
IT University of Copenhagen

Doctoral Thesis

Collaborative Windows – A User
Interface Concept for Distributed

Collaboration

Author:

Morten Esbensen

Supervisor:

Dr. Jakob E. Bardram

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

at the

IT University of Copenhagen

August 2015

http://www.itu.dk
http://www.itu.dk

Abstract

Distributed collaboration is the work arrangement in which people distributed across

different locations collaborate on achieving a common goal. One particular domain

of work that has embraced distributed collaboration is software development. Global

software development is the special kind of software development where the production

of software is carried out by geographically dispersed people. Such work however, is

challenged by the distance between people and a strategy for handling the complex

dependencies that exists in distributed software development is to engage in closely

coupled work where close collaboration and frequent meetings drive the work. One

way to achieve this way of working is to implement the Scrum software development

framework. Implementing Scrum in globalized context however, requires transforming

the Scrum development methods to a distributed setup and extensive use of collaboration

technologies.

In this dissertation, I explore how novel collaboration technologies can support closely

coupled distributed work such as that in distributed Scrum. This research is based

on three different studies: an ethnographic field study of distributed Scrum between

Danish and Indian software development companies and the design, implementation

and evaluation of the two video-communication based collaboration tools SideBar and

dBoard.

Based on these studies I present the concept of collaborative windows—a user interface

concept for a special kind of collaborative video-mediated systems. A collaborative win-

dow is a video-based collaboration tool that implements three properties; (i) it employs

a window metaphor to its videoconferencing features, (ii) it uses a content-on-video ap-

proach to superimpose interactive content on top of the video and (iii) it implements

context-awareness to adjust its behaviour to the surrounding environment. The disserta-

tion explains the concept and presents a design space analysis for collaborative window

systems.

Acknowledgements

Four years ago I started as a Ph.D. student at the IT University of Copenhagen. Since

then, I have encountered numerous people who have helped, influenced or inspired my

work for which I am thankful.

First, I extend my greatest thanks to my supervisor Jakob E. Bardram. You have

been a great inspiration and support in my work ever since I entered the PitLab as an

undergraduate student and all the way through my Ph.D. studies. It has been a pleasure

to work with you and the results presented in this dissertation have been produced as a

result of your excellent guidance.

Second, I would like to thank all my former and current colleagues in the PitLab. Special

thanks go to Aurelien Tabard, Juan D. H. Ramos, Steven Houben, Steven Jeuris, Paolo

Tell, Sebastian Büttrich, Jakob B. Cholewa and Mathias K. Pedersen for all your help

with my research and for making the PitLab a great environment in which I have enjoyed

working the last six years. I also extend my thanks to Carl Gutwin and the students at

the Interaction Lab at the University of Saskatchewan for having me stay there for four

months and showing me the hospitality of Canada.

As a member of the NexGSD research project I would also like to thank Rasmus E.

Jensen, Stina Matthiesen, Thomas Tøth and Anne-Marie Søderberg for many fruitful

discussions and input on my work throughout the four years. A special thanks goes to

Pernille Bjørn for help and guidance of my project and for showing me new ways of

research. I have truly enjoyed working with you.

Lastly, a special thanks go to my beloved family for supporting me through my years as

a Ph.D. student. A very special thanks goes to my wonderful girlfriend Line Jakobsen.

Without your love, support and endless compassion throughout these last years, I would

not have made it this far. I hope I may someday repay you.

iii

Papers Included

The present dissertation consist of an introduction and a collection of the following four

research papers:

[P1] Morten Esbensen and Pernille Bjørn: Routine and Standardization in Global

Software Development. In Proceedings of the 18th International Conference on

Supporting Group Work, (GROUP ’14), ACM, 2014

[P2] Morten Esbensen, Paolo Tell and Jakob E Bardram: SideBar: Videoconferenc-

ing System Supporting Social Engagement. In 2014 International Conference on

Collaborative Computing: Networking, Applications and Worksharing, (Collabo-

rateCom ’14), IEEE, 2014

[P3] Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob

E. Bardram: The dBoard: a Digital Scrum Board for Distributed Software De-

velopment. Conditionally Accepted for publication in Proceedings of the 10th In-

ternational Conference on Interactive Tabletops and Surfaces, (ITS ’15), ACM,

2015

[P4] Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob E.

Bardram: Facilitating Distributed Standup Meetings through Blended Video Con-

ferencing and Task Management Technology. Submitted, Revised and Resubmitted,

Rejected at CSCW, 2016

iv

Full Publication List

Pre-print Manuscripts

• Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob

E. Bardram: The dBoard: a Digital Scrum Board for Distributed Software De-

velopment. Conditionally Accepted for publication in Proceedings of the 10th In-

ternational Conference on Interactive Tabletops and Surfaces, (ITS ’15), ACM,

2015

• Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob E.

Bardram: Facilitating Distributed Standup Meetings through Blended Video Con-

ferencing and Task Management Technology. Submitted, Revised and Resubmitted,

Rejected at CSCW, 2016

Full Papers

• Pernille Bjørn, Morten Esbensen, Rasmus Eskild Jensen and Stina Matthiesen:

Does Distance Still Matter?; Revisiting the CSCW Fundamentals on Distributed

Collaboration. ACM Transactions on Computer-Human Interaction, (TOCHI),

21.5 (2014): 27

• Morten Esbensen and Pernille Bjørn: Routine and Standardization in Global

Software Development. In Proceedings of the 18th International Conference on

Supporting Group Work, (GROUP ’14), ACM, 2014

• Morten Esbensen, Paolo Tell and Jakob E Bardram: SideBar: Videoconferenc-

ing System Supporting Social Engagement. In 2014 International Conference on

Collaborative Computing: Networking, Applications and Worksharing, (Collabo-

rateCom ’14), IEEE, 2014

• Steven Houben, Søren Nielsen, Morten Esbensen and Jakob E. Bardram: Noo-

sphere: An activity-centric infrastructure for distributed interaction. In Pro-

ceedings of the 12th International Conference on Mobile and Ubiquitous Multi-

media,(MUM ’13), ACM, 2013

Workshop Papers

• Jakob E. Bardram, Morten Esbensen, and Paolo Tell: Supporting Co-located

SCRUM Processes in Global Software Development. In workshop of “Local Re-

mote” Collaboration: Applying Remote Group Awareness Techniques to Co-located

Settings, (CSCW ’15)

v

Contents vi

• Morten Esbensen and Jakob Bardram: Tool Support for Globally Distributed

Scrum. In workshop of Global Software Development in a CSCW perspective,

(CSCW ’14)

• Steven Houben, Morten Esbensen and Jakob E. Bardram: A Situated Model

and Architecture for Distributed Activity-Based Computing. In workshop of Mod-

iquitous ’12, the 2nd international workshop on model-based interactive ubiquitous

systems, (EICS’12)

Contents

Abstract ii

Acknowledgements iii

Papers Included iv

Full Publication List v

Contents vi

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Domain . 2

1.2.1 Next Generation Technologies for Global Software Development . . 3

1.3 Research Question and Approach . 3

1.4 Reading Guide . 4

I Collaborative Windows 7

2 Background 8

2.1 Global Software Development . 8

2.1.1 Scrum in GSD . 9

2.2 Video Mediated Communication . 9

2.2.1 Video Windows and Media Spaces 10

2.2.2 Integration with other tools . 11

2.2.3 Beyond Being There . 12

2.3 Summary . 12

3 Research Methods 13

3.1 Workplace Study . 14

3.1.1 Results . 14

3.1.2 Summary . 16

3.2 SideBar . 16

3.2.1 System Description . 17

3.2.2 Evaluation . 18

3.2.3 Summary . 20

vii

Contents viii

3.3 dBoard . 20

3.3.1 System Description . 21

3.3.1.1 Scrum Board . 22

3.3.1.2 Window Metaphor . 22

3.3.2 Proxemic Interaction . 22

3.3.3 Backend Integration . 23

3.3.4 User Study . 23

3.3.5 Field Deployment . 24

3.3.5.1 Pre-deployment study . 25

3.3.5.2 Deployment . 27

3.3.6 Summary . 29

3.4 In Conclusion . 29

4 Collaborative Windows 31

4.1 Definition . 31

4.1.1 Window Metaphor . 32

4.1.2 Content Overlay . 33

4.1.3 Context Awareness . 33

4.2 Design Space . 34

4.2.1 Content Synchronization . 34

4.2.2 Information Density . 35

4.2.3 Interaction Awareness . 36

4.2.4 Video-Content Connectivity . 37

4.2.5 Privacy . 37

4.2.6 User Interface Inversion . 38

4.3 SideBar and dBoard . 39

4.4 Summary . 40

5 Discussion 42

5.1 Window Metaphor . 42

5.2 Limitations . 43

5.3 Other Domains . 43

6 Conclusion 45

6.1 Answer to Research Questions . 45

6.2 Future Work . 46

II Papers 55

Paper 1: Routine and Stadardization 56

Paper 2: SideBar 69

Paper 3: dBoard 1 80

Paper 4: dBoard 2 92

List of Figures

3.1 The research methods positioned in Mackay and Fayard’s framework of
triangulation [47]. The papers presented in Part II are are depicted in
the figure as well (P1 - P4). 14

3.2 The SideBar system adds tablet computer for all meetin participant. Us-
ing these tablets, partcipants can seek out information about each other
and engage in one-on-one chat conversations. 17

3.3 SideBar uses face-detection to track people in a videomeeting and provide
interactive content overlay. 18

3.4 A snapshot from the SideBar evaluation. 19

3.5 Questionnaire result on a 5-point Likert scale. For each feature, the ta-
ble shows the reported minimum score (Min), the first quartile (Q1),
the median (x̃), the third quartile (Q3), the maximum (Max) and the
interquartile range (iqr). 20

3.6 The dBoard is a combined video-communication tool and scrum board. . 21

3.7 Evaluation participants performing a standup meeting scenario during
the evaluation of the dBoard. 24

3.8 The results of the user evaluation of dBoard 25

3.9 With little space around the Scrum board (1) the screen had to be turned
to face the person speaking (2) leaving others with no direct view to the
board (3). 26

3.10 The desk around which the collocated Scrum meetings took place. The
Scrum board used is visible on the monitor. 27

3.11 The dBoard in use during a distributed Scrum meeting 28

4.1 The dBoard conceptualized as a collaborative window. 32

4.2 The 6 dimensions of the collaborative window design space and possible
values. The first two dimensions (Synchroniation and Density) can take
on a continuos value, the remaining can take on a discrete value. 35

4.3 Tasks are overlayed the video on the dBoard but with a low degree of
information density. 36

4.4 Interaction awareness on the dBoard is implemented using task-highlighting
and touch pointers. 37

4.5 The dBoard uses proximity sensing to blur the video. 38

4.6 SideBar positioned in the collaborative windows design space. 40

4.7 dBoard positioned in the collaborative windows design space. 40

ix

Chapter 1

Introduction

The present dissertation presents work on designing technologies for distributed collabo-

ration and the concept of collaborative windows—a novel type of collaboration technol-

ogy for closely coupled distributed work. In this chapter, I present the background and

domain of the work, the research question and provide an overview of the dissertation.

1.1 Background

Nowadays, more and more work is carried out as distributed work. In distributed col-

laboration, geographically dispersed actors work together on a common task. In order

to enable distributed collaboration, a number of technologies should be used to handle

communication. In these technological setups, video technologies play a large role. As a

high-bandwidth communication channel [50] video is well suited for many collaborative

tasks in which distributed co-workers have to come together. Video-conferencing pro-

vides advantages over for example audio-only setups in terms of meeting structure, turn

taking and conveying body-language [38, 52].

Video-communication is not without problems though, and one area of problems with

todays videoconferencing, relates to the fact that the videoconferencing technologies

often are disconnected from other collaborative tools. Previous research have shown that

videoconferencing is most often conducted in combination with other activities [11]. Just

as in collocated meetings, distributed meetings using videoconferencing usually revolves

around a common task. And as with most tasks that need to be solved collaboratively,

such tasks are solved with the aid of tools. The problem here is related to the fact that

the tools needed to solve a given task at hand, and the videoconferencing tools used

to mediate the communication are not integrated which requires distributed actors to

1

Chapter 1. Introduction 2

manually set up and relate these tools to each other. Creating such arrangements where

different kinds of tools has to be connected and setup across locations poses challenges

for distributed teams [4, 14] and there is a need to create technologies that integrate

video with the other essential tools used in distributed collaboration [69].

Another area of problems of videoconferencing setups is that they are mostly designed

for planned meetings. A typical videoconferencing setup in a company will be located

in a dedicated meeting room where meetings can be planned and executed at specific

times. In collocated settings however, much interaction and information sharing amongst

colleagues happen outside of such planned meetings. From the informal meetings in

hallways or at the coffee machine to the awareness gathered by sitting and working

collocated, much information is gained simply by being collocated. In distributed col-

laboration, this information is lost which in turn causes challenges for the collaboration.

These issues have been addressed with the concept of ‘video windows’ [21]‘ and ’media

spaces‘ [6]. Both concepts describe how video can be use as always-on technologies to

provide a view into a distant location instead of only being turned on during planned

meetings.

1.2 Domain

This research has been conducted in the domain of global software development (GSD).

GSD is one work domain that has adopted distributed collaboration as a standard way

of working [15]. Companies are increasingly turning to GSD in search of greater profits

through access to lower wage labor, in search of new talented employees or to reach

new markets [15, 29]. Transitioning to global work however, also introduces a range of

problems related to the distances of time, space and culture which pose challenges to

communication, coordination and control [13].

Within GSD, agile methodologies like Scrum are now increasingly becoming applied [34].

The usage of Scrum in GSD might seem like a contradiction at first [59]; while Scrum

advocates close collaboration, collocation and frequent communication, GSD projects

are characterized by the distribution of people over two or more locations. With a focus

on close collaboration and frequent meetings however, Scrum has proved a good ap-

proach to handle the complexities of GSD [57]. Adhering to the recommended meetings

and transforming them to a globalized work context, companies have been observed

to overcome some of the problems traditionally associated with GSD [2]. In general,

achieving a successful collaboration across distances requires companies to implement

appropriate work processes—such as those recommended by Scrum transformed to a

Chapter 1. Introduction 3

distributed environment [35]—and communication and coordination technologies to fa-

cilitate these processes. This dissertation presents work on the latter of these two; how

novel collaborative technologies can support distributed agile software development.

1.2.1 Next Generation Technologies for Global Software Development

The work presented in this dissertation has been carried out as a part of the research

project ‘Next Generation Technologies for Global Software Development’ (NexGSD)1.

The NexGSD project is a joint research project between universities and companies

that have set out to develop processes and tools supporting GSD. The project has

undertaken a multidisciplinary approach to GSD looking at challenges and opportunities

from ethnographical, organizational and technological perspectives. This, so far has shed

light over GSD from different perspectives looking into the challenges of GSD in terms

of e.g. managing trust [70] or maintaining legacy systems [48].

A core tenet within the NexGSD project is to explore GSD as a potential for companies

to stretch across countries and engage in close collaboration with distant colleagues

rather than a platform for outsourcing work. We refer to outsourcing as the special kind

of organizational arrangement where (parts of) the construction of software is shipped

off to another location to be returned once it has been completed. Differently, we refer

to close collaboration in GSD if the production of software relies on close collaboration

between two or more sites that each take part in and responsibility of the construction

and completion of the software as a whole. Our studies have showed that successful

collaborative software projects can be achieved by keeping collaboration close despite the

complexities of managing such closely coupled distributed work [5, 39]. This dissertation

presents work on collaborative technologies for agile GSD and follows the tenet of the

NexGSD project. GSD carries a potential for engaging in close collaboration between

distributed teams and the tools we design to support such work should enable close

collaboration to unfold rather than support outsourcing.

1.3 Research Question and Approach

This dissertation addresses how distributed collaboration can be supported from a tech-

nological perspective and asks the question: How do we design technologies that support

closely coupled collaborative work such as that of global Scrum?. Following the trian-

gulation process of Mackay and Fayard [47] the dissertation approaches this questions

from three perspectives: a technological, an empirical and a conceptual.

1http://nexgsd.org/

http://nexgsd.org/

Chapter 1. Introduction 4

Technological. From a technological perspective, the dissertation demonstrates two

tools designed to support distributed teams; SideBar and dBoard. SideBar is an initial

exploration into the domain of collaborative video and is a tool designed to support

social engagement in video meetings. dBoard is a collaboration tool for GSD in the

form of distributed Scrum board designed to support awareness and ad-hoc and planned

meetings for a distributed Scrum team. I present the design and implementation of these

prototypes which were used to explore the technical aspects of the research question.

Empirical. The empirical perspective encompasses a workplace study of a distributed

Scrum team working out of Denmark and India and three evaluations of SideBar and

dBoard. SideBar was evaluated in a small scenario-based usability study. dBoard was

evaluated in two steps; in a scenario-based usability study with Scrum practitioners

and in a field deployment between two distributed collaborating software development

companies. These studies show how users found the tools both easy to use, usable

and how combined video and domain specific applications was appreciated. The field

deployment of dBoard also showed how this kind of technology was well suited for

supporting the standup meetings of the distributed Scrum team but also pointed out

challenges that were introduced with a deployment of the board.

Conceptual. The conceptual perspective presents the concept of collaboration win-

dows—a user interface concept for collaborative systems that are specifically designed

closely coupled distributed collaboration. A collaborative window application is a video-

mediated communication tool where domain-specific interactive content is overlaid on

top of the video. The concept is derived from the the workplace study and the expe-

riences of designing, implementing and evaluating SideBar and dBoard and builds on

previous research on content overlay in videoconferencing [43, 51], video windows [21]

and media spaces [6].

1.4 Reading Guide

This dissertation is organized into two parts. Part I is an introduction and Part II is

a collection of four research papers. In Part I, I introduce and discuss the background

of the research, the methods used and the concept of collaborative windows that was

developed based on the research. This part is structured as follows:

Chapter 2: Background

This chapter sets the stage of the dissertation by examining the domain of agile global

software development, how video-mediated communication is used within the domain

and what challenges are faced. The chapter also explains related work which is later

Chapter 1. Introduction 5

used to position the concept of collaborative windows.

Chapter 3: Research Methods

Chapter 3 presents the methods that were used in exploring the research questions. The

chapter describes the ethnographic workplace study of distributed Scrum and the de-

sign, implementation and evaluation of two technology prototypes that were developed

to support distributed software development: SideBar and dBoard.

Chapter 4: Collaborative Windows

This chapter presents the concept of collaborative windows—a user interface concept for

collaborative systems that employ a window metaphor, use content-on-video to integrate

video with other tasks and implement context awareness. The concept was derived from

the workplace study of distributed Scrum and the work of designing, implementing and

evaluating SideBar and dBoard and captures what was learned into a unified concept.

The chapter places the concept in relation to related works and presents a design space

analysis of systems that build on top of this concept. The purpose of this chapter is to

summarize and crystallize what has been learned from working with developing systems

for globally distributed scrum.

Chapter 5: Discussion

This chapter discusses the opportunities and challenges of collaborative windows and

how the concepts might be appropriated to domains outside distributed agile software

development.

Chapter 6: Conclusion

Chapter 6 concludes the dissertation by providing an answer to the research question

and pointing out directions of future work.

Part II is a collection of four research papers:

Paper P1: Routine and Standardization in Global Software Development

This papers reports on an ethnographic work place study of globally distributed Scrum

between a Danish software development company and an Indian service provider. The

purpose of the study was to investigate the complex net of dependencies that exists

in such a project and how a globally distributed team managed to successfully handle

these dependencies. This paper contributes to the dissertation in two ways. First, it

demonstrates how GSD using Scrum organized around close collaboration and frequent

communication can be used to handle the complex dependencies in such a collaboration.

Second, it was used as the first step in the design of the dBoard as some of the challenges

Chapter 1. Introduction 6

we observed were related to the lack of a Scrum board for the observed distributed Scrum

team.

Paper P2: SideBar: Videoconferencing System Supporting Social Engagement

This paper presents the design, implementation and evaluation of SideBar. SideBar was

our first exploration into the domain of collaborative video. The purpose of SideBar

is to give distributed co-workers opportunities to connect to each other and engage in

more social activities. SideBar is a videoconferencing system that extends a traditional

videoconferencing systems with tablet computers for all participants. The tablets show

a mirrored videofeed from the conference camera, however, the video has been made in-

teractive by superimposing interactive rectangles on top of faces of people in the video.

Using this interactive video, users can navigate to profiles of each other and engage in

one-to-one chat conversations during the meetings.

Paper P3: dBoard: a Digital Scrum Board for Distributed Software Development

In this paper we present the dBoard—an interactive Scrum board and video-communication

tool designed for distributed Scrum teams. The dBoard superimposes a shared inter-

active Scrum board on top of a video-stream. Designed for both planned as well as

unplanned meetings, the dBoard is able to blur and de-blur the video automatically

the proximity of people and the whole system is integrated with existing task tracking

system so it fits into the standart collaboration setup used in distributed software de-

velopment. The paper reports on the design, implementation and user evaluation of the

dBoard.

Paper P4: Facilitating Distributed Standup Meetings through Blended Video Confer-

encing and Task Management Technology

This last paper reports on a field deployment of the dBoard. We first studied the daily

Scrum meeting practices of a small Danish software development company to under-

stand and learn how the meetings supported their Scrum process and what challenges

the team faced. We then deployed the dBoard in two companies; the Danish company

and their collaborating partner in Flensburg, Germany for a period of 5 weeks. During

this time we observed the standup meetings of the teams as they used the boards. The

paper describes the outcomes of these studies that showed how the dBoard was able

to provide support for their daily standup meetings while also pointing out challenges

related to the physical and organizational embeddedness of the board.

Part I

Collaborative Windows

7

Chapter 2

Background

This chapter describes the background and context of the dissertation. In particular,

since the work presented here has been carried out within the domain of distributed agile

software development, the the first part of chapter explains the concept of global software

development and the relation to Scrum. The second part of the chapter then explains

the role of videoconferencing—a widely used communication tools for GSD—and the

benefits and challenges of using videoconferencing in distributed collaboration.

2.1 Global Software Development

Global software development (GSD) is the special kind of software development where

work is split across two or more geographically dispersed sites [44]. In recent years,

GSD has become common practice [15] as companies have realized that GSD carries

potential for savings through reduced labour costs, easier penetrations of new markets

and access to larger pools of skilled labour [15]. GSD however, also faces challenges

related to the geographical, temporal, cultural and linguistic distances [53] that impact

communication, coordination and control [13]. In worst case, such challenges can cause a

distributed collaboration to fail [7] however, if handled correctly, succesful collaboration

can unfold [20] and companies might reap the benefits of GSD.

This dissertation refers to GSD as the work arrangement within software development

where several people in two or more geographically dispersed locations work together

to produce software. Here, it is important to note that several terms are used in the

literature when talking about GSD. Distributed software development, global software

development or global software engineering are all used somewhat interchangeably by

different authors when describing the same domain. In this dissertation I use the term

8

Chapter 2. Background 9

global software development and the abbreviation GSD to describe such work arrange-

ments however, it should be noted that other terms exist and that these have been

treated as being similar description for the same concept.

2.1.1 Scrum in GSD

Scrum is a software development framework that suggests how to arrange work, de-

velopment teams and meetings [63]. Scrum is built on the Agile philosophy in which

the it is recognized that software requirements are hard to define up-front and that the

development teams should embrace change [3]. In Scrum, software requirements are

formulated as user stories which are broken down into tasks and arranged in the prod-

uct backlog. Development teams are organized into Scrum teams—small self-managing

teams consisting of a Scrum master, developers and testers. The work is arranged into

sprints—time boxed unit of typically 2-3 weeks—during which a number of user stories

are implemented. The effort it takes to implement a user story is estimated by the Scrum

teams and every sprint, a number of user stories corresponding to the teams velocity

(i.e. the amount of estimated user stories the team can produce) are selected and placed

in the sprint backlog. During the sprint, the developers in the Scrum teams assign user

stories to each other and remove them from the backlog as they are completed. At

the end of a sprint, the implemented stories are accepted or rejected in a demonstration

meeting and the Scrum team reflects on the work processes in the retrospective meeting.

While Scrum has been designed for collocate use, it is increasingly being applied to GSD

as well with succeses (e.g. [2, 57, 67]). Despite the fact that previous research suggests

that the challenges of GSD should be handled through reducing collaboration [13] it is

exactly the focus on frequent meetings and close collaboration of Scrum that has proven

to be successful in handling the problems that arise from the distances in GSD [57].

Still however, challenges exist related to the introduction of Scrum in GSD which re-

quires companies using Scrum in distributed environments to tailor the Scrum practices

to fit with the distances [35, 56], make use of other strategies such as aligning work-

ing hours and additional informal meetings as well as make extensive use of different

communication tools [34].

2.2 Video Mediated Communication

One central research theme in GSD is how technologies can support GSD [29]. To

achieve successful collaboration, a wide range of tools should be used. Noll et. al.

Chapter 2. Background 10

describe how one of the primary solutions to overcome the barriers created by the dis-

tances in GSD is to make use of synchronous communication technologies [53]. Within

synchronous communication, videoconferencing plays a large role as the highest commu-

nication bandwidth technology [17]. Previous research on technology support for GSD

suggests that video carries value in the fact that that meetings are better structured, and

that people tend to be more focussed compared to audio only [52]. Isaacs and Tang’s

studies of video technologies suggest, that compared to audio-only communication the

benefits of video is how video allows expressing understanding, forecasting responses,

managing pauses and including non-verbal communication [38]. Video-communication

however, also suffers from problems. One line of problems relate to the fact that tradi-

tional videoconferencing setups where the camera is mounted on top or below the screen

create a parallax that disrupts eye-contacts and pointing gestures. To solve such issues,

previous research has looked into creating setups with one way transparent screens where

the camera can be placed behind the screen [42, 55, 68], or recently, using 3d-sensors

in additional to cameras to create 3d photorealistic representations of meeting partic-

ipants that can be rendered ‘correctly’ on screen to correctly transmit both gaze and

gestures [31, 74].

2.2.1 Video Windows and Media Spaces

One issue in distributed collaborative work is tied to all the information that which is lost

when people are working geographically dispersed. From the spontaneous encounters

in hallways to the knowledge of where ones colleagues are located, much information is

shared among people simply by being collocated. Staying aware of remote co-workers’

schedules, work and personal lives is much more difficult in distributed collaboration [12]

and existing technology setups are not designed to support such awareness [37]. This

problem is perhaps not directly linked to videoconferencing as a technology. Indeed, the

name video-conferencing or video-meeting implies that this kind of technology is targeted

planned events such as a conference and not designed for informal communication and

awareness. However, this is a general problem of distributed work and it is included in

this dissertation as it links to the usage of videoconferencing. In distributed work, the

video serves as the closest means of achieving collocation, however, it does not support

an important aspect of what it entails to be collocated.

To address these issues, the concepts of video windows and media spaces have been pro-

posed. A video window is an always on video connection between two sites intended for

people to be able to communicate with each other through a virtual window in the wall

Chapter 2. Background 11

providing a video into a distant location [21]. Similarly, the concept of mediaspaces de-

scribe video and audio connected geographically dispersed sites that support awareness,

chance encounters and group discussions [6].

2.2.2 Integration with other tools

Another problem of todays videoconferencing equipment is the fact that it is rarely in-

tegrated with other tools. A traditional setup consists of camera, screen, microphone

and speakers—perhaps located in a dedicated meeting room. While some setups al-

low for bringing in documents or provide an additional screen for screen sharing, there

is no explicit support for collaborative tools to be used during the meetings. While

videomeetings indeed are about meetings—which the technology facilitates—is usually

done in conjunction with other tasks [11]. When distributed actors meet using video-

conferencing, it is with a task at hand. The point here is, that these tasks usually

also require some tools to accomplish and that these tools are not integrated with the

videoconferencing equipment. There is a need for videoconferencing technologies that

integrate with the other tools used during meetings [69].

The problems of establishing a video channel and meanwhile configuring other tools is

part of Bjørn and Christensen’s concept of relation work [4, 14]. Relation work denotes

all the work that goes into establishing the social-technical relations between people

and people, people and artifacts and artifacts and artifacts. Establishing these connec-

tions, the authors argue, become increasingly complex in distributed collaboration. The

problems of setting up videoconferencing equipment in conjunction with other tools is

one instance of the complexities of relation work in distributed collaboration. Bjørn and

Christensen observed how communicating information on physical task wall in global en-

gineering through video became a cumbersome task. Indeed, the disconnection between

the task wall and the video set the need for highly complex and complicated relation

work to take place.

Some previous research however, have focussed on creating vide-mediated communi-

cation setups which provide support for collaboration around shared artifacts. The

notion of blended interaction spaces and the accompanying BISi system for example,

is a video-mediated communication system inspired by the HP Halo systems that have

been engineered in software as well as hardware to create a video-mediated space in

which external artifacts and data sourced can be brought into the meeting [54].

Chapter 2. Background 12

2.2.3 Beyond Being There

Despite the aforementioned problems within the context of video-mediated communica-

tion, previous research have also pointed out that video-communication provides possi-

bilities of creating systems that provide collaborating actors with interaction possibil-

ities that are not possible in collocated environments. System that—in theory—could

be preferred even if interaction in physical proximity was possible [32]. Beyond being

there is the concept that describe such systems that take advantage of the possibili-

ties of modern technology to provide users with experiences and interactions beyond

physical collocation. Roussel and Gueddana elaborate on this concept and propose the

notion of Multiscale Communication Systems—a telecommunication concept that aims

to support variable degree of engagement, smooth transition between such degrees and

integration with other media [61]. Concepts such as beyond being there and multiscale

communication systems suggest that we can design and implement communication-tools

that provide us with functionality that we do not have in collocated settings.

2.3 Summary

In distributed collaboration, distributed actors work together on a common task. One

instance of distributed collaboration is GSD where the work of producing software is

carried out by people located in geographically dispersed locations. With opportunities

for advantages of reduced costs and access to skilled labour, GSD has become popular

but GSD is also challenged by geographical, temporal, cultural and linguistic distances.

Within GSD, agile methodologies such as Scrum are now increasingly becoming applied

as they have proven to be effective in helping overcome the challenges associated with

the distances of GSD. In order to successfully implement Scrum in GSD, the processes

need to be modified to the distances and appropriate technologies should be used for

handling the collaboration. One such technology that has enabled this way of work-

ing is videoconferencing. Videoconferencing enables distributed coworkers to met in a

high communication bandwidth channel, but videoconferencing still does not compare

to collocation and suffer from several drawbacks. In particular, the lack of support for

informal awareness and the disconnections between video-technology and other tools

needed during video-meetings pose challenges for distributed collaboration. In the fol-

lowing chapters, I present work on collaboration technologies that seek to solve these

issues.

Chapter 3

Research Methods

The purpose of this dissertation is to gain knowledge about designing collaborative

tools for closely coupled distributed work such as that of distributed Scrum. In doing

so, three main studies were conducted: an ethnographic work place study of globally

distributed Scrum and the development of two video-based communication tools: Side-

Bar and dBoard. All studies are detailed in Part II (the study in [P1], SideBar in [P2]

and dBoard in [P3] and [P4]) so this chapter explains the studies with a focus on how

they helped inform and conceptualize the notion of collaborative windows (Chapter 4).

This chapter describes the research methods that have been applied in the investigation

of the research question and the three aforementioned studies. The specific activities

in the research methodology can be depicted using Mackays and Fayard’s framework of

scientific triangulation which describes the research methods underlying HCI research

and how these methods relate to each other [47]. More specifically, HCI research trian-

gulates between theory, the design of artifacts and observations. The methods used in

exploring collaboration tools for globally distributed work presented in this dissertation

can be seen in Figure 3.1.

The observation perspective encompassed a workplace study [46] of distributed Scrum

which was conducted to explore globally distributed Scrum and provide input for the

design of technologies supporting this kind of work arrangement. The design of artifacts

perspective involved the design and implementation of two collaboration tools: SideBar

and dBoard. The design of these tools both followed a centered design process [1] where

wireframes or working prototypes were presented to users used in order to elicitate final

requirements [25]. Both systems were built as fully functional prototypes. The tools were

then—from an observational perspective—evaluated in user studies and the dBoard was

furthermore subjected to a field deployment [66]. Finally, the concept of collaborative

windows was conceived based on the work of the three main studies.

13

Chapter 3. Research Methods 14

dBoard

Field Study

SideBar

Feasibility
Study

Theory

Design of
Artifacts

Observations

Usability Study Field Deployement

Collaborative
Windows

P1

P2

P4

P3

Figure 3.1: The research methods positioned in Mackay and Fayard’s framework of
triangulation [47]. The papers presented in Part II are are depicted in the figure as well

(P1 - P4).

3.1 Workplace Study

In 2013 we performed an ethnographic workplace study of a globally distributed Scrum

team with members located in both Denmark and India. Using observations and inter-

views, two researchers studied the work practices of the team for two weeks. With one

researcher located in Denmark and one in India we had access to a global view of the

collaboration [58]. The purpose of this study was two-fold. First, we wanted to under-

stand how a distributed Scrum team managed to handle all the dependencies in work

that arise when working in a distributed team. Second, we wanted to gather input for

the design of collaborative systems supporting global Scrum. Paper [P1] explains how

the team used the strategies of routine and standardization to manage the complex de-

pendencies that arise in distributed work, so this section explains what we learned from

the study that helped us design tools for distributed Scrum. We also refer to Paper [P1]

for details on the study methodology. It is important to note here, that this study was

conducted after SideBar (Section 3.2) was designed and evaluated, and the results thus

were used for the design of dBoard (Section 3.3) and as part of the motivation for the

concept of collaborative windows (Chapter 4).

3.1.1 Results

Our study of the distributed Scrum team revealed that they managed to keep an ongo-

ing close collaboration despite the large distance between Denmark and India and that

Scrum was a particularly good match for the complex work the goes into developing

software across countries. Adhering to many of the suggested Scrum practices—such as

daily meetings, sprint planning and estimation, and team struture—the team success-

fully carried out the Sprint we observed and in general expressed that the collaboration

Chapter 3. Research Methods 15

was a success. Despite the success however, we also observed problems which were

mostly related to the technical setup the teams used to facilitate the collaboration.

In the case of a daily standup meeting in Scrum, for example, the lack of a dedicated

space where the meetings could take place caused delays. While the Indian developers

always used the same meeting room for the daily meetings, in Denmark, a room was

booked on a day-to-day basis. As the Danish developers did not have a spatially stable

location to go to when conducting the meetings, we observed how delays occurred. In

several instances, the Danish developers were late to the meetings as they first had to

figure out which meeting room had been booked for the meeting and then navigate

through the (rather large) office building to that room. This could easily delay the

meeting by 5 minutes, leaving little time for the meeting as only 15 minutes had been

allocated in India before another team had booked the room. Without access to a

common, stable location to conduct daily meetings, the meetings were delayed and had

to be rushed so they could finish within the 15 minute timeslot.

The lack of integration between video and other tools also caused problems during the

daily meetings. We observed how the meetings between the two distributed sites were

done using videoconferencing but also required the access to their task tracking software.

Indeed, these two technologies were not integrated but had to be set up independently

for each meeting which had two negative consequences for these meetings. First, the

setup costs of these meetings were quite high which contrasts the intention of the daily

meeting. These meetings are supposed to be short and effective but we observed how this

was only possible in a distributed setting if setting up the equipment was as effortless as

possible. Both technologies required significant knowledge to set up—knowledge which

on the Indian side only resided with one developer. If this developer was not available

to set up the technology we observed how the others struggled to establish the video

connection and log in to the task tracking system which delayed the meeting. Second,

the lack of integration between video and task mangement tool caused a situation where

only the Danish Scrum master could update the state of tasks and the control of the

system thus resided with him.

The same problems were observed during the demonstration meeting which was con-

ducted at the end of the Sprint, only here, the consequences of not having an integrated

video and demonstration tool were more severe. During the demonstration meetings,

the Scrum team demonstrated the user stories that had been implemented in the sprint

for the Product Owner. The Product Owner would either accepts the user story as

completed or reject it in which case the user story was placed back into the develop-

ment backlog for further development. What we observed was, that due to the technical

limitations of the technologies used in the demonstration meetings, it was not possible

Chapter 3. Research Methods 16

for the Indian developers to participate in the meeting, and instead, Danish developers

demonstrated the features that the Indian developers had worked on. The reason for

this was, that the team needed a large projector to demonstrate the features which did

not allow them to simultaneously have a video link to the Indian offices. At the same

time, was the test-server setup located in Denmark and the Indian developers did not

have access to it. The technological contraints thus meant, that the Indian developers

had to inform developers in Denmark on what was to be demonstrated and how, and

all demonstration was done in Denmark by the Danish team.

3.1.2 Summary

The study of a globally distributed Scrum team showed, that while the team was able

to successfully carry out a globally distributed collaboration using of Scrum, some of

the greatest challenges were related to the technological setups used to facilitate the

collaboration. The team had access to and made extensive use of videoconferencing

equipment, but when other tools were needed during meetings, problems arose and with

no common place for the daily meetings to take place, meeting were delayed. The daily

Scrum meetings became cumbersome to setup—which goes against their intended simple

and fast intentions—and the demonstation meetings were held without the participation

of the Indian developers. There seemed to be a need for smarter video-conferencing

solutions that integrated with the other tools that were needed to support these specific

activities.

3.2 SideBar

SideBar was out first technological exploration into the domain of interactive video.

SideBar seeks to address the problem that personal connections are hard to achieve in

distributed arrangements. The problems of distributed collaboration are linked to the

fact that many of the processes that exists in collocated collaboration are disrupted

by distances [28]. This also applies to the creation of personal ties and connections

which have optimal conditions in collocated settings where everyday communication,

spontaneous encounters, frequent meetings and interactions, and possibly planned team

building activities all foster the creation of such connections. With the introduced

distances in GSD, such facilitating processes are disrupted and studies of people in

distributed teams show that their self-reported distributed social network size is smaller

compared to collocated [30] and people tend to form groups with collocated colleagues [9].

Personal connections are not without importance however, and concepts such as trust,

Chapter 3. Research Methods 17

the feeling of group cohesion and connectedness have been linked to communication

effectiveness and patterns in distributed environments [22, 40, 50].

Figure 3.2: The SideBar system adds tablet computer for all meetin participant.
Using these tablets, partcipants can seek out information about each other and engage

in one-on-one chat conversations.

3.2.1 System Description

SideBar addresses the problem that interpersonal connections are much harder to achieve

in distributed collaboration compared to collocated [4]. SideBar is a videoconferencing

system that aims to support social activities during video meetings using interactive

video. The main feature of SideBar is that the traditional videoconferencing setup

is extended with personal tablets for all meeting participants. These tablets show an

interactive mirrored videofeed from the conference camera. Using facial-tracking, the

tablet video is made interactive by superimposing small rectangles on top of the faces of

people in the video. As the SideBar system uses face tracking not face recognition, a login

procedure is necessary to make a connection between the user and the face as tracked

by the image recognition algorithm. This association is made by a login procedure in

which a user—when starting the video-meeting—is shown the video-stream of the local

site in which she is located. She then selects herself in the interactie videofeed to make

the connection between the face and the person. Figure 3.2 depicts a conceptualization

from the design process of a SideBar meeting—meeting participants are using tablets

during the meeting to interact with each other.

Chapter 3. Research Methods 18

Figure 3.3: SideBar uses face-detection to track people in a videomeeting and provide
interactive content overlay.

Users can tap an interactive rectangle on the tablet videofeed to navigate to a personal

profile for the corresponding person. The personal profiles in SideBar contain personal

and professional information about the person such as name, position and personal

interests, access to a direct one-to-one chat as well as information about the location

of the person, and information about the team as a whole. With SideBar, people can

seek out information about each other during the meeting and engage in one-to-one—so

called sidebar—conversations. Figure 3.3 shows the SideBar tablet user interface in a

meeting situation. The videofeed from the conference camera is shown on the tablet

and yellow rectangular interactive areas are superimposed onto the faces of people in

the video along with the names of the people. Tapping these rectangles will bring up the

profile page for that person. On the side of the videofeed, the time of day, the weather

and recent news about the remote location is shown.

3.2.2 Evaluation

SideBar was evaluated in a small scenario-based usability study [16] with the purpose

of assessing the perceived usefulness of the different features of SideBar as well as the

ease of use. 7 participants (mean age 32, all male) were recruited for the evaluation

which was conducted in two sessions. Each participant was given a role such as user

interface designer or developer and was asked to play out a scenario in which a mobile

application was to be produced and they had to agree on the division of work. The

details of the scenario and the procedure can be found in [P2]. After completing the

Chapter 3. Research Methods 19

scenario, participants were asked to rate the usefulness of different features of SideBar

on a Lickert scale and state to what extend they agreed with the statements The system

is easy to use and The use of tablets distracts the video meeting. The session concluded

with an open ended interview in which participants could elaborate on their answers

and provide additional comments and suggestions on the system. Figure 3.4 shows a

snapshot from the an evaluation session.

Figure 3.4: A snapshot from the SideBar evaluation.

Table 3.5 shows the results of the Lickert scale questionnaire reported as the minimal

score, the first quartile, the median, the third quartile, the maximum score and the

interquartile range. In general, the participants found SideBar useful and reported that

SideBar was “really helpful” and “the right way to go”. The interactive videofeed and

the personal profiles scored especially high in the evaluation. In the semi-structured

interview that followed participants stated that “[I] felt surprised how useful integrating

information and video is” and that the combined video-content interface “added more

depth to the video meeting” and even requested more information be readily available

on the video instead of in the profile pages of SideBar. The participants also found the

system easy to use which was also visible from observing the evaluation scenario as it

played out as all participants confidently navigated to the profiles of each other seeking

out information using the interactive video.

Chapter 3. Research Methods 20

Feature Min Q1 x̃ Q3 Max iqr
Interactive video 4 4 4 5 5 1
Personal profiles 3 3.25 4 5 5 1.75
Location page 1 1.5 3 3 4 1.5
Communication backchannel 4 4 4 5 5 1
Team Page 1 1.5 4 4 5 2.5

Statement Min Q1 x̃ Q3 Max iqr
The system is easy to use 3 4 4 4 5 0
The use of tablets distracts the video
meeting

1 1.25 4 4 4 2.25

Figure 3.5: Questionnaire result on a 5-point Likert scale. For each feature, the table
shows the reported minimum score (Min), the first quartile (Q1), the median (x̃), the

third quartile (Q3), the maximum (Max) and the interquartile range (iqr).

3.2.3 Summary

We designed and implemented SideBar to explore how to support more social engage-

ment in videoconferencing—these details can be found in [P2]. With respect to the con-

cept of collaborative windows, designing, implementing and evaluating SideBar provided

us with two main insights that helped inform the concept. First, SideBar demonstrates

how—from a technical perpective—video and interactive content can be combined by

superimposition of the two. Second, the evaluation—while limited in size—showed that

participants found the interactive video especially useful and during the scenarios we

observed how all participants navigated using the video-content user interface without

problems. The work on SideBar showed us how to combine video and content which

lead us pursue this concept and helped us develop the initial concept of collaborative

windows which was the initial basis for the design of the dBoard as explained in the

following section.

3.3 dBoard

The Scrum board is an important artifact in the Scrum development process. The tradi-

tional Scrum board is a large physical wall—such as a whiteboard—divided into columns

representing states. Tasks to be implemented are represented on small post-it notes (or

similar small objects) and placed in the first column representing the ‘New’ state. As

tasks are being implemented they are moved from the ‘New’ through ‘In Progress’ to

‘Done’. The Scrum board thus reflects the current state of implementation and provides

awareness about work to developers which is one of the most sought information types

of software developers [41]. The board has been subject to research and it has been

identified as an important tool in reducing the amount of articulation work during a

Chapter 3. Research Methods 21

standup meetings [57] and as an object around which many other scrum processes re-

volve [49]. Previous research have problematized the digitization of tasks boards [65, 73]

but in order to provide a Scrum board to a distributed Scrum team, either physical

boards should be set up and manually synchronized across sites or digital ones be used.

Recent research have shown how distributed teams have adopted digital solutions [8, 26]

to their needs but there is still a need for solutions that facilitate communication as well

as task board for distributed teams [26].

Figure 3.6: The dBoard is a combined video-communication tool and scrum board.

3.3.1 System Description

We designed the dBoard to provide distributed Scrum teams with a task board that sup-

ported both task management and communication. Based on our ethnographic work-

place study of a distributed Scrum team (Section 3.1) and previous literature on Scrum

boards (e.g. [26, 49, 57]), we designed the dBoard with the following requirements. The

dBoard should:

• Provide active support during scrum meetings

• Function as an information radiator

• Give awareness about the presence of remote co-workers

• Seamlessly transition between information and awareness radiator and meeting

support tool

• Integrate with existing software engineering tools

• Be easily movable and deployable

• Provide mechanisms for ensuring the privacy feeling of the users.

Chapter 3. Research Methods 22

3.3.1.1 Scrum Board

The dBoard is a combined digital Scrum board and video-communication tool. A syn-

chronized digital Scrum board is superimposed on top of an always-on full screen video-

stream providing a shared communication and coordination surface for a distributed

Scrum team. The Scrum board is laid out with columns representing states and rows

representing user stories. Tasks are represented as small post-it notes that are placed

in the row-column intersection corresponding with their state and the user story they

belong to. The tasks show their title, a snippet of the description and the name of the

developer assigned to them. The Scrum board is touch enabled and users can move tasks

around using touch or re-assign tasks to each other from a drop-down menu. Performing

a tap-and-hold gesture on a task brings up a sidepanel with detailed information about

the task’s description, estimate and change-history. The dBoard also has menues to fil-

ter out tasks based on user or user story and provides features for sorting the board by

automatically placing tasks in their right row-column intersection. Figure 3.6 shows an

illustration of the dBoard user interface with the user interface components explained.

3.3.1.2 Window Metaphor

We designed the video-communication features of dBoard to function as a VideoWin-

dow [21]. Using a ‘window’ metaphor in our design, the dBoard provides an always-on

full screen video channel between two connected sites. The intention here is that the

dBoard should support ad-hoc meetings at the board and awareness of the presence

and activities of remote team members not just planned meetings after which video is

switched off. The window metaphor is also visible in the user interface where the video

takes up the entire screen as if is was a window.

3.3.2 Proxemic Interaction

The dBoard is designed to function both as a passive information radiator, as a tool

supporting the daily standup meeting with a Scrum board and as a facilitator for ad-

hoc or unplanned meetings at the board and provides features for transitioning between

these modes. Using proxemic approach applied to the video [60], the dBoard uses a

Microsoft Kinect sensor mounted below the screen to automatically adjust its audio and

video based on the proximity of people at the board. The dBoard operates in three

different modes depending on the proximity of people in both ends. In the first mode

where people are present in both ends, the video is clear and the audio turned on. In

the second mode where no people are present on either side, the video is blurred on both

Chapter 3. Research Methods 23

sides and the audio is turned of. In the last third mode where people are present in only

one site, the audio is kept off but video is blurred less than in the first mode so that it is

clear that people are at the board. Requesting the attention of remote co-workers from

the board is as simple as performing a ‘knocking’ gesture on the board which will play

a ‘knock-knock’ sound in the other end.

3.3.3 Backend Integration

Lastly, we integrated the information on the dBoard (tasks, user stories, bugs, users)

with existing task-tracking systems. This is a two-way integration; changes made on

the dBoard (such as updating the state of a task) are updated in the task-tracking soft-

ware and vice versa. Currently, the dBoard integrates with Microsoft Team Foundation

Server1, but using NooSphere [36] as an in between layer between task-tracking system

and the dBoard, it is possible to add other task tracking systems without changing the

dBoard software.

To evaluate the dBoard we conducted two studies: a scenario-based user evaluation with

Scrum practitioners and a field deployment in a distributed Scrum team as described in

the following.

3.3.4 User Study

To evaluate the dBoard and get feedback on the design, we conducted a scenario-based

user evaluation [16]. 7 participants from 3 different companies that all use Scrum par-

ticipated in the evaluation. Participants conducted the evaluation with their colleagues

resulting in three evaluation sessions. In each of these sessions, two researchers played

out the roles of confederates to create a distributed team consisting of the evaluation

participants on one side and the two researchers on the other. Two scenarios were

conducted involving common tasks in a Scrum team. The first task involved working

distributed on separate tasks and updating the Scrum board when done, then contacting

the remote team. The second task was a standup meeting in which participants took

turns updating tasks. Again, we refer to the paper for details on the methodology [P3].

After the scenarios, the participants were asked to fill out a Technology Acceptance

Model (TAM) [18] questionnaire to which we added four questions about the usefulness

of specific dBoard features. At the end of each evaluation session, a small open-ended

interview was conducted in which the participants were asked about their experiences

with the dBoard and had the opportunity to express any comments or feedback that

they might have.

1https://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

https://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

Chapter 3. Research Methods 24

Figure 3.7: Evaluation participants performing a standup meeting scenario during
the evaluation of the dBoard.

The results from the questionnaire is shown in Figure 3.7. In general, participants

were positive towards the usefulness of the dBoard. This was especially prevalent in the

evaluation of the different features which all scored high whereas the TAM-specific scores

were more moderate yet still positive. In particular, the video was well received. As

one participant expressed “The entire video is really cool—really helpful.”, while another

noted that “You are actually interacting with your colleagues that you do not normally

see”. The Scrum board as well received positive scores and all participants appreciated

the interactive Scrum board. As one participant noted: “One of the things I like of a

Scrum board like this is that you have not the digital but the post-its like interactions,

and you can walk up there, take a task up here, and put it over here. I know you can do

it on your computer—it might be easier—but I just like that feeling, I like to be able to

do that”. Indeed, we designed the dBoard with inspiration from physical Scrum board.

In general, the participants expressed that they found the dBoard useful and ease to use.

The combined video and Scrum board in particular was well received and participants

agreed that this was a promising direction for a collaborative Scrum board. This was

also observed during the evaluation scenarios where all participants interacted with the

board with ease.

3.3.5 Field Deployment

To understand how the dBoard supported daily standup meetings in a real world, we

subjected the dBoard to a field deployment [66]. The purpose of the deployment was

to understand how the dBoard supported the Scrum processes of a distributed Scrum

team. We collaborated with a small Danish software company that in 2013 engaged

in a collaboration with a medium-sized German software company. This created a dis-

tributed team in which the Danish developers and German developers form one coherent

Scrum team responsible for the development of one of the German companies products.

Chapter 3. Research Methods 25

Figure 3.8: The results of the user evaluation of dBoard

Following the collaboration agreement with the German company, the Danish company

had opted to change to using Scrum as their software development framework.

3.3.5.1 Pre-deployment study

To first gain an understanding of how team conducted these meetings, we observed the

Scrum meeting practices of the team for a period of four and a half months. Meanwhile

we configured the dBoard to integrate with their backend systems. During the time of

observations, the team conducted 27 standup meetings. Figure 3.10 shows a picture of

the setup used for the meetings. The Scrum masters desk was raised to accomodate the

standup nature of the meetings and a Team Foundation Server Scrum board plugin was

Chapter 3. Research Methods 26

launched on the computer. When it was time for the meeting, the Scrum master called

out the meeting and the team gathered around his desk. They then took turns explaining

their tasks. From our observations it became clear that these meetings constituted

an important setting for coordination and knowledge sharing between the developers.

Taking turns explaining ongoing and future work, the meetings provided a setting within

which the team became aware of each others work which often was follow by discussions

and other knowledge sharing activities relating to implementation of specific tasks.

1 2
3

Figure 3.9: With little space around the Scrum board (1) the screen had to be turned
to face the person speaking (2) leaving others with no direct view to the board (3).

We also observed several problems which we grouped into three distinct categories.

First, we observed how the fact that the German team members were not included in

the meeting caused problems. In several occasions the Danish developers had questions

about the completion of tasks that they could not get an answer to as the German

team members were not included in the meeting. In such situations, they would have

to contact the German team by phone after the meeting. Second, we observed how the

physical location where the meeting took place did not provide adequate space for all

team members to be included in the meetings. Figure 3.9 shows a typical situation from

a meeting. The limited space did not provide enough space for all people to see the

Scrum board due to the amount of desks in te room so the Scrum master had to turn

his screen to whomever was speaking if that person needed to see the tasks on the scrum

board. And third, the software and hardware used did not support all the activities of

the meeting. The small screen used to present the Scrum board was only visible to the

Chapter 3. Research Methods 27

people standing nearest and in order to see all tasks and user stories, much panning and

zoomning in the program had to be done during the meetings.

Figure 3.10: The desk around which the collocated Scrum meetings took place. The
Scrum board used is visible on the monitor.

3.3.5.2 Deployment

The pre-study showed us that there was a need for a Scrum board that both supported

distributed Scrum meetings and provided enough space around it and screen real estate

to provide support for the inclusion of all team members during the meeting. Following

the pre-study of the Scrum meeting practices, we therefore deployed the dBoard system

as it is designed exactly to support such issues. Two dBoards were deployed at the offices

of the distributed Scrum team. With the dBoards deployed, we observed six standup

meetings between the people in Denmark and Germany.

From these observations it became clear, that the combined videoconferencing and Scrum

board provided the team with a tool for effectively carrying out these meetings. The

meetings were conducted in a similar way as the collocated ones; each developer took

turns in explaining ongoing and upcoming tasks and much knowledge sharing was con-

ducted however, now, the German team were included in the meetings. During the

meetings, the video enabled the team to communicate with their distant colleagues and

the Scrum board overlay provided them with a shared tool to coordinate their work.

The problems that were observed during the pre-study were all adressed by the dBoard

system which allowed all team members to carry out their meeting with the support of

a Scrum board and in general the users interacted with the board and with each other

with ease.

Chapter 3. Research Methods 28

Interestingly, we observed how the teams did not interact much with the tasks on the

board. As a requirement of the dBoard was to have it integrated with existing task

tracking systems, we had configured the dBoard to integrate with the Microsoft Team

Foundation Server system that the companies were using to manage their development.

This integration we believe is one of the major advantages of digitizing the Scrum board

as it allows task being changed on the board to be correctly updated the in the backend

systems which are used to track the status of the work and later reflect on how work was

carried out. What we observed however, was that the team interacted very little with

the dBoard during standup meetings as it in many cases was in the correct state when

the meeting was initiated. During the day, each developer opened and closed tasks they

were working on and the board thus was mostly in the correct configuration when the

meetings were started.

Figure 3.11: The dBoard in use during a distributed Scrum meeting

As described in detail in paper [P4], the field deployment of the dBoard also showed us

some unpredicted usage. The user study of the dBoard showed a general high perceived

usefulness of all features of the system but when we deployed it, we observed how it was

only used as tool for planned standup meetings. The German side of the team decided

to place their dBoard in a large meeting room. This decision was taken as the German

team was located in a large office environment with other teams and the German team

leader did not want to disturb the other teams with a video-channel in the office. The

board has been designed to be placed among developers so the decision to place it in

the meeting room removed its effects as a passive information radiator and as a window

into the Danish office. With the dBoard in the meeting room, it served solely as a tool

Chapter 3. Research Methods 29

supporting the pre-planned standup meetings. Furthermore, we also observed a low

meeting frequency during the deployment of the dBoard. While this partly was caused

by vacations and upcoming relseases of the product which , we also saw how Scrum

meeting were only planned if both teams could participate. This was an interesting

observation as it demonstrates how the organizational arrangements—in this case the

specific implementation of Scrum—also has an impact on a tool like dBoard.

3.3.6 Summary

The dBoard is a combined video-communication and Scrum board tool designed for

distributed Scrum teams. We conducted two evaluations of the dBoard: a user study

and a field evaluation. Both evaluations showed that the combination of video and Scrum

board was highly appreciated and supported the daily Scrum meetings of a distributed

Scrum team. The user study also showed that the features of dBoard were positively

appreciated and that users considered the dBoard easy to use. On the other hand,

the field deployment also revealed problems related to the dBoard. In particular we

observed how—despite a design process where the companies were highly involved—the

usage of the dBoard was limited to a few pre-planned meetings due to the placement

of the dBoard. With the placement of the dBoard in the meeting room in the German

office building, it lost its effects of serving as a passive information radiator and an ad-

hoc meeting tool. Arguably, we would have seen other outcomes had the teams decided

to place the dBoards in other location however, the field deployment demonstrates the

physical and organizational effects on the adoption of a technology like the dBoard.

3.4 In Conclusion

This thesis asks the question of how we might design technologies supporting closely cou-

pled distributed work such as that of distributed agile software development. Following

a triangulation approach, this chapter provided technical and empirical perspectives

on the question. In total, three overall studies were conducted: an ethnographic work-

place study of globally distributed Scrum and the design, implementation and evaluation

of two video-based collaboration tools. The ethnographic work-place encompassed two

weeks of observations and interviews of a distributed Scrum team working from Denmark

and India. The results from the study showed that despite the successful collaboration

between the distributed actors, several challenges related to the technical setup of the

collaborative technologies arose. In specific, the lack of integration between video and

task-tracking systems and the lack of stable easy to setup meeting technologies caused

delays in the daily collaboration.

Chapter 3. Research Methods 30

The design of the two video-based collaboration tools SideBar and dBoard showed how

the integration of video and content can be achieved through superimposition of the

two. These combined user interfaces provided support for social engagement and dis-

tributed Scrum meetings in SideBar and dBoard respectively. The evaluations of the two

showed a high degree of acceptance and ease of use of this way of designing video-based

communication systems. The user study of the dBoard also showed how an always on

video-connection and the use of proxemic interaction in video-communication to me-

diate between different modes of operation were perceived well by users. Finally, the

field deployment of the dBoard showed how in a real world setting, a combined video-

communication and Scrum board tool provided support for Scrum meetings but also

showed how the implementation of Scrum and the physical location of the dBoard af-

fected its usage.

Chapter 4

Collaborative Windows

Based on the workplace study of distributed Scrum and the work of designing, im-

plementing and evaluating SideBar and dBoard, this dissertation argues, that future

system designers might benefit from adopting the concept of collaborative windows as a

user interface concept describing a particular type of systems well suited for supporting

distributed collaboration. This chapter unfolds this concept and presents a design space

analysis that can be used to design such collaborative windows.

4.1 Definition

A collaborative window is a user interface concept that describes a particular type

of video-mediated communication tool. Collaborative windows are characterized by

three properties that—combined—distinguish them from other video-based collabora-

tive systems. First, collaborative windows apply a ‘window’ metaphor to their video-

communication [21]. This entails that such systems are designed to work not only as

tools for planned meetings but as windows into distant locations from which awareness

information can be gathered and ad-hoc meetings started. Second, collaborative win-

dows overlay content on top of their video to provide a tight integration between the

video-communication feature and task specific tools. This content is interactive and

collaborative in the sense that it is designed for interaction and for supporting collabo-

ration. Third, collaborative are context aware as they adapt their behaviour based on

their surroundings. In the following, these properties are explained in detail. Figure 4.1

shows the dBoard visualized as a collaborative window—a virtual window in the wall

combined with a distributed virtual Scrum board provides a view into a distant location

and allows for distributed Scrum meetings.

31

Chapter 4. Collaborative Windows 32

Figure 4.1: The dBoard conceptualized as a collaborative window.

4.1.1 Window Metaphor

Collaborative windows employ a ‘window’ metaphor to their video streams. As in Vide-

oWindows [21], collaborative windows are designed as a way of seing through a window

and into a distant office. This is opposed to traditional video conferencing systems that

usually are designed to be started for planned meetings and stopped afterwards while

being located in dedicated meeting rooms. With a window metaphor, collaborative

windows support not only planned distributed meetings but allow users to have ad-hoc

meetings when passing by the window or simply gather awareness about the presence

of remote co-workers [6, 19].

The window property of collaborative windows should be implemented on a hardware

and on a software level. On a hardware level this entails that a collaborative window

should be implemented on a large wall-mounted screen—possibly embedded into the

Chapter 4. Collaborative Windows 33

wall—to mimic a window into another place and that the camera-parallax problem is

solved to allow correct transmission of gaze and gestures. On a software level, designing

for the window metaphor entails that the video should be full-screen and always on.

The idea is create the technological setup that—as much as possible—mimics a ‘real’

window and the feeling of looking into a distant location.

4.1.2 Content Overlay

Collaborative windows integrate video and content by superimposing content of top of

video. The purpose of this is to provide a shared collaborative surface between dis-

tributed sites and to avoid having different tools for handling video-communication and

other tasks. Content overlay seeks to solve the problems that videoconferencing tech-

nologies are detached from the other tools needed in videoconferencing. The hypothesis

behind this property is, that it is possible combine video and task-specific tools by su-

perimposing interactive content on top of the video task rather than keeping content

and the video in separate applications.

One important aspect of the content overlay in collaborative windows is, that the con-

tent is interactive. This property affords collaboration on the window and distinguishes

this property from previous work on content on video which doesn’t enforce such inter-

activity [43, 51]. The dBoard for example, overlays an interactive synchronized Scrum

board on top of the video that allows people to work on a shared Scrum board. The

content–user stories and tasks—is interactive in the sense that users can move tasks

on the board using touch and the content is synchronized across two boards such that

movement on one board is reflect in real time on the other. As a result, the dBoard

supports collaborative work on a Scrum board which is integrated with the video used

for communication.

4.1.3 Context Awareness

With an alway-on window providing a view into another location, collaborative windows

applications should implement context awareness to adapt to the environment in which

they are embedded. Context awareness is the property of systems that can change their

behaviour through sensing of their surrounding [62]. Context awareness was proposed

in the wake of the ubiquitous computing paradigm. Ubiquitous computing as coined by

Weiser was the vision describing a future where computers moved into the world and

became invisible [72]. In such a world, context awareness is important as computers

should be able to change their behaviour to accomodate the many different contexts in

which they could be used when moved from the desktop and out into the ‘real’ world.

Chapter 4. Collaborative Windows 34

Collaborative windows are an example of a ubiquitous computing technology. Serving

as an interactive window built into the environment, collaborative windows weave into

the environment much like Weiser’s vision [72]. Because of this factor, collaborative

windows implement context awareness to make them aware of their surroundings and

usage situations.

The dBoard implements context awareness to meidate its role of meeting supporting

tool and passive information radiator. Using a proxemics approach [27] applied to the

video stream [60] the dBoard turns on and off audio and blurs its video based on the

proximity of people. If no people are in front of two connected dBoards, audio is turned

off and video is blurred to ensure privacy and enhance the visibility of the Scrum board

overlay serving as a passive information radiator. If people approach the dBoards, the

video is de-blurred and the audio turned on to allow for communication. In SideBar,

context awareness is implemented by being aware of who is in a meeting through means

of face tracking.

4.2 Design Space

Based on the work of designing, implementing and evaluating the technologies presented

in Chapter 3 and formulating the concept of collaborative windows , this dissertation

presents a design space analysis for the design of systems building on top of the con-

cept of collaborative windows. The design space dimensions arose from the choices that

were made during the design and implementation of SideBar and dBoard and from the

user studies and field deployment. The design space can be used to guide the design

of future collaborative window systems or to reason about existing. The design space

consist of six dimensions each associated with continuous or discrete values. As seen

in Figure 4.2, these dimensions are Content Synchronization, Information Density, In-

teraction Awareness, Video-Content Connectivity, Privacy and Video-Content Inversion

which are explained in detail below:

4.2.1 Content Synchronization

Content Synchronization refers to the degree to which the content overlay of collabo-

rative windows are synchronized between connected windows. The dimension can take

on a continuous value ranging from non synchronized to fully synchronized. On non

synchronized collaborative windows, the content overlay on connected collaborative win-

dows are not synchronized and collaborating actors work on each their interface. On

Chapter 4. Collaborative Windows 35

None

None

Fully

Minimal Fully

Int. Aware

None

None

Off

None

Video Content Both

Obscurity

Video Content

Synchronization

Density

Awreness

Connectivity

Privacy

Inversion

Figure 4.2: The 6 dimensions of the collaborative window design space and possible
values. The first two dimensions (Synchroniation and Density) can take on a continuos

value, the remaining can take on a discrete value.

fully synchronized collaborative windows, the content is synchronized in real time be-

tween connected windows. As a continuos dimension, degrees of synchronization can be

achieved

The dBoard is an example of highly syncrhonized collaborative window. All tasks, user

stories and bugs are synchronized between two dBoards and movement of tasks are

updated in real time. Only the placement of the filtering menues are not synchronized.

This synchronization provides users of the dBoard with feeling of working on a shared

distributed Scrum board.

4.2.2 Information Density

Information density refers to how much content is presented on top of the video. It is a

continuous dimensions with values that range from minimal—in which little information

is presented—to fully covered where the entire video is covered with content. This

dimension is important to consider in the design of collaborative windows as the amount

of information placed on top of the video affects how much of the video is visible. In the

case of minimal content, usually, it isn’t necessary to consider how the video is affected,

but as the amount of information grows, such considerations become more important.

If most or all of the screen is covered with content, it may become necessary to opacify

the content or employ other strategies for making sure that communication can happen

undisturbed.

SideBar and dBoard both implement a low degree of information density. As seen in

Figure 4.3 the high resolution screen of the dBoard leaves space for many tasks to be

Chapter 4. Collaborative Windows 36

Figure 4.3: Tasks are overlayed the video on the dBoard but with a low degree of
information density.

placed while still keeping the majority of the video visible. During the user evaluation

of the dBoard however, several participants mentioned that they were concerned about

how the video would perform if the board was fully covered with user stories and tasks.

Indeed, in such cases, measures should be taken to ensure that the video remains visible

to the meeting participants.

4.2.3 Interaction Awareness

Interaction awareness refers to awareness of interaction with content on the window.

This dimension becomes important to consider if the collaborative window implements

a high degree of content synchronization and if camera parallax distors gestures towards

the content. In such systems, awareness of what is happing on another connected col-

laborative window becomes important, and interaction awareness should be considered.

Interaction awareness can be implemented through touch pointers or visualizations of

arms and hands [23].

The content overlay of dBoard is highly synchronized and the parallax between camera

and screen does not allow the video to capture arms or hands of people interacting with

the board. Therefore, the dBoard implements interaction awareness by highlighting

tasks in red when they are moved and by showing touch pointers on the screen as shown

in Figure 4.4.

Chapter 4. Collaborative Windows 37

Figure 4.4: Interaction awareness on the dBoard is implemented using task-
highlighting and touch pointers.

4.2.4 Video-Content Connectivity

The Video-Content Connectivity dimension refers to the extend to which the video and

the overlaid content are connected. This dimension can undertake four discrete values;

None, Video, Content, Both. In the None situtation, video and content are disconnected

and the behaviour of one does not affect the other. In the Video situation, the video

is connected to the content overlay but not vice-versa. In this situation, changes to the

content can affect the video. The Content situation refers to the situation the other

way around. In this situation, changes in the video changes the content overlay. In the

last situation, there is a two-way connection between video and content and changes in

either affects the other.

While dBoard does not implement video-content connectivity—the video and the Scrum

board do not affect each other—SideBar uses a ‘Content’ approach. Using face tracking,

the SideBar tablet application overlays interactive rectangles on top of the video. As

people in the video-feed move, the rectangles move and as such there is a connection

between the content and the video. The video however, does not change with changes

to the content.

4.2.5 Privacy

The Privacy dimension describes how the collaborative window deals with privacy issues

that arise from having an always-on video connection in the shared workspace. While

the application seeks to mimic collocation by using a window metaphor which implies

that a remote site is always visible it still might feel intrusive to the users and therefore

this dimension should be considered in the design of a collaborative window. The privacy

dimension applies to the video-feed between remote sites and is not to be confused with

privacy of data.

Chapter 4. Collaborative Windows 38

We have identified three discrete values for this dimension; None, Obscurification and

Off. The None value refers to systems that do not take into account the privacy of users.

In this mode, the video communication channel is always-on and no privacy measures are

taken. The Obscurification value refers to privacy by obscurity [64]1. In this mode, the

privacy of users is protected by means of obscuring the video at various times. This can

be achieved by blurring the video which has been shown as effective means of balancing

awareness and privacy in video [10]. In the off mode, privacy is achieved by completely

turning off the video at certain times.

Figure 4.5: The dBoard uses proximity sensing to blur the video.

We implemented privacy by obscurity in dBoard. Taking a proximity approach by using

a Kinect sensor, the dBoard senses the presence of people and blurs or de-blurs the video

accordingly. Furthermore, we also implemented a ‘privacy’ button that when switched

on turns the privacy dimension of dBoard to ‘Off’.

4.2.6 User Interface Inversion

When designing collaborative windows it is also important to take into account the

horizontal alignment of video and content overlay. As content is overlaid the video, users

might want to gesture towards the user interface which isn’t possible unless content or

video is flipped. The user interface inversion dimension refers to wether the video or

the content of a collaborative window are inverted or ‘flipped’ to allow gestures towards

the user interface to be conveyed correctly. This dimensions can take on three discrete

values; None, Content or Video.

In the None situation, neither video nor content is flipped and gestures such as pointing

towards the screen come across mirrored. In the Content situation, the content is flipped

1Sellinger and Hartzog use the concept of obscurification when speaking about privacy of big data
from e.g. social media sites and search engines. Here, we use the concept in relation with video as the
concept describes the act of transforming data that could be used to identify people.

Chapter 4. Collaborative Windows 39

in one end. In this situation it is possible to keep the alignment of text and images using a

relaxed WYSIWIS approach in which selected areas of the user interface are flipped [45].

The relaxed WYSIWIS approach can be used to flip for example images and text leaving

their position on the window unchanged. In this way the spatial orientation of the image

or text element is correct (i.e. on the left-most side on one window and on the right-most

site of the other) but the text or images are equally readable from both perspectives.

The last situation is Video in which the video is flipped. This situation might allow for

pointing towards the screen correctly but in turn renders the perspective on the video

mirrored.

In essence, whichever method is chosen has consequences for such systems. Flipping

content to implement strict or relaxed WYSIWIS interfaces is only possible if the con-

tent can be mirrored on one side. The Scrum board for example has meaning in in

its horizontal orientation—tasks move from left to right as they progress from ‘New’

to ‘Done’. Other applications however might flip the content without problems. On

the other hand, the video could be flipped to facilitate pointing towards user interface

elements on the screen. This method however is not without consequences either as, the

window the does not provide the ‘correct’ view into the distant location.

The dBoard does not invert video or content and thus falls into the category none. While

this did not seem to have an impact on the usefulness of the system, it was mentioned

in one of the evaluation scenarios.

4.3 SideBar and dBoard

Using this design space, we can reason about SideBar and dBoard as collaborative win-

dows. While these system weren’t designed using the collaborative window metaphor–

rather the concept was formulated based on the systems—both systems implement some

of the requirements and design dimensions of a collaborative window. These figures help

to illustrate how systems might be depicted in the collaborative windows design space.

Figure 4.6 shows SideBar positioned in the collaborative windows design space. SideBar

does not implement content synchronization, has a low information density, does not

use interaction awareness, implements the content value of video-content connectivity,

does not implement a privacy feature and has no inversion of video or content.

Figure 4.7 shows dBoard as positioned in the collaborative windows design space. The

dBoard implements a high degree of content synchronization, low information density,

Chapter 4. Collaborative Windows 40

None

None

Fully

Minimal Fully

Int. Aware

None

None

Off

None

Video Content Both

Obscurity

Video Content

Synchronization

Density

Awreness

Connectivity

Privacy

Invension

Figure 4.6: SideBar positioned in the collaborative windows design space.

interaction awareness through touch pointers and task highlights, no video-content con-

nectivity, obscurity and off modes to perserve privacy (a user can select the option) and

no inversion of video or content.

None

None

Fully

Minimal Fully

Int. Aware

None

None

Off

None

Video Content Both

Obscurity

Video Content

Synchronization

Density

Awreness

Connectivity

Privacy

Inversion

Figure 4.7: dBoard positioned in the collaborative windows design space.

4.4 Summary

This chapter presented the notion of collaborative windows as a user interface concept

that describes a particular type of collaborative systems designed to support closely

coupled distributed collaboration. A collaborative window is a video-based communi-

cation tool that implements three main properties. First, a collaborative window is

built around a window metaphor which entails that the video is alway on and that the

window—in software as well as hardware—seeks to give users a sense of looking through

and collaborating on a window and into a distant location. Second, a collaborative

window presents interactive content on the video using a content-on-video approach in

Chapter 4. Collaborative Windows 41

which the content is superimposed onto the video. And third, collaborative windows

are context aware so they can adapt their behaviour to the context in which they are

situated and used. Furthermore, this chapter presented a design space consisting of six

dimensions that should be considered when designing a collaborative window. These

dimensions are: Content Synchronization, Information Density, Interaction Awareness,

Video-Content Connectivity, Privacy and User Interface Inversion.

Chapter 5

Discussion

The previous chapter introduced the notion of collaborative windows as a user interface

concept describing a particular type of collaborative systems. The concept was derived

from an ethnographic field study of distributed Scrum that revealed problems related

to the technological setup and the design, implementation and evaluation of two video-

based communication systems: SideBar and dBoard. Combining the findings from these

different studies lead us to suggest the concept as a novel user interface concept par-

ticularly well suited for technologies supporting closely coupled distributed work. This

chapter discusses the concept of collaborative windows in terms of the limitations of the

studies presented and the generalizability of the concept to other domains.

5.1 Window Metaphor

The window metaphor of a collaborative window seeks to address the problems of lack

of awareness and casual encounters. This property however also enforces contraints on

the technology that sets limits on what such a system can achieve. A consequence of the

window metaphor property is that connecting more than two sites becomes problematic.

Indeed, it is perfectly possible from a technology point of view to design systems that can

connect several sites. Such an idea could be realized by dedicating different parts of the

user interface to different video-streams from all the connected sites. Doing so however,

is a violation of the window metaphor property that—if followed strictly—dictates that

the window should be designed to look like a physical window which does not allow

multiple video-streams on the window. Connecting several sites could then be realized

by setting up different collaborative windows—one for each site—side-by-side. Such a

setup though also requires more space.

42

Chapter 5. Discussion 43

The systems presented in this dissertation also suffer the problem of camera parallax.

As much previous research has focussed on solving these issues (e.g. [68, 71, 74]) we

did not implement features to account for gaze and gestures however, if we compare

a collaborative window to a physical window, eye-contact, gaze and gestures should

be transmitted correctly creating the illusion of standing on each side of a window.

Instead, in this dissection we focussed in bringing together video and interactive content

on window-like and context-aware collaborative applications. Future explorations into

the domain of collaborative windows would benefit from taking into account gaze, eye-

contact and gestures. A combination of e.g. and dBoard and ConnectBoard [68] would

constitute an intersting system that could elaborate on the findings presented in this

dissertation and move forward the research on collaborative windows.

5.2 Limitations

The concept of collaborative windows as proposed in Chapter 4 was coined based on

empirical and technological research on tool support for distributed Scrum. Through

an ethnographic workplace study of distributed Scrum we were able to point out how

the lack of a stable meeting supporting technology and the problems of setting up mul-

tiple tools caused problems leading to delays in Scrum meetings. Through the design,

implementation and evaluation of the two tools SideBar and dBoard we showed how

such problems could be solved. The results from these studies combined lead us to

suggest the notion of collaborative windows as a user interface concept that, we argue,

is especially useful in designing technologies for closely coupled distributed work. The

tools presented in Chapter 3 however, were not built on the concept of collaborative

windows and the evaluations conducted thus do not evaluate the concept as a whole.

We acknowledge that despite all the empirical material gathered and presented in this

dissertation more research on collaborative windows should be conducted in order to

evaluate systems that implement all the properties of such systems. Along these lines,

it is also important to point out that a limited number of participants were included in

all the studies. Nonetheless, this dissertation presented empirical and technical results

that point towards the usefulness of the concept of collaborative windows.

5.3 Other Domains

The work presented here has been carried out within the domain of globally distributed

Scrum, and the results presented should be read and understood within this domain.

We do however believe, that it is possible to take the concept of collaborative windows

Chapter 5. Discussion 44

into other domains. While SideBar was designed and evaluated in a software devel-

opment setting, the specific purpose of the system—supporting social engagement in

videoconferencing—is not tied to the domain per se. dBoard is more closely related to

software development as one of the main features is the Scrum board—an important

artifact in the Scrum development process. Task boards however, are also found in

domains outside software development. Kanban boards for example, are widely used

in other domains such as engineering and while such boards are not identical to Scrum

boards, the overall intentions are the same: tasks to be completed are placed on the

board and transition through various stages resulting in a clear visual depiction of the

progress of work. As such, the technologies presented here could be appropriated to

other domains with much modification.

A particular feature for the concept of collaborative windows is that the concept has

been designed based on the assumption of closely coupled work. Indeed, previous re-

search have suggested strategies of reducing collaboration [13] to handle the complexities

of distributed work and strategies such as segregation [24] and avoidance [33] have de-

scribed as coordination mechanisms in collaborative work. When bringing the concept

of collaborative windows into other domains it is important to consider the kind of work

and how the collaboration is handled. As we saw in the field deployment of the dBoard,

the adoption of the technology was highly dependant on the strategies that were used

for handling the collaboration. While the team used Scrum, they did not have daily

meetings. As a consequence, the dBoard was used less frequently than intended. Col-

laborative windows have been designed for closely coupled work and how such systems

perform if other strategies are used remains unclear.

Chapter 6

Conclusion

This chapter provides a conclusion to Part I of this dissertation. Chapter 2 described the

context and background of the dissertation by explaining the usage of video-communication

in distributed Scrum and what challenges still remain. Chapter 3 presented the research

methods and the three studies that were conducted in exploring how to provide tech-

nology support for distributed Scrum with a focus on how they helped give an answer

to the research question. In particular, the chapter presented the ethnographic work-

place study that provided an empirical perspective on the technological problems of

distributed Scrum and the two collaboration tools SideBar and dBoard that were used

to explore the technological perspectives. Chapter 4 introduced the notion of collabo-

rative windows as a way of designing systems for distributed work and and provided a

design space analysis of such systems and finally, Chapter 5 discussed the concept, its

limitation and its possible applicability into other domains.

6.1 Answer to Research Questions

This dissertation asked the question How do we design technologies that support closely

coupled collaborative work such as that of global Scrum?. To provide an answer, three

main studies were undertaken. Through a workplace study of distributed Scrum between

Denmark and India, we found that while Scrum was used effectively to keep collabora-

tion close and handle the dependencies in global work, issues were encountered related

to the technical setup used to handle the collaboration. In particular, the lack of a

stable meeting tool and the disconnection between video-conferencing equipment and

task tracking system caused delays and problems in the meetings.

45

Bibliography 46

From a technology perspective two video-based collaboration tools were designed. Side-

Bar was a first exploration into the domain of collaborative video and was a video-

communication system designed to support social engagement in videomeetings. Af-

terwards, we designed and implemented the dBoard—a combined video-communication

and Scrum board which utilized a content-on-video approach to superimpose a syn-

crhonized, digital Scrum board top of a full screen, always-on video. These tools were

evaluated in user studies and the dBoard subjected to a field deployment which showed

that users found the tools both useful and easy to use.

Based on the results from these studies, this dissertation provided an answer to the

aforementioned research question by proposing the notion of collaborative windows—a

user interface concept that can be used to design collaboration tools especially targeted

closely coupled distributed work. A collaborative window is a user interface concept

describing a particular type of video-mediated system that implements three overall

properties; the video-communication features are designed using a window metaphor,

interactive content is superimposed onto the video and context awareness is used to

adapt behaviour based on the environment. The dissertation also presented a design

space consisting of six dimensions that can be used to design future collaborative window

systems.

6.2 Future Work

The research presented in this dissertation demonstrates early work on the concept

of collaborative windows and we identify several areas in which more research should

be conducted. First and foremost, a collaborative window that strictly implements

the features of a window metaphor, content-on-video and context-awareness should be

implemented. Such a system would require much engineering effort however, could

provide valuable contributions to research on teleconferencing and collaborative systems.

Second, a long term field deployment of a collaborative window should be conducted to

asses the long term effects of a window embedded in the workplace. Furthermore, the

notion of collaborative windows should be taken into other domains in which closely

coupled distributed work is carried out.

Another intersting line of research would be to explore the potential of the Video-Content

Connectivity dimension. In particular, a connection between video and content as a way

of interacting with a collaborative window could be realized through adapting the user

interface based on the video. SideBar demonstrated an example of how video and content

can be connected and it would be interesting to take these findings and implement them

in a collaborative windows system.

Bibliography

[1] Abras, C., Maloney-Krichmar, D., and Preece, J. User-centered design. Bain-

bridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage

Publications 37, 4 (2004), 445–456.

[2] Bannerman, P., Hossain, E., and Jeffery, R. Scrum practice mitigation of global

software development coordination challenges: A distinctive advantage? In System

Science (HICSS), 2012 45th Hawaii International Conference on (Jan 2012), 5309–

5318.

[3] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,

R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. Manifesto for agile

software development. http://agilemanifesto.org, 2001.

[4] Bjørn, P., and Christensen, L. R. Relation work: Creating socio-technical con-

nections in global engineering. In ECSCW 2011: Proceedings of the 12th Euro-

pean Conference on Computer Supported Cooperative Work, 24-28 September 2011,

Aarhus Denmark, S. Bødker, N. O. Bouvin, V. Wulf, L. Ciolfi, and W. Lutters, Eds.

Springer London, 2011, 133–152.

[5] Bjørn, P., Esbensen, M., Jensen, R. E., and Matthiesen, S. Does distance still

matter? revisiting the cscw fundamentals on distributed collaboration. ACM Trans.

Comput.-Hum. Interact. 21, 5 (Nov. 2014), 27:1–27:26.

[6] Bly, S. A., Harrison, S. R., and Irwin, S. Media spaces: Bringing people together

in a video, audio, and computing environment. Commun. ACM 36, 1 (Jan. 1993),

28–46.

[7] Boden, A., Nett, B., and Wulf, V. Trust and social capital: Revisiting an offshoring

failure story of a small german software company. In ECSCW 2009, I. Wagner,

H. TellioÄlu, E. Balka, C. Simone, and L. Ciolfi, Eds. Springer London, 2009, 123–

142.

47

http://agilemanifesto.org

Bibliography 48

[8] Boden, A., Rosswog, F., Stevens, G., and Wulf, V. Articulation spaces: Bridging

the gap between formal and informal coordination. In Proceedings of the 17th ACM

Conference on Computer Supported Cooperative Work & Social Computing, CSCW

’14, ACM (New York, NY, USA, 2014), 1120–1130.

[9] Bos, N., Shami, N. S., Olson, J. S., Cheshin, A., and Nan, N. In-group/out-

group effects in distributed teams: An experimental simulation. In Proceedings of

the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04,

ACM (New York, NY, USA, 2004), 429–436.

[10] Boyle, M., Edwards, C., and Greenberg, S. The effects of filtered video on awareness

and privacy. In Proceedings of the 2000 ACM Conference on Computer Supported

Cooperative Work, CSCW ’00, ACM (New York, NY, USA, 2000), 1–10.

[11] Brubaker, J. R., Venolia, G., and Tang, J. C. Focusing on shared experiences:

Moving beyond the camera in video communication. In Proc. DIS 2012, ACM

(June 2012).

[12] Brush, A. B., Meyers, B. R., Scott, J., and Venolia, G. Exploring awareness

needs and information display preferences between coworkers. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, ACM

(New York, NY, USA, 2009), 2091–2094.

[13] Carmel, E., and Agarwal, R. Tactical approaches for alleviating distance in global

software development. Software, IEEE 18, 2 (Mar 2001), 22–29.

[14] Christensen, L. R., Jensen, R. E., and Bjørn, P. Creating relation work: Charac-

teristics for local and gloval collaboration. COOP ’14, Springer (2014).

[15] Conchúir, E. O., , P. J., Olsson, H. H., and Fitzgerald, B. Global software devel-

opment: Where are the benefits? Commun. ACM 52, 8 (Aug. 2009), 127–131.

[16] Convertino, G., Neale, D. C., Hobby, L., Carroll, J. M., and Rosson, M. B. A labo-

ratory method for studying activity awareness. In Proceedings of the Third Nordic

Conference on Human-computer Interaction, NordiCHI ’04, ACM (New York, NY,

USA, 2004), 313–322.

[17] Daft, R. L., and Lengel, R. H. Information richness: A new approach to manage-

rial behaviour and organizational design. Research in Organizational Behaviour 6

(1984), 191–233.

[18] Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Q. 13, 3 (1989), 319–340.

Bibliography 49

[19] Dourish, P., and Bly, S. Portholes: supporting awareness in a distributed work

group. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’92, ACM (New York, NY, USA, 1992), 541–547.

[20] Esbensen, M., and Bjørn, P. Routine and standardization in global software devel-

opment. In Proceedings of the 18th International Conference on Supporting Group

Work, GROUP ’14, ACM (New York, NY, USA, 2014), 12–23.

[21] Fish, R. S., Kraut, R. E., and Chalfonte, B. L. The videowindow system in informal

communications. ACM Press (1990), 1–11.

[22] Fulmer, C. A., and Gelfand, M. J. At What Level (and in Whom) We Trust: Trust

Across Multiple Organizational Levels. Journal of Management (2012).

[23] Genest, A., Gutwin, C., Tang, A., Kalyn, M., and Ivkovic, Z. Kinectarms: a toolkit

for capturing and displaying arm embodiments in distributed tabletop groupware.

In CSCW 2013 (2013).

[24] Gerson, E. M. Reach, bracket, and the limits of rationalized coordination: Some

challenges for cscw. In Resources, Co-Evolution and Artifacts, Computer Supported

Cooperative Work. Springer London, 2008, 193–220.

[25] Gomaa, H., and Scott, D. B. Prototyping as a tool in the specification of user

requirements. In Proceedings of the 5th International Conference on Software En-

gineering, ICSE ’81, IEEE Press (Piscataway, NJ, USA, 1981), 333–342.

[26] Gossage, S., Brown, J. M., and Biddle, R. Understanding digital cardwall usage.

Technical report tr-15-01, Carleton University - School of Computer Science, June

2015.

[27] Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., and Wang, M. Prox-

emic interactions: The new ubicomp? interactions 18, 1 (Jan. 2011), 42–50.

[28] Herbsleb, J. Global software engineering: The future of socio-technical coordina-

tion. In Future of Software Engineering, 2007. FOSE ’07 (May 2007), 188–198.

[29] Herbsleb, J., and Moitra, D. Global software development. Software, IEEE 18, 2

(mar/apr 2001), 16 –20.

[30] Herbsleb, J. D., Mockus, A., Finholt, T. A., and Grinter, R. E. Distance, dependen-

cies, and delay in a global collaboration. In Proceedings of the 2000 ACM conference

on Computer supported cooperative work, CSCW ’00, ACM (New York, NY, USA,

2000), 319–328.

Bibliography 50

[31] Higuchi, K., Chen, Y., Chou, P. A., Zhang, Z., and Liu, Z. Immerseboard: Im-

mersive telepresence experience using a digital whiteboard. In Proceedings of the

33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15,

ACM (New York, NY, USA, 2015), 2383–2392.

[32] Hollan, J., and Stornetta, S. Beyond being there. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’92, ACM (New York,

NY, USA, 1992), 119–125.

[33] Holten Møller, N., and Dourish, P. Coordination by avoidance: Bringing things

together and keeping them apart across hospital departments. In Proceedings of

the 16th ACM International Conference on Supporting Group Work, GROUP ’10,

ACM (New York, NY, USA, 2010), 65–74.

[34] Hossain, E., Babar, M., and young Paik, H. Using scrum in global software de-

velopment: A systematic literature review. In Global Software Engineering, 2009.

ICGSE 2009. Fourth IEEE International Conference on (july 2009), 175 –184.

[35] Hossain, E., Bannerman, P. L., and Jeffery, R. Towards an understanding of tailor-

ing scrum in global software development: a multi-case study. In Proceedings of the

2011 International Conference on Software and Systems Process, ICSSP ’11, ACM

(New York, NY, USA, 2011), 110–119.

[36] Houben, S., Nielsen, S., Esbensen, M., and Bardram, J. E. Noosphere: An activity-

centric infrastructure for distributed interaction. In Proceedings of the 12th Inter-

national Conference on Mobile and Ubiquitous Multimedia, MUM ’13, ACM (New

York, NY, USA, 2013), 13:1–13:10.

[37] Isaacs, E., Whittaker, S., Frohlich, D., and O’Conaill, B. Informal communica-

tion re-examined: New functions for video in supporting opportunistic encounters.

Video-mediated communication 997 (1997), 459–485.

[38] Isaacs, E. A., and Tang, J. C. What video can and can’t do for collaboration: A case

study. In Proceedings of the First ACM International Conference on Multimedia,

MULTIMEDIA ’93, ACM (New York, NY, USA, 1993), 199–206.

[39] Jensen, R. E. Why closely coupled work matters in global software development. In

Proceedings of the 18th International Conference on Supporting Group Work, ACM

(2014), 24–34.

[40] Kiesler, S., and Cummings, J. N. What do we know about proximity and distance

in work groups? a legacy of research, 2002.

Bibliography 51

[41] Ko, A. J., DeLine, R., and Venolia, G. Information needs in collocated software

development teams. In Proceedings of the 29th international conference on Software

Engineering, IEEE Computer Society (2007), 344–353.

[42] Kuechler, M., and Kunz, A. Holoport - a device for simultaneous video and data

conferencing featuring gaze awareness. In Virtual Reality Conference, 2006 (March

2006), 81–88.

[43] Kunz, A., Dehlin, S., Piazza, T., Fjeld, M., and Olofsson, T. Collaborative white-

board: Towards remote collaboration and interaction in construction design. In

Proc. 27th International Conference on Applications of IT in the ABC Industry

Accelerating BIM Research Workshop (2010), 132–140.

[44] Lanubile, F. Collaboration in distributed software development. In Software Engi-

neering, A. De Lucia and F. Ferrucci, Eds., vol. 5413 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2009, 174–193.

[45] Li, J., Greenberg, S., Sharlin, E., and Jorge, J. Interactive two-sided transparent

displays: Designing for collaboration. In Proceedings of the 2014 Conference on

Designing Interactive Systems, DIS ’14, ACM (New York, NY, USA, 2014), 395–

404.

[46] Luff, P., and al., e. Workplace Studies: Recovering Work Practices and Informing

System Design. Cambridge University Press, 2000.

[47] Mackay, W. E., and Fayard, A.-L. Hci, natural science and design: a framework for

triangulation across disciplines. In Proceedings of the 2nd conference on Designing

interactive systems: processes, practices, methods, and techniques, DIS ’97, ACM

(New York, NY, USA, 1997), 223–234.

[48] Matthiesen, S., and Bjørn, P. Why replacing legacy systems is so hard in global

software development: An information infrastructure perspective. In Proceedings

of the 18th ACM Conference on Computer Supported Cooperative Work and Social

Computing, CSCW ’15, ACM (New York, NY, USA, 2015), 876–890.

[49] McNely, B. J., Gestwicki, P., Burke, A., and Gelms, B. Articulating everyday

actions: an activity theoretical approach to scrum. In Proceedings of the 30th ACM

international conference on Design of communication, SIGDOC ’12, ACM (New

York, NY, USA, 2012), 95–104.

[50] Nardi, B. A. Beyond bandwidth: Dimensions of connection in interpersonal com-

munication. J. Comput.-Supp. Coop. Work 14 (2005), 91–130.

Bibliography 52

[51] Nescher, T., and Kunz, A. An interactive whiteboard for immersive telecollabora-

tion. Vis. Comput. 27, 4 (Apr. 2011), 311–320.

[52] Niinimaki, T., Piri, A., Lassenius, C., and Paasivaara, M. Reflecting the choice and

usage of communication tools in gsd projects with media synchronicity theory. In

Global Software Engineering (ICGSE), 2010 5th IEEE International Conference on

(Aug 2010), 3–12.

[53] Noll, J., Beecham, S., and Richardson, I. Global software development and collab-

oration: Barriers and solutions. ACM Inroads 1, 3 (Sept. 2011), 66–78.

[54] O’hara, K., Kjeldskov, J., and Paay, J. Blended interaction spaces for distributed

team collaboration. ACM Trans. Comput.-Hum. Interact. 18, 1 (May 2011), 3:1–

3:28.

[55] Okada, K.-I., Maeda, F., Ichikawaa, Y., and Matsushita, Y. Multiparty videocon-

ferencing at virtual social distance: Majic design. In Proceedings of the 1994 ACM

conference on Computer supported cooperative work, CSCW ’94, ACM (New York,

NY, USA, 1994), 385–393.

[56] Paasivaara, M., Durasiewicz, S., and Lassenius, C. Distributed agile development:

Using scrum in a large project. In Global Software Engineering, 2008. ICGSE 2008.

IEEE International Conference on (aug. 2008), 87 –95.

[57] Pries-Heje, L., and Pries-Heje, J. Why scrum works: A case study from an agile

distributed project in denmark and india. In Agile Conference (AGILE), 2011 (aug.

2011), 20 –28.

[58] Prikladnicki, R., Boden, A., Avram, G., Souza, C., and Wulf, V. Data collection

in global software engineering research: learning from past experience. Empirical

Software Engineering (2013), 1–35.

[59] Ramesh, B., Cao, L., Mohan, K., and Xu, P. Can distributed software development

be agile? Commun. ACM 49, 10 (oct 2006), 41–46.

[60] Roussel, N., Evans, H., and Hansen, H. Mirrorspace: Using proximity as an inter-

face to video-mediated communication. In Pervasive Computing, A. Ferscha and

F. Mattern, Eds., vol. 3001 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2004, 345–350.

[61] Roussel, N., and Gueddana, S. Beyond ”beyond being there”: Towards multiscale

communication systems. In Proceedings of the 15th International Conference on

Multimedia, MULTIMEDIA ’07, ACM (New York, NY, USA, 2007), 238–246.

Bibliography 53

[62] Schilit, B., Adams, N., and Want, R. Context-aware computing applications. In

Proceedings of the 1994 First Workshop on Mobile Computing Systems and Ap-

plications, WMCSA ’94, IEEE Computer Society (Washington, DC, USA, 1994),

85–90.

[63] Schwaber, K., and Sutherland, J. The scrum guide - the definitive guide to scrum:

The rule of the game. http://scrum.org, 2011.

[64] Selinger, E., and Hartzog, W. Obscurity and privacy.

[65] Sharp, H., Robinson, H., Segal, J., and Furniss, D. The role of story cards and the

wall in xp teams: a distributed cognition perspective. In Agile Conference, 2006

(July 2006), 75–86.

[66] Siek, K. A., Hayes, G. R., Newman, M. W., and johntang. Field Deployments:

Knowing from Using in Context. Springer, June 2014.

[67] Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N. Distributed scrum: Agile

project management with outsourced development teams. In System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International Conference on (Jan 2007), 274a–

274a.

[68] Tan, K.-H., Robinson, I., Samadani, R., Lee, B., Gelb, D., Vorbau, A., Culbertson,

B., and Apostolopoulos, J. Connectboard: A remote collaboration system that

supports gaze-aware interaction and sharing. In Multimedia Signal Processing, 2009.

MMSP ’09. IEEE International Workshop on (Oct 2009), 1–6.

[69] Tang, J. C., Zhao, C., Cao, X., and Inkpen, K. Your time zone or mine?: A study

of globally time zone-shifted collaboration. In Proceedings of the ACM 2011 Con-

ference on Computer Supported Cooperative Work, CSCW ’11, ACM (New York,

NY, USA, 2011), 235–244.

[70] Tøth, T. Trust in client-vendor relations: An empirical study of collaboration

across national and organizational boundaries. In Proceedings of the 5th ACM

International Conference on Collaboration Across Boundaries: Culture, Distance

and Technology, CABS ’14, ACM (New York, NY, USA, 2014), 5–14.

[71] Vertegaal, R., Weevers, I., Sohn, C., and Cheung, C. Gaze-2: conveying eye contact

in group video conferencing using eye-controlled camera direction. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03, ACM

(New York, NY, USA, 2003), 521–528.

[72] Weiser, M. The computer for the 21st century. SIGMOBILE Mob. Comput. Com-

mun. Rev. 3, 3 (July 1999), 3–11.

http://scrum.org

Bibliography 54

[73] Whittaker, S., and Schwarz, H. Meetings of the board: The impact of schedul-

ing medium on long term group coordination in software development. Computer

Supported Cooperative Work (CSCW) 8 (1999), 175–205.

[74] Zillner, J., Rhemann, C., Izadi, S., and Haller, M. 3d-board: A whole-body remote

collaborative whiteboard. In Proceedings of the 27th Annual ACM Symposium on

User Interface Software and Technology, UIST ’14, ACM (New York, NY, USA,

2014), 471–479.

Part II

Papers

55

Part 2. Papers 56

Routine and Standardization

Title of Paper

Routine and Standardization in Global Software Development

Authors:

Morten Esbensen, Pernille Bjørn

Published:

In Proceedings of the 18th International Conference on Supporting Group Work (GROUP).

ACM, 2014. p. 12-23.

Abstract:

We present an ethnographic field study of a distributed software development team fol-

lowing the Scrum methodology. During a two-week period, we observed from both sites

the collaboration between a Danish software company off-shoring part of their develop-

ment to an Indian solution provider. Collaboration by its very definition is based on the

notion of dependency in work between multiple people. Articulation work is the extra

work required to handle these dependencies. In a globally distributed team, managing

these dependencies is exacerbated due to the distances of time, space, and culture. To

broaden our understanding of dependencies in a global context and how they influence

work practices, we made them the focus of our analysis. The main contributions of this

paper are (i) an empirical account of the dependencies that are part of the collaborative

work in a global software development team, (ii) a discussion of the interlinked prop-

erties of dependencies, and (iii) an explanation of how the practices of standardization

and routine are developed and used to manage these dependencies.

Routine and Standardization in Global Software
Development

Morten Esbensen*

mortenq@itu.dk
Pernille Bjørn*†

pbra@itu.dk
*IT University of Copenhagen †UCIrvine & Intel Center for Social Computing (ISTC)

Rued Langgaards Vej 7 Bren Hall, 6th Floor
2300 Copenhagen S, Denmark Irvine, California, USA

ABSTRACT
We present an ethnographic field study of a distributed soft-
ware development team following the Scrum methodology.
During a two-week period, we observed from both sites the
collaboration between a Danish software company off-shoring
part of their development to an Indian solution provider.
Collaboration by its very definition is based on the notion
of dependency in work between multiple people. Articula-
tion work is the extra work required to handle these de-
pendencies. In a globally distributed team, managing these
dependencies is exacerbated due to the distances of time,
space, and culture. To broaden our understanding of de-
pendencies in a global context and how they influence work
practices, we made them the focus of our analysis. The main
contributions of this paper are (i) an empirical account of
the dependencies that are part of the collaborative work in
a global software development team, (ii) a discussion of the
interlinked properties of dependencies, and (iii) an explana-
tion of how the practices of standardization and routine are
developed and used to manage these dependencies.

Categories and Subject Descriptors
K.4.3 [Organizational Impacts]: Computer-supported col-
laborative work

Keywords
Global software development; ethnographic study; depen-
dencies; standardization; routine

1. INTRODUCTION
Work in software development projects is increasingly be-

ing carried out by distributed teams. Distributed or global
collaboration allows companies to take advantage of a global
workforce, execute work at different hours of the day, and
keep work close to different target markets. However, this
way of working also introduces a number of problems related

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GROUP’14, November 9–12, 2014, Sanibel Island, Florida, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3043-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660398.2660413.

to the distances of time, space, and culture by increasing the
“reach” [16]. With collaboration spanning multiple countries
and time zones, one key challenge concerns the difficulties in
handling dependencies as they emerge and become pertinent
in the collaboration across geographical sites.

Collaboration by its very definition is based upon the no-
tion of dependency in work between multiple people. People
collaborate when “they are mutually dependent in their work
and therefore are required to cooperate in order to get the
work done” [28]. Collaborative actors are interdependent in
their work, which requires them to articulate their distribu-
ted yet individual activities. Articulation work is the extra
work required to handle the dependencies that arise in col-
laborative work [32], and has in prior research been identified
as an important aspect of global software development [4].
However, this extra work tends to be neglected [25]. Strate-
gies such as coordination or knowledge practices have been
suggested to solve such issues [3, 29]; however, our interest in
this paper is to examine how the articulation work involved
in handling dependencies is related to practices of routine
and standardization.

Initially we wanted to reveal the basic set of dependen-
cies as they unfold in geographical distributed practices;
however, examining our empirical observations it was clear
that certain dependencies such as location, people, collabo-
rative activities, and artifacts created particular conditions
for how the work and collaboration could unfold in practice.
More interestingly, however, it became clear that the key
mechanisms software developers enacted when handling the
challenges that emerge due to the dependencies in practice
concerned standardization and routine. Therefore, the re-
search question investigated in this paper concerns how the
mechanisms of routine and standardization were enacted in
practice by software developers when overcoming the depen-
dencies that constituted global software development prac-
tices.

In this paper we zoom in and explore ethnographically
which dependencies are constitutive of the globally distri-
buted work practices within software development. In addi-
tion, we investigate how dispersed software developers han-
dle and deal with dependencies in their work and, in particu-
lar, the role of standardization and routine. As an empirical
case we chose to study global Scrum practices as they emerge
between two geographical sites in Denmark and India. What
makes this an excellent case to study dependencies is that
the project was divided equally between developers at both
sites and entailed many diverse types of dependencies, which
the participants had to deal with on a daily basis. We had

the unique opportunity to follow the work practices between
the two sites in detail over a period of 14 days, where one
of us observed the work from the site in Denmark while the
other observed the work from the Indian location, allowing
us access to a global view of the collaborative setup [27]. By
exploring these work practices we are able to create a rich
understanding of the work as it emerged from the data, while
zooming in on the strategies for how the geographical distri-
buted partners succeeded in reducing the effort involved in
articulation work through strategies of standardization and
routine practices.

The main contributions of this paper are as follows: (i) an
empirical account of the dependencies that are part of the
collaborative work in a global software development team,
(ii) a discussion of the interlinked properties of dependen-
cies, and (iii) an explanation of how the practices of stan-
dardization and routine are developed and used to manage
these dependencies. Interestingly, we found that standardiz-
ing the technology needed for the work seemed much harder
than standardizing the processes of work.

The paper is structured as follows. First, we present re-
lated work on global software development, dependencies,
and standardization and routine. Then we present our em-
pirical case, data material, and analysis method. This is
followed by a results section presenting our empirical data
structured into subsections, each focusing on particular de-
pendencies that constitute the global software development
practices. Then we discuss the empirical findings by enfold-
ing previous literature on standardization and routine.

2. DEPENDENCIES IN GLOBAL SOFTWARE
DEVELOPMENT

The term dependencies refers to coupling among entities
or relations, where change in one area might produce certain
changes (sometimes unanticipated) in other areas. When a
dependency arises in collaborative work, a certain reliance
is created, where individual work becomes interlinked with
the work of others, and therefore articulation work is re-
quired [32]. Thus, collaborative work by its very definition
is based on the notion of dependencies, and articulation work
is the work involved in handling these dependencies. Previ-
ous research on dependencies in distributed software collab-
oration projects tends to focus on the software dependencies
that affect programming activities [e.g. 7, 11, 19] or docu-
ments [8]. Software dependencies occur when one part of
a program depends on another, and since most larger IT
systems are created by multiple people working together,
software dependencies are of crucial importance to under-
standing the often tight coupling between people.

Although software and document dependencies are impor-
tant, our interest is to zoom out from the concrete software
code and documents, and instead focus on the organiza-
tional practices of coordination, which are critical to han-
dling the articulation work in global software development.
Dependency in work is part of the definition of collabora-
tion, and much research has thus been conducted in terms
of figuring out how practitioners involved in collaboration
accommodate the challenges of articulation work [5, 25], for
example, in terms coordination [16, 18], knowledge manage-
ment [3, 22], commitment and transparency [31], or aware-
ness [10]. In this paper, we are particularly interested in
coordination as a strategy to handle articulation work. Mal-

lone and Crowston define the very process of coordination
as “the act of managing the interdependencies between activ-
ities” [24, p. 90] and suggest that we may further investigate
the processes of managing dependencies by “characterizing
different kinds of dependencies and identifying the coordi-
nation processes that can be used to manage them” [24, p.
91]. In order for us to unravel the coordination activities in
global software work, we will need to look at the dependen-
cies as they manifest themselves in everyday work and what
strategies are used for managing these.

Coordination is a strategy to handle articulation work [e.g
16, 21, 28] and in earlier studies it has been investigated in
different ways: as coordination mechanisms where a protocol
for work is embedded within an artifact [29], as coordina-
tion by avoidance [21], or as the difference between segre-
gation and standardization [16]. Segregation or avoidance
are both strategies where the aim is to keep work separated
and reduce connections within the work, thus reducing the
complexity of coordination. As a strategy this has been
applied in global software development, where practices of
decomposing and recomposing have been identified [18], or
in terms of minimizing interaction across sites [20]. In con-
trast, the strategy of standardization is quite different; in-
stead of trying to divide the work into smaller pieces, thus
reducing the relations, standardization seeks to keep the re-
lations within the work but instead create the same (or at
least similar) conditions for the collaboration across people.
In global software development one of the challenges is to
create standardization of practices across multiple hetero-
geneous sites, since the basic conditions for collaboration
are dependent on the geographical site where the people are
physically located. The world is not flat [35].

Standardization has often been conceptualized as top-down
imposed processes where practitioners are forced or disci-
plined into working in certain ways guided by the catego-
rization schemes embedded within the technology [1, 33].
However, recent studies on standardizations in practice have
shown that standardizations are not stabilized and predeter-
mined entities but instead malleable and negotiated [6], and
thus standardization from a practice perspective [15] com-
prises incomplete and co-constructed practices, where people
enact and make the standards work for them in practice [13].

While standardization is a difficult strategy to employ in
global work, one of the interesting aspects we found in our
data was that this was the preferred strategy of the prac-
titioners, and thus we wanted to investigate why that is
and how they manage to deploy the standardization strat-
egy as a general approach to reduce the complexity of artic-
ulation work. So our interest is to see how standardization
is achieved as a collective and emergent accomplishment [26]
where the various dependencies, which affect the collabora-
tive engagement, are coming into place.

3. METHOD
To investigate the enactment of routine and standardiza-

tion in global software development practice, we examined
the empirical observations from our workplace study [23],
focusing on the collaborative practices that arose in a global
software development team distributed across Denmark and
India. What makes this approach particularly applicable
for such a study is that we were able to experience the prac-
tices as they unfolded rather than forcing a particular the-
oretical conceptualization on our data. For two weeks we

observed the work practices simultaneously from two geo-
graphical locations, one observer in Denmark and one in
India, collecting data material about their work practices.
We also interviewed 12 employees in total.

After the empirical observation, all notes were aligned
and the interviews were transcribed. Since the study was
designed with one researcher being in India while another
was in Denmark, the first part of the analysis was zooming
in on the observed practices from each location. To ana-
lyze the data, each researcher first went through their own
notes, conducted within-case analysis [12], and annotated
the dependencies that began to emerge from the data ma-
terial. We used a grounded-theory-inspired approach [17]
where candidates for dependencies emerged from the data
rather than applying predefined theoretical categories from
the literature. Following the within-case analysis we began
to compare the data across the cases by conducting cross-
case analysis [12]. This work was done through a shared
document within which we identified important actors, ac-
tivities, and technologies and the relations and associations
between them. This approach allowed us to take a broad
perspective on the data material, from which we believe we
were able to identify many of the dependencies that existed
in the work during the observation period.

During our data analysis, we created a dependency graph
in which we tried to visualize the connections between ob-
served dependencies. However, we quickly saw, as this graph
grew in size, that the dependencies we had observed were all
somehow linked in a much larger structure encompassing the
whole observation period. Figure 1 shows a small excerpt of
our dependency graph.

Figure 1: An excerpt of the dependency graph gen-
erated from our data material.

Despite our efforts to learn about individual or small clus-
ters of dependencies through a dependency graph visualiza-
tion, we saw how a myriad of dependencies were linked in
much larger structures, and while we could pick and exam-
ine one, its meaning and effects were tightly linked to other
such dependencies.

While the initial focus concerned the dependencies, as the
analysis proceeded and empirical write-ups and thick de-
scriptions were made, it became clear that the important
finding of the data was not simply in the descriptions of the
dependencies. Instead it became clear that the main inter-
esting findings, which emerged in different ways and places
from the data, concerned how mechanisms of standardiza-

tion and routine were enacted. Therefore, in an iterative
process of redefining focus and stabilizing the empirical nar-
rative, two main contributions appeared: 1) an empirical
account of the dependencies that constitute the global soft-
ware development practices, 2) the role and practices by
which standardization and routine are enacted to handle the
complexities of the global work.

3.1 The Case
The organizational setup was an outsourcing setup be-

tween a Danish software vendor (DKSoft) working out of
Denmark and L&T Infotech, a large Indian outsource spe-
cialist working out of India. While two people from L&T In-
fotech had been temporarily relocated to work in Denmark,
most of the collaboration was mediated through technology.
The IT system being developed was a financial software sys-
tem for the Scandinavian market, and it had been worked
on for just over a year when we visited. The global work
was organized by following the Scrum methodology from
the beginning of the project [30]. The decision to apply the
Scrum methodology was chosen by the Danish company, as
the project was large and targeted the whole Scandinavian
market. Given this complexity, the Danish project man-
agement estimated that it would be impossible to define re-
quirements up front and opted for an iterative development
approach. Additionally, they had prior positive experiences
following the Scrum methodology on other projects. The
Indian outsourcing company had trained their staff in the
execution of Scrum precisely to be able to work with Scan-
dinavian vendors.

The Scrum team we followed was distributed across both
Denmark and India. In Denmark, the Scrum master, prod-
uct owner, and test lead were sitting along two Indian de-
velopers that had been temporarily relocated to Denmark.
In India, the team consisted of two front-end developers,
two back-end developers, and one tester. All but one of the
Indian Scrum team members had previously been to Den-
mark to work for about half a year at the Danish site. The
team followed the Scrum process with daily meetings, esti-
mations meetings, sprint planning, demonstration meetings,
and sprint retrospective. All meetings with the exception of
the demonstration meeting were conducted using videocon-
ferencing with participants from both locations.

The empirical data were collected in the period between
Aug 12 2013 and Aug 23 2013 , where one researcher visited
L&T Infotech in Mumbai, while another researcher visited
DKSoft in Ballerup. In total, 36 hours were spent on obser-
vations, where 15 were in DKSoft and 21 in L&T Infotech.
Observations included meetings, individuals working, the
environment in general, as well as the workspace arrange-
ments, etc. Twelve interviews were conducted with team
members in both Denmark and India. Each interview on
average lasted about 30 minutes and was later transcribed.
In total, we interviewed five team members in India (four
developers and one tester) and seven team members in Den-
mark (the project manager, product owner, test manager,
Scrum master, a colleague in charge of the infrastructure,
and two temporarily onshore Indian developers).

All the data material was collected and shared across the
authors and discussed both during data collection (using
Skype) as well as after through the iterative writing process,
creating diverse, thick descriptions and cut-down narratives
based on the data material.

4. DEPENDENCIES IN A GLOBAL SPRINT
While presenting our empirical data, we will be focus-

ing on the diverse sets of dependencies that we observed
during the two-week period of close collaboration between
the two sites. We ended up structuring our main findings
within four different perspectives, which became evident as
our data analysis progressed: the locations, the people, the
collaborative activities, and the artifacts. What makes each
of these perspectives interesting for our analysis is that they
each form a dependency set that is constitutive for the global
software development practice. We label these perspectives
as “dependencies” as they each, in different ways, interlink
the practices while providing certain conditions for how the
collaboration could unfold. Dependency concerns a coupling
or relation between multiple entities, where change in one
entity produces ripple effects in other entities. Coupling
and reliance do not appear only in between people; certain
other entities, such as the location where one works, create
particular conditions for the collaboration, and as such a de-
pendency in the work. It does matter whether the developer
who is normally located in Mumbai is temporarily moved to
work in Denmark. It creates certain conditions for how the
work can be executed in practice. Following this perspec-
tive, we identified four different types of dependencies that
shaped the work in the empirical case. Furthermore, we ex-
perienced instances where exceptions occurred, and finally,
we observed how dependencies existed as interlinked entities.
Below we zoom in on each of these. For each subsection, we
bring the empirical account across the geographical sites we
investigated.

4.1 Locations Dependencies
When we first visited the L&T Infotech offices we en-

countered a large, modern office building, which provided a
quite different experience than the outside traffic, noise, and
smells of the Mumbai city and its large highways running
nearby. The building that housed the L&T Infotech offices
was located within a large IT park with several other large,
brand-new buildings. In the seven-story building, L&T In-
fotech occupied two floors. Several departments, some open
and some closed off by frosted glass walls, were located side-
by-side. They were only accessible after passing through a
front gate guarded by three security guards. In all the de-
partments, signs hanging from the ceiling indicated which
client they were working for.

The department we were visiting was located at the cen-
tre of the floor, closed off by two access-card-operated doors.
The security was quite high since DKSoft, the company they
work with, develops financial software. The department
hosted around 35 people, all working on projects for DKSoft.
The people were divided into approximately six teams, su-
pervised by two project managers and one delivery manager.
The team we observed consisted of five software developers.
Due to the time difference between Denmark and India (3.5
hours), the team usually met in between 10:30 and 11:00
AM to have more overlapping working hours with the Dan-
ish team. The department had been decorated to match the
Danish company’s visual identity; paper flags with the name
of the company were scattered throughout the workspace,
and the values and mission statement of the Danish com-
pany had been printed on large posters that were placed at
the entrance to the department. These statements, however,
had been modified from the original company’s values and

missions to fit with the Indian company. On the wall, a
Danish and an Indian clock hung next to each other, but
both had stopped working.

Around the same time in Denmark, we also entered the
DKSoft office building, located in a suburb outside of Copen-
hagen together with several other IT companies. In front of
the parking space of the office were three flagpoles with flags
displaying DKSoft’s logo. The office sign showed the same
logo of DKSoft as well as two smaller logos of subsidiary
companies. The three-story office building seemingly hosted
many employees – not unexpected for one of the biggest IT
solution providers in the banking sector. On the way to the
office landscape where the team we observed worked, turn-
stiles prevented non-employees from passing. In order to en-
ter, each day a temporary pass was handed to the observer
at DKSoft. Additionally, any visitor had to be accompa-
nied by one of the local employees while going through the
turnstiles. This could not be one of the temporary onshore
Indian developers.

The seven members of the project team located in Den-
mark were seated at two neighbouring islands of desks with a
walkway in between, separated only by low dividers. Within
the same open office space, about six more of these “desk
islands”were located. Two temporarily relocated Indian de-
velopers were sitting on one side, while the Danish develop-
ers sat together with the product owner and project manager
at the other island. The product owner later explained that
this setup grew organically as the Indian developers were
usually there for shorter periods of time. In contrast to the
offices at L&T Infotech, there was no decoration revealing
that part of the development team was working at L&T
Infotech, except for an Indian gift from one of the Indian
developers who temporarily worked onshore. Some stick-
ers on a small cabinet revealed which project the team was
working on.

We view the locations and the structure of the locations
as forms of dependencies, since each geographical site pro-
duces certain conditions for how the work can be executed.
For example, when the office in India is located in the heavy
traffic in Mumbai, it produces particular conditions for the
time it takes to move around in the city, and what time the
developers can be at work in the morning and leave in the
evening. Travelling in heavy traffic in a large metropolis in
India is not an easy task, which means that developers ei-
ther follow a schedule of company transportation or come
in late and thus also stay late to accommodate the traffic.
The software developer is dependent on the traffic in terms
of making it to work. Turning to the Danish location, it is
clear that the traffic is not an issue in the same way. The
differences in travelling in traffic at the two different loca-
tions thus place particular conditions not only on the people
having to make the travel, but also on the collaboration as a
whole, as meetings and communication have to be planned
around the times at which people can be present in the office.
At the Danish offices, however, the office layout creates cer-
tain conditions for the work. Being temporarily collocated
in the same office, it is possible for the visiting developers
to engage with the DKSoft developers. However, a certain
distance between the regular and the temporary developers
still exists by having them dispersed across different desk
islands.

Location dependencies include diverse sets of aspects such
as security and office design, and our point here is that it

does matter where people’s physical bodies are located in
terms of what makes the conditions for the global work.
Working remotely does not limit the impact of where we are
and how this shapes the kind of collaborative engagement
we can commit to.

4.2 People Dependencies
The team working on the project we observed was dis-

persed across two locations, seven members at DKSoft in
Denmark and five members at L&T Infotech in India. In
Denmark, the seven members took on the role of Scrum
master, product owner (one primary and one assistant),
team lead, test manager, and developer (one lead and one
general). All were permanently located at DKSoft, except
the two Indian developers who were temporarily relocated
there for six months. In India, the members took on the
role of user interface (UI) developer (two members), back-
end developer (two members), and one tester. Although the
main organizational activities were taken care of in Denmark
by the Scrum master and product owner, development on
the project occurred from both sites as a collaborative pro-
cess. This team thus provided an excellent case to study
dependencies in closely coupled work across geographical
distances.

The whole team relied heavily on the knowledge about
the client and the system they were developing, which was
organized by the product owner in the team. The product
owner represents the client stakeholder – in this case a large
Scandinavian financial company – and holds regular meet-
ings with this client. He is thus the close link between the
development team and the client. The product owner was
responsible for the product backlog, and so the development
process depended greatly on his decisions.

The developers also depended on the product owner for
the development process. With the product owner being
the client stakeholder, he was the person in the team who
knew most about these business processes. The developers
at L&T Infotech thus needed him for explanation of these
different processes.

During the course of the project, DKSoft intended to have
all developers from L&T Infotech come to Denmark for a 6-
month period. This was handled by having two developers
at a time in Denmark. During our observations, these two
developers were the lead developer and a UI developer. The
motivation for this was clear; if the L&T Infotech developers
had been to DKSoft, they would get to know much more
about the team in Denmark and how work was organized.
When returning to India to work, these developers would not
only have a better understanding of how people worked in
Denmark, but they would also have developed more personal
relationships with the Danish team – giving a more coherent
feeling of “team spirit” despite the fact that the team was
based in two different companies.

While the relocation of the lead developer from L&T In-
fotech was temporary, the Scrum master told us that he
preferred to keep the lead developer in Denmark as long as
possible because they feared that another person could not
do the job as well. When asked what they would do when
he left for India again, the Scrum master answered, “We
might have to tie him to the table . . . ”. With team mem-
bers from both sites relying heavily on his role as boundary
spanner and keeping the collaboration working, they were
very dependent on his presence at the Danish site. The

L&T Infotech developers depended on him for their daily
development work, while the Danish team relied on him
as a boundary spanner between the Indian developers and
the Danish team. His role in the project thus had many
sides: He was the most experienced programmer from India
and thus the natural contact person for questions regarding
implementation, he was responsible for hand-picking team
members from the Indian outsource company to work on the
project, and he maintained continuous communication with
the developers in the team.

People dependencies arise in the work practices where dif-
ferent people have diverse sets of knowledge, both in terms
of knowledge about the content, process, and the business,
as well as knowledge about technologies and the system un-
der construction. What is particularly interesting in this
perspective is that part of what makes the global software
development team function is dependent upon the practice
by which team members are hand-picked across distance,
and the special competences of boundary spanners to be
able to solve such a task. Also interesting is that people de-
pendencies are not simply one-to-one relations, but instead a
multiplicity of relations across people, their roles, and work
tasks. Understanding the perspective of people in terms
of people dependencies thus points to interlinked practices
across diverse subgroups spanning geography, roles, and re-
sponsibilities.

4.3 Collaborative Dependencies
While the two preceding sections focus on the location

and people dependencies, this subsection zooms in on the
collaborative dependencies of the software developers. These
dependencies emerged and became observable particularly
during the diverse types of meetings (collocated as well as
across sites) the team engaged in.

The team we observed used Scrum as their development
methodology. Scrum puts forward a number of meetings and
processes that should be followed throughout a development
process. We observed that some of these processes and meet-
ings were followed in the collaboration and had eventually
become routines. These routines also helped integrate new
team members into the project. One of the developers from
L&T Infotech who had just worked with the team for two
sprints explained it as follows:

“We have a daily Scrum meeting every day and we do esti-
mation and we know that in the QC [software requirements
management tool] looking at the tasks we know the remain-
ing estimated hours and we have to finish within that time
frame. So everything is written within the system, and if you
follow the system, you can finish the tasks on time.” (Inter-
view, developer, India, 21/08/2013)

During our observations, we observed 10 daily Scrum meet-
ings, two estimation meetings for the estimation of tasks
for an upcoming sprint, and the demonstration meeting to-
wards the end of the sprint. These meetings were particu-
larly interesting as they rendered the dependencies between
the different sites quite visible.

The daily Scrum meetings were executed as short 15-
minute meetings and were attended by the developers and
testers from DKSoft and L&T Infotech. In most cases, the
product owner also took part in the meeting. In the meet-
ings, each participant took turns explaining the progress of

work. Following the same routine, the Danish and Indian
team went to their respective videoconferencing rooms at the
same time each day – 9:45 AM Danish time / 1:15 PM India
time. The same developers at L&T Infotech always prepared
the video equipment and made the call to the Danish site.

The meetings proceeded with each present meeting par-
ticipant taking turns explaining what she had been working
on, what she was going to work on, and mentioning any
problems that she had experienced. The turn order was
not defined and was settled by whoever took initiative to
start. The Danish Scrum mater was responsible for deduct-
ing hours from the tasks that had been worked on to reflect
their new status. At one meeting, for example, an L&T In-
fotech developer explained that he had been working on the
document handling user story and that the Scrum master
could deduct 5 hours from that task. The Scrum master
then reduced the number of remaining hours on that task
from 7 to 2. With the screen shared to the Indian site, this
process was visible for the whole team.

The Scrum meetings were usually finished within the 15
allocated minutes. In a few instances, the meetings went
over time due to either starting late (as a consequence of
change of meeting rooms at the Danish site) or due to dis-
cussions about certain issues. In these cases, another team
at the Indian site would knock on the door of the meeting
room and the meeting was quickly wrapped up. However, in
Denmark the room booking system did not allow booking
rooms for 15 minutes, so they were always booked for 30
minutes, but only used for 15.

While the daily Scrummeetings were conducted with both
the Danish and the Indian parts of the team present, the
demonstration meeting at the end of the sprint was deliber-
ately held with the Danish team only. During the demon-
stration meeting, the developers in the Scrum team demon-
strated the features they had implemented in the sprint, and
the product owner would then accept or reject the feature.
Such a setup, however, would require a different technologi-
cal setup, as the test environment where the product being
developed was running was located on a Danish internal net-
work. Giving access to the Indian team for them to demon-
strate what they had implemented would require a virtual
private network (VPN) connection from India to Denmark.
Instead, the developers at the Danish site handled demon-
strating all the features, even those implemented in India.
Due to the daily meetings and the lead developer keeping
daily contact with the Indian team, the developers in Den-
mark were quite aware of the features implemented in India
and therefore capable of demonstrating them.

One particularly interesting meeting was held each after-
noon. By the end of each working day in India, around 3:30
PM Danish time / 6:45 PM India time, the lead developer
located in Denmark contacted the development team in In-
dia over instant messaging to get feedback on their progress
and resolve any issues they might have when meeting for
work the next day. These meetings were not a part of the
traditional Scrum methodology, however, and they resem-
bled that of the daily meeting in content. The developers
at L&T Infotech were given the opportunity to explain their
work and discuss any potential issues. One of the Indian
developers explained this process as the following:

“We don’t have a Scrum board because our team lead is not
sitting here. . . But then, our team lead communicates with

us every now and then in the communicator. So we update
the daily status before we go – that we have done this, we
have done that – even before the daily Scrum meeting.” (In-
terview, developer, India, 21/08/2013)

These meetings were routinely handled and had thus become
a natural part of the development process. These procedures
had all become routines, and they helped the Danish team
gain awareness of the work in India and made sure that the
people at L&T Infotech did not have unresolved questions
before they went home.

Collaborative dependencies arise in the everyday work
when different people are interdependent in the actual work.
These dependencies become particularly visible during meet-
ings where distributed actors are brought together. How-
ever, they also arise in the arrangement and structure of the
work – in this case the iterations of the project in sprints.

4.4 Artifactual Dependencies
We have now discussed the work environment, the team,

the task, and the collaborative activities. However, an im-
portant part of the closely coupled work also concerns the
diverse set of artifacts that the participants use in making
their collaboration work. Interestingly, the absence of par-
ticular artifacts also places certain constraints on the de-
velopers. We will look into how the participants managed
to organize their work in particular ways to accommodate
limitations of technology.

The team relied heavily on the technical infrastructure for
their work. Most common software engineering tools were
used to develop the product: integrated development envi-
ronments for coding, source control management for man-
aging code, and test environments for testing. For project
management, an integrated task-tracking tool was used. SAP
was used for noting working hours and the team communi-
cated using email, telephone, instant messaging, and video-
conferencing.

In order to let daily Scrum meetings take place in a global
context, dedicated videoconferencing rooms were used, equip-
ped so that setting up bidirectional communication was as
effortless as possible. The conference rooms used on both
sides had a meeting table with a central microphone and
surrounding chairs. Mounted to the wall were two screens,
one to display the video feed of the team on the other side,
as well as a smaller video feed of themselves, and another
to display a shared screen. The Scrum master was the only
one to bring along a laptop, as it was his screen that was
shared with the Indian team.

Besides the video conferencing equipment, the Applica-
tion Lifecycle Management (ALM) tool by HP usually open
on the Scrum master’s laptop was the central artifact used
during global Scrum meetings. It was used to provide an
overview of and to update the state of user stories, for ex-
ample, to reduce the amount of expected hours to work on
certain tasks. In order to see the screen shared by the Scrum
master in India, one of the Indian developers had to log into
the VPN prior to the meeting to set up the screen sharing.
Only the Scrum master made changes to the ALM visible on
the shared screen as the other developers updated the team
on their progress.

The back-end developers used business process modeling
notation (BPMN) – a modeling notation used for specify-
ing business processes – to develop the core infrastructure of

the product. On an artifact level, the project used BPMN to
model their back-end. BPMN is used to model business pro-
cesses using a graph-like notation. The back-end developers
in India modelled the business workflows of the application
as graphs, and these graphs, in turn, were used to generate
code for the back end.

Arguably, any modelling or programming language is a
form of standardization, as it equips programmers with a
structured way to construct software and a common way to
talk about such implementations. However, we argue, that
BPMN adds to this standardization. With the abstraction
towards actual business processes that BPMN adds, we ob-
served how it equipped the back-end developers with a lan-
guage that could be used to talk with the domain knowledge
experts. We thus claim that the use of BPMN provided a
form of standardization highly suitable for the development
of such business-logical applications.

The project followed an agile approach in which the de-
velopment process was split into four-week iterations dur-
ing which a fixed workload of features were selected for
implementation. Within Scrum these iterations are called
“sprints.” The sprint we observed lasted 4 weeks and com-
prised 10 user stories describing certain features that needed
to be implemented. Examples of user stories from the project
include integrating scanning documents into the business
process, providing download links to digital contracts, and
implementing “fast track” processes for certain merchants.
Depending on the assessed complexity of the user stories,
more or less can be taken up into a sprint. The success of a
sprint depends on the developers actually finishing them.

Artifactual dependencies concern situations where tech-
nology is involved, such as videoconferencing, task-tracking
software, communication software, and networks. The divi-
sion of work into user stories also constitutes an artifactual
dependency as these were the objects dictating work in the
team.

4.5 Exception Handling
The four previous sections concerning sets of location de-

pendencies, people dependencies, collaborative dependen-
cies, and artifact dependencies all describe situations where
work goes as expected. However, there are several situations
where exceptions occur, and it is critical to investigate what
happens in these situations in terms of dependencies and
how these are organized.

Despite the routine manner in which the daily Scrum
meetings were executed, we observed different situations
were exceptions occurred. The room for the daily meeting
was booked for the Indian team for use from 1:15 PM to 1:30
PM each day. The Danes switched rooms according to avail-
ability. They used a room booking system to book rooms;
however, in several instances, problems with this booking
caused a delay in the daily meeting as the Danes had to
find an available room. In addition, sometimes some of the
Danes showed up on time for the meeting while others were
late, as they did not check themselves beforehand which
room had been booked for the meeting. Whether people
showed up late or not, the meeting always started once the
videoconferencing was set up. We observed this on several
occasions where the Indian team was on time, as was the
Danish Scrum master at the other end, but the rest of the
Danish team was still missing. The meeting would be initi-

ated and the rest of the Danish team would show up after a
few minutes.

The technology used to facilitate the daily meetings also
caused exceptions. Take the following observation, for ex-
ample, from the preparation of a daily Scrum meeting where
a virtual desktop connection needed to be made from a com-
puter in the Indian videoconferencing room to a Danish com-
puter.

“U1 is sick today, so U2 heads for the meeting room to start
the video equipment and the projector. He’s clearly not as
experienced doing that so it is taking longer than when U1
is doing it. He also doesn’t have a login to the VPC so he
has B1 establish a virtual private network (VPN) connection
after which B2 logs in with her account on the VPC.” (Ob-
servation notes, India, 20/08/2013)

Usually, the same developer from L&T Infotech (U1) would
prepare the videoconferencing equipment and make the call
to the Danish site. When he was on holiday one day, another
person (U2) had to perform this work. Setting up the video
and the shared workspace took significantly longer and also
forced the person to seek help with login to a virtual PC.

Interestingly, company rules and regulation regarding con-
nectivity and firewalls created particular technical constraints
for the development team, forcing them to organize their
work in particular ways. As the testing environment was
located in Denmark – and the team at L&T Infotech did
not have access to this environment over the network – they
were forced to run a similar setup on their own computers.
This setup consisted of a virtual machine running Linux and
the web-server software that the product was developed for.
The setup was so heavy on computer power that the team –
for this project – had been given new, powerful computers,
as opposed to other teams in the company working on other
projects. Despite this investment, the developers at L&T
Infotech had to reboot this test setup on a daily basis. This
process took between 10 and 15 minutes and caused work to
halt for that duration. The developers would usually go for
a coffee if this happened.

Another example of exception handling became clear when
the Scrum master explained the team’s testing procedure.
Interestingly, the testing and fixing of bugs in the product
was done one sprint behind. The Scrum master explained it
as follows:

“Yeah, of course optimally we would like to have everything
well tested before the end of the sprint so that at least very
few defects are found in the next sprint. But we haven’t re-
ally, that’s our goal, but we haven’t really succeeded because
the implementation just is rarely finished before very close
before the end of the sprint. So then there is not enough time
to test.” (Interview, Scrum master, Denmark, 23/08/2013)

Despite their intention to deliver a working and well-tested
version of the product after each sprint, as the implemen-
tation was not finished until the very end of the sprint, the
testing was left for the next sprint. This process caused some
problems, as errors that emerged were to be resolved quickly
because the product of the sprint, when it was introduced,
had already been marked as done. In one specific case, the
two developers at L&T Infotech stayed until midnight to fix
an error that was introduced in a previous sprint.

4.6 Sets of Dependencies
We have now presented four sets of dependencies that cre-

ated certain conditions for how the global software develop-
ment collaboration was executed and organized. In addition,
we looked into the practices by which the developers han-
dled exceptions and unforeseen challenges. The four sets
of dependencies were location dependencies, people depen-
dencies, collaborative dependencies, and artifactual depen-
dencies. While this overall categorization of dependencies
helps us understand what organizational dependencies in
global software development comprise, one important em-
pirical observation remains, namely the interlinked nature
of dependencies.

Analyzing our data iteratively, and creating diverse sets
of rich descriptions, we realized that even though we were
able to label specific dependencies, several categorizations
could be applied to a dependency. Therefore, we decided to
think in terms of “sets of dependencies” rather than depen-
dencies as singular causal relations. Furthermore, we saw
how one set of dependencies (e.g. people dependencies) was
tightly linked to others (e.g. collaborative dependencies).
This leads us to suggest that dependencies in global soft-
ware development have an interlinked structure, where it is
not easy to pick apart and set boundaries for what is part
of and what is outside of the particular dependency, for ex-
ample, what is technical and what is social. We might, for
example, talk about the development process of a particu-
lar artifact, such as a user story, and how it has multiple
dependencies embedded in the very task: coupling the IT
system under development, the technical architecture, the
work across developers, and other user stories. But at the
same time each user story also has close connections with
other artifacts – for example, the range of documents that
makes the development project, such as requirement specifi-
cation or test documents [8]. To handle all these dependen-
cies, a range of tools such as development environments, test
setups, and communication tools are being included in the
collaborative activities. However, what is more surprising
is how participants’ hardware and technical infrastructure,
which is related to the developer’s location dependencies as
well as the artifactual dependencies, place particular condi-
tions for how the participants can manage and handle their
work, for example, as we saw in the need for powerful com-
puters and the technical setup for demonstration meetings,
which placed the participants in a situation where devel-
opers located in India could not fully participate. How the
technical infrastructure and the hardware devices impact the
conditions for collaboration in this particular case was due
to the location dependencies in the diverse structure across
the different geographical sites. The technical infrastruc-
ture locally thus created particular conditions for how the
participants could manage to handle and organize their work
according to the set of location and artifactual dependencies
they need to accommodate.

Similarly, we may find that one particular set of depen-
dencies gives rise other sets of dependencies. As such, the
structure across the sets of dependencies resembles that of
the documentscape [8]. The documentscape refers to the dy-
namic interlinked ensemble of project documents in global
software development practices between developers located
in various locations. It stipulates that while we might zoom
in on one single document, the meaning of the document is
embedded within the location of the document within the

Category Features
Location De-
pendencies

External environment; office design; of-
fice security; time zone

People De-
pendencies

Roles; responsibilities; knowledge

Collaborative
Dependencies

Meetings; turn taking; discussions

Artifactual
Dependencies

Business process modelling notation;
VPN; video conferencing setups; test
environment; user stories

Table 1: Categorization of dependencies

documentscape. We may also look at a single dependency;
however, its meaning is embedded within the network of de-
pendencies across all sets of dependencies. While we may
look at a dependency and label it according to different sets
of dependencies, each dependency plays a role in a larger
set of interlinked dependencies where the boundaries are not
easily defined.

Despite the interlinked nature of dependencies, we may
still talk in terms of sets of dependencies. As our analyti-
cal cut-downs in the data material demonstrate, we found
four important sets of dependencies: location dependencies,
people dependencies, collaborative dependencies, and arti-
factual dependencies. Location dependencies entail the mul-
tiplicity of dependencies that are related to the geographical
site of the software developers. This includes the external so-
ciety within which the location is placed, as well as the inner
office environment design and the conditions this creates for
the collaboration. People dependencies entail the roles, re-
sponsibility, and specific knowledge the collaborative actors
have and use in the work together. This includes knowl-
edge about competences, knowledge about technologies, as
well as knowledge about the business in which the system
is being created. Collaborative dependencies in particular
become observable in situations where multiple people en-
gage in a common practice – in most cases in meetings, but
also outside of meetings. The meetings can take many dif-
ferent forms and shapes and be organized differently. Some
meetings involve participants from both locations (e.g. daily
stand-up meetings), while others are location specific (e.g.
demonstration meeting). Artifactual dependencies are per-
tinent at all times, since technology is what makes it possi-
ble for the dispersed developers to collaborate and interact
with the same coding environment, which serves as the main
technical infrastructure supporting the work. However, as
we have also shown, the artifactual dependencies also com-
prise other important artifacts such as the user stories, the
BPMN notation, the VPN connection, and the video equip-
ment, which all took part in linking and organizing the work
and connections between the developers. It is important to
notice that in practice these sets of dependencies are not
singular entities, but instead function as multiplicities that
connect and interrelate across all types of dependencies. Ta-
ble 1 summarizes the four sets of dependencies and their
characteristics.

5. STANDARDIZATION & ROUTINE
Having conceptualized the four main categories of depen-

dencies that emerged in our data, the next question concerns
how the developers managed to collaborate despite the di-

verse set of dependencies and how these each brought about
an increasingly complex work arrangement. Looking across
the categories of dependencies, we found a repeating pattern
in the work regarding the participants’ ability to continu-
ously create and apply standardization as a mechanism to
reduce complexity. There were standardizations in terms of
meeting structure and time for conducting meetings. There
were standardizations in terms of the team at L&T Infotech
arriving late in the morning to accommodate the time dif-
ference between the sites. There were standardizations in
terms of people’s roles and knowledge, and to some extent
there were standardizations in terms of artifacts such as user
stories or the use of the BPMN notation form.

What is interesting about how the strategy of standard-
ization was applied by the practitioners in the empirical case
was that it did not arrive as a top-down forced structure on
the work. Instead, it emerged over time as the practition-
ers made the methodology of Scrum into a practice fitting
their work. It was not that the developers did not follow
the methodology; our point here is that they had aligned
the methodology with their practices in the global work.
In this way, the standardization of when, where, and how
to meet supported the developers in organizing their work,
taking into account the different sets of dependencies, but
at the same time the standardization had a transformative
effect on the practice [13], as it was dynamically developed.
Engaging with the standardized process of Scrum was not
a process by which the developers simply followed Scrum
in a scripted manner. Instead, they adjusted and recreated
the process, making it fit their practices while still taking
into account the conditions for collaboration created by the
location and artifactual dependencies. So when the Indian
developers could not participate in the demonstration meet-
ing due to the lack of a standardized technical setup across
sites – the artifactual dependencies not letting them partic-
ipate – they adjusted the work accordingly and found other
ways to demonstrate the requirements developed at L&T
Infotech. In this way, the standardization was a transforma-
tive practice where processes and technologies were being
accommodated, and thus standardization was incomplete
initially. What is also fascinating with this example is that
while we expected that standardization across the technical
platforms would be easy to create (e.g. having access to the
same tools and applications etc.), this turned out to be the
most challenging area, where local artifactual dependencies
place certain constraining conditions on the collaboration.

We observed how the daily meetings were executed in a
routine manner, giving rise to frequent interaction across
sites. However, whereas the team at L&T Infotech always
had the same meeting room booked for their meetings, the
team at DKSoft had a different meeting room with video-
conferencing equipment booked on a day-to-day basis. This
caused several situations where people from DKSoft arrived
a bit late since they first arrived at the wrong meeting room
prior to finding out the designated meeting room for that
day – in other words, the complexities of relation work in-
creased [2, 9]. This lack of standardization in terms of rooms
for daily meetings thus created extra challenges – not only
for the developers at the Danish location, but also for the
developers at the location in Mumbai, since they had to wait
for the videoconferencing to be started from the remote lo-
cation. In contrast, the room in Mumbai never changed,
and as such the location dependencies did create different

types of conditions for the work, both locally and in the
distributed situation. However, not only did the location
constraints affect the daily meetings, we also observed an
exception-handling situation where the developer who was
normally in charge of setting up the VPN connection was not
present. Here it turned out that the developer who wanted
to set up the equipment instead did not have a VPN login,
and extra work was required to locate a person with a VPN
login before the daily meeting could take place. The com-
plexities of managing the dependencies – in this case the
amount of relation work needed to establish a connection
between the two sites – increased.

What also becomes obvious in the example above is the
role of routine [14]. For each activity the developers engage
in, both locally and in between the two sites, the more fre-
quent the activity, the more aligned and transformed their
common practice becomes. Routine is the practice by which
the developers turn standardization strategies into concrete
activities that support their practice. It is through the en-
actment of routine behavior in daily interaction that the
developers are able to reduce the effort required for articula-
tion work and to spend more time on the actual project they
are developing. We observed routines as repeating patterns
of coordination employed to handle the complexities of the
diverse set of dependencies. Routines, as opposed to strate-
gies, exist only through the actual enactment and the dif-
ferent activities [14]. Referring to the concepts of plans and
situated actions [34], standardization constitutes the plan
whereas the routine is embedded within the situated action.
In our case it was clear that the routinized behaviors were
mostly connected to the various types of meeting activities
in the distributed team, as in the example where the devel-
opers explain why they have an additional meeting at the
Danish location to ensure that the team at the Indian site
is kept up to date. They explained how this meeting was
a replacement of the Scrum board, and how this practice
supported their work.

Other artifactual dependencies gave rise to exception han-
dling. The lack of standardization regarding access to the
test network required the developers at L&T Infotech to be
equipped with much more powerful computers than the rest
of the employees. The restrictions caused by firewalls and
the generally slow bandwidth out from India forced the de-
velopers to have a local version of the testing environment
running, which was only possible on these more powerful
computers. While it was not possible to standardize the
technical connectivity across the geographical sites due to
firewall, bandwidth, and privacy issues, the developers cre-
ated other routine behaviors in terms of testing practice,
making it possible for them to collaborate despite the tech-
nical constraints.

Standardization and routine did not solve all issues of de-
pendencies. Our data clearly demonstrated that a repeating
pattern across sprints was the testing that was pushed back
to the next sprint, often causing the developers at L&T In-
fotech to work overtime. Here it is important to notice that
working late at the Mumbai location means evening and late
evening, and since this occurred quite often it clearly im-
pacted the work at L&T Infotech. The reason for the delay
was that the developers were implementing source code until
the very last minute, not leaving time for the testers to reach
their goal within the pre-allocated time of the sprint. The
developers depend on the tester to report defects. However,

the tester cannot begin until the developers have delivered
the source code. The product owner in the end depends on
the developers to fix the defects detected by the tester. All
of this is organized through the bug report artifact. This
made the activity of testing a closely coupled activity re-
quiring closely coupled coordination. No routine or stan-
dardization was able to solve this activity, which meant that
major defects in the software sometimes occurred in subse-
quent sprints, forcing the team to work even later, solving
tasks from the last sprint while neglecting their tasks for the
current sprint.

In summary, in many cases the practitioners applied stan-
dardization as a strategy to handle the complexity evolving
from heterogeneous locations, people, and artifacts, and in
most cases it worked well. However, there were also situa-
tions where standardization did not work – and surprisingly
this was largely in the technical infrastructure and hardware
across the sites. This lack of standardization did increase the
complexity of including participants equally in, for exam-
ple, the demonstration meeting, and also in terms of having
enough machine power to execute the work. It was clear
that standardization made it possible for the participants to
reduce their effort required to organize their collaboration,
making it possible to focus on the task ahead. However,
at the same time the extra standardization also required
work – articulation work – and as such the standardization
strategy was not “free”. Standardization is a known strategy
to handle coordination [16]; however, what was interesting
in our study was how the standardization process made it
possible for the participants to handle and deal with many
complexities that emerged from the diverse set of dependen-
cies. On the other hand, issues of solving the closely coupled
task of testing remained. Similar to how specific artifacts re-
duce the complexities of articulation work [29], knowing the
standardization practices in a routine manner made it possi-
ble for the participants to reduce time spent on articulation
work and instead made them focus on the content of the
development project.

6. CONCLUSION
In the very definition of collaboration exists the notion

of dependencies in work. However, dependencies as perti-
nent in collaborative work might take different forms and
shapes. In this paper, we reported on an ethnographic
study of global software work executed across two sites –
Denmark and India – zooming in on what makes the perti-
nent dependencies in such work. We observed how various
types of dependencies constitutive of the collaborative prac-
tice across the developers included location dependencies,
people dependencies, collaborative dependencies, and arti-
factual dependencies. In addition, we saw how the strategies
of standardization form a repetitive pattern in how the de-
pendencies were managed across sites, and in particular how
routine in the work was crucial for making the collaboration
function. Based on our observations, this paper puts for-
ward three main contributions: (i) Global software develop-
ment is based on a multiplicity of dependencies that fall into
four broad categories: location, people, collaboration, and
artifactual. Using these categories, we can start to exam-
ine more carefully how dependencies constitute global work,
and in particular point to situations where dependencies
are challenging for the collaboration. (ii) Dependencies in
global software development are not singular entities, but in-

stead exist as one multiplicity of interlinked practices, which
makes it difficult to clearly define and distinguish the bor-
ders between the dependencies. (iii) Standardization and
routine can be used as specific coordination mechanisms to
handle dependencies, thus reducing the complexity of the as-
sociated articulation work. However, surprisingly, our data
suggest that it is more difficult to standardize the artifactual
dependencies (e.g. hardware and software practices) across
geographical sites, compared to standardizing the organiza-
tional practices such as user stories, roles and responsibility,
or daily meetings.

7. ACKNOWLEDGEMENTS
This research was conducted in collaboration with L&T

Infotech, both in terms of funding as well as in terms of ac-
cess to the empirical sites. In particular, we would like to
mention the efforts and work of Sarbajit Deb (Vice Presi-
dent, L&T Infotech, the Nordic Region) and Muthurama-
lingam P. (Deputy Head, Banking & Financial Services,
L&T Infotech, Denmark) in making this research possible.
Without such strong connections between industry and acade-
mia, we would never have been able to conduct such ethno-
graphic research.

Furthermore, we would like to thank the employees at
DKSoft for welcoming us into their company, working with
us, and allowing us to follow them during their work. Lastly,
we thank Steven Jeuris for his participation and help in the
study.

This research has been funded by the Danish Agency for
Science, Technology and Innovation under the project “Next
Generation Technology for Global Software Development”,
#10-092313.

References
[1] P. Bjørn and E. Balka. Health care categories have

politics too: Unpacking the managerial agendas of
electronic triage systems. In ECSCW 2007, pages
371–390. Springer London, 2007.

[2] P. Bjørn and L. R. Christensen. Relation work:
Creating socio-technical connections in global
engineering. In ECSCW 2011: Proceedings of the 12th
European Conference on Computer Supported
Cooperative Work, 24-28 September 2011, Aarhus
Denmark, pages 133–152. Springer London, 2011.

[3] A. Boden, G. Avram, L. Bannon, and V. Wulf.
Knowledge management in distributed software
development teams - does culture matter? In Global
Software Engineering, 2009. ICGSE 2009. Fourth
IEEE International Conference on, pages 18–27, July
2009.

[4] A. Boden, B. Nett, and V. Wulf. Articulation work in
small-scale offshore software development projects. In
Proceedings of the 2008 International Workshop on
Cooperative and Human Aspects of Software
Engineering, CHASE ’08, pages 21–24, New York, NY,
USA, 2008. ACM.

[5] A. Boden, F. Rosswog, G. Stevens, and V. Wulf.
Articulation spaces: Bridging the gap between formal
and informal coordination. In Proceedings of the 17th

ACM Conference on Computer Supported Cooperative
Work & Social Computing, CSCW ’14, pages
1120–1130, New York, NY, USA, 2014. ACM.

[6] G. C. Bowker and S. L. Star. Sorting things out :
classification and its consequences. MIT Press,
Cambridge, Mass., 1999.

[7] M. Cataldo, M. Bass, J. Herbsleb, and L. Bass. On
coordination mechanisms in global software
development. In Global Software Engineering, 2007.
ICGSE 2007. Second IEEE International Conference
on, pages 71–80, Aug 2007.

[8] L. R. Christensen and P. Bjørn. Documentscape:
Intertextuality, sequentiality & autonomy at work. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, New York,
NY, USA, 2014. ACM.

[9] L. R. Christensen, R. E. Jensen, and P. Bjørn.
Creating relation work: Characteristics for local and
gloval collaboration. COOP ’14. Springer, 2014.

[10] C. de Souza and D. Redmiles. The awareness network,
to whom should i display my actions? and, whose
actions should i monitor? Software Engineering, IEEE
Transactions on, 37(3):325–340, May 2011.

[11] C. R. de Souza, S. Quirk, E. Trainer, and D. F.
Redmiles. Supporting collaborative software
development through the visualization of
socio-technical dependencies. In Proceedings of the
2007 international ACM conference on Supporting
group work, pages 147–156. ACM, 2007.

[12] K. M. Eisenhardt. Building theories from case study
research. The Academy of Management Review,
14(4):pp. 532–550, 1989.

[13] G. Ellingsen, E. Monteiro, and G. Munkvold.
Standardization of work: Co-constructed practice.
The Information Society, 23(5):309–326, Oct. 2007.

[14] M. S. Feldman and W. J. Orlikowski. Theorizing
practice and practicing theory. Organization Science,
22(5):1240–1253, 2011.

[15] M. S. Feldman and A. Rafaeli. Organizational
routines as sources of connections and understandings.
Journal of Management Studies, 39(3):309–331, 2002.

[16] E. Gerson. Reach, bracket, and the limits of
rationalized coordination: Some challenges for cscw.
In Resources, Co-Evolution and Artifacts, Computer
Supported Cooperative Work, pages 193–220. Springer
London, 2008.

[17] B. G. Glaser and A. L. Strauss. The Discovery of
Grounded Theory: Strategies for Qualitative Research.
Aldine de Gruyter, New York, NY, 1967.

[18] R. Grinter. Recomposition: Coordinating a web of
software dependencies. Computer Supported
Cooperative Work (CSCW), 12(3):297–327, 2003.

[19] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E.
Grinter. Distance, dependencies, and delay in a global
collaboration. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work,
CSCW ’00, pages 319–328, New York, NY, USA,
2000. ACM.

[20] M. Hertzum and J. Pries-Heje. Is Minimizing
Interaction a Solution to Cultural and Maturity
Inequality in Offshore Outsourcing?, pages 77–97.
TAPIR Akademisk Forlag, 2011. 2011; 4.

[21] N. Holten Møller and P. Dourish. Coordination by
avoidance: Bringing things together and keeping them
apart across hospital departments. In Proceedings of
the 16th ACM International Conference on Supporting
Group Work, GROUP ’10, pages 65–74, New York,
NY, USA, 2010. ACM.

[22] R. E. Jensen and P. Bjørn. Divergence and
convergence in global software development: Cultural
complexities as social worlds. In From Research to
Practice in the Design of Cooperative Systems: Results
and Open Challenges, pages 123–136. Springer
London, 2012.

[23] P. Luff and e. al. Workplace Studies: Recovering Work
Practices and Informing System Design. Cambridge
University Press, 2000.

[24] T. W. Malone and K. Crowston. The interdisciplinary
study of coordination. ACM Comput. Surv.,
26(1):87–119, Mar. 1994.

[25] S. Matthiessen, P. Bjørn, and L. M. Petersen.
“figuring out how to code with the hands of others”:
Recognizing cultural blind spots in global software
development. In Proceedings The 17th ACM
Conference on Computer Supported Cooperative Work,
CSCW ’14, New York, NY, USA, 2014. ACM.

[26] T. Meum, E. Monteiro, and G. Ellingsen. The
pendulum of standardization. In ECSCW 2011:
Proceedings of the 12th European Conference on
Computer Supported Cooperative Work, 24-28
September 2011, Aarhus Denmark, pages 101–120.
Springer London, 2011.

[27] R. Prikladnicki, A. Boden, G. Avram, C. Souza, and
V. Wulf. Data collection in global software engineering
research: learning from past experience. Empirical
Software Engineering, pages 1–35, 2013.

[28] K. Schmidt and L. Bannon. Taking cscw seriously.
Computer Supported Cooperative Work (CSCW),
1(1-2):7–40, 1992.

[29] K. Schmidt and C. Simone. Coordination mechanisms:
Towards a conceptual foundation of cscw systems
design. Computer Supported Cooperative Work
(CSCW), 5(2-3):155–200, 1996.

[30] K. Schwaber and J. Sutherland. The scrum guide: The
definitive guide to scrum: The rules of the game, 2011.

[31] A.-M. Søderberg, S. Krishna, and P. Bjørn. Global
software development: Commitment, trust and
cultural sensitivity in strategic partnerships. Journal
of International Management, 19(4):347 – 361, 2013.
Developing Offshoring Capabilities for the
Contemporary Offshoring Organization.

[32] A. Strauss. The articulation of project work: An
organizational process. Sociological Quarterly,
29(2):163–178, 1988.

[33] L. Suchman. Do categories have politics? the
language/action perspective reconsidered. In
Proceedings of the Third Conference on European
Conference on Computer-Supported Cooperative Work,
ECSCW’93, pages 1–14, Norwell, MA, USA, 1993.
Kluwer Academic Publishers.

[34] L. A. Suchman. Plans and Situated Actions: The
Problem of Human-machine Communication.
Cambridge University Press, New York, NY, USA,
1987.

[35] G. Walsham. Icts and global working in a non-flat
world. In Information Technology in the Service
Economy: Challenges and Possibilities for the 21st
Century, volume 267, pages 13–25. Springer US, 2008.

Part 2. Papers 69

SideBar

Title of Paper

SideBar: Videoconferencing System Supporting Social Engagement

Authors:

Morten Esbensen, Paolo Tell, Jakob E. Bardram

Published:

In Collaborative Computing: Networking, Applications and Worksharing (Collaborate-

Com), 2014 International Conference on. IEEE, 2014. p. 358-367.

Abstract:

Companies are increasingly organizing work in globally distributed teams. A core chal-

lenge to these distributed teams is, however, to maintain social relationships due to lim-

ited opportunities and tools for social engagement. In this paper we present SIDEBAR: a

videoconferencing system that enhances virtual meetings by enabling social engagement.

Through image analysis of the conference video feed, SIDEBAR tracks meeting partici-

pants in real-time. A personal tablet then allows each participant to identify and track

other participants, to look up information about them and their local work context, and

to engage in peer-to-peer chat conversations. We describe the motivation, design and

implementation of SIDEBAR and report results from a preliminary evaluation, which

shows that participants found SIDEBAR useful and easy to use. The paper concludes by

providing three design guidelines for collaborative technologies supporting social engage-

ment.

SideBar: Videoconferencing System Supporting
Social Engagement

Morten Esbensen, Paolo Tell, Jakob E. Bardram
Pervasive Interaction Technology Laboratory

IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen S, Denmark

Email: {mortenq,pate,bardram}@itu.dk

Abstract—Companies are increasingly organizing work in
globally distributed teams. A core challenge to these distributed
teams is, however, to maintain social relationships due to limited
opportunities and tools for social engagement. In this paper
we present SIDEBAR: a videoconferencing system that enhances
virtual meetings by enabling social engagement. Through image
analysis of the conference video feed, SIDEBAR tracks meeting
participants in real-time. A personal tablet then allows each
participant to identify and track other participants, to look up
information about them and their local work context, and to
engage in peer-to-peer chat conversations. We describe the moti-
vation, design and implementation of SIDEBAR and report results
from a preliminary evaluation, which shows that participants
found SIDEBAR useful and easy to use. The paper concludes by
providing three design guidelines for collaborative technologies
supporting social engagement.

I. INTRODUCTION

Companies are progressively organizing work in globally
distributed teams [1]. It has been recognized that such dis-
tributed collaboration is affected by new challenges, which,
according to Herbsleb [2], can be ascribed to the absence
or disruption of those mechanisms that in collocated settings
naturally support coordination among practitioners. Examples
of these mechanisms range from spontaneous engagement in
conversation to visual clues conveying awareness capable of
offering insights on, for instance, availability of team members
as well as their current activity. Studies reflecting on the
challenges of distributed collaboration (e.g., [3], [4]) agree
on the view that physical distance is a factor of paramount
importance that profoundly influences how people interact [5].

Social relationships and engagement are in particular neg-
atively affected by geographical distance [6], [7]. Given for
granted in collocated settings and often overlooked and un-
derestimated in distributed arrangements, social engagements
represent powerful facilitators capable of fostering successful
collaboration [8], which have to be nurtured and encouraged
not only by practices but also by technologies. Important
aspects of social engagement, which have been investigated
and for which direct dependences have been observed are:
the feeling of group cohesion, which has been argued to be
a facilitator for the effectiveness of communication technolo-
gies [9]; the feeling of connectedness, for which an impact
on communication has been identified [10]; the awareness of
remote team members and of their locations, which have been
linked to communication patterns [11]; and, trust, which has
been investigated from multiple angles and perspectives as
systematically reported in [12].

Fig. 1. SIDEBAR is a videoconferencing system supporting social engage-
ment. This is achieved by face tracking in the video feed and by provide
an interactive mirrored video feed on tablet computers, allowing users to
recognize and seek information about each other, and engage in backchannel
peer-to-peer chat conversations.

A core challenge in distributed collaboration is, therefore,
how to support such social engagements. Collocated envi-
ronments provide good conditions for social engagements to
occur through shared physical spaces allowing for mutual
awareness, close collaboration, shared experiences, and social
encounters [5]. In distributed arrangements, however, actors
have to commit to much more explicit work to cultivate such
social aspects [13], especially when the social connections
required to initiate these aspects of collaboration need to
be established (e.g., visit to remote site and team building
activities [14]).

To address the challenge of providing social engagements
in distributed arrangements, we have designed SIDEBAR: a
videoconferencing system with special support for social en-
gagements. SIDEBAR incorporates face tracking into a video-
conferencing system to provide an interactive mirrored video
feed on tablet computers that allows users to recognize and
seek information about each other and engage in backchannel
peer-to-peer conversations.

In this paper, we provide an overview of videoconferencing
solutions and then describe the SIDEBAR system. The more
significant design decisions are discussed before detailing
the architecture of the system. A preliminary evaluation of
the system is also presented, which aimed at assessing the

perceived usefulness and ease of use of SIDEBAR, as well
as whether or not the system was perceived as a distraction.
Finally, before concluding, we propose a set of guidelines for
designing collaborative technologies with support for social
engagement.

II. BACKGROUND AND RELATED WORK

Social connections are core to collaboration [8] but chal-
lenged in distributed arrangements. For example, Herbsleb and
Mockus [7] have shown that the size of social networks in
distributed arrangements is smaller as compared to collocated
ones, and that the ability to recognize remote team members is
more difficult for distributed team members. Similarly, it has
been found that people tend to form groups with collocated
colleagues rather than distant ones [15]. Social factors, how-
ever, are important in distributed arrangements in which the
communication is affected by the feeling of connectedness [10]
and of group cohesion [9]. Social connections and engagement,
thus, are of much importance when designing tools supporting
distributed collaboration.

Videoconferencing meetings are used extensively in dis-
tributed collaboration and are, in terms of media richness
theory, the closest we come to collocated meetings and col-
laboration [16]. However, despite the richness of the video
medium, a meeting supported by technologies still does not
compare to a collocated face-to-face one [17]. Therefore, a
significant body of research has focused on bringing the feeling
of ‘sitting together’ to the video meeting by improving the
videoconferencing technology to include information intrin-
sic to the collocated meeting such as eye-contact [18] and
non-verbal cues [19]. Such information can be valuable in
distributed collaboration by increasing the social awareness
between team members [20].

The setup of videoconferencing equipment has been shown
to affect different aspects of participants perception of each
other. Using a video setup that captures both face and upper
body have been shown to have a positive result on trust and
empathy in groups as opposed to only capturing the face [21].
Another study of trust in different group-to-group videoconfer-
encing setups suggests that a combination of personal displays
and individual streams of each participant contribute to a
higher level of trust development [22], and that the perception
of proximity in videoconferencing is linked to the zoom of the
camera [23].

GAZE-2 [18] is a group video system that supports eye-
contact transmission. Using several cameras and an eye-tracker
per setup, the system ensures parallax-free transmission of
eye contact, by choosing the camera the user is looking at.
eyeView [24] is a videoconferencing system that leverages
gaze direction. Using eye tracking to resize individual video
windows based on looking behavior, eyeView keeps focus
on the current speaker while keeping an overview of all
participants though scaled down videos of them. These systems
are examples of technologies, which include eye-contact [25]
or 3D-experience [26] in traditional videoconferencing setups.

Other approaches to enhance videoconferencing have fo-
cused on creating a more immersive experience. MAJIC [27],
for example, uses large curved, semi-transparent displays with
cameras placed behind them. This setup allows for life-size

Fig. 2. SIDEBAR extends the video conferencing setup with tablet computers
for all meeting participants.

video projection with eye-contact support. TeleHuman [19]
uses a cylindrical 3D screen to display life-size video of a
person, increasing users sense of social presence and im-
proving the ability to asses gaze and body language cues.
LiveMask [28] uses a video setup that presents a movable 3D
screen of a persons face upon which live video is projected
leading to a more correctly transmitted gaze direction than tra-
ditional video setup. More generally, moving and zooming the
videoconference camera to suggest movement of participants
have been shown to enhance social telepresence of remote
actors [29].

In summary, prior research in videoconferencing technolo-
gies has focused on enhancing the video meeting by incorpo-
rating aspects from collocated meetings, including non-verbal
cues and physical presence of remote participants information
that can lead to an increase in social awareness [20]. Focus
has been on improving the fidelity of the audio-video channel
as such, and less on using other channels during videocon-
ferencing to build social relationships and engagement. The
latter is the objective of our research and this is approached
by integrating face-tracking into the video feed of a regular
videoconferencing, and use this to identify and engage with
meeting participants, and support ad-hoc backchannel conver-
sations during meetings.

III. SIDEBAR

Social aspects among people have a large impact on
communication [10] and collaboration [9]. SIDEBAR is a
videoconferencing system that focuses on supporting social
engagement. As illustrated in Figure 2, the SIDEBAR system
extends a traditional videoconferencing system with a tablet
computer for each meeting participant.

The purpose of these personal tablets is to provide meet-
ing participants with a tool to recognize remote participants
and to engage in backchannel—or sidebar—task-related work,
information seeking, and communication. Using face tracking
techniques, SIDEBAR provides an interactive mirrored video
feed (Figure 3-(1)). Meeting participants can access informa-
tion about each other via personal profiles (Figure 4-(1)), can
learn about the different geographical locations they are located

in through location profiles (Figure 5), and engage in sidebar
conversations using a communication backchannel (Figure 4-
(2)).

The following scenario describes how SIDEBAR is used in
a video meeting.

Each Thursday a video-meeting between a software
SME and its distant sister-company is held. The
video connection is initiated and everyone logs into
SideBar on their tablets. A few participants notice a
person at the other site they have not seen before.
They use the interactive video feed to navigate to his
profile and find out that he has just been assigned to
the project. Given recent re-arrangement of teams,
he is now the new test manger. The project manager
immediately starts the meeting leaving no time for
introduction, however, the participants are able to
quickly greet the new member using the communica-
tion backchannel. As the project manager explains
some proposed changes, he has some questions re-
garding impact and estimates. Using the tablet, he
can see which team member has been working on
these modules and, since this person is part of the
meeting, he can directly address questions to him.

A. System Description

In the following, the main features of SIDEBAR are de-
scribed.

Interactive Video Feed. The interactive video feed is the main
screen on the SIDEBAR tablet computer (Figure 3-(1)). The
user interface augments the video stream from the large confer-
ence display with information about each meeting participant.
Using the videoconference camera, SIDEBAR tracks people in
the meeting room and overlays the video image with a tracking
box surrounding each face and adding a name above it. On the
tablet, users can tap on the image of a remote participant to
visualize his or her personal profile. This helps participants to
identify and recognize remote colleagues at a glance, without
the need to explicitly look up names in meeting agendas,
documents, or by asking local people about who is present.

12

3

Fig. 3. Interactive video feed on the tablet computer that tracks each
participant and display their name (1). Alongside, information about the
weather (2) and recent news (3) of the remote site is displayed.

Association Between User and Position. Given the unre-
liability of face recognition techniques and their need for
additional resources (i.e., precise pictures of each person the
system should recognize), SIDEBAR only tracks the faces of
participants, and the mapping of the person’s profile with the
correct tracked face is created during the login procedure.
When logging in, users are asked to select their name, their
geographical location, and the meeting they are participating
in. After users have selected these options, a live stream of the
local meeting is presented. The user is then asked to select him-
or her-self in the video stream. Upon selection, the association
between the actual user and a tracked face in the stream is
created.

Personal Profiles and Team. Each meeting participant has
a personal profile in SIDEBAR (Figure 4), which contains
both personal and profession information, such as name,
age, hometown, profession, education, and interests. This
information provides background information and awareness
between meeting participants, and can be used to acknowledge
similarities between them facilitating the establishment of
relationships. Similarly, a team page that provides a side-by-
side overview of all members of a team is also available.

1
3

2

4

Fig. 4. The personal profile of each meeting participant contains basic
personal information (1) and allows to access the communication backchannel
(‘chat room’) with this person (2). Furthermore, the live video feed is displayed
(3) and the menu for navigation in the app (4).

Communication Backchannel. One shortcoming of a stan-
dard videoconferencing setup is that it provides little op-
portunities for side conversations among the meeting partici-
pants [17]. As discussed above, such side conversations about
both professional and more personal matters are important in
building and maintaining personal connections in collocated
settings. By using the tablet computer, SIDEBAR allows people
to engage in backchannel conversations (Figure 4-(2)), hence,
providing globally distributed actors with similar opportunities
for side conversation.

Local Information. A mundane, yet often observed, obstacle
to efficient communication and collaboration across distance is
the lack of location information, including weather, time zone,
and geography. To help build personal relations, SIDEBAR
provides such information in different places. Local informa-
tion on weather (Figure 3-(2)) and various relevant news feeds
(Figure 3-(3)) are visualized in the main screen, and a dedi-
cated display in SIDEBAR providing local information about

the remote meeting participants and including a description of
both the remote office as well as its geographical location is
also provided (Figure 5).

1

2

Fig. 5. The location information screen provide simple information about
the geographic location of the remote user and the company that he or she is
sitting at through a map (1) and a short description (2).

B. Design Methodology

The SIDEBAR system was designed in a three step process.
First, we derived a number of requirements informed by the
literature review presented above and field studies reported
elsewhere [13], [31]. Next, an initial paper mockup of the
SIDEBAR system was designed, which was refined in a user-
centered design process with a software SME [32]. Finally, the
system was implemented in an initial prototype.

We based our initial design on three overall requirements.
First, SIDEBAR should provide users with awareness of each
other. Second, SIDEBAR should provide users with opportu-
nities to connect to each other. While technology for commu-
nication already exists—email and chat for example are ex-
tensively used in collaboration—the opportunity of interaction
should exist in conjunction with the awareness of each other.
Third, SIDEBAR should integrate with existing technologies
and practices. These three overall design requirements formed
the basis for adding support for social engagement in a video-
conferencing system. This support was added ‘on the side’ by
using tablet computers which allows meeting participants to
maintain an awareness of each other, to provide opportunities
to connect and communicate, while still being integrated with
the video meeting.

We created an initial paper mockup of this design as
an input to a design process with a software SME. The
company makes extensive use of video meetings with its two
offices located in a different parts of the world. The onshore
office handles contact with customers while the offshore office
handles implementation and test of software. Two workshops
focusing on testing the design of the system were conducted,
in addition to a series of more informal conversations and
discussions of the system design. Each workshop was attended
by two researchers and two employees from the company
and lasted approximately two hours. The workshops were
videotaped for further analysis. Figure 6 shows a snapshot from
one of the design workshops.

Fig. 6. A snapshot of a design workshop with researchers and industry
partners.

These design workshops gave us important insights on
the feasibility of the system design and suggestions on how
to improve it. First of all, the general idea of providing a
SIDEBAR tablet for parallel information seeking, task-based
interaction, and communication was well received. The specific
UI sketches for looking up information about co-workers,
for peer-to-peer communication, and for identifying meeting
participants were all considered useful, and the workshop
participants provided input for enhancing the UI design of
these features. The design study, however, also revealed that
some features were missing in the design. Among them, the
lack of information—hence, awareness—about the setting and
location of remote team members. Information about the local
geography, weather, time zone, etc. of the remote place was
also considered very useful information for making distributed
colleagues more comfortable when contacting each other.
Another issue that was raised during the design sessions was
that the system should incorporate support for the team aspect
of collaboration. The design of the paper prototypes focused
on one-to-one connections between people. But considering
the role of a person within the team is equally important as
a general background information for meeting participants.
Finally, we received suggestions for features that were not
included in the final design of SIDEBAR. In particular, the
participants in the workshop suggested that SIDEBAR should
include information about cultural habits associated with the
different locations of people. One participant for example,
mentioned that small-talk with co-workers about family is
common in some parts of the world whereas in other parts,
this is seen as inappropriate. While such suggestions indeed
are interesting, we decided not to include them in the design
of SIDEBAR as such feature should require a thorough inves-
tigation of if and how traits associated with cultures can be
identified and disseminated.

In summary, on the one hand the user-centered design
process confirmed the overall system design of SIDEBAR ,
while on the other, it provided valuable input for detailed
refinements as well as two new important features related to
location and team awareness.

C. System Architecture & Implementation

The SIDEBAR system is composed of several inter-
connected sub-systems (Figure 7): SideBar App is the tablet
application and main user interface to the system; Relation
Server is a web server and database system handling data
access to all relevant information; the Registration application
allows for registration of new users, locations, and meetings;
VLC [33] is used to stream video to the tablets; the Tracking
Client handles face tracking; finally, Skype [34] is used as the
videoconferencing system.

Web Server

Conference ComputerTablet

Relation Server Registration

SideBar App

Tracking Client

VLC Skype

Fig. 7. Overview of the architecture of SIDEBAR. Red boxes represent
existing hardware/software, while blue boxes show the novel components of
SIDEBAR.

Figure 7 shows an overview of the SIDEBAR system
architecture at each meeting location. The conference computer
runs the Tracking Client, Skype, and VLC. The Tracking Client
performs face tracking, Skype is used for the videoconference,
and VLC is used to stream video to the SideBar App. A web
server runs the Relation Server and Registration application.
The Relation Server is a web application that handles all
data access except video. Access to personal profiles, location,
meeting, chat, and position information can be achieved using a
REST interface of the server. New users, locations or meetings
can be added to the system using the Registration application.
The SideBar App runs on Android tablets and receives both
video streaming over RTSP from the VLC server deployed on
the conference computer as well as tracking data, personal and
location data, and chat from the Relation Server running on the
web server. In the following, we describe the technical details
behind the SIDEBAR sub-systems.

Tracking Client. The Tracking Client is a Java application
running on the video conference computer implemented via
JavaCV [35]. The client determines the position of the head of
each meeting participant, and post these to the Relation Server.
As previously described, the Tracking Client performs face
tracking and not face recognition. Faces are constantly tracked
and their positions are regularly sent to the relation server.
The association between face positions in the video and actual
users is resolved during the login procedure. The Tracking
Client constantly updates the position of people, however, it
does not allow people to switch seats or leave the meeting and
return without logging back in.

Video Streaming. Any videoconferencing setup can be used
with SIDEBAR as long as it supports one of the following
two requirements; (1) it must expose a camera that VLC and
the Tracking Client can access, or (2) it must be possible to

place a camera very close to the existing camera to provide a
similar video stream to the SIDEBAR system. In our current
implementation, Skype is used as the video conferencing
technology, and since Skype, VLC, and the Tracking Client
are running on the same computer, they all have access to
the same camera. Video streaming to the tablets is done using
VLC. VLC captures the camera feed and exposes it as an RTP
stream playable by the default Android media API. The video
is encoded with .h264 and streamed at a resolution of 480 x
360 and a bit rate of 500Kbps.

Relation Server. The Relation server is responsible for data
handling of SIDEBAR. The server is implemented in Java using
the Java Spring framework and runs in an Apache Tomcat
server. The Relation Server stores all information regarding
user locations and meetings as well as all position information
as tracked by the tracking client and makes this information
available through a REST interface to the tablet computers.

SideBar App. SIDEBAR App is the tablet application and
user interface of the SIDEBAR system. SIDEBAR App is
implemented in Android 4.0 and is designed to run on a
10.1 inch tablet. SIDEBAR App handles the login procedure,
streaming video, backchannel communication, and implements
the profiles, location and team profiles.

IV. EVALUATION

To gather early feedbacks on SIDEBAR, we performed a us-
ability experiment. The key research questions (RQ) addressed
by this evaluation were:

RQ1 How useful are the core features of SIDEBAR?
Do users perceive SIDEBAR’s features useful for
improving videoconference meetings, or not?

RQ2 Is SIDEBAR easy to use? Do users perceive SIDE-
BAR as easy to use, or not?

RQ3 Is the use of SIDEBAR during meetings a dis-
traction? Do users feel distracted when using
SIDEBAR during videoconference meetings; does
it improve their focus; or do they experience no
difference in using it.

These research questions were approached by assessing the
so-called ‘perceived ease of use’ and ‘perceived usefulness’
of SIDEBAR. Research has shown that there is a strong
correlation between user acceptance of a technology and its
perceived ease of use and usefulness [36]. In addition to
perceived usability and usefulness, we also wanted to explore
the notion of ‘distraction’, since introducing additional devices
like the SIDEBAR tablet into a meeting may lead to distraction
of the participants.

A. Method

Given the novelty of the system, we opted to expose study
participants to SIDEBAR through a scenario-based approach.
This method entails the design of scenarios based on realistic
settings exposing participants to complex situations, which
would otherwise be hard to observe [37]. Each evaluation
session consisted of three phases: a briefing, a scenario, and a
debriefing.

In the first phase, participants were welcomed, the SIDE-
BAR tablet application was demonstrated to them, and they

were given the opportunity to get accustomed to the appli-
cation. During this phase the experimenter was present with
the participants to answer any questions or concerns regarding
both the evaluation procedure as well as the SIDEBAR system.

In the second phase, participants were divided in two
groups, were administered a sheet describing the scenario
and their role (details below), and were asked to reach their
designated position: two rooms were used to simulate two
different locations. During this session, they were observed
by the experimenter but interactions were kept at a minimum
to avoid potential bias.

In the debriefing phase, participants were called back to
the initial room and were administered a questionnaire. The
questions addressed the three research questions and partici-
pants were asked to rate the questions on a 5-point Likert
scale1: (RQ1) the usefulness of the main features of SIDEBAR
(i.e., interactive video feed, personal profiles, location, com-
munication backchannel, and team information); (RQ2) the
extend to which they agreed with the statement “The system
is easy to use.”; and, (RQ3) the extend to which they agreed
with the statement “The use of tablets distracts the video
meeting.”. After completing the questionnaire, participants
were subject to a semi-structured interview including questions
about the general experience with the system. The interview
allowed participants to elaborate on their previous answers and
to provide detailed comments. Interviews were recorded for
further analysis.

Evaluation Scenario. The scenario addressed coordination
in distributed software development. A software development
scenario was chosen to promote discussion among participants
by accommodating the background of the people envisioned
as potential candidates for the recruitment, which happened
within the SSS department2. The scenario focused on a kickoff
meeting in which two remote teams of developers had to
discuss the design and implementation of a smartphone appli-
cation. Participants were asked to plan the project using their
knowledge about the competences of each other, and divide
the work between application development and user interface
design. Furthermore, participants were asked to schedule future
meetings. Rather then emphasizing the creation of personal
connections, the evaluation scenario described a common
software scenario, i.e. the kickoff meeting.

The purpose of the study was to investigate whether SIDE-
BAR was used in connection-making processes without ex-
plicitly asking participants to do so. Each participant received
a slightly different version of the scenario, which described
their specific roles in the scenario. Since participants knew
each other, they were all equipped with artificial identities and
roles. Participants were asked to enact the character described
in the scenario, which required them to ‘learn to know each
other’, which again promoted conversation and the use of the
the social features in SIDEBAR .

B. Participants & Setup

We recruited a total of seven participants for the eval-
uation (mean age 32, all male) for two sessions (4 and 3

1Likert scale parameters: 1 (strongly disagree) to 5 (strongly agree).
2SSS department: Software and Systems Section, IT University of Copen-

hagen, Denmark.

Feature Min Q1 x̃ Q3 Max iqr
Interactive video 4 4 4 5 5 1
Personal profiles 3 3.25 4 5 5 1.75
Location page 1 1.5 3 3 4 1.5
Communication backchannel 4 4 4 5 5 1
Team Page 1 1.5 4 4 5 2.5

Statement Min Q1 x̃ Q3 Max iqr
The system is easy to use 3 4 4 4 5 0
The use of tablets distracts the
video meeting

1 1.25 4 4 4 2.25

Fig. 8. Questionnaire result on a 5-point Likert scale. For each feature,
the table shows the reported minimum score (Min), the first quartile (Q1), the
median (x̃), the third quartile (Q3), the maximum (Max), and the inter quartile
range (iqr).

participants respectively). The participants were a mix of
master students, PhD students, and research assistants. Two
compulsory requirements were considered during the selection
process related to the experience in software development
and the experience in collaborating with distant people using
Skype for communication. Besides these requirements, no
other inclusion/exclusion criteria were applied. Two meeting
rooms were used for the evaluation, each equipped with
SIDEBAR. The setup comprised a computer, a large screen,
a high resolution webcam with microphone, speakers, and a
tablet for each participant. Figure 9 shows a picture from an
evaluation session.

C. Results

The results of the questionnaire are shown in Table 8. In the
following we describe these results in detail.

Interactive Video Feed. The interactive video feed was one
of the SIDEBAR features that scored highest (x̃=4; iqr=1).
Participants liked the interactive video feed and it was found
very useful for navigating. One participant even “felt surprised
how useful integrating information and video is” and men-
tioned that the interactive video feed “added more depth to the
video meeting”. During the evaluation, we observed that the
participants quickly picked up on the names of each other, and
used the augmented video feed to reassure themselves about
the name of another person before directing a question to this
person. Participants were also able to use the interactive video
feed to navigate to the personal profiles. Thereby, participants
quickly recognized the roles of each other and were able to
make the connection between the video image and the person.

Personal Profiles. The personal profile pages were also well
received by the participants (x̃=4), but with some disagreement
(iqr=1.75). During the evaluation, the participants actively
used the profiles to seek out information about each other.
The data they gathered from these profiles were used to
direct questions at the right person. The profiles were also
used to asses how to divide the work involved in creating
the application mentioned in the scenario, thus, aiding them
in performing the task described in the scenario. In one
session, for example, a participant noted, while referring to the
remote site: “you guys are mostly UI designers [. . .]”. This
information was then used to argue for a particular division of
work.

Location. The location page was the feature that was rated
lowest in the evaluation (x̃=3; iqr=1.5). When asked about

Fig. 9. Evaluation setup. A team of four persons—two at each location—is
having a video meeting using SIDEBAR including the larger video display, a
camera, and a tablet computer for each meeting participant.

the page after the evaluation, most participants noted that
the information was not particularly useful to them. The
information provided by the map was, however, used in the
evaluation. For example, one participant asked, while referring
to the position of the company being located near Central
Park in New York: “so your office is near Central Park?”.
Hence, getting access to local information about the remote
site did spark a more informal conversation, thereby building
knowledge about the remote participants.

Communication Backchannel. The communication
backchannel also scored high in the questionnaire (x̃=4;
iqr=1). The participants noted that it provided them with an
easy way of sharing textual messages and notes during the
meeting. Several participants mentioned that with traditional
videoconferencing setups, one-to-one channels for chatting or
sharing information are not easily accessible. The participants
used the chat actively in the meeting to greet each other and
towards the end of the meeting to share relevant information,
such as email and web addresses.

Team Profile. There was less agreement on the usefulness of
the team information (x̃=4; iqr=2.5). This was also evident
from the observations, for some participants used the page ac-
tively, while others did not. In the former case, one participant
found the team information useful to support the beginning of
the meeting in which the teams briefly introduced themselves.
In the latter case, another participant found the information in
the team page to be redundant, as the same information was
available on the profile pages. He noted that it just caused
more navigation within the system.

Ease of use. Participant found the system easy to use (x̃=4;
iqr=0), and throughout the evaluation, participants were able to
navigate within the system without any problems. One remark,
however, focused on the fact that the top-menu of the SIDEBAR
App is associated with a person, therefore, not accessible on
the display showing the video. This caused some confusion as
participants were looking for the menu when interacting with
the video screen.

Distraction. Participants disagreed on the question of how dis-
tracting the tablets were in the video meeting (x̃=4; iqr=2.25).

On the one hand, some participants did not find that the tablets
would disturb the meeting and some argued that SIDEBAR
would not add more disturbances than the ones already exist-
ing. As one participant argued; “it [SIDEBAR] does not disturb
more than, for example, printed meeting agendas.” Another
noted that smart phones and computers are already extensively
used during meeting today. On the other hand, two participant
noted that eye contact in the video meeting cease when people
turn to the tablet. One participant said; “you think you have
eye-contact as you see the same video on the tablet—but you
don’t.” Lastly, a participant expressed concern that turning to
the tablet felt like turning away from the meeting.

D. Limitations

This study is a preliminary evaluation and, as such, presents
several limitations posing threats to the validity of its results.
The main limitations, which were identified and addressed, are
briefly discussed in the following.

First, being a preliminary evaluation, no statistical sig-
nificance, scalable, or generalizable results were sought, as
the key objective was to systematically gather and interpret
empirical evidence about the perceived ease of use of the
system, the perceived usefulness of its core functionalities,
and the user perception of the system as a distraction. With
regards to the external validity, even if participants were not
practitioners and it could be argued that the sample was not
fully representative of the intended population, all participants
had software development experience and had experience with
remote collaboration. Second, aware of the complexity of as-
sessing collaboration technologies [38], we carefully designed
this preliminary evaluation by leveraging established methods
(i.e., [37]). Regarding the ecological validity, the scenario
was extensively discussed to be as realistic as possible in
the simplifications that were applied. This process led us
to the decision of simulating a videoconferencing meeting
involving three to four people per session separated into two
teams physically distributed in different rooms. A hands-on
training session was also included before the main scenario to
mitigate bias connected to the use of a novel technology. Third,
given that our purpose was to gather initial understandings
on SIDEBAR, rather than utilizing an established instrument
for collecting data, we preferred an ad hoc questionnaire
comprising a set of very focused questions. Therefore, the
questionnaire used has been designed by the authors, and it was
only reviewed and discussed with colleagues knowledgeable
and experienced in empirical research. This poses threats to
the construct validity; however, the decision allowed us to
keep the number of questions to a minimum avoiding lengthly
instruments appropriate to more extensive evaluations. Forth,
internal validity. Even though all participants satisfied the
selection constraints, affiliation with the authors represents
a bias. Nonetheless, such recruiting approach is a common
practice for preliminary evaluations. Additionally, to avoid
experimenter bias, observer/participants interactions were re-
duced to a minimum by providing participants with a scenario
including predesigned roles as described Section IV-A.

Finally, it is worth to notice that no technical validation
for the system or its features was conducted. The purpose of
the evaluation was purely to get feedback on the design of
SIDEBAR, hence, technical aspects were not considered. In a

future evaluation, the stability and integrity of the system in a
realistic setting should be evaluated.

V. DISCUSSION

The evaluation of SIDEBAR was designed to provide in-
sights on three research questions. In this section, we discuss
these insights.

[RQ1] How useful are the core features of SIDEBAR? The
evaluation showed that the participants found SIDEBAR useful
and the participants commented on SIDEBAR as being “really
helpful” and “the right way to go”. In particular, participants
liked the linking of video and personal information through
the interactive video feed. Furthermore, the communication
backchannel was also appreciated. The evaluation, thus, shows
promising results for the support of social engagements in
video meetings. Nonetheless, some participants found spe-
cific features (i.e., the team and location information) less
useful compared to the video stream and the communication
backchannel. Interestingly, these features were derived from
the design workshops we conducted. This points to the pos-
sible gap between the design and evaluation; SIDEBAR was
designed in collaboration with industry partners, but evaluated
with students and researchers. These two aspects of SIDEBAR
also contained some redundant information; the team page
contained some information that was also available in the
profile pages, and the location information was split between
the interactive video feed (news and weather) and the location
screen (description and map). The information about people
and location could be possibly redesigned to be available in
one screen to ease navigation.

[RQ2] Is SIDEBAR easy to use? SIDEBAR was found easy
to use and participants did not have problems navigating the
application, seeking information about each other or using
the communication backchannel. A few participants found it
confusing that the navigation menu (Figure 4-(4)) was not
accessible from the main interactive video screen but only from
the profile screens. This suggests that some improvements in
terms of navigating in the app should be made.

[RQ3] Is the use of SIDEBAR during meetings a distrac-
tion? Participants responded very differently to this question.
To really investigate how the introduction of a tablet-based
technology like SIDEBAR changes video meetings, a more
thorough study should be made, possibly comparing meetings
with SIDEBAR to meetings without. For now, it is hard to say
whether such a technology would introduce distractions that
would disturb the video meetings.

The evaluation of SIDEBAR also pointed out some areas of
improvements. Two participants mentioned that the augmented
video feed could display even more information than the
current implementation offers, including information from the
personal profile pages, and highlighting those relevant for the
meeting. Also, one participant suggested that the information
exposed by SIDEBAR should be available even outside the
meeting session. In the current implementation of SIDEBAR,
the personal profiles are available only after login—a pro-
cedure that requires an ongoing meeting. The suggestion is
particularly interesting to consider as in line with our future
plans. In fact, on the one hand, social engagements activities

are not limited to the meetings per se, and allowing out-of-
meeting usage of SIDEBAR might improve their support. On
the other hand, considering that features similar to the ones
implemented by SIDEBAR (e.g., personal profiles and commu-
nication back channel) are, in some cases, already provided
within the ecology of tools used in distributed collaboration
projects, integrating existing online social profiles or company
chat applications would clearly both facilitate user adoption
of the technology as well as increase the chances of finding
an industrial partner for performing a field deployment of a
company-specific version of SIDEBAR.

VI. DESIGNING FOR SOCIAL ENGAGEMENT

Establishing more personal and non-work relations in
collaborative settings is an important part of successful col-
laboration. This is particularly relevant in distributed and
global collaboration in which supporting social engagements
is more challenging. Therefore — we argue — the design of
technologies for distributed collaboration should incorporate
support for this social dimension. This section discusses ways
of designing for social engagement in distributed collaboration
technologies.

We designed and implemented SIDEBAR based on the three
design objectives that the system should: support awareness
amongst meeting participants, provide them with opportunities
to connect to each other, and integrate with existing tech-
nologies and practices. These design goals can be generalized
to a model of how to design for social engagement in dis-
tributed collaboration, as illustrated in Figure 10. Collaborative
technologies should provide support for social engagement
through: (i) relational context awareness, (ii) relation building
and sharing, and (iii) relationship maintenance. In other words,
the core design approach is to design for a mutual awareness
of relational context, which may trigger relational building and
sharing, which again builds and maintains relationships.

A. Relational Context Awareness

Maintaining an awareness of the nature of relationships be-
tween members of an organization is core to social connection
making. This happens while overhearing desktop discussions,
ad-hoc queries, small exchanges during coffee breaks and
in the hallway, and while setting up a meeting. Central to
relational context awareness is that people build knowledge
about each other and the relationships they are involved in.
Design for relational context awareness is evident in architec-
tural design of office space, which is designed with open space
where people easily can see and overhear each other, and the
office layout is designed so that people easily ‘bump into’ each
other. Similarly, the use of shared artifacts like visible post-it
notes, print-outs or drawings on a shared wall allows for the
same kind of awareness that collocation brings.

When designing technologies for social engagement, rela-
tional context awareness is of great importance. Technologies
should seek to provide actors with a sense of awareness
about each other. SIDEBAR was designed to support rela-
tional context awareness by helping people render relevant
relationships visible for others, and for people to be able
to monitor the relationships of colleagues. The evaluation of
SIDEBAR showed that participants appreciated the awareness

and the association between video and personal profiles and
the information were actively used in the scenarios.

B. Relation Building and Sharing

A common way to build relationships is the classic team
building exercises, company dinners or similar social activities.
These activities are all explicitly designed to bring people
together within a non-work context. One a more daily basis,
informal talks around a shared office space helps establish and
maintain connections between people.

Collaborative technologies should seek to provide users
with opportunities for building and sharing relations. SIDEBAR
provides users with a communication backchannel in video
meetings. This channel is accessible from the personal profiles,
providing an easy link from the relational context awareness
information. As one participant put it, “. . . this [technology]
could replace a kick off meeting” which fits well with the
intention of designing for relationship building.

C. Relationships Maintenance

Once connections have been established, they need to
be maintained and remembered. Often people keep specific
artifacts such as pictures, tokens, prizes, diplomas, toys, and
award medals from e.g. team building activities as souvenirs
and reminders of specific relationships. However, more active
involvement is often required to maintain relationships and
keep them alive. Social media such as Facebook and Twitter,
for example, encourages users to regularly update their online
profiles with current information about their doings, interests,
and whereabouts etc.

Relational Context
Awareness

Relationship
Maintenance

Relation Building
and Sharing

Fig. 10. Design guidelines for social engagement. The core design approach
is to design for a mutual awareness of relational context, which may trigger
relational building and sharing, which again builds and maintains relationships.

In summary, technology should provide relational context
awareness, giving access to relationship building and sharing,
which in turn promotes relationship maintenance and thereby
creating new awareness. If these three processes are supported,
a positive spiral of social engagement is achieved in a col-
laborative setting. By tapping into the design model shown
in Figure 10, SIDEBAR is designed to integrate with exist-
ing videoconferencing equipment while providing continuous
support for social engagement.

VII. CONCLUSION

In this paper we presented SIDEBAR: a videoconferencing
system with a special focus on supporting social engagement.
Through the use of face tracking, SIDEBAR offers an interac-
tive mirrored video feed of the ongoing videoconference on
tablets, which allows meeting participants to seek information
about each other and engage in backchannel conversations.
SIDEBAR was designed in a user-centered design process
involving a software company implemented in a functional
prototype. A preliminary study of SIDEBAR showed that
participants found the system easy to use and appreciated both
the interactions using an augmented video feed as well as
the introduction of a communication backchannel. Based on
the design and evaluation of SIDEBAR, we presented three
guidelines for the design of technology supporting social en-
gagement revolving around the concepts of relational context
awareness, relation building and sharing, and relationship
maintenance. In the future, we plan to integrate SIDEBAR into
a larger suite of tools for distributed software engineering and
evaluate the system in a larger study.

VIII. ACKNOWLEDGMENTS

We would like to thank the participants of the design and
evaluation workshops. This research has been funded by the
Danish Agency for Science, Technology and Innovation under
the project “Next Generation Technology for Global Software
Development”, #10-092313.

REFERENCES

[1] P. J. Hinds and D. E. Bailey, “Out of sight, out of sync:
Understanding conflict in distributed teams,” Organization Science,
vol. 14, no. 6, pp. 615–632, Nov. 2003. [Online]. Available:
http://dx.doi.org/10.1287/orsc.14.6.615.24872

[2] J. Herbsleb, “Global software engineering: The future of socio-technical
coordination,” in Future of Software Engineering, 2007. FOSE ’07, May
2007, pp. 188–198.

[3] J. Noll, S. Beecham, and I. Richardson, “Global software
development and collaboration: Barriers and solutions,” ACM
Inroads, vol. 1, no. 3, pp. 66–78, Sep. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1835428.1835445

[4] S. Deshpande, I. Richardson, V. Casey, and S. Beecham, “Culture in
global software development - a weakness or strength?” in Global Soft-
ware Engineering (ICGSE), 2010 5th IEEE International Conference
on, Aug 2010, pp. 67–76.

[5] G. M. Olson and J. S. Olson, “Distance matters,” Hum.-Comput.
Interact., vol. 15, no. 2, pp. 139–178, sep 2000. [Online]. Available:
http://dx.doi.org/10.1207/S15327051HCI1523 4

[6] S. Sarker and S. Sahay, “Implications of Space and Time for Distributed
Work: An Interpretive Study of US-Norwegian Systems Development
Teams,” Eur. J. Inf. Syst., 2004.

[7] J. Herbsleb and A. Mockus, “An empirical study of speed and com-
munication in globally distributed software development,” Software
Engineering, IEEE Transactions on, 2003.

[8] J. Kotlarsky and I. Oshri, “Social ties, knowledge sharing and successful
collaboration in globally distributed system development projects.”

[9] S. Kiesler and J. N. Cummings, “What do we know about proximity
and distance in work groups? a legacy of research,” pp. 57–80, 2002.

[10] B. A. Nardi, “Beyond bandwidth: Dimensions of connection in inter-
personal communication,” J. Comput.-Supp. Coop. Work, vol. 14, pp.
91–130, 2005.

[11] O. Gotel, V. Kulkarni, M. Say, C. Scharff, and T. Sunetnanta,
“Quality indicators on global software development projects: does
getting to know you really matter?” Journal of Software: Evolution
and Process, vol. 24, no. 2, pp. 169–184, 2012. [Online]. Available:
http://dx.doi.org/10.1002/smr.474

[12] C. A. Fulmer and M. J. Gelfand, “At What Level (and in Whom)
We Trust: Trust Across Multiple Organizational Levels,” Journal of
Management, 2012.

[13] P. Bjørn and L. R. Christensen, “Relation work: Creating socio-technical
connections in global engineering,” in ECSCW 2011: Proceedings of
the 12th European Conference on Computer Supported Cooperative
Work, 24-28 September 2011, Aarhus Denmark. Springer London,
2011, pp. 133–152. [Online]. Available: http://dx.doi.org/10.1007/978-
0-85729-913-0 8

[14] B. Lings, B. Lundell, P. J. Agerfalk, and B. Fitzgerald, “A reference
model for successful Distributed Development of Software Systems,”
in Proceedings of the International Conference on Global Software
Engineering, 2007.

[15] N. Bos, N. S. Shami, J. S. Olson, A. Cheshin, and N. Nan,
“In-group/out-group effects in distributed teams: An experimental
simulation,” in Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, ser. CSCW ’04. New
York, NY, USA: ACM, 2004, pp. 429–436. [Online]. Available:
http://doi.acm.org/10.1145/1031607.1031679

[16] R. Daft and R. Lengel, “Information Richness: A New Approach
to Managerial Behaviour and Organizational Design,” Research in
Organizational Behaviour, 1984.

[17] E. A. Isaacs and J. C. Tang, “What Video Can and Can’T Do
for Collaboration: A Case Study,” in Proceedings of the First ACM
International Conference on Multimedia, 1993.

[18] R. Vertegaal, I. Weevers, C. Sohn, and C. Cheung, “Gaze-2: conveying
eye contact in group video conferencing using eye-controlled
camera direction,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’03. New
York, NY, USA: ACM, 2003, pp. 521–528. [Online]. Available:
http://doi.acm.org/10.1145/642611.642702

[19] K. Kim, J. Bolton, A. Girouard, J. Cooperstock, and R. Vertegaal,
“Telehuman: effects of 3d perspective on gaze and pose estimation
with a life-size cylindrical telepresence pod,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’12. New York, NY, USA: ACM, 2012, pp. 2531–2540. [Online].
Available: http://doi.acm.org/10.1145/2207676.2208640

[20] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace awareness in
real-time distributed groupware: Framework, widgets, and evaluation,”
in Proceedings of HCI on People and Computers XI, ser. HCI ’96.
London, UK, UK: Springer-Verlag, 1996, pp. 281–298. [Online].
Available: http://dl.acm.org/citation.cfm?id=646683.702625

[21] D. T. Nguyen and J. Canny, “More than face-to-face: empathy
effects of video framing,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New
York, NY, USA: ACM, 2009, pp. 423–432. [Online]. Available:
http://doi.acm.org/10.1145/1518701.1518770

[22] P. Slovák, P. Novák, P. Troubil, P. Holub, and E. C. Hofer, “Exploring
trust in group-to-group video-conferencing,” in CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA
’11. New York, NY, USA: ACM, 2011, pp. 1459–1464. [Online].
Available: http://doi.acm.org/10.1145/1979742.1979791

[23] D. Grayson and A. Anderson, “Perceptions of proximity in
video conferencing,” in CHI ’02 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’02. New
York, NY, USA: ACM, 2002, pp. 596–597. [Online]. Available:
http://doi.acm.org/10.1145/506443.506501

[24] T. Jenkin, J. McGeachie, D. Fono, and R. Vertegaal, “eyeview:
focus+context views for large group video conferences,” in CHI ’05
Extended Abstracts on Human Factors in Computing Systems, ser. CHI
EA ’05. New York, NY, USA: ACM, 2005, pp. 1497–1500. [Online].
Available: http://doi.acm.org/10.1145/1056808.1056950

[25] C. Kuster, T. Popa, J.-C. Bazin, C. Gotsman, and M. Gross,
“Gaze correction for home video conferencing,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 174:1–174:6, nov 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366193

[26] C. Harrison and S. Hudson, “Pseudo-3d video conferencing with a
generic webcam,” in Multimedia, 2008. ISM 2008. Tenth IEEE Inter-
national Symposium on, 2008, pp. 236–241.

[27] K.-I. Okada, F. Maeda, Y. Ichikawaa, and Y. Matsushita,
“Multiparty videoconferencing at virtual social distance: Majic

design,” in Proceedings of the 1994 ACM conference on
Computer supported cooperative work, ser. CSCW ’94. New
York, NY, USA: ACM, 1994, pp. 385–393. [Online]. Available:
http://doi.acm.org/10.1145/192844.193054

[28] K. Misawa, Y. Ishiguro, and J. Rekimoto, “Livemask: a telepresence
surrogate system with a face-shaped screen for supporting nonverbal
communication,” in Proceedings of the International Working
Conference on Advanced Visual Interfaces, ser. AVI ’12. New
York, NY, USA: ACM, 2012, pp. 394–397. [Online]. Available:
http://doi.acm.org/10.1145/2254556.2254632

[29] H. Nakanishi, K. Kato, and H. Ishiguro, “Zoom cameras and movable
displays enhance social telepresence,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’11.
New York, NY, USA: ACM, 2011, pp. 63–72. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1978953

[30] G. Aranda, A. Vizcaı́ andno, R. Palacio, and A. Morá andn, “What
Information Would You Like to Know about Your Co-worker? A
Case Study,” in Global Software Engineering (ICGSE), 2010 5th IEEE
International Conference on, 2010.

[31] L. R. Christensen, R. E. Jensen, and P. Bjørn, “Relation work in collo-
cated and distributed collaboration,” in Proc. COOP 2014. Springer,
2014.

[32] D. A. Norman and S. W. Draper, “User centered system design,” New
Perspectives on Human-Computer Interaction, L. Erlbaum Associates
Inc., Hillsdale, NJ, 1986.

[33] VLC, “http://www.videolan.org/.” [Online]. Available:
http://www.videolan.org/

[34] Skype, “http://www.videolan.org/.” [Online]. Available:
http://www.videolan.org/

[35] JavaCV, “https://code.google.com/p/javacv/.” [Online]. Available:
https://code.google.com/p/javacv/

[36] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quarterly, vol. 13, no. 3,
pp. 319–339, September 1989.

[37] G. Convertino, D. C. Neale, L. Hobby, J. M. Carroll, and M. B. Rosson,
“A laboratory method for studying activity awareness,” in Proceedings
of the third Nordic conference on Human-computer interaction, 2004.

[38] J. Whitehead, “Collaboration in software engineering: A roadmap,”
Future of Software Engineering (FOSE ’07), 2007.

Part 2. Papers 80

dBoard 1

Title of Paper

The dBoard: a Digital Scrum Board for Distributed Software Development

Authors:

Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob E.

Bardram

Conditionally Accepted:

In Proceedings of the 10th International Conference on Interactive Tabletops and Sur-

faces, (ITS ’15), ACM, 2015

Abstract:

In this paper we present the dBoard – a digital scrum board designed for distributed agile

software development teams. The dBoard connects two locations with live video and au-

dio which is overlaid with a synchronized touch-enabled digital scrum board. The dBoard

is designed to work (i) as a passive information radiator from which it is easy to get

an overview of the status of work, (ii) as a media space providing awareness about the

presence of remote co-workers, and (iii) as an active meeting support tool. The dBoard

senses when people are in front of it and automatically blurs the video when no people

are present and de-blurs the video when people are approaching to allow for easily ini-

tiating meetings. We present the motivation, design and implementation of the dBoard

and report on an initial usability study which shows that users found the dBoard both

useful and easy to use. Based on this work, we suggest that superimposing collaborative

applications onto live video is a useful way of designing collaborative videoconferencing

applications.

The dBoard: a Digital Scrum Board for Distributed Software
Development

Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen & Jakob Bardram
IT University of Copenhagen

Rued Langgaards Vej 7, 2300 Copenhagen S
{mortenq,pate,jbec,mkin,bardram}@itu.dk

ABSTRACT
In this paper we present the dBoard – a digital scrum board
designed for distributed agile software development teams.
The dBoard connects two locations with live video and audio
which is overlaid with a synchronized touch-enabled digital
scrum board. The dBoard is designed to work (i) as a passive
information radiator from which it is easy to get an overview
of the status of work, (ii) as a media space providing aware-
ness about the presence of remote co-workers, and (iii) as an
active meeting support tool. The dBoard senses when people
are in front of it and automatically blurs the video when no
people are present and de-blurs the video when people are ap-
proaching to allow for easily initiating meetings. We present
the motivation, design and implementation of the dBoard and
report on an initial usability study which shows that users
found the dBoard both useful and easy to use. Based on this
work, we suggest that superimposing collaborative applica-
tions onto live video is a useful way of designing collabora-
tive videoconferencing applications.

Author Keywords
dBoard; Scrum Board; Videoconferencing; Scrum; Task
Board

ACM Classification Keywords
H.5.3 Group and Organizational Interfaces: Computer Sup-
ported Cooperative Work

INTRODUCTION
In todays globalized business world, distributed collaboration
is becoming ever more widespread. This trend has been en-
abled by new and faster technologies that allow distributed
co-workers to instantly connect across distances. One such
strong enabling technology is videoconferencing. From the
early ages of the internet where bandwidth was limited and
video quality as a result suffered, the video has evolved into a
ubiquitous technology with high resolution and low latency.
As a high communication bandwidth channel, video is well
suited for distributed collaboration where complex tasks are

Conditionally Accepted for ITS 2015.

Figure 1. The dBoard is an interactive scrum board and videoconfer-
encing tool designed for distributed teams.

solved collaboratively by co-workers across different coun-
tries.

However, video is not without shortcomings and studies have
shown that videoconferencing is often conducted as part of a
shared experience [5]. When people meet using video it is of-
ten with a specific task or purpose at hand. As a result, there
is a need for integrating videoconferencing with other sys-
tems that are used in such arrangements [26]. Likewise, tradi-
tional videoconferencing systems often are only designed for
planned meetings, thus, not supporting the nuanced aware-
ness information that lies in seeing and informally interacting
with co-workers in a shared office space [2].

One particular area of work in which video communication is
central is distributed agile software development. Agile de-
velopment like scrum puts an emphasis on close collaboration
and frequent meetings and in order to achieve such arrange-
ment in a distributed environment video is essential [19]. Of-
ten central to the scrum process is the scrum board around
which many other scrum practices revolve [18]. The board
serves two main functions; during the daily meetings it is
used to guide the discussion, and during the everyday work

it is used as a passive information radiator. The scrum board
thus is an example of a tool which is not used for one spe-
cific task but as a supporting artifact over many collaborative
practices. While concerns have been raised with respect to re-
placing physical taks boards with digital counterparts [23], a
recent study suggests that companies will adopt and use tech-
nological solutions as their scrum board [3] and technolog-
ical readiness is emerging in the modern business world of
distributed software development [1].

In this paper, we present the design, implementation and eval-
uation of the dBoard – a digital scrum board designed specif-
ically for distributed agile software development teams. The
dBoard is shown in figure 1; it is designed to function as an
information radiator, a media-space and as a scrum meeting
support tool providing support for seamless transitions be-
tween these modes. Instead of separating videoconferencing
and scrum board, the dBoard integrates these two by superim-
posing the scrum board specific user interface elements onto
a full screen video-channel. We implemented the dBoard
as a web-application that runs on large multitouch-enabled
screens and conducted an initial scenario-based user evalua-
tion with scrum practitioners which succeeds in revealing that
participants found the dBoard both useful and easy to use.

In the remainder of this paper we present related works rele-
vant to the design of the dBoard. We then report on the ethno-
graphic field studies of a distributed agile software develop-
ment team that helped us inform the design of the dBoard. We
describe the features and implementation of the dBoard and
report on a scenario-based user evaluation with scrum prac-
titioners. Finally, we conclude by discussing the results and
by suggesting the potential for this kind of collaborative video
systems as an innovative way of designing videoconferencing
system for distributed collaboration.

RELATED WORK
The dBoard builds on different research on immersive tele-
conferencing, media spaces and scrum boards. In this section
we therefore review related works in these areas.

Immersive Teleconferencing
The idea of superimposing a shared user interface on top of
videoconferencing has been researched previously but largely
as a way of preserving eye-contact or conveying gestures to
provide more immersive teleconferencing. Early prototypes
demonstrated how to preserve eye-contact and convey ges-
tures in shared drawing applications. ClearBoard [15] for ex-
ample, was designed based on a metaphor of looking through
and drawing on a transparent window into another office.
This line of research have since been extended to include sys-
tems that capture the image of a user through half-silvered
screens to provide parallax free videoconferencing systems
that convey eye contact [17, 25]. Recently, advanced proto-
types have taken a step further, using 3d-sensors in conjunc-
tion with cameras to capture people and provided interfaces
in which 3d realistic representations of participants are pre-
sented blended with user interface elements [13, 27]. Despite
such focus on gaze and gesture, these systems demonstrate an

idea in which videoconferencing and task specific user inter-
faces can be combined into one technology instead of keeping
each tool in its own window or on separate screens.

Media Spaces
Traditional videoconferencing setups have mostly been de-
signed for planned meetings however, in collocated environ-
ments, much information is conveyed outside meetings by be-
ing aware of the presence of nearby colleagues or during in-
formal talks outside scheduled meetings. This fact has been
recognized by system designers who have proposed video-
conferencing systems capable of providing such awareness
information. Portholes [8] demonstrated an early version of
such system where still images were broadcasted through-
out an office space to provide co-workers sitting in differ-
ent offices with awareness of each other. The PARC me-
dia space [2] and VideoWindow [11] connect different of-
fices using live video. More recently, systems such as Mir-
rorSpaces [21] and Pêle-Mêle [12] further explored the con-
cept of media spaces by offering always-on video systems
that take into account the proximity of people to the system
screen as a means of altering the video. This is especially
interesting in the context of this paper as the dBoard incorpo-
rates proximity awareness to mediate between the modalities
of active meeting and passive awareness tool.

Scrum Board
The scrum board has been recognized as an important arti-
fact in the scrum development framework. The board works
as a boundary object, helps reduce the amount of articula-
tion work [20] and serves as a central artifact around which
other scrum practices revolve [18]. Despite the fact that sev-
eral commercial products offer digital versions of the board,
less studies have been dedicated to such solutions. Sharp et.
al. argue that transitioning to digital task boards can become
problematic as some affordances of the traditional task board
lie in the fact that it is physical [23]. Nonetheless, Boden et.
al. have shown how their implementation of the concept of
articulation spaces were appropriated to be used as a scrum
board for a collocated software development team [3]. Fi-
nally, Rubart has proposed using an interactive tabletop-based
scrum board as a tool for collocated scrum [22]. However, in
general research on scrum boards is scarse and little is known
about how to design scrum boards for distributed teams.

In summary, previous studies have investigated from a tech-
nological perspective how to address the problems of inte-
grating video and task specific applications or creating me-
dia spaces for informal communication and awareness in dis-
tributed collaboration. In this paper, we draw on these works,
bring them together and into the domain of distributed scrum
to develop the dBoard – a combined videoconferencing sys-
tem and collaborative scrum board.

DESIGN
The dBoard is designed as part of a larger project studying the
work of distributed software developers1. The motivation of
1The anonymized project is a research project dedicated to studying
global software developement.

designing the dBoard came partly from the related work we
described and partly from a set of ethnographic field studies
of distributed software developers, and the design was done
in a user-centered iterative design process. In total, four dif-
ferent companies were involved in the studies and design pro-
cess.

Field Studies of Distributed Software Development
Field studies of distributed software development have been
undertaken in four different companies, involving sites in
Denmark, Philipines and India. Different findings from these
studies have been reported elsewhere [1, 9, 16] but, in this
paper, we focus on how these studies informed the dBoard.

Common to the studies was that software development was
set up as an agile process across distributed team members.
Hence, the goal was to adopt an agile software development
methodology in which software developers should work as
a coherent scrum team of people, despite their physical and
temporal separation. All field studies applied participant ob-
servations in which we observed daily work and meetings of
the developers and conducted onsite interviews of team mem-
bers.

Our observations identified a set of recurrent challenges in
running an agile, distributed software development process.
First, the agile methodology encourages team members to do
a short and efficient daily stand-up meeting for easy and low-
level coordination. Such meeting should take place in the
shared workspace of the team in front of the scrum board
and should not exceed more than 15 minutes. However, once
the team is distributed, setting up and running daily stand-up
meetings was cumbersome and often impossible. The prob-
lems often were related to the lack of proper tool support in
the right location – both for video meetings and for handling
tasks on a scrum board. For example, a team distributed be-
tween Denmark and India would try to meet at the same time
each day (9:45 CET in Denmark and 1:15 PM in India). For
this to happen, the team first had to go to dedicated video-
conferencing rooms at each site. Then they had to set up the
videoconference call and all the software development tools
needed. The meetings were usually initiated by an Indian de-
veloper setting up all the required systems and then calling
the Danish side. The team used a traditional videoconferenc-
ing setup in conjunction with the HP Application Lifecycle
Manager (ALM) system to manage and update their tasks.
As this application was not designed for collaborative use,
the scrum master – who was located in Denmark – controlled
the ALM application while the team in India used VPN and
Remote Desktop Connection to connect to the scrum mas-
ter’s computer and project the application onto a screen next
to the videoconferencing screen. As such, the amount of
work needed to set up and conduct a stand-up meeting was
extremely demanding, and, when the experienced developer
was not around to start the meeting, we observed how the oth-
ers struggled to get the video conferencing, ALM, VPN and
Remote Desktop Connection up and running. Hence, these
meetings were far from the ideal agile stand-up meeting tak-
ing place in the developers’ workspace and only lasting 15
minutes.

A second recurring challenge we observed in the distributed
teams was the lack of mutual awareness, especially out-
side the daily stand-up meetings. In one instance for exam-
ple, two Indian developers were working on the same bug.
When using a traditional scrum board in a collocated team
workspace, such a situation would seldom happen, since a de-
veloper would physically go to the board and move the ‘bug
ticket’ from one column to another, thereby signaling a status
change. However, in the distributed setup there was no way
for a developer to notice such a change if not explicitly com-
municated. To account for this lack of awareness between the
developers, the lead developer located in Denmark contacted
the Indian developers on a daily basis using instant messag-
ing. This process allowed him to get an overview of the sta-
tus of work, but this information then only resided with him
and no mutual awareness amongst team members was main-
tained.

Designing the dBoard
Based on the field studies we designed the dBoard as an aug-
mented version of the traditional physical one. We first built a
prototype that integrated video and scrum board features into
one single tool designed to run on a large multitouch surface.
This prototype was presented to a compay that works with
distributed scrum in a workshop. Based on the feedback from
this workshop we formulated the following set of guidelines
that was used to guide the final design and implementation of
the dBoard. Namely, the dBoard should:

• Provide active support during scrum meetings
• Function as an information radiator
• Give awareness about the presence of remote co-workers
• Seamlessly transition between information and awareness

radiator and meeting support tool
• Integrate with existing software engineering tools
• Be easily movable and deployable
• Provide mechanisms for ensuring the privacy feeling of the

users.

SYSTEM OVERVIEW
The dBoard is a combined videoconferencing and scrum
board tool that is designed to support distributed agile soft-
ware developers. The dBoard is designed to work in pairs;
two dBoards should be setup at the locations of two collab-
orating parties connecting these locations with video and au-
dio. The main feature of the dBoard is its videoconferencing
ability which functions as a window to another office. On top
of this video-window, a synchronized digital touch-enabled
scrum board is superimposed. Furthermore, the scrum board
senses when people are in front of a board and adjusts its be-
havior accordingly. In this section we describe these features
in detail.

Video Window
The dBoard applies a ‘window’ metaphor to its video confer-
encing features. The whole background of the dBoard user
interface is a large video stream from a connected dBoard de-
signed to give same the feeling that can be experienced when
looking through a window into another office. All other user
interface elements such as the scrum board and the menus are

Figure 2. The user interface of the dBoard. (1) Menu, (2) Privacy menu, (3) User filters, (4) Story filters, (5) Tasks

placed on top of this video. Similar to a media space [2],
the dBoard video is always on and is started automatically
when the application is started. The dBoard also captures and
streams audio from a connected microphone. This always-on
feature makes the initiating of a meeting as simple as walk-
ing up to a board. To get the attention of people at the loca-
tion of another dBoard, we implemented a ‘knock knock’ fea-
ture. When a user performs a knocking gesture on the board,
a knocking sound is played at the other board signaling that
someone requests attention.

Information Radiator
The state of the dBoard is kept synchronized across the two
connected boards. All task movements on one board are im-
mediately updated on the other in a WYSIWIS [24] fashion.
As in traditional videoconferencing setups, the camera on the
dBoard is mounted on top of the stand, which makes it im-
possible to point to specific tasks due to the parallax. To ad-
dress this issue we implemented interaction awareness on the
screen. When a user drags a task, the task is highlighted in
red on both boards. When a user touches anywhere else on
the board, a small red pointer is shown on both boards. Fur-
thermore, as described later, the dBoard is synchronized with
existing software development tracking systems such that the
board is automatically updated even if tasks are updated from
outside of the dBoard system.

We built a prototype of the dBoard mounted on a wheeled
stand that can easily be moved anywhere. Alternatively, the
screen of the dBoard can be setup using a wall display. The
important aspect that is highlighted is, that the hardware of

the dBoard system can be setup in many configurations as
it doesn’t require any specially engineered hardware or large
physical space which allows the dBoard to be deployed in
the place that best fits its needs or that would be chosen for
placing a physical board – for example among the developers.

Task Management
The scrum board elements of the dBoard are superimposed
onto the full screen video stream from the other dBoard (see
Figure 2). The scrum board is organized as a traditional phys-
ical board; tasks are represented as small digital post-it notes
that are arranged into columns representing their state and
rows representing the user story they belong to. As some
tasks do not belong to specific user stories and as some user
stories do not contain any tasks, we implemented a Unasso-
ciated row where all such items are placed. The tasks dis-
play information about their name, their type, the user story
they belong to, their description and the person assigned to it
as seen in Figure 3. Tasks can be repositioned using touch,
and dragging a task from one column to another changes its
state. Tasks can be placed anywhere on the board and do not
‘snap’ into position when dropped allowing users to arrange
the tasks on the board in a similar way that post-it notes can
be arranged on a physical board. The progress update of tasks
thus also follows those on a physical board; tasks are moved
from one column to another as they are being completed. To
assign a task to a developer, users can tap the task’s name or
user icon to access a dropdown list of people to whom the task
can be assigned. The dBoard shows all tasks and user stories

Figure 3. A closeup of a task on the dBoard. (1) Task color, (2) Task
type, (3) Title, (4) Description, (5) Assigned user, (6) Assign button +
User initial, (7) Assign dropdown

for one sprint at a time. When signing in to the application,
users select which sprint to work on.

We also implemented a number of options to filter and sort the
tasks on the board. Two filter menus can be used to highlight
specific tasks based on two parameters: user and user story.
When a user selects a user or user story filter, the dBoard
opacifies all tasks that do not match the given filter. As tasks
can be dragged around the board and positioned anywhere we
also implemented two ways to sort the board. When sorting,
tasks are automatically positioned in the row and column of
the scrum board layout that correspond to their state and user
story. To sort the entire board, a user can tap the sorting button
in the menu. To sort only a specific tile (i.e. row/column
intersection), the user can tap and hold that tile. As the state
of the board is kept synchronized across the two connected
sites, sorting in one end results in tasks on the other board
being sorted as well. Lastly, we implemented a user mode
to the board. By tapping the user mode button in the menu,
the dBoard rearranges itself to show users as rows rather than
user stories. This means that all tasks are re-positioned to
be located in the row representing the user they belong to.
Tapping this button again brings the board back to show user
stories as rows.

Detailed Task Information
Tasks on the dBoard are deliberately designed to be small
post-it notes-like elements. These notes contain the very basic
information about the task however; to access detailed infor-
mation users can bring up a side panel. The panel (Figure 4)
slides in from the right side of the board when a use performs
a tap-and-hold gesture on a task or a user story and it con-
tains much more detailed information about the task. The
side panel contains: task name, full description, state infor-
mation and legal states, time estimate and change history list.
From the side panel a user can change the time estimate by
performing a dragging gesture on the progress bar or change
the state by tapping one of the legal state buttons. The side

Figure 4. The side panel of dBoard can be used to see detailed informa-
tion about tasks and user stories. (1) Title, (2) Time estimate, (3) State,
(4) Rich text description, (5) Change history

panel can be hidden again by performing a swipe gesture on
it.

Proxemic Interaction
To provide seamless transition between awareness tool and
meeting tool, the video of the dBoard is automatically blurred
and de-blurred and the audio turned on and off by sensing
proximity of people. If no people are in front of the dBoards
at both ends, the video is blurred and the audio is turned off.
If people are present at only one of the dBoards, the video is
blurred less in both ends while the audio is kept turned off.
If people are present in both ends, the video is completely
un-blurred and the audio is turned on. The blur is used to en-
hance visibility of the scrum board – when blurred, the con-
tours in the video are washed out and the colors are faded thus
bringing forward the non-blurred user interface elements of
the scrum board. Furthermore, the audio is only turned on
if people are present at both end to ensure that the dBoard
does not become too much of a distraction if placed in a busy
working environment. While blur has been shown to be able
to provide the balance between awareness and privacy [4], we
also implemented a privacy button that instead of blurring the
video removes it altogether until people are present at both
boards. Figure 5 shows a cutout of the dBoard without blur,
with blur and with privacy enabled.

To provide transparency to users with respect to what the
dBoard senses, the proximity button in the menu changes

color based on the state of the sensing. When green, the but-
ton signals that the dBoard has sensed one or more people in
front of the board, yellow signals that the sensing is running
but no people are seen, while flashing red signals a discon-
nection to the sensing application. This information is also
available when tapping the button; in this case a dropdown
appears in which the colors are explained in more detail and
the current state is highlighted. This dropdown also contains
a calibration button that can be used to calibrate the sensing
application in case of erroneous sensing.

Synchronization
All sprints, user stories, tasks, bugs and users are synchro-
nized with a Microsoft Team Foundation Server (TFS) in-
stallation. We chose this platform as it is a widely adopted
software management platform. The synchronization makes
sure that all information on the dBoard is taken from a TFS
instance and that all changes made either on the dBoard or
on another system are kept synchronized across the dBoards
and TFS. In case of inconsistency between the dBoard and
TFS due to network problems, TFS is considered the master.
As explained later, we implemented the dBoard to be able to
integrate to other software management systems as well.

IMPLEMENTATION
The dBoard system consists of the two main parts: the
dBoard, which is the board itself; and the backend which han-
dles communication between dBoards and integration with
external tools. This section presents the implementation of
these parts.

dBoard
The dBoard hardware consists of a large high-resolution
screen with a PQ Labs multitouch overlay. A connected
high-definition camera and a quality microphone captures
video and audio. All the hardware is mounted on a movable
stand and all components are connected to a fan-less com-
puter strapped to the stand. The setup ensures that setting up
and starting the dBoard is as simple as moving it to the de-
sired location and plugging in power. The Kinect v2 sensor
used to sense proximity to the board is mounted between the
wheels of the stand. Alternatively, the components can be
dismounted from the stand the screen hanged on a wall.

On startup, the dBoard launches the dBoard frontend appli-
cation in fullscreen. The dBoard frontend is an HTML5 and
JavaScript application built with AngularJS and a designed

Figure 5. The dBoard in its normal mode (left), with blurred video (mid-
dle, and with privacy enabled (right).

for Google Chrome. Two connected dBoards send and re-
ceive video and audio using WebRTC, which is a peer-to-peer
based JavaScript framework while all other information (such
as tasks and user stories and state information) is communi-
cated through the server using web-sockets.

Proximity Sensing
The dBoard senses proximity with a Microsoft Kinect v2 at-
tached between the wheels of the system. The Kinect is ac-
cessed through the official .NET SDK in a C# application
which analyzes skeletal information and depth frames to in-
fer human presence. Depth frames are used in addition to
skeletal tracking as it is possible for people to stand too close
to the dBoard for the Kinect to pick up skeletal information.
The depth frames are analyzed in two ways: large frame-by-
frame pixel changes suggest movement in front of the sen-
sor and a large summed difference between the current frame
and a calibration frame suggests proximity. In case presence
information is sensed for an extended period of time with-
out any movements happening, the application assumes that
a non-human artifact (such as a chair) has been placed in view
of the camera and the application recalibrates automatically.
A menu button also allows to manually request a recalibration
of the proximity sensing application. All presence informa-
tion is sent to the dBoard web application over a websocket.

Backend
As shown in Figure 6 the dBoard backend consists of three
main components: (i) a Node.js web server, (ii) a Microsoft
Team Foundation Server (TFS), and (iii) the activity-centered
infrastructure NooSphere [14] with a plugin to communicate
with the TFS instance.

The Node.js server is responsible for serving the AngularJS
web application to the dBoards along with facilitating web
socket connections for task and interface synchronization be-
tween the boards and the backend. Any change made on the
dBoard is reflected in NooSphere which in is turn reflected
on the TFS and vice versa. In case of conflict, the TFS will
always take precedence. NooSphere exposes all scrum activ-
ities (i.e. sprints, user stories, tasks, bugs and users) trough a
RESTful web interface. We added this extra layer on top of
TFS as it allows for easily changing the task tracking software
from TFS to, e.g., Jira without modifying the rest of the ap-
plication. Changing or adding task management systems can
be done by writing a plugin. Other tools would then in turn
also be able to access the same data in NooSphere making it
an infrastructure able to support other collaborative tools.

STUDY
To evaluate the concepts behind the design of the dBoard and
collect user feedback, we conducted a scenario-based user
evaluation [6]. The goals of this study were to (i) observe
how participants would use the system for performing ad-hoc
and standup meetings, (ii) elicit user input on the perceived
usefulness and ease of use of the dBoard, and (iii) gather feed-
back on the main features provided by the dBoard.

Participants
The study was conducted by contacting local software devel-
opment companies to participate to a workshop in our lab. In

Figure 6. An overview of the architecture of dBoard with its three main
components; the TFS server, the dBoard server and the dBoards

Figure 7. Snapshot of a workshop setup taken during Scenario II—the
‘standup meeting’.

the workshops we would have demonstrated the dBoard and
they would have had the opportunity to try it out first hand.
Strong requirements for their selection were that (i) they did
not participate in the design stages and (ii) their team had to
be using scrum to run their projects. Three different compa-
nies participated in the study for a total of seven people (age
µ = 30,5, σ = 4,53). Participants reported to be experienced
agile and scrum practitioners, their seniority ranges from 6
months to 10 years (µ = 4,3; σ = 3,98). Among them, 2 cover
scrum master roles, 2 product owner roles, and the rest varies
from developers to testers.

Method
As shown in Figure 7, the setup comprised one board placed
on the stand depicted in Figure 1 and one displayed on a large
wall display located in our lab. This decision was taken to
highlight the flexibility of the hardware form factor of the
dBoard. The workshop was divided into four parts: (i) an in-
troduction to the dBoard in which the participants were wel-
comed to the study, signed an informed consent form, filled
out a demographic questionnaire, and were given a detailed
presentation of the dBoard features; (ii) a hands-on session
in which the participants were invited to experiment with the
two different dBoards; (iii) a session in which we asked par-
ticipants to act in two different scenarios; and, (iv) a clos-
ing group discussion in which participants, after completing
a short survey, were asked to reflect on the dBoard and elabo-
rate on their survey answers by providing additional insights
and feedback.

The two scenarios were chosen from common activities in
traditional distributed scrum teams. Scenario I required the
participants to first perform a simple design task (i.e., select a

Figure 8. The results of the 7-point Likert-scale questionnaire on the
perceived usefulness, perceived ease of use, and usefulness of the dif-
ferent features of the system. The numbers in the bars represent the
amount of participants that selected a given score.

template for a website design based on inspirations from ex-
isting websites); update the status of the task on the dBoard;
and, contact the remote team (enacted by confederates [6]) to
communicate that the design task was completed as well as
seek information about the progress on the remote site. Sce-
nario II simulated a standup meeting; participants were given
a script describing the role of the enacted character (one of
which was the scrum master dictating the pace of the meet-
ing), the work done on the previous day, the one planned for
the coming day, and whether there were some impediments
or clarifications required from the remote site.

The survey was constructed based on the technology accep-
tance model (TAM) [7] to which four questions were added to
assess the usefulness of specific dBoard features (i.e., video-
conferencing, scrum board, privacy through proxemic, and
‘knock knock’). In line with what has been used in [7], each
question was measured with a seven-point Likert scale2.

Results
Figure 8 depicts an overview of the results of the question-
naire on the perceived usefulness, perceived ease of use, and
usefulness of the different features of the dBoard.
2Likert scale parameters: (1) extremely likely, (2) quite likely, (3)
slightly likely, (4) neither, (5) slightly unlikely, (6) quite unlikely,
(7) extremely unlikely.

Perceived Usefulness
Even though overall participants scored positively the useful-
ness of the dBoard, on average they remained quite neutral
with answers that varied across participants. In particular,
they reported to be uncertain about the ability of the dBoard
to enable them to accomplish tasks more quickly (P.Usf 1: x̃
= 4, iqr = 2); a pattern that is repeated across the next four
questions related to the ability of the system to: improve
performance (P.Usf 2: x̃ = 3, iqr = 0); improve productivity
(P.Usf 3: x̃ = 3, iqr = 1,5); enhance effectiveness on the job
(P.Usf 4: x̃ = 3, iqr = 0); and, make it easy to do the job
(P.Usf 5: x̃ = 3, iqr = 1,5). Nonetheless, on a more direct
question about the usefulness of the dBoard in their job, the
participants scored the dBoard very positively (P.Usf 6: x̃ =
1, iqr = 1). Compared to the remaining questions – especially
with the group on feature usefulness – these results appear
contradicting; therefore, we will provide a possible explana-
tion in the Discussion Section by interpreting further these
mixed results.

Perceived Ease of Use
All participate managed to appropriate the system with more
or less confidence in a very brief period of time (P.EoU 5:
x̃ = 2, iqr = 1); they reported the dBoard to be very easy to
operate (P.EoU 1: x̃ = 1, iqr = 1) and to use (P.EoU 6: x̃ =
2, iqr = 1). The analogy with the post-it notes often used in
physical scrum boards was well received; participants appre-
ciated the flexibility provided by the dBoard in terms of freely
arranging tasks at arbitrary locations (P.EoU 4: x̃ = 2, iqr =
1,5). However, even though still scored positively, the over-
all interaction with the dBoard received some negative scores
(P.EoU 3: x̃ = 2, iqr = 1,5); a trend visible also in the question
related to the easiness with which participants could make the
dBoard act as desired (P.EoU 2: x̃ = 3, iqr = 2,5). These less
aligned results will be further analyzed in the Discussion Sec-
tion.

Feature Usefulness
When confronted with more specific questions about the use-
fulness of the different features provided by the dBoard, par-
ticipants provided very positive scores. Especially with re-
gards to the videoconferencing capabilities, all participants
considered this feature extremely useful (Videoconference: x̃
= 1, iqr = 0) and provided comments like:

– “The entire video is really cool – really helpful.” –
P3 – “You are actually interacting with your colleagues
that you do not normally see.” – P5

The scrum board features were also received very well
(Scrum board: x̃ = 1, iqr = 1); participants found the inte-
gration with TFS to be an essential feature for a digital ver-
sion of a scrum board as it represents the main shortcoming
of the physical counterpart, and they saw a significant value
in the affordances provided by the dedicated setup mimicking
physical scrum boards. One participant stated:

– “One of the things I like of a Scrum board like this
is that you have not the digital but the post-its like in-
teractions, and you can walk up there, take a task up

here, and put it over here. I know you can do it on your
computer—it might be easier—but I just like that feeling,
I like to be able to do that.” – P5

Moreover, the simplicity of the scrum board representation
was also appreciated; as one of the participants ironically
pointed out:

– “[speaking about a feature] it is definitely also there
[in Jira], but it would take a couple of days to find out
where.” – P7

In relation to the proxemic feature of the dBoard to support
gradual engagement and privacy, participants were less satis-
fied (‘Proxemic’: x̃ = 3, iqr = 1,5). If on the one hand, they
valued the ability of mitigating the disturbance of a constant
video feed from a large display through video blurring and
sound removal:

– “Without the blur, it would be like in a sport bar during
a soccer match where everyone’s attention is captivated
by the game being streamed.” – paraphrasing P2, – “I
like the idea that when one team is working, they can see
when a person is at the board.” – P4

On the other hand, the quick and automatic de-blurring of the
video feed due to the detection of presence on the remote site
was considered by some as potentially distracting.

Finally, the ‘knock knock’ feature was also very well received
(‘Knock knock’: x̃ = 1, iqr = 1) insomuch that they suggested
additional applications for it, as it will be presented in the
Discussion Section. One participant stated:

– “[...] we use Slack for things like ‘do you have time for
a Skype call?’. And that is basically the ‘knock knock’
right, so I think you got it pretty good there!” – P3

DISCUSSION
We designed and implemented the dBoard to support differ-
ent aspects of distributed agile software development. The
design of the dBoard aimed to reduce the costs of conducting
distributed standup meetings, getting awareness information
and informally meeting with distant co-workers to resolve is-
sues. The evaluation of the dBoard revealed a general high
level of perceived usefulness and ease of use and several ques-
tions and comments were raised. In this section, we discuss
the results of the evaluation and suggest that future collabora-
tive systems might benefit from adopting the concept blend-
ing video and user task specific user interfaces.

The evaluation of the usefulness of the dBoard showed some
mixed results. On one hand, the overall usefulness and the
four distinct features of the dBoard were rated highly useful.
On the other hand, the TAM specific usefulness parameters
received more moderate results. We speculate that this dif-
ference is caused by the way the TAM scale is constructed.
The scale evaluates perceived usefulness based on parame-
ters such as performance, productivity and effectiveness. The
dBoard is a multi-purpose tool designed to support a wide
range of collaborative activities in distributed scrum; from the
planned meetings, over information radiating to the informal
presence awareness. These functions have not been designed

with a specific focus on improving speed or effectiveness but
as a way of supporting a long term collaborative practice.

While results of the evaluation showed some divergence in
the perceived usefulness, the results pointed to a general high
level of ease of use. The dBoard , however, still suffers from a
few performance issues that can affect ease of use which was
also reflected in the evaluation scores of the TAM (P.EoU 2
and P.EoU 3). During the evaluations, some interactions with
the board such as dragging multiple items simultaneously
around or performing swipe gestures suffered from ‘lagging’.
Despite the computational power of today, we experienced
that implementing such a complex collaborative application
as a web application could cause some performance bottle-
necks. We believe however, that with the speed at which
modern computers and browsers are evolving, transitioning
to implementing rich collaborative tools as web applications
is a promising direction. This has the main advantage that
web applications are easy to deploy, they can be used on any
operating system and can be updated by deploying a new ver-
sion on the server rather than forcing users to manually update
their applications.

The features of the dBoard that were scored in the evaluation
were also very well received. During the evaluation however,
several issues and suggestions for improvements were raised
by the participants. A common theme of the participants’
feedback was related to what happens if too much informa-
tion is presented on the dBoard. Indeed, if lots of user stories
and tasks are placed on the board, there’s a risk of covering
most of the video. Another line of comments was related
to the usage of proxemics. Several participants mentioned
that they would prefer to have the de-blurring of video trig-
gered by the knock-knock feature rather than the proxemic
interaction. We do believe however, that using proximity on
the board is valuable as it allows for more than binary oper-
ations and it would allow adopting behavior that is based on
the number of people sensed. Finally, some participants sug-
gested that the dBoard should be able to include more sites.
This is interesting and opens up new questions related to how
to handle and position the videos from many participants and
how to handle e.g. knock knock.

Collaborative Videos
Based on our work of designing, implementing and eval-
uating the dBoard, we argue that combining video with
collaborative user interfaces using a ‘collaborative window’
metaphor in which the application is superimposed onto the
video is a promising design guideline for collaborative appli-
cations. While such systems have been designed and imple-
mented before (e.g. [25, 27]), this has mostly been with a fo-
cus on conveying eye-contact, gaze and gestures in video me-
diated communication. In this work, investigated the creation
of a compelling collaborative application for a specific do-
main rather than solving the problems of eye-contact and ges-
tures. Despite the camera parallax that exists in the dBoard,
we believe that the idea of blending video and task specific
user interface carries great value. In particular, we argue that
such applications allows for a richer collaborative experience

as they don’t require users to constantly switch attention from
the video to the tasks at hand.

These user interfaces however also open up for other ques-
tions. While we have demonstrated with the dBoard an ex-
ample of combining video and a scrum board the question
arises of how these two user interface layers relate to each
other. In the example of SideBar for instance, the overlay is
linked to the video by means of image processing [10] but in
the dBoard there is no connection between video and over-
lay. An intersting line of research would be to investigate
how to relate the layers to each other in a meaningful way.
One example that could solve the observation made by sev-
eral participants related to the amount of information on the
screen could be to use image processing to arrange the user
interface in such a way that it does not cover the place in the
video where people are.

In the future, we are planning to keep developing the dBoard
and to gather more feedback from practitioners. We are also
pursuing the idea of designing more collaborative applica-
tions build on the metaphor of a collaborative window to
gather more evidence on how such systems are able to support
distributed collaboration. Lastly, we are looking into how
such systems can be extended to include more than two sites.

CONCLUSION
In this paper we presented the design, implementation and
evaluation of the dBoard – a digital distributed scrum board
that blends together videoconferencing and scrum task man-
agement. This is achieved by bringing them together in a
setup where the scrum board specific elements are superim-
posed onto the video. The dBoard was designed to provide
support both as a passive information radiator from which
the state of work can be collected, as a media space prov-
ing awareness about the presence of remote co-workers, and
as an active meeting support tool. By sensing the proxim-
ity of people the dBoard provides a way to seamlessly switch
between these three modes of operations.

We designed the dBoard based on observations of distributed
scrum practices and implemented the system as a web ap-
plication that runs on large multitouch enabled screens. The
dBoard was evaluated in a scenario based setting with ex-
perienced scrum practitioners. The evaluation revealed that
users found the dBoard both useful and easy to use. In par-
ticular, the combination of video and scrum board was very
well received. Based on this work, we argue that adopting the
metaphor of a ‘collaborative window’ as a means of designing
collaborative videoconferencing systems can lead to new and
interesting applications supporting distributed collaboration.

ACKNOWLEDGMENTS
Anonymized

REFERENCES
1. Pernille Bjørn, Morten Esbensen, Rasmus Eskild Jensen,

and Stina Matthiesen. 2014. Does Distance Still Matter?
Revisiting the CSCW Fundamentals on Distributed
Collaboration. ACM Trans. Comput.-Hum. Interact. 21,
5, Article 27 (Nov. 2014), 27:1–27:26 pages.

2. Sara A. Bly, Steve R. Harrison, and Susan Irwin. 1993.
Media Spaces: Bringing People Together in a Video,
Audio, and Computing Environment. Commun. ACM
36, 1 (Jan. 1993), 28–46.

3. Alexander Boden, Frank Rosswog, Gunnar Stevens, and
Volker Wulf. 2014. Articulation Spaces: Bridging the
Gap Between Formal and Informal Coordination. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing
(CSCW ’14). ACM, New York, NY, USA, 1120–1130.

4. Michael Boyle, Christopher Edwards, and Saul
Greenberg. 2000. The Effects of Filtered Video on
Awareness and Privacy. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work
(CSCW ’00). ACM, New York, NY, USA, 1–10.

5. Jed R. Brubaker, Gina Venolia, and John C. Tang. 2012.
Focusing on Shared Experiences: Moving Beyond the
Camera in Video Communication. In Proceedings of the
Designing Interactive Systems Conference (DIS ’12).
ACM, New York, NY, USA, 96–105.

6. Gregorio Convertino, Dennis C. Neale, Laurian Hobby,
John M. Carroll, and Mary Beth Rosson. 2004. A
Laboratory Method for Studying Activity Awareness. In
Proceedings of the Third Nordic Conference on
Human-computer Interaction (NordiCHI ’04). ACM,
New York, NY, USA, 313–322.

7. Fred D. Davis. 1989. Perceived usefulness, perceived
ease of use, and user acceptance of information
technology. MIS Q. 13, 3 (1989), 319–340.

8. Paul Dourish and Sara Bly. 1992. Portholes: supporting
awareness in a distributed work group. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’92). ACM, New York, NY,
USA, 541–547.

9. Morten Esbensen and Pernille Bjørn. 2014. Routine and
Standardization in Global Software Development. In
Proceedings of the 18th International Conference on
Supporting Group Work (GROUP ’14). ACM, New
York, NY, USA, 12–23.

10. Morten Esbensen, Paolo Tell, and Jakob E Bardram.
2014. SideBar: Videoconferencing system supporting
social engagement. In Collaborative Computing:
Networking, Applications and Worksharing
(CollaborateCom), 2014 International Conference on.
IEEE, 358–367.

11. Robert S. Fish, Robert E. Kraut, and Barbara L.
Chalfonte. 1990. The VideoWindow system in informal
communications. ACM Press, 1–11.

12. Sofiane Gueddana and Nicolas Roussel. 2006.
Pêle-Mêle, a Video Communication System Supporting
a Variable Degree of Engagement. In Proceedings of the
2006 20th Anniversary Conference on Computer
Supported Cooperative Work (CSCW ’06). ACM, New
York, NY, USA, 423–426.

13. Keita Higuchi, Yinpeng Chen, Philip A. Chou,
Zhengyou Zhang, and Zicheng Liu. 2015.
ImmerseBoard: Immersive Telepresence Experience
Using a Digital Whiteboard. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 2383–2392.

14. Steven Houben, Søren Nielsen, Morten Esbensen, and
Jakob E. Bardram. 2013. NooSphere: An
Activity-centric Infrastructure for Distributed
Interaction. In Proceedings of the 12th International
Conference on Mobile and Ubiquitous Multimedia
(MUM ’13). ACM, New York, NY, USA, Article 13, 10
pages.

15. Hiroshi Ishii and Minoru Kobayashi. 1992. ClearBoard:
A Seamless Medium for Shared Drawing and
Conversation with Eye Contact. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’92). ACM, New York, NY, USA,
525–532.

16. Rasmus Eskild Jensen. 2014. Why closely coupled work
matters in global software development. In Proceedings
of the 18th International Conference on Supporting
Group Work. ACM, 24–34.

17. M. Kuechler and A. Kunz. 2006. HoloPort - A Device
for Simultaneous Video and Data Conferencing
Featuring Gaze Awareness. In Virtual Reality
Conference, 2006. 81–88.

18. Brian J. McNely, Paul Gestwicki, Ann Burke, and
Bridget Gelms. 2012. Articulating everyday actions: an
activity theoretical approach to scrum. In Proceedings of
the 30th ACM international conference on Design of
communication (SIGDOC ’12). ACM, New York, NY,
USA, 95–104.

19. M. Paasivaara, S. Durasiewicz, and C. Lassenius. 2008.
Distributed Agile Development: Using Scrum in a Large
Project. In Global Software Engineering, 2008. ICGSE
2008. IEEE International Conference on. 87 –95.

20. Lene Pries-Heje and Jan Pries-Heje. 2011. Why Scrum
Works: A Case Study from an Agile Distributed Project
in Denmark and India. In Agile Conference (AGILE),
2011. 20 –28.

21. N. Roussel, H. Evans, and H. Hansen. 2004. Proximity
as an interface for video communication. MultiMedia,
IEEE 11, 3 (July 2004), 12–16.

22. Jessica Rubart. 2014. A Cooperative Multitouch Scrum
Task Board for Synchronous Face-to-Face
Collaboration. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’14). ACM, New York, NY, USA,
387–392.

23. H. Sharp, H. Robinson, J. Segal, and D. Furniss. 2006.
The role of story cards and the wall in XP teams: a
distributed cognition perspective. In Agile Conference,
2006. 75–86.

24. M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D.
Tatar. 1987. WYSIWIS Revised: Early Experiences
with Multiuser Interfaces. ACM Trans. Inf. Syst. 5, 2
(April 1987), 147–167.

25. Kar-Han Tan, I. Robinson, R. Samadani, Bowon Lee, D.
Gelb, A. Vorbau, B. Culbertson, and J. Apostolopoulos.
2009. ConnectBoard: A remote collaboration system
that supports gaze-aware interaction and sharing. In
Multimedia Signal Processing, 2009. MMSP ’09. IEEE
International Workshop on. 1–6.

26. John C. Tang, Chen Zhao, Xiang Cao, and Kori Inkpen.
2011. Your Time Zone or Mine?: A Study of Globally
Time Zone-shifted Collaboration. In Proceedings of the
ACM 2011 Conference on Computer Supported
Cooperative Work (CSCW ’11). ACM, New York, NY,
USA, 235–244.

27. Jakob Zillner, Christoph Rhemann, Shahram Izadi, and
Michael Haller. 2014. 3D-board: A Whole-body
Remote Collaborative Whiteboard. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 471–479.

Part 2. Papers 92

dBoard 2

Title of Paper

Facilitating Distributed Standup Meetings through Blended Video Conferencing and Task

Management Technology

Authors

Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen, Jakob E.

Bardram

In Preparation

Submitted, Revised and Resubmitted, Rejected at CSCW 2016

Abstract

A daily standup meeting in front of a Scrum board is the pivotal coordination, communi-

cation and awareness vehicle in Scrum. Since the standup meeting relies on collocation

and since software development increasingly takes place in a distributed global setup, it

becomes a challenge to conduct such meetings when the team is distributed across mul-

tiple locations. This paper first presents a study of such challenges in a small software

company working across two sites in differ- ent countries, and then presents a study

of how the company deployed a combined digital Scrum board and video conferencing

tool (called dBoard) that supports distributed standup meetings. The three months field

deployment revealed how the dBoard was able to improve the physical meeting setup

and bridge the geographical gap by supporting distributed Scrum meetings, while at the

same time pointing out significant challenges related to the physical and organizational

configuration and set up of this kind of technology.

Facilitating Distributed Standup Meetings through Blended
Video Conference and Taks Management Technology

Morten Esbensen, Paolo Tell, Jacob B. Cholewa, Mathias K. Pedersen & Jakob Bardram
IT University of Copenhagen

Rued Langgaards Vej 7, 2300 Copenhagen S
{mortenq,pate,jbec,mkin,bardram}@itu.dk

ABSTRACT
A daily standup meeting in front of a Scrum board is the piv-
otal coordination, communication and awareness vehicle in
Scrum. Since the standup meeting relies on collocation and
since software development increasingly takes place in a dis-
tributed global setup, it becomes a challenge to conduct such
meetings when the team is distributed across multiple loca-
tions. This paper first presents a study of such challenges in
a small software company working across two sites in differ-
ent countries, and then presents a study of how the company
deployed a combined digital Scrum board and video confer-
encing tool (called dBoard) that supports distributed standup
meetings. The three months field deployment revealed how
the dBoard was able to improve the physical meeting setup
and bridge the geographical gap by supporting distributed
Scrum meetings, while at the same time pointing out sig-
nificant challenges related to the physical and organizational
configuration and set up of this kind of technology.

Author Keywords
Scrum board; task board; Scrum; agile software
development; distributed software development; field study;
dBoard

ACM Classification Keywords
H.5.3 Group and organizational Interfaces: Computer Sup-
ported Cooperative Work

INTRODUCTION
Agile software development practices such as Scrum are in-
creasingly adopted in many software companies and have
proven to facilitate more efficient delivery of software accord-
ing to budget, time and quality [24]. Central to the Scrum
methodology is the daily Scrum meeting: a practice in which
software developers meet in front of a physical Scrum board
situated in the team’s shared workspace. The Scrum board is
typically a simple whiteboard with post-it notes that provides
an overview of the pending, ongoing, and finished software

Submitted, Revised and Resubmitted, Rejected to CSCW 2016 for review

Figure 1. The dBoard in action during the Scrum meeting of a dis-
tributed team.

development tasks (e.g., feature implementations, enhance-
ments or bug fixes). The Scrum board is updated during the
daily Scrum meeting and represents the pivotal mechanism
for coordination, communication, and status awareness in a
Scrum team. As such, the Scrum board has three main fea-
tures; (i) it is a task management tool providing information
about tasks and their status, (ii) it is a tool guiding communi-
cation during the daily Scrum meeting, and (iii) it works as an
information radiator from which it is easy to get information
about the progress of work during the work day.

The features of the Scrum board rely heavily on collocation
of the team members and the Scrum board: task management
can only be done on the physical board in the team room, the
daily Scrum meeting takes place in front of the board, and
the team members must be collocated with the board for it to
work as an information radiator. However, software develop-
ment is increasingly being carried out across geographically
distributed teams, and due to its success, Scrum is being ap-
plied in distributed arrangements as well [10]. In distributed
software development setups, members of a Scrum team rely
on computer mediated communication technologies to facil-
itate standup meetings as, rather then being collocated, the
team is spread across different offices, countries, and poten-
tially time zones. Studies of distributed Scrum has shown
that videoconferencing is a core enabling technology – both
large group videoconferencing as well as personal one-on-
one video calls [11, 15]. However, videoconferencing tech-
nologies are not integrated with the other tools required dur-

ing the meetings. In fact, videoconferencing often happens
in connection with a shared task [4], and there is a need for
systems that integrate videoconferencing and with the tools
used during meetings [22].

This paper presents a longitudinal study of the Scrum work
practices of a distributed software team working across two
sites in Denmark and Germany, while employing different
technologies. The study is divided into two main parts: the
first part focused on obtaining a detailed understanding of
the challenges arising when moving from a collocated Scrum
setup to a distributed one; the second part revolved around a
field deployment of the dBoard [1], which was deployed to
support the Scrum practice across the two sites. The purpose
of this study was twofold as it focused on the support pro-
vided by the dBoard in both the collocated setup as well as
the distributed.

This study of distributed Scrum revealed a set of challenges
of which some were addressed by the dBoard. For exam-
ple, a traditional Scrum board is easy to use and access—it’s
just a whiteboard—whereas setting up remote video links and
task management software is rather cumbersome and often
disrupts the easy flow of a Scrum meeting. In this respect,
the dBoard was much more straightforward deploy and use.
However, the study also revealed a set of more fundamental
challenges which were not addressed by the dBoard. For ex-
ample, the organizational and physical set up of the Scrum
processes and the board is important for the Scrum process to
work. And if a tool like the dBoard is not physically and or-
ganizationally embedded into the offices and work practices
of the team, it cannot work properly.

BACKGROUND AND RELATED WORK
Scrum is a software development framework that suggests
a number of practices to structure work, team and meet-
ings [19]. One central meeting in the framework is the Scrum
meeting, also referred to as the ‘daily Scrum’ or ‘standup
meeting’. The Scrum meeting is a short meeting usually held
every day in the morning in which participants are encour-
aged to stand up to prevent meetings prolongation. The pur-
pose of the meeting is to get a daily status on the sprint and the
meeting follows a simple pattern. All team members present
three things: what they have been doing since the last meet-
ing, what they will be working on and whether they see any
impediments to their work. The Scrum meeting is not only
effective for giving awareness of how the team is progress-
ing but also helps in both the day-to-day coordination of the
Scrum team [16] and in the co-articulation, i.e., the process of
articulating ones actions in response to a team members daily
report [13].

During the meetings it is customary for many teams to use a
Scrum board. Containing all the tasks in a sprint (those that
have been completed, those in progress and those where work
still has not begun), the Scrum board provides an overview of
the sprint status and thus acts as a tool facilitating the meeting.
As such, the Scrum board helps reducing articulation work
during a Scrum meeting [16].

In distributed Agile Scrum where a Scrum team is partly dis-
tributed across several locations, a core and recurring ques-
tion is how to set up and use the Scrum board. The traditional
Scrum board as a white board with post-it notes can only
work in a distributed arrangement if the board is maintained
and manually synchronized at all locations; alternatively, dig-
ital versions of a Scrum board can be used to automatically
synchronize the Scrum board across distant sites. Video con-
ferencing systems can also be used to facilitate Scrum meet-
ings across distributed sites, however, even with video tech-
nology at hand, the lack of easy access to a collaborative
Scrum board can cause a team to abandon the Scrum board
altogether [6].

Scrum Boards
The Scrum board has received some focus from academia
research and has been identified as an important coordina-
tion mechanism in terms of handling articulation work [3,
16] and as a learning tool in Scrum [13]. Several products
such as Jira1, TargetProcess2, and Microsoft Team Founda-
tion Server3 offer digital Scrum boards and are often the
choices selected in companies interested in digital Scrum
boards. Such digital Scrum boards have been studied and
it has been suggested that digital Scrum boards can have
drawbacks compared to physical ones [20], however, a re-
cent study also showed that digital card-walls such as Jira can
provide support for distributed teams but also point out that
there still does not exist a tool that supports distributed Agile
meetings with the wall as a central artifact [9]. While few
studies have suggested digitizing the Scrum board [17, 18]
or, closely related, utilizing tabletops for Agile planning [8],
in terms of field deployments of digital Scrum boards this is
still largely an under-explored area. However, in a study of
‘articulation spaces’, Boden et. al. demonstrated willingness
to adopt digital tools as means of Scrum boards in collocated
software development [3].

In summary, the Scrum board has been identified as an im-
portant artifact in the Scrum development framework yet it
still remains unclear how to provide support for daily Scrum
meeting for distributed Scrum teams that include such a
tool. Combined with the importance of videoconferencing
for Scrum teams, we see an opportunity to explore an area in
which videoconferencing is combined with the digital Scrum
board designed for distributed teams.

CASE AND RESEARCH METHODS
Alpha is a small Danish software company that specializes
in developing stowage-planning optimization software for
the shipping industry. In 2013 Alpha entered a partnership
with Beta—a German software provider that develops sev-
eral products for the shipping industry. In 2014 a 10 year co-
operation began in which Alpha was made responsible for the
development of one of Beta’s products. This contract resulted

1https://www.atlassian.com/software/jira
2http://www.targetprocess.com/
3https://msdn.microsoft.com/en-us/vstudio/
ff637362.aspx

dBoard Configuration and Enhancement

Pre-Deployment Study Two-sites Deployment

α release Sprint 7 Sprint 8 Sprint 9 Sprint 10 Sprint 11 Sprint 12 Sprint 13

July August September October November December '14 January '15 February March April May

Sprint 14

Legend
Workshop Observation of collocated meeting Observation of distributed meeting

Single-site Deployment

Figure 2. Overall outline of the study showing the four main phases; (i) pre-deployment study of the Scrum practices at Alpha; (ii) the configuration of
the dBoard; (iii) the collocated deployment of the dBoard at Alpha; and (iv) the distributed deployment at both Alpha and Beta.

in a setup with developers located in both Denmark and Ger-
many. The Danish part of the team consists of seven practi-
tioners (i.e., five developers, the Danish project manager, and
the Scrum master). The German part consists of four people
(i.e., two developers, the German project manager, and one
tester).

Figure 2 outlines the main phases of the study we conducted
at Alpha and Beta, and hereafter we present relevant details
and main the focus of them. The pre-deployment phase fo-
cused on how Alpha appropriated the Scrum practices for
their local coordination and communication as well as how
the Scrum framework facilitated their cooperation with Beta.
This study took place over a period of four and a half months
involving in total 27 site visits.

In parallel with the pre-deployment study, the dBoard sys-
tem was configured and enhanced. The core dBoard system
was at this point designed [1], but to clarify how the dBoard
would fit the technical setup and work practices of Alpha and
Beta, we conducted a design workshop in late July. The
main requirements that emerged from this workshop were
that the dBoard should integrate to their task management
system (Microsoft Team Foundation Server (TFS)) and that
some additional features related to more detailed task infor-
mation and task sorting should be included. Relevant find-
ings from the ongoing pre-deployment study were also in-
corporated into tailoring the dBoard for later deployment in
this setup. In December, when the pre-deployment study was
concluded, a second workshop was conducted to verify the
configuration and adaptation of the dBoard. This was done
using a scenario-based evaluation in which two major scenar-
ios were enacted by team members from Alpha and Beta. In
particular, we asked participants to enact a standup meeting
and an ad-hoc meeting both performed using two separate lo-
cation to mimic their distributed arrangement.

At the final workshop, it was decided to separate the de-
ployment into two phases: a single-site deployment only in-
cluding Alpha and a two-sites deployment with both Alpha
and Beta. The purpose of the single-site deployment was to
evaluate how well the dBoard was supporting Scrum-based
task management, including its integration to the Microsoft
Team Foundation Server (TFS) system. This initial installa-
tion turned out to be a wise approach, since changes and up-
dates to the TFS setup had to be accommodated. The dBoard
was deployed in the office of Alpha for two weeks in January
‘15 and, in March, the dBoard system was deployed at both

Alpha in and Beta in Germany with the activation of the col-
laborative features of the system, which were put to test. The
focus of this final phase was to observe how the dBoard sys-
tem helped bridging the geographical gap between Alpha and
Beta .

In total, the dBoard was deployed for three months, during
which we made 9 site visits: 3 involving only the Danish
team and 6 including both teams. The rather small number
of site visits as compered to the pre-deployment study was
influenced by several factors, which will be described later
in the paper. All observations were performed by one per-
son with the exception of two out of the 6 distributed standup
meetings, which were observed concurrently by one observer
at each side (i.e., one observing the team in Denmark and one
observing the one in Germany).

We used empirical qualitative methods throughout our inves-
tigations, in particular participants observation and on-site in-
terviews. Extensive note taking and photography was done
during site visits, and all observed standup meetings were
video recorded. During subsequent analysis, all observation
notes were coded independently by two researchers following
a grounded theory-inspired approach in iterative coding ses-
sions that allowed concepts to emerge, video recordings were
also reviewed and annotated, and important sequences were
identified and studied in details by two researchers.

SCRUM MEETINGS IN APLHA
In early 2014, Alpha decided to switch to a Scrum inspired
development process and they now follow many of the prac-
tices recommended by Scrum. Their development is arranged
in sprints, planned during sprint planning meetings. Each
sprint consists of a number of user stories broken down into
tasks that are assigned to the different developers. The tasks
and stories are managed using TFS. The team has also as-
signed a Scrum master and uses Scrum meeting throughout
the sprint.

The Scrum guide suggests Scrum meetings to be held
daily [19], however, the Danish team had settled on a model
where meetings are arranged on an ad-hoc basis. Usually the
meetings were held twice a week; however, when close to a
delivery, the team had even less frequent meetings. During
our four months observation we observed 27 of these meet-
ings. The meetings were held at 10 AM and were initiated
by the Scrum master or the project manager informing that

Figure 3. A collocated Scrum meeting at Alpha. With the Scrum board
turned so the active person can point towards it (2) another person is not
able to see it (3).

the daily meeting was about to start. The team then assem-
bled around the Scrum master’s desk which was raised to ac-
commodate standing up (see Figure 3). The Scrum master
launched the Scrum board plugin of TFS on his computer.
This plugin shows all user stories, tasks and bugs from TFS
as post-it notes sorted into rows by the user assigned to them.
Meetings were organized as suggested in the Scrum guide;
however, the team often engaged in longer discussions during
these meetings to address implementation details of the tasks
which caused meetings to prolong more than the 15 minutes
usually suggested [19].

Results
While the team did not have meetings daily but only twice
a week, and even though they included German developers
only when visiting the Danish office, it was clear from our ob-
servations that the meetings helped the team coordinate their
work, gave awareness of the state of the work and were a
place for rich knowledge sharing.

The standup meeting provided a fora for the team to share
progress and to foster continuous coherent understanding of
the project status, which allowed the team members to coordi-
nate, focus, and align their efforts. We observed that the meet-
ings also allowed details to emerge often resulting in prompt
identification of issues followed by immediate reactions ex-
pressed through brief orders from the project manager (e.g.,
“make a bug!”). Moreover, close to the end of a sprint, the
overview provided by the Scrum board supported quick plan-
ning and reorganization of tasks across sprints. For instance,
between sprint 7 and 8, the Scrum master in one occasion and
the project manager in another requested all team members
to act on the non-completed tasks by either completing them
quickly or by moving them to the next sprint.

The standup meetings facilitated general awareness within
the team. Often the project manager would ask questions like
“Is this closed?” or “What is that bug?”, which would draw
the team members attention to these tasks on the board and
help build an awareness of the status of work among the team

members. Furthermore, during meetings it was not uncom-
mon that simple statements from one developer would catch
the attention of another team member, who could then add in-
formation about the task, hence, adding to the shared aware-
ness of the status of work in the team.

We also observed how the meetings were used extensively
for knowledge sharing among the developers. In almost all
meetings, discussions involving the specifics of an imple-
mentation task emerged frequently. After a person had taken
her turn in the meeting explaining what she was working on,
the team would initiate a discussion related to these tasks.
While Scrum suggests longer discussions to be taken outside
daily meetings, we observed how the team preferred to take
these during the Scrum meetings even if it meant prolong-
ing them and potentially, but not necessarily, loosing the at-
tention of some participants. The meetings thus facilitated a
large amount of knowledge sharing between the developers,
which often resulted in clarification of very specific details
regarding the implementation.

In line with other studies [24], our observations clearly
showed that the Alpha team benefited from conducting reg-
ular Scrum meetings. But we also observed and identified a
set of challenges related to: (i) the distribution of meetings,
(ii) the use of the task management and Scrum software tools,
and (iii) the way the meeting was done in terms of physical
space and place.

No Distributed Meetings
We observed that meetings primarily included only the Dan-
ish staff. Only if team members from Germany were visiting
the Danish offices, they would participate in the Scrum meet-
ings. This absence of the German team in the daily meeting
caused problems and confusion. In one instance, we observed
how a task that was marked as ‘Done’ by a German team
member caused confusion, since the Danish team doubted
if this task had really been completed. With that developer
not present, it was not possible to clarify this doubt until af-
ter the meeting. We also observed how the progress of team
members in Germany was discussed during the daily meeting.
With no team members present from Germany, it was hard for
the Danish team to get a complete overview of the status of
the sprint and what the German developers were working on.
This resulted often in long phone calls between either the two
project managers or two specific developers that, due to the
task at hand, had to share part of the code base.

Setup Cost of Scrum Board Technology
A specific Scrum board plugin for TFS was used to facili-
tate the Scrum meetings at Alpha. However, there were sev-
eral challenges and shortcomings in this tool. First of all, in
contrast to a non-digital Scrum board—which has no setup
cost—there was a significant overhead of establishing an ‘ad-
equate’ view of the work using the TFS tool. Most of the
time in fact, the Scrum master had to abandon what he was
doing on his computer, switch to the Scrum board plugin, and
set it up. And, if for example, he was compiling code on
his computer, the team would have had to wait before they
could launch the Scrum board. In more than one case, these
‘setup costs’ caused the meetings to be either delayed, due to

1

4

3

2

Figure 4. The UI of the dBoard with telepointers and highlight (1), tasks (1 & 2), menu (3) and filters (4).

the extra time spent on finding alternative means (e.g., other
workstation to run the TFS plugin), or conducted without the
use of the Scrum board.

User stories were typically broken down into separate tasks
to be worked on by team members. In the TFS Scrum board,
both user stories and tasks were displayed side-by-side using
color coding to indicate whether it was a task, a user story
or a bug. However, the team had problems relating these to-
gether, and we observed how team members had to open the
details of a user story to understand which tasks were related
to that story. The knowledge of the relationship between tasks
and user stories is important as, when user stories are broken
down into tasks, the progress of implementing a user story
can be tracked by the number of related tasks completed.

Inappropriate Space and Place
The physical space and location of the Scrum meeting in the
office of Alpha also posed signifiant challenges. The meet-
ings were conducted by using the TFS Scrum board plugin
on the Scrum master’s computer. This resulted in a meet-
ing setup as shown in Figure 3, in which the team members
would gather around the Scrum master’s desk and monitor
(1). There are several challenges associated with this setup:
the space is very limited and does not leave space for team
members to stand in front of the display; the display is rel-
atively small and hard (or even impossible) to read from a
distance; and, only one person can interact with the board at
a time. Figure 3 shows a typical meeting situation: while one
person (2) is speaking and gesturing towards the board, an-
other (3) is unable to see the board. To accommodate this
problem, the team sometime used a magnification feature to
zoom in on the board, but this just made it harder to navigate
in the system as it required both scrolling and panning. We
also observed how the Scrum master had to turn the display

toward the person speaking for that person to see the infor-
mation on it (e.g., Figure 3 (3)).

In summary, our observations of the daily meeting practices
of Alpha provided insights into the benefits of such meetings,
while also revealing a set of challenges the team faced. The
meetings provided the team with a platform for rich coordina-
tion, awareness and knowledge sharing. However, there were
also significant challenges encountered regularly during these
meetings, specifically related to: the absence of German team
members, the setup cost of the Scrum board tool and the con-
strained physical setup of the meetings in the office space.

DBOARD
The ‘Distributed Scrum Board’ (dBoard) was designed to
support distributed software teams in their standup meetings.
The dBoard hardware setup is shown in Figure 5 and the soft-
ware UI is shown in Figure 4. Based on studies of Scrum
practices and daily standup meetings at Alpha and other soft-
ware companies, the dBoard was designed to integrate five
core design features into one solution:

• Virtual Window – The dBoard should provide a ‘virtual
window’ between two remote sites thereby enabling seam-
less communication between two distributed teams.

• Scrum Board – The dBoard should support task manage-
ment (i.e., user stories) in a Scrum fashion by supporting
direct manipulation of ‘virtual post-it notes’ on a grid-like
task board.

• Proximity-based Interaction – The dBoard should adapt to
the environment in which it is situated; in particular, it
should adapt to whether people are in front of it or not and
to how they are using it.

• Minimal Setup Costs – The dBoard should allow people to
easily establish meetings with minimal setup costs.

Figure 5. The hardware setup of one dBoard.

• Tool Integration – The dBoard should integrate to relevant
digital software engineering tools like issue tracking and
Agile project management used in the Scrum practices.

This section provides an overview of the dBoard features. A
more detailed description of the technical architecture and the
UX design of the dBoard is presented elsewhere [1].

Virtual Window
As shown in Figure 5 and 4, the dBoard is equipped with a
65” display with a 3840 x 2160 resolution, an HD camera and
multitouch overlay in combination with a high-quality noise-
reducing microphone and loud speakers. This configuration
allow to create a ‘virtual window’ [7] in which two sites can
see into each others’ offices and engage in conversations in
front of the ‘window’. Touch events on the screen are relayed
as ‘telepointers’ shown as red dots on both screens (Figure 4
(1)).

Scrum Board
A Scrum board is overlaid on top of the video on the dBoard
screen using a content-on-people approach [12, 14] (Fig-
ure 4). The Scrum board applies a traditional grid-based lay-
out with user stories represented as rows and development
states represented as columns. Tasks are visualized as small
‘virtual post-it notes’—small blocks with minimal informa-
tion on them (see Figure 4 (2)). The position of a task on the
board represents the user story it belongs to (row) and its cur-
rent state (column). The Scrum board is synchronized across
two connected dBoards to show the exact same view in both
sites.

Tasks on the board are interactive: a task can be dragged any-
where on the board to update its status; a task can be assigned
to another developer just by tapping the name on the task

and by selecting a new one from the popup list and, a task-
dedicated side panel can be revealed on the right-hand side of
the board by using a ‘tap-and-hold’ gesture on the task.

The Scrum board also contains a number of ways to sort and
filter the information presented on the board. From the menu
(Figure 4 (3)) rows that normally show user stories, can be
toggled to organize tasks by users instead. With this feature, it
is easy to get an overview of which tasks are assigned to each
developer. The dBoard also implements filtering for users
and user stories. If a filter is selected, all tasks not belong-
ing to that user or user story are dimmed out. Figure 4 (2)
shows the filtering of tasks based on a user and the user fil-
ter handle respectively. Finally, the dBoard also supports two
different forms of automatic sorting of tasks to re-organize
their position and visibility by placing them into the correct
row-column cell as well as by stacking them to maximize vis-
ibility.

Since the Scrum board runs on top of the virtual window and
hence runs in a collaborative mode, the two boards are im-
plementing a WYSIWIG approach [21]. Task movements on
one board are updated in real time on the other board. Fur-
thermore, just like telepointers are marked with red dots, a
task that is touched and moved is highlighted in red, as shown
in Figure 4 (1).

Proximity-based Interaction
By using the Kinect mounted beneath the screen, the dBoard
automatically adjusts the video and audio based on the pres-
ence of people in front of it. The dBoard has three spe-
cific modes of presence: people present in both sides, peo-
ple present in only one side and people not present in ei-
ther side. If no people are present at either side, the audio is
turned off and video is blurred to the extent that movement is
still identifiable but recognizing people is hard. In this mode,
the dBoard is designed to work as a Porthole-style awareness
window [5]. If people are in front of the board in only one
office, the video is slightly less blurred on both dBoard’s and
the audio is disabled. Finally, if people are in front of the
dBoard in both offices, the full video and audio is turned on.
The dBoard also has a ‘privacy button’ that—instead of blur-
ring the video—removes the video entirely if no people are
in front of the board. This allows the dBoard to be used only
as a passive Scrum board without the potential distractions of
the background video feed.

Minimal Setup Costs
The dBoard is designed to conduct daily standup meetings
and other meetings in an easy manner without any overhead
in terms of setting up video equipment and/or software, or
to establish communication links. The dBoard is an alway-
on, dedicated tool for meetings, and meetings are started (and
stopped) automatically when people gather in front of the
board. The dBoard application is automatically started and
the video and audio link established when the computer is
turned on or restarted. All components of the system are
mounted on a stand with wheels making the dBoard easy to
move around and position in an appropriate place in the of-
fice. Hence, there is no need for dedicated ‘video conference

rooms’ and the board can be moved around and placed in dif-
ferent locations of an office just as a physical Scrum board
(e.g., on a white board, a wall or on a window).

While the 65”, ultra-high resolution (i.e., 3840 x 2160) moni-
tor used for the dBoard does provide a large amount on screen
real-estate, it is still smaller in size than a white board typi-
cally used for a physical Scrum board. Indeed, this limits the
amount of tasks that can be displayed on the dBoard, how-
ever, we chose this approach over multiple screens as it al-
lowed us to mount all components on an easy to move setup
that reduces the setup costs of the dBoard.

Finally, the dBoard also implements a ‘knock-knock’ gesture,
which allows a user to knock on the screen (like knocking on
a window). This knocking is relayed to the dBoard which
will produce a knocking sound signaling that someone at the
other end is requesting attention. This allows for very easy
and ad-hoc meeting initiation.

Tool Integration
The dBoard is designed to integrate with issue tracking sys-
tems for software engineering. For the deployment at Al-
pha, the issue tracking system integrated was TFS. This is
a two-way integration: all tasks including their information
and status are synchronized with the dBoard and when a task
is changed in the dBoard—for example by moving a task
from one status column to another—the information is syn-
chronized back to TFS. This two-way synchronization, how-
ever, puts a few limitations on the use of the dBoard, of which
the most important one is that TFS puts constraints on sta-
tus changes. The TFS workflow used by Alpha and Beta
would not allow tasks to move from the ‘New’ state to the
‘Resolved’ state. Therefore, if a user moved a task on the
dBoard from ‘New’ to ‘Resolved’, the state change would not
be allowed by TFS and the task post-it note would be moved
back to the ‘New’ state on the board. This was in conflict
with the original design goal of allowing any movement of
the task post-it notes on the dBoard, but since Alpha insisted
on having TFS as the ‘ground truth’, we had to compromise.

DEPLOYMENT
For the evaluation of a combined videoconferencing and
scrum board tool, the dBoard was deployed in two phases as
shown in Figure 2. In the first phase, we deployed the dBoard
at Alpha and, in the second phase, at both Alpha and Beta.

One-site Deployment
The one-site deployment took place at Alpha, and focused
on the use of the dBoard as a Scrum board for collocated
use. Therefore, the collaborative features, including the video
and proximity-based interaction, were disabled, turning the
dBoard into a digital and interactive Scrum board. This de-
ployment strategy was chosen, as it gave us the opportunity
to evaluate and test the hardware and software in one location
before moving to a distributed deployment.

Setting
The dBoard was deployed at Alpha for a period of two weeks.
As the dBoard was designed to be an ‘information radiator’
(like a regular Scrum board), the original intention was to

1

2

3

4

Figure 6. The office plan of Alpha (top) and the meeting room of Beta
(bottom)—(1) the location of the Scrum master’s desk; (2) the locations
of the dBoard at the one-site deployment; (3) & (4) the location of the
dBoard during the two-site deployment.

place it in the shared office space of the Scrum team. How-
ever, due to space limitations the dBoard was not placed in
the team office, but in the room close to the coffee machine
(Figure 6(2)).

Results
During this phase, Alpha only conducted one meeting using
the dBoard, but during the two-site deployment phase, ad-
ditional two meeting involving only the Danish team were
held. Hence, in total three meetings using the dBoard in a
collocated Scrum meeting at Alpha were conducted; there
are the basis for this analysis. The meetings with the dBoard
were conducted in a similar way to the ones the team mem-
bers would perform with the TFS plugin: at 10 AM the team
would assemble and explain what they had been working on
since the last meeting, what they were currently working on,
and whether they foresaw impediments. During our obser-
vations, we saw how the dBoard supported the team in their
Scrum meeting practices. The high-resolution large screen
provided plenty of space to display all tasks in the sprint,
and the area used for the meetings had sufficient space for
all developers (see Figure 1). The relationship between user
stories and tasks was also clear from the dBoard visualiza-
tion. As such, it was evident that the prior challenges of poor
task visualization and lack of space and visibility were ad-
dressed with the introduction of the dBoard. Moreover, since
the dBoard was a dedicated ‘always-on’ public display, there
was limited setup cost associated with it, and the team could
simply walk up to it and start the meeting.

For the first meeting, the team used the different features
of the dBoard extensively. The team made extensive use of
the side panel presenting detailed information about a spe-
cific task or user story while explaining finished and ongoing

work. One the one hand, the usage of this panel quickly di-
minished and, for the later collocated meetings as well as the
distributed meetings, it was rarely used. This was surprising
to us because much of the information on the side panel was
requested by the team during the workshops. On the other
hand, the user-filter feature of the dBoard extensively used
throughout the meetings for turn-taking might explain such
reduced use. As tickets were not anymore arranged by users
but by user story, the task context (i.e., which task belonged
to which user story), which was one of the main reasons to
investigate the detailed information on the TFS, was now al-
ways clear. Usually the project manager would control turn-
taking among the team members, and use the filter to display
only the tasks relevant for the team member talking. The fact
that the user filter was widely used during the meetings also
meant that the turn-order was decided by the order of this
menu.

What was also interesting, however, was that the teams did
not interact much with tasks on the dBoard during the meet-
ings. As the dBoard synchronizes its information with the
TFS system used by the companies to handle the develop-
ment process, the board often was in the right configuration
even before the meetings started. This meant that few changes
(such as opening, closing or re-assigning tasks) had to be
made during the meeting. We did however, observe a few in-
stances where such changes were made. Despite the dBoard’s
design for such activities, the team followed the practices that
they used during the collocated meetings in which the board
was used primarily as a tool for guiding the Scrum meet-
ing and for a platform to initiate knowledge sharing with oc-
casional changes being made to the tasks presented on the
board.

Finally, due to the fact that the dBoard was placed in the
‘wrong’ location–namely in the office with the coffee ma-
chine rather than in the team’s office–we observed that it did
not work as an information radiator and did not provide the
team with any shared awareness of the status of work. In fact,
the dBoard was turned off while not used during the meetings,
which implied that it was standing idle most of the time.

Two-site Deployment
In the second phase, the dBoard was deployed both at Alpha
and Beta. The focus of this second phase was to study how
the dBoard would support a distributed Scrum team.

Setting
During this phase, all features of the dBoard were enabled.
At Alpha, the dBoard was moved to the corner of the office
(Figure 6(3)), since the desk behind it was used by a new em-
ployee and was blocking the line of sight to the other room.
At Beta, the plan was to deploy the dBoard in the team’s space
to allow for easy access to the system, for easy ad-hoc meet-
ings through the knock-knock feature and to foster mutual
awareness by having the dBoard alway-on and working as an
information radiator. However, due to space limitations in
the team space at Beta, the project manager insisted on the
dBoard to be moved into a meeting room, which was even
situated on a different floor than the team space (Figure 6(4)).

Results
With the dBoard positioned in the meeting room, the features
dedicated to awareness and ad-hoc meetings were clearly not
used. The dBoard was designed to function as a meeting sup-
port tool as well as an information radiator with a graceful
way to switch between these two modes. However the place-
ment of the boards turned them into a meeting support tool
for pre-planned meetings. Even though the placement at Al-
pha was not optimal either, they would still be able to see the
display on a regular basis (e.g., when getting coffee) and to
hear any knock-knock being initiated from Beta. But clearly–
as a collaborative tool–the placement at Beta also affected the
Danish team; with no opportunity to engage with–or be en-
gaged by–the German team outside pre-planned meetings, the
two teams often turned off the dBoard after a meeting.

Analyzing specifically the Scrum meetings conducted via the
dBoard, it was evident that: first, the system enabled the two
teams to engage in distributed meetings, which was identi-
fied as an issue during the pre-deployment study; and second,
the blended videoconferencing and Scrum board features pro-
vided good support for the team during the meetings. As
an example, the German project manager during the standup
meeting slot of a Danish developer noticed a task about which
he had a concern. Used to the previous practice without the
dBoard, he stated thathe wanted to discuss it over the phone.
However, the Danish developer were able to further discuss
the task which instantly stimulated the German project man-
ager to propose that the task should be assigned to a German
developer he believed to be more suited for solving it, hence,
removing the need for a subsequent phone call. The German
developer, also present to the meeting, agreed, and the task
was immediately re-assigned to the new person. This snippet,
which lasted roughly 3 minutes, clearly showcases how the
dBoard provided support to communication between the two
locations, improved the awareness of each others’ work, facil-
itated the identification of potential risks, and allowed quick
reactive ad-hoc coordination.

The video also facilitated other interesting interactions for
which the system was not designed. Once, the Danish of-
fice received a list of bugs from the client via email in which
the German team was not cc’ed; in this occasion, they printed
the screenshots of these bugs and showed these printouts to
the German team through the dBoard camera. Even though
we did not design for bringing in external documents to
the dBoard, the team found a way around this, and these
printouts–eight in total–were discussed in detail in the meet-
ing.

We also observed how the rich knowledge sharing activities
seen during the collocated meetings continued to be present
during the distributed meetings but with the German team
members included. As with the collocated meetings, often
these sessions were initiated based on talks about a specific
task on the Scrum board. This was interesting as the Ger-
man project manager is a domain expert in the field of ship-
ping and cargo vessels and during most of the meetings, he
was able to share knowledge about the specifics of container
vessels–information important to the Danish developers.

DISCUSSION
The dBoard provided the team at Alpha and Beta with a tool
for facilitating both collocated and distributed Scrum meet-
ings. As opposed to before, the German team was now
present in almost all Scrum meetings, and the dBoard helped
alleviating some of the problems they had experienced before.
In particular, the combination of video and task management
provided the team with a physical workspace to communicate
and discuss their work while orienting themselves towards
the work at hand. And, the cost of setting up meetings was
reduced significantly, which lead to more efficient meetings.
We also observed how the dBoard supported the articulation
work of the collaboration, which has been pointed out to be
core to the success of Scrum [16]. As opposed to before, the
team was now able to coordinate and discuss their work dur-
ing the Scrum meetings and the need for contacting remote
team members after meetings was reduced.

Our study also confirmed how the dBoard was able to lower
the setup costs of the Scrum meetings but also revealed a set
of new problems and challenges related to the introduction of
the new technology.

Digitalization and Synchronization
The synchronization of the dBoard with TFS caused interest-
ing usage patterns. In particular, we observed how the teams
interacted very little with the board as it in most cases was in
its correct state even before a meeting had started. The team
extensively planned, carried out and updated their progress
on tasks and user stories from their personal computers and
little work on the board was needed during meetings. This
highlights an important consideration regarding digital Scrum
boards. The synchronization of data with other systems is
a valuable benefit of a digital system that, however, reduces
the need for explicit interactions with the board when com-
pared with a physical board. These findings echo previous
research on the advantages of drawbacks of physical and dig-
ital tools [20, 23].

Another point that became apparent was how the workflow
structure of TFS influenced the usage of the dBoard during
the meetings. While we designed the board so that a tasks
could be moved freely on the board, we also wanted to en-
sure that the board always reflected the state of the underly-
ing TFS. We therefore had to disallow certain state changes
that were not valid in the TFS workflow. This meant that it
was not allowed for some types of tasks to transition from the
‘Active’ to the ‘Resolved’ state and trying to perform such
transitions in the board would force the task to be reposi-
tioned back to its previous state. This behaviour was observed
in a few instances, and it consistently generated confusion
for users. This highlights another tradeoff of using a digital
Scrum board as compared to a traditional physical one. On
physical Scrum boards tasks can be placed anywhere and it is
up to the team to ensure that the board is in a state that con-
forms to the teams’ practices. On digital boards where work-
flow constraints from underlying systems are applied, tasks
have to follow these workflows which eventually can cause
confusion if users are unaware of these constraints when in-
teracting with the board. Therefore, designers of interactive

Scrum boards in which underlying constraints are applied
should take into consideration making explicit to users what
kinds of state transitions are allowed or disallowed.

Physical Location
The physical placement of the dBoard in the meeting room
at the offices of Beta severely influenced its usage and the
awareness and ad-hoc meeting features were not used. The
decision to put the dBoard in the meeting room rather than
in the workspace of the developers was taken by the German
project manager, and he explained that there were two rea-
sons for not having the dBoard in the office. First, the open
offices at Beta were occupied by people working on different
projects—not just the four people working with Alpha. The
project manager did not want to disturb these other people
with meetings at the board when they were working. Sec-
ond, the dBoard is more bulky than a physical board due to
the stand and therefore occupies more space than a physical
board that can be hanged on a wall. The German offices were
already quite occupied and the project manager argued that
there was little room to place the dBoard.

With the dBoard deployed in a meeting room rather than in
the office space, the board lost its effect of serving as an in-
formation radiator and was not used for any ad-hoc meetings
even though such features were designed. This highlights
a challenge in the design of technologies that aim to sup-
port different collaborative activities. The physical location
of such technologies is crucial to their adoption and usage.
The dBoard was designed to integrate videoconferencing and
Scrum board into one tool as such integration is needed [22].
However, in doing so, the German team decided that partly
due to its videoconferencing features, the dBoard was to be
placed in a meeting room and not in the office space. In de-
signing tools that blend together videoconferencing and task-
specific application, it is important to consider how such tools
will be viewed and in turn deployed by the intended users.

Interestingly, in our efforts to create a tool with as low setup
costs as possible, we also created a tool that requires some
space to setup. The stand of the dBoard (see Figure 5)
takes up more space in an office compared to a wall-mounted
screen, however, we chose this to lower overall the setup
cost. Both the German and the Danish side chose to place
the dBoard in rooms not ideal for a Scrum board—in Den-
mark in the office with fewest developers and in Germany in
a dedicated meeting room. This highlights another tension
in the design: the movable stand reduced the setup costs of
the system but enforced constraints on the location in which
it could be deployed eventually resulting in the teams’ deci-
sions to position them in sub-optimal locations.

Meeting Frequency
During the time of the deployment, we saw a decrease in the
frequency of Scrum meetings. While this decrease can’t be
attributed solely to the introduction of the dBoard, we did ob-
serve how the team at Alpha decided not to have meetings
when the team at Beta was not available. This is an inter-
esting observation as it demonstrates how trying to introduce
technologies to facilitate closer collaboration across distances

can cause a change in the existing work patterns. Transition-
ing to distributed work can significantly complicate the work
of setting up meetings [2] and, despite our effort to design the
dBoard to be easy to use for meetings, the teams’ usage of
Scrum affected the use of the dBoard.

This finding highlights the importance of carefully both im-
plementing Scrum as a framework and selecting the technolo-
gies for enabling the collaboration. With the dBoard, the
teams at Alpha and Beta were able to carry out distributed
Scrum meetings in front of an interactive Scrum board – an
activity which was hard to perform before; however, despite
the deployment of this tool, they did not have daily meet-
ings as suggested by Scrum. An efficient implementation of
Scrum in a distributed context requires not only the appro-
priate technology but also the ability and willingness to im-
plement the processes of Scrum. While this implementation
of Scrum has to be tailored to the challenges of working dis-
tributed [11] it still needs to be taken seriously.

Organizational and Physical Embeddedness
We categorize the aforementioned problems and challenges
that we encountered during the deployment of the dBoard into
the degree of organizational and physical embeddedness of a
technology. These categories affect the adoption of such a
technology.

With organizational embeddedness, we refer to the degree
to which an organization’s practices align with technology.
The dBoard was designed to facilitate distributed daily Scrum
meetings with minimal setup costs, but in our study we ob-
served how the team did not have such frequent meetings
which was partly caused by the ad-hoc meeting structure that
the team had adopted. We also observed how few interac-
tions with tasks happened during the meetings as the status of
sprints were kept up to date on a daily basis by the developers.

The physical embeddedness refers to the physical embodi-
ment of a technology. What we observed here was that while
the dBoard in Alpha was placed in the everyday workspace,
at Beta the board had been placed in a large meeting room.
This placement of the dBoard effectively removed both the
dBoard’s function of being an information radiator as well as
the one of being a tool supporting ad-hoc meetings as it was
only visible during pre-planned meetings. The physical em-
beddedness does not only concern the physical surroundings
in the environment but also the physical form of the technol-
ogy itself. In particular, a combination of the office layout of
Beta and the large stand of the dBoard influenced the German
team decision to place it in a meeting room.

CONCLUSION
The Scrum board is an important tool in the Scrum develop-
ment framework, however, its collocated nature causes prob-
lems for adopting the board into distributed software devel-
opment. In this paper, we presented two studies of distributed
Scrum meetings. In the first study, we reported on an ob-
servational study of the Scrum meeting practices of a small
Scrum team. The study showed that the Scrum meeting pro-
vided a platform for coordination, awareness and knowledge
sharing but also revealed problems related to the absence of

remote team members, the digital Scrum board tool and the
space and place of meetings. Based on this study we deployed
the dBoard—a digital Scrum board and videoconferencing
tool—and studied how the team conducted their scrum meet-
ings.

This second study showed that the new technology was able
to provide support for distributed Scrum team in conducting
Scrum meetings but also pointed out new challenges. First,
we observed how the synchronization of the dBoard with an
underlying task tracking system caused confusion when in-
teracting with the board as the task tracking system enforced
constraints on the dBoard that were not clear to the users.
Second, we argue that the design of collaborative system in-
tended to support different activities might eventually be used
for only one single purpose. The dBoard was designed to
support many practices around a Scrum board (i.e., informa-
tion radiator, ad-hoc meetings and standup meetings) but was
used only for planned meetings. Lastly, we stressed that both
appropriate technologies as well as serious implementation
of practices are required for a successful adoption of Scrum,
and a thorough dedication to one of the two cannot resolve
problems in the other.

ACKNOWLEDGMENTS
Anonymized for review

REFERENCES
1. Anonymized. 2015. The dBoard: a Digital Scrum Board

for Distributed Software Development (ITS’15). In
submission to the ACM International Conference on
Interactive Tabletops and Surfaces (ITS’15).

2. Pernille Bjørn and Lars Rune Christensen. 2011.
Relation work: Creating socio-technical connections in
global engineering. In ECSCW 2011: Proceedings of the
12th European Conference on Computer Supported
Cooperative Work, 24-28 September 2011, Aarhus
Denmark. Springer London, 133–152.

3. Alexander Boden, Frank Rosswog, Gunnar Stevens, and
Volker Wulf. 2014. Articulation Spaces: Bridging the
Gap Between Formal and Informal Coordination. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing
(CSCW ’14). ACM, New York, NY, USA, 1120–1130.

4. Jed R. Brubaker, Gina Venolia, and John C. Tang. 2012.
Focusing on Shared Experiences: Moving beyond the
camera in video communication. In Proc. DIS 2012.
ACM.

5. Paul Dourish and Sara Bly. 1992. Portholes: supporting
awareness in a distributed work group. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’92). ACM, New York, NY,
USA, 541–547.

6. Morten Esbensen and Pernille Bjørn. 2014. Routine and
Standardization in Global Software Development. In
Proceedings of the 18th International Conference on
Supporting Group Work (GROUP ’14). ACM, New
York, NY, USA, 12–23.

7. Robert S. Fish, Robert E. Kraut, and Barbara L.
Chalfonte. 1990. The VideoWindow System in Informal
Communication. In Proceedings of the 1990 ACM
Conference on Computer-supported Cooperative Work
(CSCW ’90). ACM, New York, NY, USA, 1–11.

8. Y. Ghanam, Xin Wang, and F. Maurer. 2008. Utilizing
Digital Tabletops in Collocated Agile Planning
Meetings. In Agile, 2008. AGILE ’08. Conference.
51–62.

9. Stevenon Gossage, Judith M. Brown, and Robert Biddle.
2015. Understanding Digital Cardwall Usage. Technical
report tr-15-01. Carleton University - School of
Computer Science.

10. E. Hossain, M.A. Babar, and Hye young Paik. 2009.
Using Scrum in Global Software Development: A
Systematic Literature Review. In Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE
International Conference on. 175 –184.

11. Emam Hossain, Paul L. Bannerman, and Ross Jeffery.
2011. Towards an understanding of tailoring scrum in
global software development: a multi-case study. In
Proceedings of the 2011 International Conference on
Software and Systems Process (ICSSP ’11). ACM, New
York, NY, USA, 110–119.

12. Andreas Kunz, Stefan Dehlin, Tommaso Piazza, Morten
Fjeld, and Thomas Olofsson. 2010. Collaborative
Whiteboard: Towards Remote CollaBoration and
Interaction in Construction Design. In Proc. 27th
International Conference on Applications of IT in the
ABC Industry Accelerating BIM Research Workshop.
132–140.

13. Brian J. McNely, Paul Gestwicki, Ann Burke, and
Bridget Gelms. 2012. Articulating everyday actions: an
activity theoretical approach to scrum. In Proceedings of
the 30th ACM international conference on Design of
communication (SIGDOC ’12). ACM, New York, NY,
USA, 95–104.

14. Thomas Nescher and Andreas Kunz. 2011. An
Interactive Whiteboard for Immersive Telecollaboration.
Vis. Comput. 27, 4 (April 2011), 311–320.

15. M. Paasivaara, S. Durasiewicz, and C. Lassenius. 2008.
Distributed Agile Development: Using Scrum in a Large
Project. In Global Software Engineering, 2008. ICGSE
2008. IEEE International Conference on. 87 –95.

16. Lene Pries-Heje and Jan Pries-Heje. 2011. Why Scrum
Works: A Case Study from an Agile Distributed Project
in Denmark and India. In Agile Conference (AGILE),
2011. 20 –28.

17. Jessica Rubart. 2014. A Cooperative Multitouch Scrum
Task Board for Synchronous Face-to-Face
Collaboration. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’14). ACM, New York, NY, USA,
387–392.

18. Jessica Rubart and Frank Freykamp. 2009. Supporting
daily scrum meetings with change structure. In
Proceedings of the 20th ACM conference on Hypertext
and hypermedia (HT ’09). ACM, New York, NY, USA,
57–62.

19. Ken Schwaber and Jeff Sutherland. 2011. The Scrum
Guide - The Definitive Guide to Scrum: The Rule of the
Game. http://scrum.org. (2011).

20. Helen Sharp, Hugh Robinson, and Marian Petre. 2009.
The Role of Physical Artefacts in Agile Software
Development: Two Complementary Perspectives.
Interact. Comput. 21, 1-2 (Jan. 2009), 108–116.

21. M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D.
Tatar. 1987. WYSIWIS Revised: Early Experiences
with Multiuser Interfaces. ACM Trans. Inf. Syst. 5, 2
(April 1987), 147–167.

22. John C. Tang, Chen Zhao, Xiang Cao, and Kori Inkpen.
2011. Your Time Zone or Mine?: A Study of Globally
Time Zone-shifted Collaboration. In Proceedings of the
ACM 2011 Conference on Computer Supported
Cooperative Work (CSCW ’11). ACM, New York, NY,
USA, 235–244.

23. Steve Whittaker and Heinrich Schwarz. 1999. Meetings
of the Board: The Impact of Scheduling Medium on
Long Term Group Coordination in Software
Development. Computer Supported Cooperative Work
(CSCW) 8 (1999), 175–205. Issue 3.

24. Laurie Williams, Gabe Brown, Adam Meltzer, and
Nachiappan Nagappan. 2011. Scrum + Engineering
Practices: Experiences of Three Microsoft Teams. In
Proceedings of the 2011 International Symposium on
Empirical Software Engineering and Measurement
(ESEM ’11). IEEE Computer Society, Washington, DC,
USA, 463–471.

	Abstract
	Acknowledgements
	Papers Included
	Full Publication List
	Contents
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Domain
	1.2.1 Next Generation Technologies for Global Software Development

	1.3 Research Question and Approach
	1.4 Reading Guide

	I Collaborative Windows
	2 Background
	2.1 Global Software Development
	2.1.1 Scrum in GSD

	2.2 Video Mediated Communication
	2.2.1 Video Windows and Media Spaces
	2.2.2 Integration with other tools
	2.2.3 Beyond Being There

	2.3 Summary

	3 Research Methods
	3.1 Workplace Study
	3.1.1 Results
	3.1.2 Summary

	3.2 SideBar
	3.2.1 System Description
	3.2.2 Evaluation
	3.2.3 Summary

	3.3 dBoard
	3.3.1 System Description
	3.3.1.1 Scrum Board
	3.3.1.2 Window Metaphor

	3.3.2 Proxemic Interaction
	3.3.3 Backend Integration
	3.3.4 User Study
	3.3.5 Field Deployment
	3.3.5.1 Pre-deployment study
	3.3.5.2 Deployment

	3.3.6 Summary

	3.4 In Conclusion

	4 Collaborative Windows
	4.1 Definition
	4.1.1 Window Metaphor
	4.1.2 Content Overlay
	4.1.3 Context Awareness

	4.2 Design Space
	4.2.1 Content Synchronization
	4.2.2 Information Density
	4.2.3 Interaction Awareness
	4.2.4 Video-Content Connectivity
	4.2.5 Privacy
	4.2.6 User Interface Inversion

	4.3 SideBar and dBoard
	4.4 Summary

	5 Discussion
	5.1 Window Metaphor
	5.2 Limitations
	5.3 Other Domains

	6 Conclusion
	6.1 Answer to Research Questions
	6.2 Future Work

	II Papers
	Paper 1: Routine and Stadardization
	Paper 2: SideBar
	Paper 3: dBoard 1
	Paper 4: dBoard 2

