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“With regard to performance, commitment, effort,
dedication, there is no middle ground.

Or you do something very well or not at all.”

Ayrton Senna do Brasil (1960-1994)



Abstract

This Ph.D. thesis is about using available information known from the problem at hand

(aka priors), with the aim to enhance the performance of head-mounted eye trackers. Prior

information is used for eye tracking scenarios in different sports disciplines to improve

the accuracy and robustness of gaze estimation in critical situations. This thesis also

explores off-the-shelf hardware to build flexible and adaptable eye trackers that exploit

the constraints revealed for specific sports settings. Several eye tracking methods are

presented, in which the use of priors plays the leading role. The compensation models

proposed in this thesis ranging from solving geometrical constraints of head-mounted

eye trackers to eye feature detection in challenging environment lighting conditions. The

experiments focused on different sports disciplines to collect and analyze eye tracking data

involving elite athletes during the daily training sessions of shooting and kayak as well

as some laboratory experiments. The results of the experiments showed that the use of

priors is very promising to the field of eye tracking, such as (i) using the distance between

the athlete and the observed target as priors, to reduce the influence of parallax error in

80.59%; (ii) using the 3D angles from the athlete’s head as priors, to reduce the influence

of head rotation in 86.41%; (iii) using the geometric relation of human ocular system

as priors, to make eye tracking more robust to eye feature noise, among others. Using

priors in different steps of an eye tracking system has a general and substantial impact

on eye trackers in general. While the focus of this thesis is in the use of eye tracking

in sports, it is evident that progress achieved within this project on gaze estimation for

sports activities has a direct impact on other areas that use eye tracking as well.

Keywords: eye tracking, sports analysis, prior information, head-mounted eye tracker.



Resume

Denne Ph.D. afhandling handler om at anvende tilgængelig information vedrørende det

aktuelle problem (aka priors), med det form̊al at forbedre ydeevnen i hovedmonterede eye

trackers. Priors anvendes til eye tracking-scenarier inden for forskellige sportsdiscipliner

med henblik p̊a at forbedre nøjagtighed og robusthed i blikbedømmelsen i kritiske situa-

tioner. Denne afhandling udforsker ogs̊a tilgængelig hardware til opbygningen af fleksible

og tilpasningsdygtige eye trackers, der udnytter de begrænsninger, som har vist sig inden

for bestemte sportsindstillinger. Flere forskellige metoder til eye tracking præsenteres,

hvor brugen af priors spiller en afgørende rolle. De kompensationsmodeller, der foresl̊as

i denne afhandling, spænder fra at løse geometriske begrænsninger i hovedmonterede eye

trackers til detektering af øjetræk under vanskelige belysningsforhold. Eksperimenterne

fokuserede p̊a forskellige idrætsdiscipliner i indsamlingen og analysen af eye tracking-

data under eliteatleters daglige træningspas inden for skydning og kajak samt laborato-

rieforsøg. Resultaterne af eksperimenterne viste, at brugen af priors er meget lovende

for eye tracking-omr̊adet, s̊asom (i) anvendelse af afstanden mellem atleten og det ob-

serverede mål som prior for at reducere indflydelsen af paralaksefejl i 80,59% ; (ii) at

bruge 3D-vinklerne fra atletens hoved som prior for at reducere indflydelsen af hovedrota-

tion i 86.41%; (iii) Brug af det geometriske forhold i det menneskelige okulære system som

priors for at gøre eye tracking mere robust i forhold til blandt andet øjetræk-støj. Brug af

priors p̊a forskellige trin i et eye tracking-system har en generel og betydelig indvirkning

p̊a eye tracking generelt. Selv om fokus i denne afhandling er anvendelsen af eye tracking

til analyse inden for sport, er det tydeligt, at de fremskridt der er opn̊aet inden for dette

projekt vedrørende sportsaktiviteter, kan have en direkte indvirkning p̊a andre omr̊ader,

hvor eye tracking ogs̊a anvendes.

Nøgleord: eye tracking, sportsanalyse, prior information, hovedmonteret eye tracker.
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Part I

Introduction and Foundation



Chapter

1
Introduction

T
his Ph.D. thesis presents the use of available information known from the problem

at hand (aka priors), with the aim to enhance the performance of head-mounted

eye trackers to be used in sports. Prior information is used to solve classical

problems highlighted in the literature, such as (i) using the known distance between the

subject and the observed target as priors, to compensate the parallax error [1] in head-

mounted eye trackers (see Chapter 4); using 3D angles from the user’s head as priors, to

compensate the influence of head rotations [2] in gaze estimation (see Chapter 5); using

the geometric relationships between both eyes as priors, to validate a binocular eye feature

detector in outdoor conditions [3] (see Chapter 6), among others.

The project was inspired in different sports disciplines to assist and evaluate the de-

velopment of accurate and adaptable eye tracking systems. The use of head-mounted

eye trackers in the wild is still a challenging research topic in the field of eye tracking,

especially due to problems in environment light conditions, geometric constraints in uncal-

ibrated eye trackers, and complicated setup of the eye tracking components. This Ph.D.

thesis aims (i) to investigate methods and mathematical models to enhance robustness in

eye tracking; (ii) to explore off-the-shelf hardware to build flexible and fitting eye track-

ing equipment; (iii) to develop new methods for eye tracking that exploits the constraints

revealed for specific sports settings; and (iv) to use prior information to improve the

robustness and accuracy of eye tracking systems.

1.1 Overview

Eye tracking has been showing a great potential for detailed and objective performance

analysis in sports experiments. Most scientific research that uses eye tracking in sports
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is of psychological nature [4, 5, 6, 7], but eye tracking also provides detailed performance

measures of elite athletes that cannot be obtained otherwise [8, 9, 10, 11].

Elite athletes need to perform optimally. In many sports disciplines, it is a matter of

being fast, precise and accurate at the same time. When the ocular activities are the pri-

mary skill of some sport (e.g. shooting [5]), the athlete must look at the right thing at the

right time to achieve the best performance. Detailed eye tracking data allow the athletes

and trainers to get much deeper insight into strategies used by the athletes during the ful-

fillment of a sport action [8,9,12]. They can also adapt the training correspondingly, thus

improving their performance in stressful and time critical situations [10]. Furthermore,

novice and intermediate athletes can use eye information for quickly acquiring knowledge

that expert athletes may not even be explicitly known [9,13].

Gaze data collected during daily training sessions or competitions are usually used

to answer empirical questions, such as (i) what do athletes look at during specific sports

actions? (e.g. kick, jump, leap, punch, shot, catch, throw, attacking, defending) [8, 9, 12]

(ii) is there any difference in the ocular activities of novice, intermediate and experts

athletes? [8, 10, 12, 14] (iii) which strategies can be used to improve the novice athletes’

performance based on knowledge of eye movements patterns of expert athletes? [9, 13]

(iv) which visual information are athletes gathering? [4, 5] (v) which are the areas of

interest viewed during sports practices? [11] (vi) how long do athletes focus on areas of

interest? [11] and (vii) when does gaze behavior (e.g. fixation, saccades, blinks, dilation,

quite eye, onset, offset) occur? [7, 10,14,15,16].

In general, athletes perform sports activities in highly dynamic environments that are

difficult to control. Thereby, the monitoring of eye information from elite sports athletes

needs to be accomplished by specialized tools and devices.

1.2 Problem Delimitation

Hansen and Ji [17] describe fundamental eye and gaze tracking models that can be used

to build eye trackers for sports experiments. Even nowadays, accuracy, precision and

robustness of head-mounted eye trackers are still negatively influenced by problems such

as (i) parallax error [1,18,19,20,21,22], (ii) head rotations [2,23,24,25], and (iii) camera

slippage [26,27,28,29]. In general, several kinds of noises from the environment influence

the detection of eye features in video-based eye tracking. For example, eye tracking

in outdoor conditions (a common practice in many sports disciplines) is difficult and

Ph.D. Thesis
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challenging due to sunlight, eye occlusions, reflections, small pupil circumference, low

contrast between pupil and iris, among others [3,30,31,32,33,34], as shown in Figure 1.

Figure 1: Pupil detection usually fail due to (top-left) reflections over the pupil; (top-right) illumination
condition changes; (bottom-left) eye occlusions; and (bottom-right) low contrast between iris and pupil.

Most current scientific studies of eye tracking in sports have used head-mounted eye

trackers [8,9,10,12,35,36] rather than remote eye trackers [37]. Commercial eye trackers

currently used in sports are expensive and not suitable to be used actively in many sports

situations. So far, there has been very little focus on finding cheap and tailored eye

trackers for supporting the athletes with automated tools in their daily training.

Even current eye tracking directed towards sports still requires several new techniques

to be developed. Eye trackers should be seamlessly integrated into daily sports training

practices and, at the same time, must provide good ergonomy, avoid disturbing the ath-

lete’s field of view, be lightweight, comfortable, and robust to changes in the environment

conditions. Using eye tracking in sports is likely to require (i) high speed processing to

analyze a large amount of eye tracking data in a short time, (ii) high accuracy to identify

the athletes’ ocular activities, (iii) high robustness to changes in the surrounding light

conditions (i.e. athletes may be moving constantly during a match), and (iv) flexible

and easy setup of the eye tracker. Solving these open research problems has a broad and

meaningful impact in the field of eye tracking research in general.

1.3 Using Priors in Head-Mounted Eye Tracker

The main contribution of this Ph.D. thesis is the use of priors which consist of using

available information known from the problem at hand to improve the accuracy, precision,

Ph.D. Thesis
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and robustness of eye tracking systems in sports. Priors are available from several distinct

sources, such as (i) electronic sensors; (ii) information extracted from eye or scene images;

(iii) geometric relationships between both eyes; (iv) location of all components involved

in the eye tracking session; (v) fully or partially calibrated setup, among others.

Classical problems of head-mounted eye trackers are usually related to (i) the geom-

etry and location of device components; (ii) simple parametrization of the human visual

system; (iii) noise added during some eye tracking stage, among others. A deep knowledge

about these problems can assist researchers in creating methods for compensating errors

in gaze estimation. For example, (1) if the distance between the user and the observed

target is prior known, it is possible to compensate the parallax error using the depth

information as priors (see Chapter 4); and (2) if electronic sensors provide information

about head movements, it is possible to make up for the head rotations using 3D head

angles as priors (see Chapter 5). This Ph.D. thesis presents some approaches of using

priors to improve the accuracy, precision, and robustness of head-mounted eye trackers

(see Part II) and some assessments using sports experiments as study cases (see Part III).

1.4 Outline of this Ph.D. Thesis

This introduction composes Chapter 1 of this Ph.D. thesis and sets the scene for the

presented research project.

Chapter 2 introduces an overview of eye tracking addressed to parameterizations,

models, techniques, methods and technical details of eye tracking systems. Chapter 3

presents the literature review of the last ten years, where are analyzed some alternatives

of the use of eye tracking in sports, specially head-mounted eye tracker in different sports

disciplines. It also discusses how the analysis of eye movements could support novice,

intermediate, and expert athletes, and technical body of an elite sports team.

The use of available information known from the problem at hand is the kernel and

the main contribution of this Ph.D. thesis. For this reason, each methodological chapter

presents an approach of using priors to support the eye tracking system in sports. Each

chapter discusses how to collect available information from different data sources and

how to use priors to support the improvements in gaze estimation and to compensate the

geometric constraints in uncalibrated head-mounted eye trackers.

Chapter 4 presents a mathematical model to compensate the influence of parallax

error in head-mounted eye trackers. The parallax error happens due to the spatial offset

Ph.D. Thesis
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between the subject’s eye and the scene camera, and it causes a significant offset in gaze

estimation when the observed targets are at different depths concerning the calibration

plane. This model uses the known distance between the subject and the view target as

priors, and estimate the actual subject’s gaze in depth with high accuracy.

Chapter 5 presents a mathematical model to compensate the influence of head ro-

tations in the gaze estimation. If the subject keeps his/her gaze on a fixed target and

rotates the head around Z-axis (in the right-hand rule), the gaze estimation will include a

spatial offset error. This model uses the rotation matrix provided by an orientation sensor

as priors and compensates the gaze estimation error through least square regression.

Chapter 6 presents a set of novel eye tracking methods that use priors to enhance

the robustness of gaze estimation in challenging environments. Most improvements are

related to eye feature detection, which use the geometric relationships between both eyes

as priors to validate and to compensate errors in the pupil detection. This chapter also

presents two new normalization approaches that use corneal reflections and eye corners

as reference points to compensate the head movements in remote eye trackers and the eye

cameras slippage in head-mounted eye trackers.

A set experiments assisted in the development of the eye tracking methods using priors

proposed in this Ph.D. thesis. Chapter 7 gives an overview of experiments in different

sports disciplines to collect and analyze eye tracking data involving novice, intermediate,

and expert elite athletes during the daily training session of shooting and kayak.

Chapter 8 is the last chapter, and it discusses the conclusions of this Ph.D. thesis.

Instead of restating what has been presented throughout this Ph.D. thesis, it presents a

final discussion by offering an all-round of using eye tracking in sports and how to achieve

high-accuracy and high-robustness in the eye tracking systems using available information

known from the problem at hand.

Ph.D. Thesis



Chapter

2
Overview of Eye Tracking

E
ye tracking is an active multidisciplinary field of research, which has shown con-

siderable progress in the last decades [38]. In practical terms, eye tracking is

the process of monitoring eye movements to determine the point of gaze or to

analyze motion patterns of an eye relative to the head or the environment [17, 39]. The

increase in the processing power of personal computers and the improvements in computer

vision techniques are some of the most important factors to the advance in the field of

eye tracking [39]. However, current eye tracking techniques still present limitations.

There are two important aspects that the developer should analyze during the de-

velopment of new eye tracking systems, namely (i) accuracy; and (ii) robustness [40].

Accuracy is a measurement that defines the proximity of gaze estimation to the actual

subject’s point of regard. On the other hand, robustness is a subjective measurement that

is related to the performance of the eye tracking methods, mainly concerning eye feature

detection and gaze estimation. The use of eye tracking technology is prevalent in both

diagnostic and interactive applications [39, 41].

In the field of human-computer interaction, eye tracking systems can provide contin-

ued support for the operation of computer applications. The monitoring of human eye

behavior is one of the most efficient interaction mechanism, and the analysis of the user’s

visual attention will be vital for the next generation of human-computer interfaces [42,43].

Many scientific research studies are developing computer applications with interaction via

eye movements, to make the interaction easier, more intuitive, and more efficient [44], some

have proposed using eye tracking as the main input device for computers [45,46,47,48].

Eye tracking is also successful in mobile applications, which the use of wearable eye

tracking devices allows the subject to perform daily activities without restrictions during

an eye tracking session. For example, eye tracking in sports to monitor the athletes’

ocular activities during the execution of sports tasks. Next sections address the parame-
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terizations, models, techniques, methods and technical details of the most relevant items

destined for the development of eye tracking systems.

2.1 Human Visual System

The analysis of internal and external parameters of human eye structure allows the mon-

itoring of the subject’s visual attention. One of the most important internal parameters

of the human eye is called fovea, i.e. a small region of the retina where high-resolution

images are projected [49]. The fovea is located around 5◦ from the optical axis, but its ex-

act location is different for each person (i.e. an user-dependent feature). This eye feature

determines the relationship between the eye pose (i.e. orientation and position) and the

subject’s line of sight. Gaze estimation methods require the monitoring of eye movements,

and these eye parameters need to be tracked all the time during an eye tracking session.

The knowledge of the human eye structure is essential to understand the principle of

operation of eye tracking methods. However, the use of a model and the information of the

eye parameters is only required by some methods, e.g. model-based eye tracking methods

typically estimate the eye pose and the line of sight in three-dimensional models. In gen-

eral, mathematical models should be generic enough to estimate the gaze of a significant

variety of people (e.g. Africans, Asians, Europeans, Latins, men, women, young, elderly,

with/without glasses or ophthalmic lenses) [41]. Some important aspects require particu-

lar attention in the development of novel ocular-parameters-based eye tracking methods.

As human eye structure is user-dependent, the generalization of such parameters tends

to decrease the gaze estimation accuracy [40].

Gullstrand-Le Grand Eye Model is widely used in the field of eye tracking to create

mathematical models of the eyeball [50,51,52,53,54,55]. This model can be used directly to

estimate the gaze as well as to perform simulations of eye tracking methods. In summary,

it is a simplified mathematical model of the human eye, which assumes that the eyeball

has the following features (i) two spheres with distinct sizes; (ii) the eyeball performs

a rotation movement around a fixed point; and (iii) there is a small angular difference

between the optical and visual axes for each user [47, 49, 53, 54, 55]. Figure 2 shows a

lateral vision of the internal parameters of the human eye.

The optical axis starts at the anterior pole and ends at the posterior pole, which passes

through the centers of the eyeball E, cornea C and pupil P (see Figure 2). The visual

axis starts at the fovea F and ends at the observed target PoR, which passes through
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Figure 2: Simplified mathematical model of the human visual system. The eyeball is formed by two
spheres, and the optical and visual axes. The optical axis passes through the centers of the eyeball E,
cornea C and pupil P . And the visual axis starts at the fovea F and ends at the observed target PoR.

the center of the cornea C (see Figure 2). Therefore, the visual axis defines the highest

point of interest in subject’s field of view. As the fovea is not localized (exactly) at the

posterior pole, the visual axis is slightly deflected from the optical axis. The angle formed

by the intersection of the optical and visual axes is called angle kappa K, it has an average

magnitude of 5◦ [51,56] and, in general, has the same magnitude in both eyes [47,51,56].

The captured eye images only contain a “virtual” pupil image, because the pupil center

in the eye image does not coincide with the actual pupil center in the subject’s eye. This

phenomenon happens due to the aqueous humor liquid. The corneal surface refraction can

negatively influence some eye tracking methods, e.g. model-based eye tracking that uses

only one camera. The discrepancy between the virtual pupil and the actual pupil increases

according to pupil dilation and the angle between eye optical and camera optical axes [49].

Typically, the refraction index considered by ocular models used in the several scientific

publications is 1.336 [17,52,55]. The difference in taking into account the refraction index

in the eye tracking method can reflect in a value greater than 1◦ in gaze estimation [17].

Video-based eye tracking methods analyze eye images that contain only external eye

features. One of the simplest approach is to recognize the boundary between the iris

and the sclera, called limbus [38, 46, 57, 58]. The limbus does not subject to the corneal

surface refraction. However, limbus-based eye tracking methods are influenced by the

upper eyelids that cover the iris partially and decrease the vertical precision of gaze esti-

mation [38,46]. Another traditional video-based eye tracking approach analyzes the pupil

circumference in eye images. However, it is necessary to use an alternative illumination

source to increase the contrast between the pupil and the iris, mainly, in people with dark

eyes. Although the eye occlusions are less common over the pupil region, the effects of

corneal surface refraction influence the pupil analysis.

Ph.D. Thesis
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2.2 Eye Trackers

An eye tracker is a device responsible for analyzing eye movements and estimating the

gaze [39, 59]. Eye trackers have components of different natures, such as mechanical,

electronic and optical [60]. These devices can be classified according to the component

that plays the most important role, namely (i) electro-oculography ; (ii) scleral contact

lens/search coil ; (iii) video-oculography ; and (iv) video-based combined pupil/corneal re-

flection [39]. The hardware components are essential to define the gaze estimation ac-

curacy and eye tracking robustness. In video-based eye trackers, the camera is the most

important component once eye tracking begins by capturing images from the eyes.

2.2.1 Eye Tracker Setup

According to some authors (e.g. [51,61]), eye tracker setups can be classified as (i) remote

eye trackers, if their hardware components do not require to be attached to the subject’s

body; and (ii) head-mounted eye trackers, if their hardware components are fixed on a

frame to be worn on the subject’s head. Figure 3 shows two examples of vision-based eye

tracker setups built with off-the-shelf hardware components.

Figure 3: Video-based eye tracker setups built with off-the-shelf hardware. (left) a remote eye tracker
built with a PlayStation R© Eye Camera and four infrared light sources in the screen corners [62]; and
(right) a head-mounted eye tracker built with two eye cameras and one scene camera in an eyeglass frame.

In general, remote eye trackers are integrated with computer screens to monitor the

user’s eyes movements from a certain distance. On the other hand, head-mounted eye

trackers are usually built on eyeglass frames, caps or helmets, and they are designed to

monitor the user’s eyes movements from a very close range. Head-mounted eye trackers

usually have 2 (monocular) or 3 (binocular) cameras attached in their physical structure.

Eye cameras capture images used in the eye features detection, as shown in Figure 4 (left).
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On the other hand, scene cameras are used to capture images from the environment which

represents the user’s field of view, as shown in Figure 4 (right).

Figure 4: An example of synchronized images captured by a head-mounted eye tracker. (left) the user’s
eye captured by the eye camera; and (right) the scene image that represents the user’s field of view.

The use of head-mounted eye trackers is still normally restricted to research centers

and specific economic sectors. A widespread use is not yet possible mostly due to high

costs associated with commercial eye trackers [63,64]. Figure 5 shows two different head-

mounted eye trackers built for this Ph.D. thesis. These devices cost around $500, and

they are cheaper than the commercial head-mounted eye trackers. For example, the Tobii

Pro Glasses 2 costs around $30.000 (quotation in September 2016).

Figure 5: Two head-mounted eye trackers used in sports experiments built with off-the-shelf hardware
components. (left) a binocular head-mounted eye tracker built in a kayak helmet; and (right) a binocular
head-mounted eye tracker built in a shooting protection eyeglass frame.

2.2.2 Eye Tracker Calibration

Eye trackers can be classified according to the type of calibration to their hardware com-

ponents, namely (i) uncalibrated, when the parameters and geometry of all eye tracker
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components are unknown; (ii) partially calibrated, when the parameters or geometry of

some eye tracker components (e.g. unknown infrared light source location, but calibrated

cameras) are previously known; and (iii) fully calibrated, when the parameters and geom-

etry of all eye tracker components are known a prior [17,65].

Uncalibrated eye trackers usually have the following features (i) head movements are

limited for remote eye trackers; (ii) gaze estimation is sensitive to camera slippage in

head-mounted eye trackers; and (iii) there is no kind of calibration for any eye tracker

components [60]. In this case, it is necessary to perform a new personal calibration at

each eye tracking session. The personal calibration is not a complex process since the

subjects just needs to look at a set of predetermined targets in their field of view. Despite

these limitations, it is possible to achieve similar results (i.e. in terms accuracy and

performance) to those of fully calibrated eye trackers [52,54,65].

Partially calibrated eye trackers present better gaze estimation accuracy and robust-

ness to head movements in remote eye trackers when multiple infrared light sources are

used, and the screen’s position is known [17]. Partially and uncalibrated eye trackers

are more suitable for the development of eye tracking systems for scientific applications.

However, these kinds of calibrations may lead to a more difficult modeling problem [17],

mainly the mathematical model used to parameterize the eye structure. According to

Hansen and Ji [17], future eye tracking research studies may reveal the potential of par-

tially calibrated setups as well as present more robust approaches to uncalibrated setups.

Some advantages of fully calibrated setups: (i) they are more robust to head move-

ments in remote eye trackers; (ii) the personal calibration is shorter and easier because it

requires fewer calibration targets; and (iii) they provide better gaze estimation accuracy.

On the other hand, non-commercial fully calibrated eye trackers require a new device

calibration every time there is a change in any hardware component [65]. The personal

calibration is usually performed only once for each user, with the aim to estimate the user-

dependent eye parameters [17,65]. It means, fully calibrated eye trackers have a complex

and tedious device calibration, but a straightforward and fast personal calibration.

For eye trackers that use model-based eye tracking methods and stereo cameras, the

first step is to align correctly the stereo cameras’ optical axes. In general, their optical

axes intersect at a distance of approximately 65cm from the screen [49, 66]. The calibra-

tion of cameras and other components can be performed with a unit framework for the

MATLAB, called “MATLAB Camera Calibration Toolbox 1” [48, 49, 51, 67, 68]. The cali-

1See more information on http://www.vision.caltech.edu/bouguetj/calib doc/
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bration can also be performed through OpenCV library2, which provides a set of classes

for manipulating, managing and capturing synchronized stereo videos [66,67].

2.2.3 Types of Illumination

The accuracy and robustness of an eye tracker are usually related to the quality of its hard-

ware components as well as its underlying mathematical models. Illumination also plays

an important role towards the success of an eye tracker. In general, eye trackers can use

two kind of illumination, namely (i) passive illumination; or (ii) active illumination [41].

Passive illumination exclusively uses the environment natural lighting in the entire

eye tracking process. The corneal reflections (i.e. glints) obtained through passive illu-

mination are not good reference points, because of the inherent lack of control of these

illumination sources (i.e. localization, quantity, state – on/off). In general, it is not com-

mon to use passive illumination for producing glints on the corneal surface. The use of

passive illumination is usual in limbus-based eye tracking methods.

On the other hand, active illumination is often controlled by the eye tracker. It

can use different wavelengths, but the use of infrared light sources (IR) is widespread,

because (i) they do not distract the user; and (ii) in indoor environments, they do not

suffer interference from variations of the environment illumination, which it is possible to

maintain a homogeneous illumination condition. The use of active illumination has two

purposes (1) to facilitate the detection of eye features; and (2) to produce glints on the

corneal surface, which can be used as reference points by several eye tracking methods.

Normally, active illumination-based eye trackers use infrared light sources with wave-

lengths between 780-880nm, because they are close to the visible-light spectrum [41,48,69].

Infrared wavelength is harmless (unlike ultraviolet) to human eyes, and infrared intensity

defines the safety level. If an infrared light source has strong intensity, contrary to visi-

ble light spectrum, there is no natural defense mechanism in the human eye, e.g. pupil

contraction to reduce the quantity of light that enters the eye or reflex to divert the gaze.

Active light sources used by eye trackers can be classified according to their locations

concerning the eye cameras positions, namely (i) on-axis ; and (ii) off-axis. On-axis light

sources are placed in the eye camera’s optical axis (or very near to it). On the other hand,

off-axis light sources are placed in any other location far from the eye camera’s optical

axis. Some eye tracking methods explore these two types of active illumination to become

2See more information on https://goo.gl/TaVAP7
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easier the eye feature detection. Figure 6 shows the effects of using both (left) on-axis

and (right) off-axis infrared light sources in a remote eye tracker.

Figure 6: The use of active infrared light sources in remote eye tracker setups to improve the contrast
between the pupil and the iris. (left) bright pupil effect caused by the use of one on-axis infrared light
source; and (right) dark pupil effect caused by the use of two off-axis infrared light sources.

To capture light beams in the invisible light spectrum, the eye tracker needs to use

night vision cameras, without any filter to block infrared light and with sensors sensible

to the infrared wavelength. The use of redundant infrared light sources to produce more

than one corneal reflection can improve the robustness of an eye tracking system because

it increases the probability of a minimum number of glints (required by some specific eye

tracking methods) to be formed on the corneal surface. On the other hand, it is necessary

to include an additional process of identifying and correctly labeling all detected glints [70].

2.2.4 Hardware Components and Features

COGAIN Association (Communication by Gaze Interaction) maintains an up-to-date cat-

alog of currently available eye trackers3, categorized into open-source gaze tracking, free-

ware eye tracking, low-cost eye tracking, among others. In this catalog, it is possible to

obtain information about hardware components, features, and requirements to build a

low-cost eye tracking system for both remote and head-mounted eye trackers.

The quantity and type of components used to build an eye tracker are important

factors to achieve good accuracy, precision, and robustness in the gaze estimation. It is

important to note that the eye model used can also influence the gaze estimation directly.

In some cases, the accuracy, precision, and robustness of an eye tracker can be improved

only by some changes in the mathematical model, without changing any component.

3See more information on http://wiki.cogain.info/index.php/Eye Trackers
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2.3 Eye Tracking Methods

The first scientific studies of eye movements were on text reading. The French ophthal-

mologist Louis Émile Javal studied eye movements through naked-eye observation during

text reading sessions by children [71]. Javal concluded that the readers’ eyes do not move

continuously along the texts, but performed brief pauses (fixations) over small regions of

interest and fast eye movements (saccades) in the direction to new areas. The human eye

behavior is still a theme of continued debate and research [72]. Nowadays, researchers

know that many other specialized eye movements provide different types of visual infor-

mation and can be analyzed in distinct aspects and goals. In this sense, the eye-tracking

research field offers support to various knowledge areas that use eye information.

Human eye movements provide valuable information that can be used within several

distinct research studies. In general, eye tracking applications can be classified as (i)

diagnostic; and (ii) interactive [39]. In diagnostic applications, the collected gaze data

are used with quantitative evidence of the subject’s visual attention. On the other hand,

interactive applications use gaze data for human-machine communication by the sub-

ject’s eye movements. Due to some aspects such as feasibility, reliability and accuracy,

eye tracking technology has received high interest in the conception of new interactive

interfaces based on gaze direction [69]. In the field of Computer Science, it common the

use of eye tracking as main interaction mechanism for computer systems.

2.3.1 Eye Tracking Classifications

The are different classifications for eye tracking methods in the scientific literature, based

on various aspects such as (1) setups or hardware components used by the eye tracker [38,

73,74]; (2) compositions of the gaze estimation method [38,41]; (3) mathematical models

used to parameterize the human eye structure [51,54,68,75], among others.

Eye tracking methods can be classified according to whether there is physical contact

of any eye tracker component with the user’s body, namely (i) intrusive; and (ii) non-

intrusive [38,73,74]. Some years ago, this classification was used to distinguish between eye

trackers based on measurement components (e.g. electrodes, scleral contact lens/search

coil) and eye trackers based on computer vision techniques [39].

There is also a classification based on the input data used to gaze estimation methods,

namely (i) feature-based ; and (ii) appearance-based [38, 41]. Feature-based eye tracking

methods explore the local eye features from processed eye images (e.g. pupil, iris, glints).
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These methods are less sensitive to variations in the environment lighting and are more

tolerant to the head movements, e.g. using glints as reference points. On the other hand,

appearance-based eye tracking methods are trained with a set of sampled eye images that

incorporates appearance variations. In general, these methods are more robust to gaze

estimation (even using low-resolution images), and more sensitive to head movements [38].

Eye tracking methods can also be classified according to the mathematical model used

to parameterize the eye structure and estimate the gaze, namely (i) interpolation-based ;

and (ii) model-based [51,54,55,68,75]. In general, interpolation-based eye tracking meth-

ods use a non-linear second order polynomial or a geometric transformation to map coor-

dinates from the image plane to the screen/scene plane. On the other hand, model-based

eye tracking methods use complex mathematical models to parameterize eye features,

which their parameters are computed accurately for each user in three-dimensional space.

Both interpolation-based and model-based methods use distinct mathematical models

and typically estimate the gaze with high accuracy (i.e. error < 0.5◦). However, model-

based methods are naturally more tolerant to head movements than interpolation-based

methods [56]. Furthermore, model-based methods estimate the line of sight in 3D, while

interpolation-based methods estimate the point of regard [75]. Another important differ-

ence is the personal calibration because interpolation-based eye tracking methods require

visualizing several targets in the screen/scene space, and some model-based eye tracking

methods require visualizing only one target in the three-dimensional space [51].

In interpolation-based eye tracking methods, a mapping is used to define the rela-

tionship between eye features extracted from input images and the gaze estimation. In

remote eye trackers, this approach is sensitive to head movements [38,56,60,61]. Thus, an

additional normalization approach based on reference points is necessary to compensate

head movements, or the user has to hold the head still during the entire eye tracking

session. For head-mounted eye tracker, this method works well if the relation between eye

camera, scene camera, and user’s eyes do not change during the eye tracking session.

In model-based eye tracking methods, information about global coordinates — of

eye features and eye tracker components — are used to estimate the line of sight in

3D [39, 47, 56]. It means, the gaze estimation on a target in the three-dimensional space

can be obtained through the identification of the intersection point between the line of

sight and the observed target. The model-based approach is naturally tolerant to the

head movements because the gaze estimation does not assume a user’s specific position or

depends on calibrated parameters that are optimized for a user’s particular position [56].
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2.3.2 Video-Based Eye Tracking Methods

The knowledge of the human visual system is a valuable asset to understand the principle

of operation of video-based eye tracking methods. The use of a mathematical model and

the knowledge of specific eye feature are only required for some video-based eye tracking

methods, e.g. model-based methods that typically estimate the eye pose and the line of

sight in 3D. Internal and external eye features are essential to understand and to develop

video-based eye tracking methods. However, it is possible to estimate the gaze by the

analysis of only external eye features (e.g. pupil, glints, iris) available in eye images.

Pupil-Center-Corneal Reflection Methods (PCCR) PCCR methods are the most

traditional video-based eye tracking methods [56]. These methods estimate the gaze by

the analysis of the relation between the pupil center and reference points on the corneal

surface. In general, these methods require the use of active illumination. Some PCCR-

based eye tracking methods use both on-axis and off-axis illumination to detect easier

the pupil center. However, it is possible to use only one type of illumination, and even

it will be generated glints on the corneal surface. Furthermore, an on-axis illumination

is not always convenient for the pupil center segmentation. In most of the eye tracking

applications, PCCR methods present good gaze estimation accuracy (error < 0.5◦) [56].

Iris-Center-Corneal Reflection Methods (ICCR) ICCR methods are among the

simplest video-based eye tracking methods. The gaze estimation uses the relation between

the center of the iris and corneal reflections [38,46,57]. In general, the main disadvantage

of these methods are the eyelids that partially cover the iris and decreases the vertical

accuracy of the iris detection and gaze estimation [38,46].

The main differences between ICCR and PCCR methods are the following (i) in

ICCR methods, the center of the iris is used instead of the pupil center; and (ii) in

ICCR methods, reference points (i.e. glints) on the corneal surface are obtained through

visible-light spectrum components (e.g. corneal reflection of the screen) or through active

illumination components (e.g. incandescent lamps, flashes). It is still possible to use some

additional face/eye feature as reference point [38, 57].

In general, ICCR methods use passive illumination, and they work well for both indoor

and outdoor settings. The basic mathematical model of ICCR methods is similar to the

model used by PCCR methods. However, in ICCR methods the analyzed vector starts at

the center of the iris and ends at a reference point. Figure 7 shows two example of eye

images processed with both ICCR and PCCR eye tracking methods.
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Figure 7: An example of two video-based eye tracking methods that used external eye features to estimate
the gaze. (left) ICCR methods estimate the center of the iris through the analysis of the boundary between
the iris and sclera in visible-light spectrum; and (right) PCCR methods usually use active illumination
to improve the contrast between the pupil and iris, and to create reference points on the corneal surface.

Cross-Ratio Methods (CR) The original CR method was created to overcome the

major limitations of PCCR methods [76]. CR methods require using four off-axis infrared

light sources attached to the screen corners to create a polygon of glints on the corneal

surface. In this case, the polygon represents a screen projection on the user’s cornea, and

the pupil center accounts for a forecast of the gaze estimation. From the quadrilateral

formed by the corneal reflections and the pupil center, it is possible to use a projective

geometry invariant to estimate the user’s gaze.

The original CR method has low accuracy, once it is based on a simple mathematical

model [77]. Furthermore, this model is sensitive to noise produced by occlusions and

presents high errors rates in gaze estimation. In the last years, some improvements have

been proposed for the theoretical limitations of CR methods [52, 54, 55, 65, 77, 78, 79].

CR method was designed to tolerate head movements, at the same time, do not require

any device or personal calibration [54]. However, in practice, the original CR method is

intolerant to large head movements, in special over the Z-axis [54, 55].

Homography-based eye tracking methods are others improvements to the original

CR method, which are based on a geometric transformation from the eye plane to the

screen/scene plane. It is also possible to normalize a set of corneal reflections in a nor-

malized space to compensate the influence of head movements in remote eye trackers [65].

Homography normalization methods model better the displacement between the optical

axis and visual axis compared to the original CR method, and they require at least four

calibration targets to create the geometric mapping used to estimate the user’s gaze [65].

Model-Based Methods In general, model-based eye tracking methods use a pair of

stereo cameras and at least two infrared light sources. These methods have four steps
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to identify internal and external eye parameters as illustrated in Figure 2, namely (1)

detection of the spherical center of the cornea; (2) estimate of the eye’s optical axis; (3)

estimate of the eye’s visual axis; and (4) estimate of gaze in the three-dimensional space.

Model-based eye tracking methods use the reconstruction property of the three-

dimensional triangulation [80] and the convex mirror property [81] to get the global co-

ordinate of the spherical center of the cornea C [56]. For this, it is necessary to use at

least two infrared light sources to generate two glints on the corneal surface [56]. In this

case, the light beams emitted by infrared light sources form two vectors that intersect

themselves exactly in the center of the cornea C.

It is necessary to get the global coordinate of the pupil center to estimate the eye’s op-

tical axis. This coordinate can be estimated through reconstruction by three-dimensional

triangulation from the extracted information of the stereo images. Remember that, due

to the refraction caused by the liquid of the aqueous humor, it is possible to view only the

virtual pupil. However, according to the refraction law of the convex mirrors, even with

the shift of virtual pupil in the eye images, its center (P ′) remains in the eye’s optical

axis [56]. Therefore, the optical axis can be estimated directly through the vector that

passes through the centers of the cornea (C) and virtual pupil (P ′) [47, 56].

The eye’s visual axis estimation is not performed directly because the fovea (i.e. the

origin of visual axis) is an invisible eye feature in the context of analyzed eye images.

However, as the magnitude of angle kappa is constant for each subject, it is possible

to estimate the eye’s visual axis from the previously estimated eye’s optical axis. The

personal calibration plays the role to measure the magnitude of angle kappa. In a fully

or partially calibrated setup, the subject looks at a single calibration target in 3D space.

In the end, the global coordinate of the 3D gaze estimation can be obtained by the

intersection of the visual axis and the surface of an observed object at the scene.

2.3.3 Personal Calibration

The personal calibration creates the mapping used to estimate the user’s gaze. Eye

tracking methods need to estimate a set of geometrical parameters through a personal

calibration [17]. These parameters can be calculated before each eye tracking session or

just once for each user [56,65]. The requirements of personal calibration depend strongly

on the eye tracking method used by the eye tracker.

For example, some interpolation-based eye tracking methods use a non-linear second
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order polynomial with 12 unknowns [38,57,61,68,79]. The values of these unknowns (ai e

bi) can be calculated by Ordinary Least Squares (OLS) method, which estimates the best

adjustment for this set of data during the personal calibration. Before an eye tracking

session, a set of calibration targets are shown to the user by a period of time while the

eye tracking system creates the mapping which minimizes the sum of squared residuals

between estimated and observed coordinates. Equation 2.1 can be used to estimate the

gaze through a non-linear second order polynomial:

ux = a0 + a1vx + a2vy + a3vxvy + a4v
2
x + a5v

2
y

uy = b0 + b1vx + b2vy + b3vxvy + b4v
2
x + b5v

2
y,

(2.1)

which, (ux, uy) denotes the coordinates in the screen/scene domain and (vx, vy) denotes

the coordinates in the image domain. The assumed values for (vx, vy) depend on the type

of the eye tracking method used to estimate the gaze. For example, in PCCR methods the

magnitude of the vector between the pupil center and the reference points are used. If the

user views 9 calibration targets during the personal calibration, each target will produce

two equations. Thus, the system will use 12 unknowns and 18 equations [38,57,61].
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Chapter

3
Overview of Eye Tracking in Sports

W
hen it comes to sports, an important aspect is understanding the role of visual

strategy in sports practice [82]. Sports performance analysis is primarily an

observational task, and it aims to improve the athletes’ performance [83].

However, there are also other judging contexts of sports analysis. With the athletes’

eye information added to the kinematics of human movements, environment information,

and results, it is possible to identify and analyze athletes’ behaviors patterns and thus to

improve some of their abilities.

In a global sports market where positive results mean thousands or millions of dollars,

advances on performance can be truly significant. Focusing, attention, concentration,

consistency, selectivity of perception, and ability to coordinate many actions at the same

time [84] are examples of improvements in cognitive areas that can be achieved by athletes’

behavior analysis. Some investigations use exclusively observational methods, while others

use computerized notational analysis [83]. Nowadays, a common method to get different

data for sports analysis is tracking the athletes in many ways, e.g. using an eye tracking

system to obtain the athletes’ eye information.

Sports analysis is a short way to tell performance analysis of sports. According to

O’Donoghue [85], performance analysis of sports is the investigation of actual sports per-

formance or performance in training. The purposes of performance analysis of sports are

(i) analysis of technique; (ii) analysis of effectiveness; (iii) tactical analysis; (iv) movement

analysis, and (v) analysis of decision making [85]. The sports performance analysis can

be done before, during, or after daily training sessions and competitions [85].

According to Passos et. al [86], performance analysis is concerned with the analysis,

design, and evaluation of sports systems, which is composed of several layers, as the

disciplines physiology, biomechanics, psychology, pedagogy, and sociology. When the

primary goal of performance analysis is to understand how the athlete performs related
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to decisions, then psychology plays the most import role because the study is focusing on

cognitive aspects. The psychology studies have been used eye trackers to investigate how

eye movements are related to cognitive processes during different tasks [6]. Eye tracking

is also an useful tool to provide detailed performance measures of athletes [8, 9, 10, 11].

3.1 Eye Tracking for Performance Optimization

Investigations regarding gaze behavior use several gaze data measures to provide analysis

and to produce the results. Gaze behavior includes gaze direction, gaze estimation, the

field of view, quiet eye, visual search, visual fixations, external focus, pupillometry, eye

movement amplitude, among others. Combining the collected gaze data with information

from the environment, kinematics of human movements, and head movements it is possible

to have unlimited varieties of interpretation and analysis of behaviors, causes and effects

and other factors, which can influence the athlete’s performance results. In this sense,

several studies regarding athlete’s performance have analyzed various aspects.

3.1.1 Novices versus Experts Athletes and the Use of Time

The performance of the elite athletes depends on the ability to make accurate and timely

decisions [87]. According to Fegatelli et al. [7], the novice athlete needs to learn observ-

ing all relevant information in a complex and challenging environment using the time

efficiently. The best athletes know the best way to collect visual information [7]. To

investigate the visual behavior and differences between novice and experts athletes, Han-

cock and Ste-Marie [88] presented an experiment with ice-hockey players, analyzing the

visual search pattern, eye fixations, and decision making. The authors concluded that

high-level ice hockey make better decisions than lower-level athletes.

Vansteenkiste et. al. [89] measured the gaze location of the novice, intermediate

and experts volleyball players regarding on the strategies used for each group during

daily training sessions. They found differences in the athletes’ visual search patterns

corresponding to their levels of experience. Paeglis et al. [8] presented an analysis of

ocular activities from elite junior basketball athletes during throwing training sessions.

The evaluation assessed the performance of six junior basketball athletes during two years.

After only one year of training, their free throw rates have significantly improved. Paeglis

et al. [8] concluded that novice players need more time to make quality decisions before

throwing the ball compared to expert basketball players.
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Alder et al. [90] investigated the visual search behavior of badminton athletes concern-

ing the responding time to the kinematics of their opponents’ movements. The experiment

used videos of opponents projected on a life-size screen, and the participants should react

to the video as they would play in a real badminton match. The data analysis evaluated

the athletes’ gaze behavior related to fixations, the number of fixations, fixation duration

(minimum 120 ms), and final fixation duration. The authors concluded that expert ath-

letes are more accurate at responding to opponents’ actions compared to novices athletes.

In summary, novice athletes require more time to fixate on kinematic locations [90], which

is the best strategy to defend from the opponents’ attacks.

3.1.2 Attention and the Influences of Anxiety

Human gaze behaviors are strongly related to cognitive factors [91]. For example, studies

show that the effect of anxiety in athletes on both cognitive and motor performance is

an aversive emotional state that occurs as a result of threats and pressures [4,5]. Studies

on visual attention are usually associated with the athletes’ performance [92], which can

be evaluated from different points of views, such as (i) focus of attention, the act of

shifting the eyes to information resources or objects of interest [93]; (ii) visual attention,

the capacity to focus only on what is relevant to whatever the subject is doing [92];

(iii) attention control theory, predictions about effects of anxiety on susceptibility to

distraction, dual-task performance, and task-switching performance [5,94], among others.

Related to the focus of attention, Hüttermann et al. [10] presented a study to inves-

tigate the ability of athletes to devote attention simultaneously to multiple objects into

their field of view. For example, when athletes need to focus on a target and on the

opponent at the same time, they have two options (1) focus on one object and attend to

the other one in the peripheral vision; or (2) focus between both objects and attend to

them in the peripheral vision. Hüttermann et al. [10] showed that athletes present better

attention performance when focusing attention simultaneously on two stimuli.

Willians et. al [3] tested the predictions of attentional control theory to examine the

effect of anxiety on attention control and its influence on performance (effectiveness and

efficiency). The experiments conducted with elite level shooters analyzed the quiet eye

duration and onset. As result of tests, the authors reported that changes in performance

cause a decrease in shooting accuracy. They also noted efficiency changes, as inferred

from the reductions in quiet eye durations, more variable and less efficient gun motions,

and increase in mental effort invested in the task.
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Several studies investigated the focus of attention of athletes with different data ana-

lyzing approaches, like observing the gaze estimation of golf athletes [11], the gaze direc-

tion of baseball players [95], visual field of soccer coach [96], and the visual fixations of

ice-hockey athletes [88], golf players [97], sailors [92], volleyball players [98] and gymnasts

athletes performing high bar [99]. Other studies explore aspects as visual attention [100],

the external focus of attention [92], attention control [5, 101], attentional effort [14], and

predictive or prospective control [15].

3.1.3 Visual Search Behavior and the Quiet Eye

According to Spitz et al. [102], visual search behavior describes a set of eye movements

and fixations available in the cognitive system by visual input. According with Neumann

and Sanders [103], visual search behavior is a junction of structural level responsible by

the information processed in the visual search that defines a visual search pattern.

Some studies regarding measure attention demonstrated a relationship between the

efficient attention in aiming tasks and longer quiet eye durations [82]. The quiet eye

is defined as the tracking gaze or final fixation that is located in a specific object or

position in the field of view within up to 3◦ of visual angle for a minimum of 100 ms [104].

According Vickers [104], the relations between the time of fixation, athlete’s actions and

the results, various interpretation can be made regarding attention, distraction, intended

to improve the performance results.

Moran et al. [14] developed a study using pupillometry to evaluate attentional effort

in quiet eye for equestrian athletes of different levels of ability. The authors monitored

the athletes’ eyes movements while making critical decisions by watching a video-based

show-jumping sequence. The results showed that pupillometry can be used to identify

differences in attentional effort related to skill when the quiet eye occurs. Several oth-

ers experiments have explored the quiet eye, in diverse sports, like in shooting [5], ice

hokey [15], golf putting [101,105,106], basketball [107], ice hokey [16], among others.

Heinen et al. [99] presented an exploratory study to investigate functional relationships

between gaze behavior (specifically visual spotting) and movement kinematics of gymnasts

athletes performing high bar. The authors analyzed the gaze direction and the visual

fixations of athletes. The results suggested that gymnasts use visual spotting during

preparatory giant swings and dismounts on the high bar. There are functional relations

between different fixations and specific movement intentions.
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3.2 Eye Tracking Hardware and Systems in Sports

Multidisciplinary research groups use eye tracking technologies to perform amount anal-

ysis in various sports disciplines. Table 3.1 presents a review of the most popular choices

regarding eye tracking equipment applied in sports, related to hardware, software and

systems used in combination and their limitations.

Table 3.1: Summarization studies related to used eye tracking equipment in several sports disciplines.

# Sports
Disciplines

Eye Trackers
Setups

Eye Feature
Detection

Analysis
Software

Gaze
Analysis

Additional
Information

01 High bar [99] An off-the-shelf
head-mounted
eye tracker
building in a
modified bicycle
helmet, with a
wireless camera
(50 Hz) and two
IR sources

PCCR based on
two glints

WinAnalyze 3D
movement-
analysis
system

Gaze behavior
(gaze direction,
visual fixations)
and movement
kinematics

N/A

02 Shooting [5] ASL Mobile Eye
II; and two XM2
Digital Video
cameras (for
kinematics
records)

Dark pupil,
glints and 9
calibration
targets

Gamebreaker
Software
(frame-by-
frame); and
SIMI Motion 6
Software

Gaze behavior
(quiet eye,
onset) and
movement
kinematics

The gaze
estimation
accuracy
checked
periodically

03 Badminton [90] ASL Mobile Eye
Tracker; and
Qualisys
Pro-Reflex MCO
1000 (motion
capture
cameras)

Monocular,
PCCR, 6
calibration
targets, and 25
fps

Adobe Premier
Editing
Software; and
Qualysis
Motion Capture
System

Gaze behavior
(visual search,
visual fixations)
and opponent’s
movement
kinematics

Eye movement
video footage
analyzed
frame-by-frame

04 Volleyball [98] ASL 3000
Mobile Eye

Monocular,
PCCR, and 7
calibration
targets

Avidemux for
MAC

Gaze behavior
(visual search)

Videos
analyzed twice
frame-by-frame

05 Sailling [92] ASL Mobile Eye
Tracker; and an
action camera

N/A Intraclass
Correlation
Coeficient
(ICC)
calculation; and
IBM SPSS
Statistics

Gaze behavior
(external focus
of visual
attention) and
head
orientation
measures

Coding videos
twice
frame-by-frame

06 Golf [11] ASL Mobile
Eye-XG Eye
Tacking Glasses

Monocular and
4 calibration
targets

ASL Analysis
Software

Gaze behavior
(point-of-
regard)

Recalibration
performed at
every trial

07 Basket-
ball [107]

Head-Mounted
Arrington
Reasearch

Lightweight and
9 calibration
targets

View Point
Software

Gaze behavior
(quiet eye)

N/A

08 Ice Hockey [88] EyeLink II SR
Research Eye
Movement
Recorder

Binocular SPSS Gaze behavior
(number of
fixation,
average fixation
duration, visual
search pattern)
and decision
making

No head
movements
allowed

09 Equestrian [14] Tobii T60
System

Binocular,
bright and dark
pupil

Tobii Studio;
SuperLab Pro
4.0; and Quiet
Eye Solutions

Pupilometry
(pupil size) and
gaze behavior
(quiet eye)

QE analyzed
frame-by-frame

continues on the next page.
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Table 3.1 – continued from previous page.

# Sports
Disciplines

Eye Trackers Eye Feature
Detection

Analysis
Software

Gaze
Analysis

Additional
Information

10 Ice Hokey [16] ASL Mobile Eye
Tracker; and
Panasonic
PV-GS200

N/A VIA Vision-in-
Action; Quiet
Eye Solutions;
and Statistical
Analysis
System

Gaze behavior
(quiet eye)

ASL Glasses
fitted under a
modified
goaltender
helmet

11 Golf [97] Eye Tracker LC Binocular,
PCCR, two
infrared light
sources and 9
calibration
targets

NYAN
Software; and
SPSS

Gaze behavior
(number of
fixation,
average fixation
duration)

The eye
tracking system
is tolerant to
pupil drift and
head range
variation

12 Baseball [95] ISCAN Eye
Tracker; and
3DM-GX1 Head
Tracker

Binocular and
PCCR

N/A Gaze behavior
(gaze position,
eye movement
amplitude) and
Head movement
amplitude

ISCAN data
converted from
digital to
analog; and
visual
inspection to
discard blinks
images

13 Football [96] Tobii X60 Eye
Tracker

N/A N/A Novices vs.
experts’ gaze
behavior
(central visual
field, gaze
direction)

Discrete-time
Gaussian
additionally
used to reduce
the effects of
random
fluctuations
and involuntary
micro eye
movements

14 Golf [105] ASL Mobile Eye
Tracker

PCCR,
Realtime
connected via
10m fire wire
cable

EyeVision ASL
Recording
Software; and
Quiet Eye
Solutions

Gaze behavior
(quiet eye) and
movement
kinematics

QE analyzed
frame-by-frame

15 Ice Hockey [15] ASL Mobile Eye
Tracker

Monocular and
PCCR

VIA Vision-in-
Action; and
Quiet Eye
Solutions

Gaze behavior
(quiet eye)

N/A

16 Volleyball [89] ASL 501
Head-Mounted
Optics

Monocular and
PCCR

Eyenal Gaze behavior
(gaze location)

N/A

17 Football [108] ASL Mobile Eye
Tracker

PCCR EyeVision ASL
Recording
Software; Quiet
Eye Solutions;
and
GazeTracker
Software

Gaze behavior
(quiet eye) and
attentional
control (visual
attention,
anxiety,
performance)

Area of interest
defined
frame-by-frame

18 Golf [106] ASL Mobile Eye
Gaze
Registration

N/A Quiet Eye
Solutions

Gaze behavior
(quiet eye)

Gaze behavior
analyzed
frame-by-frame

19 Football [100] ASL Mobile Eye
Tracking

N/A EyeVision ASL
Recording
Software; and
GazeTracker
Software

Attentional
control (visual
attention,
anxiety,
performance)
and gaze
behavior (quiet
eye)

Off-line
analysis,
calibration
process
connected by
fire wire cable
and
coordinating
determined
frame-by-frame

End of Table 3.1
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Several studies presented experiments performed in indoor simulated environments.

In this condition, the noise from the environment illumination is controlled. Besides this,

according to Afonso et al. [98] there are differences in results of experiments in in-situ

conditions compared to the simulated environments.

Afonso et al. [98] performed two experiments with volleyball athletes to analyze the

differences in eye fixations based on two distinct conditions, namely (i) film-based versus

(ii) in situ data collection. The authors concluded that in situ, players employed longer

eye fixations than in the film condition. According to Afonso et al. [98], the results

suggest that mechanisms underpinning skills decision-making in sports differ between

film-based and in-situ conditions. In this sense, it is important to observe that simulated

environments or projections do not represent the real sports situations and it can influence

on results and analysis.

Others issues associated to eye tracking systems are related by different research

studies, such as (i) the need to perform the personal calibration periodically [5, 11]; and

(ii) the video analysis performed manually and frame-by-frame [14, 90, 92, 98, 105, 108].

Any author related any issue concerning head-mounted eye trackers, such as (i) parallax

error; (ii) head rotations; (iii) scene camera’s field of view; or (iv) illumination problems.
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Chapter

4
Using Priors to Compensate the

Parallax Error

P
arallax error is a geometric problem due to the projection centers of the scene

camera, eye camera, and user’s eyeball are not co-axial [18, 20, 22]. This issue

causes significant gaze estimation errors (in the scene view) when the observed

targets move at different depth locations than during personal calibration. In addition

to the inherent inaccuracy of gaze estimation (error > 0.5◦), the parallax error will

effectively make it hard, if not impossible, to analyze gaze data reliably.

The parallax error is a significant problem of eye tracking in sports, which the observed

target (e.g. ball, disk, gate, opponent, stone) moves in depth relative to the athlete. So

far most of the eye trackers can not account for the parallax error, and therefore research

results are often based on human inspection and estimates on the location the point of

regard when the target moves in space [72].

This chapter presents the use of depth information as priors to compensate the influ-

ence of parallax error exclusively for head-mounted eye trackers. Several different data

sources such as visual tracking, stereo, and electronic sensors can provide the depth in-

formation. Thus, Section 4.1 describes the parallax error in more detail, and Section 4.2

describes the proposed parallax compensation model.

Section 4.3 presents an evaluation of the proposed compensation model using sim-

ulated data, which consistently improves the gaze estimation accuracy when the target

is in both calibration plane and different depth planes. On the other hand, Section 4.4

discusses the improvements achieved using real gaze data collected during a laboratory

experiment. This chapter intends to show the possibility of estimating the athletes’ gaze

actively in sports practices and thus overcome some of the problems related to the gaze

estimation in multiple depth locations using head-mounted eye trackers.
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4.1 Influence of Parallax Error in Gaze Estimation

Most current head-mounted eye trackers can not provide high accuracy gaze estimation

(error < 0.50◦) due to the parallax error. The scene camera is not on the same axis

of the subject’s eye to avoid occlusions; however, the scene camera placed on the same

axis would reduce the influence of parallax error in gaze estimation. For this reason, it is

necessary to find out a solution to compensate the parallax error for general head-mounted

eye trackers. Figure 8 shows an example of the geometry of parallax error.

Figure 8: The parallax error geometry in head-mounted eye trackers. In general, the personal calibration
of head-mounted eye trackers uses a fixed calibration plane. Targets on calibration plane can be estimated
with high accuracy using traditional gaze estimation methods (e.g. cross-ratio, polynomial, homography).
However, when the user looks at a target in the same position X1 but on a different plane Di, the gaze
will be estimated on position X3

i instead of the position X2
i . The green arrows represent the parallax

error corresponds to the vector ||X2
iX

3
i || on the observed plane and a vector ||x1x2i || on the scene plane.

The first parameter to be analyzed is the subject’s eye, based on Gullstrand-Le Grand

Eye Model (see Section 2.1). The second parameter is the scene camera, which is not

co-axial with the subject’s eye and is based on the pinhole model with a vertical image

plane. The last parameter to be analyzed are the planes observed during the eye tracking

session. The personal calibration of head-mounted eye trackers uses a calibration plane

in a given distance Dcalibration from the subject. The eye tracking system can provide
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high accuracy gaze estimation in the entire calibration plane. The subject’s visual axis

intersects the calibration plane exactly at the point X1 and the multiple depth planes Di

at the point X2
i (1 ≤ i ≤ n). When the subject looks directly at the point X1, the gaze

is estimated correctly as the point x1 on the image plane. On the other hand, when the

subject looks at to any depth plane at the point X2
i , the gaze will be estimated as the

same point x1 instead of the point x2
i on the image plane.

According to Mardanbegi and Hansen [19], the parallax error produces an offset vector

||x1x2
i || on the image plane, which corresponds to the vector ||X2

iX
3
i || on the observed

plane [19, 20]. Figure 9 shows an example of using an eye tracking system for a curling

daily training session. The parallax error appears in different planes on the curling sheet

when the athlete look at to the stone (target) far away from the calibration plane.

Figure 9: An example of parallax error during a curling daily training session. On the calibration plane,
there is no influence of parallax error after the personal calibration. On the other hand, when the stone
goes to position X2 on the observed plane, the gaze will be estimated on position X3. When the distance
between the athlete and the stone is prior known, the proposed parallax compensation model can correct
the gaze estimation to the actual position in the scene image, as shown in the small upper picture.

Several research studies proposed solutions to minimize the influence of parallax error

in head-mounted eye trackers. For example, Velez and Borah [18] presented an eye tracker

that uses hot-mirror glasses in front of the subject’s eyes to control the distances and

angular relationship between the eye camera, scene camera, and eyes. The hot-mirror

is positioned in the eye’s optic axis with the aim to reflect images from the eyes and

environment toward their respective cameras. This setup removes the parallax error and

ensures a wide-angle scene viewing over multiple depth planes. Not all head-mounted eye

trackers have an architecture that allows to attach hot-mirror glasses on them, and thus

the problem persists. Mardanbegi and Hansen [19] proposed a study to identify the main
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sources of parallax error in head-mounted eye trackers. They analyzed the influence of

scene camera positions, the calibration and fixation distances on the parallax error. They

showed that the angle kappa does not have a significant effect on the parallax error [19,20].

4.2 Parallax Compensation Model

The phenomenon of parallax occurs due to the geometry of head-mounted eye trackers,

which is similar to epipolar geometry in a stereo vision system [19, 109]. The epipolar

geometry is expressed by the point peye on eye plane and the point pscene on scene camera

plane that must lie on a line called epipolar line. As shown in Figure 10, if the point P

in subject’s field of view moves along the line formed by center of the user’s eye Oeyeball

and point peye, its projection on the eye plane will not change but the projection on the

scene plane will change. This movement traces out the epipolar line Lscene [109].

Figure 10: The epilolar geometry of a monocular head-mounted eye tracker.

When the subject focuses on targets at different planes (see Figure 8), the point of

regard will move along an epipolar line on the scene plane. Based on epipolar geometry,

all epipolar lines intersect at a common point called epipole. In this context, the epipole

is the point Es on the scene camera plane. The epipolar geometry uses the fundamental

matrix F to estimate each epipolar line [110]. To estimate the fundamental matrix, it is

necessary at least eight corresponding points in both eye and scene images [111].

The fundamental matrix F encapsulates the intrinsic camera geometry, and it is

independent of scene structure [109]. Given F as a 3× 3 matrix, Equation 4.1 calculates
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the corresponding epipolar line Lscene for every point peye in the eye image plane:

Lscene = F × peye. (4.1)

In a binocular head-mounted eye tracker, each eye image with the scene image forms

a geometry similar to a stereo vision system. Thus, the binocular eye tracking approach

defines two epipolar lines (Lleft and Lright) on the scene camera plane. As the point of

regard moves along each epipolar line [19], the intersection between two epipolar lines is

very close to the actual subject’s gaze. Let the epipolar line from left eye as Lleft = ax+c

and the epipolar line from right eye as Lright = bx+d. Equation 4.2 presents the proposed

binocular gaze estimation method based on the interception of two epipolar lines:

g =

(
d− c
a− b,

ad− bc
a− b

)
. (4.2)

Let the scene camera captures images from the environment based on the pinhole

model, as shown in Figure 11. The camera center C is the origin of a Euclidean coordinate

system (i.e. center of projection), which all points in the 3D-space join in C. If Z-axis is

the principal axis in camera model, then the image is formed in any plane orthogonal to

the Z-axis at a distance f (i.e. focal length) from the camera center. The principal point

p is the intersection between the principal axis and the image plane. The origin of the

world coordinate system O is related to C by a rotation R and a translation t.

Figure 11: The proposed parallax compensation model is based on the pinhole camera model. This model
describes the relationship between the coordinates of a point in three-dimensional space X that moves
in depth Z and join in the camera center of projection C.
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Let X = (X, Y, Z)T as a point in three-dimensional Euclidean space, there is a line

that join the point X to the center of projection C. This line intersects the image plane

at point x. Considering the origin of the image coordinate system as the principal point

p, the mapping from Euclidean 3D-space R3 to Euclidean 2D-space R2 can be described

linearly in terms of homogeneous coordinates as Equation 4.3:

x ≈




f 0 0 0

0 f 0 0

0 0 1 0


X. (4.3)

In general, the origin of the image coordinate system is not located at p. The principal

point offset is described as (px, py). There are some non-Euclidean properties of the

relationship between the camera coordinate system and the image coordinate system

must be accounted for. The captured images usually have some distortion, with respect to

aspect ratio α (i.e the ratio of height to width of a pixel) and camera skew s (i.e. skewness

in the camera sensor). Thus, Equation 4.4 defines the camera calibration matrix K that

describes the intrinsic parameters of a pinhole camera.

K =




αf s px

0 f py

0 0 1


 . (4.4)

As the world coordinate system is not coincident with the camera coordinate system

(i.e C 6= O), the camera’s location and orientation in the world coordinate system is

defined by (R, t). Thus, the relationship between the point X in camera and world

coordinate systems depends on a rotation and a translation, as defined in Equation 4.5:

Xcam =


R t

0 1


X, (4.5)

which, t = −RC. The angles from R and C are known as the extrinsic parameters of a

pinhole camera. Both intrinsic and extrinsic camera parameters define the full mapping

from Euclidean 3D-space R3 to Euclidean 2D-space R2 of a pinhole camera. Equation 4.6

defines the pinhole camera projection matrix P , which consists of Equations 4.4 and 4.5:

P = K[R|t]. (4.6)

Even proposed gaze estimation method (see Equation 4.2) still suffers influence of
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parallax error. For this reason, it is proposed a novel parallax compensation model based

on pure translation motion, i.e. a planar motion case where there is no rotation [110,112].

After estimating the gaze, it is necessary to correct the parallax error based on the

depth information between the observed target and the calibration plane. As the cam-

eras are stationary in the head-mounted eye tracker, the proposed parallax compensation

model assumes that only the targets undergo a translation −t and there is no rotation

R = 0. In this case, the 3D points move on straight lines parallel to the direction

of t. One may assume that the calibration plane and observed plane are respectively

Pcalibration = K[I|0] and Pobserved = K ′[I|t]. Equation 4.7 calculates the fundamental ma-

trix when there is no rotation (R = I) and both camera matrices are the same (K = K ′):

F = [e′]×KK
−1 = [e′]×, (4.7)

which the notation [e′]× is a rank 2 skew-symmetric 3 × 3 matrix. For example, if the

target plane translation is parallel to the calibration plane Z-axis, then e′ = (0, 0, 1)T . In

this case, Equation 4.8 defines the fundamental matrix for translation on Z-axis:

F =




0 −1 0

1 0 0

0 0 0


 . (4.8)

If the gaze estimation g in the calibration plane is normalized as g = (x, y, 1)T , then

from g = PG = K[I|0]G, which the coordinates of point G in Euclidean 3D-space R3

are (X, Y, Z)T = ZK−1g, where Z is the depth of the point G from the observed plane

along the principal axis of the calibration plane. It follows from g′ = P ′G = K[I|t]G,

Equation 4.9 estimates the user’s gaze g′ without the influence of parallax error:

g′ = g +Kt/Z, (4.9)

which depends on the magnitude of translation t and the inverse depth Z [110]. The

proposed model uses the distance Z between the observed target plane and the calibra-

tion plane as priors to estimate the actual subject’s gaze g′. The projection matrix of

calibration plane Pcalibration represents the origin of pure translation motion as defined in

Equation 4.10:

Pcalibration =




1 0 0 0

0 1 0 0

0 0 1 0


 , (4.10)
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which, there is no information about translation or rotation. In turn, the projection

matrix of observed target plane Pobserved is estimated from the fundamental matrix F

that defines the three-dimensional axis which the pure translation will be performed (e.g.

Equation 4.8). The camera matrix K, translation matrix t, and rotation matrix R (that

is always equals to identity matrix I) are extracted from the difference between Pcalibration

and Pobserved. Finally, the gaze estimation without the influence of parallax error is cal-

culated using Equation 4.9, which Z is the prior information related to the distance in

meters between the observed target plane and the calibration plane in the real world.

4.3 Assessment using Simulated Gaze Data

This section presents the evaluation of the proposed gaze estimation method (based on

binocular eye tracking systems and epipolar geometry, see Equation 4.2) and the proposed

parallax compensation model (based on pure translation motion and depth distance as

priors, see Equation 4.9) using simulated gaze data from an entirely controlled simulation

environment. The used MATLAB eye tracker simulator allows controlling all eye tracker

settings as well as all human ocular parameters [113].

The evaluation using simulated gaze data contains two distinct stages, namely (i) eval-

uation of proposed gaze estimation method according to when the user observes targets

only on the calibration plane (Subsection 4.3.2); and (ii) evaluation of proposed parallax

compensation model according to when the user observes targets on the multiple depth

planes (Subsection 4.3.3). The evaluation investigated the error distribution in gaze es-

timation concerning (1) refractive index of aqueous humor [α]; (2) number of targets in

personal calibration [N ]; (3) horizontal [γ] and vertical [β] angle offset between optical

and visual axes [aka angle kappa]; (4) noise in eye feature estimation [Pc + λ]; and (5)

targets moving in depth along to Z-axis with respect to the calibration plane.

4.3.1 Apparatus

The MATLAB eye tracker simulator [113] simulated a binocular head-mounted eye tracker

with two eye cameras (one for each user’s eye) and one scene camera (to monitor the

simulated environment). Both eye cameras were on the calibration plane in the bottom.

The left eye camera was 20 cm to the left from the center of calibration plane, and the

right eye camera was 20 cm to the right. In turn, the scene camera was slightly closer

to the user position in the simulation environment, between both user’s eyes and aligned
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with the center of calibration plane (with respect to X-axis). The calibration plane was

55 cm from the user, and the personal calibration used N = 8 targets to calculate the

fundamental matrices (Fleft and Fright) used to estimated the simulated gaze data.

This evaluation used two distinct eye models with different angle kappa offsets, based

on the assessment protocol of Hansen et al. [65]. The eye model E0 [β = γ = 0◦] is a phys-

ically infeasible setup, used only to avoid some particular eye biases in gaze estimation.

On the other hand, the eye model E1 [β = 1.5◦, γ = 4.5◦] contains a more realistic angle

kappa for the human visual system. During each test (see full description in introduction

of Section 4.3), the proposed gaze estimation method generated the gaze error distribution

of 4.096 observed targets distributed in a 64× 64 matrix on the observed plane.

4.3.2 Evaluation of Proposed Gaze Estimation Method

Refractive Index of Aqueous Humor This test evaluated the influence of the refrac-

tion index in proposed gaze estimation method. According to Hansen and Ji [17], the

refractive index of aqueous humor has a constant value around 1.336. Table 4.2 presents

the influence of the refractive index of aqueous humor based on two eye models (E0 and

E1) and with the presence or not of refraction. The results show that angle kappa offset

presents a notable difference in proposed gaze estimation method when comparing the

gaze data from E0 and E1 eye models. On the other hand, there is no influence of the

refractive index because the gaze error distributions do not change for each eye model.

Table 4.2: The influence of the refractive index of aqueous humors [1.336] in proposed gaze estimation
method, using two eye models, i.e. E0 [β = γ = 0◦] and E1 [β = 1.5◦, γ = 4.5◦].

Model Refraction Maximum Error Mean Error

E0 No 0.23◦ × 10−4 0.37◦ × 10−5

E0 Yes 0.23◦ × 10−4 0.37◦ × 10−5

E1 No 0.79◦ × 10−1 0.89◦ × 10−2

E1 Yes 0.79◦ × 10−1 0.89◦ × 10−2

Number of Calibration Targets This test evaluated how the number of calibration

targets (8 ≤ N ≤ 25) influences the accuracy of the proposed gaze estimation method.

Figures 12 and 13 show the gaze estimation accuracy as a function of the number of

calibration targets. For both eye models (E0 and E1) the minimum number of calibration

targets (N = 8) presented lowest gaze error distribution. Figure 12 shows that the gaze

error is not steady for the eye model E0. On the other hand, Figure 13 shows a more
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stable gaze error distribution for the eye model E1. The more realistic eye model E1

did not improve the accuracy of proposed gaze estimation using more than the minimum

number of calibration targets required by the personal calibration, in opposite to classical

gaze estimation methods [65,78,114].

Figure 12: The influence of the number of calibration targets N to the proposed gaze estimation method
using eye model E0 [β = γ = 0◦].

Figure 13: The influence of the number of calibration targets N to the proposed gaze estimation method
using a more realistic eye model E1 [β = 1.5◦, γ = 4.5◦].

Angle Kappa Offset This test showed that differences in angle kappa have a significant

influence on the accuracy of proposed gaze estimation method. Figure 14 illustrates

the influence of different angle kappa offsets within a range of angular horizontal offsets

(−4.5◦ ≤ γ ≤ 4.5◦) and a fixed angular vertical offset (β = 0◦). The results show that the

accuracy of proposed gaze estimation method linearly decreases according to angle kappa,

i.e. the bigger the angular difference among visual and optical axes (an user-dependent

parameter) the lower will be the gaze estimation accuracy. In humans, angle kappa has

the same magnitude in both eyes, and its average angle is around 5◦ [56]. It means, the
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proposed gaze estimation method based on epipolar geometry has better accuracy than

classical gaze estimation methods, i.e. in the worst case the error is around 0.01◦.

Figure 14: The influence of angle kappa offset to the proposed gaze estimation method. Angle kappa has
two angles offsets, i.e. horizontal (γ) and vertical (β). The are results of the influence of angle kappa
with −4.5◦ ≤ γ ≤ 4.5◦ and β = 0◦.

Noise This test investigated if the proposed gaze estimation method would have the

same accuracy in a real eye tracking scenarios, i.e. the robustness of proposed method

adding noise to the eye feature detector. The evaluation added controlled noise (λ) in the

pupil center Pc before calculating the epipolar line, i.e. Lleft = Fleft × (Pcright + λ) and

Lright = Fright × (Pcleft + λ). Figure 15 shows a two-dimensional view of the noises in a

range of horizontal coordinates and a fixed vertical coordinate, i.e. Pc = (x+ λx, y).

Figure 15: The influence of noise in the proposed gaze estimation method when adding noise to the pupil
center coordinate using (red) eye model E0 [β = γ = 0◦] and (blue) eye model E1 [β = 1.5◦, γ = 4.5◦].
The noise (λ) added to pupil center Pc(x, y) has the following range −18.90 ≤ λ ≤ 18.90 in pixels.

The results show that the proposed gaze estimation method only achieves better

accuracy than traditional gaze estimation methods when there is no noise. For a real

Ph.D. Thesis



4.3 Assessment using Simulated Gaze Data 39

eye tracking scenario, the proposed gaze estimation method presents an average gaze

error around 0.50◦. Figures 16 and 17 illustrate the influence of noise in the eye feature

detection respectively for eye models E0 and E1 in proposed gaze estimation method.

Figure 16: The influence of feature detection noise to the proposed gaze estimation method using eye
model E0 [β = γ = 0◦]. The pupil center Pc(x, y) received an spatial noise in the following range −18.90 ≤
λ ≤ 18.90 pixels, i.e. ±5 mm in the simulated environment.

Figure 17: The influence of feature detection noise to the proposed gaze estimation method using eye
model E1 [β = 1.5◦, γ = 4.5◦]. The pupil center Pc(x, y) received an spatial noise in the following range
−18.90 ≤ λ ≤ 18.90 pixels, i.e. ±5 mm in the simulated environment.

For both eye models, the proposed gaze estimation method is sensitive to noise in

the eye feature detection. According to Luong and Faugeras [115], fundamental matrix

based on the eight point algorithm [111] is very sensitive to noise. The gaze estimation

error was small only when λ = 0. In this case, eye model E0 presented a gaze estimation

accuracy around 0.39◦ × 10−5 and eye model E1 was around 0.11◦ × 10−1. For λ > 0 the

gaze estimation accuracy is similar for both E0 and E1, i.e. the difference mean is ±0.01◦.

Ph.D. Thesis



4.3 Assessment using Simulated Gaze Data 40

4.3.3 Evaluation of Proposed Parallax Compensation Model

The last test with simulated gaze data aimed to evaluate the proposed parallax compen-

sation model. During this test, the simulated eye tracker and user kept still while the

targets moved along to Z-axis. The calibration plane was at 55 cm from the user, and the

observed targets moved in depth in a range of 35-125 cm from the user in steps of 10 cm.

Figure 18 shows the influence of parallax error to the proposed gaze estimation method

in a range of 35-125 cm in depth. Figure 19 shows the gaze error distribution when the

observed targets were 95 cm from the user. The results showed that for each meter from

the calibration plane, the parallax error adds a gaze error around ±2.30◦.

Figure 18: The influence of parallax error to the proposed gaze estimation method. The observed targets
moved to 10 different distances from the user position, i.e. in a range 35-125 cm in steps of 10 cm. The
results show that the gaze estimation accuracy decrease a lot because the parallax error.

Figure 19: The influence of parallax to the proposed gaze estimation method. After personal calibration,
the observed targets moved to 95 cm from the user, and the gaze estimation accuracy was 0.95◦.

Ph.D. Thesis



4.3 Assessment using Simulated Gaze Data 41

Figure 20 shows the gaze estimation after reducing the influence of parallax error using

the proposed compensation model, in a range of 35-125 cm in depth. Figure 21 shows

the gaze error distribution based on the proposed parallax compensation model when

the observed targets were 95 cm from the user. The results showed that the proposed

parallax compensation model can improve the gaze estimation accuracy by a factor of

10 times. For each meter from the calibration plane, the parallax error adds only a gaze

error around ±0.20◦, i.e. an improvement of 95.79%. Using simulated data, the proposed

parallax compensation model has shown very promisingly to the field of eye tracking.

Figure 20: The influence of the proposed parallax compensation model to gaze estimation. The observed
targets moved to 10 different distances from the user position, i.e. in a range 35-125 cm in steps of 10
cm. The parallax error only added a gaze error around ±0.02◦ for each 10 cm from the calibration plane.

Figure 21: The influence of the proposed parallax compensation model to the gaze estimation. Using
the parallax compensation model, the gaze estimation accuracy has achieved 0.04◦ when the targets have
been moved to 95 cm from the user position, i.e. an improvement of 95.79%.
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4.4 Assessment using Real Gaze Data

This section presents the evaluation of the proposed parallax compensation model using

real gaze data collected in a laboratory experiment. The participants used an uncalibrated

head-mounted eye tracker to collect their binocular gaze data. This evaluation aimed to

investigate if the proposed model can handle the parallax error in a real eye tracking sce-

nario. The assessment investigated the gaze error distribution concerning (1) magnitude

and orientation of gaze error distribution; (2) monocular versus binocular systems; (3)

scene camera location; and (4) improvements achieved using the proposed model.

4.4.1 Apparatus

During this assessment, the participants used a similar head-mounted eye tracker proto-

type like the one built for experiments with Kayak athletes (see Section 7.3). Compared

to the eye tracker used for kayak experiments, this one had three scene cameras to in-

vestigate the influence of scene camera position in the parallax error. Figure 22 shows a

participant using the eye tracker prototype during the parallax error experiment.

Figure 22: The head-mounted eye tracker used for the parallax error experiment. This device had three
scene cameras, one eye camera to capture the binocular information from the user (built in May 2017).

This device had the following components (i) four synchronized Full-HD web cameras

that allow capturing 30 frames per second with 1280 × 720 of resolution; (ii) one lens of

3.97mm (focal length) and f/2.8 (aperture) for the eye camera; (iii) three eye-fish lenses

of 1.21mm and f/2.0 for the scene cameras; (iv) one IR narrow pass filter; and (v) some

off-the-shelf hardware to mount electronic components in a canoe slalom helmet.
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4.4.2 Participants

A sample of 20 volunteer participants (15 males and 5 females) was recruited from the

IT University of Copenhagen. Four undergraduate students, five master students, seven

doctoral students, and four postdocs researchers. Participants ranged from 20 to 45 years

old (mean = 31.6± 7.2) and their height ranged from 150 cm to 190 cm (mean = 175.1

cm ± 11.2 cm). Eleven had normal vision, six wore glasses, and three wore contact lenses.

According to the eye dominance test described by Collins and Blackwell [116], thirteen

participants had right-eye dominant and seven left-eye dominant. Participants were free

to blink, moving the head, withdraw from testing at any stage.

4.4.3 Procedure

The experiment started with the personal calibration. Figure 23 (left) shows the targets

used for the personal calibration and the experiment, distributed in a 3 × 3 matrix on

a moving whiteboard. For the personal calibration, the board was 2 meters from the

participant. The instructor moved the whiteboard from 2 to 18 meters (see Figure 23

(right)) in steps of 2 meters, to collect gaze data in depth. The instructor instructed how

long each participant was to fixate on a given target, i.e. around 2 seconds to collect at

least 60 gaze samples.

Figure 23: The participants looked at 9 targets on a moving whiteboard to investigate the influence of
parallax error and the proposed compensation model when the targets moving in depth. (left) the board
is 4 meters from the participant; and (right) the board is 18 meters from the participant.
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4.4.4 Evaluation in a Real Eye Tracking Scenario

First of all, it is important to mention that, as the scene cameras had eye fish lenses, it

was not possible to identify the targets automatically because they were small. All targets

coordinates (i.e. the red circles presented in all plots of this subsection) were collected

manually through mouse clicks in three different scene images. It means the manual data

collecting could include outliers in the final results. On the other hand, an eye tracking

system provided all gaze estimations automatically (i.e. the colored crosses in the plots).

Magnitude and Orientation of Gaze Error Distribution This experiment investi-

gated if the parallax error distribution would have the same magnitude and orientation

among all participants. For each participant, the test evaluated the offset between the gaze

estimation and the actual observed target, in 9 depth planes from 2 meters (calibration

plane) to 18 meters. This test used only the binocular gaze estimation based on homog-

raphy [65] from the middle scene camera. Figure 24 shows the gaze error distribution of

4 first participants when gazing 9 targets at 18 meters from them.

Figure 24: The effect of parallax error in gaze error distribution for 9 observed targets on a depth plane
at 18 meters from the participant. Red circles are the targets, blue crosses are the gaze estimations, and
red values are the gaze error in pixels. The error distribution of 4 participants are (top-left) Participant
#01 with left-eye dominant; (top-right) Participant #02 with left-eye dominant; (bottom-left) Participant
#03 with left-eye dominant; and (bottom-right) Participant #04 with right-eye dominant.

All participants were at the same position, and the instructor moved the whiteboard

in the same direction. However, the gaze error distribution presented different magni-
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tudes and orientations among this group of participants. For example, in Figure 24 the

gaze estimation of Participant #03 (bottom-left) has orientation around 65◦ and mean

magnitude of 2.87◦. On the other hand, the gaze estimation of Participant #04 (bottom-

right) has orientation around 210◦ (i.e. in the opposite direction) and mean magnitude

of 1.02◦. It is also possible to notice that the difference between the average magnitude

of Participant #03 (bottom-left) and Participant #02 (top-right) is more than 4 times.

Angle kappa was one of the independent variables did not controlled in this experi-

ment. Angle kappa is different regarding α and β angles between humans [17]. Thus, the

difference in magnitude and orientation of parallax error among this group of participants

is directly related to subject’s angle kappa. For future investigations, it is also important

to evaluate the parallax error distribution with respect to other aspects such as (i) the

use of uncalibrated head-mounted eye trackers, which the eye camera position is different

for each user; (ii) the helmet position related to the participant’s head, which captures

the eye information in a different angle and gives greater emphasis to one of the eyes; and

(iii) the influence of head rotations in the parallax error (see Chapter 5).

It is important to note that the parallax error was almost imperceptible in the pro-

cessed videos of this experiment. As the head-mounted eye tracker had an eye-fish lens

with a wide angle of view (around 220◦), the scene camera captures the environment like

a sphere and covers the entire subject’s field of view. It means, when the subject looks

naturally forward, the deeper is the observed plane, the closer it is to the image center, as

shown in Figure 25. Of course, the gaze estimation accuracy is better in the calibration

plane than in any depth plane. However, 30 pixels of gaze error (in the worst case) is a

very small error in high-resolution images. For visual inspector, the gaze estimation will

be very close to the actual observed region although the parallax error.

Figure 25: Two different images captured from a scene camera using a M12 eye-fish lens of 1.21mm (focal
length) and f/2.0 (aperture). This lens has an angle of view of 220◦ and it covers the entire subject’s
field of view. It is also possible to see a small region even behind the subjects. Cameras that use eye-fish
lenses with a wide angle of view, capture the environment like a sphere.
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Monocular versus Binocular System This experiment evaluated the influence of par-

allax error in monocular and binocular eye tracking systems. The assessment investigated

if there is some difference in using the dominant eye in a monocular setup and the benefits

of using binocular gaze estimation. Only a single eye camera captured the binocular data

from the participants. The data analysis investigated the left gaze, right gaze, and the

average between both eyes as the binocular gaze estimation individually. Figure 26 shows

both monocular and binocular gaze error distribution (from the middle scene camera) of

4 first participants when gazing 9 targets at 18 meters from them.

Figure 26: The influence of parallax error in three gaze estimations methods. Magenta crosses are the
gaze estimations from the left eye, cyan crosses are the gaze estimations from the right eye, yellow crosses
are the binocular gaze estimation (the average of left and right gaze estimations), and red circles are the
actual observed targets. All gaze estimation methods are based on homography [65] using 9 targets in the
personal calibration. The error distribution of 4 participants are (top-left) Participant #01 with left-eye
dominant; (top-right) Participant #02 with left-eye dominant; (bottom-left) Participant #03 with left-eye
dominant; and (bottom-right) Participant #04 with right-eye dominant.

For all participants and trials, both monocular gaze estimations tended to the same

location concerning the binocular gaze estimation. Contrary to the initial hypothesis, the

results showed that the monocular gaze estimations from the dominant eye did not provide

a more precise estimation (i.e. smallest gaze error in term of magnitude). Both monocular

gaze estimations increased the mean absolute error when comparing the results between

Figures 25 and 26. In general, the binocular gaze estimation presented the best accuracies.

As the middle scene camera and the eye camera were aligned with the participant’s face,

the average between both eyes provided the best gaze estimation for this device.
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Scene Camera Location This experiment evaluated the influence of scene camera lo-

cation at the head-mounted eye tracker concerning the parallax error. For this reason,

the head-mounted eye tracker had three scene cameras in different X-axis locations. All

scene cameras used the same type of lenses (eye-fish lens of 1.21mm and f/2.0) to avoid

any bias in the collected data. The cameras were in the following positions (i) left-scene

camera at 5.1cm to the left; (ii) middle-scene camera at the center of the helmet; and (iii)

right-scene camera at 5.1cm to the right. Figure 27 shows the gaze error distributions of

the same observed nine targets from three different camera perspectives.

Figure 27: The influence of parallax error in the gaze estimation from three different camera perspectives.
Red circles are the actual observed targets, blue crosses are the gaze estimations, and the red values are
the gaze error in pixels. The binocular gaze estimations correspond to 9 observed targets at 18 meters
from Participant #05. (top-left) gaze estimations from left-scene camera; (top-right) gaze estimations
from right-scene camera; and (bottom-center) gaze estimations from middle-scene camera.

The gaze error distribution had a similar behavior for all participants in this ex-

periment. The results showed that the error orientation tends to the left-, middle- and

right-scene camera locations. Figure 27 shows the gaze estimation distribution of Par-

ticipant #05 in a distance of 18 meters from the observed plane. As the scene cameras

capture mirrored images from the environment, the error orientation in Figure 27 is in

the opposite direction of the X-axis of scene camera. It means the left-most scene camera

forces the parallax error orientation to the right, and to the left on the contrary. The

results confirmed the hypothesis of Mardanbegi and Hansen [19] that the spatial offset

between the user’s eyes and the eye tracker cameras influences the parallax error directly.
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Improvements achieved using the proposed model During the experiment with

real gaze data from 20 participants, the results showed that the parallax error is an user-

dependent variable. The magnitude and orientation of gaze error distribution are quite

different between this group of participants. Thus, it was not possible to use the proposed

parallax compensation model (described in Equation 4.9) in the same way as used during

the experiment with simulated data (described in Section 4.3).

As the parallax error changes the principal point p in the pinhole model, and it is

necessary to use the translation tp(px, py) of principal point as priors in the camera matrix

(see Equation 4.4). The translation is linear and increases equally for each meter in depth.

Euclidean distance d between the average of observed targets and the average of gaze

estimations determine the translation parameters in a specific depth Z. To calculate the

translation parameters for each meter, it is necessary to divide d by the depth information

Z, px = dx/Z and py = dy/Z. Figure 28 shows the gaze estimations (from the middle

scene camera) of 4 first participants with (green crosses) and without (blue crosses) using

the proposed model, when the participants gazing 9 targets at 18 meters from them.

Figure 28: Results achieved using the proposed parallax compensation model. Blue crosses are the
binocular gaze estimation based on homography [65], green crosses are the compensated gaze estimations,
and red circles are the actual observed targets. The error distribution of 4 participants are (top-left)
Participant #01 with left-eye dominant; (top-right) Participant #02 with left-eye dominant; (bottom-left)
Participant #03 with left-eye dominant; and (bottom-right) Participant #04 with right-eye dominant.

The results in Figure 28 present a huge improvement in the accuracy of gaze estimation

in comparison with the results in Figure 24. Figures 29 and 30 show the average gaze
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error over all 20 participants of this experiment. The red bars show the gaze estimation

under the influence of parallax error, which the average gaze error is 1.01◦ ± 0.77◦. The

green bars show the results of proposed parallax compensation model using the depth

information Z and the translation of principal point tp as priors, which the average gaze

error is 0.20◦±0.11◦. The proposed parallax compensation model showed very promisingly

to reduce the influence of parallax error in uncalibrated head-mounted eye trackers, and

it has presented an improvement of 80.59% in a real eye tracking scenario.

Figure 29: Mean gaze error between all observed targets at 18 meters from the Participants #01 to #10.
(red bars) Mean gaze estimation using a traditional gaze estimation method based on homography [65].
(green bars) Mean gaze error of proposed parallax compensation model.

Figure 30: Mean gaze error between all observed targets at 18 meters from the Participants #11 to #20.
(red bars) Mean gaze estimation using a traditional gaze estimation method based on homography [65].
(green bars) Mean gaze error of proposed parallax compensation model.

4.5 Conclusions

This chapter presents a compensation model to minimize the influence of parallax error in

head-mounted eye trackers. The proposed model uses two information as priors, namely
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(1) the distance between the subject and the observed target; and (2) the offset of gaze

error distribution in any depth plane. The parallax error compensation is based on pure

translation motion, which it is a geometric transformation where there is no rotation.

Thus, the depth information Z in Equation 4.9 adjusts the gaze data distribution to

estimate more accurate subject’s gaze even in different depth planes.

The assessment of proposed parallax compensation model used both simulated and

real gaze data. The evaluation using simulated gaze data showed that the phenomenon

of parallax adds an error around ±2.30◦ for each meter in depth with respect to the

calibration plane. On the other hand, using the proposed model the parallax only adds

a gaze error around ±0.20◦ for each meter in depth. It means that the proposed model

improves the gaze estimation accuracy by a factor of 10 times. The data analysis showed

an improvement of 95.79% in a simulated scenario.

The assessment also used real gaze data to investigate if the proposed model can han-

dle the parallax error in a real eye tracking scenario. The data analysis of 20 participants

showed that the magnitude and orientation of gaze error distribution are different for each

subject due to the angle kappa is an user-dependent variable. For simulated experiment,

it was necessary only use the depth information Z as priors to compensate the parallax

error. However, as the subject’s angle kappa changes the principal point p in the pin-

hole model, the proposed compensation model needs the angle kappa offset to handle the

parallax error in a real eye tracking scenario.

The results also showed that it is possible to compensate the influence of parallax

error for both monocular and binocular eye tracking systems. For example, in Figure 26,

the monocular (magenta and cyan crosses) and binocular (yellow crosses) gaze error have

basically the same distribution but in a different location (i.e. including a translation).

Thus, it is necessary to investigate the gaze error distribution in depth for each subject.

During the personal calibration, the subject must also observe a set of targets on a depth

plane to verify the influence of angle kappa in the gaze error distribution in depth. The

minimum number of observed targets necessaries to identify the influence of angle kappa

in depth planes will be a research topic in a future investigation.

The evaluation using real gaze data showed that the phenomenon of parallax adds

a gaze error around 1.01◦ ± 0.77◦ when the targets move 16 meters in depth concerning

the calibration plane. On the other hand, using the proposed compensation model the

parallax only adds a gaze error around 0.20◦ ± 0.11◦ for the same depth plane. The data

analysis showed an improvement of 80.59% in a real eye tracking scenario.
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This chapter also describes a gaze estimation method based on epipolar geometry.

The method uses binocular information to define two epipolar lines in the scene image,

and the gaze estimation is based on the intersection between the left and right epipo-

lar lines. The proposed gaze estimation method achieved high accuracy estimation in

simulated data (error < 0.01◦). However, this gaze estimation method is very sensitive

to feature detection noise and its accuracy is similar to others traditional gaze estima-

tion methods in a real eye tracking scenario. As fundamental matrix based on the eight

point algorithm [111] is sensitive to noise [115], the proposed gaze estimation method did

not present good performance in real head-mounted eye tracking scenarios, specially due

to complex eye movements (e.g. torsions) and natural subject’s head rotations. For this

reason, all experiments in real scenarios presented in this Ph.D. thesis used a homography-

based eye tracking method with 9 calibration targets [65].

The assessment of proposed parallax compensation model using simulated gaze data

was accepted as a full paper1 in 2nd IEEE International Workshop on Computer Vision

in Sports (CVsports 2015) of 2015 IEEE International Conference on Computer Vision

(ICCV 2015) and is available in Annex A, and as an abstract in 19th European Conference

on Eye Movements (ECEM 2017) and is available in Annex B. The assessment using real

gaze data will be submitted as a full paper to 2018 Symposium on Eye Tracking Research

& Applications (ETRA 2018), and a more detailed data analysis (e.g. using gaze data

from all depth planes, investigating the minimum number of observed targets on a depth

plane) will be submitted as a full paper to some journal in the field of computer science.

1http://dx.doi.org/10.1109/ICCVW.2015.107

Ph.D. Thesis

http://dx.doi.org/10.1109/ICCVW.2015.107


Chapter

5
Using Priors to Compensate the

Head Rotation Error

T
his chapter focuses on compensating the influence of head rotations in the gaze

estimation. In general, head-mounted eye trackers are negatively influenced by

head rotations because these movements add a significant spatial error on the

gaze estimation, in the opposite direction of the head rotation. The eye tracking system

needs to be robust to this kind of head movements; otherwise, the analysis of gaze data

will be impracticable.

This chapter proposes a head rotation compensation model that uses the three-

dimensional angles from the subject’s head as priors to decrease the rotational errors. It

is possible to obtain the updated head angles using an orientation sensor attached to the

head-mounted eye tracker. The proposed compensation model is based on least squares

fitting between the gaze estimation and current head pose with the aim to maintain high

accuracy and precision of the eye tracking system along the entire session.

Section 5.1 describes the spatial error produced by the head rotations in more detail,

and the proposed head rotation compensation model is described in Section 5.2. The

evaluation of the proposed model using real eye tracking data from 10 participants in a

laboratory experiment is described in Section 5.3. Section 5.4 explains the entire personal

calibration used for the gaze estimation method and for both head rotation and parallax

error compensation models. Finally, in Section 5.5 are presented the final conclusions of

the proposed head rotations compensation model.

5.1 Influence of Head Rotations in Gaze Estimation

Head-mounted eye trackers are naturally robust to user’s head movements, because all

their components (i.e. eye camera, scene camera, infrared light sources, frame, helmet,
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sensors) move together following the user’s head movements [17]. Figure 31 shows the

gaze estimation as a blue circle that covers the current observed target on the calibration

plane. After the personal calibration, it is possible to estimate the user’s gaze with high

accuracy (i.e. less than 0.50◦) on the calibration plane.

Figure 31: High accuracy gaze estimation of head-mounted eye tracking on the calibration plane using a
binocular gaze estimation method based on homography and seven calibration targets [65].

During some experiments, we observed the influence of natural head rotation in the

gaze estimation, especially movements around roll axis (i.e. Z-axis in the right-hand rule).

Figures 32 (left) and (right) show the spatial error when the subject keeps his focus of

attention in a calibration target and rotates the head around Z-axis. It is important

to note that this spatial error does not suffer any influence of parallax error, once the

observed target is still at the same distance on the calibration plane.

Figure 32: The spatial error produced by the user’s head rotations to the left and the right around Z-axis.

As head movements do not change the rotation matrix properties of pinhole model (see

Equation 4.6) in head-mounted eye trackers, the investigation of the cause of the rotational
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errors analyzed the eyes movements behavior during head rotations. An observational

analysis identified that eyes perform complex movements when the subject keeps the gaze

in a fixed target and rotates the head. These movements are similar to ocular torsions,

which the pupil center coordinates change a lot compared to the original head position.

Figure 33 shows the binocular pupil center coordinates from two subjects when performing

head rotations to the left (cyan crosses) and the right (magenta crosses).

Figure 33: The effect of head rotation in both pupil center coordinates from two subjects. Cyan crosses
are the pupil center coordinates when the subject rotates the head to the left. Yellow crosses are the
pupil center coordinates in the original head position; Magenta crosses are the pupil center coordinates
when the subject rotates the head to the right.

During this task, two subjects looked at nine targets on a plane and rotated their

head to the left and the right for each observed target. Figure 33 shows a similar pupil

center distribution as a 3× 3 matrix for both eyes. It is also possible to observe that the

head rotation creates three different classes of pupil centers. Because of the changes in

the pupil center coordinates in the eye image, the gaze estimation presents a significant

offset concerning the actual observed target in the scene image.

It is easier to observe this phenomenon directly in the eye images. Figure 34 (left)

shows both eyes when the participant rotates his head to the left, and Figure 34 (right)

shows an ocular torsion when the participant rotates his head to the right. Note the

difference in the pupil center in both eye images, although the observed target is in a very

similar position in the scene images. As head rotation changes the eye feature coordinates,
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eye tracking methods would wrongly estimate the subject’s gaze.

Figure 34: During the head rotation around Z-axis, the eyes perform a more complex torsion movement
(e.g. convergence, divergence). (left) shows the eyes position when participant looks at a fixed target on
the calibration board and rotates his head to the left. On the other hand, (right) shows different pupil
center positions for the same observed target, but with head rotation to the right.

5.2 Head Rotation Compensation Model

Head rotations are natural human movements controlled by the activities of muscles in

the region of the neck. According to Alfayad et al. [117], the human neck motions and

head rotations are classified based on three major movements, namely (i) extension and

flexion, pitch rotations around X-axis; (ii) vertical rotation, yaw rotations around Y -axis;

and (iii) lateral bending, roll rotations around Z-axis. Figure 35 shows in details the

human head rotations relative to Euler angles, 3D axes and maximum angle of motion.

Figure 35: Human head rotations based on three major neck motions. (left) shows the extension and
flexion motion around pitch axis in Euler angles. (center) shows the vertical rotation motion around yaw
axis in Euler angles. (right) shows the lateral bending motion around roll axis in Euler angles.
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Flexion motion allows the head to bend toward the chest in a range of 50◦, while

extension motion ensures the head to tilt back to the primary position in a range of

57.5◦ [117]. These motions occur when a subject shakes the head to say yes. Vertical

rotation motion allows the head to turn to the right and the left in a range of 70◦ [117],

and occur when a subject shakes the head to say no. In turn, lateral bending motion

allows the head to bend towards the shoulders in a range of 45◦ [117]. This motion is

commonly used to stretch the neck, and it has the biggest influence to the gaze estimation.

The proposed compensation model uses the head angles as priors to compensate the

influence of head rotation around (X, Y, Z)-axes in the gaze estimation. In this case, an

orientation sensor attached to the structure of head-mounted eye tracker provides the in-

formation about head movements. The sensor was installed behind the scene camera, and

it provides the updated rotation matrix and the three-dimensional subjects’ head move-

ments in Euler angles (yaw, pitch and roll). As the error distribution is user-dependent, it

is necessary to perform a personal calibration exclusively for head rotation compensation.

During the personal calibration process, the subjects must look at a set of targets, and

rotate their head to the left and the right. Then the magnitude and orientation α(xh, yh)

of the difference between the gaze estimation and observed target are computed. The

head rotation compensation model uses a least squares polynomial to fit the gaze error α

related to the angles from one of the head rotation axes β, according to Equation 5.1:

α
′
=

k∑

i=0

βiαi. (5.1)

Finally, the gaze estimation without the influence of head rotation can be estimated

through the subtraction of the predicted gaze error α
′
(based on the current head rotation

angle βi) and the gaze estimation g, as described in Equation 5.2:

g
′
= g − α′

. (5.2)

5.3 Assessment using Real Gaze Data

The evaluation of the proposed head rotation compensation model used gaze data from

a real eye tracking scenario in a laboratory experiment. The participants used an uncali-

brated head-mounted eye tracker to collect binocular information. Therefore, the evalu-

ation investigated if the proposed compensation model can handle the influence of head

rotation in an eye tracking application. The evaluation investigated the error distribution
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in gaze estimation concerning (1) magnitude and orientation of gaze error distribution;

(2) monocular versus binocular systems; (3) scene camera location; and (4) improvements

achieved using the proposed model.

5.3.1 Apparatus

The participants used the same head-mounted eye tracker prototype built for the parallax

error experiment (see Subsection 4.4.1). The only difference is the use of an orientation

sensor to measure head movements. The eye tracker had the following components (i)

four synchronized Full-HD web cameras that allow capturing 30 frames per second with

1280×720 of resolution; (ii) one lens of 3.97mm (focal length) and f/2.8 (aperture) for the

eye camera; (iii) three eye-fish lenses of 1.21mm and f/2.0 for the scene cameras; (iv) one

IR narrow pass filter; (v) one orientation sensor to monitor the head rotations; and (vi)

some off-the-shelf hardware to mount electronic components in a canoe slalom helmet.

5.3.2 Participants

A sample of 10 volunteer participants (8 males and 2 females) was recruited from the

IT University of Copenhagen. Three undergraduate students, one master students, four

doctoral students, and two postdocs researchers. Participants ranged from 20 to 43 years

old (mean = 30.5± 7.6) and their height ranged from 165cm to 188cm (mean = 175.4cm

± 7.7cm). Six had normal vision, two wore glasses and two wore contact lenses. According

to the eye dominance test described by Collins and Blackwell [116], six participants had

right-eye dominant and four left-eye dominant. Participants were free to blink, move the

head, withdraw from testing at any stage.

5.3.3 Procedure

The experiment started with the personal calibration, using nine targets on a whiteboard

located at four meters from the participant. The participants kept their heads still during

the calibration data collection, and they stood in front of the calibration board during

the entire eye tracking session. The instructor asked the participants to look at each

calibration target again, and turn their heads (i) to the left, (ii) then to the primary

position, and (iii) finally to the right. The instructor controlled how long the participant

looked at each target by head rotation, to collect at least 60 gaze samples (i.e. around

2 seconds). In the end, the participants performed a recalibration to compare the gaze
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estimation at the beginning and the end of the eye tracking session. Figure 36 shows a

participant during the head rotation experiment.

Figure 36: The participants were asked to look at nine targets during the head rotation experiment.
(left) the participant turns his head to the left; and (right) the participant turns his head to the right.

5.3.4 Evaluation in a Real Eye Tracking Scenario

Magnitude and Orientation of Gaze Error Distribution This experiment investi-

gated if the error distribution produced by head rotation would have the same magnitude

and orientation among all participants. For each participant, the experiment evaluated

the gaze error in 9 different observed targets at 4 meters away from the participants.

Only the binocular gaze estimations from the middle scene camera was assessed to avoid

bias relative to the camera location. Figure 37 shows the gaze error distribution of 4 first

participants (each row) when they turned their heads in lateral bending to the left (left

column) and to the right (right column).

Although all participants stood in the same position at 4 meters from the targets, the

gaze error distribution presented a different behavior for each participant. For example,

Figure 37 shows a big variance between error magnitude of Participant #01 [first row ]

(i.e. 5.72◦) and Participant #03 [third row ] (i.e. 14.14◦) when they turned their heads

to the left [left column]. The orientation also presented different behavior between the

participants. However, it is possible to note the error distribution tends to the opposite

direction concerning the lateral bending.
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This experiment showed that the rotational error is user-dependent, and the eye track-

ing system needs to investigate the error behavior for a specific subject. It is important

to note the need to perform a personal calibration for the head rotation with the aim to

create the regression mapping used to compensate the influence of head rotations.

Figure 37: The effect of head rotation in gaze error distribution for 9 observed targets at four meters.
Red circles are the actual observed targets, blue crosses are the gaze estimation, and red values are the
gaze error in pixels. Each row corresponds to one participant. (Left collumn) shows the error distribution
when the participants turn their heads to the left and (right collumn) shows the roll rotations to the right.

Monocular versus Binocular System This experiment evaluated the influence of head

rotations in monocular and binocular eye tracking systems. The assessment investigated

if the proposed compensation model can work in both eye tracking systems. The data
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analysis assessed separately the left, right and binocular (average between both eyes) gaze

estimation. Figure 38 shows the gaze error between the actual observed target and the

three gaze estimations from 3 first participants.

Figure 38: Error distribution of head rotations for 3 gaze estimation methods. Magenta crosses are the
gaze estimations from the left eye, cyan crosses are the gaze estimations from the right eye, yellow crosses
are the binocular gaze estimation (average of left and right gaze estimation), and red circles are the
observed targets. Each row corresponds to one participant. (Left collumn) shows the error distribution
when the participants turn their head to the left and (right collumn) shows the roll rotations to the right.

For all participants, the results showed a strong relationship between the three gaze

estimations regarding magnitude and orientation. The gaze error tends to the opposite

direction concerning the head rotation. It is important to note an inversion phenomenon

in the left and right gaze estimations when the subject turns the head in opposite lateral

bedding. Figure 38 shows the left gaze estimation (magenta crosses) is above the others

estimations in the left column, and under in the right column (the same phenomenon

occurs with cyan crosses). This behavior occurs independently of the dominant eye.

The results also showed that the magnitude and orientation of each gaze estimation

method presented similar behavior compared the Euclidean distance between the esti-
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mated gazes (colored crosses) and the observed targets (red circles). This experiment

showed that it is possible to compensate the influence of head rotations for both monoc-

ular and binocular eye tracking systems. It is only necessary to investigate the gaze error

behavior through a specific personal calibration.

Scene camera location This experiment evaluated the influence of scene camera posi-

tion in the eye tracker structure concerning the error produced by head rotations. The

head-mounted eye tracker had three scene cameras at a distance of 5.1cm in x-axis between

their optical center. Figure 39 shows the error distribution (magnitude and orientation)

of one participant when she has turned her head to the left in roll rotation.

Figure 39: The influence of head rotations in three different scene images. Red circles are the actual
observed targets, blue crosses are the gaze estimations, and red values are the gaze error in pixels. (top-
left) gaze estimations from left-scene camera; (top-right) gaze estimations from right-scene camera; and
(bottom-center) gaze estimations from middle-scene camera.

Unlike the parallax error experiment, which the scene camera position determined

different gaze error behaviors (see Subsection 4.4.4), the experiments involving head rota-

tions showed there is no influence of camera location in the orientation of gaze error. For

all participants, the orientations and magnitude are very similar to each other, even in

different scene images. The small difference in the error magnitude is because the targets

coordinates were collected manually through mouse clicks in three different scene images.

Improvements achieved using the proposed model During the experiment with

real gaze data from 10 participants, the results showed that the influence of head rotation

is an user-dependent variable. The lateral bending motion around Z-axis adds an average
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error of 1.92◦ ± 0.79◦ in the gaze estimation for each 10◦ of head rotation. The average

gaze error magnitude was 9.01◦ ± 5.18◦ when the participants turned their heads to the

left, and 7.83◦ ± 3.67◦ to the right. The proposed compensation model reduced the gaze

error respectively to 1.25◦ ± 0.73◦ (left), and 1.06◦ ± 0.50◦ (right). Figure 40 shows the

gaze estimations with (green crosses) and without (circle crosses) using the proposed head

rotation compensation model, when the first 4 participants turned their head to the left

(left column) and the right (right column).

Figure 40: Results achieved using the head rotation compensation model. Blue crosses are the binocular
gaze estimation based on homography [65], green crosses are the compensated gaze estimations, and
red circles are the actual observed targets. (left collumn) shows the gaze error distribution when the
participants turned their head to the left and (right collumn) shows the head rotations to the right.
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Figures 41 and 42 show the average gaze error over all 10 participants of this ex-

periment, when they turned their head respectively to the left and the right. The red

bars present the gaze estimation under the influence of head rotation, and the green bars

present the results of proposed head rotation compensation model using the head angles

as priors. The head rotation angles ranged from 16.15◦ to 68.99◦ (average 44.47◦±12.96◦),

and this is the cause of the significant variance between the average gaze error magnitude

from the participants in this experiment. The proposed head rotation compensation model

showed very promisingly to reduce the influence of head rotations in head-mounted eye

trackers, and it has presented an enhancement of 86.41% in a real eye tracking scenario.

Figure 41: Average gaze error of all observed targets when the participants turned their heads to the left.
(red bars) Average gaze estimation using a traditional gaze estimation method based on homography [65].
(green bars) Average gaze error of proposed head rotation compensation model.

Figure 42: Average gaze error of all observed targets when the participants turned their heads to the right.
(red bars) Average gaze estimation using a traditional gaze estimation method based on homography [65].
(green bars) Average gaze error of proposed head rotation compensation model.

Figure 43 shows the use of proposed model to compensate the influence of head rota-

tion in real gaze data. It shows the results achieved (green circles) from different lateral

bending movements when the participant has looked at nine targets in a whiteboard.
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Figure 43: Results achieved using the head rotation compensation model. The red circles illustrate the
raw gaze estimations. On the other hand, the compensated gaze estimations are the green circles. Each
figure shows one sample of nine targets observed by the participant during this experiment.
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5.4 Proposed Personal Calibration

Both parallax error and head rotation compensation models have user-dependent vari-

ables. Thus, it is necessary to investigate the gaze error compensation for each subject

with the aim of training a set of methods used to compensate both geometrical problem.

The proposed personal calibration is divided into three steps, namely (1) perform the

personal calibration in the traditional way, which the user looks at a set of targets on the

calibration plane; (2) rotate the head looking at a fixed target to learn person specific

parameters; (3) move the calibration target in depth, perform a new calibration with the

aim to estimate the user’s angle kappa.

To enjoy the benefits proposed in this Ph.D. thesis, after performing the three cali-

bration steps, the eye tracking system must execute following actions (i) gaze estimation,

using pupil center coordinates as input data; (ii) head rotation compensation, using head

angles from an orientation sensor as priors; and (iii) parallax error compensation, using

the distance between the user and the observed target as priors.

5.5 Conclusions

This chapter presents a compensation model to minimize the influence of head rotations

in head-mounted eye trackers. The proposed model uses the three-dimensional angles

from the subject’s head as priors. An orientation sensor attached on the head-mounted

eye tracking (behind the scene camera) provides the updated rotation matrix and the

subject’s head angles. It is important to note the error orientation tends to the opposite

direction concerning the subject’s head rotation.

The proposed head rotation compensation model is based on a second-order ordinary

least squares polynomial. Thus the head angle β in Equation 5.1 predicts the magnitude

and orientation of gaze error for a specific head pose, then adjusts the actual gaze esti-

mation in Equation 5.2. As the gaze error distribution is user-dependent, it is necessary

to learn the error behavior during the personal calibration.

Unfortunately, it was not possible to assess the proposed model using simulated data,

because the simulator does not simulate the binocular eye torsion movements properly.

However, the data analysis from 10 participants showed that the head rotation compen-

sation model can be used for both monocular and binocular eye tracking systems, once

the analyzed gaze estimation methods (left, right and average binocular) showed a strong
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correlation between their error distributions. When the participants turned their heads

around Z-axis, the gaze error presented a systematic inversion in left and right gaze es-

timations. The results did not present any influence of scene camera positions, glasses,

contact lenses and dominant eye in the gaze error behavior.

In this dataset, head rotations added an average error around 8.42◦±4.73◦ in the gaze

estimation. Lateral bending motion added an average error of 1.92◦±0.79◦ for each 10◦ of

head rotation. On the other hand, the proposed compensation model reduced the average

error to 1.15◦ ± 0.99◦ and presented an improvement in the accuracy in a head-mounted

eye tracking system of 86.41%.

The head rotation compensation model is going to submit as a full paper to 2018

Symposium on Eye Tracking Research & Applications (ETRA 2018).
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Chapter

6
Using Priors in Eye Tracking

Methods

T
he use of eye tracking in sports is challenging due to many aspects, such as

(i) eye feature detectors non-robust to critical situations; (ii) noises from the

environment; (iii) uncontrolled light conditions; (iv) geometric constraints of

uncalibrated eye trackers, among others. However, eye tracking is still the best mechanism

to supply detailed information about the visual interest of an athlete and to assist sports

specialist in the eye movements analysis that cannot be obtained otherwise. Eye tracking

systems need to be accurate and robust in several sports situations and, at the same time,

to support athletes seamlessly in their daily training sessions and official matches.

Noises from outdoor environments (e.g. light reflections, shadows, sun light) influence

negatively head-mounted eye trackers and make impractical the eye feature detection in

most sports disciplines in outdoor fields. For this reason, this chapter presents a set of

methods that use the geometric relationship between both eyes as priors to improve eye

tracking in sports. All eye tracking methods proposed in this chapter embody three main

aspects, namely (i) a robust binocular pupil detector; (ii) a novel glint normalization

approach; and (iii) an alternative eye camera slippage compensation.

Most of the head-mounted eye tracking systems use the pupil center purely to estimate

the subject’s gaze. Thus, it is essential to detect precisely the actual pupil center in most

processed eye images and, at the same time, avoid changes in the eye camera location

during the entire eye tracking session. All methods proposed in this chapter were used to

collect and analyze gaze data from experiments in elite sports practices.

Section 6.1 describes a binocular eye feature detector that uses information from both

eyes to improve the pupil detection and to make the eye tracking system more robust to

changes in the illumination conditions. Two methods to compensate the cameras slippage
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concerning the user’s faces are described in Section 6.2 (using glints normalization) and

Section 6.3 (using eye landmark detection). Finally, Section 6.4 presents the conclusions

of proposed eye tracking methods using eye information as priors.

6.1 Binocular Eye Feature Detector

According to Kaufman and Albert [118], six extraocular muscles control the human eye

movements, namely: (i) superior rectus muscle (srm); (ii) inferior rectus muscle (irm); (iii)

lateral rectus muscle (lrm); (iv) medial rectus muscle (mrm); (v) superior oblique muscle

(som); and (vi) inferior oblique muscle (iom). Each of these muscles works on a particular

action axis, and they are responsible for moving the eyes to the highest point of regard in

the subject’s field of view. According to Hering’s law of equal innervation [119], the human

nervous stimulus is equal and simultaneous for both eyes in a binocular visual system.

Figure 44 shows the relationship between primary, secondary and tertiary positions in a

typical human visual system.

Figure 44: Human eye movements patterns in a binocular system. D-axis represents the primary position
when a subject looks at the horizon. (E,F,G)-axes are the secondary positions which happen due to
complex eye movements. (A,B,C)-axes are tertiary positions and are related to human rest behavior.

In Figure 44, D-axis shows the primary position in a binocular system, when a sub-

ject looks naturally at the horizon. Secondary positions (E,F,G)-axes happen due to
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several eye movements, such as [120]: (i) ductions, ocular movements of only one eye

around vertical or transversal axes; (ii) torsions, ocular movements of only one eye around

anterior-posterior axis; (iii) versions, ocular movements of both eyes in the same direction,

speed and amplitude which the visual axes remain in the same relative situation; and (iv)

vergences, ocular movements of both eyes in opposite directions which the visual axes

vary in their relative location. Tertiary positions (A,B,C)-axes are ocular movements

corresponding to human rest (e.g. deep sleep, general anesthesia, coma, death).

Humans can move the eyes to several secondary positions around the horizontal and

vertical axes when there is a visual stimulus. Eye movements of the vergence type are

common sources of errors to gaze estimation methods. Vergence ocular movements can

be classified as [120]: (i) convergence, when the initial angle (θ1) is less than the final

angle (θ2); and (ii) divergence, on the contrary, as shown in Figure 45. Vergences also can

be defined as symmetric (when the point of regard is in the middle plane of the head and

angles α and β are the same) or asymmetric (on the contrary).

Figure 45: Vergences are ocular movements of both eyes on opposite directions which the visual axes
vary in their relative situation. (left) convergence happens when the initial angle (θ1) is less than the
final angle (θ2). (right) divergence happens when the initial angle (θ1) is bigger than the final angle (θ2).

6.1.1 Using the Eyes Relationship to Improve a Pupil Detector

This subsection presents a binocular eye feature detector that uses known human eye

movements as priors to compensate and validate the detected eye feature. The proposed

approach can be used for any eye feature, but this subsection presents only an example
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based on pupil detection. In general, a binocular pupil detector aims to detected the pupil

center in both eyes [Pl(xl, yl), Pr(xr, yr)]. As human eyes focus on the same object and

move accordingly, it is possible to create a homography between both eyes, and use the

mapping as priors to estimate the eye coordinates in two distinct ocular planes.

According to Hartley and Zisserman [110], a homography is a geometric transforma-

tion with 8 degrees of freedom, used to estimate from a point PA in the plane A the

corresponding point PB in the plane B through the following equation: PB = H × PA,

which H is a 3 × 3 matrix created from 4 corresponding points in two different planes.

For the proposed pupil detector, it is required to use the same eye feature data collected

during the personal calibration. Thus, the gaze estimation method creates the traditional

mapping from pupil centers to observed targets in the calibration plane. On the other

hand, the proposed pupil detector creates a second mapping based on the left pupil center

concerning the right pupil center.

Given the relationship between both eyes is prior known because the binocular move-

ment is simultaneous, using only the left pupil center it is possible to predict the right

pupil center through homography H and vice versa. Obviously, this is a simplistic model

which it is not considered complex eye movements like convergence or divergence concern-

ing the calibration plane. However, this approach can assist the eye tracking system to be

more robust in the eye feature detection as well as to validate if both detected coordinates

are true positive pupil candidates.

Let, Pl(xl, yl) as the left pupil center, Pr(xr, yr) as the right pupil center, and Heyes

the geometric mapping between both eyes. The proposed validation approach checks if

both pupil center coordinates correspond to true positive pupil candidates, comparing the

coordinated of pupil center P (detected through the pupil detector) related to the pupil

center P
′

(estimated through the geometric mapping). Thus, P
′
r = Heyes × Pl and both

pupil centers will be valid if and only if Pr ≈ P
′
r (based on Euclidean distance). The same

rule applies to validate the left pupil candidate.

Furthermore, the geometric mapping can remove outliers and perform a new attempt

to detect the pupil when the eye feature detector fails for one of the subject’s eyes. For this

last case, the geometric mapping Heyes is used to estimate the pupil location corresponding

to P
′

and to perform a new analysis in its N -neighborhood to ensure that the detector

will always detect both pupils in the processed image. Figure 46 shows the flow diagram

of pupil detection developed during this project and used for sports experiments. The

detector uses priors to validate and to improve the binocular pupil detection.
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Figure 46: This flow diagram presents the proposed eye feature detector using information from both
eyes to improve the robustness of pupil detection. When some information is lost, the detector uses a
geometric transformation between both eyes to perform a new recognition trial. The same geometric
transformation is also used to validate if both detected blobs are true positive pupil candidates.

6.1.2 Using N -Neighborhood to Filter a Gaze Signal

In eye tracking, gaze estimation is represented in two-dimensional gaze coordinates (gx, gy)

on a tracking plane. However, it is possible to constitute a sequence of gaze coordinates in

a one-dimensional signal, i.e. a plot with X and Y coordinates variations concerning the

time t. Through the analysis of the gaze signal, the specialist can have an overview of eye

movements behavior when the subject performs specific tasks, e.g. text reading [71,121],

surfing on web pages [122], understanding source-code [123], sports practices [124].

A one-dimensional signal of eye movements is a valuable data source, once it is possible

to identify some gaze behaviors like blinks, fixations, saccades, glissade, smooth pursuit,

microsaccades, quiet eye, among others [125]. However, the use of raw eye tracking data

can include several kinds of noise from different steps of eye tracking. This subsection

presents a gaze signal filtering approach that uses a range in the one-dimensional signal

as priors to remove noise from the signal itself and make the eye tracking system more

robust to several variations occurred during data collection and data processing.

Figure 47 shows a sequence of six video frames of a subject’s left eye. The first

row corresponds to the sequence of processed images, the red plot corresponds to their

xi-coordinates converted into a one-dimensional signal, and the blue plot is their yi-

coordinates. In both plots, it is possible to see an outlier in the pupil detection, which

generates a pulse in both signals at time 3. In an offline analysis of gaze data, there is
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the advantage of search for information in a N -neighborhood beyond the current frame

to check if the current pupil candidate is valid or not.

Figure 47: A sequence of video frames processed through a pupil detector based on blobs recognition.
The red plot shows the x-coordinates pupil centers converted into a one-dimensional signal and the blue
plot shows the y-coordinates. It is possible to see a pulse in both signals and concluded that there was a
noise in the pupil detection (as shown in the third video frame).

The video sequence showed in Figure 47 was recorded using a single eye camera with

30 frames per second in a resolution of 1280× 720 (Full HD). The illustrated gaze signal

starts in a continuous region, reaches its peak in only one frame and returns to the same

continuous region in the next frame, i.e. an eye movement of ±60 ms. The proposed gaze

signal filtering approach assumes that this pulse is an outlier and adjust the current pupil

center (xi and yi) according to the coordinates of its N -neighborhood frames.

This subsection also proposes a second gaze signal filtering approach that compares the

behavior of two synchronized signals created from binocular information. This approach

is indicated for both online and offline gaze data analysis. In the case of only one signal

presents a pulse in time ti, the proposed approach considers the pulse as an outlier in

one of the eyes. The noise can be filtered in two different ways, namely (i) through the

analysis of N -neighborhood frames (offline); and (ii) through the mapping between both

eyes to estimate the location of the missing pupil (online) (see Subsection 6.1.1).

Figure 48 shows the variations in xi-coordinates of an athlete’s right eye during the

kayak experiment in an outdoor environment (with sudden changes of illumination). The

green plot shows the signal generated from the raw pupil center and the magenta plot

shows the signal filtered using a combination of both gaze signal filtering approaches.
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Figure 48: xi-coordinates of pupil center converted in a one-dimensional signal. The green plot shows
the raw coordinates from the athlete’s right eye collected during a kayak experiment. The magenta plot
shows the signal filtered based on the analysis ofN -neighborhood frames and the geometric transformation
between both athlete’s eyes. The curve around time 1750 means one eye blink in a sequence of images.

The use of filtered signal (P
′
x, P

′
y) as input data to the eye tracking method ensures

that the gaze estimation will be similar to the actual subject’s point of regards during the

eye tracking session. The gaze signal filtering approaches are linear concerning the time.

Both approaches provide better results in offline gaze data analysis once it is possible to

know the signal behavior in a wider range n > i from the current processing time ti.

6.1.3 Using Histogram Analysis in Automatic Thresholding

The proposed eye feature detector (see Figure 46) is based on blobs recognition and

requires a threshold to convert the input grayscale image into a binary image. The binary

image has different sets of pixel elements (white regions) that share between them a

specific range of grayscale intensities and define eye feature candidates (pupil, iris, glints).

In general, pupil detectors based on blobs recognition use classifiers to analyze some blobs

properties (e.g. area, perimeter, circularity, bounding box) and define pupil candidates.

In most of viewing angles, the pupil blob appears as an ellipse and this region can

be modeled by five shape parameters [17]. Fitting an ellipse to the pupil blob contours

provides an accurate way to estimate the pupil center for both horizontal and vertical eye

positions. However, a small change in thresholding can deform the pupil blob, decrease the
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accuracy of pupil center detection and, in turn, reduce the accuracy of gaze estimation.

Furthermore, in the case of outdoor scenario, the light conditions (e.g. illumination

changes, shadows, reflections, different grayscale intensities for left and right eyes) may

change significantly during an eye tracking session which makes it hard to set (fixed or

dynamically) thresholds for pupil detection.

The grayscale intensities in the processed image (i.e. histogram) is used to define pupil

thresholds automatically. For this, it is necessary to calculate the mean from eye image

histogram, which the intensities are distributed uniformly in several classes (i.e. histogram

bars). The mean from a histogram is calculated by multiplying each value taken by the

histogram bar by the fraction of the time it occurs, through the Equation 6.1:

x̄ =
1

nw×h

∑
pixi, (6.1)

which, xi is grayscale quantization in the processed eye image and pi is the number of

pixels with grayscale intensity xi in the processed eye image.

The mean value by itself it is not the best threshold to be used by the proposed eye

feature detector. On the other hand, it is a good starting point to understand how the

processed eye image is formed. For example, corneal reflections have the highest grayscale

intensities close to white (255), and their values are much bigger than the histogram mean.

On the contrary, pupils are the darkest regions in the processed eye image, and they have

grayscale intensities smaller than the histogram mean. It means, it is possible to use

a scalar γ to assist the proposed eye feature detector in automatic select the current

threshold to corresponding eye image, through the Equation 6.2:

threshold = x̄× γ, (6.2)

which, γ < 1.0 is used to pupil detection and γ ≥ 1.0 to glints detection.

A nonlinear regression defines the scalar used to calculate the threshold used in cor-

responding processed eye image. This regression is based on a training dataset with

binocular information from 42 subjects (185 eye images) of different nationalities, gen-

ders, ages, ethnicities, with and without corrective ophthalmic lenses, in different kinds of

environments, and performing distinct tasks. Figure 49 shows four different distributions

based on scalars and histogram properties such as mean, mode, minimum and maximum

grayscale intensities. All scalars were selected manually by a specialist to ensure the best

fitting ellipse in the detected pupil candidate.

The first investigation evaluated the use of histogram mean to select the scalar γ.
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Figure 49: Threshold distribution dataset created using binocular eye images from 42 subjects. In total,
329 eye images was analyzed in different illumination conditions. The blue circles represent data collected
in outdoor experiments and the red stars are the data collected in indoor experiments. (top-left) histogram
mean vs. scalars; (top-right) maximum grayscale intentisities vs. scalars; (bottom-left) histogram mode
vs. scalars; and (bottom-right) minimum grayscale intensities vs. scalars.

However, the data distribution concerning histogram mean is not a good dataset to cre-

ate a regression model, because there is a strong correlation between data from indoor

and outdoor environments. For this reason, the experiment was expanded to investi-

gate the relationship between scalars and others histogram properties. Histogram mean

(57.00 ± 57.06), mode (61.94 ± 63.91) and median (58.21 ± 58.49) presented practically

the same data distribution. The largest variance was observed in data distribution using

the maximum grayscale intensities from the processed eye images (106.42 ± 110.93), as

shown in Figure 49 (top-right).

The best nonlinear regression to predict the scalar γ used to calculate the dynamic

threshold is based on the minimum grayscale intensities in the processed images. The

minimum grayscale intensity property presented the lowest variation among the analyzed

data distributions (26.46±29.09). The nonlinear regression uses a second order polynomial

to fit the dataset in Figure 49 (bottom-right). In summation notation this regression

polynomial is defined in Equation 6.3:

y = a0 + a1x+ a2x
2, (6.3)

which, the coefficients in used dataset are: a0 = 0.312523682, a1 = 0.006937170 and
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a2 = −0.000018764 (see green line in Figure 49 (bottom-right)). After selecting the scalar

γ, the pupil detector performs the blobs recognition module in a range of γ± 0.1 in steps

of 0.01 to choose the best pupil candidate. In this case, the “best” pupil candidate is the

one that has the best circularity (the closest value to 1), according to Equation 6.4:

circularity =

∣∣∣∣
√

4× π × area
perimeter2

∣∣∣∣. (6.4)

All plots in Figure 49 show conflicts in small regions between data collected in indoor

(red stars) and outdoor (blue circles) environments. The conflict happens because in

some images from outdoor environments was captured in place with little influence of

sun light. For example, Figure 50 (left) shows a kayak’s athlete passing under a bridge

and Figure 50 (right) shows that eye image has a grayscale intensity similar to the one

captured in indoor environments. In general, scalars bigger or equal to 0.6 are used to

define the threshold used in outdoor images, and scalars less than 0.6 are used to indoor

images.

Figure 50: An example of outdoor illumination influence in eye image. (right) The kayak athlete passes
under a bridge where there is a small influence of sun light in the captured images. (left) The captured
eye image has similar contrast compared to the images captured in indoor environments.

Figure 51 shows the result of automatic scalar selection using the nonlinear regression

polynomial (Equation 6.3) presented in this subsection. This gaze signal represents a

sequence of eye images from one athlete during the kayak experiment (see Section 7.3).

In this case, at several times the scalar signal exceeds the zone defined for the indoor

images. These are situations where eye images were captured in places with little sun

light illumination during the experiment, e.g. between the time range 1300-1400, it is

possible to observe what happens when the athlete pass under the bridge. The others

negative peaks are related to trees shadows, tends over the river, and the action of rotating

around (upstream) one of the poles in kayak gates (see Subsection 7.3.1).

Eye images recorded in indoor environments suffer less influence of sudden changes

Ph.D. Thesis



6.2 N -Closest Glint Normalization Approach 77

Figure 51: The result of automatic scalar selection using an eye video from kayak experiment. The signal
passes through the red area (for indoor images) a couple of times because the athlete was in areas without
the influence of sun light (e.g. bridges, trees shadows, covered areas).

in the threshold selection due to a better controlling of indoor illumination. Figure 52

shows a sequence of eye images captured in a laboratory experiment. In this case, at

any moment the signal exceeds the outdoor zone (i.e. blue area). It is also possible to

conclude that changes in the threshold selection are strongly related to eye rotations.

At the beginning of eye tracking session, the participant looks at the horizon. Between

time range 300-1450 the personal calibration is performed. From time 1450 onwards, the

participant only follows a target moving in depth. The jumps in this interval represent

some participant’s blinks during the experiment.

Figure 52: The result of automatic scalar selection using an eye video from a laboratory experiment. The
signal never passes through the blue area (for outdoor images). Indoor images are the easiest to select
the threshold thought the presented nonlinear regression automatically.

6.2 N -Closest Glint Normalization Approach

Glint normalization is a method that uses homographies to make an eye tracking system

more robust to head movements in remote eye trackers [65]. However, this approach can

also be used by head-mounted eye trackers [27] to reduce the influence of eye camera

slippage concerning the user’s head. The eye tracker may move during use e.g. when the

athlete is shooting due to the impact produced by the gun. A small displacement in the
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eye camera position reduces a lot the accuracy and precision of gaze estimation methods.

Hansen et al. [70] introduced a glint normalization method that selects the best de-

graded homographies according to the number of detected glints, namely (i) similarity,

a transformation that preserves the shape (for 2 glints); (ii) affine, a non-singular lin-

ear transformation that preserves the length ratios and angles between lines because its

non-isotropic scaling (for 3 glints); and (iii) homography, a general non-singular linear

transformation that preserves the collinearity of transformed points (for 4 or more glints).

This section presents an extension of Hansen et al.’s method [65, 70], which analyzes

the N -closest corneal reflections (1 ≤ N ≤ 3) from the pupil center given all true positive

glints. The proposed glint normalization approach uses all geometric transformations

from Hansen et al.’s method [70] and the Euclidean distance for a single detected glint.

The simplified human eye geometric model assumes that pupil and corneal reflec-

tions coincide on corneal plane. However, corneal reflections are non-linearly distorted

on corneal curvature surface and the planarity assumption can enhance the gaze estima-

tion error. Using the N -closest glints approach, it is possible to investigate the influence

of non-linearly distribution of glints on the cornea and compare it with the traditional

homography normalization method [65,70].

6.2.1 Assessment using Simulated Gaze Data

The evaluation of proposed glint normalization approach used simulated gaze data in a

controlled environment for MATLAB [113], where it is possible to evaluate the effects of

noise in each eye parameter. The data analysis was based on both multiple geometric

transformations and N -closest approach. The assessment was divided in two main tasks

(i) the observed targets on the screen plane with the head still, and (ii) a single observed

fixed target in different head positions. The evaluation investigated the error distribution

in gaze estimation concerning: (1) refractive indexes of aqueous humor and cornea [α]; (2)

horizontal [γ] and vertical [β] angle offset between optical and visual axes [angle kappa];

(3) number of calibration targets [N ]; and (4) XY -axes and XZ-axes head movements.

6.2.1.1 Apparatus

The simulated eye tracker was a monocular remote eye tracker with four infrared light

sources. The remote eye camera was at the center and slightly below of the screen,

the infrared light sources were at the screen corners, and the screen was 55 cm away
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from the user. Each experiment analyzed the gaze estimation from 256 observed targets

distributed in a 16×16 matrix over the screen plane. All tests aimed to investigate the gaze

estimation from two different eye models [65] with distinct angle kappa offsets, namely (i)

E0 (γ = β = 0◦), and (ii) E1 (γ = 4.5◦, β = 1.5◦). Although, the eye model E0 is physically

infeasible setup, it assists to avoid some eye biases into the controlled environment. For

standard, the experiment used the minimum number of calibration targets (N = 4)

necessary to calibrate a gaze estimation method based on homography [65].

6.2.1.2 Evaluation Controlling Head Movements

Refractive Indexes of Aqueous Humor and Cornea The test evaluated the influence

of eye refractions to the glint normalization, as shown in Figures 53 and 54. According

to Hansen and Ji. [17] the refractive index of aqueous humor is around 1.336, and the

refractive index of the cornea is around 1.376. The results of this test showed that the

refractive indexes present only a slight influence in the glint normalization.

Figure 53: The influence of the refractive index of aqueous humor [1.336] and the refractive index of
cornea [1.376] to proposed glint normalization using the eye model E0 [γ = β = 0◦].

Figure 54: The influence of the refractive index of aqueous humor [1.336] and the refractive index of
cornea [1.376] to proposed glint normalization using the eye model E1 [β = 1.5◦, γ = 4.5◦].
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Optical and Visual Angle Offset This test evaluated the influence of different angles

kappa to the glint normalization. Figure 55 shows the accuracy as a function of various

horizontal angles (−4.5◦ ≤ γ ≤ 4.5◦) and a fixed vertical angle (β = 0◦). The results of

this test showed that all geometric transformations from Hansen et al.’s method [70] model

with high accuracy (i.e. error < 0.5◦) the angle kappa during the personal calibration.

Figure 55: The influence of horizontal [γ] and vertical [β] angle kappa offset to proposed glint normaliza-
tion. This test investigated the influence of angle kappa with −4.5◦ ≤ γ ≤ 4.5◦ and β = 0◦.

Number of Calibration Targets This test investigated the influence of the number of

calibration targets to the glint normalization based on the following range: 4 ≤ N ≤ 25.

Figures 56 and 57 show the accuracy of gaze estimation as a function of the number of

calibration targets for both E0 and E1 eye models. The evaluation of similarity, affine

transformation, and homography presented similar results. On the other hand, Euclidean

distance presented a similar performance curve, but a worse accuracy (around +0.05◦).

Figure 56: The influences of the number of calibration targets (4 ≤ N ≤ 25) to the glint normalization
using the eye model E0 [γ = β = 0◦].
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Figure 57: The influences of the number of calibration targets (4 ≤ N ≤ 25) to the glint normalization
using the eye model E1 [β = 1.5◦, γ = 4.5◦].

6.2.1.3 Evaluation with Head Movements

Head Movements Around XY -axes During the experiments to investigate the ro-

bustness of glint normalization to the head movements around XY -axes, the eye looked

at a fixed point on the screen while the head moved 16 positions on the X-axis and 16

positions on the Y -axis. The fixed point was one of the calibration targets because gaze

estimation on this point presents high accuracy [65]. This experiment evaluated the ro-

bustness of the proposed glint normalization approach withN -closest glints concerning the

head movements as well. Given four corneal reflections, the proposed approach uses the

3-closest glints for affine transformation, 2-closest glints for similarity, and 1-closest glint

for Euclidean distance. Figure 58 shows that the 3-closest and 2-closest normalizations

present a performance similar to traditional homography normalization [65].

Figure 58: The influences of head movements around XY -axes to proposed glint normalization approach
using eye model E0 [γ = β = 0◦] and eye model E1 [β = 1.5◦, γ = 4.5◦]. The eye location changes in
steps of 100 mm in both x- and y-coordinates from the camera center.
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Head Movements in Depth The last simulated test evaluated the robustness of pro-

posed glint normalization approach to head movements in depth. Again, a fixed target

remained still on the screen while the eye moved in steps of 100 mm in X-coordinate and

300 mm in depth. During the personal calibration, the screen as at 550 mm away from the

user. For the experiment, the eye moved in a range of 400-700 mm in 16 positions. The

3-closest and 2-closest normalizations presented a better performance for head movements

in depth compare to traditional homography normalization [65], as shown in Figure 59.

Figure 59: The influences of head movements in depth to proposed glint normalization approach using
eye model E0 [γ = β = 0◦] and eye model E1 [β = 1.5◦, γ = 4.5◦]. The eye location changes in steps of
100 mm in X-coordinate and 300 mm in depth.

6.3 Eye Camera Slippage Compensation Model

Although glint normalization approach proposed in Section 6.2 works very well for both

remote and head-mounted eye tracking applications, some practical problems arose during

sports experiments. In general, infrared light sources are attached close to eye cameras in

head-mounted eye trackers. However, eye cameras are located slightly below to subject’s

eyes and corneal reflections are not present in the most of the captured eye images, mainly

due to large eyeball rotations.

It is necessary to use any reference point to compensate the eye camera slippage. This

section presents a new eye feature normalization approach to be used in missing corneal

reflections. Eye corners are features widely used to eye feature normalization and to assist

gaze estimation [40, 57, 58, 126]. Even after small displacements of eye cameras around

x- or y-coordinates concerning the user’s head, the relationship between eye corners and

pupil center do not suffer major changes. In general, eye corner detection algorithms are

unstable, and they add noise to eye feature normalization and to gaze estimation.
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6.3.1 Eye Feature Normalization Approach

This subsection presents a novel eye feature normalization approach that uses landmarks

around the eyelids to normalize the pupil center. The proposed approach created a par-

ticular labeled binocular landmark dataset using 260 infrared eye images. The eye images

were manually labeled, specifying eight (x, y)-coordinates of landmarks around each eye,

and the two regions of interest around the eye regions. The training dataset was trained

using a regression tree ensemble algorithm developed by Kazemi and Sullivan [127].

The binocular landmark positions are directly estimated from the grayscale intensities

themselves. The proposed approach improves the controlling of eye camera slippage in

head-mounted eye trackers and, at the same time, maintains the robustness of eye feature

normalization during the entire eye tracking session. Figure 60 presents four examples

of eye images used to test the learning approach. The processed images contain eight

landmarks around each eye contour (i.e. green points) and two regions of interested with

recognized eyes (i.e. red rectangles) in a binocular image.

Figure 60: An example of four eye images used to test the performance of a learning approach. It can
recognize both eyes in the processed image (red boxes) and, at the same time, the eye contour through
pre-defined landmarks (green points).

Each landmark contains one IDi in a range of 0 ≤ i ≤ 7, which ID0 are lateral

eye corners, ID2 are top landmarks, ID4 are nasal eye corners, and ID6 the bottom

landmarks for each eye. Only landmarks ID0 and ID4, and the midpoint of the segment
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connecting both landmarks are used in eye feature normalization because they do not

change their locations during eyelids movements, as shown in Figure 60 (bottom-right).

The normalization is based on Euclidean distance between the pupil center and the closest

reference point (i.e. ID0, ID4, or the midpoint). The closest approach is used to get better

performance in the normalization as shown in Subsection 6.2.1.3.

The same algorithm is used to detect the user’s eyes and define regions of interest

in the processed image, as presented in the flow diagram in Figure 46. Thus, the pupil

detection is performed only on each region of interest, and it is possible to speed up the

processing time and reduce the number of false positive pupil candidates. The algorithm

also has a routine to detect eye blinks (see the first blink output in Figure 46) based on

the aspect ratio of landmarks ID0, ID2, ID4 and ID6, using the Equation 6.5:

ratio =
distanceh

2× distancev
, (6.5)

which distanceh is Euclidean distance between landmarks ID0 and ID4, and distancev

is Euclidean distance between landmarks ID2 and ID6. The algorithm sets the currently

processed eye image as an eye blink when ratio < 0.09 and stops the eye feature detection.

6.3.2 Assessment using Real Gaze Data

The evaluation of the proposed eye features normalization approach used a real eye track-

ing scenario in a laboratory experiment. The participants used the same head-mounted

eye tracker built for the head-rotation experiment (see Subsection 5.3.1). A sample of 5

volunteer participants (4 males and 1 female) were recruited from the IT University of

Copenhagen. Participants ranged from 26 to 45 years old (mean = 34.2± 6.9) and their

height ranged from 151cm to 187cm (mean = 173.8cm ± 13.7cm). Two of them had

normal vision, two wore glasses, and one wore contact lenses.

During the personal calibration, the participants stood in a fixed position and looked

at 9 targets in a whiteboard at 4 meters from them. Participants were instructed to look

at the calibration target number 5, keep their focus of attention at the target during the

entire experiment and rotate the head freely for how long they wanted. At the end of the

experiment, the participants performed a recalibration to compare the error distribution

concerning the calibration data collected at the beginning of the eye tracking session.

Participants were free to blink, move the body and withdraw from testing at any stage.

Figure 61 shows the (x, y)-coordinates distribution of a participant’s right eye during
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the execution of experiment. It is possible to see in Figure 61 (bottom) that the plot has a

descendant curve when comparing the beginning and the end of eye tracking session. The

difference between initial and final Y -coordinates in the blue plot is around 65 pixels.

Figure 61: Influence of eye camera slippage in the eye feature detection. (top) X-coordinates do not
change along the eye tracking session, while (bottom) shows a descendant curve in Y -coordinates.

Eye corners are used to identify the eye camera slippage. The compensation approach

(see Subsection 6.3.1) uses eye corners as reference points in an eye feature normalization.

The biggest problem found in this experiment was the instability of binocular landmark

detector because both eye corners (inner and outer) presented considerable variations

along of processed eye video. Figure 62 shows Y -coordinates from the inner right eye

corner of the same participant’s eye illustrated in Figure 61. The blue plot in Figure 62

shows several jumps with large dispersion along the entire eye tracking session.

Figure 62: (blue) Y -coordinates from inner right eye corner along the experiment. The blue plot presents
a descendant curve related to the eye camera slippage concerning participant’s head. (green) A 4th order
polynomial regression to calculate the eye corner coordinate used into eye feature normalization.

Figure 61 (bottom) and Figure 62 show that pupil center and eye corners coordinates

presented similar descendant curve in Y -coordinates along the time. A fourth order
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polynomial regression fits the distribution of the eye corners coordinates (see the green

plot in Figure 62) to reduce outliers in the eye feature normalization. This polynomial

regression provides the reference points used in the eye feature normalization approach.

Figure 63 shows a plot with the average gaze error of nine targets observed during

the recalibration, i.e. the difference of gaze estimation between the beginning and the end

of the experiment. The red bars are the gaze error distribution using a gaze estimation

method based on homography [65], and the green bars are the gaze error distribution

using the proposed eye feature normalization approach before estimating the gaze.

Figure 63: Average gaze error between the beginning and the end of an eye tracking session. (red bars)
Average gaze error using a traditional gaze estimation method based on homography [65] and using only
the pupil center as input data. (green bars) Average gaze error of proposed approach that uses normalized
pupil center as input data to the same gaze estimation method based on homography [65].

Figure 63 shows the average gaze error distribution over the 5 participants. In the

first analyzed item (i.e. the red bars), the pupil center is the only one input data used to

the gaze estimation method, which the mean gaze error is 22.73◦±33.14◦. The significant

variance is related to the eye camera slippage. In the second analyzed item (i.e. the

green bars), the proposed approach normalizes the pupil center, and then the normalized

pupil is the input data used to the gaze estimation method, which the mean gaze error is

5.99◦±3.57◦. The proposed eye feature normalization approach presented an improvement

of 74.94% in this dataset.

The proposed eye feature normalization approach showed very promisingly to reduce

the influence of eye camera slippage in uncalibrated head-mounted eye trackers. However,

the development of proposed approach still needs many improvements to increase the

robustness of eye corners detector. Thus, it is proposed to use a broader dataset with

eye images from different subjects, in indoor and outdoor environments, while performing

various daily tasks using a head-mounted eye tracker. It is also important to increase the
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number of landmarks around the eyelids to stabilize the landmarks that represent the eye

corners (i.e. currently the landmarks ID0 and ID4).

6.4 Conclusions

It is tough to identify the pupil and glints in eye images for outdoor applications be-

cause of illumination noise, reflections, sunlight, shadows, among others. For this reason,

this chapter presents a collection of eye tracking methods to improve the robustness of

a head-mounted eye tracker in the wild. These methods use eye information to reduce

the influence of noise for eye feature detection. The use of binocular information to val-

idate and compensate the pupil center showed very promisingly in outdoor and indoor

experiments, in particular for sports practices (kayak and shooting). Obviously, the math-

ematical model based on homography is simplistic, and it does not take into account that

after the personal calibration complex eye movements could happen which the mapping

is not able to handle, e.g. ductions, torsions, versions. However, some situations which

one of the eyes suffer a strong influence of external noises (e.g. shadow, sunlight), the

proposed binocular compensation approach presented satisfactory performance.

The offline analysis of gaze data allows searching information in different ranges of

the gaze signal and, at the same time, having an overview of gaze behavior during the

entire eye tracking session. For example, the pupil center coordinates (pcx, pxy) can be

represented in two one-dimensional gaze signals for each X- and Y -coordinates. The

analysis of N -neighborhood range allows assisting filtering the input gaze data before

the gaze estimation. However, it is important to be aware that the proposed gaze signal

filtering approach works very well for eye tracking application with normal frame rate

(30-90 Hz). It would have a different behavior to remove outliers from high-speed gaze

signal (e.g. 1000 fps). The offline analysis also allows using gaze signals from both eyes

to remove outliers and to identify gaze behaviors like blinks, saccades, and fixations. This

approach was widely used during this project to process the eye tracking data collected

from eye tracking experiments in real scenarios.

Another contribution presented in this chapter was a learning approach to assist

the eye feature detector in recognizing the environment setup (indoor or outdoor) and

selecting the best threshold for binarizing the input eye image. This learning approach

uses the minimum grayscale intensity of processed eye image to choose the scalar used

to calculate the current threshold. This approach presented an excellent performance for
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the entire dataset created in this project, but it was not validated to eye feature dataset

in general. Before publishing the proposed automatic threshold selection, it is necessary

to validate it using others pupil datasets (e.g. [33,34,128]).

This chapter also presents a novel glint normalization approach based on the exten-

sion of multiple geometric transformations [70]. This glint normalization approach is

robust to noise and selects the best geometric transformation according to the number

of detected corneal reflections. The primary intention was creating a robust glint nor-

malization that works even with one glint. However, the first experiments showed that

translation transformation is intolerant to head movements. For this reason, the proposed

approach uses the Euclidean distance between pupil center and detected glint as an al-

ternative to translation normalization. During the personal calibration, it is necessary to

create all geometric transformation matrices, i.e. four matrices for the norm, six matri-

ces for similarity, four matrices for affine transformation and one matrix for homography

normalization. The biggest contribution of the proposed approach is the N -closest glints

normalization. This normalization presents a performance similar to traditional homog-

raphy normalization [65] even using only two corneal reflections. The proposed approach

will be submitted as a paper to some conference in the field of Computer Science and its

draft is available in Annex C.

The normalization is useful to compensate the influence of eye camera slippages con-

cerning the subject’s face along the eye tracking session. However, glint normalization

presents some practical problems for head-mounted eye trackers because glints are not

available in all processed eye images due to large eyeball rotations. For this reason, this

chapter presents an alternative eye feature normalization based on eye contour landmark

detection. The eye corners coordinates are used to normalize the pupil center before the

gaze estimation and it presented an improvement of 74.94%. However, the current eye

contour landmark detector based on regression tree ensemble algorithm was trained using

a small dataset and only eight landmarks around each eye. Thus, eye corners detection

presented significant variation in (x, y)-coordinates as shown in Figure 62. A fourth order

polynomial regression was used to reduce the outliers of eye corners coordinates and to

calculate the reference point used to normalize the input pupil center.

The proposed eye feature normalization is begin improved in collaboration with the

University of the West of Santa Catarina (UNOESC), supervised by Prof. Lilian Jean-

nette Meyer Riveros and the Bachelor student in Computer Science Fernando Wolff. In

this new study, the learning approach will be trained and tested using a dataset with
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binocular information from 42 subjects (185 eye images) of different nationalities, gen-

ders, ages, ethnicities, with and without corrective ophthalmic lenses, in different kinds

of environments, and performing distinct tasks (i.e. the same dataset used to training

the automatic threshold selection in Subsection 6.1.3). The new study proposes to use 64

landmarks around the eyelids to increase the stability of eye corners detector. This eye

feature normalization approach will be submitted as a full paper to 2018 Symposium on

Eye Tracking Research & Applications (ETRA 2018).
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Chapter

7
Experiments in Sports Scenarios

T
his chapter presents two eye tracking experiments performed in sports scenarios.

The first experiment planned with the objective to explore different combina-

tions of hardware to improve the eye tracker for the chosen sports. The second

one with the aim to collect and analyze gaze data in the wild to support the development

of the eye tracking methods proposed in this Ph.D. thesis, which are robust to critical

situations in indoor and outdoor environments.

The dataset generated through these experiments and laboratory experiments con-

tains eye information from more than 100 distinct subjects of different nationalities, gen-

ders, ages, ethnicities, with and without corrective glasses, in various environments, and

performing distinct sports tasks. In a scope of the following experiments, an elected group

of that dataset have been used in different moments.

Section 7.2 describes the shooting experiments, which assisted in developing an eye

tracking system and in building some head-mounted eye tracker prototypes. A collabora-

tion between the IT University of Copenhagen (Denmark) and the University of Leipzig

(Germany) resulted in a kayak experiment as described in Section 7.3.

7.1 Collaborations

This Ph.D. thesis had an extensive collaboration with the Danish Elite Sport Organization

(aka Team Danmark), which provided access to the training facilities, athletes, and experts

during the shooting experiments. Eye tracking methods and tools developed during this

Ph.D. thesis were used at the Department of Movement and Training Science of Natural

Sports of the University of Leipzig, in a series of experiments coordinated by the Ph.D.

students Melanie Mack and Otto-Max Klein. There was also a collaboration with the

Deutscher Kälteund Klimatechnischer Verein (DKV), during the kayak experiments.
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7.2 Shooting Experiment

The shooting experiment was an environment for continuous tests, controls, and appraisal

of the eye tracking methods proposed in this thesis, and to test and found the best

combination concerning the eye tracker hardware. It worked as a laboratory test, where for

each new software or hardware update released, a new daily training session was scheduled

with a shooting athlete to investigate the need for new enhancements in the hardware,

and to identify bugs in the eye tracking system methods in development. The idea of

creating adaptable eye trackers that exploit the constraints revealed for specific sport

training settings has emerged during shooting experiments. Each shooting experiment

session used the same methodology protocol with a single one elite athlete.

7.2.1 Method

Participants The elite athletes who participated in most of shooting experiments were

(i) Mikkel Petersen, junior elite athlete with 8 years of experience, Danish champion in his

category in 2016; and (ii) Jesper Hansen, expert elite athlete with 24 years of experience,

world champion in 2014 and fifth position Rio 2016 Olympic Games. Figure 64 shows an

athlete during a daily training session using one of our head-mounted eye trackers.

Figure 64: Mikkel Petersen’s eye movements are collected while the target is rushing through the air, on
the skeet field at Københavns Flugtskytte Klub.

Apparatus In a case of shooting, according to Danish laws athletes are obliged to use
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protection glasses and hearing protection in the daily training sessions and official com-

petitions. Consequently, the head-mounted eye trackers prototypes used in the shooting

experiment were built using frame glasses and, in some cases, helmets. The set of equip-

ment had constantly changed, during de experiments as shown in Figure 65. The essential

configuration included scene and eye cameras, lenses, infrared light sources, IR pass filter,

computer and power cables. The head mounted eye tracker is connected to a computer

by USB port 2.0. An intermediary session uses a combining of wireless equipment.

Figure 65: A set of head-mounted eye tracker prototypes built during this Ph.D. thesis.

Measures Measures and information collected during the shooting experiments evaluated

the quality of cameras, infrared light sources, IR pass filters, m12 lenses with different

focal lengths and apertures, components, among others. In the side of software, it was

possible to assess the quality of captured images, maximum frame rate for capturing and

recording videos, the efficiency of eye feature detectors, the accuracy and precision of gaze

estimation, sources of noise, among others.

Procedure All shooting experiments were performed at the Københavns Flugtskytte Klub

(KFK) where contains three Olympic fields of shooting practice with moving targets.

Figure 66 shows the layout of a training field based on Olympic shooting rules. For
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each experiment session, the athletes tried to hit the moving disk from the skeet range at

stations 1, 4, 7 and 8. The session started with the personal calibration using nine targets.

Then, the athlete performed three tasks, namely (1) hit five individual moving disks from

the high tower; (2) hit five individual disks from the lower tower; and (i) hit two sequences

of two disks released simultaneously from both towers, i.e. in total 14 targets for each

trial. It was performed around ten training sessions of shooting experiments.

Figure 66: The layout of an Olympic field of shooting practice with moving targets.

7.2.2 Analysis and Results

After each daily training session, the collected gaze data were analyzed offline to investi-

gate many aspects of both hardware and software (see Subsection 7.2.1). The prototypes

built during this project were used to define the best off-the-shelf hardware to build a

robust head-mounted eye tracker. For each session, the prototype was mounted on dif-

ferent supports, glasses frames, 3D printed mounts, helmets, and finally in safety glasses

specific to shooting discipline, which presented the best ergonomy for shooting practices.

In this sense, one of the main contributions of this Ph.D. thesis is to provide an entirely

customizable eye tracker for different needs of each sports discipline.

The basic off-the-shelf hardware chosen to build eye trackers for sports experiments

are (i) UVC cameras1 that use m12 lenses, have board size of 38 × 38mm, are multi

1Available in https://goo.gl/VXq7ip
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platform, work with USB2.0 high speed, and have maximum resolution of 1920 × 1080

Full HD in 30 frames per second using MJPEG codec; (ii) eye camera lenses2 are 3.97mm

(focal length), f/2.8 (aperture), 82 degrees (field of view), 16MP (resolution), with no

distortion and have an infrared pass filter in a very narrow range around 850nm; and (iii)

scene camera lenses3 are 1.21mm, f/2.0, 220 degrees, 16MP, and they are able to capture

a very wide field of view from the environment.

7.3 Kayak Experiment

This experiment had several aims in collaboration with the Department of Movement and

Training Science of Natural Sports of the University of Leipzig and the German Kayak

Organization. For the scope of this Ph.D. thesis, the main aims were (i) build an off-the-

shelf head-mounted eye tracker adaptable to kayak discipline; and (ii) collect gaze data

from a real eye tracking scenario of sport (in-situ) to be used in the improvement of eye

tracking methods proposed in Chapter 6.

For the Leipzig’s Associated Research Project4, the main objective was using the

collect gaze data to analyze the athlete’s gaze behavior in canoe slalom during locomotion

under competition constraints. The study investigated athletes with different experience

levels in two whitewater kayak slalom disciplines, namely (1) canoe single [C-1], a sport

which involves paddling a canoe with a single-bladed paddle; and (2) kayak single [K-1],

with a double-bladed paddle.

The used head-mounted eye tracker prototype was built especially to the Leipzig’s

Associated Research Project. The research team had a first pilot test experiment using

a commercial SMI head-mounted eye tracker. However, even before the athlete passed

through the gate, it was not possible to see the two poles of the gate due to the narrow

lens of the scene camera. For this reason, an adaptable head-mounted eye tracker was

built to capture the entire whitewater slalom course.

7.3.1 Method

Participants A sample of 22 volunteer participants (13 males and 9 females) were re-

cruited from the German Kayak National Team. Participants ranged from 18 to 31 years

2Available in https://goo.gl/qb2ZfX
3Available in https://goo.gl/4AuNiW
4See more information about this eye tracking study in the Experimental Test Plan available in

Annex D.
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old (23.68±3.94). Eight athletes of canoe single (C-1) and fourteen athletes of kayak sin-

gle (K-1). The athletes had different expertises in kayak practice, which six professionals,

six experts, and ten intermediates. Their experience in kayak practice ranged from 8 to

22 years (15.00 ± 3.61). Three wore glasses and three wore contact lenses. Participants

were free to blink, move the head, withdraw from testing at any stage.

Measures To the kayak experiment, the information collected during each session refers

to eye and scene images, which we tried to find out solutions to improve the robustness of

eye feature detection over critical outdoor illumination such as reflections, sun light, low

contrast, among others. The Leipzig’s Associated Research Project used this information

to evaluate a qualitative approach to visual perception and a quantitative measurement

of athletes’ eye movements. Furthermore, a user evaluation was shared with this project

to collect the user opinions related to (Q1) the eye tracking frame impaired the athlete’s

movements; (Q2) the situation of the study impaired the athlete’s movements; and (Q3)

the athlete’s gaze movement matches with the real eye movements.

Apparatus The head-mounted eye tracker for kayak practice was mounted in the official

canoe slalom helmet. The prototype had the following components (i) two synchronized

Full-HD web cameras that allow capturing 60 frames per second with 1280 × 720 of

resolution; (ii) one lens of 3.97mm (focal length) and f/2.8 (aperture) for the eye camera;

(iii) one eye-fish lens of 1.21mm and f/2.0 for the scene camera; (iv) one IR narrow pass

filter; and (v) some off-the-shelf hardware to mount electronic components in the helmet.

Pilot Tests The pilot tests consisted of four sessions and executed with one single kayak

athlete. The objective was to evaluate the head-mounted eye tracker used in the kayak

practices, speed up the capturing and recording video process, and to develop eye tracking

methods robust to critical situations. For the pilot tests, the kayak athlete did not follow

any formal experiment procedure, except the personal calibration. The pilot test was also

used to define all steps of the formal follow experiment at the competition.

Procedure Two sessions were made at the actual test site in Augsburg, Germany. In

the experiment, the athletes had to perform slalom courses in competition mode through

a sequence of 7 gates. The gates have two poles of 1.2m width, numbered and colored as

either red or green. Each color indicates the direction how the athlete must pass through

the gate, namely (i) red (upstream), the athlete must rotate around one pole; and (ii)

green (downstream), the athlete only must pass through the gate. For this experiment,

only gates 1-7 were used, which 1-2 and 7 are red gates, and 3-6 are green.

Each session started by the personal calibration using twelve targets on a wide board
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at 1.5 meters from the athlete. After that, the athlete went to the boat, and the laptop

was placed inside the kayak with a water protection bag. Finally, the athlete performed

the trials (each one around 45 seconds). The athlete repeated the experiment from 3 to 8

trials according to the number of failed trials (e.g. when the eye camera touched the gate

pole). After the last trial, the personal calibration was verified by asking the participant

to look at a moving target in nine positions.

At the end of the experiment, the athlete was interviewed to answer the evaluation

questionnaire with three questions (Q1, Q2 and Q3) about the use of the head-mounted eye

tracker. Posteriorly, the athletes answered about impressions and the results of processed

scene videos. Figure 67 shows some images from the kayak experiment.

Figure 67: The kayak experiment with intermediate and expert athletes. (top-left) some tends have
been placed along the river to reduce the influence of sun light during the experiment. (top-middle)
the personal calibration with twelve targets. (top-right) the recalibration to check if the eye camera has
moved during the experiment. (bottom) canoe and kayak athletes during the experiment.

7.3.2 Analysis and Results

Head Mounted Eye Tracker Through this experiment, we discovered a solution to

build a stable head-mounted eye tracker for kayak practices, as shown in Figure 68. The

eye and scene cameras were placed according to the camera location test (see Subsec-

tion 4.4.4), to reduce the influences of parallax error in X-axis. The list of used off-the-

shelf hardware is available in Subsection 7.3.1.

Using the Proposed Eye Tracking Methods For the kayak experiment, it was nec-

essary to develop eye feature detectors robust to the reflection in the water and direct
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Figure 68: A head-mounted eye tracker prototype built with off-the-self hardware in a kayak helmet.

sun light, because the river acts as a mirror which reflects the sun light directly in the

athletes’ face. The eye tracking methods proposed in Chapter 6 played the main role in

improving the gaze data collecting. Figure 69 shows the result of eye images processed

with the eye tracking methods using priors.

Figure 69: Pupil detection of the same athlete and trial in different illumination conditions. Red X means
pupils detected correctly and green X means pupils detected using eye information as priors.

7.3.3 User Satisfaction Evaluation

The user satisfaction evaluation had three questions (Q1, Q2 and Q3) related to the head-

mounted eye tracker and the eye tracking session. Each athlete replied the questionnaire

(available in Subsection 7.3.1) choose the best answer from 1 to 5, which (1) I do not

agree; (2) I nearly do not agree; (3) I partly agree; (4) I nearly agree; and (5) I agree.
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Figure 70 shows an overview of athletes’ answers concerning the questionnaire. Q1

showed that the athletes answered that the head-mounted eye tracker impaired their

natural movements (11/22 participants), and the second half said that the eye tracker

partially impaired or did not impair. In general, Q2 showed that the athletes did not feel

annoyed with the situation of the study (19/22 participants). Moreover, Q3 showed that

most of the athletes wholly or partially agree on the gaze estimations matches with their

real eye movements (17/22 participants).

Figure 70: An overview of the user satisfaction evaluation from all 22 participants of the kayak experiment.
They have answered the following satisfaction survey, Q1: Does the eye tracking frame impaired my
movement? Q2: Does the situation of the study impaired my movement? and Q3: Does my gaze
movements matches with my real eye movements?

The athletes that felt totally (18.2%) or partially (31.8%) impaired by the head-

mounted eye tracker reported that (i) they need to take more distance to the gates or

poles because their field of view was partially occluded or to avoid the eye camera touches

the gate; (ii) they made an alternative trajectory and handling of the paddle because

of helmet construction; (iii) paddling and movement were limited, and (iv) the frame

distracted a little bit and the user touched it sometimes.

The athletes that did not feel annoyed (9.1%) or only a bit annoyed (40.9%) with

the head-mounted eye tracker reported that (i) it was unusual to have a camera in their

field of view, but they did not mind and (ii) they were more annoyed with the sun light

changes and shadow under the tarp than with the eye tracker.

Some athletes from the group of women (9/22 participants) reported that the frame

was too big, and the eye camera was in their field of view. It means, would be necessary

to mount a female version of the head-mounted eye tracker to fit better in women’s head.

In the group of men (13/22 participants), some athletes reported the need to take more

distance to the gates and the new strategies to pass through the gate.
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8
Conclusions

T
his Ph.D. thesis presents the use of priors to improve the accuracy and robustness

of eye tracking system. The emphasis is on the application of eye tracking

in sports, which is a challenging topic in the field of eye tracking due to the

difficulty of performing eye tracking sessions in critical situations. The thesis embodies

4 main themes, namely (i) mathematical models to reduce the influence of noise in eye

tracking systems; (ii) off-the-shelf hardware to build adaptable head-mounted eye trackers;

(iii) eye tracking methods to explore the constraints revealed for specific sports settings;

and (iv) prior information to improve the accuracy of gaze estimation methods. This

chapter summarizes the contributions developed in this thesis and proposes future work.

8.1 Contributions of this Thesis

Using priors to improve eye tracking systems “Using priors” is a novel terminology

presented in this Ph.D. thesis to the field of eye tracking, and it means to use available

information known from the problem at hand as an alternative to improve different steps

of eye tracking. Priors are the kernel of this Ph.D. thesis, and all eye tracking methods,

models, and approaches developed in this Ph.D. thesis use prior knowledge from several

data sources (e.g. orientation sensors, geometric relations of eye feature, depth, head

angles). In general, eye tracking methods use eye feature purely to estimate the user’s

point of regard. This Ph.D. thesis goes beyond and uses any available information that

could improve the robustness, accuracy, precision of eye tracking. The following topics

present the kind of used priors and a statistical analysis of achieved improvements.

Building adaptable head-mounted eye trackers Most eye trackers suffer from geo-

metric constraints as well as strong interference from the environment of the eye tracking

session. Another factor to highlight is the low adaptability of commercial eye trackers
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once it is not possible to replace electronic components according to constraints revealed

for specific sports settings. For this reason, this thesis used head-mounted eye tracker

prototypes built with off-the-shelf hardware that covers specific sports situations taking

into account do not disturb the athlete’s field of view during the daily training session.

Using the depth as priors to compensate the parallax error Section 4.2 presents a

parallax compensation model that improves the gaze estimation accuracy in head-mounted

eye trackers when the observed target moves in depth. The proposed compensation model

uses the distance between the athlete and the observed target, and the offset of athlete’s

angle kappa as priors. The proposed model presented impressive results using both simu-

lated and real gaze data. The evaluation using simulated gaze data showed that proposed

model improves the accuracy by a factor of 10. Moreover, the evaluation using real gaze

data demonstrated that the proposed model enhances the accuracy in 80.59%.

Using the 3D angles of head movements to compensate the head rotation

Empirical observations of laboratory experiments revealed that head rotations influence

the accuracy of head-mounted eye trackers. In general, the gaze error tends to the opposite

direction concerning the head rotation. The magnitude and orientation of gaze error

are user-dependent related to angle kappa, and it is necessary to learn about the error

distribution for each subject. As head rotations are natural body movements, it is a need

to create a mechanism to handle head rotation. An orientation sensor attached to the

head-mounted eye tracker provides the three-dimensional head movements. The proposed

head rotation compensation model uses the 3D angles from subject’s head as priors to

improve the gaze estimation accuracy by multiple linear regression. The evaluation in a

real eye tracking scenario demonstrated that the proposed compensation model improves

the gaze estimation accuracy in 86.41%.

Novel glint normalization approach This Ph.D. thesis presents a novel glint normal-

ization approach based on homographies that uses a formal geometric correction scheme to

make an eye tracking system more robust to head movements in remote eye tracking setups

and more robust to eye camera slippage in head-mounted eye tracking setups. The pro-

posed glint normalization approach is particularly focused on adapting the normalization

according to the number of detected or missing corneal reflections. This approach requires

labeling each detected glint to choose the correct mapping when the glint detection loses

any true positive glint candidate. All geometric linear transformation degraded homogra-

phies depending on how many glints are available. The proposed approach introduces an

alternative glint normalization that uses the N -closest glints from the pupil center (given
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all true positive glints candidates) that reduces the influence of the non-linearly distri-

bution of corneal reflections on the user’s cornea surface. Experiments using simulated

gaze data showed that the 3-closest and 2-closest glint normalization methods present a

performance similar to traditional homography normalization [65] (error ≈ 0.4◦). This

approach still needs to be evaluated in a real eye tracking scenario. The paper draft is

available in Annex C.

Using eye feature as priors to compensate eye camera slippage Eye camera

slippage is a common problem in mobile eye tracking setups, where the head and eye

tracker moves and hence disrupting the personal calibration. For example in the shooting

experiment, each shot fired the eye tracker vibrates and also changes the eye camera

location. After the second shot, it was not possible to identify the actual athlete’s point

of regard in the scene image. The first trial of eye camera slippage compensation used

corneal reflections to normalize the pupil center. However, glints were either weak due to

outdoor lighting and disappeared due to large eyeball rotations. The proposed eye feature

normalization approach uses the eye corners as reference points to normalize the pupil

center. Experiments in a real eye tracking scenario showed that the proposed approach

improves the gaze estimation accuracy in 74.94% compared to traditional gaze estimation

without normalization. The eye corners detector developed in this Ph.D. thesis is still at

an early stage of development and needs several improvements to stabilize the detected

points along the processed video. This approach presented good results only in laboratory

experiments (indoor), and it is exclusively for head-mounted eye tracking setup.

Using eyes as priors in a robust eye feature detector Eye tracking is challenging

in critical situations which beyond geometric issues also influence eye feature extraction.

The proposed eye feature detector uses the geometric relation of the human ocular system

as priors to make eye tracking more robust to environmental noises. For example, the

binocular eye tracking method (see Section 6.1) uses a geometric mapping between left

and right eyes to validate and recognize both eyes in noised eye images. As the eye

tracking data analysis evaluates offline gaze data, it is possible to have an overview of

eyes behavior in a particular range at the eye tracking session time. The offline gaze data

analysis is based on (i) N -neighborhood of the monocular eye tracking signal itself; and

(ii) comparison of binocular eye tracking signals. This approach had a significant role in

the analysis of gaze data from shooting and kayak experiments because sunlight made the

pupil detection much more challenging. Lastly, the histogram analysis is used as priors

to select automatically the threshold used for pupil and glints detectors. This approach

works pretty well for the data set generated in this Ph.D. thesis and subsequent eye videos
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recorded using the same eye tracker prototype. Before publishing the proposed approach,

it is important to validate it using different datasets [33, 34, 128] with eye images from a

larger number of participants performing different everyday tasks.

Eye tracking in sports experiments Experiments in different sports disciplines were

performed to collect and analyze gaze data involving novice, intermediate and expert elite

athletes during the daily training session of shooting, football, and kayak. Unfortunately,

most of the eye tracking methods presented in this Ph.D. thesis were not tested in the

sports experiments. In fact, the proposed eye tracking methods arose as a consequence of

difficulties encountered in the sports experiments. All sports experiments were necessary

to improve the developed eye tracking system and to build adaptable head-mounted eye

trackers step-by-step. Shooting experiments assisted in defining cameras and lenses used

in the final head-mounted eye tracker prototype, to build adaptable devices once the use

of protection glasses is mandatory for shooting athletes in Denmark, and to define the best

personal calibration to eye tracking in sports. Football experiments were useful to improve

the video capturing and recording processes using multiple synchronized cameras and in

the development of binocular eye tracking system. Kayak experiments were paramount

to define the final head-mounted eye tracker prototype, capturing and recording videos

in the maximum frame rate available in the selected cameras (60 Hz), and evaluation of

binocular eye tracking methods presented in Section 6.1. The influence of parallax error,

head rotation, and eye camera slippage was evaluated only in laboratory experiments.

8.2 Future Work

The research carried out in this Ph.D. thesis suggests some open problems and new aspects

that could be further explored.

Using priors to improve eye tracking systems showed very compelling in sports ex-

periments during this Ph.D. thesis. However, the best scenario would be to get priors

from data sources available on the eye tracker itself. For example, extracting priors from

captured scene images (i.e. object recognition/tracking) to estimate the distance between

the user and the observed plane. This open problem will be the first research topic to be

investigated after this Ph.D. thesis.

The proposed personal calibration is a bit complicated due to the inclusion of two

extra calibration steps to compensate parallax error and head rotations. For uncalibrated

head-mounted eye trackers, it is necessary to perform the personal calibration for the
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same participant in each new eye tracking session. An approach to minimize and simplify

the proposed personal calibration could be investigated.

The geometric relations of the human ocular system is the main parameter of a method

to compensate and validate a binocular eye feature detector (see Subsection 6.1.1). How-

ever, the proposed method is restricted only to the pupil center. Further research in this

direction could include a similar approach to detect missing glints based on a geometric

transformation between corneal reflections available in both user’s eyes.

Improvements in the eye tracker prototypes will be one of priority tasks of this research

over the next few years. Nowadays, it is still necessary to use computers/laptops with good

resources (e.g. SuperSpeed USB, multi core microprocessors, GPU, solid-state drives) to

capture and record multiple synchronized videos in high resolution and good frame rate

(i.e. more than 30 frames per second). The use of wireless setup to avoid occluding the

subject’s field of view during the eye tracking session could be further investigated.

Future steps in this research could also include using 360 scene cameras to capture

images from the entire environment. This idea is useful in sports practices which the

athlete remains in the same position throughout the sports practice. Thus, it would be

possible to generate heat maps and gaze plots in different visualization perspectives which

it would facilitate to compare the gaze behavior between a set of athletes.
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[113] M. Böhme, M. Dorr, M. Graw, T. Martinetz, and E. Barth, “A software framework
for simulating eye trackers,” in Proceedings of the 2008 Symposium on Eye Tracking
Research & Applications, ETRA ’08, (New York, NY, USA), pp. 251–258, ACM,
mar. 2008.

[114] C. H. Morimoto, D. Koons, A. Amir, and M. Flickner, “Frame-rate pupil detec-
tor and gaze tracker,” in Proceedings of the 7th IEEE International Conference on
Computer Vision, ICCV ’99, (Washington, DC, USA), IEEE Computer Society, sep.
1999.

[115] Q.-T. Luong and O. D. Faugeras, “The fundamental matrix: theory, algorithms, and
stability analysis,” International Journal of Computer Vision, vol. 17, pp. 43–75,
jan. 1996.

[116] J. F. Collins and L. K. Blackwell, “Effects of eye dominance and retinal distance on
binocular rivalry,” Perceptual and Motor Skills, vol. 39, pp. 747–754, oct. 1974.

[117] S. Alfayad, M. E. Asswad, A. Abdellatif, F. B. Ouezdou, A. Blanchard, N. Beaussé,
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Abstract

A depth compensation model is presented as a novel
approach to reduce the effects of parallax error for head-
mounted eye trackers. The method can reduce the parallax
error when the distance between the user and the target is
prior known. The model is geometrically presented and its
performance is tested in a totally controlled environment
with aim to check the influences of eye tracker parameters
and ocular biometric parameters on its behavior. We also
present a gaze estimation method based on epipolar geom-
etry for binocular eye tracking setups. The depth compen-
sation model has shown very promising to the field of eye
tracking. It can reduce 10 times less the influence of paral-
lax error in multiple depth planes.

1. Introduction
Eye tracking is an expressive tool for analyzing human

interest and intend [13]. Its potential for detailed and objec-
tive performance analysis in sports has been shown in var-
ious experiments [1, 12, 17] and the collected information
from eye tracking can potentially help athletes to become
more effective in their daily training.

Head mounted eye tracking is the most obvious type
of eye tracker to use for analysis of athletes during daily
training [8] and with current technological developments it
could be implemented without significantly disturbing the
athletes. However, head mounted eye tracking analysis are
typically challenged by the parallax error, which happens
as a consequence of the spatial offset between the eye and
the camera observing the scene [15]. This causes signif-
icant gaze estimation errors (in the scene view) when the
apparent objects are located at different depths than during
calibration. In addition to the inherent inaccuracy of gaze
estimation (0.5 degrees or more), the parallax error will ef-
fectively make it hard, if not impossible, to analyze the eye
tracking data reliably. Despite of this, many research results
are based on manual inspection of video data with overlaid
gaze data and the depth compensated point of regard is done

based on human estimation when the objects move in space.
The parallax error is a practical problem for gaze-analysis
in sports where the target (say ball, stone or person) con-
stantly moves in depth relative to the athlete. So far there
is no commercial eye tracker that can account for the par-
allax error and therefore research results are often based on
human inspection and estimates on the location the point of
regard (PoR) when the target moves in space [13].

In this paper we will present a method that uses the depth
as a prior to compensate for the parallax error. Having the
object depth can be made feasible via visual tracking or
through other sensors. Even without an accurate estimate
the method can be used to discern between which of two
objects the person is most likely to look at. In Section 2 we
describe related work and in Section 3 we describe the par-
allax error in more detail. The parallax error compensation
model is described in Section 4.

The proposed depth compensation model is shown to
consistently improve the accuracy level of gaze estima-
tion process when the target is viewed on both calibration
plane (Section 5.2) and different depth planes (Section 5.3).
Through this paper we intend to show that it is possible
to estimate the athletes’ gaze actively in given sports sit-
uations and thus overcome some of the problems relate to
gaze estimation in depth using head-mounted eye trackers.
An overview of eye and gaze tracking models is reviewed
by Hansen and Ji [8].

2. Related Work
Eye tracking has been used for sports analysis but mostly

using head mounted eye tracking [1, 10, 12, 14, 17, 18].
Most eye tracking results are of psychological nature but
gaze estimation data collected during daily training where
it can be used for analyzing the athletes’ performance, such
as what happens when the athlete perform specific actions
(e.g., shoot, catch, throw)? Are there ocular differences be-
tween novice and experts [12, 14, 17]? Which strategies
can be used to improve the novice athletes’ performance
based on knowledge of eye movements patterns collected
from training activities of expert athletes [1]? For example,
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Paeglis et al. [17] presented a study for analyzing eye move-
ments from elite junior basketball players during shots prac-
tice training. After only a year of training, their free shot
rates significantly improved as a consequence of the use of
eye tracking in their training. They concluded among other
important results that if compared directly with expert bas-
ketball players, novice basketball players need more time
for quality decisions before making their shots but during
free shots, expert players spend more time to do this action
than novice players.

Hüttermann et al. [12] presented a study for verifying the
ability to devote attention simultaneously to multiple visual
objects into a athlete’s field of view and important concept
in team sports, for example. Hüttermann et al. [12] showed
that athletes present better attention performance when fo-
cusing attention simultaneously on two stimuli (i.e., when
the athlete fixates between two stimuli). This could mean,
in the future, it will be possible to improve training athletes
to better focus through of subsequent training studies for
improving fixation strategies of a determinate athlete.

Eye trackers for sports analysis are based on the same
fundamental eye and gaze tracking models as described
in the overview [8]. The parallax error in head-mounted
eye trackers (HMET) can be minimized through hardware.
Velez and Borah [20] presented an eye tracker that uses
a hot-mirror glass in front of the user’s eyes for control-
ling the distances and angular relationships of eye camera,
scene camera and user’s eyes. The hot-mirror is positioned
in the eye’s optic axis with aim to reflect images from the
eyes and environment toward their respective cameras. This
setup removes the parallax error and ensures a wide-angle
scene viewing over multiple depth planes. Not all HMET
have a physical structure that allows hot-mirror glasses to
be used. Mardanbegi and Hansen [15] proposed a study to
identify the main sources of parallax error in head mounted
eye trackers. They analyzed the influence of scene camera
positions, the calibration and fixation distances on the paral-
lax error. They showed that the angle kappa (the difference
between visual and optical axes) does not have a significant
effect on the parallax error [15].

3. Parallax Error in Gaze Estimation
We are going to explain the parallax error based on a

HMET. The most of current HMET cannot estimate high
accuracy gaze due to the parallax error. Parallax error is a
geometrical problem due to the projection center of HMET
scene camera and the user’s eyeball center are not co-axial.
Since the scene camera cannot be placed at the same axis
of the user’s eye, it is necessary to find out a solution for
compensating the parallax error for general HMET.

HMET usually have two (monocular) or three (binocu-
lar) cameras attached in their physical structure. For exam-
ple, a binocular HMET has two eye cameras located slightly

close to each eye and one scene camera on the head. The
scene camera is used for capturing images from the user’s
field of view. However, the scene camera is usually not co-
axial with any user’s eye. In this case, the gaze estimation
includes the parallax error on it. Figure 1 shows an example
of the parallax error when a person uses an HMET like that.

Figure 1. Geometry of parallax error in a HMET. The head
mounted eye tracking system is calibrated on the calibration plane.
Targets on calibration plane can be estimated with high accuracy.
However, when the user looks at to a target in the same position
X1 but on a different plane Di, the gaze will be estimated on posi-
tion X3

i instead of the position X2
i . The green arrows represent the

parallax error corresponding to the vector ||X2
i X

3
i || on the viewed

plane and a vector ||x1x2
i || on the scene camera plane.

The first parameter to be analyzed is the user’s eye. Ac-
cording to Gullstrand-Le Grand Eye Model, the simplified
model for representing the human visual system is formed
by two spheres with distinct sizes for representing the eye-
ball and the cornea surface [4, 5, 11]. The center of rotation
of these spheres is around a fixed point Oeyeball and there
is a small angular difference between the optical and vi-
sual axes, which is user dependent and they intersect in the
point Ocornea. The second parameter is the scene camera,
in which is not co-axial with the user’s eye. The scene cam-
era is represented as a pinhole camera with a vertical im-
age plane. The last parameter to be analyzed are the planes
viewed by the user during the eye tracking session.

The eye tracking system is calibrated in a given distance
Dcalibration from the user to the calibration plane. All
points on the calibration plane can be estimated with high
accuracy level. However, what happen when the user fix-
ates his/her gaze so far away from the calibration plane (at
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Figure 2. Example of parallax error during a curling daily training session. The system is calibrated on the calibration plane and there is no
influence of parallax error on that. On the other hand, when the stone goes to position X2 on the viewed plane, the gaze will be estimated
on position X3. When the distance between the curling athlete and the viewed stone is prior known, the proposed depth compensation
model is able to correct the estimated PoR for the correct position in the scene image, as shown in the small upper picture.

the distance Di)? The user’s visual axis intersects the cali-
bration plane exactly at the point X1 and the multiple depth
planes at the point X2

i (1 ≤ i ≤ n). When the user looks
directly at the point X1, the gaze is estimated correctly as
the point x1 on the image plane. On the other hand, when
the user looks at to any depth plane at the point X2

i , the
gaze is going to be estimated as the same point x1 instead
of the point x2

i on the image plane. According to Mardan-
begi and Hansen (2012), the parallax error is defined as a
vector ||x1x2

i || on the image plane, which is corresponding
to the vector ||X2

i X
3
i || on the viewed plane [15]. Figure 2

shows a practical example of using an eye tracking system
for a curling daily training. The parallax error appears in
different planes on the curling sheet when the athlete look
at to the stone (target) far way from the calibration plane.

4. Depth Compensation Model

The phenomenon of parallax is related by the geometry
of the HMET, in which it can be described by epipolar ge-
ometry in a stereo vision system [2, 15]. In this case, the
epipolar geometry is expressed by the point peye on the eye
plane and the point pscene on scene camera plane that must
lie on a line called epipolar line. As shown in Figure 3,
if the point P in the athlete’s field of view moves along the
line formed by the optical center of the scene camera Oscene

and the point pscene, its projection on the scene plane will
not change but the projection on the eye plane will change.
This movement traces out the epipolar line Deye [2].

When the athlete focuses on objects at different planes
(see Figure 1), the PoR projection will move along an epipo-

Figure 3. Geometry of parallax error in a HMET.

lar line in the image plane. Based on epipolar geometry, all
epipolar lines intersect at a common point called epipole.
In our context, the epipole is placed in the optical center
Oeyeball into eye plane. Each epipolar line can be estimated
through an algebraic representation called fundamental ma-
trix (F ). F can be estimated given at least seven point corre-
spondences in both image and scene camera planes. These
correspondences represent the geometric information about
the intrinsic and extrinsic parameters of the cameras.

The fundamental matrix F encapsulates the intrinsic
camera geometry and it is independent of scene structure.
Given F as a 3 × 3 matrix, it is possible to calculate the
corresponding epipolar line Dscreen for every point peye in
the eye image plane by Equation 1:

Dscreen = F × peye. (1)

If any point P is imaged as peye in the eye camera and
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pscreen in the scene camera, then the following relation is
equivalent to the corresponding epipolar line and constrains
the matching of points through Equation 2:

pTscreen × F × peye = 0, (2)

for all corresponding points pscreen ↔ peye.
In a binocular HMET, each pair of eye camera and scene

camera forms a structure similar to a stereo vision sys-
tem. We uses a binocular eye tracking approach to define
two epipolar lines in the scene camera plane. As the PoR
moves along each epipolar line, the intersection between
these epipolar lines will be very close to the real athlete’s
gaze. The biggest problem is when the target moves so far
away from the calibration plane, because the parallax error
will drastically reduce the precision of the gaze estimation
process. Our depth compensation model is based on pure
translation motion, i.e. a planar motion case where there is
no rotation [9, 19]. According to Hartley and Zisserman [9],
the “pure” definition means that there is no change in the in-
ternal parameters of the cameras.

After estimating the gaze, it is necessary to correct the
parallax error based on the information about the depth dis-
tance between the viewed target and the calibration plane.
As the cameras are stationary in the HMET and we consider
that only the targets undergoes a translation −t. In this case,
the three-dimensional points move on straight lines paral-
lel in the direction of t. One may assume that the calibra-
tion plane and viewed plane are respectively Pcalibration =
K[I|0] and Pviewed = K ′[I|t]. Equation 3 is used for cal-
culating the fundamental matrix when there is no rotation
(R = I) and both camera matrices are the same (K = K ′):

F = [e′]×K
′K−1 = [e′]× (3)

in which the notation [e′]× is a rank 2 skew-symmetric 3×3
matrix. If the target plane translation is parallel to the cal-
ibration plane z-axis, then e′ = (0, 0, 1)T . In this case, the
fundamental matrix can be represented by the Equation 4:

F =



0 −1 0
1 0 0
0 0 0


 . (4)

If a point x in the calibration plane is normalized as
x = (x, y, 1)T , then from x = PcalibrationX = K[I|0]X ,
the space point’s coordinates are (X,Y, Z)T = ZK−1x,
where Z is the depth of the point X from the viewed plane
along the principal axis of the calibration plane. It then fol-
lows from x′ = P ′X = K[I|t]X , Equation 5 corrects the
estimated gaze point x to the real gaze point x′ viewed by
the athlete without parallax error:

x′ = x+Kt/Z (5)

in which depends on the magnitude value of the translation
t and the inverse depth Z [9].

5. Assessment on Simulated Data

Simulated eye tracking data were used for assessing the
proposed gaze estimation approach (using epipolar geome-
try) and depth compensation model (using pure translation)
in a totally controlled environment. We have used a MAT-
LAB eye tracker simulator in which it is possible to control
the eye tracker parameters and the ocular biometric param-
eters [3]. Therefore, it was possible to evaluate the noise ef-
fects of each parameter in the gaze estimation process. The
evaluation process was divided according to when the user
visualizes targets on the calibration plane (Subsection 5.2)
and on the multiple depth planes (Subsection 5.3).

The assessment on the calibration plane has evaluated
the accuracy of the proposed gaze estimation approach
based on epipolar geometry, and the assessment on the mul-
tiple depth planes has evaluated the parallax error rectifica-
tion of the proposed depth compensation model based on
pure translation. We have evaluated the following aspects
during our assessment process: (1) refractive index of aque-
ous humor [α]; (2) number of calibration targets [N ]; (3)
horizontal [γ] and vertical [β] angle offset between optical
and visual axes [a.k.a. angle kappa]; (4) the influence of
noise in the eye features detection process [Pc+λ]; and (5)
depth movements along to the calibration plane z-axis.

5.1. Setup

The simulated eye tracker device was setup as a binocu-
lar HMET. In this case, it had two eye cameras (one for each
user’s eye) located slightly close to the calibration plane
and one scene camera (to get images from the user’s field
of view) slightly close to the user’s head. The calibration
plane was adjusted to 55 cm distance from the user. During
each test, it was estimated the gaze error from 4,096 targets
distributed in a 64 × 64 matrix over the viewed plane. For
all simulated tests, we have used two eye models with dif-
ferent angle kappa offsets [7], namely: E0[β = γ = 0◦] (a
physically infeasible setup only to avoid some eye specific
biases) and E1[β = 1.5◦, γ = 4.5◦] (a more realistic ocular
biometric setting). For standard, it has used the minimum
number of calibration targets necessary to create the funda-
mental matrix (N = 8) during the user calibration process.

5.2. Tests on the Calibration Plane

Refractive Index of Aqueous Humor The first test evalu-
ated the influence of refraction index in the gaze estimation
process. According to Hansen and Ji [8], the refractive in-
dex of aqueous humor has a constant value around 1.336. It
can add some noise or have some directly influence to the
gaze estimation process. Table 1 presents the influence of
the refractive index of aqueous humor when it is included
and when it is not. We concluded that there is no influence
of the refractive index in the gaze estimation process. On
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the other hand, changes in the angle kappa offset present a
notable difference for a similar test.

Model Refraction Maximum Error Mean Error
E0 No 0.0000231◦ 0.0000037◦

E0 Yes 0.0000231◦ 0.0000037◦

E1 No 0.0791455◦ 0.0088679◦

E1 Yes 0.0791455◦ 0.0088679◦

Table 1. The influence of refractive index of aqueous humors
[1.336] to the gaze estimation using E0 [β = γ = 0◦] and E1

[β = 1.5◦, γ = 4.5◦] eye models.

Number of Calibration Targets The second test evaluated
how the number of calibration targets (8 ≤ N ≤ 25) in-
fluences the gaze estimation process. The user calibration
process is performed in the beginning of an eye tracking ses-
sion. The user needs to look at N targets on the calibration
plane for creating a mapping used by the gaze estimation
process. Figure 4 shows the accuracy of the gaze estima-
tion as a function of the number of calibration targets. For
both eye models the minimum number of calibration targets
(N = 8) has achieved a good accuracy. In opposite to the
classical gaze estimation methods, in a more realistic ocu-
lar biometric setting this approach does not improve its ac-
curacy when the number of the calibration targets increase
during the user calibration process (see the blue graphic).

Figure 4. The influence of the number of calibration targets N
to the gaze estimation using eye model (up) E0[β = γ = 0◦] and
(down) eye model E1 [β = 1.5◦, γ = 4.5◦].

Angle Kappa Offset The third test showed that there is a
huge difference among the tests performed with different
angle kappa offsets. Figure 5 shows the influence of differ-
ent angle kappa offsets within a range of angular horizontal

offsets (−4.5◦ ≤ γ ≤ 4.5◦) and a fixed angular vertical off-
set (β = 0◦). We conclude that the gaze estimation based
on epipolar geometry does not model the angle kappa with
high accuracy. The accuracy linearly decreases according
to angle kappa, i.e. the bigger the angular difference among
visual and optical axes the lower will be the accuracy.

Figure 5. The influence of the angle kappa offset to the gaze es-
timation. Angle kappa has two angles offsets, i.e. horizontal (γ)
and vertical (β). We observed the influence of angle kappa with
−4.5◦ ≤ γ ≤ 4.5◦ and β = 0◦.

Noise During the aforementioned tests, the gaze estima-
tion approach based on the intersection of multiple epipolar
lines showed very promising (error < 0.01◦). However,
in a real application will this approach achieve the same
accuracy degree? With aim to answer this question, we
have performed a fourth test add a controlled noise in the
pupil center coordinate before calculate the epipolar line,
i.e. lineleft = Fleft × (Pcleft + λ) and lineright =
Fright × (Pcright + λ). Figure 6 shows a two-dimensional
view of the noise tests with different values to horizontal
coordinates and a fixed vertical coordinate Pc = (x+λ, y).

Figure 6. Two-dimensional view of the influence of noise added
to the pupil center coordinate to the gaze estimation process us-
ing eye model (up) E0 [β = γ = 0◦] and (down) eye model E1

[β = 1.5◦, γ = 4.5◦]. The noise (λ) was added to Pcenter =
(x, y) in the following range −18.90 ≤ λ ≤ 18.90 pixels.

We concluded that this gaze estimation approach only
calculate the PoR with high accuracy level when there is
no noise in the eye features detection process. In a real
eye tracking application, this approach is going present the
same accuracy degree as the classical gaze estimation meth-
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ods (e.g. homography, cross-ratio, polynomial, among oth-
ers [5, 7, 16, 23]). Figure 7 shows a three-dimensional
views of the influence of noise in the gaze estimation pro-
cess. The noise was added to each (x, y) coordinate of the
pupil center, in the following range −18.90 ≤ λ ≤ 18.90
pixels (±5 mm) on the calibration plane.

Figure 7. Three-dimensional view of the influence of noise added
to the pupil center coordinate to the gaze estimation process us-
ing eye model (up) E0 [β = γ = 0◦] and (down) eye model E1

[β = 1.5◦, γ = 4.5◦]. The noise (λ) was added to Pcenter =
(x, y) in the following range −18.90 ≤ λ ≤ 18.90 pixels.

There is a huge difference only when the noise is λ =
0. In this case, E0 presents an accuracy degree around
0.0106921◦ and E1 is around 0.0000039◦. For others noise
level, the accuracy degree is basically the same for E0 and
E1, i.e. the difference mean is ±0.01◦.

5.3. Tests on the Depth Planes

The last simulated test was performed with aim to eval-
uate the depth compensation model proposed in this paper.
During this test, the HMET hardware components and the
user are still while the targets moves along to the calibration
plane z-axis. The calibration plane is 55 cm far away from
the user and the viewed plane moves in a range 35-105 cm
from the user (step of 10 cm). Figure 8 and 9 show the in-
fluence of parallax error to the gaze estimation. For each 10

cm far away from the calibration plane, the parallax error
adds a gaze error around ±0.23◦.

Figure 8. The influence of parallax error to the gaze estimation.
The viewed plane was moved to 10 different distances far away
from the user position, i.e. in a range 35-125 cm. The accuracy
level decrease because the parallax error.

Figure 9. The influence of parallax error to the gaze estimation.
After the user calibration process, the viewed plane was moved
to 95 cm far away from the user position. The gaze estimation
presented an accuracy level around 0.95◦.

Figure 10 and 11 show the influence of proposed depth
compensation model to the gaze estimation process. The
depth compensation model was able to correct the parallax
error of simulated eye tracking data. For each 10 cm far
away from the calibration plane, the parallax error adds only
a gaze error around ±0.02◦ (i.e. 10 times less). At this
point, we concluded that this depth compensation model is
very promising to the field of eye tracking.

6. Conclusions
This paper has presented a novel depth compensation

model used for correcting the parallax error in HMET. The
proposed model is robust to large depth planes when the dis-
tance between the user and the target is prior known. The
distance is used for compensating the parallax error using
the pure translation approach. This paper has also described
a gaze estimation method based on epipolar geometry. This
method has presented high accuracy degree with simulated
date. However, it has shown very sensitive to intrinsic and
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Figure 10. The influence of depth compensation model to the gaze
estimation. The viewed plane was moved to 10 different distances
far away from the user position, i.e. in a range 35-125 cm. The
gaze estimation presented a good accuracy level despite the paral-
lax error.

Figure 11. The influence of depth compensation model to the gaze
estimation. Using the depth compensation model, the gaze esti-
mation achieved an accuracy level around 0.04◦ when the viewed
plane was moved to 95 cm far away from the user position.

extrinsic noise and it accuracy is similar to others classi-
cal gaze estimation methods (e.g. homography, cross-ratio,
polynomial, among others).

The proposed model was developed to be used in a big-
ger project with elite sport athletes (shooting and curling).
The main expected contributions by this research project is
to develop flexible eye tracking models that can be used for
elite sport athletes in their daily training. Eye tracking has
been used for sports and has already shown some promise.
However, eye trackers used for sports analysis are general
purpose, expensive and not adapted to be used actively in
sports situations.

Eye tracking can used for collecting information about
the pattern of ocular activities of experts athletes and let
other novices athletes observe their eye movements. The
use of eye tracking in sport can go further, e.g. to auxiliary
the hawk-eye technology for evaluating information that has
raised doubts during a match [22], to activate resources of
a vehicle cockpit through fixations [21], to find the better
alternative to view multiple targets during an action of at-
tack or defenses [12] and to identify external points of dis-
traction presents during an eye tracking session [6]. Eye

tracking data and tools will allow the athletes and trainers
to get much deeper insight into thoughts and strategies used
by the athletes, and adapt the training correspondingly thus
improving their performance in stressful and time critical
situations. While the focus of this project is on sports train-
ing, it is evident that progress made within this project on
eye tracking and supporting tools for sports activities could
have a direct impact on other areas that use eye tracking.
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Abstract

A novel glint normalization approach based on multiple geomet-
rical transformations for uncalibrated remote eye trackers is pre-
sented. This approach selects the best geometrical transformation
according to the number of detected corneal reflections. This makes
glint normalization more robust to noise in a real eye tracking ap-
plication. We demonstrate geometrically and empirically that this
approach is robust to head pose changes and it maintains high-
accuracy gaze estimation even when only one glint is detected.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations;

Keywords: glint normalization, homographies, remote eye tracker

1 Introduction

This paper addresses glint normalization in the presence of missing
glints. Glint normalization is a method that uses a formal geometric
correction scheme for making an eye tracking system more robust
to head movements for a remote eye tracking setup [Hansen et al.
2014]. The paper is particularly focused on adapting glint normal-
ization according to the number of detected glints.

Corneal reflections (a.k.a glints) are commonly used in scientific
researches in the field [Coutinho and Morimoto 2012; Hansen et al.
2010] and they can support invariant head pose changes to tradi-
tional gaze estimation methods (e.g. PCCR, homography, cross-
ratio). They can be generated through active or passive illumina-
tion. Active illumination is usually controlled by the eye tracker
and it is very common to use infrared light sources (IR). On the
other hand, passive illumination uses the environment natural illu-
mination or reflections of environment objects. It is more common
to use active illumination for generating glints because it is easier
to control these illumination sources (e.g. localization, intensity).

While head-mounted eye trackers do benefit from corneal reflec-
tions [Li et al. 2008], it is mostly remote eye trackers that need to
handle head pose changes. When the eyeball moves around its cen-
ter of rotation, the corneal reflections from IR sources remain still.
However, glint detection often fails for large angles of eye rotation
when the corneal reflections occur close to the limbus (the boundary
between the iris and the sclera) or on the sclera itself (the white part
of the eye). Glint normalization is typically challenged by noise
and eye pose changes, which reduces the number of true positive
corneal reflections. This induces gaze estimation errors when the
glints positions are not detected with high accuracy, the glint inten-
sity is so weak, the glint is reflected on the sclera, some required

∗e-mail: fabn@itu.dk
†e-mail: witzner@itu.dk

glint is not detected, uncontrolled light environment conditions or
there are several false positives. In summary, glint normalization
can be cornerstones in making remote eye tracking systems more
robust to natural head movements [Hansen et al. 2014].

In Section 2 we describe related work and in Section 3 we introduce
the proposed glint normalization approach based on multiple geo-
metrical transformations. This approach is shown to consistently
maintain the robustness of gaze estimation when a different num-
ber of glints are detected on both head still (see Subsection 4.2) and
head movements (see Subsection 4.3). Through this paper we in-
tend to show that it is possible to maintain the robustness of an eye
tracking system even with large head movements and thus over-
come some of the influence of noise relate to glint normalization
using remote eye trackers. An overview of eye tracking methods,
technologies and applications is given in Hansen and Ji [2010].

2 Previous Work

Several eye tracking researches were presented in order to make
the glint normalization more robust to external critical situations.
Hua et al. [2006] introduce a glint detection approach that handles
addresses the missing glint problem over large angles of eye ro-
tation. Infrared light sources placed in a strategic position form
a fixed geometric pattern of glints and this geometrical condition
is predictable when the eye rotates arbitrarily. Based on a prior
known geometric pattern, it is possible to calculate the intersec-
tion point (a.k.a. virtual glint) with less than 1 pixel error even
with some missing glints. This method works with a fixed num-
ber of glints (i.e. four glints) and it can estimate the virtual glint
when one or two of the four glints were missed. Li et al. [2008]
propose a similar glint detection approach for predicting missing
glints. This method uses a fixed geometric pattern of glints formed
by nine infrared light sources (3×3 matrix) and it is able to predict
missing glints when the size of the pattern remains relatively fixed.
It can predict missing glints when at least one glint is detected on
the cornea region. Hennessey and Lawrence [2009] present an en-
hanced Pupil Center Corneal Reflection (PCCR) method that uses
a scaling correction for estimating the PCCR vector. It uses Eu-
clidean distance between the pupil center and the centroid of the
glints geometric pattern and it can improve the gaze estimation 2.8
times more (for near depth head movements) compare to traditional
PCCR (using one glint). This method compensates for translation,
distortion, false positives and missing glints. However, the method
requires at least two valid glints for a robust glint normalization.
Hansen et al. [2014] demonstrate a high accuracy glint detection
method that detect the corneal reflections even in the presence of
several false positives. This methods uses homography normaliza-
tion and it is based on geometric properties of corneal reflections
that learn about the unknown configuration of IR for detecting only
the glints generated by the system. In this case, the glint detection
is robust up to around 10 false positives reflections without using
other constraints than the fixed geometric pattern.

3 Proposed Glint Normalization Method

This section presents a novel glint normalization approach based on
homography and degraded homographies for uncalibrated remote
eye tracker setups. The proposed approach is towards an eye tracker



setup with one remote camera and four infrared light sources, as
shown in Figure 1. The simplified geometric model of the human
eye contains the point pc as the center of the elliptical pupil, the
pointC as the center of the cornea sphere and fc as the cornea focal
point. Degraded homographies are used to estimate the relation
between points from image space Πi and points from screen space
Πs. Thus, given corresponding points (xi ⇔ x′i) on two planes (Π
and Π′), the geometrical transformation is a matrixM3×3 such that
for any point x′i = M × xi.

Figure 1: Geometric setup of the remote camera, human eye intrin-
sic parameters, infrared light sources and corneal reflections.

Our proposed model uses among one and four corneal reflections
(gc1...gc4) from the infrared light sources on the cornea. These re-
flections are formed in a plane called corneal-reflection plane Πc.
Differently from cross-ratio based models [Yoo and Chung 2005;
Coutinho and Morimoto 2012], the proposed model do not need
to place the infrared light sources exactly on the corners of the
screen. We assume that the infrared light sources are simply placed
on the screen plane Πs, and the relationship between the infrared
light sources (Li) and their respective reflections (gcj ) can be re-
lated via a geometrical transformation Ms

c . The remote camera is
placed in front of the eyes and it captures a geometric pattern of
glints (gi1...gi4) on the image plane Πi. The relationship between
the corneal reflections (gcj ) on the corneal-reflection plane Πc and
the geometric pattern of glints (gij) on the image plane Πi can be
related via a geometrical transformation M i

c .

Our gaze estimation method is described by a direct mapping from
the image plane Πi to the screen plane Πs using Ms

i = Mc
i ◦Ms

c .
Furthermore, it uses a normalized space Πn between the image
space (Πi) and screen space (Πs) for normalized the pupil center
(pc) with the proposed glint normalization approach based on mul-
tiple geometrical transformation, as shown in Figure 2. Thus, the
pupil center and glints are normalized from image space to normal-
ized space via a dynamic glint normalization transformation Hn

i ,
and finally, the normalized pupil center (pnc ) is used for estimating
the gaze on the screen via a fixed homography F s

n.

Eye tracking techniques based on active illumination present some
problems in relation to glint detection, e.g. bad illumination distri-
bution, glints collision, insufficient bright, large angles of eye ro-
tation, among others. For traditional homography normalization
methods, it is necessary to detect all four available glints for a ro-
bust gaze estimation. However, sometimes the glint detection does
not detect all true positive glints. The proposed approach works
with multiple geometrical transformations that adapt the glint nor-

Figure 2: (left) Pupil (gray ellipse) and glints (crosses) are cap-
tured in the image space and (middle) the pupil is normalized using
the detected glints by a geometrical transformation. (right) From
the normalized space the pupil is mapped to the Point of Regard.

malization for normalizing points from the space Πi to the space
Πn using 1 ≤ j ≤ 4 glints. Its basic requirement is to label each
detected glint for helping to choose the correct mapping when the
glint detection loses any true positive. All geometrical transforma-
tion matrices are created during the user calibration process and
they are dynamically selected by the glint normalization according
to the number of detected glints.

The proposed approach uses different geometrical transformations
with distinct Degrees of Freedom (DoF). In general, linear transfor-
mations can be written as an invertible 3×3 matrix in homogeneous
coordinates with real entries, as defined in Equation 1:

Mp =



a11 a12 tx
a21 a22 ty
v1 v2 r


 =

[
A t
vT r

]
, (1)

in which, A denotes a 2× 2 non-singular matrix, t denotes a trans-
lation vector, v denotes perspective components and r denotes ho-
mogeneous scaling factor [Hartley and Zisserman 2004].

Our proposed glint normalization is based on four geometrical
transformations, namely: (1) Translation, a transformation in which
all segments on the transformed plane are identical to their respec-
tive segments on the original plane but in a different position. It
maintains the distance and angle of all transformed points and it
can be computed from only one detected glint; (2) Similarity, a
transformation composed by an isometry transformation (transla-
tion and rotation in the same measure) and a isotropic scaling fac-
tor. It preserve the shape (i.e. no reflection) and it can be computed
from two detected glints correspondences; (3) Affine, a non-singular
linear transformation of inhomogeneous coordinates followed by a
translation. It does not preserve the length ratios and angles be-
tween lines because its non-isotropic scaling and it can be computed
from three detected glints correspondences; and (4) Homography,
a general non-singular linear transformation of homogeneous co-
ordinates. It applies a projective transformation that preserve the
collinearity of the transformed points and it can be computed from
four or more detected glints correspondences.

In the simplified geometric model of the human eye, we can assume
that the pupil and the corneal reflections coincide on the corneal
plane Πc. However, the corneal reflections are non-linearly dis-
torted on the corneal curvature surface and the planarity assumption
can enhance the gaze estimation error. For this reason, we propose
an alternative glint normalization for analyzing the n-closest glints
(1 ≤ n ≤ 3) from the pupil center given all true positive glints.
Thus, it is possible to evaluate the influence of non-linearly distri-
bution of glints on the cornea in the gaze estimation and compare it
with the traditional homography normalization method.



4 Assessment on Simulated Data

Simulated eye tracking data were used for evaluating the proposed
glint normalization approach based on multiple geometrical trans-
formation in a totally controlled environment. We have used Böhme
et al. [2008] eye tracker simulator for the experiments in which it
was possible to assess the noise effects for each parameter in the
glint normalization. The assessment process was divided according
to view targets on the screen plane with head still and view a fixed
target with different head positions. We have assessed the follow-
ing aspects: (1) refractive indexes of aqueous humor and cornea
[α]; (2) horizontal [γ] and vertical [β] angle offset between opti-
cal and visual axes [a.k.a. angle kappa]; (3) number of calibration
targets [N ]; and (4) xy-axes and xz-axes head movements.

4.1 Setup

The simulated device was setup as a monocular remote eye tracker
with four infrared light sources. The remote camera was placed
slightly below and in the center of the screen, the infrared light
sources were placed around the screen (on its corners) and the
screen was adjusted to 55 cm distance from the user. During each
test, it was estimated the gaze error from 256 targets distributed in a
16×16 matrix over the screen plane. For all tests, we have used two
eye models [Hansen et al. 2010] with distinct angle kappa offsets:
E0(γ = β = 0◦) and E1(γ = 4.5◦, β = 1.5◦). Although, E0 is
physically infeasible setup, it helps to avoid some eye biases into
the controlled environment. For standard, it has used the minimum
number of calibration targets necessary to create the homography
(N = 4) used by the gaze estimation process.

4.2 Tests with Head Still

Refractive Indexes of Aqueous Humor and Cornea

The first assessment presents the influence of eye refractions to the
glint normalization, as shown in Figure 3. In accordance to Hansen
and Ji. [2010] the refractive index of aqueous humor is around 1.336
and the refractive index of cornea is around 1.376. We concluded
that the refractive indexes present only a slightly influence in the
glint normalization.

Figure 3: The influence of the refractive index of aqueous humor
[1.336] and the refractive index of cornea [1.376] to the glint nor-
malization using E0 [γ = β = 0◦] and E1 [β = 1.5◦, γ = 4.5◦]
eye models.

Optical and Visual Angle Offset

This assessment presents the influence of different angles kappa to
the glint normalization. Figure 4 shows the accuracy as a func-
tion of the different horizontal angles (−4.5◦ ≤ γ ≤ 4.5◦) and
fixed vertical angle (β = 0◦) between optical and visual axes. We
conclude that these geometrical transformation model with high ac-
curacy the angle kappa during the user calibration process.

Figure 4: The influence of horizontal [γ] and vertical [β] angle
kappa offset to the glint normalization. We observed the influence
of angle kappa with −4.5◦ ≤ γ ≤ 4.5◦ and β = 0◦.

Number of Calibration Targets

The influence of the number of calibration targets to the glint nor-
malization process was tested in the following range: 4 ≤ N ≤ 25.
Figure 5 shows the accuracy of the gaze estimation as a function of
the number of calibration targets for both eye models (E0 and E1).
For head still, similarity normalization, affine normalization and
homography normalization present a very similar result in the gaze
estimation. Although, translation normalization presents a similar
performance curve, it presented a worse accuracy (around +0.05◦).

Figure 5: The influences of the number of calibration targets (4 ≤
N ≤ 25) to the glint normalization using E0 [γ = β = 0◦] and
E1 [β = 1.5◦, γ = 4.5◦] eye models.

4.3 Tests with Head Movements

Head Movements Around xy-axes

During the tests of the robustness to the head movements around
xy-axes, the eye looked at to a fixed point on the screen while the



head moved 16 positions on the x-axis and 16 position on the y-
axis. We selected one of the calibration targets as a fixed point, be-
cause the gaze estimation on this coordinate is close to zero [Hansen
et al. 2010]. We observed that translation normalization is not tol-
erant to head movements. It has presented low accuracy gaze es-
timation (around 78◦) and it was removed as an alternative glint
normalization. At this point, we replaced the translation for the
norm between the pupil center and the detected glint (a.k.a. vec-
tor). The alternative glint normalization with n-closest glints to
the pupil center was tested for assessing its robustness to the head
movements. In this case, given four corneal reflections it selects the
3-closest glints using affine, 2-closest glints using similarity and
1-closest glints using the norm. Figure 6 shows that the 3-closest
and 2-closest glint normalizations present a performance similar to
traditional homography normalization with head movements.

Figure 6: The influences of the head movements around xy-axes
to the glint normalization using eye model E0 [γ = β = 0◦] and
eye model E1 [β = 1.5◦, γ = 4.5◦]. The eye location changes in
space 100 mm in both x and y directions from the camera center.

Head Movements on Depth

The last simulated test was performed to evaluated the robustness
of the proposed glint normalization approach to head depth move-
ments. Again, the fixed target remained still on the screen while
the eye changes in space 100 mm in x direction and 300 mm in
depth. The system was calibrated 550 mm far away from the screen
and the eye was moved in a range of 400-700 mm in 16 distinct
positions. The translation normalization has presented a very bad
performance during this tests (around 78◦) and it was replaced by
the norm again. The 3-closest and 2-closest glint normalizations
presented a better performance for head depth movements compare
to traditional homography normalization, as shown in Figure 7.

Figure 7: The influences of the head movements in depth to the glint
normalization using eye model E0 [γ = β = 0◦] and eye model
E1 [β = 1.5◦, γ = 4.5◦]. The eye location changes in space 100
mm in x direction and 300 mm in depth.

5 Discussion

This paper has presented a novel glint normalization approach
based on multiple geometrical transformations. The proposed ap-
proach is robust to noise and selects the best geometrical trans-

formation according to the number of detected corneal reflections.
Our primary intention was creating a robust glint normalization that
work even when at least only one glint were detected. However, the
assessment process has shown that translation transformation is in-
tolerant to head movements. For this reason, we have used the norm
between the pupil center and the only detected glint as an alternative
to translation normalization. Our approach uses similarity transfor-
mation for 2 glints, affine transformation for 3 glints and homog-
raphy for 4 glints (or more). It is robust when at least two corneal
reflection are detected by the glint detector. Our approach requires
to label each detected glint for helping to choose the correct map-
ping according to the number of detected glints. During the user
calibration process, it is necessary to create all geometrical trans-
formation matrices used by glint normalization, i.e. 4 matrices for
the norm, 6 matrices for similarity, 4 matrices for affine and 1 ma-
trix for homography normalization. One of the biggest contribution
of this paper is the n-closest glints normalizations. They present a
similar performance to traditional homography normalization even
using only two corneal reflections.
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Sehr geehrter Herr Narcizo, 
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sofern Sie keinen Anspruch auf Reisekostenerstattung gegenüber Dritten, beispielsweise Ihrem Arbeitgeber gegenüber 
durch Abrechnung einer Dienstreise, haben. Weitere Kosten können von der Universität Leipzig leider nicht erstattet 
werden. 
Die Reisekostenerstattung im o. g. Umfang kann nur bei Vorlage dieser Einladung und unter Beifügung der 
Originalbelege erfolgen. Mit dem Einreichen der vorgenannten Unterlagen zum Zwecke der Kostenerstattung bestätigen 
Sie, keinen Anspruch auf Reisekostenerstattung gegenüber Dritten zu haben. 
 
Ich hoffe sehr, dass Sie dieser Einladung folgen können und freue mich Sie schon bald in Augsburg begrüßen zu dürfen.  
 
Mit freundlichen Grüßen, 
 

 
 
Vertr.-Prof. Dr. Dirk Siebert. 
Leiter der Abteilung BTW der Natursportarten 
 
 
 

- Please	see	below	for	the	English	translation	of	this	document	–	
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University of Leipzig, Faculty of Sports Science,  
Jahnallee 59, 04109 Leipzig 

IT University of Copenhagen 
i.t. Fabricio Batista Narcizo 
Rued Langgaards Vej 7 
DK-2300 Copenhagen S 
Denmark 
Building: 4D22 

Leipzig, 24/02/2017 

Invitation for a meeting in order to prepare a techning assignment 
 
Dear Mr. Narcizo, 
 
On behalf of the Department of Movement and Training Science of Natural Sports (Faculty of Sports Science, University of 
Leipzig), I am pleased to invite you to a meeting in order to be a scientific specialist for preparing a teaching assignment. 
The place of the meeting will be the federal training centre for canoe slalom in Augsburg (Germany). This invitation is 
effective for the period of 26.03. – 28.03.2017. During this period, you will be expected to be engaged in the teaching 
assignment entitled eye tracking of canoe slalom specialists. If you follow this invitation the University of Leipzig 
(Department of Movement and Training Science of Natural Sports) will cover the following travel expenses according to 
the Saxonian travel legislation: 
- train tickets (2nd class) including return within Germany until the amount of 60 Euro 
- flight tickets including return until the amount of 350 Euro 
- accommodation expenses until the amount of 70 Euro per night  

as long as you don’t draw any claims from third parties or your employer. Unfortunately, any additional expenses as well 
as travel insurance expenses can’t be covered by the University of Leipzig. The refund of the aforementioned maximum 
amounts can only be reimbursed on presentation of this invitation in combination with the original invoices of the 
corresponding expenses.  
 
I very much hope that you are able to accept this invitation, and I am looking forward to welcoming you in Augsburg. 
 
Yours sincerely, 
 

 
 
Vertr.-Prof. Dr. Dirk Siebert. 
Director of the Department of Movement and Training Science of Natural Sports 



research project  
„Eye-tracking in canoe slalom“ 
 	
	

work plan 

Sportwissenschaftliche Fakultät 
BTW der Natursportarten (Ski/Kanu/Rad) 
 

	

 

 
 
position / person tasks 

athletes • performance diagnosis  
• individual schedule of starting 

times 
• athletes’ path 
 
 

Fabricio 
 

• perform the calibration 
• (after 1st run check if systems 

recorded data) 
• perform the re-calibration  
• charge laptops 
• process the videos of the 2nd 

run 
• copy 2nd run scene and eye 

movement video to hard drive 
• technical maintenance 

 
 

Otto 
 

 
 
 
 

 
 
 
 

 

• transferring athletes to start 
• explain the experiment 
• prepare helmet with foam 

pads 
• fit the helmet and cables 
• start/stop recording of 

calibration process 
• support installation of the 

laptop into the boat 
• start recording 1st run 
• start recording re-calibration 

and 2nd run  
• send athletes to BLZ 

 • supervise experiment 

Dan 
 

• start recording camera each 
run 

• stop recording eye-tracker 
each run 

• stop recording camera each 
run 

• supervise technical procedure 
• remove splash water off the 

cameras 

KLD	

KLD	

Start	

Start	

BLZ	/	
Interview	

Finish	
Start	

Camera	

Finish	

Camera	

KLD	



• technical maintenance 
• supervise tarp construction 
 
 

Johanna 
 

• help to prepare the helmet 
• transfer hard disk to Eric 
• supervise correct labeling of 

the videos (make notes) 
• back up for incidents 
 
 
 
 
 
 
 

Eric • copy files to laptop 
• check labels 
• record interviews (dictaphone, 

camera) 
• execute the interview 
• note AOI 
• notes for labeling of files 

 
 

BLZ	/	
Interview	

Start	

BLZ	/	
Interview	



Forschungsprojekt  
„Eye-Tracking im Kanuslalom“ 
 	
	

 

Sportwissenschaftliche Fakultät 
BTW der Natursportarten (Ski/Kanu/Rad) 
 

	

 

	
Liebe*r	Eye-Tracking-Teilnehmer*in,	
	
nächste	Woche	Montag	und	Dienstag	(15.	+	16.05.)	findet	zeitgleich	zur	KLD	in	Augsburg	die	
Pilotstudie	„Eye-Tracking	im	Kanuslalom“	statt.	
	
Im	Folgenden	findest	du	den	Versuchsablauf.	Deine	individuelle	Startzeit	teile	ich	dir	telefonisch	oder	
per	E-Mail	mit.	Für	den	reibungslosen	Ablauf	der	Untersuchung	ist	es	wichtig,	dass	wir	dich		
	
zur	deiner	Startzeit,	umgezogen	und	mit	deiner	Kanu-Ausrüstung	am	AKV-Turm	
	
in	Empfang	nehmen	können.	Der	Versuch	dauert	inklusive	Weg-	und	Umkleidezeiten	eine	Stunde.		
	
	

	

	
• am	AKV	Turm	
• Strecke	besichtigen	
• Helm	wird	an	deinen	Kopf	angepasst	
• Eye-Tracker	wird	kalibriert	

	
	 • 2	Läufe	auf	der	Teststrecke	à	ca.	45	

Sekunden	
(7	Tore	davon	3x	auf,	4x	ab,	easy)	

• erneute	Kalibrierung	zwischen	den	Läufen	

	
	
	
	
	
	

	
	

• zum	BLZ	paddeln	/	laufen	
• dort	umziehen	(wenn	du	möchtest)	
• Treff	im	Besprechungsraum	/	

Trainerzimmer	
	

	

	
	

• Interview	mit	Eric	Mendel	
• Dauer	ca.	20	Minuten	

	
	

	
	
Wir	danken	dir	sehr	herzlich	für	deine	Bereitschaft!!!	
Für	Fragen	erreichst	du	mich	unter	01782036993	oder	unter	
ottomaxklein@gmail.com	
Viele	Grüße,	Otto	

Start		

Finish		
Start		

Finish		
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