get(U,r1)
get(¬U,r2)

actual edit

put(U,U, r1, v
′
1)

actual edit

put(¬U,¬U, r2, v′2)

Figure 6.4: P9 RemIfdef editing workflow.

Other Patterns

The remaining edit patterns are P11 to P14.
P11 WrapCode. This pattern describes cases where an existing piece of code is made
optional, as shown below:

1 + #ifdef ULTRA_LCD
2 lcd_setalertstatuspgm(lcd_msg);
3 + #endif

Listing 6.7: Wrapping existing code

This pattern can be supported by the following the workflow in Fig. 6.5. First,
checkout with trivial projection. Then delete the code that should be conditionally
wrapped, in this case line two. Finally, checkin with an ambition that describes the
configurations in which the code should no longer appear (e.g., ¬ULTRA_LCD).

r = lcd r′ = U〈lcd, ι〉

v = lcd v′ = ι

get(true, r)

actual edit

put(true,¬U, r, v′)

Figure 6.5: P11 WrapCode editing workflow.

As I mentioned before, the rest of the patterns are detailed in A.3, Sec. V.

RQ2a: From the total of 14 edit patterns identified, the variation control system
should support 12 of them. The excluded two patterns (P7 and P10) are the ones in
which annotations are added or removed as a single operation. The annotations
are handled automatically by the variation control system through the usage of
ambition, thus these cannot be directly supported.

55

6 Variation Control Systems - Paper C

6.6 Evaluation
The objective in this experiment is to verify if the edit patterns described in Sec. 6.5
are indeed supported, and what kind of projections and ambitions are used. Moreover,
this also explores if there are any negative effects on the source code when using the
prototype variation control system.

Applying the Changes
Following the methodology from Sec. 6.4, 33 patches were selected randomly to be
applied with the variation control system. The criteria to this selection was that each
patch should belong to only one edit pattern. The patches cover 12 edit patterns out of
the 14 in total. Two edit patterns, (P7 AddAnnotation, P10 RemAnnotation), cannot
be executed with the prototype because the tool manages annotations automatically.

All the selected patches were successfully applied using the variation control sys-
tem. The actual changes on the view were performed with a simple text editor. Note
that for all patches that add or remove #ifdef blocks, only the code between the an-
notations was touched, to realize the edit; the annotations are handled by the variation
control system.

A projection-based variation control system can support all the presented edit
patterns when no malformed variability annotations exist, to maintain and evolve
a highly configurable system.

This observation answers RQ2b with regards of maintaining and evolving a highly
configurable system.

Complexity of Projections and Ambitions
Since some patches required multiple steps to execute the change, we performed a total
of 37 projections. Of these, 14 use one feature and 11 the trivial condition true. The
remaining 12 projections use two, three or four features in their expressions. In three
cases the projection is the conjunction of four features, making these projections more
difficult to understand and use.

Yet, it is not uncommon that a developer needs to consider two or more features
(i.e., ≥ 4 system variants) when fixing bugs. In fact, Abal et al. [Abal et al., 2014]
identify 30 bugs that occur when there is a combination of at least two configuration
options. In such cases, using a projection-based editing tool could simplify the task,
focusing only on the variants in which the bug appears.

In ambitions, the highest number of features is the same as in projections, four. But
we see a decrease of trivial ambitions, which is expected, as for example P11 Wrap-
Code edits may be performed on trivial projections, but require an ambition different

56

6.6. Evaluation

LOC NVAR

Our put function Repository update Our put function Repository update

MIN 65 72 1 1
MAX 2448 2368 193 147
MEDIAN 447 449 20 21

Table 6.2: loc and nvar metrics with the min, max, and median values for the 33
changes for our put function. Repository update represents the change done by the
developer in the original git repository of the project.

than true. In one case the expression used for both projection and ambition is a con-
junction of a feature and a disjunction, p = A ∧ (B ∨ C). Finally, for 18 changes the
ambition equals the projection.

Metrics and Reduction Factors
Table 6.6 shows the aggregate values (min, max, and median) of our metrics on the
source code resulted from the update done by the prototype, and the original update
from the Git repository. While our goal is not to improve code with regards to LOC
or NVAR, Table 6.6 shows that the prototype does not perform worse than the original
update in almost all cases.

The boxplot in Fig. 6.6 shows the reduction factor for LOC and NVAR after the
projection. For the LOC reduction factor when doing projections, we would expect it
to be zero, in the case of using a trivial projection, or larger than zero when a non-trivial
projection is used. Table 6.6 and the boxplot confirm this hypothesis. The average
number of LOC after projection is smaller than before projection. In one outlier case
the LOC in the view was reduced by half, compared to the original file. The reason
is that the source code has a sequence of #if-#elif-#else-#endif directives with
many #elif branches, which naturally contradicted the projection. In such cases,
the benefit of projecting views can be high, especially for code comprehension (e.g.,
to understand the control flow). Although a small improvement exists on average,
in specific cases, a variation control system can help with program comprehension.
Furthermore, these changes have been performed through a partial configuration. By

NVAR

LOC

0.0 0.2 0.4 0.6
Reduction Factor

Figure 6.6: Reduction factors for LOC and NVAR for the view

57

6 Variation Control Systems - Paper C

design, if the presence condition is not contradicting the projection, but it is also not
implied by it, then the prototype will keep that choice as it exists. I discuss more of
this result in the discussion section of this chapter.

As expected, NVAR is reduced when projecting the code, although this reduction
is minimal in most cases. In this experiment, many changes are done on features that
wrap an entire file’s source code or use the trivial projection true. Nevertheless, in
three outlier cases there is a high decrease in NVAR when many #ifdef blocks are
projected away.

RQ2b: A projection-based variation control system can be used to engineer a
highly configurable system. The prototype did not negatively impact the code in
terms of LOC, NVAR. In some cases it even improved the code.

6.7 Variation Control System with Forking Support

Forking is a mechanism used for quick development and experimentation, without
affecting the stability of the code. Previously, in Ch. 5 I have shown that the main
drawbacks of forking are 1) expensive maintenance and difficult to propagate changes,
and 2) it leads to decentralized information. The key idea is to unify the preprocessor
annotations and forking, and use a common codebase for both. Combining the two into
one codebase mitigates the limited change propagation and decentralized information
problems.

The main difference between an integrated platform and developing a variant via
forking is that in the former, all the source code assets are usually stored in one repos-
itory. However, once a fork is created, a new branch or repository is created. These
artifacts are now duplicated and spread across multiple repositories. Storing all the as-
sets in one repository (monolithic codebase) makes it easier to maintain, improves the
visibility of new features and bug-fixes, and centralizes the information in one place.

To add forking to the variation control system, the developer can specify during a
check-in operation if the changes belong to a fork or not. By default, the system will
wrap these changes with a CONFIG_FORK_NAME annotation. The code changes
will be incorporated into the same codebase as the rest of the code. There are two

r r′

v v′

derived edit

(1) get(p, r)
get(p∧ a, r′)

(2) actual edit

put(p, p, r, v)
(3) put(p, a, r, v′)

Figure 6.7: Variation control system editing workflow.

58

6.7. Variation Control System with Forking Support

1 // LCD selection
2 #ifdef U8GLIB_ST7920
3 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
4 U8GLIB_ST7920_128X64_RRD u8g(0);
5 #endif
6
7 static char currentfont;

Listing 6.8: Marlin excerpt (dogm_lcd_implementation.h at commit a83bf18)

advantages of keeping it in one codebase: 1) the tool can show what changes are
done in the forks (centralized information), and 2) any changes to the mandatory code
(visible to all configurations) are also present when working on the forks. Thus, the
propagation problem is partially solved.

Demonstration
Recall the workflow of the variation control system (see Fig. 6.7). I will reuse the
example with the LCD in a shorter form. To the existing code I add a line in the end,
that is common to all variants as illustrated in Listing 6.8. Let’s assume that we want
to develop on the feature U8GLIB_ST7920 and we do a checkout with that projection.
We get the following code in a view.

1 // LCD selection
2 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
3 U8GLIB_ST7920_128X64_RRD u8g(0);
4
5 static char currentfont;

Listing 6.9: The view created by the variation control system that is specific for the
U8GLIB_ST7920 variant

Now, we make some modifications as in Listing 6.10, and we want to create a new fork.
We use the ambition U8GLIB_ST7920 and specify the fork’s name HW_LCD_TEST
via the -c option for the checkin command.

1 // LCD selection
2 DISPLAY_128X64_RRD init(0);
3
4 static char currentfont;

Listing 6.10: Changes done to prepare for a new variant via forking

The end result is shown in Listing 6.11. A first difference when using forking with
the tool is that by default it excludes the forks from any projections. Therefore, a
simple projection on U8GLIB_ST7920 will yield the same code as before (Listing 6.9,
where as if we include the fork we will get the new code corresponding to the fork.

59

6 Variation Control Systems - Paper C

1 // LCD selection
2 #if U8GLIB_ST7920 && CONFIG_FORK_HW_LCD_TEST
3 DISPLAY_128X64_RRD init(0);
4 #else
5 #ifdef U8GLIB_ST7920
6 //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
7 U8GLIB_ST7920_128X64_RRD u8g(0);
8 #endif
9

10 static char currentfont;

Listing 6.11: Result after checkin for creating a new fork

However, the main difference is that if we now fix the bug in line 10, by initializing the
currentfont variable, this change will still be included when we do a projection on
the fork code. This decreases the chance of missing important fixes and solves partially
the decentralization of information problem. For example, the variation control system
could easily output the code introduced by forks and compare it to the mainline.

There are two main differences when using forking support. First, the get function
will by default exclude any forks from the view. In practice, it uses the projection
given by the user and negates all existing forks, which are tracked by the system. To
work on a fork, the user needs to specify which fork should be projected. Let K be the
set of all forks defined in the variation control system.

Therefore, the definition of get becomes:

∀c ∈ C. get(c, r′) =

get(c, v′), if SAT(c ∧ p ∧ ¬f) when no fork is specified and
f = f1 ∧ ... ∧ fn, f ∈ K

get(c, v′), if SAT(c ∧ p ∧ ¬f) where
f = f1 ∧ ... ∧ fn, f ∈ K − fi and
fi is the fork specified by the user

get(c, r) otherwise

Second, when a user specifies that the changes belong to a fork (e.g., using param-
eter −c [fork_name]), then the ambition a′ will be the conjunction of the fork’s name
given by the developer and the specified ambition. The put update function is the same
as before, except of the new ambition a′.

a′ = a ∧ fork_name
put(p, a′, r, v‘′) = minimize(F 〈v′, r〉)

F = (p ∧ a′)

Adding forking capabilities in a unified way with preprocessor annotations has
several advantages. Internally, the same technique (preprocessor annotations) is used
to add first class support for forking. Having centralized code, the tool can show more

60

6.8. Discussion

information about forks and their changes. In addition, propagation of changes from
the integrated platform to the fork is not needed. Combining preprocessor annotations
and forking in a unified way makes it possible to support the development of software
variants with two of the most used techniques. This unification is a step forward for
validating H1 and answering RQ2.

RQ2: A variation control system can unify and combine preprocessor annota-
tions and forking, leveraging their advantages and reducing some of their known
drawbacks.

6.8 Discussion

Edit Operations for a Variation Control System. Some of the identified edit pat-
terns were difficult to replay using the variation control system workflow and the
get /put functions. However, the edit patterns should not be seen as the edit opera-
tions a developer would use when using a variation control system. The edit patterns
are used to derive, where needed, the edit operations for a variation control system.
Most patterns can be used in a straightforward manner and do not require specialized
operations. However, a variation control system would require a specialized edit oper-
ation for renaming and changing a presence condition. Better support is also needed
for P12 UnwrapCode and P14 MoveElse patterns, as an extra copy-paste editing step
is required. These would require more specialized primitive operations, ideally in a
text editor or IDE.

Finally, the variation control system has one limitation that is not solved by any
of the existing ones. The generalized edit isolation principle (cf. Sec. 6.3) raises the
following problem: How to handle the cases when an ambition is weaker than the
projection? An example scenario could be fixing a bug in a particular variant, where
the fix might affect other variants as well. So instead of fixing the bug in all variants,
we would like to have a specific projection, but then perform the change with a weaker
ambition. The definition of the put function (which conjoins projection and ambition)
cannot handle this case. Solving this problem in a sound way is complex and is subject
to future work.

Challenges of Using the Variation Control System. One of the biggest challenges
of this prototype is that the editing workflow is different. This requires some mental
effort in understanding what projection and ambition to use. However, in my experi-
ence, projections and ambitions were sufficiently simple to be specified. In general,
choosing a projection and ambition is straightforward, but I experienced difficulties
for changes that required two or three checkout/checkin cycles.

An interesting case to consider is choosing the ambition when making code op-
tional, that is, wrapping existing code with a presence condition. Both P11 WrapCode

61

6 Variation Control Systems - Paper C

and P5 AddIfdefWrapThen required the ambition to be the negated desired presence
condition. The intuition is that the we have to choose an ambition that describes in
which configurations should the code not appear. This may seem unintuitive at first,
but it is easy to see why this is necessary. In a text editor or IDE, the user could select
the code that should be under a presence condition with the mouse, right click and
select an option from the context menu through which the new presence condition is
entered.

Three identified editing operations are not well supported with this variation
control system. Specialized editing primitives are needed for those operations.

To this end, I believe that more concrete support through a text editor plugin or an IDE
is desired. It will support the editing operations which require first hand support.

Metrics and results The boxplots in Fig. 6.6 show that on average there is not much
of improvement in terms of LOC and NVAR. The reduction factor is highly dependent
on the way #ifdef annotations are used in the code and the usage of partial configu-
rations. However, if a complete configuration of the tool would be used, e.g., the tool
could accept a partial configuration but transform into a complete configuration on the
user’s request and eliminating all the variation points that are not related to the change,
then it is likely that these metrics would change considerably. The challenge though,
is to have a workflow and tool that does not create overly complex presence conditions
and preserves the semantics of the code, but also the properties of the current variation
control system.

6.9 Summary
In this chapter I have presented the design of a tool that combines preprocessor an-
notations and forking to offer enhanced flexibility, lower adoption costs, and decrease
maintenance. This is one of the first systems that tries to use forking in a combi-
nation with preprocessor annotations to maximize flexibility for developing software
variants. As shown in the previous chapter, forking is one available reuse mechanism
for quick development and experimentation. However, it is widely used as a way to
branch new projects from existing ones, creating new variants. The variation control
system deals with two main issues that forking has: increased maintenance costs and
decentralization of information.

First, a main challenge of forking is that changes are not propagated back and
forth in the repositories. However, using the variation control system to create a fork,
common code that is updated does not have to specifically be propagated to the fork.

Second, instead of having artifacts split across different repositories, the variation
control system centralizes all the assets into one monolithic repository. Special com-
mands can allow for creating forks or editing the code in those forks. Having all the

62

6.9. Summary

assets centralized in once place, it should be easier to find and manage assets, reduc-
ing the risk of re-implementing existing functionality. This is important as it reduces
development costs.

Through an empirical study I have shown that a variation control system can sup-
port most general editing operations that developers perform in highly configurable
systems. Although we can execute most operations, experience with such a system
is limited at the moment. Therefore, more studies could be invaluable to understand
more in-depth the intricacies of developing software variants with a variation control
system. Nevertheless, this is a first step towards providing first class support for variant
development at the code level, to reduce complexity, separate concerns, and modular-
ize code through the usage of projections.

Until now, in this chapter I have only shown how an existing system can be devel-
oped and maintained, and also how can we use forking for quick development. One
important challenge is to integrate forks into the integrated platform, to reduce costs
and improve the platform. Similarly, it is also challenging for independently devel-
oped variants to be integrated into a common platform. This challenge I address in
the following chapter, where I present a prototype for performing variant integrations
using high level intentions.

63

7. Variant Integration using Intentions
Paper D

This chapter shares content with the paper "Intention-Based Integration of Vari-
ants" that is currently under review. This work was done in close collaboration
with Max Lillack and a few other researchers, thus I will use the first person plu-
ral form to present the work we have done. For complete details, refer to the
paper in Appendix A.4.

In the previous chapter, I have presented a variation control system that leverages the
advantages of preprocessor annotations and forking, and improves some of their draw-
backs. One remaining challenge is to re-engineer either existing forked variants into an
integrated platform, or to integrate back a fork into the main platform. In this chapter,
I present how we can ease the developer’s integration tasks. Using specialized inte-
gration tool support combined with specific integration-based intentions (abstractions
of task goals), I show how developers can integrate forked variants with less manual
work and fewer edits.

7.1 Introduction

Integrating forked variants or features back into an integrated platform is challenging.
If the variants have not been synchronized and have evolved separately, then the differ-
ences between the codebases make the integration process non trivial. In the previous
chapter, I have partially answered RQ2 In this chapter, I answer the part of RQ2 that
refers to the integration of variants into an integrated platform. The key idea is to
ease the integration of software variants into an integrated platform with specialized
tool support. Integrating variants improves visibility, reduces maintenance costs and
centralizes assets into one location.

This chapter has the following contributions: 1) a set of intentions to support gen-
eral integration tasks of developers, and 2) it presents a series of simulations of real
world integrations, showing that users using the tool do less mistakes and require less
operations to achieve the tasks.

65

7 Variant Integration using Intentions - Paper D

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 uint32_t encoderPosition;

4 #if PIN_EXISTS(SD_DETECT)

5 uint8_t lcd_sd_status;

6 #endif

7 #endif // ULTIPANEL

8
9 menu_t cM = lcd_status_scrn;

10 bool ignore_click = false;

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;

3 int8_t encoderDiff;

4 uint32_t encoderPosition;

5 #if (SDCARDDETECT > 0)

6 bool lcd_oldcardstatus;

7 #endif

8 #endif //ULTIPANEL

9
10 menu_t cM = lcd_status_scrn;

Figure 7.1: Code excerpts from Marlin’s main codebase (left) and the corresponding
fork (right). Colors indicate differences.

Variant Integration Challenges

Integrating forked variants into a configurable platform is a difficult, time consum-
ing, and error-prone process. Consider the code in Fig. 7.1 split into two; on the left
hand side it is an excerpt from the Marlin mainline repository, while on the right hand
side there are changes done in a fork. Both variants have evolved after forking; the
highlighted lines were either changed or added.

Let us consider how the two codebases from Fig. 7.1 could be integrated. The
fork’s line 3 (added variable int8_t encoderDiff) could be copied and kept as
it is. It can also be made into an optional feature. For example if the line is annotated
with an expression that specifies that the line belongs to a feature. The developer may
also decide if this feature is the same as for the fork’s lines 5-7 based on his expertise.
Another interesting aspect in this example is the ordering of code blocks. From an
integration point of view, in this case, the order of these variable declarations does not
matter. However, this is not generally valid and ordering does matter in most cases. If
these were statements, it might be necessary to enforce a certain order.

There are several steps that need to be completed to successfully execute an inte-
gration task. First, domain knowledge is important and usually tools can offer little
help in this first step. A developer has to understand the changes and differences be-
tween the codebases to correctly execute the task. Second, the developer needs to take
decisions about the code and its structure. Having two or more codebases that need
to be integrated, there are several possibilities of merging the code. For example, the
developer could choose to enclose the differences between the two codebases using
#if annotations [Jepsen et al., 2007]. Another possibility is to integrate modifica-
tions from either codebases via copy-pasting, while using a diff tool. However, this
method might quickly become complex particularly when errors have been made and
a developer would want to undo the changes. The undo operations from text editor
are at character level, and do not align well with the intentions of developers who deal
with integrating tasks. When complex changes are involved, diff tools are not suffi-

66

7.2. The Integration Process

cient to reason about the task, and do not make the task much easier for developers.
A developer would still have to copy paste, add or delete code, or to introduce anno-
tations manually to allow the code to be configurable. This is a time consuming and
error-prone task.

Integrating software variants is challenging due to the following reasons:

• Manual editing is an error prone process

• Difficult to undo changes due limited undo capabilities of general text editors
and IDEs

• Working at code level instead of an abstraction for the integration goal

In this dissertation, I will focus on integrating two codebases. Performing n-way inte-
grations (regardless if models or code is merged) is a known and difficult problem [Ru-
bin and Chechik, 2013b, Mens, 2002], and is left for future work.

7.2 The Integration Process
In this section I present what steps are needed to perform an intention-based integra-
tion. We consider two variants, a mainline and a fork. The process is realized in two
steps.

1. Merging two codebases into an integrated codebase. We automatically create
an integrated codebase from the mainline and the fork variant. The integrated codebase
captures the commonalities and differences between two variants. When there exists a
difference between the two variants, this difference is introduced as in #ifdef block
with the FORK presence condition.

Figure 7.2 illustrates the creation of the integrated codebase (in concrete syntax)
for the running example from Fig. 7.1. We can derive, compile and execute individual
variants at any time during the integration process, e.g., to run a test suite. Since this
integrated codebase is likely hard to understand and maintain, the developer can adjust
it to obtain a well-structured platform in subsequent steps.

2. Exploring and editing the integrated codebase The developer explores the in-
tegrated codebase and navigates through it using different views that ease comprehen-
sion of the variants and their differences. We provide five different views, four of them
being illustrated in Fig. 7.3. Using these views, the developer can see how a change
affects the individual variants, and the resulting integrated platform.

The integrated side-by-side view (bottom left of Fig. 7.3) renders the common in-
tegrated codebase, but with the differences between mainline and fork arranged next
to each other without #ifdef directives. The mainline view and the fork view (top left

67

7 Variant Integration using Intentions - Paper D

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 #ifdef FORK
4 int8_t encoderDiff;
5 #endif
6 uint32_t encoderPosition;
7 #ifdef FORK
8 #if SDCARDDETECT > 0
9 bool lcd_oldcardstatus;

10 #endif
11 #else
12 #if PIN_EXISTS(SD_DETECT)
13 uint8_t lcd_sd_status;
14 #endif
15 #endif
16 #endif
17
18 menu_t cM = lcd_status_scrn;
19 #ifndef FORK
20 bool ignore_click = false;
21 #endif

Figure 7.2: The common integrated codebase for the mainline/fork of Fig. 7.1

and right of Fig. 7.3) render a projection of the integrated codebase where only a subset
of the derivable variants are shown. The mainline view shows all variants with feature
FORK disabled, and fork view with this feature enabled. In these views, the developer
can define intentions (explained shortly), and explore and edit code. The result view
(bottom right of Fig. 7.3) renders a preview of the final result, after all intentions are
resolved and any manual edits applied.

The developer edits the integrated codebase (using one of the integrated views, the
mainline or the fork view) and declares intentions on code blocks (individual lines,
multi-lines or entire blocks of code). Whenever a change is made, all views are up-
dated synchronously. Developers decide how to deal with variant differences and how
to prepare code for evolving it as a configurable platform (e.g., creating features that
can be included or excluded at compilation time or renaming a variable, and other kinds
of edits). The user interface supports navigating the variant differences, and declaring
intention on selected code. Declaring intentions relieves developers from creating or
adjusting #ifdef structures along with the associated presence conditions. The result
view is updated when an intention is added or removed on a node. Finally, the devel-
oper commits the intentions and the integrated codebase is updated to incorporate all
the selected intentions.

7.3 Intentions

Intentions are a way to model generic integrations goals as abstractions from code.
When a developer proceeds to execute an integration task, the developer should have a
goal or an intent for each difference between the codebases. Intentions are better suited

68

7.3. Intentions

Figure 7.3: INCLINE showing the common integrated codebase of Fig. 7.1. Four
views are shown. The top two views are projections of the integrated codebase; the
top left is the code that exists in the mainline variant, and the top right is the code from
the fork variant. The bottom left view shows the common integrated codebase, with
side-by-side differences (gray boxes). The bottom right is a pre-view, showing how
the future common integrated codebase will be affected by the intentions applied.

for performing different integration tasks, as they provide general common goals of
integrating code. The key aspects of tool-based integration intentions are:

• Intentions abstract from the code level with the goal of providing a skeleton for
the integration goal

• Tool supported integrations with intentions let the developer focus on the actual
goal and not only on the code

• With an intention-based integration tool, developers need to do less editing and
have better undo facilities. For example, a developer can undo a single intention
even after other several intentions and changes have been done, which is much
more difficult to achieve in a character-based undo tool.

69

7 Variant Integration using Intentions - Paper D

#ifndef FORK // block_not_fork

int servo_e1[] = SE

int servo_e2[] = SEA

#else // block_fork
int16_t servo_e1 = SE
int16_t servo_e2[] = SEA

#endif

int servo_e1[] = SE
int servo_e2[] = SEA

#ifdef FORK
int16_t servo_e1 = SE
int16_t servo_e2 = SEA

#endif

Figure 7.4: Keep intention (left) and result (right)

Exploratory study To design and understand the type of intentions needed to inte-
grate real world software project variants, I have analyzed a number of scenarios from
Marlin. These scenarios are extracted either from pull requests that were merged, or
from forks that were integrated based on previous knowledge of the project [Stănci-
ulescu et al., 2015]. Once I identified a number of similar scenarios, I proceeded in
understanding the developer’s intention and how this could be extracted. After several
iterations of this process, I have determined seven intentions that are specific for the
integration process: Keep, KeepAsFeature, Exclusive, Remove, AssignFeature, Post-
pone, Order. I describe in detail the most common three intentions in the next section.
The rest of them and the formalization of their semantics is fully described in A.4.

Intentions
Intentions are partial functions transforming an abstract syntax tree (AST). For in-
stance, Fig. 7.4 shows the integrated AST in a textual representation on the left, se-
lected nodes on which an intention is declared in gray, and the desired result on the
right. In this section, the examples show all variants at once as it is more suitable to
explain how intentions work directly on source code. I will show three most used in-
tentions Keep, Remove, and KeepAsFeature. The other intentions, formalization of all
intentions, and their semantics are presented in detail in Appendix A.4. In Appendix
A.7, four intentions have complete examples extracted from real code.

Keep The Keep intention includes a block as it appears in mainline or fork in an
unconditional manner, without guarding it with any additional feature.

Consider the example in Fig. 7.4 where we define block_not_fork to represent the
set of nodes in the ¬FORK branch highlighted with gray, and the block_fork represents
the set of nodes in the FORK branch. The fork changes the type of the servo variables
to be 16-bit signed integers, because different hardware and compiler are used for this
variant. During the integration process, it is decided that the hardware used in the fork
should no longer be supported, and only the code from mainline is kept. We apply
the Keep intention on block_not_fork set of nodes. The right side shows the result
of applying Keep on the selected block_not_fork. The nodes from the fork should be
removed (which can be done with the dual of Keep, Remove, described below). Note

70

7.3. Intentions

int servo_e1[] = SE
int servo_e2[] = SEA

#ifdef FORK

int16_t servo_e1 = SE

int16_t servo_e2 = SEA

#endif

int servo_e1[] = SE
int servo_e2[] = SEA

Figure 7.5: Remove intention (left) and result (right)

that the integration is not completed, as there is still a block from the forked variant,
which should be resolved later.

The nodes for which Keep was declared should no longer be under the constraint
created by the #ifdef that directly wraps those nodes (in the example we drop !FORK).
Their new presence condition is the conjunction of all but the last constraint that di-
rectly wrapped the nodes. All nodes that are not part of the intention are unchanged.

Remove This intention removes the selected nodes from the AST. Its definition is
simple; we ensure that the selected nodes do not exist in the updated AST. This can be
seen in Fig. 7.5.

KeepAsFeature The KeepAsFeature intention preserves a block from one of the
variants, but makes it conditionally present, only linked to a certain feature or com-
bination of features. It wraps the block with a new presence condition given with the
intention.

In the example of Fig. 7.6, a fork developer added functionality to pause a 3D-print
from an SD card. Not concerned with other devices than the one for which the fork
was developed, the developer included the new behavior unconditionally. However,
in the integration process, it became clear that this functionality only makes sense in
variants supporting SD cards, thus, it needs to be included conditionally. The desired
result is shown on the right side of the figure.

Tool Implementation
We use the language workbench JetBrains MPS [mps,] on top of which we realize
our tool INCLINE. MPS relies on projectional editing, which is well-suited for cre-
ating editable views. Projectional editing (a.k.a., syntax-directed editing or structural

Figure 7.6: KeepAsFeature intention (left) and result (right)

#ifdef FORK // block_fork

card.pauseSDPrint();

#endif

#ifdef SDSUPPORT
card.pauseSDPrint();
#endif

71

7 Variant Integration using Intentions - Paper D

editing) [Völter et al., 2014, Berger et al., 2016] is conceptually different from tradi-
tional parser-based editing, since the user’s program-editing gestures directly change
the underlying AST, which is still rendered into concrete syntax the user sees. Pro-
jectional editing eases language composition and allows flexible notations (e.g., the
integrated side-by-side view).

We make use of MPS’ meta-modeling facilities and implement our own stripped
version of the C preprocessor language, including only the #ifdef, #else, #if, #elif,
#endif macros. For example, we define #ifdef as a language concept that defines a
node containing a condition and having three child nodes for the nodes in the true,
else if, and else branches. In addition, we add a Text concept that represents a line
of actual source code (C/C++ in our case) in the AST. Each of the concepts can have
different properties, e.g., the #ifdef concept has a condition attribute that holds the
presence condition associated with this #ifdef. These language concepts suffice to
represent source code files that use preprocessor annotations to implement variability.

We specify how the user can interact with our language, that is, edit the AST using
the editor functionality of MPS. For each concept we create a visualization definition,
which controls the rendering of it. The intentions are implemented using MPS actions,
user-invoked commands to change the AST, selectable via the UI.

We implement three additional components. PPParse is a parser for C preproces-
sor directives that creates the initial AST, based on the clang compiler infrastructure.
PPMerge is a tool to create the integrated AST of two files using the C preprocessor.
It first parses the input files to create XML-based ASTs, then constructs the integrated
AST using JNDiff [Di Iorio et al., 2009], which diffs the ASTs, followed by trans-
forming the diff into optional changes in the input file. PPConstraintSolver is a tool to
perform operations on preprocessor conditions using the SMT solver Z3 [Moura and
Bjørner, 2008]. Specifically, we use it to calculate projections, i.e., to decide if and
how conditions are shown in the views.

Figure 7.3 shows a screenshot of the tool. The user can select a four-view window
for the integration process. On the top left part of the window, there is the view for
the initial integrated platform created from two files. In this view, we can also see
two boxes: one that has a tag mainline and one that has a tag clone. These two boxes
represent the different lines of code that exist in the mainline and respectively in the
fork, similarly to a diff tool. On the top right part of the window, we have a projection
on the fork code. That is, we use the projection FORK to get a view for the fork. On
bottom right part of the window, there is the view corresponding to the projection ¬
FORK, showing the mainline code. Finally, in the bottom left part of the window, we
have the view responsible for previewing the result when applying different intentions.

72

7.4. Evaluation

7.4 Evaluation
To study how well INCLINE supports developers during variant integration, we con-
duct a series of simulations of real development. We conceive integration tasks from
real evolution steps of the three often forked open-source systems Marlin, Vim, and
BusyBox, as opposed to artificially creating tasks—a reasonable trade-off between
complexity and real-world cases.

Subject Systems
All subjects use preprocessor annotations to realize variability. We enhance external
validity by sampling over their source files and forks (>4,000 Marlin forks exist). Our
selection of forks (three Marlin forks, one fork each from BusyBox and Vim) is based
on the fork’s activity, viability (i.e., has variability-related changes), and popularity
(stars on Github). This way, we avoid bias towards a particular usage of the preproces-
sor. In addition, a study including Vim and BusyBox confirms that the preprocessor is
used similarly among open-source and industrial systems [Hunsen et al., 2015].

1. Marlin (>40 KLOC of C++ code) has many forks that evolved separately or
independently added new functionality. Given this richness of changes and new
functionality, and existing re-integration efforts of the community, Marlin is an
ideal subject for our evaluation. We mined from 1,715 approved pull requests
and three forks based on my knowledge and understanding of the project. The
three forks are as following: jcrochollMarlin, a variant for the deltabot printer;
esenapajMarlin is a variant to support the Arduino Due board, based on a 32-bit
ARM microcontroller; Marlin_STM32Marlin is a also variant that attempts to
port Marlin to work on ARM microcontrollers. Using more powerful boards
with more computation power (such as the ARM microcontrollers), has been
one of the requests from the Marlin developers, thus these fork constitute a good
selection for our purpose of integrating variants.s

2. BusyBox (>160 KLOC of C code) is a tool suite of common shell programs
(e.g., grep, cut). We use a fork tailored for Android. 1

3. Vim (>300 KLOC of C code) is a popular console-based text editor for Unix-
like systems. We use a fork that adds support for OS2. 2

Study Design
Evaluating an interactive tool with a rich UI such as INCLINE is challenging, since
users do not only face the inherent complexity of the integration task, but also have to

1https://github.com/jcadduono/android_external_busybox
2https://github.com/h-east/vim/tree/clpum

73

https://github.com/jcadduono/android_external_busybox
https://github.com/h-east/vim/tree/clpum

7 Variant Integration using Intentions - Paper D

learn the tool and handle potential usability issues of a research prototype. We conduct
a series of simulations, going from an internal evaluation via a preliminary user study
with MSc students to a controlled experiment with experienced PhD students in a
realistic integration setting.

First, we verify the completeness of our intentions. We replay a set of real-world
merge commits from Marlin by applying intentions and checking that the commits are
realizable. We also check that the result is semantically identical (i.e., code lines obtain
the correct presence condition) to the original merge commit.

Second, we validate the correctness of the implemented intention resolutions and
investigate the usability and scalability of INCLINE. Three authors simulate ten Marlin
integration tasks and thoroughly cross-check the correctness by reviewing the resulting
integrated files. While this does not allow comparing the efficiency, it validates that
INCLINE produces correctly integrated files if intentions are assigned correctly, and
that it scales. It also provides valuable experiences to improve INCLINE and to fix
bugs.

Third, we investigate the INCLINE approach with 16 MSc students to learn how
they perceive the intentions, the views, and the editing efficiency and usability of our
tool. We conduct a user study where we create realistic, but reasonably small tasks
from Vim and BusyBox and let participants solve them using INCLINE and Eclipse.
Since the participants lack domain knowledge for the integration tasks, we give the
final result. As such, this experiment also lets us obtain information about the pure
editing efficiency with INCLINE (recall its underlying projectional editor, which can
cause editing challenges [Berger et al., 2016]), potential improvements, and bugs.

Fourth, after improving INCLINE with insights from the steps above, we validate
INCLINE in a realistic setting. This validation is aimed at testing the integration part
of H2. We conduct a controlled experiment with 12 experienced PhD students. We
reuse the Vim and BusyBox tasks, but instead of providing the final result (which,
as we learned from the user study, lets developer just apply low-level edits without
understanding what they are doing), we provide detailed domain knowledge about the
variants to be integrated. Tasks are solved with INCLINE and Eclipse using a 2x2
Latin square design. This controlled experiment lets us obtain information about the
efficiency of integrating smaller files.

In summary, this set of consecutive experiments lets us obtain information about
the benefits and limitations of our approach. As we will show, the scalability of IN-
CLINE to files of up to 4K LOC, together with the benefits measured for integrating
smaller files, evidences the applicability of INCLINE to smaller and larger integration
project. Yet, we believe that training and experience can further increase the efficiency
of developers working with INCLINE, which needs to be validated in a longitudinal
study. Such a study is beyond the scope of this dissertation, but part of possible future
work.

74

7.4. Evaluation

Completeness, correctness and scalability

Completeness To show that the defined intentions are sufficient to handle real-world
integration tasks, we replay non-trivial (conflicting) merges from Marlin history. We
retrieve all 2,065 merge commits of the mainline, and extract those that had conflicts,
to identify complex merge tasks, yielding 49 merges. We discard two merges that
had conflicts only in documentation files, two that conflicted in whitespace, three that
conflicted due to configuration changes. Another three merges are discarded because
some related artifact had syntax errors and could not be compiled. Additionally, four
merges are discarded because they simply accepted the mainline changes as evolution
(empty changeset). We use the remaining 35 merge commits as tasks.

We successfully simulate all 35 commits using intentions.
Examples mined from Vim and BusyBox can be handled by our intentions as well,

as I will show shortly in the next section.

The set of intentions suffices for real-world variant integration.

Correctness and Scalability With an internal study we validate that INCLINE pro-
duces correct results when intentions are assigned correctly, and that we can use it on
large files without scalability problems.

We simulate ten integrations by randomly sampling seven commits tasks from the
35 merge commits in the previous experiment, and conceive three tasks simulating
the integration of files from Marlin forks.3 4 5. The selected forks contain significant
changes to the mainline, covering both evolution and new features.

Most tasks comprise only a single file, some two or three, but each file can be
very large (up to nearly 4,000 LOC and hundreds of #ifdef blocks in a single file).
The first three authors serve as evaluators, among whom we distribute the ten tasks to
execute with INCLINE. We then manually peer-review the integration results to detect
any errors that INCLINE might have introduced. For the seven tasks based on merge
commits, we compare to the actual merge result. For the three tasks based on the fork
integration, the correct results was determined during the peer review.

All of the observed errors could be explained by errors done by the user or errors
introduced by the tool. We fixed errors in the implementation and analyzed mistakes
done by us to improve usability. This shows that the intention resolution, as defined in
Sec. 7.3, works as expected. Furthermore, the broad range of file sizes (from tens up
to thousands of lines of code) evidences the scalability of INCLINE.

3https://github.com/jcrocholl/Marlin
4https://github.com/esenapaj/Marlin
5https://github.com/Marlin_STM32

75

https://github.com/jcrocholl/Marlin
https://github.com/esenapaj/Marlin
https://github.com/Marlin_STM32

7 Variant Integration using Intentions - Paper D

INCLINE produces the correct output when correct intentions are applied and it
scales to files up to 4K lines of code.

Using INCLINE with students
We continue with a user study to get first-hand experience how users deal with IN-
CLINE and its UI. We recruit 16 MSc students to execute two newly developed inte-
gration tasks with INCLINE and Eclipse.

The two new integration tasks are derived from BusyBox (P1) and Vim (P2), by
using files from the main project variant as well as a fork of each project (see Sec. 7.4).
We select chunks of code based on our understanding and experience with the systems,
as well as code blocks that involve integrating variability (#ifdef blocks). We merge
these chunks into one condensed file for brevity and comprehension. The end result
is an integrated file consisting of 74 LOC (P1), and 50 LOC (P2). The P1 file has 8
#ifdef blocks, with 37 LOC within these blocks; the P2 file contains 5 #ifdef blocks,
with 32 LOC within these blocks. These tasks represent a good trade-off between
complexity and real-world integration scenarios.

The participants are given the (correct) target solution and brief description of the
integration goal. Giving the target solution reduces the influence of (a lack of) domain
knowledge because all participants work towards the same goal. On the other hand, it
is less realistic because the participants do not need to understand the example code
or think on the level of integration goals. We observe their usage of the tools (through
screen recordings), and at the end we ask them to take part in an exit questionnaire.

Results We observe that INCLINE users only need to declare a few intentions to
reach their desired result, whereas Eclipse users use the keyboard much more heavily.
INCLINE users mostly used the intentions Keep and Remove, since they are the most
obvious intentions for new users and they were sufficient for the selected tasks. The
user’s behavior and their feedback suggest they miss more advanced functionality, e.g.,
the side-by-side view which was disabled by default. We also learn that the UI needs
better highlighting of the intentions that were applied, that keyboard shortcuts would
help to quickly apply an intention (the users needed to use a menu button to reach the
intentions), that the multiple views help exploring the code to reach consensus on how
to integrate it, and that the arrangement of views shown in Fig. 7.3 is most intuitive.

Not surprisingly, the Eclipse tasks are solved faster, since we provided the final
result, and as such, solving the integration task amounts to straightforward, low-level
editing. The users hardly need to take high level decisions and map them to low level
edits. Analyzing the recordings of the Eclipse tasks in fact shows that the participants
seem to thrive with the direct low-level editing of the code. They quickly start copy-
pasting code, and introduce preprocessor annotations to match their solution to the

76

7.4. Evaluation

programs

de
ve

lo
pe

rs P1 P2

D1 CDT INC

D2 INC CDT

Table 7.1: Latin square design. Each developer executes in a random order the P1 or
P2 task, with the two treatments: Eclipse CDT or INCLINE (INC).

actual target solution. INCLINE users are slower as they need to understand the inte-
gration solution and map it back to intentions first, which is more demanding. In sum-
mary, this shortcoming in plain editing efficiency illustrates an important limitation of
our approach. Yet, even in INCLINE, developers could resort to writing preprocessor
annotations by hand, making up for this limitation, a possibility about which we did
not instruct them.

Controlled Experiment
We conduct a controlled experiment with 12 experienced PhD students who are famil-
iar with the C preprocessor. We adapt the situation where a developer who has domain
knowledge about the variants shall integrate them to simulate a realistic setting. To
this end, we provide a detailed, but abstract explanation of the purpose of the variants’
individual parts and how they should be integrated.

We use a 2x2 within-subjects counterbalanced Latin square design and reuse the
Vim and BusyBox tasks. That is, each participant performs two tasks, using two treat-
ments: Eclipse, and INCLINE on P1 or P2, in a random order to reduce learning effects
(see Table 7.1). Using a within-subjects design, we can have a lower number of partici-
pants, while every subject participates in each task. Furthermore, we mitigate learning
effects by randomizing the order of the tasks (counterbalanced part of the design).

Participants are trained through a video tutorial on how to use both tools, as well
as being instructed on preprocessor usage (they only needed to use #ifdef, #else,
and #endif). Then, we asked the participants to solve a warmup task extracted from
Marlin, to get familiar with the tools. We record the screens and log information about
keystrokes (in Eclipse) and intentions (in INCLINE).

We compare the performance of participants with both tools by measuring the mis-
takes done per task, the time to complete each task, and the number of edit operations
(and number of intentions) applied per task as a proxy measure of effort.

We count mistakes done by the participants as follows. For Eclipse, we check if the
end result is the same as the expected result. A mistake can be a missing preprocessor
annotation, missing code or extra code. For INCLINE, we check for wrong intentions
or no intentions applied by the participant that leads to errors in the resulting file.

77

7 Variant Integration using Intentions - Paper D

●

●

●

BusyBox Vim

Eclipse INCLINE Eclipse INCLINE

20

40

60

80

25

50

75

editor

ed
it

op
er

at
io

ns
 (

E
cl

ip
se

)
vs

 in

te
nt

io
ns

 (
IN

C
LI

N
E

)

Figure 7.7: The edit operations/intentions needed to execute the BusyBox and Vim
tasks using Eclipse and respectively INCLINE

For both tools, errors concerning comments are counted as a half mistake, errors in
formatting of code is ignored.

Results INCLINE participants made fewer mistakes than participants using Eclipse
(7 vs 17.5). Furthermore, only four participants did mistakes in INCLINE compared
to 11 participants in Eclipse. This is no surprise, as INCLINE has better support for
keeping or removing code without needing to copy&paste or create #ifdef structures
(a good source of errors). Users made mistakes in INCLINE when they missed relevant
nodes in the declared intentions, declared incorrect intentions, or declared different
intentions for the same node with an unexpected result for the user. Common mistakes
with Eclipse included failures in the #ifdef structure, leaving code that should be
removed or removing too much code.

INCLINE is also better in terms of intentions needed to execute the task (see
Fig. 7.7). In BusyBox, INCLINE users need only a handful of intentions to integrate
the two variants, whereas BusyBox requires almost 50 edit operations for achieving
the same goal. In perspective, Vim is less demanding for Eclipse users, and INCLINE
users use a very similar number of intentions to execute the task.

If we compare the times to execute the task, INCLINE integrations are almost as
fast as the ones in Eclipse (see Fig. 7.8). The reason for being slower is twofold. First,
participants spent a lot of time (which we count in the result) reading back and forth
through the descriptions to understand their integration goal. Second, some partici-
pants were always verifying the preview view after applying an intention. A possible
explanation for the latter case is that users are not very familiar with the tool and in-
tentions, and thus either do not trust the tool or are not sure if they applied the right
intention. However, this is exactly where INCLINE shines as it facilitates exploration,

78

7.4. Evaluation

BusyBox Vim

Eclipse INCLINE Eclipse INCLINE

500

1000

600

900

1200

1500

1800

editor

tim
e

in
 s

ec
on

ds

Figure 7.8: The time needed to execute the BusyBox and Vim tasks using Eclipse and
respectively INCLINE

quick undo, and offers multiple views for manipulating and understanding the different
variants and the integration result. Along these lines, one of the participants mentions
that “It was really useful to declare all the intentions while still having the original
files in sight and previewing the result.”

INCLINE users are almost as fast as Eclipse users, but perform much fewer mis-
takes.

Post-experiment survey

After both user studies, we asked our participants to fill in a survey questionnaire. We
received in total 25 responses.

Figure 7.9 shows the survey questions and the results on a Likert scale. The heatmap
representation quickly shows that 56% of the participants consider that integration with
INCLINE is faster than with Eclipse. One potential reason is that by not doing many
copy pasting operations or editing text, INCLINE feels and sometimes is faster through
the usage of intentions. To this end, more than 90% of the participants agreed that the
Keep and Remove intentions are intuitive. Moreover, intention-based integration is not
complex, according over 70% of the participants. This is an encouraging result that
suggests the potential of using intentions to abstract from code and offer guidance for
integration tasks. On the downside, one third of the participants believe that INCLINE
is not mature enough, which is to be expected for a first fully working research proto-
type.

79

7 Variant Integration using Intentions - Paper D

4.40 (0.76)

4.52 (0.65)

4.12 (0.85)

3.84 (1.07)

3.80 (0.96)

3.96 (0.93)

3.36 (1.11)

3.32 (1.31)

2.96 (1.31)

3.56 (0.86)

3.25 (0.94)

2.80 (0.87)

12.0%

12.0%

 4.0%

16.0%

 8.0%

 0.0%

 4.0%

 0.0%

 0.0%

 0.0%

 0.0%

 0.0%

 4.0%

16.0%

 8.0%

28.0%

24.0%

20.8%

 4.0%

 4.0%

 0.0%

 8.0%

 4.2%

 5.6%

28.0%

20.0%

16.0%

 8.0%

48.0%

45.8%

20.0%

 4.0%

 8.0%

20.0%

16.7%

50.0%

48.0%

32.0%

44.0%

40.0%

20.0%

20.8%

52.0%

40.0%

32.0%

40.0%

41.7%

27.8%

 8.0%

20.0%

28.0%

 8.0%

 0.0%

12.5%

20.0%

52.0%

60.0%

32.0%

37.5%

16.7%

Integration.with.INCLINE.is.faster.than.in.Eclipse

I.make.fewer.mistakes.in.INCLINE.than.in.Eclipse

Mistakes.are.easier.to.notice.in.INCLINE.than.in.Eclipse

Mistakes.are.easier.to.fix.in.INCLINE.than.in.Eclipse

INCLINE.is.a.mature.tool

INCLINE.is.not.mature.enough

Intention.based.integration.is.not.complex

The.Keep.intention.is.intuitive

The.Remove.intention.is.intuitive

The.Implicit.Keep.Remove.intentions.are.intuitive

The.Keep.as.Feature.intention.is.intuitive

The.Exclusive.intention.is.intuitive

Mean (SD) 1 2 3 4 5

0

25

50

75

100
Percent

Figure 7.9: Post experiment survey answers on likert-scale in a heatmap representa-
tion. The X-axis represents the likert values: 1 being Strongly Disagree and 5 being
Strongly Agree. The Y axis shows all the questions in the questionnaire. The stronger
color indicates agreement among the participants.

When asked what are the advantages of using intention-based over manual inte-
gration, some participants mentioned that "It doesn’t require manual code rewrite so I
believe it could be easier avoid unintentional bugs in code and subtle differences" or
"You get the preview of the result and the projections side-by-side, which seems hugely
helpful when you don’t have a clear integration goal. Harder to make syntactic mis-
takes.". One participant mentions "It’s much more intuitive and is less error-prone."
In general, participants seemed to be satisfied with their first INCLINE experience.

Discussion
This is a first step towards providing concrete support for integration tasks, moving
from old fashioned tools like diff, that involve manual and error-prone processes. In
retrospective, INCLINE suffers from a high learning curve and at times a confusing
and immature user interface. This is a challenge as I am not a professional UI designer,
nor is any of my colleagues. What I learned from this process, is that when designing
a tool it is really important to perform usability studies before releasing the tool to
the users. I strongly believe that we could have avoided some critique if we have
asked for the services of an expert in user interfaces, to design this more user friendly.
Nevertheless, we have seen usability improvements with every iteration of the tool,
which is a good indication that this can be further improved.

Although the UI is not perfect, some limitations come from underlying platform
that was used, MPS. For example, it is not possible to use the mouse to select a num-
ber of nodes, as most users would expect and are used to do in a text editor. Instead,
pressing and holding the shift key and using the up and down arrows is the way to

80

7.5. Summary

perform this selection. It was also impossible to add intentions in the right click con-
textual menu, which would have made it easier than using keyboard shortcuts or going
through a menu and choosing the right intention, which takes time. Looking through
the videos, I have found that undoing changes with the default MPS operation causes
strange side effects, particularly to intentions and code marked by those intentions.

Intention-based integration has the potential of being faster and less error-prone
than traditional merging of software variants. H2 is confirmed.

7.5 Summary
In this chapter I presented a prototype for supporting variant integration through high
level intentions. These intentions are intended to offer a higher abstraction level from
code. We have designed these intentions with a specific goal: to offer general guidance
through the integration task. In general, intents are modeled following the natural way
of human thinking. Most actions that we perform are impulses of specific intentions.

The INCLINE tool presented in this chapter is a first attempt at offering specialized
support for integrating software variants into a common integrated platform for soft-
ware product line adoption. Through a series of simulations, we have gained valuable
insights for the variant integration process. Working with users requires a high degree
of quality at the user interface level. Specialized tools like INCLINE are even more
challenging to build due to their very specific focus and particular target audience.
Nevertheless, INCLINE participants made fewer mistakes and were almost as fast as
Eclipse user, while using fewer operations.

Most participants consider that using an intention-based integration tool, they can
be faster and make fewer mistakes. This is encouraging as one of the motivation for
this work was the high efforts required to execute variant integrations. In particular,
copy pasting and editing manually the code can lead to errors and makes it difficult
to navigate through own changes due to the general undo operation. Using INCLINE
users do not have to deal with preprocessor annotations, and have the freedom of ex-
ploring the integration result.

As future work, it would be valuable to experiment and improve the user interface.
Engaging with a user interface expert would be extremely useful to help us with the
design of our UI. It is likely that after several iterations to improve the UI, the whole
experience will be smoother and give the users more trust, leading to faster integra-
tion times. In addition, a clear goal for INCLINE is to be used by developers and
software product line engineers to perform integration tasks. To achieve this, more
studies, preferable with experts from software product line engineering community or
companies doing product line engineering, are needed to further improve the tool and
understand its usage and benefits.

81

8. Related Work

8.1 Forking
Several existing works investigate the reasons for forking [Dubinsky et al., 2013, Duc
et al., 2014, Robles and González-Barahona, 2012, Mikkonen and Nyman, 2011]. De-
velopers who fork in industrial projects are reported to be motivated by the immediate
availability of the method, freedom of control and independence from the old code
base [Dubinsky et al., 2013]. Easy access to validated code is also a frequently cited
reason [Dubinsky et al., 2013, Duc et al., 2014, Cordy, 2003].

Both in open source software [Mikkonen and Nyman, 2011,Robles and González-
Barahona, 2012] and in industry [Duc et al., 2014] forking is also motivated by project
organizational matters (who has control over what code). For instance, in commercial
projects, the different teams have different road maps for their products, different risk
management strategies and different release schedules—all issues that can be circum-
vented by forking [Duc et al., 2014].

Open source developers may decide to fork in response to needs that are not recog-
nized by the project’s maintainers [Robles and González-Barahona, 2012]. A group
of developers can fork a project to start a new organization with different priorities
and direction than the original one [Robles and González-Barahona, 2012]. As we
can see, both in closed and open projects forking centers around adding new function-
ality, which seems difficult in other ways [Mikkonen and Nyman, 2011, Robles and
González-Barahona, 2012, Dubinsky et al., 2013, Duc et al., 2014].

Forking comes at a cost, though. Maintenance becomes more difficult [Dubinsky
et al., 2013, Duc et al., 2014], largely because of the lack of traceability between the
forks [Dubinsky et al., 2013]. Features and bug-fixes for different code bases are
developed independently, therefore duplicated code is created unintentionally [Duc
et al., 2014]. A bug that occurs in one code base may exist in others [Dubinsky et al.,
2013, Jang et al., 2012], and can remain unfixed [Jang et al., 2012]. Typically the
independent teams are unaware of changes that exist in other forks [Duc et al., 2014].
Few forks are merged back into origin and even fewer integrate code from similar or
original projects [Robles and González-Barahona, 2012].

One objective of this dissertation was to understand how forking functions as a
reuse and variant management mechanism more holistically; not only the reasons for

83

8 Related Work

doing it, but also other aspects such as the extent of synchronization, or criteria for
choosing forking vs preprocessor annotations and the life cycle of variants that are
eventually integrated. The main finding is that the main reason for using forking is to
add new functionality, confirming previous studies. This data was confirmed both in
the automatic analysis of changes in the forks, as well as in the survey, as presented in
Ch. 5.

In Marlin I have found several important bug-fixes that are not propagated in the
project’s forks. One interesting observation is that in Marlin, many forks share their
changes with the origin, unlike the prior study of Robles et al. [Robles and González-
Barahona, 2012] who state that very few forks are merged back and even fewer inte-
grate code from the origin or similar forks. Github’s forking and pull request likely
play a big role in offering support for sharing changes, thus the different results be-
tween this work and the one of Robles et al.

Few studies also mention redundant development [Duc et al., 2014]. In the Marlin
study I also confirmed occurrences of redundant development. Moreover, I looked
into this problem in more depth and I did a pre-study to verify if this is indeed a real
problem and not an artificial one. This study was done using data from GHTorrent
[Gousios, 2013], by analyzing the top 500 most forked projects and their pull requests.
I randomly sampled 100 closed pull requests from the set of tens of thousands of pull
requests. I then manually analyzed each pull request to understand the reason for being
closed. Approximately 6% of the pull requests were indeed closed due to redundant
development. This brings a good evidence that this is indeed a problem, and it will
only grow as long as the forking mechanism is heavily used.

Decentralization of information is also a problem that I have encountered in the
main study done in this dissertation. Forking enables a simple and controlled collabo-
ration mechanism through the usage of forks and pull requests, but makes it difficult to
find new functionality or forks of interest. A variation control system with forking sup-
port aims at centralizing the forks’ knowledge into one place. In a separate paper that
it is not part of this dissertation, together with few other colleagues, we have developed
a tool that identifies features developed in forks. To overcome the decentralization of
information problem, the tool also extracts an overview of the functionality existing in
the forks of a project and summarizes it to the user [Zhou et al., 2018]. This can be
used to guide developers to interesting artifacts or forks, while all the information is
centralized into one place with easy access to the actual code changes for an in-depth
analysis, if needed.

One particular difference in this dissertation compared to many previous studies,
is that I focused on only one main study subject, the Marlin open source project. This
project follows a typical collaborative community driven development process, with
no central organization. This is very different than the industrial processes studied
before [Duc et al., 2014,Dubinsky et al., 2013]. Perhaps more importantly, this means
that all the data, tools and other artifacts used in this dissertation are available online.
Moreover, the study in Ch. 5 differs methodologically combining study of artifacts

84

8.1. Forking

(commits, branches, forks, pull-requests), interviewing developers, and surveying both
active and passive users of the community. This way researchers working on tools and
methods can use this data to evaluate their methods and tools, or replicate findings
presented.

Cloning in-the-small
Cloning in-the-small, which is different from forking, meaning that a copy of an arti-
fact is done within a project, can also be beneficial [Kapser and Godfrey, 2006a]. For
instance, developers of the Apache web-servers use subsystem cloning to support a
large number of different platforms: 51% of code is cloned across the relevant subsys-
tems [Kapser and Godfrey, 2006b]. A study of the projects hosted in the Squeaksource
hosting service reveals that 14% of the methods are copied between projects [Schwarz
et al., 2012]. Even maintenance is reported to benefit from cloning. Cloning can
decrease maintenance risk for program logic, as it allows avoiding any impact on un-
related applications or modules [Cordy, 2003]. Cloning allows to quickly implement
a new functionality similar to an existing one. Cordy [Cordy, 2003] reports that in
some domains (financial software in his study) cloning is encouraged as it reduces the
risk of introducing errors. Experienced programmers clone consciously with intention
to reuse knowledge [Kim et al., 2004, Kim et al., 2005]. Still, it is generally agreed
that cloning in-the-small introduces software evolution challenges. Roy and Cordy
perform an in-depth analysis of clone detection, covering aspects from techniques and
tooling, to advantages and disadvantages of cloning and taxonomies of clones [Roy
and Cordy, 2007]. Several questions remain open to this day, e.g. if code clones should
be removed, encouraged or refactored.

Unlike all the above works in this dissertation the main focus was not on cloning
in-the-small, but on forking entire projects. While some drawbacks of cloning in-
the-small apply to forking (e.g. fixing bugs in clones), there are some that only apply
to forking (e.g. redundant development across projects). This dissertation provides
detailed analysis on the advantages and disadvantages of forking in an open source
community. The analysis provides a high level perspective, asking process and ar-
chitectural questions about variant management using preprocessor annotations and
forking.

Clone-and-own Support
In more recent years, several works have presented alternative ways to support the
ad-hoc clone-and-own for software variant development.

Rubin et al. [Rubin and Chechik, 2013a] present a set of operators used to support
clone-and-own. In a subsequent effort [Rubin et al., 2013], the operators are refined
through three industrial case studies. The main idea is to verify if proposed operators
can be mapped to actual activities performed during a manual re-engineering effort.

85

8 Related Work

The work confirms the applicability of the operators to support the development of
variants, and proposes some techniques that can be used to realize the operators. The
end goal is to facilitate the development of variants via clone-and-own, and to support
re-engineering efforts. However, a main difference is that in this dissertation I take a
step further and provide tool support for realizing these goals, while in the previous
work there is no implementation that can be used or tested.

Fischer et al. [Fischer et al., 2014, Fischer et al., 2015] take a different approach
with the ECCO tool. The idea is to use an extraction and composition mechanism, to
reuse existing code from variants developed via clone-and-own. The result is a new
product variant that is specified by the features selected. Most of the extraction and
composition is done automatically. The user needs to manually verify different hints
given by the tool to finalize the product variant.

Rabiser et al. [Rabiser et al., 2016] propose to support clone-and-own prototypes
at three granularity levels: products, components, and features. Clones can be cre-
ated from products, on top of which existing components can be cloned to different
prototypes, while compliance levels ensure consistency among the cloned assets.

Schmorleiz et al. propose to annotate source code of variants for a system to
automatically keep consistency between variants according to the specified annota-
tions [Schmorleiz, 2015, Schmorleiz and Lämmel, 2016]. Similarly to the idea of
Schmorleiz et al., Pfofe et al. use feature expressions to map code to features. Using
feature expressions, variants that need to be synchronized can be automatically iden-
tified [Pfofe et al., 2016].JSync is a plug-in for Eclipse to detect clones, synchronize
the known clones, merge them when needed, and to verify their consistency [Nguyen
et al., 2012].

All these works present alternatives to software product line development by en-
hancing clone-and-own with first class support. Although little is known if these can
be used in industrial or even open source projects, they provide another step forward
in bringing support for forking to develop software variants.

8.2 Software Product Line Engineering

Adoption
In a recent mapping study on re-engineering variants into product lines, the large ma-
jority of the 119 papers analyzed were focused on detecting and analyzing common-
alities and variabilities of the variant systems, together with feature identification and
location [Assunção et al., 2017]. Actually, only few support the actual variant integra-
tion.

Many works focus on re-engineering a single system into a software product line
[Schulze et al., 2012,Kolb et al., 2006,Kästner et al., 2007,Kiczales et al., 1997,Fenske
et al., 2014], typically proposing refactoring techniques for creating configurable plat-

86

8.2. Software Product Line Engineering

forms. For instance, Schulze et al. propose to adapt OOP refactorings to feature
oriented SPLs refactorings, and define four refactorings suited for FOP product lines
[Schulze et al., 2012]. Kolb et al. refactor an existing component to be reused in a soft-
ware product line and apply semantic-preserving refactorings to the component [Kolb
et al., 2006]. Kästner et al. [Kästner et al., 2007] refactor Berkeley DB into an SPL us-
ing aspects [Kiczales et al., 1997]. While these works are single-system oriented, the
focus in this dissertation is on systematically integrating a set of variants, guiding the
process with intentions and views. The main difference is that I focus on integrating
software variants originating from clones into a product line, systematically guiding
the process with intentions and views.

Rubin et al. present a conceptual framework with seven operators usable to re-
engineer cloned variants into a product line [Rubin et al., 2015]. The operators are
abstract and some are related to our intentions. Yet, none is implemented and executed
on real world systems. Fischer et al. [Fischer et al., 2014,Fischer et al., 2015] propose
an extraction and composition method to detect reusable features among variants, al-
lowing to compose them to derive a new system. Martinez et al. present a framework
for re-engineering a set of assets into a product line [Martinez et al., 2015]. The frame-
work can be extended and customized to support different kind of artifacts. Klatt et
al. [Klatt et al., 2013] present a tool for consolidating cloned product variants. It en-
hances the initially created integrated platform by providing a variation point analysis
that provides recommendations for a developer to aggregate variation points. Fenske et
al.’s tool uses clone detection to recover clones among variants in order to lift cloned
code to reusable product-line assets by applying refactorings [Fenske et al., 2017].
Around 25% reduction in redundant code could be achieved. Ziadi et al. [Ziadi et al.,
2014] automatically create a feature model and a software product line from a set of
variants.

Finally, case studies of manual re-engineering exist. For instance, Hetrick et al.
re-engineer cloned variants into a product line, extracting core assets from existing
codebases, creating variation points, and switching to product line engineering [Het-
rick et al., 2006]. Jepsen et al. [Jepsen et al., 2007] compute pairwise differences of
two products, and wrap differences using #ifdef to create the initial integrated plat-
form. The platform was iteratively refined, deciding to keep, remove or introduce a
new feature, which took several years to complete [Jepsen and Beuche, 2009].

Compared to existing approaches, in this dissertation I propose: (1) a set of in-
tentions for various integration goals; (2) editable views to improve variant compre-
hension and offer a (pre)view to analyze the integration results; (3) doing edits on the
integrated platform to explore the effect of intentions and manual edits, with support
for undo; (4) a tool chain aimed at C/C++ systems using the preprocessor for variation
points, where their correct handling is ensured.

87

8 Related Work

Evolution

Other works provide support for evolving a product line. Montalvillo et al. propose
to extend version control system functionality to synchronize core assets and product
assets through specific propagation events. These assets are versioned and maintained
using Git and Github [Montalvillo and Díaz, 2015]. Different branching models are
proposed for core assets and product development, with possibility of synchronizing
them when needed. Liebig et al. [Liebig et al., 2015] provide three refactorings (re-
name identifier, extract function, inline function) that are proven to preserve the vari-
ants in a configurable platform. The resolution of our intentions can also be seen as a
refactoring, but it is explicitly not variant-preserving. Yet, automatically detecting and
applying refactorings to improve the quality and structure of the integrated platform
based on their approach would be valuable future work.

Several studies explored changes done in highly configurable software. These stud-
ies consider the variability model and the build system [Dintzner et al., 2016, Passos
et al., 2015, Lotufo et al., 2010], whereas in this dissertation I only focus on the code
level.

Dintzner et al. aggregate feature-evolution information by mining commits [Dintzner
et al., 2016], including extensive information of what artifacts are affected. The work
mainly considers commits that touch #ifdef blocks. The variability model, build
system, and source code is used to identify which artifacts are affected and in which
layers. The focus of that work is not to detect the exact type of changes, but to offer
an overview of the evolution of features. Passos et al. present a catalog of patterns on
the co-evolution of features in the variability model, build system, and code, obtained
from the Linux kernel [Passos et al., 2015]. Several patterns use only the variability
model and/or the build files to add or remove features. Some of the patterns presented
in Ch. 6 overlap with the ones from Passos’ patterns: P3 AddIfdefElse corresponds
to AVONMF (Add Visible Optional Non Modular Feature), P5 AddIfdefWrapThen to
FCUTVOF (Featurize Compilation Unit to Visible Optional Feature), and P9 RemIfdef
to RVONMF (Remove Visible Optional Non Modular Feature). The main difference
between the two is that I zoomed into understanding how source code changes can be
realized with a variation control system, disregarding other layers like the variability
model or the build system. Nevertheless, considering other layers would be interesting
as feature work. For example, the variation control system could create, maintain and
ensure consistency of a variability model.

8.3 Projectional Editing

Kruskal describes an editor to handle sequential versioning (deltas) over time and con-
current versions (conditional compilation) [Kruskal, 1984, Kruskal, 2000]. The con-
ditional compilation uses Boolean expressions to wrap code, and the editor allows to

88

8.3. Projectional Editing

select which code to select by giving a Boolean expression. The code fragments that
correspond to that Boolean expression are available to be edited. Several commands
are available to the user for maximum flexibility. The main difference is that I use
only a projection and an ambition to specify what does the change affect. Their study
explains how the editor works, but offers no information on how easy it is to use nor
the feasibility of using such a system. I can only infer that the system has been used
successfully [Kruskal, 2000].

Lie et al. present an alternative versioning model that has its foundations on log-
ical changes [Lie et al., 1989]. The change-oriented versioning (CoV) focuses on
doing changes that are related from the functionality perspective, users manipulating
options (similar to what we call today features) using choice and ambition for read-
ing and respectively for writing to the repository. Munch [Munch, 1993] presents an
experiment on how to use CoV on gcc. A tool CC2CoV (Conditional Compilation
to CoV) translates the existing CC++ source code files into CoV representation in the
EPOSDB-II [Gulla et al., 1991]. Conditional compilation macros are mapped to op-
tions and are interpreted as compile flags. They then automatically checkin version
2.4.0 of gcc using CoV into the system, and compare how their system fares to the
repository stored in RCS [Tichy, 1985]. However, their experiment does not draw any
conclusions on how feasible it is to use the system to handle the evolution of large
systems.

Atkins et al. develop a version editor that hides preprocessor directives, allowing
to edit a particular variant of a source file [Atkins et al., 2002]. Edits to the view are
propagated back into the source file. Their study on a large telecommunication project
shows a productivity increase of up to 40%. In comparison, we focused mainly in
understanding what kind of operations should such a tool support, and if indeed, these
operations can be used to maintain and evolve highly configurable software systems.

Hofer et al. argue that existing approaches to assist with handling the preprocessor
are tied to IDEs, thus, their adoption rate is low [Hofer et al., 2010]. They introduce
the filesystem LEVIATHAN that mounts a view representing a variant. Heuristics are
used to synchronize changes in the view with the source code in the physical storage.
However, it does not allow modifying the structure of the conditional blocks when
working on a view.

C-CLR is an Eclipse plugin that allows creating a view by selecting the respective
preprocessor macros (features) [Singh et al., 2007]. The tool offers support for gen-
erating views, but not for executing changes and updating the view. Similarly, folding
is used as a visualization technique by Kullbach et al. [Kullbach and Riediger, 2001]
to hide and unhide code in the GUPRO tool [Ebert et al., 1998]. The idea is to fold
parts of code (including preprocessor directives) and possibly labeling the fold to eas-
ily identify its purpose. Compared to these two works, we wanted to allow modifying
the view and updating the repository with the new changes.

Kästner et al. propose colors to show annotated code corresponding to a fea-
ture [Kästner et al., 2008], and implement the Colored IDE (CIDE). The tool requires

89

8 Related Work

disciplined preprocessor annotations, such that arbitrary code fragments cannot be an-
notated. A variant view shows annotated code fragments using a background color
according to a feature selection. Markers are used to show code that belongs to fea-
tures that are not selected.

A similar tool that uses colors (but lacks the ability to hide code) is developed by Le
et al. [Le et al., 2011]. Internally it uses the choice calculus. A controlled experiment
with students shows that the prototype increases code comprehension compared to the
C preprocessor tool. Users were more successful and efficient in completing their tasks
and gave more correct answers, which motivates the use of dedicated variation control
systems.

Janzen et al. propose to use a concept called crosscutting effective views to modu-
larize concerns [Janzen and De Volder, 2004]. The modules view provides a decom-
posed structure in terms of module units of the program. A classes view shows the
decomposed structure of classes. Changes applied to one view are reflected in the
other view, which is automatically modified and updated. The tool stores the struc-
ture of the program internally, while the developer edits a so-called virtual source
file [Chu-Carroll et al., 2002].

Westfechtel et al. propose a uniform version model [Westfechtel et al., 2001] that
allows for the version model to be orthogonal to the data model. This effort has resulted
in SuperMod [Schwägerl et al., 2015]. This tool is probably the closest to the variation
control system. It uses the same idea of projections (called choices in SuperMod)
and ambitions to support variant editing. SuperMod is implemented as an Eclipse
plug-in, and supports different kind of artefacts. The only current drawback is that
it requires an importer to transform current projects that use preprocessor annotations
into specific projects that SuperMod can use. One key difference is that SuperMod
enforces complete configurations of the system, while the variation control system
presented in this dissertation allows for partial configurations.

90

9. Conclusion

In this dissertation I had two objectives. First, to investigate the challenges in the
development of software variants (O1.), and second, to design, develop and evaluate
tools that would support the development and integration of software variants (O2.).

One of the most common techniques to implement variability is using annotations.
Developers annotate code to include or exclude it at compilation time. Although pre-
processor annotations have been heavily criticized, they are still heavily used in prac-
tice both in industry and in open source systems.

On the other hand, forking is a cheap and readily available mechanism tailored
for quick development and exploration. Despite known problems, particularly costly
maintenance, many organizations still prefer to use it to develop software variants.
Flexibility and no need for specialized tools or processes are the main strengths for
forking.

To retain benefits of both techniques, I explored possible improvements by com-
bining the traditional forking and preprocessor annotations. I analyzed in depth how
the two techniques are combined and used by developers in an open source project,
and learned that developers prefer to use one or the other as needed. To facilitate this,
I developed a variation control system that unifies the two techniques, allowing for
higher flexibility. Early results show that the variation control system is feasible to use
on large systems, with many features.

Often variants developed through forking need to be integrated into one integrated
platform. To this end, I explored how an intention-based integration tool can support
the integration. The core idea is the usage of intentions and of exploratory views, al-
lowing developers to make changes and previewing the end result of the integration,
while still being able to see the original code from the two variants. The benefit of the
intention-based integration is its intuitiveness and being less error prone. In our exper-
iments, we have shown that INCLINE produces correct results, the set of intentions
suffices for most integration tasks and that it scales up to files of 4k LOC. Moreover,
in the controlled experiment 8 out of 12 INCLINE users did not do any mistakes in the
integration tasks, compared to only 1 participant who did not do any mistakes when
using Eclipse.

91

9 Conclusion

Future work The variation control system and the intention-based integration are
alternative ways for developing and migrating variants to integrated platforms. So far,
the experience with both tools is limited but early results are promising. The variation
control system was developed as a command line tool. This has some limitations
and makes it more difficult to use in some cases. It would be interesting to have an
alternative to the command line tool, for example integrating it into a text editor. This
would allow to add first class support for the checkin and checkout operations, i.e.,
allowing users to explore the code by adding or removing features in the projection.
Currently, the variation control system does not enforce a feature model to be used and
maintained. I believe that adding support for feature models would be a useful addition
to the tool, and it would bring it closer to be a complete toolbox for software product
line engineering.

INCLINE was developed as a standalone tool to support variant integration. There
are few interesting directions to improve INCLINE. First, collaborating with a user
interface designer/expert would be of great help to improve the UI and overall usability
of the tool, to offer a smooth experience which will potentially lead to faster integration
times. Second, many variant systems exist in C/C++ codebases. Currently, INCLINE
has a very simplistic language representing the preprocessor language. It would be
valuable to fully support C/C++ codebases (e.g., perhaps using mbeddr), to be able
to provide compilation support for type checking the integrated results. Finally, a
potential direction is to embed the variation control system within INCLINE, as an
alternative to coupling it to a standalone text editor. This would offer the needed UI
support for the variation control system, while allowing to use the intention-based
integration of forked variants as needed.

92

A. Appendix

A.1 Paper A

93

Flexible Product Line Engineering with a Virtual Platform

Michał Antkiewicz, Wenbin Ji,
Thorsten Berger, Krzysztof Czarnecki

University of Waterloo, Canada

Thomas Schmorleiz, Ralf Lämmel
Universität Koblenz-Landau, Germany

S, tefan Stănciulescu, Andrzej Wąsowski
IT University of Copenhagen∗, Denmark

Ina Schaefer
Technische Universität Braunschweig, Germany

ABSTRACT
Cloning is widely used for creating new product variants.
While it has low adoption costs, it often leads to maintenance
problems. Long term reliance on cloning is discouraged in
favor of systematic reuse offered by product line engineering
(PLE) with a central platform integrating all reusable assets.
Unfortunately, adopting an integrated platform requires a
risky and costly migration. However, industrial experience
shows that some benefits of an integrated platform can be
achieved by properly managing a set of cloned variants.

In this paper, we propose an incremental and minimally in-
vasive PLE adoption strategy called virtual platform. Virtual
platform covers a spectrum of strategies between ad-hoc clone
and own and PLE with a fully-integrated platform divided
into six governance levels. Transitioning to a governance
level requires some effort and it provides some incremental
benefits. We discuss tradeoffs among the levels and illustrate
the strategy on an example implementation.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Management

Keywords
product line engineering, clone management, virtual platform

1. INTRODUCTION
Development of multiple variants of products is often needed
in order to satisfy conflicting requirements, legal frameworks,
or to adapt the products to different geographical regions
and usage conditions. In many cases, such product families
are created using clone-and-own—a new variant is created
by copying and customizing assets from an existing variant.

∗
Supported by ARTEMIS JU grant n◦ 295397 VARIES

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

Despite having low adoption costs and allowing indepen-
dence from other developers, cloning easily leads to inconsis-
tencies, redundancies, and lack of control. In the literature,
using cloning in the longer term has been considered a harm-
ful practice [8]. It has been traditionally recommended that
organizations adopt a more systematic, strategic reuse offered
by product line engineering (PLE) [10] based on a central
platform. Such a platform should integrate the reusable
assets and it should be used for deriving new variants of
products. Existing incremental PLE adoption strategies [4,
6] discourage relying on cloning due to maintainability issues.
However, as shown by industrial practice, eliminating cloning
and adopting the integrated platform is not always desirable
nor beneficial as it requires high-risk migration processes [2].

In this paper, we present an incremental and minimally
invasive strategy for adoption of product-line engineering
called virtual platform. Virtual platform allows organizations
to achieve many benefits traditionally associated with having
a fully-integrated platform but without requiring the high-
risk transition processes, while retaining the flexibility and
benefits of cloning. Most importantly, it allows organizations
to obtain incremental benefits proportional to incremental
efforts suitable to the frequency of reuse and the required
degree of consistency among the variants.

2. VIRTUAL PLATFORM
To describe the spectrum of strategies employed within the

virtual platform, we use the following conceptual framework.
An organization runs many projects concurrently. Each
project has a team and assets. The team uses the assets
to derive one or more variants of products. An integrated
platform is a special kind of project intended to keep reusable
assets that can be used without modification by teams in
other projects. The variants can be further characterized
by features. The customer requests a variant based on the
desirable features. The features can be mapped to fragments
of assets used to specify and implement them.

The main idea of the virtual platform strategy is to apply
a clone management approach to make distributed assets
reusable instead of physically containing all reusable assets
in an integrated platform as typical for PLE. Transitioning
from clone-and-own to a fully-integrated platform as advo-
cated in literature is difficult, as it requires transforming
assets not intended for reuse into a set of fully reusable
assets that features map to. Furthermore, the transition
requires introducing new processes, training, and switching
development focus from a single variant to the entire family
of variants. Such a transition disrupts the organization’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591126

532

ability to operate and continue development [14].
In reality, there are many practical intermediate points

between the clone-and-own and the fully integrated platform.
Whether the effort spent by an organization on preparation
for reuse (either via clone management or PLE) is justifiable
depends on the required frequency of reuse and the required
degree of consistency among the reused assets. In the follow-
ing, we present the governance levels of the virtual platform,
discuss their tradeoffs, and illustrate them, where applicable,
on the 101companies effort [3].

2.1 L0: Ad-hoc Clone-and-Own
Teams freely copy assets across projects and modify them

as needed, without any reuse strategy or process. No prepara-
tion for reuse is needed. Entire projects, assets, or fragments
of assets are copied. No notion of features is used and there-
fore no mapping of features to assets exists. A single project
containing all assets is used to derive one variant.
Advantages. Cloning is associated with many benefits [2,
8]. It is easy and fast for teams knowledgeable about the
project, since no special development tools or processes are
needed. Developers of a new variant are also independent
from the developers of the original, and free to modify it as
needed. Finally, as the original variant may have been tested
and used, the new variant may be usable from the beginning.
Disadvantages. If not carefully managed, cloning has seri-
ous drawbacks [2, 8]. It does not scale: with an increasing
number of variants, the overhead for synchronizing assets
may exceed the benefits of the initial reuse. Cloning also re-
quires governance and discipline among developers. Without
specified cloning practices and recorded provenance infor-
mation, the assets used to create the original and the clone
easily become disconnected and inconsistent. This can result
in redundant work and can hinder long-term evolution.
Tactics. Traditional small-scale reuse tactics such as com-
ponent libraries and frameworks can be used to make the
assets more reusable. Also, cloning can be better managed by
using branching and merging capabilities of a (distributed)
version control system, which automatically records some
information needed for locating features.
Example. The goal of 101companies [3] is to aggregate a
set of contributions from different authors who implement
the same set of features of a fictitious human resources man-
agement system, while illustrating different implementation
languages and techniques. The practice within 101companies
can be characterized as ad-hoc clone-and-own, except that
the system is described by a feature model. Each contribu-
tion is also characterized by a set of features, but without
any mapping to the assets. No libraries or frameworks are
used to make the project assets reusable.
Recommendation. Ad-hoc clone-and-own is appropriate
when the frequency of reuse is very low and maintaining the
consistency among the projects is not important.

2.2 L1: Clone-and-Own with Provenance
Teams record provenance information about the original

projects and per cloned asset. Teams use the provenance
information for impact analysis and change propagation.
Advantages. Provenance information enables propagation
of extensions and bug fixes among the cloned assets. During
development of an original asset, teams can send notifications
about changes to teams working on the clones. Conversely,
teams working on a cloned asset can decide whether change

Figure 1: Recording provenance information

progagation is needed upon receiving a notification.
Disadvantages. Since the provenance information is coarse-
grained (entire asset), teams need to manually locate the
relevant fragments of assets and propagate the change.
Tactics. Develop small, cohesive assets. Use facilities of a
version control system, such as branching, to isolate modi-
fications into coherent groups across assets, and exchange
changesets. Incorporate metadata using explicit feature an-
notations in code or in commit messages. Use clone detection
tools to recover provenance information.
Example. In 101companies, we extended the metadata
of a contribution to contain information about the origi-
nal contribution it was cloned from. Fig. 1 illustrates two
contributions: HStarter and HProf. Solid line boxes rep-
resent the projects. The shapes numbered 1–5 represent
fragments of assets contained within the projects. Dashed
lines represent the provenance links (cloneOf) for project
HProf = cloneOf(HStarter) and for asset 4 HProf::4 =

cloneOf(HStarter::4). We can also see that asset 5 was
not cloned. We analyzed the version control history to detect
instances of cloning and recover provenance information. We
detected that in a commit to HProf, a new asset 4 was added
which was a clone of an existing asset 4 in project HStarter,
that is, asset 4 was cloned from HStarter to HProf.
Recommendation. Clone-and-own with provenance is ap-
propriate when the frequency of reuse is low and maintaining
the consistency among the assets is moderately important.

2.3 L2: Clone-and-Own with Features
Features succinctly characterize the functionality of a vari-

ant from the customer’s point of view. Teams declare features
and map them to asset fragments that implement them. Fea-
tures can be modular (implemented in a single asset) or
cross-cutting (distributed across assets), or tangled (a single
asset can contain overlapping fragments corresponding to
many features). Teams propagate features among projects
by cloning the corresponding asset fragments and recording
provenance information. Teams leverage notifications about
feature-related changes and perform change propagation.
Advantages. Features provide a functional decomposition,
and allow reasoning about the co-evolution of projects and
their assets in terms of features instead of physical assets.
Teams benefit from a better overview of the projects in terms
of user-relevant functions. Teams can make better reuse
decisions and more easily propagate features across projects,
as the relevant fragments of assets can be located easily.
Disadvantages. Features can have complex dependencies
and interactions, challenging their reuse. Thus, teams need
to rely on intricate domain and implementation knowledge.
Tactics. Use a framework for managing cloned product vari-
ants, such as Rubin et al. [13, 11, 12], which treats features
as the prime reuse units. It relies on metadata about the fea-
tures of variants, their location in code, their dependencies,
and their origins if cloned from other projects. Thus, relevant
fragments can be located. Operators and metadata as speci-

533

Figure 2: The scenario Create Project

Figure 3: The scenario Propagate Feature

fied by Rubin et al. support the following scenarios in this
level: refactoring to introduce features, variability and com-
monality analysis, propagating and sharing features among
variants, retiring features, and establishing new variants [12].

Further, use white-box reuse approaches, such as those by
Holmes and Walker [5]. Such approaches identify other parts
of the implementation that features depend on using various
techniques, including static code analysis.
Example. We applied a variation of Rubin et al.’s clone
management framework to 101companies, and implemented
tool support for feature location and two scenarios as follows.

The scenario Create Project is shown in Fig. 2 (block ar-
row). We represent the metadata using dashed lines: a box
for the features of a project and arrows for the mapping of
the features to asset fragments. For example, the project
HStarter implements three features, cut, total, and bonus,
which are mapped to fragments 1, 3, and 5. The other frag-
ments, 2 and 4, are integral to the project. The mapping
between features and asset fragments is computed automat-
ically by a simple feature location algorithm. We use the
links cloneOf to record the provenance of features.

Developers create a new project from an existing project
by deselecting undesired features. In Fig. 2, a developer
selected the project HStarter and deselected the features
total and bonus. Since cut requires the feature total, both
must be cloned. The developer deselected the feature bonus

and therefore the corresponding asset was not cloned. In our
approach, instead of physically removing fragments of the
features that are not cloned, we comment these fragments
out to compensate for the imprecision of the feature location.
Also, features which cannot be located are always cloned
since they cannot be commented out. Asset fragments 2 and
4 were also cloned as they are integral parts of the project.
Provenance information (cloneOf) was also recorded.

Thereafter, developers manually inspect the assets, build
the project, and uncomment the code that is still needed.
For instance, in one case, parts of the implementation of one
unselected feature were used in implementation of a cloned
feature—these needed to be uncommented for the project
to build. Finally, the developer confirmed the successful
creation of a new project, while our tool recorded the set of
features and their provenance information.

The scenario Propagate Feature is shown in Fig. 3 (block

arrow). Developers first identify dependencies of a feature
they want to propagate. Next, they retrieve fragments of
assets related to the given feature and its dependencies.
Finally, they clone the needed fragments to their project,
using and recording provenance information. In Fig. 3, the
team of HStarter’ propagated a new feature depth and the
extended feature cut’ from HProf’. In the resulting project
HStarter", fragment 1 was replaced by the new fragment
HProf’::6, and the fragment HProf’::8 was added.
Recommendation. Clone-and-own with features is appro-
priate when the entire features are reused and the frequency
of reuse is medium as well as reasoning about the features
and maintaining the consistency among them is important.

2.4 L3: Clone-and-Own with Configuration
For individual projects, teams add the capability to disable

features and to derive variants by selecting subsets of features.
They add feature constraints to exclude invalid combinations.
Advantages. The ability to derive multiple variants from a
single project reduces cloning and increases reuse potential.
Disadvantages. Focus of a developer is shifted from a single
variant to a set of variants, which complicates development.
Tactics. Use a feature model [7] per project, to define fea-
tures and constraints; use a configurator. Use traditional
variability mechanisms, such as configuration parameters,
preprocessors, generators, or component frameworks.
Recommendation. Clone-and-own with configuration is
appropriate when frequent derivations of similar variants con-
taining subsets of features are needed and when maintaining
the consistency among the projects is important.

2.5 L4: Clone-and-Own with a Feature Model
An organization creates a central feature model that covers

all projects and all implemented features. Teams create new
projects by taking an existing project as a basis and then
propagating the needed features from all other projects as
allowed by feature model constraints. Teams extend the
central feature model.
Advantages. The assets distributed across the projects are
reusable as if they were integrated into a platform. The
central feature model constrains the valid combinations of
features that can be reused together.
Disadvantages. The assets are still distributed and their
consistency still needs to be managed. Multiple versions of
the same feature exist. Manual integration of the cloned
assets is needed as they are not prepared to work with each
other as there is no product line architecture.
Tactics. Merge feature models of projects into the central
feature model.
Example. We envision the scenario Create Project as follows.
Fig. 4 shows a feature model containing features from a
number of contributions. The team creates a new project
HSimple by selecting three features. The tool creates the
project by cloning the fragments implementing these features.
Recommendation. Clone-and-own with a feature model
is appropriate when the frequency of reuse is high, a global
overview of all features and constraints among them is needed,
features need to be reused from many projects, and maintain-
ing the consistency among the cloned features is important.

2.6 L5: PLE with an Integrated Platform and
Clone-and-Own

An organization creates a platform project and a platform

534

Figure 4: The scenario Create Project, cf. Fig. 3

team. This team adds configurability to the platform so that
project teams can derive variants by configuring the platform.
However, this team also merges existing projects into the
platform and harvests features from existing projects.
Advantages. Increased scale, improved change propagation,
reduced redundancy, and configuration over implementation.
Although an integrated platform is created, other projects
can still be kept and developers can still work on projects as
cloning is still allowed. Project teams are not restricted by
the platform, which supports innovation.
Disadvantages. Same as level 4, although reduced in sever-
ity as the amount of cloning is reduced and consistency is
managed through the platform. Projects receive updates
when adopting a new version of the platform.
Tactics. Use a clone management framework, such as Ru-
bin et al. [13, 11, 12], to perform development of common
architecture and common assets, merging initial set of cloned
variants, bringing additional variants into the platform.

Use traditional annotative and compositional PLE tech-
niques [9], which rely on a configuration mechanism (e.g.,
build system and preprocessor) or a suitable software archi-
tecture leveraging programming-language-level mechanisms.
Recommendation. PLE with an integrated platform and
cloning is appropriate for frequent reuse, a global overview
of all features and constraints among them is needed, and
maintaining consistency among projects is important.

2.7 L6: PLE with a Fully-Integrated Platform
Teams only use shared assets contained in the integrated

platform to derive variants. The platform is completely
specified by a feature model: given a set of desired features, a
new variant can be completely—often automatically—derived
from the platform. No development happens within projects.
Advantages. Makes the sharing of assets explicit, which
allows developers to reduce redundant implementation and
to propagate new features, extensions, and bug fixes. The full
platform integration minimizes custom code for new variants.
Disadvantages. Poses high risks. PLE adoption requires
disruptive organizational changes, including a new platform
team and new processes for product teams [4]. Relying on the
platform for new products also hinders innovation, because
the platform restricts developers’ freedom, while cloning
may still not be entirely prevented [2]. Beginning with a
fully integrated platform approach is often not practical,
as organizations cannot anticipate all future variants and
features. Cost can be also very large [10]. In fact, our survey
shows that only a minority of industrial product lines was
adopted pro-actively [1]. Most were evolved from one variant
or re-engineered from a set of cloned variants.
Tactics. Use annotative and compositional PLE approaches.
Recommendation. A fully integrated platform is hard to
achieve, since new features, extensions, and bug fixes are
continuously and concurrently developed within projects.

Development within a platform, without a project context,
is possible but difficult, since projects provide motivation,
requirements, and a testing environment. Only changes
worth of propagation and sharing are harvested into the
platform. Thus, a platform rarely covers 100% of variants.

3. CONCLUSION
We presented an incremental and minimally invasive strat-

egy for adoption of PLE called virtual platform. It combines
the flexibility of clone-and-own with the scalability and con-
sistency of traditional platform-based PLE using common
variability mechanisms. We presented six governance levels
as a roadmap for seamless and gradual adoption of PLE,
thus eliminating costly, disruptive, and high-risk transition
processes. Adopting each level provides incremental benefit.
Acknowledgements. We thank Julia Rubin for discussions
about the relationship between the virtual platform and her
clone management framework.

4. REFERENCES
[1] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,

K. Czarnecki, and A. W ↪asowski. A survey of variability
modeling in industrial practice. In VaMoS, 2013.

[2] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. In CSMR,
2013.

[3] J.-M. Favre, R. Lämmel, T. Schmorleiz, and
A. Varanovich. 101companies: a community project on
software technologies and software languages. In
TOOLS, 2012.

[4] W. A. Hetrick, C. W. Krueger, and J. G. Moore.
Incremental return on incremental investment:
Engenio’s transition to software product line practice.
In OOPSLA, 2006.

[5] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM Trans. Softw. Eng. Methodol.,
21(4):20:1–20:44, Feb. 2013.

[6] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally
invasive migration to software product lines. In SPLC,
2007.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep., SEI, CMU, 1990.

[8] C. Kapser and M. Godfrey. “cloning considered harmful”
considered harmful. In WCRE, 2006.

[9] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, 2008.

[10] L. N. P. Clements. Software Product Lines: Practices
and Patterns. Addison-Wesley, 2001.

[11] J. Rubin and M. Chechik. A framework for managing
cloned product variants. In ICSE, 2013.

[12] J. Rubin, K. Czarnecki, and M. Chechik. Managing
cloned variants: A framework and experience. In SPLC,
2013.

[13] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik.
Managing forked product variants. In SPLC, 2012.

[14] F. Stallinger, R. Neumann, R. Schossleitner, and
S. Kriener. Migrating towards evolving software
product lines: Challenges of an SME in a core
customer-driven industrial systems engineering context.
In PLEASE, 2011.

535

A Appendix

A.2 Paper B

98

Forked and Integrated Variants
in an Open-Source Firmware Project

S, tefan Stănciulescu
IT University of Copenhagen, Denmark

scas@itu.dk

Sandro Schulze
Technical University Braunschweig,

Germany
sanschul@tu-braunschweig.de

Andrzej Wąsowski
IT University of Copenhagen, Denmark

wasowski@itu.dk

Abstract—Code cloning has been reported both on small (code
fragments) and large (entire projects) scale. Cloning-in-the-large,
or forking, is gaining ground as a reuse mechanism thanks to
availability of better tools for maintaining forked project variants,
hereunder distributed version control systems and interactive
source management platforms such as Github.

We study advantages and disadvantages of forking using the
case of Marlin, an open source firmware for 3D printers. We find
that many problems and advantages of cloning do translate to
forking. Interestingly, the Marlin community uses both forking
and integrated variability management (conditional compilation)
to create variants and features. Thus, studying it increases our
understanding of the choice between integrated and clone-based
variant management. It also allows us to observe mechanisms
governing source code maturation, in particular when, why and
how feature implementations are migrated from forks to the
main integrated platform. We believe that this understanding
will ultimately help development of tools mixing clone-based and
integrated variant management, combining the advantages of
both.

I. INTRODUCTION

Code cloning [1], [2], [3] is the practice of creating new code
by copying the existing code and modifying it to match a new
context. Cloning is used in-the-small to reuse implementations
of non-trivial algorithms and to reuse local program patterns
such as ‘boilerplate’ code seen in many framework-based
systems. Moreover, cloning is frequently used for experimental
changes without putting the system’s stability at risk [4], [5].
Some authors suggest that, for highly-specialized complex code,
cloning might even be the preferred reuse method [6].

Cloning is also used in-the-large to create new system
variants by forking. In such a scenario, an entire project
is copied and the copy, a fork, is customized to meet new
requirements. The practice of forking has been observed both
in industry [7] and in open source projects [8], [9], [5]. Reuse of
existing tested code decreases the time and cost of delivery [4]
and raises confidence in product reliability [7]. Forking, so
cloning in-the-large, is a remarkably easy and fast reuse
technique, and it is the subject of this study.

Both cloning in-the-small and cloning in-the-large are part of
the clone-and-own paradigm [2], [10], [11] that is recognized as
a harmful practice, credited for decreasing code quality [4] and
multiplying maintenance problems [12], [13], [4], [7]. A bug
found in one clone can exist in other clones, thus, it needs to
be fixed multiple times [14]. Even just locating all cloned code

may be nontrivial. Unintentional parallel development of the
same functionality in different forks increases implementation
and test costs [15]. Finally, merging diverged code forks is very
laborious.

Our first objective is to understand how far the known
benefits and drawbacks of cloning in-the-small apply to forking.
To this end, we investigate forking practices in Marlin, an open
source 3D printer firmware project. Marlin is an appropriate
study subject due to an unprecedented amount of forks created
in a very short period. The Marlin project has been forked 1588
times in the period of 3 years and 3 months. We investigate
the following research questions using Marlin:

RQ1 What are the main reasons for creating forks?
RQ2 How do ongoing project development and maintenance

benefit from existence of many forks? To what extent do
forks retrieve changes from their origins? To what extent
do forks contribute changes to their origins?

RQ3 To what extent known drawbacks of cloning in-the-small
(e.g., difficulties in propagating changes) apply to forking?
Are there any new challenges?

Historically, forking had a negative antisocial connotation. It
denoted a community schism, when a project is split and an
independent development starts in a diverging direction [16].
The term has acquired a less negative meaning since the arrival
of distributed version control systems and, in particular, of
Github, which introduced traceability and easy propagation
of commits between forks. Github makes forking relatively
easy. Consequently, forking has become a potentially viable
way to maintain concurrent program variants. Forking can now
be seen as a software reuse mechanism next to established
examples such as object-oriented reuse patterns, aspect-oriented
programming, or software product line architectures.

The relation of forking and product line architectures has
been noted in several recent works [17], [10]. The central
part of a product line architecture is an integrated platform
gathering together the core assets. The integrated platform uses
programming language mechanisms, for instance conditional
compilation [18], to maintain multiple variants simultaneously.
Recently, we have proposed a lightweight methodology that
combines the integrated platform approach with forking,
referred to as a virtual platform [10]. The virtual platform
attempts to combine the flexibility and low initial investment

978-1-4673-7532-0/15/$31.00 c© 2015 IEEE ICSME 2015, Bremen, Germany

52

151

of forking with acknowledged benefits of software product lines
(the integrated platform). It proposes to use advanced automatic
traceability mechanisms to maintain concurrent development of
clones, and to allow for an easy migration of mature software
fragments to an integrated platform. This way, small changes as
well as experimental code could created and integrated easily.

The Marlin project is of interest in this context as it uses both
conditional compilation (in the role of the integrated platform)
and intensive forking (for more ad hoc volatile changes). As
such, Marlin and Github can be seen as a spartan prototype of
the virtual platform idea. Our second objective is to understand
how the mixed variant development works in Marlin and to
derive detailed requirements for developing the actual virtual
platform. We formulate the following research questions:

RQ4 Under what circumstances is forking preferred over
integrated variability for creating and maintaining variants?

RQ5 What are the criteria to introduce variants using condi-
tional compilation instead of forking?

RQ6 What are the criteria that lead to integrating a forked
variant into the platform using conditional compilation?

Previous studies focused mostly on analyzing cloning in-the-
small, and there is little empirical evidence on what benefits
and drawbacks cloning in-the-large exhibits in practice. We
provide insights into forking as a reuse practice that can be
beneficial for researchers and tool developers. We analyze
cloning in-the-large from the variant management perspective.
We provide evidence as to when and why cloning in-the-large is
used for creating variants, and when it is better to have explicit
variability. Our study uses an open source ecosystem, therefore
the study subject can be further reused by other researchers
to develop tools and methods, and run empirical studies for
their tools. We provide traceability links to source material for
interesting cases of cloning, merging, concurrent development,
and others.

In the remainder, we provide basic definitions in Sect. II.
Then, Sect. III presents the subject system, our methodology
and the experiment design. Section IV surveys the results and
synthesizes key observations. We then discuss threats to validity
in Sect. V, related work in Sect. VI, and conclude with Sect. VII.

II. BACKGROUND AND DEFINITIONS

A. Git and Github

Git is a distributed version control system that allows for local
repositories, which can be set to point to a remote repository.
In the local repository, the user can commit his changes. When
needed, changes can be pushed to the remote repository via
the git push command. Git employs a lightweight and simple
branching system, with each branch being nothing more than
a label attached to a commit.

Github is a hosting service for Git repositories, offering
a platform for collaborative development. Github allows for
copying repositories in a structured way. This mechanism,
known as forking, creates a traceability link between the copied
repository, the fork, and the original project. On Github, a
user can create a pull request which resembles a traditional

change request. A pull request can be created either in the
same repository, e.g. to allow a team to discuss the change, or
from a fork to the original project. It consists of a description,
possible comments from users, and a set of commits.

B. Basic Definitions

Repository. A repository is a structured storage for a project.
The content is organized by a version control system.
Commit. A commit is an atomic change that was applied to a
repository. It uses a similar syntax to UNIX patches, with a
message attached that describes the change.
Fork. A fork is a copy of a project created by cloning
in-the-large. A formal fork has been made using Github’s
forking mechanism. An informal fork is a copy of an existing
repository created simply by copying files elsewhere, without
any automatic traceability links. An active fork is a fork that
has either synchronized with the origin after its creation, or
has had changes applied to it. An inactive fork exhibits no
activity in the repository after the creation date.
Variant. A variant is a project that was cloned and modified to
satisfy certain requirements. Variants can also be created by
derivation from an integrated platform, given a configuration.
Pull request. A pull request is a change request that contains
commits and information about the change. A pull request can
exist in one of the following three states: open—when the pull
request is created and awaits to be verified, merged—the pull
request is accepted into the target repository, and closed—the
pull request has been rejected.

III. METHODOLOGY AND RESEARCH DESIGN

A. Research Questions

In Sect. I we formulated six research questions aiming at two
main objectives. First, we want to understand whether forking
is useful for the community, and to what extent it bears the
benefits but also drawbacks of cloning-in-the-small. Second, we
want to investigate the relation between integrated and explicit
variant management. In particular, we want to reveal when
and why conditional compilation, forking, or a combination of
both is used.

B. Subject System

Marlin is a 3D printer firmware that works with ATmega
microcontrollers [19]. It has been created by reusing parts of
two existing firmware projects, Sprinter and Grbl, to which
new code was added. The firmware computes and controls
the movements of the printer, by interpreting a sliced model.
Marlin must be flexible enough to deal with different hardware
and printer types. It has about 140 features, which can be
controlled using compile-time parameters. At the time of our
data retrieval (November 2014), the main Marlin repository
contained more than 1500 commits, and it has been forked
1588 times. The high number of forks and the fact that Marlin
has explicit variability, makes it a good choice for our study.

The project was initiated by one Github user, ErikZalm,
in August 2011. It gained attention and popularity due to
several improvements over Sprinter. Over time, more than 100

152

562(35%) 632(40%)

105(6%)
175(11%)

30(2%) 78(5%)

3(0.2%) 3(0.2%)

1st level 2nd level 3rd level 4th level

Active forks Inactive forks

Total
forks
1588

Fig. 1: Marlin’s active and inactive forks, and forks’ levels
(percentages show the relative size in the set of all forks). The
1st level forks were created by forking main Marlin repository,
the 2nd level forks were created by forking 1st level forks of
Marlin, and similarly for 3rd and 4th level.

developers contributed to the project, out of which only 15
have direct commit access. Several other firmware projects are
inspired by, or forked from, Marlin1. Besides hobbyists, 3D
printer manufacturers use the Marlin firmware in their products.

Marlin is released under the GPL license. The project and its
formal forks are hosted on Github2. In early 2015, the repository
was transferred to a Github organization MarlinFirmware. In the
paper we point to both, the new repository MarlinFirmware/Marlin
and to the old one ErikZalm/Marlin (currently listed just as a fork
of MarlinFirmware/Marlin).

C. Methodology

In our study we use mixed-methods combining qualitative and
quantitative analysis. To obtain quantitative data, we built a
simple tool that uses Github’s public API to retrieve information
about a repository, its branches, commits (and commits of
each branch), issues, pull requests, forks and the owner of a
repository, all as JSON files, which are then used to populate
a database. The main purpose of this quantitative data is to
get a comprehensive overview of the development process of
Marlin and to identify points of interest that are further subject
for detailed investigation.

To get insights why users fork and use conditional compila-
tion, we classify the forks into two categories; purpose of the
fork, and fork activity and nesting depth (Fig 1). We analyzed
the corresponding commit messages (using key word search)
of all forks using a simple heuristic in order to classify them by
their main purpose (i.e., why a particular fork has been created).
To obtain qualitative data, we analyze rejected pull requests
to retrieve information about reasons for rejecting proposed
changes from forks. In addition, we employ two short surveys
directed towards active and inactive fork owners. The surveys
contained both closed and open questions. They were available
for ten days, after which we closed the possibility of receiving
answers. We asked for the reasons to fork Marlin; what are
the challenges encountered in getting their patches accepted;
why they do not retrieve changes from Marlin and if they do
it, how often they synchronize. We also asked about usage of
conditional compilation. We distributed the survey invitation

1http://reprap.org/wiki/List_of_Firmware
2https://github.com/MarlinFirmware/Marlin

526

306
225

Configuration forks

Feature forks

Bug-fixes forks
75% 43% 32%

Fig. 2: Number of active forks used for configuration, develop-
ing features or bug-fixes (overlapping categories, percentages
show the relative size in the set of active forks)

to 336 e-mail addresses (the other Github users did not add an
e-mail address to their account), 185 belonging to owners of
active forks and 151 to inactive ones. The response rate was
18.3% (34 respondents) for active fork owners, and 15.2% (23
respondents) for inactive forks. Finally, we interviewed two
active maintainers of Marlin (in writing, open answers).

In the discussion, we link to exact commits by giving the
Github user and the name of the repository, together with the
first 8 characters of the commit hash. For example, ErikZalm/-
Marlin #750f6c33, where ErikZalm is a Github user name, Marlin
is the name of the repository belonging to that user and the
commit hash is preceded by #. The commit hash is hyperlinked
to the corresponding URL of the commit on Github, which
can be conveniently followed if reading online. The above
example points to https://github.com/ErikZalm/Marlin/commit/
750f6c33e30ca16fab1ebe552a6b3422282bc66a. We also point
to specific pull requests in the main Marlin repository, using
the letter P followed by the number of the pull request, e.g.
P1 points to https://github.com/MarlinFirmware/Marlin/pull/1.

Our database, survey questions, and other artifacts are
available at http://bitbucket.org/modelsteam/2015-marlin.

IV. RESULTS AND ANALYSIS

RQ1. What are the main reasons for creating forks?

We establish the purpose of forks using a term-based clas-
sification and substantiate the results with a quantitative
questionnaire to fork owners. We first analyze the 700 active
forks (Fig. 1) automatically. We establish the purpose of each
fork analyzing commits on each branch heuristically, using the
commit message. We divide the forks into the following three
categories:

• Configuration forks are forks that change the configuration
of the firmware. We detect them by checking if the
main configuration files (files configuration.h and
configuration_adv.h) are modified.

• Development forks are used to add new functionality. We
detect them by matching the following search terms: add,
support, feature, new, added, implemented.

• Bug-fix forks are used to fix defects. We identify them
with these terms: corrected, fix, bugfix, bug, fixed, replace.

Commit messages of a single fork may match search terms of
more than one category. In such case the fork is classified as
belonging to all matching categories.

Figure 2 summarizes the results of the heuristic categoriza-
tion. It indicates that 75% of the active forks have configured the

153

firmware. Detailed inspection shows that users of Marlin adjust
the configuration to match their hardware, to enable/disable
features or to fine tune parameters to ensure a good quality print.
Some need to change the configuration to test a functionality
that they are working on. Examples of configuration forks
include: 3DPrintFIT #6343044c, jmil #04b8ef41, and Makers-Tool-
Works #651b99d1. The configuration category is the most
interesting. To the best of our knowledge, using version control
is not a well-recognized way of handling variant configurations,
while it is the dominating reason for forking in Marlin. The
other two categories are expected and cover development of
new functionality (43%) and bug-fixes (32%).

In order to verify the automatic, keyword-based classification,
we manually analyzed a random sample of 40 active forks.
For this analysis, we manually checked if changes have been
done to the fork, and categorized the type of change into one
of the three categories explained above. For each fork, we
checked whether it has been classified correctly by comparing
the manual and automatic analysis. We found that the precision
of the heuristic on this sample is 97% for configuration forks,
and 94% for both development and bug-fix forks, thus the data
of Fig. 2 appears reliable.

Finally, we have approached the owners of the forks with
a quantitative survey, asking them what were the reasons for
creating their forks. Among the active fork owners, 62% (21
responses) report that they had originally intended to configure
the firmware. This fraction is smaller than 75% of the actual
number of configuration forks (Fig. 2). The intention to just
configure the firmware was even more dominating among
inactive fork owners (74% or 17 responses). The situation is
the opposite for the non-configuration forks: 68% of active
fork owners report that their intention was to contribute new
functionality or modify the existing one. This is more than
the actual number established heuristically: 54% of forks are
used for new functionality or bug-fixes, which is the sum of
the last two columns in Fig. 2, corrected for the intersection.
Apparently, when you start with an intention to contribute new
code, you cannot be certain to succeed. You may end up just
configuring the code, even if you did not intend to do this.

Maintaining variant configurations in forks of entire projects
is a very simple and effective mechanism. It does not require
specialized configuration management or variability manage-
ment tools. The fork owner has a reliable backup copy of
the configuration, and the configuration can always be easily
reconciled with upstream, if that becomes desirable. The Marlin
community is extremely successful using this mechanism for
the purpose. As mentioned above, some developers end up
following this practice, even though this is not what they
initially expected. It is actually somewhat surprising that this
practice is not to be found in classic product line literature.

Observation 1. Storing variant configuration data of a product
family in forks of the entire project is a lightweight and effective
configuration maintenance mechanism.

238

462

888
Total active forks that synced

Total active forks that did not sync

Inactive forks and never synced15% 29% 56%

238

462

888

15% 29% 56%

Fig. 3: Retrieval from origin (non-overlapping groups, percent-
ages show the relative size in the set of all forks)

RQ2. How do ongoing project development and maintenance
benefit from existence of many forks?

We answer this question by investigating to what extent there is
a flow of contributions between the forks and main Marlin. We
split the discussion into two subquestions and then synthesize.

To what extent do forks retrieve changes from their origins?
To answer this question, we checked for each fork whether
its branches contain any commits added to the main Marlin
repository after the fork’s creation date. We found that only
238 forks (15% of all forks) have synchronized at least once
with the main Marlin repository (Fig. 3), which amounts to
only 34% of active forks.

Observation 2. Most forks do not retrieve new updates from
the main Marlin repository.

Marlin developers fork significantly more often than merge.
This is a striking observation, given that merging of concurrent
development strands is the key purpose of git. The forks in
the Marlin ecosystem are characterized by a short maintenance
lifetime (101 days on average). Once a fork achieves the desired
functionality (the printer operates as expected) the incentives
to maintain the fork decrease, and it becomes inactive (32%
of active forks did not receive any commits between January
2014 and November 2014). Thus the period in which upstream
changes are relevant for many developers is relatively short.

We confronted this hypothesis with the developers in our
questionnaire. In the responses, only 18% of active fork owners
synchronize monthly, and 6% synchronize weekly. Others do
not synchronize at all, or synchronize irregularly. When asked,
they state that the upstream changes are uninteresting for them,
or that they do not wish to take in new changes as integrating
them costs additional work. Merging new changes from
upstream can be difficult and time consuming. One inactive
fork owner explained that I fear that my settings/calibration
could change, sometimes I stay 1–3 months without changing
the firmware of my printer. This reinforces our understanding
that most Marlin developers use Github to manage their variant,
and not to collaborate with others.

At the same time, the altruist developers that want to
contribute to the community synchronize more frequently. From
306 development forks, 142 have retrieved changes from the
main Marlin repository. Moreover, 87% of pushed patches from
development forks, come from those that synchronized. Being
up-to-date with the main repository is key for producing clean
up-to-date patches. This is consistent with our hypothesis that
the maintenance span determines the need for synchronization.

154

To what extent do forks contribute changes to their origins?
We found that only 202 forks (253 with forks that were deleted
before our retrieval, and they are represented as unknown
in pull requests by Github) contributed with patches to the
main Marlin repository, so not even all feature development
forks (306 in Fig. 2) have contributed pull requests upstream.
Nevertheless, 714 commits have been integrated in main Marlin
by merging pull requests. These 714 commits constitute 58%
of all commits in the main Marlin repository, excluding the
empty commits acknowledging merges. Most pull requests
come from the first level forks; only seven come from the
second level forks (Tbl. I). We conclude that Marlin is strongly
supported and developed by the community.

An example of a contributed functionality is the Auto
Bed Leveling (ABL) feature. A prototype of ABL was first
implemented in a fork, which does not exist anymore at
the time of writing. The commits have been accepted into
another fork, akadamson/Marlin #728c355f (traced in our database
which was populated before the original fork has been deleted).
Then it was ported in alexborro/Marlin-BedAutoLev #0344dbfc to
the latest version of Marlin and finally included in the main
Marlin repository #253dfc4b. The feature was later improved in
fsantini/solidoodle2-marlin #cc2925b7, and the improvements were
accepted in the main Marlin repository #89a304fd. This example
demonstrates how innovation and improvements happen thanks
to collaboration of several developers that are distributed in
space and time. Each of them has control over its own fork,
which is the key for innovation.

Observation 3. The ability to fork gives developers control
over the code base, which encourages innovation. More than
half of the commits in the main Marlin repository come from
forks of Marlin.

Let us now return to the question RQ2. The Marlin project
was forked 1588 times in three years and three months (an
average of 40 forks per month). As shown above, more than
half of the commits in Marlin come from these forks.

Another benefit of easy forking for developers is showing
up in testing and debugging. Testing 3D printer firmware is
difficult, because maintainers do not have access to all the
supported hardware. Hence, changes that are related to new
hardware are usually tested by users having the corresponding
hardware (e.g. P335, P572). During the life of the project, many
users debugged problems, reported bugs, and contributed fixes
developed in their own forks (e.g. P335, P594).

TABLE I: Contributions to the main Marlin repository. The
last row refers to deleted forks whose level is unknown

Fork
level # forks

pull
requests

(total)

open
pull

requests

merged
pull

requests

closed
pull

requests

1 197 389 56 245 88
2 5 7 3 3 1
3 and 4 0 0 0 0 0
unknown 51 92 2 51 39

23

26

18

61

Manually merged

Outdated

Concurrent Development

Other

Fig. 4: Reasons for not merging pull requests. The numbers
represent how many pull requests were rejected in each category.
Other includes: closed by the pull request author (no reason),
bad patch, pull request created on wrong repository, not fixing
anything

Forking facilitates a gradual involvement of contributors.
Fork owners gain experience working on their own forks. Once
they gain reputation, they become committers in the main
project. We have identified such cases both in our survey and
in the interviews with the maintainers of the main project.

In summary, the development and maintenance of Marlin
benefited from the multitude of forks in the following ways:

• Forks contribute new features and new hardware support.
• Fork owners test and improve the firmware on different

hardware and configurations.
• Working on forks grooms new maintainers for the project.

RQ3. To what extent known drawbacks of cloning in-the-small
(e.g., difficulties in propagating changes) apply to forking? Are
there any new challenges?

We approach this question using the following methods: (i)
studying the reasons for rejecting contributions, (ii) tracking
how bug-fixes for important problems are propagated in the
repositories and (iii) asking the fork owners about importance
and challenges of receiving and contributing bug-fixes from
upstream. All of these aspects can potentially reveal information
about frictions in project management on the boundary of forks.
We organize the discussion along the identified challenges
starting with decentralization of information in forks, and
moving to difficulties in propagating changes, redundant
development, and other maintenance issues.
Decentralization of information. Decentralization of informa-
tion is an issue that is specific to forking, where much more
information is cloned than with cloning in-the-small. The
modifications and extensions to Marlin are not kept in one
neatly organized repository but in several hundreds of forks. For
example, malx122/Marlin #69052359 added support for a second
serial communication and malx122/Marlin #326c59f6 support for
fast SD card transfer. These two features are not in the main
Marlin repository, but they were actually taken from a fork
(pipakin/Sprinter) of another firmware (kliment/Sprinter). Finding
such features in the multitude of forks is extremely hard for the
community members. This is consistent with an observation
of Berger et al. [20] that an excessive use of clone-and-own to
create variants in industrial projects leads to loss of overview of
the available functionality. They name centralized information
as a key advantage of integrated variability management and
feature modeling over fork-based management. Also Duc et
al. acknowledge that diverged code bases make it hard for

155

59 68 64 66 60 59 49 20

416 407 409 443 449 466
537 590

#Forks that do
not have the
patch

#Forks that
have the
patch

Fig. 5: Synchronization of active forks for patches. The sum
of the two represents existing active forks at the time creation
of that patch

individual teams to know who is doing what, and what features
exist elsewhere [15]. This is a problem in Marlin as well, even
though the individual forks do not depart far from the mainline.
The sheer amount of forks makes it difficult to understand
breadth of the available code.

Formal forking makes it easier to navigate the space of
the available code compared to using entirely ad hoc forking.
For example, the RichCatell/Marlin repository was not created
using the forking mechanism of Github. This informal fork has
several improvements including an updated auto-calibration
feature, but it is far less known than the main Marlin repository.

Observation 4. Decentralization of information in many forks
is a challenge in fork-intensive development.

Redundant development. The analysis of rejected pull requests
showed that 18 pull requests (14% of all rejected pull requests)
are rejected because of concurrent development (Fig. 4). The
requested change either contained a feature or a bug-fix
that already existed, or it was developed in parallel by two
developers. This is a challenge not only for the contributors
(e.g. P1087 or P223) but also for the maintainer who needs
to have a good overview of all open pull requests to resolve
the conflicts in the best possible way (e.g. P594). Berger et
al. [20] confirm that concurrent development is a similar issue
in industrial projects using clone-and-own.
Challenges in change propagation. The fact that forks do
not retrieve changes from the main repository is problematic
as fixes and new features are not propagated. In order to
understand this phenomenon, we selected eight patches fixing
important bugs in the main repository between January 2014
to November 2014, and verified if they were propagated to the
forks. Figure 5 shows to what extent these patches have been
adopted in forks. The light color part of the bar represents the
number of active forks that have not pulled the patch, while
the darker grey part represents active forks that have the patch
(this only considers the active forks that existed before the
patch was committed). For example, patch 1 in ErikZalm/Marlin
#8a5eaa3c fixes a bug in a feature that may damage the printer.
All the considered patch adoptions exhibit the same pattern.

Observation 5. Propagation of bug-fixes is a problem for
forking, just like for cloning in-the-small, even though git offers
facilities for selective download of patches from upstream.

At the same time, forks do not push changes back, so
important fixes from the forks may never make it to the main
repository. As many as 447 forks (63% of active forks) did
not submit any patches to the origin. The survey data shows
that one of the challenges is to prepare a robust pull request
that does not break other features. A developer who works on
his own fork, may find it difficult to take into account how
his fix will affect configurations of all the other users. See for
example a case of pull request P594 mentioned above, where
a developer proposes to fix the problem for one hardware
configuration, by removing the code that is necessary to make
other configurations work. It is easier to maintain this general
view on the variants, when integrated variability is used.
Other maintenance issues. When a project has many forks
the maintenance becomes costly due to the large number of
incoming change requests. An interviewed project maintainer
explains that Marlin needs more developers and maintainers, as
there are not enough people to support all the desired changes
from the community.

RQ4. Under what circumstances is forking preferred over
integrated variability for creating and maintaining variants?

In order to understand why developers prefer forking over
integrated variability management, we investigated scenarios
in Marlin’s history that are typical of fork-based development.
We selected the cases that appeared to be beneficial based
on developer’s statements or on our experience in variability
management. This qualitative analysis included forks that are
used to manage configurations and forks that develop features,
but do not push changes upstream. We disregarded forks that
push changes upstream as these have to integrate variation
using conditional compilation. Since Marlin itself was created
as a fork, we investigated its origin and the initial rationale.

Observation 6. We have observed that Marlin developers
preferred forking over integrated variability under the following
reasons:
S1. The fork extension has little relevance to other users.
S2. The maintenance time span for the developed code is

expected to be short.
S3. The external developer has no control over the upstream

project.
S4. A developer wants to create experimental code.
S5. An active project provides a good skeleton for adding new

functionality.
S6. A defunct project contains code that can be reused.
S7. The developer wants to change the programming language.

Next, we detail the above scenarios using concrete examples.
Our data shows that there are 526 forks that did modifications to
the configuration files. There are 316 forks (45% of active forks)
that modified only the configuration files and made no other
changes (S1). For instance, 33d/marlin-i3 #abaec3b3 configures
the firmware to comply with a specific hardware. Some
other forks mix configuration changes with other development
changes 0xPIT/Marlin #70c7dde7, which makes it difficult to
create pull requests containing just the new code and no

156

configuration noise. Both previous examples have not been
updated afterwards (S2). Recall that 66% of active forks
never synchronized with upstream after making their changes.
Once the firmware is configured and running on the printer,
new changes are not desired and no further maintenance is
associated with these forks (S2). The average lifetime of a
Marlin fork is 101 days, according to our data.

Forks commonly develop features for their own use, which
may be highly experimental. For instance, martinxyz/Marlin
#a8d59b1a modifies the IRQ functionality of the software and
even adds an alternative IRQ code (#2a1c0766) for the stepper
motor control in the firmware (non-standard IRQs are unlikely
to be used). In this case, experimenting with code and adding
new features that the original project lacks are the main reasons
for forking, but the changes are, at least initially, not interesting
to other users (S1, S4).

The fork jcrocholl/Marlin is a first level fork of main Marlin.
It adds support for a new type of printer, a so called delta,
that works differently than the normal Cartesian printers. Delta
printers use spherical geometry and compute the location of
the movements using trigonometric functions, such that the
nozzle is not moved along the Cartesian planes. Before this
extension, Marlin provided already support for some existing
hardware and most of the needed software (S5), which made
it easy to introduce the extension. From user’s perspective this
was a large qualitative leap, almost a new project though, as
it supported hardware with completely different design. The
main Marlin project was not affected in any way by these
changes. Moreover, the developer had complete control (S3)
over his fork allowing him to progress fast.

Originally, Marlin itself was created by cloning and ex-
tending parts of kliment/Sprinter and grbl/grbl. The Sprinter
firmware was itself a fork of tonokip/Tonokip-Firmware, which
was based on Hydra-MMM firmware. So heavy forking in this
community predates Marlin’s time. These earlier projects
provided a good skeleton, from which Marlin could evolve into
a solid standalone variant (S5, S6). There were few reasons to
incorporate Marlin improvements into the upstream projects,
as soon as the main developer realized that he has different
goals and a different roadmap. The original projects would
have never agreed to accept them anyways (S3, S4).

Another interesting example is the Traumflug/Teacup-Firmware
firmware that started as a complete rewrite of the triffid/-
FiveD_on_Arduino firmware. This fork decided to switch from
C++ to C (S7). In such case integrating the differences between
the two projects as variation points made little sense (S7). For
Teacup, forking was the only possibility of development.

RQ5. What are the criteria to introduce variants using
conditional compilation instead of forking?

Use of integrated platforms has been a subject to extensive
studies in the field of product line engineering. The main text
books of the field give criteria to select variation points and
features [21], [22], [23]. Still, we ask this question in the context
of Marlin, as the community uses both integrated and forked
variants. The accumulated experience sheds light on the choice

between the two mechanisms. We approach the question by
qualitatively analyzing forks that developed changes involving
preprocessor directives, excluding those that modify only the
configuration files (configuration changes involve changing
preprocessor directives). We supplement this data with answers
to our survey and interviews.

Observation 7. Marlin developers prefer integrated variability
(conditional compilation) over forking in following situations:
T1. The flexibility to use several variants is needed.
T2. Coding conventions expect usage of #ifdefs.
T3. Project maintainers require conditional compilation for

new features submitted to main Marlin repository.

We identified 261 forks (37% of active forks) that introduced
preprocessor directives in their commits. Conditional compi-
lation is used in these forks for the same reasons as in other
system level software [24]: to reduce use of memory, to disable
functionality that is incompatible with current hardware, or to
control inclusion of experimental code. Marlin supports printers
based on 8-bit ATmega micro-controllers that have limited
flash memory, usually 4–256kB. Seven out of 11 developers
report use of conditional compilation for managing memory
limitations (e.g., Not all boards have enough space to run all
the features so my feature was only compiled into larger chips).
In general, developers use conditional compilation to guard
functionality that is optional, allowing it to be switched off
either for themselves or for other users. Hence, flexibility of
integrated variants (T1) is needed to meet memory requirements
of different use cases and different hardware in the same fork.

Interestingly, many forks that do not contribute any changes
to main Marlin use conditional compilation. Only 83 out of
the 261 forks using this mechanism actually created pull
requests (32%). They might have needed the flexibility for
their own printers or experiments (T1). However, several
survey respondents clearly state another reason—the coding
conventions of the surrounding code: That was how it was
done by the guys before me, I didn’t want to break the feel of
the code. (T2).

Finally, if a developer plans to contribute a feature to the
main repository, he has to follow Marlin’s coding guidelines.
One of the main project maintainers states in the interview:
Every new feature contribution requires conditionals in some
amount. New features that don’t do this will be deferred until
they do (T3). Indeed, the pull request P594 discussed above,
was initially rejected because it did not properly consider
conditional compilation. Obviously, the Marlin maintainers
enforce this rule, because the broad Marlin community needs
the flexibility prescribed by criterion T1.

RQ6. What are the criteria that lead to integrating a forked
variant into the platform using conditional compilation?

We define integrating a forked variant as either merging the
entire fork or one of its features into the main platform.
Both phenomena are of interest for researchers working on
development modes mixing integrated and forked (virtual)
variants [10], [25], [26], [17]. While several research groups are

157

attempting to build technical solutions for mixed development,
we know little about how they should be used. The two previous
research questions tell us under what conditions a particular
mode can be selected. RQ6 asks about changing the integration
mode for a variant. We answer it by analyzing history of
variants integrated into the main Marlin. We learn that:

Observation 8. Marlin fork owners consider integrating their
forks into the main platform for the following reasons:
U1. Integrating widely used variants that need to be kept in

sync with upstream reduces effort and evolution cost.
U2. Integrated features are more visible and attract more

users.

Observation 9. A fork-based variant is integrated into the
main Marlin platform under the following conditions:
U3. The quality of the feature is within standards. It has been

tested and is known to work as expected.
U4. Project maintainers accept to take over the maintenance,

and the feature is aligned with project goals.

The Auto Bed Leveling feature (#253dfc4b), described above,
has been created in a fork, later updated in another fork and
finally integrated into the main repository. The integration took
place after the feature has been tested and widely recognized3

as well functioning (U3). On the other hand, if a feature is
not working as expected and may introduce bugs or affect
functionality, then it is not integrated. One such example is
thinkyhead/Marlin #de725bd4, that adds support for SD card sorting
functionality. This feature was not accepted in the main Marlin,
because it causes problems in some specific cases (U4), but it
was kept in the fork because it is demanded by users.

The fork for delta printers jcrocholl/Marlin has been integrated
into the main Marlin repository (#c430906d, #6f4a6e53). Integrat-
ing the forked variant into the origin gave both visibility (U2)
and lower maintenance efforts (U1). One of the maintainers
stated that deltabot was merged because it was clear and we
knew it had been well-tested (U3). Additionally, developers
started to contribute changes to deltabot (P511,P568). In the
deltabot fork, there were only nine pull requests created and
only one got accepted. On the other hand, after deltabot was in-
tegrated into Marlin, there were created 20 pull requests related
to Deltabot in ErikZalm/Marlin (55% more), out of which 14
were accepted (U2, U4). Interestingly, jcrocholl/Marlin remains a
separate fork where the experimental development (S4) ahead
of the main repository is happening. This allows the owner
to continue development outside the control of Marlin project
maintainers (S3).

V. THREATS TO VALIDITY

Internal validity. We have classified commits and forks using
keyword-based heuristics, and then employed this classification
in a qualitative investigation of selected cases. The use of an
imprecise heuristics could introduce noise. We did cross-check
the precision of the heuristic on a small sample, obtaining a

3Forum discussion: "Bed Auto Leveling.. check this out": http://forums.
reprap.org/read.php?151,246132

good precision. Thus, we believe that the reported numbers are
representative. Also since the detailed analysis is qualitative,
misclassification would have been detected in later phases.

Other quantitative data (contributions from forks, pull request
classification, propagation of bug-fixes, etc.) have been obtained
using exact algorithms and manual analysis. Care has been
taken to eliminate human mistakes.

During our study the Marlin firmware continued to change.
We have used an offline database obtained during a short time
interval to minimize the risk of divergences in the data source.
Then we used this database for quantitative queries.

It is possible that inactive fork owners synchronize directly
with their local git repositories, without leaving traces in
the remotes. Thus, it is hard to quantify how many actually
synchronize or push changes outside of the pull request
mechanism. Our survey verifies that this practice does not
appear at a meaningful scale though.

External validity. Practices in other software domains might not
follow those of Marlin developers. It is reassuring though that
several observations are consistent with findings of independent
studies of related problems. These were cited during our
analysis and in the following section. Since little is known
about mixed development of integrated and forked variants,
any insight, even just into the firmware domain, is useful.

VI. RELATED WORK

Cloning in-the-large. Several existing works investigate the
reasons for forking [7], [15], [5], [27]. Developers who fork
in industrial projects are reported to be motivated by the
immediate availability of the method, freedom of control
and independence from the old code base [7]. Easy access
to validated code is also a frequently cited reason [7], [15], [6].
Both in open source software [27], [5] and in industry [15]
forking is also motivated by project organizational matters
(who has control over what code). For instance, in commercial
projects, different teams have different roadmaps for their
products, different risk management strategies, and different
release schedules—all issues that can be circumvented by
forking [15]. Open source developers may decide to fork in
response to needs that are not recognized by the project’s
maintainers [5]. A group of developers can fork a project to
start a new organization with different priorities and direction
than the original one [5]. As we can see, both in closed and
open projects forking centers around adding new functionality,
which seems impossible in other ways [27], [5], [7], [15].

Forking comes at a cost, though. Maintenance becomes more
difficult [7], [15], largely because of the lack of traceability
between the forks [7]. Features and bug-fixes for different code
bases are developed independently, thus duplicated code is
created unintentionally [15]. A bug that occurs in one code
base may exist in others [7], [14], and can remain unfixed [14].
Typically, the independent teams are unaware of changes that
exist in other forks [15]. Few forks are merged back into
origin and even fewer integrate code from similar or original
projects [5]. Rubin et al. [28], [17] have extracted a set of fork

158

management operators, based on three industrial cases. The
operators support both managing forks and integrating them
into a platform. They are meant to reduce the cost of forking.

Our study confirms the above findings in several ways. We
have found several bug-fixes that are not propagated in other
projects. Adding new functionality is also one of the main
reasons for forking in our study, but often the intention is to
share the changes. We also confirmed occurrences of redundant
development. The present study differs in the following ways.
First, our objective is to understand how forking functions as
a reuse and variant management mechanism more holistically;
not only the reasons for doing it, but also other aspects such as
the extent of synchronization, or criteria for choosing forking
vs integrated variability and the life cycle of variants that are
eventually integrated. We observe that in Marlin many forks
share their changes with the origin, unlike the prior study of
Robles et al. [5] who state that very few forks are merged
back and even fewer integrate code from the origin or similar
forks. Second, our study subject is an open source system. It
follows a typical collaborative community driven development
process, without a central organization. This is very different
than the industrial processes studied before [15], [7]. Perhaps
more importantly, this means that all the data used in this
study is available online. We have provided traceability links
wherever possible. This way, researchers working on tools and
methods can use our study as an index of entries to evaluation
data for their results. Third, this study differs methodologically
combining study of artifacts (commits, branches, forks, pull
requests), interviewing developers, and surveying both active
and passive users of the community.

Cloning in-the-small. Cloning in-the-small can also be bene-
ficial [4]. For instance, developers of the Apache web server
use subsystem cloning to support a large number of different
platforms: 51% of code is cloned across the relevant subsys-
tems [29]. A study of the projects hosted in the Squeaksource
hosting service reveals that 14% of the methods are copied
between projects [30]. Even maintenance is reported to benefit
from cloning. Cloning can decrease maintenance risk for
program logic, as it allows avoiding any impact on unrelated ap-
plications or modules [6]. Cloning allows to quickly implement
a new functionality similar to an existing one. Cordy [6] reports
that in some domains (financial software in his study) cloning
is encouraged as it reduces the risk of introducing errors.
Experienced programmers clone consciously with intention
to reuse knowledge [31], [32]. Still, it is generally agreed
that cloning in-the-small also introduces software evolution
challenges. Roy and Cordy perform an in-depth analysis of
clone detection, covering aspects from techniques and tooling,
to advantages and disadvantages of cloning and taxonomies of
clones [33]. Several questions remain open to this day, e.g., if
code clones should be removed, encouraged or refactored.

Unlike all the above works, we are interested in cloning
in-the-large (forking). While some drawbacks of cloning in-the-
small apply to cloning in-the-large (e.g. fixing bugs in clones),
there are some that only apply to forking (e.g. redundant

development across projects). We provide a detailed analysis
on the benefits and drawbacks of forking in an open source
community. We took a high level perspective, asking process
and architectural questions about variant management using
forks and conditional compilation. These could not been asked
in the context of cloning in-the-small, used to scaffold code
rather than to create variants.
Github and its pull request development model. Only 14% of
the active projects in Github use the pull request development
model [34], but 79% of commercial users of Github report use
of its fork and pull request workflow [35]. The most important
factors that lead to acceptance of pull requests are code quality,
code style alignment, and the technical suitability of the change
according to a survey on 770 Github users [36]. Pull requests
are often rejected due to poor quality of the code, failing tests,
not adhering to project conventions styles, and newer pull
requests that solve the same issue but have better quality.

We corroborate a lot of these results. For example, only 15%
of Marlin’s forks create pull requests. Marlin is not different
than other open source projects in this respect. However, instead
of analyzing the usability of Github, we seek understanding of
fork-based and mixed variant management. The new knowledge
is not in understanding how the pull request mechanism works.
We study pull request to understand the dynamics and life-cycle
of forked variants. For example, the existence of pull requests
is just a proxy for generality of the variant’s value proposition.

VII. CONCLUSION

We have investigated how forking and integrated variant
management function in a lively open source community.
Forks are used to manage variant configurations. Somewhat
surprisingly, Github forks of Marlin are used more to create
disconnected software variants, than to collaborate on software
development. Most forks diverge from the mainline, possibly
due to a short activity time. Forking contributes greatly to the
creativity in the project, and more than half of the commits
originate in forks. Still, forking poses several challenges to
project participants: it leads to distribution of large amounts
of information in an unorganized space, important bug-fixes
are not propagated, and occasionally the same functionality is
developed more than once. Finally, we have extracted criteria
used by Marlin developers to decide whether a variant should
be created as a fork or integrated into the main platform, and
when the former should be migrated into the latter. To the best
of our knowledge this is the first such list created empirically.

This study will be used to derive requirements for a tool that
mixes development of individual forks and many integrated
variants, and to propose a development method around it. We
have also initiated a project to integrate several Marlin forks
into a product line architecture, in order to create a documented
and open product-line re-engineering case study.
Acknowledgments. We thank Danilo Beuche for pointing us to
the Marlin project, and maintainers Bo Herrmannsen and Scott
Lahteine for their valuable input on the Marlin project. This
work was supported by ARTEMIS JU grant n◦295397 and the
Danish Agency for Science, Technology and Innovation.

159

REFERENCES

[1] D. Faust and C. Verhoef, “Software Product Line Migration and
Deployment,” Software Practice and Experience, John Wiley & Sons,
Ltd, vol. 33, pp. 933–955, 2003.

[2] T. Mende, R. Koschke, and F. Beckwermert, “An Evaluation of Code
Similarity Identification for the Grow-and-Prune Model,” J. Softw. Maint.
Evol., vol. 21, no. 2, pp. 143–169, Mar. 2009.

[3] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting
the Grow-and-Prune Model in Software Product Lines Evolution Using
Clone Detection,” in CSMR, 2008.

[4] C. Kapser and M. W. Godfrey, “‘Cloning Considered Harmful‘
Considered Harmful,” in 13th Working Conference on Reverse
Engineering, 2006.

[5] G. Robles and J. M. González-Barahona, “A Comprehensive Study
of Software Forks: Dates, Reasons and Outcomes,” in International
Conference on Open Source Systems: Long-Term Sustainability, 2012.

[6] J. R. Cordy, “Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation,” in Proceedings of the
11th IEEE International Workshop on Program Comprehension, 2003.

[7] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An Exploratory Study of Cloning in Industrial Software
Product Lines,” in CSMR, 2013.

[8] N. A. Ernst, S. M. Easterbrook, and J. Mylopoulos, “Code forking
in open-source software: a requirements perspective,” CoRR, vol.
abs/1004.2889, 2010.

[9] L. Nyman, T. Mikkonen, J. Lindman, and M. Fougère, “Perspectives
on Code Forking and Sustainability in Open Source Software,”
in International Conference on Open Source Systems: Long-Term
Sustainability, 2012.

[10] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Laem-
mel, S. Stănciulescu, A. Wąsowski, and I. Schaefer, “Flexible Product
Line Engineering with a Virtual Platform,” in ICSE, 2014.

[11] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
“Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants,” in ICSME, 2014.

[12] B. S. Baker, “On Finding Duplication and Near-duplication in Large
Software Systems,” in Proceedings of the Second Working Conference
on Reverse Engineering, 1995.

[13] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” in ICSM, 1999.

[14] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding Unpatched
Code Clones in Entire OS Distributions,” in Symposium on Security and
Privacy, SP, 2012.

[15] A. N. Duc, A. Mockus, R. Hackbarth, and J. Palframan, “Forking
and Coordination in Multi-platform Development: A Case Study,”
in Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2014.

[16] E. S. Raymond, “Homesteading the Noosphere,” in The Cathedral and
the Bazaar, T. O’Reilly, Ed. O’Reilly & Associates, Inc., 1999.

[17] J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants: A
Framework and Experience,” ser. SPLC, 2013.

[18] B. W. Kernighan, The C Programming Language, 2nd ed., D. M. Ritchie,
Ed. Prentice Hall Professional Technical Reference, 1988.

[19] “megaAVR — 8 bit family of microcontrollers,” http://www.atmel.com/
products/microcontrollers/avr/megaAVR.aspx, accessed: 2015-07-01.

[20] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and
A. Wąsowski, “Three Cases of Feature-Based Variability Modeling in
Industry,” in MODELS, 2014.

[21] S. Apel, D. S. Batory, C. Kästner, and G. Saake, Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer,
2013.

[22] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools and Applications. Addison-Wesley, 2000.

[23] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[24] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki, “A Study
of Variability Models and Languages in the Systems Software Domain,”
Trans. Software Eng., vol. 39, no. 12, pp. 1611–1640, 2013.

[25] T. Schmorleiz and R. Lämmel, “Annotations as maintenance tasks in
similarity management,” 2015, submitted for publication. 11 pages.

[26] E. Walkingshaw and K. Ostermann, “Projectional Editing of Variational
Software,” in GPCE, 2014.

[27] T. Mikkonen and L. Nyman, “To Fork or Not to Fork: Fork Motivations
in SourceForge Projects,” Int. J. Open Source Softw. Process., vol. 3,
no. 3, pp. 1–9, Jul. 2011.

[28] J. Rubin and M. Chechik, “A Framework for Managing Cloned Product
Variants,” ser. ICSE, 2013.

[29] C. J. Kapser and M. W. Godfrey, “Supporting the Analysis of Clones in
Software Systems: Research Articles,” J. Softw. Maint. Evol., vol. 18,
no. 2, pp. 61–82, Mar. 2006.

[30] N. Schwarz, M. Lungu, and R. Robbes, “On How Often Code Is Cloned
across Repositories,” in ICSE, 2012.

[31] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethnographic Study
of Copy and Paste Programming Practices in OOPL,” in Proceedings of
the International Symposium on Empirical Software Engineering, 2004.

[32] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An Empirical Study
of Code Clone Genealogies,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, pp. 187–196, Sep. 2005.

[33] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” Technical Report No. 2007-54, School of Computing, Queen’s
University, Kingston Canada, vol. 115, 2007.

[34] G. Gousios, M. Pinzger, and A. van Deursen, “An Exploratory Study of
the Pull-based Software Development Model,” in ICSE, 2014.

[35] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. M. German,
“Open Source-Style Collaborative Development Practices in Commercial
Projects Using GitHub,” in ICSE, 2015.

[36] G. Gousios, A. Zaidman, M.-A. Storeyy, and A. van Deursen, “Work
Practices and Challenges in Pull-Based Development: The Integrator’s
Perspective,” in ICSE, 2015.

160

A.3. Paper C

A.3 Paper C

109

Concepts, Operations, and Feasibility of a
Projection-Based Variation Control System

S, tefan Stănciulescu
IT University of Copenhagen

Denmark
scas@itu.dk

Thorsten Berger
Chalmers | University of Gothenburg

Sweden
thorsten.berger@chalmers.se

Eric Walkingshaw
Oregon State University

USA
walkiner@oregonstate.edu

Andrzej Wąsowski
IT University of Copenhagen

Denmark
wasowski@itu.dk

Abstract—Highly configurable software often uses preproces-
sor annotations to handle variability. However, understanding,
maintaining, and evolving code with such annotations is difficult,
mainly because a developer has to work with all variants at a
time. Dedicated methods and tools that allow working on a subset
of all variants could ease the engineering of highly configurable
software. We investigate the potential of one kind of such tools:
projection-based variation control systems. For such systems we
aim to understand: (i) what end-user operations they need to
support, and (ii) whether they can realize the actual evolution
of real-world, highly configurable software. We conduct an
experiment that investigates variability-related evolution patterns
and that evaluates the feasibility of a projection-based variation
control system by replaying parts of the history of a highly
configurable real-world 3D printer firmware project. Among
others, we show that the prototype variation control system does
indeed support the evolution of a highly configurable system and
that in general, it does not degrade the code.

I. INTRODUCTION

Tailoring systems to the specific needs of users, such as hard-
ware environments, runtime platforms or various combinations
of features, is becoming increasingly important. Such systems
are typically highly configurable by containing massive amounts
of variability, which is often realized using static variability
annotations, such as conditional compilation directives (e.g.,
#ifdef) in C code [19]. While such annotations are among the
most frequently used and most simple variability mechanisms,
their use is known to complicate writing, maintaining (e.g.,
bug-fixing), and evolving (e.g., adding a cross-cutting feature)
source code [12]. Variability annotations obscure the structure
and flow of the underlying code [32], since much of the
conditionally included code is often irrelevant for a particular
code-editing task. In fact, working on all possible variants
of the system at once is known to negatively impact the
comprehension of source code [26]. Beyond syntax highlighting
and code folding, no major IDE supports editing variant subsets
while ensuring the consistency of the whole system.

Consider the code excerpt in Listing 1 taken from the
Marlin 3D printer firmware, the subject of our study. The
code represents several variants related to the printer display.
Understanding the code and what impact a change might
have is difficult due to the many variability annotations and
the variant-specific code. Ideally, when editing one or more
features, developers would only see the relevant code without
being distracted by code that belongs to irrelevant features. For

// LCD selection
#ifdef U8GLIB_ST7920
//U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
U8GLIB_ST7920_128X64_RRD u8g(0);

#elif defined(MAKRPANEL)
// The MaKrPanel display,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

#elif defined(VIKI2) || defined(miniVIKI)
// Mini Viki and Viki 2.0 LCD,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

#elif defined(ELB_FULL_GRAPHIC_CONTROLLER)
// Based on the Adafruit ST7565
// (http://www.adafruit.com/products/250)
U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0);

#else
// for regular DOGM128 display with HW-SPI
// HW-SPI Com: CS, A0
U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0);

#endif

Listing 1. Marlin excerpt (dogm_lcd_implementation.h at commit a83bf18)

instance, for editing Marlin’s feature MAKRPANEL, a developer
could choose to select variants that include this feature, in
order to obtain a simplified view similar to the one shown in
Listing 2. Now, the developer could edit this view, and should
then be able to consistently update the underlying code from
Listing 1, which contains all the variants.

Various methods and tools that allow working on dedicated
subsets of all variants have been proposed in the literature [38],
[23], [3], [20], [18], [29]. We refer to them as variation control
systems. To some degree, they can ease the engineering of
highly configurable software by providing views that only show
the code related to specific variants, while hiding irrelevant
code. However, none of them has found widespread adoption.
In fact, no empirical data is available that shows how exactly
they can be used to engineer real-world systems, and what
their specific benefits and challenges are. Another kind of tools
that provide views on programs, but that are actually adopted
in practice [35], are projectional editors, such as Jetbrains’
Meta Programming System [1] or Intentional’s Domain Work-
bench [30], [5]. Unfortunately, they lack dedicated operations

// The MaKrPanel display,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

Listing 2. Code relevant for editing the feature MAKRPANEL

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.88

323

related to editing source code with variability.
Towards building efficient, projection-based methods and

tools for engineering highly configurable software, we need to
understand what operations users need and how they could deal
with such operations. In this paper, we conduct an empirical
study to assess the feasibility and actual use of a variation
control system. Specifically, we realize a variation control
system prototype and use it to evolve parts of the history of
a highly configurable software. Our prototype supports the
following workflow: (1) checkout a view (a version of the
full source code with less variability) according to a given
projection condition, (2) edit the view, and (3) checkin the
edited code (updating the underlying, fully variational code).

Our system combines and extends concepts from prior
work [38], [24]. We describe it using the choice calculus [10],
[36], [37], a concise and formal notation that avoids dealing
with intricate C preprocessor semantics and allows reasoning
about highly configurable systems.

To identify end-user edit operations that the system should
support, we analyze the history of a highly configurable open-
source software system: the 3D printer firmware Marlin. We
aim at understanding the kinds of changes (patterns) related to
variability done by developers. We cross-validate the patterns
using Busybox, an open-source project implementing shell
tools for embedded systems. Based on the patterns we show
how the edit operations for the variation control system can
be implemented. We then conduct an experiment to study how
the edit operations can be realized using the variation control
system. In the experiment, we use our prototype to replay parts
of Marlin’s history, by applying randomly selected patches.

In summary, we contribute:
• A projection-based variation control system prototype

relying on a checkout/checkin workflow and automatically
handling variability annotations.

• End-user edit operations that show the use of the variation
control system, based on identified variability-related code
evolution patterns.

• Empirical data (metrics) that shows feasibility, benefits,
and challenges of using the system, specifically showing
that the resulting code is not significantly degraded by
using the variation control system.

• A replication package in an online appendix,1 showing
the use of the system (i.e., the code before projection, the
projection and its resulting view, the code changes, and
the code after checking the edited view back in).

II. MOTIVATION

We briefly introduce three previous variation control sys-
tems [20], [27], [38] that provide editable views based on
projections specified by developers. All rely on variability
realized using annotations embedded in code, similar to C’s
conditional-compilation directives (e.g., #if or #ifdef). These
annotations carry a Boolean expression over features, called
presence condition (PC) in the remainder. The first two systems

1http://bitbucket.org/modelsteam/2016-vcs-marlin

do not exist anymore and there is hardly any evidence on their
usefulness. The third one has not been empirically evaluated
and no publicly available tool exists.

Kruskal [20], [21] presents an editor that realizes both
concurrent versioning (variability) and sequential versioning
(evolution in time) relying on variability annotations. Similar
to conditional compilation, code lines are mapped to Boolean
PCs, representing both the variant and the version to which
the lines belong to. The editor creates views based on a
partial configuration (a conjunction of features) called mask,
supporting workflows where developers start with a relatively
broad mask (e.g., projecting on just one feature), potentially
restricting the mask by conjoining other features (e.g., “push”
more masks on a stack), editing code in the views belonging
to the more restricted masks, and then returning to more broad
masks (e.g., “pop” masks from a stack). Code lines with PCs
that do not contradict the mask are visible for editing. Several
convenience commands are available to the user for iterating
through variants and for manipulating PCs. The editor is not
available anymore, and no empirical data on its use exists.

Lie et al. [24], Munch [27], and Westfechtel et al. [39] present
and evaluate an alternative versioning model based on logical
changes: change oriented versioning (CoV). It also unifies
concurrent and sequential versioning, by attaching Boolean PCs
to file fragments. It follows a classical checkout/checkin cycle,
where a configuration (conjunction of features) determines
both the version and the variant available in the view (e.g., the
workspace), which can be edited. It decouples the projection
(called “choice”) from the expression used to checkin the edited
view (called “ambition”) to denote to which variants a change
applies to. In an empirical study the authors translate existing
C/C++ source code files of gcc into CoV representation in
a database (EPOSDB-II [14]), and compare the performance
against RCS [33] when doing a full checkin of version 2.4.0
of gcc. The experiment investigates only performance. It does
not show how feasible it is to actually engineer a real-world
system, and how exactly the checkout/checkin cycles using
choices and ambitions can be used by developers.

Walkingshaw et al. [38] present a model for a variation
control system called projectional editing.2 They present a
formal specification of the model with the get (create a view
using a projection) and put (update the underlying program
with changes done within the view) functions at its core.
Examples are provided that show how to create the view
and how an update executes the changes done to the view.
However, in contrast to CoV, the definition of put is founded
on an edit isolation principle that ensures that the only variants
that change in the underlying program are those that can be
reached from the view. In other words, when we use put to
perform the update, the edits made on the view are guaranteed
not to affect code that was hidden by the get function. Given
this limitation, and since it was not evaluated on a real-world
system, it is not clear whether this model can handle the

2Not to be confused with projectional editing [35], [4] used in the Meta
Programming System [1] or the Intentional Domain Workbench [5]

324

B ::= true | false
F ::= B | ¬F | F ∨ F | F ∧ F
e ::= F 〈e, e〉 Choice

| e · e Append
| a Token
| ι Identity

Fig. 1. Choice calculus syntax

engineering of real-world, highly configurable systems.
To study the concepts and the feasibility of using a variation

control system based on projections, we create one that takes
concepts from previous work.

III. VARIATION CONTROL SYSTEM PROTOTYPE

Our variation control system prototype can be seen as a
generalization of the one described before [38]. We avoid
some limitations by allowing partial configurations and using
the concept of ambition from CoV [27], which specifies what
variants are affected by the change when updating the code.

A. Choice Calculus

We use the choice calculus [10], [36], [37], a formal and concise
notation for variational software, to describe our projection-
based variation control system and for expressing examples in
a language independent manner. Fig. 1 describes its syntax.

Unlike previous applications of the choice calculus [11], we
do not embed choices within abstract syntax trees. Instead,
we use a generic monoid structure. This better models the
use of #ifdef directives in existing code repositories, since
#ifdef directives are line-based and do not need to respect the
syntactic structure of the underlying object language.

The metavariable e denotes a choice calculus expression (i.e.,
code). An expression can consist of a choice, the concatenation
of one expression to another using the monoid append operation
(·), an arbitrary token, or the monoid identity element (ι). A
choice represents a variation point in-place as a choice between
alternatives, written F 〈e1, e2〉. The associated condition F is
the choice’s PC. When configuring a choice calculus expression,
each feature is set to true or false , then each choice is replaced
by either alternative e1 if F evaluates to true , or alternative e2
otherwise. For example, given the choice (A∧B)〈2, 3〉, if both
features A and B are set to true , the choice will resolve to 2

during configuration, but will resolve to 3 if A or B is false.
We consider tokens to be arbitrary strings, the append operation
to be string and line concatenation, and the identity element
to be the empty string. This allows for a finer representation
of variability than afforded by #ifdef, as it is not constrained
to varying lines.

B. Workflow

Fig. 2 shows the intended workflow of our system. Symbols r
and r′ refer to the highly configurable software source code
stored in a repository, and v and v′ refer to working copies of
the source code that are viewable and editable by the developer.
The source code (r, r′, v, v′) is represented by a choice calculus
expression (e in Fig. 1). The operation get is used to checkout
a particular working copy from the repository, and put is used
to checkin any changes back to the repository. Our workflow is

r r′

v v′

derived edit

(1) get(p, r)

get(p∧ a, r′)

(2) actual edit

put(p, p, r, v) (3) put(p, a, r, v′)

Fig. 2. Projection-based variational editing workflow and relationships. Symbol
r represents the repository that contains source code, p is the projection that
specifies how to obtain the view v from r using the get function. The ambition
a specifies how should the changes from the edited view v′ be applied to the
repository using the put function. Both p and a are Boolean expressions over
features.

independent of the type of storage used to contain the source
code (e.g., version control systems or just folders).

In step (1) the developer obtains a simplified view v from
the initial repository r. The parameter p, the projection, defines
how v is obtained from r. More specifically, p describes a
partial configuration of r, eliminating all of the variability that
is irrelevant to the current code-editing task. In step (2) the
developer edits v into v′ using whatever standard tools they
prefer. In step (3) an additional parameter a, the ambition, is
introduced, which specifies how the developer’s changes should
be integrated into the repository. Note that the put operation
takes into account the initial repository, the updated working
copy, the projection, and the ambition when producing the
updated repository r′.

The two dashed edges in the diagram describe some basic
consistency principles that get and put should satisfy. These
are derived from the lens laws developed in research on
bidirectional transformations [13] and constrain the potential
definitions of get and put .

The left dashed line requires that a get followed by a put
is idempotent. Specifically, if we retrieve a simplified version
v with some projection p and then immediately check it back
in with the same ambition a = p, then the repository should
remain unchanged. This enforces that the get operation is not
effectful from the perspective of the repository.

The right dashed edge requires that a put followed by a
get (with an appropriately structured projection) is idempotent.
Specifically, immediately after applying the put function to
checkin changes from the edited view v′, we can obtain that
same working copy by doing a checkout using the conjunction
of p and a as the projection. This enforces that the put operation
is always reversible.

C. Get and Put Function

Specifying and implementing get is straightforward (e.g., using
full or partial preprocessing). We chose partial preprocessing to
allow projections that are partial configurations. The function
get obtains a view using the following process. It iterates
through all top-level choices in the AST. It takes the right
alternative if the choice’s PC contradicts the projection. It takes
the left alternative if the negated PC contradicts the projection.
Contradictions are checked using a SAT solver [9]. If neither
the PC nor its negation contradict the projection, get keeps the
choice as it is. For each not eliminated alternative, get repeats
this process descending into each alternative’s sub-tree.

325

FACTORING
F 〈e1, e2〉 · F 〈e3, e4〉� F 〈e1 · e3, e2 · e4〉

F 〈e1, e2〉 · ¬F 〈e3, e4〉� F 〈e1 · e4, e2 · e3〉

CHOICE-IDEMPOTENCY
F 〈e, e〉� e

CHOICE-DOMINATION
�el�F = e′l �er�¬F = e′r

F 〈el, er〉� F 〈e′l, e′r〉
JOIN-OR
F 〈el, F ′〈el, er〉〉� (F ∨ F ′)〈el, er〉
JOIN-AND
F 〈F ′〈el, er〉, er〉� (F ∧ F ′)〈el, er〉
JOIN-OR-NOT
F 〈el, F ′〈er, el〉〉� (F ∨ ¬F ′)〈el, er〉
JOIN-AND-NOT
F 〈F ′〈er, el〉, er〉� (F ∧ ¬F ′)〈el, er〉

Fig. 3. Choice calculus minimization rules

For the put operation it is difficult to identify a simple and
rational definition that is consistent with the above requirements
by analyzing examples alone. Recall that our previous work [38]
relied on an edit isolation principle: when doing a put in (3),
the edits made in (2) cannot affect code hidden by get in
(1). Although this principle is somewhat restrictive, it leads
naturally to a definition that satisfies the requirements derived
from the lens laws. Generalizing the edit isolation principle,
we can obtain a put operation that is less restrictive than in
the previous work, while still retaining the properties.

This generalized edit isolation principle can be defined as
follows. Let C be the set of all configurations of r and r′,
and r′ = put(p, a, r, v′) as defined in Fig. 2. The get function
obtains all choices whose PC does not contradict the projection:

∀c ∈ C. get(c, r′) =
{
get(c, v′) if SAT(c ∧ p)

get(c, r) otherwise

The put update function consists of constructing a new
choice with the updated view v′ in the left branch, and the
original source r in the right branch:

put(p, a, r, v‘′) = minimize(F 〈v′, r〉)
F = (p ∧ a)

We minimize the choice expressions to a more compact
representation, which reduces redundancy, using the rules
shown in Fig. 3. Note that they can change the syntax of a
choice, but preserve its semantics. For an in-depth description
of choice-idempotency, choice-domination, and the join rules,
please refer to previous work [38]. In addition, we introduce
the two FACTORING rules, which join two consecutive choices
that have compatible PCs into a single choice.

D. Implementation

We implement the variation control system prototype, compris-
ing parser, get and put function, minimization rules, and pretty
printer, in Scala. The prototype is programming-language inde-
pendent (line-based), but the parser and pretty printer recognize
and write variability annotations in C preprocessor syntax (e.g.,
#if, #ifdef, #endif). Internally, the choice calculus [36] is used.

IV. STUDY DESIGN

In our study we investigate two research questions:
RQ1: What edit operations should a variation control system
support? We analyze the history of an open-source project
repository at the source code level to identify variability-related
editing patterns. We show how edit operations for the variation
control system can realize the patterns found.
RQ2: Can a variation control system be used to maintain and
evolve a highly configurable system? In an experiment we
replay parts of the history of our subject system using the
variation control system prototype, and check how many cases
we can support and which are not trivial to support. Using
metrics we study characteristics of the code before checkout,
of the view itself, and of the code after checkin. Specifically,
we check that there is no negative effect (e.g., deterioration)
on the source code by our variation control system prototype.

Our investigation of both research questions is followed by
a discussion of the challenges we encountered (e.g., choosing
a projection and ambition) during the experiment, and of the
edit operations we identified.

Subject System

We study Marlin, a highly configurable firmware for 3D
printers written in C++, which uses conditional compilation to
implement variability. Marlin emerged in 2011 as a mixture
of the existing projects Grbl (firmware for CNC machines)
and Sprinter (firmware for 3D printers), and original code. We
choose Marlin as it is large and complex enough for our purpose
(40 KLOC and over 140 features) and we have prior experience
with understanding the system [34], which reduces the chance
of misinterpretations or mistakes. We use the development
branch of Marlin’s Git repository3 on Github. We clone the
“MarlinDev” repository with the HEAD pointing to commit
3cfe1dce1. This version of Marlin consists of 187 source files
(excluding additional library files supporting Arduino boards).

RQ1: Identification of Edit Operations

To identify edit operations we analyze patches and extract
variability-related edit patterns. We retrieve all 3747 commits
(without merge commits) from Marlin’s history and split each
commit into a patch per changed file, excluding those files that
were added, removed or renamed, resulting in 5640 patches.

We classify the patches into patterns in three steps. First,
we randomly extract 50 commits that add or remove #ifdef

directives in code using grep, and manually inspect the patch
to understand the change and recognize patterns. Second, to
automatically classify to which edit pattern a patch belongs to,
we create several regular expressions to represent each pattern
defined previously, and apply them on the pool of patches. We
analyze the results of this step by verifying whether all the
patches have been classified. Third, for patches that remain
unclassified, we add the respective regular expressions and
re-run the classification. We repeat these steps until each patch

3https://github.com/MarlinFirmware/MarlinDev

326

is classified by at least one pattern (note that a patch can belong
to multiple patterns).

To cross-validate the patterns we run our classifier on the
Busybox project, a larger project with 175 KLOC. We use the
project’s Git repository4 at commit a83e3ae, containing 13,700
commits excluding merge commits, and again split them into
a patch per file, which yields 34,018 patches.

RQ2: Replaying a Sample of Marlin’s History

We replay randomly selected patches from Marlin (RQ2). We
filter the 5640 Marlin patches down to 2322 by considering
only those patches that modify files containing only Boolean
PCs. This is justified as we are not interested in analyzing
the complexity of Marlin’s PCs. Other kinds of PCs could
be handled using an SMT or CSP solver, without affecting
the variation control system’s main design features. From the
2322 patches we randomly select three for each identified
edit pattern. Some patterns did not have any purely Boolean
representative in the selection. For these we randomly pick
missing patches from the whole pool of 5640 (Boolean and non-
Boolean) patches, and transform non-Boolean expressions into
Boolean ones by introducing new variables for non-Boolean
sub-expressions (a simple form of predicate abstraction).

1) Experiment Setup: For each randomly selected patch,
we manually conceive the projection and ambition required
to replay it. Recall that the projection represents a set of
configurations for which the code is changed. To conceive it
we localize the change in the file using line numbers from the
patch’s meta-data and then check if those lines exist under a
PC. The projection is then a conjunction of all these PCs. The
ambition is conceived using only the patch information. We
replay each change in three steps, where S1 and S3 are done
by our prototype, and S2 is done manually in a text editor:
S1 Checkout the original source code file using the projection,
S2 Edit the view to apply changes from the patch,
S3 Checkin changes using the ambition.

2) Metrics: We compute metrics for the stages in our
workflow (cf. Fig. 2): original source code (r), view on source
code (v), and updated source code by our system (r’). To
compare the latter to the updated original source code, we also
compute the metrics for the original update (r’) from Marlin’s
Git repository. We use the following metrics:

• LOC: lines of code in a file, including comments but
excluding blank lines.

• NVAR: number of variation points; more precisely:
choices (represented by #if, #ifdef, #ifndef, etc.) in a
file. A high NVAR challenges code comprehension.

We compute the reduction factor for LOC and NVAR
by dividing their values after checkout (view) to the values
before checkout, which would show any positive or negative
impact of creating views. Finally, we consider the number of
checkout/checkin cycles per executed change. In some cases,
we need to apply different projections and ambitions to realize
a change. We record this number of steps.

4https://git.busybox.net/busybox

TABLE I
CODE-ADDING PATTERNS

Name #Multi #Only Example

P1 AddIfdef 969 129 ι → F 〈e, ι〉
P2 AddIfdef∗ 424 32 (ι → F 〈e, ι〉)∗
P3 AddIfdefElse 271 4 ι → F 〈e1, e2〉
P4 AddIfdefWrapElse 43 17 e2 → F 〈e1, e2〉
P5 AddIfdefWrapThen 13 3 e1 → F 〈e1, e2〉
P6 AddNormalCode 4683 871 ι → e
P7 AddAnnotation 293 12 not applicable

V. IDENTIFIED EDIT OPERATIONS

We now explain each identified pattern and how it can be turned
into an edit operation (RQ1) on top of the variation control
system. We use a stripped notation of the unified diff program to
represent the changes. A plus (+) in front of a line indicates that
the line is to be added, a minus (-) that the line is to be removed.
A line without plus or minus remains unmodified. We remove
meta information (e.g., header, hunks, range information), as it
is not particularly useful for representing the pattern. Running
the pattern classifier, we identify 14 types of edit patterns.
We split these into three categories: Code-Adding Patterns,
Code-Removing Patterns, and Other Patterns.

These patterns represent edit operations that projection-based
variation control systems need to support. We show for each
pattern how the workflow described in Sec. III-B can be applied
to realize the particular edit.

A. Code-Adding Patterns

Table 1 shows patterns where new code is added, together with
the number of patches belonging to each pattern. The #Multi
column indicates the number of patches that match the given
pattern and also one or more other patterns, while the #Only
column indicates the number of patches that match only that
pattern. The last column provides a brief illustration of the
pattern using the choice calculus.
P1 AddIfdef. In this pattern a simple #ifdef with no #else

branch is added in the code, as shown below.
+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #endif

This pattern can be achieved in the variation control system
by doing a checkout with the trivial projection true , adding the
second line, then checkin changes with the ambition ULTRA_LCD.

In Fig. 4 we illustrate this workflow using the choice calculus.
For simplicity of presentation, we assume starting with an
empty file or with just a few lines of code, in this and all
of the following examples. We use U as shorthand for the
ULTRA_LCD feature and lcd for the code on the second line. We
will use these abbreviations throughout the section.

r = ι r′ = U〈lcd, ι〉

v = ι v′ = lcd

get(true, r)

actual edit

put(true, U, r, v′)

Fig. 4. P1 AddIfdef editing workflow.

327

P2 AddIfdef∗. In this pattern two or more simple #ifdef with no
#else branches are added to the code. We distinguish this pattern
from the previous one, since adding multiple #ifdef blocks at
once may require multiple checkout/checkin sequences if the
PCs are different. If multiple #ifdef blocks are added that have
the same PC, then the edit can be executed in the same way
as the P1 AddIfdef pattern.
P3 AddIfdefElse. In this pattern, presented below, an #ifdef

with an #else branch is added in the code.
+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #else
+ alertstatuspgm(msg);
+ #endif

This pattern is supported by the variation control system
in two ways. The first is to do a checkout with the trivial
projection true , add the full #ifdef–#else–#endif block directly,
and then checkin with the trivial ambition true . However, it is
also supported by a sequence of two edits, one that edits the
configurations where the ULTRA_LCD feature is enabled, and one
that edits the configurations where it is disabled.

Fig. 5 illustrates this edit using our workflow. We use lcd

and alert as shorthand for the code on lines 2 and 4, in the
pattern above.

ι U〈lcd, ι〉 U〈lcd, alert〉

ι lcd ι alert

get(true,r)
get(¬U,r2)

actual edit

put(true, U, r1, v
′
1)

actual edit

put(¬U,¬U, r2, v
′
2)

Fig. 5. P3 AddIfdefElse editing workflow.

P4 AddIfdefWrapElse. This pattern represents cases where
some existing code becomes the #else branch of a new #ifdef

block. The pattern is presented below.

+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #else

alertstatuspgm(msg);
+ #endif

This pattern is well supported by our workflow, as illustrated
in Fig. 6, where we checkout with a trivial projection, edit the
original code, and then checkin with the ambition ULTRA_LCD.

r = alert r′ = U〈lcd, alert〉

v = alert v′ = lcd

get(true, r)

actual edit

put(true, U, r, v′)

Fig. 6. P4 AddIfdefWrapElse editing workflow.

Note that a checkout with projection U would yield the
same result, but the advantage of this workflow is that we can
decide after making the edits how they are be applied to the
repository.
P5 AddIfdefWrapThen. This pattern is dual to the previous
pattern. In this pattern, the original code becomes the then-
branch of a new #ifdef block, as illustrated in the code below:

TABLE II
CODE-REMOVING PATTERNS

Name #Multi #Only Example

P8 RemNormalCode 3932 209 e → ι
P9 RemIfdef 534 24 F 〈e1, e2〉 → ι
P10 RemAnnotation 228 2

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

+ #else
+ alertstatuspgm(msg);
+ #endif

The workflow to support this pattern is as the one from P4
AddIfdefWrapElse, except that we checkin with ambition ¬U .
P6 AddNormalCode. This pattern represents changes that do
not affect the variability of the code base. That is, the modified
code is either (1) non-variational or (2) exists under a specific
PC. This is the most common of the operations performed
during system evolution [25]. In case (1), we just checkout
and checkin with p = a = true. In case (2), we checkout
with a p equal to the PC of the modified code, then checkin
with a = true. In case (2), if the preprocessing eliminates a
significant amount of surrounding code, then we expect our
editing workflow to convey significant usability benefits since
this code is irrelevant to the edit being performed. This is
confirmed in a case in our experiment, where more than half
of the code is eliminated in the view.
P7 AddAnnotation. This pattern captures cases where preproces-
sor annotations are added to the code. This usually corresponds
to adding a new #ifdef line or a new #endif line to the code to
fix a previous mistake. We do not exclude whitespace changes,
thus, this pattern happens also when there are changes in the
line that contains the annotations (e.g., adding a comment to
the line). Our editing model does not support such cases since
we permit only well-formed variability annotations.

B. Code-Removing Patterns

Table II lists patterns that relate to removing code.
P8 RemNormalCode. This pattern captures cases where code
is removed, regardless of whether it is under a PC or not. The
pattern is presented below:

#ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg);
alertstatuspgm(msg);
#endif

The update in this case is simply to checkout the source
code with projection ULTRA_LCD, delete line 2, and checkin with
ambition ULTRA_LCD as shown in Fig. 7.

r = U〈lcd · alert, ι〉 r′ = U〈alert, ι〉

v = lcd · alert v′ = alert

get(U, r)

actual edit

put(U,U, r, v′)

Fig. 7. P8 RemNormalCode editing workflow.

For cases where an #else branch exists in the #ifdef block,
the workflow is the same, but the projection is the negation

328

of the PC. All the numbers corresponding to P9 in Table II
include any removed code from an #ifdef block.
P9 RemIfdef. This pattern captures cases where code blocks
guarded by PCs are removed. This pattern covers the removal
of both simple #ifdef blocks and those containing an #else

branch. The pattern is presented below:
- #ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg);
- #else
- alertstatuspgm(msg);
- #endif

This edit is dual to the P3 AddIfdefElse and can be similarly
supported either by a trivial projection or by a sequence of
two edits, as illustrated in Fig. 8.

U〈lcd, alert〉 U〈ι, alert〉 ι

lcd ι alert ι

get(U,r1)
get(¬U,r2)

actual edit

put(U,U, r1, v
′
1)

actual edit

put(¬U,¬U, r2, v
′
2)

Fig. 8. P9 RemIfdef editing workflow.

P10 RemAnnotation. This pattern represents cases where
annotations are removed from code. This can happens when an
#ifdef or #endif line was inconsistently removed, resulting in
ill-formed code. As with P7 AddAnnotation, this pattern cannot
be reproduced (and would not occur) using our editing model,
since we do not support ill-formed variability annotations.

C. Other Patterns

The remaining editing patterns are listed in Table III.
P11 WrapCode. This pattern describes cases where an existing
piece of code is made variational, as shown below:

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

+ #endif

We show how to support this pattern in Fig. 9. We checkout
with a trivial projection, delete the code that should be
conditionally wrapped, in this case line two, and then checkin
with an ambition that describes the configurations in which
the code should no longer appear (e.g., ¬ULTRA_LCD).

r = lcd r′ = U〈lcd, ι〉

v = lcd v′ = ι

get(true, r)

actual edit

put(true,¬U, r, v′)

Fig. 9. P11 WrapCode editing workflow.

P12 UnwrapCode. This pattern describes the opposite case
of the previous pattern. In this pattern, an existing piece of
variational code is made non-variational, that is, the surrounding
#ifdef and #endif annotations are removed, as shown below:

- #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

- #endif

This pattern is not very amenable to the projectional editing
model. The workflow for this pattern is shown in Fig. 10.
Essentially, it requires to obtain the variants that do not include

TABLE III
OTHER PATTERNS

Name #Multi #Only Example

P11 WrapCode 77 29 e → F 〈e, ι〉
P12 UnwrapCode 12 2 F 〈e, ι〉 → e
P13 ChangePC 225 74 F1〈e1, e2〉 → F2〈e1, e2〉
P14 MoveElse 5 2 F 〈e1, e2 · e3〉 → F 〈e1 · e2, e3〉

the code, re-adding the same code, and checkin with the same
ambition as the projection.
Note that before minimization, the put will produce a choice
U〈lcd, lcd〉, where both alternatives are the same. This can
be simplified to simply lcd using the choice idempotency
minimization rule, resulting in r′.

r = U〈lcd, ι〉 r′ = lcd

v = ι v′ = lcd

get(¬U, r)

actual edit

put(¬U,¬U, r, v′)

Fig. 10. P12 UnwrapCode editing workflow.

Observe that the manual edit to transform v into v′ requires
reproducing the code that was projected away during checkout.
Although this can be accomplished for a single #ifdef with
copy–paste, clearly this is not ideal. Therefore, this scenario is
better supported by a non-projectional edit, doing a checkout
with the trivial projection true , removing the #ifdef and #endif

annotations, and using the ambition true for checkin.
P13 ChangePC. This pattern describes cases where the PC
associated with an #ifdef is changed, as shown below:

- #ifdef ULTRA_LCD
+ #if ULTRALCD && ULTIPANEL

lcd_setalertstatuspgm(lcd_msg);
#endif

In this example two changes have occurred: the ULTRA_LCD

option has been renamed to ULTRALCD, and an additional
constraint ULTIPANEL has also been added.

This pattern is perhaps better supported without a projec-
tional edit because it would require to remove all code under
the old PC and then add the same code that was removed under
the new PC. In future work, we plan to explore operations for
explicitly supporting such edits, including feature renaming
and systematic modifications to PCs.
P14 MoveElse. This pattern captures cases where an #else

annotation is moved in order to move some code from one set
of configurations to another. This pattern is presented below:

#ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

- #else
alertstatuspgm(msg);

+ #else
cleanup(msg);
#endif

This (infrequent) pattern is another that is better supported
without projectional editing, but it can be achieved by two
edits as illustrated in Fig. 11. We use the first letter of lines 2,
4, and 6 from the pattern above, to indicate the respective line
of code.

329

U〈l, a · c〉 U〈l, c〉 U〈l · a, c〉

a · c c l l · a

get(¬U,r1)

get(U,r2)

actual edit

put(¬U,¬U,r1,v
′
1)

actual edit

put(U,U,r2,v
′
2)

Fig. 11. P14 MoveElse editing workflow.

As with the P12 UnwrapCode pattern, this requires repro-
ducing some part of the code between projectional edits (e.g.,
alert in this example).

VI. RESULTS

We now present the results of applying the variation control
system. All evaluation data is available in the online appendix.5

Our objective in this experiment is to verify if the edit
patterns described in Sec. V are indeed supported, and what
kind of projections and ambitions are used. Moreover, we are
interested to see if there is any negative effect on the source
code when using the prototype variation control system.

A. Applying the Changes

Following the methodology from Sec. IV, we randomly selected
patches that belong to only one edit pattern, covering 12 edit
patterns out of 14. Patches from the remaining two edit patterns
(P7 AddAnnotation, P10 RemAnnotation) cannot be executed
with the prototype. We therefore ignore these two update
patterns and obtain 34 patches. One patch belonging to P12
UnwrapCode contains merge conflicts leading to an ill-formed
variation and is excluded. In total we use the variation control
system on 33 patches.

All the selected patches were successfully applied using the
variation control system. The actual changes on the view were
performed with a simple text editor. Note that for all patches
that add or remove #ifdef blocks, we only touched the code
between the annotations to realize the edit; the annotations are
handled by the variation control system.

A projection-based variation control system can support
all the presented edit patterns when no malformed
variability annotations exist.

B. Complexity of Projections and Ambitions

Since some patches required multiple steps to execute the
change, we performed a total of 37 projections. Of these, 14 use
one feature and 11 the trivial condition true. The remaining 12
projections use two, three or four features in their expressions.
In three cases the projection is the conjunction of four features,
making these projections more difficult to understand and use.

Yet, it is not uncommon that a developer needs to consider
two or more features (i.e., ≥ 4 system variants) when fixing
bugs. In fact, Abal et al. [2] identify 30 bugs that occur when
there is a combination of at least two configuration options. In
such cases, using a projection-based editing tool could simplify
the task, focusing only on the variants in which the bug appears.

5http://bitbucket.org/modelsteam/2016-vcs-marlin

TABLE IV
LOC AND NVAR METRICS WITH THE MIN, MAX, AND MEDIAN VALUES FOR

THE 33 CHANGES FOR OUR PUT FUNCTION. REPOSITORY UPDATE
REPRESENTS THE CHANGE DONE BY THE DEVELOPER IN THE ORIGINAL GIT

REPOSITORY OF THE PROJECT.

LOC NVAR

Our put function Repository update Our put function Repository update

MIN 65 72 1 1
MAX 2448 2368 193 147
MEDIAN 447 449 20 21

In ambitions, the highest number of features is the same as
in projections, four. But we see a decrease of trivial ambitions,
which is expected, as for example P11 WrapCode edits may
be performed on trivial projections, but require an ambition
different than true. In one case the expression used for both
projection and ambition is a conjunction of a feature and a
disjunction, p = A ∧ (B ∨ C). Finally, for 18 changes the
ambition equals the projection.

C. Metrics and Reduction Factors

Table IV shows the aggregate values (min, max, and median)
of our metrics on the source code resulted from the update
done by the prototype, and the original update from the Git
repository. While our goal is not to improve code with regards
to LOC or NVAR, Table IV shows that the prototype does not
perform worse than the original update in almost all cases.

The boxplot in Fig. 12 shows the reduction factor for LOC
and NVAR after the projection. For the LOC reduction factor
when doing projections, we would expect it to be zero, in the
case of using a trivial projection, or larger than zero when a
non-trivial projection is used. Table IV and the boxplot confirm
this hypothesis. The average number of LOC after projection
is smaller than before projection. In one outlier case the LOC
in the view was reduced by half, compared to the original
file. The reason is that the source code has a sequence of
#if-#elif-#else-#endif directives with many #elif branches,
which naturally contradicted the projection. In such cases, the
benefit of projecting views can be high, especially for code
comprehension (e.g., to understand the control flow).

As we would also expect, NVAR is reduced when projecting
the code, although this reduction is minimal in most cases. In
our experiment, many changes are done on features that wrap
an entire file’s source code or use the trivial projection true.
Nevertheless, in three outlier cases there is a high decrease in
NVAR when many #ifdef blocks are projected away.

Finally, we investigate whether there is any degradation of
code when using the variation control system. Comparing the

����

���

	
	 	
� 	
� 	

����������������

Fig. 12. Reduction factors for LOC and NVAR for the view

330

LOC between the update done by the variation control system
and the original update, shows that the former has the same or
less LOC in most cases. The differences mostly occur when
two consecutive choices (#ifdef blocks) with the same PC
are merged, or when one has the other one’s negated PC, as
formulated by the factoring rule shown in Fig. 3. This merging
also affects the number of variation points, generating a lower
number in the case of the variation control system’s update.

A projection-based variation control system can be used
to engineer a highly configurable system. Our prototype
did not negatively impact the code in terms of LOC, NVAR.
In some cases it even improved the code.

VII. DISCUSSION

Let us now discuss challenges we encountered in the experiment
(RQ2) and then get back to the editing operations (RQ1).

A. Challenges of Using the Variation Control System

Most importantly, the editing workflow is different. This
requires some mental effort in understanding what projection
and ambition to use. However, in our experience, choosing a
projection and ambition was straightforward in most cases,
but more difficult for changes that required two or three
checkout/checkin cycles.

An interesting case to consider is choosing the ambition when
making code optional, that is, wrapping existing code with a
PC. Both P11 WrapCode and P5 AddIfdefWrapThen required
the ambition to be the negated desired PC. The intuition is
that the we have to choose an ambition that describes in which
configurations should the code not appear. This may seem
unintuitive at first, but it is easy to see why this is necessary.
In a text editor or IDE, the user could select the code that
should be under a PC and just enter that PC.

B. Edit Operations for a Variation Control System

Some of the identified edit patterns were difficult to replay
using the projection-based editing workflow and our realization
of the get /put functions. However, the edit patterns should not
be seen as the edit operations a developer would use when
using a variation control system. We use the edit patterns to
derive, where needed, the edit operations for a variation control
system. Most patterns can be used in a straightforward manner
and do not require specialized operations. However, a variation
control system would require a specialized edit operation for
renaming and changing a PC. We also need better support
for P12 UnwrapCode and P14 MoveElse patterns, as an extra
copy-paste editing step is required. These would require more
specialized primitive operations, ideally in a text editor or IDE.
In future work we plan to define and implement these edit
operations, and experiment how well they can be used.

Finally, we identified a limitation of the variation control
system, that is not solved by any of the existing ones either. The
generalized edit isolation principle (cf. Sec. III-B) raises the
following problem: How to handle the cases when an ambition
is weaker than the projection? An example scenario could

be fixing a bug in a particular variant, where the fix might
affect other variants as well. So instead of fixing the bug in all
variants, we would like to have a specific projection, but then
perform the change with a weaker ambition. Our definition
of the put function (which conjoins projection and ambition)
cannot handle this case. Solving this problem in a sound way
is subject to future work.

VIII. THREATS TO VALIDITY

A. Internal Validity

We consider our updates to be correct as the put function is
correct by construction. To check for bugs in the prototype,
we used KDiff3 to compare the update result of the prototype
with the original update from the repository. We examined and
compared the two updates visually. We double-checked the
two cases where our update performs worse, which showed
that the update result is correct and preserves semantics.

We developed a general parser for the C preprocessor
language, as it is simpler and less error-prone than language-
specific parsers. This allows to use the system with any source
code that implements variability using preprocessor annotations.

Our definition and implementation of the variation control
system might be incorrect, and we might have introduced
bias when identifying the edit operations or conducting the
experiment.

To identify edit operations we followed a systematic ap-
proach: first studying samples, then iteratively creating regular
expressions to validate them on all 5640 Marlin patches. We
also cross-checked the identified operations on 34,018 patches
from Busybox, another highly configurable software from a
different domain. 99.27% of the patches in Busybox were
classified in one or more patterns that we previously identified.

In the experiment, we reduced bias of replaying changes
with the variation control system by randomly selecting patches
spanning all twelve edit operations considered.

B. External Validity

The identified edit patterns overlap with some extracted in
previous work [17], [28], [7], which increases our confidence in
the method and completeness. While more patterns might exist,
our collection was sufficient for executing complex changes.

Composing edit operations can allow a user to execute the
same change as in a normal editing model, modulo the number
of steps. The edit operations are generic and also specific
enough to allow to execute any change. Using the trivial
projection and ambition true, the proposed workflow behaves
similarly as the normal editing model.

We did not consider systems that use a variability model and
a dedicated variability-aware build system for implementing
more complex variability, such as the Linux Kernel or Busybox.
However, the variation control system can still be used to
directly manipulate the source code, as well as the variability
model and the build files.

331

IX. RELATED WORK

In addition to the three variation control systems discussed in
Sec. II that our prototype is most similar to, other techniques
to realize views on configurable code exist.

A. Views on Source Code

Atkins et al. develop a version editor that hides preprocessor
directives, allowing to edit a particular variant of a source
file [3]. Edits to the view are propagated back into the source
file. Their study on a large telecommunication project shows a
productivity increase of up to 40%. In comparison, we focused
mainly in understanding what kind of operations should such
a tool support, and if indeed, these operations can be used to
maintain and evolve highly configurable software systems.

Hofer et al. argue that existing approaches to assist with
handling the preprocessor are tied to IDEs, thus, their adoption
rate is low [15]. They introduce the filesystem LEVIATHAN
that mounts a view representing a variant. Heuristics are used
to synchronize changes in the view with the source code in
the physical storage. However, it does not allow modifying the
structure of the conditional blocks when working on a view.

C-CLR is an Eclipse plugin that allows creating a view by
selecting the respective preprocessor macros (features) [31]. The
tool offers support for generating views, but not for executing
changes and updating the view. Similarly, folding is used as
a visualization technique by Kullbach et al. [22] to hide and
unhide code in the GUPRO tool [8]. The idea is to fold parts of
code (including preprocessor directives) and possibly labeling
the fold to easily identify its purpose. Compared to these two
works, we wanted to allow modifying the view and updating
the repository with the new changes.

Kästner et al. propose colors to show annotated code
corresponding to a feature [18], and implement the Colored IDE
(CIDE). The tool requires disciplined preprocessor annotations,
such that arbitrary code fragments cannot be annotated. A vari-
ant view shows annotated code fragments using a background
color according to a feature selection. Markers are used to
show code that belongs to features that are not selected.

A similar tool that uses colors (but lacks the ability to hide
code) is developed by Le et al. [23]. Internally it uses the choice
calculus. A controlled experiment with students shows that the
prototype increases code comprehension compared to the C
preprocessor tool. Users were more successful and efficient in
completing their tasks and gave more correct answers, which
motivates the use of dedicated variation control systems.

Janzen et al. propose to use a concept called crosscutting
effective views to modularize concerns [16]. The modules view
provides a decomposed structure in terms of module units of
the program. A classes view shows the decomposed structure
of classes. Changes applied to one view are reflected in the
other view, which is automatically modified and updated. The
tool stores the structure of the program internally, while the
developer edits a so-called virtual source file [6].

B. Evolution of Highly Configurable Software

Several studies of changes performed to highly configurable
software consider the variability model and the build system [7],
[28], [25], whereas we focus only on the code level.

Dintzner et al. aggregate feature-evolution information by
mining commits [7], including extensive information of what
artifacts are affected. They mainly consider commits that touch
#ifdef blocks. They create this data for the variability model,
build system, and source code. Their focus is not to detect the
exact type of changes, but to offer an overview of the evolution
of features. In contrast, our work identifies what kind of code
edits occur in real systems and whether these can be applied
using a variation control system.

Passos et al. present a catalog of patterns on the co-evolution
of features in the variability model, build system, and code,
obtained from the Linux kernel [28]. Several patterns use
only the variability model and/or the build files to add or
remove features. Some of our patterns overlap with theirs: P3
AddIfdefElse corresponds to AVONMF (Add Visible Optional
Non Modular Feature), P5 AddIfdefWrapThen to FCUTVOF
(Featurize Compilation Unit to Visible Optional Feature), and
P9 RemIfdef to RVONMF (Remove Visible Optional Non
Modular Feature). The main difference between our work and
theirs is that we did not want to understand how a system
evolves in all three spaces, but whether source code changes
can be realized using a variation control system.

X. CONCLUSION

Maintaining and evolving highly configurable software is chal-
lenging for many projects. Using a projection-based variation
control system may overcome some of these challenges. But
so far, the experience with variation control systems is limited.

In this paper, we have designed and formally described a
variation control system that combines and extends concepts
of prior proposals in the literature. In a study, we identified 14
variability-related edit patterns from the highly configurable
3D printer firmware Marlin. We used the patterns to derive
what edit operations a projection-based variation control system
needs to support. We then conducted an experiment using our
variation control system prototype to replay real changes from
the subject system, to show that it can in fact be used to
maintain and evolve a highly configurable software system.

We found that while the projection-based editing model can
support most edit operations, some are difficult to realize with
this model and require extra effort. However, when executing
changes with the prototype, we found that in most cases the
code does not degrade with respect to code size and number
of variation points, and that it is fairly easy to use. In a few
cases, the view had considerably less code.

In future work, we strive to allow developers to work in
parallel on a project, which means that we need to handle code
merges, merge conflicts, and other possible code-integration
aspects. We are also currently developing a user interface that
is connected to the prototype, to allow us to implement and test
the identified edit operations on highly configurable systems.

332

A Appendix

A.4 Paper D

120

Intention-Based Integration of Variants

Max Lillack University of Leipzig, Germany
S, tefan Stănciulescu IT University of Copenhagen, Denmark

Wilhelm Hedman Chalmers University of Technology, Sweden
Thorsten Berger Chalmers | University of Gothenburg, Sweden

Andrzej Wąsowski IT University of Copenhagen, Denmark
ABSTRACT
Cloning is an e�cient and simple strategy to develop new variants
of a system, well-supported by version-control systems. However,
as the e�ort of long-term maintenance of clones outgrows the ini-
tial bene�ts, the variants often need to be re-engineered into an
integrated and con�gurable platform. Such an integration is chal-
lenging, mostly because variation points need to be consistently
introduced and properly assigned to features, to achieve the integra-
tion goal. In this sense, variant integration di�ers from traditional
merging, which does not produce or organize variation points,
but creates a single, non-variational system. Unfortunately, little
support exists for the transformation phase of variant integration.

We introduce integration intentions as domain-speci�c actions
(e.g., ‘keep functionality’ or ‘ keep as a con�gurable feature’) al-
lowing the integration editing to happen at a much more abstract
level than in traditional merge tools. Developers interactively apply
intentions on the source code supported by di�erent views. Quickly
applying or undoing intentions allows exploring the integration. We
implement our approach in a full IDE tool supporting the integra-
tion of �le variants that use preprocessor annotations for variation
points. We evaluate our approach’s correctness, completeness, and
bene�ts in a set of user studies with altogether 31 participants who
replay real integration steps mined from the history of three highly
forked open-source projects, with �le variants up to 4K lines of
code. Our evaluation shows that our approach is correct, applicable,
and reduces mistakes done by developers during integration.

ACM Reference format:
Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT Univer-
sity of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg,
Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark .
2017. Intention-Based Integration of Variants.

1 INTRODUCTION
Many software systems need to exist in multiple variants. Innova-
tors create variants to experiment with new ideas and products.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2018,
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Organizations create variants to customize systems towards mar-
ket segments, hardware platforms, runtime environments, or non-
functional properties (e.g., performance or energy consumption).

A widespread practice for creating variants is cloning—copying a
variant’s code and adapting it to the new requirements [8, 11, 12, 36].
Despite critique for introducing maintenance problems, cloning is
appreciated as easy and readily available [20], commonly used in
industrial [7, 11] and open-source [41] projects. Nowadays, cloning
is often realized using facilities of version-control systems, which
allow to quickly create forks (project-wide clones) and support some
degree of traceability and back-porting facilities. However, in the
long term, the e�ort for maintaining and evolving forked variants
outweighs the initial bene�ts when more than a few variants exist.

Organizations often need to re-integrate variants and establish
an integrated platform—a.k.a., software product line—sharing the
previously separated features [8]. Such a platform is usually con�g-
urable through variation points (e.g., using compilation directives),
which allow deriving individual variants that realize speci�c com-
binations of features. Some large integrated platforms were created
from scratch, such as the Linux kernel with around 15,000 con�gu-
ration options. However, most con�gurable platforms are the result
of integrating formerly cloned variants [8, 19, 37].

Integrating variants is costly and risky. Developers need to un-
derstand the variants and their di�erences, to consistently intro-
duce variation points re�ecting the integration goal. For instance,
if two functionalities are con�icting but should co-exist, variation
points need to be incorporated that prevent deriving variants with
both functionalities. If the variants already contain variation points,
these need to be made consistent. If the C preprocessor is used,
developers need to obtain a single #if hierarchy guarded by cor-
rect #if expressions—especially di�cult when multiple variations
in forks are overlapping. In general, developers are lacking tool
support and often do not even attempt to integrate larger and con-
�icting variants [14, 31], which is especially di�cult when variants
have intricate and undisciplined #if structures. Such structures are
typical in con�gurable C projects, including our evaluation sub-
jects [28, 32, 43]. In fact, we can easily �nd commits in them where
developers needed to �x #if structures.1 Furthermore, a think-aloud
exercise we conducted on manual variant integration with a plain
di� tool exhibited, as we will show, problems with the alignment
of changes among the variants, a lack of overview on the variants,
and di�culties undoing parts of the integration.

These challenges of variant integration also illustrate the high-
level di�erences to traditional code merging. The latter aims at
creating a single implementation out of contributions coming from

1https://git.io/v7pzb, https://git.io/v7pgL

MANUSCRIPT UNDER REVIEW

ICSE 2018, ,Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT University of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg, Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark

parallel developments. The main challenge in code merging is con-
�ict resolution. In contrast, variant integration aims at creating an
integrated platform. The main challenge is to control features com-
ing from various forks, while incorporating common improvements
into the core assets, and dropping uninteresting changes.

Prior work has mainly focused on understanding the commonali-
ties and di�erences among variants [6, 41], largely sidestepping the
actual integration. In this work, we focus on supporting engineers
who work on integrating variants into an integrated platform. We
do not aim at alleviating developer’s domain knowledge about the
variants, but at supporting variant comprehension using views, and
at helping developers to structure and organize the changes into
variation points and features in an iterative process.

We present the approach and tool suite INCLINE (intention-
based clone integration) to support the variant-integration process.
To support variant comprehension, INCLINE o�ers developers var-
ious views on the variant code that shall be integrated. To support
the actual integration, INCLINE o�ers intentions—domain-speci�c
actions that can be declared by developers over code—lines or in-
dividual nodes of the abstract syntax tree (AST)—in the views,
de�ning how the functionalities should be integrated (e.g., keep
functionality, remove functionality, or keep functionality as a con-
�gurable feature). INCLINE resolves the intentions by automatically
creating variation points (i.e., a correct #if structure) in the target
integrated platform, which can be previewed interactively by de-
velopers. The developers can quickly change or undo intentions,
allowing an iterative process to explore the e�ect of intentions
and reaching the desired integration. In summary, we help to raise
the abstraction level at which the integrator works, from writing
low-level #if directives and expressions to declaring architectural
intentions, helping to focus on the actual integration problem. In
other words, intentions are intentionally simple, but can have com-
plex resolutions (e.g., through interactions with other intentions)—a
complexity that is hidden from the developer.

We evaluate INCLINE’s completeness, correctness, and the ben-
e�ts for developers when integrating variants by simulating real
variant-integration steps mined from the history of three popular
open-source systems with forks: Marlin, a 3D printer �rmware;
Vim, a UNIX text editor; and BusyBox, a tool suite of shell tools.
We perform a set of consecutive simulations with a total of 31
participants, comprising �le variants up to 4K lines of code, cumu-
lating in a controlled experiment with 12 experienced PhD students
who perform integration tasks in a realistic setting. Our evaluation
shows the completeness and correctness of our approach and, most
importantly, that declaring intentions is simple and intuitive, com-
pared manual integration using Eclipse. Developers also make less
mistakes when using INCLINE.

We contribute: (i) a de�nition of intentions as a vocabulary to
express integration goals for individual variant-related function-
alities, (ii) a formalization of the intentions as transformations on
a variational AST, (iii) a complete IDE tool that provides views
together with facilities for declaring intentions, executing them as
in-place transformations, and for editing code to adjust the result,
and (iv) an online appendix [2] with the INCLINE tool, evaluation
material, and a replication package.

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 uint32_t encoderPosition;

4 #if PIN_EXISTS(SD_DETECT)

5 uint8_t lcd_sd_status;

6 #endif

7 #endif // ULTIPANEL

8
9 menu_t cM = lcd_status_scrn;

10 bool ignore_click = false;

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;

3 int8_t encoderDiff;

4 uint32_t encoderPosition;

5 #if (SDCARDDETECT > 0)

6 bool lcd_oldcardstatus;

7 #endif

8 #endif //ULTIPANEL

9
10 menu_t cM = lcd_status_scrn;

Figure 1: Code excerpts fromMarlin’smainline (left) and the
corresponding fork (right). Colors indicate di�erences.

In our view, the research on generic re-engineering and project
manipulation tools is presently in rather early stages. Few gen-
eral tools exist. Mostly experiences from manual re-engineering
processes are reported. This is despite the increasing amount of
legacy code and, in this context, the increasing amount of forked
software variants. With this tool we hope not only to help concrete
forked projects, but also to inspire the research community to work
on the related challenges, towards more e�ective and intelligent
re-engineering tools.

2 MOTIVATION AND BACKGROUND

2.1 Variant Integration versus Code Merging
Variant integration di�ers from traditional code merging [34] that
focuses on merging changes performed in isolation into a single
system. Merging does not directly support realizing variants or
building a con�gurable integrated platform. Traditional merge algo-
rithms combine as much code as possible and delegate con�icts they
cannot resolve to the developer. In contrast, our focus is on con-
sistently and e�ciently transforming system variants—that were
developed in parallel and that can realize con�icting (i.e., mutual-
exclusive) functional- or non-functional requirements—into a con-
�gurable platform, where they can co-exist. Deciding whether a
change should be shared by all variants, or be speci�c to a particular
variant, has to be done regardless whether a merge con�ict occurs
or not. Even smoothly merging changes might need to become
optional in a given project.

Research on variant integration can be found under the broader
research area of re-engineering legacy products into a software
product line [6]. However, works in this area almost solely focus on
discovering commonalities and variabilities between codebases to
gain an understanding of how similar or far apart they are, together
with research on identifying and locating features.

2.2 Variant Integration Challenges
Consider Fig. 1, which shows code from the Marlin mainline repos-
itory (our running example for the remainder). The right-hand
side shows the corresponding part in a Marlin fork. Both variants
evolved after forking: the highlighted lines were changed or added.

When integrating the variants, the developer needs to decide
about a target #if structure, which changes should be included, and
under what presence conditions (Boolean expressions over features,
determining when the respective code should be included in a vari-
ant derived from the integrated platform). Speci�cally, the fork’s

Intention-Based Integration of Variants
ICSE 2018, ,

5 ...
6 #ifdef FORK
7 #if (SDCARDDETECT > 0)
8 bool lcd_oldcardstatus;
9 #else

10 #if PIN_EXISTS(SD_DETECT)
11 uint8_t lcd_sd_status;
12 #endif
13 #endif //ULTIPANEL
14 ...

Figure 2: An invalid #if structure produced by diff -D

line 4 (added variable encoderDiff) could be either made manda-
tory or optional, the latter by adding an #ifdef with an expression
specifying that the line belongs to a feature. Furthermore, this fea-
ture could be the same as for the fork’s lines 6–8 or a di�erent one,
according to the actual integration goal based on the developer’s
expert knowledge. Furthermore, consider lines 5–7 in the mainline
and lines 6–8 in the fork. In our example, the �nal relative order of
these blocks does not matter, since they have no side e�ects. But, if
these were statements, it might be necessary to enforce an order.

Consider viewing these excerpts in a traditional di� tool, which
highlights the di�erences, but does not help with the integration.
Working with a di� tool, the developer needs to comprehend such
di�s, while editing the text to create an appropriate #if structure.

While cheap-and-quick ways of integrating variants exist, they
typically do not lead to the desired integration goal, as they disre-
gard the domain knowledge. The most trivial solution is to create a
new feature that represents the variant (we will call such a feature
FORK in the remainder) and wrap the complete �les in an #ifdef-
#else block. This fails to recognize any commonalities and creates
a highly redundant integrated platform, not providing much bene-
�t. Another approach could be wrapping all di�erences in #ifdef

blocks. GNU’s di� tool provides the option -D, which wraps any
di�erences between two �les in #ifdefs.2 In our example, we would
obtain an invalid #if structure, since the newly created directives
interfere with existing ones in the variants, as illustrated in Fig. 2.

The strategy of doing pairwise di�ng and then wrapping the
changes using #ifdefs is relatively common. For instance, Danfoss,
used this to integrate forks [18, 19], creating “features” representing
individual variants. GNU di� was also used. While this integration
was relatively quick (months) for a system with around 1.5M lines of
code, it took the organization years to achieve the desired integrated
platform. It required deciding, among others, which functionality
to keep, remove, or which should become a new feature. In this
process, the platform was iteratively veri�ed. The e�ort was mostly
manual, with minimal tool support. It was challenging to refactor
the variant-based “features” into around 1000 variant-cross-cutting
features, which required regrouping variation points logically.

As the example (Fig. 1) illustrates, many ways exist to integrate
variants, and the developer has to �rst create and then iteratively
refactor conditional structures. This task is both laborious and
error-prone, but hard to automate entirely due to dependence on
architectural decisions and domain knowledge.

Another challenge is the cognitive load introduced by the C
preprocessor, whose #if directives clutter source code and challenge
program comprehension [40, 43], as the developer needs to work

2diff-w-DFORKfile1file2, where -w ignores whitespace and FORK is the feature

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 #ifdef FORK
4 int8_t encoderDiff;
5 #endif
6 uint32_t encoderPosition;
7 #ifdef FORK
8 #if SDCARDDETECT > 0
9 bool lcd_oldcardstatus;

10 #endif
11 #else
12 #if PIN_EXISTS(SD_DETECT)
13 uint8_t lcd_sd_status;
14 #endif
15 #endif
16 #endif
17
18 menu_t cM = lcd_status_scrn;
19 #ifndef FORK
20 bool ignore_click = false;
21 #endif

Figure 3: The integrated AST for the mainline/fork of Fig. 1

with all variants simultaneously. This can easily lead to code ending
up in the wrong variant (the wrong #if block) [33].

In summary, integrating forked variants into a product line is a
challenging and time-consuming e�ort that needs to be handled
iteratively. One needs to decide how to integrate separately devel-
oped variants. If variants already contain variation points, their
variation spaces also need to be merged: a deeper understanding of
existing and desired variation points is necessary.

2.3 Think-Aloud Exercise
To better understand these challenges, we conducted a think-aloud
exercise where three participants (student developers) executed
two integration tasks, one from the Marlin project and one from
Busybox, using Eclipse’s integrated di� tool. The participants re-
ceived three �les: a �le with the code from the main, a �le with
fork code, and the target solution. The main Marlin �le has over
2,000 lines of code and over 100 #ifdef blocks. The Busybox �le has
25 lines of code and only two #ifdef blocks. The fork �les are simi-
larly in size and number of #ifdef blocks. During the integration,
the participants were asked to speak aloud what are they doing
to integrate the two �les. We recorded this process and reviewed
the spoken comments. All users report that the di� tool creates
alignment problems which lead to mismatching. The tool tries to
align the text and the changes, but often fails to do it correctly.
The second problem is that using a single view where variants
are explored, and modi�ed as well, hinders the overall integration
process. More exactly, the users need better views to explore the
variants, and how changes in�uence the end result, with the ability
to easily undo changes. One user mentions the need for creating a
new �le where all the changes should be stored, such that the two
variant views can be used to understand the di�erences. Another
user is overwhelmed by the fact that the di� tool highlights every
line.

3 THE VARIANT INTEGRATION PROCESS
We now present the proposed integration process. We integrate
two variants at a time, the mainline and a fork, in three steps:
1. Automatically generate an integrated AST. We automati-
cally create an integrated AST from the mainline and the fork

ICSE 2018, ,Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT University of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg, Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark

Figure 4: Screenshot of views supporting the integration:
mainline view (top left), fork view (top right), integrated side-
by-side view (bottom left), and result view (bottom right)

variant. In addition to the features already contained in the input
variants, we introduce a special feature FORK. The AST captures the
commonalities and di�erences between two variants. AST nodes
that are speci�c to the fork variant are annotated with the presence
condition FORK and those speci�c to the mainline with !FORK.

Figure 3 illustrates the creation of the integrated AST in concrete
syntax for our example from Fig. 1. Given that the AST is always
syntactically correct, we can derive, compile, and execute individual
variants during the integration process, e.g., to run a test suite.
2. Explore the integrated AST using views. The developer ex-
plores the AST and navigates through it using di�erent views that
ease comprehension of the variants and their di�erences. We pro-
vide �ve di�erent views implemented in our tool, whereas further
views can be realized on top of our implementation. Figure 4 illus-
trates four of them. The mainline view and the fork view (top left
and right of Fig. 4) render a projection of the integrated AST where
only a subset of the derivable variants is shown. The mainline view
shows all variants with feature FORK disabled, and fork view with
this feature enabled. The integrated side-by-side view (bottom left of
Fig. 4) renders the whole integrated AST, but with the di�erences
between mainline and fork arranged next to each other without
#ifdef directives. Alternatively, this view can be switched to the
integrated view (Fig. 3), which shows the code as an #if structure
corresponding to the integrated AST. In these views, the developer
can de�ne intentions (explained shortly), and explore and edit code.
The result view (bottom right of Fig. 4) renders a preview of the
�nal result, after all intentions are resolved and any manual edits
applied.

Using all views, the developer can see how a change a�ects
the individual variants, and the resulting integrated platform. All
views are projections from the integrated AST, and are updated
synchronously whenever a change is made.
3. Edit integrated AST and add integration intentions. The
developer edits the integrated AST (using one of the integrated
views, the mainline or the fork view) and declares intentions on

AST nodes. The user interface supports navigating the variant
di�erences, and declaring intention on selected code. The result
view is updated when an intention is added or removed. Finally, the
developer commits the intentions, which updates the integrated
AST. Thereafter, a developer can repeat steps 2 and 3 with the
freshly modi�ed AST until all changes are handled.

4 THE INTEGRATION INTENTIONS
Intentions specify the goal of integrating a change, that is, how
the integrated AST should be customized with respect to the input
variants. For instance, a developer could ask: should the change be
made common to all variants? Or only to some of them? Or should
it remain variant-speci�c? Is the change standalone or is it intended
to belong to a feature implementation?

We extracted a set of intentions from the history of Marlin reposi-
tories. We studied merge commits involving preprocessor directives,
pull requests, and con�icting commits—all these being examples of
developers performing integration, while dealing with variability.
For these, we tried to understand the original intention of the de-
veloper, which we carefully assessed and discussed. As a result we
propose the following intentions to be used for high-level control
of the integration process: Keep, KeepAsFeature, Exclusive, Remove,
AssignFeature, Order. We de�ne them in detail below.

4.1 Variational AST and Views
A variational AST is a syntax tree with embedded #ifdefs. For
simplicity of the discussion we often see it just as a set of nodes
(Nodes). For each node n, we identify a sequence of conditions,
cn1 , c

n
2 , · · · , cnk , used in the #ifdefs on the path from the root (cn1)

of the AST to n (cnk). A node that is not wrapped by any #ifdef

(non-variable node) has an empty sequence of conditions.
We de�ne the presence condition pc(n) to be the conjunction of

all conditions used by the #ifdefs the node n ∈ Nodes is contained
in. The presence condition of a non-variable node is true.

pc(n) =
∧

i ∈1..k
cni

We de�ne ablock to be a set of nodes in the underlying AST:block ∈
P(Nodes). We also introduce an order of nodes, that describes the
syntactic order of the C/C++ program. If a node n1 exists before
node n2 in the syntactic order, we write n1 < n2.

A view is a projection of the AST showing only a speci�c set
of variants speci�ed by a view constraint ρ over features. For the
views mainline and fork, ρ = ¬FORK and ρ = FORK , respectively.
For the integrated views ρ = true. Of course, ρ can be a more
complex expression, not just a literal, to �lter out more variability
not relevant for the integration task at hand. In the remainder, we
limit ourselves to simple view constraints, though. Finally, note
that the view through which an intention is declared forms the
context for the intention, and as such in�uences its resolution.

To determine how conditions are shown in a view, we substitute
every occurrence of the view constraint in the conditions with true:

∀n ∈ Nodes cnρ = c
n [ρ ← true],

where cnρ denotes the conditions shown in the view.
In the variant views, we render the variational AST as follows:
• We hide nodes where pc(n)[ρ ← true] ≡ false

Intention-Based Integration of Variants
ICSE 2018, ,

#ifndef FORK // block_not_fork

int servo_e1[] = SE

int servo_e2[] = SEA

#else // block_fork
int16_t servo_e1 = SE
int16_t servo_e2[] = SEA
#endif

int servo_e1[] = SE
int servo_e2[] = SEA
#ifdef FORK
int16_t servo_e1 = SE
int16_t servo_e2 = SEA
#endif

Figure 5: Keep intention (left) and result (right)

• We show nodes without the surrounding #ifdef if cnk ≡ true
• For the remaining nodes, we simplify presence conditions

with respect to the view constraint using an SMT solver
Special care needs to be taken for blocks containing nodes with
complex presence conditions. Complex conditions contain both the
view constraint ρ and some unrelated terms. When using views,
a complex presence condition is shown as a non-complex condi-
tion, since the view constraint is simpli�ed. Still, the hidden view
constraint is part of the context that the intentions are declared
in, just as is if the node was implicitly wrapped in an #ifdef with
the view constraint as its condition. Formally, we say a condition is
complex i� cn . cn [ρ ← true]. For an #ifdef node n with a complex
condition, we rewrite the sequence of conditions so that it ends
with the view constraint. We use the notation pc(n, ρ) to denote
the presence condition of node n in a view with constraint ρ:

pc(n, ρ) =
∧

i ∈1..k
cni ∧ ρ

4.2 Semantics of Intentions
We now de�ne the individual intentions and illustrate them with
examples. Intentions are partial functions transforming ASTs. We
formalize their semantics as e�ects they have on the presence con-
ditions and ordering of nodes. Later, in Sec. 4.3, we show how the
intentions are resolved (implemented) on the AST. The �gures (for
instance, Fig. 5) show the integrated AST on the left, selected nodes
on which an intention is declared in gray, and the desired result on
the right. The examples use the integrated view, which shows all
variants at once. The verbosity of this view makes it most suitable
to explain how intentions work. For each intention we use the
notation pc ′(n) to illustrate the resulting presence condition of the
node n, and pc(n) for the presence condition before the intention
resolution.
Keep. The Keep intention includes a block as it appears in mainline
or fork in an unconditional manner, without guarding it with any
additional feature.

Consider the example in Fig. 5 where we de�ne block_not_fork
to represent the set of nodes in the ¬FORK branch highlighted with
gray, and the block_fork represents the set of nodes in the FORK
branch. The fork changes the type of the servo variables to be 16-bit
signed integers, because di�erent hardware and compiler are used
for this variant. During the integration process, it is decided that
the hardware used in the fork should no longer be supported, and
only the code from mainline is kept. We apply the Keep intention
on block_not_fork set of nodes.

The right side shows the result of applying Keep on the selected
block_not_fork. The nodes from the fork should be removed (which
can be done with the dual of Keep, Remove, described below). Note

#ifdef FORK // block_fork

card.pauseSDPrint();

#endif

#ifdef SDSUPPORT
card.pauseSDPrint();
#endif

Figure 6: KeepAsFeature intention (left) and result (right)

that the integration is not completed, as there is still a block from
the forked variant, which should be resolved later.

The e�ect of Keep(block) on the presence conditions is:

pc ′(n) =
{
cn1 ∧ ... ∧ cnk−1, if n ∈ block
pc(n), otherwise

The nodes for which Keep was declared should no longer be under
the constraint created by the #ifdef that directly wraps those nodes
(in the example we drop !FORK). Their new presence condition is the
conjunction of all but the last constraint that directly wrapped the
nodes. All nodes that are not part of the intention are unchanged.
KeepAsFeature. The KeepAsFeature intention preserves a block
from one of the variants, but makes it conditionally present,only
linked to a certain feature or combination of features. It wraps the
block with a new presence condition given with the intention.

In the example of Fig. 6, a fork developer added functionality to
pause a 3D print from an SD card. Not concerned with other devices
than the one for which the fork was developed, she included the
new behavior unconditionally. However, in the integration process,
it became clear that this functionality only makes sense in variants
supporting SD cards, thus, it needs to be included conditionally.
The desired result is shown on the right side of the �gure.

KeepAsFeature(block, F) is de�ned as replacing the last constraint
from the sequence of constraints with the new presence condition:

pc ′(n) =
{
cn1 ∧ ... ∧ cnk−1 ∧ F , if n ∈ block
pc(n), otherwise

Exclusive. This intention declares that two code blocks should be
mutually exclusive (enforcing the separation of con�icting func-
tionality), controlled by a choice condition.

In Fig. 7 the fork introduces a new optional feature FIL_DISPLAY
and keeps the line that prints a message on the LCD display under
a speci�c condition. The integration requires keeping the optional
feature and ensuring that when this feature is not selected a message
is shown on the LCD (to not break the mainline variant). Therefore,

Figure 7: Exclusive intention with the three parameters
block1, block2, FIL_DISPLAY (left) and result (right)
#ifndef FORK //block2
lcd.print(msg);

#else
#ifdef FIL_DISPLAY //block1
if(condition){

lcd.print(msg);

}else{

lcd.print(trnsf(data));}

}

#endif
#endif

#ifndef FIL_DISPLAY
lcd.print(msg);
#else
if(condition){
lcd.print(msg);
}else{
lcd.print(trnsf(data));
}
#endif

ICSE 2018, ,Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT University of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg, Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark

#ifdef SD

card.pauseSDprint();

#endif

#ifdef SDSUPPORT
card.pauseSDprint();
#endif

Figure 8: AssignFeature intention (left) and result (right)

we keep both blocks as a mutually exclusive implementation using
the Exclusive intention.

We introduce the helper function common(block) which returns
the longest common subsequence of conditions of nodes in the
block (semantically akin to the prime implicate of the set of presence
conditions of the block’s nodes):

common(block) = c1 ∧ . . . ∧ cs such that

∀n∈block
∧

i ∈1..k
cni →

∧
i ∈1..s

ci and s is maximal such.

Then the Exclusive(block1, block2, F) has the e�ect as follows:

pc ′(n) =

common(block1 ∪ block2) ∧ F , if n ∈ block1
common(block1 ∪ block2) ∧ ¬F , if n ∈ block2
pc(n), otherwise

We use the common conditions of the nodes in block1 and block2 as
the basis and then include the feature condition F (or its negation)
to control the selection of the variant.
Remove. This intention deletes the selected nodes from the AST.
By de�nition, it ensures that the selected nodes do not exist in the
updated AST’:

∀n ∈ block n < AST ′

AssignFeature. This intention is used when code was already inte-
grated, but its presence condition should be changed (e.g., simpli�ed,
weakened, or strengthened). This intention can only be declared
for complete #if-#else-#endif blocks. Fig. 8 shows the renaming of
feature SD (left) to SDSUPPORT (right).

The e�ect of AssignFeature(n, F) is that the last constraint of
nodes from both branches (#if and #else of the #ifdef block) is re-
placed with the given feature, and respectively the negated feature:

pc ′(n) =

cn1 ∧ ... ∧ cnk−1 ∧ F , if n ∈ if branch of n
cn1 ∧ ... ∧ cnk−1 ∧ ¬F , if n ∈ else branch of n
pc(n), otherwise.

Order. This intention prescribes an order of blocks from the vari-
ants for the integrated AST (with respect to the concrete syntax).
As a notation, we resort to the operators > and <, which declare
that the �rst block be put before the second block, and vice versa.
This intention re-orders blocks or ensures their correct order during
integration, especially when further intentions are applied.

For example, we apply the intention Keep on a mainline and a
fork block, but we want the mainline code to be executed �rst, we
declare order (block_f ork,block_main, <), which then yields the
correct order.
Composing Intentions. It is often necessary to declare multiple
intentions. Fig. 9 shows two function calls, card.pauseSDprint(), one
that is guarded by an #ifdef, the other is not. A developer can
classify this change as a bug-�x and resolve it using two intentions:
Keep fork code, but Remove mainline code. For convenience, she can

select in the UI, when applying a Keep intention on all the nodes
in block_fork, that the Remove intention should be automatically
applied on nodes of block_not_fork.

4.3 Intention Resolution
We conceive an AST in-place transformation to resolve intentions,
which needs to consider all declared intentions at once, since in-
tentions can interact. Although intentions are declared on blocks
of nodes, their resolution will a�ect other nodes.

We resolve intentions in a speci�c order, �rst based on our own
de�ned priority of intentions, and second based on the AST struc-
ture (top down, from outermost to innermost node). The priorities
(descending, from resolved �rst to resolved last) are: Keep, KeepAs-
Feature, Exclusive, Order, AssignFeature, Remove.

During resolution, each intention will use the result from the
previous intention as its context, therefore the execution of one
intention will likely in�uence the context for intentions that are
declared for nested (child) nodes. The idea is that intentions for
nested nodes are more speci�c than intentions for outer nodes.

Fig. 10 illustrates the importance of the resolution order by show-
ing two declared Keep intentions, one for lines 2–4 (#ifdef) and one
for line 3. We resolve the intention for the #ifdef �rst by unwrap-
ping the node from the surrounding condition FORK. Then, we apply
Keep on the node in now line 2 (previously, line 3), which moves it
out of the condition SDSUPPORT. The two empty #ifdef are removed
in a cleanup operation, leaving only the line card.pauseSDprint().
Resolving reversed would move line 3 out of the condition SDSUPPORT

and then move the now empty #ifdef out of the outer #ifdef FORK.
We now explain each intention’s resolution, which typically

includes moving nodes and (un)wrapping them from #ifs.
Keep. For Keep(block) we �rst group the block nodes into a list of
adjacent nodes, that is, each group of nodes will have the same
parent and is in the same branch. For each group, we split any
surrounding #ifdef into blocks before and after the group. Both
blocks get the same presence condition. Fig. 11 illustrates this trans-
formation, showing how the resolution of Keep splits an #if block.
KeepAsFeature. We resolveKeepAsFeature(block, feature) similarly
to Keep, except that the nodes unwrapped during the Keep step are
now wrapped in a new #ifdef with the condition feature.
Exclusive. We resolve Exclusive(block1, block2, feature) using Keep
on block1 and block2. The results are wrapped in a new #ifdef where
the nodes of block1 are moved to the true branch and the nodes
from block2 are used in the else branch. The condition of the new
#ifdef is given by the parameter feature.
Order. To resolve order(block1, block2, <) we assume the nodes of
block1 and block2 have the same parent. If all nodes in block2 are,

Figure 9: Composition of Keep intention (left, gray lines)
with Remove intention (left, blue lines), and result (right)
#ifdef FORK //block_fork

#ifdef SDSUPPORT

card.pauseSDprint();

#endif
#else //block_not_fork

card.pauseSDPrint();

#endif

#ifdef SDSUPPORT
card.pauseSDPrint();
#endif

Intention-Based Integration of Variants
ICSE 2018, ,

1 #ifdef FORK

2 #ifdef SDSUPPORT

3 card.pauseSDprint();

4 #endif
5 #endif

Figure 10: Two Keep intentions (lines 2–4 and 3) to illustrate
the importance of a resolution order

based on their position in the parent’s list of child nodes, before
the nodes of block1, we switch their position. In a similar way, we
perform this action with reversed parameters for operator >.
Remove. We resolve Remove(block) simply by removing all nodes
in block from the AST. If a node was already removed (e.g., when
Remove was declared for an ancestor of the node) nothing is done.

5 TOOL IMPLEMENTATION
We use the language workbench JetBrains MPS [1] on top of which
we realize our tool INCLINE [2]. MPS relies on projectional editing,
which is well-suited for creating editable views. Projectional edit-
ing (a.k.a., syntax-directed editing or structural editing) [9, 42] is
conceptually di�erent from traditional parser-based editing, since
the user’s program-editing gestures directly change the underlying
AST, which is still rendered into concrete syntax the user sees. Pro-
jectional editing eases language composition and allows �exible
notations (e.g., the integrated side-by-side view).

We make use of MPS’ meta-modeling facilities and implement
our own stripped version of the C preprocessor language, including
only the #ifdef, #else, #if, #elif, #endif macros. For example, we
de�ne #ifdef as a language concept that de�nes a node containing
a condition and having three child nodes for the nodes in the true,
else if, and else branches. In addition, we add a Text concept that
represents a line of actual source code (C/C++ in our case) in the
AST. Each of the concepts can have di�erent properties, e.g., the
#ifdef concept has a condition attribute that holds the presence con-
dition associated with this #ifdef. These language concepts su�ce
to represent source code �les that use preprocessor annotations to
implement variability.

We specify how the user can interact with our language, that
is, edit the AST using the editor functionality of MPS. For each
concept we create a visualization de�nition, which controls the
rendering of it. The intentions are implemented using MPS actions,
user-invoked commands to change the AST, selectable via the UI.

We implement three additional components. PPParse is a parser
for C preprocessor directives that creates the initial AST, based
on the clang compiler infrastructure. PPMerge is a tool to create
the integrated AST of two �les using the C preprocessor. It �rst
parses the input �les to create XML-based ASTs, then constructs the
integrated AST using JNDi� [10], which di�s the ASTs, followed

Figure 11: Resolution of Keep (b()) splits #if block (right)

#if A
a()

b()

c()
#endif

#if A
a()
#endif

b()

#if A
c()
#endif

by transforming the di� into optional changes in the input �le.
PPConstraintSolver is a tool to perform operations on preprocessor
conditions using the SMT solver Z3[35]. Speci�cally, we use it to
calculate projections, i.e., to decide if and how conditions are shown
in the views.

6 EVALUATION
To study how well our approach and tool supports developers
during variant integration, we conduct a series of simulations of
real development. We conceive integration tasks from real evolution
steps of the three often forked open-source systems Marlin, Vim,
and BusyBox, as opposed to arti�cially creating tasks—a reasonable
trade-o� between complexity and real-world cases.

6.1 Subject Systems
All subjects use preprocessor annotations to realize variability. We
enhance external validity by sampling over their source �les and
forks (>4,000 Marlin forks exist). Our selection of forks (three Mar-
lin forks, one fork each from BusyBox and Vim) is based on the
fork’s activity, viability (i.e., has variability-related changes), and
popularity (stars on Github). This way, we avoid bias towards a
particular usage of the preprocessor. In addition, a study including
Vim and BusyBox con�rms that the preprocessor is used similarly
among open-source and industrial systems [17].
Marlin (>40 KLOC of C++ code) has many forks that evolved sep-
arately or independently added new functionality. Given this rich-
ness of changes and new functionality, and existing re-integration
e�orts of the community, Marlin is an ideal subject for our eval-
uation. We mined from 1,715 approved pull requests and three
forks.
BusyBox (>160 KLOC of C code) is a tool suite of common shell
programs (e.g., grep, cut). We use a fork tailored for Android. 3

Vim (>300 KLOC of C code) is a popular console-based text editor
for Unix-like systems. We use a fork that adds support for OS2. 4

6.2 Evaluation Design
Evaluating an interactive tool with a rich UI such as INCLINE is
challenging, since users do not only face the inherent complexity
of the integration task, but also have to learn the tool and handle
potential usability issues of a research prototype. We conduct a
series of simulations, going from an internal evaluation via a pre-
liminary user study with MSc students to a controlled experiment
with experienced PhD students in a realistic integration setting.

First, we verify the completeness of our intentions. We replay a
set of real-world merge commits from Marlin by applying intentions
and checking that the commits are realizable. We also check that
the result is semantically identical (i.e., code lines obtain the correct
presence condition) to the original merge commit.

Second, we validate the correctness of the implemented intention
resolutions and investigate the usability and scalability of INCLINE.
Three authors simulate ten Marlin integration tasks and thoroughly
cross-check the correctness by reviewing the resulting integrated
�les. While this does not allow comparing the e�ciency, it vali-
dates that INCLINE produces correctly integrated �les if intentions
3https://github.com/jcadduono/android_external_busybox
4https://github.com/h-east/vim/tree/clpum

ICSE 2018, ,Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT University of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg, Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark

are assigned correctly, and that it scales. It also provides valuable
experiences to improve INCLINE and to �x bugs.

Third, we investigate the INCLINE approach with 16 MSc stu-
dents to learn how they perceive the intentions, the views, and
the editing e�ciency and usability of our tool. We conduct a user
study where we create realistic, but reasonably small tasks from
Vim and BusyBox and let participants solve them using INCLINE
and Eclipse. Since the participants lack domain knowledge for the
integration tasks, we give the �nal result. As such, this experiment
also lets us obtain information about the pure editing e�ciency
with INCLINE (recall its underlying projectional editor, which can
cause editing challenges [9]), potential improvements, and bugs.

Fourth, after improving INCLINE with insights from the steps
above, we validate INCLINE in a realistic setting. We conduct a
controlled experiment with 12 experienced PhD students. We reuse
the Vim and BusyBox tasks, but instead of providing the �nal result
(which, as we learned from the user study, lets developer just apply
low-level edits without understanding what they are doing), we pro-
vide detailed domain knowledge about the variants to be integrated.
Tasks are solved with INCLINE and Eclipse using a 2x2 Latin square
design. This controlled experiment lets us obtain information about
the e�ciency of integrating smaller �les.

In summary, this set of consecutive experiments lets us obtain
information about the bene�ts and limitations of our approach.
As we will show, the scalability of INCLINE to �les of up to 4K
LOC, together with the bene�ts measured for integrating smaller
�les, evidences the applicability of INCLINE to smaller and larger
integration project. Yet, we believe that training and experience can
further increase the e�ciency of developers working with INCLINE,
which needs to be validated in a longitudinal study. Such a study is
beyond the scope of this paper, but part of our future work.

6.3 Completeness of Intentions
Methodology. To show that the de�ned intentions are su�cient
to handle real-world integration tasks, we replay non-trivial (con-
�icting) merges from Marlin history. We retrieve all 2,065 merge
commits of the mainline, and extract those that had con�icts, to
identify complex merge tasks, yielding 49 merges. We discard two
merges that had con�icts only in documentation �les, two that
con�icted in whitespace, three that con�icted due to con�guration
changes. Another three merges are discarded because some related
artifact had syntax errors and could not be compiled. Additionally,
four merges are discarded because they simply accepted the main-
line changes as evolution (empty changeset). We use the remaining
35 merge commits as tasks.
Results. We successfully simulate all 35 commits using intentions.
Details are shown in the online appendix [2] together with examples
illustrating the intentions. As we will show in Sec. 6.5 and 6.6,
examples mined from Vim and BusyBox can be handled by our
intentions as well.

The set of intentions su�ces for real-world variant integration.

6.4 Correctness and Scalability
Methodology. With an internal study we validate that INCLINE
produces correct results when intentions are assigned correctly,
and that we can use it on large �les without scalability problems.

We simulate ten integrations by randomly sampling seven com-
mits tasks from the 35 merge commits in the previous experiment,
and conceive three tasks simulating the integration of �les from
Marlin forks5. The selected forks contain signi�cant changes to the
mainline, covering both evolution and new features.

Most tasks comprise only a single �le, some two or three, but
each �le can be very large (up to nearly 4,000 LOC and hundreds
of #ifdef blocks in a single �le). The �rst three authors serve as
evaluators, among whom we distribute the ten tasks to execute with
INCLINE. We then manually peer-review the integration results
to detect any errors that INCLINE might have introduced. For the
seven tasks based on merge commits, we compare to the actual
merge result. For the three tasks based on the fork integration, the
correct results was determined during the peer review.
Results. All of the observed errors could be explained by errors
done by the user or errors introduced by the tool. We �xed errors in
the implementation and analyzed mistakes done by us to improve
usability. This shows that the intention resolution, as de�ned in
Sec. 4.2, works as expected. Furthermore, the broad range of �le
sizes (from tens up to thousands of lines of code) evidences the
scalability of INCLINE.

INCLINE produces the correct output when correct intentions are
applied and it scales to �les up to 4K lines of code.

6.5 User Perception and Editing E�ciency
Methodology. We continue with a user study to get �rst-hand
experience how users deal with INCLINE and its UI. We recruit 16
MSc students to execute two newly developed integration tasks
with INCLINE and Eclipse.

The two new integration tasks are derived from BusyBox (P1)
and Vim (P2), by using �les from the main project variant as well as
a fork of each project (see Sec. 6.1). We select chunks of code based
on our understanding and experience with the systems, as well
as code blocks that involve integrating variability (#ifdef blocks).
We merge these chunks into one condensed �le for brevity and
comprehension. The end result is an integrated �le consisting of 74
LOC (P1), and 50 LOC (P2). The P1 �le has 8 #ifdef blocks, with 37
LOC within these blocks; the P2 �le contains 5 #ifdef blocks, with
32 LOC within these blocks. These tasks represent a good trade-o�
between complexity and real-world integration scenarios.

The participants are given the (correct) target solution and brief
description of the integration goal. Giving the target solution re-
duces the in�uence of (a lack of) domain knowledge because all
participants work towards the same goal. On the other hand, it is
less realistic because the participants do not need to understand the
example code or think on the level of integration goals. We observe
their usage of the tools (through screen recordings), and at the end
we ask them to take part in an exit questionnaire.
Results. We observe that INCLINE users only need to declare few
intentions to reach their desired result, whereas Eclipse users use
5github.com/[jcrocholl | esenapaj | Marlin_STM32]/Marlin

Intention-Based Integration of Variants
ICSE 2018, ,

the keyboard much more heavily. INCLINE users mostly used the
intentions Keep and Remove, since they are the most obvious in-
tentions for new users and they were su�cient for the selected
tasks. The user’s behavior and their feedback suggest they miss
more advanced functionality, e.g., the side-by-side view which was
disabled by default. We also learn that the UI needs better highlight-
ing of the intentions that were applied, that keyboard shortcuts
would help to quickly apply an intention (the users needed to use a
menu button to reach the intentions), that the multiple views help
exploring the code to reach consensus on how to integrate it, and
that the arrangement of views shown in Fig. 4 is most intuitive.

Not surprisingly, the Eclipse tasks are solved faster, since we
provided the �nal result, and as such, solving the integration task
amounts to straightforward, low-level editing. Analyzing the record-
ings of the Eclipse tasks in fact shows that the participants seem to
thrive with the direct low-level editing of the code. They quickly
start copy-pasting code, and introduce preprocessor annotations to
match their solution to the actual target solution. INCLINE users are
slower as they need to understand the integration solution and map
it back to intentions �rst, which is more demanding. In summary,
this shortcoming in plain editing e�ciency illustrates an important
limitation of our approach. Yet, even in INCLINE, developers could
resort to writing preprocessor annotations by hand, making up for
this limitation, which we did not instruct them.

6.6 Bene�ts of INCLINE
Methodology. We conduct a controlled experiment with 12 expe-
rienced PhD students who are familiar with the C preprocessor.
Recall that the setting should be realistic, so we adapt the situation
where a developer who has domain knowledge about the variants
shall integrate them. To this end, we provide a detailed, but abstract
explanation of the purpose of the variants’ individual parts and
how they should be integrated.

We use a 2x2 within-subjects counterbalanced Latin square de-
sign and reuse the Vim and BusyBox tasks. That is, each participant
performs two tasks, using two treatments: Eclipse, and INCLINE
on P1 or P2, in a random order to reduce learning e�ects. Using
a within-subjects design, we can have a lower number of partici-
pants, while every subject participates in each task. Furthermore,
we mitigate learning e�ects by randomizing the order of the tasks
(counterbalanced part of the design).

Participants are trained through a video tutorial on how to use
both tools, as well as being instructed on preprocessor usage (they
only needed to use #ifdef, #else, and #endif). Then, we asked the
participants to solve a warmup task extracted from Marlin, to get
familiar with the tools. We record the screens and log information
about keystrokes (in Eclipse) and intentions (in INCLINE).

We compare the performance of participants with both tools by
measuring the mistakes done per task, the time to complete each
task, and the number of edit operations (and number of intentions)
applied per task as a proxy measure of e�ort.

We count mistakes done by the participants as follows. For
Eclipse, we check if the end result is the same as the expected
result. A mistake can be a missing preprocessor annotation, miss-
ing code or extra code. For INCLINE, we check for wrong intentions
or no intentions applied by the participant that leads to errors in

●

●

●

BusyBox Vim

Eclipse INCLINE Eclipse INCLINE

20

40

60

80

25

50

75

editor

ed
it

op
er

at
io

ns
 (

E
cl

ip
se

)
vs

 in

te
nt

io
ns

 (
IN

C
LI

N
E

)

(a) Intentions/edit operations

BusyBox Vim

Eclipse INCLINE Eclipse INCLINE

500

1000

600

900

1200

1500

1800

editor

tim
e

in
 s

ec
on

ds

(b) Task completion times

Figure 12: Participants’ e�ort and completion times

the resulting �le. For both tools, errors concerning comments are
counted as a half mistake, errors in formatting of code is ignored.
Results. INCLINE participants did visibly less mistakes than partic-
ipants using Eclipse (7 vs 17.5). Furthermore, only four participants
did mistakes in INCLINE compared to 11 participants in Eclipse.
This is no surprise, as INCLINE has better support for keeping or
removing code without needing to copy&paste or create #ifdef

structures (a good source of errors). Users made mistakes in IN-
CLINE when they missed relevant nodes in the declared intentions,
declared incorrect intentions, or declared di�erent intentions for
the same node with an unexpected result for the user. Common mis-
takes with Eclipse included failures in the #ifdef structure, leaving
code that should be removed or removing too much code.

INCLINE is also better in terms of intentions needed to execute
the task (see Fig. 12a). In BusyBox, INCLINE users need only a hand-
ful of intentions to integrate the two variants, whereas BusyBox
requires almost 50 edit operations for achieving the same goal. In
perspective, Vim is less demanding for Eclipse users, and INCLINE
users use a very similar number of intentions to execute the task.

If we compare the times to execute the task, INCLINE integra-
tions are almost as fast as the ones in Eclipse (see Fig. 12b). The
reason for being slower is twofold. First, participants spent a lot of
time (which we count in the result) reading back and forth through
the descriptions to understand their integration goal. Second, some
participants were always verifying the preview view after applying
an intention. A possible explanation for the latter case is that users
are not very familiar with the tool and intentions, and thus either
do not trust the tool or are not sure if they applied the right inten-
tion. However, this is exactly where INCLINE shines as it facilitates
exploration, quick undo, and o�ers multiple views for manipulat-
ing and understanding the di�erent variants and the integration
result. Along these lines, one of the participants mentions that “It
was really useful to declare all the intentions while still having the
original �les in sight and previewing the result.”

INCLINE users are almost as fast as Eclipse users, but perform
much fewer mistakes.

6.7 User Survey
After both user studies with student developers, we asked to �ll in
a survey questionnaire. We received 25 responses (cf. appendix [2]).

Participants agree in majority (over 90%) that the Keep and Re-
move intentions are intuitive. However, the Exclusive intention
seems more confusing, because the user cannot directly select it.

ICSE 2018, ,Max Lillack University of Leipzig, Germany, S, tefan Stănciulescu IT University of Copenhagen, Denmark, Wilhelm Hedman Chalmers University of
Technology, Sweden, Thorsten Berger Chalmers | University of Gothenburg, Sweden, and Andrzej Wąsowski IT University of Copenhagen, Denmark

Interestingly, over 50% of the participants consider that integra-
tion with INCLINE is faster than with Eclipse. One potential reason
is that by not doing many copy pasting operations or editing text,
INCLINE feels faster through the usage of intentions, though results
show the two tools are close. Similarly, over 50% of the participants
agree that intention based integration is not complex, suggesting
that there is potential for intention-based integrations.

When asked what are the advantages of using intention-based
over manual integration, some participants mentioned that "It
doesn’t require manual code rewrite so I believe it could be easier
avoid unintentional bugs in code and subtle di�erences" or "You get
the preview of the result and the projections side-by-side, which seems
hugely helpful when you don’t have a clear integration goal. Harder
to make syntactic mistakes." There is in general a consensus that
"It’s much more intuitive and less error-prone".

6.8 Threats to Validity
External Validity. We mitigate selection bias, as the main threat
in our evaluation, by using multiple open source projects that have
been actively developed and many variants have emerged. We use
both main source �les as well as forks to create realistic integra-
tion tasks. For the controlled experiment, we recruited experienced
PhD students. However, only basic program understanding was re-
quired, and we recapped the preprocessor use, which mitigated any
potential di�erences in programming experience among the partic-
ipants. Furthermore, students are known to perform like industry
participants in similar conditions [16, 38].
Internal Validity. Simple bugs in the tool chain can hide or dis-
tract from potential correctness issues of the intention concept. To
mitigate this, we classify any errors in the result �les as bugs in
the tool chain, which are not related to speci�c tasks or the inten-
tion concept, and focus on errors where a user declared the wrong
intentions or the intention resolution performed not as speci�ed.

The experiment participants using INCLINE have disadvantages
compared to plain merge tools, mostly due to the lacking experience
and the rough UI of a research prototype. We mitigate this threat
by training users through a tutorial and a warmup task on how to
use INCLINE. Furthermore, we randomly assigned the tasks to the
participants, minimizing the risk of learning e�ects.

7 RELATEDWORK
Product-Line Adoption. Many works focus on re-engineering
a single system into a software product line [21, 22, 24, 39], typi-
cally proposing refactoring techniques for creating con�gurable
platforms. The main di�erence is that we focus on integrating
multiple system variants (originating from cloning) into a product
line, systematically guiding the process with intentions and views.
Product-Line Evolution. Other works provide intelligent support
for evolving a product line. For instance, Liebig et al. [29] provide
three refactorings (rename identi�er, extract function, inline func-
tion) that are proven to preserve the variants in a con�gurable
platform. The resolution of our intentions can also be seen as a
refactoring, but it is explicitly not variant-preserving. Yet, automat-
ically detecting and applying refactorings to improve the quality
and structure of our integrated AST would be valuable future work.

Re-Engineering Multiple Variants. Compared to existing ap-
proaches, in summary, the novelties of our work are: (1) a set of
intuitive intentions for various integration goals, controlling how
code is integrated, which improves over character-based changes
done in traditional merge/di� tools; (2) editable views that improve
comprehension of the variants, the automated integration, and the
end result; (3) doing edits on the variational AST to explore the
e�ect of intentions and manual edits, with support for undo; (4)
a tool chain aimed at C/C++ systems using the preprocessor for
variation points, where we ensure their correct handling; and (5)
instead of proposing automatic merges, we rather strive to support
developers with intuitive, partially automated mechanisms.

A recent mapping study on re-engineering variants into product
lines identi�es 119 papers on this topic. However, the large majority
focuses on detecting and analyzing commonalities and variabilities
of the variant systems, together with feature identi�cation and
location [6]. Only few support the actual variant integration.

Rubin et al. present a conceptual framework with seven operators
usable to re-engineer cloned variants into a product line [37]. The
operators are abstract and some are related to our intentions. Yet,
none is implemented. In contrast, we provide full tool support.

Fischer et al. [13] propose a method to detect reusable features
among variants, allowing to compose them to derive a new system.
Martinez et al. present a framework for re-engineering a set of
assets into a product line [30]. The framework can be extended and
customized to support di�erent kinds of artifacts. Klatt et al. [23]
present a tool for consolidating cloned product variants. It enhances
the initially created integrated platform by providing a variation
point analysis that provides recommendations for a developer to
aggregate variation points. Ziadi et al. [44] automatically create a
feature model and a software product line from a set of variants. All
these works lack support for handling variability using preprocessor
directives as the most common technique for variation points.

Finally, case studies of manual re-engineering exist. For instance,
Hetrick et al. re-engineer cloned variants into a product line, extract-
ing core assets from existing codebases, creating variation points,
and switching to product line engineering [15]. Jepsen et al. [19]
compute pairwise di�erences of two products, and wrap di�erences
using #ifdef to create the initial integrated platform. The platform
was iteratively re�ned, deciding to keep, remove or introduce a
new feature, which took several years to complete [18].
SoftwareMerging. Recall that variant integration is di�erent from
traditional merging. Still, we are inspired by techniques known from
it. Our technique for creating the initial integrated platform works
on ASTs and as such is related to structural merge [4, 5, 27, 34],
which also relies on ASTs. Furthermore, detecting structural dif-
ferences is used for many kinds of models in software engineer-
ing research [26]. For instance, JNDi� [10] implements a generic
di�erencing algorithm for any XML-based model. Finally, model
merging [25] and model composition [3] are related approaches to
combine existing models, ASTs in our case, to one resulting model.

8 CONCLUSION
Forking is a fast way for prototyping and creating new variants.
However, the long-term costs can easily outrun the initial bene�ts,
which often requires re-integrating such forks.

Intention-Based Integration of Variants
ICSE 2018, ,

We presented an approach to integrate forked variants into a
con�gurable integrated platform. The core idea of our approach is
to o�er a set of intuitive integration intentions resembling domain-
speci�c actions to execute the integrations, at the core of a tool-
supported variant-integration process. Instead of focusing on low-
level #if directives, the developer can express the integration goal
using intentions declared on code blocks of the original variants,
make edits to the code, and immediately observe the result. At
any time, the platform is in a consistent state, and variants can
be derived for validation and veri�cation. Our evaluation showed
the bene�ts of our approach, substantially reducing the number
of editing operations required. We also showed that our approach
can handle complex integration tasks and merges with con�icts.
Declaring intentions was easy, and only rarely direct code editing
was required. Although understanding the integration goal is some-
times di�cult, the di�erent views help to explore and navigate the
code. Applying intentions and undoing them is particularly useful
to explore the result, before committing the changes. Participants
did mistakes with INCLINE when the integration goal was not
well understood and applied the wrong intentions or no intentions
at all. Often, complex tasks could be solved more e�ciently with
intentions than editing source code directly through a merge tool.

REFERENCES
[1] Jetbrains MPS. http://www.jetbrains.com/mps.
[2] Online Appendix. https://sites.google.com/site/myicse2018paper/.
[3] S. Apel, C. Kastner, and C. Lengauer. Language-independent and automated

software composition: The featurehouse experience. IEEE Trans. Softw. Eng.,
39(1):63–79, Jan. 2013.

[4] S. Apel, O. Leßenich, and C. Lengauer. Structured merge with auto-tuning:
Balancing precision and performance. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012, pages
120–129, New York, NY, USA, 2012. ACM.

[5] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. Semistructured merge:
Rethinking merge in revision control systems. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, 2011.

[6] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio, and A. Egyed.
Reengineering legacy applications into software product lines: a systematic
mapping. Empirical Software Engineering, pages 1–45, 2017.

[7] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wasowski. Three
cases of feature-based variability modeling in industry. In Model-Driven Engi-
neering Languages and Systems - 17th International Conference, MODELS 2014,
Valencia, Spain, September 28 - October 3, 2014. Proceedings, pages 302–319, 2014.

[8] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wą-
sowski. A survey of variability modeling in industrial practice. In VaMoS, 2013.

[9] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund. E�ciency of
projectional editing: A controlled experiment. In 24th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), 2016.

[10] A. Di Iorio, M. Schirinzi, F. Vitali, and C. Marchetti. A natural and multi-layered
approach to detect changes in tree-based textual documents. In Proceedings of
the 11th International Conference on Enterprise Information Systems, pages 90–101,
Berlin, Heidelberg, 2009. Springer.

[11] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki.
An exploratory study of cloning in industrial software product lines. In 17th
European Conference on Software Maintenance and Reengineering, CSMR 2013,
Genova, Italy, March 5-8, 2013, pages 25–34, 2013.

[12] A. N. Duc, A. Mockus, R. L. Hackbarth, and J. D. Palframan. Forking and co-
ordination in multi-platform development: a case study. In 2014 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement,
ESEM ’14, Torino, Italy, September 18-19, 2014, pages 59:1–59:10, 2014.

[13] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. Enhancing clone-
and-own with systematic reuse for developing software variants. In 30th IEEE
International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, pages 391–400, 2014.

[14] M. L. Guimarães and A. R. Silva. Improving early detection of software merge
con�icts. In ICSE, pages 342–352, Piscataway, NJ, USA, 2012. IEEE Press.

[15] W. A. Hetrick, C. W. Krueger, and J. G. Moore. Incremental return on incremental
investment: Engenio’s transition to software product line practice. In Companion

to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland,
Oregon, USA, pages 798–804, 2006.

[16] M. Höst, B. Regnell, and C. Wohlin. Using Students As Subjects—A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment. Empirical
Softw. Engg., 5(3):201–214, Nov. 2000.

[17] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker, and S. Apel.
Preprocessor-based variability in open-source and industrial software systems:
An empirical study. Empirical Software Engineering, 2015.

[18] H. P. Jepsen and D. Beuche. Running a Software Product Line: Standing Still is
Going Backwards. In SPLC, 2009.

[19] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally invasive migration to software
product lines. In Software Product Lines, 11th International Conference, SPLC 2007,
Kyoto, Japan, September 10-14, 2007, Proceedings, pages 203–211, 2007.

[20] C. Kapser and M. W. Godfrey. "cloning considered harmful" considered harmful:
patterns of cloning in software. Empirical Software Engineering, 13(6):645–692,
2008.

[21] C. Kästner, S. Apel, and D. S. Batory. A case study implementing features using
aspectj. In Software Product Lines, 11th International Conference, SPLC 2007, Kyoto,
Japan, September 10-14, 2007, Proceedings, pages 223–232, 2007.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming, pages 220–242. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[23] B. Klatt, M. Küster, and K. Krogmann. A graph-based analysis concept to derive
a variation point design from product copies. Proc of REVE, 13, 2013.

[24] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refactoring a legacy component
for reuse in a software product line: a case study. Journal of Software Maintenance,
18(2):109–132, 2006.

[25] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Merging models with the ep-
silon merging language (eml). In Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems, pages 215–229, Berlin,
Heidelberg, 2006. Springer-Verlag.

[26] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F. Paige. Di�erent models for
model matching: An analysis of approaches to support model di�erencing. In
2009 ICSE Workshop on Comparison and Versioning of Software Models, pages 1–6,
May 2009.

[27] O. Leßenich, S. Apel, and C. Lengauer. Balancing precision and performance in
structured merge. Automated Software Engineering, 22(3):367–397, 2015.

[28] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An Analysis of the
Variability in Forty Preprocessor-Based Software Product Lines. 2010.

[29] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. Morpheus: Variability-
aware refactoring in the wild. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ICSE ’15, 2015.

[30] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon. Bottom-up adoption
of software product lines: a generic and extensible approach. In Proceedings of
the 19th International Conference on Software Product Line, SPLC 2015, Nashville,
TN, USA, July 20-24, 2015, pages 101–110, 2015.

[31] S. McKee, N. Nelson, A. Sarma, and D. Dig. Software Practitioner Perspectives
on Merge Con�icts and Resolutions. In Proceedings of the 33rd International
Conference on Software Maintenance and Evolution, ICSME’17, 2017.

[32] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The love/hate rela-
tionship with the c preprocessor: An interview study. In ECOOP, 2015.

[33] J. Melo, C. Brabrand, and A. Wąsowski. How Does the Degree of Variability
A�ect Bug-Finding? In International Conference on Software Engineering (ICSE),
2016.

[34] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Software
Eng., 28(5):449–462, 2002.

[35] L. D. Moura and N. Bjørner. Z3: An e�cient smt solver. In Proc. Int’l Conf. on
Tools and algorithms for the construction and analysis of systems (TACAS/ETAPS),
pages 337–340, Berlin, Heidelberg, 2008. Springer.

[36] J. Rubin, K. Czarnecki, and M. Chechik. Managing cloned variants: a framework
and experience. In 17th International Software Product Line Conference, SPLC
2013, Tokyo, Japan - August 26 - 30, 2013, pages 101–110, 2013.

[37] J. Rubin, K. Czarnecki, and M. Chechik. Cloned product variants: from ad-hoc to
managed software product lines. STTT, 17(5):627–646, 2015.

[38] P. Runeson. Using Students as Experiment Subjects—An Analysis on Graduate
and Freshmen Student Data. In Proc. EASE, 2003.

[39] S. Schulze, T. Thüm, M. Kuhlemann, and G. Saake. Variant-preserving refactoring
in feature-oriented software product lines. In Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12, 2012.

[40] H. Spencer and C. Geo�. #ifdef Considered Harmful, or Portability Experience
With C News. In USENIX Summer Technical Conference, pages 185–198, 1992.

[41] S, . Stănciulescu, S. Schulze, and A. Wąsowski. Forked and Integrated Variants in
an Open-Source Firmware Project. In 31st International Conference on Software
Maintenance and Evolution (ICSME), 2015.

[42] M. Völter, J. Siegmund, T. Berger, and B. Kolb. Towards User-Friendly Projectional
Editors. In SLE, 2014.

A Appendix

A.5 Marlin Survey Active Forks

132

Marlin firmware - Active fork
Dear participant,

Thank you for taking part in our survey. We are three researchers, Andrzej Wasowski and Stefan

Stanciulescu from IT University of Copenhagen in Denmark, and Sandro Schulze from TU

Braunschweig Germany, who are interested in the evolution of the Marlin firmware. We want to

understand how Marlin and its variants evolve, and how Git and Github contribute to this

development.

Our work is part of an european project, VARIES - www.varies.eu, that deals with handling

configurable software, and finding ways to better manage this kind of software and its

development.

The purpose of this survey is for research only, and it will only be used by the three of us.

All the information collected in this survey will be anonymous (unless you provide us with further

details, such as an e-mail address), and we will preserve confidentiality.

Completion Time: Approximately 10 minutes

Thank you,

Andrzej, Sandro and Stefan

*Required

Were you active on your fork (did some changes, synchronized with upstream, etc)? *

Note: If you have forked this Marlin repository more than once, please respond to the

following questions having in mind just one of the forks (e.g. the one that was the most

important, with most contributions).

Mark only one oval.

Yes

No Skip to "Not active fork."

1.

Questions regarding Marlin and your fork

What was your reason for forking Marlin repository? (choose one or more suitable

answers) *

Tick all that apply.

I wanted to configure the software to work with my own hardware

I am actively using this firmware, thus I wanted to have a copy of the repository

I am a developer or an enthusiast, and I wanted to modify Marlin for my own needs

I am a developer or an enthusiast, and I wanted to contribute to Marlin with patches for

features and bug-fixes

I had no specific intention when I forked Marlin

Other:

2.

Synchronization

Marlin firmware - Active fork https://docs.google.com/forms/d/1-xbWp2VLvto-6kK0NztLtilvT1zv...

1 of 4 8/14/17, 2:23 PM

Do you synchronize your fork with Marlin? *

do you take (pull) changes that are done in the main Marlin repository, and apply them to your

fork

Mark only one oval.

Yes Skip to question 4.

No Skip to question 5.

3.

Start this form over.

Synchronization with Marlin

How often do you synchronize with Marlin?

Mark only one oval.

Rarely

Every month

Every week

4.

Skip to question 6.

Synchronization with Marlin

What is the reason for not synchronizing with Marlin? (choose one or more suitable

answers)

Tick all that apply.

I do not know how to pull changes from Marlin repository

I do not want any changes from Marlin

The changes are not interesting for me

I am unaware of the new changes in Marlin

Other:

5.

Pull-request and patches

Did you create pull requests for Marlin? *

Mark only one oval.

Yes Skip to question 7.

No Skip to question 7.

I do not know what a pull-request is

6.

Patches

Did you have patches accepted in Marlin or other related project? *

Mark only one oval.

Yes Skip to question 8.

No Skip to question 10.

7.

Patches explanations

Marlin firmware - Active fork https://docs.google.com/forms/d/1-xbWp2VLvto-6kK0NztLtilvT1zv...

2 of 4 8/14/17, 2:23 PM

What was the main challenge in getting your patches accepted?8.

How many patches did you get accepted?9.

Skip to question 10.

Pull-request

Are you using other mechanism than Github's pull-request to send patches to the

maintainers of Marlin (or related projects?) *

Mark only one oval.

Yes Skip to question 11.

No Skip to question 12.

10.

Pull request explanation

How are you sending patches to maintainers of Marlin?

Please explain

11.

New functionality (or features)

Have you added new functionality in the code using #ifdef annotations? *

Mark only one oval.

Yes Skip to question 13.

No Skip to question 14.

12.

New functionality using #ifdef annotations
Please explain why did you introduce new functionality using #ifdef preprocessor annotations

Marlin firmware - Active fork https://docs.google.com/forms/d/1-xbWp2VLvto-6kK0NztLtilvT1zv...

3 of 4 8/14/17, 2:23 PM

Powered by

Explain why using #ifdef. Did you see any advantage in using the preprocessor

annotation?

13.

Contact information

Would you be interested in receving a copy

of our research paper? If yes, please enter

a valid e-mail address. *

Else write no

14.

Would it be ok to be contacted for further

information? If yes, please enter a valid

e-mail address. *

Else write no

15.

Skip to "Outro."

Not active fork
It looks like you selected that you did not do any changes to your fork, nor have synchronized with

upstream (Marlin). Please complete this survey instead.

https://docs.google.com/forms/d/1esY8pMkQ_BQ_QOO2bemqlCeuJGEUEirTKXZ09M6k7fM

/viewform?usp=send_form

Start this form over.

Outro
Thank your for your time.

Andrzej, Sandro and Stefan

Marlin firmware - Active fork https://docs.google.com/forms/d/1-xbWp2VLvto-6kK0NztLtilvT1zv...

4 of 4 8/14/17, 2:23 PM

A.6. Marlin Survey Inactive Forks

A.6 Marlin Survey Inactive Forks

137

Marlin firmware - Inactive fork
Dear participant,

Thank you for taking part in our survey. We are three researchers, Andrzej Wasowski and Stefan

Stanciulescu from IT University of Copenhagen in Denmark, and Sandro Schulze from TU

Braunschweig Germany, who are interested in the evolution of the Marlin firmware. We want to

understand how Marlin and its variants evolve, and how Git and Github contribute to this

development.

Our work is part of an european project, VARIES - www.varies.eu, that deals with handling

configurable software, and finding ways to better manage this kind of software and its

development.

The purpose of this survey is for research only, and it will only be used by the three of us.

All the information collected in this survey will be anonymous (unless you provide us with further

details, such as an e-mail address), and we will preserve confidentiality.

Completion Time: Approximately 10 minutes

Thank you,

Andrzej, Sandro and Stefan

*Required

Were you active on your fork (did some changes, synchronized with upstream, etc) and

pushed your changes on your repository on Github? *

Note: If you have forked this Marlin repository more than once, please respond to the

following questions having in mind just one of the forks (e.g. the one that was the most

important, with most contributions).

Mark only one oval.

Yes Skip to "Active fork."

No

1.

Questions regarding Marlin and your fork

What was your reason for forking Marlin repository? (choose one or more suitable

answers) *

Tick all that apply.

I wanted to configure the software to work with my own hardware

I am actively using this firmware, thus I wanted to have a copy of the repository

I am a developer or an enthusiast, and I wanted to modify Marlin for my own needs

I am a developer or an enthusiast, and I wanted to contribute to Marlin with patches for

features and bug-fixes

I had no specific intention when I forked Marlin

Other:

2.

Local changes

Marlin firmware - Inactive fork https://docs.google.com/forms/d/1NJJiNW_AQVqCBI0QX2AnQkui...

1 of 4 8/14/17, 2:20 PM

Do you have local changes (on your local repository on your own computer) that you

have not pushed on Github? *

Mark only one oval.

Yes Skip to question 4.

No Skip to question 5.

3.

Start this form over.

Reasons for only local changes

What is the reason for not pushing changes up to your repository on Github (to the

remote repository)? *

If there exist local changes (commits) but these are not pushed on Github, we would like to

understand why.

Tick all that apply.

I do not want to push my changes to the public repository

I forgot about my changes, and I do not need them to exist in the remote repository

I did a change once and then did not use the software anymore

Other:

4.

Branches

Do you use local branches (only on your own local repository on your computer) to

work with different configurations of the software? *

Mark only one oval.

Yes

No

5.

Do you use local branches (only on your own local repository on your computer) to

develop additional features or fix bugs? *

Mark only one oval.

Yes

No

6.

Pull-request

Are you using other mechanism than Github's pull-request to send patches to the

maintainers of Marlin (or related projects?) *

Mark only one oval.

Yes Skip to question 8.

No Skip to question 9.

I do not know what a pull-request is Skip to question 9.

7.

Pull requests explanation

Marlin firmware - Inactive fork https://docs.google.com/forms/d/1NJJiNW_AQVqCBI0QX2AnQkui...

2 of 4 8/14/17, 2:20 PM

How are you sending patches to maintainers of Marlin?

Please explain

8.

Synchronization with upstream

Why have you not synchronized with Marlin? *

Tick all that apply.

I did not know that Marlin has evolved

I do not know how to pull changes from Marlin repository

I do not want any changes from Marlin

I did not keep up with the project after I forked

Other:

9.

Contact information

Would you be interested in receving a copy

of our research paper? If yes, please enter

a valid e-mail address. *

Else write no

10.

Would it be ok to be contacted for further

information? If yes, please enter a valid

e-mail address. *

Else write no

11.

Skip to "Outro."

Active fork
It looks like you selected that you did changes to your fork, or maybe have synchronized with

upstream (Marlin). Please complete this survey instead.

https://docs.google.com/forms/d/16ZdnXmdlLzRjMPEnryS8VMeWAT2bWZPQ_DlMwVQ8R1M

/viewform?usp=send_form

Start this form over.

Outro
Thank your for your time.

Andrzej, Sandro and Stefan

Marlin firmware - Inactive fork https://docs.google.com/forms/d/1NJJiNW_AQVqCBI0QX2AnQkui...

3 of 4 8/14/17, 2:20 PM

Powered by

Marlin firmware - Inactive fork https://docs.google.com/forms/d/1NJJiNW_AQVqCBI0QX2AnQkui...

4 of 4 8/14/17, 2:20 PM

A Appendix

A.7 Intentions Examples

142

Keep

Code taken from temperature_47c1ea7_integrated.cpp.

See also Remove.

Case I: Explicit keep

Expected outcome: accept change as evolution.

Integrated view:

#include "watchdog.h"
#if !defined(FORK)

#include "language.h"
#endif
#include "Sd2PinMap.h"

Mainline view:

#include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h"

Clone view:

#include "watchdog.h"
#include "Sd2PinMap.h"

Resolutions:

In order to achieve the expected outcome of integrating this change as evolution,
there are two possible actions, both involving Keep, but applied on two different
views. Let K denote that the Keep intention is applied to the node. Only one of
a) and b) below are required, but they are equal.

a) Keep on Integrated view

#include "watchdog.h"
#if !defined(FORK)
K #include "language.h"
#endif
#include "Sd2PinMap.h"

b) Keep on Mainline view

1

#include "watchdog.h"
K#include "language.h"
#include "Sd2PinMap.h"

Outcome:

#include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h"

Case II: Implicit keep

Expected outcome: Discard the changes from the fork, accept the changes in
the mainline as evolution.

Integrated view:

#if !defined(FORK)
int cycles = 0;

#else
int cycles=0;

#endif

Mainline view:

int cycles = 0;

Clone view:

int cycles=0;

Resolutions:

Note that the actual applied intention is Remove, denoted by R. The K is added
by the tool after prompting the user. This is triggered because all the children
of the if/else-block has a Remove intention applied - therefore the user is asked
whether they want to automatically apply Keep to all children of the sibling
if/else-block.

To reach the expected outcome, we can apply the Remove intention in either the
integrated view or the clone view. For view clarity, we only show the integrated
view here, but the same principle as above still stands.

Integrated view:

2

#if !defined(FORK)
K int cycles = 0; // All nodes in this block get Keep because

we apply the Remove intention below!
#else
R int cycles=0; // Apply Remove to all nodes in this block -

prompt user for Keep on all nodes in if-block.
#endif

Outcome:

int cycles = 0;

3

Keep as feature

Code taken from 373f3ec/Marlin_main.cpp.

Expected outcome: Integrate Delta-specific changes from fork as features.

Integrated view

static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
#if defined(FORK)

static float delta[3] = {0.0, 0.0, 0.0};
#endif
static float offset[3] = {0.0, 0.0, 0.0};

Mainline view:

static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0};

Clone view:

static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0};

Resolution:

In order to achieve the expected outcome of integrating this change as a feature,
there are two possible actions, both involving KeepAsFeature, but applied on
two different views. Below we will show the Clone view only, but the exact
same principle applies for the Integrated view also. Let F denote that the
KeepAsFeature intention is applied to the node. The presence condition used
for the applied intention is defined(DELTA).

KeepAsFeature on Clone view

static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
F static float delta[3] = {0.0, 0.0, 0.0}; // PC: defined(DELTA)
static float offset[3] = {0.0, 0.0, 0.0};

Outcome:

static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
#if defined(DELTA)

static float delta[3] = {0.0, 0.0, 0.0};
#endif
static float offset[3] = {0.0, 0.0, 0.0};

1

Remove

Code taken from temperature_47c1ea7_integrated.cpp.

See also Keep.

Case I: Explicit remove

Expected outcome: Discard the variable ms, as it is no longer required.

Integrated view:

#if !defined(FORK)
unsigned long ms = millis();

#endif
if (temp_meas_ready == true) {

// stuff
}

Mainline view:

unsigned long ms = millis();
if (temp_meas_ready == true) {

// stuff
}

Clone view:

if (temp_meas_ready == true) {
// stuff

}

Resolutions:

In order to achieve the expected outcome of integrating this change as evolution,
there are two possible actions, both involving Remove, but applied on two different
views. Let R denote that the Remove intention is applied to the node. Only one
of a) and b) below are required, but they are equal.

a) Remove on Integrated view

#if !defined(FORK)
R unsigned long ms = millis();
#endif
if (temp_meas_ready == true) {

// stuff
}

1

b) Remove on Mainline view

R unsigned long ms = millis();
if (temp_meas_ready == true) {

// stuff
}

Outcome:

if (temp_meas_ready == true) {
// stuff

}

Case II: Implicit remove

Expected outcome: Discard the changes from the fork, accept the changes in
the mainline as evolution.

Integrated view:

#if !defined(FORK)
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);

#else
SERIAL_ECHOLN("PID Autotune start");

#endif

Mainline view:

SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);

Clone view:

SERIAL_ECHOLN("PID Autotune start");

Resolutions:

Note that the actual applied intention is Keep, denoted by K. The R is added
by the tool after prompting the user. This is triggered because all the children
of the if/else-block has a Keep intention applied - therefore the user is asked
whether they want to automatically apply Remove to all children of the sibling
if/else-block.

To reach the expected outcome, we can apply the Keep intention in either the
integrated view or the clone view. For view clarity, we only show the integrated
view here, but the same principle as above still stands.

Integrated view:

2

#if !defined(FORK)
K SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START); // Apply Keep to all

nodes in this block - prompt user for Remove on all nodes in
else-block.

#else
R SERIAL_ECHOLN("PID Autotune start"); // All nodes in this

block get Remove because we apply the Keep intention above!
#endif

Outcome:

SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);

3

Exclusive

Code taken from 373f3ec/Marlin_main.cpp.

Case I: Mutually exclusive code

Expected outcome: Integrate Delta-specific changes from fork as features, and
make non-delta-compatible code features.

Integrated view

#if !defined(FORK)
// Do not use feedmultiply for E or Z only moves
if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

}
#else

float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {

difference[i] = destination[i] - current_position[i];
}

#endif

Mainline view:

float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {

difference[i] = destination[i] - current_position[i];
}

Clone view:

// Do not use feedmultiply for E or Z only moves
if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

}

1

Resolution:

Apply Keep on both branches, followed by making each block mutually exclu-
sive under the condition !defined(DELTA). Let K denote Keep and Xn denote
Exclusive, with n={1,2} to denote block.

Integrated view:

#if !defined(FORK)
K // Do not use feedmultiply for E or Z only moves
K if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
K plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

K }
#else
K float difference[NUM_AXIS];
K for (int8_t i=0; i < NUM_AXIS; i++) {
K difference[i] = destination[i] - current_position[i];
K }
#endif

Intermediary view (after Keep is applied):

// Do not use feedmultiply for E or Z only moves
if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

}
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {

difference[i] = destination[i] - current_position[i];
}

Integrated view (apply Exclusive):

X1 // Do not use feedmultiply for E or Z only moves
X1 if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
X1 plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

X1 }
X2 float difference[NUM_AXIS];
X2 for (int8_t i=0; i < NUM_AXIS; i++) {

2

X2 difference[i] = destination[i] - current_position[i];
X2 }

Outcome:

#if !defined(DELTA)
// Do not use feedmultiply for E or Z only moves
if((current_position[X_AXIS] == destination [X_AXIS]) &&

(current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS],

destination[Z_AXIS], destination[E_AXIS], feedrate/60,
active_extruder);

}
#else

float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {

difference[i] = destination[i] - current_position[i];
}

#endif

3

A.8. Variant Integration Exit Questionnaire

A.8 Variant Integration Exit Questionnaire

153

Exit Questionnaire
Please specify to which extent you agree with the following statements. Thereafter, please

answer five open-ended questions. Please carefully elaborate, we are interested in your

experiences and your opinion about the concept of intention-based integration, less about the

tool UI or usability-related issues that are easy to fix in the INCLINE tool.

Integration with INCLINE is faster than in Eclipse

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

1.

I make fewer mistakes in INCLINE than in Eclipse

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

2.

Mistakes are easier to notice in INCLINE than in Eclipse

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

3.

Mistakes are easier to fix in INCLINE than in Eclipse

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

4.

INCLINE is a mature tool

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

5.

INCLINE is not mature enough

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

6.

Exit Questionnaire https://docs.google.com/forms/d/1hzaQKaPJy0eiwvGuRkP823Gi6ST...

1 of 3 7/26/17, 4:50 PM

Intention-based integration is not complex

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

7.

The Keep intention is intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

8.

The Remove intention is intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

9.

The Implicit Keep/Remove intentions are intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

10.

The Keep as Feature intention is intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

11.

The Assign Feature intention is intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

12.

The Exclusive intention is intuitive

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

13.

Exit Questionnaire https://docs.google.com/forms/d/1hzaQKaPJy0eiwvGuRkP823Gi6ST...

2 of 3 7/26/17, 4:50 PM

Powered by

Which intentions did you find the most useful? Please elaborate.14.

What are the advantages of using intentions for variant integration compared to

manual integration with Eclipse? Please elaborate.

15.

What are your perceived disadvantages of using intentions for variant integration

compared to manual integration with Eclipse? Please elaborate.

16.

Are there any possible improvements to intention-based integration or in particular

INCLINE? Please elaborate.

17.

How would you prefer to perform a variability-related integration? Please elaborate.18.

Exit Questionnaire https://docs.google.com/forms/d/1hzaQKaPJy0eiwvGuRkP823Gi6ST...

3 of 3 7/26/17, 4:50 PM

A.9. Variant Integration Exit Questionnaire Answers

A.9 Variant Integration Exit Questionnaire Answers
The full answers can be viewed at https://docs.google.com/spreadsheets/
d/1-hoXph_T7p9NvHX55rObh4RG17MECXZoIqLT_Qw5gko/edit?usp=sharing

157

https://docs.google.com/spreadsheets/d/1-hoXph_T7p9NvHX55rObh4RG17MECXZoIqLT_Qw5gko/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1-hoXph_T7p9NvHX55rObh4RG17MECXZoIqLT_Qw5gko/edit?usp=sharing

Timestamp Integration with INCLINE is faster than in EclipseI make fewer mistakes in INCLINE than in EclipseMistakes are easier to notice in INCLINE than in EclipseMistakes are easier to fix in INCLINE than in EclipseINCLINE is a mature tool INCLINE is not mature enough
2017-05-02 14.50.57 1 1 1 1 4 2
2017-05-03 09.54.38 3 2 4 4 3 2
2017-05-03 20.03.51 4 3 4 2 1 5
2017-05-04 17.47.17 4 4 5 5 2 5
2017-05-08 14.35.48 4 2 3 4 2 4
2017-05-08 14.36.18 4 4 5 4 2 4
2017-05-08 16.32.08 4 3 4 4 3 3
2017-05-09 11.22.06 4 4 4 4 3 3
2017-05-09 14.08.23 1 2 3 1 4 2
2017-05-09 15.58.42 2 4 4 2 3 3
2017-05-11 21.01.06 4 4 4 3 2 3
2017-05-12 14.30.16 1 1 2 2 3 4

2017-05-15 11.14.30 4 5 4 4 4 2
2017-05-15 18.24.39 3 1 3 2 2 3
2017-05-15 18.24.51 3 5 5 1 3 3
2017-05-16 18.39.11 4 4 5 4 3

Intention-based integration is not complexThe Keep intention is intuitiveThe Remove intention is intuitiveThe Implicit Keep/Remove intentions are intuitiveThe Keep as Feature intention is intuitiveThe Assign Feature intention is intuitiveThe Exclusive intention is intuitive
3 5 5 5 5 5 5
3 4 3 3 3 3 2
5 5 5 4 4 3 3
5 4 4 3 3 4 3
4 5 5 5 5 5 3
5 4 5 4 2 2
4 4 4 3 4 4 3
3 4 4 4 5 5
4 2 5 2 4 3
2 5 5 4 3 4 3
3 5 5 5 5 5
1 3 3 2 3 3

4 4 4 4 4 4
4 4 4 3 4 3 3
4 4 4 4 4 5
4 5 5 3 4 4

Which intentions did you find the most useful? Please elaborate.What are the advantages of using intentions for variant integration compared to manual integration with Eclipse? Please elaborate.What are your perceived disadvantages of using intentions for variant integration compared to manual integration with Eclipse? Please elaborate.Are there any possible improvements to intention-based integration or in particular INCLINE? Please elaborate.How would you prefer to perform a variability-related integration? Please elaborate.
The Keep and remove were the most used by me but you will need the rest ofc. it instantly adds the method or the function, which is nice, however in my case I did not look at the two screens on the right. maybe because I was reading the results from a paper and in reality I would have to look at the other screens. in Eclipse I copied from a screen to paste into the other which was intuitive.I don't have the experience. maybe if I used the tool on many times I would be more flaunt in using it. I would say add colors, like this part is removed mark it red, this part is kept mark it green (the whole code) just to keep up with. that's something other integration tools utilize The github desktop tool seems to me like the best tool. it is similar to Eclipse but you don't have to copy and paste portions of the code, you just click integrate to the main branch etc.
Keep intention, i found it the most useful one due to its ease of use to highlight and keep the intended piece of codeI found it faster and more friendlier to use, the only small "issue" was to learn to use it but the tutorial and help which was given were sufficient.Manual you could change the code directly, while e.g in some views allowed code manipulation but not statements (if,else etc)Well there were some small factors like, highlighting with a mouse was harder, and some of the shortcuts did not work. The views are adjustable but it will definitely be more clustered for user with bigger softwareSince Im not in the so called "loop" of variability-related integration I have it hard to make any concrete statements in that field in general. However, when it comes to variability-related integration between eclipse and incline, I believed that incline was a little bit better due to its multi view and fast editing available with intentions manipulation. So for me if a tool or a system which allows intentions manipulation(like incline), is something i would prefer working with when dealing with variability-related integration.
Keep intention and keep as a feature because they allowed me to organize the codeIt doesn't require manual code rewrite so I believe it could be easier avoid unintentional bugs in code and subtle differencesIt's a bit steeper learning curve compared to manual text editing. Would probably be much faster and easier once one would become accustomed to the way of working.Easy keybindings for faster usage in real world scenarios, a bit hard to grasp how multiple conflicting mutations/intentions are prioritized, the graphical interface could be made more user friendly for new users.Today I'd probably do it manually in my text editor (as with merge conflicts) but considering a tool like INCLINE once mature and if widely adopted seems reasonable.
Keep and remove easier to see end result without modifying old filesconfusing to learn a new toolThe ui could be more visual. Not exactly sure how, but improvements can surely be madeincline, but I've never run in to this problem before
Keep and remove, easy to understand what they actually did.Easier to keep track of where a change occurred, while at the same time being able to keep and remove intentions (or modify) intentions for the baseline or new variantIt might take longer to learn, I don't see any other real drawbacksThe function (intentions, features, a.s.o.) and what they did should have been better explained for the users to easier understand what happened when a certain button was pressed.I don't really prefer any way i have currently tried. Most of them are a hassle and always seem to de-sync somewhere, which leads to irritation and longer development time/increments
Keep and remove All information is kept intact, no risk of destroying anythingDifferent way of thinking It would be nice with better command support, like CTRL-K for keep and CTRL-R for remove.If it was a large scale project i would feel more comfortable with INCLINE.
The assign as a feature and keep/remove intention. The names are self-explanatory and are common features to use when merging one type to another.It gives a better overview and it is easier to know where the differences are. Furthermore, it is easier to change the differences.To be able to write directly in the file; that is the only feature which is missing.Same as above, to be able to write directly in the file.A combination of both would have been awesome!
The keep intention mostly. I feel like it's often more intuitive and useful to think about things in terms of what you want to keep, rather than the opposite. The Assign Feature was very easy to use, but Keep as Feature seems more powerful.It's a much more powerful tool. After you get used to it, the speed advantages will probably be quite substantial. It also helps minimizing the risk of error as it does much of the work for you: no missed lines when copy-pasting, etc.Bigger hurdle to get started. The manual integration in Eclipse is easy to understand and easy to get started with.Not that I can think of (except for obvious possibilities for usability improvement in the tool).I would definitely like using the INCLINE way. It offers a nice way to work through the variabilities while making it hard to make any stupid mistakes. The focus is on understanding what you want instead of correctly maneuvering through copy and pastes.
Assign feature Seems faster in a larger scope (not just a few lines)It was hard to navigate to the menu each time and the naming was not intuitiveThe naming of functions was not 100% intuitive without the introduction/cheatsheetIncline for longer periods of time and on larger projects. Manual for shorter statements.
Keep and Remove, very intuitive and easy to understand after only a few uses. Easier to keep track of bulks of code, nice highlights on "processed" code during the course of the integration. Learning curve, mostly - users will already be quite familiar with copy/paste and the concept of comparing side-by-side. Hotkeys for all the intentions would probably allow power users to be faster than just sitting in Eclipse.INCLINE would be nice for scalability and the improved overview, but only for specific projects - it it too complex for small files which require only a few minutes of time, I'd say. Imagining a code of over 100 rows, INCLINE would most likely be the better choice.
Impossible to say, because they seemed to complement each other. I wouldn't want to remove any of them. If I had to, I would remove "assign feature". You can still easily do the same thing by just selecting all the code and choosing "keep as feature". Not exactly what you asked, but the best I can give.You get the preview of the result and the projections side-by-side, which seems hugely helpful when you don't have a clear integration goal. Harder to make syntactic mistakes.Learning curve. And a slightly immature tool. But that's it.Not having different intentions cancel each other, the latest one should apply. INCLINE for any file larger than the tasks given. Once I am used to the tool, probably those too. Not sure about smaller ones.
No single one stood out as more useful, or more mature, than the others.Explicit concern given to the why (intention) behind the variation.No additional abstraction power over the textual representation. Cf. UML diagrams vs. OO code. There's no additional mathematical power in the former over the latter, "only" visualization.Interleaved free-text editing.Three-way diff.

Keep intentions. It makes sense to find the correct code block and say: "I want to use this."It's much more intuitive and is less error-prone.It's something that I haven't used before so it I would imagine that it would take a little bit longer to get used it but when one is experienced enough (which shouldn't take more than a few times using it) it would be much faster and less error-prone.

Someone would have to explain this to me to begin with (like with the video) and I would need to have some kind of a reference to get accustomed to using it. It's much "easier" to just copy and paste since I'm used to it.

Sometimes I was a bit lost if what I was trying to do, actually did something since you have multiple views open and are kind of just looking around.

I think the one with Incline would be the ideal approach. Of course some changes could be done to the user interface and such but, as you state, that is something that is relatively easy to fix.

I would be much less worrisome in using Incline than regular copy and paste when comparing several different versions of a file.
Keep as Feature. It was more clear how it affected the existing version. Involves a learning curve that copy and paste does not.Too new to be able to give feedback. Probably the copy and paste approach, since it is most familiar option.
Keep and remove Less mistakes Feels like drag and drop, less powerfulMore keybindings INCLINE
Keep Intention You can preform the task from the beginning to end without jumping in the code. You wont forget part of the integration. It takes more time. Keybindings. Being able to mark rows with your mouse. Incline

A.10. Controlled Experiment Answers

A.10 Controlled Experiment Answers

161

Timestamp Integration with INCLINE is faster than in EclipseI make fewer mistakes in INCLINE than in EclipseMistakes are easier to notice in INCLINE than in EclipseMistakes are easier to fix in INCLINE than in EclipseINCLINE is a mature tool INCLINE is not mature enough
22/08/2017 13:51:04 5 4 4 3 3 3

22/08/2017 14:50:11 5 5 5 4 4 2
23/08/2017 03:11:35 3 4 4 2 3 4
23/08/2017 03:55:12 3 3 3 4 3 3
23/08/2017 04:17:01 4 2 4 2 3 3
23/08/2017 05:40:13 4 3 2 1 1 5
23/08/2017 09:02:40 3 3 4 2 2 4
24/08/2017 07:39:10 4 5 5 4 4 3
24/08/2017 13:41:09 3 5 5 5 3 3

26/08/2017 08:38:10 4 5 4 4 3 4

Intention-based integration is not complexThe Keep intention is intuitiveThe Remove intention is intuitiveThe Implicit Keep/Remove intentions are intuitiveThe Keep as Feature intention is intuitiveThe Exclusive intention is intuitiveWhich intentions did you find the most useful? Please elaborate.
4 5 5 5 5 4 Keep, remove, feature

4 5 5 4 5 4 feature intention, since its not supported by traditional tools and required almost always manual interaction
5 5 5 5 4 4 Keep as feature
4 4 4 4 4 4 In my opinion, all of the intentions are useful. It could be that you use keep/remove intentions more than feature intentions, or viceversa. This actually depends on what was implemeted in the clone.
4 5 5 5 5 5 Keep as Feature intention, because it assures to hand over the feature name.
4 5 5 4 5 4
3 4 4 4 4 3 Keep and remove, because they constitute the basics you will need.
5 5 5 5 4 3 Keep as Feature, Implicit Keep/Remove
4 5 5 5 5 5 The implicit K/R intentions as well as KasFeature. The main benefit is saving time. The implicit suggestions given by INCLINE are short-cutting a lot user actions.

5 5 5 4 5 4 Keep and remove

What are the advantages of using intentions for variant integration compared to manual integration with Eclipse? Please elaborate.What are your perceived disadvantages of using intentions for variant integration compared to manual integration with Eclipse? Please elaborate.Are there any possible improvements to intention-based integration or in particular INCLINE? Please elaborate.How would you prefer to perform a variability-related integration? Please elaborate.
Intentions are much more intuitive and user friendly. Saves you some typing and copy-pasting. The sinchronized views were also very useful, because you can choose either the mainline, the combined view, or the fork to make updates, whatever is more convenient for the task at hand.Have to be careful not to leave any blank lines, otherwise the #if defined(FORK) block does not dissapearMaybe allow mouse text-selection, although this was not a big disadvantage.INCLINE

less typing/manual copy&paste and thereby less errors

existing features coud be extracted from the code. So when I apply a feature intention I can select from existing features.

UI could be polished, especially buttons for the intentionsas described before, extraction of existing features in mainline and fork would be helpful. E.g., for selecting from existing features when applying a feature intention or for a feature-based diff instead of line-based.
Makes it easier to merge two code bases as it raises the level of abstraction that one needs to think onMakes it easier to merge two code bases as it raises the level of abstraction that one needs to think onThe tool had some bugs, especially when un-doing things.
Faster integration based on short keyboard-keys. Using of colors as secondary notations to highlight the considered code fragements. The only thing is that you need to learn the short keys (which is not difficult).Log the actions and display them to the user. I may need to know, after a time working on integration, the order of my intention actions. I did not get the question.
It is much time saving than copy-pasting. Sometimes code-blocks caused troubles when integrating them. Is it possible to handle them in an unassembled way?Your tool is better than Eclipse. It still seems to have some is issues/bugs.
Editing on the AST level instead of textually is very useful (in my case probably because I'm used to it from paredit for LISP)Moving code seems to be not supported? What if a fork moved code around? What about moving code to different files? I have little experiences with INCLINE or merging variants. I would need more time working with problems in this domain to have any real opinion about it.I would lean towards INCLINE, given that it still allowed me to manually adjust the code (some mistakes are just quicker to fix by moving code around).
It's a specialised tool, in contrast to an all-purpose text editor.You might be simply more used doing things on a text basis, so that using a specialised tool seems superfluous.Don't know, I don't know the domain too well.I'm not sure I understand the question.
Less effort and reduction in human error due to either typing or copying and pastingNone, with maturity of he tool and experience of using the tool, intention based integration far outweighs manual integration in benefits. For small files, manual integration might seem to work better than IBI but with larger files and more changes, I believe intention based is more intuitive and less error prone.Now I can't remember, perhaps if the survey was sent immediately after the experiment I would have remembered.Through intention based integration. It was much faster for me once I got to know how to use the tool--INCLINE
(1) INCLINE as a tool is better than Eclipse compare because it offers multiple views in the same time. It was really useful to declare all the intentions while still having the original files in sight and previewing the result. The actual merge was done only in the end, when all changes were analysed as a whole. (2) Eclipse can only copy one chunk of code at once, which might include code from several features. To cope for this, the developer also ends up copying code line-by-line which defeats the purpose of the tool.There is a learning curve to the semantics and the keyboard shortcuts of the intentions and, of course, the tool must be sound. But one it matures I can't see any disadvantages.
-> Straightforward to decide which code should be integrated.
-> Easy to check whether the variant looks like expected.Sometimes it would be nice to be able to edit the target variant directly (e.g., fix bugs that could appear during an integration)Support for merging directories. How would that look like? Typically, I integrate variants using IntelliJ. INCLINE would be a nice addition on top.

as described before, extraction of existing features in mainline and fork would be helpful. E.g., for selecting from existing features when applying a feature intention or for a feature-based diff instead of line-based.

I would lean towards INCLINE, given that it still allowed me to manually adjust the code (some mistakes are just quicker to fix by moving code around).

Through intention based integration. It was much faster for me once I got to know how to use the tool--INCLINE
There is a learning curve to the semantics and the keyboard shortcuts of the intentions and, of course, the tool must be sound. But one it matures I can't see any disadvantages.

Bibliography

[mps,] Jetbrains MPS. http://www.jetbrains.com/mps.

[Abal et al., 2014] Abal, I., Brabrand, C., and Wasowski, A. (2014). 42 variability
bugs in the linux kernel: a qualitative analysis. In ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE, 2014, pages 421–432.

[Abal et al., 2017] Abal, I., Melo, J., Stănciulescu, Ş., Ribeiro, M., Brabrand, C., and
Wąsowski, A. (2017). Variability Bugs in Highly-Configurable Systems: A Quali-
tative Analysis. TOSEM.

[Antkiewicz et al., 2014] Antkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmor-
leiz, T., Lämmel, R., Stanciulescu, S., Wasowski, A., and Schaefer, I. (2014). Flex-
ible product line engineering with a virtual platform. In 36th International Confer-
ence on Software Engineering, ICSE ’14, Companion Proceedings.

[Assunção et al., 2017] Assunção, W. K. G., Lopez-Herrejon, R. E., Linsbauer, L.,
Vergilio, S. R., and Egyed, A. (2017). Reengineering legacy applications into soft-
ware product lines: a systematic mapping. Empirical Software Engineering, pages
1–45.

[Atkins et al., 2002] Atkins, D. L., Ball, T., Graves, T. L., and Mockus, A. (2002).
Using version control data to evaluate the impact of software tools: A case study of
the version editor. IEEE Transactions on Software Engineering, 28(7):625–637.

[Babich, 1986] Babich, W. A. (1986). Software Configuration Management: Coor-
dination for Team Productivity. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[Batory et al., 2004] Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004). Scaling
step-wise refinement. IEEE Transactions on Software Engineering, 30(6):355–371.

[Bécan, 2016] Bécan, G. (2016). Metamodels and Feature Models: Complementary
Approaches to Formalize Product Comparison Matrices. PhD thesis, Université
Rennes 1.

167

http://www.jetbrains.com/mps

Bibliography

[Berger et al., 2014a] Berger, T., Nair, D., Rublack, R., Atlee, J. M., Czarnecki, K.,
and Wąsowski, A. (2014a). Three Cases of Feature-Based Variability Modeling
in Industry. In Model-Driven Engineering Languages and Systems - 17th Inter-
national Conference, MODELS 2014, Valencia, Spain, September 28 - October 3,
2014. Proceedings, pages 302–319.

[Berger et al., 2013] Berger, T., She, S., Lotufo, R., Wąsowski, A., and Czarnecki, K.
(2013). A Study of Variability Models and Languages in the Systems Software
Domain. IEEE Trans. Software Eng., 39(12):1611–1640.

[Berger et al., 2014b] Berger, T., Stănciulescu, Ş., Øgård, O., Haugen, Ø., Larsen, B.,
and Wąsowski, A. (2014b). To connect or not to connect: experiences from model-
ing topological variability. In 18th International Software Product Line Conference.

[Berger et al., 2016] Berger, T., Völter, M., Jensen, H. P., Dangprasert, T., and Sieg-
mund, J. (2016). Efficiency of Projectional Editing: A Controlled Experiment. In
24th ACM SIGSOFT International Symposium on the Foundations of Software En-
gineering (FSE).

[Blendinger, 2010] Blendinger, F. (2010). A Filesystem-Based Approach to Sup-
port Product Line Development with Editable Views. Master’s thesis, Friedrich-
Alexander University Erlangen-Nuremberg.

[Christerson and Kolk, 2009] Christerson, M. and Kolk, H. (2009). Domain expert
DSLs. talk at QCon London 2009, available at http://www.infoq.com/
presentations/DSL-Magnus-Christerson-Henk-Kolk.

[Chu-Carroll et al., 2002] Chu-Carroll, M. C., Wright, J., and Shields, D. (2002). Sup-
porting aggregation in fine grained software configuration management. ACM SIG-
SOFT Software Engineering Notes, 27:99.

[Clements and Northrop, 2002] Clements, P. and Northrop, L. (2002). Software prod-
uct lines. Addison-Wesley.

[Cordy, 2003] Cordy, J. R. (2003). Comprehending Reality - Practical Barriers to
Industrial Adoption of Software Maintenance Automation. In 11th IEEE Interna-
tional Workshop on Program Comprehension.

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. W. (2000). Gen-
erative programming - methods, tools and applications. Addison-Wesley.

[Di Iorio et al., 2009] Di Iorio, A., Schirinzi, M., Vitali, F., and Marchetti, C. (2009).
A natural and multi-layered approach to detect changes in tree-based textual docu-
ments. In Proceedings of the 11th International Conference on Enterprise Informa-
tion Systems, pages 90–101, Berlin, Heidelberg. Springer.

168

http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

Bibliography

[Dintzner et al., 2016] Dintzner, N., van Deursen, A., and Pinzger, M. (2016).
FEVER: Extracting Feature-oriented Changes from Commits. In 13th International
Conference on Mining Software Repositories (MSR).

[Dubinsky et al., 2013] Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker,
M., and Czarnecki, K. (2013). An Exploratory Study of Cloning in Industrial Soft-
ware Product Lines. In 17th European Conference on Software Maintenance and
Reengineering.

[Duc et al., 2014] Duc, A. N., Mockus, A., Hackbarth, R., and Palframan, J. (2014).
Forking and Coordination in Multi-platform Development: A Case Study. In Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, pages 59–68, New York, NY, USA.
ACM.

[Ebert et al., 1998] Ebert, J., Gimnich, R., Stasch, H., and Winter, A. (1998). GUPRO
- Generische Umgebung zum Programmverstehen. Koblenzer Schriften zur Infor-
matik. Folbach, Koblenz.

[Erwig and Walkingshaw, 2011a] Erwig, M. and Walkingshaw, E. (2011a). The
choice calculus: A representation for software variation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 21(1):6.

[Erwig and Walkingshaw, 2011b] Erwig, M. and Walkingshaw, E. (2011b). The
Choice Calculus: A Representation for Software Variation. ACM Trans. on Soft-
ware Engineering and Methodology (TOSEM), 21(1):6:1–6:27.

[Faust and Verhoef, 2003] Faust, D. and Verhoef, C. (2003). Software Product Line
Migration and Deployment. In Software Product Line Migration and Deployment,
volume 33, pages 933–955.

[Favre, 1996] Favre, J. (1996). Preprocessors from an abstract point of view. In Inter-
national Conference on Software Maintenance (ICSM).

[Fenske et al., 2017] Fenske, W., Meinicke, J., Schulze, S., Schulze, S., and Saake,
G. (2017). Variant-Preserving Refactorings for Migrating Cloned Products to a
Product Line. In 24th International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 316–326. IEEE.

[Fenske and Schulze, 2015] Fenske, W. and Schulze, S. (2015). Code smells revisited:
A variability perspective. In Proceedings of the Ninth International Workshop on
Variability Modelling of Software-intensive Systems, page 3. ACM.

[Fenske et al., 2015] Fenske, W., Schulze, S., Meyer, D., and Saake, G. (2015). When
Code Smells Twice as Much: Metric-Based Detection of Variability-Aware Code

169

Bibliography

Smells. In Source Code Analysis and Manipulation (SCAM), 2015 15th IEEE In-
ternational Working Conference on, pages 171–180. IEEE.

[Fenske et al., 2014] Fenske, W., Thüm, T., and Saake, G. (2014). A taxonomy of
software product line reengineering. In Proceedings of the Eighth International
Workshop on Variability Modelling of Software-Intensive Systems, page 4. ACM.

[Fischer et al., 2014] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E., and Egyed, A.
(2014). Enhancing clone-and-own with systematic reuse for developing software
variants. In 2014 IEEE International Conference on Software Maintenance and
Evolution, pages 391–400.

[Fischer et al., 2015] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E., and Egyed,
A. (2015). The ECCO tool: Extraction and composition for clone-and-own. In
Proceedings of the 37th International Conference on Software Engineering-Volume
2, pages 665–668. IEEE Press.

[Foster et al., 2007] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and
Schmitt, A. (2007). Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 29(3):17.

[Ganesan et al., 2009] Ganesan, D., Lindvall, M., Ackermann, C., McComas, D., and
Bartholomew, M. (2009). Verifying Architectural Design Rules of the Flight Soft-
ware Product Line. In 13th International Software Product Line Conference.

[Gousios, 2013] Gousios, G. (2013). The GHTorrent dataset and tool suite. In Pro-
ceedings of the 10th Working Conference on Mining Software Repositories, MSR
’13, pages 233–236, Piscataway, NJ, USA. IEEE Press.

[Gousios et al., 2014] Gousios, G., Pinzger, M., and van Deursen, A. (2014). An Ex-
ploratory Study of the Pull-based Software Development Model. In 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014, pages 345–355.

[Gulla et al., 1991] Gulla, B., Karlsson, E.-A., and Yeh, D. (1991). Change-oriented
version descriptions in EPOS. Software Engineering Journal, 6(6):378–386.

[Hetrick et al., 2006] Hetrick, W. A., Krueger, C. W., and Moore, J. G. (2006). Incre-
mental return on incremental investment: Engenio’s transition to software product
line practice. In OOPSLA’06.

[Hofer et al., 2010] Hofer, W., Elsner, C., Blendinger, F., Schröder-Preikschat, W.,
and Lohmann, D. (2010). Toolchain-independent Variant Management with the
Leviathan Filesystem. In Proceedings of the 2nd International Workshop on
Feature-Oriented Software Development (FOSD).

170

Bibliography

[Hunsen et al., 2015] Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O.,
Becker, M., and Apel, S. (2015). Preprocessor-Based Variability in Open-Source
and Industrial Software Systems: An Empirical Study. Empirical Software Engi-
neering.

[Iosif-Lazar et al., 2017] Iosif-Lazar, A. F., Melo, J., Dimovski, A. S., Brabrand, C.,
and Wasowski, A. (2017). Effective Analysis of C Programs by Rewriting Variabil-
ity. Programming.

[Jang et al., 2012] Jang, J., Agrawal, A., and Brumley, D. (2012). ReDeBug: Finding
Unpatched Code Clones in Entire OS Distributions. In IEEE Symposium on Security
and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 48–
62.

[Janzen and De Volder, 2004] Janzen, D. and De Volder, K. (2004). Programming
with crosscutting effective views. In Proceedings of the 18th European Conference
on Object-Oriented Programming (ECOOP).

[Jepsen and Beuche, 2009] Jepsen, H. P. and Beuche, D. (2009). Running a Software
Product Line: Standing Still is Going Backwards. In 13th International Software
Product Line Conference.

[Jepsen et al., 2007] Jepsen, H. P., Dall, J. G., and Beuche, D. (2007). Minimally In-
vasive Migration to Software Product Lines. In 11th International Software Product
Line Conference.

[Johnson and Foote, 1988] Johnson, R. E. and Foote, B. (1988). Designing reusable
classes. Journal of object-oriented programming, 1(2):22–35.

[Juergens et al., 2009] Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S.
(2009). Do code clones matter? In Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on, pages 485–495. IEEE.

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson,
A. S. (1990). Feature-oriented domain analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[Kapser and Godfrey, 2006a] Kapser, C. and Godfrey, M. W. (2006a). ‘Cloning Con-
sidered Harmful‘ Considered Harmful. In 13th Working Conference on Reverse
Engineering.

[Kapser and Godfrey, 2006b] Kapser, C. J. and Godfrey, M. W. (2006b). Supporting
the Analysis of Clones in Software Systems: Research Articles. J. Softw. Maint.
Evol., 18(2):61–82.

171

Bibliography

[Kästner, 2010] Kästner, C. (2010). Virtual separation of concerns. PhD thesis, Uni-
versity of Magdeburg.

[Kästner and Apel, 2009] Kästner, C. and Apel, S. (2009). Virtual separation of
concerns-a second chance for preprocessors. Journal of Object Technology,
8(6):59–78.

[Kästner et al., 2007] Kästner, C., Apel, S., and Batory, D. S. (2007). A Case Study
Implementing Features Using AspectJ. In Software Product Lines, 11th Interna-
tional Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings,
pages 223–232.

[Kästner et al., 2008] Kästner, C., Trujillo, S., and Apel, S. (2008). Visualizing Soft-
ware Product Line Variabilities in Source Code. In ViSPLE.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C
programming language, volume 78.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming.
ECOOP’97—Object-oriented programming, pages 220–242.

[Kim et al., 2004] Kim, M., Bergman, L., Lau, T., and Notkin, D. (2004). An Ethno-
graphic Study of Copy and Paste Programming Practices in OOPL. In Proceedings
of the 2004 International Symposium on Empirical Software Engineering, ISESE
’04, pages 83–92, Washington, DC, USA. IEEE Computer Society.

[Kim et al., 2005] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. (2005). An Em-
pirical Study of Code Clone Genealogies. SIGSOFT Softw. Eng. Notes, 30(5):187–
196.

[Klatt et al., 2013] Klatt, B., Küster, M., and Krogmann, K. (2013). A graph-based
analysis concept to derive a variation point design from product copies. Proc of
REVE, 13.

[Kolb et al., 2006] Kolb, R., Muthig, D., Patzke, T., and Yamauchi, K. (2006). Refac-
toring a legacy component for reuse in a software product line: a case study. Journal
of Software Maintenance, 18(2):109–132.

[Krinke, 2008] Krinke, J. (2008). Is cloned code more stable than non-cloned code? In
Source Code Analysis and Manipulation, 2008 Eighth IEEE International Working
Conference on, pages 57–66. IEEE.

[Kruskal, 1984] Kruskal, V. (1984). Managing Multi-Version Programs with an Edi-
tor. IBM Journal of Research and Development, 28(1):74–81.

172

Bibliography

[Kruskal, 2000] Kruskal, V. (2000). A blast from the past: Using P-EDIT for multidi-
mensional editing. In Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering.

[Kullbach and Riediger, 2001] Kullbach, B. and Riediger, V. (2001). Folding: an ap-
proach to enable program understanding of preprocessed languages. In Proceedings
of 8th Working Conference on Reverse Engineering (WCRE).

[Le et al., 2011] Le, D., Walkingshaw, E., and Erwig, M. (2011). #ifdef confirmed
harmful: Promoting understandable software variation. In Proceedings of Sympo-
sium on Visual Languages and Human Centric Computing (VL/HCC).

[Lie et al., 1989] Lie, A., Conradi, R., Didriksen, T. M., and Karlsson, E.-A. (1989).
Change oriented versioning in a software engineering database. SIGSOFT Softw.
Eng. Notes, 14(7):56–65.

[Liebig, 2015] Liebig, J. (2015). Analysis and Transformation of Configurable Sys-
tems. PhD thesis, University of Passau, Germany.

[Liebig et al., 2015] Liebig, J., Janker, A., Garbe, F., Apel, S., and Lengauer, C.
(2015). Morpheus: Variability-aware Refactoring in the Wild. In Proceedings of
the 37th International Conference on Software Engineering - Volume 1, ICSE ’15.

[Lillack et al., 2017] Lillack, M., Stănciulescu, Ş., Hedmann, W., Berger, T., and Wą-
sowski, A. (2017). Intention-Based Integration of Variants. Manuscript under re-
view. Available upon request.

[Lotufo et al., 2010] Lotufo, R., She, S., Berger, T., Czarnecki, K., and Wasowski, A.
(2010). Evolution of the linux kernel variability model. In Proceedings of 14th
International Conference, (SPLC).

[Martinez et al., 2015] Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., and Traon,
Y. L. (2015). Bottom-up adoption of software product lines: a generic and exten-
sible approach. In Proceedings of the 19th International Conference on Software
Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, pages 101–110.

[McVoy, 2015] McVoy, L. (2015). Preliminary Product Line Support in BitKeeper. In
19th International Software Product Line Conference, SPLC.

[Mebane and Ohta, 2007] Mebane, H. and Ohta, J. (2007). Dynamic Complexity and
the Owen Firmware Product Line Program. In 11th International Software Product
Line Conference.

[Melo et al., 2016] Melo, J., Brabrand, C., and Wąsowski, A. (2016). How Does the
Degree of Variability Affect Bug-Finding? In International Conference on Software
Engineering (ICSE).

173

Bibliography

[Mens, 2002] Mens, T. (2002). A State-of-the-Art Survey on Software Merging. IEEE
Trans. Software Eng., 28(5):449–462.

[Mikkonen and Nyman, 2011] Mikkonen, T. and Nyman, L. (2011). To Fork or Not
to Fork: Fork Motivations in SourceForge Projects. Int. J. Open Source Softw.
Process., 3(3):1–9.

[Montalvillo and Díaz, 2015] Montalvillo, L. and Díaz, O. (2015). Tuning GitHub
for SPL development: branching models & repository operations for product en-
gineers. In Proceedings of the 19th International Conference on Software Product
Line, pages 111–120. ACM.

[Moura and Bjørner, 2008] Moura, L. D. and Bjørner, N. (2008). Z3: An efficient
smt solver. In Proc. Int’l Conf. on Tools and algorithms for the construction and
analysis of systems (TACAS/ETAPS), pages 337–340, Berlin, Heidelberg. Springer.

[Munch, 1993] Munch, B. P. (1993). Versioning in a Software Engineering Database
— the Change Oriented Way. PhD thesis, Norwegian Institute of Technology, Di-
vision of Computer Systems and Telematics.

[Nguyen et al., 2012] Nguyen, H. A., Nguyen, T. T., Pham, N. H., Al-Kofahi, J., and
Nguyen, T. N. (2012). Clone management for evolving software. IEEE transactions
on software engineering, 38(5):1008–1026.

[Passos et al., 2015] Passos, L., Teixeira, L., Nicolas, D., Apel, S., Wąsowski, A.,
Czarnecki, K., Borba, P., and Guo, J. (2015). Coevolution of Variability Models
and Related Software Artifacts: A Fresh Look at Evolution Patterns in the Linux
Kernel. Empirical Software Engineering, Springer.

[Pech et al., 2009] Pech, D., Knodel, J., Carbon, R., Schitter, C., and Hein, D. (2009).
Variability Management in Small Development Organizations: Experiences and
Lessons Learned from a Case Study. In 13th International Software Product Line
Conference, SPLC ’09.

[Pfofe et al., 2016] Pfofe, T., Thüm, T., Schulze, S., Fenske, W., and Schaefer, I.
(2016). Synchronizing Software Variants with Variantsync. In Proceedings of
the 20th International Systems and Software Product Line Conference, SPLC ’16,
pages 329–332, New York, NY, USA. ACM.

[Pohl et al., 2005] Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[Prehofer, 1997] Prehofer, C. (1997). Feature-oriented programming: A fresh look at
objects. ECOOP’97—Object-Oriented Programming, pages 419–443.

174

Bibliography

[Rabiser et al., 2016] Rabiser, D., Grünbacher, P., Prähofer, H., and Angerer, F.
(2016). A Prototype-based Approach for Managing Clones in Clone-and-own Prod-
uct Lines. In Proceedings of the 20th International Systems and Software Product
Line Conference, SPLC ’16, pages 35–44, New York, NY, USA. ACM.

[Raymond, 1999] Raymond, E. S. (1999). Homesteading the Noosphere. In O’Reilly,
T., editor, The Cathedral and the Bazaar. O’Reilly & Associates, Inc.

[Robles and González-Barahona, 2012] Robles, G. and González-Barahona, J. M.
(2012). A Comprehensive Study of Software Forks: Dates, Reasons and Out-
comes. In Open Source Systems: Long-Term Sustainability - 8th IFIP WG 2.13
International Conference, OSS 2012, Hammamet, Tunisia, September 10-13, 2012.
Proceedings, pages 1–14.

[Roy and Cordy, 2007] Roy, C. K. and Cordy, J. R. (2007). A Survey on Software
Clone Detection Research. Technical Report No. 2007-54, School of Computing,
Queen’s University, Kingston Canada, 115.

[Rubin and Chechik, 2013a] Rubin, J. and Chechik, M. (2013a). A Framework for
Managing Cloned Product Variants. In Proceedings of the 2013 International Con-
ference on Software Engineering, ICSE ’13, pages 1233–1236, Piscataway, NJ,
USA. IEEE Press.

[Rubin and Chechik, 2013b] Rubin, J. and Chechik, M. (2013b). N-way model merg-
ing. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 301–311. ACM.

[Rubin et al., 2013] Rubin, J., Czarnecki, K., and Chechik, M. (2013). Managing
Cloned Variants: A Framework and Experience. In Proceedings of the 17th Inter-
national Software Product Line Conference, SPLC ’13, pages 101–110, New York,
NY, USA. ACM.

[Rubin et al., 2015] Rubin, J., Czarnecki, K., and Chechik, M. (2015). Cloned product
variants: from ad-hoc to managed software product lines. STTT, 17(5):627–646.

[Schmorleiz, 2015] Schmorleiz, T. (2015). An Annotation-centric Approach to Simi-
larity Management. Master’s thesis, University of Koblenz Landau, Germany.

[Schmorleiz and Lämmel, 2016] Schmorleiz, T. and Lämmel, R. (2016). Similarity
management of’cloned and owned’variants. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 1466–1471. ACM.

[Schulze et al., 2012] Schulze, S., Thüm, T., Kuhlemann, M., and Saake, G. (2012).
Variant-preserving Refactoring in Feature-oriented Software Product Lines. In Pro-
ceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12.

175

Bibliography

[Schwarz et al., 2012] Schwarz, N., Lungu, M., and Robbes, R. (2012). On how often
code is cloned across repositories. In 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 1289–1292.

[Schwägerl et al., 2015] Schwägerl, F., Buchmann, T., and Westfechtel, B. (2015).
SuperMod — A Model-Driven Tool that Combines Version Control and Software
Product Line Engineering. In Proceedings of the 10th International Conference on
Software Paradigm Trends, pages 5–18.

[She, 2013] She, S. (2013). Feature model synthesis. PhD thesis, University of Wa-
terloo.

[She et al., 2010] She, S., Lotufo, R., Berger, T., Wasowski, A., and Czarnecki, K.
(2010). The Variability Model of The Linux Kernel. In 4th International Workshop
on Variability Modelling of Software-intensive Systems.

[Singh et al., 2007] Singh, N., Gibbs, C., and Coady, Y. (2007). C-CLR: A Tool for
Navigating Highly Configurable System Software. In Proceedings of the 6th Work-
shop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS).

[Spencer and Geoff, 1992] Spencer, H. and Geoff, C. (1992). #ifdef Considered
Harmful, or Portability Experience With C News. In USENIX Summer Technical
Conference, pages 185–198.

[Stănciulescu et al., 2016a] Stănciulescu, Ş., Berger, T., Walkingshaw, E., and Wą-
sowski, A. (2016a). Concepts, Operations and Feasibility of a Projection-Based
Variation Control Systems. In Proceedings of the 32nd International Conference
on Software Maintenance and Evolution, ICSME’16.

[Stănciulescu et al., 2016b] Stănciulescu, Ş., Rabiser, D., and Seidl, C. (2016b). A
Technology-Neutral Role-Based Collaboration Model for Software Ecosystems. In
Proceedings of the 7th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, ISoLA’16.

[Stănciulescu et al., 2015] Stănciulescu, Ş., Schulze, S., and Wąsowski, A. (2015).
Forked and Integrated Variants in an Open-Source Firmware Project. In 31st Inter-
national Conference on Software Maintenance and Evolution (ICSME).

[Tichy, 1985] Tichy, W. F. (1985). RCS — A System for Version Control. 7(July
1985):637–654.

[Voelter et al., 2014] Voelter, M., Siegmund, J., Berger, T., and Kolb, B. (2014). To-
wards User-Friendly Projectional Editors. In 7th International Conference on Soft-
ware Language Engineering (SLE).

176

Bibliography

[Völter et al., 2014] Völter, M., Siegmund, J., Berger, T., and Kolb, B. (2014). To-
wards User-Friendly Projectional Editors. In SLE.

[Walkingshaw, 2013] Walkingshaw, E. (2013). The Choice Calculus: A Formal Lan-
guage of Variation. PhD thesis, Oregon State University, USA.

[Walkingshaw and Erwig, 2012] Walkingshaw, E. and Erwig, M. (2012). A Calculus
for Modeling and Implementing Variation. SIGPLAN Not., 48(3):132–140.

[Walkingshaw and Ostermann, 2014] Walkingshaw, E. and Ostermann, K. (2014).
Projectional editing of variational software. In Generative Programming: Concepts
and Experiences (GPCE).

[Westfechtel et al., 2001] Westfechtel, B., Munch, B. P., and Conradi, R. (2001). A
Layered Architecture for Uniform Version Management. IEEE TSE, 27(12):1111–
1133.

[Zhang et al., 2013] Zhang, B., Becker, M., Patzke, T., Sierszecki, K., and Savolainen,
J. E. (2013). Variability Evolution and Erosion in Industrial Product Lines: A Case
Study. In 17th International Software Product Line Conference.

[Zhou et al., 2018] Zhou, S., Stănciulescu, Ş., Leßenich, O., Xiong, Y., Kästner, C.,
and Wąsowski, A. (2018). INFOX: Identifying Features from Forks. In Manuscript
under review.

[Ziadi et al., 2014] Ziadi, T., Henard, C., Papadakis, M., Ziane, M., and Le Traon,
Y. (2014). Towards a Language-independent Approach for Reverse-engineering of
Software Product Lines. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pages 1064–1071, New York, NY, USA. ACM.

177

