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Cloud-Enabled, Reactive Liquid Handling Robot

Abstract

We introduce a robotic system developed to perform artificial chemical life ex-

perimentsbasedondroplet systems. Theseexperiments areparticularlywell suited

for automationbecause theyoften stretchover longperiodsof time, possiblyhours,

and often require that the human takes action in response to observed events such

as changes in droplet velocity, size, count, shape, or clustering or declustering of

multiple droplets.

We describe a robotic system designed to automate this type of artificial chemi-

cal life experiment. We verify the design by successfully applying it to three differ-

ent experiments: i) automating an experiment whose purpose it is to measure the

movement response of a droplet as a function of distance to a reagent, ii) aspirating

amoving droplet when the droplet speed goes below a specified threshold, and iii)

detecting clustering of droplets and dispensing a salt droplet at a specific distance

to the cluster. We demonstrate how our robot cannot only automate these exper-

iments, collect data, and interact with the experiments in a closed feedback loop,

but also enable chemists to perform formerly infeasible experiments.

Another aspect of our work is that we designed, implemented, and deployed a

cloud-based user interface for a distributed system of liquid handling robots. The

user interface is intuitive, as well as being easily extensible for new experimental

protocols inbiological andchemical laboratories. Theuser interfacedevelopedcan

control the robotonmultiple platforms anddevices. Remote control of the robotic
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system enhances effective use of time and usability. The open source software

for the user interface allows users to customize the experiment protocols based

on their requirements. Furthermore, as multiple users use our robotic platform,

quality, reusability, deployability, and maintainability of software become central

and crucial for efficient use of the robot. Our cloud solution enables users to share

experiment code, and reuse already developed protocols for experiments. There-

fore, the robotic system can be used simultaneously by multiple users, and users

can work on the same experiment collaboratively. Furthermore, a user is able to

run experiments on several robotic systems at a time and hence increase through-

put through parallelism.

Performing reactive experiments in artificial chemical life research is made pos-

sible with this robotic platform. In addition, a cloud-based user interface provides

newopportunities by enabling real time control of the robotonmultiple platforms,

making collaborative work on the robot possible as well as parallelizing experi-

ments.
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Cloud-Baseret Reaktiv Væskehåndteringsrobot

Resumé

Vi har udviklet et robot system til at udføre kemiske forsøg indenfor kunstigt liv

baseret pådroplet systemer. Specifikt er robotten fokuseretpå forsøgmeddroplets,

som er i stand til at bevæge sig selv pga. deres kemiske sammensætning. Denne

slags forsøg er oplagte at automatisere, fordi de typisk tager lang tid, endda timer,

og ofte kræver at mennesket skal gøre noget som reaktion på observerebare hæn-

delser som f.eks. ændring i dråbe størrelse, antal, form, eller gruppe dannelse eller

gruppe opbrud i multi-droplet systemer.

Vi beskriver et robot system, der er designet til at automatisere denne slags kun-

stig liv eksperimenter. Vi har verificeret vores robot ved succesfuldt at anvende

den i tre forskellige eksperimenter: i) automatisering af et eksperiment hvis for-

mål det er at måle, hvordan en droplet bevæger sig som funktion af afstanden til

en reagens, 2) at aspirerer en dråbe i bevægelse når dens hastighed når under en

specificeret grænseværdi, og 3) detektere gruppedannelse af droplets og pipettere

en salt droplet i en specificeret afstand fra gruppen. Vi demonstrere ikke kun hvor-

dan robotten kan automatisere disse eksperiments, indsamle data, og interagere

med eksperimenter i en lukket kontrol sløjfe, men også hvordan kemikere kan lave

eksperimenter, som ikke før var mulige.

Et andet aspekt af vores arbejde er at vi designede, implementerede, og installerede

en cloud-baseret brugergrænseflade til et distribueret system af væske håndter-

ingsrobotter. Brugergrænsefladen er intuitiv og kan nemt udvides til at håndtere
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nye eksperimentprotokoller i biologiske og kemiske laboratorier. Brugergrænse-

fladen kan kontrollere robotten fra mange forskellige typer af digitale enheder.

Fjernbetjening af robot systemet gør det mere tidseffektivt at bruge samt forbedre

detsbrugbarhed. Open-source softwaren somrobottenerbaseret pågørdetmuligt

for tekniske brugere at tilpasse systemet til deres behov. Endvidere, givet at flere

brugere bruger vores robot platform er kvalitet, genbrug, og vedligeholdelse af

software centralt for effektivt brug af robotten. Vores cloud løsning gør brugere

i stand til at dele kode og genbruge allerede eksisterende kode. Det betyder at

robot systemet kan blive brugt samtidigt af flere brugere. Endvidere kan brugerne

samarbejde om at udvikle eksperimenter. Endeligt, er en bruger i stand til at kører

et eksperiment på flere robot systemer på samme tid og dermed øge antallet af

eksperimenter der kan gennemføres igennem parallelism.

Vores arbejde har gjort detmuligt at udføre reaktive eksperiment indenfor kun-

stig kemisk liv forskningen. Udover dette giver den cloud-baserede brugergrænse-

flade nye mulighed ved at gøre det muligt at arbejde på og udføre eksperimenter

parallelt.
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1
Introduction

1.1 Outline

Wecommence this chapter by introducing artificial chemical life research. Wewill
demonstrate the advantages of automation, and review the liquid handling tech-
nologies and also the user interfaces for these systems. We discuss the inadequacy
of current robotic systems to perform artificial chemical life experiments, and con-
sequently themotivation for developing a robotic system. Wewill elaborate on the
requirements for such a robotic platform. Subsequently, we enumerate the scien-
tific, and engineering contributions of this work. We conclude this chapter by an
overview of the chapters in this thesis.
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1.2 Artificial Chemical Life Research

Artificial life research is the study of the emergence of life-like behaviours (like
chemotaxis) in highly reduced and simple physico-chemical systems. Researchers
explore if such systems could represent a primitive formof life on the early Earth or
elsewhere in the universe [69]. A key objective of artificial life research is grasping
how non-living matter can recreate the essential properties of life [71]. An un-
derstanding of the essential properties of life not only may result in synthesizing
artificial life and self-reproduction [46], but may also lead to understanding the
complexity of natural life.

Droplet experiments are a common type of artificial chemical life experiments.
These experiments are aimed to create life-like behaviors by combining simple
chemicals. The behaviors seen by these droplets resembles the basic elements of
life, e.g. moving, dividing [56], etc. Thesedroplets can even formaggregated struc-
tures by embedding DNA molecules on their surfaces [68].

Thereexist distinct typesof artificial chemical life experiments, anddiversedroplet
behaviors can be observed. Following are few examples describing some of these
behaviors.

1.2.1 moving droplet experiment

Figure 1.2.1 [69] shows a typicalmoving droplet experiment. Heavy nitrobenzene
(NB) oil containing 0.5 M oleic anhydride and Oil Red O as colourant is placed
in a glass-bottom Petri dish containing both 10 mM oleate pH 12 micelles and a
pH indicator, thymolphthalein. The pH indicator is blue at high pH and colour-
less below pH11. As soon as the droplet is introduced to thewater phase, it breaks
symmetry and begins to move directionally around the dish (see supplementary
video 1 in Appendix A). As the droplet moves, it leaves a trail of low pH solution.
The droplet in this system is moving in response to its own self-generated pH gra-
dient.

This moving droplet experiment is an example of artificial chemical life experi-
ments where the experiment is not just finished by placing the the chemical in the
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Figure 1.2.1: Droplet moving in an aqueous pool containing surfactant. The
droplet (red) moved from the upper left to the lower right edge. The low pH
trail was visualized by using the pH-sensitive dye thymolphthalein. Diameter
of the section containing the aqueous pool was 27 mm.[69]

vessel, but there is an observation phase which takes a significant amount of time.
Thishas important consequences for automation. Thisobservationphasehas great
potential for automation, as if automated will save users a significant amount of
time.

1.2.2 reaction to externally applied pH

In [70] researchers have also shown that the droplet is sensitive to externally ap-
plied pH gradients, with movement towards high pH. A droplet can respond to
pH gradients in its local environment and move towards high pH solution using
its own particular form of chemotaxis. As shown in Figure 1.2.2 [69], a droplet

3



moving through the aqueous phase senses a pH gradient (blue), climbs the gra-
dient and stops at the point of highest concentration (supplementary video 2 in
Appendix A). The droplet has an interface that can sense its local chemical envi-
ronment and an internal convective flow acting as a motor.

This system is an example of the movement of droplets in concentration gradi-
ents, which can be viewed as a simplistic model of life that mimics the behavior of
cells that move away from their metabolic waste into regions with fresh nutrients
[70]. This system contains only five chemical components, including water.

1.2.3 droplet chemotaxis in a complex topology

Figure 1.2.3 [57] shows an example of droplet chemotaxis in a complex topology.
In this experiment, the decanol droplet follows the shortest path toward the source
of the salt and eventually fuses with the salt-loaded nitrobenzene droplet (supple-
mentary video 3 in Appendix A). The decanol droplet has a purple color, and the
nitrobenzene droplet has a yellowish color.

1.2.4 dynamics of droplet systems

In [67], to explore the emergent dynamics of droplet systems, a search is con-
ducted over a four-chemical (dodecane, pentanol, octanol andDEP) search space.
Aftermixing the components at different proportions, the formulations are placed
into a Petri dish containing the aqueous phase to form droplets. The researchers
discovered and characterized a total of nine distinct behaviours, as described in
Figure 1.2.4, displaying a great deal of complex, unexpected emergent behaviours
(supplementary video 4 inAppendix A). As described in this experiment, it is usu-
ally desired in artificial chemical life experiments to examine experiment condi-
tions, and modify them to potentially find new behaviors.

4



Figure 1.2.2: Chemotaxis of a droplet in a pH gradient. Each frame repre-
sents a 10 s interval. The droplet (red) was moving around the aqueous pool
until a droplet was introduced that created a pH gradient in fourth frame.
The dispersing pH gradient was visualized using the pH-sensitive dye, thy-
molphthalein. The diameter of the section containing the aqueous pool was
27 mm. (order bottom up, left to right) [69]
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Figure 1.2.3: Examples of droplet chemotaxis in a complex topology: (A)
nonlinear path in a channel; (B) nonlinear path in a simple “labyrinth” with
dead-end channels. The decanol droplet has a purple color, and the salt dif-
fuses from a stationary nitrobenzene droplet (yellowish color). Scale bars on
the right represent 1 cm.[57]
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Figure 1.2.4: Variety of behaviours observed in lattice search. Photographs
of the droplet behaviour as a function of time (from left to right) for all the
traits (given in a–i) except the ‘stardust’ and ‘galaxies’ where just one image
is shown [67].
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1.2.5 Characteristics of Artificial Chemical Life experiments

As described in the preceding experiments, droplet experiments are long lasting
experiments in comparison to ordinary liquid handling experiments that aremore
often high throughput and short. Furthermore, a main characteristic of artificial
chemical life experiments is the requirement for online/real-time observation and
reaction that is different from ordinary experiments. These experiments require
precise timing and relative positioning of reagents with respect to motile droplets.
Furthermore, experimental parameters, suchasdistancebetweendroplet and reagent,
time of adding reagent, and concentration of liquids, influencing droplet behavior
play an important role in these experiments.

1.3 Motivation for aNewRobotic System

In this section we discuss the motivation for developing a new liquid handling
robot for performing artificial chemical life experiments. We discuss the advan-
tages of automation for artificial chemical life experiments. Then we discuss why
thewide rangeof available liquidhandling robots arenot suitable for reactivedroplet
experiment, and therefore the need to develop a novel robot for artificial chemi-
cal life experiments. We then discuss the usability issues regarding liquid handling
robots, and the necessity for an intuitive user interface.

1.3.1 Lab automation advantages

Artificial life experiments are particularly well-suited for automation because they
often stretch over long periods of time, possibly hours, and often require that the
human takes action in response to observed events such as change in droplet size,
count, shape, or clustering/ declustering of multiple droplets.

Furthermore, artificial chemical life experiments are prone to systematic errors
and noise introduced by humans. This originates from the fact that humans are
unable to precisely perceive spatial distances and dynamics. Even if they could lo-
cate the precise distance relative to a motile, or non-motile droplet, placing the
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droplets on the exact same location by hand introduces significant imprecision.
Furthermore, the angle of the pipette tip, the time to dispense liquid, the force of
dispensing, and the distance between pipette tip and liquid surface are parameters
that could potentially influence the experiment negatively. In addition, over the
course of long experiments, human exhaustion could further influence the experi-
ment.

In case of more complicated experiments the need for automation becomes
more salient as the experiments become more difficult for humans to perform.
An example of these complicated experiments is when the chemical diversity of
the components increases. As a result of increasing the diversity in components,
new and interesting phenomena may emerge, which depends mainly on the spe-
cific combinations of chemicals used. An example is fluid-dynamically controlled
self-division [56].

1.4 Review of LiquidHandling Technologies

Delivering liquids, and samples efficiently and accurately is a necessity for many
applications in chemistry laboratories. Liquid handling machines facilitate these
tasks by aspirating, i.e. drawing, a specific volume of liquid from a source vessel,
repositioning the liquid, and dispensing, i.e. delivering, this liquid to the destina-
tion vessel. The fluid transferred is also called the sample fluid. Automated liq-
uid handling was first utilized in the late 1980s and 1990s, and it was driven by
the needs for genomic sequencing studies, and also the pharmaceutical industry.
Since then, this technology has been growing rapidly.

Labautomationhas extensivelyhelpedchemists performchemical experiments,
which are often repetitive tasks in chemical laboratories. Owing to lab automation,
the behavior of the experiment can be verified over many runs and sufficient data
can be collected to build a model or attain statistically significant results. There-
fore liquid handling technologies alleviate the hardships of dealing with dull, time
consuming tasks of doing the same experiment over and over. This prevents ex-
periments from being prone to the numerous types of human error that could be
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introduced into the experiment. On the other hand, lab automation is even more
advantageous when performing experiments with hazardous chemicals. All the
aforementioned advantages, hasmade lab automation popular and led to develop-
ment of many liquid handling technologies.

It should be noted that most liquid handling systems are outside the academic
domain and therefore this section is a review instead of a literature review. In the
absence of academic resources for liquid handling robots, we provide a review of
the state of the art in liquid handling robots. Thus the references to the website of
these products are provided, should the readers need to obtain more information
about the technologies.

We have categorized liquid handling systems regarding the level of automation,
reactive functionality, being standalone, and single-channelVSmulti-channel. These
are important considerations in the choice of a liquid handling systems for chem-
ical experiments, and thus artificial chemical life experiments. In section 1.6, we
discuss whether these technologies are appropriate for artificial life experiments.

1.4.1 Level of Automation

Basedon level of automation, liquid handling systems canbe categorized as bench-
top semi-automatic pipettors, automated dispensers, robotic workstations or fully
integratedworkstations. Wedescribe the technology andconsiderations regarding
each category.

Bench-Top Semi-Automatic Pipettors

Bench-top semi-automatic pipettors are the least automated liquid handling sys-
tems. They provide improvements over the manual systems by reducing the diffi-
culties associated with liquid handling when operated by hand. These systems do
not use an external computer. These pipettors are usually used along with external
machines such as shakers. There exist different types of semi-automatic pipettors
to handle 96 or 384 wellplates. As can be seen in Figure 1.4.1, and Table 1, the
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Figure 1.4.1: CyBio® SELMA by Analytik Jena semi-automatic pipettor.

CyBi-SELMA [33] is an example of a fast semi-automatic pipettor. The Eppen-
dorf epMotion 96 [19] is another device in this category capable of handling a
range of volumes with the same head.

Automated Dispensers

Automated dispensers, also called automated pipettes are another liquid handling
system. They improve the automation capabilities of semi-automatic pipettors,
but are not still fully automated. They are the least complex type of liquid han-
dlers. In these systems the vessels can be repositioned. As can be seen in Figure
1.4.2 and table 1, the CyBi-Well Vario from Analytik Jena [38] is an example. Ver-
tical pipetting station fromAgilentTechnologies [42], andVIAFLOASSIST from
Integra [41] are also systems in this category.

Robotic Workstations

Robotic workstations have automation capability not only to aspirate or dispense
liquid, but they can reposition the dispenser or the containers. This adds more
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functionality to the system to perform more experiments in comparison to au-
tomated dispensers. On the other hand, these systems are more complex, and
occupy more space. Figure 1.4.3 shows 4LAB™ Automated Low Volume Liquid
handling system [1]. As can be seen in table 1, the TTP Labtech mosquito HTS
[28] is another example of a robotic system for high-throughput liquid handling.
More systems in this category include aBioBot [14], S-PIPETTE fromApricotDe-
sign [35], Bravo from Agilent Technologies [17], Andrew from Andrew Alliance
[4], EzMate from Arise Biotech [22], Versa 10 from Aurora Biomed [39], Versa
110 from Aurora Biomed [40], Biomek 4000 from Beckman Coulter [15], Micro
b processor from Bee Robotics [31], PIRO from Dornier LTF [9], SOLO from
Hudson Robotics [34], Beeline from HTZ [5], BenchSmart™ 96 from Mettler
Toledo [6], OT.One from OpenTrons [106], Seymotion from Seyonic [6], and
X150 from Xiril AG [13].
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Table 1 

	
	

Bench-Top Semi-Automatic Pipettors 

Product Manufacturer Pipet no. Channel no. Dimensions (W*D*H) in mm weight 
CyBi®-SELMA Analytik Jena 1 96, 384  307x325x480 18 
epMotion® 96 Eppendorf 1 96 215x344x525 20 

	
	
	

Bench-Top Semi-Automatic Pipettors 
Product Open-source Reactive Functionality Affordability (for small labs) 

CyBi®-SELMA No No No 
epMotion® 96 No No No 

	
	
	
	
	
	
	
	
	
	
	

13



	
	
	

Automated Dispensers 

Product Manufacturer Pipet no. Channel 
no. 

Dimensions (W*D*H) in mm weight 

Vertical Pipetting Station Agilent Technologies 1 96 381x259x787 32 
CyBi®-Well Vario Analytik Jena 1 96, 384, 

1536 
960x370x772 40 

VIAFLO Assist Integra 1 8, 12, 16 340x360x400 10 
	
	
	
	

Automated Dispensers 
Product Open-source Reactive Functionality Affordability (for small labs) 

Vertical Pipetting Station No No No 
CyBi®-Well Vario No No No 

VIAFLO Assist No No No 
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Robotic Workstations 

Product Manufacturer Pipet no. Channel no. Dimensions (W*D*H) in mm weight 
4LAB 4titude 1 1 590x440x460 25 

aBioBot aBioBot 1 1 NA NA 
S-PIPETTE Apricot Design 1 96 292x330x521 20 

Bravo Agilent 
Technologies 

1 96 NA NA 

Andrew Andrew Alliance 1 1 535x29x25 10 
EzMate Arise Biotech 1 1, 8 292x330x521 25 
Versa 10 Aurora Biomed 1 4, 8 650x430x520 27 

Versa 110 Aurora Biomed 1 1 600x600x450 35 
Biomek 4000 Beckman Coulter 1 8 885x1225x505 41 

Micro b 
processor 

Bee Robotics 1 1 1000x500x600 NA 

PIRO Dornier LTF 1 1 600x515x470 45 
SOLO Hudson Robotics 1 1, 8, 12 755x500x 610 25 
Beeline HTZ 1 1 NA NA 

BenchSmart™ 96 Mettler Toledo 1 96 500x500x800 30 
OT.One OpenTrons 1 1, 8 600x500x600 20 

Seymotion Seyonic 1 1 800x800x850 50 
Mosquito® HTS TTP Labtech 1 1 390x470x690 27 

X150 Xiril AG 1 1, 2, 4, 96 750-1500x700x720 115 
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Robotic Workstations 
Product Open-source Reactive Functionality Affordability (for small labs) 
4LAB X X X 

aBioBot X X X 
S-PIPETTE X X X 

Bravo X X X 
Andrew ✔	 ✔ ✔ 
EzMate X X X 
Versa 10 X X X 

Versa 110 X X X 
Biomek 4000 X X X 

Micro b processor X ✔ X 
PIRO X X X 
SOLO X X X 
Beeline X X X 

BenchSmart™ 96 X X X 
OT.One ✔	 ✔ ✔ 

Seymotion X X X 
Mosquito® HTS X X X 

X150 X x x 
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Fully Integrated Workstations  

Product Manufacturer Dimensions (W*D*H) in mm weight Open-
source 

Reactive 
Functionality 

Affordability (for 
small labs) 

Biomek i7 
Base Unit 

Beckman 
Coulter 

1700x810x1120 234 No No No 

PIPETMAX Gilson 544x655x696 25 No No No 
Freedom EVO 
200 

Tecan 2050x780x870 230 No No No 

STARplus Hamilton 2160x795x903 NA No No No 
Cell explorer 

gene pro 
PerkinElmer NA NA No No No 

Cytomat™ 10 
C450 Series 
Automated 
Incubator 

thermofisher 800x822x915 NA No No No 

Nano-
PlotterTM NP 

2.1/E 

GeSiM 645x400x375 50 No No No 
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Figure 1.4.2: CyBio® Well Vario by Analytik Jena automated dispenser.

Fully Integrated Workstations

Fully integrated workstations are the most advanced automated systems for liq-
uid handling, and often other modules can be integrated into these systems. Ad-
ditional modules may include plate readers, centrifuges, bar code readers, PCR
devices, colony pickers, shaking instruments, and incubators. Based on the appli-
cation, appropriatemodules can be used. Figure 1.4.4 shows Biomek i7 Integrated
System [16] an example of a fully integrated workstation. As can be seen in Table
1, the PIPETMAX automated liquid handling system from Gilson [8], is another
example of a multi-functional modular system. More systems in this category in-
clude Freedom EVO 200 from TECAN [7], STARPlus from HAMILTON [11],
Cell explorer gene pro from PerkinElmer [32], Cytomat™ 10 C450 Series from
Thermo Fisher [12], and Nano-Plotter 2.1 from Gesim [27].

1.4.2 Reactive functionality

The liquid handling systems can also be investigated according to their reactive
functionality. Reactive functionality can be either getting feedback from the sys-
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Figure 1.4.3: 4LAB™ Automated Low Volume Liquid handling system.
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Figure 1.4.4: Biomek i7 Integrated System.
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tem, or feedback from experiment.

Feedback from the system

Reactive functionality of a liquid handling system is to satisfy the functionality
requirements in order to improve the capabilities of the system. For example, An-
drew has a reactive functionality to read QR codes in order to recognize the type
of vessels, or it has a camera to analyze the image to read the amount of liquid as-
pirated by the pipet.

Another example for getting feedback from the system is detecting the liquid
level. Capacitive liquid level detection is one way to determine the height of the
liquid surface, and interact with the experiment based on that. Alternatively, pres-
sure based liquid level detection uses data obtained from a pressure sensor to de-
tectwhether the tip is approaching the surface, touching the surface, or penetrating
through the liquid, and interact with the experiment based on the data.

Feedback from experiment

Somerobotics systemsavailable in themarkethave cameras to take imagesor videos
from the experiment, butmost of themdo not use the data from the experiment as
feedback for the system. For instance, there are applications where there is limited
and simple processing on samples to recognize color changes.

1.4.3 Standalone

Many robotic systems require an external computer to operate. However, there are
some stanadlone robotic platforms that do not need the computer. As can be seen
in the table, BenchSmart™ 96 from Mettler Toledo is an example of a standalone
liquid handling robotic system.

1.4.4 Single-Channel VS Multi-Channel

The liquidhandling systemsprovide single-channel ormulti-channel functionality.
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Single-Channel

Single-channel instruments have only one channel to deliver liquid. It means they
are more flexible. However, their throughput is limited. The single-channel ma-
chines are less common than multi-channel liquid handling machines

Multi-Channel

Multi-channel systems have either a small number of channels (4, 8, 12, 16) or a
large number of channels (96, 384). The smaller number channels are more flex-
ible as the distance between the channels can be set. Multi-channel systems are
more common than single-channel liquid handling systems. Multi-channel sys-
tems provide high throughput liquid handling functionality.

1.5 Review ofUser Interfaces for LiquidHandling Robots

It should be noted during the development of our platform and the corresponding
user interface, none of the liquid handling robots provided an accessible version
of their user interface if you had not purchased their product. Therefore our inves-
tigation was based on visiting labs that had purchased liquid handling machines,
and asking actual users of these interfaces regarding their usability. An informal
investigation showed the users were often dissatisfied regarding the user interface
of these systems. However, we introduce the user interfaces which have been re-
cently accessible (after we actually developed our interface). They are state-of-the-
art examples of user interfaces. However, they need to be extended in several ways.
Similarities in these user interfaces with the final user interface developed in this
thesis proves the effectiveness of our design.

Andrew [4] is a successful example of recent semi-affordable commercial low-
throughput liquid handling platforms. This platform can be versatile. Andrew is
designed with DOMINO™ blocks, magnetic tiles on the working deck of Andrew
that are designed to host consumables, e.g. bottles, tubes, microplates, etc. These
DOMINOS of different kinds can be configured as needed. AndrewLab is the
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Figure 1.5.1: Screen shot of AndrewLab application.

software for from Andrew Alliance. It is not directly downloadable, but Andrew
sends a link to the application upon registration. It is a desktop software, and re-
quires installation of Adobe AIR runtime, and also the AndrewLab application.
So the user interface cannot be run out of the box on any platform, i.e. requires
installation. Figure 1.5.1 shows a screen shot of the application.

In the AndrewLab software, the users have to design protocols. Designing pro-
tocols starts by dragging consumables into the virtual bench. As can be seen in the
Figure 1.5.1, the virtual bench is the workspace in this application. The user can
choose from various consumables including 96-wellplates, 384-wellplates, . mL
conical μ tubes, . mL conical μ tubes, flat bottom vials, etc.

As the next step, the user indicates the possible stock solutions. This step in-
cludes choosing the name, concentration, and volume of the solution. Finally, the
user drags among the consumables. For instance, starting a drag from a tube and
ending the drag on a wellplate. Having done this, the user will be prompted for
some actions. For instance, the user needs to specify the destination, e.g. if it is a
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Figure 1.5.2: Screen shot of OpenTrones application.

wellplate, the wells should be selected. The user also needs to specify the volume
of the liquid to be transferred, the pipet, and the parameters for this transfer, e.g.
the tip touching the liquid, or an air cushion for high viscosity liquids. Theuser can
add steps to the protocol, or investigate the contents of a consumable at different
steps.

This application cannot be used to run multiple robots in parallel, nor tasks
can be run in parallel. Furthermore, tasks cannot be performed collaboratively.
The use of Adobe AIR provides code reuse on Mac OS, and Windows. However,
we encountered unexpected crashes on the latest version of the application (Ver-
sion 1.5.3) when designing protocols in this application on a Mac. Moreover, An-
drewLab does not comewith any sample protocols. Furthermore, the AndrewLab
software is not open-source, and there is no support for Linux.

OpenTrones [106] is another successful example of liquid handling robotsmak-
ing the price affordable even for small labs, through open-source software. Open-
Trones provides theOTApp, as can be seen in Figure 1.5.2 . It is a desktop applica-
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tion, which can be run onMacOS,Windows, andLinux. TheOTApp comeswith
a protocol library, providing sample protocols for basic pipeting, sample prepara-
tion, etc. However, accessing protocols is not well integrated into the software.
The users need to go to the OpenTrones website to download a specific protocol.
Then, they have to upload this protocol on the OT Software. Another limitation
is that the users of the OT App cannot modify the uploaded protocol. They can
only modify the downloaded protocol which is in the Python programming lan-
guage file. This may not be feasible for all users, as they may not be familiar with
programming. Having edited this Python file in an IDE (Integrated Development
Environment), or text editor, they can upload it into the OT App. In other words,
to develop a protocol for a custom application, users need to have programming
skills.

This application cannot be used to runmultiple robots in parallel, nor tasks can
be run in parallel. Furthermore, tasks cannot be performed collaboratively. Open-
Trones’ application programming interface is open source.

Next we look at the user interface of Universal Robots robot arms. Universal
Robots is a manufacturer of smaller flexible industrial collaborative robot arms.
These robot arms can automate various tasks, including assembly, painting, screw
driving, labeling, injection molding, welding, packaging, polishing, etc.

The Universal Robots software is called PolyScope. When the users need to
program the robot, the page 1.5.3 is presented to the users. Here the users need
to click ”Empty program” to start programming a new task. The proceeding page
can be seen in Figure 1.5.4. On the left pane, the robot program is displayedwhich
is called the program tree. The program tree contains all the commands executed
by the robot during the program. The commands are executed sequentially. More
details regarding the Universal Robots user interface is provided in Appendix B.

Thisuser interface shares the same limitaion as previousoneswehavediscussed.
This application cannot be used to runmultiple robots in parallel, nor tasks can be
run in parallel. Furthermore, tasks cannot be performed collaboratively.
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Figure 1.5.3: New program screen.

Figure 1.5.4: Robot programming initial page.
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1.6 LimitationsofCurrentLiquidHandlingTechnologies

for Artificial Chemical Life

In this section we describe the limitations of current liquid handling technologies
for artificial chemical life in regards to their robotic technology, and their user in-
terfaces.

1.6.1 Technology

The wide range of available liquid handling robots in the market are not suitable
for reactive droplet experiment. Firstly, most of the robots in themarket have been
designed to maximize accuracy and throughput for short-duration experiments,
which results in high price of these robots. Although, high throughput can be use-
ful for artificial chemical life experiments, it is less of a priority because the liq-
uid handling operations only use a fraction of the time of an experiment. In other
words, high throughput liquid handling technologies are over optimized in case
of artificial chemical life experiments, and therefore unnecessarily costly. Conse-
quently, these robots are not suitable for artificial chemical life experiments. In
addition, easy modification of experiments based on the result of previous exper-
iments is necessary in artificial chemical life research. For instance, a new droplet
behavior may be observed or become of interest to scientists. This is not a possi-
bility with available robots, as they are designed to optimize performing specific
types of experiments. Therefore these robots do not address the needs of artificial
chemical life.

The robots in themarket are not capable of performing artificial chemical life ex-
periments due to the reactive nature of these experiments. As discussed in the pre-
vious section, some liquid handling systems have sensing functionality. However,
this sensing functionality is for the performance of the system, e.g. barcode readers
for determining the location of vessels, or a pressure sensor, and does not provide
feedback for performing experiments. Therefore, even the emergenceof affordable
commercial low-throughput liquidhandlingplatforms in recent years, has not con-
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tributed to artificial chemical life research. Andrew [4], andOpenTrones [106] are
successful examples with a semi-affordable price. However, there is little sensing
functionality involved in these platforms to provide feedback for reactive experi-
ments. For instance, the sensing functionality in Andrew is reading barcodes for
locating vessels, or determining the contents of a vessel as well as processing im-
ages to read the numbers on a pipet in order to determine the aspirated/dispensed
liquid. The sensing functionality in OpenTrones is only limited to taking images
or recording videos, and processing them later offline when required.

The robots developed so far cannot be generalized to perform different types
of artificial chemical life experiments because of the wide range of these experi-
ments. The need to perform reactive low throughput liquid handling experiments
has resulted in the development of custom platforms for specific tasks. DropBot
[66] is an example of robots developed to perform artificial life experiments in a
chemistry laboratory. However, these platforms are not open-source, and as they
are not modular, they are not easy to extend or versatile enough to be used for
experiments for which they were not designed.

1.6.2 usability issues of liquid handling robots

Likemany complex engineering systems, liquid handling robots have traditionally
had complex and difficult to use interfaces [65]. Thus in addition to providing a
low cost and extensible open source system, we wanted to provide a good user in-
terface thatwould bemore intuitive and easier to use. It was particularly important
to make the use of the robot more efficient [99]. Furthermore, a good interface
design was needed to reduce errors in setting up and programming experiments.
When dealing with chemicals, errors are potentially dangerous, and a good user
interface can improve safety by providing good feedback. Last but not least, the
long-term costs of ownership and use of the robot should be lower with a good in-
terface, reducing the need for user training, and will lead to greater efficiency and
accuracy in performing experiments.

Usabilityof liquidhandling robots is another challengeof the technology. Human-
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Robot Interaction for these systems, i.e. interactionof chemists andbiologistswith
a liquid handling robot, involves many challenges both with respect to the techni-
cal challenges, as well as with respect to the human-centred aspects involved. The
former relates to technical requirements for users in order to be able to use the
interface, and operate the robot. The latter includes issues such as people’s expec-
tations of robots, acceptability of interaction, and interaction with the robot that
is comfortable for humans [60].

Furthermore, we intended to develop an interface to enable us to teleoperate
the robot. Owing to such user interface, users can access the robot from any loca-
tion of their choosing, and from any browser-enabled device. On the other hand,
teleoperation can be a challenging task as the operator is remotely located, the op-
erator’s situation awareness of the remote environment can be compromised and
resultingobjective effectiveness can suffer [58]. This shouldbe carefully addressed
in the design of the interface.

Scalability of the user interface in termsof the number of robots to be controlled
is another challenge. Human-robot interfaces for interacting with multiple robots
are very different from single-robot interfaces. The central design challenge is de-
veloping techniques to maintain, program, and interact with the robots without
having to handle them individually [81].

1.7 Requirements for our Robotic Platform

In section 1.3.1, we discussed the advantages of automation for biochemical ex-
periments. This forms the motivation for developing a robot to perform feedback
based experiments. We discussed the shortcoming of available automation so-
lutions for these types of experiments in section 1.6.1. In order to address these
shortcomings our solution has to satisfy the following requirements.

1.7.1 Routine liquid handling functionality

The basic required functionality for our solution is routine liquid handling func-
tionality, i.e aspirating a specified amount of liquid from one reaction vessel, e.g.
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a Petri dish, or well plate, and dispensing the desired amount of liquid in another
reaction vessel. This core functionality is present in all liquid handling robots, and
is not a novel aspect of our solution. However, as aspirating, dispensing, andmov-
ing liquids is the basis for a lot of chemical experiments, it should be present in our
solution for artificial chemical life experiments, too.

1.7.2 Performing Feedback based experiments

In order to be able to perform artificial chemical life experiments, we must inter-
act with the experiment based on the visually observed behavior. Therefore, our
solution requires to be able to perform feedback based experiments.

1.7.3 Interacting with experiments in real-time

Another requirement for users performing artificial chemical life experiments is to
be able to analyze experimental data in real time, and use this data to interact with
the experiment in real time. This is in contrast to conventional experiments where
the data is processed after the conclusion of the experiment. This functionality
opens doors to new possibilities for biochemical researchers.

1.7.4 Affordability

The platform to be developed has to be affordable so it can be used in laborato-
ries with limited resources. Most available liquid handling robots in the market
are expensive. A low price can increase the application of such a platform, hence
promoting research in the field of artificial life.

1.7.5 easy software management for the system, and fast setup time

Short setup time, and ease of software management for the system is another re-
quirement for our solution. A platform capable of processing data for artificial life
experiments would require different software libraries. Installing, and managing
these dependencies on different hardware, and operating systems would be diffi-
cult and time consuming. Furthermore users should be able to use our platform

30



on any system they wish, and not require to spend a lot of time for installing all
the software if they use a new computer. Therefore we need to decouple control
software from user software.

1.7.6 Intuitive user interface

Another requirement for our robotic platform is an intuitive user interface en-
abling users to use the functionality of our platform. Most of the people perform-
ing artificial chemical life experiments, are chemists, biologists, etc. Theuserswould
prefer a graphical user interface rather than programming the experiments. There-
fore enabling our intended users to use the features of our robot is another require-
ment. Furthermore, we had to choose a programming language they preferred, if
they were required to program an experiment.

Most of the liquid handling robots in themarket lack an intuitive user interface.
Providing a good user interface for our platform would mean less documentation
for users, and more efficient use of their time.

1.7.7 Opensourcemultiplatformuser interfaceenablingremotereal
time control

An open source multi platform user interface enabling remote real time control is
another requirement for our robotic system. Weneed a user interfacewhich canbe
accessed on various platforms, e.g. MacOS,Windows, Linux, or different devices,
for instance,Mac, PC,mobile phone or tablet. This enhances the portability of our
robotic system.

Remote real time control of the robotic systemprovides several advantages. The
users can access the robot at a location that suits them, and not necessarily by the
robot. This is crucial as experiments in chemistry and biology labs usually take a
long time, and such an interface grants users freedom to switch between their de-
sired tasks, as they can access the robot remotely. Furthermore, the user interface
provides users with notifications, so they are informed if an experiment is finished,
or if there is an error during the experiment, such as a vessel running out of liquid,
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or a pipette missing, so they can take the appropriate action.
Furthermore, an open source solution needs to be provided for our platform.

Software for the user interface of liquid handling robots in the market is propri-
etary, which has several downsides. The licensing fee of proprietary software is
expensive. Furthermore, users are reliant on the program’s developer for all up-
dates, support, and fixes. Software updates may not be fast depending on the size
of the developer team. In addition, customization is very limited or not possible
for proprietary software as access to the source code is restricted. An open source
user interface solves these problems.

1.7.8 resource Sharing and reusability of experiment protocols

The ability to share the resources among different users is another requirement for
our platform. Many of the artificial chemical life experiments have a lot of com-
monality and are performed bymany users. Therefor it is useful to enable users to
reuse code, and take advantage of already developed experiments.

1.8 Contributions

The main contributions of this thesis fall into two main categories: 1) scientific
contributions, and 2) engineering contributions. Furthermore, this work can be
used as a guideline for users going through developing a similar liquid handling
robotic system.

1.8.1 Scientific contributions

The scientific contributions of this thesis include 1) Showing that the quality of
data obtained from reactive experiments can be improvedwith the use of a robotic
platform, 2)Demonstrating real-time user interactionwith a chemical experiment
through a robotic platform, 3) User interface design for liquid handling robots,
4) Open source multi-platform user interface for remote real time control of a
robotic system, and 5)Cloud-based user interface for a distributed robotic system.
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These contributions resulted in nine publications. Furthermore the developed liq-
uid handling system has been patented, and has lead to the spin off Flow Robotics
A/S [105].

Showingthatthequalityofdataobtainedfromreactiveexperiments
can be improved with the use of a robotic platform

We demonstrate in this thesis that the quality of data from artificial chemical life
experiments is improved using automation. We have developed a robotic system
to automate a large class of droplet experiments in artificial chemical where the
behavior of motile droplets in a reaction vessel such as a petri dish is of interest.
To enable feedback-based experiments, we have integrated computer vision into
the design of a liquid handling robot, and developed the required software func-
tionality. Computer vision enables the robotic system to detect relevant changes,
either in individual droplet behavior, e.g. change in droplet area, position, speed,
direction, acceleration, color, shape, number of droplets, or group droplet behav-
ior, e.g. droplets clustering or declustering. Having detected the specifiedbehavior
change, precise automation enables the robot to interact with the experiment, e.g.
dispense or aspirate a chemical at a specific point relative to a droplet center.

The following papers are published in regards to this part of our contribution:

• Nejatimoharrami, F., Faina, A., & Støy, K. (2016). Robotic Automation to
Augment Quality of Artificial Chemical Life Experiments. In Proceedings
of the Artificial Life Conference 2016 (pp. 634-635). Massachusetts Insti-
tute of Technology Press.

• Faina, A.,Nejatimoharrami, F., Stoy,K.,Theodosiou, P., Taylor, B.,& Ieropou-
los, I. (2016). EvoBot: An Open-Source, Modular Liquid Handling Robot
for Nurturing Microbial Fuel Cells.

• Nejatimoharrami, F., Faina, A., & Støy, K. (2016). An open-source, low-
cost robot for performing reactive liquid handling experiments. In 2016
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Society for Lab Automation and Screening International Conference&Ex-
hibition.

• Theodosiou, P., Faina, A., Nejatimoharrami, F., Stoy, K., Greenman, J., Mel-
huish,C.,& Ieropoulos, I. (2017, July). EvoBot: Towards a robot-chemostat
for culturing andmaintainingMicrobial Fuel Cells (MFCs). InConference
on Biomimetic and Biohybrid Systems (pp. 453-464). Springer, Cham.

• Janská, P., Zadražil, A., Nejatimoharrami, F., Faina, A., Støy, K., & Čejková,
J. (2016). Collective behaviour in droplet systems. In 43rd Conference of
Slovak Society of Chemical Engineering.

Demonstratingreal-timeuser interactionwithachemicalexperiment
through a robotic platform

The platform we have developed makes real-time interaction with the experiment
possible. This is because the robot can record accurate experimental data in real
time. Thepossibility of providing real time experimental data, in contrast to the of-
fline data processing at the endof the experiments, the ability to place newdroplets
a precise distance from any droplet center, and the ability to track fast moving
droplets open doors to new possibilities in laboratory research. Our robot’s data
logger provides various kinds of data about the experimentwith 0.1millimeter po-
sition accuracy, and 4% droplet area accuracy at millisecond time steps. This en-
ables building precise models for chemical experiments, and accurate verification
of hypotheses. It should be noted that data from other types of sensors such as
voltage or pH sensors can also be readily utilized to provide feedback for a specific
experiment if required as explored by colleagues [61].

Furthermore, the user interface provided with our robotic system provides a
real time video feed of the experiment, therefore enabling users to interact with
the experiment while it is happening. Therefore if the users observe an interesting
behavior, they don’t need towait until the end of the experiment. They canmodify
the remaining steps of the experiment on the fly.

The following papers are published in regards to this part of our contribution:
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• Nejatimoharrami, F., Faina, A., & Stoy, K. (2017). New Capabilities of
EvoBot: A Modular, Open-Source Liquid-Handling Robot. SLAS TECH-
NOLOGY: Translating Life Sciences Innovation, 2472630316689285.

• Nejatimoharrami, F., Faina, A., & Støy, K. (2016). A Low Cost Standalone
Open-SourceRoboticPlatform forPerformingFeedbackbasedLiquidHan-
dling Experiments. In 2017 Society for Lab Automation and Screening In-
ternational Conference & Exhibition.

• Faíña, A., Nejatimoharrami, F., & Støy, K. (2014). Towards EvoBot: A
liquid-handling robot able to automatize and optimize experiments based
on real-time feedback. Exploiting synergies between biology and artificial
life technologies: tools, possibilities, and examples.

• Faíña, A.,Nejatimoharrami, F.,&Støy,K. (2017). EvoBot: AnOpen-Source,
Modular LiquidHandlingRobot. IEEETransactions onMechatronics (un-
der review).

User interface design for liquid handling robots

In this work, we come up with a user interface design for liquid handling robots
that is intuitive, as well as being easily extensible for new experimental protocols
in biological, and chemical laboratories. In order to design an intuitive user inter-
face, we have studied different users in various fields dealing with liquid handling
tasks to fully understand their needs and concerns. This user study, and analysis of
requirements have led to the design of a user interface based on UCD (User cen-
tered design) process. Using a special version of heuristic evaluation designed for
robot interfaces, and iterative feedback fromusers, wewere able to identify key us-
ability problems in the user interface prototypes and develop a user interface to be
implemented on our robotic system that represents a significant advance of prior
user interfaces for liquid handling robots.

The following paper is published in regards to this part of our contribution:
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• Nejatimoharrami, F., Faina, A., Jovanovic, A., St-Cyr, O., Chignell, M., &
Stoy, K. (2017, April). UI Design for an Engineering Process: Program-
ming Experiments on a Liquid Handling Robot. In Robotic Computing
(IRC), IEEE International Conference on (pp. 196-203). IEEE.

Open sourcemulti-platformuser interface for remote real time con-
trol of a liquid handling robotic system

We have developed a user interface which can control the robot on multiple plat-
forms and devices. Remote control of the robotic system enhances effective use of
time, and usability, and provides notification of potential errors. The open source
software for the user interface allows users to customize the experiment protocols
based on their needs.

Cloud-based user interface for a distributed liquid handling robot

In this thesis, we deploy a cloud-based user interface for a distributed automation
system. Multiple users use our robotic platform. Therefore quality, reusability,
deployability, and maintainability of software become central and crucial for per-
forming the required tasks. We provide a design, implementation, and deploy-
ment that enables users to share experimental code, and reuse already developed
protocols for experiments. Therefore, the robotic system can be used in real time
by multiple users. In addition, users can work on the same experiment collabo-
ratively, and simultaneously. They can modify the same experiment as a team, or
receive notifications regarding experiment progress.

The following paper is published in regards to this part of our contribution:

• Nejatimoharrami, Andres Faina, &Kasper Stoy, ”ALow-CostOpen-Source
Cloud-based Liquid Handling Robotic Platform for Performing Remote
Real-TimeCollaborative Experiments”, under review in the seventhAnnual
International SLAS (Society for Laboratory Automation and Screening)
Conference (SLAS 2018)
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1.8.2 Engineering contributions

The engineering contributions of this thesis include 1) Developing software for
experimental support , 2) Computer vision for droplet tracking, 3) a robotic plat-
form with integrated controller hardware, 4) Integrating controller hardware into
the robotic platform

Software for experimental support

The API (application programming interface) developed for our liquid handling
robot provides the basis for performing a large class of artificial chemical experi-
ments. The software developed for our platform, addresses feedback based exper-
iment requirements. These requirements include detecting interaction with the
experiment based on the observed changes. The developed software equips our
robotic systemwith a data logger which is able to log different types of experiment
data. In addition, the software provides a world coordinate system which trans-
forms coordinate systems of differentmodules to each other, enablingmoving dif-
ferent modules to the same location. It also enables customization for different
robots by enabling users to use the same software independent of the specific pa-
rameters of the robot they use. In addition, our software provides an interactive
graphical user interface, which enables chemists to interact with the experiment.
We provide numerous examples in our codebase, demonstrating the use of the
API. We also maintain the documentation for the hardware and software of our
robotic system in our wiki.

Computer vision for droplet tracking

The vision software developed for the liquid handling robot, enables detecting
changes in the experiment condition based on sensor input. The vision API of
our developed robotic system is responsible for processing the camera frames from
the experimental layer to extract data about the experiment, e.g. droplet behaviors.
In order to recognize droplets in artificial chemical life experiments, and analyze
their behavior we use a series of image processing operations for image data anal-
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ysis. Furthermore, in order to extract relevant experiment data, our robot’s vision
API calibrates the coordinate system of the robot and the camera, as they are in
millimeters and pixels, respectively.

Integrating controller hardware into the robotic platform

In thiswork, wehavedeveloped a standalone robotic platformwith integrated con-
troller hardware. Therefore user software for programing experiments is detached
from control software. This platform eases packagemanagement as installing, and
managing software libraries required for feedback based experiments on different
hardware, and operating systems would be difficult. Therefore, regardless of the
choice of system users want to use, they don’t need to install any libraries. Such a
platform is muchmore affordable owing to elimination of the need for an external
computer.

Integration ofmodern software technology into a real robotic sys-
tem

Another contribution of this work, is applyingmodern software design principles,
software technology, and practices to a real robotic system. Software Engineering
is fast growing, and there have been a lot of advances. Important developments
relevant to robotic systems include those related to component based software de-
sign, event-driven architectures, separation of concerns, software frameworks for
real time robotics systems, and combining high level decision making with low
level control systems. Applying the software architecture design, software tech-
nologies, and standard development processes to a real robotic system comeswith
challenges. We discuss the challenges, and our approach to solve them in order to
achieve a fast responsive robotic system.
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1.9 Contributors

EvoBot was designed by Andres Faina, a postdoctoral researcher, in the context of
the EVOBLISS EU project. Prof. Kasper Støy, my supervisor, has also had a great
contribution in developing software for the robot. We have built seven copies of
EvoBot in the Robots, Evolution, and Arts Lab (REAL), to be used by our EVOB-
LISS partners. The partners are University of Trento, Italy, University of glasgow,
UK,University of Bristol, UK, Karls Ruhe Institute of Technology, Germany, Uni-
versity of Chemistry and Technology Prague, Czech Republic, and University of
Toronto, Canada.

While chapters 2, and 3 have been collaborative work, chapters 4 to 9 are the
scientific, and engineering contributions of the author. In chapter 2, the author has
specifically been involved in building robots, andperforming tests for verifying the
performance of the robot. In chapter 3, section 3.2.1 is the contribution of Prof.
Kasper Stoy, and assistant professor Andres Faina. Section 3.2.2 through section
3.2.9 are the contributions of the author.

The partners of the EVOBLISS consortium, including Prof. Martin Hanczyc,
Prof. Jitka Cejkova, and Silvia Holler helped us perform artificial chemical life ex-
periments. Jørn Lambertsen was involved in building EvoBot.

Prof. Mark Chignell, Prof. Olivier St-Cyr, and Andrea Jovanovic have con-
tributed to thedesignof theuser interfaceof the robot. Themembersof theEVOB-
LISS consortium helped evaluate the user interface for the robot. In particular,
Florian Blauert, Pavlina Theodosiou, and Silvia Holler provided feedback on the
interface, and evaluated it. Also, researchers in University of Toronto, BioZone,
and department of chemistry, Particularly, Naveen Venayak, Brian Nguyen, and
Jenna Blumenthal provided constant constructive feedback on the user interface
of the robot.
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1.10 DissertationOverview

This dissertation is organized into two main parts. In part I, we demonstrate how
we can perform artificial chemical life experiments by addressing hardware and
software requirements of a liquid handling robot. We demonstrate the applica-
bility of the robot to a comprehensive class of feedback based experiments. Then
we demonstrate the steps towards developing a user interface for liquid handling
robots. First, we discuss the implementation of a platformwhich provides the soft-
ware infrastructure for developing the user interface. This infrastructure includes
both hardware and software for a standalone robotic platform. We continue this
route by designing the user interface, developing the user interface, and then de-
ploying the user interface. In Appendix E, we include our scientific contribution
presented as papers.

This thesis consists of 9 chapters:

Chapter 2 Hardware functionality needed for artificial chemical life
In this chapter, we introduce EvoBot, a robot developed to perform
liquid handling experiments.We commence this chapter with a phys-
ical description of the robot. We will introduce the modular design
of EvoBot. We then report on its performance. We explain how a
sensing layer for EvoBot provides us with the hardware functionality
needed in artificial chemical life.

Chapter 3 Required Software for Artificial Chemical Life Experiments
In this chapter, we discuss the software functionality required in ar-
tificial chemical life experiments. Addressing these software require-
ments allows us to use a liquid handling robot, introduced in chapter
2, for artificial chemical life experiments.

The software developed for this liquid handling robot, EvoBot, ad-
dresses artificial chemical life experiment requirements. These require-
ments includedetecting changes in the experimental conditions, based
on sensor input, and interacting with the experiment based on the
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observed changes. In this chapter, we introduce the software archi-
tecture including firmware, vision system, camera calibration, coor-
dinate system transformation, logging experiment data, customiza-
tion for different robots, graphical user interface for interactive exper-
iments, experiment templates, and the robot’s wiki.

Chapter 4 Interactive experiments
In this chapter, we discuss howwe havemade a liquid handling robot
usable for artificial chemical life experiments by addressing hardware,
and software requirements explained in chapters 2 and 3. We demon-
strate thegeneral non-reactive liquidhandling functionalityof the robot
byperforming the routine liquidhandling experimentswith the robot.
We provide examples of precise droplet placement, and investigate
the reactive functionality of the robot. EvoBot has been used for per-
forming numerous reactive liquid handling experiments. We include
three use cases, as droplet behaviors in these experiments and the re-
quired type of robot interaction are comprehensive enough to be gen-
eralized to various reactive experiments. The use cases are examples
of what is possible with EvoBot, and are functionalities requested by
our partners in Evobliss EU project to enable them not to perform a
specific experiment but a class of experiments. We compare the way
non-automated experiments were performed without the robot for
demonstrating the ease, accuracy and precision of results obtained by
the robot. Furthermore, easy configurability of the robot for ”needed
tobemodified” experiments is examined. Wediscuss howEvoBothas
realized experiments that formerly were difficult to perform.

Chapter 5 Robotic Platform with Integrated Controller Hardware
This chapter comprises our first step towards developing a user interface
for liquid handling robots. In this chapter, we discuss the implementation
of a platform which provides the infrastructure for developing the user in-
terface. This infrastructure includes both hardware and software for a stan-
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dalone robotic platform. In this chapter, we focus on the system design.

Chapter 6 User Interface Design
In this chapter we continue our goal for developing a user interface for liq-
uid handling robots. We focus on the the user interface design and evalu-
ation. We demonstrate the significance of user interface design. Then we
talk about user requirement analysis, and user studies. We demonstrate the
important design principles taken into account for designing the user inter-
face. Thenwe talk about themock up for the user interface. This is followed
by the heuristic evaluation of the user interface. We conclude this chapter
by evaluating the user interface.

Chapter 7 Software Architecture for an Open Source Multi-platform User Interface
for Remote Real Time control of a Robotic System
In this chapter focuses on the software architecture of a user interface for
a liquid handling robot. We describe the different user interfaces for our
robot, such as a Python based user interface, an iPad user interface, and
a web interface using LAMP stack, and finally a MEAN stack user inter-
face. We demonstrate the implementation, advantages, and disadvantages
of each user interface.

Chapter 8 Cloud-based software architecture for a distributed liquid handling system
This chapter addresses another requirement for our robotic system which
is resource sharing and reusability of experiment protocols, the ability to
work on the robotic system collaboratively, and parallelizing experiments
on different robotic systems.

In this chapter, we describe a cloud based software architecture for deploy-
ing our user interface. A cloud based implementation is a paradigm shift
from single user single platform concept to single usermulti platform,multi
user single platform, and multi user multi platform approaches. This chap-
ter also comprises our final step towards developing a user interface for liq-
uid handling robots, which is deploying the user interface on the cloud.
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Chapter 9 Conclusions & Future Work
This chapter concludes my findings in this thesis and proposes some future
research directions.

In appendix E, we include our scientific contribution presented as following papers:

Paper 1 New Capabilities of EvoBot: A Modular, Open-Source Liquid Han-
dling Robot

Paper 2 Robotic Automation to Augment Quality of Artificial Chemical Life
Experiments

Paper 3 UI Design for an Engineering Process: Programming Experiments on
a Liquid Handling Robot

Paper 4 AnOpen-Source, Low-CostRobot forPerformingReactiveLiquidHan-
dling Experiments

Paper 5 A Low Cost Standalone Open-Source Robotic Platform for Perform-
ing Feedback based Liquid Handling Experiments

Paper 6 EvoBot: An Open-Source, Modular Liquid Handling Robot for Nur-
turing Microbial Fuel Cells

Paper 7 Towards EvoBot: A liquid-handling robot able to automatize and op-
timize experiments based on real-time feedback

Paper 8 EvoBot: Towards a robot-chemostat for culturing and maintaining
Microbial Fuel Cells (MFCs)

Paper 9 Collective behaviour in droplet systems

Paper 10 EvoBot: An Open-Source, Modular Liquid Handling Robot (under
review in IEEE Transactions on Mechatronics)

Paper 11 ALow-CostOpen-SourceCloud-basedLiquidHandlingRobotic Plat-
form for Performing Remote Real-Time Collaborative Experiments (un-
der review in SLAS 2018)
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2
Hardware functionality needed for

artificial chemical life

2.1 Introduction

This chapter is the first step towards building a robotic system capable of perform-
ing artificial chemical life experiments. In section 1.7.1, we described that one of
the requirements of such a platform is performing routine liquid handling experi-
ments. In section 1.7.2, we explained another requirement is performing feed back
based experiments. This chapters addresses these two requirements.

In this chapter, we introduce EvoBot, a robot developed to perform liquid han-
dling experiments. We commence this chapter with a physical description of the
robot. We will introduce the modular design of EvoBot for liquid handling, and
how it addresses the routine liquid handling functionality requirement. We then
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Figure 2.2.1: Overview of EvoBot.

report on the performance. We explain how a sensing layer for EvoBot provides us
with the hardware functionality needed for feedback based experiments in artifi-
cial chemical life. This sensing layer provides the required infrastructure to address
the requirement for feedback based experiments.

2.2 Robot Implementation

In this section we provide an overview of the mechanics, electronics, and perfor-
mance of EvoBot.

2.2.1 Mechanics

EvoBot consists of an actuation layer on top, an experimental layer in the middle,
and a sensing layer at the bottom. Figure 2.2.1 shows an overview of EvoBot, and
Figure 2.2.2 shows an overview of the actuation and experimental layers, as well as
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Figure 2.2.2: Overview of the actuation, experimental, and sensing layers.
EvoBot’s actuation layer consists of a moving head on which various modules,
such as syringe modules can be mounted. The experimental layer accommo-
dates different vessels, and the camera at the bottom acts as the sensing layer
by collecting experiment data.

46



the head, syringe modules, and the camera.
The actuation layer comprises the robot head and modules mounted on it. The

modules are plugged into the head, and are usually designed to perform an action
on the experiments. However they may have sensor functionality, e.g. OCT (op-
tical coherence tomography) scanning, an imaging techniquewhich allows for op-
tical sectioning of the sample. The head which holds the modules can be moved
in the horizontal plane. EvoBot’s modularity allows for support of modules of dif-
ferent kinds for various applications. The experiment-dependent modules could
entail syringe modules for liquid dispensing or aspirating, grippers to move the
containers over the experimental layer or dispose dirty containers, an OCT scan-
ner module to perform OCT scans, an extruder module to 3D print, and other
potential experiment-specific tools.

Theexperimental layer consists of a transparentPolymethylmethacrylate (PMMA)
sheet on which reaction vessels are positioned. Various types of reaction vessels
can be placed on the experimental layer such as, Petri dishes, well plates, beakers,
volumetric flasks, graduated cylinders, Erlenmeyer flasks, and soon. Theactuation
layer interacts with the experimental layer by filling or emptying a specific volume
to/from a syringe, washing a syringe, disposing dirty containers.

The sensing layer consists of a camera below the experimental layer to monitor
the experiment, or required sensors depending on the experiment. The sensing
layer collects data from the experiment, and provides feedback for the robot to
interact with the experiment.

The robot frame is built from Aluminium profiles, and the experimental layer
and actuation layer are mounted on it. The layers can be easily moved up or down
on the robot frame with a cam lever mechanism. The frame size is 600x400x600
mm. However, it can be extended based on experiment specific requirement.

We have built different kinds of modules to be used on EvoBot’s head as can be
seen in Figure 2.2.3. Figure 2.2.3 (a) shows two different types of syringemodules
on the left. A syringe module can move in the z direction and a stepper motor
moves a plunger for aspiration and dispensing. A pump-based dispensing module
can be seen on the right in Figure 2.2.3 (a). The pump-based dispensing module
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Figure 2.2.3: Modules. (a) two different types of syringe modules on the left
and a pump-based dispensing module on the right. (b) the back of a syringe
module. (c) heavy payload module to hold an OCT scanner in order to per-
form OCT scans.

can also move in the z direction, but a pump is used for dispensing. Figure 2.2.3
(b) show the back of a syringe module, and Figure 2.2.3 (c) show a heavy payload
module, which can hold an OCT scanner to perform OCT scans.

The robot head can accommodate syringe modules to aspirate or dispense liq-
uid at 17 potential positions, as shown in Figure 2.2.4. Up to 11 syringes can be
used simultaneously as the socket positions overlap with adjacent ones, as shown
in Figure 2.2.4 (a), and Figure 2.2.4 (b).

Configuring EvoBot for different experiments is easy, as different types of mod-
ules can be easily removed or plugged at the appropriate position. The head is re-
sponsible formoving themodules in the x-y plane, while themodules havemotors
to move vertically. Figure 2.2.5 shows two different syringe modules mounted on
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(a) 11 possible syringe modules positions on robot head.

(b) 6 more possible middle syringe modules positions on robot head.

Figure 2.2.4: Possible syringe modules positions on robot head.

sockets 12 and 16.

2.2.2 Electronics

EvoBot’s design is based on open-source 3d printers. We use an Arduino board
and aRAMPS shield, as can be seen in Figure 2.2.6. This electronics design allows
us to build on existing software for open-source 3D printers. Figure 2.2.7 shows
how the electronics of the robot communicate together. The computer receives
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Figure 2.2.5: 1ml (Left), 5ml (right) syringe modules mounted on robot
head.
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Figure 2.2.6: An Arduino board and a RAMPS shield.

image frames from the camera. On the other hand, the computer communicates
with the Arduino through serial communication. TheArduino is connected to the
RAMPS shield. TheRAMPS shield controls the three steppermotors tomove the
robot head. The RAMPS shield is also connected to two large PCBs (Printed Cir-
cuit Board) on the robot head. On the other hand, each module contains a small
PCB (printed circuit board) with the electronics to control the actuators and sen-
sors of the module. When a module is plugged into the robot head, the module
PCBmakes an electrical connection with the spring connectors on the head PCB.
Therefore the module is provided with power and an SPI bus through this spring
connector. Owing to this electronics design, the Arduino can detect if a socket is
populated, the type of module , and can control the module by sending SPI com-
mands. Furthermore, if new types ofmodules are designed, they can be easily con-
trolled.
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Figure 2.2.7: Communication of robot parts.

2.2.3 Precision

In this section we describe EvoBot’s precision for speed, positioning, and liquid
handling tasks, providing interested users with insights whether these specifica-
tions suit their requirements.

Speed

An important metric for defining the performance of a robot for liquid handling is
robot speed. Therefore, we tested the maximum speed of the robot for each axis.
In order to test the performance, we increased the speed of the robot on each axis
to the point where the robot was missing steps. Therefore the maximum speed of
the robot corresponds to the speed the robot is not missing any steps. Table 2.2.1
reports the results of these tests.

Positioning Performance

In order to test the positioning performance, wemodified a syringmodule to hold
a test probe. This probe would touch a dial indicator with a 0.01mm accuracy. To
perform this test, we first homed the robot, and the dial indicator was placed in
contact with the probe and set to zero. Then we moved the robot to 1, 2, 10, 20
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Table 2.2.1: Max speed and accelerations of the robot.

X Y Z
(Syringe) Plunger

Max Speed
(mm/s) 180 180 235 8

Acceleration
(mm/s ) 3000 3000 235 4

Table 2.2.2: Positioning accuracy for each axis of the robot.

0mm 1mm 2mm 10mm 20mm

X
(mm) 0.04 0.03 -0.04 -0.11 -0.17

Y
(mm) 0.01 -0.05 -0.08 -0.14 -0.18

Z
(mm) 0.10 0.02 0.09 0.28 0.35

and 0 mm positions respectively, measuring the real position of the probe. We
repeated this experiment 30 time to measure the accuracy. Accuracy is calculated
by as A = q̄ − qt formula, where qt is the target position and q̄ is the average of n
measured coordinates. Table 2.2.2 shows the results.

Liquid Handling Performance

In order tomeasure the precision of the robot for handling droplets, we performed
experiments with various droplet volumes, and needle diameters. To measure the
precision, we compared the actual volume of a dispensed distilled water droplet
with the intended droplet volume. The actual droplet volume needed to be calcu-
lated from the density equation. For this equation, we needed to know the mass
of the droplet. We measured the weight (hence the mass) of the droplet with a
±0.003g precision scale. Four experiments were performed with a professional
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Figure 2.2.8: Boxplot comparing experiments with 100μl syringe. The
whiskers represent the lowest and highest datum still within 1.5 IQR (in-
terquartile range) of the lower quartile or of the upper quartile, respectively.

100 μl syringe (Hamilton 710 LT) to handle liquid volumes of 15 μl and 30μl, with
needle internal diameters of 0.96mm and 1.7mm. In order to obtain better perfor-
mance, we performed experiments with an air gap, i.e. aspirating air before water,
tominimize the the effect of surface tension. The results of the experiments can be
seen in Figure 2.2.8.

2.2.4 Building a robot

EvoBot is based on open-source 3d printer technology. The open-source nature
reduces the cost of the robot and makes it possible to design a robot for specific
experiments. Interested users can build the robot as it takes advantage of open-
source 3d printer community and open-source electronics. They can also build
already developed modules as they are available as open source.
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2.3 Conclusion

In this chapter, we described the implementation of EvoBot, a liquid handling
robot, and how it addresses the requirement for basic liquid handling function-
ality. EvoBot is designed in 3 layers. An experimental arena, to hold microscope
slides, Petri dishes or other reaction vessels, and on top of the experimental layer
the robot head, accommodating up to 11 syringe modules to aspirate or dispense
liquid. The sensor layer is under the experimental layerwhere the camera is placed.
This sensing layer provides us with the required hardware infrastructure to enable
us perform artificial chemical life experiments. In the following chapter, we will
explain what software functionality is required to make this platform capable of
performing feedback based experiments.
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3
Required Software for Artificial Chemical

Life Experiments

3.1 Introduction

This chapter is the second step towards building a robotic system capable of per-
forming artificial chemical life experiments. In section 1.7.2, wedescribed that one
of the requirements of such a platform is performing feed back based experiments.
In section 1.7.3, we explained that another requirement of this platform is interact-
ing with experiments while happening. In chapter 2, we described the hardware of
the required infrastructure to address the needs of feedback based experiments.
In this chapter, we describe the software functionality required for a robotic plat-
form capable of feedback based experiments in artificial chemical life experiments
introduced in section 1.2, and also able to interact with the experiments in real-
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Figure 3.2.1: Software architecture of EvoBot. The API developed for
EvoBot provides the basis for performing a large class of experiments.

time. Addressing these software requirements allows us to use a liquid handling
robot, introduced in chapter 2, for artificial chemical life experiments.

In this chapter, we describe how the software for this liquid handling robot,
EvoBot, is developed to meet the different needs of artificial chemical life exper-
iments. These needs include detecting changes in the experiment condition, based
on sensor input, and interactingwith the experimentbasedon theobservedchanges.
Wealso introduce the software architecture includingfirmware, vision system, cam-
era calibration, coordinate system transformation, logging experiment data, cus-
tomization fordifferent robots, graphical user interface for interactive experiments,
experiment templates, and the robot’s wiki.

3.2 Software Architecture

Thesoftware for EvoBot has been developed in Python, and has been tested onOS
X, Linux, and Windows. Figure 3.2.1 shows the software architecture of EvoBot.
At the top layer the user programs and runs the experiment. Depending on the
command, an API module like the syringe module will be responsible for sending
the corresponding G-code (or G programming language used in computer-aided
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Figure 3.2.2: Sample functions provided by EvoBot’s API.

manufacturing to control automated machine tools) to the next layer down. The
syringe module, the Petri dish, the well plate, and the head have methods for their
own behavior or their interaction with other modules. The bottom layer, EvoBot
represents the robot as awhole. It ismainly used to initialize the robot, turn it onor
off. One layer down, the open-source library “printcore” is responsible for check-
ing errors. The physical layer is responsible for configuring a serial connection on
a specific port and baud rate, as well as reading to and writing from the serial port.
On the other hand, the simulation module enables the user to verify his program
in simulation mode prior to running it on the robot.

TheAPI developed for EvoBot provides the basis for performing a large class of
experiments. Figure 3.2.2 shows some of the functions provided by EvoBot’s API
enabling it to perform various chemical experiments.

3.2.1 Firmware

EvoBot uses an extended version of the Marlin firmware to add support for con-
trolling syringe modules. The robot’s firmware resides on an Arduino Mega, and
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is the link between software and hardware, interpreting commands from the host
computer in G-code and controlling the motion accordingly.

3.2.2 Reactive vision system

EvoBot’s vision API is responsible for processing the camera frames from the ex-
perimental layer to extract data about the experiment, e.g. droplet behaviors. We
use OpenCV3, NumPy, Matplotlib, and Webcolors libraries for image data anal-
ysis. In order to recognize droplets in artificial chemical life experiments, and an-
alyze their behavior we use a series of image processing operations, including dif-
ferent filters. We smooth the image to remove noise, and convert the color space
of camera frames from BGR to HSV for better accuracy, and robustness to light-
ing changes. We then threshold the HSV image to extract only the droplets. We
apply morphological operators, namely closing, i.e. dilation of image frames fol-
lowed by erosion, and then opening, i.e. erosion of the resulting frame followed by
a dilation, to remove noise, and recognize droplets more accurately. The next step
is to find the contours in the binary image to detect droplets. Then the moments
are calculated to determine the center of droplets. The center coordinate is used
to calculate other droplet information, e.g. speed, direction, or acceleration. We
use Hough transform to detect Petri dishes.

In order to measure the accuracy of the vision system, we needed to compare
the actual size of a droplet, with the size obtained from the vision system. As it
was difficult to measure the actual area of a droplet precisely, we laser cut droplets
fromPolymethylmethacrylate (PMMA)at different sizes, namely 5mm , 10mm ,
and 15mm . Then we placed the laser cut droplets on the experimental layer to be
detected by the vision, and consequently had their size calculated. The accuracy
of the vision system was tested with the droplet placed at different locations on
the experimental layer, and when the experimental layer was placed at different
distances to the camera. Our experiments determined the accuracy of the vision
system to be 4% of droplet area.

It should be noted that the vision system may have constraints in some work-
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ing conditions. The vision system of our robot detects droplets based on color
segmentation. Therefore a white background should be used on top of the robot’s
frame, so that external objectswill be filtered. There are also certain lighting condi-
tions for the vision system that need to bemet. There should be sufficient ambient
light to make the droplets detectable. Therefore if the robot needs to be operated
under low lighting conditions, e.g. at night, an external source of light should be
used.

3.2.3 Camera Calibration

In order to extract relevant experimental data, EvoBot’s Vision API needs to cali-
brate the coordinate systems of the robot and the camera. To this end, we utilize
Affine Transformation that represents a relation between two images, and can be
used to express rotations, translations, and scale operations. We need five coeffi-
cients to calculate the Affine transformation matrix in images obtained from the
camera. This is done by asking the user to click on the needle tip at three different
positions to provide six equations for calculating the Affine transform coefficients.
This step is only done once, when the robot is setup.

Having performed the camera calibration, we need to verify the accuracy of cal-
ibration. To this end, after the user has clicked on three predefined positions, i.e.
calibration is finished, the phase to verify the accuracy begins. In the verification
phase, when a user clicks on an arbitrary point on the image, the syringe needle tip
should move to that location. The clicked point on the image is small, and there-
fore the needle tip moving to the same points provides an acceptable accuracy.
Through tests at different positions on the experimental layer, and at different dis-
tances of the experimental layer and the camera, the calibration has shown to be
reliable. It should be noted that we also implemented the calibrationwith perspec-
tive transformation. However, the performance was not as accurate. Therefore the
method used for the vision system of EvoBot is affine transform.
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3.2.4 World coordinate system for Multi syringe experiments

Theworld coordinatemodule transforms coordinate systems of differentmodules
to each other, enabling moving different modules to the same location. Syringe
modules can be placed at 17 different positions on EvoBot’s head, and up to 11
syringes can be mounted on EvoBot simultaneously. An object, such as a Petri
dish, or a well plate can be defined relative to any of the 17 coordinate systems, and
its coordinates will be calculated automatically relative to other syringes, enabling
precise access to the same object by any desired syringe module. Even if using
multiple syringes, only one of the syringes needs to be calibrated.

3.2.5 Logging experiment data

We have equipped EvoBot with a data logger which is able to log different types
of experiment data, including head x and y position, head speed and acceleration,
syringe x, y and z position, and plunger vertical position over time. The data log-
ger can also log events, such as aspirating or dispensing with a syringe, washing a
syringe, various experiment steps and so on. The user can save the log either in
”csv” file-format or a simple text format. The ”csv” format enables the users to ana-
lyze this data easily, as well as providing compatible data for advanced datamining
applications with software such as Weka or python-based Orange. Also sophisti-
catedplots of real time experiment results canbedepicted usingMatplotlib library.
In addition, EvoBot’s vision API enables users to record the video of experiments
when a desired event occurs.

Taking advantage of the log module in EvoBot API, we obtain useful informa-
tion weather the experiment was performed successfully, and in accordance with
the profile defined in the firmware. Figure 3.2.3 shows the head position for 1-
N experiments. 1-N refers to experiments like aspirating liquid from one chem-
ical vessel, and dispensing in different chemical vessels, e.g. filling all wells in a
well plate with a specific liquid from a Petri dish. The head position provides an
overview of the experiment, and can be used to verify if the experiment has been
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Figure 3.2.3: Head position for experiment verification in 1-N experiments.

performed correctly. In case of errors it is useful for fast debugging.
It should be noted that the trail is generated by themotion controller. Hence, it

is unknown if the robot actually moved this trail, as we don’t have any sensors to
detect this. Hence, the program can be verified, but not the working of the actual
robot.

Figure 3.2.4 (a) shows the speed and acceleration for the head during the exper-
iment. An overview of this diagram can help optimising the experiments, as well
as highlighting errors in the experiments, and detecting unusual behaviors.

In addition, we can look at this diagram data in more detail to verify if the mi-
croscopic behaviors set in firmware are satisfied. Figure 3.2.4 (b) shows the speed
profile for a movement over a straight line. The speed profile set in the firmware
is accelerating at the start of a movement, keeping the speed constant during the
movement, and decelerating at the end of the movement as shown in Figure 3.2.4
(b).

Figure 3.2.5 shows the syringe and plunger speed, and acceleration for 1-N ex-
periments. This data can also be beneficial for verifying the experiment or high-
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(a) Head speed and acceleration profile for experiment optimization and verifi-
cation in 1-N experiments.

(b) Head speed profile for movement over a straight line as set in firmware.

Figure 3.2.4: Head speed and acceleration profile for experiment verification
in 1-N experiments.

lighting inconsistencies in experiment pattern.

3.2.6 Customizing robots

EvoBot comes with a default configuration file, and each user has his own local
configuration on top of that, enabling users to use the same software independent
of the specificparameters of the robot theyuse. Weuse this configuration structure
as we have built seven copies of EvoBot with different dimensions, and modules
for different users according to their needs. The software detects the type, serial
port and slot number for all modules mounted on the head. In addition, the users
use different versions, size, and number of syringe modules based on the types of
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(a) Syringe position, speed and acceleration profile for 1-N experiments.

(b) Plunger position, speed and acceleration profile for 1-N experiments.

Figure 3.2.5: Syringe and plunger position, speed and acceleration profile for
experiment verification 1-N experiments.
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Figure 3.2.6: EvoBot’s interactive graphical user interface. The user inter-
face displays experiment information live, and enables users to interact with
the experiment real time. The dotted circles show the estimated propagation
of injected salt droplets. The elapsed time since dispensing is displayed in the
center of the circle..

experiments they perform. Furthermore, EvoBot may be connected to different
serial ports on different computers. The camera is also assigned different ids when
connected to different ports or computers.

3.2.7 interactive graphical user interface

As can be seen in Figure 3.2.6, the EvoBot software provides an interactive graph-
ical user interface, which enables chemists to interact with the experiment. The
users areprovidedwith a live videoof the experiment, showing real timedata about
the experiment includingdroplet data, such as sizeor speed, timeelapsed sincedis-
pense. Based on this data, the chemist can interact with the experiment. The user
will select one of the syringes, specify the volume either to aspirate or dispense
liquid, and click on the point he/she wants to perform the interaction. Data about
the interaction, e.g. time elapsed from interaction, will also be displayed.
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Figure 3.2.7: EvoBot’s wiki.

3.2.8 Experiment templates

Wehave providednumerous examples in theEvoBot’s codebase [21], demonstrat-
ing the use of the API. Furthermore, since EvoBot is an open source system other
users are able to develop software for any potential modules they develop.

3.2.9 EvoBot’s Wiki

Wemaintain thedocumentation for theEvoBot hardware and software inEvoBot’s
wiki, as can be seen in Figure 3.2.7. Thewiki includes information about installing
different required softwarepackages, low level software, e.g. updating thefirmware,
and custom M codes, setting local configuration, running the example programs,
calibrating the vision system, lighting conditions for vision system, multi-syringe
droplet tracking, world coordinate system, trouble shooting hardware, and soft-
ware, and API documentation.
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3.3 Conclusion

In chapter 2, we described the required hardware for a robotic system capable of
feedback based experiments. In this chapter, we describe howwe address software
requirements for such a platform. In this chapter, we demonstrate the software
implementation in order to make a liquid handling robot capable of artificial life
experiments, which require feedback from the experiment. This software imple-
mentation provides the data obtained from the vision systemas feedback to the ex-
periment. Different software modules enable required interaction with the exper-
iment. The different functionalists this software architecture provides empower
us to perform a wide class of artificial chemical life experiments. In the following
chapter, we demonstrate a range of possible feedback based experiments owing to
the developed hardware, and software. We will discuss how EvoBot has realized
experiments that formerly were difficult to perform.
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4
Interactive experiments

4.1 Introduction

In chapter 2, and chapter 3, we described the hardware, and software functionality
required for a robotic system capable of performing feedback based experiments
in the field of artificial chemical life. Having defined the requirements, and im-
plemented the robotic system, it is required to verify the the applicability of de-
veloped platform to liquid handling experiments. To this end, the capability to
perform both routine liquid handling experiments, and various artificial chemical
life experiments should be tested. This chapter addresses the need for verification
of the systemby applying the robot to non reactive experiments, aswell as different
artificial chemical life experiments.

Wecommence this chapterbyverifying thegeneral non-reactive liquidhandling
functionality of the robot by performing the routine liquid handling experiments
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with the robot. Then we provide examples of precise droplet placement. These
functionlities are often required in liquid handling experiments as well as artificial
life experiments. In the next step, we investigate the reactive functionality of the
robot. EvoBot has been used for performing numerous reactive liquid handling
experiments. We will include three use cases, as droplet behaviors in these experi-
ments and the required type of robot interaction are comprehensive enough to be
generalized to various reactive experiments. The use cases are examples of what
is possible with EvoBot, and are functionalities requested by our partners in the
EVOBLISSEUproject to enable them to perform a class of experiments. We com-
pare the way non-automated experiments were performed without the robot for
demonstrating the ease, accuracy and precision of results obtained by the robot.
Furthermore, easy configurability of the robot for ”needed to be modified” exper-
iments is examined. These experiments are quickly designed to investigate the ef-
fect of a parameter on the experiment. Based on these pilot experiments, an exper-
iment with desired behavior can be designed. Finally, we will discuss how EvoBot
has realized experiments that formerly were difficult to perform.

In this chapter, wedescribe howwehavemade a liquidhandling robot usable for
artificial chemical life experiments by addressing hardware, and software require-
ments explained in chapters 2 and 3.

4.2 General LiquidHandling Experiments

EvoBot cando general liquid handling experiments as it canperform1-N,N-1, and
N-N experiments, mix the contents of a reaction vessel, and wash reaction vessels.
1-N, as shown in Figure 4.2.1, refers to experiments like aspirating liquid from one
chemical vessel, and dispensing in different chemical vessels, e.g. filling all wells in
a well plate with a specific liquid from a Petri dish. N-1, as shown in Figure 4.2.2,
refers to experiments like emptyingwells of awell plate in a garbage collector. N-N,
as shown inFigure 4.2.3, refers to experiments like transferring liquid from specific
wells in a well plate to the corresponding wells in another well plate. Owing to the
software developed, the robot is intelligent enough to fill a syringe with the same
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Figure 4.2.1: 1-N experiment. Filling all wells in a well plate with a specific
liquid from a Petri dish.

liquid if that syringe runs out of liquid. Due to these functionalities, EvoBot can be
used in application like serial dilutions, ELISA, and PCR. A serial dilution is dilut-
ing a substance in solution step by step. ELISA (enzyme-linked immunosorbent
assay) [110] is a test to identify a substance. PCR (Polymerase chain reaction)
[84] is a technique in molecular biology for generating copies of DNA sequence.

It should be noted that the general liquid handling functionality of the robot
is not the focus of this chapter, and not as important as the reactive functionality
of the robot, but provided to briefly showcase some of the possibilities with the
robot.
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Figure 4.2.2: N-1 experiment. Emptying wells of a well plate in a garbage
collector.
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Figure 4.2.3: N-N experiment. Transferring liquid from specific wells in a
well plate to the corresponding wells in another well plate.
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Figure 4.3.1: Droplet placement in two dimensions in controlled patterns
(the word ”REAL” in this experiment).

4.3 Droplet Placement

EvoBot can be used to place droplets in 2 or 3 dimensions precisely. The droplets
can be placed in specific patterns such as circles or rectangles, or in sophisticated
geometric shapes. Droplet pattern printing in 3D is a novel opportunity as it is
difficult to achieve the necessary precision in the vertical direction if performed
manually. Figure 4.3.1 shows an image of droplets, placed in two dimensions in
an arbitrary pattern (the word ”REAL” in this experiment). Figure 4.3.2 shows
droplets placed in 3D patterns. This was obtained by injecting salt solution into
silicone. The salt density was calculated in a way so the injected droplets would
float in the silicone. Different droplet volumes at different positions, and heights
were injected to form a 3D pattern. Then the silicone was cured in an oven for 10
minutes.
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Figure 4.3.2: Droplet placement in 3D patterns. The 3D pattern was ob-
tained by injecting salt solution into silicone, and then curing silicone in an
oven.

4.4 Interactive Experiments

As discussed in chapter 1, artificial life experiments require precise timing and rel-
ative positioning of reagents with respect to motile droplets. In this type of exper-
iments, the introduction of a reagent into the experiment will make a stationary
droplet motile, or affect the motility of a dynamic droplet. Therefore the exper-
iment parameters, such as distance between droplet and reagent, time of adding
reagent, and concentration of liquids, affecting droplet behavior are investigated.
The experimental parameters either influence individual droplet behavior, such as
droplet speed, droplet size, and induction time, or group droplet behavior, such as
droplets clustering or declustering, droplets merging or dividing.

Theconfluenceof computer visionand robotic automation, asdiscussed in chap-
ters 3 and 2, makes automation of these experiments possible. Real-time analysis
of experimental images provides data about droplet properties and behavior. The
preciseness of robot automation enables significant reduction of noise related to
positioning of reagents and control over parameters such as fixed dispensing angel,
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dispense time, dispensing force, and dispense distance to liquid surface. It is also
possible to make reactive experiments because the data obtained from the com-
puter vision system may trigger the robot to perform a specific action. Hence, the
introduction of automation makes it is possible to control experimental param-
eters precisely and significantly reduce the noise leading to improved statistical
significance of results.

In the following sections, we will discuss three use cases of EvoBot for artificial
chemical life experiments. These use cases demonstrate how applying EvoBot to
artificial chemical life experiments improves precision and repeatability of the ex-
periments. Furthermore we show how experiments that were very difficult or not
possible to perform are made possible using EvoBot.

4.4.1 Usecase1: dropletresponseasafunctionofdistancetoareagent

In this section we automate an experiment whose purpose was to understand the
response of a droplet as a function of distance to a reagent [57]. Chemists did this
experiment by hand, but given they were not able to place reagents precisely they
had to rely on intuition and luck to get a sufficient coverage of distances. Whether
they were successful or not could first be verified after the experiments were per-
formed by analyzing the experiment videos. In contrast, by employing computer
vision driven automation it is easy to ensure systematic coverage of relevant dis-
tances and we were also successful in reducing the noise of the experiments.

Experimental Setup

An example of reactive experiments is the dynamics of chemotactic droplets in salt
concentration gradients [57]. To verify the reduction in variability of reactive ar-
tificial life experiments, we used EvoBot to duplicate the experiment reported in
[57], as shown in Figure 4.4.1. In this experiment, a decanol droplet is added to
decanoate spread over a microscope slide. Now adding a droplet of sodium chlo-
ride will cause the decanol droplet move. We have used EvoBot to duplicate this
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Figure 4.4.1: Bottom camera view of decanol droplet on microscope slide.

Figure 4.4.2: The x, y position of the droplet as a function of time.
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experiment by adding 1 mL of 10 mM sodium decanoate on a 76×26 mm micro-
scope slide. Themicroscope slide was placed horizontal on the experimental layer
of the robot, and the lower left corner of the slide was assumed to be the origin of
the coordinate system. In order to have the decanoate spread on the microscope
slide, first a 0.5 mL droplet of 10 mM sodium decanoate was placed at point x=10
and y = 6.5 (10 mm to the width, and 6.5 mm to the length of the slide). Then an-
other 0.5 mL droplet of 10 mM sodium decanoate was placed at the center of the
microscope slide (x=38 and y = 13). The robot syringe was perpendicular to the
microscope slide and the syringe tip was 1 mm above the microscope slide when
dispensing the decanoate. The stepper motor of the syringe had a speed of 4 mm
per second dispensing droplets. As the next step, a μL droplet of decanol mixed
with oil red O was dispensed at point x = 10 and y = 13 on the slide. The robot
syringe was perpendicular to the microscope slide and the syringe tip was 1 mm
above the microscope slide when dispensing decanol. The stepper motor of the
syringe had a speed of 4 mm per second dispensing decanol. Another syringe was
used to add a μL droplet of a 1 M NaCl solution (i.e., μmol of NaCl) at 50
mm distance to the decanol droplet. Similarly, the robot syringe was perpendic-
ular to the microscope slide and the syringe tip was 1 mm above the microscope
slide when dispensing Sodium Chloride. The stepper motor of the syringe had a
speed of 4mm per second dispensing the droplet. We repeated the experiment 15
times to verify the repeatability of the experiment.

Experiment Results

Figure 4.4.2 shows the x and y position of decanol droplet over time. Figure 4.4.3
shows the induction time of decanol droplet, i.e., the delay betweenNaCl addition
and the start of its chemotaxis, and chemotactic droplet speed for the experiment
being performed 15 times. Verifying the repeatability of the experimentwith fixed
parameters, such as distance between decanol and salt droplets, fixed dispensing
angle, force, and time, and precise analysis of the result is only possible with au-
tomation. The results of our experiments verify the behavior of decanol droplets
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(a) Experiment results performed by hand

(b) induction time (c) chemotactic droplet speed

Figure 4.4.3: Experiment results performed by hand (top), induction time (
bottom left), and chemotactic droplet speed (bottom right).
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Table 4.4.1: Mean and standard deviation of experiment results

Statistics Induction Time Chemotactic Droplet
Speed

Mean 159.60 1.28
Standard Deviation 25.89 0.51

in presence of salt concentration gradients observed by [57]. We used coefficient
of variation to compare the accuracy of the experiment results when performed by
hand and the robot. The coefficient of variation [53] is the ratio of the standard
deviation to the mean, and therefore a unitless measure of spread that describes
the amount of variability relative to the mean. For instance, the coefficient of vari-
ation of induction time the for the results of the experiment when performed by
hand was obtained form Figure 4.4.3 (a) for the blue points ( μ) at the distance
of 50 mm, and was compared by the coefficient of variation obtained from the ex-
periment performed by the robot. Comparison of the results obtained frompipet-
ting by hand and the robot, shows a reduction in the variability of the results from
the robot, in particular a 26% decrease in coefficient of variation for the induction
time. Table 4.4.1 summarizes the mean and standard deviation of experiment re-
sults performed by the robot.

Automation provides chemists with data whichwas not possible to be obtained
performing experiments by hand. Using EvoBot, chemists are enabled to perform
experiments with a precise spatial organization, e.g at fixed intervals of 1 mm, in a
timely manner.

Further possibilities

EvoBot can be used to interact with the experiment while it is happening, e.g.
adding a second salt droplet when the first droplet has moved a specific distance.
In addition, it can also be used to make droplets move in certain trajectories by
adding droplets of different concentrations at different positions relative to the de-
canol droplet.
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In addition, it is possible to analyze the effects of salt addition for multiple de-
canoldroplets ormultiple salt additions. Furthermore, owing to automation, droplet
patterns such as squares or circles can be precisely created.

Conclusion

In this experiment, we described howwe applied computer vision and automation
to improve an artificial chemical life experiment. For this experiment the use of the
robot enabled systematic control of experimental parameters resulting in timely,
and precise verification of the experiment results with fixed parameters, and less
noisy experimental data. Overall, we conclude that computer vision and robot au-
tomation make it possible to perform chemical experiments where precise spatial
placement and timing are important.

4.4.2 Use case 2: Sensor input feedback for aspirating droplet

In this experiment, as can be seen in Figure 4.4.4, a moving droplet is aspirated
by the syringe module when the droplet speed goes below a specified threshold.
These types of experiments are not possible to be performed by hand. However,
by employing computer vision driven automation they become feasible.

Experimental Setup

As the first step, the robot dispenses 3mLof 10mMsodiumdecanoate (pH11) in
a 90 mm diameter Petri dish. The robot syringe is perpendicular to the Petri dish
surface and the syringe tip was 1mm above the Petri dish surface when dispensing
the decanoate. The stepper motor of the syringe had a speed of 4 mm per second
dispensing decanoate. The next step is adding a 40μL droplet of a 1 M NaCl so-
lution (i.e., 10μmol of NaCl) at 10 mm distance from the edge of the Petri dish.
Another syringe was used for this purpose. The robot syringe was perpendicular
to the Petri dish surface and the syringe tip was 1 mm above the Petri dish surface
when dispensing the Sodium Chloride. The stepper motor of the syringe had a
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Figure 4.4.4: Aspirating a moving droplet by the syringe module when the
droplet speed goes below a specified threshold.

speed of 4 mm per second dispensing the droplet. Finally, another syringe is used
to dispense a 20 μL decanol droplet over the sodium decanoate, as can be seen in
supplementary video 5 in Appendix A.The robot syringewas perpendicular to the
liquid surface and the syringe tipwas 1mmabove the liquid surfacewhen dispens-
ing the decanol. The stepper motor of the syringe had a speed of 4mmper second
dispensing the droplet.

Experiment Results

As can be seen in the supplementary video, the decanol dropletmoves towards the
salt gradient. When the speed goes below a threshold, the syringe tip aspirates the
droplet. We repeated the experiment 10 times with the same droplet. In order to
do this, the vision API of EvoBot tracks the droplets, and analyzes droplet speed.
Figure 4.4.5 shows the droplet speed over time obtained fromEvoBot’s visionAPI.
As canbe seen in theFigure, whenever the droplet speed reaches 1mmper second,
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Figure 4.4.5: Droplet speed over time for use case 2. As can be seen in
the supplementary video 1 in Appendix A, when droplet speed goes below
a threshold, the robot aspirates the droplet. The experiment is repeated 10
times.

the syringe tipmoves to the center of themovingdroplet, and aspirates thedroplet.
The syringe tip touches the droplet vertically and in the center.

Conclusion

Analysis of the speed of a droplet composed of different chemicals is of interest to
chemists. EvoBot makes interacting with the experiment based on droplet speed
possible. This is useful as the composition of an aspirated droplet with certain
speed can be analyzed with an external instrument. A similar application is inject-
ing a chemical in a moving droplet when the speed reduces [71]. It is of interest
for artificial life scientists to refuel amoving droplet when it stopsmotion or when
the speed is below a certain threshold in order tomake the droplet continuemove-
ment. Furthermore, collecting data such as droplet position, speed, acceleration,
size, analyzing this data, and potentially modeling droplet behavior is crucial for
chemists.
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4.4.3 Use case 3: Sensor input feedback affecting group droplet be-
havior (Clustering Experiment)

In this experiment, as can be seen in Figure 4.4.6, multiple decanol droplets are
added toadecanoate solutionatdifferentpoints. After a certain time thesedroplets
come together and form a cluster. Now if a droplet of SodiumChloride is added at
a specific distance from the cluster, the experiment will be reversed, meaning the
decanol droplets will de-cluster. However this step takes a long time, depending
on the set of parameters even as long as a day. Subject to the parameters of the ex-
periment such as the number of decanol droplets, how distant and in what pattern
they are placed, pH of Decanoate solution, room temperature, decanol droplets
cluster at different times and patterns. In addition to these parameters the loca-
tion and time of salt injection affects the number of clusters over the course of the
time and the total time needed to de-cluster completely.

The need to perform different long running experiments with various parame-
ters makes EvoBot ideal for these experiments. EvoBot’s vision API enables it to
detect clustering and declustering and count the number of cluster over the course
of the experiment. While humans need to waste time monitoring the experiment
for declustering to happen, EvoBot can perform many of the experiments in par-
allel at the same time without the need for presence of a human. In addition, hu-
mans are not as accurate as the robot detecting the clustering, not precise enough
to inject salt at a specific point relative to the cluster at a certain time, and it is too
tedious and inaccurate to count the clusters over the course of a long experiment.

Supplementary video6 inAppendixAdemonstrates the feasibilityof these types
of experiments with the robot. First the robot adds 0.5 mL of 10 mM sodium de-
canoate (pH 11) on one end of a 76 × 26 mm microscope slide, and then adds
another 0.5 mL of sodium decanoate in the center of the microscope slide. There-
fore the sodium decanoate is distributed all over the slide. Then the robot adds a
row of five 5μL decanol droplets, and a row of four 5μL droplets of decanol with
a distance of 10 mm between droplets. Figure 4.4.7 shows the number of clusters
over time for this experiment obtained from EvoBot’s vision API. As can be seen
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Figure 4.4.6: Multiple decanol droplets added to decanoate solution at differ-
ent points forming a cluster.

in the video, the robot detects the desired behavior, as soon as the formation of the
cluster, and injects a 10μL droplet of a 1 M NaCl solution (i.e., 10μmol of NaCl)
at 10 mm distance to the cluster center. It should be noted that the data from this
experiment is inconclusive, and provided as a showcase of possibilities of reactive
experiments.

4.5 Conclusion

In this chapter, we demonstrated that by addressing hardware and software re-
quirements for a liquid handling robot discussed in chapters 2 and 3, we were able
to use the developed robotic platform for performing diverse experiments, includ-
ing artificial chemical life experiments. As explained in chapters 2 and 3, EvoBot is
developed to meet the image processing and robotic automation requirements to
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Figure 4.4.7: Number of clusters over time in declustering experiment. The
number of clusters is obtained from the vision API of EvoBot. As can be seen
in the supplementary video 2 in Appendix A, when droplets form a cluster, a
salt solution is aspirated and dispensed at the specified distance to the cluster.

perform automated artificial chemical life experiments. The sensor layer under the
experimental layer collects various droplet data collected from the image analysis
of the camera, and is used as feedback to make artificial life experiments possible.
The camera provides data about droplet properties, such as position, speed, area,
and color, or about change in droplet behavior, such as droplets merging or divid-
ing, clustering or declustering. Based on this data, EvoBot will interact with the
experiment.

We commenced this chapter by showing our robotic system can perform rou-
tine liquid handling experiments. Another application of EvoBot described was
2D or 3D positioning of droplets at precise positions or in specific patterns form-
ing complicated geometric shapes. We thendemonstrated thatEvoBot canbeused
to automate a variety of artificial life experiments. As a use case, we utilized our
robotic system to investigate the response of a droplet as a function of distance
to a reagent. The use of the robot enabled systematic control of experimental pa-
rameters resulting in less noisy experimental data. We described that computer
vision and robot automation make it possible to perform chemical experiments
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where precise spatial placement and timing are important. In addition, we used
EvoBot to track motile droplets, and interact with the experiment, e.g aspirating
a droplet when its speed goes below a threshold. We also used EvoBot to detect
when a collection of droplets behaves in a certain way, e.g droplets clustering, and
accordingly interact with the experiment, e.g inject a reagent at a certain distance
from the droplet cluster.

In summary, the confluence of software required for artificial life experiments,
and precise automation makes artificial chemical life experiments more precise
and repeatable. Furthermore, new possibilities are provided for researches to per-
form experiments which were very difficult for infeasible to perform.
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5
Robotic Platformwith Integrated

Controller Hardware

5.1 Introduction

So far we have described a robotic system capable of performing artificial chemi-
cal life experiments, and verified its applicability to the experiments. As discussed
in section 1.7.5, one of the requirements of this robotic system is ease of software
management, and fast setup of the system, without needing to install different soft-
ware required for artificial chemical life experiments. In section1.7.4, we explained
another requirement for this robotic system is low price, so the robotic platform
is affordable even for small laboratories. The robotic systemwe described in chap-
ters 2.1, and 3 uses a dedicated external computer for running the required soft-
ware, which constitutes a large portion of the price of the robotic system. In this
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Figure 5.1.1: User interface procedure.

chapter, we address these two requirements, namely easy software management,
and affordability.

We need to make our robotic platform usable on different computers without
requiring to install all the software, and libraries. This is because EvoBot’s applica-
tionprogramming interface (API)usesnumerous softwarepackages, likeOpenCV
and PyQt. Installing these libraries andmanaging their dependencies on an exter-
nal computer proved to be time consuming and difficult for non-expert users. In
order to solve this issue, we need to decouple control software from user software.
Therefore we have to replace the dedicated external computer with an integrated
controller hardware. There are different single board computers available to use as
an integrated controller hardware. In this chapter, we discuss our choice of single
board computer. We explain how this choice enables us to meet the requirement
of an affordable robot, and how easy it is to duplicate software for new platforms
by mounting an image of the operating system with all required packages on a mi-
croSD card. We then describe the hardware and software implementation so we
can run the experiments on this robotic platform with integrated controller hard-
ware. Finally, we evaluate the performance of this standalone robotic platform
with integrated controller hardware.

This chapter also comprises our first step towards developing a user interface for
liquid handling robots. In this chapter, we discuss the implementation of a plat-
formwhich provides the infrastructure for developing the user interface. As can be
seen in Figure 5.1.1, in this chapter we focus on the systemdesign. In the following
chapterswewill continue this route by designing the user interface, developing the
user interface, and then deploying the user interface.

88



The approach we have taken for detaching user software from control software
can be applied to similar robotic systems. Our choice of a cheap single board com-
puter can also be employed inmany robotic applications tomake them affordable.
Given that implementinghardware, and software for these applications canbe time
consuming due to some technical details. We describe the implementation of our
platform to serve as a guideline for interested readers.

5.2 Requirements

In order to choose an integrated controller hardware, we need to consider the re-
quirement of our robotic system for affordability. On the other hand, the hardware
needs to have sufficient processing power to perform non-reactive liquid handling
experiments, as well as feedback based experiments which require processing of
image frames. WeuseGeekbench [24], a benchmarking tool tomeasure processor
andmemory performance of different devices. GeekBench runs a series of tests on
the platform, and evaluates the performance by assigning a score to the platform.
The scores are calculated against a baseline score of 4000, which represents the per-
formance of an Intel Core i7-6600U@2.60GHz. GeekBench is available onmost
platforms, e.g. Windows,Mac, Linux, Android, BlackBerry, iPhone, and produces
consistent results across them.

Geekbench uses a number of different tests, or workloads, to measure CPU
performance. The workloads are divided into four different sections, including
crypto, integer, floating point, and memory. These workloads measure the per-
formance of cryptography instructions, integer, and floating point operations, and
memory, respectively. For instance, the floating point workload includes image
processing operation tests such as blurring images, sharpening images, and dot
products.

We had successfully used a MacBook Pro with a 2.5 GHz Intel Core i7 proces-
sor, and 16 GB 1600 MHz DDR3 Memory to perform various experiments with
the robot. The Geekbench score for this computer was 3862. This provides an
approximate metric in deciding whether an integrated controller hardware would
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be a suitable choice. For instance, an integrated controller hardware with a Geek-
bench score ten order of magnitude smaller than the Geekbench score of the orig-
inal computer is not a good candidate.

Finally, the form-factor for integrated controller hardware should also be taken
into consideration. A choice of a not too large integrated controller hardware pro-
vides us with more flexibility.

5.3 Choice of IntegratedControllerHardware

In order to develop a robotic platform with integrated controller hardware, one
option is to use a mini computer. Intel NUC Rock Canyon NUC5I5RYK, as can
be seen in Figure 5.3.1a, is an example of a powerful mini computer. Intel NUC’s
processor is an Intel Core i5-5250U (1.6 GHz up to 2.7 GHz Turbo, Dual Core).
This choice addresses our requirement for an integrated controller hardware, al-
though priced at $ , it does not meet the affordability requirement. The not
inexpensive price of mini computers drives us towards the choice of single board
computers.

There are numerous single board computers (SBCs) designed with different
specifications appropriate for different applications. Priced at just $ , CHIP, as
can be seen in Figure 5.3.1b, is the cheapest SBC on the market. CHIP has built-
in Wi-Fi, Bluetooth, 4 GB flash storage, 1GHz ARM R8 CPU, and 500 M RAM.
However, CHIP’s low processing potential, does not suit our application, as it has
a Geekbench score of 413 [25] (10 order of magnitude smaller than the origi-
nal computer we used to perform the experiments with). The BeagleBone™ Black
Wireless, as can be seen in Figure 5.3.1c, is another SBCwith 1GHzARMCortex-
A8 Processor, and 512MB DDR3 RAM. However, it does not have an Ethernet
port, and priced at $ , there are newer SBCs with higher processing power at a
lower price in comparison (Geekbench score 248 [23]). Udoo x86 Ultra, as can
be seen in Figure 5.3.1d, is another SBC comparable in power to that of a typi-
cal budget PC. The embedded Arduino 101 board, 8 GB of RAM, and a 2.6 GHz
quad-core IntelCPUmake this SBCa versatile tool. However,Udoo x86has no in-
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tegrated hardware to connect to Wi-Fi or Bluetooth networks, and priced at $ ,
it’s expensive in comparison with SBCs. [10] provides the specifications for pop-
ular single board computers in 2016.

Raspberry Pi 3 is another single board computer priced at $ , and having a
Geekbench score of 2128. This single board computer is our choice of the inte-
grated controller hardware. The following section describes our motivation for
this choice.

Motivation for the Choice of a Raspberry Pi 3

We have chosen a Raspberry Pi 3, a single board computer, in lieu of the exter-
nal computer used in the robotic system introduced in chapter 2 as the integrated
controller hardware for various reasons. Onemotivation for this choice is the rea-
sonable price of theRaspberry Pi helps us satisfy the requirement discussed in sec-
tion 1.7.4 for affordability. Furthermore, the processing power of the Raspberry 3
(Geekbench score 2128 [26]) is relatively close to the original computer we have
used for experiments (Geekbench score 3862). Therefore it can be a potential can-
didate. In addition, the performance to price ratio of the Raspberry Pi 3 surpasses
its counterparts. The Raspberry Pi 3 model B costs $ due to mass production
price reduction. In February 2016, the Raspberry Pi Foundation announced that
they had sold eight million devices, making it the best-selling UK personal com-
puter.

Moreover, the Raspberry Pi performs better than its average performance for
the algorithmsweuse inour applicationprogramming interface. Figure5.3.2 shows
the floating point performance of Raspberry Pi 3. Specifically for tasks performed
in our image processing algorithm, it outperforms the average performance. For
instance, the score for dot product (multi-core scalar) is 4181, for sharpening im-
ages (multicore scalar) is 9460 , and forblurring images (multi-core scalar) is 12783,
which is higher than the average Raspberry Pi performance score 2128.

Another motivation for this choice is the available Raspberry Pi resources, and
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(a) Intel NUC ROCK CANYON Mini
Computer (b) CHIP Single Board Computer.

(c) BeagleBone™ Black Wireless
Single Board Computer

(d) Udoo x86 Ultra Single Board
Computer

Figure 5.3.1: Mini computer and single board computers for integrated con-
troller hardware.
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Figure 5.3.2: Raspberry Pi 3 floating point performance.

the active Raspberry Pi community. Having the largest and most active commu-
nity among SBCs, the amount of guides, tutorials and software available for the
Raspberry Pi is unmatched by any other competitor. There is close to no chance
of a routine problem not already have been covered by the community. Further-
more, the native Raspberry Pi module V2 camera, and the Picamera library pro-
vide valuable advantages for reactive experiments as will be discussed in the fol-
lowing sections. In addition, replicating disk image for a new robot is as easy as
copy pasting using a Raspberry Pi. Moreover, as will be explained in chapter 8, the
availability of theEthernet port, andWiFimodule allowsus topreload thenetwork
SSID and secret key so that the robots can introduce themselves to the web server
automatically.

Another motivation for this choice is that Raspberry pi 3 comes with HATs,
i.e. add-on boards attached on top of the Raspberry Pi, for different applications.
The functionality provided by these HATs, for instance motor or sensor support,

93



(a) Raspberry Pi 3 Stepper motor
HAT

(b) Raspberry Pi HATs can be
stacked up using a stacking header.

(c) Raspberry Pi 3 Servo motor HAT (d) Raspberry Pi 3 Pimoroni HAT

Figure 5.3.3: Raspberry Pi HATs for different applications.
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can be potentially integrated into our robotic platform. Adafruit Stepper & DC
Motor HAT for Raspberry Pi 3, as can be seen in Figure 5.3.3a, is an example that
can drive up to DC or Stepper motors with full PWM speed control . As the
Raspberry Pi does not have many PWM pins, this board uses a fully-dedicated
PWM driver chip onboard to both control motor direction and speed. This chip
handles all the motor and speed controls over I C, and up to Motor HATs can
be stacked for controlling up to stepper motors or DC motors if soldered
with a stacking header, as can be seen in Figure 5.3.3b. Adafruit 16-Channel PWM
/ ServoHAT for Raspberry Pi , as can be seen in Figure 5.3.3c, is anotherHAT for
controlling DC Servo Motors. These motors need specific and repetitive timing
pulses to set the position. This board can drive up to servos or PWM outputs
over I Cwith 2 pins. Pimoroni Explorer HAT Pro, as can be seen in Figure 5.3.3d,
is another example for reading analog sensors, interfacing with 5V systems, and
touch interfaces.

5.4 Hardware Components

This section describes our choice of hardware parts in order to develop a stan-
dalone robotic platform with integrated controller hardware, including a Rasp-
berry Pi 3 Model B, Raspberry Pi camera module V2, flex cable for Raspberry Pi
Camera, and 15.6” HDMI interface LCD with capacitive touchscreen. Then we
describe integrated controller hardware setup for this standalone robotic platform.

5.4.1 Raspberry Pi 3 Model B

The Raspberry Pi 3 controls the robot, and processes data obtained from sensing
modules. The Raspberry Pi is a series of credit card-sized single-board computers
developed in the United Kingdom by the Raspberry Pi Foundation. Several gen-
erations of Raspberry Pis have been released, the first generation (Pi 1) being in
February 2012, and the latest Raspberry Pi 3 model B in February 2016.

The Raspberry Pi 3, as can be seen in Figure 5.4.1a, comes with:
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• A 1.2GHz 64-bit quad-core ARMv8 CPU

• 802.11n Wireless LAN

• Bluetooth 4.1

• Bluetooth Low Energy (BLE)

• 1GB RAM

• 40 GPIO pins

• Ethernet port

• Combined 3.5mm audio jack and composite video

• Camera interface (CSI)

• Display interface (DSI)

• Push-pull Micro SD card slot

• VideoCore IV 3D graphics core

5.4.2 The Raspberry Pi camera module v2

The V2 camera, as can be seen in Figure 5.4.1c, has a Sony IMX219 8-megapixel
sensor, and can be used to take high-definition video, as well as still photographs.
We connect the camera to the Raspberry pi Camera Interface (CSI). We use this
camera for reactive experiments, aswell as streamingvideoover thenetwork,when
required.

5.4.3 Flex Cable for Raspberry Pi Camera

This cable, as can be seen in Figure 5.4.1d, lets us swap out the stock 150mm long
flex cable from a Raspberry Pi Camera for a different size. We need to open the
connector on the Raspberry Pi and slip this one in. This is useful for accessing all
the space on the experimental layer of the robot.
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(a) Raspberry Pi 3 Model B (b) Capacitive Touchscreen

(c) Raspberry Pi camera module v2 (d) Flex Cable for Pi Camera

Figure 5.4.1: Hardware for platform with integrated controller.

5.4.4 15.6” HDMI Interface LCD with Capacitive Touchscreen

An LVDS cable connects the 15.6” 1366 x 768 pixel glossy LCD to the HDMI-
LVDS converter board that has all required voltages for LCD, and can powerRasp-
berry Pi through a USB connector. An HDMI extender connects the convertor
board to the raspberry pi through the HDMI interface. The LCD can be seen in
Figure 5.4.1b.

5.4.5 Integrated Controller Hardware Setup

The Arduino and the Raspberry Pi 3 transfer data through serial communications
with a standard A-BUSBCable, as can be seen in Figure 5.4.2. TheRaspberry Pi is
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Figure 5.4.2: Implementation of platform with integrated controller hard-
ware.

connected to the touch screen through theHDMI interface. A V, A power adap-
tor provides power to the HDMI-LVDS converter board that powers the Rasp-
berry Pi through the USB connector. A mouse or a keyboard can be added to the
Raspberry Pi via USB port. The Raspberry Pi includes a wireless network adaptor
aswell as an Ethernet port to connect to the Internet. Figure 5.4.3 shows the setup.

5.5 Software Implementation

Raspbian, a Debian-basedOperating System, is the Raspberry Pi Foundation’s of-
ficial supported Operating System. Raspberry Pi Foundation promotes Python
as the main programming language, although C, C++, PHP, Java, Perl, Ruby, and
many more are supported. We mounted an image of the Raspbian operating sys-
tem on anMicroSD 16GBClass 10MemoryCard using an SD/MicroSD adaptor,
and inserted the MicroSD into the Raspberry Pi.

We use the Advanced Package Tool, or APT, which is a free software user inter-
face that works with core libraries to handle the installation and removal of soft-
ware on the Debian-based Linux distributions. To install the required libraries for
EvoBot’s API, we also use pip which is a package management system used to in-
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Figure 5.4.3: Setup.

stall and manage software packages written in Python. Python 2.7, and Python
3 come preinstalled on Raspbian. We also installed NumPy, SciPy, matplotlib as
required for the Evobot’s API. We installed pySerial to manage the serial commu-
nication between the Raspberry Pi and the Arduino.. Installing OpenCV 3.1.0 for
image processing was more straightforward than installing on a Mac, but compil-
ing OpenCV for Python takes about 75 mins on a Raspberry Pi. We also installed
Flask, which is a Python web framework on Raspberry pi.

We used Cron to automate managing specific tasks. Cron is a unix utility that
allows tasks to be automatically run in the background at regular intervals by the
Cron daemon. Owing to cron, required tasks can be scheduled to run at reboot or
at specific time intervals.

5.6 Performance

We used the robotic platform with integrated controller hardware to perform for-
merly performed experiments with EvoBot and evaluate the performance of the
new platform. We needed to evaluate the performance of EvoBot for non-reactive
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experiments, as well as reactive experiments where feedback is provided by ana-
lyzing camera image frames.

In case of non-reactive experiments, we managed to run the code on EvoBot’s
repository without any modification. This is because we have installed the Rasp-
bian Jessie with Pixel to provide a GNOME (GNU Network Object Model Envi-
ronment) for users. Therefore Raspberry Pi can be used as a Linux computer by
connecting a touch screen, and keyboard, as Python and the required libraries had
been successfully installed.

In case of reactive experiments requiring a camera, the Raspberry Pi camera
from Raspberry Foundation, and the PiCamera library for Raspberry Pi can be
used for image processing. However, we could also use the same camera we had
used with EvoBot, with the Raspberry Pi, without the need to change code.

We first evaluated the performance of experiments when EvoBot’s webcam is
connected to the Raspberry Pi. This option didn’t require any major code change.
We compared the performance of EvoBot running with a Mac computer, and the
robotic platformwith integrated Raspberry Pi 3 controller running reactive exper-
iments requiringOpenCV.There are various reactive experiments performedwith
EvoBot, whichhave their owncomputational requirements. Wefirst compared the
performance of EvoBot, and the platform with integrated controller hardware for
basic image processing tasks. The Mac was a MacBook Pro with a 2,5 GHz Intel
Core i7 processor, and 16GB 1600MHzDDR3Memory. The Raspberry Pi man-
aged tohave the sameperformance as the computer, and frame-processing ratewas
limited by the camera frame rate (around 18 frames per second). We then com-
pared the frame processing for an extreme case of multi droplet tracking which re-
quires image processing, processing experiment data, logging them in detail, writ-
ing experiment data to disk, displaying live experiment video, and recording exper-
iment video. EvoBot performed this experiment at about 11 frames per second. In
this extreme case the Raspberry Pi performed the experiment at 3 frames per sec-
ond. However, the performance of theRaspberry pi could be increased if we didn’t
display the live experiment data, or ease the processing requirements.

We thenneeded to evaluate theperformanceof experimentswith theRaspberry
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Pi Module 2 camera provided from Raspberry Pi foundation. The camera pro-
vided from Raspberry Pi foundation, along with the optimized PiCamera library
for Raspberry Pi performs very well. However, we could not use the EvoCamAPI
without anymodification as it was. Therefore, wemodifiedEvoCam to support Pi-
Camera and OpenCV working together. Consequently, we were able to use Evo-
Cam with the webcam, or the Raspberry Pi camera, or both of them at the same
time.

Having the new EvoCam library with PiCamare support, we evaluated the per-
formance of Raspberry Pi, and the pi camera. For basic image processing exper-
iments, we had the same frame-processing rate for the case of the webcam con-
nected to the computer, and the Raspberry pi connected to the Raspberry cam-
era. For the extreme processing case assessed earlier, we had a great increase in
performance processing at 8 frames per second (in comparisonwith 11 frames per
second with the computer and EvoBot’s webcam).

We then tried overclocking the Raspberry Pi. We needed to use heat sinks on
the Raspberry, as can be seen in Figure 5.6.1, to avoid damaging the chips. We had
to increase the processor, gpu, and sdram frequency for better performance. The
details for overclocking the Raspberry Pi can be found in Appendix C

It should be noted that changing the ”up_threshold” on theRaspberry Piwould
cause it not to increase the speed until CPUutilization gets above a certain thresh-
old, for instance %75. Using these settings we managed to process frames at 10.
frames per second for the extreme case.

For common image processing tasks, mean and standard deviation of frame
processing rate per second is m=18.6, s=0.9 for 2,5 GHz Core-i7 Mac Book Pro,
andm=17.8, s=1.1 for Pi. For experiments with extreme processing requirements,
we overclock the Pi by increasing GPU, and CPU frequencies when CPU utiliza-
tion exceeds a certain threshold (75%). Theabove-mentionedcomputer processes
frames at m=11.3, s=0.8, and Pi at m=10.3, s=0.9 (91 performance).

In Summary, evaluation of the robotic platformwith integrated controller hard-
ware demonstrates it is possible to perform routine liquid handling experiments
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Figure 5.6.1: Using heat sinks to overclock the Raspberry Pi.
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and it has sufficient computational power to perform feedback-based experiments,
owing to tight integration of hardware and software. We use Raspberry Pi Foun-
dation’s native camera-module v2. On software side, we boost performance by
building our image-processing API on top of optimized Raspberry Pi Camera li-
brary and GPU accelerated OpenCV. Finally overclocking the Raspberry Pi can
result in processing performance close to EvoBot running with the computer.

5.7 Conclusion

In conclusion, we introduce a robotic platform with integrated controller hard-
ware, resulting in an architecture where user software for programing experiments
is decoupled from control software. We discussed possible approaches to develop
suchaplatform, anddesignconsiderationwehave taken into account forour choice
of the implementation. We showed that the resulting platformeases softwareman-
agement as installing, andmanaging software libraries required for feedback based
experiments on different hardware, and operating systems was difficult. Further-
more it is affordable owing to the low cost of the Raspberry Pi. This robotic plat-
formwith integrated controller hardware is able to perform liquid handling exper-
iments, including feedback based experiments in artificial chemical life. Using the
nativeRaspberry Pi camera, developing image processingApplication programing
interface (API) for Raspberry Pi, and overclocking the Raspberry Pi 3 adaptively,
we gained satisfactory performance.
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User interface is like a joke.
if you have to explain it to someone, it’s not a good one!

...

6
User interface design

6.1 Introduction

In the preceding chapters, we have described a robotic system capable of perform-
ing artificial chemical life experiments, and have verified its applicability to these
experiments. We also decoupled user software, and control software by integrating
controller hardware into the robotic platform for easy software management.

As we explained in section 1.7.6, another requirement for our robotic platform
is an intuitive user interface enabling users to use the functionality of our robotic
platform effectively. Most of the users of our robotic platform for performing arti-
ficial chemical life experiments are chemists, biologists, etc. As these users are not
proficient in programming, theywould prefer a graphical user interface rather than
writing code in order to be able to perform the experiments. Thereforemaking the
features of our robotic platform usable for these users is critical.
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Figure 6.1.1: User interface procedure.

Design of this user interface is important as it ensures a good experience for the
users. The user interface is the gateway to the system. Even if all the other parts of
the complicated robot system are very well built, but the user interface is not easy
to use, all the other effort is wasted. A good user interface has a very important role
in making the users willing to use a product.

User interface design is also an important part of the software development
chain. Usability bug fix costs increase as the bugs propagate through requirement
analysis, design, coding, testing, and production. Research has shown it costs five
times more to fix a problem in the design phase than in the requirement phase. It
costs ten times more if the same issue propagates to the coding phase. If the us-
ability bug gets to deployment it can cost from 100 times more to fix [3] [2] [48].
Furthermore, a good user interface reduces costs, and saves users’ time by elimi-
nating the need for providing unnecessary documentation for the system.

This chapter also comprises our second step towards developing a user inter-
face for liquid handling robots. In chapter 5, we discussed the implementation of
a platformwhichprovides the infrastructure for developing the user interface. This
infrastructure includes both hardware and software. As can be seen in Figure 6.1.1,
in this chapter we focus on the the user interface design and evaluation. In the fol-
lowing chapters we will continue this route by designing the software architecture
required for developing this user interface, and deploying the user interface on the
cloud.

In order to design an intuitive user interface for our robotic system we need to
go through several tasks. We need to observe users and based on the observations
analyze the requirement for the user interface. Furthermore we need to satisfy the
principles of user interface design. Having observed users and met the principles
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of user interface design, we need to come up with a mock up of the user interface
that can be tested. We need to perform a heuristic evaluation of this interface by
experts. Moreover, this interface should be evaluated by real users of this robotic
system. In this chapter, we will go through these steps.

6.2 User Requirement Analysis

Analyzing the requirements of users for an intuitive user interfacewasour first task.
This section describes our effort to this end. In chapter 3, we described the devel-
opment of software that would allow control of our robotic platform using Python
code. However, given the preferences of our users for a graphical user interface
rather than a programming interface, we describe the development of a simplified
user interface that will eliminate the need for programming skills when operat-
ing our robotic platform. In this more demanding context, users would not be
expected to have any substantial training and the interface should expose the key
functionality in a simple and easy to use way.

The user interface of the robot was developed using the User-Centred Design
(UCD) framework [93]. As a first step in the user centered design, we carried out
field visits to interview and observe users and learn to understand their needs. The
field visits were carried out in chemistry and biology laboratories at University of
Toronto,Canada. Users carriedout real tasks, and their performance and reactions
were observed, and recorded. We analyzed the goals users were trying to achieve,
how users performed tasks without the interface, the parts they liked or disliked
about it, the difficulties they experienced along theway, and theworkarounds they
used.

Our field visits with users showed us how tasks should be divided into logical
steps that make sense to users. For instance, we learned that some experiments
may require the syringe tip to be touching the liquid in vessels for better dispens-
ing results. Due to the properties of surface tension, some liquids may need to be
blown out while dispensing. We also learned that, when working with micro well
plates, the edgewells shouldbe excluded in someexperiments, as their evaporation
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pattern is different from that of the inner wells. Another lesson was that using air
gaps while absorbing may be required (depending on the experiment) for better
liquid handling performance.

6.3 Design Principles

As the next task, we go through user interface design principles. In this section, we
enumerate the design principles we have taken into account for the design of our
user interface.

6.3.1 users are not design experts

In order to come up with the best design of the user interface, it is crucial not to
ask the actual users of the robotic system what kind of a user interface they would
prefer for the system. This is because they are not user interface design experts,
and they often get confused encountered with this question. This is referred to
as the first rule of usability [86]. When we were conducting the interviews with
users this point was well taken into account. We didn’t ask users what kind of user
interface they would like, but rather how they would do the task. We interviewed
them forwhat the common tasks were, andwhat tasks were less frequent. We tried
to develop the subsequent design based upon an explicit understanding of users,
tasks andenvironmentswith respect to thedomainof liquidhandling experiments.

6.3.2 No Panacea

While we interviewed users we understood there are diverse types of experiments
users do. This was because they would come from different fields, for example
chemistry or biology. Furthermore, different chemistry or biology researchers fo-
cused on different types of experiments. In other words, there were different per-
sonas. Personas are fictional characters created to represent thedifferent user types
that might use a site, brand, or product in a similar way [79]. We used the obser-
vations from user interviews to create personas.
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Trying to design a user interface that satisfies the needs of every potential user
is a wrong practice [83]. A real world example is trying to design a car which is
sport, SUV, and pick up. Therefore we didn’t aim to design an interface that can
please every possible user. Our designed interface was centered around the pri-
mary persona, themost influential persona among the cast [50]. The primary per-
sona represents the core users, or uses core features, and is the main focus of the
design [44] [49]. Our primary persona were chemists doing common chemistry
experiments in a chemical laboratory.

6.3.3 Functionality vs Usability

When designing a user interface, there is a compromise between functionality and
usability. The more features included in the user interface, the more functionality
the user interface will have. However, it comes with the price of reducing the us-
ability. A good example is iTunes, which has good usability. Although, potentially
muchmore features could have integrated into this product, themost crucial ones
have been included into the design as a trade off between functionality, and usabil-
ity. This example demonstrates an important user interface design principle, the
necessity of excluding features for the sake of improving usability [92]. Further-
more, according to Hick’s law, ”The time taken to make a decision increases as the
number of choices is expanded.” [102].

As computer scientists, we were first tempted to provide as many features as
possible, and include every detail in the user interface. We covered even less prob-
able scenarios, and all corner cases. However, this had made the design less us-
able. Therefore we took this principle into account, and considered the trade off
between functionality and usability. Therefore, our final user interface is designed
to be usable as well as having only the core functionality required.

6.3.4 Progressive disclosure

Progressive disclosure is a way to satisfy both of the conflicting requirements for
power, and simplicity in a user interface. Progressive disclosure is accomplished
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by initially, showing users only a few of the most important options, then offering
a larger set of specialized options upon request. Therefore the secondary features
are only disclosed if a user asks for them, meaning that most users can proceed
with their tasks without worrying about this added complexity [89].

Progressive disclosure makes a complicated user interface simple and powerful
at the same time. Google maps is a good example [91]. It has complicated func-
tionality and at the same time provides a simple straight forward interface as can
be seen in Figure 6.3.1 (a) . At the same time there are numerous features available
based on demand. If required, the user can click on ”leave now” to have access to
more options like ”depart at”, ”or arrive by”. Furthermore, clicking on the ”OP-
TIONS”, the user can choose to avoid tolls, etc, or display distance inmiles, etc, as
can be seen in Figure 6.3.1 (b). These features don’t confuse users by complicating
the user interface, when the users do not actually need them.

In addition, contrary to common belief, the number of clicks to reach a spe-
cific target is not as decisive as believed. If each click is an unambiguous choice,
clicking to reach the target would be seamless, and the number of clicks are not as
significant [75].

We have considered this design principle in our user interface design. There-
fore details in the interface are not presented to the user unless the user asks for
them. Consequently, unnecessary complexity is avoided. An example in our user
interface design is disclosing several check boxes only when clicking on a button.

6.3.5 Iterative design

Iterative design is a method for developing user interfaces by refining them itera-
tively over several versions [87]. Iterative design, or incremental design, is more
suited for user interface design than waterfall design. In waterfall design, produc-
tion is the ultimate goal, and change in specifications is very difficult or nearly im-
possible as waterfall design aims for functionality and stability. On the other hand,
in iterative design, users are the main goal of the design, and changes in specifica-
tions are inevitable. Iterative design aims for usability and usefulness [104] [97]
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(a) Simple Interface (b) Interface Details

Figure 6.3.1: Progressive disclosure in Google Maps
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[78] [101].
The design of our user interface was based on iterative design. We tested each

version of the design with users, and tried to make the iterations as much as possi-
ble.

6.3.6 Validated learning

Validated learning is the process in which learning is achieved by trying out an
initial idea and then measuring it to validate the effect. Each test of an idea is a
single iteration in a larger process of many iterations whereby something is learnt
and then applied to succeeding tests [94]. In other words, validated learning is a
form of iterative design where the design team test design hypotheses with users
[37].

We implemented validated design in our design of the user interface. This origi-
nated from the fact that there is no intelligent designer that can sit alone anddesign
the best user interface, but rather actual users provide the best feedback on the user
interface. If experimental validation of a design fails, the design is not acceptable.
It does not make any difference how beautiful a design looks, or how intelligent
the user interface designer is [77].

6.3.7 Testing early

Inmostprojects, thefirst systembuild is barelyusable. Theonlyquestion iswhether
to plan in advance to build a throwaway or promise to deliver the throwaway to
customers [52]. Furthermore, Testing one user early in the project is better than
testing 50 near the end [64].

A good example for this principle is the design of MacBook. It has been a pro-
cesswhere theydiscovered theproduct through constantly creatingnew iterations.
Apple has made hundred prototypes of the product, in comparison with few pro-
totypes common in other companies. The teamhas discovered the design through
an exhaustive process of building numerous prototypes [74].
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The preceding discussions motivated us for testing our design of the user inter-
face in the early stages with the users.

6.4 Low Fidelity Prototype

Next step was to build a testable mock up of the user interface. To this end, a fo-
cus group was carried out with three experts in human factors and user interface
design. This was because we were following User-Centered Design (UCD), and
UCD is a method that relies on interactive design, prototyping and testing after
the requirements analysis. The goal was to determine the overall strategy for con-
structing the user interface for dilution experiments, a frequent task in a number
of scientific areas that might use our liquid handling platform. The experts recom-
mended a strategy where the user first configures the robot and then programs the
experiment, using a menu selection approach.

There were several tools for wireframing this design. Axure RP Pro is a wire-
framing, rapid prototyping, documentation and specification software tool aimed
at web and desktop applications [43] . Sketch3 is a vector graphics editor for Ap-
ple’s macOS . Invisionapp is a prototyping, collaboration, and workflow platform
[29]. Using Invision, prototypes can be developed online, without installing any
software. Then they can be sent to desktop or mobile devices, e.g. Android or
iOS, to be installed and evaluated on the device. Balsamiq Mockups is a graphi-
cal user interfacemockup and website wireframe builder application. It allows the
designer to arrange pre-built widgets. The application is developed as a desktop
version, and also a plug-in for Google Drive . Balsamiq makes fast Iterations pos-
sible without much effort, and makes collaboration smooth.

We chose Balsamiq for wireframing owing to its simplicity,and fast implemen-
tation time. The prototype of the user interface consists of two pages. Figure 6.4.1
and Figure 6.4.2 show two screenshots for the resulting Balsamiq prototype de-
veloped for setting up and programming experiments with our robotic platform.
Figure 6.4.1 shows the layout page, used for setting up and configuring the experi-
ment. On this page, the user chooses the vessels, and assigns themaposition based
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Figure 6.4.1: Layout mock up.

on his/her observation of the experimental layer. There exists also a text box in
which the user enters an arbitrary, easy to remember name for vessels, so they can
be referred to in the next step. Having defined the layout, the user proceeds to the
next page.

Figure 6.4.2 shows the screen for programming the experiment. The user de-
fines the desired experimental protocol on this page. At the top of the page, com-
mon tasks in a chemical experiment can be seen. The user chooses a task among
these, and based on the choice a box is presented on the screen. He will then set
the required parameters in that box based on the choice of the task. Having added
the required steps, the user can either run the experiment, or save it by clicking the
corresponding buttons. Finally, at the bottom of the page, the experiment log is
displayed, providing useful feedback for the users.
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Figure 6.4.2: Experiment setup mock up.
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6.5 Heuristic Evaluation

Next task we had to go through was expert evaluation of our graphical user inter-
face. To this end, once the low fidelity prototype was constructed, it was tested
with Heuristic evaluation, a method of discount usability engineering that allows
efficient formative evaluation of user interface designs based on the assessments of
expert reviewers, guided by a set of heuristics [90]. Clarkson and Arkin [59] ex-
amined a number of lists of heuristics that were subsequently developed, and then
integrated them into a new list in the special context of human-robot interaction:

1. Sufficient information design.

2. Visibility of system status.

3. Appropriate information presentation.

4. Use natural cues

5. Synthesis of system and interface

6. Help users recognize, diagnose, and recover from errors

7. Flexibility of interaction architecture

8. Aesthetic and minimalist design

An expert evaluator used the Clarkson and Arkin list to identify usability prob-
lems in the low fidelity prototype of our robotic platform’s user interface. Each
problem identified was labelled with a severity based on the original ratings pro-
vided by Nielsen [88] which vary from 1-4, where 1 is a cosmetic problem only,
and 4 is “usability catastrophe”

Table 6.5.1 shows the eight high severity problems that were identified. Two
of them were found in the configuration component of the interface and six of
them were found in the experiment programming interface. Seven (1-7) of the
8 heuristics listed by Clarkson and Arkin were involved in defining the problems
(numbers provided in third column of Table 6.5.1).
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Table 6.5.1: Heuristic Evaluation

Interface Evaluator Observation Heuristics Severity
The meaning of the
“location” input field

is unclear.
3, 6 4

Set up environment
The experimental layer
representation does not

clearly reflect the
real-world.

3, 4, 5 4

Terms and phrases do
not reflect users’ language. 4 4

Units are manually
input from a keyboard. 3, 6 4

Units are hardcoded
into the interface. 3, 4, 6 ,7 4

Required input parameters
are missing. 1, 3 4

Tasks cannot be removed
or reordered. 7 4ProgramExperiment

The “run experiment”
function is unclear. 2, 6 4
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6.5.1 Addressing expert evaluation

Usability problems identified by expert evaluators in the low fidelity prototype of
our robotic platforms’s user interface were addressed. Figure 6.5.1 shows the re-
sulting screen for setup and configuration, and Figure 6.5.2 shows the resulting
screen for programming the experiment.

6.6 User Interface Evaluation

Evaluation of our user interface design by real users of the systemwas the final task
that we had to perform. For this purpose, we evaluated our user interface with 15
users with diverse expertise in chemistry, biology, artificial chemical life, etc, from
different universities, including University of Toronto, Canada, Mcgill University,
Canada, University of Trento, Italy, University ofWestern England, UK,Karlsruhe
institute of technology, Germany. The user interface was constantly improved by
feedback from users. One example of feedback was to correct the use of techni-
cal terms. For instance, we replaced absorb with aspirate as they refer to different
tasks in laboratories, as absorbing is a physico-chemical effect. The term triturate
was also replaced by pipet up and down, as not all users were familiar with this ex-
pression. Dilution was changed to serial dilution, and the parameters for the task
were modified to reflect how chemists perform the task in practice. We used the
SystemUsability Scale (SUS) to evaluate our user interface. SUS is a highly robust
and versatile tool for usability testing [109]. In order to calculate the SUS score,
users answer questions on a questionnaire as can be seen in Figure 6.6.1.

The SUS score is calculated from the responses on the questionnaire [51]. The
responses have values from 1 to 5 (from left to right on 6.6.1). To calculate the
final score, we add the value of each of the odd-numbered questions minus 1. For
instance, if the user has chosen the second choice for question 3, the score 2-1=1
will be calculated for this question. For even- numbered questions we subtract the
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Figure 6.5.1: Iterated version of layout mock up.
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Figure 6.5.2: Iterated version of experiment setup mock up.
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Figure 6.6.1: SUS score questionnaire.
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Figure 6.6.2: SUS score boxplot.

value from 5. For example, if the user has chosen the forth choice for question 6,
the score 5-4=1 will be calculated for this question. Therefore the scores for each
question are from 0 to 4. We add up each score. Then wemultiply the total by 2.5.
This converts the range of possible values from 0 to 100 instead of from 0 to 40.

We got an average score of 87 in our usability testing as can be seen in Figure
6.6.2.. Another interesting observation was that the users with experience using a
liquid handling robot interface gave a higher usability score to the user interface.

6.7 Conclusion

In the preceding chapters, we described a robotic system capable of performing
artificial chemical life experiments. Then we verified its applicability to these ex-
periments. We also decoupled user software, and control software by integrating
controller hardware into the robotic platform for easy software management. In
this chapter, we addressed another requirement for our robotic platform for an in-
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tuitive user interface enabling users to use the functionality of our robotic platform
effectively.

In order to design an intuitive user interface for our robotic system, we had to go
through several tasks. To this end, we observed users and performed user require-
ment analysis based on user studies. We also took into account important design
principles considerations in the user interface design of our robotic platform. We
highlighted the strategies that allowed us to develop the user interface for control
of our robotic system, as well as the UCD process that we followed to design the
interface. Wedeveloped amockupof theuser interface basedonuser observations
and user interface design principles. Using a special version of heuristic evaluation
designed for robot interfaces wewere able to identify key usability problems in the
prototype and address them. Finally, we evaluated this user interface by real users
of the robotic system.

This intuitive user interface enables our users, who are less inclined to program-
ming the experiments, use the functionality of our robotic platform. Furthermore,
by providing a good user experience for the users, they are more willing to use the
robotic system. Moreover, providing a good user interface for our platformmeans
less documentation for users, and consequently more efficient use of their time.
This also helps us further meet our robotic platform’s requirement for affordabil-
ity.

In this chapter we focused on the the user interface design and evaluation. In
the following chapters, we will continue our path towards developing a user inter-
face for liquid handling robots by designing the software architecture required for
developing this user interface, and deploying the user interface on the cloud.
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7
Software Architecture for anOpen Source
Multi-platformUser Interface for Remote

Real Time control of a Robotic System

7.1 Introduction

Up to this point, we have described a robotic system capable of performing arti-
ficial chemical life experiments, and have verified its applicability to these experi-
ments. We also decoupled user software, and control software by integrating con-
troller hardware into the robotic platform for easy softwaremanagement. We then
designed an intuitive user interface for this platform described in chapter 6.

As we explained in section 1.8.1, another requirement for our robotic system is
design of a software architecture needed for an open source multi platform user
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Figure 7.1.1: User interface procedure.

interface to enable remote real time control of such a robotic system. Portability
of our robotic system is increased taking advantage of a user interfacewhich can be
accessed on different operating systems, or various devices. Furthermore, remote
real time control of the robotic system improves accessibility, productivity, and ef-
ficiency as users can access the robot at a location at their comfort, and receive no-
tifications regarding experiment progress, or potentialwarnings, and errors. More-
over, open source software, in contrast to proprietary software for other liquid han-
dling robots, provides a high degree of customization, bug fixes are faster, and is
free of cost.

This chapter also comprises our third step towards developing a user interface
for liquid handling robots. In chapter 5 and 6, we discussed the implementation
of a platform which provides the infrastructure for developing the user interface,
and design of the user interface, respectively. As can be seen in Figure 7.1.1, in this
chapter we focus on the software architecture required for developing this user
interface. In the following chapters we will continue this route by deploying the
user interface on the cloud.

This chapter aims at developing an open source multi platform user interface
enabling remote real time control of a robotic system. However, in order to de-
velop such a user interface, we have implemented different software architectures,
encountered shortcomings, and continued our path for design of a software archi-
tecture addressing the deficiencies. Developing a user interface for similar robots
would involve similar challenges. For instance, we discuss challenges for remote
control, and explain that trivial solutions based on search results are not only the
best answer to the problem, but hinder users from innovative approaches. There-
fore we present the problems we have run into, how we have solved them, and
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lessons learnt. We believe the software architecture design presented in this chap-
ter can be applied for remote real time control of similar robotic systems, and can
help users to implement this approach in various applications. Furthermore, a re-
view of different types of software architectures for user interfaces alongwith their
upsides and downsides can provide a good metric for users to choose which soft-
ware architecture suits them in different scenarios.

In this chapter, we describe different software architectures for user interfaces
for our robot, including a Python based user interface, an iOS-based user inter-
face, a LAMP stack web interface, and finally a MEAN stack user interface. We
describe the implementation, and discuss advantages, and disadvantages of each
user interface. We describe that developing a native user interface in Python has
less complexity as our Application programming interface is in Python. However,
it has limitations inherent to Python for user interfaces, and it cannot control the
robotic platform remotely. We then investigate an iPaduser interface for our robot.
This user interface enables remote control of our robot, and improves accessibility.
However, it cannot be used over Internet from a different local area network, and
it cannot be accessed onmultiple platforms, i.e. operating systems, or devices. We
then investigate a LAMP stack web interface. This interface can control the robot
remotely. Finally, we compare these user interfaces for different applications.

The MEAN software stack introduced in this chapter is a new technology used
in many start ups for pushing innovative technologies. We believe applying this
technology to robots not only contributes to our platform, but will also be advan-
tageous to other robotic systems. This technology can be applied to not only in-
ternet of things projects, as simple as controlling appliances, or reading sensors
over the internet, but also to applications for complicated robotic systems. We ex-
plain how this technology enables fast affordable real time control, enhances code
reusability, and testability owing to the front-end, and improves flexibility to store
data as we want owing to NoSQL databases. We also explain how we can take ad-
vantage of modern web advances, for example classes and modules but run them
on old browsers
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7.2 Requirements

The software architecture needed for a user interface enabling remote real time
control of a robotic system must meet several requirements. The following is the
list of the requirements that we will address in this chapter.

1. A native software architecture, in regards to our application programming
interface (API), for our graphical user interface application is advantageous,
although not a strict requirement. A native software architecture facilitates
the communication of different software components between the graphi-
cal user interface and the API.

2. The software architecture needs to provide support for remote control of
our liquid handling robot.

3. The software architecture should enable web based control of the robotic
system. We differentiate between remote control, and web based control in
the sense that a user interface may be controlled remotely, and unattended
on the same local area network, but not from internet on a different local
area network. A software architecture enabling web based control is more
powerful and pervasive.

4. The software application should also be cross-platform.

5. We need a software solution for our application that works on different de-
vices, e.g. computer, tablet.

6. Activeness of the user community, good documentation, availability of re-
sources, software packages, and libraries should be taken into account.

7. Easy integrationofmodern technologies into the software architecture, scal-
ability, code reusability, and maintainability, and easy testability are other
important factors. Taking advantage of modern technologies enables us to
control our robot real time.
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8. Simplicity of software implementation is important.

9. The learning curve should be taken into consideration.

7.3 PythonUser Interface

Our robotic system comes with a Python based user interface as can be seen in
Figure 7.3.1. The users can see information regarding the experiment they are per-
forming, such as droplet size, and droplet center. The users can interact with the
experiment based on the displayed information. For instance, if they left click on a
point on the image, they will see the distance to the droplet center. This is useful,
as users need to know at what distance they need to dispense the salt solution in
artificial chemical life experiments. If the users left click on their desired point, the
amount of liquid they have assigned will be dispensed or aspirated. The users can
choose the amount to dispense with a track bar on top of the display. They can
also start or stop recording the experiment when they want.

Being cross-platform, simple syntax, and existenceof numerous libraries in vari-
ous fields of science makes Python a popular programing language among the sci-
entific community. However, when it comes to user interfaces Python is not as
powerful as its counterparts. There are several choices for developing a user inter-
face in Python including TkInter, pyqt, and kivy. Tkinter is a Gui (Graphical user
interface) Programming toolkit for Python [36]. However, it is basic in compari-
son to its peers in other programing languages, for instance Autolayout for Swift,
or JavaFx for Java, or Layout Editor for Android development. PyQt is a Python
binding of the cross-platform GUI toolkit Qt . However, installing the right ver-
sion of Qt and PyQt can be tedious, and they often break with operating system
updates. Furthermore, the license is not GPL. This is in contrast with our open
source philosophy for our robotic platform. Kivy is an open source Python library
for rapid development of applications that make use of innovative user interfaces
. However, to use Kivy all packages need to be be installed on the Kivy core, and
not Python, which means reinstalling every required package for Kivy.
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Figure 7.3.1: Python based user interface.

Despite the simplicity of developing a native user interface in Python, it is a
common practice for full stack applications in Python, to develop the front end
in another language due to the aforementioned shortcomings. Therefore, the user
interface is developed in another language, e.g. HTML5, CSS, JavaScript, and a
Python based server plays as the back-end to talk with the API (Application pro-
gramming interface) in Python.

Therefore we use a non Python based user interface for our robotic system, as
will be explained in the following sections. However, for simple user interfaces use
of a Python framework is suggested as it results in much more simplicity.

7.4 iOS-basedUser interface

In this section we describe the software architecture for an iOS-based user inter-
face to control our robot, and discuss its advantages and disadvantages.
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7.4.1 Description

The iPad user interface displays the experimental layer live as the experiment is
happening as can be seen in Figure 7.4.1(a). Therefore the users can see the differ-
ent vessels available to perform their desired experiment. For instance, if the users
starts a drag gesture from a Petri dish and ends it on a well plate, a pop over will
appear as can be seen in Figure 7.4.1 (b). Then the user will choose experiment
parameters, such as amount of liquid in ml or ul, and the syringe to use for trans-
ferring liquid. The user has the option to add this step to the experiment, or cancel
it.

Having added different experiment steps, the user can reorder steps, edit or
delete the steps as can be seen in Figure 7.4.2. The users can then either run the
experiment or save the experiment for later use. If the user saves the experiment it
will be available later in saved experiments as can be seen in Figure 7.4.1(a).

7.4.2 Implementation

The user interface was developed in Swift, a language developed by Apple Inc. for
iOS,macOS, andLinux. Swift, the successor ofObjective-C, is designed to be con-
cise, and more resilient to erroneous code. We use the Model–View–Controller
(MVC) design pattern for implementing our user interface. Therefore, our soft-
ware is divided into three parts. The view is the presentation of different compo-
nents on the screen. Our controller defines howour views interactwith eachother,
and is the logic of our application. We use core data as the model for our software
architecture for persisting data. We use a protocol-based programming approach
to make the communication of different objects possible.

The back-end of our application is implemented using a Python based Server,
called BaseHTTPserver. The server is responsible for responding to communica-
tion from the client side, namely our iPad user interface. Based on the request from
the user interface, the server will communicate with the robot control application
programming interface so that the experiment will be run.
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(a) User interface showing experimental layer live.

(b) Pop over to choose experiment parameters.

Figure 7.4.1: iPad user interface.

In our Python application programming interface, we have developed a mod-
ule to translate the coordinates of the touch point on the iPad screen to the corre-
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Figure 7.4.2: ipad interface.
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sponding coordinate in the coordinate system of the robot. This is done by trans-
lating the coordinate systemof the iPad screen to the coordinate systemof camera,
and then translating the coordinate system of the camera from pixels to the coor-
dinate system of the robot in millimeters.

7.4.3 advantages

The advantage of an iPad user interface is the capability to control the robot re-
motely. Therefore the users can run the experiment unattended, allowing them to
perform multiple tasks and organize their time. The other advantage is that the
robot can move in an arbitrary path drawn by the drag gesture. Therefore, if the
user observes an obstacle, the robot can avoid the obstacle if the user defines the
path around the obstacle. The other application can be in 3D printing an arbitrary
drawn object, as EvoBot comes with a 3D printing module.

7.4.4 disadvantages

Using the iPad interface has two main disadvantages. The first downside of this
software architecture is that only users on the same local area network can access
the robot. Therefore, the robot cannot be controlled from user’s home over the
internet or user’s office with a different network. Another issue is that the IP ad-
dress of the server on our robotic platform has to be enteredmanually on the iPad
user interface. We cannot set a static IP address on the server, as this address may
be reserved on the local area network our robotic system is being used, therefore
causing conflicts.

7.5 LAMP StackWeb interface

To address the challenges discussed in section 7.4.4, we use LAMP, an archety-
pal model of web service solution stacks . We used the four open source compo-
nents in LAMP stack, namely Linux, Apache, MySQL, PHP, to develop our user
interface. As can be seen in Figure 7.5.1 [76], ApacheHTTPServer, and PHPpro-
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Figure 7.5.1: LAMP stack architecture [76].

gramming language form the back-end technology to serve the user interface. We
useMySQL relational databasemanagement system (RDBMS) as the database to
save experiments.

7.5.1 Implementation

We use Representational state transfer (REST) or RESTful web services to imple-
ment our user interface. RESTful APIs support CRUD operations, namely creat-
ing data in the database, Reading from the database, Updating the database, and
Deleting entries from the database. Therefore the user interface sends an HTTP
GET or POST request to the server, and receives a response in JSON, providing a
feedback about the request. We used Python-based Flaskmicroframework for the
back-end. The frontend was developed in HTML5, CSS, and Javascript.

We use port forwarding to communicate with the Raspberry Pi behind a local
area network. Port forwarding is forwarding the incoming traffic to a network to a
specific port. Therefore we were able to access the robot even behind a local area
network.
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7.5.2 advantages

The advantage of the web based user interface is that it is accessible on any device
connected to internet, therefore the robot can be used remotely.

7.5.3 disadvantages

We used port forwarding to communicate with our robot. This is not always pos-
sible, as when using the robot on a private network, the network does not have a
static IP. Therefore we cannot communicate with the robot. In addition, on many
public networks, like a LAN network in a University users don’t have administra-
tive privileges on the router to enable port forwarding. More importantly, port
forwarding is not a good practice due to security issues. It is a bad practice to leave
a port always open, and exposes the robot to security vulnerabilities.

7.5.4 Reverse tunneling

Due to the challenges encountered with port forwarding, we used the reverse tun-
neling concept to communicate with the robot. Reverse tunneling, or back door is
used when incoming connections are blocked. Therefore, instead of accepting in-
coming connections, an outbound connection is opened on the client to a server.
Then the user interface connects to the server. Consequently, as the client on the
Raspberry Pi is already connected to the server, the server can communicate with
the client on the Raspberry Pi.

Wemanaged to implement this software architecture on our local development
server. However, when we tried to host it on a hosting service provider, we were
not successful. The reason was that installing system level software, e.g. new li-
braries required for reverse tunneling, on external hosts is often not possible. We
needed to get a dedicated server to overcome this limitation, which is less afford-
able. This was against our philosophy of an affordable robotic platform. This was
the reason to look for other solutions to implement reverse tunneling which will
be discussed in the following section.
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Figure 7.6.1: Software architecture.

7.6 MEAN StackWeb Interface

Due to the challenges mentioned in section 7.5.3, we useMEAN stack as our soft-
ware architecture. The MEAN stack consists of MongoDB, Express.js, AngularJS,
andNode.js. Using theMEANStack, it is possible to develop both server side and
client side applications in Javascript. Appendix D describes the building blocks of
our application, including package management, database architecture, back-end,
front-end, unit testing, and styling.

7.6.1 Software architecture

The various software components work together using events, as can be seen in
Figure 7.6.1. When the robot is turned on, the Raspberry Pi 3 sends an event to
theweb socket server using a Python socket.io client, stating that the robot is avail-
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able. The Node web socket server keeps this connection alive, waiting for events
that need to be responded to by the robot. When the user logs in to the web in-
terface page, based on the credentials provided the robot id is inquired from the
database using RESTful APIs. For instance, if the University of Trento user logs
in, the assigned id for the user in the database, e.g. id=1234 is inquired from the
database. Therefore, the server knows which Raspberry Pi to control among all
connected Raspberry Pis. On the web interface page, there is also socket.io client
under the hood. When the run experiment button is clicked an event is sent to
theNode socket.io server stating that the robot needs to perform a specific action.
The socket server then tells the Raspberry Pi 3 that the robot needs to do an ex-
periment, as the connection has been kept alive. Going the other way, when there
is a new notification from the robot regarding the experiment, such as completing
a task or finishing the experiment, the Python socket.io client will send a notifi-
cation event to the Node socket.io server. This event is followed by an event sent
from the Node server to the web socket.io client, as the second connection from
the web socket.io client to the web server has also been kept alive. This results in
the notification being updated on the coding web interface. It should be noted
that the id used in this example is simplified. However, ids in the database look
like b : : eb : : : a , a sample Raspberry Pi MAC address.

7.6.2 Implementation

In the following sections, wewill introduce thefinal implementationof ourMEAN
stack user interface taking advantage of the components, and software architecture
described in the preceding sections. We provide two different interfaces, namely
a coding interface for programing experiments in Python, and a protocol-based
interface, to define protocols and run them on the robotic platform without the
need to program in Python.

136



Figure 7.6.2: Code Interface.

coding user interface

The coding web interface, as can be seen in Figure 7.6.2 is a webpage, which al-
lows users to write Python code that will then be run on EvoBot. The users can
write Python code in the code editor, as if they were going to run it on a desktop
computer. They can either run the experiment on the robot or save it for later use.

The project navigator on the left, as can be seen in Figure 7.6.2, provides access
to built-in examples provided in EvoBot’s repository. The users can browse files
using the menu at the left, and can select them to use as is, or to modify them
based on their needs.

The experiment log at the bottom of the screen provides live feedback from the
robot while the experiment is happening. It informs users of the start of experi-
ments, the experiment’s progress step by step, and will let them know when the
experiments finish. The robot will also warn users if there are any issues during the
experiments, such as if the user has forgotten to mount a syringe, or power on the
robot, or if a vessel is running out of liquid. The status indicator at the top of the
screen informs users if the robot is ready to be used or not.
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protocol-based interface

We described the design of the protocol-based user interface in chapter 6. The im-
plementation of the protocol based user interface can be seen in Figure 7.6.3. The
user first configures the robot in the layout web page, as can be seen in Figure 7.6.3
(a). At this step, based on what observed on the experimental layer of the robot,
the user selects the appropriate reaction vessels and defines the corresponding lo-
cation on the experimental layer. The users also defines names for vessels for easy
access in the next step. Having defined the layout of the experiments the user pro-
ceeds to defining the experiment.

As the next step, the user defines the experiment protocol on the protocol web
page, as can be seen in Figure 7.6.3 (b). At this stage, the user selects the desired
steps in experiment protocol from available operations. For instance, the user can
choose wash, transfer, pipet up and down, discard, mix or serial dilute, etc, as the
steps of the experiment protocol. Based on the choice, relevant parameters will
be inquired from the user. For example, if ”serial dilute” is selected, stock vessel,
dilutent vessel, and the vessel to place the chemical, as well as the number of times
will be inquired. This is different for the choice of a ”transfer”, where the origin and
destination vessel, and the number of timeswill be asked. Having defineddifferent
steps in a protocol, and having set the required parameters, the user can delete or
reorder steps. Having finalized the experiment the user can either run or save the
experiment for later use.

The users are also provided with an experiment log at the bottom of the screen,
displaying live feedback from the robotic platform, including start of the experi-
ment protocol, the step by step protocol progress, the end of the experiment pro-
tocol, and warnings, or errors in the experiment protocol.

7.6.3 advantages of web user interface

The software architecture of the MEAN stack-based user interface addresses our
requirement list. Thiswebuser interface is usableonmultipleplatforms, andowing
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(a) layout page.

(b) Protocol page.

Figure 7.6.3: protocol-based interface.

to using a Raspberry Pi as integrated controller hardware, software setup is facil-
itated, and there is an enhancement in affordability. The web user interface also
enables user to access EvoBot remotely, unattended, and in an adaptive manner.
The experiment can be run over the internet, and the user is provide with live ex-
periment feedback, and is notifiedwhen the experiment is finished, when a certain
milestone is reached, or if there are errors or warnings.

7.7 Comparison ofUser Interfaces

In this chapter, we described different software architectures for graphical user
interfaces along with their advantages, disadvantages, and the the scenarios they
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could be potentially used. In this section, we provide a comparison of the software
architectures.

Our choice of software architecture should meet the list of requirements we
have described for our user interface. Figure 7.7.1 summarizes the comparison of
different software architectures for user interfaces. The figure headings are num-
bered according to the list of our requirements. Using a native Python user in-
terface results in a less complicated software architecture, as our application pro-
graming interface is in Python. However, it does not provide remote control of
the robotic platform, and for more complicated user interfaces, like our case, it is
not the optimal choice due to limitations of available frameworks. An iPad user
interface, on the other hand, provides remote access to our robotic platform. This
interface provides live video of the experiment, which can help having a better per-
ception of the experiment conditions. Furthermore, a potential application of this
interface can be 3D printing arbitrary shapes drawn by hand. However, this iOS-
based user interface is not cross-platform, and cannot be used from the internet or
on a different local area network.

The web user interfaces developed in MEAN, and LAMP stack enable remote
control of our robotic platform, as well as over the internet. The MEAN stack was
a more appropriate choice for our software architecture, regrading the complica-
tion, scalability, code reusibility, and the need for integration of modern software
technologies.

Considering to choose MEAN or LAMP for an application, there are points to
take into account. MEANStack is an innovative, new and cutting-edge technology
package. It is a frequent choice of new startups willing to push the boundaries
in web app development. Significant features of this stack include, being a single
language from top to bottom, flexibility in deployment platform, and enhanced
run speed, and also in data retrieval, and better scalability. In comparison, LAMP
ismore traditional. It requiresmore timeand server knowledge to learn theMEAN
software stack.

MEAN stack advantages derive from its components. Node.js makes it possi-
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Figure 7.7.1: Comparison of different software architectures for user inter-
faces.
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ble towrite server side applicationsusing JavaScript, and is faster andmore scalable
than other server side technologies including LAMP, because of its non-blocking
architecture. AngularJS is an open source client-side JavaScript framework devel-
oped andmaintained byGoogle. It has solvedmany development issues regarding
reusable, maintainable and testable client-side code. MongoDB is a document-
oriented database that allows storing documents in JSON (JavaScript Object No-
tation), a format that JavaScript natively understands. As both the server-side
code, and client-side code are in JavaScript, the required code to serialize anddese-
rialize data is simple, and concise. Non-relational Databases are much faster, and
provide an easier method of scaling with higher traffic.

7.8 Conclusion

In this chapter, we addressed another requirement for our robotic system which
is an open source multi platform user interface enabling remote real time control
of this robotic system. We described different software architectures for graph-
ical user interfaces, along with their advantages, disadvantages, implementation,
and finally compared them. Having addressed different challenges, we came up
with a software architecture for a user interface which enables users to access our
robotic system remotely, unattended, and in an adaptive manner. Owing to this
software architecture, the experiment can be run over the internet, and the user
is provided with live experiment feedback, and is notified when the experiment is
finished, when a certain milestone is reached, or if there are errors or warnings.
Remote control of the robotic system enhances effective use of time, and usabil-
ity. Furthermore, the open source software for the user interface allows users to
customize the experiment protocols based on their needs.

Up to this point, we have developed a web user interface which is usable on
multiple platforms, i.e. users can access the user interface on any device, such as
a tablet, a desktop, a mobile phone, or different operating systems, such as OSX,
Windows, or Linux. In addition, as described in chapter 5.1, users don’t have to
deal with the cumbersome task of installing the numerous packages for the robotic
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platform as it is taken care of on the Raspberry Pi 3. Owing to this reasonably
priced integrated controller hardware, the price of our platform decreases drasti-
cally as a dedicated desktop device is no longer required. In the following chapter,
we will accomplish last part of our mission by addressing resource sharing, and
deploying the user interface we have developed.
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I would rather walk with a friend in the dark,
than alone in the light.

Helen Keller

8
Cloud-based software architecture for a

distributed liquid handling system

8.1 Introduction

So far, we have described a robotic system capable of performing artificial chemi-
cal life experiments in chapters 2, and 3, and have verified its applicability to these
experiments in chapter 5. In chapters 5, 6, and 7.1, we described integrating the
controller hardware into the robotic platform, designing the user interface, and
the software architecture to implement this design. The resulting web interface
consists of two pages. First, the user configures the robot on the layout web page,
as demonstrated in Figure 7.6.3 (a) in chapter 7. As the next step, the user de-
fines the experiment protocol on the protocol web page, as demonstrated in Fig-
ure 7.6.3 (b). We described the advantages of this web user interface including the
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fact that it is usable onmultiple platforms, software setup is facilitated, and there is
an increase in affordability. The users can access the user interface on any device,
such as a tablet, a desktop, a mobile phone, or different operating systems, such as
OSX, Windows, or Linux. In addition, users don’t have to deal with the cumber-
some task of installing the numerous packages for the robot as it is taken care of
on the Raspberry Pi 3. Last but not least, the price of our robotic system decreases
drastically as a dedicated desktop device is no longer required.

As we explained in section 1.7.8, another requirement for our robotic system is
resource sharing and reusability of experiment protocols, the ability towork on the
robotic system collaboratively, and parallelizing experiments on different robotic
systems. Sharing resources allows users to benefit from experiment protocol tem-
plates provided for common experiments, as well as taking advantage of protocol
examples developed by other users. Users can also develop their own sample pro-
tocols, and share it with their teammates or the rest of the community. This is
specifically helpful as our liquid handling robot can be used for numerous appli-
cations by different users, therefore taking advantage of sample experiment pro-
tocols can save a lot of time for the user community. Collaboration on robotic
platforms provides novel opportunities for researchers. Providing the users with
the capability of working on experiments collaborativelymeansmultiple users can
work on the same experiment simultaneously. On the user interface, they would
see the changes other users are making to the experiment protocol real time. They
can modify the same experiment as a team, or receive notifications regarding ex-
periment progress. Moreover, users can continue to work on the same experiment
on another machine. On the other hand, parallelizing experiments improves ef-
ficiency, specifically for artificial chemical life experiments, as several long lasting
experiments are performed on multiple platforms.

In this chapter, we describe a cloud based software architecture for deploying
our user interface. A cloud based implementation is a paradigm shift from sin-
gle user single platform concept to single user multi platform, multi user single
platform, and multi user multi platform approaches. A single user multi platform
paradigm, i.e. a user being able to control several robotic systems at the same time,
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Figure 8.1.1: User interface procedure.

and run the same code on multiple robots, allows for a high degree of parallelism.
A multi user single platform, i.e. several users can work on the same robot simul-
taneously, provides a great potential for collaboration on the robotic platform. A
multi user multi platform approach, i.e. several users, e.g. a team, being able to
work onmultiple robots, enhances resource sharing, and reusability of experiment
protocols.

This chapter also comprises our final step towards developing a user interface
for liquid handling robots. In chapter 5 and 6, we discussed the implementation of
a platformwhich provides the infrastructure for developing the user interface, and
design of the user interface, respectively. In chapter 7.1, we described the software
architecture required for developing this user interface. As can be seen in Figure
8.1.1, in this chapter we will deploy this user interface on the cloud.

Deploying application on the cloud is a new trend, providing newopportunities
including real-time collaboration, example templates, file synchronization, version
control, andmore resources in terms of storage or computation. Large companies
are moving in this direction fast, providing cloud computing solutions. Amazon
EC2 (ElasticComputeCloud), GoogleCloudPlatform, Apple iCloud, Rackspace
Cloud,MicrosoftsAzure, IntelHybridCloudComputing are few examples. There
are diverse successful services based on cloud computing, and new cloud-based
technologies are emerging. ShareLaTeX , and Overleaf are online LaTeX editors.
They don’t require installation of LaTeX and packages, and enable real-time col-
laboration, version control, and provide numerous LaTeX templates. Dropbox
simplifies creating, sharing and collaborating by offering cloud storage, and file
synchronization. iCloud ensures having the latest versions of documents, photos,
and notes, on different devices and platforms, e.gMacOS, and iOS.TheConstruct
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Simulators allows using a web browser to simulate robots, e.g. run Gazebo or We-
bots simulation environment with full ROS support, without any installation re-
quired, and with high processing power [18].

In spite of the great potential of cloud computing, this paradigm has not been
applied to a real distributed liquid handling robotic system. We believe cloud so-
lutions provide new opportunities for distributed robotic applications. Specifi-
cally, when computation requirements outweigh communication requirements,
use of cloud computation provides many advantages as the computation can be
outsourced to an external powerful resource, and only the computation processing
results need to be communicated. Furthermore, as cloud computing is a modern
technology, in this chapter we gather and organize resources, and introduce tech-
nologies, therefore same software architecture, and deployment techniques will
be reproducible by other users to be applied to different applications for robotic
systems.

8.2 Requirements

In order to deploy our application we have to meet several requirements. The fol-
lowing is the list of the requirements that we will address in this chapter.

1. The first requirement is to choose the right technology for deploying our
application.

2. Once we have chosen the technology, we need to choose an engine to de-
ploy our application.

3. We need to choose a registry to store, maintain, and distribute our applica-
tion, and manage changes.

4. As our software architecture introduced in chapter 7 requiresmultiple com-
ponents, weneed tobuild a flexible, independently deployable software sys-
tem that is easily scalable.
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5. As our application consists of multiple components, making modifications
on these components and deploying them to test the changes can be time
consuming and tedious. Furthermore, we need to address the dependency
between components. For instance components depending on each other,
should start in the correct order.

6. As we add features to our multi component application, we need to make
sure providing a new feature, does not break the old functionality of our
application. Therefore another requirement is to guarantee our application
can always be deployed on the production server.

7. As our application consists of different services, it is critical to avoid integra-
tion problems, as making modifications to a component and not merging
them immediately to the code base may make different components not in
sync.

8. Easy scalability of services is another requirement forour application. Based
on theneed, someof the servicesmayneed to scale up at different levels. We
need to manage this scaling easily.

9. Finally, we need to deploy our application on a cloud platform.

8.3 Technology Choice forDeploying our Application

In this section, we address the 1st point on the requirement list which is choos-
ing the right technology for deploying our application. We describe the tradi-
tional server concept, and compare it with hypervisor-based virtualization, and
container-based virtualization.

8.3.1 The Traditional Server Concept

Figure 8.3.1 shows the traditional server model . Before the advent of virtualiza-
tion, big server racks were used. As can be seen in the Figure 8.3.1, underneath
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Figure 8.3.1: Before virtualization.

lies the physical server on which the desired operating system is installed. The ap-
plications are run on top of the operating system. In this approach, each physical
machine would only run one application.

There are several downsideswith thismodel [72]. Thefirst issue is the huge cost
associated with this approach as physical machines need to be purchased in order
to deploy each application. These commercial servers can be very expensive. We
might end up only using a fraction of CPU, or memory of the machine. The rest
of the resources are wasted. However, the hardware has to be bought in advance.
Another downside is slow deployment time. The process of purchasing and con-
figuring new physical servers can take a long time, especially for big organizations.
The other drawback is hard migration of applications to new servers from a differ-
ent vendor. For instance, migrating from Dell servers to IBM servers can be time
consuming, and requires a significant amount of configuration change, andmanual
intervention [55].

8.3.2 hypervisor-based virtualization

Figure 8.3.2 shows the traditional model of virtualization, also called hypervisor-
based virtualization technology . Underneath lies the physical server, onwhich the
desired operating system is installed. On top of the operating system a hypervisor
layer is introduced which allows installation of multiple virtual machines on a sin-
gle physical machine. Each virtual machine can have a different operating system,
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Figure 8.3.2: Hypervisor-based virtualization on the left, and Container-based
virtualization on the right.

for instance Ubuntu on one, and CentOS on the other. Owing to this model, we
can run multiple operating systems on the same physical machine, and each oper-
ating system can run a different application. VMware , and VirtualBox are among
the popular providers of hypervisors.

Usinghypervisor-based virtualization technologies has several advantages [80].
Firstly, it is more cost effective. Each physical machine is divided into multiple
virtual machines, and each one uses its ownCPU,memory, and storage resources.
Users pay only for the compute power, storage, and other resources they use. This
is a cheap solution for users, and they don’t have any upfront commitment. Sec-
ondly, scaling is easy with virtual machines deployed in the cloud environment. If
new instances of an application are required, this can be easily achieved by deploy-
ing virtual machines in the cloud, in contrast to ordering and configuring physi-
cal servers. With this approach, the time required to scale applications is reduced
drastically to minutes. This results in great increase in agility for organizations.

However, there are still drawbacks with hypervisor-based virtualization tech-
nology [54]. Thefirst limitation originates fromkernel resource duplication. Each
virtual machine needs an operating system installed. This entire operating sys-
temhas its ownmemorymanagement, device drivers, daemons, etc. Even though,
there can be different kernels, still a lot of the core functionality of the operating
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system, e.g. Linux, is replicated [45]. Therefore this approach is not efficient as
an entire operating system is required to run the application. Secondly, applica-
tion portability is not guaranteed as running virtual machines on different types
of hypervisors is still work in progress.

8.3.3 container-based Virtualization

The final approach is container-based virtualization technology as demonstrated
in figure 8.3.2 on the right. Underneath lies the server, which can be either a phys-
ical machine or a virtual machine. The operating system is installed on the server.
On top of the operating system, a container engine is installed which allows run-
ning multiple guest instances. Each guest instance is called a container. In each
container, the application, and all the libraries required for that application are in-
stalled.

Thekeydifferencebetweencontainer-basedvirtualizationmodel andhypervisor-
based virtualization model is the replication of the kernels [98]. In the traditional
model each application is running its own copy of the kernel, and the virtualiza-
tion happens at the hardware level. In container-based virtualization model there
exists only one kernel, which supplies different binaries at run time to the applica-
tions running in isolated containers. So the containers will share the base run time
kernel, which is the container engine. In this model, the virtualization happens at
the operating system level. Containers share the hosts operating system. There-
fore this approach is more efficient, and lightweight, as the operating system is not
duplicated.

One advantage of containers is run time isolation [108]. Most applications de-
pend on third party libraries. For instance, if we need to run two different versions
of Python applications (Python3, andPython2.7), running themon the same vir-
tual machine without introducing any conflicts may be challenging. By leveraging
containers, we can easily isolate the two run time environments. Therefore if ap-
plication A (Python Socketio client) requires Python 3, we can install Python 3 in
container A, and run the application in container A. On the other hand, if applica-
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Figure 8.3.3: Isolation.

tionB (OPENCV3) requires Python 2.7, we can install Python 2.7 in container B,
and run the application in container B. In this way, we have two containers on the
same machine running two different applications, with different Python versions
as can be seen in Figure 8.3.3.

Container-based virtualization has advantages over hypervisor-based virtual-
ization [107]. Container-based virtualization does not create an entire operating
system. Instead, only the required components are packed up inside the container
with the application. So containers consume less CPU, RAM, and storage space
than virtual machines. That means we can have more containers running on one
physicalmachines than virtualmachines. Secondly, the deployment speed is faster
as containers house the minimal requirement for running the application which
can boot up as fast as a process. A container can be several times faster to boot
than a virtual machine. Thirdly, portability is guaranteed with containers, as con-
tainers are independent self-sufficient application bundles. They can run across
machines without compatibility issues.

8.4 ImplementationMetrics

In this section, we explainhowweaddress thedifferent requirements for deploying
our application discussed earlier. We demonstrate the choice of a container engine
for implementing our application. We commence by describing the docker con-
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cept, and the choice of a public registry for our images. We then explicate why
we use a microservice architecture, and how we automate the docker work flow.
We then demonstrate the necessity of running unit tests inside docker containers,
and how we use continuous integration in our work flow. We then show how our
application can be scaled up for any number of users, taking advantage of docker
swarm. We conclude this section by comparing different cloud platforms we used
for deploying our application.

8.4.1 Choice of Deployment Engine

In this section, we address the 2ndpoint on the requirement listwhich is the choice
of an engine to deploy our application. There exist different container engines for
this purpose, including Core OS’ rkt, Cloud Foundry’s Garden, Kubernetes, and
docker engine. For this purpose, we use docker engine, an implementation of a
container based engine, to deploy our application on the cloud [85]. Docker en-
gine is based on two concepts, namely images, and containers. Images are tem-
plates that can only be read. Containers are run time objects built from images
and can be written to. In computer science terminology, if we think of images as
classes, containers are instances of the class.

The reason for the choice of docker engine is rapid application deployment, ver-
sion control and component reuse, portability acrossmachines, andminimal over-
head of containers.

Figure shows the layout of our image stack, and the corresponding container
8.4.1 . As can be seen, the image stack is made up of layers. The base image can
be seen at the bottom, on which other layers required for the application are built.
The layers incorporate the differences in the file system. Ubunto forms the base
for the container’s file system, we then add emacs, and Node image layers on top
of the base layer. We spin up containers, thin lightweight layers on top that we
can modify, from our image stack. Inside the container, we update the operating
system, install required packages, and dependencies, and run required commands.
The container encapsulates the environment, and can be ported for reuse [47]. It
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Figure 8.4.1: Docker image layers.

should be noted that multiple containers can be spun up from the image stack.
The major difference between container and an image is the top writable layer.

Therefore multiple containers can share access to the same underlying image, and
have their own data state. Docker pulls the images layer by layer.

It should be noted that choice of docker is one possible implementation of our
application. However, the business logic of our application, regardless of choice
of implementation can be generalized to similar applications. It means analogous
applications can implement microservices in a vendor agnostic way.

8.4.2 Public Registry Choice

This section addresses the 3rd point on the requirement list which is the need
to choose a registry to store, maintain, distribute our application, and manage
changes. There exist different hosted registry options for this purpose, including
Quay.io, Artifactory, Google Container Registry, andDocker’s public registry. For
this purpose, we use Docker’s public registry, called docker hub , to store our im-

154



ages, as well as pulling images for production when they have passed unit tests.
Docker hub is a registry, similar toNPMregistry, containingmany images in repos-
itories fromeither official imageproviders or theopen sourceuser community. For
instance, we use the official Node image. Therefore, instead of installing Node, we
just need to download it.

The reason for this choice is ease of container management and deployment
without the need for building complex pipelines in Docker hub. Furthermore,
other registries are aimed for larger enterprises providing high availability.

Docker repository is a collectionof different docker imageswith the samename,
that have different tags. Each tag usually represents a different version of the image.
As images can become large in size, images are designed to be composed of layers
of other images, allowing a minimum of data to be sent when transferring images
over the network [103].

8.4.3 Microservices

In order to address the 4th point on the requirement list which is building a flexi-
ble, independently deployable software system that is easily scalable, we use a mi-
croservice architecture for deploying our application. The microservice architec-
ture allows different services to run independently, and communicate with each
other when necessary [62]. The communication between the services is on their
own local network, so they don’t expose any ports to the outside world, which
is a great security advantage. In addition, when using microservice architecture,
adding new services or scaling up applications is easy, as we don’t need to change
the software architecture of the whole application, but only add the new service.

Ourmicroservice architecture consists of three services, namely, mongoservice
to manage our database, socketservice to communicate the events on the user in-
terfacewith theweb server, and dockerapp service to provide RESTful APIs, and a
socketio web server. To deploy the microservice architecture, we need to link the
containers running the mongodb, socketio, and application services, so they can
discover each other, and communicate over a secure tunnel. Linking containers
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can be done explicitly at container build time. However, we used docker’s capa-
bility to intelligently infer, and establish service links by following service name
consistency [100]. For instance as can be seen in Figure ??, all services have the
same network name ”mynet”, and we define this network as a bridge network in
network declaration.

8.4.4 Automating the work flow

In order tomeet the requirement for the 5th point on the requirement list which is
easy testing of application components modification in deploy environment, and
also satisfying component dependency requirements, we automate our workflow.
Our application is not a single component container, and as described in section
8.4.3 it consists of mongoservice, socketservice, and dockerapp services. There-
fore, we automate the work flow by taking advantage of docker compose, a tool to
setup docker environments for docker orchestration [95]. Therefore we can auto-
matically build images, start all the services, and create the links among services.

8.4.5 Unit tests inside containers

Inorder tomeet the 6thpoint on the requirement listwhich ismaintaining the core
functionality when adding new functionality, we perform unit tests to guarantee
our application can be deployed on the production server. The unit tests verify
if the basic functionality of our application is not broken. It is specially important
for production as developersmight not have the exact environment for developing
the application, MacOS or Windows for example . Therefore the application may
work for one developer, but not the other. As a consequence, we take advantage of
docker containers to perform the unit tests. To perform tests, a clean container is
created swiftly in which unit tests are run. This ensures the reliability of the appli-
cation. The same container will be used for production. This guarantees the same
image can run on the production server.

Runningunit tests in thedocker comeswith advantages anddisadvantages [96].
The upside is that the developer doesn’t need towait for the validation of unit tests
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every time he makes changes as the tests are run in docker containers in a paral-
lel process. The downside is the image size grows as unit tests are included in the
image. However, this is not an important issue, as our unit tests are not large. Fur-
thermore, it should be taken into account that unit tests are only as good as the
design of the tests.

8.4.6 Continuous integration

In point 7 of the requirement list, we described that another requirement for our
application is to avoid integration problems. To address this requirement, we use
continuous integration, a software engineering practice to test changes to the code
base immediately [63]. Continuous integration aims to provide fast feedback in
order to prevent introducing flaws into the repository [82]. This is specially use-
ful as image repositories contain larger files than code repositories. Therefore it is
helpful to test the code before pushing the image to the repository.

The work flow of our application starts by pushing code to a repository, e.g.
Github, or Bitbucket. We use circleci as our continuous integration server. The
continuous integration server monitors the repositories we define, in our case our
github repository. As a change is made in our codebase, the continuous integra-
tion server figures it out, and triggers a build of the image. Therefore a clean im-
age is built upon each commit, incorporating the code pushed to the repository,
along with unit tests. Then the unit tests we have defined are run automatically. If
they are not successful we receive an email, so that we can revert the commit. On
the other hand, if the tests are run successfully, the image is pushed to the docker
hub. The image is tagged with the commit hash value, so that images can be eas-
ily mapped to their corresponding commit. This image on the docker hub will be
pulled to run on the production server, e.g. Digitalocean.

8.4.7 Scaling Up the Application

In point 8 of the requirement list, we described the requirement for easily man-
aging the scaling up of our application. In order to address this requirement, we
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use docker swarm for docker orchestration in our application. Docker swarm is
based on the idea of dividing docker engines into clusters, and assigning a swarm
manager for each cluster [73]. Then the swarmmanager, in lieu of each individual
docker engine, is responsible for scheduling containers into all docker engines in
the cluster. The swarm manager knows the status of all nodes in the cluster based
on a discovery method. We define the scheduling strategy on the swarm manager
so that it defines the order of docker containers being run. Whenwe decide to run
new containers, the docker manager distributes the containers among docker ma-
chines, therefore the workload is divided by the nodes in the swarm. This is useful
for scaling our application.

8.4.8 Deploying on Cloud Platforms

This section addresses the 9th point on the requirement list which is deploying
our application on a cloud platform. For this purpose, we compare deploying ap-
plications on two different types of cloud platforms, namely Digital Ocean, and
Heroku.

Deploying on Digital Ocean

We deployed our application on Digital Ocean , a cloud computing platform. De-
ploying our application on other cloud platforms, such as Amazon EC2 (Elastic
Compute Cloud), Google Cloud Platform, Rackspace Cloud,Microsofts Azure is
also possible, and similar. We have chosenDigitalOcean because of the good pric-
ing to address our affordability requirement described in section 1.7.4. In Digital
Ocean terminology, each docker machine is referred to as a droplet.

Deploying on Heroku

Our application can also be deployed on Heroku , a cloud platform which is dif-
ferent form others. Deploying applications on Heroku is possible using Heroku
toolbelt. Although deploying applications is easier with Heroku toolbelt, other
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platforms are more suitable for applications that need to be scaled up due to pric-
ing considerations.

8.4.9 Example Scenario

A useful application of the cloud implementation can be a multi user multi plat-
form scenario. The users of our robotic system are distributed in seven differ-
ent universities across the world. Each university owns a robot. Furthermore,
in each university several users may use the same robot. On the other hand, due
to shared research interests in different universities, some common experiments
are performed in different labs. In a multi user multi platform scenario, the users
in University of Trento for instance set up a team profile. Thereafter, when each
user of the University of Trento accesses the cloud based user interface he/she is
regarded as a member of that team. The user will set up the experiment on the
protocol based web user interface. When setting the experiment up, each user
can see the modifications the other users are making to the experiment real time,
and he/she can also modify the experiment himself/herself. Therefore multiple
users can work on the experiment collaboratively, and simultaneously. Having
set the experiment up, the users will choose which robots to run the experiment
on. Therefore each of the users in the University of Trento’s team for example can
choose to run the same experiment on different robots, e.g. the robots of Univer-
sity of Trento, University of Prague, and ITUniversity of Copenhagen, etc. All the
users in a team will receive notifications regarding the progress of an experiment.
Each user is also capable of including or excluding robots that the experiment will
be run on.

8.5 Conclusion

In this chapter, we addressed another requirement for our robotic systemwhich is
resource sharing and reusability of experiment protocols, the ability towork on the
robotic system collaboratively, and parallelizing experiments on different robotic
systems. We demonstrated a cloud based software architecture for deploying our
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user interface. A cloud based implementation is a paradigm shift from single user
single platform concept to single user multi platform, multi user single platform,
and multi user multi platform approaches. This chapter also comprised our final
step towards developing a user interface for liquid handling robots. We demon-
strated that deploying an application on the cloud is a new trend, and provides
a lot of new opportunities. However, this paradigm has not been applied to real
distributed robotic systems.

We described that in order to deploy our application we had to meet several
requirements. We had to choose the right technology for deploying our applica-
tion. Container-based virtualization was the answer to this question, providing
run time isolation, portability, and consuming less resources. We also needed to
choose an engine to deploy our application. We used docker engine, an imple-
mentation of a container based engine, to deploy our application on the cloud.
We also needed to choose a registry to store, maintain, and distribute our appli-
cation, and manage changes. To address this requirement, we used docker hub to
store our images, as well as pulling images for production when they have passed
unit tests. Furthermore, as our software architecture introduced requires multiple
components, we need to build a flexible, independently deployable software sys-
tem that is easily scalable. In order to address this requirement, we use a microser-
vice architecture for deploying our application, which allows different services to
run independently, and communicate with each other when necessary. Moreover,
as our application consists of multiple components, makingmodifications on the-
ses components and deploying them to test the changes can be time consuming
and tedious. Furthermore, we need to address the dependency between compo-
nents. In order to meet these requirements, we automate our workflow, by taking
advantage of docker compose, a tool to setup docker environments for docker or-
chestration

Another requirement is to guarantee our application can always be deployed
on the production server. To address this requirement, we used unit testing in-
side containers. The unit tests verify if the basic functionality of our application is
not broken. Moreover, as our application consists of different services, it is critical
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to avoid integration problems. To address this requirement, we used continuous
integration, a software engineering practice to test changes to the code base im-
mediately. Yet, easily scalability of services was another requirement for our ap-
plication. In order to address this requirement, we used docker swarm for docker
orchestration in our application. Docker swarm is based on the idea of dividing
docker engines into clusters, and assigning a swarm manager for each cluster. Fi-
nally, we needed to deploy our application on a cloud platform. We chose Digital
Ocean, a cloud computing platform to deploy our application on the cloud.
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9
FutureWork&Conclusion

9.1 FutureWork

9.1.1 robot-facilitatedevolutioninartificialchemicalliferesearch

One future direction for further research is robot-facilitated evolution in artificial
chemical life research. As the reagents, and parameters affecting artificial chemical
life experiments are varied, machine learning techniques can be applied to explore
this space. For instance, if the speed of a droplet composed of several chemicals
needs to bemaximized, evolutionary algorithms can be used to define the propor-
tion of different chemicals in the droplet. As the robot is capable of processing
droplet behaviors, in this case droplet speed, the fitness function can be evaluated.
Therefore, the compound formula for the desired behavior can be optimized. Re-
searchers inUniversity ofGlasgowhave startedworking in this direction [67], and
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potentially there is much more possibilities to explore in this regard.

9.1.2 Experiments with different classes of chemicals

Another line of work can be to use the developed robotic platform for new classes
of chemicals. Most of the experiments we have performed with the robotic plat-
form have been performed with low viscosity chemicals like water. Investigating
requirements for other classes of chemicals, for instance high viscosity chemicals,
and exploring possibilities that performing these experiments provide can be an-
other direction for research. For instance, researches at University ofWest of Eng-
land are exploring the possibilities of 3Dprintingmicrobial fuel cells, a technology
that works by converting biomass into electricity with the aid of microbes, with
such a robotic platform.

9.1.3 Dissemination of our work, and Promoting open source hard-
ware and software

Another future work can be introducing the robotic platform we have built to the
relevant community, and promoting open source hardware and software. Coordi-
nationof a summer school for students and researchers in relevant disciplines to ar-
tificial chemical life research, and robotics can be useful to disseminate the results
of our work. This summer school can aim at students from different backgrounds
such as artificial life, chemistry, microbiology, artificial intelligence, robotics, and
mechatronics. Sucha summer school canopencross-disciplinarydiscussions about
the potential of artificial chemical life, and participants can discoverwhat newpos-
sibilities such a robotic platform provides for their research in areas such as dy-
namic chemistry or microbial systems. Also publishing parts of this thesis that
have not been published yet, and participation in scientific venues can help fur-
ther disseminate the scientific results of our work.
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9.2 Conclusion

In this thesis, we introduced artificial chemical life experiments where the behav-
ior of a motile droplet with respect to relative positioning of reagents is of inter-
est. These droplet experiments are long-lasting, low-throughput experiments in
comparison to ordinary liquid handling experiments that are high throughput and
don’t have to be under constant observation. These experiments require precise
timing and relative positioning of reagents with respect to motile droplets. Fur-
thermore, experiment parameters, such as distance between droplet and reagent,
time of adding reagent, and concentration of liquids, affecting droplet behavior
play an important role in these experiments.

Lab automation has extensively helped chemists perform repetitive chemical
experiments. Owing to lab automation, the behavior of the experiment can be ver-
ified over many runs and sufficient data can be collected to build a model or attain
statistically significant results. Therefore liquid handling technologies alleviate the
hardships of dealing with the dull, time consuming task of repeating experiments.
It alsoprevents thenumerous typesof errors humansmay introduce into the exper-
iment. Furthermore, lab automation is beneficial when performing experiments
with hazardous chemicals.

The characteristics of artificial chemical life experiments, and the potential ad-
vantages automation could bring to these experiments were our motivation to de-
velop a robotic platform capable of performing theses experiments. Artificial life
experiments are particularly well-suited for automation because they often stretch
over long periods of time, possibly hours, and often require that the human takes
action in response toobservedevents suchas change indroplet velocity, size, count,
shape, or clustering/ declustering of multiple droplets.

The basic required functionality for our solution was routine liquid handling
functionality, i.e aspirating a specified amount of liquid from one reaction vessel,
e.g. a Petri dish, or well plate, and dispensing the desired amount of liquid in an-
other reaction vessel. Moreover, in artificial chemical life experiments, based on
the observed behavior we must interact with the experiment. Therefore another
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requirement for our platform was to be able to perform feedback based experi-
ments. In addition, another requirement for users performing artificial chemical
life experimentswas tobe able to analyze experimentdataonline, anduse this feed-
back to interact with the experiment real time. Moreover, having developed such
a robotic platform, we needed to verify that our solution is able to perform diverse
liquid handling experiments. Furthermore, the robotic platform needed to be af-
fordable so it can be used in small size laboratories.

Addressing the requirements, we described the robotic system we have devel-
oped in order to automate a large class of droplet experiments in artificial chemi-
cal. To enable performing these feedback-based experiments, we have integrated
computer vision into the design of a liquid handling robot, and developed the re-
quired software functionality. Computer vision enables the robotic system to de-
tect relevant changes, either in individual droplet behavior, e.g. change in droplet
area, position, speed, direction, acceleration, color, shape, number of droplets, or
group droplet behavior, e.g. droplets clustering or declustering. Having detected
the specified behavior change, precise automation enables the robot to interact
with the experiment, e.g. dispense or aspirate a chemical at a specific point relative
to a droplet center. Moreover, the platformwe have developed can record accurate
experiment data online, therefore enabling users to interactwith the experiment in
real time. We also demonstrated the robotic platform can be employed in various
artificial chemical life experiments. Furthermore, being based on open-source 3D
printer technology, the cost of the platform is reduced significantly.

Other requirements for our robotic platform were related to usability. Short
setup time, and ease of softwaremanagement for the robotic systemwas a require-
ment, as installing, and managing software libraries required for feedback based
experiments on different hardware, and operating systems would be difficult. An-
other requirement was an intuitive user interface enabling users to utilize the func-
tionality of our robotic platform. Remote real time control through anopen source
multi platform user interface was another requirement for our robotic platform in
order to make it more portable on different operating systems, and devices. Fi-
nally, the ability to share the resources among different users was another require-
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ment for our robotic platform in order to enhance code reusability.
To address these requirements, we detached user software for programing ex-

periments from control software. Therefore we developed a standalone robotic
platform with integrated controller hardware in order to ease package manage-
ment. Consequently, regardless of the choice of the system users want to use, they
don’t need to install any libraries. This platform is also more affordable owing to
elimination of the need for an external computer. In addition, we came up with
a user interface design for liquid handling robots that is intuitive, as well as being
easily extensible for new experiment protocols in biological, and chemical labora-
tories. We also developed an open source multi platform user interface enabling
remote real time control of this robotic system empowering users to access our
robotic system unattended. Owing to this user interface, the experiment can be
run over the internet, and the user is provided with live experiment feedback, and
is notified when the experiment is finished, when a certain milestone is reached,
or if there are errors or warnings. Remote control of the robotic system enhances
effective use of time, and usability.

Finally, we demonstrated a cloud based software architecture for deploying our
user interface. A cloud based implementation is a paradigm shift from single user
single platform concept to single user multi platform, multi user single platform,
andmulti user multi platform approaches. This cloud-based software architecture
improves resource sharing and reusability of experiment protocols, and enables
working on the robotic system collaboratively, and parallelizing experiments on
different robotic systems.
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A
Supplementary Videos

1. Oleic anhydride dropletmoving in an aqueous system containing a pH sen-
sitive dye.

https://www.youtube.com/watch?v=S Ln-fvuUvo

2. Oleic anhydridedropletmovingchemotactically towards a solutionofhigher
pH.

https://www.youtube.com/watch?v=fu CrRQWpJs

3. Dynamics of Chemotactic Droplets in Salt Concentration Gradients

https://www.youtube.com/watch?v=P uKRqJIeSs

4. Nine droplet behaviours discovered, displaying a great deal of complex, un-
expected emergent behaviours.

http://www.nature.com/article-assets/npg/ncomms/ / /
ncomms /extref/ncomms -s .mov

5. Sensor input feedback for aspirating droplet. A moving droplet is aspirated
by the syringemodulewhen thedroplet speedgoesbelowa specified thresh-
old.

https://youtu.be/Mc-eoBajV U
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6. The feasibility of experimentswhen sensor input feedbackaffects groupdroplet
behavior (Clustering Experiment)

https://youtu.be/kbly Fkfko
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B
Universal Robots User Interface

Figure B.0.1 is the main page of the robot software called PolyScope. On this in-
terface, programming the robot begins by selecting ”program robot”.

In order to add commands to the program tree, the users need to click on the
“Structure” tab at the top to select required commands. On the structure tab, as
can be seen in Figure B.0.2, users can add motions, waypoints (the waypoints tell
the robot where it has to position the arm), and other commands. For instance,
clicking the “Move”buttonwill insert awaypoint. The locationof thewaypoint can
be either defined bymoving the robot armmanually or by using the user interface
to define the waypoint by clicking the “Move” Tab. The move tab can be seen in
FigureB.0.3. Users can clickon theblue arrows tomove the robotor push theblack
Freedrive button on the top back of the touch screen to move the arm manually.
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Figure B.0.1: Universal Robots PolyScope home screen.
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Figure B.0.2: Structure tab.
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Figure B.0.3: PolyScope move robot interface.
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C
Overclocking the Raspberry Pi

In order to overclock the Raspberry Pi, we had to increase the processor, gpu,
and sdram frequency for better performance. They can be modified on the Rasp-
berry Pi in the /boot/config.txt file. The ”gpu_freq” setting includes ”core_freq”,
”v3d_freq”, ”h264_freq”, and ”isp_freq” all inone, soweonlyneed to set the ”gpu_freq”
and it pulls them all up together. We started with lower values and if it was stable
then we increased only one setting at a time, so that we could track which one is
causing aproblem. Followingare the valueswehave changed in the/boot/config.txt
file with the Raspberry Pi working stable:
arm_freq=1370
over_voltage=5
gpu_freq=580
sdram overclock
sdram_freq=580
sdram_schmoo=0x02000020
over_voltage_sdramp =
over_voltage_sdrami =
over_voltage_sdramc =

It should be noted that changing the ”up_threshold” on theRaspberry Piwould
cause it not to increase the speed until CPUutilization gets above a certain thresh-
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old, for instance %75.
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D
MEANStack Implementation

The following sections describe the building blocks of our MEAN stack applica-
tion, including package management, database architecture, back-end, front-end,
unit testing, and styling.

D.0.1 npmjs

NPM is the package manager for JavaScript. Using NPM registry, it is possible to
find, share, and reuse packages of code from hundreds of thousands of developers,
and assemble them in powerful new ways. NPM is the largest existing ecosystem
of open source software.

D.0.2 NoSQL Database

NoSQL encompasses a wide variety of different database technologies that were
developed in response to the demands presented in buildingmodern applications.
Relational databases were not designed to cope with the scale and agility chal-
lenges that face modern applications, nor were they built to take advantage of the
commodity storage and processing power available today .
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Figure D.0.1: MongoDB.

Mongodb

MongoDB(originated fromhumongous) is aNoSQLdatabase. MongoDB isopen-
source, free, cross-platform, and is based on the concept of documents, and collec-
tions. The data structure of a MongoDB database can be seen in Figure D.0.1. A
collection in MongoDB is similar to a table in a SQL based database, and a doc-
ument in MongoDB is similar to a row in a SQL based database. Documents
look like JSON. Therefore MongoDB is very flexible for different data types, and
database entries don’t need to be the same in MongoDB. A field in a MongoDB
document is similar to a row in a SQL based database.

Mongoose

Mongoose provides a straight-forward, schema-based solution tomodel our appli-
cation data. It includes built-in type casting, validation, query building, and busi-
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ness logic hooks out of the box.

API key

The web user interface of our robotic system requires to allow multiple users to
control their corresponding robots simultaneously, and also needs to allow a sin-
gle user to control multiple robotic systems simultaneously. We have made this
possible by assigning each robotic system a unique API key to be identified from
others. The uniqueMACaddress of eachRaspberry Pi is used as the API key. Ow-
ing to the use of API key, users can login with their credentials, and access their
own robot. This is useful as multiple copies of EvoBot are used in seven laborato-
ries in different countries.

D.0.3 Back-end

Our back-end is implemented using RESTful APIs, and web sockets owing to the
power of Nodejs, and Express.

Nodejs

Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js
uses an event-driven, non-blocking I/O model that makes it lightweight and effi-
cient.

Express

Express is aminimal and flexibleNode.js web application framework that provides
a robust set of features for web and mobile applications.

socket

The back-end for our user interface has been implemented using web sockets, in
addition to common RESTful APIs. The reason is that the functionality provided
by traditional RESTful APIs is not sufficient for our application, as the link is ter-
minated after the connection with RESTful APIs. In our situation, the robot and
the interface need to actively listen for events, and respond accordingly. The com-
munication between the back-end, front-end and the database will be further ex-
plained in section 7.6.1.
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D.0.4 Front-end

In this section, we describe how the frontend of our application is developed using
ES6, TypeScript, AngularJS 2, Webpack, Jasmine, Karma, and Bootstrap.

ES6 vs ES5

ECMAScript 2015 (ES2015) is the specification of JavaScript approved in 2015.
ES2015 is also called ES6 as it is the sixth edition of the standard. ES5, also called
Vanilla JavaScript is the older version of JavaScript which has been around since
2009.

There are several features in ES6 of which we have taken advantage in our appli-
cation, including default parameters, template literals, multi-line strings, destruc-
turing assignment, enhancedobject literals, arrow functions, promises, block-scoped
constructs Let and Const, classes, and modules. Since the standard is fairly new,
the browsers don’t support ES6 code fully, e.g. Chrome 56 supports 96% of ES6
features, and IE supports 11% of ES6 features as can be seen in Figure D.0.2 [20].
However, IE has 23% ofmarket share as can be seen in FigureD.0.3 [30], and even
Chrome does not support 100% of the features. For this reason, we use tools like
babel, or webpack module loaders that can convert ES6 code to ES5 code. There-
fore we write our application in ES6 code, and then it is transformed to ES5 code
that can run in every browser.

Typescript

TypeScript is a superset of JavaScript improving the language by providing op-
tional static types and classes for object-oriented programming. TypeScript was
developed by Anders Hejlsberg, lead architect of C ♯ from Microsoft. For our ap-
plication, we write ES6 code in TypeScript. The TypeScript compiler is responsi-
ble for compiling the TypeScript code to ES5 understandable by all browsers.

Angularjs 2

AngularJS 2 is an open-source web application framework backed by Google. The
final version of Angular was released in September 2016, after around two years
of active development. AngularJS 2 extends HTML vocabulary, therefore the re-
sulting environment is expressive. As can be seen in Figure D.0.4, AngularJS 2
comprises of four main building blocks; namely components, directives, services,
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Figure D.0.2: ECMAScript compatibility table.
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Figure D.0.3: Browser market share.

Figure D.0.4: AngularJS 2 building blocks.

and routers. Our application components encapsulate the data, template, and be-
havior of the view. The components allow us to reuse our code, and scale up our
application easily. Services are delegated any logic not related to our view , e.g.
sending requests to our back-end API to save or retrieve data. We use directives
tomodify DOM(DocumentObjectModel) elements, and extend their behavior.
Finally, routers are responsible for navigation to our different user interfaces or the
transitions in a specific interface.

Packing modules together

We use webpack as the module bundler, to pack our modules together. As can
be seen in Figure D.0.5 webpack takes modules with dependencies and generates
static assets representing thosemodules. Webpackmodule loaders are responsible
for compiling ES6 code to ES5 code, and can transform files from a different lan-
guage like CSS or HTML, or inline images as data URLs . The downside of using
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Figure D.0.5: Webpack.

webpack is a build step in the project, as the Es6 needs to be compiled into ES5
code. However, this step is fast, and worth the effort.

unit testing

Unit testing is amethod of testing individual units of source code. Therefore func-
tionality of different application units is tested separately, and when developers
change code, we can assure the tested functionality of code is not broken. Owing
to separation of the application architecture into components in AngularJS 2, our
code is easily unit testable. We use Jasmine and Karma for unit testing our appli-
cation. Jasmine is a behavior driven development JavaScript framework for testing
Angular applications. Karma is a JavaScript command line tool that can be used
to spawn a web server which loads our application’s source code and executes our
tests.

Styling

By using CSS, and Bootstrap styling, we optimize use of screen real state based on
device type. For example the navigation sidebar will disappear when accessing the
user interface on a mobile phone.
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