
TA S K A N D I N T E R R U P T I O N M A N A G E M E N T

I N

A C T I V I T Y- C E N T R I C C O M P U T I N G

steven jeuris

PhD Thesis in Human-Computer Interaction

Submitted: July 2016

Published: March 2017

Steven Jeuris: Task and Interruption Management in Activity-Centric Com-
puting, PhD Thesis in Human-Computer Interaction, © March 2017

institute:
IT University of Copenhagen
Software Development Group
Pervasive Interaction Technology Laboratory

supervisor:
Professor Jakob E. Bardram

A B S T R A C T

Throughout history, the design of interactive computing systems has
always been inhibited by technological limitations of the time. For
a truly groundbreaking paradigm shift to occur (reshaping the very
nature of human-computer interaction), a tremendous amount of re-
search and engineering is required. Therefore, most computing sys-
tems instead build on top of an existing stack of contemporaneous
technologies, inescapably adhering to their underlying interaction
paradigms. When left unquestioned, such an incremental approach
inadvertently shoehorns system design into preexisting notions of
how computing systems work. Thus, it is likely that design deci-
sions imposed by technological constraints of the past have needlessly
been carried over to modern-day systems. With information technol-
ogy now forming a major part of our daily lives and giving rise to
new emerging design challenges, it is prudent to address these not in
isolation, but by fundamentally reevaluating the current computing
paradigm.

To this end, activity-centric computing has been brought forward
as an alternative computing paradigm, addressing the increasing
strain put on modern-day computing systems. Activity-centric com-
puting follows a top-down approach to design using the full con-
text of human activity as the starting point of analysis. The focus no
longer lies on individual technologies, but on how computing sys-
tems are used as mediators within the broader context of human
intentionality, thus also taking into account the encompassing com-
munity, environment, and dependencies on other technologies. Users
can aggregate resources, work, and collaborate on them within goal-
oriented workspaces that are meaningful to the user, as opposed to
having to adhere to data structures imposed by specific technologies.
Such systems have been deployed successfully in a variety of different
domains, including healthcare, experimental biology, and software
engineering.

However, several recurring open issues have been identified based
on the deployment and evaluation of different activity-centric com-
puting systems. Broadly speaking these impact the scalability and
intelligibility of current research prototypes. In this dissertation, I
postulate that such issues arise due to a lack of support for the full
set of practices which make up activity management. Most notably, al-
though task and interruption management are an integral part of per-
sonal information management, they have thus far been neglected
in prior activity-centric computing systems. Advancing the research
agenda of activity-centric computing, I (1) implement and evaluate an

iii

activity-centric desktop computing system, incorporating support for
interruptions and long-term task management; (2) provide empirical
data on the overhead of switching between activities when using con-
temporary desktop computing systems; and (3) implement a software
architecture facilitating developers to aggregate resources handled by
independent applications into one central activity manager.

iv

P U B L I C AT I O N S

Most of the work presented in this dissertation is the result of an elab-
orate review and exploration of activity-centric computing, also dis-
cussed in earlier publications which my colleagues and I have worked
on. In sections where content of this earlier work has been incorpo-
rated, I will refer to the specific publications.

[1] Jakob E. Bardram, Steven Jeuris, and Steven Houben. “Activity-
based computing: computational management of activities re-
flecting human intention.” In: AI Magazine 36.2 (2015), pp. 63–
72. doi: 10.1609/aimag.v36i2.2585.

[2] Steven Jeuris and Jakob E. Bardram. “Dedicated workspaces:
Faster resumption times and reduced cognitive load in sequen-
tial multitasking.” In: Computers in Human Behavior 62 (2016),
pp. 404–414. issn: 0747-5632. doi: http://dx.doi.org/10.
1016/j.chb.2016.03.059. url: http://www.sciencedirect.
com/science/article/pii/S0747563216302308.

[3] Steven Jeuris and Steven Houben. “Temporal Model for Reflec-
tive Multitasking.” In: CHI ’13 Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’13. 2013.

[4] Steven Jeuris, Steven Houben, and Jakob E. Bardram. “Laevo: A
Temporal Desktop Interface for Integrated Knowledge Work.”
In: Proceedings of the 27th Annual ACM Symposium on User In-
terface Software and Technology. UIST ’14. Honolulu, Hawaii,
USA: ACM, 2014, pp. 679–688. isbn: 978-1-4503-3069-5. doi:
10.1145/2642918.2647391. url: http://doi.acm.org/10.
1145/2642918.2647391.

[5] Steven Jeuris, Paolo Tell, and Jakob E. Bardram. co-Laevo: Sup-
porting Cooperating Teams by Working ‘within’ Shared Activity
Time Lines. Tech. rep. ITU-TR-2016-193. IT University of Copen-
hagen, June 2016. url: http://en.itu.dk/Research/About-
ITUs - Research / Technical - Reports / Technical - Reports -

Archive/2016/TR-2016-193.

[6] Steven Jeuris, Paolo Tell, Steven Houben, and Jakob E. Bardram.
“The Hidden Cost of Task Switching: How Well Do Window
Managers Support Sequential Multitasking?” In: In submis-
sion.

v

https://doi.org/10.1609/aimag.v36i2.2585
https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.03.059
https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.03.059
http://www.sciencedirect.com/science/article/pii/S0747563216302308
http://www.sciencedirect.com/science/article/pii/S0747563216302308
https://doi.org/10.1145/2642918.2647391
http://doi.acm.org/10.1145/2642918.2647391
http://doi.acm.org/10.1145/2642918.2647391
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193

Don’t repeat yourself (DRY):
Every piece of knowledge must have a single,

unambiguous, authoritative representation within a system.

— Andrew Hunt and David Thomas [130]

A C K N O W L E D G M E N T S

While writing these acknowledgments, I am faced with an unusual
conundrum. As a software engineer, I have learned to resent unnec-
essary repetition1, but the only way to fully express my gratitude to
all those I am indebted to, will inevitably require me to ‘repeat my-
self’. Still, in the spirit of this profession, and to reduce the risk of
leaving anyone out (which I undoubtedly will), allow me to resolve
this dilemma in the most generic way I know: I want to start out by
thanking everyone that has inspired me in this line of research, has
supported me throughout the process of working on this dissertation,
and will continue to be there for me throughout the rest of my career.
My apologies lest you have been left out.

First and foremost, not only would this dissertation have been im-
possible without the support of my advisor—Jakob E. Bardram—the
very topic, activity-centric computing, would likely have dwindled
out of existence, if not for his sustained commitment to this line of
research. It takes character to keep pursuing a vision which by many
within the field is considered to be worn-out. In addition, you have
created a vibrant research environment within which I could perform
my work, and it was sad to see you leave the Pervasive Interaction
Technology Laboratory (PIT lab) behind. However, it is a testimony
of your perseverance to study topics you truly care about that you be-
came the director of the Copenhagen Center for Health Technology
(CACHET), thereby returning to your roots. Thank you for your pro-
fessional guidance, and giving me the opportunity to work on this
research!

Second, I would like to thank all colleagues from the PIT lab for
the many shared discussions we had. As in Steve Job’s ‘parable of
the stones’ (Appendix A) it is “through that group of incredibly tal-
ented people bumping up against each other, having arguments, hav-
ing fights sometimes, making some noise” that the ideas presented
here came to fruition. In particular, I am indebted to the co-authors
on my publications—Steven Houben and Paolo Tell—who directly
helped shape this dissertation, and with whom I shared many inspir-
ing design sessions, in the lab and bars alike. Special thanks to Steven

1 Dave Thomas: “Most people take don’t repeat yourself (DRY) to mean you shouldn’t
duplicate code. That’s not its intention. The idea behind DRY is far grander than
that.” (http://www.artima.com/intv/dry.html)

vii

http://www.artima.com/intv/dry.html

Houben for inviting me to the PIT lab, which is how I got interested
in pursuing this PhD. The past few years, I have also really enjoyed
the company of fellow PhD students Morten Esbensen and Shahram
Jalalinia, during summer schools, seminars, and conference trips. I
would also like to explicitly thank Florian Biermann, Jacob Cholewa,
Sebastian Büttrich, Thomas Pederson, John Paulin Hansen, Tim Han-
kins, Dominik Grondziowski, Siemen Baader, Mathias Schmidt, and
Mathias Pedersen for their active presence in the lab, thereby creating
a fun and engaging work environment.

Third, I would also like to restate my gratitude to my former super-
visors of my master thesis—Peter Werkhoven and Ingrid van Zaanen—
who enabled me to commence early work in this line of research and
thereby paved the way for future work. Also the participants during
the empirical studies presented here are worthy of mention, without
whom the results would be rather succinct.

Lastly, without the continued support of family and friends, both
in Belgium and in Denmark, I likely would not have been able to stay
motivated (or well-fed) to turn this dissertation into something I can
truly be proud of.

This research has been funded primarily by the Danish Agency for
Science, Technology and Innovation under the project “Next Genera-
tion Technology for Global Software Development”, #10-092313 and
the collaboration with Steven Houben by the EU Marie Curie Net-
work iCareNet under grant number 264738.

viii

C O N T E N T S

1 introduction 1

1.1 Research question . 4

1.2 Research method . 5

1.3 Overview of contributions 7

i a design space for

activity-centric computing 9

2 computer-mediated activity 11

2.1 History of activity-centric computing 13

2.2 The search for theory . 16

2.3 Implications for design 18

2.4 Conceptual models . 19

2.5 Motor themes . 21

3 interaction framework 25

3.1 Common language . 26

3.2 Layers of abstraction . 27

3.3 Types of interaction . 33

3.4 Completing the mosaic 35

4 activity management 39

4.1 Information fragmentation 41

4.2 Computational activities 43

ii design and technology 47

5 activity-centric computing systems 49

5.1 Task, window, and file management 50

5.2 Desktop systems . 53

5.3 Ubiquitous computing systems 57

6 laevo and co-laevo 59

6.1 Activity life cycle . 60

6.2 Personal information management 62

6.3 The activity time line . 65

6.4 To-do list and interruptions 68

6.5 The cooperative activity life cycle 69

6.6 Shared activity hierarchies 71

7 dedicated workspaces toolkit 77

7.1 Architecture . 79

7.2 Workspace manager . 80

7.3 Plug-in manager . 82

iii empirical studies 87

8 laevo evaluation 89

9 task switching in sequential multitasking 93

ix

x contents

9.1 Multitasking continuum 94

9.2 Tasks and task sequence 97

9.3 Study 1: comparative study 100

9.4 Study 2: in-depth analysis 108

9.5 Task resumption and construction time 121

9.6 Cognitive load and performance 125

9.7 Threats to validity . 126

iv discussion and conclusion 129

10 scalability and intelligibility 131

10.1 The hidden cost of task switching 131

10.2 Integrated knowledge work 133

10.3 The marks are on the knowledge worker 135

11 from computation to activity 139

11.1 Limitations: radical innovation 142

11.2 Future work: a long-term goal 144

v appendix 147

a the parable of the stones 149

b laevo evaluation material 151

b.1 Laevo manual . 151

b.2 Laevo diary study questions 159

bibliography 161

L I S T O F F I G U R E S

Figure 1 The first graphical window management sys-
tem, part of the Smalltalk programming envi-
ronment. 2

Figure 2 Triangulation model for human-computer in-
teraction. 5

Figure 3 An overview of the main activities and deliv-
erables discussed in this dissertation. 6

Figure 4 A coarse depiction of the expansion of user in-
terface design and associated scientific disci-
plines over the course of history. 12

Figure 5 Activity system model: the unit of analysis in
activity theory. 13

Figure 6 An overview of workspaces in the Rooms system. 14

Figure 7 Conceptual model: the designer’s model, the
system image, and the user’s model. 19

Figure 8 The Xerox Star user interface which commer-
cialized the desktop metaphor. 21

Figure 9 Stategic diagram for CHI indicating a lack of
motor themes. 22

Figure 10 Two dimensions for a theoretical framework in
human-computer interaction. 25

Figure 11 Individual sciences operating on their own plane
of knowledge, and the interaction between them. 26

Figure 12 Using instruments, additive and subtractive tech-
niques are used in order to shape objects. . . . 31

Figure 13 A character (‘data material’) is converted into
pixels (‘resource’). 31

Figure 14 ‘Subject’, ‘object’, and ‘outcome’ in activity the-
ory overlap to some degree with the activity
abstraction dimension. 34

Figure 15 Overview of task, window, and file manage-
ment, highlighting conflicts which arise between
them. 53

Figure 16 TaskTracer for Windows XP. 54

Figure 17 Giornata for OS X. 54

Figure 18 A historical overview of activity-centric com-
puting since 2003 55

Figure 19 co-ActivityManager: an activity-centric desk-
top computing system supporting communi-
cation and collaboration 56

xi

xii List of Figures

Figure 20 ReticularSpaces is an activity-centric smart space
environment. 57

Figure 21 ActivitySpace supports moving and sharing re-
sources across multiple devices. 58

Figure 22 Modern knowledge work consists of archiving,
multitasking and planning. Four fundamental
practices, related to these processes, determine
how an activity evolves over time. 60

Figure 23 Laevo is a temporal activity-centric desktop in-
terface supporting activity management. . . . 63

Figure 24 The activity context library and tray icon within
a dedicated activity workspace. 64

Figure 25 The activity overview through which activities
are accessed and managed in Laevo. 66

Figure 26 Interruptions and to-do items in Laevo. 68

Figure 27 Implications for design in cooperative activity
life cycle management. 69

Figure 28 An example activity tree for a PhD student. . . 72

Figure 29 An overview of the newly introduced cooper-
ative features of co-Laevo. 73

Figure 30 User profile and activity access in co-Laevo. . . 74

Figure 31 The dedicated workspaces toolkit architecture. 79

Figure 32 Class diagram for WorkspaceManager. 80

Figure 33 Example of one concrete AbstractWorkspace-

Manager, the VirtualDesktopManager. 81

Figure 34 Suspending a workspace in a more recent ver-
sion of Laevo. 81

Figure 35 VirtualDesktopManager plug-ins which are man-
aged by PluginManager. 83

Figure 36 Different activity scopes in Laevo. 91

Figure 37 Multiple instances of one activity in time in co-
Laevo. 92

Figure 38 The disengagement and resumption stage dur-
ing a task switch. 97

Figure 39 The four tasks used during the sequential mul-
titasking studies. 99

Figure 40 Task sequence followed in the sequential mul-
titasking studies. 100

Figure 41 Laevo during the comparative sequential mul-
titasking study. 102

Figure 42 Traditional desktop environment during the com-
parative sequential multitasking study. 103

Figure 43 Overview of average resumption time per in-
dividual task switch under both conditions. . . 105

Figure 44 Overview of average resumption times per par-
ticipant under both conditions. 105

List of Figures xiii

Figure 45 Cumulative task switch time for ten partici-
pants during the comparative sequential mul-
titasking study. 106

Figure 46 Breakdown of averages for each scale used as
part of the Raw TLX test in the comparative
sequential multitasking study. 107

Figure 47 Window manager features of Windows 7. . . . 110

Figure 48 Data analysis of task switches in ChronoViz. . 113

Figure 49 Average disengagement and resumption time
per participant. 114

Figure 50 Percentile breakdown of actions and intents dur-
ing task switches per participant, for both the
disengagement and resumption stage. 116

Figure 51 The average percentage of time spent during
task switching on reorganizing the workspace. 117

Figure 52 Detailed breakdown of representative task switches
for recurring observations. 119

Figure 53 Box plots for task resumption times under both
studies. 121

Figure 54 Average breakdown of reorganization actions
during task resumption. 122

Figure 55 Average breakdown of reorganization actions
during task disengagement. 124

Figure 56 Box plots for Raw TLX measures under both
studies. 125

Figure 57 Information overload experienced during task
switching using the taskbar. 133

Figure 58 Real-world use of Laevo by the author of this
dissertation. 134

Figure 59 A lack of intelligibility can lead to a discrep-
ancy between context and intent. 136

Figure 60 The activity life cycle is supported in Laevo
through the management of activities on a time
line and by constructing work within the con-
text of dedicated workspaces. 141

Figure 61 Incremental innovation compared to radical in-
novation . 143

Figure 62 The design of NLS supported dedicated workspaces.146

L I S T O F TA B L E S

Table 1 Examples of objects that are part of human ac-
tivity along different layers of abstraction. . . . 30

Table 2 Decomposition of the interaction framework into
28 different research topics. 35

Table 3 Examples of relevant research topics for each
of the categories within the interaction frame-
work. 36

Table 4 Different categories of computing systems po-
sitioned within the interaction framework. . . 42

Table 5 The activity-centric computing principles rep-
resented within the interaction framework. . . 43

Table 6 The full range of interactions activity-centric
computing should address. 44

Table 7 Task, window, and file management are an in-
tegral part of knowledge work, generally sup-
ported by independent tools. 50

Table 8 Laevo and co-Laevo integrate workspaces with
task and workflow management respectively,
which as a whole constitutes activity manage-
ment. 59

Table 9 Practices which influence the activity life cycle,
positioned within the interaction framework. . 61

Table 10 The dedicated workspaces toolkit is an inter-
mediate approach to supporting the construc-
tion of arbitrary workspaces. 78

Table 11 The ‘activity-centered’ and ‘multiplexing’ prin-
ciples of activity-centric computing cover sup-
port for sequential multitasking through the
use of dedicated workspaces. 93

Table 12 Counterbalancing in the comparative sequen-
tial multitasking study. 102

Table 13 Overview of t-tests comparing productivity and
accuracy of all tasks between dedicated workspaces
and a traditional desktop environment. 108

Table 14 Overview of t-tests comparing productivity and
accuracy of all task between the first session
and the second session participants took part in. 108

Table 15 The questionnaire assessing computer literacy
and degree of multitasking users engage in on
average. 110

Table 16 Framework used to analyze task switches. . . . 112

xiv

List of Tables xv

Table 17 Time and percentage of total task switch time
spent on errors for each participant. 115

Table 18 Breakdown of averages for each scale used as
part of the Raw TLX test in the in-depth study
on sequential multitasking. 115

Table 19 The makeup of reorganization work during dis-
engagement and resumption. 117

Table 20 Features used for ‘navigation to opened’. . . . 120

Table 21 Predicted time spent on reorganizing the workspace
per day for participants in the second study on
sequential multitasking. 132

Table 22 The current activity-centric computing princi-
ples outlined within the interaction framework.
This highlights how Laevo and co-Laevo target
previously unaddressed issues of information
fragmentation. 140

Table 23 Historically, computational support for differ-
ent levels of abstraction has not always been
separated. 146

L I S T I N G S

Listing 1 Setting up a WorkspaceManager. 81

Listing 2 Settings for Chrome, which has a status bar as
separate window. 83

Listing 3 The persistence provider for Notepad. 84

xvi

A C R O N Y M S

ABC activity-based computing

AI artificial intelligence

API application programming interface

CHI Conference on Human Factors in Computing Systems

CSCW computer-supported cooperative work

DRY don’t repeat yourself

DW dedicated workspaces

ERP enterprise resource planning

GSD global software development

GUI graphical user interface

HCI human-computer interaction

IDE integrated development environment

IPC inter-process communication

IS information systems

MEF Managed Extensibility Framework

OOP object-oriented programming

PIM personal information management

UIST User Interface Software and Technology

UX user experience

VDM virtual desktop manager

xvii

1
I N T R O D U C T I O N

Applications: what a terrible term. What a terrible concept. Applications
have little to do with the tasks that people are attempting to accomplish.

Look. We don’t do word processing; we write letters, or memos, or reports,
or notes to ourselves.

— Donald A. Norman [101]

Sketchpad [127], the first interactive computing system supporting di- The design of
interactive systems
is influenced by
underlying
architecture.

rect manipulation of graphical data, dates back to the early sixties. It
paved the way for a new area of research originating as a sub-branch
of computer science, called human-computer interaction (HCI)—the
topic of this thesis. Aside from inciting the interest of researchers to
design novel user interactions, its implementation also inspired the
design of the currently predominant programming paradigm [75],
object-oriented programming (OOP). Thus, early on in the history of
computer science the design of graphical user interfaces (GUIs) be-
came interlinked with the development of the required underlying
technologies. In fact, the concept of a graphical window management
system (still in use by modern desktop computing systems) was first
introduced in the programming environment of Smalltalk [129] (Fig-
ure 1). This demonstrates how much the design of user interfaces
relies on, and is influenced by underlying architecture [42]. It should
then not come as a surprise that many abstractions and interactions
exposed in contemporary user interfaces reflect the underlying hard-
ware and software architecture upon which they have been built.

This is a suboptimal approach to user interface design. For user Technological
abstractions are
unintuitive, yet
common.

interfaces to be intuitive, they should reflect a preexisting conceptual
understanding users have of the world, as opposed to being bound to
arbitrary technological abstractions. Ironically, one of the most preva-
lent concepts in computing has no clear conceptual counterpart in ev-
eryday life: applications. An application first and foremost represents
the short-lived execution of predefined routines, operating on data
loaded into the working memory of a computer. In contrast to tools
within a physical environment, software applications introduce an ar-
tificial dependency between data and the tools that operate on it; i. e.,
data and tools can only be accessed in unison, from within a specific
application. This is distinctly different from real world tools; e. g., a
hammer serves multiple purposes, and to use it one does not need
to be in the workshop where it is stored. Unfortunately, ‘application’
is but one example of an ill-suited technological abstraction which is
still exposed to users in contemporary computing systems.

1

2 introduction

Figure 1: The first graphical window management system, introduced as
part of the Smalltalk programming environment in the 1970s [129].

As per the quote by Donald A. Norman at the start of this chap-HCI is moving away
from a technological

perspective on
design towards a

contextual one.

ter, this is not a new observation. Many studies point towards the
inadequacies of contemporary computing systems. Ever since Lucy
Suchman reported on how office workers struggled to use an ‘expert
help system’ attached to a large complex photocopier [126], it became
clear that providing support for strict predefined procedures does not
account for the intricate details which can be observed in work prac-
tice. Therefore, it has long been the goal of HCI to move away from
a technological perspective on design, towards a contextual one. To
this end the full context within which a new computing system will
be used is considered during design, including the social setting and
work environment. Moreover, end users of the system are usually
encouraged to participate in the design process. This provides the op-
portunity to account for otherwise easily overlooked scenarios which
could severely impact the effectiveness of the final system. However,
as indicated by the similarity of present-day desktop computing sys-
tems to the first graphical window management system (Figure 1),
and the recent adoption of ‘apps’ in mobile computing, we clearly
continue to inherit concepts of a primarily technology-focused past.

introduction 3

A different approach to design is needed if we are to overcome pre- Activity theory
provides a potential
theoretical
framework for HCI.

conceived notions of how computing systems should work. The pre-
dominant paradigm to interaction design in the early 1980s assumed
that human actions follow predetermined algorithmic plans which
can be modeled in a computing system. Suchman’s observations pro-
vided a convincing critique to this cognitive paradigm, broadening
the scope of investigation for interaction design. However, her work
was influenced by a profoundly atheoretical subfield of sociology, eth-
nomethodology; it did not provide the groundwork for a new theo-
retical foundation. Without theory however, it is hard to compare, ab-
stract, and generalize results, thus HCI has been on the lookout for a
new theoretical framework to guide its research. One such framework,
‘activity theory’, has been explored extensively in interaction design
for the past two decades [74, 97]. In line with Suchman’s recommen-
dation, the main unit of analysis in activity theory is the purposeful
interaction of a subject with the world, incorporating the full context
of human activity. This framework is therefore often used as an ‘an-
alytical lens’ to inspire the design of new systems and to highlight
possible issues which might otherwise be overlooked.

This focus on ‘activity’ as the key unit of analysis has also been Activity-centric
computing is an
alternative to the
current outdated
computing
paradigm.

adopted in ‘activity-centric’, or ‘activity-based’ computing systems.
Activity-centric computing has been brought forward as an alterna-
tive computing paradigm, aiming to provide direct support for hu-
man activities, rather than through intermediate abstractions such as
files and applications [101]. Although not all activity-centric comput-
ing systems have been inspired by activity theory, the common un-
derlying assumption is the same: activities reflect a useful conceptual
understanding users have of the world, thus they should be incor-
porated directly into the design of interactive computing systems. A
top-down approach to design is followed, based on a thorough under-
standing of human activity, as opposed to a bottom-up approach to
design, guided primarily by the underlying technologies and inher-
ent restrictions upon which a system is built.

This new paradigm has been applied successfully to several dif- Resources can be
organized and
accessed within the
context of activities.

ferent domains, ranging from ordinary desktop computing, to soft-
ware development, to nomadic hospital work. It focuses on several
aspects of human activity. First, by providing explicit support for
users to structure their work within the context of activities, mech-
anisms can be put in place to more easily switch between parallel
ongoing work as part of multitasking. Second, documents and other
resources belonging to collaborative activities can easily be shared
among participants by placing them within a shared activity context.
Lastly, given that users nowadays own (or need to use) multiple de-
vices from which the same resources need to be accessed, a shared
activity context can also be used to access resources from multiple
devices.

4 introduction

1.1 research question

The overarching goal of this dissertation is to advance the researchOpen issues in
activity-centric

computing.
agenda of activity-centric computing. To do so I investigate two of the
open issues formulated as part of a workshop on how to move from
a theoretical understanding of activities towards providing computa-
tional support for them [14]. Although the workshop was held over
a decade ago, the issues mentioned are still very prominent today, as
summarized in a recent review of activity-centric computing [20].

activity life cycle : One particularly challenging issue of activity-
centric computing is that it is often hard to keep activities sep-
arated from one another. There are no clear demarcations be-
tween the start of one activity and the end of another. For exam-
ple, while working on the implementation of a new feature, a
software developer might temporarily investigate an unrelated
bug report he just received; as a result, irrelevant source files
would end up within an activity labeled “Implementation of
feature X”. This can be the source of much confusion. In ad-
dition, at times it can be difficult for users to decide when to
create a new activity; e. g., should a new activity be created per
feature which needs to be implemented, or with more granular-
ity, when looking up related documentation?

organizing and managing activities : Another challenge con-
cerns scalability; it is by no means clear how to scale current
research systems so that they could be deployed in a real-world
environment. For example, an activity-centric medical record
system in a modern hospital would need to handle a significant
number of patients, users, physical artifacts, and activities. If
not carefully designed, a user would in no time accumulate a
significant number of activities that would rapidly become obso-
lete. Hence, tools and methods for managing, linking together,
and navigating a complex web of activities are needed.

Encompassing these two issues, the central research question of
this dissertation is:

How can support for the full life cycle of activities, from creation
to completion, be incorporated into an activity-centric comput-
ing system?

It entails the following two underlying research questions:

R1 What constitutes the activity life cycle? How do users manage their
activities in contemporary computing systems, and what influences
the creation and lifetime of an activity?

R2 How can support for long-term activity management be included in
an activity-centric computing system?

1.2 research method 5

Unfortunately, activity-centric computing is missing a systematic Part i introduces a
conceptual
framework for
interaction design,
formulating a goal
for activity-centric
computing.

goal which can help guide the design of new systems. There is no
clear guidance on how to address these research questions; should
they be addressed in isolation, or are they part of a bigger research
agenda? Although inspiration can be drawn from a broad range of re-
search fields, including HCI, personal information management (PIM),
computer-supported cooperative work (CSCW), and information visu-
alization, it is unclear how activity-centric computing is interlinked
with other research. Therefore, Part i of this dissertation will first in-
troduce a theoretical framework for interaction design, within which
a goal for activity-centric computing is formulated. Thereby, the tech-
nological contributions presented in Part ii are clearly framed in light
of prior work. Subsequently, Part iii and Part iv will present and dis-
cuss new empirical findings, and reflect on a more long-term goal.

1.2 research method

Mackay and Fayard discuss the differences between deductive and Within HCI,
multiple methods
need to be adopted
in order to address a
single question.

inductive approaches to the scientific method. While the deductive
model starts from theory and the inductive model starts from observa-
tion, both acknowledge the existence of these two ‘worlds’: the theo-
retical and the empirical [86]. The process of design on the other hand
is quite different: throughout several iterations, prototypes are devel-
oped into finished products. Mackay and Fayard argue “that scien-
tists strive to understand whereas designers strive to create. HCI is an
interdisciplinary field that must do both.” To this end they introduce
a triangulation model (Figure 2) outlining how different methods can
be used to address a given problem in HCI [86]:

At the theoretical level, we can create and revise inter-
action models based upon observations of users interact-
ing with artifacts. At the empirical or real-world level, we
can observe how people interact with various technologies
and develop models of use. In both cases, we can draw
from theory and observation to instantiate new artifacts,
ranging from early simulations to working prototypes to
products.

Theory

Design

Observation

MODEL

FIELD
STUDY

REVISED
MODEL

SIMULATION PROTOTYPE

EVALUATION

Figure 2: Triangulation model for HCI by Mackay and Fayard [86], adapted
from original.

6 introduction

In order to reflect on the different methods used throughout thisThis dissertation
contributes to

theory, design, and
empirical findings.

dissertation, I will outline the overall process within Mackay and Fa-
yard’s triangulation model. Figure 3 shows the theoretical, design, and
empirical contributions described within this dissertation.

theory : Based on a PIM literature review (and a pilot study of an
early system prototype) a conceptual framework—the activity
life cycle—which describes the different states and transitions of
human activity on a desktop computer while multitasking, is
constructed. As part of a bigger research agenda, this contri-
bution is situated within a theoretical framework for HCI—the
interaction framework. It highlights how the activity life cycle con-
tributes to an overarching goal for activity-centric computing.

design : Through iterative design, multiple prototypes of a desk-
top system for multitasking and interruption handling have
been created—Laevo—incorporating support for the full activ-
ity life cycle. Based on an extended evaluation of this prototype,
as well as associated experimental studies, a reusable software
toolkit to aggregate resources handled by independent applica-
tions within dedicated workspaces is presented. Lastly, the design
of Laevo is extended to include support for cooperating teams.
This system—co-Laevo—has not been evaluated yet, but its de-
sign is based on accumulated knowledge throughout the project
and its contribution is framed within the interaction framework.

observation : During a two week qualitative in situ field study
Laevo was evaluated by six participants. One of the features
of Laevo was experimentally evaluated in a comparative study
involving 16 participants. This study provides quantitative in-
sights into how well dedicated workspaces support sequential mul-
titasking. Contributing to these findings, a second study inves-
tigated multitasking in a traditional window manager, thereby
highlighting shortcomings of current systems.

Theory

Design

Observation

ACTIVITY LIFE
CYCLE

INTERACTION
FRAMEWORK

CO-LAEVOLAEVO

SEQUENTIAL
MULTITASKING

DEDICATED
WORKSPACES

EVALUATION

Figure 3: An overview of the main activities and deliverables discussed in this dissertation.

1.3 overview of contributions 7

1.3 overview of contributions

This dissertation is a monograph within which all of my work on This dissertation is
subdivided into four
parts:

Part i A design
space

Part ii Design and
technology

Part iii Empirical
studies

Part iv Discussion
and
conclusion

activity-centric computing, both published and previously unpub-
lished, is presented as a whole. It is subdivided into four parts. In
Part i, a theoretical framework for HCI and activity-centric comput-
ing is presented (the interaction framework), which will serve as a
roadmap throughout the remainder of the dissertation. In Part ii the
technological contributions are discussed in light of prior work and
framed within the interaction framework. In addition to clarifying
the novelty of the contributions presented here, this provides a clear
roadmap for future work on activity-centric computing. In Part iii, I
present an evaluation of the system introduced in Part ii, and two ex-
perimental studies investigating multitasking on a desktop computer.
Lastly, in Part iv, I will relate these empirical findings to open issues
in activity-centric computing. In the remainder of this introduction,
for each of the contributions (outlined in Figure 3), I will mention
where they have been published before and where they will be dis-
cussed within this dissertation.

interaction framework : The interaction framework is a theoret-
ical framework for HCI within which different perspectives on
the ‘user interface’ can be positioned and related to each other.
This is previously unpublished work and is presented in Chap-
ter 3, after which it will serve as a roadmap throughout the
remainder of this dissertation.

activity life cycle : The activity life cycle was first described as
a “temporal model for reflective multitasking” in a workshop
on conceptions and experiences of time at the Conference on
Human Factors in Computing Systems (CHI) [63]. This concep-
tual model depicts the practices and processes of human activ-
ity, identified based on a literature review of PIM (presented in
Chapter 5). It formed the conceptual basis for the design of an
activity-centric desktop computing system—Laevo—of which a
publication includes an updated version of the model [64]. In
this dissertation I will reintroduce the model in Chapter 6 as
part of presenting Laevo.

laevo : Laevo is a personal desktop computing system which ad-
dresses open issues in activity-centric computing. A review of
these issues (and activity-centric computing, Chapter 5) was
published in a special issue of the AI Magazine on activity recog-
nition [20]. Laevo addresses these prior open issues by recog-
nizing the need to support the full activity life cycle. The result-
ing design and evaluation of the system was published and pre-
sented at the conference on User Interface Software and Tech-
nology (UIST) [64]. In this dissertation, Laevo will be discussed

8 introduction

alongside co-Laevo in Chapter 6. The evaluation of Laevo is pre-
sented in Chapter 8.

sequential multitasking : The experimental study on dedicated
workspaces (used in Laevo) was published in the journal of
Computers in Human Behavior [62]. A follow-up study inves-
tigating how well traditional window managers support multi-
tasking is in submission to the same journal [66]. Both studies
are presented here in Chapter 9 as a whole.

dedicated workspaces : The software toolkit in support of dedi-
cated workspaces will be described in Chapter 7 of this disserta-
tion, and has not been published before.

co-laevo : co-Laevo extends on Laevo by including support for co-
operating teams. Its design is described in a technical report at
the IT University of Copenhagen [65]. In this dissertation co-
Laevo is presented alongside Laevo in Chapter 6, serving as an
indication of how the conceptual model from Laevo can easily
be extended on.

Part I

A D E S I G N S PA C E F O R
A C T I V I T Y- C E N T R I C C O M P U T I N G

2
C O M P U T E R - M E D I AT E D A C T I V I T Y

[T]here is a continuity to the outward movement of the computer’s interface
to its external environment, from hardware to software to increasingly

higher-level cognitive capabilities and finally to social processes.

— Jonathan Grudin [51]

Historically, the development of computing systems has followed a As technology
evolves, the context
studied in user
interface design
expands.

bottom-up approach. First the underlying hardware had to be built,
before programming languages could be created to operate on them,
before rich new user interfaces could be implemented. This is quite a
natural progression, since progress on lower levels opens up opportu-
nities for innovations higher up. Consequently, user interface design
has also shifted its focus over time: originally there was a focus on the
hardware interface, followed by a focus on software, whereas most of
HCI research today focuses on the work settings and its associated
social context. The computer interface thus seems to ‘reach out’ into
the environment as technology evolves [51]. As a result, the type of
‘users’ that interact with user interfaces has also changed over time.
The first user interfaces were mainly used by engineers and program-
mers, whereas modern personal computers are ubiquitous, and need
to support groups of users with a wide variety of professional back-
grounds. This expansion has lead to the multidisciplinary nature of
HCI, which draws upon research in fields like computer science, cog-
nitive science, design, and more recently social science (Figure 4).

Within such a multidisciplinary field, it can be challenging to find HCI is studied by
various disciplines,
each with their own
theories and
methods.

common ground. Each discipline brings along its own theories and
associated methods, which can pose a challenge when interrelating
findings from opposing views. For example, cognitivism dominated
HCI research in the early 1980s. With its focus on information pro-
cessing, effectively equating humans to computers which follow pre-
determined plans, it was presumed that all human tasks could be
modeled using task analysis (e. g., GOMS). This cognitive approach
brought along with it powerful predictive models, including Fitts’s
law (still used to model pointing tasks), but failed to consider broader
aspects of user experience (UX). Therefore, later in the 80s, design ex-
perts emphasized the importance of the user, introducing usability,
accessibility, and pleasure as important determining factors for effec-
tive human-computer interaction. Around the same time, researchers
interested in collaborative computing opposed the methods from cog-
nitive science used in HCI [10] and banded together to form a new (yet
overlapping) research area—CSCW—which focuses on the social and
organizational context of interactive computing systems [119].

11

12 computer-mediated activity

Context

Time

01010011
01001010

HARDWARE

SOFTWARE

DESKTOP

USER

CONTEXTEngineering

Mathematics

Programming

Design

Cognitive Science

Social Sciences

Figure 4: A coarse depiction of the expansion of user interface design and associated scientific
disciplines over the course of history. (Icons designed by Freepik.)

As wide and varied as the current field of HCI is, what unifies itThe primary concern
of interface design is

to support human
activity.

is reflected in its name: the interaction of humans with computers.
Unlike the dominant cognitive paradigm from the 80s, user interac-
tion nowadays is generally considered to be more than mere infor-
mation processing between a user and computer; rather, as popularly
phrased by Bannon, users are considered to be ‘human actors’ with
“a set of values, goals and beliefs about life and work” [9]. The user’s
point of view is thus adopted as the main perspective during design.
This sentiment is reflected by Kaptelinin, who goes so far as to sug-
gest a new term for the discipline: computer-mediated activity [71]. This
emphasizes the primary concern of HCI in supporting human activ-
ity, and reframes the role of interactive computing systems as that of
mediating tools within the broader context of human intentionality.

One line of research—activity-centric computing—(studied in bothActivity-centric
computing aims to

support the full
context of human

activity.

HCI and CSCW) emphasizes this view even further and postulates that
providing computational support for human activities is fundamental
to the design of effective interactive computing systems. Within this
line of research, ‘activity’ is commonly interpreted along the lines
of (or directly inspired by) the main unit of analysis in activity the-
ory [44]: the purposeful interaction of a subject with the world. As
part of a community, mediated by rules and division of labor, the
subject works on objects through the use of tools, towards a desired
outcome (Figure 5). What constitutes an activity is user-specific “since
it relies on which intention is expressed by or is meaningful to the
user” [20] (e. g., writing a thesis, or developing a piece of software).
Thus, activity-centric computing tries to tailor to many different types
of users and activities, which is why it often is envisioned as a general
purpose computing system.

2.1 history of activity-centric computing 13

COMMUNITY

Outcome

TOOLS

OBJECTSUBJECT

RULES DIVISION of LABOR

Figure 5: Activity system model: the unit of analysis in activity theory. Fig-
ure adapted from original by Engeström et al. [44].

2.1 history of activity-centric computing

The idea for activity-centric computing has been around for over ABC is an ambitious
idea which has been
around since the
1980s.

three decades. As part of a ‘hardy band of souls’1 at Apple Com-
puter, Don Norman was one of the first to name the concept, which
they referred to as ‘activity-based computing (ABC)’ [101, Ch. 4]:

The basic idea is simple; make it possible to have all the
material needed for an activity ready at hand, available
with little or no mental overhead. Tools, documents, and
information are gathered together into packages maximally
designed for the particular activities in which they partic-
ipate, without interfering with other activities.

Their design (which never made it in to product) was based on an un-
derstanding of the psychology of human activities and interruptions.
Already in the 1980s it was suggested that systems should [93]:

1. Support easy suspension and resumption of activities2: (1) with-
out interfering other tasks; (2) activity state should be saved so
tasks can be continued where left off; (3) and that users should
be reminded of unfinished tasks.

2. Support concurrent activities by allowing to simultaneously view
different components related to a complex task.

About 10 years later (while working at Apple), Norman envisions
that “activity spaces could be shared with other people or copied
from one machine to another” in which case there is a need to “figure
out how to coordinate the work so that one person’s actions do not
interfere with another’s”. Activity spaces would allow the user to
“add or subtract tools as needed” and “software companies might
provide specialized activity spaces” which come prepackaged with
the necessary tools needed to execute specific procedures [101, Ch. 4].
From a cursory reading of early HCI literature it thus becomes clear
that activity-centric computing is not a novel idea and that it was
quite ambitious from the start.

In fact, a similar proposal with a similar vision predates Norman’s Workspaces allow
grouping resources
related to one
activity together.

1 During 1993–1998 Don Norman was vice president of the ‘Advanced Technology
Group’ (Apple’s research arm) and part of a group working on ABC: Thomas Erick-
son, Charlie Hill, Austin Henderson, Dan Russell, Harry Saddler, and Mitch Stein.

2 ‘Activity’ and ‘task’ seem to be used interchangeably by Miyata and Norman.

14 computer-mediated activity

definition (and even the widespread adoption of windowing systems)
and was based on the empirical analysis of command-line histories [11].
To address problems that users encountered when attempting to ac-
complish several different tasks in a single session, Bannon et al. in-
troduced the notion of a ‘workspace’3: “an environment dedicated to
allowing easy user manipulation of activities to achieve a particular
goal or set of functionally related goals” [11]:

From the users’ perspective, workspaces must have highly
dynamic internal structures which can be modified as users
reformulate their goals. From the system’s perspective, a
workspace contains tools and data relevant to the users’
goals and, in addition, provides a record of the ongoing ac-
tivities or processes resulting from applying a set of tools
to a set of data structures. The internal structure of the
workspace thus reflects both the users’ goals and the soft-
ware tools that the computer system can provide for ac-
complishing these goals.

An analysis of Interlisp-D window usage followed soon after and
highlighted similar results: users regularly switch between multiple
activities, identified as sets of windows that are repeatedly used in
unison. This inspired the design of the now canonical Rooms sys-
tem [55], supporting some of the envisioned workspace features that
later came to be known as ‘virtual desktops’ (Figure 6). However, this
is but a small subset of what activity-centric computing entails.

Figure 6: An overview of workspaces in the Rooms system [55].

The functional equivalent of workspaces (allowing the user to groupGoal-oriented
workspaces are but a

small subset of
activity-centric

computing.

3 A possible cause for confusion here is that the notion of ‘workspace’ by Bannon et al.
corresponds to that of ‘activity space’ by Miyata and Norman, whereas ‘task’ and
‘activity’ are used quite liberally, including to refer to actions within a workspace.

2.1 history of activity-centric computing 15

user interface elements together which can be retrieved in unison) ex-
isted long before Rooms came along. To go back in time: a conceptu-
ally similar system (named ‘Room’) was introduced by Chan prior to
Rooms [35]; Smalltalk-80 (the pioneer of graphical window manage-
ment systems) supported ‘project’ workspaces [48]; and even Engel-
bart’s NLS system from 1968 was flexible enough to allow the user to
set up a list of activities which linked to associated workspaces [43].
What sets activity-centric computing apart is the intent assigned to a
workspace by the user and the computational support provided for it.
More than just an aggregation of resources, activity-centric comput-
ing aims to incorporate support for the full context of human activity,
including collaboration. Therefore the distribution and management
of activities needs to be supported as well. Although Rooms seems to
be inspired by a similar vision, its implementation does not venture
beyond providing basic support to group resources.

Outside of research the concept of activity-centric computing never At present,
workspaces are
widespread, but
activity-centric
computing remains
limited to research.

really caught on. The first mass-marketed personal computers did not
even support the more basic notion of multiple workspaces. Therefore
not unexpectedly, more than 20 years after Bannon et al. suggested to
provide support for easy suspension and resumption of activities [11],
studies were still reporting on the complexities of multitasking in con-
temporary computing systems [37, 49, 89]. As a result the concept
acquired yet another name: González and Mark referred to the need
to support multiple ‘working spheres’ [49]. Although most contem-
porary operating systems now finally support an implementation of
workspaces similar to Rooms (only recently introduced in Windows
10), just a limited subset of the envisioned functionality originally pro-
posed by Miyata and Norman is incorporated [93]. Window manage-
ment systems primarily support the second requirement for human
activity (allowing to simultaneously view different components re-
lated to a complex task), whereas the workspace functionality seems
to be tacked on, not fully supported by some applications.

This provides the historical context for activity-centric computing. This part introduces
a conceptual
framework for
activity-centric
computing.

An overview of this line of research (also the topic of this disserta-
tion) will be provided in Chapter 5, but here, I will first introduce a
conceptual framework which will serve as a research agenda. Given
the extensive scope covered by this research, a matching theoretical
foundation needs to be equally broad. It should cover a general un-
derstanding of human activity and thus be applicable to multiple
settings and domains. Although such theories exist (as will be sum-
marized next), they are not prescriptive; they can inspire the design of
specific computing systems by highlighting key points of interest but
do not lay down generalizable implications for design. Moreover, they
tend to carry with them rich and complex philosophical backgrounds,
which, as I will argue here, might not be relevant for design.

16 computer-mediated activity

2.2 the search for theory

Theories within HCI can be divided into two main categories: descrip-Postcognitivist
theories in HCI are

descriptive.
tive (and explanatory) and prescriptive (and predictive) theories. The-
ories within the former category primarily serve as analytical tools
(facilitating the thought process), whereas theories in the latter can
make predictions about performance and provide specific guidelines
for design. Both are useful and serve their distinctive purpose, how-
ever, ever since HCI has distantiated itself from the cognitive infor-
mation processing paradigm, theory has been primarily seen “as an
explanatory device, and as an aid to understanding, rather than as a
predictive instrument” [114]. E. g., during ethnographic observations
theories act as an analytical lens, highlighting the social and organi-
zational context of human activity. Rich descriptions of work practice
are created as it occurs (in situ), before and after the introduction of
a new or existing technology. This allows to identify concrete issues
which need to be addressed in system design. However, with the fo-
cus of ethnography on the details of practice, such observations are
highly situation-specific and are thus hard to generalize [33]. They
form a valid critique of specific technologies but do not pave the way
to improving overall system design. Even more so, ethnomethodol-
ogy, as popularized by Suchman in an early observational study [126],
explicitly shies away from generalizing results. Postcognitivist theo-
ries in HCI (such as activity theory, actor-network theory, distributed
cognition, and phenomenology) are thus predominantly descriptive
and avoid reducing human activity to a set of core concepts which
need to be supported within a computing system [74, Ch. 9]:

If postcognitivist theories have taught us anything, it is
that the closer we look, the more complex ordinary activi-
ties appear, and the less amenable they are to reductionist
accounts.

Regardless of the intrinsic complexities of human activity, in orderThe design of
general purpose

computing systems
requires prescriptive

models.

for software engineers to be able to construct a common underlying
architecture in support of them, there is still a need to reduce activi-
ties to a simplified computational representation. The very nature of
software engineering—constructing reusable components that build
on top of one another—requires a reductionist approach to system de-
sign. Postcognitivist theories thus seem to be at odds with software
engineering. Although descriptive theories are particularly suitable
as heuristic tools during the observation of existing systems (sensitiz-
ing the ethnographer to the complexities of situated action), they can
not prescribe central features which need to be supported in a general
purpose computing system, i. e., a personal computer. Postcognitivist
theories can guide incremental innovation by highlighting specific
problems with existing technology, but do not outline a broader vi-
sion for future technologies.

2.2 the search for theory 17

There is a problem with such a ‘localized’ view on design, where Designers need to
understand the core
concepts of human
activity for which to
provide support.

technologies are tailored entirely to specific practices. Creating iso-
lated technologies easily disregards issues of interoperability, further
contributing to readily observable problems in computing like infor-
mation fragmentation [25]. Each application ends up storing, man-
aging and viewing information items within separate application-
specific collections. What is needed is a more general understanding
of human activity: common findings across studies which can directly
impact the design of a broader range of systems and help to design
them in such a way so they work well together. In other words, what
is needed is a general conceptual understanding of the ‘physics of
practice’; what are the core concepts of human activity that need to
be supported? Such a collection of theoretical concepts could be used
by system designers to expose as computational constructs, providing
an intuitive and coherent user experience across applications.

To this end, more important than being able to explain human ac- Conceptual models
are prescriptive.tivity, we need to understand how users experience it; the two do not

necessarily coincide. For example, although activity theory decom-
poses activities into underlying actions and operations (a useful con-
struct for analysis), users do not express their goals as such. It does
not make sense to represent the inner structure of a particular the-
ory within the user interface. Therefore, we can sidestep the “boiling
cauldron of competing social science perspectives” [114] (and their
associated philosophical backgrounds) and focus on the task at hand:
designing computer-mediated activity. For the purpose of interaction de-
sign, it is quite sufficient to understand the mental models users have
of the world. Such conceptual models (as will be detailed later) can
form part of a prescriptive theoretical foundation for HCI from which
general implications for design can be derived.

Theory also serves a broader purpose. Other than providing a clear Descriptive theory
can validate, extend
on, and introduce
new prescriptive
conceptual models.

goal to direct the design of interactive computing systems, theory
can unite communities through the introduction of shared concepts
and help make strategic choices on how to proceed [74, 81, Ch. 2].
Emphasizing this even further, Barthelmess and Anderson state [21]:

The value of any theory is not “whether the theory or
framework provides an objective representation of real-
ity” [13], but rather how well a theory can shape an object
of study, highlighting relevant issues.

Although current postcognitivist theories can be used as such, they
carry with them rich and complex philosophical backgrounds which
might inhibit cooperation; conceptual models do not, and can more
easily be adopted as a ‘common language’ between opposing views.
In such a scenario, the main role of descriptive theory is no longer to
explain human activity, but to validate, extend on, and introduce new
prescriptive conceptual models.

18 computer-mediated activity

2.3 implications for design

The apparent conflict between the ‘localized’ view of ethnographyEthnography can
contribute to design

in more ways than
simply reporting on
empirical accounts.

and system design has been recognized for quite some time. Nonethe-
less, some implications for design can be derived through ethnogra-
phy. Button and Dourish discuss three ways by which ethnomethodol-
ogy in particular can influence design, which they coin ‘technomethod-
ology’ [33]. First (and most commonly employed), the ethnomethod-
ologist works closely with the designer, providing direct input based
on observations done in the field. Second, letting an ethnomethod-
ological account speak for itself, the designer draws inspiration from
reading the analysis of the work situation constructed by the eth-
nomethodologist. However, neither of these two approaches are di-
rected towards creation of the reusable theoretical concepts that we
are after. More in line with this objective, a third approach suggests
“to align system design not so much with the details of specific work-
ing practices, as with the details of the means by which such working
practices arise and are constituted” [33]. They posit that the ‘generally
operative social processes’ which are identified in ethnomethodology
can be adopted as resources for design. These are the analytical in-
sights which are the true important implications for design [39]. In
essence, Button and Dourish seem to argue that ethnomethodology
should develop precisely the theoretical foundations interaction de-
sign is looking for [71, 74, Ch. 2].

However, from an overview of 25 years of ethnography in designEthnographic
findings are mostly

highly specific, or
overly broad

sensitizing concepts.

it becomes clear that discussions on how to effectively interrelate the
two and on how to construct such a general understanding of the
‘nature of work’ are still actively ongoing [27]. What is evident, how-
ever, is the stark contrast between how the majority of findings in
ethnography are reported and the distilled format in which design
researchers anticipate to receive them. Based on interviews with 12

expert design researchers Sas et al. summarize [117]:

In contrast with ethnographic research emphasizing “thick
descriptions” and HCI textbooks highlighting communi-
cating devices, i. e. personas and scenarios, our findings
show limited evidence of these types but a strong interest
in “short descriptions” of fieldwork data.

As hinted at earlier, such results do commonly make up the ‘implica-
tions for design’ section at the end of HCI papers which report on
ethnographic field studies [39]. These results can be broadly cate-
gorized as either being domain- or technology-specific findings, or
broader sensitizing concepts highlighting relevant social aspects con-
cerning technology use (e. g., social awareness) [117]. However, it is
quite rare for findings to relate to generalizable conceptual models
users have of the world [104], which arguably have thus far had the
greatest impact on system design (e. g., the desktop metaphor).

2.4 conceptual models 19

2.4 conceptual models

Early on in the history of HCI, Norman and Draper introduced the Conceptual models
are powerful
generalizable tools
for system design.

notion of using clear coherent ‘conceptual models’ as an appropriate ap-
proach to system design [104]. When interacting with a system, users
form a mental model which they use to anticipate and reflect on sys-
tem behavior. It is thus beneficial for designers to expose preexisting
conceptual models users might have in the user interface, either from
the real world or from using prior systems. When the user’s mental
model coincides with that which is introduced by the designer into
the system, their need to rely on system documentation is diminished.
In a way, the designer ‘talks’ to the user through the system to con-
vey its functionality; an image of the designer’s conceptual model
is embedded into the system, from which the user gradually shapes
a mental model which is relied upon during user interaction (Fig-
ure 7). A widespread example of this is the user interface on desktop
computers: folders and documents placed on a digital desktop are
designed to resemble a physical desk in an office workspace.

Figure 7: Conceptual model: the designer’s model, the system image, and
the user’s model. [104].

Conceptual models entail three different types of constraints which Behavioral
constraints guide
user interaction.

can prohibit, discourage, or encourage certain user interactions [102]:

physical constraints : These make it physically impossible to
perform a certain action. For example, it is impossible to move
the cursor outside of the screen.

logical constraints : By implicitely exposing the underlying de-
sign model, users can deduce available or necessary actions
themselves. For example, users can anticipate more text is avail-
able in a partially visible text document.

cultural constraints : These are conventions that have evolved
over time, and ideally are a good fit with human cognition. For
example, clicking and dragging a scrollbar will reveal content
beyond what is visible.

20 computer-mediated activity

The trick to good system design, then, lies in finding such appropri-Well designed
systems incorporate

consistent and
natural conceptual

models . . .

ate conceptual models and ensuring they are consistent throughout
all of the user’s interactions with the system. Consistency is what
allows the user to accurately predict system behavior. Therefore, par-
ticularly appropriate conceptual models are those that coincide with
mental models users already have of the ‘natural’ world; such models
are consistent beyond the user interface, and help to bridge the gap
between the physical and digital world. This is in line with Weiser’s
concept of ‘ubiquitous computing’ where he explores the boundaries
of this concept by anticipating computers will become ‘invisible’. He
states that “[m]achines that fit the human environment, instead of
forcing humans to enter theirs, will make using a computer as re-
freshing as taking a walk in the woods” [137].

Another important aspect to good design is to choose conceptual. . . that are broadly
applicable. models which can be applied to a broad range of situations as this

helps to reduce the amount of interactions users need to rehearse
and recollect. To demonstrate, it suffices to look back at the design
methodology of the highly influential Xerox Star [68]. The Xerox Star
“adheres rigorously to a small set of design principles” in order to
“unify the nearly two dozen functional areas of Star, and allow user
experience in one area to apply in others” [123]:

We have learned from Star the importance of formulating
the fundamental concepts (the user’s conceptual model)
before software is written, rather than tacking on a user
interface afterward. Xerox devoted about thirty work-years
to the design of the Star user interface. It was designed
before the functionality of the system was fully decided.
It was even designed before the computer hardware was
built. We worked for two years before we wrote a single
line of actual product software.

The Xerox Star interface (Figure 8) thus reflects one of the earliestThe conceptual
models used in
contemporary

systems are
outdated.

commercially influential attempts to follow a top-down approach to
design, based on the perspective of the user, as opposed to the tra-
ditional technology-driven bottom-up approach to design. It brought
many useful concepts still present in modern day computing systems
to market, most importantly the desktop interface and ‘universal com-
mands’ like ‘copy’ and ‘delete’. However, as an ‘office information
system’ it was modeled after the metaphor of a physical office, a con-
cept now largely antiquated; the majority of information is no longer
stored in physical files, computers are no longer chained to office
desks, and computing devices of varying shape and size have made
their way into our everyday lives. Computers have thus become ubiq-
uitous, but unlike Weiser’s vision they have yet to become invisible.
Therefore, the current challenge for HCI is to find new appropriate
conceptual metaphors, tackling this broader context in which compu-
tational devices are used.

2.5 motor themes 21

Figure 8: The Xerox Star user interface which commercialized the desktop metaphor [68, 123].

2.5 motor themes

Long-term design efforts such as that of the Xerox Star are now rare. HCI lacks motor
themes which
represent
accumulated
knowledge.

Where the Star had an open playing field, largely unrestricted by
prior technologies, the design of contemporary systems is inhibited
by concerns of backwards compatibility (more likely to get adopted
by users). In fact, even though the Star was highly influential in
shaping modern computing, the workstation itself did not become
a commercial success. Instead, information technology is governed
by a fast-paced competitive market (even in research) with a constant
push for short-term innovations. In an analysis of proceedings at CHI

it is shown that “when a new technology comes along it seems that
researchers start from scratch leading to relatively isolated research
themes” [85]. Old topics are constantly being replaced by newer ones,
with a limited amount of insights being handed over. There are no co-
herent and central ‘motor themes’ which can drive scientific research4.

4 In a plenary session at CHI 2016 Alan Kay even states: “Well I don’t think we have a
field. I think it is still basically a pop culture probing around; there are little pockets
of this and that, but it doesn’t act like any field that is taking its larger mission
seriously. It is kind of a caricature.” (youtube.com/watch?v=S6JC_W9F8-g)

https://www.youtube.com/watch?v=S6JC_W9F8-g

22 computer-mediated activity

Motor themes are represented within a strategic diagram, depictingMotor themes are
needed to make a
bigger impact on

society.

research themes studied within a field along two dimensions: cen-
trality and density (Figure 9a). Centrality indicates to which degree
a theme interacts with other research themes. Density represents the
strength of links within a specific research theme (internal cohesion).
Motor themes are research themes which are both central (impacting
the entire field) and dense (well-developed themes) [79]:

A theme begins its life with low centrality and density
in the Chaos quadrant. As the theme becomes more cen-
tral to the community, it moves to the Bandwagon quad-
rant. The theme eventually matures its internal cohesion
and moves to the Mainstream quadrant, where the motor
themes of a community lie.

In their analysis, Liu et al. show that no such themes exist within the
CHI community (Figure 9b), which is representative of multiple com-
peting perspectives in HCI. This “should be a very worrying prospect
for a scientific community” [79]. Motor themes are needed to drive an
overarching research agenda, allowing themes to advance sufficiently
into the mainstream, i. e., to make a bigger impact on society.

identifying motor themes To summarize, in this chapter I
have so far highlighted the multidisciplinary nature of HCI, a research
field which studies human activity mediated by computational tech-
nologies. The field is plagued by a lack of generalizable implications for
design as a result of its focus on short-term innovation whenever new
enabling technologies arrive. However, I introduced conceptual models
as an important and historically successful approach to system de-
sign. I will conclude this chapter by arguing how a renewed focus on
the general conceptual models that users form of the ‘natural’ world
can help in accumulating knowledge, and how such models can act
as motor themes to foster collaboration across disciplines.

crucial information, this approach visualizes the interrelated
concepts [11] and intellectual structure of a discipline into a
map of the conceptual space of this field, and a time-series
of such maps produces a trace of the changes in this
conceptual space [13]. Co-word analysis has been widely
utilized in mapping the conceptual networks of a diversity
of disciplines, like business intelligence [29], consumer
behavior [22], software engineering [11], patent analyses
[10], biology [1,9], education [25], and library and
information science [13,20,30]. As such, it makes sense to
apply this technique to enrich our understanding of CHI.

Given a network of keywords, we can use network analysis
and strategic diagrams to characterize the field. Keywords
and clusters have different properties, depending on how
they are linked with each other. For instance, bridges
between two nodes (i.e., linked nodes) in a network perform
a valuable function in allowing communication and
facilitating the flow between otherwise isolated regions of
the network, also known as structural holes [24]. The
greater the number of bridges associated with a research
topic or theme, the more it serves to connect otherwise
isolated research topics or themes. Keywords with a great
number of structural holes serve as the backbone of the
whole network. If these are removed from the network, the
whole network will collapse into a number of separated and
unconnected research sub-fields, therefore losing its
scientific cohesion and identity.

When computing a network’s core-periphery structure, it
becomes possible to determine which nodes are part of a
densely connected core (i.e., with a higher number of
bridges) and which are part of a sparsely connected
periphery [5,26]. Core nodes are typically well connected to
peripheral nodes. Peripheral nodes are sparingly connected
to a core or to each other. In a keyword network it is
expected that, as the body of knowledge grows, peripheral
nodes become core nodes, thus allowing for the emergence
of new peripheral nodes. Research topics with a high core
value delimit the main body of HCI knowledge, and
represent important knowledge-growing points of the main
body of the field.

In our work we rely on two graph theory concepts to map
the field of HCI: density and centrality, defined as follows:

• Density, or internal cohesion, measures the strength of the
links that tie together the cluster of keywords making up
the research theme. This can be understood as a measure
of the theme’s development [17,22]. Density offers a
good representation of the cluster’s capacity to maintain
itself and to develop over the course of the time in the
field [7,17]. The higher the density, the more coherent the
cluster is and the more likely it is to contain inseparable
expressions;

• Centrality measures the degree of interaction of a theme
with other parts of the network [24]. In other words, it
measures the strength of external ties of a research theme
to other research themes, and can be referred to as a
measure of the importance of a theme in the development
of the entire research field [22]. The greater the number
and the strength of a theme’s connections with other
themes, the more central this theme will be to the whole
network [3].

By combining both concepts we then created a strategic
diagram. Strategic diagrams are two-dimensional plots that
have been widely used in prior co-word analysis studies
[7,11,20,22]. The x-axis shows the strength of interaction
between a specific research theme with others (i.e.,
centrality). The y-axis reflects the density of the research
theme, or the internal cohesion of a specific research theme
(see Figure 1).

Figure 1. Strategic diagram’s degree of density and centrality.
The location of a given research theme within this strategic
diagram characterizes the theme in the context of the whole
discipline:
Quadrant I (Figure 1, top-right): both internally coherent
and central to the research network in question. Known as
the motor-themes of the discipline given that they present
strong centrality and high density;
Quadrant II (Figure 1, top-left): coherent but low centrality
themes. These themes are internally well structured and
indicate that a constituted social group is active in them.
However, they have rather unimportant external ties
resulting in specialized work that is rather peripheral to the
work being carried out in the global research network;
Quadrant III (Figure 1, bottom-left): weakly developed
with marginal interest in the global research network. These
themes have low density and low centrality, mainly
representing either emerging or disappearing themes;
Quadrant IV (Figure 1, bottom-right): weakly structured
themes. These are strongly linked to specific research
interests throughout the network but are only weakly linked
together. In other words, prior works in these themes is
under-developed yet transversal, with potential to be of
considerable significance to the entire research network.
DATA
The ACM digital library provided us data on the papers
published at the CHI conference between 1994 and 2013.
According to Bradford’s law [6], a fundamental theory in
bibliometric analysis, a small core of publications will
account for a sizeable portion of the significant literature in
terms of citations received (i.e., as high as 90%), while
attempts to gather 100 percent of it will add articles to the
core at an exponential rate [14]. Considering the relevance
of the CHI conference to the field of HCI, an analysis on
the CHI articles should enable us to attain a fair overview
of the field’s development: a total of 3152 CHI articles (full
papers and notes) were published between 1994 and 2013,
containing 16035 keywords (mean of 5.09 per article) (see
Figure 2). For a small number of papers we had to
manually extract the keywords from the electronic version
of the manuscript (PDF) using a script.

Session: HCI Paradigms: Past, Present and Future CHI 2014, One of a CHInd, Toronto, ON, Canada

3554

(a) Strategic diagram quadrants.

Popular Topic
(Frequency)

Core Topic
(Coreness value)

Backbone Topic
(Structural holes)

1 CSCW (50) CSCW (0.375) CWCW (42)
2 world wide web (35) two-handed interaction (0.355) world wide web (31)
3 ubicomp (28) ubicomp (0.226) interaction design (31)
4 visualization (27) world wide web (0.222) user interface (30)
5 input devices (27) CMC (0.191) visualization (29)
6 user interface (26) information retrieval (0.186) input devices (27)
7 virtual reality (26) infoviz (0.171) interaction techniques (27)
8 Fitts' law (24) awareness (0.161) CMC (26)
9 infoviz (23) tangible user interface (0.160) ubicomp (25)
10 augmented reality (22) virtual reality (0.160) information retrieval (24)
11 interaction design (22) user interface (0.159) multimedia (24)
12 interaction techniques (21) augmented reality (0.149) infoviz (23)
13 information retrieval (20) children (0.148) children (23)
14 tangible user interface (20) user studies (0.146) virtual reality (22)
15 CMC(20) multimedia (0.145) Fitts' law (22)
16 children (20) interaction techniques (0.142) Interface design (22)
17 multimedia (20) visualization (0.142) mobile computing (20)
18 user studies (18) interaction design (0.137) empirical study (20)
19 user interface design (18) hypertext (0.133) augmented reality (19)
20 cognitive modeling (18) ethnography (0.113) agents (19)

Table 3. Summary of popular, core and backbone topics of HCI in 1994-2003.
 In bold are keywords that appear in every column.
Popular Topic

(Frequency)
Core Topic

(Coreness value)
Backbone Topic

(Structural holes)
1 mobile phone (67) handheld devices (0.229) ubicomp (44)
2 ubicomp (65) gestures (0.229) collaboration (43)
3 visualization (62) collaboration (0.226) evaluation (43)
4 handheld devices (60) mobile phone (0.224) mobile phone (41)
5 CMC (59) CMC (0.211) children (39)
6 gestures (59) ubicomp (0.210) visualization (38)
7 user studies (58) CSCW (0.208) design (38)
8 collaboration (57) touch (0.207) gestures (34)
9 privacy (54) children (0.203) user studies (34)
10 CSCW (52) evaluation (0.195) CSCW (34)
11 design (49) privacy (0.161) CMC (33)
12 children (48) user studies (0.158) mobile (32)
13 sustainability (45) design (0.153) handheld devices (31)
14 ethnography (45) education (0.152) games (29)
15 evaluation (43) learning (0.149) ethnography (28)
16 infoviz (43) games (0.146) augmented reality (28)
17 mobile (42) visualization (0.146) social computing (28)
18 TUI (38) TUI (0.142) privacy (27)
19 games (38) touch screens (0.134) social networks (26)
20 Fitts' Law (37) mobile (0.134) mobile computing (25)
21 online communities (36) tabletop (0.123) sustainability (24)
22 HCI4D/ICTD (35) augmented reality (0.117) infoviz (24)
23 interaction design (35) communication (0.116) education (24)
24 augmented reality (34) infoviz (0.115) learning (24)
25 participatory design (33) social networks (0.113) communication (24)
26 social networks (33) awareness (0.112) TUI (23)
27 usability (33) SNS (0.109) awareness (23)
28 crowdsourcing (32) wikis (0.106) participatory design (22)

Table 4. Summary of popular, core and backbone topics of HCI in 2004-2013.
 In bold are keywords that appear in every column.

Figure 4. Strategic diagram for CHI for the period 1994-2003 (left), and 2004-2013 (right).

Figure 5. Indicative strategic diagrams
from other scientific disciplines.

Psychology [21]

Consumer Behavior [22]

Software Engineering [11]

Stem Cell Research [1]

Quadrant I Quadrant II

Quadrant III Quadrant IV Quadrant IV

Quadrant I Quadrant II

Quadrant III

Session: HCI Paradigms: Past, Present and Future CHI 2014, One of a CHInd, Toronto, ON, Canada

3557

(b) Strategic diagram for CHI 2004–2013.

Figure 9: Stategic diagram for CHI indicating a lack of motor themes [85].

2.5 motor themes 23

Ironically, even though the human is what unifies the different dis- The human is a
constant in HCI
which can be used to
accumulate
knowledge.

ciplines within HCI, Liu et al. show in their review that there is “no
discernible research theme emerging on this topic” [85]. A more intri-
cate reading, as presented in this chapter, does reveal that attempts
are made to guide research in this direction. However, given that no
common theoretical framework exists, suggestions on how to accu-
mulate knowledge on the nature of human activity seem to be fairly
secluded and do not build on top of one another: e. g., where eth-
nomethodology speaks of ‘generally operative social processes’, sys-
tem design speaks of ‘conceptual models’, to list but two examples
highlighted earlier. Regardless of terminology, there seems to be a
general consensus that knowledge should be accumulated around a
context-free interpretation of human activity, as opposed to concrete
instantiations of it. We should strive to understand the general pro-
cesses which define human activity: the ‘physics of practice’.

As per the quote by Grudin at the start of this chapter, another The interface,
although diverse,
has common
desirable design
properties.

constant within the field has been the ‘interface’. Although the en-
tities between which interfacing takes place have evolved over time,
the notion of an interface is inherent to HCI; without the interface,
no interaction can occur. Thus, it forms a suitable motor theme on
which knowledge can be accumulated. However, “the interface is not
a unitary concept”, and discussing it requires navigating a ‘termino-
logical minefield’ [81]. Along with the expanding context of HCI came
different perspectives on what constitutes the interface, again, each
building on top of their own fairly secluded insights. In between all
of this diversity, however, a glimpse of harmony shines through. No
matter what abstraction level the interface operates on, common desir-
able properties persist. E. g., consistency has long been a goal within
design. Likewise, on a much lower abstraction level, ‘conceptual in-
tegrity’ is an important characteristic of a well-designed API [26].

Human activity and the interface, then, are two motor themes which Motor themes can
form the basis of a
theoretical
framework.

could form the basis for a research agenda in HCI. Although taken at
face value this might seem trivial (given the name of the field), there is
a limited amount of accumulated knowledge, applicable to multiple
settings and technologies, revolving around these themes. The brief
examples listed here do indicate that commonalities between differ-
ing perspectives within the field exist, but in order to relate, contrast,
and develop such findings they need to be framed within a shared
theoretical framework. A shared framework does not imply reduc-
ing different perspectives to one overarching view; separate concep-
tualizations are still a possibility, and moreover, extremely valuable.
However, insights need to be integrated through a common formal-
ization of what the objects under study are. To this end, the two motor
themes identified here form a suitable starting point, but they need
to be dissected further into more narrow elements of study in order
to become truly operational.

24 computer-mediated activity

Naturally occurring conceptual models, inherent to human nature,Conceptual models
can be used as

shared concepts to
enable cooperation
across disciplines.

are a particularly interesting candidate to be made part of such a
framework. Although they were introduced from the perspective of
design, they sit in between the technical and empirical: they can guide
the implementation of software systems by outlining the necessary in-
teractions to be supported, but can also be placed under close scrutiny
through ethnographical observations within the natural world. At
first sight this might seem to conflict with grounded theory (as some-
times employed by researchers within the social sciences), however,
even though grounded theory starts its analysis from the ground up,
it does not eliminate the possibility of relating findings back to a
common theoretical framework after data analysis has been finalized.
Norman revealed the importance of ethnography in understanding
conceptual models and their entailing behavioral constraints (includ-
ing cultural conventions) [102]:

How do you know if the user shares the conventions?
Why, with data, of course. This is something that cannot
be decided by arguments, logic, or theory. Cultural con-
straints and conventions are about what people believe
and do, and the only way to find out what people do is to
go out and watch them—not in the laboratories, not in the
usability testing rooms, but in their normal environment.

Conceptual models, as part of overarching motor themes, can thus
provide suitable ‘hooks’ across disciplines, enabling the construction
of a shared body of knowledge.

3
I N T E R A C T I O N F R A M E W O R K

To become [an integrated field of studies], HCI should be based on a
conceptual scheme powerful enough to incorporate both human beings and

computer technology within a coherent theoretical framework.

— Victor Kaptelinin [71]

Different perspectives in HCI correspond to common motor themes An integrative
framework in HCI
covers interaction,
as part of human
activity.

(discussed in Section 2.5) which are studied at different levels of
abstraction: e. g., cognitivist approaches study the mental operations
which make up human activity, whereas sociological inquiry investi-
gates the impacting factors of its surrounding context. Regarding one
as more important than the other does nothing but stymie progress.
Both perspectives (as well as others) are integral to constructing a
complete understanding of human activity. Although the interface is
‘reaching out’ [51], it does not disappear from whence it came. A first
important dimension for a theoretical framework in HCI should there-
fore cover different levels of abstractions of human activity. Each level
can still formalize its own conceptualization of the ‘interface’, but all
should be directed at a common understanding of what purpose it
serves, answering the question “Why does interaction occur?” This
forms a second important dimension for a theoretical framework in
HCI: types of interaction. Both dimensions are depicted in Figure 10.

-
Types of Interaction

6Activity
Abstraction

interface

Figure 10: Two dimensions for a theoretical framework in HCI: levels of ab-
straction of human activity, and different types of interaction.

This two-dimensional framework only outlines the scope and com-
plexity of studying the interface. It incorporates the two motor themes
of HCI identified in the previous chapter, but without breaking it
down into further subcomponents it can not act as an integrative
framework to unite differing perspectives within HCI. In this section I
will therefore decompose both dimensions into meaningful conceptu-
ally coherent concepts, which will act as a common thread through-
out the remainder of this dissertation.

25

26 interaction framework

3.1 common language

Tackling the multidisciplinary nature of HCI is by no means an easyDisciplines
construct their own
plane of knowledge,

but can interact
with others using

shared terminology.

task. Looking for inspiration we can turn to Otto Neurath, a philoso-
pher of science who spent several years of his life on constructing a
‘unified science’ [109]. As part of ‘the movement for the Unity of Sci-
ence’, he proposed not to strive for a ‘super-science’ (based on a prior
and independent philosophy), but rather that “the special sciences
will themselves supply their own synthesizing glue” in the form of
unifying concepts which can be identified across disciplines [99]:

A large collection of terms have been gathered by the var-
ious sciences during the centuries, and it is necessary to
examine this collection from time to time, for terms should
not be multiplied beyond necessity. . . . Distinct terms oc-
cur in different disciplines which nevertheless may have
the same function; and much fruitless controversy may
arise in trying to find a distinction between them.

Such common concepts denote a ‘horizontal component’ which links
the different sciences to each other within a two-dimensional concep-
tion of unified science: there is a “horizontal consistency and ‘har-
mony’ among the sciences”, however, “none, [Neurath] felt, should
be considered more fundamental than others” [109]:

Although individual sciences might evolve toward hierar-
chical axiomatization, and the task of logically reducing
some sciences to others was worth while, unified science
as a whole, Neurath felt, should be conceived not as a
pyramid but as a ‘mosaic’ [98].

Each science is tethered to its own horizontal plane of knowledge,
along a second (vertical) dimension. Where planes overlap a com-
mon language should be introduced in order to enable accumulating
knowledge which transcends individual disciplines. This metaphor is
depicted in Figure 11, extending on the earlier introduced framework.

Activity
Abstraction

Types of Interaction

Figure 11: Individual sciences operating on their own plane of knowledge,
and the interaction between them.

3.2 layers of abstraction 27

Considering different levels of abstraction in HCI “a hypothesis can Constructing a
unifying
terminology is a
cross-disciplinary
concern.

be made that the problems and debates within HCI research . . . are
due to a change or enlargement of the research object of HCI from one
level to another” [81]. Although this broadening of context is a crucial
part of a maturing field of research, it does not mean that prior levels
should be subsumed by newly introduced research philosophies. In-
tegrating different perspectives within HCI is a collaborative research
effort, and no single subdomain can rightfully claim a seat on the
throne. As Neurath states while arguing for a unifying common lan-
guage [100]:

Debaters on comprehensive scientific problems are . . . like
lawyers who have to take a side. Each of them intends
to strengthen his own arguments and to weaken the ar-
guments of the aggressor—but no judge is in the chair.
. . . Finally we find ourselves all together in the same ship
and are co-operating even when we think we are fighting
one another.

To be able to cooperate, Neurath suggests common terminology Common concepts
should be based on a
everyday description
of human activity.

should be based on ‘everyday’ language, derived from physical ob-
servation, so that terminology from any specific science can be trans-
lated to it [100]. While I agree with Kaptelinin that “it is desirable to
rely on a single homogeneous conceptual scheme powerful enough
to cover various levels of human-computer interactions” [71], I do
not share his (and others’ [80, 81]) optimism that a preexisting frame-
work (e. g. activity theory [74, 97]) can be adopted to this end. Instead,
I share Neurath’s view that such a conceptual scheme can only be
built from the ground up, based on cross connections (shared con-
cepts, yet with different terms) which can be identified among differ-
ent research disciplines. For example, within information systems (IS)
research, each abstraction level operates on its own models, concepts,
methods, and background theories. A common language in the form
of ‘transformation procedures’ enables integration between the differ-
ent subdomains where needed [81], thus not too dissimilar from Neu-
rath’s view of unified science. Similarly, HCI should aim to construct
such a common language, devoid of any particular epistemology or
philosophy, in order to foster collaboration across disciplines.

3.2 layers of abstraction

Categorizing HCI research as the investigation of the interface at dif- Prior work has
categorized the
interface along
different levels of
abstraction.

ferent levels of abstraction (or perspectives) is by no means a new
proposition [80, 81]. While Grudin discusses the computer is ‘reach-
ing out’, he identifies five different shifts in focus of interface develop-
ment: the interface at the (1) hardware (2) programming task (3) ter-
minal (4) interaction dialogue (5) and work setting [51]. Inspired by

28 interaction framework

this, and in line with IS research, Kuutti and Bannon suggest that the
following three levels suffice to describe the current state of affairs: a
work process, a conceptual, and a technical level [80, 81]. The work pro-
cess level considers the relation between the computing system and
the context of its use; the conceptual level concerns those parts of the
system which need to be understood in order to use it (including con-
ceptual models); and finally the technical level determines how the
user and computer communicate.

Although different perspectives in HCI seem to correspond to “dif-Different research
disciplines need to

be aware of all levels
of abstraction.

ferent design domains of an application, each containing also an inter-
face as an integral part” [81], I do not deem it beneficial to emphasize
this separation in a framework intended to unify differing points of
view. In reality, even though the primary focus of a ‘technical’ level is
to enable input and output modalities in a computing system, it can
not do so effectively without concerning itself with the surrounding
context in which interaction takes place (e. g., a spelling checker or
autocomplete function needs to be aware about the language used1).
Conversely, beyond understanding the context of use, the ‘work pro-
cess’ level needs to concern itself with how a system works (or can
work) in order to meaningfully interpret its impact on the surround-
ing work context (e. g., miscommunication originating from a hastily
approved autocompleted word). Different research perspectives are
thus much more interrelated than made out to be in the earlier sim-
plification presented in Figure 11. Although the primary focus of each
perspective lies on a distinct level of abstraction, all rely heavily upon
a basic understanding of the bigger picture.

In line with Neurath’s view, the identified levels of abstraction inDifferent levels of
abstraction entail
different types of

objects in the world.

this dissertation are based on the observation of ‘physical’ human ac-
tivity, as opposed to being based on a historical perspective [51] or
different design domains recognized within HCI [81]. Nevertheless,
such earlier demarcations are useful and, as will become clear later
on, to some degree overlap with those found when using human ac-
tivity as the main point of analysis. In the categorization that follows,
each level of abstraction denotes a set of observable objects in the
world (both actual and desired), related to human activity. The focus
on objects is motivated by their essential role as part of user interac-
tion, which forms the second dimension of the theoretical framework
presented in this chapter. The purpose of this categorization is not to
define intricate details of what each category entails (this is left open
to the interpretation of individual perspectives), but to delineate one
category from the other. Such a categorization allows to more easily
relate findings from separate research disciplines to each other.

What follows is a decomposition of human activity in terms of the
objects it operates on with increasing levels of abstraction. Table 1 lists

1 To exemplify a failure in doing so: my Nokia Lumia 720 Windows phone retains a
system-wide input language setting, requiring me to change it constantly depending
on whom I am writing to.

3.2 layers of abstraction 29

a few examples of such a decomposition based on different perspec-
tives within HCI. These examples are not exhaustive nor definite, but
merely serve to highlight the intended scope of each layer of abstrac-
tion. In addition, it is worth noting that not all objects of the same
‘kind’ are necessarily situated on the same layer (e. g., a text editor
that allows grouping resources would be a workspace).

material : As a fundamental building block, ‘material’ is designed Material traits:

1. indivisible

2. manipulable

3. data or
instrument

to be indivisible; no interaction readily accessible to the user
allows breaking it apart into further subcomponents. The mate-
rial can only be manipulated as a whole. When manipulated as
intended, the material maintains its original purpose or mean-
ing (considering it in isolation). However, as part of a collection,
data material can gain additional meaning based on its relation to
other materials; instrument material can not, and serves solely to
operate on other materials. This does not exclude data material
from being able to operate on other materials, but in contrast to
instrument material this is not its primary purpose.

item : An item is a collection of data and related instrument mate- Item traits:

1. collection of data

2. divisible

3. tool or resource

4. hierarchical

rials to which direct or indirect access is provided. Each indi-
vidual data material in the collection gains additional meaning
based on its relation to at least one of the other data materials
within the same collection. In case the resulting composition is
designed to operate on material, it is called a tool (configurable
instrument); otherwise, it is called a resource. Items can overlap
with smaller contained items. Although material is designed to
be indivisible, the whole can be converted into a collection of
materials (generally of a different type than the original), effec-
tively turning it into an item.

workspace : From within a workspace, direct access to multiple Workspace traits:

1. group resources

2. direct
manipulation

resources is provided (not necessarily at the same time), and
groups of resources can be formed. Manipulation of items is
possible through the use of instruments (instrument materials
or tools) directly or indirectly accessible from within the same
workspace. This concept is not restricted to human labor. In
other words, the intent behind manipulating items is not in-
cluded in this definition.

activity : Within a workspace human activity takes place, directed Activity traits:

1. uses workspace

2. outcome directed

3. meta-resources

towards a certain outcome, during which resources are con-
structed and instruments are used. Not all resources form part
of the desired outcome. Some act as mere intermediate objects;
losing them does not negate the outcome. Such ‘meta-resources’
can document the intent, context, and history of human activity.

Some of the terminology used in these dense definitions warrants Demarcations
between layers are
drawn based on the
perspective adopted
and the intended
design.

elaboration. Multiple times it is stated that objects are ‘designed’ for

30 interaction framework

programming

text

editing

desktop

computing

task

management

activity

feature/bug
report

review
bookmarks

thesis writing
calendar

project
management

workspace

IDE

debugging
library

classification
desktop

multitasking
calendar
schedule

item

statement/class
function

paragraph/text
text editor

file
application

task
alarm

material

value/operator
compiler

character
formatting

icon
window borders

date
time

Table 1: Examples of objects that are part of human activity along different layers of abstraction.

some ‘purpose’, and entail an ‘intended’ use or ‘meaning’. This re-
flects the nature of the categorization, serving to unify differing per-
spectives on technology and design. Earlier I stated that any perspec-
tive relies on understanding the ‘bigger picture’, which I posit here
can be broken down into four separate layers of abstraction. However,
where borders between layers are drawn depends entirely on the per-
spective adopted, and therefore definitions on what delineates one
layer from the other necessarily rely on references to how different
perspectives make meaning of the world. Within system design this
implies that a designer decides on the intended use of individual ob-
jects, but can not always anticipate breakdowns (bugs, wear and tear)
or unforeseen usage of an object. This might lead to objects being
categorized differently once the design ‘breaks down’.

To further exemplify the distinction between materials and items itMaterials can be
manipulated into

items, and vice
versa.

is worthwhile to relate the different layers of abstraction to techniques
common within the arts. The ‘bigger picture’ for the artist entails both
understanding the materials used, as well as envisioning the final
piece. Only through practice can the artist gain an understanding of
how to navigate the labyrinth in between. To this end, multiple tech-
niques are at hand. For example, both sculpting and electronic music
incorporate additive and subtractive techniques to manipulate objects
into unique pieces of art (Figure 12). Using a subtractive technique, a
sculptor carves away at stone looking at it as a divisible ‘item’, using
a chisel as ‘instrument’ to ultimately reduce it to the ‘resource’ in-
tended. The only limitation is the maximum amount of detail which
can be obtained using the given ‘data material’. For a sculptor this is
less restricting than for let’s say, a pixel artist2, whose only available2 A pixel artist edits

images on a pixel
level. (art by Brian

Gogol)

material is the pixel. On the other hand, using additive synthesis,
a musician combines multiple sine waves (‘data material’) to create
different timbres for electronic instruments (‘tools’) from which com-
positions are created (‘resources’).

The hierarchical nature of items also warrants further elaboration.As a composition,
materials either gain

‘purpose’ or
‘meaning’.

Any combination of data and instrument materials is conceivable, but

3.2 layers of abstraction 31

MATERIAL

Additive Subtractive
ITEM (S)

INSTRUMENTuses

(RESOURCE or TOOL)

(DATA or INSTRUMENT)

Figure 12: Using instruments, additive and subtractive techniques are used
in order to shape objects.

an item (resource or tool) needs to be composed of at least two materi-
als. Similar to Gestalt psychology, the resulting composition “is other
than the sum of its parts”3. For example, a multi-bit screwdriver is
composed of exclusively data materials: the handle, and the individ-
ual bits. Each in separation is not ‘designed’ to be an instrument,
but in combination they gain ‘purpose’ and form a ‘tool’. In con-
trast, a work of art gains ‘meaning’ based on the interrelationships
of its containing data materials (e. g., one pixel in relation to another).
The whole is a ‘resource’ (all pixels), but a subset of data materials
can also be considered a resource in isolation (e. g., the pixels which
make up the eyes of the fox in the image depicted earlier). In this
sense items do not necessarily ‘contain’ other items, but can more
generally be said to ‘overlap’ with others. This distinction becomes
important when considering shared items, e. g., a function (‘tool’) in
object-oriented programming which is called by multiple classes.

Other than additive and subtractive techniques, objects can also Material and items
can be converted,
changing their
makeup in the
process.

be reconstructed from the ground up using new materials, generally
from a different kind. For example, in image editing software, text can
be rasterized (‘converted’ from characters into pixels). The resulting
object looks the same, but its makeup changes in the process. Using
this technique a single material can also be converted into an item
(Figure 13), or an item converted into material (e. g., optical character
recognition).

MATERIAL ITEM

A Convert

Figure 13: A character (‘data material’) is converted into pixels (‘resource’).
For demonstration purposes the quality is reduced, but this is not
a requirement.

While an object might seem to contain other objects (is divisible), Design requires
continuous moving
up and down the
ladder of abstraction.

the determining factor on whether or not that makes it an item is

3 The original statement by Kurt Koffka is often incorrectly translated to “the whole is
greater than the sum of its parts”. This deviates from the original intended meaning
which simply observes that the whole is different and independent, not greater.

32 interaction framework

its intended design. For example, a dialog box on a personal com-
puter containing a button and a label is still considered ‘data ma-
terial’ when its sole purpose is to inform the user. However, when
in addition it contains an input field acted upon by the application
(the input is taken into account), it becomes a ‘tool’. Such lines are
harder to draw when considering the process of design; although a
final design adheres to the four layers of abstraction outlined here,
the process of design requires continuous moving “up and down the
ladder of abstraction”4 [134]:

We stepped up a level of abstraction to see a high-level pat-
tern, and then stepped down to discover the explanation
for that pattern. I believe that this dance is where the deep-
est insights are born—not at any one level of abstraction,
but in the transitions between them. . . . To understand a
system, we must explore it.

Such exploration requires changing one’s perspective, and thus look-
ing at objects in a different light. Once they become the focus of de-
sign, objects previously categorized as ‘material’ can become ‘items’
and vice versa, forcing the designer to start working with a whole
new set of resources, instruments, and materials. For example, when
the aforementioned dialog box needs to be modified, it can no longer
be considered ‘material’. The focus shifts from using the application
to user interface design, or possibly even software development. Each
different perspective (abstraction level in the physical world) corre-
sponds to a new set of relevant objects and associated classifications
which need to be considered.

The distinction between items and workspaces is a challengingA workspace
supports easy

grouping of
resources, whereas

an item does not.

one. The key difference lies in being able to practically group related
resources together. For example, some text editors support having
multiple documents open simultaneously, but do not allow creating
additional groups beyond the default collection of open documents.
Therefore, a simple text editor is considered a ‘tool’ through which
‘resources’ are accessed. The desktop, however, supports having sev-
eral instances of such a text editor open and is therefore considered
a ‘workspace’. The emphasis on ‘practically’, albeit subjective, dis-
ambiguates user interfaces which are clearly designed to support
resource grouping, from those that require a bit of imagination to
achieve the same. For example, it could be said that a text editor sup-
ports grouping paragraphs. While this is true, each paragraph is part
of the overall text, and the order they are presented in generally car-
ries meaning. This is thus more in line with the definition of ‘item’
than that of ‘workspace’.

Lastly, an activity always takes place within a workspace. This isMultiple activities
can take place in a

single workspace.
4 In his essay, Bret Victor refers to different layers of abstraction for understanding

complex systems, but the same principles apply here.

3.3 types of interaction 33

necessarily true because the definition of ‘workspace’ is not bound
to any individual interface nor physical constraints thereof. That is
to say, a workspace within a computing system is always part of a
bigger overarching work environment. For example, when working
on a desktop computer the keyboard, desk, paper notes, whiteboard,
or any nearby objects can all contribute to achieving the desired goal;
the desktop interface thus forms only part of the entire office envi-
ronment (‘workspace’). Within a single workspace multiple activities
can take place, facilitated by the ability to group related resources to-
gether. Without resource grouping, activities would quickly become
entangled, negatively impacting performance. ‘Meta-resources’ can
further help organizing the workspace, clarifying which activity the
available resources belong to, who is responsible for them, or any
other information not directly forming part of the desired outcome
of the activity.

3.3 types of interaction

Having outlined four different layers of abstraction, each building on Types of interaction
need to be applicable
to all four layers of
abstraction.

top of one another, I will now turn to decomposing the second di-
mension of the interaction framework: types of interaction. Similar to
the earlier decomposition, each constituting element serves as a unify-
ing concept (enabling cooperation across disciplines), thus should be
broad enough to allow for exploration from different points of view,
yet specific enough to delineate one category from the other. In ad-
dition, as an orthogonal dimension to the first, each category within
should be applicable to all four layers of abstraction.

In contrast to the activity abstraction dimension, there is no conti- Activity theory can
be used as an
analytical tool for
user interaction.

nuity or logical ordering which can be identified for different types
of interaction. Earlier I stated activity theory is ill-suited to be used as
a unifying framework for HCI, however, as an analytical tool it can
be used to highlight the full context of human activity, thus also the
full context of user interaction. There is no need to understand the
specifics of activity theory at this point; I will merely refer to its cen-
tral (yet self-explanatory) activity system model to introduce relevant
categories of interaction.

The main unit of analysis in activity theory is the purposeful in- Types of interaction
should cover tools,
rules, community,
and division of labor.

teraction of a subject with the world. This has also been the focus of
the first dimension of the interaction framework. To a large extent the
relation between ‘subject’, ‘object’, and ‘outcome’ are encompassed
within the different categories part of the activity abstraction dimen-
sion (Figure 14). The remaining concepts of the activity system model
and their relation to the former, then, can be used to inspire which
categories make up the second dimension of the framework. These
concepts are ‘tools’, ‘rules’, ‘community’, and ‘division of labor’.

34 interaction framework

COMMUNITY

Outcome

TOOLS

OBJECTSUBJECT

RULES DIVISION of LABOR

Figure 14: ‘Subject’, ‘object’, and ‘outcome’ in activity theory overlap to
some degree with the activity abstraction dimension.

Tools are physical artifacts5 mediating human activity. Earlier ‘in-
strument material’ and ‘tools’ were identified as objects which allow
for the manipulation of other objects (categorized based on their com-
position, collectively referred to as ‘instruments’). When using instru-
ments, objects can be manipulated in two different ways:

construct : The act of bringing objects into existence. On the low-
est level of abstraction this pertains to both data and instrument
materials. Higher up this pertains to items, workspaces, and
lastly activities which can be created through a single interac-
tion, tailored to this specific purpose.

position : Using additive or subtractive techniques, items can be
composed from material. While doing so, material itself remains
unchanged and is merely positioned to form part of a new or ex-
isting item. On higher levels of abstraction, items, workspaces,
and activities are positioned (or retrieved) to be used and orga-
nized.

Human activity always takes place within a community. Even when
objectives are not shared, community plays an essential role in achiev-
ing one’s personal goals. To this end, two interactions are available:

search : Searching for objects in a personal work environment is
useful, but becomes essential when considering shared work
environments. At different levels of abstraction different ap-
proaches to search become available, given that different types
of information are specified and can be operated upon.

share : Objects can be shared, providing others (or elsewhere) with
the means to access and/or modify them. The technology needed
and reasons to do so differ between layers of abstraction.

Rules govern the relationship between subjects within a community
and the objects to which they have access and of which they make use.
To specify rules (regulate), one type of interaction is specified:

control : Access to, guidelines for, and dependencies between ob-
jects can be controlled. Depending on the level of abstraction
this ranges from specifying data types on the material layer to
workflow specifications on the level of activity.

5 Activity theory also considers psychological tools, which are left out here.

3.4 completing the mosaic 35

Division of labor determines how the objects of activity are distributed
and/or shared among multiple subjects within a community. In or-
der to effectively collaborate and/or cooperate two interactions are
needed:

notify : Status changes of objects can be communicated to other ob-
jects which might depend on them. In addition, links between
objects can be established in order to relate them to each other.

evolve : Understanding the evolution6 of how an object came to be
can help in handing over and reporting on objects and activities,
as well as easily reverting them to a prior state.

Having decomposed both dimensions, the resulting interaction
framework is a ‘mosaic’ containing 28 research topics each related to
a type of interaction at a certain level of abstraction. Based on the
matching definitions of both dimensions each tile can be differenti-
ated from one another and entails different questions for research
(Table 2).

activity

workspace

item

material

Table 2: Decomposition of the interaction framework into 28 different research topics. (Icons de-
signed by Freepik.)

3.4 completing the mosaic

All that remains is to fill out the framework. A full discussion of each The interaction
framework gives an
overview of research
topics in HCI.

individual cell is beyond the scope of this dissertation, but for each of
the activity abstraction levels I will shortly highlight examples which
are common to a wide variety of domains. A summary of these is pre-
sented in Table 3, providing a coarse overview of different research
topics within HCI and how they are related to each other. This frame-
work will form the basis for a discussion of related work in Part ii of
this dissertation.

6 The notion of ‘development’, understanding how human activity unfolds over time,
is central to activity theory.

3
6

i
n

t
e

r
a

c
t

i
o

n
f

r
a

m
e

w
o

r
k

construct position search share control notify evolve

activity

context

intent
task

management provenance coordination workflow activity life
cycle

logging

reporting

workspace

grouping

dedicated
environment

multitasking

suspend and
resume

workspace
overview

view properties

annotations

collaboration

templating

accounts

log in
interruptions

checkpoint

replay

item documents

information
curation

(keep, manage,
exploit)

information
retrieval

metadata

synchronization

conflict handling
authorization messaging version control

material

input/output
devices

modalities

selection

manipulation
analysis

distribution

serialization

protocols

types

dependencies

links

data binding

history

undo and redo

Table 3: Examples of relevant research topics for each of the categories within the interaction framework.

3.4 completing the mosaic 37

Materials are the fundamental building blocks with which users can
interact. Different materials offer different modalities, each of which re-
quires specific input and output technologies so that new materials can
be created as well as viewed. By selecting one or more existing mate-
rials they can subsequently be moved, resized, rotated, or otherwise
manipulated in any other way which treats the material as a whole.
Searching among existing materials is simplified by using analysis
techniques (e. g., image search to find images matching a given one).
To transfer them (or share with others) they need to be converted into
a suitable format to be carried across a transfer medium (e. g., serial-
ization). There are different types of materials, each with their own
capabilities and constraints. Some might depend on others in order to
be put to good use (e. g., wheels of a car), or might follow certain
conventions in order to be understood (e. g., network protocols). To en-
able this, links between different materials can be established so they
can respond accordingly (e. g., data binding in programming). Lastly,
a history of the construction of material can be maintained in order to
allow retracing one’s steps (e. g., undo and redo).

Items are compositions of material, possibly of different types. For
example, text documents can be constructed to contain both charac-
ters and images. In order to support information curation processes
(the keeping, managing, and exploitation of information), structur-
ing mechanisms need to be put into place (e. g., folder hierarchies to
organize documents). To further facilitate information retrieval, addi-
tional mechanisms can be made available to the user, like the ability
to add metadata to documents. When items are shared across devices
and/or people, a choice needs to be made on how to synchronize them:
Can multiple people modify items simultaneously, or is there a need
for a locking mechanism so that only one person can edit them at
any given time? In case parallel manipulations are allowed, possible
conflicts which arise need to be resolved. Additionally, authorization
procedures might be desired to prevent unwanted access to sensi-
tive documents. Similar to links between different materials, but on
a higher level of abstraction, links between items can support the ex-
change of messages within a network of items. Lastly, through version
control additional information regarding the history of an item can be
specified by documenting particularly interesting points in time.

Workspaces provide access to multiple resources and instruments,
allowing to group related items together. This supports the construc-
tion of dedicated work environments which can be suspended and resumed,
thus supporting multitasking. While focusing on a task, interruptions
external to the workspace need to be dealt with (e. g., through the
use of a notification system). When multiple work environments are
available, identifying and resuming the one needed can be enabled
from a workspace overview. Once within a specific work environment,
view properties can specify how the containing items should be visual-

38 interaction framework

ized. Additionally, annotations on items and the workspace itself can
act as visual cues making it easier to find specific items and to docu-
ment their purpose as part of the workspace. This is especially useful
when sharing work environments, supporting collaboration both syn-
chronously and asynchronously. Workspaces can also be set up and
shared in order to serve as reusable templates tailored to a specific
community, somewhat acting like ‘instruments’ but on a higher level
of abstraction. Similar to items, access to entire workspaces can be
restricted to certain accounts, requiring the user to log in. Lastly, build-
ing on top of version control for single items, checkpoints for entire
workspaces can be specified and progress within the workspace can
be recorded, allowing to replay work later.

Activities always take place within a workspace, but how work is
divided among multiple workspaces is decided by the user; there
are no strict imposed relationships between activities and available
workspaces. Meta-resources documenting the context and intent of an
activity can be used to formulate plans, which when outlined in time
can form part of task management. Given this richer available informa-
tion (the provenance7 of objects) search is no longer restricted to merely
searching for objects based on what they contain, but can rely on who
created them, for what purpose, and under which circumstances. By
sharing such meta-information (including formulated plans for activi-
ties) work can be coordinated among colleagues, as well as friends and
families. More extensive and possibly recurring plans can be made
part of workflows of which the execution is controlled and closely fol-
lowed up. Not all plans are strictly followed. Interruptions can give
rise to formulating new goals, switching to different activities, or alto-
gether abandoning ongoing work. This is part of the activity life cycle
which work environments need to cater to. Lastly, overall progress
can be reported by carefully logging the history of activities.

7 According to the Oxford dictionary provenance is the “place of origin or earliest
known history of something” or a “record of ownership of a work of art or an
antique, used as a guide to authenticity or quality”.

4
A C T I V I T Y M A N A G E M E N T

You know, one of the things that really hurt Apple was after I left, John
Sculley got a very serious disease. And that disease, I’ve seen other people
get it too, it’s the disease of thinking that a really great idea is 90% of the

work. And that if you just tell all these other people “here’s this great idea,”
then of course they can go off and make it happen.

— Steve Jobs: The Lost Interview (2012)1

So far, I have introduced activity-centric computing as a radically new For historical
reasons,
activity-centric
computing never
took off.

computing paradigm, addressing some of the technological problems
inherited from the past. The underlying idea (providing support for
the full context of human activity) is arguably as old as the personal
computer itself, but seemingly got lost somewhere over the course of
history. Due to the widespread adoption of files and applications, in-
troduced as part of the first commercially available personal comput-
ers, the path for subsequent innovation was all but set in stone; today
we have bigger files and bigger applications, to the extent that some
applications have now formed their own isolated ecosystems, taking
over responsibilities traditionally assigned to the operating system.
Most noticeably, window and file management are extended upon in
a variety of—at times conflicting—ways by applications that need to
manage large amounts of open resources: e. g., web browsers and IDEs.
These are indications of a faltering underlying software architecture,
which activity-centric computing sets out to address.

Unfortunately, the broader idea of activity-centric computing has Research on
activity-centric
computing is forced
to focus on just a
subset of the overall
vision.

remained largely that, an idea. Outside of research there is little in-
centive to invest in technology which breaks away from the status
quo—incompatible with earlier products a company has invested in.
Within research, addressing a research agenda which arguably cov-
ers the entirety of human-computer interaction (as I will demonstrate
here) is outside of scope for short-running research projects with but a
handful of researchers working on it. Therefore, most activity-centric
computing research focuses on narrowly-scoped evaluations, address-
ing only part of the underlying vision, and ironically have to build on
top of the computing paradigm they are arguing against. Like Steve
Job’s ‘parable of the stones’ (Appendix A), there is “a tremendous
amount of craftsmanship in between a great idea and a great prod-
uct”, and we have only just started scratching the surface.

1 This is the beginning of Steve Jobs’s reply to the question, “What is important to
you in the development of the product?”, in an interview 10 years after he left Apple
and two years before his return (1995). The full question and answer, including the
inspiring ‘parable of the stones’ about teamwork can be found in Appendix A.

39

40 activity management

That is not to say that no discernible progress has been made.A set of principles
underpin most work

on activity-centric
computing.

As one of the most active researchers in this line of research, Jakob
Bardram has formulated a set of key principles which have guided
the design of several activity-centric computing systems over the
course of the past decade. These were based on the design of a perva-
sive healthcare system accounting for “mobility, many interruptions,
ad-hoc collaboration based on shared material, and [work which is]
organized in terms of well-defined, recurring, work activities” [36]. In
subsequent publications the principles were introduced [15, 17], elab-
orated upon [16], and more recently presented alongside a summary
of 10 years of research on activity-based computing (ABC) [20]:

1 . activity-centered : Work is organized into activities, which
are higher-level computational constructs that encapsulate all
resources, tools, and communication mechanisms into one
goal-oriented interaction model. By moving away from classic
application-oriented interfaces to multi-device activity-oriented
workspaces, users are presented with logical units of work com-
bined with the tools required to perform that work.

2 . activity multiplexing : By supporting activity suspension and
resumption, users can easily switch between different activity
contexts. Suspending an activity means its state is stored and
removed from the active workspace, while resuming an activity
restores it. This feature supports parallel activities (multitask-
ing) and interruptions in work.

3 . activity roaming : Activities are stored in an infrastructure and
hence can be accessed from multiple devices. This allows a user
to suspend an activity on one device and resume it on another,
thereby allowing the user to roam between devices. The context
of an ongoing activity can also be spread across devices, allow-
ing for multi-device interaction on one common activity context.
Users are presented with awareness cues and overviews on the
distributed state and accessibility of the activities.

4 . activity adaptation : Activities adapt to the capabilities of the
device(s) on which they are resumed. Hence, an activity might
look quite different whether it is resumed on a wall-sized dis-
play or on a smartphone. A subset of an activity’s context can
be displayed when it is spread across several devices.

5 . activity sharing : Because activities are distributed, they can
also be shared among users. Shared activities can be accessed
and modified by all related participants. Accessing activities si-
multaneously allows for synchronous collaborative setups. Al-
ternatively, asynchronous exchange of information is possible
when separate users suspend and resume an activity. By attach-

4.1 information fragmentation 41

ing messages or other objects to the activity, all related partici-
pants are notified of changes, thus providing users with aware-
ness about what changed and on who is working on what.

6 . context-awareness : Since activities are computational con-
structs that transcend a single user or device, they need to be
aware of their usage context such as location, type of device,
amount of users and other factors. The process of detecting,
selecting and managing the activity and its resources is a semi-
automatic process involving both the users as well as automated
sensing and inferring of context information.

With the interaction framework in place (Chapter 3), I can now po- A goal for
activity-centric
computing can be
formulated within
the interaction
framework.

sition Bardram’s activity-centric computing principles within a wider
research agenda for HCI. But first, I will categorize different types of
tools in support of knowledge work. By positioning these alongside the
ABC principles, it will become clear how activity-centric computing is
related to other lines of research, and more specifically, how its un-
derlying vision tries to integrate different types of interaction which
are generally supported by independent tools. Furthermore, a clear
goal for activity-centric computing is outlined in regards to which
additional types of interaction still need to be integrated in order to
cover the full scope of knowledge work.

4.1 information fragmentation

Within the interaction framework, different categories of interactive Most software
systems provide
support for a set of
different
interactions.

computing systems supporting multiple types of interaction can be
recognized (Table 4). By no means are these categories the sole ones
imaginable, nor do they define strict boundaries in between comput-
ing systems, however, they do provide a coarse overview of different
functionalities which are commonly bundled together within specific
software systems. For example, a text editor (an editing tool) sup-
ports manipulating and searching for text, maintaining a history of
edits (thus supporting undo and redo), and in some cases incorpo-
rates version control. However, more advanced operations such as
data binding and restricting the possible values for data fields are
generally only available in programming languages (although spread-
sheets do support this to some extent). File and window management
come prepackaged as separate subsystems in most operating systems,
but no such support is provided for task management which requires
adopting third party tools such as electronic calendars or productiv-
ity tools. To share and back up files cloud storage is commonly used
nowadays. However, further cooperation requires employing commu-
nication tools, or collaborative workspaces which support editing shared
documents simultaneously. Finally, some more advanced workflow
management systems allow automating entire business processes.

42 activity management

activity Task management Workflow management

workspace Window management Collaborative workspace

item File management Cloud storage Communication Editing
material Editing Programming

Table 4: Different categories of computing systems positioned within the interaction framework.

As can be seen in Table 4, most software systems operate on justInformation
fragmentation is

caused by systems
operating on just

one level of
abstraction.

one layer of abstraction within the interaction framework. Although
some more advanced computing systems that tailor to very specific
practices do integrate different types of interaction from separate lay-
ers within the framework (e. g., IDEs and ERP systems), general pur-
pose systems typically do not. These are the tools predominantly
used by knowledge workers, involved in producing, transforming,
consuming, and communicating large amounts of diverse informa-
tion2. While a wide range of specialized tools do allow users to se-
lect those most suited to their work, it also introduces information
fragmentation: for each tool information items are stored, managed
and viewed within separate application-specific collections [25]. Since
studies have shown that information is often organized within hier-
archies reflecting the users’ projects or tasks [25, 28, 56], and a single
project can make use of several tools, it is left to the user to asso-
ciate the different related information items and maintain consistency
across individual project hierarchies. These problems are exacerbated
within distributed and collaborative environments, where informa-
tion in addition can be fragmented across multiple devices and col-
laborators. Users need to decide where to store data, how to transfer
it across devices, and how to share it with others [116].

What unifies different tools is the actual work they set out to sup-Activity-centric
computing

integrates tools
around the central
notion of ‘activity’.

port. Studies have shown that people organize their work in higher-
level thematically connected units of work, often referred to in litera-
ture as tasks or activities [11, 37, 49]. By constructing tool integration
around a computational representation of activities, the redundant
work of managing them within individual computing systems can be
offloaded to a centralized activity management system. This integrative
aspect is a key characteristic of activity-centric computing which can
be recognized in most of its principles (Table 5). In activity-centric
computing an activity is “a computerized representation of a real-
world human activity” [16]:

Computational Activity. An aggregation of services, resources,
artifacts, and users that are relevant for a real world hu-
man activity.

2 The following argumentation is largely adopted from my UIST publication [64].

4.2 computational activities 43

4.2 computational activities

activity

workspace 4. Adapt. 5. Sharing

item

1. Activity-
centered 2. Multi-

plexing
6. Cont.-aw. 3. Roaming

material

Table 5: The activity-centric computing principles represented within the interaction framework:
(1) activity-centered; (2) activity multiplexing; (3) activity roaming; (4) activity adaptation;
(5) activity sharing; (6) context-awareness.

A central feature of activity-centric computing is for users to be able

Activity-centered

to assign intent to context, i. e., to be able to construct computational
activities. Therefore, the user first needs to be able to aggregate sep-
arate items into collections which make up said context, represented
within the interaction framework as the construction of workspaces.
The key distinction between ordinary workspaces and those that are
activity-centered lies in how well the system supports aggregating
the full context of human activity, thus including a near-exhaustive
set of different types of ‘items’, e. g., documents, web pages, emails,
contact information, and any other relevant information.

In case the user assigns one activity per workspace, switching be-

Activity
multiplexing

tween activities is just a matter of going from one workspace to the
next; there is no longer a need to retrieve individual items. Moreover,
when items are persisted within the workspace (and thus activity),
file management becomes integrated with multitasking; in order to
access files, all one needs to do is switch to the corresponding ac-
tivity. Although not formulated as part of the original multiplexing
principle, even further integration can be achieved by supporting rich
organization of said activities, thus effectively integrating task man-
agement with file management as well.

The activity adaptation principle is not so much about integrating

Activity adaptation
and
context-awareness

separate tools, as it is a desirable property for any workspace to have,
whether it is displaying items related to one particular activity or any
other information. Allowing users to switch between different views
on the same information provides them with the opportunity to tai-
lor their work environments to specific tasks or circumstances. Part of
this process can be automated by making computing systems context-
aware. However, context-awareness is not restricted to activity adap-
tation and can be applied to any of the interactions that are speci-
fied on the workspace layer (through analysis of objects on the items
layer): e. g., automatically assigning relevant items to a workspace,
automated log in, and filtering irrelevant interruptions.

44 activity management

Activity roaming and activity sharing are highly interlinked, the

Activity roaming
and sharing

former enabling the latter. In unison these two principles support
working on synchronized files within collaborative workspaces. This
integration is not unique to activity-centric computing; distributed
workspaces can just as well be used to work on contexts other than
one individual activity and rely on the same technologies in order to
do so. However, by associating one activity per workspace and shar-
ing additional information in regards to these—who scheduled them,
for how long, and who else is working on them—shared workspaces
could further be integrated with the coordination mechanisms needed
to manage the activities they represent. So far, however, this has not
been researched within activity-centric computing.

By outlining the ABC principles within the interaction frameworkActivity-centric
computing needs to

integrate workspaces
and items into one

activity context.

(Table 5) it becomes clear that activity-centric computing has thus far
focused primarily on setting up workspaces, generic enough to en-
compass the full context (all ‘items’) of human activity, and to support
interactions on them as a whole (e. g., sharing, and suspend and re-
sume). This work can be particularly challenging, given that it needs
to build on top of a technological stack essentially designed to do the
opposite: each workspace is designed to manage just a specific sub-
set of items. Therefore, activity-centric computing needs to integrate
different existing workspaces into one overarching ‘activity context’
workspace, covering the full range of items and available interactions
(Table 6). By doing so any material can be accessed from within the
full context of the activities it belongs to, addressing the problem of
information fragmentation. The ‘control’, ‘notify’, and ‘evolve’ inter-
actions, however, have thus far been overlooked (Table 5).

More importantly, insufficient support for activity management (theActivity
management needs

to be supported.
full range of interactions represented on the top ‘activity’ layer) is
likely to have resulted in some of the open issues encountered within
activity-centric computing [20]: organizing activities is error-prone
since their contexts easily intertwine, and a large number of activities
need to be managed once all interactions occur within the context of
activity. What is needed more than mere labeling of activities (ascrib-
ing intent to a workspace), is providing support for the full set of
interactions incorporated within tools currently supporting task and
workflow management (Table 6).

activity Activity management (task & workflow management)

workspace

item

Activity context

material

Table 6: The full range of interactions activity-centric computing should address.

4.2 computational activities 45

Prior activity-centric computing systems seem to assume that com- Scaling up
activity-centric
computing relies on
task management.

mencing work on an activity precedes or coincides with defining it.
In reality, however, users often define loose goals only to start work-
ing on them somewhere in the near future. The temporal aspects of
when and how activities are defined and how they evolve over time
warrant further exploration. Furthermore, any long-term deployment
of an activity-centric computing system (even for a single user) would
need to consider how to store the large number of activities that users
accumulate over time. This is reflected in the open issues listed as
part of a review on activity-centric computing, clearly indicating a
need to provide better support for the organization of activities [20].
Therefore, the full set of interactions which currently make up task
management need to be incorporated into activity-centric computing.

Because of the emphasis of activity-centric computing on support- Sharing activities
relies on worflow
management.

ing users to construct computational activities—as opposed to pre-
scribing them—workflow management systems have generally been
considered a separate class of systems [36]:

In our view, a human activity precedes the computational
activity that mirrors it, whereas in a workflow system the
computational activity precedes and dictates the human
activity.

However, some overlap with workflow management becomes in-
evitable as part of sharing activities with other users. This implies
an activity context is already set up, thereby necessarily prescribing
human activity to some extent. Therefore, a logical continuation of
the overarching vision behind activity-centric computing is to incor-
porate features from workflow management. This, however, requires
improving support for task management first, which will be the focus
of this dissertation.

Part II

D E S I G N A N D T E C H N O L O G Y

5
A C T I V I T Y- C E N T R I C C O M P U T I N G S Y S T E M S

The so-called ‘desktop metaphor’ of today’s workstation is instead an
‘airplane-seat’ metaphor. Anyone who has shuffled a lapful of papers while

seated in coach between two portly passengers will recognize the
difference—one can see only a very few things at once. The true desktop

provides overview of and random access to a score of pages.

— No Silver Bullet, Frederick P. Brooks, Jr. [31]

There is a noticeable overhead associated with managing many dif- Contextualizing
information is a
common approach to
addressing
information
overload.

ferent parallel activities, which can easily lead to information over-
load [95]. By contextualizing information—hiding irrelevant data
while pushing important information to the foreground—this prob-
lem can be alleviated. Different areas of research are trying to pro-
vide the user with contextualized information, each approaching the
problem from a slightly different angle. PIM research tries to em-
power users by providing extensive tool support by which to man-
age and access their information. HCI follows a more user-oriented
approach, where the user is usually placed central during system
design. Lastly, artificial intelligence (AI) research focuses on making
systems ‘context-aware’ through the use of activity recognition, al-
lowing the system to respond to ongoing activities. In short, PIM, HCI,
and AI emphasize information, users, and automation respectively, but
all address a common problem—information overload.

The topic of this dissertation is activity-centric computing, an ap- Activity-centric
computing supports
user-defined
computational
activities.

proach within the field of HCI to contextualizing information around
the central concept of ‘activity’. In this line of research, what defines
a concrete activity is user-specific, since it relies on which intention
is expressed by or is meaningful to the user. The underlying goal is
to provide a computing platform for users which allows them to fo-
cus on the high-level collaborative activities they engage in, rather
than being forced to deal with low-level details such as deciding on
specific software applications or retrieving necessary resources when
resuming activities. In this section, I will provide an overview of vari-
ous systems in this line of research, which have been introduced over
the course of the past 10 years1. First, however, given the lack of sup-
port for task management in earlier described work, I will investigate
how task management is typically supported in various personal in-
formation management tools2.

1 This overview of related work is largely based on an earlier publication [20].
2 The discussion of task, window, and file management is adopted from an earlier

publication [64].

49

50 activity-centric computing systems

5.1 task , window, and file management

This dissertation focuses on how task management can be integratedTask, window, and
file management are

an integral part of
knowledge work.

into activity-centric computing. Therefore, in order to analyze how
task management is interrelated with underlying tools in support of
knowledge work, I will review prior literature on PIM tools support-
ing the management of tasks, windows, and files (Table 7). These
are used at different points in time throughout the life cycle of an
activity, thereby providing a better understanding of how activities
evolve over time. In addition, this can highlight conflicts where func-
tionalities of tools overlap with one another. Such conflicts need to be
addressed within a conceptual model serving as the basis for design
of systems in support of integrated knowledge work.

activity Task management

workspace Window management

item File management

material

Table 7: Task, window, and file management are an integral part of knowledge work, generally
supported by independent tools.

Tasks in task management are best defined as a set of actions which

Task management

need to be performed in order to achieve a certain goal. Within a
desktop environment, a single task usually employs several different
application windows and documents. Window management helps to
organize these during multitasking, but once a task is discontinued
and the associated applications are shut down the window configura-
tions set up by the user are lost. To reconstruct the work environment
users needs to reopen all related documents and reposition applica-
tion windows for optimal use. Therefore, users often aggregate docu-
ments related to one particular task in task-specific folders [25, 28, 56].
This prevents them from having to browse to several different folder
locations within the file system when resuming a task. Similarly, some
systems support creating task-centric resource collections within exist-
ing applications. Taskmaster [24], e.g., recasts email as a task manage-
ment tool by allowing users to aggregate email threads within task-
centric collections called ‘thrasks’. Task Gallery [112] allows users to
organize windows and files within pieces of artwork hung on the
walls of a 3D virtual art gallery. Mylyn [76] is an extension for the
Eclipse programming environment which allows users to switch be-
tween programming tasks and automatically builds up their context
based on source files users interacted with. Most of these approaches,
however, are application-specific and only support aggregating a lim-
ited set of document types. TAGtivity [106], on the other hand, allows

5.1 task , window, and file management 51

tagging any resource on a personal computer. While tags don’t nec-
essarily have to represent tasks, they were shown to be used as such,
allowing the user to easily retrieve files of different work contexts.
TaskTracer [40] monitors the user’s interaction with a personal com-
puter and automatically builds up multiple task contexts, of which
an overview is subsequently shown to the user. What many of these
tools neglect, however, is that planning future events plays a crucial
role in knowledge work as well. The user needs to be able to pre-
pare, structure and reflect on future work. The widespread adoption
of electronic calendars, to-do lists, and other productivity tools indi-
cates their value as part of task management. These tools, however,
are intrinsically disconnected from the actual resources needed to
start work on future tasks [132].

Window managers are tools that allow users to handle an increasing

Window
management

number of windows by grouping them together spatially, leveraging
human spatial memory when they need to be retrieved. By allow-
ing users to switch between separate window groups, multitasking
is supported. Many modern window managers (such as those avail-
able in Windows XP up to Windows 8) automatically group windows
from the same application together under one item on the taskbar.
Although this reduces taskbar clutter, a task might rely on windows
from several different applications. Therefore, GroupBar [124] extends
on this idea by providing the user with more control; windows be-
longing to different applications can be grouped together arbitrarily
on the taskbar. Overall, existing window managers focus on similar
lightweight support for task management. Rooms [55] was one of the
earliest systems to do so and popularized virtual desktops. Using vir-
tual desktops work can be distributed across several different dedi-
cated workspaces, each showing only those windows opened from
within one specific desktop environment. A similar feature is now
available in most contemporary operating systems and has most re-
cently been introduced in Windows 10 as the ‘task view’. Other win-
dow managers explore alternate visualizations for window group-
ing. One such example is Scalable Fabric [113]; windows shrink in
size when moving them into the periphery and can be organized
within labeled groups. WindowScape [128] offers implicit task man-
agement by storing snapshots of short-lived window groups (used in
unison) which can be returned to at a later moment in time. Elastic
Windows [70] allows organizing windows hierarchically and can per-
form operations on window groups, e. g., hiding an entire window
hierarchy. Spatial arrangement, however, does not need to be limited
to 2D space, e. g., BumpTop [5] allows dragging and tossing objects
around in 3D space, extending even further on the physical attributes
of the desktop metaphor. However, long term task management (like
planning events ahead of time), requires users to install separate task
managements tools.

52 activity-centric computing systems

Whittaker describes three information curation processes: the keeping,

File management

management and exploitation of information. Based on how informa-
tion is stored, there are four main strategies of accessing information:
navigation, search, orienteering (hybrid of navigation and search),
and tagging [138]. People preserve large quantities of emails, book-
marks, and personal files and organize them in ways that will pro-
mote future retrieval. However, information items are stored, man-
aged, and viewed from within application-specific collections, caus-
ing information fragmentation [25]. Not all information items are purely
informative. Some are action-oriented, like emails. They require the re-
cipient to do something, possibly before a certain date, and are gen-
erally kept around as visual reminders. In order to alleviate the over-
head of organizing files, time-based organization has been brought
forward in previous research. Lifestreams [46] was the first to do so,
providing a simple stream of documents over time. TimeScape [110]
extends on this by integrating with the desktop interface. Time travel
allows going to past and future states of the desktop. Only those
documents used or placed at a certain point in time show up. Other
approaches, like Haystack [1], offer the ability to construct person-
alized information collections by creating relations between separate
information items. To simplify file retrieval, Leyline [47] offers infor-
mation about the creation, use, and context of documents, including
whom documents have been shared with—their provenance. Although
such tools do provide improved access to the underlying file system,
in essence files are a remnant of the original desktop metaphor. Users
are forced to mentally connect window representations to the files
they represent. Therefore, when resuming a task users first need to
find all related files and restore their window configurations prior to
commencing any actual work.

It is clear that task, window and file management, each a fun-Task, window, and
file management are

intrinsically
interconnected.

damental part of knowledge work, are three practices intrinsically
linked to each other. As depicted in Figure 15, conflicts arise where
their supported functionalities overlap. To sum up and add to
some of the conflicts highlighted earlier: window managers sup-
port lightweight multitasking but are unaware of the tasks speci-
fied in traditional task management tools; interruptions often lead to
commencing new tasks or revisiting old ones [67], which requires
(re)opening the relevant application windows; task-centric resources
are often grouped together in the file system with folder hierarchies
acting as kind of project plans [69]; action-oriented items (like emails
or temporary files) are left behind as reminders [138]; email has been
shown to be the primary source of new events entered in a calendar,
and calendars themselves are not only used for planning, but also
to report on finished projects and to record memorable events [132];
lastly and most prominently, information curation is handled differ-
ently per application, causing information fragmentation.

5.2 desktop systems 53

Figure 15: Overview of task, window, and file management, highlighting
conflicts which arise between them [64].

What unifies these different practices is the actual work they set

Activity
management

out to support. Studies have shown people organize their work in
higher-level thematically connected units of work, often referred to
in literature as tasks or activities [11, 37, 49]. By constructing tool inte-
gration around computational representations of activities, the redun-
dant work of managing them within individual computing systems
can be offloaded to a centralized activity management system. Such a
system needs to integrate with the core aspects of task, window and
file management; activities evolve over time, should be easily config-
urable, and should be persisted so their context does not get lost once
the system is shut down (Figure 15). Within prior activity-centric com-
puting systems, files, applications, communication, and collaboration
can be structured within computational representations of activities.
However, with the strong emphasis on activity context in this line of
research, activity management has thus far received little attention.

5.2 desktop systems

Since the seminal work on Rooms [55] many desktop systems sup- Context can be
constructed in
various ways.

porting activities have been described. UMEA [72] is a first exam-
ple of a system that monitors the user’s behavior within self-defined
‘projects’. Activity context is built up automatically within the cur-
rently selected activity, providing the user with an overview of their
interaction history. TaskTracer [40] (Figure 16) and CAAD [108] use
advanced data collection frameworks to monitor the user’s interac-
tions, from which activity representations are automatically created.
Although the work of defining activities in TaskTracer is automated,
manual construction of activities is supported as well. Activity Ex-
plorer [96], the Activity Bar [17], and Giornata [136] are examples of
systems that fully rely on users to define meaningful activities.

54 activity-centric computing systems

Figure 16: TaskTracer for Windows XP [40].

Giornata (Figure 17) and the Activity Bar re-frame the desktop in-Different degrees of
integration with

traditional
computing are

possible.

terface for personal computers to be activity-centric, for OS X and
Windows XP respectively. They provide activity-centric management
and sharing of context like windows, files and contacts by integrat-
ing with the traditional desktop operating system, adding or modi-
fying existing components from the desktop user interface. The user
can switch between different ongoing activities by suspending and
resuming them, thus facilitating multitasking. In contrast, Activity
Explorer [96] resembles an email client, less integrated with the op-
erating system, but was the first system to show that you can mean-
ingfully structure communication and collaboration processes within
shared representations of human activity.

Figure 17: Giornata for OS X [136].

2003 20092006

UMEA

2012

ActivityExplorer

TaskTracer
Activity Bar

Activity-Based Computing Project

CAAD

Giornata

co-Activity Manager

ReticularSpaces

ActivityDesk

Figure 18: A historical overview of activity-centric computing since 2003 [20].

56 activity-centric computing systems

The main technological contributions introduced in this dissertation—Supporting the
activity life cycle
remains an open

issue in
activity-centric

computing.

Laevo and co-Laevo (Chapter 6)—can be positioned within this cat-
egory of activity-centric desktop computing systems. The most recent
work in this area is co-ActivityManager (cAM) [58], which extends
on the concept of the Activity Bar. cAM supports three main features:
(1) dedicated activity workspaces; (2) collaboration through activity
(and resource) sharing, status updates, and online communication;
and lastly, (3) activity management through an activity task bar (Fig-
ure 19). The goal of cAM is to integrate communication and collabora-
tion channels more explicitly into activity-centric computing. The sys-
tem was deployed for a period of 14 days in a multidisciplinary soft-
ware development team. An analysis of the activities created by users
showed different levels of granularity of goals and time spans used.
Participants organized activities in three categories: (1) ad hoc activ-
ities (e. g., a to-do), (2) short-term activities (e. g., day to day work),
and (3) long-term activities (e. g., ongoing collaborative projects). De-
spite these insights into how users appropriate activities of varying
scope, it is still unclear how these different activities relate to each
other and how they fit into the entire shared activity life cycle of daily
work. As reflected in the research question of this dissertation (Sec-
tion 1.1), this thus remains an open issue within activity-centric com-
puting, even in most recent work. To this end, Laevo and co-Laevo
provide explicit support for activities of varying levels of granularity.

Figure 2: The interface of co-Activity Manager consists of (A) a per-activity workspace, (B) an activity task bar to visualize activities
to the user, (C) an activity start menu to manage activities and applications, and (D) a collaboration manager to interact and share
with contacts. Each contact is visualized with an avatar, name and status field. The interaction menu (E) can be used to share a
folder, chat or share an activity (F).

tivities should therefore be available in and deployable from the
cloud [5]. In addition, this would also make it easier for users
to access their activities and information from multiple devices,
thereby addressing the problem of multi-device fragmentation [3].
Finally, communication tools should closely integrate into the ABC
paradigm to avoid forcing users to deal manually with unrelated
communication interruptions while performing collaborative activ-
ities.

In this note, we introduce an Activity-Based Computing (ABC) ap-
proach that (i) supports activity sharing for multiple collaborative
contexts by allowing users to share and deploy an activity-based
desktop workspace; (ii) includes collaborative tools (including file
sharing, messaging and collaboration) into the activity abstraction;
and (iii) provides a lightweight cloud mechanism that allows users
to save activities on one instance of cAM and open them in another
instance on a different computer.

2. CO-ACTIVITY MANAGER
co-Activity Manager (cAM) (Figure 2) is an activity-based desk-
top manager that augments the Microsoft Windows 7 window- and
task-manager. cAM deals with workflow fragmentation and com-
munication interruptions by allowing the user to (re-)organize doc-
uments, applications and files as well as structuring communication
and collaboration with other participants in shared activities. The
purpose of cAM is to minimize out-of-context interrupts by restruc-
turing the desktop and filter communication based on the current
activity. For each activity, a separate virtual desktop is created that
confines the workflow of that activity. The activity workspace (Fig-
ure 2 A) allows users to pile relevant files and documents which are
then automatically related to the activity. An activity taskbar (Fig-
ure 2 B) is used to manage and work on activities. Users can create,
save, edit and manage local activities as they see fit (Figure 2 C).

2.1 Communication and Collaboration
cAM includes a collaboration manager (Figure 2 D) to facilitate
and structure activity-based communication and collaboration. The
manager supports standard chat messages. The chat window is
equipped with an automatic sharing system, that allows users to
drag and drop documents they want to share on top of the chat
windows. These files are then automatically uploaded to the cloud
storage and shared via a web link. The user can also define a shared
folder for each contact per activity. All these folders are stored in
the cloud and can be used as a persistent sharing mechanism or to
share large amounts of data. Users can also share activities, which
will be discussed in the next section.

Figure 3: A contact can be added to or removed from the cur-
rent activity by clicking the light bulb icon. It is only possible to
interact with contacts who have added you to their activity as
well (as indicated by the interaction menu below the contact’s
name).

399

Figure 19: co-ActivityManager [58] is an activity-centric desktop computing system incorporating:
(A) activity workspaces, (B) task bar to visualize activities, (C) start menu to manage ac-
tivities, (D) a collaboration manager through which (E) communication can be initiated
and (F) activities can be shared.

5.3 ubiquitous computing systems 57

5.3 ubiquitous computing systems

Although not the focus of this dissertation, it should be noted that Problems are
exacerbated when
multiple devices and
users are involved.

activity-centric computing has been applied to other domains than
desktop computing. A major focus has been on ubiquitous computing
and distributed user interface systems, demonstrating the merit of
activities as a context model in multi-device environments (Figure 20).
When moving away from a single user/device scenario to a more
pervasive environment many of the multitasking and interruption
problems are greatly amplified.

A major body of work on activity-centric computing was performed Ubiquitous
activity-centric
computing has been
applied to hospital
work.

under the name of activity-based computing (ABC), and took its out-
set in the design of a ubiquitous computing infrastructure to support
the nomadic, collaborative, and time-critical work in hospitals [16, 36].
This research introduced an activity-based infrastructure consisting
of distributed middleware and specialized user interfaces optimized
for medical work. All services, applications, and resources related to
patient care are bundled in distributed activities. For example, med-
ical records, information on the medicine administered, and medi-
cal images for a patient are linked together in an activity, which is
shared across clinicians involved in the patient’s treatment and care.
This infrastructure was extended to incorporate large interactive dis-
plays [18] and automatic activity detection [38], resulting in increased
activity awareness.

Figure 20: ReticularSpaces is an activity-centric smart space environment [19].

58 activity-centric computing systems

More recently, this research was extended upon to create supportActivity
representations

should be tailored to
the specific form
factor of devices.

for distributed activities across multiple devices in the ReticularSpaces
infrastructure [19]. ReticularSpaces is an activity-based smart space
system designed to support: (1) unified interaction with applications
and documents through ReticUI, a novel design for distributed user
interfaces; (2) management of the complexity of tasks between users
and displays; (3) mobile users in a local, remote, or nomadic settings;
and (4) collaboration among local and remote users (Figure 20). Retic-
ularSpaces was deployed in a smart space environment and was ex-
posed to end-users through a scenario-based evaluation. The study
showed that users found the use of activities intuitive in a multi-
device context as it allowed them to move tasks between devices and
collaborating users. However, it also highlighted a number of open
issues with device-specific visualization of activities and cross-device
interaction. While the ReticUI interface duplicated the same user in-
terface on all devices with only small adaptations, users argued that
this adaptation should go much further and interfaces as well as infor-
mation density should be much more tailored to the type of device.

multi-device interaction Mobile devices, such as smartWorking on an
activity using

multiple devices
simultaneously is

cumbersome.

phones and tablets, have become an intrinsic part of people’s ev-
eryday life. Alongside laptops and desktop computers, these devices
have become part of a device ecology in which each device acts as
a specialized portal into the overarching information space of users.
There is no longer a one-to-one relation between users and devices,
but rather a one-to-many, or even many-to-many relationship. This
introduces a configuration overhead when users have to access the
same activity from multiple devices [57]. ActivitySpace [60] is an early
prototype providing support for the management of multiple devices
in an office environment (Figure 21). The main goal of ActivitySpace
is to reduce the configuration work required to use multiple devices
simultaneously by using an interactive desk as a medium to move
and share activities across devices.

Figure 21: ActivitySpace supports moving and sharing (F, G) resources across (A-E) multiple de-
vices. Placeholders are shown (H, I) when devices are removed. [60]

6
L A E V O A N D C O - L A E V O

levo lēvo (laevo), āvi, ātum,
... to make smooth, to smooth, polish

levo, lĕvo, āvi, ātum,
... to lift up, raise, elevate

— Lewis & Short, A Latin Dictionary (1879)1

In this chapter I will introduce Laevo and co-Laevo2: activity-centric

Laevo and co-Laevo
integrate dedicated
workspaces with
support for activity
management.

computing systems which integrate workspaces with task and work-
flow management respectively (Table 8). Laevo is the result of an elab-
orate design process and has been evaluated during a two-week in
situ field study by various knowledge workers [64]. The system is
based on an analysis of three fundamental knowledge work practices
(task, window, and file management), presented earlier in Section 6.1,
giving rise to a conceptual model for design depicting the different
states and transitions of human activity over time—the activity life cy-
cle. Laevo is primarily designed to function as a personal information
management (PIM) system, but is consistent with the broader scope of
activity management. To demonstrate, co-Laevo is a conceptually co-
herent superset of Laevo, extending on the design to incorporate sup-
port for cooperation [65]. However, co-Laevo is incomplete in regards
to providing support for the full set of interactions which make up
workflow management. As part of this dissertation, co-Laevo mainly
serves to indicate how the conceptual model from Laevo can easily be
extended on in order to provide support for the full scope of human
activity within a general purpose computing system.

activity

workspace

Task management
(laevo)

Workflow management
(co-laevo)

item

material

Table 8: Laevo and co-Laevo integrate workspaces with task and workflow management respec-
tively, which as a whole constitutes activity management.

1 I found this old latin translation for the verb ‘relieve’ through Google Translate,
which I personally feel aptly describes the intent behind activity-centric computing:
to relieve the user from the complexities of managing multiple activities by ironing
out issues of interoperability between independent tools.

2 These systems will largely be presented as they were in earlier publications [64, 65].

59

60 laevo and co-laevo

6.1 activity life cycle

As I conclude in Chapter 4, prior research on activity-centric comput-The activity life
cycle is a conceptual

model for activity
management.

ing has mainly focused on which information and which services the
activity context is comprised of, based on theories of cognition and
observations of real-world practice. However, the previous literature
review clearly indicates that investigating the transience of information
is equally important; where does information come from, how is it
passed from one tool to another, and when is it no longer needed.
Within the context of activities this means investigating how the ac-
tivity context is created, used, and how it changes over time. As con-
cluded in the evaluation of Giornata “[this] raises further research
questions about how individuals think about the stages in an activ-
ity’s lifecycle” [135]. Here I introduce the activity life cycle: a concep-
tual model encompassing key concepts for activity management (Fig-
ure 22). This model represents the main interactions that influence
the state of activities over time and relates them to three fundamental
processes of knowledge work: multitasking, archiving, and planning.

Multitasking is a common process which involves switching be-Multitasking,
archiving, and

planning correspond
to window, file, and

task management
respectively.

tween and managing a large number of open windows, files, and
other resources that are associated with different activity contexts [37,
49, 67]. Within activity-centric computing this is supported by allow-
ing users to aggregate related resources into meaningful structures
reflecting their ongoing parallel activities and providing support to
easily switch between them. Restoring the entire work context is auto-
mated, minimizing reconfiguration work users would otherwise have
to do manually. Multitasking is traditionally supported by window
managers. File management, on the other hand, primarily supports
archiving. Malone identified two important practices which describe
how office workers physically organize their information on their
desks and in their offices: filing and piling [87]. Following this cat-
egorization, structuring work within labeled activities allows for the
systematic ordering of information—the equivalent of filing. In con-

Figure 22: Modern knowledge work consists of archiving, multitasking and planning. Four fun-
damental practices, related to these processes, determine how an activity evolves over
time [64].

6.1 activity life cycle 61

trast, while working on an activity, documents can easily be piled
within the current open activity context, automatically associating
the two. Following ‘overview first, zoom and filter, then details-on-
demand’ [122], users can search through filed activities and subse-
quently retrieve the associated piles (activity contexts). Lastly, task
management constitutes short- and long-term planning, an essential
part of knowledge work which shapes future activities. While plan-
ning activities, part of the context can already be built up in order to
be exploited once work on the activity finally commences.

Time ties archiving, multitasking, and planning together. It is an Activities are either
ongoing, past, or
planned.

integral part of planning and a useful reference when retrieving
archived activities. Furthermore, given that users already have a men-
tal model of how activities occur in time, the temporal dimension is
an extremely useful construct to be made part of a conceptual model
for activity management. Considering time, activities can be in three
different states: ongoing when part of the current multitasking session,
past when work has been discontinued, and planned when intending
to work on them at a later point in time. Four practices influence the
state of activities over time (construction, interruption, resumption,
and closure), which to some degree correspond to the interactions in
the interaction framework (Table 9).

1 . construction : Construction is the practice of defining the con-
text of an ongoing or planned activity. During this practice,
users gradually build up and modify the containing items, thus
refining the scope of the activity. Because there are no clear
borders that fully define activities up front, the overhead of
constructing, updating, and moving items in between activities
should be minimized, supporting ad hoc and post hoc activity
creation. Improving general activity awareness can reduce occa-
sions where activities become intertwined.

2 . interruption : External and self-interruptions are events which
often carry context and elicit the user to reconstruct or re-
sume another past, ongoing, or planned activity. By provid-
ing a central interruption mechanism, the context of incoming

activity

workspace

1.
Construction

3.
Resumption

4.
Closure

2.
Interruption Time

item

material

Table 9: Practices which influence the activity life cycle, positioned within the interaction frame-
work. Task management is fully covered, whereas workflow management will be elabo-
rated upon as part of co-Laevo.

62 laevo and co-laevo

interruptions can easily be incorporated into new or existing
activities, supporting construction. Additionally, coupling inter-
ruption handling to activity construction also improves activity
awareness, as users are encouraged to actively pair incoming
interruptions to their corresponding activities.

3 . resumption : Resumption is the practice of restoring the full con-
text (all ‘items’) of a previously constructed past, ongoing, or
planned activity. When resuming an activity, ideally its context
reflects the user’s mental model before the activity was inter-
rupted. This facilitates quicker resumption, essential for effi-
cient multitasking. Although activities can become irrelevant,
they might need to be revisited shortly, or even restored at a
later point in time.

4 . closure : When an ongoing activity loses its temporal relevance
during multitasking, its context is removed from the set of paral-
lel activities. Rather than deconstructing the activity, the entire
constructed context (all ‘items’) should be preserved in such
a way to allow for easy resumption at a later time. Archiving
should be instant and reversible.

6.2 personal information management

Laevo is a temporal activity-centric desktop interface for Windows 7Laevo supports
dedicated

workspaces
organized in time.

and 8. It is designed for personal use on a single computer in sup-
port of office work. Going back to the seminal work of Rooms [55],
Laevo allows users to structure work (applications and files) within
dedicated workspaces. Similar to other activity-centric computing sys-
tems [16, 17, 58, 135], each workspace can be used to reflect a sepa-
rate activity constructed by the user. Where previous activity-centric
computing systems focus primarily on providing functionality within
such workspaces, Laevo focuses on all practices which influence ac-
tivities over time. The entire activity life cycle is supported by intro-
ducing workspaces for to-do items, planned activities, and providing
support for interruptions and easy transitions between different ac-
tivity states. When working within a workspace, the user interface
of Laevo is kept to a minimum; no new interface elements are intro-
duced except for a system tray icon through which the user is notified
of incoming interruptions. Only when opening the activity overview,
are users presented with a touch-enabled full-screen user interface
from where activities and interruptions can be accessed, opened, and
organized (Figure 23).

Figure 23: Laevo is an activity-centric desktop interface that supports: (1) persisting, restoring and managing window configurations and files within dedicated
workspaces which are managed on a time line; and (2) handling interruptions and to-do items through a centralized notification system, in place or by
redirecting them to new or existing workspaces. [64].

64 laevo and co-laevo

When working on a particular activity, only the relevant activityDedicated
workspaces are

implemented as
virtual desktops;

interruptions as tray
icon notifications.

context is visible. This helps reducing information overload and thus
allows the user to maintain focus. This is achieved by setting up a vir-
tual desktop per activity, which still supports all the existing tools the
user is accustomed to (Figure 24). The context of the activity automat-
ically arises from the user working within the currently open desktop
environment; windows which are opened within the workspace are
assigned to the activity it represents (activity construction), but the
underlying resources (e. g., open files within applications) remain un-
modified. When the user switches to a different workspace, the cur-
rently open windows are hidden and all windows of the new activity
context are restored (activity resumption). Users can always see at a
glance whether something requires their attention; Laevo introduces
a system tray icon which lights up yellow when new interruptions ar-
rive (Figure 24 B). The visualization is intentionally kept to a bare
minimum in order not to disrupt the flow of the user. Users decide
for themselves when they want to address interruptions, which they
can do by opening the activity overview.

In order to organize files within the context of activities, each ac-An activity context
library supports file

management.
tivity has access to an activity context library (Figure 24 A). This is a
standard Windows library, similar to “Pictures” or “My Documents”,
directly accessible from the side menu in Windows Explorer. Libraries
allow the user to aggregates files from a specified set of paths. The
content of the library is contextualized by Laevo so it only shows
paths assigned from within the currently active activity. One folder
is created by default and maintained for each activity, reflecting its
date and name, e.g., “3-11-2014 UIST 2014 paper”. This supports the
common file management practice of structuring files within folders
representing tasks [56]. At any time, users can freely add new folder
locations from their existing folder hierarchies to the library, ensuring
interoperability with previously established archiving practices.

Figure 24: The (A) activity context library and (B) tray icon within a dedicated activity workspace.

6.3 the activity time line 65

There are no clear-cut borders in between activities: while working Transitioning
between activities is
optimized to support
the fluid nature of
activities.

on one activity the user might have started work on another. There-
fore the system provides a flexible mechanism by which windows
can be moved in between different workspaces. Similarly to how files
are cut and pasted, shortcut keys can perform these operations on
application windows once they have focus. Windows that are cut dis-
appear immediately. Multiple cut operations can be performed in a
row, and a subsequent paste operation reassigns all windows to the
currently active workspace. Other shortcut keys allow quick access to
the activity context library, creating new empty activities, closing the
current activity, and switching between the last two accessed activity
workspaces.

6.3 the activity time line

Laevo provides an overview of activities in time and space (Figure 25), Activities can be
managed from a
full-screen time line
overview.

highlighting the conceptual model on which the design is based—the
activity life cycle (Section 6.1). At a glance users can see when activi-
ties were open or are planned. Spatial organization, colors, and icons
can be used to identify activities or indicate relationships between
them. This can be a powerful cue for recall by invoking episodic
memory [83], thus facilitating the resumption of old activities. A full-
screen representation hides the low-level details of the work users
were working on and is intended to help users reason on a higher
level of abstraction. The overview contrasts the ongoing activity with
the full surrounding work context, including parallel ongoing ac-
tivities (supporting multitasking). The time line is the ‘heart’ of the
application, and can be accessed at any point in time using the re-
appropriated keyboard button, Caps Lock

3, which when pressed
provides immediate access to all other activities. It also acts as a mod-
ifier key to access all other shortcut keys. Alternatively the user can
double-click the tray icon to access the overview. The granularity of
activities can vary drastically; some lasting weeks, others mere min-
utes. Therefore, the time line supports continuous touch-enabled pan-
ning and zooming in order to show any arbitrary time interval4. De-
pending on the zoom level, the semantically most meaningful labels
are shown (e.g. months or days). A one-dimensional representation
of time, as opposed to a more traditional calendar layout, empha-
sizes the fragmented and parallel execution of activities over time [49].
Lastly, applying a perspective transformation has two advantages. It
saves screen estate without hampering readability too much [84] and
it strengthens the presentation of time following the common con-
ceptual metaphor of expressing time as a physical path in space. For
example, “approaching the end of the year” or “leaving days behind”.

3 This idea is borrowed from the now defunct Humanized Enso launcher application.
4 The time line flexibly scales to any resolution, thus supporting different form factors.

Figure 25: The activity overview through which activities are accessed and managed in Laevo. It displays (A) open ongoing activities, (B) archived activities,
(C) planned activities, (D) a context menu through which new activities can be created, (E) the home activity, and (F) to-do list. The three detailed
images show the (G) popup menu to edit activities, (H) action buttons when hovering over an activity, and (I) attention span lines.

6.3 the activity time line 67

Figure 25 highlights the user interface elements accessible from Activities are either
open, closed, or
planned. Only one
activity can be
active at a time.

the overview screen, as well as the different states activities can be
in. An activity can either be: open to represent ongoing work (Fig-
ure 25 A); closed when finished in the past and now archived in time
(Figure 25 B); or planned when a time slot has been assigned for it
in the future (Figure 25 C). When starting Laevo, all windows pre-
viously not associated with an activity are assigned to a permanent
home activity (Figure 25 E). It can be used as a workspace for smaller,
less important tasks which aren’t immediately recognized as an ac-
tivity, or aren’t activity-specific. Activities are represented by rectan-
gular areas which stretch along the time line horizontally, indicating
when the associated work context was open (or is planned to be).
Only one workspace can be active at any given time (highlighted with
a yellow border on the time line), but several can be open simultane-
ously, allowing for multitasking. An activity is made active simply by
clicking on it, after which the overview is hidden and its dedicated
workspace shows up. Yellow lines along the bottom of a workspace
indicate when they were active (Figure 25 I), but this visualization
can be disabled when deemed too distracting.

It is up to the user to change the state of activities as they unfold. Users need to
change the state of
activities in order to
facilitate
multitasking.

This encourages users to reflect on their ongoing work, increasing
activity awareness. The state of closed and planned activities can be
changed to open through a hover menu, which is always positioned
near the mouse (Figure 25 H). Doing so brings the activity into the
current multitasking session, visually represented by stretching the
rectangle up to a line which indicates the current time. Activating an
activity does not open it, so at any time it can be inspected without
changing the state of the activity. The same hover menu is used to edit
and remove activities, however, removing activities is discouraged.
Instead, the system encourages archival over time by simply closing
activities. To reinforce this, an ongoing activity can only be removed
after it has been closed and when it does not contain any open appli-
cation windows. Closed and planned activities that do have windows
open in them are displayed with an orange border.

The user can edit the name, icon, and color of each activity in a Activities have a
name, icon, color,
and can be
positioned vertically.

pop-up window which can be accessed from the hover menu (Fig-
ure 25 G). As the activity is edited, changes are applied immediately
to reflect the final representation on the time line, i. e., the background
color and icon in the top left corner changes. For easy access, activity
names can also be edited directly from the time line; the labels act
like ordinary input boxes. Activities can be dragged up and down,
allowing the user to organize them vertically. This combined with the
temporal dimension in which they are displayed gives plenty of suit-
able visual cues to identify activities, following the redundancy gain
principle.

68 laevo and co-laevo

6.4 to-do list and interruptions

Although future activities can be planned at specific time intervals onTo-do items are
activities which are

not yet positioned in
time.

the time line, there is also a need for less structured task management.
Laevo allows users to create to-do items which behave the same as ac-
tivities, except that they are always visible on the overview screen
irrespective of the currently visible time interval (Figure 25 F). Only
their icons and colors are shown in order to save up space. However,
hovering over to-do items shows their name, as well as a menu to edit
or remove them (Figure 26 A). Simple drag operations allow users to
rearrange to-do items to reflect their priority. If a user decides to start
working on, or specify a suitable time interval for a to-do item, it
can be dragged to the time line. Dropping it in front of the current
time opens it, while dropping it behind plans it at that particular po-
sition (Figure 26 B). Alternatively to-do items can be dragged to exist-
ing activities, in which case their contents are merged (the associated
windows and activity context library paths).

Laevo features a centralized notification system for interruptions,Interruptions are
introduced as to-do

items.
well integrated with the rest of the system. It does so by equating
interruptions with to-do items. They are added to the to-do list but
can be distinguished by a flashing yellow border (Figure 26 A). When
within a workspace, the tray icon lights up as long as there are unat-
tended interruptions. Opening interruptions for the first time opens
up their context with the appropriate application. For example, when
an email is received it shows up in the to-do list with the subject as
name; clicking on it opens up the email message. Using the normal
to-do list functionality, this allows users to either handle interrup-
tions in place (from within the workspace), merge them with existing
activities, open, remove, or plan them.

Figure 26: (A) Interruptions, e. g., emails, arrive in the to-do list and are
highlighted. (B) To-do items can be dragged to the time line to
start work on them or plan them.

This design is based on early psychological considerations for in-Interruptions are
only shown when

switching between
activities.

6.5 the cooperative activity life cycle 69

terruptions formulated by Miyata and Norman [93]:

Think of the user buried in the task, unwilling to be inter-
rupted, but every so often finishing a cycle and “coming
up for air,” quickly breaking from the task and taking a
quick look around. The reminder should only be notice-
able during that “breathing spell”.

When switching between activities, part of multitasking, users are
confronted with any pending interruptions in the to-do list, but
within a workspace (while working) users are only notified of inter-
ruptions through the tray icon.

6.5 the cooperative activity life cycle

co-Laevo extends on the design of Laevo to incorporate support for co-Laevo extends on
Laevo to support
coordination
mechanisms.

cooperating teams [65]. ‘Cooperation’, as conceptualized within the
field of CSCW, refers to interdependence in work: “multiple individuals
working together in a conscious way in the same production process
or in different but connected production processes” [118]. In addi-
tion to the actual cooperative work, articulation work needs to occur to
enable effective cooperation: the coordinating, scheduling, meshing,
and integrating of interdependent activities. To this end, coordination
mechanisms are often put in place [120]. co-Laevo provides computa-
tional support for such coordination mechanisms in a desktop work
environment for knowledge workers.

The design of co-Laevo was inspired by considering the activity life Design implications
for cooperative
activity life cycle
management are
introduced.

cycle (Section 6.1) within a cooperative work environment, in which
activities are shared. This gives rise to several design implications
for cooperative activity life cycle management, which will be presented
from three different perspectives, summarized in Figure 27: (1) the
users, (2) their data, and (3) the different views on that data.

1. Users

2. Data

3. Views

Personal Cooperative

Figure 27: Implications for design in cooperative activity life cycle manage-
ment. Activities can be both personal and cooperative, requiring a
seamless transition between a personal and cooperative view [65].

70 laevo and co-laevo

users (shared activities) In addition to personal activities, users

Activity signifiers
tie a personal

workspace to a
shared workspace.

need to have access to the shared activities of users they cooperate
with. This implies that for each activity there is a local, as well as
possibly shared context associated to it. Common to both, however,
is the activity signifier: a necessary description used to refer to and
discuss the activity [57]. To this end, each participant needs to be able
to have a personal workspace associated to a shared activity signi-
fier. Although the workspace is local, it can be used to access shared
resources and initiate collaboration with participants.

Activity construction is “the practice of defining the context of anCollective
management of the

state of activities
supports team

awareness.

ongoing or planned activity. During this practice, users gradually
build up and modify the content, thus refining the scope of the ac-
tivity” [64]. Different from PIM, activity construction is no longer
restricted to one individual user. As posited by Schmidt and Ban-
non [118], within cooperating teams there is a need to “support the
ongoing dynamic articulation of distributed activities and the coop-
erative management of the mechanisms of interaction themselves”.
Activity coordination can be supported by collectively managing the
state of activities in a shared work environment (e.g., an activity that
changes from a planned state to open, indicating work has started on
it). However, in order to keep users that depend on an activity up
to date, there is a need to inform everyone within the shared work
environment of modifications (these might be possible interruptions
during ongoing work), including life cycle state changes (e. g., an ac-
tivity which is completed by another user). In addition to facilitating
coordination, this supports team awareness by regularly confronting
users with the activity descriptions and states of other users when
switching between their own activities as part of everyday knowledge
work (multitasking).

data (organizing activities) Considering that the number of ac-

1. Users

2. Data

3. Views

Personal Cooperative

Activities should be
groupable.

tivities that need to be managed in a cooperative environment is the
same as during personal information management, but multiplied
(approximately) by the number of users one cooperates with, there
is a scalability issue that needs to be addressed. Even more so than
in PIM, there is a need to be able to group related activities together
and relate them to other groups of activities. Merely representing ac-
tivities along a temporal dimension no longer suffices (even for small
activity sets) since the user needs to be able to share groups of activi-
ties with other users. These should be separable from one’s own pri-
vate activities. Additionally, groups of activities might be part of an
overarching higher-level goal. For example, programming activities
can be shared within a software development team, but furthermore
are part of higher-level project management of the overseeing com-
pany. It should thus be possible to fluently define, relate, and share,
collections of activities.

6.6 shared activity hierarchies 71

A permanent internet connection, and thus a continuous up-to- Resolution
mechanisms are
needed to
synchronize
divergent activities.

date collection of activities, cannot be guaranteed. Therefore, activ-
ity state conflicts can arise when users modify the state of a shared
activity while offline. Since the personal planning and associated lo-
cal workspace of users might depend on the state or existence of the
activity, the concerned users need to be notified and presented with
a resolution mechanism once activities are synchronized. For exam-
ple, two separate users might have opened (and thus indicate having
started work on) an activity. A choice needs to be made whether one
of the users abandons ongoing work, or whether work up to that
point should be aggregated. Alternatively, one of the user continues
work on a copy of the activity.

views (personal and cooperative workspaces) Laevo was de-

Activity ownership
should be distinct
from activity access.

signed with PIM in mind, providing support to easily suspend and
resume the activities of just one user. Although cooperative activity
life cycle management additionally requires access to the activities of
users one cooperates with, not all shared activities should be made
part of the personal workspace. This would rapidly lead to informa-
tion overload. Users thus need to be able to claim ownership (which
can be shared with other users) over the activities they are interested
in. To further support coordination, it should also be possible to sug-
gest ownership to others. A similar view to that of Laevo (a personal-
ized overview) can show all activities one has claimed ownership over,
distinct from a view which provides access to the full set of activities
one has access to. A seamless transition between the two supports fre-
quent switching between them as part of creating and selecting new
activities to work on.

6.6 shared activity hierarchies

The original design of Laevo has two distinct work environments, one co-Laevo introduces
activity hierarchies
and shared activity
time lines.

activity management environment (the activity time line), and several
dedicated workspaces (one per activity). On the activity time line, Laevo
employs the inherent state changes of activities over time as a way
of organizing and accessing them. co-Laevo extends on this design
by introducing activity hierarchies and shared activity time lines. During
the design process a strong emphasis was placed on finding a satisfac-
tory compromise between the original requirements derived from PIM

literature (the personal overview of activities as presented in Laevo)
and incorporating access to even larger numbers of activities part of
a cooperative work environment. The newly introduced features do
not conflict with the earlier design of Laevo. In fact, co-Laevo can
be seen as a conceptually coherent superset of Laevo which merely
introduces an additional layer of abstraction to scale up the original
design to a cooperative context.

72 laevo and co-laevo

activity hierarchies As part of an evaluation of Laevo (which

Activity hierarchies
support the

hierarchical nature
of goals.

will be presented in Chapter 8), insufficient support for high-level ac-
tivities that need to be revisited only sporadically was observed, like
long-term projects representing particular clients. Users expressed
problems in managing them: stopping and reopening projects did
not feel adequate as the project was not discontinued, but rather, did
not require any attention at the time. This indicates a need for the
user to be able to define more granular activities within the context
of higher-level activities. For example, a meeting activity could be
considered part of an overarching project activity. This observation is
reflected in activity theory [73], in which activities constitute actions
directed at specific goals which in turn are part of attaining an under-
lying motive. Goals can be decomposed into sub-goals, sub-sub-goals,
and so forth. For example, a PhD student might be motivated to grad-
uate (the activity), for which he needs to write a thesis (the action),
containing several different lower-level actions targeted at sub-goals,
like reading up on related research. Although activity theory distin-
guishes between activities and actions, there is no such need to make
a distinction in the user interface. It is the user who mentally assigns
an intent to an activity upon its creation. However, the hierarchical
nature of goals should be reflected in the user interface in order to
support richer management of both high-level and low-level goals.

To this end, co-Laevo introduces a separate time line for each activ-Each activity has a
dedicated workspace
and an independent

time line.

ity within the system. Each activity represents thus not only a point
of access to a dedicated workspace, but also to a time line from where
its sub-activities can be managed. For intelligibility reasons (as not to
confuse the user) a choice was made not to make the state of activi-
ties depend on that of parent activities, and vice versa. Activities can
thus contain sub-activities of any state, e. g., open activities can con-
tain planned activities, and closed activities can contain to-do items.
Not much is to be gained from automating possible dependencies
between the two, in contrast to the added complexity this would in-
troduce. The ‘Home’ activity of Laevo is used as the root for the ac-
tivity tree which represents a top level time line. An example activity
hierarchy for a PhD student is shown in Figure 28.

Meet
Supervisor

...

Teach
Course

Write
Thesis

Read Related
Work

PhD

Pinpoint
Contributions

...

Figure 28: An example activity tree for a PhD student.

6.6 shared activity hierarchies 73

The original time line of Laevo provides a complete overview of A personal view
shows a subset of
activities selected
from a hierarchy
view.

all the user’s personal activities. In contrast, the personal view in co-
Laevo shows only a subset of all accessible activities. In a newly intro-
duced hierarchy view (Figure 29) all activities in the hierarchy can be
accessed and users can decide which activities to show on their per-
sonal time line by claiming ownership over them (Figure 29, 4). The
personal time line thus provides an aggregated overview of a set of
selected activities from different levels in the hierarchy view. Brows-
ing hierarchies is similar to how folders are navigated in an ordinary
file system, with breadcrumbs indicating the current position within
the activity hierarchy (Figure 29, 1). The hierarchy time line shows
the containing activities of the currently selected activity (function-
ally identical to the old personal view from Laevo since there were
no hierarchies). Pressing a button allows seamlessly transitioning be-
tween both views (Figure 29, 3): the background color changes, the
time line is repopulated with the requested activities, but the cur-
rent visible time interval remains the same. In both the personal and
hierarchy view, an activity log keeps track of changes made to the
activities of the currently visible time line (Figure 29, 7).

6. Independent
positioning

Personal View

7. Access
activity log

Hierarchy View

4. Add/remove
ownership

2. Manage
access

3. Switch
overviews

1. Breadcrums

5. Awareness
of other's activities

Figure 29: An overview of the newly introduced cooperative features of co-Laevo in both the new
hierarchy view, and preexisting personal view.

74 laevo and co-laevo

Compared to Laevo, the personal time line remains largely un-The personal view is
conceptually

identical to Laevo.
changed, except for newly added cooperative features including a
user profile (Figure 30, 2), a list of owners per activity, and the abil-
ity to remove ownership over an activity (same representation as in
the hierarchy view). Removing ownership removes the activity from
the personal time line but keeps it in the hierarchy view. Activity
ownership is not shown for the active user on the personal time line
as this would be a redundant visualization; it is, however, shown in
the hierarchy view. The vertical position of activities on the personal
view can be modified independently from the vertical position on the
hierarchy view (Figure 29, 6). This is necessary to maintain a person-
alized organization of activities in the personal view as opposed to
the hierarchy view which can be organized collaboratively.

shared time line Prior activity-centric computing systems pro-

Articulation work is
an important part of

cooperation.

vide the means to share activities and their work context with other
users and devices [58, 135]. However, support for coordination is lim-
ited to sharing individual activities. No explicit support is provided
to articulate (divide, allocate, coordinate, schedule, mesh, interrelate,
etc.) activities within cooperative work arrangements [118]. Although
some strict interpretations of situated action favor highlighting the ad
hoc (in situ) nature of knowledge work over elaborate support for
planning, the two are not mutually exclusive [121]. For example, ac-
tivity theory argues that plans are achieved, but undergo continual
modifications in the course of action. There is thus a need to support
situated planning: the plan should be made a malleable part of the
activity [12].

Figure 30: The window used to (1) add and remove access for users, and
(2) modify the user profile. Initials are shown when no profile
picture is set.

6.6 shared activity hierarchies 75

co-Laevo supports situated planning by allowing users to access Ownership over
activities can be
claimed or suggested
from shared activity
time lines.

shared activity time lines (Figure 29, hierarchy view). The notion of
activity access is distinct from activity ownership. Activity access im-
plies having access to an activity and all of its sub-activities (and
their sub-sub-activities, etc.), but does not imply activity ownership.
Activity ownership means users claim ownership over an activity, at
which point it will be displayed on their personal time line. The user
will be notified of any changes made to the activity through the activ-
ity log accessible from their personal view (Figure 29, 7). Users who
have access to an activity can see who has claimed ownership over it5

(Figure 29, 4). In short, activity access can thus be used to share and
coordinate plans with participating users, and activity ownership can
be used to set up a personal work environment. Ownership can also
be suggested to other users, but remains in a pending state until ap-
proved, which can be done from the personal activity log. In case an
owned activity is removed by someone else, the activity is automati-
cally moved to the home time line, thus removing it from the shared
work context. Similar to other owned activity state changes, the user
is notified of removal through the personal activity log.

From the hierarchy view, access can be given to other users to the Users can be given
access to a time line,
of which they are
notified through the
to-do list.

currently shown activity time line (Figure 29, 2 and Figure 30, 1). This
will trigger an interruption which is added to the to-do list of the re-
cipient, representing the activity they were just invited to. This is
distinct from activity notifications (introduced in co-Laevo as the ac-
tivity log), which refer to existing activities and do not carry any new
context. Although the initial activity representation (icon, color, and
name) corresponds to that of the invited activity, invited users are free
to change the representation locally. In essence, only the containing
activity time line is shared, allowing users to freely mount the shared
activity anywhere within their own personal activity hierarchy using
the original activity manipulations available in Laevo. They can thus
also choose to represent it as an open, closed or planned activity.

5 User who have ownership might be hidden when insufficient space is available on
the time line. This depends on the current zoom level.

7
D E D I C AT E D W O R K S PA C E S T O O L K I T

Einstein argued that there must be simplified explanations of nature,
because God is not capricious or arbitrary. No such faith comforts the

software engineer. Much of the complexity that he must master is arbitrary
complexity, forced without rhyme or reason by the many human

institutions and systems to which his interfaces must conform. These differ
from interface to interface, and from time to time, not because of necessity

but only because they were designed by different people, rather than by God.

— No Silver Bullet, Frederick P. Brooks, Jr. [31]

In order to indicate how much the design of user interfaces relies on, Implementing an
activity-centric
computing system is
labor-intensive.

and is influenced by underlying architecture [42], I presented some
key points of interest within the history of interactive computing sys-
tems at the start of this dissertation (Chapter 1). Although new com-
puting systems have a lot to gain from building on top of prior tech-
nologies, their design is also largely restricted by it. This has lead to
a historical bottom-up approach to system design, resulting in contem-
porary computing systems which in many ways still resemble some
of the earliest systems introduced1. In contrast, activity-centric com-
puting is a top-down approach to system design which envisions a rad-
ically new computing paradigm. Regardless of the aversion most re-
searchers in this line of research feel towards the current technological
stack, they still need to build on top of current technologies in order
to be able to evaluate their newly introduced systems within a real-
world work environment. Therefore, a major focus of prior work has
been to integrate existing applications into activity-centric computing
systems so that their content can be made part of computational activ-
ities. This is a labor-intensive, error-prone process, which in addition
is often invalidated by future releases of the targeted applications. As
discussed in Chapter 4, the majority of work in activity-centric com-
puting has therefore operated on the workspace layer within the inter-
action framework; multiple applications need to be aggregated into
one overarching ‘activity context’ workspace. This has left little time
to focus on some of the higher-level implications of activity-centric
computing, i. e., activity management.

1 Reading up on early HCI literature is a truly humbling experience in that it reveals
a vision for future technologies which in many ways resembles and even transcends
present-day technologies. With a focus on technology and a short time to market only
a handful of features are adopted and the underlying vision often gets lost along the
way (e. g., collaboration in NLS [43], virtual desktops in Rooms [55], and the Xerox
Star which was much more document-oriented than applications are today [29, 68]).

77

78 dedicated workspaces toolkit

DW toolkit To this end, I introduce a toolkit2 which centralizes

The DW toolkit
supports creating

research prototypes
for activity

management.

the redundant work of integrating separate applications into overar-
ching dedicated workspaces (DW). Although these can be used to rep-
resent activities, this is not a prerequisite—activities are not part
of the supported abstraction. As an intermediate approach, the DW

toolkit “sit[s] atop of a layer of more fundamental infrastructure” [42],
namely the Windows operating system and existing applications (Ta-
ble 10). The main focus is to support the construction and positioning
(suspend and resume) of arbitrary workspaces, not tied to any one
specific application. Less focus is placed on search, although this is a
logical point for extension. This frees up time for researchers to focus
on activity management, essential to advancing the research agenda
for activity-centric computing (Table 10). It must be noted that this
toolkit is merely intended to be part of a transitional phase, supporting
the construction of prototypes which “serve as ‘proxies’ for how real
applications built on the final infrastructure might work” [42]:

Thus, after identifying user-facing needs, general capabili-
ties can be pushed down into infrastructure in a top-down
manner.

activity Activity management (Laevo [64], co-Laevo [65], and ActivitySpace [60])

workspace

item

DW toolkit NooSphere [59]

material Operating system & applications

Table 10: The dedicated workspaces (DW) toolkit is an intermediate approach to supporting the
construction of arbitrary workspaces.

Such a toolkit which can act as ‘middleware’ for the constructionPrior middleware
solely focuses on

activity distribution.
of dedicated workspaces did not yet exist. Although the underlying
infrastructure of activity-centric computing systems is at times de-
scribed, no independent reusable implementation is made available
to the public. For example, the ABC framework for medical work in
hospitals does shortly describe key components of the implemented
architecture [16], including the integration of different applications
with one central ‘state manager’, but does not provide the source
code to enable this functionality as an isolated package. In contrast,
NooSphere supports “the prototyping of distributed interaction sys-
tems” [59]. As an activity-centric toolkit it provides support for the
distribution of activities (enabling activity sharing), resolving many
of the complexities surrounding the implementation of networked
applications. However, it does not support the integration of existing
applications within the context of dedicated workspaces.

2 Source code is available on github: https://github.com/Whathecode/ABC

https://github.com/Whathecode/ABC

7.1 architecture 79

7.1 architecture

The DW toolkit (Figure 31) is built on top of the .NET framework The toolkit is
designed for
Windows and can be
extended on to
support more
applications.

for the Windows operating system. It exposes an application pro-
gramming interface (API) implemented in the C# programming lan-
guage, designed for researchers or developers interested in creating
an interactive computing system supporting dedicated workspaces.
Within a workspace manager, default implementations for common
workspaces (e. g., a virtual desktop manager) are available. New types
of workspaces can be introduced by extending on the provided ab-
stract classes. In addition, a plug-in management system integrates with
the prepackaged workspace managers in order to allow developers
to integrate with or specify custom behavior for native applications.
These plug-ins are loaded at run time using the Managed Extensibil-
ity Framework (MEF) or through simple configuration files. Plug-ins
can communicate with extensions for native applications using, e. g.,
named pipes. Under the covers the workspace managers use Platform
Invoke (P/Invoke) to communicate with the native Win32 API3. Two
less developed components, part of ongoing research, enable central-
ized interruption management (e. g., incoming emails) and the invoca-
tion of services in an application-agnostic way (e. g., opening a web-
page). Since the framework acts as middleware, it necessarily tailors
to just one specific operating system. However, it might inspire the
design of similar architectures on other operating systems.

Dedicated workspaces toolkit

PLUG-IN
MANAGER

SERVICE
PROVIDER

INTERRUPTION
MANAGER

WORKSPACE
MANAGER

ACTIVITY-AWARE
APPLICATIONS

NATIVE
APPLICATIONS

OPERATING SYSTEM

ACTIVITY
MANAGEMENT

.NET API

MEF

Config. files

P/Invoke Named pipes, ...

Figure 31: The dedicated workspaces toolkit is comprised of four components: a (1) workspace
manager, (2) interruption manager, (3) service provider, and (4) plugin manager. It sits
on top of the operating system and supports the creation of interactive computing
systems which support integrated activity management.

3 A managed wrapper for P/Invoke is used, part of a separate library: https:
//github.com/Whathecode/Framework-Class-Library-Extension

https://github.com/Whathecode/Framework-Class-Library-Extension
https://github.com/Whathecode/Framework-Class-Library-Extension

80 dedicated workspaces toolkit

7.2 workspace manager

The central component of the DW toolkit is the WorkspaceManager.A central workspace
manager manages

and supports
switching between

dedicated
workspaces.

It aggregates multiple instances of AbstractWorkspaceManager and
enables performing operations on them as a whole. From this one
central location, dedicated workspaces can be constructed, switched be-
tween, and merged. In line with the composite pattern, the Workspace-

Manager itself is an AbstractWorkspaceManager, thus (in theory4) sup-
porting workspace hierarchies (Figure 32). Depending on the specific
managers passed during the construction of the aggregate manager
(Listing 1), different items are incorporated into the context of each
individual workspace. For example: a VirtualDesktopManager man-
ages application windows; a LibraryManager manages the paths of
a specific Windows Library (as employed in Laevo, see Section 6.2);
and a DesktopIconsManager manages desktop icons (as employed in
an updated version of co-Activity Manager [58] using the DW toolkit).
Concrete implementations of AbstractWorkspaceManager operate on
one specific AbstractWorkspace implementation. For example, the
VirtualDesktopManager manages VirtualDesktop’s (Figure 33). The
WorkspaceManager thus needs to handle different concrete implemen-
tations of AbstractWorkspaceManager and AbstractWorkspace. There-
fore it accesses them through non-generic interfaces5, which for the
sake of simplicity are not displayed in Figure 32. When switching
between workspaces using the WorkspaceManager, all corresponding
items from the aggregated workspaces are swapped out.

AbstractWorkspaceManager
 <<get>> CurrentWorkspace: TWorkspace

+CreateEmptyWorkspace(): TWorkspace
+CreateWorkspaceFromSession(session:TSession): TWorkspace
+SwitchToWorkspace(workspace:TWorkspace)
+Merge(from:TWorkspace,to:TWorkspace)

TWorkspace:AbstractWorkspace
TSession:object

WorkspaceManager

VirtualDesktopManager

LibraryManager

DesktopIconsManager

AbstractWorkspace
 <<get>> IsVisible: bool
 <<get>> IsSuspended: bool

+Suspend()
+Resume()
+Store(): TSession
 Show()
 Hide()

TSession:object

 aggregates

0..*

1

1..*

Figure 32: Class diagram for the WorkspaceManager. Extensibility is supported by extending from
AbstractWorkspaceManager, allowing to incorporate additional items in a workspace.

4 Specific implementations of AbstractWorkspaceManager need to account for this.
5 The abstract classes contain a NonGeneric wrapper (following the adapter pattern)

initialized from within the constructor: https://whathecode.wordpress.com/2015/
12/15/non-generic-wrapper-instead-of-base-class-or-interface/

https://whathecode.wordpress.com/2015/12/15/non-generic-wrapper-instead-of-base-class-or-interface/
https://whathecode.wordpress.com/2015/12/15/non-generic-wrapper-instead-of-base-class-or-interface/

7.2 workspace manager 81

AbstractWorkspaceManager

TWorkspace:AbstractWorkspace
TSession:object

VirtualDesktopManager

AbstractWorkspace
TSession:object

1

1..*

VirtualDesktop

StoredSession

<<bind>>
TSession -> StoredSession

<<bind>>
TWorkspace -> VirtualDesktop
TSession -> StoredSession

Figure 33: Example of one concrete AbstractWorkspaceManager, the VirtualDesktopManager.

// Create individual workspace managers.

var vdmManager = new VirtualDesktopManager(vdmSettings,

persistenceProvider);

var libraryManager = new LibraryManager("Activity Context");

// Initialize aggregate workspace manager.

WorkspaceManager = new WorkspaceManager(new[] { vdmManager.

NonGeneric, libraryManager.NonGeneric });

Listing 1: Setting up a WorkspaceManager.

Internally, switching between workspaces is achieved by showing Workspaces can be
suspended and
resumed to free up
computational
resources.

and hiding them. This implies that even though items from a cer-
tain workspace are no longer visible, they might still take up compu-
tational resources. Since creating too many workspaces might slow
down the system, it should be possible to suspend a workspace,
thereby releasing the resources it contains (e. g., the VirtualDesktop-

Manager should close down applications). This is an interjected abstrac-
tion: a situation “in which low-level infrastructural concepts become
part of the conceptual model of the interface” [42]. To make managing
a plethora of activities within activity-centric computing a possibility,
suspending workspaces should be made part of the user interface6.
Using the DW toolkit, a recent version of Laevo [64] incorporates said
functionality (Figure 34). Workspaces can be suspended from within
the workspace. The DW toolkit closes as many resources as possible
(i. e., those for which plug-ins are available), and subsequently asks
the user to clean up any remaining ones. Alternatively, remaining re-
sources can be merged with the home workspace. When resuming the
workspace, the resources suspended by the DW toolkit are reopened.

Figure 34: Suspending a workspace in a more recent version of Laevo.

6 I do so reluctantly, since this goes counter the vision of activity-centric computing in
which activities can simply be suspended by switching to another activity.

82 dedicated workspaces toolkit

Another inevitable interjected abstraction, due to not being ableOnly one workspace
can be visible at a

time.
to close the traditional desktop environment without shutting down
the system, is that one workspace needs to be visible at any given
point in time (they cannot all be hidden)7. In addition, only one
workspace can be visible (or more specifically, be manipulated) si-
multaneously. This is part of the conceptual model of a ‘workspace’,
which is deliberately enforced by the API. It is by performing work
‘within’ a workspace that the containing context is built up. There-
fore, allowing users to work on multiple workspaces simultaneously
would inevitably lead to dissolving the borders in between them. At
least, without clear demarcations (which are not part of the desk-
top metaphor), the system, and possibly even the user, would not
know which workspace new or repositioned items belong to. How-
ever, workspaces can be merged with one another, and concrete im-
plementations of AbstractWorkspaceManager can implement mecha-
nisms to move (or share) individual items in between workspaces.
For example, the window cut and paste operations supported by the
VirtualDesktopManager.

An AbstractWorkspace can be stored, which saves the currentWorkspaces can be
stored so they can

exist beyond the
lifetime of the

application.

state of the workspace in an object serializable by the .NET frame-
work (using DataContractSerializer). The caller still needs to de-
cide when and where to store this ‘session’. Sessions can be passed to
a workspace manager to reinitialize the state and containing items of
the corresponding workspaces. This is distinct from ‘suspend’, e. g., a
workspace can be stored without suspending it. For example, Laevo
can be closed down, at which point all workspaces are stored and pre-
viously hidden items reappear (using a Close method). Upon restart-
ing, workspaces are recreated from the stored sessions and only a
StartupDesktop8 remains, showing all resources that could not be
allocated to prior workspaces.

7.3 plug-in manager

Any middleware which intends to support a broad set of preexistingPlug-ins are
required to integrate

with preexisting
applications.

practices would out of necessity have to rely on a plug-in manage-
ment system in order to integrate with the near endless amount of
independent applications which are available on the market. A plug-
in manager can support the loading of independently developed inte-
grations, and furthermore facilitate their distribution. Without a plug-
in manager in place, each release of a new or updated application
necessitates evaluating and possibly redeploying the system under
construction in order to guarantee that it functions properly.

7 Laevo somewhat works around this by showing a full screen user interface (the time
line) which can not be closed when a workspace is suspended. Underneath, however,
the workspace is still visible.

8 For simplicity a Close method and StartupWorkspace are not displayed in Figure 32.

7.3 plug-in manager 83

For example, the VirtualDesktopManager relies on two points of Workspace
managers can be
extended by loading
plug-ins.

extension: window specifications and persistence providers. These are
loaded from components passed during the construction of Virtu-

alDesktopManager (e. g., Listing 1): IWindowSpecifications and Ab-

stractPersistenceProvider (Figure 35).

VirtualDesktopManager

AbstractPersistenceProvider
-processTracker: ProcessTracker

+Suspend(windows:List<Window>): List<PersistedApplication>
+Resume(persistedStates:List<PersistedApplication>)
#GetPersistenceProviders(): List<AbstractApplicationPersistence>

1

FolderPersistenceProvider

PluginManager

PluginPersistenceProvider

IWindowSpecifications
+CreateWindowFilter()
+CreateHideBehavior()

1

LoadedWindowSpecifications
+AddSettingsFile(stream:Stream)

PluginWindowSpecifications

1

1

Plugin
+Target: ApplicationManifest
+Version
+Author

Figure 35: VirtualDesktopManager plug-ins which are managed by PluginManager.

Window specifications indicate which windows need to be managed Window
specifications are
loaded through
settings files.

(or not) and can specify custom behaviors for when application win-
dows need to be hidden, i. e., during window cut and paste opera-
tions and when switching between workspaces9. Window specifica-
tions can be loaded through settings files using LoadedWindowSpeci-

fications (example configuration file in Listing 2).

<Process Name="chrome" CompanyName="Google Inc.">

<IgnoreWindows>

<Window ClassName="Base_PowerMessageWindow" />

<Window ClassName="SWFlash_PlaceholderX" />

<Window ClassName="CSpNotify Notify Window" />

</IgnoreWindows>

<HideBehavior>

<Default Hide="SelectedWindow" />

<!-- Visible status bar also needs to be hidden. -->

<Include ConsiderWindows="AllWindows">

<Window ClassName="Chrome_WidgetWin_0"

Visible="True" Title="" />

<Window ClassName="Chrome_WidgetWin_1"

Visible="True" Title="" />

</Include>

</HideBehavior>

</Process>

Listing 2: Settings for Chrome, which has a status bar as separate window.

9 Each process in Microsoft Windows can host several application windows, some of
which are never visible, and some of which are only made visible when the process
decides to. Since processes handle application windows differently, it is not possible
to rely on a single universal implementation to handle all application windows.

84 dedicated workspaces toolkit

Persistence providers are used when suspending a workspace to savePersistence
providers are loaded

through highly
specific plug-ins.

the state of specific applications and subsequently to shut them down,
and to reinitialize state once they are resumed. There are no default
ways of suspending applications, which is why configuration files do
not work in the case of AbstractPersistenceProvider. Instead, plug-
ins are loaded through FolderPersistenceProvider, which uses MEF

to retrieve assemblies conforming to the interface of AbstractAppli-
cationPersistence from a folder on the hard drive. These implemen-
tations vary wildly, and require a certain degree of creativity to ac-
cess native applications. For example, restoring Windows Explorer
windows (file system explorer) relies on accessing the Windows API;
restoring Notepad (a simple text editor) relies on monitoring passed
command line parameters to see which file was open (Listing 3);
and restoring open browser tabs from Chrome requires implement-
ing a custom Chrome extension which uses inter-process communi-
cation (IPC) to talk to the plug-in loaded by the DW toolkit.

[Export(typeof(AbstractApplicationPersistence))]

public class NotepadPersistence : AbstractApplicationPersistence

{

public NotepadPersistence()

: base("notepad", "Microsoft Corporation") { }

public override object Suspend(SuspendInformation toSuspend)

{

// Is data to know which file was open passed?

if (toSuspend.CommandLine == null) { return null; }

ProcessHelper.SetUp(@"C:\Windows\System32\taskkill . exe", "/
pid " + toSuspend.Process.Id, " ", true).Run();

// Extract file name from commandLine.

Match split = Regex.Match(toSuspend.CommandLine, " \"(. *) \"
(. *) ");

return split.Groups[2].Value;

}

public override void Resume(string applicationPath, object

persistedData)

{

if (persistedData == null) { return; }

var filePath = (string)persistedData;

ProcessHelper.SetUp(applicationPath, filePath).Run();

}

public override Type GetPersistedDataType()

{

return typeof(string);

}

}

Listing 3: The persistence provider for Notepad.

7.3 plug-in manager 85

Similarly, other AbstractWorkspaceManager’s might have to rely on A plug-in manager
is needed for a
longitudinal
deployment.

plug-ins to integrate with preexisting applications. As per the quote
at the start of this chapter, it is thus necessary to master “arbitrary
complexity” [31], conforming to the many different interfaces which
applications that need to be integrated with expose. This is a diffi-
cult and time-consuming task, and therefore we would do well by
making this a collaborative research effort. Ongoing work is to set up
a visual PluginManager (Figure 35), part of the DW toolkit, through
which plug-ins can easily be installed, shared, and distributed. This
would support the long-term deployment of activity-centric comput-
ing systems which can be updated externally to satisfy unanticipated
needs from end users. A Plugin targets a specific application and
lists the versions it supports, thereby allowing to compare applica-
tions installed on the user’s computer to available plug-ins. Following
the strategy pattern, plug-ins loaded by the PluginManager are man-
aged by separate concrete implementations (e. g., PluginPersisten-
ceProvider), but can nonetheless rely on the earlier described mech-
anisms internally (Figure 35).

Part III

E M P I R I C A L S T U D I E S

8
L A E V O E VA L U AT I O N

I regarded [the virtual desktop manager (VDM) of Ubuntu] as several
screens between which you can switch, [in Laevo] I saw it more as a

distribution of my activities.

— Laevo participant in first study

After identifying early usability and stability problems in a one day Laevo was evaluated
during a two-week
field study including
six participants.

in situ pilot study (including 12 participants), Laevo (Chapter 6) was
deployed during a two-week field study1. The goal of this second
study was to assess the short- and mid-term feasibility of using the
system and explore the perceived impact of Laevo on the work prac-
tices of the user. Six participants (age ranging from 28 to 59, one

6

female) were recruited to participate in the experiment. Participants
came from a broad range of backgrounds, including consulting, en-
gineering, and software development, to represent different types of
knowledge work. Participants were required to have experience with
either Windows 7 or 8. Similar to the pilot study, the experiment was
conducted in situ, meaning that the system was deployed on their
personal computer, used in their own work environment. Two out of
12 users from the pilot study participated in this second long-term
study. The other 4 participants used Laevo for the first time.

method Users were sent a link to a blog post2 containing an in-

Participants filled
out a daily diary and
a semi-structured
interview followed.

staller and a complete manual of Laevo (Section B.1). Participants
were requested to use the system over a period of 14 days during their
day-to-day work. During this period, they were asked to keep a diary,
in which they had to add one entry each day. The entry was based on
a number of predefined questions on how and if they used the sys-
tem that day, with a particular focus on any special events that had
occurred (Section B.2). Additionally, usage data from the system was
automatically collected throughout the experiment. At the end of the
experiment participants were requested to anonymize any sensitive
information before submitting their data and diary. From this data, a
local representation of their timeline could be reconstructed for anal-
ysis. Finally, after the experiment was completed, participants were
invited for a semi-structured interview in which their experiences
with the system were discussed. Initial questions were individually
outlined beforehand based on their diaries.

1 Only Laevo was evaluated during a field study, co-Laevo was not.
2 https://whathecode.wordpress.com/2013/08/04/start-of-laevo-user-studies/

89

https://whathecode.wordpress.com/2013/08/04/start-of-laevo-user-studies/

90 laevo evaluation

results All participants experienced benefits by structuring their

Participants were
more focused and
more aware about

their activities.

work within the context of activities, confirming prior findings of
in situ field studies which have evaluated activity-centric computing
systems. Once activities are set up, people like having only those
things for the task at hand visible as it helps them in keeping focus.
Participants experienced losing less time when switching between
parallel tasks since the right folders and files were still open. Without
Laevo, extreme filers (P1, P2, P4) ordinarily closed windows in order
to coordinate many parallel tasks.

“I’m getting used to not having a cluttered desktop. I made an
activity for something that only took about one hour, but this
allowed me to focus on the task at hand.” – P1

When asked to elaborate on where this focus came from it became
clear that Laevo made participants more aware about their activities.
The activity overview played an important role in this. Participants
argued that each time they switched between activities they were ex-
posed ‘at a glance’ to all ongoing and planned work, which P5 stated
as being an advantage over a to-do list on paper which can easily be
ignored. This allowed them to make more conscious decisions about
which activities to prioritize. As mentioned by one user:

“By explicitly defining your activity, you are [...] forced to reflect
on what is your current active ‘task’, [which] seems to make
you less distracted. When you do switch to something else, it
becomes a very conscious choice.” – P6

Analyzing the participants’ time lines indicated that for all users ex-
cept one (P3) the majority of activities were concrete instantiations
aimed towards a certain goal, as opposed to ‘types’ of activities like
‘programming’. Noteworthy, two users (P2, P3) who were using Out-
look instead of Gmail, and thus were not receiving email interrup-
tions, created long-running ‘check email’ activities.

“Using other [VDMs] I structured my work according to [type
of work]. What distinguishes Laevo from other [VDMs] is it is
inviting to organize [work] as concrete activities.” – P6

The activity model provided by Laevo was appropriated by users toActivity scopes
varied and changed

over the course of
the experiment.

support different activity scopes, ranging from only having short hour-
based tasks (P2, P6), to long-term projects that lasted several weeks
(P3, P4), to a combination of both (P1, P5) (Figure 36). One user (P5)
created a number of short tasks at the start of each day, meticulously
planning which work needed to be done. As the day progressed he
used the activity time line to check whether he was still on schedule,
reprioritizing activities where needed. Another user (P4), however, ar-
gued that activities only made sense to him for long-term projects. As
part of his work, he created activities for each of the clients he was

laevo evaluation 91

(P2) Hour-long activities. (P5) Various activity lengths.

(P6) Hour- to day-long activities. (P4) Week-long activities.

Figure 36: Different activity scopes, depicted by the time lines of participants P2, P4, P5, and P6.

working with. For all smaller tasks, he used the home activity or sim-
ply handled them inside the currently open activity. In general, all
participants saw the home activity as a catch-all environment, often
used for quick and dirty work or private activities, thus keeping ac-
tual work separated from ‘daily clutter’. All participants that eventu-
ally created short-term activities mentioned a ‘learning curve’ they had
to go through when using Laevo. After a while, P1 and P2 adopted
a ‘nothing ventured, nothing gained’ attitude towards creating activi-
ties. The up-front configuration work initially seems like an overhead,
but over time users start to see several advantages when doing so: less
clutter, increased focus, productivity and efficiency.

“[...] the more separate activities I start in Laevo, the less I’m
tempted to quickly do another activity within an existing one,
the more fluently and efficient I can work. You have to ‘learn to
use’ Laevo – as is the case with everything.” – P2

Participants incorporated the system to varying degrees into their Appropriation of
Laevo depended on
the overlap with
existing practice.

existing work practices, depending on how much overlap there was
with the other tools they used. Before using Laevo, P2 used to write
to-do items on a piece of paper. She first experimented with plan-
ning activities in the future in order to remind her of them, but af-
terwards started using the built-in to-do list instead. P1 opened up

92 laevo evaluation

entire projects within to-do items as placeholders for side projects he
wanted to start working on when he had some spare time. Another
participant (P5) preferred the task list from Google since he could eas-
ily access it from his mobile phone. However, at the start of each day
he manually transferred the to-do items with the highest priority to
the time line from Laevo, planning his day. He preferred the overview
in Laevo over the Google task list. Lastly, P6 did not use the to-do list
nor the incoming email interruptions since he kept an elaborate to-do
list on paper, which he divided in different zones by priority. Sim-
ilarly, participants used different approaches to construct activities.
P5 had set up emails to arrive in his to-do list. A request to update
his daily report of Laevo lead to opening it up as a new activity,
while a reminder email by Google was dragged to the corresponding
time on the time line. Another participant (P4) who had not set up
email interruptions manually cut and pasted email windows to the
corresponding activities, effectively using them as reminders within
his long-running projects. P2 manually introduced to-do items, which
lead to the creation of activities the next day. Analyzing the time lines
of all participants (e. g., Figure 36), it was clear that users applied a
wide variety of color schemes and physical layouts.

Laevo provides limited support for the revisitation of past activities.The study
highlighted new

features for co-Laevo.
Previously closed activities that are reopened are shown on the time
line as a continuous visualization, which most participants found to
be an incorrect representation. The original design rationale behind
this feature was to create a connection between the two points in time
the activity was used. The yellow lines indicate when the activity was
active. The users, however, argued that it should not be represented as
a continuum but rather as multiple instances of that particular activity.
This feedback was incorporated in the design of co-Laevo (Figure 37).
Stopping and reopening activities splits their representation.

Figure 37: Multiple instances of one activity in time in co-Laevo.

Three out of six participants (P2, P5, P6) continued using the sys-The concept was
proven effective, but

more applications
need to be integrated.

tem after the study. Two other users mentioned they would continue
using Laevo in case stability issues would be resolved (P1 and P4)
and in case integration with Outlook would be provided (P4).

9
TA S K S W I T C H I N G I N S E Q U E N T I A L
M U LT I TA S K I N G

The heart of what information overload really is may very well lie between
tasks rather than within. — Mulder et al. [95]

A major part of this dissertation focuses on how new technologies Few studies
investigate how
dedicated
workspaces support
sequential
multitasking.

can help out users during intensive knowledge work. Activity-centric
computing posits that providing computational support for human
activities allows users to more easily switch between independent on-
going work, thus facilitating multitasking. Although this basic premise
is based on theories of cognition and has largely been confirmed by
the evaluation of several different activity-centric computing systems,
the resulting findings are predominantly qualitative. They do not pro-
vide deeper insights into the degree to which supporting multitasking
through the use of dedicated workspaces improves knowledge work, nor
how multiple workspaces compare to a ‘single workspace’ work en-
vironment. Therefore, in this section I introduce two studies1 which
evaluate computational support for sequential multitasking—the inter-
leaving of several tasks which are executed one at a time. These stud-
ies investigate two of the fundamental principles of activity-centric
computing: activity-centered and activity multiplexing (Table 11).

activity

workspace

item

1. Activity-
centered
(dedicated
workspaces)

2. Multiplexing
(multitasking)

material

Table 11: The ‘activity-centered’ and ‘multiplexing’ principles of activity-centric computing cover
support for sequential multitasking through the use of dedicated workspaces.

The first study is “an experimental study incorporating 16 partici- Two studies are
presented which
share a similar
methodology.

pants in which a traditional Windows 7 environment is compared to
one augmented by virtual desktops” [62]. The second study “investi-
gat[es] the window manager of Windows 7, unraveling the processes
and strategies used when switching from one task to another” [66].
Both studies share a similar methodology: participants follow the
same procedure and work on the same task sets. However, the data
analysis differs. Therefore, related work and part of the methodology
for both studies will be presented as a whole.

1 These studies will largely be presented as they were in earlier publications [62, 66].

93

94 task switching in sequential multitasking

9.1 multitasking continuum

As I will discuss here, several studies in both cognitive sciences andThere are describes
different types of

multitasking.
HCI study multitasking, as well as related concepts such as inter-
ruptions and task switching. However, some ambiguity exists in the
terminology used. Where some theories, models, and studies inves-
tigate short-term subconscious processes, others describe activities
which can last up to several hours. According to Salvucci et al. [115],
“multitasking can be represented along a continuum in terms of time
spent on one task before switching to another.” Along this contin-
uum, research related to multitasking can be divided into (at least)
four different topics: studies investigating (1) concurrent multitask-
ing, (2) task switching, (3) interruptions, and (4) sequential multitask-
ing. Although unifying theories of the full spectrum—ranging from
concurrent to sequential multitasking—have been proposed [115], the
individual empirical studies do not report on the same phenomena
and are hence hard to interpret as a whole [61]. The studies presented
in this chapter focus on investigating sequential multitasking, but to
situate it within this wider research, and to prevent misinterpreting
study results, I will provide a short overview and report on important
differences and similarities.

concurrent multitasking During concurrent multitasking

Working on tasks
simultaneously.

cognitive resources have to be divided across several competing par-
allel tasks, such as driving while talking on the phone. Many ‘dual-
task’ studies investigate dual-task interference and reduction of per-
formance while performing two simultaneous tasks. For example,
driving while on the phone has been shown to result in slower re-
sponses to traffic signals [125]. Other studies show that unfulfilled
goals (like finishing a paper) interfere with tasks that require execu-
tive function [88, 92]. Executive function includes working memory,
reasoning, and problem solving, and can only pursue one goal at a
time. Since executive function is in high demand during knowledge
work, interleaving several long-term tasks (as studied in this chapter)
might decrease overall productivity when mental processes remain
focused on prior goals. However, by consciously formulating plans
for unfulfilled goals, such problems may be avoided [92].

task switching Task switching studies within cognitive sciences

Switching between
different types of

tasks.

explore switching costs between tasks at a microscopic level [78], like
the action of pressing a key. Such cognitive tasks require an appropri-
ate configuration of mental resources, which task switching studies
refer to as a ‘task-set’. This is not to be confused with the task sets
participants have worked on in the studies reported on in this chap-
ter, which cover higher-level real-world knowledge work. In a typical
task switching experiment, effects of switching between two different

9.1 multitasking continuum 95

task-sets are observed, like classifying a digit as odd or even, and
classifying a letter as consonant or vowel. Switching costs include
longer responses on the switched-to task immediately following the
task switch. It is tempting to equate such a task switch with higher-
level knowledge work where complex task goals need to be substi-
tuted. However, this is a fundamentally different operation [94].

interruptions Interruption studies measure the effects of short-

A secondary task
interrupting a
primary task.

lived secondary tasks interrupting a primary task, on both the pri-
mary and secondary task. A primary task here refers to higher-level
goal-oriented work, like solving a Sudoku. Interruptions are short-
term tasks which require suspension of the primary task, like answer-
ing a short question posed by a colleague. Interruptions can lead to
annoyance and anxiety [8], and feelings of stress and frustration [90,
91]. As summarized by Monk et al. [94], some studies show people
perform post-interruption tasks more slowly, and that more errors are
made compared to pre-interruption performance. Characteristics de-
termining the disruptiveness of interruptions include task similarity
to the primary task, interruption complexity, control over interruption
onset, availability of primary task retrieval cues, and duration [94].
Not all interruptions are alike or as disruptive, depending on when
they occur. Interruptions at task boundaries cause less anxiety and in-
duce less errors [7], but this might depend on interruption relevance
to the primary task [50]. Other findings suggest resuming a primary
task slowly can reduce the amount of errors made [32]. Lastly, inter-
ruptions can also disrupt task management, i. e., cause the resump-
tion of unintended tasks [41]. Based on such insights, interruption
management systems attempt to alleviate the disruptiveness of inter-
ruptions by predicting interruptibility of the user [133].

When a secondary task interrupts a primary task two relevant time Interruptions
give rise to a
disengagement and
resumption stage.

intervals become important to study: time taken (or allowed) to dis-
engage from the primary task before starting work on the secondary
task, and time taken to resume the primary task after completion of
the secondary task [6, 30, 131]. Although the studies reported on in
this chapter do not include the traditional notion of a secondary task,
the disengagement and resumption stage are still useful concepts, which
can also be recognized within sequential multitasking studies while
switching between two tasks.

sequential multitasking In contrast to concurrent multitask-

Executing tasks one
at a time.

ing, sequential multitasking denotes the interleaving of several pri-
mary tasks which are executed one at a time. Compared to interrup-
tion studies there are no secondary tasks, as all tasks are long-lived
and of equal importance. This is representative of common everyday
knowledge work [11, 37, 49]. Switching from one task to the next
involves retrieving all the necessary resources (e. g., multiple appli-

96 task switching in sequential multitasking

cation windows) needed to resume the previously suspended task.
Studies investigating sequential multitasking are among other things
interested in measuring the effects of task interleaving on produc-
tivity and accuracy. The control condition typically consists of per-
forming tasks in sequence, as opposed to an experimental condition
where the same tasks need to be, or are voluntarily interleaved. Re-
sults show an inverted U-relationship between multitasking and pro-
ductivity; there is thus an optimal amount of task switching which
leads to the highest productivity. However, increased levels of mul-
titasking lead to a significant loss in accuracy, indicating a trade-off
between productivity and accuracy [2]. This trade-off is further influ-
enced by task difficulty: easy tasks benefit from multitasking due to
the increase in stimulation, but task performance for hard tasks can
decrease due to an overload in mental workload [4].

Interruptions leading to task switches can either be internal (self-There are different
reasons for

switching tasks.
initiated) or external. Although most interruption studies focus on ex-
ternal interruptions, internal interruptions are as common in knowl-
edge work, and there are different reasons for users to decide to
switch tasks [53, 67]. Based on flow theory, these can be broadly cate-
gorized as either originating from negative (e. g., frustration, exhaus-
tion) or positive (e. g., exploration, reorganization) feelings associated
with the task [3]. For example, studies show that users have a ten-
dency to continue working on more rewarding tasks (with a contin-
uous rate of return), and have a tendency to switch tasks after the
completion of subgoals [41, 107].

So far, however, no studies have investigated how different supportThe impact of
specific window

managers has not
been studied.

for task switching in a desktop environment influences sequential
multitasking. Prior studies generally employ a custom application in
which participants can switch between trivial tasks by the press of a
button, e. g., solving a Sudoku, unscrambling letters to form words
(Scrabble) and finding the “Odd One Out” between a set of shapes [2,
4, 107]. Although these task sets make it straightforward to measure
productivity and accuracy, they are not ecologically valid representa-
tions of real-world knowledge work within a desktop environment.
Using a window manager, users can structure (resize and position),
hide, and retrieve application windows, thus supporting sequential
multitasking. Therefore, this chapter introduces two studies which
investigate the very nature of task switches, as supported by win-
dow managers. This differs from prior sequential multitasking stud-
ies which have focused on the impact of the amount of task switch-
ing on task performance. The first presented study focuses on how
task switching as supported by dedicated workspaces influences task
resumption and overall knowledge work, compared to a traditional
desktop environment. The second study investigates in more detail
what comprises a task switch in a traditional window manager, still
widely in use to this day.

9.2 tasks and task sequence 97

9.2 tasks and task sequence

Similar to other sequential multitasking studies, participants work on The presented
studies follow
mandatory task
interleaving to
control for task
switches.

a set of different tasks [2, 4]. Since the focus lies on the nature of task
switches rather than degree of multitasking, both studies presented
in this chapter control for task switches by instructing participants
to switch between given tasks at predetermined intervals (mandatory
task interleaving), mimicking a heavy multitasking scenario with con-
current deadlines. The concepts of a disengagement stage and a resump-
tion stage (which make up a task switch) are introduced, illustrated
in Figure 38. These concepts build on terminology used in interrup-
tion studies [6, 30, 131]. However, in the studies presented here, users
do not return to a primary task, but rather switch between two sepa-
rate tasks as part of an ongoing multitasking session. Task disengage-
ment time is defined as the time between the initial interruption and
the point in time where task resumption commences. In the studies
presented here, all interruptions are external alerts given by the ex-
perimenter. Real-world interruptions may also be initiated by users
themselves (internal interruptions). Task resumption time is the time
between commencing retrieval of the first needed resource and the
first work performed on the next task. This includes retrieving and
opening documents required for the next task, finding files, launch-
ing applications, cleaning up the desktop, and taking a break.

Time -
Task A Disengagement stage Resumption stage

Resumption
time

Task B

Disengagement
time

Interruption

Figure 38: During the disengagement stage, users wrap up a task after having received an interrup-
tion. During the resumption stage, users retrieve and prepare the next task to continue
working on it [62].

Participants had to switch between four tasks, each requiring sev- Participants worked
on four separate
tasks within an
unmodified desktop
environment.

eral application windows. This supports the main intent of simulating
heavy multitasking where several application windows are open simultane-
ously. Tasks were designed according to criteria similar to earlier stud-
ies [107]: performance should be measurable, and tasks should be lin-
ear in progression (should increase continuously and monotonically
with time spent on the task). In contrast to earlier studies [2, 107],
each unit of work over time (subtask) required approximately the
same amount of effort. Participants were instructed to work on sub-
tasks in the order listed in the assignment. All tasks were designed
to be long enough so they could not be completed within one hour.
This allows for the measuring of productivity as a percentage of com-
pleted subtasks, and accuracy as a percentage of correctly performed
work. These task requirements eliminate the possibility of using more
complex tasks like solving a Sudoku. However, as opposed to prior se-

98 task switching in sequential multitasking

quential multitasking studies, none of the applications used through-
out the experiment were modified or simulated. Participants worked
in a completely unmodified desktop environment (Figure 39). The
documents required for the tasks were placed in the default “Doc-
uments” folder of Windows. No other documents needed to be ac-
cessed during the study. For each task a text file with a short assign-
ment description was provided, referring to the required files and
folder location needed for that task.

writing (W): Participants type text found within a PDF file into a
new text document (copy is disabled). No formatting needs to
be applied. At regular intervals the text includes assignments
asking participants to either substitute the assignment with text
displayed in an image pointed to on the hard drive, or with the
translation of a word using Google Translate. Image thumbnails
are available.

This implies four applications need to be used: a file explorer, a
browser, PDF reader, and a text processor.

searching (S): Participants perform calculations based on search-
ing the Internet. For example, “Height of the Eiffel Tower in
meters + year when it was completed =”. Both the intermediate
and final results need to be written in a text file.

This implies three applications need to be used: a browser, a text
processor, and a calculator.

comparing (C): Participants highlight differences between an orig-
inal and modified text. Modifications include synonyms, left out
words, or additional words, but the modified text is still gram-
matically correct.

This implies two applications need to be used: two text proces-
sors.

organizing (O): To mimic folder navigation, a folder hierarchy
contains images organized by type of object (e. g., bridges, is-
lands ...). A task folder contains the same images but disorga-
nized. Participants need to identify what is displayed in the
images from the task folder, find the folder of the correspond-
ing type, within it find the image, and subsequently copy its
filename into a text document.

This implies two applications need to be used: a file explorer
and a text processor. However, experienced users generally use
several file explorer windows. In addition, the image viewer can
be used when image thumbnails are unclear.

9.2 tasks and task sequence 99

WRITING (W)

SEARCHING (S)

COMPARING (C)

ORGANIZING (O)

Figure 39: For each of the four tasks used during the studies, a screenshot is depicted showing
one possible window configuration while working on them [66].

100 task switching in sequential multitasking

During a 10 minute training session, participants familiarized them-Over the course of
50 minutes,

participants switch
tasks 12 times.

selves with a training task set, similar to the evaluation tasks, and
were asked to work on them until they understood what each task
entailed. During the main evaluation, a researcher notified the user 12

times when to switch between tasks over the course of 50 minutes.
These notifications were done at predetermined intervals of 2, 4.5,
and 6 minutes, totaling in 12.5 minutes of work per task (Figure 40).
This is representative of real-world knowledge work, which involves
frequent switching between different tasks [49]. The researcher an-
nounced task switches by stating the required task number and a
short description: e. g., “Now please switch to task A, which is the
writing task.” Participants were instructed that they were allowed
to wrap up ongoing work by finishing the current subtask, e. g., a
copy/paste operation, or finish writing a sentence, but were not al-
lowed to commence work on a new subtask. Any exceptionally late
responses were addressed by restating that the participant had to
switch to the next task. Finishing subtasks was allowed to control for
disruptive effects due to differences within the disengagement stage,
since interruptions at task boundaries are know to be less disrup-
tive [7]. The studies presented here are only interested in effects due
to differences within the resumption stage (Figure 38) [30]. After 50

minutes of working on the tasks, participants completed the NASA-
TLX test to assess overall cognitive load during the experiment. A
modified version of the NASA-TLX test was used, Raw TLX [54],
which eliminates the weighting process of the separate subscales.

-
W S C O W S C O W S C O Task

2 4.5 6 2 4.5 6 2 4.5 6 2 4.5 6 Min.

Figure 40: Task sequence of tasks W, S, C, and O, which is followed in both studies [62, 66].

9.3 study 1 : comparative study

Although the widespread use of virtual desktops clearly shows theirDedicated
workspaces are
compared to a

traditional desktop
environment.

importance, no prior studies have assessed their impact on knowl-
edge work compared to a traditional desktop environment. The goal
of this study is to quantify the difference in time taken to switch between
tasks under both environments, as well as measure possible effects on the
performed tasks and experienced task load.

Adopting virtual desktops as dedicated workspaces allows instan-H1:
task resumption taneous switching between parallel ongoing tasks, which in a tradi-

tional environment requires several operations. Therefore, it is hy-
pothesized that it takes longer to resume a previously suspended task
under a traditional Windows 7 environment than when using dedicated
workspaces.

9.3 study 1 : comparative study 101

The necessary work to switch to the next task could be considered H2:
annoyance and
anxiety

the equivalent of a secondary task within interruption studies. Unlike
interruption studies, however, participants do not return to the same
primary task but to a previously suspended goal. Since interruptions
can lead to annoyance, anxiety, and stress [8, 90, 91], it is hypothesized
that dedicated workspaces will reduce annoyance and anxiety compared to a
traditional Windows 7 environment.

Errors during task management have been shown to affect task per- H3:
task performanceformance [41]. Furthermore, in line with interruption duration and

complexity influencing disruptiveness [94], the nature of a task switch
might determine its disruptiveness. Therefore, it is hypothesized that
simplifying task switching by means of dedicated workspaces will improve
task performance.

participants Sixteen users (age 27–58, 12 male, 4 female) were

16

recruited to participate in this study. Their backgrounds included
program manager, ICT manager, pharmacist, clerk, student in so-
cial work, and software developer, representing a broad spectrum of
knowledge workers. Only six participants worked within IT, ensur-
ing not only expert computer users were recruited. All but one of the
participants had extensive (> 1 year) experience with the Windows
operating system, of which 12 specifically with Windows 7. The sin-
gle inexperienced participant used OS X, and was not as familiar with
the Windows 7 window manager, but did work within IT. Only four
participants had used virtual desktops before. To incentivize partici-
pants in performing the given tasks, they were informed that the per-
son ranking first in the study would win a cinema ticket. It was made
clear that overall task score was calculated based on task progress, as
well as accuracy. No other compensation was given for participating
in the study.

experimental design The experiment was run as a within-

Within-subjects

1. resumption time

2. construction
time

3. cognitive load

4. productivity

5. accuracy

subjects design with one independent variable—User Interface: Dedi-
cated Workspaces Vs. Windows. Under each of the two conditions partic-
ipants worked on the four separate tasks (Section 9.2) between which
had to be switched at predetermined intervals. Two separate but simi-
lar task sets were created, one for each condition. Average Resumption
Time was measured while switching between tasks, as well as average
task Construction Time needed to set up a task the first time. Other de-
pendent variables measured were overall Cognitive Load throughout
the experiment, and Productivity and Accuracy for each of the four
tasks. The order in which the conditions were completed, and the
order of the task sets used, were fully counterbalanced across par-
ticipants (thus four different groups with four participants each, as
shown in Table 12). In addition to counterbalancing for learning ef-
fects, this also accounts for differences in between the task sets.

102 task switching in sequential multitasking

task a - b task b - a

Windows - DW 4 4

DW - Windows 4 4

Table 12: Counterbalancing of condition and task set order: Windows or
Dedicated Workspaces (DW) first, and task set A or B first.

materials It was preferred for users to work in their own work

Dedicated
workspaces from
Laevo were used.

environment to minimize the impact on the measures due to unfa-
miliarity with the workspace. However, due to practical limitations
(e. g., work hours), six of the participants performed the study at a
different desk, on a notebook with a 15.6 inch screen provided by
the experimenter. Although this introduced variability between work
environments, in all cases the same setup was used under both User
Interface conditions. No multiple monitors were used, but screen sizes
did vary. The computer ran either an unmodified Windows 7 environ-
ment or was augmented using Laevo [64]. Within the context of this
study, and in line with many virtual desktop implementations, a full
screen overview simply displays different ‘buttons’ each representing
an individual dedicated workspace (as shown in Figure 41), which is
opened when clicked. Workspace representations (including a name,
color, and icon) could be modified by the participants to help in iden-
tifying them.

Figure 41: Example of the full screen overview used for task switching when using Laevo (near
the end of the experiment), visualizing the different dedicated workspaces, represented
as rectangular ‘buttons’ on a time line.

9.3 study 1 : comparative study 103

Using the traditional desktop environment while running the ex-
periment, this results in a workspace as shown in Figure 42, repre-
sentative of heavy multitasking. In contrast, Figure 39 shows what in-
dividual tasks look like when using dedicated workspaces, whereas
Figure 41 shows the interface used to switch between them. The main
difference lies in how many windows are accessible from the Win-
dows task bar.

procedure Six users had installed and used Laevo for at least a

1. introduction
laevo and tasks

2. first condition

3. 10 minute break

4. second condition

full day prior to the experiment, and thus did not need an introduc-
tion to the system. The other 10 users were given a one-hour introduc-
tion on how to use Laevo, focusing primarily on hands-on experience
with the virtual desktop functionality. Given that this is the only func-
tionality of Laevo which was used as part of the experiment, this pro-
vided them with sufficient training to take part in the study. Before
starting the experiment, participants received a 10 minute introduc-
tion of the setup and tasks, and were asked about their background,
experience with Windows 7, and whether they had used virtual desk-
tops before. Tasks were demonstrated using an example task set, after
which participants were asked to work on them shortly. In both con-
ditions, participants worked on the tasks for 50 minutes, after which
they completed the NASA-TLX test to assess overall cognitive load
during the experiment. In between both conditions, 10 minutes were
reserved to recuperate from the heavy workload. In total, the duration
of the experiment was two hours for participants that had used Laevo
before, and three hours for those that still needed an introduction.

Figure 42: Possible window configuration while working on the tasks under a traditional desktop
environment. Windows required for all four tasks are represented on the task bar.

104 task switching in sequential multitasking

A stopwatch ran throughout the experiment, used to keep trackDisengagement and
resumption time

were measured
using a stopwatch.

of task switches. In rare occasions when a problem occurred, either
with the dedicated workspaces environment, or participants raising
questions about the task set, the timer was paused until the issue was
resolved. Both time taken during the disengagement and resumption
stage were measured by the observing experimenter for all but three
of the participants (due to three experiments which ran with two
participants in parallel) by marking the time when the participant
stopped working on the previous task, and the time when the par-
ticipant performed the first operation on the switched-to task. Once
all windows required to continue work on the task were retrieved
and readily accessible, any mouse or keyboard input on a window
of the switched-to task was considered to be the first operation. The
resulting time intervals correspond to measured time intervals within
interruption studies [6, 94, 131]. The first time participants were asked
to work on a task (and are thus not resuming it), construction time
was measured in the same way: the time taken to open the required
documents and to set up the workspace.

results Figure 43 shows an overview of average resumption

resumption time

significant difference

times and standard deviation per task switch throughout the experi-
ment for both conditions. A paired one-tailed t-test was used to an-
alyze overall average Resumption Time in both conditions. A signifi-
cant difference was found (t(12) = −2.95,p < 0.01) between Dedicated
Workspaces (µ = 7.52,SD = 2.93) and Windows (µ = 26.78,SD = 25.61).
The effect size2 using Glass’s ∆ = 0.75.

Since a high variance under the Windows condition was observedThree outliers were
identified. (traditional desktop interface), individual resumption times of partic-

ipants were investigated in more detail. Figure 44 shows an overview
of average resumption times and standard deviation per participant
for both conditions, ordered by average resumption time under the
Windows condition. Three outliers can be recognized with resump-
tion times under the Windows condition which vary considerably
more than the other participants; all three outliers (which includes
the OS X user) encountered a task switch which took them over two
minutes to complete (250, 140, and 203 s respectively). Removing
these outliers and rerunning the t-test, a more significant difference
is measured (t(9) = −4.43,p < 0.001) between Dedicated Workspaces
(µ = 6.26,SD = 1.92) and Windows (µ = 15.79,SD = 7.00). The ef-
fect size using Glass’s ∆ = 1.36. On average Resumption Time is 9.53 s
shorter when using Dedicated Workspaces.

A paired one-tailed t-test was used to analyze average Construc-construction

time

significant difference
tion Time in both conditions, expecting additional time needed to set
up Dedicated Workspaces. A significant difference was found (t(12) =

2 Rather than the common Cohen’s d, Glass’s ∆ is used since standard deviations
differ substantially between conditions [82].

9.3 study 1 : comparative study 105

0

10

20

30

40

50

60

O at

14.5m

W at

19m

S at

25m

C at

27m

O at

31.5m

W at

37.5m

S at

39.5m

C at

44m

R
e

su
m

p
ti

o
n

 T
im

e
 (

se
cn

o
d

s)

Task Switched From Over Time

Average Resumption Times per Task Switch

Dedicated Workspaces

Windows

Figure 43: Overview of average resumption time per individual task switch under both conditions.

P1 P2† P3 P4 P5 P6† P7† P8 P9† P10† P11 P12† P13

0

20

40

60

80

100

120

A
v
e

ra
g

e
 R

e
su

m
p

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Participant

Average Resumption Time per Participant

Dedicated Workspaces

Windows

† Different Computer

Figure 44: Overview of average resumption times per participant under both conditions. P11, P12,
and P13 were identified as outliers due to proportionally high variance in the Windows
condition compared to the other participants. Participants marked with ‘†’ did not per-
form the study in their own work environment, and did not use their own computer.

3.15,p < 0.005) between Dedicated Workspaces (µ = 27.21,SD = 17.05)
and Windows (µ = 14.05,SD = 5.43). The effect size using Glass’s
∆ = 2.43. On average Construction Time is 13.16 s longer when using
Dedicated Workspaces.

106 task switching in sequential multitasking

Figure 45 shows an overview of all task switches throughout theParticipants spent
less time overall on

task switching using
dedicated

workspaces.

experiment for participants one through ten, corresponding to the
participants listed in Figure 44. The first three task switches repre-
sent construction times where the workspace still needs to be set
up. The remaining task switches represent resumption times. The y-
axis shows total (cumulative) time spent on task switches over time
when using dedicated workspaces, minus time spent on the same task
switches under the traditional Windows environment. The graphs
thus show whether, and when, using dedicated workspaces resulted
in spending more, or less time on task switching. The increase in Con-
struction Time when using Dedicated Workspaces can be seen during the
three initial task switches. However, during subsequent task switches,
Resumption Time is considerably lower. Therefore, for all but two par-
ticipants, Dedicated Workspaces resulted in spending less time overall
on task switching at the end of the experiment. Seven out of ten partic-
ipants already made up for additional construction time when using
Dedicated Workspaces after just three subsequent task resumptions.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10-120

-90

-60

-30

0

30

60

90

120

S C O W S C O W S C O

C
u

m
u

la
ti

v
e

 t
a

sk
 s

w
it

ch
 t

im
e

e
xp

re
ss

e
d

 a
s

ti
m

e
 s

p
e

n
t

in
:

D
e

d
ic

a
te

d
 W

o
rk

sp
a

ce
s

m
in

u
s

W
in

d
o

w
s

(s
e

co
n

d
s)

Task sequence

Task Construction Task Resumption

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

Average

Figure 45: An overview of task switches throughout the experiment per participant. The first three
task switches represent construction times where the workspace still needs to be set up.
The remaining task switches represent resumption times. The y-axis shows total (cumu-
lative) time spent on task switches over time when using dedicated workspaces, minus
time spent on the same task switches under the traditional Windows environment.

9.3 study 1 : comparative study 107

Cognitive load was measured using Raw TLX [54], which assesses cognitive load

significant differencework load on six separate scales with 21 gradations. The overall mea-
sured task load index is the average of the six scales. An overview
of averages and standard deviations of the separate TLX scales is
shown in Figure 46. A paired one-tailed t-test was used to analyze
overall Cognitive Load in both conditions, expecting a reduced cogni-
tive load when using Dedicated Workspaces. A significant difference
was found (t(15) = −2.45,p < 0.05) between Dedicated Workspaces
(µ = 9.66,SD = 2.48) and Windows (µ = 11.25,SD = 2.91). The effect
size using Hedges’s gav = 0.56. On average Cognitive Load is rated
14.1% lower when using dedicated workspaces.

0

5

10

15

20

Mental

Demand

Physical

Demand

Temporal

Demand

Performance Effort Frustration

TLX Scales

Dedicated Workspaces

Windows

Figure 46: Breakdown of averages for each scale used as part of the Raw TLX test in the compara-
tive sequential multitasking study.

Running two-tailed t-tests on the separate scales results in only Mainly Temporal
Demand and Effort
differed.

finding a significant effect (p < 0.05) for Temporal Demand (t(15) =

−2.41,p < 0.05) and Effort (t(15) = −3.30,p < 0.01). For Temporal De-
mand the mean of Dedicated Workspaces (µ = 11.25,SD = 4.19) was
lower than Windows (µ = 13.88,SD = 3.30), Hedges’s gav = 0.66.
On average Temporal Demand is rated 23.4% lower when using ded-
icated workspaces. For Effort the mean of Dedicated Workspaces (µ =

11.75,SD = 3.44) was lower than Windows (µ = 13.10,SD = 3.34),
Hedges’s gav = 0.38. On average Effort is rated 11.5% lower when
using dedicated workspaces.

Paired two-tailed t-tests were used to analyze task Productivity and productivity and

accuracy

no difference
Accuracy in both conditions for all four tasks (N = 16). There are
no significant effects (p < 0.05) between Dedicated Workspaces and
Windows for any of the tasks on Productivity or Accuracy, of which an
overview is provided in Table 13.

108 task switching in sequential multitasking

To inspect the severity of learning effects, paired one-tailed t-testsSignificant learning
effects were observed. were used to analyze task Productivity and Accuracy of tasks between

Session 1 and Session 2: the first, and second condition participants
were exposed to respectively. A significant difference was found be-
tween Session 1 and Session 2 for Productivity on all four tasks, as
summarized in Table 14. On average participants performed 20.8%
more work overall in Session 2 than in Session 1.

writing searching comparing organizing

prod. acc. prod. acc. prod. acc. prod. acc.

p 0.51 0.63 0.63 0.24 0.66 0.80 0.39 0.29
t 0.67 0.49 0.50 1.21 0.44 0.26 0.88 1.09

DW µ 0.48 0.99 0.42 0.83 0.45 0.84 0.46 0.92
Win µ 0.49 0.99 0.40 0.79 0.43 0.83 0.43 0.89

DW SD 0.21 0.01 0.20 0.13 0.21 0.11 0.26 0.13
Win SD 0.23 0.01 0.20 0.09 0.17 0.12 0.24 0.20

Table 13: Overview of t-tests comparing productivity and accuracy of all tasks between dedicated
workspaces (DW) and a traditional desktop environment (Win).

writing searching comparing organizing

prod. acc. prod. acc. prod. acc. prod. acc.

p < 0.001 0.44 < 0.001 0.21 < 0.001 0.13 < 0.001 0.19
t 4.25 0.79 4.91 1.32 4.26 1.62 4.28 1.36

gav 0.30 - 0.41 - 0.42 - 0.41 -
S1 µ 0.45 0.99 0.37 0.79 0.40 0.82 0.39 0.89
S2 µ 0.52 0.99 0.45 0.83 0.48 0.85 0.50 0.92

S1 SD 0.20 0.01 0.19 0.12 0.17 0.12 0.23 0.20
S2 SD 0.23 0.01 0.20 0.10 0.20 0.11 0.25 0.13

Table 14: Overview of t-tests comparing productivity and accuracy of all task between the first
session (S1) and the second session (S2) participants took part in.

9.4 study 2 : in-depth analysis

Current window managers have evolved considerably since their orig-An in-depth analysis
of task switching

was conducted.
inal inception to allow having more and more simultaneous win-
dows open and providing different mechanisms of switching between
them. Although some studies have observed different strategies by
which users organize application windows when using virtual desk-
tops [111] and when using multiple monitors and computers [22, 52],
these studies have only provided high-level insights into multitasking
and have not considered the detailed processes and strategies which
take place while switching between tasks. As argued by Mulder et al.

9.4 study 2 : in-depth analysis 109

[95]: “the heart of what information overload really is, may very well
lie between tasks rather than within.” For example, in the first study
(Section 9.3) it was shown that switching between tasks when using
dedicated workspaces is not only faster, but also reduces cognitive
load during multitasking [62]. Additionally, a high variance in task re-
sumption time when using the traditional desktop environment was
observed among participants (Figure 44). Therefore, to analyze what
constitutes these differences, the goal of this second study is to investi-
gate how window managers support the user in switching between separate
tasks during sequential multitasking.

participants Seven participants (age 22 to 33, 6 male) with vary-

7

ing backgrounds (research, marketing, game design, student) were
recruited for the study. Participants with sufficient, but differing, lev-
els of experience with Microsoft Windows were selected to investigate
how experience affects task switching. On a scale from Novice to Ex-
pert, no participants selected Novice, three selected Average (P2, P5,
Px3), one selected Advanced (P1), and three selected Expert (P3, P4,
P6). All participants are considered knowledge workers since they re-
ported using a computer the majority of the day for both work and
leisure (µ = 10.9 hours, SD = 4.4 hours). All participants indicated
engaging in multitasking on a regular basis, working on several activ-
ities in parallel (µ = 2.8 activities, SD = 0.4 activities). No compensa-
tion was given for participating in the study.

materials A dedicated Windows 7 notebook with a 15.6 inch

An unmodified
Windows 7
environment was
recorded.

screen and external mouse was used for the study. Participants were
allowed to configure the notebook to their liking (e. g., change the
keyboard layout and default browser). Both recently accessed docu-
ments and browsing history were cleared prior to each test. A video
camera was set up so that the screen, the participant’s hands, and
posture were in view. Additionally, the screen, webcam (facial expres-
sions), and important key strokes (e. g., Alt-Tab) were recorded using
TechSmith Camtasia 8.

Windows 7 includes a number of features designed to support mul- Windows supports
various features for
task switching.

titasking (Figure 47). All open application windows are depicted as
icons on a taskbar. Hovering over them shows a window preview.
Windows of the same application are grouped together, in which
case the preview shows multiple windows. Clicking the taskbar icon,
window preview, or the window itself brings it to the foreground
(on top of all other windows). Prolonged hovering over thumbnails
causes all open windows except the highlighted window to be hid-
den. Windows can be positioned freely, resized, minimized to the
taskbar, maximized full screen, or docked side-by-side (Figure 39).

3 This participant is excluded from data analysis due to complications during the
study.

110 task switching in sequential multitasking

Alt-TabTaskbar
preview

Window
operationsApplication

grouping

Figure 47: Window manager features of Windows 7 (source: http://windows.microsoft.com).

These functions are also available using shortcut keys. An additional
shortcut key hides all windows, thus revealing the desktop. Lastly,
pressing Alt-Tab brings up an overview screen which displays all
open application windows. From here, the user can navigate between
windows by repeatedly using Alt-Tab until the desired window is
selected. Upon release the latest selected window is brought to the
foreground. Alternatively, the mouse can be used to select a window
directly from the overview.

procedure The study comprised three distinct phases: briefing,

1. briefing

2. training

3. evaluation

training, and evaluation. During the briefing participants filled out
a questionnaire assessing their overall computer literacy and the de-
gree of multitasking they engage in on average (Table 15). Meanwhile,
the notebook was set up to reflect the users’ preferences, including
their preferred web browser. The training phase (10 minutes) and
evaluation phase (50 minutes, 12 task switches) followed the earlier
described procedure (Section 9.2).

Age
Job title
Gender m f

OS X familiarity nov avg adv exp
Linux familiarity nov avg adv exp
MS Windows familiarity nov avg adv exp

Type of activities performed. .
On average, number of activities performed throughout the day.
On average, number of concurrent activities. .
On average, number of hours a day using a computer.

Table 15: The questionnaire assessing computer literacy and degree of mul-
titasking users engage in on average.

http://windows.microsoft.com

9.4 study 2 : in-depth analysis 111

data analysis Two researchers collaboratively reviewed the

Recorded data was
coded, resulting in a
breakdown of task
switches.

video recordings on a large wall display. ChronoViz [45] was used
to synchronize, play back, and annotate the data streams. This setup
allowed simultaneous observation of posture, verbalizations, facial ex-
pressions, and interactions of the participants during task switching
(Figure 48). Other segments were ignored. Throughout several itera-
tions, a coding framework emerged, providing a full breakdown of
task switches based on discrete events (Table 16). All task switches
were reinspected until no further changes to the framework needed
to be made to account for all observed interactions. Using the result-
ing coding framework, a third researcher independently validated all
annotated data, leading to revisions (after discussion) where annota-
tions were unclear, or considered inconsistent with the framework.

Annotation consisted of two main phases. First, for each task Identified in first
phase:

1. beginning alert

2. start of task
switch

3. objective
resumption

4. subjective
resumption

switch three points in time were identified: (1) the beginning of the
alert, identified by the voice of the experimenter; (2) the start of the
task switch, identified by the first interaction aimed at preparing the
environment for the next task (e. g., minimizing a window, or mov-
ing the cursor towards the taskbar to open a new resource); and (3)
the start of work on the next task, traditionally associated with the first
recordable input users perform on the task set (e. g., a tower of Hanoi
move [94])—in this study referred to as objective resumption. However,
observations showed that objective resumption does not always coin-
cide with the time at which users noticeably start working on the next
task. Therefore, a more subjective measure was included—subjective
resumption—also taking observable mental readiness into account. Ex-
ample indications for this are: users’ verbal utterances (e. g., “oh yes,
here I was!”), physical movements (e. g., fingers used as pointers, re-
laxing before starting a task, facial expressions), and cursor move-
ments (e. g., hovering over a relevant point in the task set).

Second, the identified task switch intervals were fully annotated Identified in second
phase:

1. interactions with
resources

2. intent assigned
to interactions

by playing back the recording at 1/4 of the original speed. During a
first pass, task switch intervals were broken down into intervals de-
noting interactions with resources of the system (‘Action’ categories in
Table 16). Resources are defined as containers of content relevant to
the task which can be shown or hidden separately: e. g., files, folders,
and tabs. During a second pass, an intent and feature of the user in-
terface used was assigned to each of these interactions (‘Intent’ and
‘Interface’ categories respectively in Table 16). Lastly, an additional
attribute allowed highlighting whether or not an action could be con-
sidered erroneous, given the intent (‘Modifier’ category in Table 16).
Five examples of fully coded task switches are visualized in Figure 52.

112 task switching in sequential multitasking

action Time intervals further breaking down task switches.

Interaction When users provide input to the task set through either the keyboard (e. g., writing) or
the mouse (e. g., selecting text, navigating menus to access operations like saving).

Navigation
within

When users navigate within an active task set while the majority of the content of the
task set is already visible (e. g., the use of arrow keys to move the cursor within a text;
scrolling using either the mouse wheel or scrollbar; moving, minimizing, or resizing a
window; reading; concentrated eye movements within the active task). This does not
require an application window of the task set to have focus (i. e., be active). The same
resource remains visible during the annotated interval. As opposed to the ‘Interaction’
category, the content (or selection) which is part of the task set does not change.

Navigation to
opened

When users restore an open resource, while the required content of the task set is not
yet visible. This action can be directed at fully hidden resources (e. g., accessing the
taskbar, using Alt-Tab) as well as partially hidden resources in the background (e. g.,
bringing windows covered by others to the foreground). As opposed to the ‘Navigation
within’ category, the majority of the content of the resource is hidden. The resource
does not need to end up visible at the end of the annotated interval. For example, when
using the taskbar preview function of Windows to thoroughly inspect a resource for a
long period of time, this is annotated as ‘Navigation to opened’, followed by ‘Navigation
within’.

Navigation to
closed

When users open a closed resource part of the task set, when currently not within
the task set. Most commonly, when no application window for the resource is open.
However, resources are defined as containers of content which can be shown or hidden
separately, thus reusing, or opening new tabs is also considered as navigation to a
closed resource. Likewise is navigating to a file path outside of the current task set
using the file explorer. When a resource is already open, but the user’s strategy follows
that of opening a closed resource, the interval is still labeled as ‘Navigation to closed’.

Pause When users interrupt their current action, e. g., by repositioning themselves, by verbally
expressing relief, or by closing their eyes for an extended duration.

intent Applied to actions, capturing their purpose.

Identify When the purpose of the action is the identification of the task description or task
resources, rather than making progress on it. E. g., figuring out which resource of the
task set is required. This is generally observed at the start of task resumption.

Reorganize When the purpose of the action is to reorganize the task set. This intent can be observed
both before the start of the task switch (e. g., leaving visual clues to facilitate future
resumption) as well as after (e. g., restoring required resources to resume work).

Task When the purpose of the action is to make progress on the current task. When the
user reorganizes the workspace while simultaneously working on the task, the ‘Task’
category takes precedence over ‘Reorganize’.

interface Applied to actions: the user interface used.

Taskbar Using the taskbar (including preview functionality) to navigate to a resource.
Alt-Tab Using the Alt-Tab shortkey to navigate to a resource.
Foreground Navigate to a window which is partially or fully visible in the foreground.
modifier Applied to actions.

Error Used to highlight an erroneous action given the intent, observable from the data (e. g.,
the resumption of a wrong resource, the unjustified use of a shortcut).

Table 16: Framework used to analyze task switches. First ‘action’ intervals are coded, after which
‘intent’, ‘interface’, and ‘modifier’ categories are assigned to them.

Figure 48: Data analysis of task switches in ChronoViz [45].

114 task switching in sequential multitasking

high-level results The outcome of the data analysis is a full

A full breakdown of
all task switches is

quantified.

breakdown of all observed task switches, following the framework
which was developed throughout several iterations of thematic cod-
ing (Table 16). These results demonstrate how the framework can be
used to quantify how well a window manager supports task switch-
ing, and can pinpoint possible areas for improvement. To demon-
strate, common findings and peculiar occurrences will be presented,
quantifying them according to the categories listed in the task switch-
ing framework. The main focus lies on investigating actions with the
intent of reorganizing the task set, as these are the ones directly sup-
ported by window managers. In addition, the full coding of a set of
representative task switches is visualized in Figure 52.

Out of the 12 task switches in the task sequence Figure 40, the44 task resumptions,
covering 27 m 11 s

of data were fully
coded.

initial four task switches participants were asked to start working
on a new task; the remaining eight, they had to return to a previ-
ously constructed task. Therefore, the initial four task switches were
not included in the data analysis as they are not representative of
task resumption. Data of one of the participants had to be dropped
due to a miscomprehension of the experiment which resulted in non-
comparable data to the other participants: he did not resume tasks,
rather restarted them from the beginning at each task switch. P4 ini-
tially did not anticipate having to return to tasks, hence closed task
resources. His first four task resumptions were therefore not consid-
ered (task switch 5 through 8). This results in a total of 44 annotated
task switches representative of task resumption, covering 27 minutes
and 11 seconds of data (out of five hours of recorded material of par-
ticipants working on the tasks).

Figure 49 shows the average disengagement and resumption timeDisengagement

and resumption

time

per participant. On average participants spent 8.9 s when suspending
tasks (SD = 9.8, Min = 0.7, Max = 43.5), and 25.5 s when resuming
tasks (SD = 15.0, Min = 8.0, Max = 72.3). In addition to subjective
resumption time, the difference with average objective resumption
time is shown. On average, objective and subjective resumption time
differ by 4.8 s (SD = 6.6, Min = 0.0, Max = 36.7).

10 s 20 s 30 s 40 s 50 s 60 s10 s20 s30 s

 Legend

Disengagement Resumption

Objective Resumption
Subjective Resumption

22

23.4

18.9

14.4 23.8

23.1 45.2

8.3 19.2

P1

P2

P3

P4

P5

P6

Figure 49: Average disengagement and resumption time per participant.

9.4 study 2 : in-depth analysis 115

Figure 50 shows a percentile breakdown of actions and intents of Percentile

breakdownall task switches per participant for both the disengagement and re-
sumption stage. Time intervals where objective resumption time ex-
ceeded subjective resumption time were dropped, as they were not
deemed part of the task switch. There are no actions with the in-
tent of identifying the task during the disengagement stage, as this
would indicate the start of the resumption stage. Similarly, during
the resumption stage there are almost no actions with the intent of
working on the task (only 2 short instances), since such a first action
generally denotes the end of the task switch and full resumption of
the new task.

In addition, Figure 50 highlights the percentage of erroneous time Half of the task
switches contained
errors.

intervals per type of action and intent (e. g., retrieving an incorrect
resource, saving an incorrect file). Half of the task switches (22 out of
44) contained one or more erroneous actions. Table 17 shows the dis-
tribution of error instances across participants. Eight out of 43 errors
could be attributed to users performing ingrained actions part of task
switching, with limited observable attention. Most notably, P1 failed
six times in opening a resource when using Alt-Tab, after which
he fell back to using the taskbar. In one occasion while minimizing
windows, P3 used a shortkey operation to save a text file which did
not need any saving as it did not need to be modified as part of the
experiment. Lastly, P4 intentively investigated window thumbnails
when using the taskbar, only to realize later he did not know which
resource he was looking for. The remaining errors mainly involved re-
suming incorrect resources (noticeable in navigation to opened) and
typos or erroneous clicks (noticeable in interaction).

p1 p2 p3 p4 p5 p6

errors 11 2 3 4 20 3

time 36.1 s 7.8 s 11.1 s 23.2 s 85.0 s 6.1 s
perc . 18.2% 3.5% 6.2% 15.2% 15.6% 2.8%

Table 17: Time and percentage of total task switch time spent on errors for
each participant.

Raw NASA-TLX [54] was used to assess cognitive load. Averages Cognitive load

for all subscales are shown in Table 18. On average work load was
rated 8.8 out of 21 (SD = 0.8, Min = 7.8, Max = 10.0).

mental phys . temp. perf . effort frustr .

µ 9.33 6.83 13.50 7.33 11.17 4.83
SD 5.01 3.82 2.26 3.88 4.17 0.75

Table 18: Breakdown of averages for each scale used as part of the Raw TLX
test in the in-depth study on sequential multitasking.

1
1

6
t

a
s

k
s

w
i
t

c
h

i
n

g
i
n

s
e

q
u

e
n

t
i
a

l
m

u
l

t
i
t

a
s

k
i
n

g

P6

P1

P5

P4

P3

P2

P1

P2

P3

P4

P5

P6

43.5 %

29.8 %

50.3 %

23.1 % 12.1 %

31.8 % 10.5 %

7.8 %

42.5 %

39.7 %

67.4 %

63 %

56.2 %

55 %

50.4 %47.1 %

13.5 %

42.7 %

45.1 % 7.6 %

48.9 % 7.2 %

14.6 % 4.7 12 %

32.5 %

51.4 %

44.6 %

42.8 %

68.7 %

33.5 % 12.5 % 8.8 % 45.2 %

8.4 %

23.9 %14.1 %

25.3 %

9 %

45.2 %

28.3 %

21.6 %

8 %

85.9 %

54.8 %

71.7 %

78.4 %

92 %

72.3 % 27.7 %

19.5 %

9.1 %

76.1 %

90.3 %

74.7 %

91 %

80.5 %

89.3 %9.7 %

 Action Legend

Action (%)

Pause
Navigation to closed
Navigation to opened
Navigation within
Interaction

Error

 Intent Legend

Intent (%)

Reorganization
Identify
Task

Error

Figure 50: Percentile breakdown of actions and intents of all eight task switches per participant (except just four for P4), for both the disengagement
and resumption stage.

9.4 study 2 : in-depth analysis 117

actions and intents With a high-level overview of the makeup

Actions labeled as
reorganization work
are analyzed in more
detail.

of disengagement and resumption time in place, it is now possible to
describe what these containing actions and intents entail. The main in-
terest of this study is to gain a better understanding on how window
managers support reorganizing the workspace (Figure 51). Therefore,
these are the main time intervals which will be presented in the sub-
sequent results. Table 19 lists the percentages as part of reorganization
work for each of the actions from the framework for both the dis-
engagement and resumption stage, thus excluding actions with the
intent to identify or to work on tasks.

Interruption

83.0%

Disengagement Stage Resumption Stage

Task BTask A

Time

24.4%

Average time spent on
workspace reorganization

Figure 51: The average percentage of time spent during task switching on
reorganizing the workspace.

interact. within opened closed pause

2 30.2% 21.4% 1.8% (1i) 0% 46.6%
. 0.9% (3i) 39.0% 50.9% 6.5% 2.7%

Table 19: The makeup of reorganization work during disengagement (2)
and resumption (.). Rare instances: i

After having received the alert to switch to the next task, partici- Disengagement

stage (2):

1. finish subtask

2. reorganize

pants generally finished up their current subtask (e. g., Figure 52, 3).
In just one instance this did not occur (Figure 52, 4), as P1 had just
finished a subtask when the alert was given. Participants spent the re-
maining disengagement time on reorganizing the task set for future
resumption (e. g., saving resources, renaming files, highlighting text,
and leaving notes in text files) or taking a break (e. g., Figure 52, 2).
In 15 cases there was no reorganization work, thus disengagement
time constituted solely wrapping up work on the previous task (e. g.,
Figure 52, 1).

An overview of the average breakdown of actions during organiza- Reorganization to:

1. facilitate future
resumption

2. short break

tion work is shown in Table 19. Reorganization work within the disen-
gagement stage for the most part is composed of actions facilitating
future resumption of the task, namely interactions with and navigation
within resources. Interactions mainly reflect save and rename oper-
ations. Navigation within reflects users repositioning, resizing, and
scrolling within windows in order to position them for later resump-
tion. However, only half of the participants (P4, P5, P6) prepared tasks
for future resumption on a regular basis; P1 never did, and P2 and P3

only on a single occasion. All participants (P1 in particular) regularly
took breaks during the disengagement stage, which lasted on average

118 task switching in sequential multitasking

1.8 s per task switch (N = 18, SD = 1.2, Min = 0.7, Max = 5.9). In
particular, 14 out of the 44 task switches ended with a short break
prior to the start of the task switch (e. g., Figure 52, 3). This break was
generally associated with a change in posture (leaning backwards)
and temporarily closing one’s eyes. Navigation to opened occurred in
just one instance (2.2 s) during reorganization work in the disengage-
ment stage. P6 considered opening a resource to resume the next task,
but aborted this action in order to write one final character acting as
a placeholder for future resumption of the task.

At the start of the resumption stage many participants could notResumption

stage (.):

1. identify resources

2. set up workspace

recall the exact resources they needed in order to resume the task
(31 out of 44 task switches), in which case they commonly would
reopen the task description. When this occurred, it took on average
6.0 s before participants actually continued resuming the required
task (N = 31, SD = 3.4, Min = 1.9, Max = 18.8). The remaining
time (disregarding a few short task intervals) was spent on setting up
the workspace to start work on the new task (reorganization averages
shown in Table 19). This took in total on average 21.3 s (N = 44,
SD = 13.2, Min = 7.8, Max = 54.6).

On average, navigation to opened occurred 2.9 times per task switchReorganization to:

1. navigate to open
resources (or re-
trieve closed)

2. short break

3. navigate within
resource

(SD = 0.9) with the purpose of reorganizing the workspace dur-
ing task resumption, taking up 10.3 s in total (N = 44, SD = 5.2,
Min = 1.5, Max = 26.4); navigating within resources 3.6 times
(SD = 1.9), taking up 8.8 s in total (N = 43, SD = 8.7, Min = 1.3,
Max = 41.1). When pauses occurred (14 out of 44 task switches), they
were always indicative of having restored the necessary resources,
and were followed by navigating within the retrieved resource to find
the location where to continue work (e. g., Figure 52, 2). These pauses
on average lasted 2.6 s (N = 14, SD = 2.2, Min = 0.2, Max = 7.7).
In a few instances, participants closed resources as part of ongoing
work and had to reopen them during the resumption stage using
either Windows explorer or by reopening browser windows or tabs.
Navigation to closed took up 7.2 s in total on average (N = 10, SD = 3.6,
Min = 3.0, Max = 13.5). Lastly, just three actions during the resump-
tion stage represented interactions. During these, files were saved (0.5
s, 0.6 s) and renamed (6.2 s).

20 s 22 s 24 s 26 s 28 s 30 s2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s2 s4 s6 s8 s10 s12 s 48 s32 s 34 s 36 s 38 s 40 s 42 s 44 s 46 s

20 s 22 s 24 s 26 s 28 s 30 s2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s2 s 48 s 50 s 52 s 54 s 56 s 58 s32 s 34 s 36 s 38 s 40 s 42 s 44 s 46 s

2.2 s 1.5 s 2.2 s 5.6 s 1.5 s 4.4 s 2.6 s 1.2 s 2.9 s 1.8 s 3.8 s 5.0 s 5.4 s 3.3 s 2.8 s 9.1 s 4.1 s

25.9 s

1.3 s

24.7 s

WritingOrganizing

8.8 s

[1] P5, switch 1

1.6 s 1.3 s 1.1 s 1.6 s 2.9 s .5 1.1 s 1.5 s 1.4 s 1.5 s 1.4 s1.8 s

4.0 s 10.3 s

WritingOrganizing

3.4 s

[5] P6, switch 5

1.3 s 1.3 s 5.4 s 4.0 s 1.6 s 2.8 s 1.4 s 4.6 s8.6 s

2.6 s 9.8 s

ComparingSearching

.8 s

[3] P3, switch 7

3.2 s

SearchingWriting

2.3 s .9 s 3.0 s 2.7 s 2.0 s1.6 s

7.7 s

[4] P1, switch 5

1.3 s1.6 s 7.6 s2.2 s 1.3 s 5.4 s 2.5 s 1.7 s 4.7 s 1.5 s8 s

23.8 s11.4 s

OrganizingComparing

4.0 s 1.4 s 1.6 s 4.3 s1.4 s

5.9 s

[2] P5, switch 8

 Legend

Objective resumption

Subjective resumption

Stimulus

Action (s)

Intent (s)

Pause

Navigation to closed

Navigation to opened

Navigation within

Interaction

Identify

Reorganization

Task

Error

Figure 52: Detailed breakdown of representative task switches for recurring observations.

120 task switching in sequential multitasking

window management strategies All actions marked as ei-

Users rely
predominantly on

the taskbar during
task switches.

ther using Alt-Tab or the taskbar, except one, are marked as nav-
igation to opened. One action using the taskbar was categorized as
navigation within, as P5 spent a total of five seconds investigating
a set of window thumbnails in order to select the right one. Therefore
solely the window management features used as part of navigating
to opened resources will be analyzed further. On average, this took
3.5 s (N = 165, SD = 2.4,Min = 0.5,Max = 20.0). Predominantly, the
taskbar was used to this end by all participants (Table 20). Only two
users (P1 and P3) occasionally used Alt-Tab. Remarkably, P3 never
retrieved a window by selecting a partially visible window from the
foreground. Using the taskbar to open resources on average took 3.8
s (N = 132, SD = 2.5, Min = 0.5, Max = 20.0); using Alt-Tab 3.2
s (N = 8, SD = 2.2, Min = 1.5, Max = 7.5); opening from the fore-
ground 2.1 s (N = 25, SD = 1.1, Min = 0.9, Max = 6.2).

p1 p2 p3 p4 p5 p6

alt-tab 12.9% 0% 15.7% 0% 0% 0%
taskbar 83.7% 98.6% 84.3% 84.6% 87.1% 87.2%
foreground 3.4% 1.4% 0% 15.4% 12.9% 12.8%

Table 20: Features used for ‘navigation to opened’.

Appropriation of window management features during taskDifferent strategies:

1. window
movement

2. side-by-side

3. overlapping

4. minimizing

5. tiling

switching varied greatly from user to user. Participants used a com-
bination of five different strategies. The first strategy (Window Move-
ment: P5) involved extensive repositioning and resizing of windows
(e. g., Figure 52, 2). Seemingly P5 was unaware of the window dock-
ing feature. In contrast, in a second strategy participants relied on
strict side-by-side window configurations using this feature (Side-by-
side: all except P5). This simplified switching between tasks by mainly
relying on selecting two required windows from the taskbar. A third
strategy involved overlapping windows in various ways, keeping the
content of multiple windows partially visible (Overlapping: P1, P4, P6).
Irrelevant windows were often minimized, revealing windows for the
required task underneath. Later, the taskbar was used to bring them
back to the foreground when resuming tasks. A fourth strategy con-
sisted of minimizing all windows during disengagement (Minimizing:
P3, P5). Interestingly, participants never used the shortcut key (show
desktop) to this end. Possibly users were hoping to find relevant win-
dows underneath (as observed when overlapping windows). A final
observed strategy was to tile windows, placing them at semi-fixed po-
sitions (Tiling: P6). While working on a task, there was little overlap
among foreground windows, and windows were rarely repositioned.
This allowed P6 to keep more than two windows permanently visible
(as in the side-by-side strategy) while working on a task.

9.5 task resumption and construction time 121

9.5 task resumption and construction time

Prior systems supporting multitasking have consistently referred to Quantitative
research on window
management is
lacking.

task switching as a problematic practice that warrants attention.
These systems typically assume that novel approaches (such as ded-
icated workspaces) would outperform the traditional window man-
ager. For example, Bardram et al. [17] stated: “We have refrained from
measuring task completion time. It is trivial to see that users of [our
system] would out-perform standard Windows XP users if asked to
perform tasks that require handling parallel tasks, accessing lots of
digitial material, [and] coping with frequent interruptions.” Despite
the fact that dedicated workspaces are specifically designed to facili-
tate task switching, no prior studies have quantified task resumption
time for window management with or without dedicated workspaces.
The studies presented here are the first to quantify in detail what
prior work has only assumed.

The first study shows it takes on average 10 seconds longer to Results indicate
dedicated
workspaces are an
order of magnitude
faster.

switch between tasks under a traditional Windows 7 environment
than when using dedicated workspaces (N = 13)4, thereby provid-
ing empirical evidence to which degree dedicated workspaces improve
task resumption time. The second study investigated task switching
under the same Windows environment (N = 6), and reported on simi-
lar task resumption times (Figure 53). It is important to keep in mind
that these measures are representative of a heavy multitasking sce-
nario (four tasks with multiple application windows), and that not
all multitasking scenarios involve the same amount of application
windows which need to be retrieved. Therefore, these results are best
viewed as an indication in which order of magnitude the results of
a large scale study would lie. Nonetheless, both studies provide use-
ful insights into differences between participants and individual task
switches, and which factors to control for in future studies.

10 20 30 40 50 60 70 80 90 100
Seconds

0

WINDOWS (STUDY 2)

WINDOWS (STUDY 1)

DEDICATED WORKSPACES

Figure 53: Box plots for task resumption times under both studies. Two out-
liers are identified bigger than 1.5 times the interquartile range.

4 Three experiments were conducted monitoring two participants simultaneously.
During these experiments the researcher could only focus on measuring task re-
sumption time for one of the participants, resulting in 13 (as opposed to 16) task
resumption time measures.

122 task switching in sequential multitasking

A high variance in task resumption time was observed in both ex-Task resumption
time increases
steeply after a

certain point of
failure.

periments when using the traditional window manager. This indi-
cates that not all users benefit from dedicated workspaces equally.
Some participants5 encountered task switches lasting over one (P2

5)
to two minutes (P1

11, P1
12, and P1

13) using the traditional Windows
7 environment, indicating a complete breakdown in finding the re-
quired resources to resume a previously suspended task. Two of these
participants (P2

5 and P1
12) were inexperienced Windows users (OS

X user), unfamiliar with some of the features of Windows 7. How-
ever, the other two participants were a consultant and clerk, using
Windows 7 on a regular basis as part of their work. The consultant
(P1

13) at times expressed severe annoyance when being unable to re-
trieve the necessary resources, after which she would clean up her
workspace entirely by closing all windows and start over. The clerk
(P1

11) struggled particularly when navigating between folders (using
Windows explorer), and sometimes had to reopen the assignment de-
scription to look up the required path for the task.

The results from the second study confirm that participants spentNavigating to open
and closed resources

is time-consuming
and error-prone.

a considerable amount of time on simply recreating window config-
urations they lost as part of switching to another task, indicated by
navigation to opened and closed actions during the resumption stage
(Figure 54). These actions do not seem to contribute to the overall
goal of the task at hand and are shown to be error-prone. In the
presence of a significant number of resources, participants struggled
to effectively use the features offered by the operating system. Even
though the Windows taskbar aggregates resources by application as
a way to reduce taskbar clutter (more effective than Alt-Tab which
lists all resources), users in the second study on average spent 3.5 s
per resource that needed to be opened. Application grouping is a sub-
optimal solution since documents opened using the same application
are not necessarily related to each other contextually—they are not
always part of the same activity.

Navigation within
Interaction

Reorganization

39.0%

Navigation to opened
Navigation to closed
Pause

50.9% 6.5

Resumption Stage

Figure 54: Average breakdown of reorganization actions during task re-
sumption.

5 I will refer to participants from the first experiment as P1 and from the second
experiment as P2.

9.5 task resumption and construction time 123

Many activity-centric systems, such as the ActivityBar [17], Gior- Dedicated
workspaces
automate
navigation to
opened and closed.

nata [136], co-Activity Manager [58], and Laevo [64] have shown
through qualitative field studies that task-centric work environments
(dedicated workspaces) help users during multitasking. What can be
shown now through these findings is the exact impact that these sys-
tems have on task switching. Having a task set organized around one
single task description makes it possible to automate navigating to
open and closed resources during task resumption as the entire pro-
cess can be reduced to identifying a task definition among a list of
open parallel tasks, e. g., an activity name. In line with observations
from both studies, it is anticipated that users often close resources
because of the overhead of keeping them open; both studies show
empirical evidence that severe detrimental effects can occur when too
many application windows are open. Dedicated workspaces alleviate
this problem by hiding irrelevant resources that might otherwise in-
terfere while switching between tasks. However, the data from the
second study suggests that further improvements can be made by
providing tool support to more easily navigate within resources, i. e.,
helping users figure out where to continue work once all necessary
resources have been retrieved (Figure 54).

Dedicated workspaces thus allow the user to set up a dedicated The construction
cost for dedicated
workspaces is
quickly made up for
by faster task
resumption.

environment for each individual goal-oriented task, which is associ-
ated with a longer set-up time (13 seconds on average) within the
user interface used in the first study (Laevo, Chapter 6). However, at
the end of the experiment all but two participants spent less time on
task switching when using dedicated workspaces than when using
a traditional Windows 7 environment (Figure 45); for the remaining
two participants the trend predicts a similar result given a longer ex-
periment. Providing support for dedicated workspaces opens up the
opportunity for rapid access to a multitude of long-lived workspaces
(rather than just four), which I hypothesize would greatly benefit even
experienced users. P1

2 confirms this by stating:

[dedicated workspaces] would mainly be useful for tasks
I haven’t worked on for a longer period of time. Since
[during the experiment] there is not much time in between
task switches, using Windows 7, it is not that much more
difficult.

What seemingly sets more ‘expert’ users apart is they take great Expert users leave
behind clear cues on
where to resume
work.

care in making the work environment their own. This is in line with
observations made by Kidd in “The Marks are on the Knowledge
Worker” [77]:

Only the knowledge worker can give meaning to the
marks on the paper or on the screen and they do not know
and cannot predict what this meaning is until they have
been informed by it.

124 task switching in sequential multitasking

Participants introduced additional cues which allowed them to more
easily disambiguate between tasks. For example, P1

1 gave more
meaningful names to documents so they could easily be recognized
on the task bar during task switching. Rather than reusing a single
Windows explorer window, some users opened multiple instances
with different file paths open in them, positioned optimally for each
individual task. The second study confirms these findings by observ-
ing that the purpose behind navigation within resources during disen-
gagement (Figure 55) was to leave behind visual markers to facilitate
later resumption. For instance, a common strategy included scrolling
within a window so that the next subtask would be displayed first.
For the same reason, participants interacted with resources: e. g., se-
lecting text in a PDF file, or even typing reminders in text documents
part of the task set. More experienced users thus seem to be able to
keep more resources open, yet easily keep track of which tasks they
belong to.

Pause
Navigation to opened

Navigation within
Interaction

30.2%

Reorganization

46.6%21.4%

Disengagement Stage

Figure 55: Average breakdown of reorganization actions during task disen-
gagement.

Dedicated workspaces encourage all users to label and group con-Dedicated
workspaces

encourage leaving
behind visual cues.

textually related resources together, thereby rehearsing the task de-
scription, useful for later identification of the workspace. Such actions
are indicative of formulating plans to return to the task at a later mo-
ment in time. This has been shown to alleviate the detrimental effects
of unconsciously remaining focused on unfulfilled goals [92]. In ad-
dition, prior studies have shown that leaving behind visual cues re-
duces the amount of required time to resume a task [6], highlighting
their importance as part of task switching. However, the observations
made here show the kind of application-specific workarounds that
participants need to use in order to leave behind such cues. Although
dedicated workspaces simplify recognizing a task, visual cues are still
needed to resume work within that task. Some text editors provide
basic features in support of task resumption, for instance, by allowing
documents to be reopened with the cursor positioned where it was
last left behind. However, the results presented here indicate a need
for more general cross-application support for leaving behind visual
cues facilitating the resumption of suspended tasks, e. g., freehand
drawings on top of application windows.

9.6 cognitive load and performance 125

9.6 cognitive load and performance

The first study found a significant difference in cognitive load be- Participants rated
dedicated
workspaces as less
mentally
demanding.

tween dedicated workspaces (as supported in Laevo) and a tradi-
tional desktop environment (N = 16). In the second study partici-
pants performed the same tasks and procedure, but only under one
condition—the Windows environment (N = 6). As a result, the sec-
ond study lasted considerably shorter. This might explain why partici-
pants indicated a lower cognitive load compared to both conditions in
the first study (Figure 56). Raw TLX [54] was used to measure cogni-
tive load, meaning the significant result reflects the participants’ sub-
jective preference for dedicated workspaces over a traditional desktop
environment during heavy multitasking. These results indicate task
switch interruptions are more disruptive (cause more annoyance and
anxiety) under a traditional desktop environment.

10 200 2 4 6 12 14 16 188

DEDICATED WORKSPACES

WINDOWS (STUDY 1)

WINDOWS (STUDY 2)

Figure 56: Box plots for Raw TLX measures under both studies.

Interestingly, in both studies it is mainly effort (how hard did you A traditional
window manager
requires more effort
and increases
perceived time
pressure.

have to work to accomplish your level of performance) and temporal
demand (perceived time pressure—was the pace slow or rapid) which
influenced cognitive load6. The difference in effort can be explained
by the additional necessary operations to switch between tasks under
a traditional desktop environment. However, this does not explain
why participants felt more rushed; under both conditions participants
worked on the same tasks, and the incentive remained the same. In-
formation overload—a possible cause of stress [95]—might be at play
here. The mere visibility of previously suspended tasks might be
what results in an increase of perceived time pressure. Even partic-
ipants fluent in task switching under a traditional desktop environ-
ment seem to confirm this, e. g., P1

4 stated having more “breathing
space” when using dedicated workspaces. In contrast, participants
were not significantly more frustrated under a traditional desktop en-
vironment, contradicting the finding of the overall measure. However,
quite a few of the participants seemed to be accustomed to heavy mul-
titasking, thus struggling minimally with task switches.

6 Study 1: Figure 46, study 2: Table 18.

126 task switching in sequential multitasking

Task switches thus seem to require a significant amount of con-Task switches seem
conceptually similar

to secondary tasks in
interruption studies.

centration. An interesting pattern was observed in the second study
which further emphasizes this finding: navigation to opened and
closed resources in many cases was followed by a pause. Only af-
ter taking a short break, would users navigate within documents to
find the exact location where to pick up work. Intrigued by this find-
ing, the data was reinvestigated and very short subtle hints—hence
not coded—were found indicating pauses at the end of most navigate
to opened/closed sequences which precede navigations within; e. g.,
closed eyes, and small readjustments of posture. It can therefore be
speculated that the entire sequence of reconstructing the work envi-
ronment could be considered (and is experienced by users) as a task
in and of itself (resumption times average around 20 seconds). In this
sense task switching could be seen as a secondary task interrupting a
primary task, conceptually similar to interruption studies.

Interruption studies indicate that more errors are made right afterThe task sets used
give rise to a high

variance in task
productivity and

accuracy.

an interruption, and that longer, more demanding interruptions lead
to longer resumption times [94]. Therefore, the first study hypothe-
sized a measurable effect on task performance. However, due to the
systematic nature of the task sets used, severe learning effects were
observed (Table 14). The resulting high variance in task productiv-
ity and accuracy eliminated the opportunity to measure any signifi-
cant effects. Rather than trying to make task sets measurable, future
studies could intersperse them with traditional cognitive tests (e. g.,
Stroop test, n-back) on which to measure progress and accuracy in-
stead. This would allow participants to work on even more represen-
tative task sets. On the other hand, this would introduce additional
interruptions which need to be controlled for under both conditions.
An alternative approach could be, rather than measuring overall task
performance, only measuring task performance during the interval
immediately following task switches. Although differences in cogni-
tive load can impact overall performance, interruption studies predict
a bigger impact immediately following the interruption [94].

9.7 threats to validity

The choice of letting participants work within a real desktop envi-The second study
validates the

resumption times
measured in the first.

ronment (in order to increase ecological validity with respect to the
resumption stage) imposed several practical limitations. Task resump-
tion time measures could not be automated. In the first study task re-
sumption was measured by a researcher using a stopwatch. Measur-
ing resumption time using a stopwatch implies inaccuracies due to
the experimenter’s response time and possible bias. To prevent bias,
a protocol was defined up front which defines what constitutes task
resumption, based on prior research [6, 94, 131]. To optimize accu-
racy, rather than starting and stopping the stopwatch to measure time

9.7 threats to validity 127

intervals, only instants in time were noted. This allowed the experi-
menter to easily update a measure when a later observation indicated
a task was not yet resumed. Time intervals were only calculated after
a task switch had occurred. The similarity between measurements in
the first study and the second (which used precise video annotations)
indicates this approach to be adequate (Figure 53). In contrast to au-
tomated measures, a benefit is intent can be interpreted as well, as
not all mouse or keyboard input on a task set implies task resump-
tion; one application window, part of the task set, could be correctly
retrieved and receive input, but a secondary window might still be
needed which takes the participant some additional time to retrieve.
In addition, verbal utterances by participants often provided rich cues
about the exact time a task was resumed. The (at times) large differ-
ences in between subjective and objective resumption times measured
in the second study show the importance of these cues (Figure 49).

One of the core challenges in setting up a laboratory experiment Creating task sets
for studies on
sequential
multitasking
involves a trade-off.

assessing productivity and accuracy of knowledge work, as influ-
enced by a manipulated variable, is how to control for the knowl-
edge work itself. Allowing participants to work freely on their actual
work would provide maximum validity. This, however, makes any
comparison across tasks impossible due to the ‘non-routine’ problem
solving nature of knowledge work [77]. In such a setup, productivity
and accuracy can vary widely from one session to another. Creat-
ing comparable task sets is a trade-off between the sensitivity of task
performance measures, and the ecologically valid circumstances the
methodology presented here strives for [49]. More concretely, equally
spaced short subtasks simplify measuring performance and allow for
shorter experiments, but are not as representative of knowledge work.
In contrast, longer subtasks can be more ecologically valid, but by
their nature will introduce more variance in performance measures.
Using the task sets presented here, the effects would have to be of
a considerable size in order to be measurable when running a study
with a limited number of participants.

Given the experimental setup, the NASA-TLX test arguably does Better measures for
cognitive load are
needed.

not provide sufficient sensitivity in order to easily interpret effect
size beyond an indication of subjective preference of one condition
over the other. Future work could investigate how to obtain and in-
terpret objective measurements of cognitive load while performing
knowledge work in a desktop environment. There is an opportunity
to use biometric data; skin conductance, blood volume, and pulse rate
in particular seem promising [61, 91], which are indicative of arousal.
Arousal however is not indicative of valence—the pleasantness or un-
pleasantness of stimuli. Therefore, first there is a need for a better
understanding of the different triggers which influence arousal dur-
ing knowledge work in order to assess whether they are indicative of
cognitive load or not.

Part IV

D I S C U S S I O N A N D C O N C L U S I O N

10
S C A L A B I L I T Y A N D I N T E L L I G I B I L I T Y

Our approach ... is to try to understand how we would design computer
tools differently if they were focussed on supporting the act of informing

people, rather than on storing or processing information on peoples’ behalf.

— Alison Kidd [77]

The contributions presented in this dissertation are three-fold: (1) a This dissertation
contributes to:

1. theory

2. technology

3. empirical
findings

theoretical framework for HCI is introduced—the interaction frame-
work—used to outline a clear goal for activity-centric computing; (2)
in pursuit of this goal, a conceptual model supporting activity manage-
ment—the activity life cycle—is incorporated into two activity-centric
computing systems—Laevo and co-Laevo; (3) results from an in field
evaluation of Laevo and two experimental studies on sequential mul-
titasking strengthen the case for activity-centric computing. In this
chapter1, I relate the empirical findings collected during these three
studies to two open issues in activity-centric computing, which I iden-
tify as issues of scalability and intelligibility. In addition to validating
the design of Laevo, this validates the suitability of the activity life
cycle as a conceptual model for other interactive computing systems.

10.1 the hidden cost of task switching

In an observational study of knowledge workers, González and Mark Extrapolating from
study results, an
estimate of time
spent on task
switching can be
made.

[49] report that the time spent within a specific working sphere2 be-
fore switching to another ranges from 7 m 41 s to 16 m 24 s. Con-
sidering an 8 h work day and using the data obtained in the second
study on sequential multitasking (Section 9.4), it is possible to predict
for each of the participants the daily cost of switching between tasks.
Given that all observed task switches were fully coded, it is possible
to disregard time intervals where participants were merely wrapping
up work on a previous task after been given the notification to switch.
Likewise, time intervals where participants were struggling to iden-
tify the necessary resources to resume a task could be dropped, since
they are arguably caused by the participants not being the original
owners of the tasks. Given this data (treating P2

5 as an outlier), on av-
erage the knowledge workers analyzed in this study would spend be-
tween 9m 45 s and 20m 50 s of their day reorganizing their workspace
during heavy multitasking (Table 21).

1 Parts of this discussion are adopted from earlier publications [64, 66].
2 Working sphere: “units of work or activities that people divide their work into on a

daily basis” [49].

131

132 scalability and intelligibility

p
2

1 p
2

2 p
2

3 p
2

4 p
2

5 p
2

6

avg 19.0 s 18.6 s 14.5 s 23.6 s 47.6 s 19.6 s

Ω[1]
9 : 44 9 : 04 7 : 04 11 : 29 23 : 12 9 : 32

O[2]
20 : 47 19 : 21 15 : 05 24 : 32 49 : 33 20 : 22

Table 21: Predicted time spent on reorganizing the workspace per day based
on 16 m 24 s[1] and 7 m 41 s[2] estimate of time in between task
switches.

Although these results are highly dependent on individual differ-The advantages of
using dedicated
workspaces far

outweighs their cost.

ences among participants and the specific conditions of the experi-
ment within which they were measured, they clearly suggest a hidden
cost associated with task switching. Retrieving a single resource as
part of reconstructing a previously suspended task took on average
3.5 s. Not only does this rapidly add up over the course of a day,
but as the first study indicates, it also introduces a perceived time
pressure (measured as part of NASA TLX), which can easily be al-
leviated through the use of dedicated workspaces. This greater time
pressure experienced by users when using a traditional Windows en-
vironment is hypothesized to arise due to information overload; some
window management features can clearly overwhelm users during
heavy multitasking (e. g., Figure 57). The overhead which is some-
times ascribed to setting up dedicated workspaces is shown to be
negligible: the time lost on setting up a workspace (13.6 s on average)
is almost instantaneously compensated for by faster task resumption
(Figure 45). Thus, the perceived overhead seems far greater than the ac-
tual cost, as was confirmed by all participants during interviews in
the evaluation of Laevo (Chapter 8).

“These small things do have a tendency to grow, and the next
day it turns out I do sometimes have to continue working on
them. In the long run I imagine I would structure even all smalls
tasks within activities, because it still is more convenient to ac-
cess when you do have to return to them. There is little overhead
in creating them; the gain is bigger when you have to return to
them.” – P11

As part of the data analysis during the detailed study on sequentialThe framework for
task switching could
be considered a more

general taxonomy.

multitasking, a framework was developed which formed the founda-
tion for many of the presented insights. The framework underwent
several iterative refinements and was validated by three researchers.
Each new discovery within a task switch which triggered a change
in the coding scheme was: (1) discussed among the researchers; (2)
tested on previously coded data; (3) if accepted, further applied to
the entire data set. The framework covers 27 m 11 s worth of data,

10.2 integrated knowledge work 133

Figure 57: Information overload experienced by P2
2 during task switching using the taskbar.

covering 44 task switches, executed by participants with varying ex-
perience using the Windows 7 window manager. Thus, it is proposed
to consider this framework to be a more general taxonomy for task
switching, which could be used in future sequential multitasking
studies for a variety of different window managers.

10.2 integrated knowledge work

The empirical studies on sequential multitasking clearly show it is Temporal activity
management in
Laevo resolves the
issue of scalability.

beneficial for knowledge workers engaging in heavy multitasking to
structure their work within the context of dedicated workspaces. Us-
ing Laevo, on average resuming activities was 9.53 s faster (µ = 6.26,
SD = 1.92). However, over time, as users amass a great number of
activities, the issue of retrieving a single resource from a large col-
lection of open resources simply resurfaces in the form of retrieving
an activity from a large collection of open activities. The temporal
dimension for activity management introduced as part of Laevo pro-
vides a lightweight scalable solution, capable of visualizing activities
of varying scope (from long-term projects to ad hoc tasks) in paral-
lel. A prolonged evaluation of Laevo (lasting longer than two weeks)

134 scalability and intelligibility

is necessary to thoroughly evaluate this claim. However, given the
experimental nature of activity-centric computing (often conflicting
with existing practice), such an investment cannot be expected from
participants who need to evaluate the system as part of their ongoing
work. One user (me), however, did evaluate Laevo over the course of
several months. Looking at the time line I constructed around July–
August, 2013, gives an impression of how I personally appropriated
long-term activities3 (Figure 58): the (ongoing) efforts towards the de-
ployment of Laevo are visible, side-by-side with short-term activities
representing the implementation of features, and activities represent-
ing arrangements for past and future music festivals.

Figure 58: Real-world use of Laevo by the author of this dissertation.

Structuring work within the context of activities, and providingLaevo supports
structuring

information in time,
reducing

information
overload.

strong provenance cues of their life cycle and interrelations with other
activities, is how I envision to support what Whittaker refers to as the
curation lifecycle [138]—the keeping, management, and exploitation of
information. As part of everyday activity management, personal infor-
mation is stored, and can easily be retrieved at a later moment in time.
The rich time line visualization incorporates most of the required task
types to easily access information [122] (overview first, zoom and fil-
ter, then details-on-demand), thereby reducing information overload.
This was confirmed by participants, who reported being more focused,
productive, and efficient in their work during the evaluation of Laevo.

3 Similarly, as part of the UIST publication [64], I provided footage of my personal
time line around July 2014: https://www.youtube.com/watch?v=BAc7sBvViFg

https://www.youtube.com/watch?v=BAc7sBvViFg

10.3 the marks are on the knowledge worker 135

The in depth study on sequential multitasking provides more detailed
insights into these findings: dedicated workspaces automate actions
which normally are required as part of reorganizing the workspace.
Not only are these time-consuming, but also error-prone. Although
these results provide an initial validation of the activity life cycle as
a suitable conceptual model, a long-term study is still needed in or-
der to assess to which degree users’ activity histories will be able to
inform later activity construction and/or resumption.

10.3 the marks are on the knowledge worker

One of the more challenging open questions in activity-centric com- Problems of
intelligibility lead to
unclear borders in
between activities.

puting is: “Who should define activities, when, and how?” Activity-
centric computing systems typically rely on users to define their own
activities, but “experience has shown that people are very poor at re-
membering to update system representations of their own state” [23].
Since work on each activity takes place within a dedicated workspace
(showing only those resources related to one activity), commencing
work on new activities without setting up a separate workspace nec-
essarily means resources become intertwined. Furthermore, users do
not always know beforehand whether a particular sub-task warrants
the creation of a new activity, given the perceived overhead in doing
so. Interruptions (often associated with a change in work context [67])
are even more likely to inadvertently incorporate unrelated resources
into the ongoing activity context. These are issues of intelligibility:
changes in intent might occur unwittingly, resulting in users starting
work on unrelated resources within the context of previously defined
activities.

To this end, some context-aware systems automate the creation Intelligibility is also
an issue in
context-aware
computing.

of activities based on an analysis of the users’ actions. In contrast
to activity-centric computing, supporting the creation of workspaces
which can be labeled with a preexisting intent, context-aware systems
automatically derive intent from interactions with the system and as-
sociate context to it. In other words: where users in activity-centric
computing assign intent to context, context-aware systems assign con-
text to intent (Figure 59). However, issues of intelligibility can still
arise in the form of incorrect presumption of human intention, which
needs to be accounted for to prevent severe annoyances [23]:

Intelligibility: Context-aware systems that seek to act upon
what they infer about the context must be able to represent
to their users what they know, how they know it, and what
they are doing about it.

The concerns with a lack of intelligibility, therefore, albeit arising
from different reasons, seems similar in both approaches to comput-
ing: a discrepancy between context and intent occurs during interaction
with the system.

136 scalability and intelligibility

INTENT
Activity-centric

computing

CHANGED
INTENT

CONTEXT

INTENT

UNEXPECTED
CONTEXT

CONTEXT

Context-aware
computing

Lack of intelligibility

Figure 59: A lack of intelligibility can lead to a discrepancy between context and intent.

In contrast to most context-aware computing systems, the concep-Activities should be
defined by the user,

but can be enhanced
using context-aware

computing.

tual model adopted in Laevo follows Kidd’s recommendation; we
should not try to predict what users want to do with represented in-
formation since “the marks are on the knowledge worker”. Rather, we
should provide users with “structures which are both flexible in their
semantics and generative in nature” [77]. Laevo provides users with
the necessary structures to allow externalizing ongoing and planned
work, storing the marks made on them for future reference. How-
ever, it is also evident that activity-centric computing should avoid
the need for users to spend too much time on defining new activities.
Therefore, a hybrid approach was suggested of explicitly defined ac-
tivities, enhanced by AI to predict and suggest activity operations [20].
This can reduce activity construction costs while simultaneously sup-
porting episodic memory by making the construction of activities
more explicit [138].

To prevent issues of intelligibility, the presentation of activities inLaevo resolves
intelligibility by

making users more
aware about their

own activities.

Laevo is aligned with the mental model users have of them—the
activity life cycle. Laevo reinforces reasoning about the state of ac-
tivities by making state modifications an integral part of setting up
their work environment. Users need to open and close activities in
order to create a multitasking session which provides a representa-
tive overview of the activities they are working on. In addition, in-
terruptions arising from within supported applications (e. g., emails)
are automatically introduced as new activities (to-do items), making
merging their context with preexisting activities a conscious choice,
as opposed to default behavior. Similarly, the ‘home’ activity was
adopted by users as a staging area for uncertain activities, prevent-
ing their context from intertwining with unintended activities. In case
application windows do end up in the wrong activity, cut and paste
operations allow to move windows around easily. Lastly, the evalua-
tion of Laevo showed that the explicit full screen interface made users
more aware about their ongoing and planned activities, empowering
them to make more conscious decisions on how to structure and orga-
nize their work. Therefore, I posit that the activity life cycle improves
intelligibility.

To support cooperation, co-Laevo associates each activity with anco-Laevo introduces
activity awareness
within cooperating

teams.

independent time line, which can be shared with other users. The local
dedicated workspace, introduced as part of Laevo, remains unchanged.
Within the local workspace users can set up their own private work

10.3 the marks are on the knowledge worker 137

environment, yet identical to an ordinary desktop environment, users
can also access shared resources and initiate collaboration using tra-
ditional collaboration tools. From a shared activity time line, the sub-
activities of the parent activity can be coordinated, planned, and dis-
tributed. Similar to Laevo, users are encouraged to update the state
of their activities, thereby making team members more aware about
each other’s activities. This type of ‘proactive’ awareness is often left
unsupported in collaborative computing systems [34]:

Too often the fact that actors actively monitor and proac-
tively display awareness information is disregarded in fa-
vor of undifferentiated mechanisms of notification. In do-
ing so, the fact that the proactive part of the phenomenon
remains unsupported, especially in asynchronous remote
collaboration, is weighted against the fact that the result-
ing technology might seem easier for the user to appropri-
ate and surely simpler for the designer to construct.

However, updating the state of activities is part of every day knowl-
edge work. Since users need to access the hierarchy view to create
or search for new activities to work on, they are regularly confronted
with the ongoing, past, and future work of all participants, thereby
not only supporting proactive awareness, but also improving passive
awareness within cooperating teams.

11
F R O M C O M P U TAT I O N T O A C T I V I T Y

In designing an integrated computational environment the most basic
heuristic demand is to try to generate a small set of structures out of which

all necessary functionality can be built.

— Andrea A. diSessa [139]

This dissertation contributes to research within activity-centric comput- This dissertation
addresses two open
issues in
activity-centric
computing.

ing, an alternative computing paradigm which aims to provide di-
rect support for human activities, rather than through intermediate
abstractions such as files and applications. This is achieved by struc-
turing work within computational representations of human activity,
with a particular focus on providing better support for users during
sequential multitasking. The contributions in this dissertation address
two open issues which have been formulated in prior work in this
line of research [20]:

activity life cycle As users work on their activities, the context
of different activities easily intertwine with one another. There
are no clear demarcations between the start of one activity and
the end of another. During the discussion, I referred to these as
issues of intelligibility: accidental changes in intent of the user
due to unsupported or unclear borders in between separate ac-
tivities.

organizing and managing activities A second issue con-
cerns scalability. It is unclear how current activity-centric solu-
tions would scale when used both over longer periods of time
and by larger groups of users. The design of current systems
does not take into account the large number of activities which
would be amassed in such scenarios.

Encapsulating these two open issues, I have formulated one main
and two underlying research questions which are the focus of this
dissertation:

How can support for the full life cycle of activities, from creation
to completion, be incorporated into an activity-centric comput-
ing system?

R1 What constitutes the activity life cycle? How do users manage their
activities in contemporary computing systems, and what influences
the creation and lifetime of an activity?

R2 How can support for long-term activity management be included in
an activity-centric computing system?

139

140 from computation to activity

To explore the design space of activity-centric computing and toPart i outlined a
clear goal for

activity-centric
computing.

investigate how the current underlying principles are related to a
larger research agenda, I have introduced a theoretical framework for
human-computer interaction—the interaction framework (Chapter 3).
This framework represents two motor themes which were identified as
recurring topics in HCI and are related to a broad range of disparate
technologies (Chapter 2): the (1) nature of human activity and (2) the
interface. As such, it can be used to frame common concepts, enabling
collaboration among differing lines of research with opposing points
of view. By systematically outlining the activity-centric computing
principles within the interaction framework, the integrative nature of
this line of research became apparent (addressing information fragmen-
tation) and clear gaps in current technological support for the full
spectrum of human-computer interaction were identified (Table 22).
Most notably, task management and workflow management are not sup-
ported, which I collectively refer to as activity management (Chapter 4).

activity laevo co-laevo

workspace 4. Adapt. 5. Sharing

item

1. Activity-
centered 2. Multi-

plexing
6. Cont.-aw. 3. Roaming

material

Table 22: The current activity-centric computing principles outlined within the interaction frame-
work. This highlights how Laevo and co-Laevo target previously unaddressed issues of
information fragmentation.

In order to investigate what needs to be supported by activity man-Part ii introduces
technologies based

on a conceptual
model for activity

management—the
activity life cycle.

agement, i. e., what constitutes the activity life cycle (R1), I performed
a literature review of common tools used by knowledge workers
as part of their daily work practices: task, window, and file manage-
ment. This highlighted commonalities and conflicts between individ-
ual work practices, which need to be accounted for as part of inte-
grated knowledge work. A review of prior activity-centric computing
systems confirms that such an integration is currently missing, and
that the focus of prior systems lies on constructing the activity con-
text, as opposed to the management of activities these contexts repre-
sent (Chapter 5). This literature review gave rise to the activity life cy-
cle—a conceptual model for activity management, encapsulating both
how users reason about their activities and how computational sup-
port can be provided for them. This model describes the constant
and interleaved construction, interruption, resumption, and closure
of activities. Through the development of two interactive computing
systems (Laevo and co-Laevo, Chapter 6), I demonstrated how this
model can be incorporated into the design of activity-centric comput-

from computation to activity 141

MULTITASKING

ARCHIVING

PLANNING

INTERRUPTIONS

Figure 60: The activity life cycle is supported in Laevo through the management of activities on a
time line and by constructing work within the context of dedicated workspaces.

ing systems (Figure 60), thereby providing support for activity man-
agement (R2). However, in order to enable the creation of these two
systems, and to ease further development in this line of research, a
dedicated workspaces (DW) toolkit was created, simplifying the com-
plex work of setting up activity workspaces (Chapter 7).

Laevo was evaluated during a two-week field study by six knowl- Part iii introduces
empirical studies
highlighting how the
activity life cycle
addresses issues of
scalability and
intelligibility.

edge workers with varying professional backgrounds (Chapter 8). Re-
sults indicate that participants were more focused and aware about
their ongoing activities, and increasingly relied on creating activities,
even for short-term tasks. This indicates that the conceptual model
and features supported in Laevo encourage users to keep activities
separated, thereby reducing issues which can otherwise arise due to
a lack of intelligibility. In addition, from the evaluation of Laevo new
features for co-Laevo were derived which support the management
of even larger numbers of activities: activity hierarchies, and activity in-
stances in time. This demonstrates how the activity life cycle addresses
issues of scalability. A more detailed understanding of this concep-
tual model (R1) was obtained by conducting two empirical studies
on sequential multitasking (Chapter 9). Results from these two studies
clearly indicate the benefits of structuring work within the context of
activities, compared to a traditional desktop environment: dedicated
workspaces (1) automate error-prone task resumption, (2) reduce cogni-
tive load, and (3) are an order of magnitude faster. These results provide
much-needed quantitative data in support of activity-centric comput-
ing, and bring forward a framework for analysis for future work.

142 from computation to activity

Several times throughout this dissertation I have highlighted howActivity-centric
computing has only

achieved incremental
innovation.

much the design of interactive computing systems relies on, and is in-
fluenced by underlying architecture [42]. Therefore, design and com-
puter science (as practiced in HCI) are—and are likely to remain—
extremely interconnected. This is a fundamental limitation for an
activity-centric approach to system design, which envisions a radi-
cally new computing paradigm incompatible with the current anti-
quated desktop metaphor for office work. Building activity-centric
computing systems is a continuous uphill battle against an industry
which is only trying to achieve local maxima. In contrast, activity-
centric computing pursues radical innovation, aiming for one unify-
ing global maximum. To conclude this dissertation, I will reflect on
how current efforts in this line of research have only accomplished
incremental innovation, and will base a vision for future work on an
analysis of early interactive computing systems (less restricted by
prior infrastructure) through the use of the interaction framework.

11.1 limitations : radical innovation

While introducing the interaction framework in Chapter 3, and re-The main limitation
for activity-centric

computing is
present-day
technology.

viewing PIM tools in support of managing tasks, windows, and files in
Section 5.1, I highlighted the fragmented nature of technology. From
a historical point of view this can be explained by considering that
the computer is ‘reaching out’ [51], thus new technologies are con-
stantly being built on top of prior ones. Referring to terminology in-
troduced as part of the interaction framework: new technologies are
composed of basic building blocks made available from lower levels
of abstraction. This enables rapid development of new technologies,
but unfortunately also builds up technical debt: “older problems are
never totally solved but remain beside the newer, larger ones; only
their relative importance diminishes gradually” [80]. More critically,
the design of interactive computing systems is not only influenced
by underlying infrastructure, but is also largely inhibited by it [42].
Given that the goal of activity-centric computing is to conceptually
overhaul the way we interact with present-day technologies, the main
limitation in this line of research for the successful deployment of new
computing systems is the technological stack which we inescapably
inherit from the past [101]:

The main barrier to the introduction of technology that
is aligned with people’s real needs and desires, with peo-
ple’s real activities is the mindset of the computer indus-
try. This industry has grown up being dominated by tech-
nology. The result has been the development of powerful
tools that have become essential to modern life. ... The
problem is that the resulting device is technology-centric.

11.1 limitations : radical innovation 143

Therefore, as presented in Chapter 4, current research efforts in True activity-centric
computing cannot
be built on top of
current
infrastructure.

activity-centric computing can only achieve incremental innovation—
patching up issues of interoperability between isolated tools by con-
structing computational integration around the central notion of hu-
man activity. The underlying vision, however, can only be realized
by making breaking changes to the current infrastructure. No inter-
mediate architecture will ever be able to fully support the concept of
activity-centric computing1, which is why the DW toolkit was first and
foremost designed to inspire the foundation of, and support transi-
tioning to, an altogether new infrastructure. In practice (as presented
in Chapter 7), the DW toolkit is still unable to work around several
interjected abstractions [42]: e. g., the need to suspend workspaces in
order to free up computational resources, and the need for at least
one workspace to be visible at any given point in time. The current
application model (and therefore all applications) need to be restruc-
tured drastically in order to work around such issues. Only then can
the unintuitive technological abstractions which still persist in com-
puting systems to date be fully hidden from view.

Norman and Verganti compare incremental innovation with radical HCI favors
short-term novelty
over sustained
radical innovation.

innovation through the use of a hill-climbing analogy: “Incremental
innovation attempts to reach the highest point on the current hill.
Radical innovation seeks the highest hill” (Figure 61) [105]:

Product
Quality

Design Parameters

Incremental
innovation

Radical
innovation

Figure 61: Incremental innovation compared to radical innovation. Figure
adapted from original by Norman and Verganti [105].

This poses an interesting question for HCI: How can we become aware
of surrounding hills with more promising vantage points, and how
do we weigh the cost of ascending them against the increase in prod-
uct quality there is to be gained? In Section 2.5 I argued HCI is lack-
ing the necessary motor themes (representing accumulated knowl-
edge) in order to make such qualified decisions. Often topics are no

1 Even Microsoft struggles with supporting dedicated workspaces in Windows 10. The
newly introduced ‘task view’ feature exhibits the same underlying problems en-
countered in previous VDMs: single-instance applications lead to application windows
ending up in unexpected workspaces. The task view in Windows 10 ‘resolves’ this
by automatically switching to a different workspace whenever an application gets
focus.

144 from computation to activity

longer pursued simply because they fall out of fashion, reflecting
short bursts of radical innovation only for as long as contributions
are deemed noteworthy by the community. There seems to be a gen-
eral disregard for investigating whether a hill is worth ascending in
the first place.

However, as per Steve Job’s ‘parable of the stones’ (Appendix A),Radical innovation
requires pursuing a

consistent vision.
there is a great amount of work to be done in between a great idea
and the final product. Unfortunately, “[m]ost radical innovations fail.
Those that succeed can take decades before they are successful” [103].
For example, as mentioned earlier, although the Xerox Star [68] de-
fined the current desktop metaphor (which was only adopted several
years later), it did not become a commercial success. It envisioned rad-
ical innovation through a change in the way people give meaning to
personal computers: before the Xerox Star, personal computers were
solely targeted at computer enthusiasts; in contrast, the Star was de-
signed for users without a technical background, to be used within an
office environment. Bringing about radical innovation requires defin-
ing a clear goal—a vision for what technology can be—and consis-
tently persevering in the pursuit to make it happen.

11.2 future work : a long-term goal

As a theoretical contribution I have brought forward the interactionA long-term goal for
activity-centric

computing should
not rely on current

infrastructure.

framework (Chapter 3). Within this framework the current goal for
activity-centric computing was systematically delineated and subse-
quently extended upon (Chapter 4). Activity-centric computing pri-
marily attempts to integrate different levels of abstraction (inherited
from a technology-oriented past), using the central notion of human
activity. However, imagining a fundamentally different infrastructure,
a long-term goal for activity-centric computing can be formulated. Such
a goal pursues radical innovation, unbounded by (and incompatible
with) contemporary technologies, but capable of addressing persist-
ing underlying issues of interactive computing systems.

Unlike a bottom-up approach to system design, a top-down approachLooking into early
literature helps

understanding the
design of current

technologies.

tries not to be constrained by prior technology. However, it does need
to rely on a basic understanding of underlying implementation de-
tails in order to discriminate between purely technological (or arbi-
trary2) system constraints, and those that have been put in place for
very specific reasons. This is essential in deciding whether such con-
straints should be eliminated rather than adhered to. For this very
reason, it is extremely valuable to revisit early literature in computer
science preceding the mainstream adoption of personal computers.
This can give insights into long-forgotten design choices regarding
the fragmented nature of current technology.

2 For example, it is frustratingly common for passwords to have a maximum length,
even though this weakens password strength considerably.

11.2 future work : a long-term goal 145

The first graphical window management system was introduced Early window
management was
based on recursive
system design.

as part of the Smalltalk programming environment in the 1970s [129].
The degree to which the design of graphical user interfaces is inter-
twined with the development of object-oriented programming (OOP)
cannot be overstated. OOP is more than just a vision for software
engineering—it is a vision for computing; I highly doubt that it is a co-
incidence that windows were conceived as ‘objects’ in this computing
paradigm. After hearing Bob Barton state that “[t]he basic principal
[sic] of recursive design is to make the parts have the same power as
the whole”, Alan Kay’s vision for OOP materialized as follows [129]:

For the first time I thought of the whole as the entire com-
puter and wondered why anyone would want to divide
it up into weaker things called data structures and proce-
dures. Why not divide it up into little computers, as time
sharing was starting to? But not in dozens. Why not thou-
sands of them, each simulating a useful structure?

He later described his vision for computing as [75]:

In computer terms, Smalltalk is a recursion on the notion
of computer itself. Instead of dividing “computer stuff”
into things each less strong than the whole—like data
structures, procedures, and functions which are the usual
paraphernalia of programming languages—each Smalltalk
object is a recursion on the entire possibilities of the com-
puter. Thus its semantics are a bit like having thousands
and thousands of computers all hooked together by a very
fast network.

This recursive approach to the design of interactive computing sys- Recursive design
offers flexibility to
the user.

tems can be recognized in the design of many early computing sys-
tems, reaching all the way back to NLS [43] in 1968. As a “research
center for augmenting human intellect”, NLS was much more than a
mere technological contribution; it was a vision for what computing
can be. Through the recursive design of interconnected nodes, NLS
supported anything from programming, to paper writing, perform-
ing a presentation at a conference, to mundane human activities like
setting up a grocery shopping list and an associated itinerary (Fig-
ure 62). By querying for nodes and changing the view properties of re-
trieved nodes, dedicated workspaces could effectively be constructed
by the user. Thus, recursive design is an extremely powerful tool for
the design of interactive computing systems. It provides users with
the necessary flexibility to tailor a computing system to their needs.

In contrast, Rooms [55], and modern systems supporting dedicated Recursive design is
not tied to fixed
layers of abstraction.

workspaces, are fundamentally different from early experimental sys-
tems such as NLS and Boxer [139]. The latter category embodies
a different computing paradigm than the one that we have grown

146 from computation to activity

(a) Grocery shopping. (b) Itinerary for groceries.

Figure 62: The design of NLS [43] supported dedicated workspaces, e. g., for grocery shopping.

accustomed to, devoid of files and applications. Rather than a fea-
ture patched on in order to be able to aggregate different resources,
workspaces are an emergent property of the way information is stored
and presented; there is no functional difference between a workspace
and a resource as known in traditional computing. Considering the
interaction framework, these systems do not provide separate com-
putational support for each of the levels of abstraction (Table 23). In-
stead, each computational unit is as versatile as the next. It is through
composition by the user, that items, workspaces, and activities can be
set up.

activity

workspace

item

material

Table 23: Historically, computational support for different levels of abstraction has not always been
separated.

Possibly these recursive approaches (resembling end-user program-
ming) were abandoned as part of the introduction of personal com-
puters, in favor of less complex, but more strict, software architec-
tures. However, given the amount of problems which keep arising
due to a lack of integration between documents, applications, and
more recently human activity, one might wonder at what cost. With
the added capabilities of modern day devices, it would be worthwhile
investigating the design of new ‘recursive’ interactive computing sys-
tems, where the basic computational unit is no longer a simple piece
of data, but a connected, shared, atomic representation of ‘activity’.

Part V

A P P E N D I X

A
T H E PA R A B L E O F T H E S T O N E S

interview

Robert X. Cringely interviews Steve Jobs in “Steve Jobs: The Lost Inter-
view (2012)”, footage from 1995.

transcript

Robert X. Cringely: “Now, you motivated this team, you had to guide
them—”

Steve Jobs: “We had to build the team!”

Robert X. Cringely: “Build the team, motivate it, guide them, deal with
them. We’ve interviewed just lots and lots of people from the Macin-
tosh team. And, what it keeps coming down to is your passion, your
vision. How do you order your priorities in there? What is important
to you in the development of the product?”

Steve Jobs: “You know, one of the things that really hurt Apple was
after I left, John Sculley got a very serious disease. And that disease,
I’ve seen other people get it too, it’s the disease of thinking that a
really great idea is 90% of the work. And that if you just tell all these
other people ‘here’s this great idea,’ then of course they can go off
and make it happen. And the problem with that is that there’s just
a tremendous amount of craftsmanship in between a great idea and
a great product. And as you evolve that great idea, it changes and
grows. It never comes out like it starts because you learn a lot more
as you get into the subtleties of it. And you also find there are tremen-
dous trade-offs that you have to make. There are just certain things
you can’t make electrons do. There are certain things you can’t make
plastic do. Or glass do. Or factories do. Or robots do. And as you get
into all these things, designing a product is keeping five thousand
things in your brain, these concepts, and fitting them all together in,
kind of continuing to push to fit them together in new and different
ways to get what you want. And every day you discover something
new that is a new problem or a new opportunity to fit these things
together a little differently. And it’s that process that is the magic.
And so we had a lot of great ideas when we started. But what I’ve
always felt that a team of people doing something they really believe
in is like, is like when I was a young kid there was a widowed man
that lived up the street. He was in his eighties. He was a little scary
looking. And I got to know him a little bit. I think he may have paid
me to mow his lawn or something. And one day he said to me, ‘come
on into my garage I want to show you something.’ And he pulled out

149

150 the parable of the stones

this dusty old rock tumbler. It was a motor and a coffee can and a
little band between them. And he said, ‘come on with me.’ We went
out into the back and we got just some rocks. Some regular old ugly
rocks. And we put them in the can with a little bit of liquid and little
bit of grit powder, and we closed the can up and he turned this mo-
tor on and he said, ‘come back tomorrow.’ And this can was making
a racket as the stones went around. And I came back the next day,
and we opened the can. And we took out these amazingly beautiful
polished rocks. The same common stones that had gone in, through
rubbing against each other like this, creating a little bit of friction, cre-
ating a little bit of noise, had come out these beautiful polished rocks.
That’s always been in my mind my metaphor for a team working
really hard on something they’re passionate about. It’s that through
the team, through that group of incredibly talented people bumping
up against each other, having arguments, having fights sometimes,
making some noise, and working together they polish each other and
they polish the ideas, and what comes out are these really beautiful
stones.”

B
L A E V O E VA L U AT I O N M AT E R I A L

b.1 laevo manual

author

Steven Jeuris

date

August 2013

151

Laevo

Download the lastest version: Alpha v0.1.4

Laevo is a personal information management tool for Windows 7 and 8

which offers you additional functionality by which to organize your work,

with a particular focus on supporting multitasking. Our goal is to do

this without changing the everyday interaction with Windows drastically.

In case you have ever used a virtual desktop manager the general

concept will seem quite similar, but in essence we are striving for much

more, and several additional features are already available.

What is a virtual desktop manager? When using a virtual desktop manager, you have not one, but several desktops

available to you between which you can switch easily. An over simplified analogy would be having several PCs

available to you, each running their own programs and being able to switch between them without having to change

seats.

Overview

The two core concepts which Laevo supports are activities and to-do items, comparable to many

existing calendar and planning tools. Laevo effectively tries to integrate your calendar into your desktop

environment.

Activities: these can be seen as the entire context of a certain task you are working on, worked on

before, or are planning to work on at a predetermined time. E.g. when writing a report you might be

working in a text editor, but you also might need relevant emails of your supervisor and additional

information from certain web pages. For each activity, Laevo offers you the opportunity of creating a

separate virtual desktop, giving you a clean slate to work on.

To-do items: these are very similar to activities. The only difference is they represent work that still needs

to be done, without having specified when. Like activities however, they can still hold their own context on

a separate virtual desktop.

152 laevo evaluation material

When first running Laevo, you have the option of entering your Gmail login and password. In case you

don't have Gmail, just click Cancel. Laevo uses this information to retrieve unread emails from your inbox

and adding them as to-do items. In case you entered a wrong username and password, the dialog box

will pop up again. (Don't forget to create a new password in case you are using 2 step verification!)

After Laevo has started, you won't see much of a

difference. As stated before, our goal is to intrude as

little as possible in your daily work. You can find Laevo as a tray icon in the bottom right. It might be

hidden, in which case you will need to click the little triangle in order to find it. We advise you to go

to "Customize" by clicking the triangle and setting Laevo to "Show icon and notifications" so that it is

always visible. The Laevo icon will light up when you have received a new email in case you entered your

Gmail credentials.

Double clicking the icon will open up a full screen overview of your activities and to-do items, presented

on a time line. Alternatively (and recommended) you can press Caps Lock (named Shift Lock on some

keyboard layouts) to show or hide the overview. The key's traditional behavior has been overridden, and

all short keys of Laevo start out with Caps Lock. You can still enable/disable Caps Lock by pressing Caps

Lock - A. Since you haven't created any activities or to-do items yet, the time line will be empty, but as will

be shown shortly the time line might be populated as follows.

B.1 laevo manual 153

Time is presented on the horizontal axis, and activities as work occurs on them (possibly in parallel) are

organized on the vertical axis. Try click-dragging to move the time line around, and scrolling to zoom

in/out. The yellow vertical marker indicates the current time. Activities which are currently being worked

on continue expanding, getting wider and wider, as long as they aren't closed. In the image above, there

are two activities currently open, and two closed ones which were open in the past. Additionally, activities

can be planned in the future at a specified time, as shown by the activity with the black background

behind the yellow marker. At the bottom you can find a list of to-do items, represented by icons. Next to it

you can find a bigger "Home" icon, representing the desktop you were working on prior to starting Laevo.

Clicking it brings you back to your original desktop. Clicking an activity or to-do item opens up a clean

desktop in which you can work, exactly the same as the original Windows desktop, but only showing

windows for that activity or to-do item.

154 laevo evaluation material

Your first activity

Press Caps Lock - N; a clean desktop will show up. You

have just created your first activity, and immediately have

started working on it. For now it is empty. If you go back to

the overview you will see a "New activity" on your time line

with a yellow border, indicating this is the activity which is

currently open. Click dragging the activity allows you to

choose where to place it vertically. Hovering over it with

your mouse pops up a menu with 3 icons. A garbage bin, a gear, and a close button.

Garbage bin: removes an activity from the time line. You can only remove an activity when it is no longer

open (you aren't working on it) and there are no windows open in it. A closed activity which has windows

open inside of it has an orange border.

Gear: opens up a menu in which you can give the activity a name and icon. You can also adjust the name

of the activity directly by clicking the label on the time line.

Close: indicates on the time line that you are no longer working on the activity. However, you can still

access it as you would otherwise just by clicking on it. It is up to you to decide when you keep an activity

closed or open.

When you are working on the desktop of your activity, all the windows you open up in there will become

part of that desktop. Try switching back and forth between the Home activity and your newly created one

after opening up a couple of windows. (Hint: Caps Lock - Tab allows you to switch between the last two

accessed activities without having to go through the overview.)

For each activity, there is a directory which is

automatically created in which you can place

relevant files. When inside an activity (on the

desktop) this directory can always be accessed from

Windows Explorer under the "Libraries" list,

named "Activity Context". Alternatively, you can

open up this library when inside an activity

B.1 laevo manual 155

using Caps Lock - L. You can even add additional folder locations to the library to import existing files. For

more information on Windows Libraries, check out the official documentation.

Moving windows between activities

You can cut and paste windows, just like you cut and paste files, in order to move them from one

desktop to another. Highlight a window (click on it) and press Caps Lock - X. The selected window will

disappear. Press Caps Lock - V to show it again. You can cut multiple windows in a row; when pasting, all

previously cut windows will show up again.

By cutting windows when inside one activity, and pasting them when inside another, you can move

windows in between activities.

Planning, to-do items and interruptions

Clicking the "+" icon on the overview adds a new to-do item. As you will notice they behave very similar to

activities, you can also click on them to open up a new desktop to work on. New to-do items show up on

the left hand side. You can drag the icons left and right to organize them. Once you decide to start

working on a to-do item you can drag it to the time line, effectively turning it into an activity.

Start working: when you drag the icon in front of the current time marker and drop it you will convert the

to-do item into an open activity, indicating you start working on it.

Plan: you can drag it behind the current time marker,

positioning it where you are planning to work on it.

Through the edit menu you can change the date and

time more accurately in case needed. You can start

working on a planned item by clicking the yellow arrow

in the mouse-over menu. To plan to-do items you can

also open up the context menu on the time line (right

mouse button) behind the current time marker at the

location where you want to place the activity, and

clicking "Plan activity".

156 laevo evaluation material

Assign: drag a to-do item to an existing activity (or the home icon) in order to make it part of that activity.

All windows open in the to-do item will be merged with those from the activity.

In case you provided login information for Gmail, new emails will show up as new to-do items with an

animated yellow border, until they have been opened. Opening an email "interruption" will besides

opening the desktop also open up the context of the interruption; in case of Gmail, the email will open up

in a new browser window.

Shortkeys overview

Caps Lock: show/hide overview

Caps Lock - N: open new activity

Caps Lock - Tab: switch between last two open activities

Caps Lock - L: open activity context library

Caps Lock - W: close activity

Caps Lock - X: cut window

Caps Lock - V: paste window

Caps Lock - A: enable/disable caps lock

Exiting and restarting Laevo

When you want to shut down Laevo, right click the tray icon, and select "Exit". All open windows from all

your activities and to-do items will show up again. All activities are closed when shutting down Laevo, and

will be represented as such when Laevo is restarted.

When restarting Laevo, the windows which were previously part of an activity or task context will be

reassigned to those and thus be hidden upon startup. All new windows, not previously part of any activity

or task, become part of the "Home" activity. Since all activities close when exiting Laevo, the activities

which were open at the time Laevo was shut down won't stretch up to the current time after a restart. You

might need to zoom out and/or move the time line to the past to find them. By clicking the yellow arrow

you can make the activity stretch to the current time again, indicating that work on it is continued.

B.1 laevo manual 157

Troubleshooting

In case the time line overview is running a bit slow, try lowering the quality in the settings which can be

accessed through the context menu (right click) of the tray icon.

When the application crashes there should be a "log.txt" file available

in "C:\Users\<username>\Documents\Laevo". Please email this to me. (sjeu AT itu.dk)

158 laevo evaluation material

B.2 laevo diary study questions 159

b.2 laevo diary study questions

The following questions were filled out every day over the course of
two weeks:

1. Why was or wasn’t Laevo useful for you today? At a minimum
state one positive and one negative points, but open feedback is
encouraged.

2. What activities have you done today that weren’t represented in
Laevo at some point?

3. What was/were your main activities today? In case they were
represented in Laevo, where did they originate from (self-initiated,
to-do item, email to-do, other)?

4. Have you scheduled any activities today? Did you also plan
them on the time line? Why (not)?

5. Did you use Leavo’s to-do list today? Why (not)? How?

6. Did you use Laevo’s Activity Context library today to store or
retrieve files?

7. Were there occasions where you considered creating an activity
or to-do item but eventually decided not to? If so, why?

8. Please have a look at your time line. Does the overview of today
reflect the actual activities you did today? Why (not)?

B I B L I O G R A P H Y

[1] Eytan Adar, David Karger, and Lynn Andrea Stein. “Haystack:
Per-user Information Environments.” In: Proceedings of the Eighth
International Conference on Information and Knowledge Manage-
ment. CIKM ’99. Kansas City, Missouri, USA: ACM, 1999, pp. 413–
422. isbn: 1-58113-146-1. doi: 10.1145/319950.323231. url:
http://doi.acm.org/10.1145/319950.323231.

[2] Rachel F. Adler and Raquel Benbunan-Fich. “Juggling on a
High Wire: Multitasking Effects on Performance.” In: Interna-
tional Journal of Human-Computer Studies 70.2 (Feb. 2012), pp. 156–
168. issn: 1071-5819. doi: 10.1016/j.ijhcs.2011.10.003. url:
http://dx.doi.org/10.1016/j.ijhcs.2011.10.003.

[3] Rachel F. Adler and Raquel Benbunan-Fich. “Self-interruptions
in discretionary multitasking.” In: Computers in Human Behav-
ior 29.4 (2013), pp. 1441–1449. issn: 0747-5632. doi: 10.1016/
j.chb.2013.01.040. url: http://www.sciencedirect.com/
science/article/pii/S0747563213000435.

[4] Rachel F Adler and Raquel Benbunan-Fich. “The effects of
task difficulty and multitasking on performance.” In: Interact-
ing with Computers 27.4 (2015), pp. 430–439.

[5] Anand Agarawala and Ravin Balakrishnan. “Keepin’ It Real:
Pushing the Desktop Metaphor with Physics, Piles and the
Pen.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’06. Montréal, Québec,
Canada: ACM, 2006, pp. 1283–1292. isbn: 1-59593-372-7. doi:
10.1145/1124772.1124965. url: http://doi.acm.org/10.
1145/1124772.1124965.

[6] Erik M. Altmann and J. Gregory Trafton. “Task Interruption:
Resumption Lag and the Role of Cues.” In: Proceedings of the
26th Annual Conference of the Cognitive Science Society. CogSci
’04. Chicago, Illinois, USA: Lawrence Erlbaum Associates, Inc.,
2004, pp. 43–48. isbn: 0-8058-5464-9.

[7] Brian P Bailey and Joseph A Konstan. “On the need for attention-
aware systems: Measuring effects of interruption on task per-
formance, error rate, and affective state.” In: Computers in hu-
man behavior 22.4 (2006), pp. 685–708.

[8] Brian P Bailey, Joseph A Konstan, and John V Carlis. “The
effects of interruptions on task performance, annoyance, and
anxiety in the user interface.” In: Proceedings of INTERACT.
Vol. 1. 2001, pp. 593–601.

161

https://doi.org/10.1145/319950.323231
http://doi.acm.org/10.1145/319950.323231
https://doi.org/10.1016/j.ijhcs.2011.10.003
http://dx.doi.org/10.1016/j.ijhcs.2011.10.003
https://doi.org/10.1016/j.chb.2013.01.040
https://doi.org/10.1016/j.chb.2013.01.040
http://www.sciencedirect.com/science/article/pii/S0747563213000435
http://www.sciencedirect.com/science/article/pii/S0747563213000435
https://doi.org/10.1145/1124772.1124965
http://doi.acm.org/10.1145/1124772.1124965
http://doi.acm.org/10.1145/1124772.1124965

162 Bibliography

[9] Liam J. Bannon. “From human factors to human actors: The
role of psychology and human-computer interaction studies
in system design.” In: Design at work: Cooperative design of com-
puter systems (1991), pp. 25–44.

[10] Liam J. Bannon. “Perspectives on CSCW: From HCI and CMC
to CSCW.” In: Proceedings of the International Conference on Human-
Computer Interaction. EW-HCI ’92 (1992), pp. 148–158.

[11] Liam Bannon, Allen Cypher, Steven Greenspan, and Melissa
L. Monty. “Evaluation and Analysis of Users’ Activity Orga-
nization.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’83. Boston, Massachusetts,
USA: ACM, 1983, pp. 54–57. isbn: 0-89791-121-0. doi: 10.1145/
800045.801580. url: http://doi.acm.org/10.1145/800045.
801580.

[12] Jakob E. Bardram. “Plans as situated action: an activity theory
approach to workflow systems.” In: Proceedings of the Fifth Eu-
ropean Conference on Computer Supported Cooperative Work. Springer.
1997, pp. 17–32.

[13] Jakob E. Bardram. “Collaboration, Coordination and Computer
Support: An Activity Theoretical Approach to the Design of
Computer Supported Cooperative Work. Ph. D. Thesis.” In:
DAIMI Report Series 27.533 (1998).

[14] Jakob E. Bardram. “Activity-based computing-lessons learned
and open issues.” In: ECSCW 2005 workshop, Activity-From a
theoretical to a computational construct. Citeseer. 2005.

[15] Jakob E. Bardram. “Activity-based computing: support for mo-
bility and collaboration in ubiquitous computing.” In: Personal
and Ubiquitous Computing 9.5 (2005), pp. 312–322.

[16] Jakob E. Bardram. “Activity-based computing for medical work
in hospitals.” In: ACM Transactions on Computer-Human Interac-
tion (TOCHI) 16.2 (2009), p. 10.

[17] Jakob E. Bardram, Jonathan Bunde-Pedersen, and Mads Soe-
gaard. “Support for activity-based computing in a personal
computing operating system.” In: Proceedings of the SIGCHI
conference on Human Factors in computing systems. ACM. 2006,
pp. 211–220.

[18] Jakob E. Bardram, Jonathan Bunde-Pedersen, Afsaneh Doryab,
and Steffen Sørensen. “CLINICAL SURFACES: Activity-Based
Computing for Distributed Multi-Display Environments in Hos-
pitals.” In: INTERACT’09: Proceedings of the Conference on Hu-
man Computer Interaction. Vol. 5727. Lecture Notes in Com-
puter Science. Springer, Aug. 26, 2009, pp. 704–717. isbn: 978-
3-642-03657-6. url: http://dblp.uni- trier.de/db/conf/
interact/interact2009-2.html#BardramBDS09.

https://doi.org/10.1145/800045.801580
https://doi.org/10.1145/800045.801580
http://doi.acm.org/10.1145/800045.801580
http://doi.acm.org/10.1145/800045.801580
http://dblp.uni-trier.de/db/conf/interact/interact2009-2.html#BardramBDS09
http://dblp.uni-trier.de/db/conf/interact/interact2009-2.html#BardramBDS09

Bibliography 163

[19] Jakob E. Bardram, Sofiane Gueddana, Steven Houben, and
Søren Nielsen. “Reticularspaces: Activity-based Computing Sup-
port for Physically Distributed and Collaborative Smart Spaces.”
In: CHI’12: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. ACM. 2012, pp. 2845–2854.

[20] Jakob E. Bardram, Steven Jeuris, and Steven Houben. “Activity-
based computing: computational management of activities re-
flecting human intention.” In: AI Magazine 36.2 (2015), pp. 63–
72.

[21] P. Barthelmess and K. M. Anderson. “A View of Software De-
velopment Environments Based on Activity Theory.” In: Com-
put. Supported Coop. Work 11.1-2 (Apr. 2002), pp. 13–37. issn:
0925-9724. doi: 10.1023/A:1015299228170. url: http://dx.
doi.org/10.1023/A:1015299228170.

[22] Russell Beale and William Edmondson. “Multiple Carets, Mul-
tiple Screens and Multi-Tasking: New Behaviours with Multi-
ple Computers.” In: Proc. BCS HCI. British Computer Society.
2007, pp. 55–64.

[23] Victoria Bellotti and Keith Edwards. “Intelligibility and ac-
countability: human considerations in context-aware systems.”
In: Human–Computer Interaction 16.2-4 (2001), pp. 193–212.

[24] Victoria Bellotti, Nicolas Ducheneaut, Mark Howard, and Ian
Smith. “Taking Email to Task: The Design and Evaluation of
a Task Management Centered Email Tool.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’03. Ft. Lauderdale, Florida, USA: ACM, 2003, pp. 345–
352. isbn: 1-58113-630-7. doi: 10.1145/642611.642672. url:
http://doi.acm.org/10.1145/642611.642672.

[25] Ofer Bergman, Ruth Beyth-Marom, and Rafi Nachmias. “The
Project Fragmentation Problem in Personal Information Man-
agement.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’06. Montréal, Québec, Canada:
ACM, 2006, pp. 271–274. isbn: 1-59593-372-7. doi: 10.1145/
1124772 . 1124813. url: http : / / doi . acm . org / 10 . 1145 /

1124772.1124813.

[26] Jasmin Blanchette. “The little manual of API design.” In: Chair
for Logic and Verification (2008).

[27] Jeanette Blomberg and Helena Karasti. “Reflections on 25 Years
of Ethnography in CSCW.” In: Computer Supported Cooperative
Work (CSCW) 22.4 (2013), pp. 373–423. issn: 1573-7551. doi:
10.1007/s10606-012-9183-1. url: http://dx.doi.org/10.
1007/s10606-012-9183-1.

https://doi.org/10.1023/A:1015299228170
http://dx.doi.org/10.1023/A:1015299228170
http://dx.doi.org/10.1023/A:1015299228170
https://doi.org/10.1145/642611.642672
http://doi.acm.org/10.1145/642611.642672
https://doi.org/10.1145/1124772.1124813
https://doi.org/10.1145/1124772.1124813
http://doi.acm.org/10.1145/1124772.1124813
http://doi.acm.org/10.1145/1124772.1124813
https://doi.org/10.1007/s10606-012-9183-1
http://dx.doi.org/10.1007/s10606-012-9183-1
http://dx.doi.org/10.1007/s10606-012-9183-1

164 Bibliography

[28] Richard Boardman and M. Angela Sasse. “"Stuff Goes into the
Computer and Doesn’T Come out": A Cross-tool Study of Per-
sonal Information Management.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’04. Vi-
enna, Austria: ACM, 2004, pp. 583–590. isbn: 1-58113-702-8.
doi: 10.1145/985692.985766. url: http://doi.acm.org/10.
1145/985692.985766.

[29] Susanne Bødker. “When Second Wave HCI Meets Third Wave
Challenges.” In: Proceedings of the 4th Nordic Conference on Human-
computer Interaction: Changing Roles. NordiCHI ’06. Oslo, Nor-
way: ACM, 2006, pp. 1–8. isbn: 1-59593-325-5. doi: 10.1145/
1182475 . 1182476. url: http : / / doi . acm . org / 10 . 1145 /

1182475.1182476.

[30] Deborah A. Boehm-Davis and Roger Remington. “Reducing
the disruptive effects of interruption: A cognitive framework
for analysing the costs and benefits of intervention strategies.”
In: Accident Analysis & Prevention 41.5 (2009), pp. 1124–1129.
issn: 0001-4575. doi: 10 . 1016 / j . aap . 2009 . 06 . 029. url:
http : / / www . sciencedirect . com / science / article / pii /

S000145750900164X.

[31] Frederick P. Brooks Jr. “No Silver Bullet: Essence and Acci-
dents of Software Engineering.” In: Computer 20.4 (Apr. 1987),
pp. 10–19. issn: 0018-9162. doi: 10.1109/MC.1987.1663532.
url: http://dx.doi.org/10.1109/MC.1987.1663532.

[32] Duncan P Brumby, Anna L Cox, Jonathan Back, and Sandy JJ
Gould. “Recovering from an interruption: Investigating speed-
accuracy trade-offs in task resumption behavior.” In: Journal of
Experimental Psychology: Applied 19.2 (2013), p. 95.

[33] Graham Button and Paul Dourish. “Technomethodology: Para-
doxes and Possibilities.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’96. Vancou-
ver, British Columbia, Canada: ACM, 1996, pp. 19–26. isbn:
0-89791-777-4. doi: 10.1145/238386.238394. url: http://doi.
acm.org/10.1145/238386.238394.

[34] Federico Cabitza and Carla Simone. “Computational Coordi-
nation Mechanisms: A tale of a struggle for flexibility.” In:
Computer Supported Cooperative Work (CSCW) 22.4-6 (2013), pp. 475–
529.

[35] Patrick P. Chan. “Learning considerations in user interface de-
sign: The Room model.” MA thesis. 1984.

[36] Henrik Bærbak Christensen and Jakob E Bardram. “Support-
ing human activities—exploring activity-centered computing.”
In: UbiComp 2002: Ubiquitous Computing. Springer, 2002, pp. 107–
116.

https://doi.org/10.1145/985692.985766
http://doi.acm.org/10.1145/985692.985766
http://doi.acm.org/10.1145/985692.985766
https://doi.org/10.1145/1182475.1182476
https://doi.org/10.1145/1182475.1182476
http://doi.acm.org/10.1145/1182475.1182476
http://doi.acm.org/10.1145/1182475.1182476
https://doi.org/10.1016/j.aap.2009.06.029
http://www.sciencedirect.com/science/article/pii/S000145750900164X
http://www.sciencedirect.com/science/article/pii/S000145750900164X
https://doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1145/238386.238394
http://doi.acm.org/10.1145/238386.238394
http://doi.acm.org/10.1145/238386.238394

Bibliography 165

[37] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. “A Diary
Study of Task Switching and Interruptions.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems. CHI ’04. Vienna, Austria: ACM, 2004, pp. 175–182. isbn:
1-58113-702-8. doi: 10.1145/985692.985715. url: http://doi.
acm.org/10.1145/985692.985715.

[38] Afsaneh Doryab, Julian Togelius, and Jakob Bardram. “Activity-
aware Recommendation for Collaborative Work in Operating
Rooms.” In: Proceedings of the 2012 ACM international conference
on Intelligent User Interfaces. IUI ’12. Lisbon, Portugal: ACM,
2012, pp. 301–304. isbn: 978-1-4503-1048-2. doi: 10.1145/2166966.
2167023. url: http://doi.acm.org/10.1145/2166966.2167023.

[39] Paul Dourish. “Implications for Design.” In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI
’06. Montréal, Québec, Canada: ACM, 2006, pp. 541–550. isbn:
1-59593-372-7. doi: 10.1145/1124772.1124855. url: http://
doi.acm.org/10.1145/1124772.1124855.

[40] Anton N. Dragunov, Thomas G. Dietterich, Kevin Johnsrude,
Matthew McLaughlin, Lida Li, and Jonathan L. Herlocker. “Task-
Tracer: A Desktop Environment to Support Multi-tasking Knowl-
edge Workers.” In: Proceedings of the 10th International Confer-
ence on Intelligent User Interfaces. IUI ’05. San Diego, Califor-
nia, USA: ACM, 2005, pp. 75–82. isbn: 1-58113-894-6. doi: 10.
1145/1040830.1040855. url: http://doi.acm.org/10.1145/
1040830.1040855.

[41] Geoffrey B. Duggan, Hilary Johnson, and Petter Sørli. “Inter-
leaving Tasks to Improve Performance: Users Maximise the
Marginal Rate of Return.” In: International Journal of Human-
Computer Studies 71.5 (May 2013), pp. 533–550. issn: 1071-5819.
doi: 10.1016/j.ijhcs.2013.01.001. url: http://dx.doi.
org/10.1016/j.ijhcs.2013.01.001.

[42] W. Keith Edwards, Mark W. Newman, and Erika Shehan Poole.
“The Infrastructure Problem in HCI.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’10.
Atlanta, Georgia, USA: ACM, 2010, pp. 423–432. isbn: 978-1-
60558-929-9. doi: 10.1145/1753326.1753390. url: http://doi.
acm.org/10.1145/1753326.1753390.

[43] Douglas C. Engelbart and William K. English. “A Research
Center for Augmenting Human Intellect.” In: Proceedings of
the December 9-11, 1968, Fall Joint Computer Conference, Part I.
AFIPS ’68 (Fall, part I). San Francisco, California: ACM, 1968,
pp. 395–410. doi: 10.1145/1476589.1476645. url: http://doi.
acm.org/10.1145/1476589.1476645.

[44] Yrjö Engeström, Reijo Miettinen, and Raija-Leena Punamäki.
Perspectives on activity theory. Cambridge University Press, 1999.

https://doi.org/10.1145/985692.985715
http://doi.acm.org/10.1145/985692.985715
http://doi.acm.org/10.1145/985692.985715
https://doi.org/10.1145/2166966.2167023
https://doi.org/10.1145/2166966.2167023
http://doi.acm.org/10.1145/2166966.2167023
https://doi.org/10.1145/1124772.1124855
http://doi.acm.org/10.1145/1124772.1124855
http://doi.acm.org/10.1145/1124772.1124855
https://doi.org/10.1145/1040830.1040855
https://doi.org/10.1145/1040830.1040855
http://doi.acm.org/10.1145/1040830.1040855
http://doi.acm.org/10.1145/1040830.1040855
https://doi.org/10.1016/j.ijhcs.2013.01.001
http://dx.doi.org/10.1016/j.ijhcs.2013.01.001
http://dx.doi.org/10.1016/j.ijhcs.2013.01.001
https://doi.org/10.1145/1753326.1753390
http://doi.acm.org/10.1145/1753326.1753390
http://doi.acm.org/10.1145/1753326.1753390
https://doi.org/10.1145/1476589.1476645
http://doi.acm.org/10.1145/1476589.1476645
http://doi.acm.org/10.1145/1476589.1476645

166 Bibliography

[45] Adam Fouse, Nadir Weibel, Edwin Hutchins, and James D.
Hollan. “ChronoViz: A System for Supporting Navigation of
Time-coded Data.” In: CHI ’11 Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’11. Vancouver, BC, Canada:
ACM, 2011, pp. 299–304. isbn: 978-1-4503-0268-5. doi: 10.1145/
1979742 . 1979706. url: http : / / doi . acm . org / 10 . 1145 /

1979742.1979706.

[46] Eric Freeman and David Gelernter. “Lifestreams: A Storage
Model for Personal Data.” In: SIGMOD Rec. 25.1 (Mar. 1996),
pp. 80–86. issn: 0163-5808. doi: 10.1145/381854.381893. url:
http://doi.acm.org/10.1145/381854.381893.

[47] Soroush Ghorashi and Carlos Jensen. “Leyline: Provenance-
based Search Using a Graphical Sketchpad.” In: Proceedings
of the Symposium on Human-Computer Interaction and Informa-
tion Retrieval. HCIR ’12. Cambridge, California, USA: ACM,
2012, 2:1–2:10. isbn: 978-1-4503-1796-2. doi: 10.1145/2391224.
2391226. url: http://doi.acm.org/10.1145/2391224.2391226.

[48] Adele J Goldberg. “SMALLTALK-80: the interactive program-
ming environment.” In: (1984).

[49] Victor M. González and Gloria Mark. “"Constant, Constant,
Multi-tasking Craziness": Managing Multiple Working Spheres.”
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’04. Vienna, Austria: ACM, 2004, pp. 113–
120. isbn: 1-58113-702-8. doi: 10.1145/985692.985707. url:
http://doi.acm.org/10.1145/985692.985707.

[50] Sandy JJ Gould, Duncan P Brumby, and Anna L Cox. “What
does it mean for an interruption to be relevant? An investi-
gation of relevance as a memory effect.” In: Proceedings of the
Human Factors and Ergonomics Society Annual Meeting. Vol. 57.
1. SAGE Publications. 2013, pp. 149–153.

[51] Jonathan Grudin. “The Computer Reaches out: The Historical
Continuity of Interface Design.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’90.
Seattle, Washington, USA: ACM, 1990, pp. 261–268. isbn: 0-
201-50932-6. doi: 10.1145/97243.97284. url: http://doi.acm.
org/10.1145/97243.97284.

[52] Jonathan Grudin. “Partitioning Digital Worlds: Focal and Pe-
ripheral Awareness in Multiple Monitor Use.” In: Proc. CHI.
Seattle, Washington, USA: ACM, 2001, pp. 458–465. isbn: 1-
58113-327-8. doi: 10.1145/365024.365312. url: http://doi.
acm.org/10.1145/365024.365312.

https://doi.org/10.1145/1979742.1979706
https://doi.org/10.1145/1979742.1979706
http://doi.acm.org/10.1145/1979742.1979706
http://doi.acm.org/10.1145/1979742.1979706
https://doi.org/10.1145/381854.381893
http://doi.acm.org/10.1145/381854.381893
https://doi.org/10.1145/2391224.2391226
https://doi.org/10.1145/2391224.2391226
http://doi.acm.org/10.1145/2391224.2391226
https://doi.org/10.1145/985692.985707
http://doi.acm.org/10.1145/985692.985707
https://doi.org/10.1145/97243.97284
http://doi.acm.org/10.1145/97243.97284
http://doi.acm.org/10.1145/97243.97284
https://doi.org/10.1145/365024.365312
http://doi.acm.org/10.1145/365024.365312
http://doi.acm.org/10.1145/365024.365312

Bibliography 167

[53] Megan Hardy and Douglas J Gillan. “Voluntary task switching
patterns in everyday tasks of different motivational levels.” In:
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting. Vol. 56. 1. SAGE Publications. 2012, pp. 2128–2132.

[54] Sandra G Hart. “NASA-task load index (NASA-TLX); 20 years
later.” In: Proceedings of the Human Factors and Ergonomics Soci-
ety 50th Annual Meeting. HFES ’06. SAGE, 2006, pp. 904–908.
doi: 10.1177/154193120605000909.

[55] D. Austin Henderson Jr. and Stuart Card. “Rooms: The Use
of Multiple Virtual Workspaces to Reduce Space Contention
in a Window-based Graphical User Interface.” In: ACM Trans.
Graph. 5.3 (July 1986), pp. 211–243. issn: 0730-0301. doi: 10.
1145/24054.24056. url: http://doi.acm.org/10.1145/24054.
24056.

[56] Sarah Henderson. “Genre, task, topic and time: facets of per-
sonal digital document management.” In: Proceedings of the 6th
ACM SIGCHI New Zealand chapter’s international conference on
Computer-human interaction: making CHI natural. ACM. 2005,
pp. 75–82.

[57] Steven Houben. “An Activity-Centric Approach to Configura-
tion Work in Distributed Interaction.” PhD thesis. IT Univer-
sity of Copenhagen, 2014.

[58] Steven Houben, Jakob E. Bardram, Jo Vermeulen, Kris Luyten,
and Karin Coninx. “Activity-centric Support for Ad Hoc Knowl-
edge Work: A Case Study of Co-activity Manager.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’13. Paris, France: ACM, 2013, pp. 2263–2272.
isbn: 978-1-4503-1899-0. doi: 10.1145/2470654.2481312. url:
http://doi.acm.org/10.1145/2470654.2481312.

[59] Steven Houben, Søren Nielsen, Morten Esbensen, and Jakob E.
Bardram. “NooSphere: An Activity-centric Infrastructure for
Distributed Interaction.” In: Proceedings of the 12th International
Conference on Mobile and Ubiquitous Multimedia. MUM ’13. Lule,
Sweden: ACM, 2013, 13:1–13:10. isbn: 978-1-4503-2648-3. doi:
10.1145/2541831.2541856. url: http://doi.acm.org/10.
1145/2541831.2541856.

[60] Steven Houben, Paolo Tell, and Jakob E. Bardram. “ActivityS-
pace: Managing Device Ecologies in an Activity-Centric Con-
figuration Space.” In: Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces. ITS ’14. Dresden,
Germany: ACM, 2014, pp. 119–128. isbn: 978-1-4503-2587-5.
doi: 10.1145/2669485.2669493. url: http://doi.acm.org/10.
1145/2669485.2669493.

https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/24054.24056
https://doi.org/10.1145/24054.24056
http://doi.acm.org/10.1145/24054.24056
http://doi.acm.org/10.1145/24054.24056
https://doi.org/10.1145/2470654.2481312
http://doi.acm.org/10.1145/2470654.2481312
https://doi.org/10.1145/2541831.2541856
http://doi.acm.org/10.1145/2541831.2541856
http://doi.acm.org/10.1145/2541831.2541856
https://doi.org/10.1145/2669485.2669493
http://doi.acm.org/10.1145/2669485.2669493
http://doi.acm.org/10.1145/2669485.2669493

168 Bibliography

[61] Christian P Janssen, Sandy JJ Gould, Simon YW Li, Duncan
P Brumby, and Anna L Cox. “Integrating knowledge of mul-
titasking and Interruptions across different Perspectives and
research methods.” In: International Journal of Human-Computer
Studies 79 (2015), pp. 1–5.

[62] Steven Jeuris and Jakob E. Bardram. “Dedicated workspaces:
Faster resumption times and reduced cognitive load in sequen-
tial multitasking.” In: Computers in Human Behavior 62 (2016),
pp. 404–414. issn: 0747-5632. doi: http://dx.doi.org/10.
1016/j.chb.2016.03.059. url: http://www.sciencedirect.
com/science/article/pii/S0747563216302308.

[63] Steven Jeuris and Steven Houben. “Temporal Model for Re-
flective Multitasking.” In: CHI ’13 Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’13. 2013.

[64] Steven Jeuris, Steven Houben, and Jakob E. Bardram. “Laevo:
A Temporal Desktop Interface for Integrated Knowledge Work.”
In: Proceedings of the 27th Annual ACM Symposium on User In-
terface Software and Technology. UIST ’14. Honolulu, Hawaii,
USA: ACM, 2014, pp. 679–688. isbn: 978-1-4503-3069-5. doi:
10.1145/2642918.2647391. url: http://doi.acm.org/10.
1145/2642918.2647391.

[65] Steven Jeuris, Paolo Tell, and Jakob E. Bardram. co-Laevo: Sup-
porting Cooperating Teams by Working ‘within’ Shared Activity
Time Lines. Tech. rep. ITU-TR-2016-193. IT University of Copen-
hagen, June 2016. url: http://en.itu.dk/Research/About-
ITUs - Research / Technical - Reports / Technical - Reports -

Archive/2016/TR-2016-193.

[66] Steven Jeuris, Paolo Tell, Steven Houben, and Jakob E. Bardram.
“The Hidden Cost of Task Switching: How Well Do Window
Managers Support Sequential Multitasking?” In: In submis-
sion.

[67] Jing Jin and Laura A Dabbish. “Self-interruption on the com-
puter: a typology of discretionary task interleaving.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. ACM. 2009, pp. 1799–1808.

[68] Jeff Johnson, Teresa L Roberts, William Verplank, David C
Smith, Charles H Irby, Marian Beard, and Kevin Mackey. “The
Xerox Star: A Retrospective.” In: Computer 22.9 (1989), pp. 28–
29.

[69] William Jones, Ammy Jiranida Phuwanartnurak, Rajdeep Gill,
and Harry Bruce. “Don’t take my folders away!: organizing
personal information to get ghings done.” In: CHI’05 extended
abstracts on Human factors in computing systems. ACM. 2005,
pp. 1505–1508.

https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.03.059
https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.03.059
http://www.sciencedirect.com/science/article/pii/S0747563216302308
http://www.sciencedirect.com/science/article/pii/S0747563216302308
https://doi.org/10.1145/2642918.2647391
http://doi.acm.org/10.1145/2642918.2647391
http://doi.acm.org/10.1145/2642918.2647391
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193
http://en.itu.dk/Research/About-ITUs-Research/Technical-Reports/Technical-Reports-Archive/2016/TR-2016-193

Bibliography 169

[70] Eser Kandogan and Ben Shneiderman. “Elastic Windows: Eval-
uation of Multi-window Operations.” In: Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems. CHI
’97. Atlanta, Georgia, USA: ACM, 1997, pp. 250–257. isbn: 0-
89791-802-9. doi: 10.1145/258549.258720. url: http://doi.
acm.org/10.1145/258549.258720.

[71] Victor Kaptelinin. “Context and Consciousness.” In: ed. by
Bonnie A. Nardi. Cambridge, MA, USA: Massachusetts In-
stitute of Technology, 1995. Chap. Computer-mediated Activ-
ity: Functional Organs in Social and Developmental Contexts,
pp. 45–68. isbn: 0-262-14058-6. url: http : / / dl . acm . org /

citation.cfm?id=223826.223829.

[72] Victor Kaptelinin. “UMEA: Translating Interaction Histories
into Project Contexts.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’03. Ft. Laud-
erdale, Florida, USA: ACM, 2003, pp. 353–360. isbn: 1-58113-
630-7. doi: 10.1145/642611.642673. url: http://doi.acm.
org/10.1145/642611.642673.

[73] Victor Kaptelinin. “Activity Theory.” In: The Encyclopedia of
Human-Computer Interaction, 2nd Ed. Ed. by Mads Soegaard
and Rikke Friis Dam. Aarhus, Denmark: The Interaction De-
sign Foundation, 2014. Chap. 16.

[74] Victor Kaptelinin and Bonnie A. Nardi. Acting with Technology:
Activity Theory and Interaction Design. The MIT Press, 2009.

[75] Alan C. Kay. “The Early History of Smalltalk.” In: The Sec-
ond ACM SIGPLAN Conference on History of Programming Lan-
guages. HOPL-II. Cambridge, Massachusetts, USA: ACM, 1993,
pp. 69–95. isbn: 0-89791-570-4. doi: 10.1145/154766.155364.
url: http://doi.acm.org/10.1145/154766.155364.

[76] Mik Kersten and Gail C. Murphy. “Using Task Context to
Improve Programmer Productivity.” In: Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. SIGSOFT ’06/FSE-14. Portland, Oregon, USA:
ACM, 2006, pp. 1–11. isbn: 1-59593-468-5. doi: 10.1145/1181775.
1181777. url: http://doi.acm.org/10.1145/1181775.1181777.

[77] Alison Kidd. “The Marks Are on the Knowledge Worker.” In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’94. Boston, Massachusetts, USA: ACM,
1994, pp. 186–191. isbn: 0-89791-650-6. doi: 10.1145/191666.
191740. url: http://doi.acm.org/10.1145/191666.191740.

[78] Andrea Kiesel, Marco Steinhauser, Mike Wendt, Michael Falken-
stein, Kerstin Jost, Andrea M Philipp, and Iring Koch. “Con-
trol and interference in task switching—A review.” In: Psycho-
logical bulletin 136.5 (2010), p. 849.

https://doi.org/10.1145/258549.258720
http://doi.acm.org/10.1145/258549.258720
http://doi.acm.org/10.1145/258549.258720
http://dl.acm.org/citation.cfm?id=223826.223829
http://dl.acm.org/citation.cfm?id=223826.223829
https://doi.org/10.1145/642611.642673
http://doi.acm.org/10.1145/642611.642673
http://doi.acm.org/10.1145/642611.642673
https://doi.org/10.1145/154766.155364
http://doi.acm.org/10.1145/154766.155364
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
http://doi.acm.org/10.1145/1181775.1181777
https://doi.org/10.1145/191666.191740
https://doi.org/10.1145/191666.191740
http://doi.acm.org/10.1145/191666.191740

170 Bibliography

[79] Vassilis Kostakos. “The Big Hole in HCI Research.” In: interac-
tions 22.2 (Feb. 2015), pp. 48–51. issn: 1072-5520. doi: 10.1145/
2729103. url: http://doi.acm.org/10.1145/2729103.

[80] Kari Kuutti. “Activity theory as a potential framework for
human-computer interaction research.” In: Context and conscious-
ness: Activity theory and human-computer interaction (1996), pp. 17–
44.

[81] Kari Kuutti and Liam J. Bannon. “Searching for unity among
diversity: exploring the “interface” concept.” In: Proceedings
of the INTERACT ’93 and CHI ’93 Conference on Human Factors
in Computing Systems. CHI ’93. Amsterdam, The Netherlands:
ACM, 1993, pp. 263–268. isbn: 0-89791-575-5. doi: 10.1145/
169059.169206. url: http://doi.acm.org/10.1145/169059.
169206.

[82] Daniël Lakens. “Calculating and reporting effect sizes to fa-
cilitate cumulative science: a practical primer for t-tests and
ANOVAs.” In: Frontiers in psychology 4 (2013), p. 863.

[83] Mik Lamming and Mike Flynn. “Forget-me-not: Intimate com-
puting in support of human memory.” In: Proc. FRIEND21,
1994 Int. Symp. on Next Generation Human Interface. 1994, p. 4.

[84] Kevin Larson, Maarten van Dantzich, Mary Czerwinski, and
George Robertson. “Text in 3D: Some Legibility Results.” In:
CHI ’00 Extended Abstracts on Human Factors in Computing Sys-
tems. CHI EA ’00. The Hague, The Netherlands: ACM, 2000,
pp. 145–146. isbn: 1-58113-248-4. doi: 10.1145/633292.633374.
url: http://doi.acm.org/10.1145/633292.633374.

[85] Yong Liu, Jorge Goncalves, Denzil Ferreira, Bei Xiao, Simo
Hosio, and Vassilis Kostakos. “CHI 1994-2013: Mapping Two
Decades of Intellectual Progress Through Co-word Analysis.”
In: Proceedings of the 32Nd Annual ACM Conference on Human
Factors in Computing Systems. CHI ’14. Toronto, Ontario, Canada:
ACM, 2014, pp. 3553–3562. isbn: 978-1-4503-2473-1. doi: 10.
1145/2556288.2556969. url: http://doi.acm.org/10.1145/
2556288.2556969.

[86] Wendy E. Mackay and Anne-Laure Fayard. “HCI, Natural Sci-
ence and Design: A Framework for Triangulation Across Disci-
plines.” In: Proceedings of the 2Nd Conference on Designing Inter-
active Systems: Processes, Practices, Methods, and Techniques. DIS
’97. Amsterdam, The Netherlands: ACM, 1997, pp. 223–234.
isbn: 0-89791-863-0. doi: 10.1145/263552.263612. url: http:
//doi.acm.org/10.1145/263552.263612.

[87] Thomas W. Malone. “How Do People Organize Their Desks?:
Implications for the Design of Office Information Systems.”
In: ACM Trans. Inf. Syst. 1.1 (Jan. 1983), pp. 99–112. issn: 1046-

https://doi.org/10.1145/2729103
https://doi.org/10.1145/2729103
http://doi.acm.org/10.1145/2729103
https://doi.org/10.1145/169059.169206
https://doi.org/10.1145/169059.169206
http://doi.acm.org/10.1145/169059.169206
http://doi.acm.org/10.1145/169059.169206
https://doi.org/10.1145/633292.633374
http://doi.acm.org/10.1145/633292.633374
https://doi.org/10.1145/2556288.2556969
https://doi.org/10.1145/2556288.2556969
http://doi.acm.org/10.1145/2556288.2556969
http://doi.acm.org/10.1145/2556288.2556969
https://doi.org/10.1145/263552.263612
http://doi.acm.org/10.1145/263552.263612
http://doi.acm.org/10.1145/263552.263612

Bibliography 171

8188. doi: 10.1145/357423.357430. url: http://doi.acm.
org/10.1145/357423.357430.

[88] Hans Marien, Ruud Custers, Ran R Hassin, and Henk Aarts.
“Unconscious goal activation and the hijacking of the exec-
utive function.” In: Journal of personality and social psychology
103.3 (2012), p. 399.

[89] Gloria Mark, Victor M. Gonzalez, and Justin Harris. “No Task
Left Behind?: Examining the Nature of Fragmented Work.”
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’05. Portland, Oregon, USA: ACM,
2005, pp. 321–330. isbn: 1-58113-998-5. doi: 10.1145/1054972.
1055017. url: http://doi.acm.org/10.1145/1054972.1055017.

[90] Gloria Mark, Daniela Gudith, and Ulrich Klocke. “The Cost of
Interrupted Work: More Speed and Stress.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’08. Florence, Italy: ACM, 2008, pp. 107–110. isbn: 978-1-
60558-011-1. doi: 10.1145/1357054.1357072. url: http://doi.
acm.org/10.1145/1357054.1357072.

[91] Gloria Mark, Stephen Voida, and Armand Cardello. “"A Pace
Not Dictated by Electrons": An Empirical Study of Work With-
out Email.” In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’12. Austin, Texas, USA:
ACM, 2012, pp. 555–564. isbn: 978-1-4503-1015-4. doi: 10.1145/
2207676 . 2207754. url: http : / / doi . acm . org / 10 . 1145 /

2207676.2207754.

[92] EJ Masicampo and Roy F Baumeister. “Consider it done! Plan
making can eliminate the cognitive effects of unfulfilled goals.”
In: Journal of personality and social psychology 101.4 (2011), p. 667.

[93] Yoshiro Miyata and Donald A Norman. “Psychological issues
in support of multiple activities.” In: User centered system de-
sign: New perspectives on human-computer interaction (1986), pp. 265–
284.

[94] Christopher A Monk, J Gregory Trafton, and Deborah A Boehm-
Davis. “The effect of interruption duration and demand on
resuming suspended goals.” In: Journal of Experimental Psychol-
ogy: Applied 14.4 (2008), p. 299.

[95] Ingrid Mulder, Henk de Poot, Carla Verwij, Ruud Janssen, and
Marcel Bijlsma. “An Information Overload Study: Using De-
sign Methods for Understanding.” In: Proceedings of the 18th
Australia Conference on Computer-Human Interaction: Design: Ac-
tivities, Artefacts and Environments. OZCHI ’06. Sydney, Aus-
tralia: ACM, 2006, pp. 245–252. isbn: 1-59593-545-2. doi: 10.
1145/1228175.1228218. url: http://doi.acm.org/10.1145/
1228175.1228218.

https://doi.org/10.1145/357423.357430
http://doi.acm.org/10.1145/357423.357430
http://doi.acm.org/10.1145/357423.357430
https://doi.org/10.1145/1054972.1055017
https://doi.org/10.1145/1054972.1055017
http://doi.acm.org/10.1145/1054972.1055017
https://doi.org/10.1145/1357054.1357072
http://doi.acm.org/10.1145/1357054.1357072
http://doi.acm.org/10.1145/1357054.1357072
https://doi.org/10.1145/2207676.2207754
https://doi.org/10.1145/2207676.2207754
http://doi.acm.org/10.1145/2207676.2207754
http://doi.acm.org/10.1145/2207676.2207754
https://doi.org/10.1145/1228175.1228218
https://doi.org/10.1145/1228175.1228218
http://doi.acm.org/10.1145/1228175.1228218
http://doi.acm.org/10.1145/1228175.1228218

172 Bibliography

[96] Michael J. Muller, Werner Geyer, Beth Brownholtz, Eric Wilcox,
and David R. Millen. “One-hundred Days in an Activity-centric
Collaboration Environment Based on Shared Objects.” In: CHI’04:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, Feb. 10, 2006, pp. 375–382. isbn: 1-58113-
702-8. url: http : / / dblp . uni - trier . de / db / conf / chi /

chi2004.html#MullerGBWM04.

[97] Bonnie A. Nardi. Context and consciousness: activity theory and
human-computer interaction. The MIT Press, 1995.

[98] Otto Neurath. “The departmentalization of unified science.”
In: Erkenntnis 7.1 (1937), pp. 240–246.

[99] Otto Neurath. “Unified science and its encyclopaedia.” In: Phi-
losophy of Science 4.2 (1937), pp. 265–277.

[100] Otto Neurath. “Universal jargon and terminology.” In: Proceed-
ings of the Aristotelian Society. Vol. 41. JSTOR. 1940, pp. 127–148.

[101] Donald A. Norman. The invisible computer: Why Good Products
Can Fail, the Personal Computer Is So Complex, and Information
Appliances Are the Solution. MIT press, 1998.

[102] Donald A. Norman. “Affordance, conventions, and design.”
In: interactions 6.3 (1999), pp. 38–43.

[103] Donald A. Norman. “Technology First, Needs Last: The Research-
product Gulf.” In: interactions 17.2 (Mar. 2010), pp. 38–42. issn:
1072-5520. doi: 10.1145/1699775.1699784. url: http://doi.
acm.org/10.1145/1699775.1699784.

[104] Donald A. Norman and Stephen W. Draper. User Centered Sys-
tem Design; New Perspectives on Human-Computer Interaction. Hills-
dale, NJ, USA: L. Erlbaum Associates Inc., 1986. isbn: 0898597811.

[105] Donald A. Norman and R. Verganti. “Incremental and Radi-
cal Innovation: Design Research vs. Technology and Meaning
Change.” In: Design Issues 30.1 (2014), pp. 78–96. issn: 0747-
9360. doi: 10.1162/DESI_a_00250.

[106] Gerard Oleksik, Max L. Wilson, Craig Tashman, Eduarda Mendes
Rodrigues, Gabriella Kazai, Gavin Smyth, Natasa Milic-Frayling,
and Rachel Jones. “Lightweight Tagging Expands Information
and Activity Management Practices.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’09.
Boston, MA, USA: ACM, 2009, pp. 279–288. isbn: 978-1-60558-
246-7. doi: 10.1145/1518701.1518746. url: http://doi.acm.
org/10.1145/1518701.1518746.

[107] Stephen J Payne, Geoffrey B Duggan, and Hansjörg Neth. “Dis-
cretionary task interleaving: heuristics for time allocation in
cognitive foraging.” In: Journal of Experimental Psychology: Gen-
eral 136.3 (2007), pp. 370–388. doi: 10.1037/0096-3445.136.3.
370. url: http://dx.doi.org/10.1037/0096-3445.136.3.370.

http://dblp.uni-trier.de/db/conf/chi/chi2004.html#MullerGBWM04
http://dblp.uni-trier.de/db/conf/chi/chi2004.html#MullerGBWM04
https://doi.org/10.1145/1699775.1699784
http://doi.acm.org/10.1145/1699775.1699784
http://doi.acm.org/10.1145/1699775.1699784
https://doi.org/10.1162/DESI_a_00250
https://doi.org/10.1145/1518701.1518746
http://doi.acm.org/10.1145/1518701.1518746
http://doi.acm.org/10.1145/1518701.1518746
https://doi.org/10.1037/0096-3445.136.3.370
https://doi.org/10.1037/0096-3445.136.3.370
http://dx.doi.org/10.1037/0096-3445.136.3.370

Bibliography 173

[108] Tye Rattenbury and John F. Canny. “CAAD: An Automatic
Task Support System.” In: CHI’07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, June 7,
2007, pp. 687–696. isbn: 978-1-59593-593-9. url: http://dblp.
uni-trier.de/db/conf/chi/chi2007.html#RattenburyC07.

[109] George A. Reisch. “Planning science: Otto Neurath and the
international encyclopedia of unified science.” In: The British
Journal for the History of Science 27.02 (1994), pp. 153–175.

[110] Jun Rekimoto. “TimeScape: A Time Machine for the Desktop
Environment.” In: CHI ’99 Extended Abstracts on Human Factors
in Computing Systems. CHI EA ’99. Pittsburgh, Pennsylvania:
ACM, 1999, pp. 180–181. isbn: 1-58113-158-5. doi: 10.1145/
632716.632830. url: http://doi.acm.org/10.1145/632716.
632830.

[111] Meredith Ringel. “When One Isn’t Enough: An Analysis of
Virtual Desktop Usage Strategies and Their Implications for
Design.” In: CHI EA. Ft. Lauderdale, Florida, USA: ACM, 2003,
pp. 762–763. isbn: 1-58113-637-4. doi: 10.1145/765891.765976.
url: http://doi.acm.org/10.1145/765891.765976.

[112] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary
Czerwinski, Ken Hinckley, Kirsten Risden, David Thiel, and
Vadim Gorokhovsky. “The Task Gallery: A 3D Window Man-
ager.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’00. The Hague, The Netherlands:
ACM, 2000, pp. 494–501. isbn: 1-58113-216-6. doi: 10.1145/
332040.332482. url: http://doi.acm.org/10.1145/332040.
332482.

[113] George Robertson, Eric Horvitz, Mary Czerwinski, Patrick Baud-
isch, Dugald Ralph Hutchings, Brian Meyers, Daniel Robbins,
and Greg Smith. “Scalable Fabric: Flexible Task Management.”
In: Proceedings of the Working Conference on Advanced Visual In-
terfaces. AVI ’04. Gallipoli, Italy: ACM, 2004, pp. 85–89. isbn:
1-58113-867-9. doi: 10.1145/989863.989874. url: http://doi.
acm.org/10.1145/989863.989874.

[114] Yvonne Rogers, Liam Bannon, and Graham Button. “Rethink-
ing theoretical frameworks for HCI: report on an INTERCHI’93

workshop, Amsterdam, 24–25th April, 1993.” In: ACM SIGCHI
Bulletin 26.1 (1994), pp. 28–30.

[115] Dario D. Salvucci, Niels A. Taatgen, and Jelmer P. Borst. “To-
ward a Unified Theory of the Multitasking Continuum: From
Concurrent Performance to Task Switching, Interruption, and
Resumption.” In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’09. Boston, MA, USA:
ACM, 2009, pp. 1819–1828. isbn: 978-1-60558-246-7. doi: 10.

http://dblp.uni-trier.de/db/conf/chi/chi2007.html#RattenburyC07
http://dblp.uni-trier.de/db/conf/chi/chi2007.html#RattenburyC07
https://doi.org/10.1145/632716.632830
https://doi.org/10.1145/632716.632830
http://doi.acm.org/10.1145/632716.632830
http://doi.acm.org/10.1145/632716.632830
https://doi.org/10.1145/765891.765976
http://doi.acm.org/10.1145/765891.765976
https://doi.org/10.1145/332040.332482
https://doi.org/10.1145/332040.332482
http://doi.acm.org/10.1145/332040.332482
http://doi.acm.org/10.1145/332040.332482
https://doi.org/10.1145/989863.989874
http://doi.acm.org/10.1145/989863.989874
http://doi.acm.org/10.1145/989863.989874
https://doi.org/10.1145/1518701.1518981
https://doi.org/10.1145/1518701.1518981
https://doi.org/10.1145/1518701.1518981

174 Bibliography

1145/1518701.1518981. url: http://doi.acm.org/10.1145/
1518701.1518981.

[116] Stephanie Santosa and Daniel Wigdor. “A field study of multi-
device workflows in distributed workspaces.” In: Proceedings
of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing. ACM. 2013, pp. 63–72.

[117] Corina Sas, Steve Whittaker, Steven Dow, Jodi Forlizzi, and
John Zimmerman. “Generating Implications for Design Through
Design Research.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’14. Toronto, Ontario,
Canada: ACM, 2014, pp. 1971–1980. isbn: 978-1-4503-2473-1.
doi: 10.1145/2556288.2557357. url: http://doi.acm.org/10.
1145/2556288.2557357.

[118] Kjeld Schmidt and Liam Bannon. “Taking CSCW seriously.”
In: Computer Supported Cooperative Work (CSCW) 1.1-2 (1992),
pp. 7–40.

[119] Kjeld Schmidt and Liam Bannon. “Constructing CSCW: The
first quarter century.” In: Computer Supported Cooperative Work
(CSCW) 22.4-6 (2013), pp. 345–372.

[120] Kjeld Schmidt and Carla Simone. “Coordination mechanisms:
Towards a conceptual foundation of CSCW systems design.”
In: Computer Supported Cooperative Work (CSCW) 5.2-3 (1996),
pp. 155–200.

[121] Kjeld Schmidt and Carla Simone. “Mind the gap! Towards
a unified view of CSCW.” In: Proceedings of the Fifth Interna-
tional Conference on the Design of Cooperative Systems. COOP ’00.
Sophia Antipolis, France: IOS Press, 2000, pp. 205–221.

[122] Ben Shneiderman. “The eyes have it: A task by data type taxon-
omy for information visualizations.” In: Visual Languages, 1996.
Proceedings., IEEE Symposium on. IEEE. 1996, pp. 336–343.

[123] D. C. Smith, C. Irby, R. Kimball, W. L. Verplank, and E. Harslem.
“Designing the Star User Interface.” In: Byte 7.4 (1982), pp. 242–
282.

[124] Greg Smith, Patrick Baudisch, George Robertson, Mary Czer-
winski, Brian Meyers, Daniel Robbins, and Donna Andrews.
“Groupbar: The taskbar evolved.” In: Proceedings of OZCHI.
Vol. 3. 2003, p. 10.

[125] David L Strayer and William A Johnston. “Driven to distrac-
tion: Dual-task studies of simulated driving and conversing
on a cellular telephone.” In: Psychological science 12.6 (2001),
pp. 462–466.

[126] Lucy A. Suchman. Plans and situated actions: the problem of human-
machine communication. Cambridge university press, 1987.

https://doi.org/10.1145/1518701.1518981
https://doi.org/10.1145/1518701.1518981
https://doi.org/10.1145/1518701.1518981
http://doi.acm.org/10.1145/1518701.1518981
http://doi.acm.org/10.1145/1518701.1518981
https://doi.org/10.1145/2556288.2557357
http://doi.acm.org/10.1145/2556288.2557357
http://doi.acm.org/10.1145/2556288.2557357

Bibliography 175

[127] Ivan E. Sutherland. “Sketchpad: A Man-machine Graphical
Communication System.” In: Proceedings of the May 21-23, 1963,
Spring Joint Computer Conference. AFIPS ’63 (Spring). Detroit,
Michigan: ACM, 1963, pp. 329–346. doi: 10.1145/1461551.
1461591. url: http://doi.acm.org/10.1145/1461551.1461591.

[128] Craig Tashman. “WindowScape: A Task Oriented Window Man-
ager.” In: Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology. UIST ’06. Montreux, Switzer-
land: ACM, 2006, pp. 77–80. isbn: 1-59593-313-1. doi: 10.1145/
1166253 . 1166266. url: http : / / doi . acm . org / 10 . 1145 /

1166253.1166266.

[129] Warren Teitelman. “Ten years of window systems-A retrospec-
tive view.” In: Methodology of Window Management. Springer,
1986, pp. 35–46.

[130] David Thomas and Andrew Hunt. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley Professional, 1999.

[131] J.Gregory Trafton, Erik M Altmann, Derek P Brock, and Farilee
E Mintz. “Preparing to resume an interrupted task: effects of
prospective goal encoding and retrospective rehearsal.” In: In-
ternational Journal of Human-Computer Studies 58.5 (2003), pp. 583–
603. issn: 1071-5819. doi: http://dx.doi.org/10.1016/S1071-
5819(03)00023- 5. url: http://www.sciencedirect.com/

science/article/pii/S1071581903000235.

[132] Manas Tungare, Manuel Perez-Quinones, and Alyssa Sams.
“An exploratory study of calendar use.” In: arXiv preprint arXiv:0809.3447
(2008).

[133] Liam D. Turner, Stuart M. Allen, and Roger M. Whitaker. “In-
terruptibility Prediction for Ubiquitous Systems: Conventions
and New Directions from a Growing Field.” In: Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. UbiComp ’15. Osaka, Japan: ACM, 2015,
pp. 801–812. isbn: 978-1-4503-3574-4. doi: 10.1145/2750858.
2807514. url: http://doi.acm.org/10.1145/2750858.2807514.

[134] Bret Victor. Up and Down the Ladder of Abstraction. 2011. url:
http://worrydream.com/LadderOfAbstraction/ (visited on
04/03/2016).

[135] Stephen Voida and Elizabeth D. Mynatt. “It Feels Better Than
Filing: Everyday Work Experiences in an Activity-based Com-
puting System.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’09. Boston, MA,
USA: ACM, 2009, pp. 259–268. isbn: 978-1-60558-246-7. doi:
10.1145/1518701.1518744. url: http://doi.acm.org/10.
1145/1518701.1518744.

https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/1461551.1461591
http://doi.acm.org/10.1145/1461551.1461591
https://doi.org/10.1145/1166253.1166266
https://doi.org/10.1145/1166253.1166266
http://doi.acm.org/10.1145/1166253.1166266
http://doi.acm.org/10.1145/1166253.1166266
https://doi.org/http://dx.doi.org/10.1016/S1071-5819(03)00023-5
https://doi.org/http://dx.doi.org/10.1016/S1071-5819(03)00023-5
http://www.sciencedirect.com/science/article/pii/S1071581903000235
http://www.sciencedirect.com/science/article/pii/S1071581903000235
https://doi.org/10.1145/2750858.2807514
https://doi.org/10.1145/2750858.2807514
http://doi.acm.org/10.1145/2750858.2807514
http://worrydream.com/LadderOfAbstraction/
https://doi.org/10.1145/1518701.1518744
http://doi.acm.org/10.1145/1518701.1518744
http://doi.acm.org/10.1145/1518701.1518744

176 Bibliography

[136] Stephen Voida, Elizabeth D. Mynatt, and W. Keith Edwards.
“Re-framing the Desktop Interface Around the Activities of
Knowledge Work.” In: Proc. UIST. Monterey, CA, USA: ACM,
2008, pp. 211–220. isbn: 978-1-59593-975-3. doi: 10.1145/1449715.
1449751. url: http://doi.acm.org/10.1145/1449715.1449751.

[137] Mark Weiser. “The computer for the 21st century.” In: Scientific
american 265.3 (1991), pp. 94–104.

[138] Steve Whittaker. “Personal information management: from in-
formation consumption to curation.” In: Annual review of infor-
mation science and technology 45.1 (2011), pp. 1–62.

[139] Andrea A. diSessa. “A Principled Design for an Integrated
Computational Environment.” In: Hum.-Comput. Interact. 1.1
(Mar. 1985), pp. 1–47. issn: 0737-0024. doi: 10.1207/s15327051hci0101_
1. url: http://dx.doi.org/10.1207/s15327051hci0101_1.

https://doi.org/10.1145/1449715.1449751
https://doi.org/10.1145/1449715.1449751
http://doi.acm.org/10.1145/1449715.1449751
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1207/s15327051hci0101_1
http://dx.doi.org/10.1207/s15327051hci0101_1

D E C L A R AT I O N

This thesis is a presentation of my original research work. Wherever
contributions of others are involved, every effort is made to indicate
this clearly, with due reference to the literature, and acknowledgment
of collaborative research and discussions. The work was done under
the guidance of Professor Jakob E. Bardram, at the IT University of
Copenhagen.

Copenhagen, July 2016

Steven Jeuris

colophon

Many of the icons presented in this dissertation were made by Freepik
from www.flaticon.com.

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

http://www.freepik.com
www.flaticon.com
https://bitbucket.org/amiede/classicthesis/

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Research question
	1.2 Research method
	1.3 Overview of contributions

	A design space for activity-centric computing
	2 Computer-mediated activity
	2.1 History of activity-centric computing
	2.2 The search for theory
	2.3 Implications for design
	2.4 Conceptual models
	2.5 Motor themes

	3 Interaction framework
	3.1 Common language
	3.2 Layers of abstraction
	3.3 Types of interaction
	3.4 Completing the mosaic

	4 Activity management
	4.1 Information fragmentation
	4.2 Computational activities

	Design and technology
	5 Activity-centric computing systems
	5.1 Task, window, and file management
	5.2 Desktop systems
	5.3 Ubiquitous computing systems

	6 Laevo and co-Laevo
	6.1 Activity life cycle
	6.2 Personal information management
	6.3 The activity time line
	6.4 To-do list and interruptions
	6.5 The cooperative activity life cycle
	6.6 Shared activity hierarchies

	7 Dedicated workspaces toolkit
	7.1 Architecture
	7.2 Workspace manager
	7.3 Plug-in manager

	Empirical studies
	8 Laevo evaluation
	9 Task switching in sequential multitasking
	9.1 Multitasking continuum
	9.2 Tasks and task sequence
	9.3 Study 1: comparative study
	9.4 Study 2: in-depth analysis
	9.5 Task resumption and construction time
	9.6 Cognitive load and performance
	9.7 Threats to validity

	Discussion and conclusion
	10 Scalability and intelligibility
	10.1 The hidden cost of task switching
	10.2 Integrated knowledge work
	10.3 The marks are on the knowledge worker

	11 From computation to activity
	11.1 Limitations: radical innovation
	11.2 Future work: a long-term goal

	Appendix
	A The Parable of The Stones
	B Laevo evaluation material
	B.1 Laevo manual
	B.2 Laevo diary study questions

	Bibliography
	Declaration
	Colophon

