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Abstract
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Denotational semantics in Synthetic Guarded Domain Theory

by Marco PAVIOTTI

In functional programming, features such as recursion, recursive types
and general references are central. To define semantics of this kind of lan-
guages one needs to come up with certain definitions which may be non-
trivial to show well-defined. This is because they are circular. Domain
theory has been used to solve this kind of problems for specific languages,
unfortunately, this technique does not scale for more featureful languages,
which prevented it from being widely used.

Step-indexing is a more general technique that has been used to break
circularity of definitions. The idea is to tweak the definition by adding a well-
founded structure that gives a handle for recursion. Guarded dependent
Type Theory (gDTT) is a type theory which implements step-indexing via a
unary modality used to guard recursive definitions. Every circular definition
is well-defined as long as the recursive variable is guarded.

In this thesis we show that gDTT is a natural setting to give denotational
semantics of typed functional programming languages with recursion and
recursive types. We formulate operational semantics and denotational se-
mantics and prove computational adequacy entirely inside the type theory.
Furthermore, our interpretation is synthetic: types are interpreted as types in
the type theory and programs as type-theoretical terms. Moreover, work-
ing directly in gDTT has advantages compared with existing set-theoretic
models.

Finally, this work builds the foundations for doing denotational seman-
tics of languages with much more challenging features, for example, of
general references for which denotational techniques were previously be-
yond reach.
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Resumé
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Denotationel semantik i synthetic guarded domain theory

af Marco PAVIOTTI

Rekursivt definerede funktioner og rekursive typer er centrale begreber
i funktionel programmering, og visse funktionelle sprog som f.eks. ML
tillader også brug af generelle referencer. For at give semantik for disse
konstruktioner er man nødt til at bruge rekursivt definerede objekter hvis
eksistens det kan være svært at bevise. Domæneteori er en teori om ordnede
mængder, i hvilken man kan give mening til en stor klasse af rekursive
definitioner og bruge disse til at modellere programmeringssprog. På det
seneste har domæneteori dog vist sig for kompliceret og utilstrækkelig til at
blive anvendt til modeller af moderne programmeringssprog.

Step-indexing er en ny teknik til at bryde cirkulariteten i rekursive def-
initioner. Ideen er at tilføje elementer fra en velfunderet struktur til defi-
nitionen og at bruge disse til at tælle udfoldninger af den rekursive defi-
nition. Guarded Dependent Type Theory (gDTT) er en abstract teori for
step-indexing i hvilken udfoldninger af rekursive definitioner bliver talt ved
hjælp af en modal typekonstruktør. En rekursiv definition er veldefineret
hvis blot alle forekomster af rekursionsvariablen er under modaliteten.

I denne afhandling viser vi at gDTT er et naturligt sprog for denota-
tional semantik af typede funktionelle programmeringssprog med rekursive
funktioner og typer. Vi konstruerer både den operationelle og denotationelle
semantik i gDTT og beviser en stærk sammenhæng mellem disse (compu-
tational adequacy) i gDTT . Den denotationelle model er syntetisk i den
forstand at typer og termer i objektsproget fortolkes som typer og termer i
gDTT . Denne tilgang giver en simplere og mere elegant repræsentation af
teorien end tidligere modeller defineret i mængdelære.

Denne afhandling lægger fundamentet for fremtidig forskning i denota-
tionel semantik for programmeringssprog med avancerede konstruktioner
som f.eks. generelle referencer, der ikke tidligere har været modelleret
denotationelt.
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Chapter 1

Introduction

Humanity’s enthusiasm for complex computer systems has outpaced our
ability to safely design them. To build a bridge, a house or a skyscraper, a
team of civil engineers has to scrupulously perform all the necessary cal-
culations and take into account all the possible things that can go wrong.
However, because computer science still lacks a proper mathematical under-
standing this practice cannot yet be applied to software engineering.

One manifestation of this problem is our perennial inability to secure
software systems against possible failures and leaks of information. To fix
this problem we need to be able to specify and prove computer programs
correct. To this end, we need mathematically precise languages that allow
us to give full specifications of the behaviour of programs and to prove
programs correct with respect to their specifications. In other words, we need
logics, mathematical models and formal systems equipped for reasoning
about computer programs.

Program verification is a discipline of computer science that focuses on
finding specification languages and models for programming languages
with the ultimate aim of providing tools for proving software correct w.r.t.
some specification. However, verifying computer programs with more than,
say, a dozen of lines of code, using pen and paper is a daunting and error-
prone task. To make sure proofs of specifications mechanically correct we
need tools (other computer programs called proof-assistants) to check the
proofs against the specifications. Still, verifying even a small code snippet
in a proof-assistant is also a daunting task and requires a lot of effort. This
practice is therefore relegated to the niche of safety critical systems where
lives – not to mention millions of dollars – are at stake.

To be able to overcome these limits in computer science we need three
things: clear and comprehensible specification languages for real-world pro-
gramming languages, tools that implement them and, finally, programming
languages with abstractions that relate to some good properties in order to
filter out as many programming mistakes as possible. For example, when
a programmin language is strongly-typed all the programs written by the
user are guaranteed to be free from typing errors. This is a property of most
functional programming languages [Gun92; Win93; Sch86; LSS84]. Central
features in functional programming include recursion and recursive types. The
first permits to write all possible computable functions whereas the second
allows the user to create new data types.

Semantics of programming languages is a subfield of computer science
that aims to specify the behaviour of computer programs within a mathemat-
ical theory. In this way it is possible to formally check, by hand or by another
computer program, that a program is correct with respect to its specification.
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Denotational semantics aims to give formal semantics of programming
languages that can be used to derive operational properties about programs.
Rather than focusing on the operational behaviour of a program as in opera-
tional semantics, denotational semantics abstracts away from the particular
syntax and computational steps that a program may have and focuses in-
stead on its mathematical meaning. This means that types of the language are
interpreted as structures called domains and programs as particular func-
tions between them. The additional structure is necessary to obtain a sound
interpretation. The model obtained can be used to reason about programs
by means of a completeness result which we call computational adequacy.

The study of giving denotational semantics using domains is called
domain theory. Denotational semantics are used to formally specify the
behaviour of programs so that we can use them to prove properties and
to inspire new programming languages and new logics to reason about
programs that can be implemented as a proof-assistant.

However, procuring the structure described by domain theory to embed
featureful programming languages requires a lot of technicalities that are
hard to grasp to the common audience. Category theory [ML71] was also
used to solve this problem, however, most computer scientists have long
criticised it as far too complex.

The complexity of denotational semantics comes from the fact that the
mathematical theory upon which the whole framework rests, set theory,
lacks the required structure to represent the basic notions of computation.
This problem led to synthetic variants of domain theory which went under
the name of Synthetic Domain Theory (SDT). In other words, SDT is a
search for new meta-theories with more suitable properties for programming
languages. This is done by taking some constructive variant of set theory
and axiomatising the properties of domains inside it.

There is another field of computer science devoted to the study of more
appropriate and comfortable foundations: type theory. Its central idea is that
a typed programming language should be regarded as a logical system (and
viceversa) under the slogan “formulas as types and proofs as programs”. This
way it is possible to program and at the same time prove properties using the
type system of the language. This idea has wide-ranging implications: some
computer scientists now even state that “Mathematics is a branch of Computer
science” (cit. Robert Harper, Oregon, 2013) due to the possibility that this
new theory might be a better tool for the whole realm of mathematics and
not only for that of computer science.

An important line of research is the formalisation of programming lan-
guages and semantics into type theories or logical frameworks [CH; HHP93].
The goal of this work is to facilitate machine-assisted reasoning about pro-
grams.

There exist many formalisations of programming languages and seman-
tics inside type theory [BKV09]. One way to do this, is to make all the
definitions explicit within the prover’s logic. For example, defining a rela-
tion that states when a program reduces to another with a computational
step, or, defining domain-theoretic construction inside type theory the same
way as it is done in set theory. However, reasoning about programs with
this kind of semantics is hard as the underlying theory does not understand
the meaning of these new definitions.
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We would like to formulate these languages synthetically, namely, inter-
preting types of the language as types in the type theory and programs of
the language as type-theoretical terms. This way, we could maintain all the
benefits of the proofs-as-program paradigm and, moreover, would allows
us to reason about programs using native mechanisms of the chosen type
theory, for example, of dependent types.

The results provided in thesis here are both type theoretic and synthetic.
In particular, we use a type theory with guarded recursion to give a computa-
tional adequate model of functional programming languages with recursion
and recursive types. The whole development, the operational semantics, the
denotational semantics and the proofs, is carried out entirely inside the type
theory. This means that the type theory might be used in the future to reason
about operational properties of programs.

In following sections we explain these points in detail. In particular, we
introduce Guarded Dependent Type Theory (gDTT) and explain why it is
suitable for doing synthetic domain theory. In particular, we claim that our
formulation is much easier to understand when proving properties about
programs, and that it potentially allows us to reason about a wide range
of much more challenging functional programming languages for which
denotational techniques have previously been shown to be impractical.
Furthermore, this thesis adds significant value to gDTT by showing another
very useful application of it.

As a slightly philosophical side remark, this work also hints that the
meaning of computation sits much more comfortably into constructive mathe-
matical theories with a notion of time.

Warning: some of the definitions used in this chapter are merely used to
introduce our work and give the reader some flavour of the ideas underpin-
ning this thesis. They are not meant to be fully rigorous and we defer the
reader to the appropriate references for further reading.

1.1 Semantics of programming languages

We start by introducing semantics of programming languages. A natural way
of describing a programming language is via operational semantics, which are
described by a relation E ) E

0 specifying that the expression E makes one
computational step to E

0. This relation specifies how a program computes,
thus leading to a more intensional description. Another way, would be to
define a relation E + v stating that E terminates with value v.

However, syntactically E is still different from v. A more extensional
notion would say that E and v are equal. As a result, reasoning with equality
would be much easier than reasoning with arbitrary relations in the meta
theory. Perhaps more philosophically, from a mathematical point of view it
may be irrelevant to worry about the dynamic aspects of execution or the
syntactic differences between programs. Thus, one may concentrate on the
what and forget about the how.

In denotational semantics closed terms or expressions E of type � are
interpreted into a mathematical object JEK 2 J�K, called the denotation of
E, where J�K is a previously defined structured set called domain. Closed
expressions of type � ! ⌧ will be interpreted as particular functions from
J�K to J⌧K which are considered equal when they deliver the same result
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for all arguments. In other words, the meaning of such a program is fully
determined by its input/output behaviour.

When a programming language comes endowed with an operational
and a denotational semantics there arises the question of how well they fit
together.

1.1.1 Computational Adequacy

When reasoning at the syntactic level with operational semantics we may
want to ask ourselves if two programs P and Q are observationally equivalent,
i.e. if they perform the same actions even though they are not exactly the
same program. A more formal way of stating this is by taking all possible
contexts C with a hole and testing if C[P ] and C[Q] reduce to the same value.
If this is the case it means that no C can tell the difference between P and
Q. This is what one would expect for example when we use two different
libraries that implement the same interface. However, this way of reasoning
is tedious as it involves quantifying over all contexts C, whereas, reasoning
about equality using the denotational semantics is much simpler.

Computational adequacy states that if two programs are equal in the
model then they are contextually equivalent. This allow us to reason about
programs directly in the model.

1.1.2 Domain theory

Denotational semantics was due to Dana Scott in 1969 [Sco69]. He showed
that to give semantics of the untyped lambda calculus one first has to solve
the equation

D

⇠= D ! D (1.1)

Unfortunately, this equation does not have a solution in general as the
cardinality of D ! D is always bigger than D. This result is due to Cantor.
To overcome this problem Scott defines domains as complete partial orders
with a bottom element (Cpos) and continuos functions between them1, thus
restricting the number of functions in the function space.

Domain theory can also be used to model functional programming lan-
guages with explicit recursion at the term level and simple types (PCF).
The main problem is to show that all the PCF-denotable terms possess a
suitable fixed point. In fact, PCF has a Y combinator computing for every
term M of type � ! � its fixed point. Thus, to give semantics of this lan-
guage we need to find a corresponding mathematical description of this
term. Since its operational semantics unfold fixed points by means of the
rule Y

�

M !M(Y
�

M), to obtain soundness we have to interpret Y such
that

JY
�

MK = JMK (JY
�

MK) (1.2)

As a matter of fact, for all the continuos endofunctions f : X ! X , where
X is a Cpos, there exists a fixed-point for f , written fix(f), defined as

fix(f)
def
==

G

n2!
f

n(?) (1.3)

1There exists extensive literature in this matter. Thomas Streicher’s book is probably the
most accessible one [Str06]
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where
F

n2! x

n

is the least upper bound of all x
n

, in other words, the most
precise approximation of the computation. The presence of the fixed point is
guaranteed by continuity of all interpreted functions.

Domain theory has been also used to give denotational semantics of
a lambda calculus with recursive types (FPC). Recursive types allow the
user to create user-defined types, e.g. natural numbers are encoded by the
recursive type µX.1 +X .

Again, the question is whether we can give denotational semantics for
this kind of languages. A first naive approach could be to interpret each
type as a domain and then proceed by induction on the types. However, in
the case of recursive types µ↵.⌧ we need to know that the interpretation of
the type ⌧ [µ↵.⌧ ] is defined. For example, by defining the fixed point case as
follows

Jµ↵.⌧K
⇢

def
== J⌧K

⇢[Jµ↵.⌧K/↵] (1.4)

where ⇢ is a function from type variables to the codomain of the interpre-
tation function. This would imply by Substitution Lemma on types that

Jµ↵.⌧K ⇠= J⌧ [µ↵.⌧/↵]K (1.5)

However, (1.4) is not well-defined as this definition is circular : the object we
are trying to define is mentioned in the definition. More specifically, induc-
tion hypothesis requires a syntactically smaller type than µ↵.⌧ . However,
the mathematics here gets complicated: the interpretation function needs
some kind of fixed-point property that in standard set theory does not exists.
Smyth and Plotkin [SP77] reformulate the solution to this problem using
category theory, resulting in a more abstract representation.

Among functional programming languages that became mainstream
are the likes of ML includes general references. The ability to store in the
memory values of any type. To give denotational semantics of this languages
we need to solve an equation similar to (1.1) and more precisely the kind we
will illustrate in Section 1.5.1.

1.2 Criticism of denotational semantics

Probably, Scott’s original intent was to encode a type for a functional pro-
gram as a set and a program as a function. However, Scott realised that
he needed more structure than he originally thought, thus leading to an
overcomplicated mathematical theory.

In fact, domain theory has been long criticised for being technically
involved and for not scaling properly to more interesting languages. At
the present day, a lot of work has been done on semantics of languages
with simple types, recursive types, polymorphism and general references.
However, as we have hinted above for recursive types the technical details
involved to even define proper relations to prove computational adequacy
are out of reach to most computer scientists. Polymorphism is also tricky
to model. More interestingly, at the present day and to the best of our
knowledge, we do not know of any denotational model for general references1.

1By denotational model we mean an adequate mathematical model where types are inter-
preted as domains and terms as functions between them.
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1.3 Axiomatic and synthetic domain theory

The structure needed at the set theoretical level became too heavy to bear
and category theory [ML71] offered the right level of abstraction that made
possible to treat huge quantity of details with simple constructions. This
led to the quest for a category of domains or axiomatic domain theory [FP94;
Fio96], i.e. a category with enough structure to abstractly give models of
programming languages.

On the other hand, Scott’s original vision was to have domains as sets. In
words, take set theory and postulate the existence of some sets with special
properties and arbitrary set-theoretical functions. It was the same Scott who
pointed out [Sco80] that this idea is inconsistent with classical set theory and
that it might be consistent with constructive set theory. As a consequence
of this statement, a long line of work kicked off towards a new meta theory
called Synthetic Domain Theory [Tay91; Hyl91; Pho91; Ros86; RS99; Sim02;
RS04].

The idea of SDT is roughly that computability is built into the logic. As
a result, constructions on domains would be set-theoretic with no extra
structure and proofs of continuity for free. In other words, intuitionistic
higher-order logic along with an axiomatisation of domain theory. The
advantage of this approach is that it would be model independent and
therefore formalisable in some theorem prover implementing intuitionistic
logic.

LCF (Logic of Computable Functions) [Mil72] is a logic to reason about
programs and is based on Scott’s model [Sco69]. LCF and its descendants
constitute a whole set of machine-assisted tools for program verification
using higher-order logic. Milner’s LCF theorem prover laid the basis for
more recent proof-assistants such as HOL and Isabelle [tea88].

1.3.1 Synthetic formalisations in type theory

LCF-based proof assistants have proved very useful for encoding domain
theory [Age95; Bar+96; Reg95] with some notable semantic applications [VB08].
On the other hand, since these proof-assistant rely on classical logic we can-
not take full advantage of dependent types nor of constructivism.

In this direction the most notable work is the one by Reus [Reu95; Reu96].
He extended the Extended Calculus of Constructions [Luo90], a type theory
with an impredicative univers, by adding an axiomatisation of domain
theory to it, proving it consistent w.r.t. a realisability model and formalising
the whole theory in LEGO [Pol94]. This is done by postulating a new
impredicative universe and assuming there exists a special set ⌃ to classify
the semi-decidable predicates. This has the advantage that we can machine
check properties about programs using the logic inside a proof-assistant.
Moreover, in this logic continuity proofs are for free.

On the side remark, other work might sound prompted in this direction.
Plotkin proposed to use intuitionistic type theory with linear maps, in fact an
intuitionistic linear type theory [Plo93]. This idea was realised by Møgelberg
[Møg06; Møg09]. He encoded a lambda calculus with polymorphism and
recursive types into models of polymorphic intuitionistic linear lambda
calculus. Despite this work shows some useful direction to look at, it is far
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from being “a proper” type theoretic formalisation in that all the work is
carried out in set-theory.

A common problem with SDT approaches in type theory Basically, the
SDT approach is to take an intuitionistic logic, be it intuitionistic set theory
or a type theory, and add some axioms that best represent the properties of
domain theory.

However, it is clear that a proper synthetic approach to domain theory in
type theory, namely, where types are domains and programs are functions in
the type theory will never exist. The reason is that in type theory adding an
unrestricted fixed-point operator for all types is inconsistent. More precisely,
if we added as an axiom that states that for all types X in the constructive
universe and terms f : X ! X there exists a fixed point for f , we would end
up with an inconsistency. In fact, as the type X ! X is always inhabited (the
identity function has this type) we would be able to produce via the fixed-
point combinator an inhabitant of every type. For instance, an inhabitant of
the empty type.

Moreover, adding axioms to type theory surely does not necessarily
prevents the result to be fully constructive, but finding a constructive in-
terpretation of such axioms requires additional effort. On the other hand,
we would like to have a formalisation of denotational semantics entirely
formulated inside the constructive universe of some type theory.

1.4 Formalisations of Domain Theory in Type Theory

Another approach is to fully encode domain theory giving definitions and
proofs of basic results on Cpos and continuous functions explicitly within
the prover’s logic. In other words, replacing set theory with type theory. Due
to domain theory relying on classical mathematics this has some problems,
for example, sets need to be encoded as there is no native notion of set in type
theory. Moreover, one may be tempted to take types and endow them with a
bottom element, for instance for a type X , defining our domain as X + {?}.
Since, in type theory functions are total and computable, this way would
allow to interpret a program as a total function JMK : X + {?}! Y + {?}.
This implies that we could run the function and see whether it returns the
bottom element or not. By adequacy theorem if a denotable term gives
bottom its syntactic counterpart diverges. This implies decidability of the
halting problem.

To overcome this problem, Capretta [Cap05] defined a lifting monad, as
the greatest solution to the equation

LA

⇠= A+ LA (1.6)

where the infinite element defines the diverging computation. In this way, a
total function cannot decide non-termination. The coinductive lifting monad
proved its worth and it has been used by many others to formalise semantics
of programming languages in proof-assistants. Benton et. al. [BKV09]
attempted to formalise domain theory in Coq. However, in loc.cit. they report
that “The constructive nature of our formalization and the coinductive treatment
of lifting has both benefits and drawbacks”. In particular, their conclusion is
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that some constructions such as the smash product of pointed domains
are not possible and one has to move to unpointed ones. On the other
hand, this effort seems to pay off. As noted in loc.cit, dependent types are
“necessary if one wishes to prove theorems like adequacy or do compiler correctness”
moreover, dependent types are convenient for “working with monads and
logical relations”. Finally, an interesting, yet unexplored path, would be to
exploit the Curry-Howard isomorphism via the Extraction mechanism of
Coq to extract runnable code out of operational flavour of the semantics
given inside the lifting monad.

This line of work suggests that domain theory is hard to encode in type
theory. But, domain theory is not the only suitable theory that ensures the
presence of fixed-points. Circularities like the one in (1.1) can be broken
introducing well-founded structures, for example natural numbers, which
do ensure the presences of fixed-points and isomorphisms. This technique
is known as step-indexing.

1.5 Step-indexing in the metric spaces

Domain theory has been used to guarantee the presence of fixed-points at
the term level as the one in (1.3) and to solve particular kind of domain
equation such as the one in (1.1).

Step-indexing is a also a technique to ensure the presence of fixed-points
and its abstract counterpart, metric spaces is a setting in which is possible to
solve domain equations.

These techniques have been successfully applied to reasoning techniques
such as relational reasoning, program logics and denotational models [Esc99;
Ahm04; Ahm06; DAB11; SB14; Jun+15].

The price one has to pay is intensionality.

1.5.1 Step-indexing

The idea of step-indexing is to artificially provide a means for recursion. In
this introduction we have provided a wide variety of cases in which certain
solutions to some equations do not exists. The domain-theoretic solution is
to solve these equations into a more structured “host theory”.

Step-indexing differs from the domain-theoretic practices we introduced
so far. The trick is to tweak the definition by adding natural numbers, thus
solving a similar, but not identical, problem. Experience tells us that this is
enough.

For example, in relational reasoning it is customary to define a relation
on terms such that it implies contextual equivalence. This relation may have
the following shape

J�K 2 P(V⇥V)

where V is the set of values for a language and J·K is recursively defined on
the types. In the presence of recursive types a first naive attempt would be
to define the interpretation function as follows

Jµ↵.⌧K
⇢

=
�
(fold v,fold v

0) | (v, v0) 2 J⌧ [µ↵.⌧/↵]K
⇢
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However, as in (1.5), we cannot appeal to the induction hypothesis on types
as ⌧ [µ↵.⌧/↵] is syntactically bigger than µ↵.⌧ . The solution is to break
circularity by adding natural numbers, thus by defining the interpretation
function as

J�K 2 P(N⇥V⇥V)

and give the interpretation function first by induction on the index and then
by induction on the type. This way, when the type does not get smaller, we
can use the index.

However, things get more tricky when dealing with general references.
Two references are related if, intuitively, the memory they represent is re-
lated. In the presence of higher-order store, however, the memory can
contain programs as well. Therefore, we need an environment, a world, that
for every allocated location gives us a relation. This was first noticed by
Ahmed [Ahm04]. A first approach is to defined our domain of relations as
follows

T ⇠= W !mon P(V⇥V)

W ⇠= Loc!fin T
(1.7)

Once again, this definition is not well-defined as the recursive variable T
appears in the negative position. However, the problem here is to define a
domain, i.e. a set of relations, whereas, in the case of the recursive type the
domain was indeed well-defined. This problem is dealt with more easily
by abstracting step-indexing using category theory, thus moving the setting
where objects come equipped with a notion of distance and maps respecting
this structure.

1.5.2 Metric Spaces

The category of metric spaces is a category where objects are pairs (M, d)
where M is a set and d : M⇥M! [0,1] is a metric: a function that defines
a distance between each pair of elements of a set. A map between two spaces
is called non-expansive when it does not increase the distance between two
given points, i.e.

d(f(x), f(y))  d(x, y)

Similarly to (1.3), in domain theory, this category provides a way to ensure
fixed-points of terms. A map between two spaces is called contractive if it
decreases the distance between them, i.e. if there exists a constant c < 1 such
that for all x, y 2M

d(f(x), f(y))  c ⇤ d(x, y)

This map is guaranteed to have a fixed point by Banach’s fixed point theo-
rem.

Theorem 1.1 (Banach’s Fixed Point). Let (M, d) be an inhabited and complete
metric space. If f : (M, d) ! (M, d) is contractive then f has a unique fixed
point.

The composition of a non-expansive map with a contractive one yields a
contractive map.

Similarly, a functor F is locally contractive if it reduces a suitably defined
distance on morphisms. If F : M ⇥Mop ! M is a locally contractive
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functor and F (1, 1) is inhabited then there exists a unique solution X such
that F (X,X) ⇠= X .

1.5.3 Relational reasoning using the metric spaces

In relational reasoning, the metric spaces has been widely used by Birkedal [BST09;
BST12] to give relational models of languages with recursive types, poly-
morphism and general references. The equation above (1.7) can be solved in
M as follows:

T ⇠=
1

2
· (W !mon P(N⇥V⇥V))

W ⇠= Loc!fin T
(1.8)

where 1
2 ·� is the locally contractive functor, which takes a space and divides

the distances between points by two, P(V⇥V) is turned into a metric space
by adding a natural number to each pair of values so that we can equip
the set with a suitable metric. The reader has to note that this equation is
different from the original one. In order to be usable one has to find suitable
functions to work with this new type construction.

1.5.4 Escardó metric space model of PCF

The metric spaces have been used by Escardó [Esc99] to give an adequate
model of PCF using the category of metric spaces. In particular, he used the
category of complete bounded ultrametric spaces (CBUlt). In this category every
object M is a metric space where the distance between two points is always
of the form r

n for some n and for some chosen non-trivial constant r for
which the limit lim

n!1 r

n is 0. Moreover, it is ultrametric since every distance
respect the strong triangle inequality, i.e. for all x, y, z 2 M , d(x, z) 
max(d(x, y), d(y, z)).

He encoded the fixed-point combinator of PCF using Banach’s fixed
point theorem. Roughly, in its development every PCF-denotable map
JMK : J�K! J�K is non-expansive. The trick is to find a contractive map �,
that can be composed with JMK.

To do this, he defines a metric lifting on sets. More precisely, for a set A,
he defines a functor L : Set! CBUlt as

LA = (A⇥ N) [ {1} (1.9)

where a computation LA either terminates with a finite number of steps
yielding a value or diverges (1). The object LA is a metric space endowed
with a distance between points, defined as :

d(1,1) = (d(a, k), (a, k)) = 0 d((a, k),1) = d(1, (a, k)) = r

k

d((a, k), (b, l)) = r

min(k,l) if a 6= b or k 6= l

For each set A, we can define the “delay” operator �
A

: LA ! LA and
the unit map ⌘

A

: A! LA as follows

�

A

(a, n) = (a, n+ 1) �

A

(1) =1 ⌘

A

(a) = (a, 0) (1.10)

The � increases the number of steps of a terminating computation by one
and leaves the diverging computation divergent, whereas the ⌘ map takes a
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value of type A and gives a computation that terminates in zero steps with
the same value.

The metric on LA is uniquely determined by the equations

d(1,1) = d(⌘
A

(a), ⌘
A

(a)) = 0 d(⌘
A

(a), ⌘
A

(b)) = 1 if a 6= b (1.11)
d(⌘

A

(a), �
A

(x)) = d(�
A

(x), ⌘
A

(a)) = 1 d(�
A

(x), �
A

(y)) = r ⇤ d(x, y)
(1.12)

1.5.5 Further uses of the metric spaces

Benton et al. [Ben+10] encoded the metric spaces in Coq to give denotational
semantics of languages with recursive types.

The metric spaces are also, perhaps quite surprisingly, connected with
coinduction and productive functions. They model Nakano’s lambda cal-
culus [Nak00; Bir+12], a calculus for ensuring productivity of coinductive
types. This is achieved by a unary modality on types pronounced “later”.

The metric spaces can be generalised even further using the category
S of the topos of trees, the category of presheaves over !, the first infinite
ordinal. More precisely, the category of complete bisected ultrametric spaces
is a full subcategory of the topos of trees. This was firstly discovered by
Birkedal et al. [Bir+12]. We will give a glance of this fact in Section 1.6.3
after having introduced the topos of trees in the next section, though, an
accessible presentation of this fact can be found in Bizjak’s Ph.D. thesis
[Biz16, Section 1.2].

The benefit is that S is a topos: it has a internal logic and it is a model for
Guarded Dependent Type Theory (gDTT) [Biz+16].

1.6 Synthetic Guarded Domain Theory

Guarded dependent Type Theory [Bir+12; BM13; Møg14; Biz+16] is a type
theory with a unary modality on types ., pronounced “later” and inspired
by Nakano’s lambda calculus. If X is a type then .X is the type of elements
available only one step from now. Moreover, if X is a type there is always
a map next : X ! .X . Intuitively, if an element is available now then it is
also available later. Furthermore, gDTT is characterised by a restricted fixed
point operator on all types X ,

fix : (.X ! X)! X

which permits to construct fixed-points for every term as long as the recur-
sive call is guarded by next.

Finally, we can solve domain equations as the one above as long as
the . operator guards the recursive variable. For example, the domain of
world-indexed relations in (1.7) can be solved alternatively as follows:

T ⇠= .((Loc!fin T )!mon P(V⇥V))

Since the . operator is guarding the recursive variable this definition is well-
defined. In previous work, Birkedal et al. [Bir+12] used this equation to give
relational models of languages with recursive types, polymorphism and
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general references. They showed this using the proof-irrelevant universe of
gDTT.

Guarded recursive types are very useful also for checking productivity
of definitions. In fact, we can define a guarded recursive variant of the
coinductive streams as

Str def
== A⇥ .Str

The type discipline here ensures that every element defined under this
domain is a productive stream.

However, guarded recursive types are stricter than coinductive types –
as noted by Atkey and McBride [AM13] – in that they do not allow to look
beyond the next step. In other words, once we obtain an element of type
. we cannot access its content even though the term under consideration
was still meeting the productiveness conditions. To solve this issue gDTT
employs clock variables originally pioneered by Atkey and McBride [AM13].
This allows for a controlled removal of the . operator. The easiest way to see
this is probably by analogy with intuitionistic modal logic IS4 [BP] and it is
in fact used for productive programming in the lambda calculus [Clo+15].

On a side remark, we cannot really say gDTT is a fully-fledged type
theory as a proper strongly normalising operational semantics does not exists
yet. However, an early prototypical work [Bir+16] suggests that operational
semantics are to be sought in a combination of guarded recursion and cubical
type theory [Coh+15].

To understand how guarded type theory is a synthetic version of step-
indexing it might be useful to see its model, the topos S of trees, and see
how Escardó’s model fits in there.

1.6.1 The topos of trees model

The category of the topos of trees is the category of presheaves over !, the
first infinite ordinal. An object X in this category is a functor X : !op ! Set.
More concretely, X is a !-indexed chain of sets along with restriction maps
r

X

n

for n 2 !. Graphically an object looks as follows

X(1) X(2) X(3) · · · X(n) · · ·
r

X
1 r

X
2r
X
3 r

X
n�1

Given two objects X and Y a map f : X ! Y is natural transformation
between X and Y .

The . operator is interpreted as an endofunctor in S where .X(1) = 1
and .X(n) = X(n� 1) for n > 1. The action on morphism takes a natural
transformation f and for the first stage gives the unique mapping into
the terminal object 1 and for n > 1 returns f

n�1. Graphically, .X has the
following shape

1 X(1) X(2) · · · X(n� 1) · · ·
! r1 rn

As hinted previously, there always exists a map next : X ! .X . This is
modelled by using the restriction maps. Using terminology from the metric
spaces, a morphism f : X ! Y is contractive if there exists a morphism
g : .X ! Y such that f = g � next

X

.
The fixed-point is a family of morphisms fix

X

: (.X ! X)! X , indexed
by all objects X such that if f : X ! X is contractive, witnessed by a
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g : .X ! X then fix
X

(ĝ) is unique map 1! X such that f �fix
X

(ĝ) = fix
X

(ĝ)
where ĝ is the exponential transpose.

Fixed-points of endofunctors also exists under certain properties. Reusing
some nomeclature from the metric spaces, these are the endofunctors that
are strong and locally contractive [Bir+12]. For the reader, it suffices to observe
that every functor constructed out of the usual type theoretical operators (⇥,
+ and!) where the recursive variable is guarded by the . functor is locally
contractive and therefore admits a unique fixed-point.

To illustrate this relation, in the next section, we reformulate Escardó’s
metric model into the topos of trees and show we can give a more intensional
version of the lifting monad in (1.6). Our version is very similar to Escardó’s
metric lifting (1.9).

1.6.2 PCF in Set!
op

The guarded recursive lifting monad is defined as the fixed-point of a functor
F

A

defined as F

A

X = A+ .X for any object A. By repeatedly applying F

it is easy to see that the fixed-point indeed exists. We do this on a generic
object X . Since F admits a unique fixed-point it does not matter what X is.

(FX)(n) = A(n) +X(n� 1)

(FFX)(n) = A(n) +A(n� 1) +X(n� 2)

(FFFX)(n) = A(n) +A(n� 1) +A(n� 2) +X(n� 3)

...
(µX.FX)(n) = A(n) +A(n� 1) +A(n� 2) + · · ·A(1) + 1

(1.13)

The lifting functor L : S ! S is defined to be the fixed-point of F , namely
LA = µX.F

A

X . Thus, the application of L at the nth component has the
following shape:

LA(n) = A(n) +A(n� 1) + · · ·+A(1) + 1

the intuition behind this construction is that if we look at the nth approxima-
tion of a computation we can observe a computations that produce a value
in less or exactly n steps or diverge. The restriction maps are depicted in
Figure 1.1.1. Note also that if we apply the . operator to the object LA we
obtain the object in Figure 1.1.2. If we apply the functor A+� back to .LA
we obtain exactly LA in Figure 1.1.1, hence

LA

⇠= A+ .LA (1.14)

Moreover, when A is constant, the reader can easily check that the fol-
lowing isomorphism holds

LA(n) ⇠= {0, 1, ..., n� 1}⇥A+ 1

whose meaning is very similar to (1.9) except that here at stage n we can
only observe computations that terminate in n� 1 steps. The isomorphism
maps a value v 2 A(n) as (0, v) and a value v 2 A(1) to (n � 1, v) and the
unit in 1 to the identity.
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A(1)
+
1

A(2)
+

A(1)
+
1

A(3)
+

A(2)
+

A(1)
+
1

FIGURE 1.1.1: The type LA in the model

1 A(1)
+
1

A(2)
+

A(1)
+
1

FIGURE 1.1.2: The type .LA in the model

Again, the object we just constructed is different from the coinductive
lifting monad in (1.6). In fact, in Figure 1.1.1 if we look at each single stage
we find an increasing amount of information about the computation. In the
coinductive lifting monad this information is constant.

When A is constant, it is also easy to see by looking at the restriction
maps and using the isomorphism above that the next map on objects LA is
defined as

next
n

(x) =

8
><

>:

? x = (n, v)

(i, v) x = (i, v) and i < n

? x = ?

Thus, if we have a computation at stage n, then after one step, if the com-
putation is divergent it remains divergent. If the computation computes for
exactly n steps then it becomes divergent at the stage n�1 and if it consumes
less than n steps it is mapped to the identity.

Delay and Tick operations The isomorphism in (1.14) induces a .-Algebra,
i.e. a map of type .LA ! LA. This is essential in our work since it pro-
vides exactly a suitable map to feed to the guarded fixed-point combina-
tor. Abstractly, to construct such a map, we just use the injection map
.LA! A+ .LA and then use the isomorphism map. We call this map ✓.
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Concretely, when A is constant, ✓ is defined as

(✓
LA

)
n

(x) =

(
(i+ 1, v) x = (i, v)

? x = ?

of course, we could have defined differently. However, abstractly ✓ is fac-
torised by the right injection into the sum type and then by using the isomor-
phism induced by L. We can now define a map � : LA! LA that delays a
computation as � = ✓ � next. By definition of next and ✓ this map behaves as
follows

(�
LA

)
n

(x) =

8
><

>:

? x = (n, v)

(i+ 1, v) x = (i, v) and i < n

? x = ?
(1.15)

Intuitively, the delay operation takes a computation and delays it by one
step. But, the type LA of a computation at stage n allows to look at most at n
computational steps. So if a computation takes exactly n steps, the delayed
computation diverges.

The intuitions on the guarded lifting monad underpin most of the con-
tributions of this thesis. In particular, has been used in Chapter 2 and
Chapter 3.

1.6.3 Escardó’s metric model and the topos of trees

The category of complete bisected ultrametric spaces (BiCBUlt) is a full sub-
category of complete bounded ultrametric spaces (CBUlt). Escardó’s model
can be reformulated by fixing the constant r with 1/2, thus getting a metric
space where all non-zero distances are of the form 2�n for some n which are
the bisected ones.

This definition gives raise to an equivalence relation

x

n

= y $ d(x, y)  2�n

Every object (M, d) in BiCBUlt can be decomposed into a sequence of
approximations to form an object in the topos of trees. More specifically, the
object in S at stage n is obtained by quotienting the underlying set M with
n

=. Graphically,

(M/

1
=) (M/

2
=) (M/

3
=) · · · (M/

n

=) · · ·
r1 r2r3 rn�1

with the identity maps as restriction maps. The category BiCBUltis co-
reflexive in the category PSh(!). This means we can also turn an object
in the topos of trees into an object in BiCBUlt. Given an object X in S the
corresponding metric space is obtained by taking the limit of the presheaf
limX

n

as the underlying set and defining the distance as follows

d(x, y) =
l

{2�n | 8j < n.⇡

i

(x) = ⇡

i

(y)}

where ⇡
i

are the projections from the limit to the ith stage of the presheaf.
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The model of PCF we defined in the topos of trees is related to Escardó’s
one on the metric spaces. One way to see this is by looking at the definition
of the guarded recursive lifting monad (1.14). This is an object in S. Since
BiCBUlt is co-reflexive in S, we can turn the object LA into a metric space
by taking its limit. The same way we can turn the delay and unit maps into
non-expansive maps in BiCBUlt. One can check that the equational laws
given by Escardó’s (1.11) still hold.

1.7 Contributions of this thesis

Our main contribution is a formalisation of recursion and recursive types in
synthetic guarded domain theory (SGDT) under the slogan

“Recursion in Guarded Recursion”

More precisely, we give denotational semantics of PCF and FPC using gDTT
as a synthetic meta theory in which to formulate the operational semantics,
the denotational model and the proofs of adequacy.

For the reasons explained earlier, in order to do synthetic domain theory
using a type theory, one would need to extend the type theory itself one way
or another. We use a type theory with guarded recursion to do Guarded
Domain Theory. Our opinion is that guarded recursion is a more natural
extension as it has many other useful applications (e.g. checking productivity
of coinductive definitions and relational reasoning).

In other words, we turn recursive constructions into guarded recursive
ones, be they on terms or types. This is consistent, since the guarded recur-
sive variant of the fixed-point combinator in gDTT is a terminating program.
Moreover, the type theory ensures at the type level that only contractive func-
tions are fed to the fixed-point combinator. This is similar to SDT in which
proofs of continuity were for free.

This means that the main constructions make use of guarded recursive
types and thus they turn out to be more intensional than the state-of-the-art
formulations. To solve this problem, in Chapter 3, we lift the model using a
logical relation and proving the extensional adequacy theorem.

1.7.1 Recursion in Synthetic Guarded Domain Theory

In Chapter 2 we give a computationally adequate model of PCF. All the
development is carried out inside the type theory with guarded recursion
and therefore also the adequacy theorem.

As a result we have to take extra care when formulating the operational
semantics. The big-step semantics is defined as an inductive data type inside
the type theory. For a term M an natural number k and a value v, M +k v

has to be read as “the term M reduces in k steps to a value v”. The role of
the natural number k is to explicitly count the fixed-point unfoldings. This
is necessary to state the adequacy theorem precisely as will see shortly. The
case of the fixed-point combinator is the most crucial as here is where we
count the steps

Y
�

M +k+1
v

def
== .(M(Y

�

M) +k v) (1.16)
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Thus unfolding of the fixed-point operator consumes one step. We also
synchronise the explicit steps with the abstract notion of time in the type
theory. This will be clear in a moment. First we define the denotational
semantics using the guarded recursive lifting monad in (1.14).

The challenge here is to find a fix-point in the model that represents the
fix-point combinator of PCF. In general, a map M : X ! X does not have
one. On the other hand, a map F : .X ! X does. We therefore, first turn
the denotation of M into a map f : . J�K! J�K and then we interpret Y

�

M

into the fix-point of f . The interpretation satisfies a more intensional version
than (1.2), namely, one operational step of unfolding correspond to one step
in the model as follows

JY
�

MK = �

�

(JM(Y
�

M)K) (1.17)

Both the model construction and the proof of adequacy are carried out
entirely within the type theory. The adequacy theorem is formulated as
follows.

Theorem 1.2. For all well-typed terms M with ground type, M +k v iff JMK =
�

k

�

JvK.

Note that this theorem lives inside the type theory as well. The inten-
sional nature of the denotational semantics forces us to take extra care about
the operational semantics. In the semantics, JY

�

(�x.x)K is a diverging com-
putation and therefore in the model is always the bottom element. However,
also a computation �

42 JvK at all the stages n < 42 is bottom. Intuitively,
because there are not enough approximations to see termination. The impli-
cation in the adequacy theorem takes into account the notion of time of the
type theory. Therefore, also the type Y

�

(�x.x) +42 v must be inhabited for
all the stages n < 42 in the model. This is done by defining the operational
semantics as above, so that if we unfold a computation for 42 times and it
does compute for enough steps, for a diverging computation we actually get
the type .420 which is inhabited for the first 42 approximations as wanted.

Moreover, it is crucial that all the development is carried out inside the
constructive universe of the type theory as a formulation of the operational
semantics inside the internal logic of the topos S would not work. In particu-
lar, the proof-irrelevant nature of the logic makes the existential to commute
with the . operator. This would make the fixed-point of the identity a termi-
nating program in the operational semantics. This statement can be shown
using guarded recursion.

1.7.2 Recursive Types in Synthetic Guarded Domain Theory

In Chapter 3 we give a denotational model of FPC in guarded type theory.
In the same style as with PCF we formulate the operational semantics, the
denotational semantics and the proofs entirely inside the type theory.

As in PCF, we formulate the operational semantics, the denotational
semantics and the proof of adequacy entirely in the type theory. We define
an inductive type of the form M +k v to be read as M reduces in k steps to
v. For FPC, we count unfolding/folding operations. To make the adequacy
theorem to work, we synchronise the explicit step counting with the abstract
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notion of time in the type theory such that

unfold (fold M) +k+1
v = .(M +k v) (1.18)

The novel character of this work is the interpretation of the recursive
types and the definition of the logical relation for proving adequacy. In
particular, we interpret the recursive types making use of guarded recursion
thus ensuring, almost straigthforwardly that the definition of the interpreta-
tion is well-defined

Jµ↵.⌧K
⇢

= . J⌧ [µ↵.⌧/↵]K
⇢

(1.19)

Note that this definition is more intensional than (1.5). In particular, this
means that in the meta theory we will need one computational step to look at
the information contained in the type. In particular, computational adequacy
says that if the denotations of two terms are equal then they converge in the
same number of steps to the same value and thus programs that produce
the same result but implementing a different algorithm will be different in
the model. An extensional version of the adequacy result does not take into
account the number of steps stating that if the denotations of two terms are
equal then the reduce to the same value. In order to recover the extensional
version of the adequacy result we first define a relation ⇡

�

: J�K⇥ J�K! U
that relates objects in the type theory that denote programs that produce the
same value. In the case of the recursive type,for x and y of type Jµ↵.⌧K, the
relation is defined such that

✓(x) ⇡
µ↵.⌧

✓(y) = .(x ⇡
⌧ [µ↵.⌧/↵] y)

If two computations are related and both produce a computational step,
they are related only later. Thus, we need to remove the . operator. To this
end, gDTT employs Atkey and McBride’s clock variables. Intuitively, they
correspond to Clouston’s box modality [Clo+15] and allows to make all
the data available at once. The relation ⇡gl

�

: J�Kgl ⇥ J�Kgl ! U is obtained
lifting the relation to its global view points using the above mentioned clock
variables. This allows us to prove that if two computations are ticking then
after one tick they are still related now.

1.7.3 Applications of synthetic step-indexing to formal verifica-
tion

Hand-crafted low-level code will always be at the bottom layer of the oper-
ating system as it is needed to deal with the lowest layers of the computer
system.

At the present time, the most faithful mechanisation of the assembly
language is the one by Jensen et al. [JBK13]. They encoded syntax and
semantics of the assembly x86 in a way that code can be extracted and run
in the actual machine. Moreover, they devised an unstructured specification
logic based on separation logic, step-indexing and higher-order frame rules.

Exceptions in the machine are generated by errors, e.g. division by
zero, unauthorised memory access and so on. An operating system uses
exceptions to catch run-time errors and handle them so that the machine
can continue to execute other tasks. To ultimately verify the lowest layer of
an operating system we have to be able to reason about exceptions as well.
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This means that we need to be able to specify and prove correct programs
that fault.

To do this we extend previous work to deal with exceptions. Exceptions
in low-level architectures are implemented as synchronous interrupts: upon
the execution of a faulty instruction the processor jumps to a piece of code
that handles the error. In Chapter 4, we study synchronous interrupts and
show their usefulness by implementing a memory allocator. This shows that
it is indeed possible to write positive specifications of programs that fault.
All of our results are mechanised in the interactive proof assistant Coq.

1.8 Future work

In previous sections we introduced guarded type theory as a type theory
for doing denotational semantics of programming languages with recursion.
However, there are many other computational aspects and features that
ought to be reformulated in type theory. Among others, (co)inductive types,
polymorphism and general references.

Languages with local store are modelled in categories of presheaves [PP02].
These models have to be encoded in the type theory beforehand – just as
it was the case for domain theory [BKV09; Ben+10]. On the other hand
when higher-order store comes into play one needs a solution to a recursive
domain equation [BST09; BST12] that in set theory or conventional type
theories does not exist. This time because of a circular dependency between
the worlds – maps from location to types – and the types. This problem
is very well summarised in Bizjak’s Ph.D. thesis and tutorial notes [Biz16;
BB16]. Birkedal et al. [Bir+12] use a synthetic form of step indexing – namely
guarded recursive types – to break this circularity, thus being able to give syn-
tactic models of languages with polymorphism, recursive types and general
references.

Giving denotational semantics for general references would require the
same techniques, but doing this in type theory would be a daunting task. On
the other hand, guarded type theory can be once again used as a synthetic
theory for giving denotational semantics – this time – of general references.
This is because step-indexing models – disguised as presheaf models – are
models of guarded type theory just as well.

In Chapter 4 we describe an extension of the assembly x86 formalisa-
tion in Coq. One motivation for doing this was to preliminary explore the
possibility of formalising asynchronous interrupts, thus being able to verify
schedulers and device drivers. However, since asynchronous interrupts are
a form of concurrency, they will have to be handled using some form of con-
current separation logic. Moreover, interrupts handlers are shared-memory
processes; they share the CPU flags and registers and also the stack. This
suggest that we need a separation logic for shared memory concurrency.
However, the only modular program logic to address this issues we know of
is iCAP [SB14]. This logic, however, is defined using guarded recursive types.
Therefore, this work would require guarded type theory to be encoded in
Coq beforehand or an implementation of guarded type theory.
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1.9 Details of publications

This dissertation consists of three papers, the first two of these have been
presented at peer-reviewed conferences or accepted for publication. The
third one is currently under review.

Each publication forms a chapter of this thesis. However, what is pre-
sented here is an extension of the published papers with the missing proofs.

Therefore, each chapter can be read independently from the others even
though it might be easier to start with Chapter 2 before reading Chapter 3.
Chapter 4 can be entirely read on its own.

What follows is a description of the author contributions for each of the
papers.

• Denotational semantics of PCF in Guarded Type Theory. Marco
Paviotti, Rasmus E. Møgelberg and Lars Birkedal. In Electronic Notes
in Theoretical Computer Science, MFPS 2015.

The extended version with all the proofs is contained Chapter 2 of this
thesis and is summarised in Section 1.7.1.

This work was carried out during my visit at Aarhus University. I
carried out all the research under the supervision of Rasmus and Lars. I
also availed myself of very helpful discussions with the members of the
Logic and Semantics group at Aarhus University. I wrote the technical
part of the paper, whereas Lars and Rasmus wrote introduction and
conclusions and helped finalising the published version.

• Denotational semantics of recursive types in Synthetic Guarded Do-
main Theory. Marco Paviotti, Rasmus E. Møgelberg. In Proceedings of
Logic in Computer Science, LICS 2016.

The extended version with all the proofs is Chapter 3 of this thesis and
is summarised in Section 1.7.2

I carried out all the research behind this paper under the helpful
supervision of Rasmus. I wrote the technical part of the paper, whereas
Rasmus wrote introduction and conclusions and helped finalising the
published version.

• Verifying Exceptions for Low-level code with Separation Logic. Marco
Paviotti and Jesper Bengtson. Submitted to Journal of Logical and Alge-
braic Methods in Programming.

This is contained in Chapter 4 and is summarised in Section 1.7.3.

I carried out all the research and wrote most of the paper. Jesper wrote
the introduction, the related work and conclusions.
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Part II

Recursion in Guarded
Recursion
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Chapter 2

A Model of PCF in Guarded
Type Theory

Marco Paviotti, Rasmus Ejlers Møgelberg
and Lars Birkedal

Abstract. Guarded recursion is a form of recursion where recursive calls are
guarded by delay modalities. Previous work has shown how guarded recursion
is useful for constructing logics for reasoning about programming languages with
advanced features, as well as for constructing and reasoning about elements of
coinductive types. In this paper we investigate how type theory with guarded
recursion can be used as a metalanguage for denotational semantics useful both for
constructing models and for proving properties of these. We do this by constructing
a fairly intensional model of PCF and proving it computationally adequate. The
model construction is related to Escardo’s metric model for PCF, but here every-
thing is carried out entirely in type theory with guarded recursion, including the
formulation of the operational semantics, the model construction and the proof of
adequacy.

2.1 Introduction

Variations of type theory with guarded recursive types and guarded recur-
sively defined predicates have proved useful for giving abstract accounts
of operationally-based step-indexed models of programming languages
with features that are challenging to model, such as recursive types and
general references [App+07; Bir+12], countable nondeterminism [BBM14],
and concurrency [SB14]. Following observations of Nakano [Nak00] and
Atkey and McBride [AM13], guarded type theory also offers an attractive
type-based approach to (1) ensuring productivity of definitions of elements
of coinductive types [Møg14], and (2) proving properties of elements of
coinductive types [Biz+16]. One of the key features of guarded type theory
is a modality on types, denoted . and pronounced ‘later’. This modality is
used to guard recursive definitions and the intuition is that elements of type
.A are elements of A only available one time step from now.

In this paper, we initiate an exploration of the use of guarded type
theory for denotational semantics and use it to further test guarded type
theory. More specifically, we present a model of PCF in guarded dependent
type theory. To do so we, of course, need a way to represent possibly
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diverging computations in type theory. Here we follow earlier work of
Escardo [Esc99] and Capretta [Cap05] and use a lifting monad L, which
allows us to represent a possibly diverging computation of type X by a
function into L(X). In Capretta’s work, L is defined using coinductive
types. Here, instead, we use a guarded recursive type to define L. Using
this approach we get a fairly intensional model of PCF which, intuitively
keeps track of the number of computation steps, similar to [Esc99]. We
show this formally by proving that the denotational model is adequate with
respect to a step-counting operational semantics. The definition of this step-
counting operational semantics is delicate — to be able to show adequacy
the steps in the operational semantics have to correspond to the abstract
notion of time-steps used in the guarded type theory via the . operator.
Our adequacy result is related to one given by Escardo in [Esc99]. To show
adequacy, we define the operational semantics in guarded type theory and
also define a logical relation in guarded type theory to relate the operational
and denotational semantics. To carry out the logical relations proof, we
make crucial use of some novel features of guarded dependent type theory
recently proposed in [Biz+16], which, intuitively, allow us to reason now
about elements that are only available later.

The adequacy result of this paper may be seen as a version of Plotkin’s
classic result from domain theory [Plo77] set in guarded type theory. There
has been work to formalise domain theory in Coq [BKV09], however, this
is difficult due to the use of classical mathematics. In fact, [BKV09] uses
a coinductively defined lifting monad similar to that of Capretta [Cap05].
We believe that guarded type theory is more suitable for encoding in proof
assistants such as Coq or Agda, and thus this work can be seen as a step
towards enabling the use of the models for formal reasoning.

The remainder of the paper is organized as follows. In Section 2.2 we
recall the core parts of guarded dependent type theory and the model thereof
in the topos of trees [Bir+12; Biz+16]. Then we define a step-counting
operational semantics of PCF in Section 2.3 and the denotational semantics
is defined in Section 2.4. We prove adequacy in Section 2.5. In Section 2.6 we
use the topos of trees model of the guarded type theory to summarize briefly
what the results proved in guarded type theory mean externally, in standard
set theory. Finally, we conclude and discuss future work in Section 2.7.

2.2 Guarded recursion

In this paper we work in a type theory with dependent types, natural num-
bers, inductive types and guarded recursion. The presentation of the paper
will be informal, but the results of the paper can be formalised in gDTT as
presented in [Biz+16]. We start by recalling the core of this type theory (as
described in [Bir+12]), introducing further constructions later on as needed.

A guarded recursive definition is a recursive definition where the recur-
sive calls are guarded by time steps. The time steps are introduced via a type
modality . pronounced ‘later’. If A is a type then .A is the type of elements
of A available only one time step from now. The type constructor . is an
applicative functor in the sense of [MP08], which means that there is a term
next : A! .A freezing an element of A so that it can be used one time step
from now, and a ‘later application’ ~ : .(A! B)! .A! .B written infix,
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satisfying
next(f)~ next(t) = next(f(t)) (2.1)

among other axioms (see also [BM13]). In particular, . extends to a functor
mapping f : A! B to �x : .A. next(f)~ x.

Recursion on the level of terms is given by a fixed point operator fix : (.A!
A)! A satisfying

f(next(fix(f))) = fix(f) (2.2)

Intuitively, fix can compute the fixed point of any recursive definition, as
long as that definition will only look at its argument later. This fixed point
combinator is particularly useful in connection with guarded recursive types,
i.e., types where the recursion variable occurs only guarded under a . as,
e.g., in the type of guarded streams:

Strg
A

⌘ A⇥ . Strg
A

The cons operation cons for Strg
A

has type A ! . Strg
A

! Strg
A

. Hence, we
can define, e.g., constant streams as constant a = fix(�xs : . Strg

A

. cons a xs).
Guarded recursive types can be constructed using universes and fix as

we now describe [BM13]. We shall assume a universe type U closed under
both binary and dependent sums and products as usual, and containing a
type of natural numbers. We write bN for the code of natural numbers satis-
fying El(bN) ⌘ N and likewise b⇥ for the code of binary products satisfying
El(A b⇥B) ⌘ El(A)⇥ El(B). The universe is also closed under . in the sense
that there exists an b

. : .U ! U satisfying

El(b.(next(A))) ⌘ .El(A). (2.3)

Using these, the type StrgN can be defined as El(dStrgN) where

dStrgN = fix(�B : .U.bNb⇥b.B)

Note that this satisfies the expected type equality because

El(dStrgN) ⌘ El(bNb⇥b.(next(dStrgN)))

⌘ El(bN)⇥ El(b.(next(dStrgN)))

⌘ N⇥ .El(dStrgN)

Likewise, guarded recursive (proof-relevant) predicates on a type A, i.e.,
terms of type A! U can be defined using fix as we shall see an example of
in Section 2.5.

Note that we just assume a single universe and that the above only allows
us to solve type equations that can be expressed as endomorphisms on this
universe.1 All the type equations considered in this paper are on this form,
but we shall not always prove this explicitly, and often work with types
rather than codes, in order to keep the presentation simple.

1It is also sound to add guarded recursive types as primitives to the type theory without
use of universes, see [Bir+12]
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�, x : �,� ` x : �

�, x : � `M : ⌧

� ` (�x : �.M) : � ! ⌧

� `M : � ! ⌧ � ` N : �

� `MN : ⌧

� `M : � ! �

� ` Y
�

M : �

� ` n : nat
� `M : nat

� ` succ M : nat
� `M : nat

� ` pred M : nat

� ` L : nat � `M : � � ` N : �

� ` ifz L M N : �

FIGURE 2.0.1: PCF typing rules

2.2.1 The topos of trees model

The type theory gDTT can be modelled in the topos of trees [Bir+12], i.e.,
the category of presheaves over !, the first infinite ordinal. Since this is a
topos, it is a model of extensional type theory. A closed type is modelled as
a family of sets X(n) indexed by natural numbers together with restriction
maps r

n

: X(n+ 1)! X(n). We think of X(n) as how the type looks if we
have n computation steps to reason about it. Using the propositions-as-types
interpretation, we say that X is true at stage n if X(n) is inhabited. Note
that if X is true at stage n, it is also true at stage k for all k  n. Thus, the
intuition of this model is that a proposition is initially considered true and
can only be falsified by further computation.

In the topos of trees model, the . modality is interpreted as .X(0) = 1
and .X(n + 1) = X(n), i.e., from the logical point of view, the . modality
delays evaluation of a proposition by one time step. For example, if 0 is the
constantly empty presheaf (corresponding to a false proposition), then .n0
is the proposition that appears true for the first n computation steps and is
falsified after n+ 1 steps.

2.3 PCF

This section defines the syntax, typing judgements, and operational seman-
tics of PCF. These should be read as judgements in guarded type theory, but
as stated above we work informally in type theory, which here means that
we ignore standard problems of representing syntax up to ↵-equality. Note
that this is a perpendicular issue to the one we are trying to solve here.

Unlike the operational semantics to be defined below, the typing judge-
ments of PCF are defined in an entirely standard way, see Figure 2.0.1. In
the figure, v ranges over values of PCF, i.e., terms of the form v = n, where
n is a natural number or v = �x.M . Note that we distinguish notationally
between a natural number n and the corresponding PCF value n. We denote
by TypePCF , TermPCFand ValuePCF the types of PCF types, closed terms, and
closed values of PCF.
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+ : TermPCF ⇥ N⇥ (ValuePCF ! N! U)! U

v +k Q

def
== Q(v, k)

pred M +k Q

def
== M +k (�x.�l.⌃n : N.x = n and Q(n� 1, l))

succ M +k Q

def
== M +k (�x.�l.⌃n : N.x = n and Q(n+ 1, l))

Y
�

M +k Q

def
== ⌃k0.k = k

0 + 1..(M(Y
�

M) +k0 Q)

MN +k Q

def
== M +k Q

0

where Q

0(�x.L,m) = L[N/x] +m Q

ifz L M N +k Q

def
== L +k Q

0

where Q

0(0,m) = M +m Q and Q

0(n+ 1,m) = N +m Q

FIGURE 2.0.2: Step-indexed Big-Step Operational Semantics
for PCF

2.3.1 Big-step semantics

The big-step operational semantics defined in Figure 2.0.2 is a relation be-
tween terms, numbers and predicates on values and numbers. The statement
M +k Q should be read as M evaluates in l  k steps to a value v satisfying
Q(v, k � l). The relation is defined as an inductive type. Note that, in the
case of pred M , the notation for n� 1 means n must also be greater than
zero. If Q : ValuePCF ! U we overload notation and write

M +k Q

def
== M +k (� hv, li .l = 0 and Q(v)) (2.4)

to be read as “M evaluates in exactly k steps to a value satisfying Q”. We
can overload even further as follows

M +k v

def
== M +k (�w.w = v)

M + v

def
== ⌃k.M +k v

As mentioned in the introduction, the formulation of the big-step op-
erational semantics is quite delicate – the wrong definition will make the
adequacy theorem false. First of all, the definition must ensure that the steps
of PCF are synchronised with the steps on the meta level. This is the reason
for the use of . in the case of the fixed point combinator. Secondly, the use of
predicates on values on the right hand side of + rather than simply values
is necessary to ensure that the right hand side is not looked at before the
term is fully evaluated. For example, a naive definition of the operational
semantics using values on the right hand side and the rule

succ M +k v

def
== ⌃n : N.(v = n+ 1) and M +k n

Would make (succ (Ynat (�x : nat.x)) +42 0) false, but to obtain computa-
tional adequacy, we need this statement to be true for the first 42 steps before
being falsified. (For an explanation of this point, see Remark 2.30 below.) In
general, for Q : ValuePCF ! U, M +k Q should be defined in such a way
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(�x : �.M)(N)!0
M [N/x]

(SLam)
Y
�

M !1
M(Y

�

M)
(SFix)

pred 0!0 0
(SPredZ)

pred n+ 1!0
n

(SPredN)

succ n!0
n+ 1

(SSucc)

ifz 0M N !0
M

(SIfZ)
ifz (n+ 1) M N !0

N

(SIfN)

L!k

L

0

E[L]!k

E[L0]
(SIfZ)

E 2 ContextPCF ::= [·] | EM | pred E | succ E | ifz E M N

FIGURE 2.0.3: Step-Indexed Small Step semantics of PCF. In
the rules, k can be 0 or 1.

that in the topos of trees model it is true at stage n (using vocabulary from
Section 2.2.1) iff either

• k < n and M evaluates in precisely k steps to a value satisfying Q, or

• k � n and evaluation of M takes more than k steps.

In particular, if M diverges, then M +k Q should be true at stages n  k and
false for n > k.

The use of predicates means that partial results of term evaluation are
ignored, and comparison of the result to the right hand side of + is postponed
until evaluation of the term is complete. Moreover, the use of predicates also
for the counting the steps is crucial to prove the correspondence between
the two operational semantics and in particular for Lemma 2.5. This is
because all the information about computations must be synchronised with
the abstract notion of time. For example, if MN +k Q we cannot decide a
priori how many steps M will take to reduce to a value. We have to defer
this information by waiting for the computation to run its course. When
the terms reaches the value we pass the rest of the “fuel” to the predicate.
So, a value reduces to a value along with possibly some additional steps to
compute.

2.3.2 Small-step semantics

Figure 2.0.3 defines the small-step operational semantics. Just like the big
step semantics, the small step semantics counts unfoldings of fixed points.
The small steps semantics will be proved equivalent to the big-step semantics,
but is introduced because it is more suitable for the proofs of soundness and
computational adequacy.

Note the following easy lemma.

Lemma 2.1. The small-step semantics is deterministic: if M !k

N and M !k

0

N

0, then k = k

0 and N = N

0.

The transitive closure of the small step semantics is defined using . to
ensure that the steps of PCF are synchronised with the steps of the meta
language.
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Definition 2.2. Denote by!0
⇤ the reflexive, transitive closure of!0. The closure

of the small step semantics, written M )k

Q is a relation between closed terms,
natural numbers, and predicates on closed terms, defined by induction on k as

M )0
Q

def
== ⌃N : TermPCF.M !0

⇤ N and Q(N)

M )k+1
Q

def
== ⌃M 0

,M

00 : TermPCF.M !0
⇤ M

0 and M

0 !1
M

00

and .(M 00 )k

Q)

(2.5)

Similarly to the case of the big-step semantics we define M )k

v

def
==

M )k

�N.v = N

Operational Correspondence We now state the equivalence of the two
operational semantics given above. However, since the big-step operational
semantics in (2.4) is stated on values and the transitive closure on the small-
step semantics in (2.2) is stated using terms, we first introduce the notation:
for a predicate Q : ValuePCF ! U,

Q

T

(N)
def
== ⌃v.N = v and Q(v) (2.6)

Note that Q
T

: TermPCF ! U whenever Q : ValuePCF ! U. Now we can
state the correspondence.

Lemma 2.3. If M : TermPCF and Q : ValuePCF ! U, then M +k Q iff M )k

Q

T

The following is the standard statement for operational correspondence
and follows directly from Lemma 2.3.

Corollary 2.4. M +k v ,M )k

v

We will now prove the correspondence between the big-step and the
small step operational semantics. First we need the following lemma.

Lemma 2.5. Let M,N be closed terms of type ⌧ , and let Q : ValuePCF ⇥N! U.

1. If M !0
N and N +k Q then M +k Q

2. If M !1
N and .(N +k Q) then M +k+1

Q

Proof. (Proof sketch)

1. By induction on M !0
N . We consider the case ifz L M N !0

ifz L

0
M N . Assume ifz L

0
M N +k Q. By definition L

0 +k Q

0. By
induction hypothesis L +k Q

0 and by definition ifz L M N +k Q. All
the other cases are similar.

2. By induction on M !1
N . We sketch a few cases. For the case

Y
�

M !1
M(Y

�

M), assume .(M(Y
�

M) +k Q). Then by defini-
tion Y

�

M +k+1
Q.

We consider now some inductive cases. For the case M1N !1
M2N ,

assume .(M2N +k Q). By definition this is equivalent to .(M2 +k
Q

0) where Q

0(�x.L, l) = L[N/x] +l Q. By induction hypothesis we
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get M1 +k+1
Q

0 which is by definition what we wanted. For the
case pred M !1 pred M

0. Assume .(pred M

0 +k Q). By definition
.(M 0 +k � hx, li .Q(x � 1, l)) and by induction hypothesis M +k+1

� hx, li .Q(x� 1, l). By definition pred M +k+1
Q.

The following lemma follows almost straightforwardly from the previous
one.

Lemma 2.6. For all MN : TermPCF, if M !0
⇤ N and N +k v then M +k v

Proof. By induction on M !0
⇤ N . The base case M = N is straightforward.

Now the inductive case M !0
N

0 and N

0 !0
⇤ N . By induction hypothesis

N

0 +k v. By Lemma 2.5 we conclude.

However, we cannot prove directly Lemma 2.3 which states the corre-
spondence between the big-step and the small-step operational semantics.
This is because the right hand side of the big-step semantics in Figure 2.4
states convergence at most with some k steps whereas the small-step in Defi-
nition 2.2 – when stated with values on right hand side – states convergence
in exactly some number of steps. For this reason we need an intermediate
formulation of the transitive closure which we give as follows:

Definition 2.7. Let Q be a predicate of type TermPCF⇥N! U and define M Vk

Q

as an inductive dependent type as follows

⌃N : TermPCF.M !0
⇤ N and Q(N, k)

M Vk

Q

⌃M 0
M

00 : TermPCF.M !0
⇤ M

0 and M

0 !1
M

00 and .(M 00 Vk

Q)

M Vk+1
Q

The following proposition follows straightforwardly from the definition.

Proposition 2.8. For all M,N : TermPCF and Q : TermPCF⇥N! U, if M !0
⇤ N

and N Vk

Q then M Vk

Q

The small-step semantics are compositional in the following sense.

Lemma 2.9. For all M,N : TermPCF, if M Vk

Q

0 with Q

0(L, n) = L Vn

Q then
M Vk

Q

Proof. By induction on M Vk

Q

0. In the first case we have that M !0
⇤ N

and Q

0(N, k), i.e. M Vk

Q, so by Proposition 2.8 we get M Vk

Q. Now the
second case. By assumption we get M !0

⇤ M
0, M 0 !1

M

00 and .(M 00 Vk�1

Q

0). By induction hypothesis we get .(M 00 Vk�1
Q) which together with

M !0
⇤ M

0 and M

0 !1
M

00 give by definition M Vk

Q.

The small-step semantics as in Definition 2.7 behaves well w.r.t. the
contexts. To make this statement precise we define, for some context E as in
Figure 2.0.3 and for some predicate Q on terms, a predicate Q

E

as follows:

Q

E

(T, k)
def
== ⌃M.T = E[M ] and Q(M,k)
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Intuitively, Q
E

is true for terms of the form E[M ] for some M that satisfies
Q. We use Q

E

(E[M ], k) to explicitly indicate that the converging terms is of
the form E[M ] and that M is the term satisfying Q. We prove now that V is
closed under context application.

Lemma 2.10. For all M : TermPCF, if M Vm

Q then E[M ] Vm

Q

E

with
Q

E

(E[M 0],m) = Q(M 0
,m).

Proof. The proof is by induction on M Vm

Q. For the first case there exists
M

0 such that M !0
⇤ M

0 and that satisfies the predicate Q(M 0
,m). By easy

induction on the relation!0
⇤ we get E[M ]!0

⇤ E[M 0]. Now, E[M 0] is indeed
of the form required by Q

E

and M

0 satisfies Q(M 0
,m), hence E[M ])k 0Q

E

.
As for the second case there exists m

0 s.t. m = m

0 + 1 and there exists
an M

0 and M

00 such that M !0
⇤ M

0, M 0 !1
M

00 and .(M 00 Vm

0
Q). By

assumption we get E[M ] !0
⇤ E[M 0] and E[M 0] !1

E[M 00]. By induction
hypothesis we get .(E[M 00] Vm

0
Q

E

) and by definition E[M ] Vm+1
Q

E

,
thus concluding the case.

We prove that the small-step operational semantics is sound w.r.t the
big-step.

Lemma 2.11. Let M be a closed term and Q : ValuePCF ⇥ N! U a relation on
values. If M Vk (�N.�z.(N +z Q)) then M +k Q

Proof. The proof is by induction on M Vk (�N.�z.(N +z Q)).
First case is straightforward from Lemma 2.6.
Now we prove the second case. We have that M !0

⇤ M

0, M 0 !1
M

00

and .(M 00 Vk

0
� hN, zi .(N +z Q)). By induction hypothesis we know that

.(M 00 +k0 Q) and by Lemma 2.5 and Lemma 2.6 we obtain M +k Q.

In the following lemma we are going to prove that the big-step opera-
tional semantics correspond to the small-step. To this end, we overload the
lifting of the predicates (2.6) as follows: for a predicate Q : ValuePCF ⇥N!
U,

Q

T

def
== � hN, ki .⌃v.N = v and Q(v, k)

Also we are going to make use of the fact that M +k � is covariant in the
following sense:

Proposition 2.12. Let Q and R two predicates on values. If Q implies R then
M +k Q implies M +k R.

Now we can prove that the big-step operational semantics correspond to
the intermediate definition of small-step semantics.

Lemma 2.13. If M : TermPCF and Q : ValuePCF ⇥ N ! U, then M +k Q iff
M Vk

Q

T

Proof. We first prove that if M +k Q then M Vk

Q

T

by induction on M +k Q.
Here we sketch the main cases. For the case v +k Q by definition Q(v, k)
is inhabited. This together with the fact that v !0

⇤ v by reflexivity give us
v Vk

�N.�k.⌃v.N = v and Q(v, k).
For the case of MN +k Q by definition M +k Q

1, where Q

1(�x.L,m) =
L[N/x] +m Q. By induction hypothesis on L[N/x] +m Q we get that Q1

implies
Q

2(�x.L,m) = L[N/x] Vm

Q

T
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thus M +k Q

2. Since (�x.L)N !0
⇤ L[N/x], by applying Proposition 2.8 we

get that Q2 implies

Q

3(�x.L,m) = (�x.L)N Vm

Q

T

thus M +k Q

3. By applying the induction hypothesis on M we get M Vk

Q

3
T

which is equivalent to M Vk

Q

3. By applying Lemma 2.10 with context
[�]N we get MN Vk

Q

4 where Q

4 is defined as

Q

4((�x.L)N,m) = Q

3(�x.L,m)

which is equal to

Q

4((�x.L)N,m) = (�x.L)N Vm

Q

T

Directly from Lemma 2.9 we get MN Vk

Q

T

.
For the case when ifz L M N +k Q by definition we get L +k Q

1 where

Q

1(v,m) = (v = 0 and M +m Q or (v = n+ 1 and N +m Q))

By induction hypothesis on M and N together with Proposition 2.12 we get
L +k Q

2 where

Q

2(v,m) = (v = 0 and M Vm

Q

T

or (v = n+ 1 and N Vm

Q

T

By Lemma 2.10 and Proposition 2.12 L +k Q

3

Q

3(v,m) = ifz v M N )m

Q

T

By induction hypothesis on L and Proposition 2.12 L)k

Q

3
T

and again by
Lemma 2.10 ifz L M N )k

Q.
The most interesting case is the fixed point case. Assume Y

�

M +k+1
Q.

By definition .(M Y
�

M +k Q). By induction hypothesis .(M Y
�

M Vk

Q

T

). As Y
�

M !1
M Y

�

M by Definition 2.7 Y
�

M Vk+1
Q

T

We prove
now that if M Vk

Q

T

then M +k Q. Assume M Vk

Q

T

. Since Q

T

implies
Q

0 where
Q

0(N, k) = N +k Q

We can apply Lemma 2.11 thus getting M +k Q.

We now prove the two definitions for the small-step semantics coincide.
To do this we have to lift the predicate on values and steps as follows: for a
predicate Q : TermPCF ! U define

Q0(N, k)
def
== k = 0 and Q(N)

Intuitively, Q0 considers only reductions when the remaining number of
steps is zero.

Lemma 2.14. For all PCF terms M and Q : TermPCF ! U, M Vk

Q0 iff
M )k

Q.

Proof. We first prove the left-to-right direction by induction on M Vk

Q0.
The base case is when M !0

⇤ N and Q0(N, k). The latter implies k = 0 and
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Q(N), so we have to prove M )0
Q which is straightforward. The inductive

case follows by definition.
We now prove the right-to-left direction assuming that M )k

Q and
proceeding by induction on k. The base case is k = 0, therefore M !0

⇤ N

and Q(N). by assumption Q0(N, k) is true. Hence M Vk

Q0. The inductive
case is k = k

0+1. By definition M !0
⇤ M

0 and M

0 !1
M

00 and .(M 00 )k

0
Q).

By induction .(M 00 Vk

0
Q0) and by definition M Vk

Q0.

Now we can prove Lemma 2.3.
Proof of Lemma 2.3.

• M +k Q0 iff M Vk

Q0 is a particular instance of Lemma 2.13

• M Vk

Q0 iff M )k

Q is by Lemma 2.14

2.4 Denotational semantics

We now define the denotational semantics of PCF. For this, we use the
guarded recursive lifting monad on types, defined as the guarded recursive
type2

LA

def
== fixX.(A+ .X).

Let i : A + .LA

⇠= LA be the isomorphism, let ✓ : .LA ! LA be the right
inclusion composed with i and let ⌘ : A ! LA (the unit of the monad)
denote the left inclusion composed with i. Note that any element of LA
is either of the form ⌘(a) or ✓(r). We can describe the universal property
of LA as follows. Define a .-algebra to be a type B together with a map
✓

B

: .B ! B. The lifting LA as defined above is the free .-algebra on
A. Given f : A ! B with B a .-algebra, the unique extension of f to a
homomorphism of .-algebras f̂ : LA! B is defined as

f̂(⌘(a))
def
== f(a)

f̂(✓(r))
def
== ✓

B

(next(f̂)~ r)

which can be formally expressed as a fixed point of a term of type .(LA!
B)! LA! B.

The intuition the reader should have for L is that LA is the type of
computations possibly returning an element of A, recording the number of
steps used in the computation. The unit ⌘ gives an inclusion of values into
computations, the composite � = ✓ � next : LA ! LA is an operation that
adds one time step to a computation, and the bottom element ? = fix(✓) is
the diverging computation. In fact, any .-algebra has a bottom element and
an operation � as defined above, and homorphisms preserve this structure.
The lifting L extends to a functor. For a map f : A ! B the action on
morphisms can be defined using the unique extension as L(f) def

== [
⌘ � f .

2Since guarded recursive types are encoded using universes, L is strictly an operation on
U. We will only apply L to types that have codes in U.
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Jx1 : �1, · · · , x
k

: �
k

` x

i

K (�) = ⇡

i

�

J� ` n : natK (�) = ⌘(n)

J� ` Y
�

MK (�) = (fixJ�K)(�x : . J�K .✓
�

(next(JMK (�)))~ x))

J� ` �x.MK (�) = �x. JMK (�, x)
J� `MNK (�) = JMK (�) JNK (�)

J� ` succ MK (�) = L(�x.x+ 1)(JMK (�))
J� ` pred MK (�) = L(�x.x� 1)(JMK (�))

J� ` ifz L M NK (�) = ( bifz(JMK (�), JNK (�)))(JLK (�))

FIGURE 2.14.1: Interpretation of terms

2.4.1 Interpretation

The interpretation function J·K : TypePCF ! U is defined by induction.

JnatK def
== LN

J⌧ ! �K def
== J⌧K! J�K

The denotation of every type is a .-algebra: the map ✓

�

: . J�K ! J�K is
defined by induction on � by

✓

�!⌧

= �f : .(J�K! J⌧K).�x : J�K .✓
⌧

(f ~ next(x))

Typing judgements � `M : � are interpreted as usual as functions from
J�K to J�K, where the interpretation of contexts is defined as

Jx1 : �1, · · · , x
k

: �
k

K def
== J�1K⇥ · · ·⇥ J�

n

K

Figure 2.14.1 defines the interpretation of judgements. Below we often write
JMK rather than J� `M : �K. Natural numbers in PCF are computations
that produce a value in zero steps, so we interpret them by using hi . In
the case of Y

�

we have by induction a map JMK (�) of type J�K ! J�K.
Morally, J� ` Y

�

MK (�) should be the fixed point of JMK (�) composed
with �, ensuring that each unfolding of the fixed point is recorded as a step
in the model, but to get the types correct, we have to apply the functorial
action of . to JMK (�) and compose with ✓ instead of �. The intuition given
above is captured in the following lemma.

Lemma 2.15. Let � `M : � ! � then JY
�

MK = � � JM(Y
�

M)K

Proof. Let � : J�K. By definition JY
�

MK (�) is equal to

(fixJ�K)(�x : . J�K .✓
�

(next(JMK (�))~ x))

We unfold the fixed point thus getting

(�x.✓
�

(next(JMK (�))~ x))(next(fix(F )))
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By function application we get ✓
�

(next(JMK (�))~ next(fix(F ))). Since next
is a natural we get ✓

�

(next(JMK (�)(fix(F )))) which is by definition equal to
�

�

(JM Y
�

MK (�)).

We now explain the interpretation of ifz L M N . Define first a semantic
ifz : J�K! J�K! N! J�K operation by

ifzx y 0
def
== x ifzx y (n+ 1)

def
== y

The operation bifz : J�K ! J�K ! JnatK ! J�K is defined by bifz x y being
the extension of ifz x y to a homomorphism of .-algebras. As a direct
consequence of this definition we get

Lemma 2.16. 1.

J �x : nat. ifz x M NK (✓(r)) = ✓(next(J �x : nat. ifz x M NK (�))~ r)
(2.7)

2. If JLK (�) = �(JL0K (�)), then

Jifz L M NK (�) = �

q
ifz L

0
M N

y
(�) (2.8)

Proof. First we prove (2.7). By definition J�x. ifz x M NK (�)(✓(r)) is equal
to

(�x. Jifz x M NK (�, x))(✓(r))

The interpretation of ifz is defined as a fixed point, namely,

(�x. fix( bifz(JMK (�, x), JNK (�, x)))(x))(✓(r))

By simplified we obtain fix( bifz(JMK (�), JNK (�)))(✓(r)) By unfolding the
guarded fixed-point (rule (2.2) we obtain

( bifz(JMK (�), JNK (�))(next(fix(ifz(JMK (�), JNK (�)))))(✓(r)))

By definition bifz applied to ✓(r) is

✓

�

((next(fix(ifz(JMK (�), JNK (�)))))~ r ~ next(JMK (~↵))~ next(JNK (~↵)))

By (2.1) we group up the nexts thus getting

✓

�

((next J�x. ifz x M NK (�))~ r)

We prove now (2.8). For a variable x : JnatK, by definition of � we know
that

J�x. ifz x M NK (�)(�nat(x)) = J�x. ifz x M NK (�)(✓nat(next(x)))

By (2.7) we can pull out the ✓ and group up the nexts by rule (2.1)

(✓
�

(next(J�x. ifz x M NK (�))(x)))

which is by definition

(�
�

(J�x. ifz x M NK (�))(x))
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2.4.2 Soundness

The soundness theorem states that if a program M evaluates to a value v in k

steps then the interpretation of M is equal to the interpretation of v delayed
k times by the semantic delay operation �. Thus the soundness theorem
captures not just extensional but also intensional behaviour of terms.

First we state the Substitution Lemma needed for the cases of the function
application.

Proposition 2.17 (Substitution Lemma). Let � ⌘ x1 : �1, · · · , x
k

: �
k

be a
context for � `M : ⌧ , for all � ` N

i

: �
i

for i = 1, · · · , k, for all ~d 2 J�K,r
� `M [ ~N/x] : ⌧

z
(~d) = J� `M : ⌧K (J� ` N1 : �1K (~d), · · · , J� ` N

k

: �
k

K (~d))

The soundness theorem is proved using the small-step semantics. We
first need a lemma for the single step reduction.

Lemma 2.18. Let M be a closed term of type ⌧ . If M !k

N then JMK (⇤) =
�

k JNK (⇤)

Proof. The proof goes by induction on M !k

N .
We first prove the bases cases. The first case is the function application,

namely (�x.M)N !0
M [N/x]. By the Substitution Lemma 2.17 we know

that J(�x.M)NK (⇤) = JM [N/x]K (⇤) holds concluding the case. The case
for the fixed-point combinator, namely Y

�

M !1
M(Y

�

M), follows from
Lemma 2.15. Now the zero case for the conditional statement: ifz 0M N !0

M . By definition

Jifz 0 M NK (⇤) = ( bifz(JMK (⇤), JNK (⇤)))(J0K (⇤))

Since J0K (⇤) = ⌘(0), the above is equal, by definition of bifz, to JMK (⇤). The
case for ifz n+ 1 M N !0

N is similar. Now the case for pred 0 !0 0. By
definition Jpred 0K (⇤) = L(�x.x� 1)(J0K (⇤)). Since (J0K (⇤)) = ⌘(0), we get
that L(�x.x � 1)(J0K (⇤)) = J0K (⇤). The case pred n + 1 !0

n is similar to
previous case.

We prove now the inductive cases. For the function application MN !k

M

0
N by definition we get JMNK (⇤) = JMK (⇤) JNK (⇤) By induction hypoth-

esis we get (�
�!⌧

JM 0K (⇤)) JNK (⇤) which by definition of �
�!�

is �
�

(JM 0K (⇤) JNK (⇤)).
Now the case for pred M !k pred M

0. By definition Jpred MK (⇤) =
L(�x.x � 1)(JMK (⇤)). By induction hypothesis we know that L(�x.x �
1)(�k JM 0K (⇤)). By definition of the functorial action of L, we get that
�

k

L(�x.x � 1)(JM 0K (⇤)) which is equal to �k Jpred M

0K (⇤). The proofs for
succ M are similar to pred M .

Now the case for the conditional statement ifz L M N !k ifz L

0
M N .

By definition Jifz L M NK (⇤) = ( bifz(JMK (⇤), JNK (⇤)))(JLK (⇤)) By induction
hypothesis we get

( bifz(JMK (⇤), JNK (⇤)))(�k(
q
L

0y (⇤)))

We can pull out one � by Lemma 2.16 thus getting

�

k(( bifz(JMK (⇤), JNK (⇤)))(
q
L

0y (⇤)))
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which is equal by definition to �k Jifz L

0
M NK (⇤)

Lemma 2.19. Let M be a closed term of type ⌧ . If M !0
⇤ N , for some term N ,

then JMK (⇤) = JNK (⇤)

Proof. The proof is straightforward.

Now we extend the previous results to)k.

Lemma 2.20. Let M be a closed term of type ⌧ , if M )k

N then JMK (⇤) =
�

k JNK (⇤)

Proof. By induction on k. The case k = 0 follows from Lemma 2.18. Assume
k = k

0 + 1. By definition we have M !0
⇤ M

0 and M

0 !1
M

00 and .(M 00 )k

0

N). By repeated application of Lemma 2.18 we get JMK (⇤) = JM 0K (⇤) and
JM 0K (⇤) = �(JM 00K (⇤)).

By induction hypothesis we get .(JM 00K (⇤) = �

k

0 JNK (⇤)). By gDTT
rule TY � COM

.

this implies next(JM 00K (⇤)) = next(�k
0 JNK (⇤))) and since

� = ✓ � next, this implies � JM 00K (⇤) = �

k JNK (⇤). By putting together the
equations we get finally JMK (⇤) = �

k JNK (⇤).

The Soundness theorem follows from the fact that the small-step seman-
tics is equivalent to the big step, which is Corollary 2.4.

Theorem 2.21 (Soundness). Let M be a closed term of type ⌧ , if M +k v then
JMK (⇤) = �

k JvK (⇤)

2.5 Computational Adequacy

In this section we prove that the denotational semantics is computationally
adequate with respect to the operational semantics. At a high level, we
proceed in the standard way, by constructing a logical relation R

�

between
denotations J�K and terms TermPCF and then proving that open terms and
their denotation respect this relation (Lemma 2.28 below). We define our
logical relation in guarded dependent type theory, so formally, it will be a
map into the universe U of types. Thus we work with a proof-relevant logical
relation, similar to what was recently done in work of Benton et. al. [BHN14].

To formulate the definition of the logical relations and also to carry out
the proof of the fundamental theorem of logical relations, we need some
more sophisticated features of gDTT, which we now recall.

2.5.1 Guarded Dependent Type Theory

We recall some key features of gDTT; see [Biz+16] for more details.
As mentioned in Section 2.2, the later functor . is an applicative functor.

Guarded dependent type theory extends the later application ~ : .(A !
B)! .A! .B to the dependent case using a new notion of delayed substi-
tution: if � ` f : .⇧(x : A).B and � ` t : .A, then the term f ~ t has type
. [x � t] .B, where [x � t] is a delayed substitution. Note that since t has type
.A, and not A, we can not substitute t for x in B. Intuitively, t will eventually
reduce to some value nextu, and at that time the resulting type should be
.B[u/x]. But when t is an open term, we can not perform this reduction,
and thus can not type this term. Hence we use the type mentioned earlier
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. [x � t] .B, in which x is bound in B. Definitional equality rules allow us to
simplify this type when t has form nextu, i.e.,

. [x � nextu] .B ' .B[u/x]

as expected. Here we have just considered a single delayed substitution, in
general, we may have sequences of delayed substitutions. For example,

. [x � t, y � u] .C

Delayed substitutions can also occur in terms, e.g., if �, x : A ` t : B and
� ` u : .A, then � ` next [x � u] .t : . [x � u] .B. Using this, one can express
a generalisation of the rule (2.3)

El(b.(next ⇠.A)) ⌘ .⇠.El(A) (2.9)

where ⇠ ranges over delayed substitutions. We recall the following rules
from [Biz+16] which we will need in the development below. The notation
⇠ [x � t] means the extension of the delayed substitution ⇠ with [x � t].

next ⇠ [x � next ⇠.t] .u = next ⇠.(u[t/x]) (2.10)
next ⇠ [x � t] .x = t (2.11)
next ⇠ [x � t] .u = next ⇠.u if x not free in u (2.12)

Of these, (2.10) and (2.11) can be considered � and ⌘ laws, and (2.12) is a
weakening principle.

Rather than be taken as primitive, later application ~ can be defined
using delayed substitutions as

g ~ y

def
== next [f � g, x � y] .f(x)

Note that with this definition, the rule next(f(t)) = next f ~ next t from
Section 2.2 generalises to

next ⇠.(f t) = (next ⇠.f)~ (next ⇠.t)

which follows from (2.10).

2.5.2 Logical Relation

In this section we define a logical relation to prove the adequacy theorem.
This relation is a function to U.

We introduce the following notation:

Notation 2.22. Let R : A! B ! U be a relation from A to B, t of type .A and
u of type .B. Define t .R u

def
== . [x � t, y � u] .(x R y)

More precisely, we can define t .R u as a term of type U by defining
it to be b.(next [x � t, y � u] .(x R y)), what we have defined above are the
elements of this term. From this, one can prove that

((next ⇠.t) .R (next ⇠.u)) ⌘ .⇠.(tRu) (2.13)

using (2.10) and (3.21).



2.5. Computational Adequacy 41

Lemma 2.23. The mapping � R . .R : (A ! B ! U) ! .A ! .B ! U is
contractive, i.e., can be factored as F � next for some F : .(A! B ! U)! .A!
.B ! U.

Proof. Define F (S)x y = b
.(S ~ x~ y).

Definition 2.24 (Logical Relation). The logical relation R
⌧

: J⌧K⇥TermPCF ! U
is inductively defined on types.

⌘(v) Rnat M
def
== M +0 v

✓nat(r) Rnat M
def
== ⌃M 0

,M

00 : TermPCF.M !0
⇤ M

0 and M

0 !1
M

00

and r .Rnat next(M 00)

f R
⌧!�

M

def
== ⇧↵ : J⌧K , N : TermPCF.↵ R

⌧

N =) f(↵) R
�

(MN)

The definition of Rnat is by guarded recursion using Lemma 2.23.
We now prove a series of lemmas needed for the proof of computational

adequacy. The first states that the applicative functor action ~ respects the
logical relation.

Lemma 2.25. If f .R
⌧!�

next(M) and r .R
⌧

next(L) then

(f ~ r) .R
�

next(ML)

Proof. The first hypothesis unfolds to

. [g � f ] .(g R
⌧!�

M) '
. [g � f ] .(⇧(y : J�K)(L : TermPCF).y R

⌧

L! g(y) R
�

ML)

By delayed application of this to r, next(L) and the second hypothesis we
get . [g � f, y � r] .(g(y) R

�

ML), which by (2.13) reduces to

next [g � f, y � r] .(g(y)) .R
�

next [g � f, y � r] .(ML) '
(f ~ r) .R

�

next(ML)

The following lemma generalises the second case of Rnat to all types.

Lemma 2.26. Let N and M be two terms. Let ↵ of type . J�K, if (↵ .R
�

next(N))
and M !1

N then ✓
�

(↵) R
�

M

Proof. The proof is by induction on �. The case � = nat is by definition of
Rnat .

For the induction step, suppose ↵ of type . J⌧1 ! ⌧2K, and M , N are
closed terms such that ↵ .R

⌧1!⌧2 next(N) and M !1
N . We must show

that if � : J⌧1K, P : TermPCF and � R
⌧1 P then (✓

⌧1!⌧2(↵))(�) R⌧2 (MP ).
So suppose � R

⌧1 P , and thus also .(� R
⌧1 P ) which is equal to

next(�) .R
⌧1 next(P )

By applying Lemma 2.25 to this and ↵ .R
⌧1!⌧2 next(N) we get

↵~ (next(�)) .R
⌧2 next(NP )
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Since M !1
N also MP !1

NP , and thus, by the induction hypothesis for
⌧2, ✓

⌧2(↵ ~ (next(�))) R
⌧2 MP . Since by definition ✓

⌧1!⌧2(↵)(�) = ✓

⌧2(↵ ~
next(�)), this proves the case.

Lemma 2.27. If M !0
N then ↵ R

�

M iff ↵ R
�

N

Proof. The proof is by induction on �. We show the left to right implication
in the case of � = nat. We proceed by case analysis on ↵ and show the
case of ↵ = ✓nat(r). From the assumption ↵ R

�

M we have that there exists
M

0 and M

00 such that M !0
⇤ M

0 and M

0 !1
M

00 and ↵ .Rnat next(M 00).
By determinism of the small-step semantics (Lemma 2.1) the reduction
M !0

⇤ M
0 must factor as M ! N !0

⇤ M
0 and thus ↵ Rnat N as desired.

We can now finally prove the fundamental lemma, which can be thought
of as a strengthened induction hypothesis for computational adequacy, gen-
eralised to open terms.

Lemma 2.28 (Fundamental Lemma). Let � ` t : ⌧ and suppose � ⌘ x1 :
⌧1, · · · , xn : ⌧

n

. Let t
i

, ↵
i

s.t. ↵
i

RJ⌧iK ti for i 2 {1, . . . , n}, then JtK (~↵)R
⌧

t[~t/~x]

Proof. The proof is by induction on the height of the typing judgement.
The first case is when � ` v : nat. We have to prove that JvK (⇤) R

⌧

v

and – since JvK (⇤) = ⌘(v) – that v +0 v. But this is true by definition of the
operational semantics.

Now the variable case � ` x

j

: ⌧
j

where j is s.t x

j

: ⌧
j

2 � where
j 2 {1, . . . n}. We want to prove that Jx

j

K (~↵) R
⌧j xj [~t/~x]. By definition of

substitution and by definition of the interpretation function we get ↵
j

R
⌧j tj

which is an assumption.
The function application case is when � ` t1t2 : ⌧ . We want to show

Jt1t2K (~↵)R⌧

(t1t2)[~t/~x]. By induction hypothesis we have Jt1K (~↵)R�!⌧

(t1)[~t/~x]
and Jt2K (~↵) R�

(t2)[~t/~x]. We can apply the former to the latter thus getting

Jt1K (~↵) Jt2K (~↵) R⌧

(t1[~t/~x])(t2[~t/~x])

which is what we wanted to show.
Now the lambda abstraction case � ` �x.t : � ! ⌧ . We need show

J�x.tK (~↵) R
�!⌧

(�x.t)[~t/~x]

Following the definition of the logical relation for the lambda abstraction
let ↵

n+1 R�

t

n+1. We must prove J�x.tK (~↵)(↵
n+1) R⌧

(�x.t)[~t/~x](t
n+1). By

simplifying both sides, taking also into account that x 62 fv(~t), we get

J�x.tK (~↵)(↵
n+1) =(�x. JtK (~↵))(↵

n+1) = JtK (~↵,↵
n+1)

(�x.t)[~t/~x](t
n+1) =�x.(t[~t/~x])(tn+1) = (t[~t/~x])[t

n+1/x]

the goal becomes JtK (~↵,↵
n+1) R⌧

t[(~t, t
n+1)/(~x, x)] which is our induc-

tion hypothesis.
The most interesting case is the fixed-point case, namely � ` Y

�

M : �.
The argument is by guarded recursion: we assume

.(JY
�

MK (~↵) R
�

(Y
�

M)([~t/~x])) (2.14)
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and prove JY
�

MK (~↵)R
�

(Y
�

M)([~t/~x]). By induction hypothesis we know
JMK (~↵) R

�!�

M [~t/~x], hence we derive .(JMK (~↵) R
�!�

M [~t/~x]), i.e.,

.(⇧↵ : J�K .N : TermPCF. ↵ R
�

N ) JMK (~↵)(↵) R
�

(M [~t/~x]N)) (2.15)

Applying (2.15) to (2.14) we get

.(JMK (~↵)(JY
�

MK (~↵)) R
�

(M [~t/~x](Y
�

M [~t/~x])))

which is equal as types to

.(JM(Y
�

M)K(~↵) R
�

(M(Y
�

M))[~t/~x]

' next(JM(Y
�

M)K (~↵)) .R
�

next((M(Y
�

M))[~t/~x])

Thus, by Lemma 2.26

✓

�

(next(JM(Y
�

M)(~↵)))K R
�

(Y
�

M)([~t/~x])

and as �
�

= ✓

�

� next, by Lemma 2.15

JY
�

MK (~↵) R
�

(Y
�

M)([~t/~x])

as desired.
Now the case of � ` ifz L M N : �. This case can be proved by showing

that
J�y. ifz y M NK (~↵) Rnat!�

(�y. ifz y M N)[~t/~x]

and then applying this to the induction hypothesis JLK (~↵)Rnat L[~t/~x]. The
argument is by guarded recursion. Assume

.(J�y. ifz y M NK (~↵) Rnat!�

(�y. ifz y M N)[~t/~x]) (2.16)

We must show that if � : JnatK, L : TermPCF and � Rnat L then

J�y. ifz y M NK (~↵)(�) R
�

((�y. ifz y M N)[~t/~x](L))

We proceed by case analysis on �.
The first case is when � = ⌘(v). We proceed by case on v.
When v = 0 we get L +0 0since by assumption � Rnat L. By induction

hypothesis
JMK (~↵) R

�

M [~t/~x]

Since v = 0 and we know that JLK (~↵) Rnat L[~t/~x] and thus that

ifz L M [~t/~x] N [~t/~x])0
M [~t/~x]

Furthermore,
J�x. ifz x M NK (~↵)(⌘(0)) = JMK (~↵)

Thus by Lemma 2.27 we conclude the case.
The case for v = k + 1 is similar.
Now we consider � = ✓nat(r). Here r is of type . JnatK and L : TermPCF.

The hypothesis ✓nat(r) Rnat L states that there exist L

0
, L

00 : TermPCF s.t.
L!0

⇤ L
0, L0 !1

L

00 and
r .Rnat next(L00) (2.17)
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Since (2.16) is equal to

(next(J�y. ifz y M NK (~↵))) .Rnat!�

next((�y. ifz y M N)[~t/~x])

We can apply Lemma 2.25 to that and (2.17) to get (using Lemma 2.27)

(next(J�y. ifz y M NK (~↵))~ r) .R
�

next(ifz L

00
M [~t/~x] N [~t/~x])

By Lemma 2.26 with L

0 !1
L

00 this implies

✓

�

(next(J�y. ifz y M NK (~↵))~ r) R
�

(ifz L

0
M [~t/~x] N [~t/~x])

and by Lemma 2.16 along with repeated application of Lemma 2.27 this
implies

J�y. ifz y M NK (~↵)(�) R
�

(�y. ifz y M N)[~t/~x](L)

thus getting what we wanted.

We have now all the pieces in place to prove adequacy.

Theorem 2.29 (Computational Adequacy). If M is a closed term of type nat
then M +k v iff JMK (⇤) = �

k JvK.

Proof. The left to right implication is soundness (Theorem 2.21). For the right
to left implication note first that the Fundamental Lemma (Lemma 2.28)
implies �k(JvK) Rnat M . To complete the proof it suffices to show that
�

k

nat(JvK) Rnat M implies M +k v.
This is proved by guarded recursion: the case of k = 0 is immediate

by definition of Rnat . If k = k

0 + 1 first assume �knat(JvK) Rnat M . By def-
inition of R there exist M 0 and M

00 such that M !0
⇤ M

0, M 0 !1
M

00 and
next(�k�1

nat (JvK)) .Rnat next(M 00) which is type equal to .(�k�1
nat (JvK)Rnat M

00).
By the guarded recursion assumption we get .(M 00 +k�1

v) which by
Lemma 2.5 implies M +k v.

Remark 2.30. In the topos of trees model JnatK (n) ⇠= {1, . . . , n} ⇥ N + {?}.
Values are modelled as elements of the form (1, k) and � is defined as �(j, k) = (j +
1, k) if j < n and �(n, k) = ?. Thus, if a term M diverges, then JMK (⇤) = �

k JvK
holds at stage n whenever k � n explaining the need for M +k v to be true also at
stage n when k � n.

2.6 The external viewpoint

The adequacy theorem is a statement formulated entirely in gDTT, relating
two notions of semantics also formulated entirely in gDTT. While we believe
that gDTT is a natural setting to do semantics in, and that the result therefore
is interesting in its own right, it is still natural to ask what we proved in
the “real world”. One way of formulating this question more precisely is to
use the interpretation of gDTT in the topos of trees (henceforth denoted by
L�M). For example, the types of PCF types, terms and values are inductively
defined types, which are interpreted as constant presheaves over the corre-
sponding sets of types, terms and values. Types of PCF as understood in set
theory, thus correspond bijectively to global elements of LTypePCF M, which
by composing with the interpretation of PCF defined in gDTT gives rise to
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an object in the topos of trees. Likewise, a PCF term gives rise to a morphism
in the topos of trees. Thus, essentially by composing the interpretation of
PCF given above with the interpretation of gDTT, we get an interpretation
of PCF into the topos of trees, which we will denote by J�Kext.

We denote by M +kext v the usual external formulation of the big-step
semantics for PCF obtained from Figure 2.0.2 by removing .s and replacing
dependent sums by existential quantifiers (see e.g. [Esc99]).

Lemma 2.31. The type LM +k QM is globally inhabited iff there exists a value v
such that M +k

ext

v and LQ(v)M is globally inhabited.

Proof. The proof is by induction over k and then M . Here we sketch
the fix-point case. The object LY

�

M +k+1
QM is globally inhabited iff

L.(M(Y
�

M) +k Q)M is globally inhabited. Since the set of global elements
of an object A is isomorphic to the set of global elements of .A, the latter
holds iff LM(Y

�

M) +k QM is globally inhabited.
By induction hypothesis, LM(Y

�

M) +k QM is globally inhabited iff there
exists a value v such that M(Y

�

M) +kext v and LQ(v)M is globally inhabited.
The former holds iff Y

�

M +k+1
ext v, thus concluding the proof.

As a special case, Theorem 2.29 states that LM +k vM is inhabited by a
global element iff LJMK (⇤) = �

k JvKM is inhabited by a global element. Since
the topos of trees is a model of extensional type theory, the latter holds
precisely when JMKext = �

kJvKext.

Theorem 2.32 (Computational Adequacy, externally). If ` M : � with � a
ground type, then M +k

ext

v iff JMK
ext

(⇤) = �

kJvK
ext

Theorem 2.32 is a restatement of Escardo’s adequacy result for PCF in
metric spaces [Esc99, Theorem 4.1]. Precisely, Escardo’s model construction
uses complete bounded ultrametric spaces. Since the spaces used are all
bisected, Escardo’s model can be embedded in the topos of trees [Bir+12, Sec-
tion 5] and up to this embedding, his model agrees with the externalisation
of the model constructed in this paper.

2.7 Discussion and Future Work

In earlier work, it has been shown how guarded type theory can be used to
give abstract accounts of operationally-based step-indexed models [Bir+12;
SB14]. There the operational semantics of the programming language under
consideration is also defined inside guarded type theory, but there are no
explicit counting of steps (indeed, part of the point is to avoid the steps).
Instead, the operational semantics is defined by the transitive closure of a
single-step relation — and, importantly, the transitive closure is defined by a
fixed point using guarded recursion. Thus some readers might be surprised
that we use a step-counting operational semantics here. The reason is simply
that we want to show, in the type theory, that the denotational semantics is
adequate with respect to an operational semantics and since the denotational
semantics is intensional and steps thus matter, we also need to count steps
in the operational semantics to formulate adequacy.

In previous work [Bir+12] we have studied the internal topos logic of the
topos of trees model of guarded recursion and used this for reasoning about
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advanced programming languages. In this paper, we could have likewise
chosen to reason in topos logic rather than type theory. We believe that the
proofs of soundness and computational adequacy would have gone through
also in this setting, but the interaction between the . type modality and the
existential quantifiers in the topos of trees, makes this an unnatural choice.
For example, one can prove the statement 9k.9v.Ynat (�x.x) +k v in the inter-
nal logic using guarded recursion as follows: assume .(9k.9v.Ynat (�x.x) +k
v). Because nat is total and inhabited we can pull out the existentials by
Theorem 2.7.4 in [Bir+12] and derive 9k.9v..(Ynat (�x.x) +k v) which im-
plies 9k.9v.Ynat (�x.x) +k v. The corresponding statement in type theory:P

k, v.Ynat (�x.x) +k v is not derivable as can be proved using the topos of
trees. Intuitively the difference is the constructiveness of the dependent sum,
which allows us to extract the witnesses k and n.

In future work, we would like to explore models of FPC (i.e., PCF ex-
tended with recursive types) and also investigate how to define a more
extensional model by quotienting the present intensional model. The latter
would be related to Escardo’s results in [Esc99].
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Chapter 3

Denotational semantics of
recursive types in synthetic
guarded domain theory

Rasmus Ejlers Møgelberg and Marco Paviotti

Abstract. Guarded recursion is a form of recursion where recursive calls are
guarded by delay modalities. Previous work has shown how guarded recursion is
useful for reasoning operationally about programming languages with advanced
features including general references, recursive types, countable non-determinism
and concurrency.

Guarded recursion also offers a way of adding recursion to type theory while
maintaining logical consistency. In previous work we initiated a programme of
denotational semantics in type theory using guarded recursion, by constructing
a computationally adequate model of the language PCF (simply typed lambda
calculus with fixed points). This model was intensional in that it could distinguish
between computations computing the same result using a different number of fixed
point unfoldings.

In this work we show how also programming languages with recursive types
can be given denotational semantics in type theory with guarded recursion. More
precisely, we give a computationally adequate denotational semantics to the lan-
guage FPC (simply typed lambda calculus extended with recursive types), mod-
elling recursive types using guarded recursive types. The model is intensional
in the same way as was the case in previous work, but we show how to recover
extensionality using a logical relation.

All constructions and reasoning in this paper, including proofs of theorems
such as soundness and adequacy, are by (informal) reasoning in type theory, often
using guarded recursion.

3.1 Introduction

Recent years have seen great advances in formalisation of mathematics
in type theory, in particular with the development of homotopy type the-
ory [Uni13]. Such formalisations are an important step towards machine
assisted verification of mathematical proofs. Rather than adapting classical
set theory based mathematics to type theory, new synthetic approaches some-
times offer simpler and clearer presentations in type theory, as illustrated by
the development of synthetic homotopy theory.
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Just like any other branch of mathematics, domain theory and deno-
tational semantics for programming languages with recursion should be
formalised in type theory, and, as was the case of homotopy theory, synthetic
approaches can provide clearer and more abstract proofs.

Guarded recursion [Nak00] can be seen as a synthetic form of domain the-
ory, or, perhaps more accurately, a synthetic form of step-indexing [Bir+12;
App+07]. Recent work has shown how guarded recursion can be used to
construct syntactic models and operational reasoning principles for (also
combinations of) advanced programming language features including gen-
eral references, recursive types, countable non-determinism and concur-
rency [Bir+12; BBM14; SB14]. The hope is that synthetic guarded domain
theory can also provide denotational models of these features.

3.1.1 Synthetic guarded domain theory

The synthetic approach to domain theory is to assume that types are domains,
rather than constructing a notion of domain as a type equipped with a certain
structure. To model recursion a fixed point combinator is needed, but adding
unrestricted fixed points makes the type theory inconsistent when read as
a logical system. The approach of guarded recursion is to introduce a new
type constructor ., pronounced “later”. Elements of .A are to be thought
of as elements of type A available only one time step from now, and the
introduction form next : A ! .A makes anything available now, available
later. The fixed point operator has type

fix : (.A! A)! A

and maps an f to a fixed point of f � next. Guarded recursion also assumes
solutions to all guarded recursive type equations, i.e., equations where all
occurences of the type variable are under a ., as for example in the equation

LA

⇠= A+ .LA (3.1)

used to define the lifting monad L below, but guarded recursive equations
can also have negative or even non-functorial occurences. Guarded recursion
can be proved consistent with type theory using the topos of trees model and
related variants [Bir+12; BM15; Biz+16]. In this paper we will be working in
guarded dependent type theory (gDTT) [Biz+16], an extensional type theory
with guarded recursion.

In previous work [PMB15], we initiated a study of denotational semantics
inside guarded dependent type theory, constructing a model of PCF (simply
typed lambda calculus with fixed points). By carefully aligning the fixpoint
unfoldings of PCF with the steps of the metalanguage (represented by .), we
proved a computational adequacy result for the model inside type theory.
Guarded recursive types were used both in the denotational semantics
(to define a lifting monad) and in the proof of computational adequacy.
Likewise, the fixed point operator fix of gDTT was used both to model fixed
points of PCF and as a proof principle.
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3.1.2 Contributions

Here we extend our previous work in two ways. First we extend the deno-
tational semantics and adequacy proof to languages with recursive types.
More precisely, we consider the language FPC (simply typed lambda calcu-
lus extended with general recursive types), modelling recursive types using
guarded recursive types. The proof of computational adequacy shows an in-
teresting aspect of guarded domain theory. It uses a logical relation between
syntax and semantics defined by induction over the structure of types. The
case of recursive types requires a solution to a recursive type equation. In
the setting of classical domain theory, the existence of this solution requires
a separate argument [Pit96], but here it is simply a guarded recursive type.

The second contribution is a relation capturing extensionally equal ele-
ments in the model. Like the model for PCF in our previous work, the model
for FPC constructed here distinguishes between programs computing the
same value using a different number of fixed point unfoldings. We construct
a relation on the interpretation of types, that relates elements that only differ
by a finite number of computation steps. The relation is proved sound,
meaning that, if the denotations of two terms are related, then the terms are
contextually equivalent.

All constructions and proofs are carried out working informally in gDTT.
This work illustrates the strength of gDTT, and indeed influenced the design
of the type theory.

3.1.3 Related work

Escardó constructs a model of PCF using a category of ultrametric spaces [Esc99].
Since this category can be seen as a subcategory of the topos of trees [Bir+12],
our previous work on PCF is a synthetic version of Escardó’s model. Es-
cardó’s model also distinguishes between computations using different
number of steps, and captures extensional behaviour using a logical relation
similar to the one constructed here. Escardó however, does not consider
recursive types. Although Escardó’s model was useful for intuitions, the
synthetic construction in type theory presented here is very different, in
particular the proof of adequacy, which here is formulated in guarded de-
pendent type theory.

Synthetic approaches to domain theory have been developed based on a
wide range of models dating back to [Hyl91; Ros86]. Indeed, the internal
languages of these models can be used to construct models of FPC and
prove computational adequacy [Sim02]. A more axiomatic approach was
developed in Reus’s work [Reu96] where an axiomatisation of domain theory
is postulated a priori inside the Extended Calculus of Constructions. Another
approach is to endow the types with additional structure [BKV09; Ben+10]
similar to an extensional version of the lifting monad we used in this paper.
Unlike guarded synthetic domain theory, these models do not distinguish
between computations using different numbers of steps. On the other hand,
with the success of guarded recursion for syntactic models, we believe that
the guarded approach could model languages with more advanced features.

The lifting monad used in this paper is a guarded recursive variant of
the partiality monad considered by among others [Dan12; Cap05; BKV09;
Ben+10]. Danielsson also defines a weak bisimulation on this monad, similar
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to the one defined in Definition 3.33. As reported by Danielsson, working
with the partiality monad requires convincing Agda of productivity of coin-
ductive definitions using workarounds. Here, productivity is ensured by
the type system for guarded recursion.

The paper is organized as follows. Section 3.2 gives a brief introduction
to the most important concepts of gDTT. More advanced constructions of
the type theory are introduced as needed. Section 3.3 defines the encoding
of FPC and its operational semantics in gDTT. The denotational semantics
and soundness is proved in Section 3.4. Computational adequacy is proved
in Section 3.5, and the relation capturing extensional equivalence is defined
in Section 3.6. We conclude and discuss future work in Section 3.7.

3.2 Guarded recursion

In this paper we work informally within a type theory with dependent types,
inductive types and guarded recursion. Although inductive types are not
mentioned in [Biz+16] the ones used here can be safely added – as they can
be modelled in the topos of trees model – and so the arguments of this paper
can be formalised in gDTT. We start by recalling some core features of this
theory. In fact, for the first part of the development, we will need just the
features of [BM13], which corresponds to the fragment of gDTT with a single
clock and no delayed substitutions. Quantification over clocks and delayed
substitutions will be introduced later, when needed.

When working in type theory, we use⌘ for judgemental equality of types
and terms and = for propositional equality (sometimes =

A

when we want
to be explicit about the type). We also use = for (external) set theoretical
equality.

The type constructor . introduced in Section 3.1.1 is an applicative func-
tor in the sense of [MP08], which means that there is a map next of type
A ! .A and a “later application” ~ : .(A ! B) ! .A ! .B written infix,
satisfying

next(f)~ next(t) ⌘ next(f(t)) (3.2)

among other axioms (see also [BM13]). In particular, . extends to a func-
tor mapping f : A ! B to �x : .A. next(f) ~ x. Moreover, the . operator
distributes over the identity type as follows

.(t =
A

u) ⌘ next t =
.A

nextu (3.3)

Guarded dependent type theory comes with universes in the style of
Tarski. In this paper, we will just use a single universe U. Readers familiar
with [Biz+16] should think of this as U



, but since we work with a unique
clock , we will omit the subscript. The universe comes with codes for
type operations, including b+: U ⇥ U ! U for binary sum types, codes for
dependent sums and products, and b

. : .U ! U satisfying El(b.(next(A))) ⌘
.El(A), where we use El(A) for the type corresponding to an element A : U.
The type of b. allows us to solve recursive type equations using the fixed
point combinator. For example, if A is small, i.e., has a code b

A in U, the type
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equation (3.1) can be solved by computing a code of LA as

fix(�X : .U. b+( bA,b.X)) .

In this paper, we will only apply the monad L to small types A.
To ease presentation, we will usually not distinguish between types and

type operations on the one hand, and their codes on the other. We generally
leave El implicit.

3.2.1 The topos of trees model

The topos of trees model of guarded recursion [Bir+12] provides useful
intuitions, and so we briefly recall it.

In the model, a closed type is modelled as a family of sets X(n) indexed
by natural numbers together with restriction maps r

X

n

: X(n+ 1)! X(n).
The . type operator is modelled as .X(1) = 1, .X(n+1) = X(n). Intuitively,
X(n) is the nth approximation for computations of type X , thus X(n) de-
scribes the type X as it looks if we have n computational steps to reason
about it.

Using the proposition-as-types principle, types like .420 are non-standard
truth values. Intuitively, this is the truthvalue of propositions that appear
true for 42 computation steps, but then are falsified after 43.

For guarded recursive type equations, X(n) describes the nth unfolding
of the type equation. For example, fixing an object A, the unique solution to
(3.1) is

LA(n) = 1 +A(1) + · · ·+A(n)

with restriction maps defined using the restriction maps of A. In particular,
if A is a constant presheaf, i.e., A(n) = X for some fixed X and r

A

n

identities,
then we can think of LA(n) as {0, . . . , n� 1}⇥X + {?}. The set of global
elements of LA is then isomorphic to N⇥X + {?}. In particular, if X = 1,
the set of global elements is !̄, the natural numbers extended with a point at
infinity.

3.3 FPC

This section defines the syntax, typing judgements and operational semantics
of FPC. These are inductive types in guarded type theory, but, as mentioned
earlier, we work informally in type theory, and in particular remain agnostic
with respect to choice of representation of syntax with binding.

Unlike the operational semantics to be defined below, the typing judge-
ments of FPC are defined in an entirely standard way. The grammar for
terms of FPC

L,M,N ::= hi | x | inl M | inr M

| case L of x1.M ;x2.N | hM,Ni
| fst M | snd M

| �x : ⌧.M | MN | fold M | unfold N

should be read as an inductive type of terms in the standard way. Likewise
the grammars for types and contexts and the typing judgements defined
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⇥ 2 Type Contexts def
== hi | h⇥,↵i

` hi
` ⇥

` ⇥,↵

↵ 62 ⇥

` ⇥

⇥ ` ⇥
i

1  i | ⇥ | ` ⇥

⇥ ` 1
⇥,↵ ` ⌧
⇥ ` µ↵.⌧

⇥ ` ⌧1 ⇥ ` ⌧2
⇥ ` ⌧1op ⌧2

for op 2 {+,⇥,!}

FIGURE 3.0.1: Rules for welformed FPC types

� 2 Expression Contexts def
== hi | h�, x : ⌧i

` ⇥

⇥ ` hi
⇥ ` � ⇥ ` ⌧
⇥ ` �, x : ⌧

x 62 �

FIGURE 3.0.2: Rules for welformed FPC contexts

in Figures 3.0.1, 3.0.2 and 3.0.3 should be read as defining inductive types
in type theory, allowing us to do proofs by induction over e.g. typing
judgements.

We denote by TypeFPC , TermFPC and ValueFPC the types of closed FPC
types and terms, and values of FPC. By a value we mean a closed term
matching the grammar

v ::= hi | inl M | inr M | hM,Ni | �x : ⌧.M | fold M

3.3.1 Small-step semantics

Figure 3.0.4 defines the reductions of the small-step call-by-name opera-
tional semantics. Since the denotational semantics of FPC are intensional,
counting reduction steps, it is necessary to also count the steps in the oper-
ational semantics in order to state the soundness and adequacy theorems
precisely. More precisely, the semantics counts the number of unfold-fold
reductions. The semantics is trivially deterministic.

Lemma 3.1. The small-step semantics is deterministic: if M !k

N and M !k

0

N

0, then k = k

0 and N = N

0.

We next define the transitive closure of the small-step operational se-
mantics. To ease the comparison with the big-step operational semantics,
we define a generalisation of the transitive closure as a relation of the form
M )k

Q to be read as ’M reduces in k steps to a term N satisfying Q’. Here
Q : TermFPC ! U is a (proof relevant) predicate on closed terms. The more
standard big-step evaluation of terms to values can be defined as

M )k

v

def
== M )k (�N.N = v)
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x : � 2 � · ` �

� ` x : � � ` hi : 1
�, x : � `M : ⌧

� ` (�x : �.M) : � ! ⌧

� `M : � ! ⌧ � ` N : �

� `MN : ⌧
� ` e : ⌧1

� ` inl e : ⌧1 + ⌧2

� ` e : ⌧2
� ` inr e : ⌧1 + ⌧2

� ` L : ⌧1 + ⌧2 �, x1 : ⌧1 `M : � �, x2 : ⌧2 ` N : �

� ` case L of x1.M ;x2.N : �
� `M : ⌧1 ⇥ ⌧2
� ` fst M : ⌧1

� `M : ⌧1 ⇥ ⌧2
� ` snd e : ⌧2

� `M : ⌧1 � ` N : ⌧2
� ` hM,Ni : ⌧1 ⇥ ⌧2

� `M : µ↵.⌧

� ` unfold M : ⌧ [µ↵.⌧/↵]

� `M : ⌧ [µ↵.⌧/↵]

� ` fold M : µ↵.⌧

FIGURE 3.0.3: Typing rules for FPC terms

(�x : �.M)(N)!0
M [N/x] unfold (fold M)!1

M

case (inl L) of x1.M ;x2.N !0
M [L/x1]

case (inr L) of x1.M ;x2.N !0
N [L/x2]

fst hM,Ni !0
M snd hM,Ni !0

N

M1 !k

M2

E[M1]!k

E[M2]

E ::= [·] | EM | case E of x1.M ;x2.N

| fst E | snd E | unfold E

FIGURE 3.0.4: Reductions of the small-step call-by-name
operational semantics. In the last rule, k is either 0 or 1.
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v +k Q

def
== Q(v, k)

case L of x1.M ;x2.N +k Q

def
== L +k Q

0

where
Q

0(inl L, l)
def
== M [L/x1] +l Q

Q

0(inr L, l)
def
== N [L/x2] +l Q

fst L +k Q

def
== L +k Q

0

where Q

0(hM,Ni,m)
def
== M +m Q

snd L +k Q

def
== L +k Q

0

where Q

0(hM,Ni,m)
def
== N +m Q

MN +k Q

def
== M +k Q

0

where Q

0(�x.L,m)
def
== L[N/x] +m Q

unfold M +k Q

def
== M +k Q

0

whereQ0(fold N,m+ 1)
def
== .(N +m Q)

FIGURE 3.2.1: The big-step operational semantics. In the
definitions of Q0 only non-empty cases are given, e.g., in the
case of unfold M , Q0(P, n) is defined to be the empty type

unless P is of the form fold N and n is a successor.

Definition 3.2. The transitive closure of the small-step relation is defined by
induction on k as follows.

M )0
Q

def
== ⌃N : TermFPC.M !0

⇤ N and Q(N)

M )k+1
Q

def
== ⌃M 0

M

00 : TermFPC.M !0
⇤ M

0 and

M

0 !1
M

00 and .(M 00 )k

Q)

Here!0
⇤ is the reflexive-transitive closure of!0.

The use of . in the second clause of Definition 3.2 synchronizes the steps
of FPC with those of the metalogic. This allows guarded recursion to be
used as a proof principle for operational semantics, and is also needed to
get the precise relationship to the denotational semantics.

3.3.2 Big-step semantics

We now define a big-step call-by-name operational semantics for FPC. Big-
step semantics are usually defined as relations between closed terms and
values. Here, we generalize to a (proof relevant) relation of the form

M +k Q (3.4)

where M is a term, k a natural number, and Q : ValueFPC ⇥ N! U a proof
relevant relation on values and natural numbers. The statement (3.4) should
be read as ’M evaluates in l  k steps to a value v such that Q(v, k � l)’.
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As for the small-step semantics, a step is an unfold-fold reduction. If
Q : ValueFPC ! U we overload notation and write

M +k Q

def
== M +k (� hv, li .l = 0 and Q(v)) (3.5)

to be read as ’M evaluates in exactly k steps to a value satisfying Q’. We can
define more standard big-step evaluation predicates as follows

M +k v

def
== M +k (�w.w = v)

M + v

def
== ⌃k.M +k v

The big-step relation is defined as an inductive type in Figure 3.2.1.
Following the reading of the big-step predicate given above, MN +k Q

holds if M reduces in l steps (for some l  k) to a term of the form �x.L,
such that L[N/x] +k�l

Q. The cases of projections and case are similar. In
the case of unfold, once M has been reduced to fold N , one time step is
consumed to reduce unfold (fold N) to N before continuing reduction.
Just as was the case for the small-step semantics, the use of . in this rule
synchronizes the steps of FPC with those of the metalogic.

The use of predicates on the right hand sides of the big-step semantics is
crucial for the equivalence of the small-step and big-step semantics. More
precisely, it allows us to postpone existence of terms to the time they are
needed. For example, if MN +k v, and M uses one step to reduce to a value,
the term �x.L that M should reduce to is only required to exist later, rather
than now, as a more direct big-step semantics would require. This makes a
difference, since ⌃ and . do not commute.

3.3.3 Examples

As an example of a recursive type, one can encode the natural numbers as

nat def
== µ↵.1 + ↵

zero
def
== fold (inl (hi))

succ M

def
== fold (inr (M))

Using this definition we can define the term ifz of PCF. If L is a closed term
of type nat and M ,N are closed terms of type � then define ifz as

ifz L M N

def
== case (unfold L) of x1.M ;x2.N

where x1, x2 are fresh. It is easy to see that ifz zero M N +k Q iff .(M +k�1

Q) and that ifz (succ L) M N +k Q iff .(N +k�1
Q) for any L closed term of

type nat. For example, ifz 1 0 1 +2 42 is .0.
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Recursive types introduce divergent terms. For example, given a type A,
the Turing fixed point combinator on A can be encoded as follows:

B

def
== µ↵.(↵! (A! A)! A)

✓ : B ! (A! A)! A

✓

def
== �x�y.y(unfold x x y)

Y
A

def
== ✓(fold ✓)

An easy induction shows that Y
�

(�x.x) +k Q = .

k0, where 0 is the
empty type.

To understand the relationship of the operational semantics defined in
this paper to more traditional semantics defined without delays in the form
of ., write M !k

⇤ N to mean that M reduces to N in the transitive closure of
the reduction semantics, where k is the sum of the steps in the reduction. If
M !k

⇤ v then

• M +k v is true

• M +n v is logically equivalent to .

min(n,k)0 if n 6= k, where 0 is the
empty type

If, on the other hand, M is divergent in the sense that for any k there exists
an N such that M !k

⇤ N , then M +n v is equivalent to .n0.

3.3.4 Equivalence of small-step and big-step semantics

We now state the equivalence of the two operational semantics given above.
Since the big-step operational semantics as defined in (3.5) uses predicates on
values, and the transitive closure of the small-step semantics (Definition 3.2)
uses predicates on terms, we first introduce some notation

Q

T

(N)
def
== ⌃v.N = v and Q(v) (3.6)

such that Q
T

: TermFPC ! U whenever Q : ValueFPC ! U.

Lemma 3.3. If M : TermFPC and Q : ValueFPC ! U, then M +k Q iff M )k

Q

T

.

This has an immediate corollary.

Corollary 3.4. M +k v ,M )k

v

Operational Correspondence We now prove the correspondence between
the big-step and the small step operational semantics. First we need the
following lemma.

Lemma 3.5. Let M,N be closed terms of type ⌧ , and let Q : ValueFPC ⇥N! U.

1. If M !0
N and N +k Q then M +k Q

2. If M !1
N and .(N +k Q) then M +k+1

Q
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Proof. First we prove (1) by induction on M !0
N . We start off with the

bases cases. When (�x.M)(N) !0
M [N/x] by assumption we have that

M [N/x] +k Q, thus, the predicate Q

0 defined as Q0(�x.L, n) = L[N/x] +n Q

– where L is bound – is true for �x.M and k. Hence �x.M +k Q

0 is also true
by Definition 3.2.1 and by Definition 3.2.1 again we get (�x.M)(N) +k Q.
For the case of case (inl L) of x1.M ;x2.N !0

M [L/x1] by assumption
we have M [L/x1] +k Q and we know that the predicate Q

0 defined as
Q

0(inl P, n) = M [P/x] +n Q – where P is bound – is true for inl L and k,
i.e. Q0(inl L, k) is inhabited. Therefore, inl L +k Q

0 is inhabited as well. It
follows by Definition 3.2.1 that

case (inl L) of x1.M ;x2.N +k Q

The case of case (inr L) of x1.M ;x2.N !0
N [L/x1]) is similar to the

previous case. For the case when fst hM,Ni !0
M assume M +k Q is

inhabited, then also Q

0 defined as Q

0(hP,Ri, n) = P +n Q – where P,R

are bound – is inhabited for hM,Ni and k and thus also hM,Ni +k Q

0. By
Definition 3.2.1 we get fst hM,Ni +k Q. The case of snd hM,Ni !0

N is
similar to the previous case.

We now prove the inductive cases. When M1N !0
M2N let assume

M2N +k Q. We know by Definition 3.2.1 that M2 +k Q

0 for Q0 as in Defini-
tion 3.2.1. By induction hypothesis M1 +m Q

0. Thus, by Definition 3.2.1
again we get M1N +k Q. For the case of case L of x1.M ;x2.N !0

case L

0 of x1.M ;x2.N assume

case L

0 of x1.M ;x2.N +k Q

By definition L

0 +k Q

0. By induction hypothesis L +k Q

0 and by definition
case L of x1.M ;x2.N +k Q. The case when fst M !0 fst M

0 assume
fst M

0 +k Q. By definition M

0 +k Q

0. By induction hypothesis M +k Q

which by definition is fst M +k Q. The other case snd M !0 snd M

0

is similar to the previous one. When unfold M !0 unfold M

0 as-
sume unfold M

0 +k Q. By assumption we know that M 0 +k Q

0 where
Q

0(fold M

00
, n+1) = .(M 00 +n�1

Q). Since M !0
M

0 by induction hypoth-
esis M +m Q

0. Thus, by definition unfold M +k Q.
We prove now (2) by induction on M !1

N . We start off with the
base cases. The only case is when unfold (fold M) !1

M . So, assume
.(M +k Q) and define the predicate Q

0 to be

Q

0(fold L, n+ 1)
def
== .L +(n�1)

Q

It is easy to see that Q0(fold M,k + 1) is inhabited. Thus, by definition
unfold (fold M) +k+1

Q holds as required.
We now prove the inductive cases. When M1N !1

M2N assume
.(M2N +k Q). By definition this is equivalent to .(M2 +k Q

0) where
Q

0(�x.L, l) = L[N/x] +l Q. By induction hypothesis we get M1 +k+1
Q

0

which is by definition what we wanted. When case L of x1.M ;x2.N !1

case L

0 of x1.M ;x2.N assume

.(case L

0 of x1.M ;x2.N +k Q)
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By definition .(L0 +k Q

0). By induction hypothesis L +k+1
Q

0 and by defi-
nition case L of x1.M ;x2.N +k+1

Q. When fst M !1 fst M

0 assume
.(fst M

0 +k Q). By definition .(M 0 +k Q

0). By induction hypothesis
M +k+1

Q

0. Thus, by definition fst M +k+1
Q. When snd M !1 snd M

0

is similar to the previous case. When unfold M !1 unfold M

0 assume
M !1

M

0 and .(unfold M

0 +k Q). By definition .(M 0 +k Q

0) where
Q

0(fold N,m+ 1) = N +m�1
Q. By induction hypothesis M +k+1

Q

0 thus
by definition unfold M +k+1

Q as desired.

The following lemma follows almost straightforwardly from the previous
one.

Lemma 3.6. For all MN : TermFPC, if M !0
⇤ N and N +k v then M +k v

Proof. Trivial by using Lemma 3.5.

However, we cannot prove directly Lemma 3.3 which states the corre-
spondence between the big-step and the small-step operational semantics.
This is because the right hand side of the big-step semantics in Figure 3.5
states convergence at most with some k steps whereas the small-step in Defi-
nition 3.2 – when stated with values on right hand side – states convergence
in exactly some number of steps. For this reason we need an intermediate
formulation of the transitive closure which we give as follows:

Definition 3.7. Let Q be a predicate of type TermFPC⇥N! U and define M Vk

Q

as an inductive dependent type as follows

⌃N : TermFPC.M !0
⇤ N and Q(N, k)

M Vk

Q

⌃M 0
M

00 : TermFPC.M !0
⇤ M

0 and M

0 !1
M

00 and .(M 00 Vk

Q)

M Vk+1
Q

The following proposition follows straightforwardly from the definition.

Proposition 3.8. For all M,N : TermFPC and Q : TermFPC⇥N! U, if M !0
⇤ N

and N Vk

Q then M Vk

Q

The small-step semantics are compositional in the following sense.

Lemma 3.9. For all M : TermFPC, if M Vk

Q

0 with Q

0(L, n) = L Vn

Q then
M Vk

Q

Proof. By induction on M Vk

Q

0. In the first case we have that M !0
⇤ N

and Q

0(N, k), i.e. M Vk

Q, so by Proposition 3.8 we get M Vk

Q. Now the
second case. By assumption we get M !0

⇤ M
0, M 0 !1

M

00 and .(M 00 Vk�1

Q

0). By induction hypothesis we get .(M 00 Vk�1
Q) which together with

M !0
⇤ M

0 and M

0 !1
M

00 give by definition M Vk

Q.

The small-step semantics as in Definition 3.7 behaves well w.r.t. the
contexts. To make this statement precise we define, for some context E as in
Figure 3.0.4 and for some predicate Q on terms, a predicate Q

E

as follows:

Q

E

(T, k)
def
== ⌃M.T = E[M ] and Q(M,k)
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Intuitively, Q
E

is true for terms of the form E[M ] for some M that satisfies
Q. We use Q

E

(E[M ], k) to explicitly indicate that the converging terms is of
the form E[M ] and that M is the term satisfying Q. We prove now that V is
closed under context application.

Lemma 3.10. For all M : TermFPC, if M Vm

Q then E[M ] Vm

Q

E

.

Proof. The proof is by induction on M Vm

Q. For the first case there exists
M

0 such that M !0
⇤ M

0 and that satisfies the predicate Q(M 0
,m). By easy

induction on the relation!0
⇤ we get E[M ]!0

⇤ E[M 0]. Now, E[M 0] is indeed
of the form required by Q

E

and M

0 satisfies Q(M 0
,m), hence E[M ])k 0Q

E

.
As for the second case there exists m

0 s.t. m = m

0 + 1 and there exists
an M

0 and M

00 such that M !0
⇤ M

0, M 0 !1
M

00 and .(M 00 Vm

0
Q). By

assumption we get E[M ] !0
⇤ E[M 0] and E[M 0] !1

E[M 00]. By induction
hypothesis we get .(E[M 00] Vm

0
Q

E

) and by definition E[M ] Vm+1
Q

E

,
thus concluding the case.

We prove that the small-step operational semantics is sound w.r.t the
big-step.

Lemma 3.11. Let M be a closed term and Q : ValueFPC ⇥ N! U a relation on
values. If M Vk (�N.�z.(N +z Q)) then M +k Q

Proof. The proof is by induction on M Vk (�N.�z.(N +z Q)).
First case is straightforward from Lemma 3.6.
Now we prove the second case. We have that M !0

⇤ M

0, M 0 !1
M

00

and .(M 00 Vk

0
� hN, zi .(N +z Q)). By induction hypothesis we know that

.(M 00 +k0 Q) and by Lemma 3.5 and Lemma 3.6 we obtain M +k Q.

In the following lemma we are going to prove that the big-step opera-
tional semantics correspond to the small-step. To this end, we overload the
lifting of the predicates (3.6) as follows: for a predicate Q : ValueFPC ⇥N!
U,

Q

T

def
== � hN, ki .⌃v.N = v and Q(v, k)

Also we are going to make use of the fact that M +k � is covariant in the
following sense:

Proposition 3.12. Let Q and R two predicates on values. If Q implies R then
M +k Q implies M +k R.

Now we can prove that the big-step operational semantics correspond to
the intermediate definition of small-step semantics.

Lemma 3.13. If M : TermFPC and Q : ValueFPC ⇥ N ! U, then M +k Q iff
M Vk

Q

T

Proof. We first prove that if M +k Q then M Vk

Q

T

. The proof is by induc-
tion on M +k Q. The first case is the value. When v +k Q by definition Q(v, k)
is inhabited. This together with the fact that v !0

⇤ v by reflexivity give us
v Vk

�N.�k.⌃v.N = v and Q(v, k). When case L of x1.M ;x2.N +k Q by
definition L +k Q

1 with

Q

1(inl L

0
, l) = M [L0

/x] +l Q and Q

1(inr L

0
, l) = N [L0

/x] +l Q
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By induction hypothesis on M [L0
/x] +m Q and N [L0

/x] +m Q , we know
that Q1 implies Q2 where

Q

2(inl L

0
, l) = M [L0

/x] Vl

Q

T

and Q

2(inr L

0
, l) = N [L0

/x] Vl

Q

T

thus by Lemma 3.12 we get L +k Q

2. By induction hypothesis on L +k Q

2

we get L Vk

Q

2
T

. Since Q

2 only takes values this is equivalent to L Vk

Q

2.
By applying Lemma 3.10 with the context E = case [�] of x1.M ;x2.N , we
get E[L] Vk

Q

2
E

Note that the lifting of Q2 for the context E, namely Q

2
E

is
equivalently formulated as

Q

2
E

(E[inl L

0], l) = M [L0
/x] Vl

Q

T

and
Q

2
E

(E[inr L

0], l) = N [L0
/x1] Vl

Q

T

Since case inl L

0 of x1.M ;x2.N !0
M [L0

/x1] then Q

2
E

is equivalently
formulated as

Q

2
E

(E[inl L

0], l) = E[inl L

0] Vl

Q

T

thus case L of x1.M ;x2.N Vk

Q

2
E

. Directly by Lemma 3.9 we get

case L of x1.M ;x2.N Vk

Q

T

Now the case for the fst L +k Q. By definition fst L +k Q is equivalent to
L +k Q

0 where Q

0 is defined as

Q

0(hM,Ni, l) = M +l Q

By induction hypothesis on M +l Q we get L +k Q

2 where

Q

2(hM,Ni, l) = M Vl

Q

T

By induction hypothesis on L +k Q

2 we get L Vk

Q

2
T

which – since Q

2 only
takes values – is equivalent to L Vk

Q

2. By applying Lemma 3.10 with the
context fst [�], we get fst L Vk

Q

3 where Q

3 is

Q

3(fst hM,Ni, l) = Q

2(hM,Ni, l)

which can be rewritten equivalently as

Q

3(fst hM,Ni, l) = M Vl

Q

T

By Lemma 3.9 we get fst L Vk

Q

T

thus concluding the case. The case for
snd L +k Q is similar.

Now the case for MN +k Q. By definition M +k Q

1, where Q1(�x.L,m) =
L[N/x] +m Q. By induction hypothesis on L[N/x] +m Q we get that Q1 im-
plies

Q

2(�x.L,m) = L[N/x] Vm

Q

T

thus M +k Q

2. Since (�x.L)N !0
⇤ L[N/x], by applying Proposition 3.8 we

get that Q2 implies

Q

3(�x.L,m) = (�x.L)N Vm

Q

T
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thus M +k Q

3. By applying the induction hypothesis on M we get M Vk

Q

3
T

which is equivalent to M Vk

Q

3. By applying Lemma 3.10 with context
[�]N we get MN Vk

Q

4 where Q

4 is defined as

Q

4((�x.L)N,m) = Q

3(�x.L,m)

which is equal to

Q

4((�x.L)N,m) = (�x.L)N Vm

Q

T

Directly from Lemma 3.9 we get MN Vk

Q

T

.
Now the case for unfold M +k Q. By definition we have M +k Q

1

where
Q

1(fold N,n) = ⌃(n� 1)..(N +n�1
Q)

By induction hypothesis on N +n�1
Q we get that Q1 implies Q2 where

Q

2(fold N,n) = ⌃(n� 1)..(N Vn�1
Q

T

)

thus M +k Q

2. Since unfold (fold N)!1
N , Q2 implies Q3 where

Q

3(fold N,n) = unfold (fold N) Vn

Q

T

thus M +k Q

3. By induction on M +k Q

3 we get M Vk

Q

3
T

which is
actually M Vk

Q

3. By applying Lemma 3.10 with context unfold [�] we
get unfold M Vk

Q

4 where

Q

4(unfold M

0
, n) = Q

3(M 0
, n)

which is equal to the following definition

Q

4(unfold fold N,n) = unfold (fold N) Vn

Q

T

Because Q

4(N,n) implies N Vn

Q

T

, by applying Lemma 3.9 we obtain
unfold M Vk

Q

T

.
We prove now that if M Vk

Q

T

then M +k Q. Assume M Vk

Q

T

. Since
Q

T

implies Q0 where
Q

0(N, k) = N +k Q

We can apply Lemma 3.11 thus getting M +k Q.

We now prove the two definitions for the small-step semantics coincide.
To do this we have to lift the predicate on values and steps as follows: for a
predicate Q : TermFPC ! U define

Q0(N, k)
def
== k = 0 and Q(N)

Intuitively, Q0 considers only reductions when the remaining number of
steps is zero.

Lemma 3.14. For all FPC terms M and Q : TermFPC ! U, M Vk

Q0 iff
M )k

Q.

Proof. We first prove the left-to-right direction by induction on M Vk

Q0.
The base case is when M !0

⇤ N and Q0(N, k). The latter implies k = 0 and



62 Chapter 3. Recursive Types in Guarded Type Theory

Q(N), so we have to prove M )0
Q which is straightforward. The inductive

case follows by definition.
We now prove the right-to-left direction assuming that M )k

Q and
proceeding by induction on k. The base case is k = 0, therefore M !0

⇤ N

and Q(N). by assumption Q0(N, k) is true. Hence M Vk

Q0. The inductive
case is k = k

0+1. By definition M !0
⇤ M

0 and M

0 !1
M

00 and .(M 00 )k

0
Q).

By induction .(M 00 Vk

0
Q0) and by definition M Vk

Q0.

Now we can prove Lemma 3.3.
Proof of Lemma 3.3.

• M +k Q0 iff M Vk

Q0 is a particular instance of Lemma 3.13

• M Vk

Q0 iff M )k

Q is by Lemma 3.14

3.4 Denotational Semantics

We now define the denotational semantics of FPC. First we recall the defini-
tion of the guarded recursive version of the lifting monad on types from [PMB15].
This is defined as the unique solution to the guarded recursive type equation1

LA

⇠= A+ .LA

which exists because the recursive variable is guarded by a .. This iso-
morphism induces a map ✓

LA

: .LA ! LA and a map ⌘ : A ! LA. An
element of LA is either of the form ⌘(a) or ✓(r). We think of these cases as
values “now” or computations that “tick”. Moreover, given f : A! B with
B a .-algebra (i.e., equipped with a map ✓

B

: .B ! B), we can lift f to a
homomorphism of .-algebras f̂ : LA! B as follows

f̂(⌘(a))
def
== f(a)

f̂(✓(r))
def
== ✓

LB

(next(f̂)~ r)
(3.7)

Formally f̂ is defined as a fixed point of a term of type .(LA! B)! LA!
B.

Intuitively LA is the type of computations possibly returning an element
of A, recording the number of steps used in the computation. We can define
the divergent computation as ? def

== fix(✓) and a “delay” map �

LA

of type
LA ! LA for any A as �

LA

def
== ✓

LA

� next. The latter can be thought of as
adding a step to a computation. The lifting L extends to a functor. For a
map f : A! B the action on morphisms can be defined using the unique
extension as L(f) def

== [
⌘ � f .

3.4.1 Interpretation of types

The typing judgement ⇥ ` ⌧ is interpreted as a map of type U |⇥| ! U, where
|⇥| is the cardinality of the set of variables in ⇥. This interpretation map is

1Since guarded recursive types are encoded using universes, L is strictly an operation on
U. As stated in Section 3.2 we will only apply L to types that have codes in U.
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J⇥ ` ↵K (⇢) def
== ⇢(↵)

J⇥ ` 1K (⇢) def
== L1

J⇥ ` ⌧1 ⇥ ⌧2K (⇢)
def
== J⇥ ` ⌧1K (⇢)⇥ J⇥ ` ⌧2K (⇢)

J⇥ ` ⌧1 + ⌧2K (⇢)
def
== L(J⇥ ` ⌧1K (⇢) + J⇥ ` ⌧2K (⇢))

J⇥ ` ⌧1 ! ⌧2K (⇢)
def
== J⇥ ` ⌧1K (⇢)! J⇥ ` ⌧2K (⇢)

J⇥ ` µ↵.⌧K (⇢) def
== .(J⇥,↵ ` ⌧K (⇢, J⇥ ` µ↵.⌧K (⇢)))

FIGURE 3.14.1: Interpretation of FPC types

defined by a combination of induction and guarded recursion for the case of
recursive types as in Figure 3.14.1.

More precisely, the case of recursive types is defined the fixed point of a
map from .(U |⇥| ! U) to U |⇥| ! U defined as follows:

�X.�⇢.

b
.(next(J⌧K)~ next(⇢)~ (X ~ next(⇢)) (3.8)

ensuring (using El(�) explicitly)

El(J⇥ ` µ↵.⌧K ⇢)
⌘ El(b.(next(J⌧K)~ next(⇢)~ (next(J⇥ ` µ↵.⌧K)~ next(⇢))))

⌘ El(b.(next(J⌧K (⇢, (J⇥ ` µ↵.⌧K ⇢)))))
⌘ .El(J⌧K (⇢, (J⇥ ` µ↵.⌧K ⇢)))

The substitution lemma for types can be proved using guarded recursion
in the case of recursive types.

Lemma 3.15 (Substitution Lemma for Types). Let � be a well-formed type
with variables in ⇥ and let ⇢ be of type U |⇥|, for ⇥,� ` ⌧ , J⇥ ` ⌧ [�/�]K (⇢) =
J⇥,� ` ⌧K (⇢, J⇥ ` �K (⇢))

Proof. The proof is by induction on ⇥,� ` ⌧ . We start off with the case of the
unit type. We know by definition that J⇥ ` 1[�/�]K (⇢) is equal to J⇥ ` 1K (⇢)
which is equal to J⇥,� ` 1K (⇢, J⇥ ` �K (⇢)), thus concluding the case. Now
we consider the type variable case. Assume that ⇥,� ` ↵. We split the proof
in two cases. If ↵ = � then J⇥ ` �[�/�]K (⇢) = J⇥ ` �K (⇢), thus concluding
the case. If ↵ is not � then J⇥ ` ↵[�/�]K (⇢) is equal to J⇥ ` ↵K (⇢) which is
equal to the right-hand side.

We consider now the function case. Assume that ⇥,� ` � ! ⌧ . We know
by definition that J⇥ ` (⌧1 ! ⌧2)[�/�]K (⇢) is equal to

J⇥ ` ⌧1[�/�]! ⌧2[�/�]K (⇢)

which again by definition is equal to J⇥ ` ⌧1[�/�]K (⇢) ! J⌧2[�/�]K (⇢). By
induction hypothesis we get

J⇥ ` ⌧1K (⇢, J� ` �K (⇢))! J⌧2K (⇢, J� ` �K (⇢))
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which by definition is J⇥ ` ⌧1 ! ⌧2K (⇢, J� ` �K (⇢)). The case for ⇥,� ` �⇥⌧
is similar to the previous case.

Now we consider the case for the co-product, namely when ⇥,� ` ⌧1+⌧2.
We know by definition that J⇥ ` (⌧1 + ⌧2)[�/�]K (⇢) equals

J⇥ ` ⌧1[�/�] + ⌧2[�/�]K (⇢)

By definition of the interpretation this equals

L(J⇥ ` ⌧1[�/�]K (⇢) + J⇥ ` ⌧2[�/�]K (⇢))

Now by induction hypothesis on both ⌧1 and ⌧2 we get

L(J⇥,� ` ⌧1K (⇢, J� ` �K (⇢))) + L(J⇥,� ` ⌧2K (⇢, J� ` �K (⇢)))

which is equal to J⇥,� ` ⌧1 + ⌧2K (⇢, J� ` �K (⇢)).
Now the most interesting case of ⇥,� ` µ↵.⌧ . We prove this case by

guarded recursion, thus assuming that

.(J⇥ ` (µ↵.⌧)[�/�]K (⇢) = J⇥,� ` µ↵.⌧K (⇢, J⇥ ` �K (⇢))) (3.9)

By definition of substitution we know that J⇥ ` µ↵.⌧ [�/�]K (⇢) equals

J⇥ ` µ↵.(⌧ [�/�])K (⇢)

assuming that ↵ is not � and is not free in �. By unfolding the definition for
the denotation function on the recursive types we obtain

.(J⇥,↵ ` ⌧ [�/�]K (⇢, J⇥ ` µ↵.(⌧ [�/�])K (⇢)))

By induction hypothesis on ⌧ , this is equal to

.(J⇥,↵,� ` ⌧K (⇢, Jµ↵.(⌧ [�/�])K (⇢), J⇥,↵ ` �K (⇢, Jµ↵.(⌧ [�/�])K (⇢))))

Since � is not free in ↵ this is equal to

.(J⇥,↵,� ` ⌧K (⇢, Jµ↵.(⌧ [�/�])K (⇢), J⇥ ` �K (⇢))) (3.10)

We want now to apply the guarded recursive hypothesis. To do this note
that (3.10) is a guarded fixed point construction on universes as defined in
Figure 3.14.1 and explained in (3.8). Thus, (3.10) is actually equal to

El(b.(next(J⇥,↵,� ` ⌧K (⇢, J⇥ ` �K (⇢))~ (next(Jµ↵.(⌧ [�/�])K (⇢))))) (3.11)

modulo rewritings using (3.2). Note also that Jµ↵.(⌧ [�/�])K (⇢) is appearing
under the next in the form of

next(Jµ↵.(⌧ [�/�])K)~ (next(⇢)) (3.12)

We now apply the guarded recursion hypothesis (3.9). In the hypothesis
the . is applied to the equality type (and not as a result of the fix-point
construction on codes of a type). Since for every type X,Y , if .(X = Y )
then next(X) = next(Y ), the guarded hypothesis (3.9) implies the following
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equality

next(J⇥ ` (µ↵.⌧)[�/�]K (⇢)) = next(J⇥,� ` µ↵.⌧K (⇢, J⇥ ` �K (⇢)))

By virtue of this fact we can rewrite (3.10) as

.(J⇥,↵,� ` ⌧K (⇢, J⇥,� ` µ↵.⌧K (⇢, J⇥ ` �K (⇢)), J⇥ ` �K (⇢)))

By switching the order of the arguments we get

.(J⇥,�,↵ ` ⌧K (⇢, J⇥ ` �K (⇢), J⇥,� ` µ↵.⌧K (⇢, J⇥ ` �K (⇢))))

and by definition this is equal to

J⇥,� ` µ↵.⌧K (⇢, J⇥ ` �K (⇢))

thus concluding the case and the proof.

The following lemma follows directly from the substitution lemma.

Lemma 3.16. For all types ⌧ and environments ⇢ of type U |⇥|,

J⇥ ` µ↵.⌧K (⇢) = . J⇥ ` ⌧ [µ↵.⌧/↵]K (⇢)

Proof. By definition we know that J⇥ ` µ↵.⌧K (⇢) equals to

.(J⇥,↵ ` ⌧K (⇢, J⇥ ` µ↵.⌧K (⇢)))

By Substitution Lemma 3.15 this is equal to .(J⇥ ` ⌧ [µ↵.⌧/↵]K (⇢))

The interpretation of every closed type ⌧ carries a .-algebra structure,
i.e., a map ✓

⌧

: . J⌧K ! J⌧K, defined by guarded recursion and structural
induction on ⌧ as in Figure 3.16.1. The case of recursive types is welltyped by
Lemma 3.16. The case of products uses the functorial action of . as described
in Section 3.2. The case of the fixed point can be formally constructed as a
fixed point of a term of type

G : .(⇧� : TypeFPC .(. J�K! J�K))! ⇧�.(. J�K! J�K)

Suppose F : .(⇧� : TypeFPC .(. J�K! J�K)), and define G(F ) essentially as
in Figure 3.16.1 but with the clause G(F )

⌧ [µ↵.⌧/↵] for recursive types being
defined as

�x : . Jµ↵.⌧K .(F
⌧ [µ↵.⌧/↵] ~ x) (3.13)

Define ✓ as the fixed point of G. Then

✓

µ↵.⌧

(x) ⌘ G(next (✓))
µ↵.⌧

(x)

⌘ next (✓)
⌧ [µ↵.⌧/↵] ~ (x)

(3.14)

Using the ✓ we define the delay operation which, intuitively, takes a
computation and adds one step.

�

�

def
== ✓

�

� next .
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✓1
def
== �x : . J1K .✓

LJ1K(x)

✓

⌧1⇥⌧2

def
== �x : . J⌧1 ⇥ ⌧2K .h✓⌧1(.(⇡1)(x)), ✓⌧2(.(⇡2)(x))i

✓

⌧1+⌧2

def
== �x : . J⌧1 + ⌧2K .✓

LJ⌧1+⌧2K(x)

✓

�!⌧

def
== �f : .(J�K! J⌧K).�x : J�K .✓

⌧

(f ~ (next(x)))

✓

µ↵.⌧

def
== �x : . Jµ↵.⌧K . next(✓

⌧ [µ↵.⌧/↵])~ (x)

FIGURE 3.16.1: Definition of ✓� : . J�K! J�K

3.4.2 Interpretation of terms

Figure 3.16.2 defines the interpretation of judgements � `M : � as functions
from J�K to J�K where Jx1 : �1, · · · , xn : �

n

K def
== J�1K⇥ · · ·⇥ J�

n

K. In the case
of case b

f refers to the extension of functions to homomorphisms defined
above, using the fact that all types carry a .-algebra structure. The interpre-
tation of fold is welltyped because next(JMK (�)) has type . J⌧ [µ↵.⌧/↵]K
which by Lemma 3.16 is equal to Jµ↵.⌧K. In the case of unfold, since JMK (�)
has type Jµ↵.⌧K, which by Lemma 3.16 is equal to . J⌧ [µ↵.⌧/↵]K, the type of
✓

⌧ [µ↵.⌧/↵](JMK (�)) is J⌧ [µ↵.⌧/↵]K.

Lemma 3.17. For all M , if � `M : ⌧ [µ↵.⌧/↵] then

Junfold (fold M)K (�) = �

⌧ [µ↵.⌧/↵] JMK (�)

Proof. Straightforward by definition of the interpretation and by the type
equality from Lemma 3.16.

Lemma 3.18 (Substitution Lemma). Let � ⌘ x1 : �1, · · · , x
k

: �
k

be a context
such that � `M : ⌧ . For all � ` N

i

: �
i

with i 2 {1, · · · , k} and � 2 J�K,
r
� `M [ ~N/x] : ⌧

z
(�) = J� `M : ⌧K (

r
� ` ~

N : ~�
z
)(�))

Proof. By induction on the typing judgement � `M : ⌧ .
The cases for � ` hi : 1, � ` x : ⌧ , � ` M N : ⌧ , � ` fst M : ⌧1,

� ` snd M : ⌧2, � ` hM,Ni : ⌧1 ⇥ ⌧2 are standard.
For the case � ` inl M : ⌧1 + ⌧2 we start from

r
� ` (inl M)[ ~N/~x] : ⌧1 + ⌧2

z
(�)

By substitution (inl M)[ ~N/~x] equals inl (M [ ~N/~x]). We also know that
its denotation equals ⌘(inl

r
(M [ ~N/~x])

z
(�)) by induction hypothesis this is

equal to
⌘(inl J� ` (M) : ⌧1 + ⌧2K (�,

r
� ` ~

N : ~�
z
(�)))

which is now by definition what we wanted. The case for � ` inr N : ⌧1+⌧2
is similar.
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J� ` t : �K : J�K! J�K

J� ` xK (�) def
== �(x)

J� ` hiK (�) def
== ⌘(?)

J� ` hM,NiK (�) def
== hJMK (�), JNK (�)i

J� ` fst MK (�) def
== ⇡1(JMK (�))

J� ` snd MK (�) def
== ⇡2(JMK (�))

J� ` �x.MK (�) def
== �x. JMK (�, x)

J� `MNK (�) def
== JMK (�) JNK (�)

J� ` inl EK (�) def
== ⌘(inlJEK (�))

J� ` inr EK (�) def
== ⌘(inrJEK (�))

J� ` case L of x1.M ;x2.NK (�) def
== b

f(JLK (�))

where f(inl(x1))
def
== JMK (�, x1)

f(inr(x2))
def
== JNK (�, x2)

J� ` fold MK (�) def
== next(JMK (�))

J� ` unfold MK (�) def
== ✓

⌧ [µ↵.⌧/↵](JMK (�))

FIGURE 3.16.2: Interpretation of FPC terms
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Now the case for � ` case L of x1.M ;x2.N : �. By definition we know
that

r
� ` (case L of x1.M ;x2.N)[ ~N/~x] : ⌧

z
(�) is equal

r
� ` case L[ ~N/~x] of x1.M [ ~N/~x];x2.N [ ~N/~x] : ⌧

z
(�)

which is by definition of the interpretation equal to

b
f(�x1.

r
M [ ~N/~x]

z
(�, x1),�x2.

r
N [ ~N/~x]

z
(�, x2))(

r
L[ ~N/~x]

z
(�))

where b
f is as in Figure 3.16.2. By induction hypothesis we know that this is

equal to

b
f(�x1. JMK (�, x1,

r
� ` ~

N : ~�
z
(�)), (�x2. JNK (�, x2,

r
� ` ~

N : ~�
z
(�))))

(JLK (�,
r
� ` ~

N : ~�
z
(�)))

which is equal by definition to

J� ` case L of x1.M ;x2.N : ⌧K (�,
r
� ` ~

N : ~�
z
(�))

Now the fixed point cases. For the case � ` unfold M : ⌧ [µ↵.⌧/↵]

we know that
r
� ` (unfold M)[ ~N/~x]

z
(�) is equal by definition of the

substitution function to
r
� ` unfold (M [ ~N/~x])

z
(�) which by definition

of interpretation is ✓
⌧ [µ↵.⌧/↵](

r
� ` (M [ ~N/~x])

z
(�)). By induction hypothesis

this is equal to
✓

⌧ [µ↵.⌧/↵](J� `MK (
r
� ` ~

N

z
(�))

which by definition is J� ` unfold (M)K (
r
� ` ~

N

z
(�)). For the case � `

fold M : µ↵.⌧ we know that
r
� ` (fold M)[ ~N/~x]

z
(�) is equal by defin-

tion to
r
� ` fold (M [ ~N/~x])

z
(�) which is by definition of the interpreta-

tion equal to next(
r
� ` (M [ ~N/~x])

z
(�)). By induction hypothesis we get

fold(J� `MK (
r
⇥ ` ~

N

z
(�)) which is by definition

J� ` fold (M)K
r
⇥ ` ~

N

z
(�)

Lemma 3.19. 1.

J �x : ⌧1 + ⌧2.case x of x1.M ;x2.NK (�)(✓(r))
=✓(next(J �x : ⌧1 + ⌧2.case x of x1.M ;x2.NK (�))~ r)



3.4. Denotational Semantics 69

2. If JLK (�) = �(JL0K (�)), then

Jcase L of x1.M ;x2.NK (�)
=�

q
case L

0 of x1.M ;x2.N
y
(�)

Proof. By definition

J�x.case x of x1.M ;x2.NK (�)(✓
⌧1+⌧2(↵))

is equal to
b
f(JMK (�), JNK (�))(✓

⌧1+⌧2(↵))

By definition of the unique extension for case we can pull out the ✓ and get

✓

�

(next( bf(JMK (�), JNK (�)))~ ↵)

which is by definition of the interpretation is

✓

�

(next J�x.case x of x1.M ;x2.NK (�)~ ↵)

Now we prove the second statement. By abstracting out L,

Jcase L of x1.M ;x2.NK (�)

is equal to
J�x.case x of x1.M ;x2.NK (�)(JLK (�))

By assumption JLK (�) = � JL0K (�), this is equal to

J�x.case x of x1.M ;x2.NK (�)(�
⌧1+⌧2(

q
L

0y (�)))

By definition of � this is equal to

J�x.case x of x1.M ;x2.NK (�)(✓
⌧1+⌧2(next(

q
L

0y (�))))

By applying the first part of this Lemma 3.19(1) we get

✓

�

(next(J�x.case x of x1.M ;x2.NK (�))~ (next(
q
L

0y (�))))

Since next distributes over ~ we get

✓

�

(next(J�x.case x of x1.M ;x2.NK (�,
q
L

0y (�))))

which is by defintion

�

�

(J�x.case x of x1.M ;x2.NK (�))(
q
L

0y (�))

Lemma 3.20. If ` µ↵.⌧ then

1.

J �x : µ↵.⌧.unfold xK (✓
µ↵.⌧

(r)) = ✓

⌧ [µ↵.⌧/↵](next(✓⌧ [µ↵.⌧/↵])~ r)
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2. If JMK (�) = �

µ↵.⌧

(JM 0K (�)), then

Junfold MK (�) = �

⌧ [µ↵.⌧/↵](
q
unfold M

0y (�))

Proof. The interpretation for J �x : µ↵.⌧.unfold xK (✓
µ↵.⌧

(r)) gives quite di-
rectly ✓

⌧ [µ↵.⌧/↵](✓µ↵.⌧ (r)). This type checks as r has type . Jµ↵.⌧K, thus
(✓

µ↵.⌧

(r)) has type Jµ↵.⌧K which – by Lemma 3.16 – is equal to . J⌧ [µ↵.⌧/↵]K.
Thus the term ✓

⌧ [µ↵.⌧/↵](✓µ↵.⌧ (r)) has type J⌧ [µ↵.⌧/↵]K. Now by definition
of ✓

µ↵.⌧

this is equal to ✓

⌧ [µ↵.⌧/↵](next(✓⌧ [µ↵.⌧/↵]) ~ (r)) which is what we
wanted.

Now we prove the 2) statement. By assumption and definition of � we
know that

J �x : µ↵.⌧.unfold xK (JMK (�))

equals to J �x : µ↵.⌧.unfold xK (✓
µ↵.⌧

(next(JM 0K (�)))) Using statement 1)
this is equal to ✓

⌧ [µ↵.⌧/↵](next(✓⌧ [µ↵.⌧/↵])~ (next(JM 0K (�)))) By rule (3.2) this
is equal to ✓

⌧ [µ↵.⌧/↵] next((✓⌧ [µ↵.⌧/↵])(JM 0K (�))) which is now by definition
of the interpretation equal to

✓

⌧ [µ↵.⌧/↵] next(J �x : µ↵.⌧.unfold xK (
q
M

0y (�)))

which by definition of � is equal to

�

⌧ [µ↵.⌧/↵](J �x : µ↵.⌧.unfold xK (
q
M

0y (�)))

Lemma 3.21. Let M be a closed term of type ⌧ . If M !k

N then JMK (⇤) =
�

k JNK (⇤)
Proof. The proof goes by induction on M !k

N . The cases when k = 0
follow straightforwardly from the structure of the denotational model.

The case unfold (fold M)!1
M follows directly from Lemma 3.17.

The case for (�x : �.M)(N) !0
M [N/x] is straightforward from by

Substitution Lemma 3.18.
The case for case (inl L) of x1.x.M ;x2.x.N !0

M [L/x] and the
case for case (inr L) of x1.x.M ;x2.x.N !0

N [L/x] follow directly by
definition.

Also the elimination for the product, namely fst hM,Ni !0
M and

snd hM,Ni !0
N follow directly from the definition of the interpretation.

Now we prove the inductive cases. For the case M1N !k

M2N we
know that by definition JM1NK (⇤) = JM1K (⇤) JNK (⇤). By induction hy-
pothesis we know that JM1K (⇤) = �

k

�!⌧

(JM2K (⇤)), thus JM1K (⇤) JNK (⇤) =
(�k

�!⌧

(JM2K (⇤))) JNK (⇤) By definition of � and ✓ this is equal to �k
⌧

(JM2K (⇤) JNK (⇤)).
Now the case for

case L of x1.M ;x2.N !k case L

0 of x1.M ;x2.N

The induction hypothesis gives JLK = �

⌧1+⌧2 � JL0K, and so Lemma 3.19
applies proving the case.

The case for fst M !k fst M

0 and for snd M !k snd M

0 are similar
to the previous case.

Finally, the case for unfold M1 !k unfold M2. By definition we know
that Junfold M1K (⇤) = ✓(JM1K (⇤)). By induction hypothesis this is equal
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to ✓(�k
µ↵.⌧

(JM2K (⇤))) which by Lemma 3.20 is equal to �k
⌧ [µ↵.⌧/↵](✓(JM2K (⇤)))

thus concluding.

Lemma 3.22. Let M be a closed term of type ⌧ , if M )k

N then JMK (⇤) =
�

k JNK (⇤)

Proof. By induction on k. When k = 0 Lemma 3.21 applies concluding the
case. When k = n + 1 by definition we have M !0

⇤ M

0, M 0 !1
M

00 and
.(M 00 )n

N) . By repeated application of Lemma 3.21 we get JMK (⇤) =
JM 0K (⇤) and JM 0K (⇤) = �(JM 00K (⇤)).

By induction hypothesis we get .(JM 00K (⇤) = �

n JNK (⇤)) which im-
plies next(JM 00K (⇤)) = next(�k

0 JNK (⇤))) and since � = ✓ � next, this implies
�(JM 00K (⇤)) = �

k(JNK (⇤)). By putting together the equations we get finally
JMK (⇤) = �

k JNK (⇤).

Finally, we can prove soundness.

Theorem 3.23 (Soundness). Let M be a closed term of type ⌧ , if M +k v then
JMK (⇤) = �

k JvK (⇤)

Proof. The proof follows from the fact that the small-step semantics is
equivalent to the big step, which is Corollary 3.4 and then directly by
Lemma 3.22

3.5 Computational Adequacy

Computational adequacy is opposite implication of Theorem 3.23 in the case
of terms of unit type. It is proved by constructing a (proof relevant) logical
relation between syntax and semantics. The relation cannot be constructed
just by induction on the structure of types, since in the case of recursive types,
the unfolding can be bigger than the recursive type. Instead, the relation is
constructed by guarded recursion: we assume the relation exists later, and
from that assumption construct the relation now by structural induction on
types. Thus the well-definedness of the logical relation is ensured by the
type system of gDTT, more specifically by the rules for guarded recursion.
This is in contrast to the classical proof in domain theory [Pit96], where
existence requires a separate argument.

The logical relation uses a lifting of relations on values available now,
to relations on values available later. To define this lifting, we need delayed
substitutions, an advanced feature of gDTT.

3.5.1 Delayed substitutions

In gDTT, if �, x : A ` B type is a well formed type and t has type .A in con-
text �, one can form the type . [x � t] .B. One motivation for this is to gener-
alise ~ (described in Section 3.2) to a dependent version: if f : .(⇧(x : A).B),
then f ~ t : . [x � t] .B. The idea is that if t will eventually reduce to a term
of the form nextu, and then . [x � t] .B will be equal to .B[u/x]. But if t is
open, we may not be able to do this reduction yet.

More generally, we define the notion of delayed substitution as follows.
Suppose �, x1 : A1 . . . xn : An

` is a wellformed context, and all A
i

are in-
dependent, i.e., no x

j

appears in an A

i

. A delayed substitution ⇠ : � _
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next ⇠ [x � next ⇠.t] .B ⌘ next ⇠.(B[t/x]) (3.15)
next ⇠ [x � t] .x ⌘ t (3.16)
next ⇠ [x � t] .u ⌘ next ⇠.u (3.17)

next ⇠ [x � t, y � u] ⇠0.v ⌘ next ⇠ [y � u, x � t] ⇠0.u (3.18)
next ⇠. next ⇠0.u ⌘ next ⇠0. next ⇠.u (3.19)

(next ⇠.t =
.⇠.A

next ⇠.s) ⌘ .⇠.(t =
A

s) (3.20)
El(b.(next ⇠.A)) ⌘ .⇠.El(A) (3.21)

FIGURE 3.23.1: The notation ⇠ [x � t] means the extension of
the delayed substitution ⇠ with [x � t]. Rule (3.17) requires
x not free in u. Rule (3.19) requires that none of the variables
in the codomains of ⇠ and ⇠0 appear in the type of u, and that

the codomains of ⇠ and ⇠0 are independent.

x1 : A1 . . . xn : An

is a vector of terms ⇠ = [x1 � t1, . . . , xn � t

n

] such that
� ` t

i

: A
i

. [Biz+16] gives a more general definition of delayed substitution
allowing dependencies between the A

i

’s, but for this paper we just need the
definition above.

If ⇠ : � _ �0 is a delayed substitution and �,�0 ` B type is a wellformed
type, then the type .⇠.B is wellformed in context �. The introduction form
states next ⇠.u : .⇠.B if �,�0 ` u : B.

In Figure 3.23.1 we recall some rules from [Biz+16] needed below. Of
these, (3.15) and (3.16) can be considered � and ⌘ laws, and (3.17) is a weak-
ening principle. Rules (3.15), (3.17) and (3.18) also have obvious versions for
types, e.g.,

.⇠ [x � next ⇠.t] .B ⌘ .⇠.(B[t/x]) (3.22)

Rather than be taken as primitive, later application ~ can be defined
using delayed substitutions as

g ~ y

def
== next [f � g, x � y] .f(x) (3.23)

Note that with this definition, the rule next(f(t)) ⌘ next f ~ next t from
Section 3.2 generalises to

next ⇠.(f t) ⌘ (next ⇠.f)~ (next ⇠.t) (3.24)

which follows from (3.15).
Rules (3.16), (3.17) and (3.19) imply the rule

next ⇠ [x � t] . nextx ⌘ next ⇠ [x � t] .t

which by (3.20) gives an inhabitant of

.⇠ [x � t] .(nextx = t) (3.25)

3.5.2 A logical relation between syntax and semantics

Figure 3.23.2 defines the logical relation between syntax and semantics. It
uses the following operation lifting relations from A to B to relations from
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⌘(⇤) R1 M
def
== M +0 hi

✓1(x) R1 M
def
== ⌃M 0

,M

00 : TermFPC.M !0
⇤ M

0 !1
M

00

and x .R1 next(M 00)

x R
⌧1⇥⌧2 M

def
== ⇡1(x) R⌧1 fst (M)

and ⇡2(x) R⌧2 snd (M)

⌘(inl(x)) R
⌧1+⌧2 M

def
== ⌃L.M +0 inl L s.t. x R

⌧1 L

⌘(inr(x)) R
⌧1+⌧2 M

def
== ⌃L.M +0 inr L s.t. x R

⌧2 L

✓

⌧1+⌧2(x) R⌧1+⌧2 L
def
== ⌃M 0

,M

00 : TermFPC.M !0
⇤ M

0 !1
M

00

and x .R
⌧1+⌧2 next(M 00)

f R
⌧!�

M

def
== ⇧x : J⌧K , N : TermFPC.x R

⌧

N

! f(x) R
�

(MN)

x R
µ↵.⌧

M

def
== ⌃M 0

M

00
.unfold M !0

⇤ M
0 !1

M

00

and x .R
⌧ [µ↵.⌧/↵] next(M

00)

FIGURE 3.23.2: The logical relation R⌧ : J⌧K⇥ TermFPC ! U.

.A to .B:
t .R u

def
== . [x � t, y � u] .(x R y) (3.26)

As a consequence of (3.22) the following statement holds:

(next ⇠.t) .R (next ⇠.u) ⌘ .⇠.(t R u) (3.27)

This lifting operation can also be expressed on codes mapping R : A !
B ! U to

�x : .A, y : .B.

b
.(next

⇥
x

0 � x, y

0 � y

⇤
.(x0 R y

0))

in fact, this operation can be shown to factor as F � next, for some F : .(A!
B ! U) ! A ! B ! U. Using this, one can formally define the logical
relation as a fixed point of a function of type

.(⇧(⌧ : TypeFPC ). J⌧K⇥ TermFPC ! U)!
(⇧(⌧ : TypeFPC ). J⌧K⇥ TermFPC ! U)

similarly to the formal definition of ✓ in the equation (3.13).

3.5.3 Proof of computational adequacy

Computational adequacy follows from the fundamental lemma below, stat-
ing that all terms respect the logical relation. The proof of the fundamental
lemma rests on the following two key lemmas.

Lemma 3.24. If f .R
⌧!�

next(M) and r .R
⌧

next(L) then

(f ~ r) .R
�

next(ML)
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Proof. By definition f .R
⌧!�

next(M) is type equal to

. [x � f ] .(x R
⌧!�

M)

which by definition is

. [x � f ] .(⇧(y : J⌧K)(L : TermFPC).y R
⌧

L! x(y) R
�

ML)

By applying the latter to r we get

. [x � f, y � r] .(⇧(L : TermFPC).y R
⌧

L! x(y) R
�

ML)

By applying this to nextL and the hypothesis we get

. [x � f, y � r] .(x(y) R
�

ML)

which is equivalent to (f ~ r) .R
�

next(ML), thus concluding the case.

Lemma 3.25. If x R
�

M and M !0
N then x R

�

N

Proof. We prove the statement by induction on �. The first case is the one
of the unit type. We proceed by case analysis on x. First we consider the
case of x = ⌘(?). From the assumption x R1 M we have that M +0 hi
which by Corollary 3.4 is M )0 hi. This together with M !0

N by the fact
that the semantics a deterministic by Lemma 3.1 gives N !0

⇤ hi. Again by
Corollary 3.4 we get N +0 hi. Now the case in which x = ✓1(x0). From the
assumption x R1 M we have that there exists M

0 and M

00 s.t. M !0
⇤ M

0

and M

0 !1
M

00 and x

0
.R1 next(M 00). We have to prove there exist N 0 and

N

00 s.t. N !0
⇤ N

0 and N

0 !1
N

00 and x

0
.R1 next(N 00). We set N 0 = M

0 and
N

00 = M

00 so that we have by assumption N

0 !1
N

00 and x

0
.Rnat next(N 00).

We are left to prove N !0
⇤ M

0. But we have M !0
N and M !0

⇤ M

0.
This together with the fact that the operational semantics are deterministic
(Lemma 3.1) implies that N !0

⇤ M
0 as we wanted.

Now we consider the case of the product. By assumption we have
⇡1(↵) R

⌧1 fst (M) and ⇡2(x) R
⌧2 snd (M). Since M !0

N then also
fst M !0 fst N and snd M !0 snd N . By induction hypothesis on ⌧1
and ⌧2 we get ⇡1(x) R⌧1 fst (N) and ⇡2(x)) R⌧2 snd (N). By definition of
the logical relation we get what we wanted.

Now we consider the case of the coproduct. We proceed by case analysis
on x. First we consider the case of x = ⌘(inl(y)). By the assumption we
have that M +0 inl (N 0) and y R

⌧1 N

0. Since M !0
N and the fact the

operational semantics are deterministic (Lemma 3.1) we get N +0 inl N

0.
By definition of the logical relation we get x R

⌧1+⌧2 N . The case where
x = ⌘(inr(y)) is similar to the previous one. The interesting case is when
x = ✓

⌧1+⌧2(y). From the assumption x R
⌧1+⌧2 M we have that there exists

M

0 and M

00 such that M !0
⇤ M

0 and M

0 !1
M

00 and y .R1 next(M 00).
We have to prove there exist N

0 and N

00 s.t. N !0
⇤ N

0 and N

0 !1
N

00

and y .R
⌧1+⌧2 next(N 00). We set N 0 = M

0 and N

00 = M

00 so that we have
by assumption N

0 !1
N

00 and y .R
⌧1+⌧2 next(N 00). We are left to prove

N !0
⇤ M

0. But we have M !0
N and M !0

⇤ M
0. This together with the fact

that the operational semantics are deterministic (Lemma 3.1) implies that
N !0

⇤ M
0 as we wanted.
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Now we consider the case for the function space. Assume

x R
⌧1!⌧2 M

and M !0
N . Assume y R

⌧1 P . We have to prove x(y) R
⌧2 NP . By

induction hypothesis we know that for all x, M , N , x R
⌧2 M and M !0

N

then x R
⌧2 N . By applying it we have left to show that MP !0

NP which
is trivial and x(y) R

⌧2 MP . The latter we get by using y R
⌧1 P with the

hypothesis x R
⌧1!⌧2 M thus concluding the proof.

Now we consider the case for recursive types. By assumption we know
there exists M

0 and M

00 such that unfold M !0
⇤ M

0 and M

0 !1
M

00 and
x .R

⌧ [µ↵.⌧/↵] next(M
00). Since M !0

N then also unfold M !0 unfold N .
Therefore, from the assumption and the fact that the operational semantics
are deterministic (Lemma 3.1) we get unfold N !0

⇤ M

0. By definition of
the logical relation we get x R

µ↵.⌧

N , which concludes the proof.

Lemma 3.26. For all x R
�

N and M !0
N then x R

�

M

Proof. We prove the statement by induction on �. The first case is the case of
the unit type. We do it by case analysis on x. When x = ⌘(?) we have that
N +0 hi which by Corollary 3.4 N !0

⇤ hi. Since M !0
N we get M !0

⇤ hi.
Again by Corollary 3.4 we get M +0 hi and by definition of the logical
relation we conclude the case. When x is ✓1(x0) by assumption x R1 N

implies that there exists N

0 and N

00 such that N !0
⇤ N

0 and N

0 !1
N

00

and x .R1 next(N 00). We have to prove there exist M 0 and M

00 such that
M !0

⇤ M

0 and M

0 !1
M

00 and x .R1 next(M 00). We pick M

0 = N

0 and
M

00 = N

00 so that we have by assumption M

0 !1
M

00 and x .R1 next(M 00).
We are left to prove M !0

⇤ N

0, but we have M !0
N and N !0

⇤ N

0 so
M !0

⇤ N
0 is by definition. By definition of the logical relation we conclude.

Now we consider the case for ⌧1 ⇥ ⌧2. By assumption we have that
⇡1(x)R⌧1 fst N and ⇡2(x)R⌧2 snd N . Since M !0

N then also fst (M)!0

fst (N) snd (M) !0 snd (N). By induction hypothesis on both ⌧1 and
⌧2 we get ⇡1(x) R⌧1 fst (M) and ⇡1(x) R⌧1 snd (M). By definition of the
logical relation we get what we wanted.

Now we consider the co-product case. We proceed by case analysis
on x. When x = ⌘(inl(y)) we have that N +0 inl (N 0) and y R

⌧1 N

0. By
Corollary 3.4 we derive that N !0

⇤ inl (N 0) Since M !0
N we get M !0

⇤
inl (N 0). Again by Corollary 3.4 we get M +0 inl (N 0). By definition of
the logical relation we get xR

⌧1+⌧2 M . The case for x = ⌘(inr(x0)) is similar
to the previous one.

Now we consider the case when x = ✓

⌧1+⌧2(x
0). From the assumption

x R
⌧1+⌧2 N we have that there exists N

0 and N

00 such that N !0
⇤ N

0 and
N

0 !1
N

00 and x .R
⌧1+⌧2 next(N 00). We have to prove there exist M 0 and

M

00 such that M !0
⇤ M

0 and M

0 !1
M

00 and x .R
⌧1+⌧2 next(M 00). We

pick M

0 = N

0 and M

00 = N

00 so that we have by assumption M

0 !1
M

00

and x .R
⌧1+⌧2 next(M 00). We are left to prove M !0

⇤ N

0, but we have
M !0

N and N !0
⇤ N

0 so M !0
⇤ N

0 is by definition. By definition of
the logical relation we conclude. Now we consider the function space.
Assume x R

⌧1!⌧2 N and M !0
N . Assume y R

⌧1 P . We have to prove
x(y)R

⌧2 MP . By induction hypothesis we know that for all x, M , N , xR
⌧2 N

and M !0
N then x R

⌧2 M . By applying it to the goal we have left to show
that MP !0

NP which is trivial and x(y) R
⌧2 NP . The latter we get by
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using y R
⌧1 P with the hypothesis x R

⌧1!⌧2 N thus concluding the proof.
Now we consider the recursive types. By assumption we have that xR

µ↵.⌧

N

and M !0
N . From the former we derive that there exists M

0 and M

00

such that unfold N !0
⇤ M

0,M 0 !1
M

00 and x R
⌧ [µ↵.⌧/↵] next(M

00). Since
M !0

N then also unfold M !0 unfold N . Therefore, we know that
unfold M !0

⇤ M

0, thus by definition of the logical relation we conclude.

Lemma 3.27. If M !0
⇤ N then x R

�

M iff x R
�

N .

Proof. We prove the statement by induction M !0
⇤ N . The case where

M = N is straightforwardly true. Now we consider the case for M !0
N .

The implication from left to right is direct from Lemma 3.25 and the other
by Lemma 3.26. Now we consider the case when M !0

M

0 and M

0 !0
⇤ N .

First we prove the left-to-right implication. By Lemma 3.25 we have xR
�

M

0

and by induction hypothesis we get x R
�

N . The right-to-left case mirrors
the previous one by applying Lemma 3.26 instead.

Lemma 3.28. If x .R
⌧

next(M) and M

0 !1
M then ✓

⌧

(x) R
⌧

M

0.

Proof. The proof is by guarded recursion, so we assume that the lemma is
“later true”, i.e., that we have an inhabitant of the type obtained by applying
. to the statement of the lemma. We proceed by induction on ⌧ .

The case for the unit type and for the co-product is straightforward by
definition. Now the case for the product. By assumption we have

↵ .R
⌧1⇥⌧2 next(M)

by pulling out the . and unfolding the definition of the logical relation we
get

. [x � ↵] .(⇡1(x) R⌧1 (fst M)) and (⇡2(x) R⌧2 fst (M))

Since the. distributes over products we derive

(⇡1(↵)) .R⌧1 next(fst M) and ⇡2(↵) .R⌧2 next(snd M)

Since M

0 !1
M then also fst M

0 !1 fst M and snd M

0 !1 snd M , thus
we can use the induction hypothesis on ⌧1 and ⌧2 and get

✓

⌧1(⇡1(↵)) R⌧1 fst M

0 and ✓

⌧2(⇡2(↵)) R⌧2 snd M

0

by definition ✓
⌧1⇥⌧2 commutes with ⇡1 and ⇡2. Thus, we obtain

⇡1(✓⌧1⇥⌧2(↵)) R⌧1 fst M

0 and ⇡2(✓⌧1⇥⌧2(↵)) R⌧2 snd M

0

which is by definition what we wanted.
Now the case for the function space. Assume ↵ .R

⌧1!⌧2 next(M) and
M

0 !1
M . We must show that if � : J⌧1K, N : TermFPC and � R

⌧1 N then
(✓

⌧1!⌧2(↵))(�) R⌧2 (MN). So suppose � R
⌧1 N , and thus also .(� R

⌧1 N)
which is equal to next(�) .R

⌧1 next(N). By applying Lemma 3.24 to this and
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↵ .R
⌧1!⌧2 next(M) we get

↵~ (next(�)) .R
⌧2 next(MN)

Since M

0 !1
M also M

0
N !1

MN , and thus, by the induction hypothesis
for ⌧2, ✓

⌧2(↵ ~ (next(�))) R
⌧2 M

0
N . Since by definition ✓

⌧1!⌧2(↵)(�) =
✓

⌧2(↵~ next(�)), this proves the case.
The interesting case is the one of µ↵.⌧ . Assume x .R

µ↵.⌧

next(M) and
M

0 !1
M . By definition of .R this implies . [y � x] .(y R

µ↵.⌧

M) which by
definition of R

µ↵.⌧

is

. [y � x] .⌃N 0
N

00
.unfold M !0

⇤ N
0 and

N

0 !1
N

00 and (y .R
⌧ [µ↵.⌧/↵] next(N

00))

Since zero-step reductions cannot eliminate outer unfold’s, N 0 must be on
the form unfold N for some N , such that M !0

⇤ N . Thus, we can apply
the guarded induction hypothesis to get

. [y � x] .(⌃N.M !0
⇤ N and

(✓
⌧ [µ↵.⌧/↵](y) R⌧ [µ↵.⌧/↵] unfold N))

Since unfold M !0
⇤ unfold N , by Lemma 3.27 we get

. [y � x] .(✓
⌧ [µ↵.⌧/↵](y) R⌧ [µ↵.⌧/↵] unfold M)

which by (3.27) is

next [y � x] .(✓
⌧ [µ↵.⌧/↵](y)) .R⌧ [µ↵.⌧/↵] next(unfold M)

By (3.23) this implies

next(✓
⌧ [µ↵.⌧/↵])~ x .R

⌧ [µ↵.⌧/↵] next(unfold M)

Since by assumption M

0 !1
M also unfold M

0 !1 unfold M thus, by
definition of the logical relation

next(✓
⌧ [µ↵.⌧/↵])~ x R

µ↵.⌧

M

0

By definition next(✓
⌧ [µ↵.⌧/↵])~ x is equal to ✓

µ↵.⌧

(x) thus we can derive

✓

µ↵.⌧

(x) R
µ↵.⌧

M

0

as we wanted.

Lemma 3.29 (Fundamental Lemma). Suppose � ` M : ⌧ , for � ⌘ x1 :
⌧1, · · · , xn : ⌧

n

and N

i

: ⌧
i

, �
i

: J⌧
i

K and �
i

RJ⌧iK Ni

for i 2 {1, . . . , n}, then
JMK (~�) R

⌧

M [ ~N/~x]

Proof. We assume by guarded recursion that for all well-typed terms M with
context � and type ⌧ the following holds:

.(JMK (~�) R
⌧

M [ ~M/~x])
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Then we proceed by induction on the typing derivation � ` M : ⌧ . For
the case � ` hi : 1, we know by definition of the logical relation that
JhiK (~�) R1 hi[ ~M/~x] is equal to hi +0 hi which is true by definition of the
big-step operational semantics. Now the case � ` x

j

: ⌧
j

. Here j is s.t
x

j

: ⌧
j

2 � where j 2 {1, . . . n} and �

j

R
⌧

M

j

. We want to prove that
Jx

j

K (~�) R
⌧j x

j

[ ~M/~x]. By the substitution function x

j

[ ~M/~x] = M

j

. As
Jx

j

K (~�) = �

j

by assumption we get �
j

R
⌧j Mj

.
Now the case of � ` �x.M : � ! ⌧ . Assume �

n+1 R
�

M

n+1. By
simplifying the goal both sides

J�x.MK (~�)(�
n+1) = (�x. JMK (~�, x))(�

n+1) = JMK (~�, �
n+1)

(�x.M)[ ~M/~x](M
n+1) = �x.(M [ ~M/~x])(M

n+1)

Since
�x.(M [ ~M/~x])(M

n+1)!0 (M [ ~M/~x])[M
n+1/x]

By Lemma 3.27 the goal becomes

JMK (~�, �
n+1) R⌧

M [ ~M/~x][M
n+1/x]

We apply the induction hypothesis on �, x : � ` M : ⌧ to the goal and we
get what we wanted.

Now the case � `M1M2 : ⌧ . By induction hypothesis we have JM2K (~�)R⌧

(M2)[ ~M/~x]
which we can apply to the induction hypothesis that we get from M1. So we
get

JM1K (~�) JM2K (~�) R⌧

(M1[ ~M/~x])(M2[ ~M/~x])

which is what we wanted to show.
Now the case for � ` fst M : ⌧1. By induction hypothesis

JMK (~�) R
⌧1⇥⌧2 M [ ~M/~x]

By definition of R
⌧1⇥⌧2 we get

⇡1(JMK (~�)) R
⌧1 fst M [ ~M/~x]

Since ⇡1(JMK (~�)) is by definition Jfst MK (~�) and fst (M [ ~M/~x]) is equal
to (fst M)[ ~M/~x] we get what we wanted. The case for � ` snd M : ⌧2 is
similar to the previous case.

The case � ` hM,Ni : ⌧1 ⇥ ⌧2 is straightforward by definition of the
logical relation, by Lemma 3.26 and by induction hypothesis.

Now for the case � ` unfold M : ⌧ [µ↵.⌧/↵] we want to show that

Junfold MK (~�) R
⌧ [µ↵.⌧/↵] (unfold M)[ ~N/~x]

By induction hypothesis we know that

JMK (~�) R
µ↵.⌧

(M [ ~N/~x])

which means that there exists M 0 and M

00 such that

unfold (M [ ~N/~x])!0
⇤ M

0 and M

0 !1
M

00
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and that JMK (~�) .R
⌧ [µ↵.⌧/↵] next(M

00). By Lemma 3.28

✓

⌧ [µ↵.⌧/↵](JMK (~�)) R
⌧ [µ↵.⌧/↵] M

0

and since unfold (M [ ~N/~x])!0
⇤ M

0 by Lemma 3.27 we get

✓

⌧ [µ↵.⌧/↵](JMK (~�)) R
⌧ [µ↵.⌧/↵] unfold (M [ ~N/~x])

By definition of the interpretation

Junfold MK (~�) R
⌧ [µ↵.⌧/↵] unfold (M [ ~N/~x])

which is what we wanted.
For the case � ` fold M : µ↵.⌧ we want to show that

Jfold MK (~�) R
µ↵.⌧

(fold M)[ ~N/~x]

First off, by definition of the substitution function (fold M)[ ~N/~x]) is equal
to fold (M [ ~N/~x]). Thus, by definition of the logical relation we have to
show that there exist M 0 and M

00 such that

unfold (fold (M [ ~N/~x]))!0
⇤ M

0

M

0 !1
M

00 and that Jfold MK (~�) .R
⌧ [µ↵.⌧/↵] next(M

00). Setting M

00 to be
(M [ ~N/~x]), we are left to show that

Jfold MK (~�) .R
⌧ [µ↵.⌧/↵] next(M [ ~N/~x])

which is equal by definition of the interpretation function to

next(JMK (~�)) .R
⌧ [µ↵.⌧/↵] next((M [ ~N/~x]))

The latter is equal by (3.27) to

.(JMK (~�) R
⌧ [µ↵.⌧/↵] (M [ ~N/~x]))

which is true by the guarded recursive hypothesis.
For the case � ` inl M : ⌧1 + ⌧2 we have to prove that

Jinl MK (~�) R
⌧1+⌧2 inl M [ ~M/~x]

By definition of the interpretation function Jinl MK (~�) is equal to

⌘(inl(JMK (~�)))

By definition of the logical relation we have to prove that there exists M

0

such that (inl M)[ ~M/~x] +0 inl M

0 and that JMK (~�) R
⌧1 M

0. The former
is trivially true with M

0 = M [ ~M/~x] and the latter is by induction hypothesis.
The case for � ` inr N : ⌧1 + ⌧2 is similar to the previous case.

As for the case � ` case L of x1.M ;x2.N : � we have to prove that

Jcase L of x1.M ;x2.NK (~�) R
�

(case L of x1.M ;x2.N)[ ~M/~x]
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For this it suffices to prove

J�x.case x of x1.M ;x2.NK (~�) R
⌧1+⌧2!�

(�x.case x of x1.M ;x2.N)[ ~M/~x]
(3.28)

and then applying this to JLK (~�)R
⌧1+⌧2 L[ ~M/~x]. We prove (3.28) by guarded

recursion thus assuming the statement is true later. Assume � of type
J⌧1 + ⌧2K, L of type TermFPC and � R

⌧1+⌧2 L. We proceed by case analysis on
� which is of type J⌧1 + ⌧2K which is by definition L(J⌧1 + ⌧2K). In the case
� = ⌘(inl(�0)), where �0 is of type J⌧1K we know by assumption that there
exists L0 s.t. L +0 inl (L0) and �0 R

⌧1 L
0. Since

J�x.case x of x1.M ;x2.NK (~�)(⌘(inl(�0))) = JMK (~�,�0)

and
case L of x1.M [ ~M~x];x2.N [ ~M/~x])0

M [ ~M/~x][L0
/x1]

by Lemma 3.27 we are left to prove

JMK (~�, �) R
�

M [ ~M/~x][L0
/x1]

which is true by induction hypothesis.
The case � = ⌘(inr(�0)) where �0 is of type J⌧2K is similar to the previous

one.
The interesting case is when � = ✓

⌧1+⌧2(�
0), where �0 is of type . J⌧1 + ⌧2K.

By induction hypothesis we know that ✓
⌧1+⌧2(�

0)R
⌧1+⌧2 L, thus there exist L0

and L

00 of typeTermFPC such that L!0
⇤ L

0, L0 !1
L

00 and �0 .R
⌧1+⌧2 next(L00).

Recall that the hypothesis says that

.(J�x.case x of x1.M ;x2.NK (~�)
R

⌧1+⌧2!�

(�x.case x of x1.M ;x2.N)[ ~M/~x])

which is type equal to

next(J�x.case x of x1.M ;x2.NK (~�))
.R

⌧1+⌧2!�

next((�x.case x of x1.M ;x2.N)[ ~M/~x])

By Lemma 3.24 we can apply the guarded hypothesis with

�

0
.R

⌧1+⌧2 next(L00)
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thus getting

next(J�x.case x of x1.M ;x2.NK (~�))~ �

0

.R
�

next(((�x.case x of x1.M ;x2.N)[ ~M/~x])(L00))

Since L

0 !1
L

00 we can apply Lemma 3.28 and obtain

✓

�

(next(J�x.case x of x1.M ;x2.NK (~�))~ �

0)

R
�

case L

0 of x1.M [ ~M/~x];x2.N [ ~M/~x]

By Lemma 3.27 with the fact that L!0
⇤ L

0 we get

✓

�

(next(J�x.case x of x1.M ;x2.NK (~�))~ �

0)

R
�

case L of x1.M [ ~M/~x];x2.N [ ~M/~x]

And finally by simplifying the left-hand side by using Lemma 3.19:

✓

�

(next(J�x.case x of x1.M ;x2.NK (~�))~ �

0) =

J�x.case x of x1.M ;x2.NK (~�)(�)

thus getting

J�x.case x of x1.M ;x2.NK (~�)(�)
R

�

(�x.case x of x1.M ;x2.N)[ ~M/~x](L)

as we wanted.

From the Fundamental lemma we can now prove computational ade-
quacy.

Theorem 3.30 (Intensional Computational Adequacy). If M : 1 is a closed
term then M +k hi iff JMK (⇤) = �

k(⌘(?)).

Proof. The proof is similar to [PMB15].

From Theorem 3.30 one can deduce that whenever two terms have equal
denotations they are contextually equivalent in a very intensional way, as
we now describe. By a context, we mean a term C[�] with a hole, and we say
that C[�] has type �, ⌧ ! (�, 1) if C[M ] is a closed term of type 1, whenever
� ` M : ⌧ .

Corollary 3.31. Suppose � ` M : ⌧ and JMK = JNK. If C[�] has type �, ⌧ !
(�, 1) and C[M ] +k hi also C[N ] +k hi.
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3.6 Extensional Computational Adequacy

Our model of FPC is intensional in the sense that it distinguishes between
computations computing the same value in a different number of steps. In
this section we define a logical relation which relates elements of the model
if they differ only by a finite number of computation steps. In particular, this
also means relating ? to ?.

To do this we need to consider global behaviour of computations, as
opposed to the local (or finitely computable) behaviour captured by the
guarded recursive lifting monad L. To understand what this means, consider
the interpretation of L1 in the topos of trees as described in Section 3.2.1. For
each number n, the set

L1(n) = {?, 0, 1, . . . , n� 1}

describes computations terminating in at most n� 1 steps or using at least
n steps (corresponding to ?). It cannot distinguish between termination
in more than n� 1 steps and real divergence. Our relation should relate a
terminating value x in L1(n) to any other terminating value, but not real
divergence, which is impossible, if divergence cannot be distinguished from
slow termination.

On the other hand, consider the partiality monad [Cap05] Lgl defined as
the coinductive solution to the type equation

L

gl
A

⇠= A+ L

gl
A (3.29)

When interpreted in Set, Lgl1 is !̄, i.e., describes the set of all possible
behaviors of a computation of unit type.

Coinductive types can be encoded in gDTT using guarded recursive
types, following ideas of Atkey and McBride [AM13; Møg14]. The encod-
ing uses universal quantification over clocks, which we now briefly recall,
refering to [Biz+16] for details.

3.6.1 Universal quantification over clocks

In gDTT all types and terms are typed in a clock context, i.e., a finite set of
names of clocks. For each clock , there is a type constructor ., a fixed point
combinator, and so on. The development of this paper so far has been in a
context of a single implicit clock .

If A is a type in a context where  does not appear, one can form the
type 8.A, binding . This construction behaves in many ways similarly to
polymorphic quantification over types in System F. There is an associated
binding introduction form ⇤.(�) (applicable to terms, where  does not
appear free in the context), and elimination form t[0] having type A[0/]
whenever t : 8.A.

The type system allows for a restricted elimination rule for .. If t is of
type .A in a context where  does not appear free, then prev .t has type
8.A. Using prev . we can define a term force:

force : 8..A! 8.A

force
def
== �x. prev .x[]

(3.30)
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The type constructor 8.(�) is modelled by taking sets of global elements.
In particular, 8.L1 is modelled as !̄. In fact, one can prove in the type theory,
that defining

L

gl
A

def
== 8.LA

gives a coinductive solution to (3.29), when  is not free in A [Møg14].
For types A and B we say the two are type isomorphic if there exist two

terms f : A ! B and g : B ! A such that f(g(x)) ⌘ x and g(f(x)) = x.
When A is a type that does not mention any free clock variables and B is
free with x : A and a clock variable  the following type isomorphism is
derivable from the � and ⌘ rules of the constructors involved [Biz+16]

8.⌃(x : A).B ⇠= ⌃(x : A).8.B (3.31)

3.6.2 Global interpretation of types and terms

As said above, the model of FPC can be considered as being defined w.r.t. an
implicit clock . To be consistent with the notation of the previous sections,
 will remain implicit in the denotations of types and terms, although one
might choose to write e.g. J�K to make the clock explicit.

We define global interpretations of types and terms as follows:

J�Kgl def
== 8. J�K

JMKgl def
== ⇤. JMK

such that if � ` M : ⌧ , then

JMKgl : 8.(J�K! J⌧K)

Note that J�Kgl is a wellformed type, because J�K is a wellformed type
in context � : TypeFPC and TypeFPC is an inductive type formed without
reference to clocks or guarded recursion, thus  does not appear in TypeFPC .
By a similar argument JMKgl is welltyped.

Define for all � the delay operator �gl
�

: J�Kgl ! J�Kgl as follows

�

gl
�

(x)
def
== ⇤.�

�

(x[]) (3.32)

Similarly for LA, �gl
LA

(x)
def
== ⇤.�

LA

(x[]).
With these definitions we can lift the Adequacy Theorem to the global

points.

Corollary 3.32 (Computational Adequacy). If M : 1 is a closed term then for
all n. 8.M +n hi iff 8. JMK (⇤) = �

n(⌘(?)).

Proof. We first prove the left-to-right direction, so assume n and assume
that for all , M +n hi. By Adequacy Theorem 3.30 this implies JMK (⇤) =
�

n(⌘(?)), thus proving the case. The other direction is similar by Adequacy
Theorem.

3.6.3 A weak bisimulation relation for the lifting monad

Before defining the logical relation on the interpretation of types, we define
a relational version of the guarded recursive lifting monad L. If applied to
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the identity relation on a type A in which  does not appear, we obtain a
weak bisimulation relation similar to the one defined by Danielsson [Dan12]
for the coinductive partiality monad.

Definition 3.33. For a relation R : A ⇥ B ! U define the lifting LR : LA ⇥
LB ! U by guarded recursion and case analysis on the elements of LA and LB:

⌘(x) LR ⌘(y)
def
== x R y

⌘(x) LR ✓

LB

(y)
def
== ⌃n, y0.✓

LB

(y) = �

n

LB

(⌘(y0)) and x R y

0

✓

LA

(x) LR ⌘(y)
def
== ⌃n, x0.✓

LA

(x) = �

n

LA

(⌘(x0)) and x

0
R y

✓

LA

(x) LR ✓

LB

(y)
def
== x .LR y

The lifting of R, intuitively, captures computations that differ for a finite
amount of computational steps or both diverge. For example, ? as defined
in Section 3.4 is always related to itself which can be shown by guarded
recursion as follows. Suppose .(? LR ?). Since ? = ✓(next(?)), to prove
? LR ?, we must prove next(?) .LR next(?). But, this type is equal to the
assumption .(? LR ?) by (3.27).

We can also prove that LR is closed under addition of � on either side.

Lemma 3.34. If R : A ⇥ B ! U, and x LR y then x LR �

LB

(y) and
�

LA

(x) LR y.

Proof. Assume x LR y. We show x LR �

LB

(y). The proof is by guarded
recursion, hence we first assume:

.(⇧x : LA, y : LB.x LR y ) x LR �

LB

(y)). (3.33)

We proceed by case analysis on x and y. If x = ⌘(x0), then, since x LR y,
there exist n and y

0 such that y = �

n

LB

(⌘(y0)) and x

0
R y

0. So then �
LB

(y) =
�

n+1
LB

(⌘(y0)), from which it follows that x LR �

LB

(y).
For the case where x = ✓

LA

(x0) and y = ⌘(v), it suffices to show that
�

n

LA

(⌘(w)) LR ⌘(v) implies �n
LA

(⌘(w)) LR �

LB

(⌘(v)). The case of n = 0 was
proved above. For n = m + 1 we know that if �n

LA

(⌘(w)) LR ⌘(v) also
�

m

LA

(⌘(w)) LR ⌘(v) holds by definition, and this implies

.(�m
LA

(⌘(w)) LR ⌘(v))

But this type can be rewritten as follows

.(�m
LA

(⌘(w)) LR ⌘(v))

⌘ next(�m
LA

(⌘(w)) .LR next(⌘(v)))

⌘ ✓
LA

(next(�m
LA

(⌘(w)))) LR ✓

LB

(next(⌘(v))))

⌘ �n
LA

(⌘(w)) LR �

LB

(⌘(v))

proving the case.
Finally, the case when x = ✓

LA

(x0) and y = ✓

LB

(y0). The assumption in
this case is x0 .LR y

0, which means by (3.26),

.

⇥
x

00 � x

0
, y

00 � y

0⇤
.x

00
LR y

00
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By the guarded recursion hypothesis (3.33) we get

.

⇥
x

00 � x

0
, y

00 � y

0⇤
.x

00
LR �

LB

(y00)

which can be rewritten to

.

⇥
x

00 � x

0
, y

00 � y

0⇤
.x

00
LR ✓

LB

(next(y00)) (3.34)

By (3.25) there is an inhabitant of the type

.

⇥
x

00 � x

0
, y

00 � y

0⇤
.(next(y00) = y

0)

and thus (3.34) implies . [x00 � x

0] .x00 LR ✓

LB

(y0), which, by (3.27) and since
y = ✓

LB

(y0) equals x0 .LR next(y). By definition, this is

✓

LA

(x0) LR ✓

LB

(next(y))

which since x = ✓

LA

(x0) is x LR �

LB

(y).

We can lift this result to L

gl as follows. Suppose R : A ⇥ B ! U and 

not in A or B. Define L

gl
R : Lgl

A⇥ L

gl
B ! U as

x L

gl
R y

def
== 8.x[] LR y[]

Lemma 3.35. Let x : Lgl
A and y : Lgl

B. If x L

gl
R y then x L

gl
R �

gl(y) and
�

gl(x) Lgl
R y.

Proof. Follows directly from Lemma 3.34.

One might expect that �
LA

(x) LR �

LB

(y) implies x LR y. This is not
true, it only implies .(x LR y). In the case of Lgl, however, we can use force
to remove the ..

Lemma 3.36. For all x : Lgl
A and y : Lgl

B and for all R : A ⇥ B ! U, if
�

gl
LA

(x) Lgl
R �

gl
LB

(y) then x L

gl
R y.

Proof. Assume �gl
LA

(x) Lgl
R �

gl
LB

(y). We can rewrite this type by unfolding
definitions and (3.27) as follows.

�

gl
LA

(x) Lgl
R �

gl
LB

(y) ⌘ 8.(�gl
LA

(x))[] LR (�gl
LB

(y))[]

⌘ 8.(�
LA

(x[])) LR (�
LB

(y[]))

⌘ 8.(next(x[]) .LR next(y[]))

⌘ 8..(x[] LR (y[]))

Using force this implies 8.(x[] LR (y[])) which is equal to x L

gl
R y.

Lemma 3.37. For all x of type Lgl
A and y of type Lgl

B, if �gl
LA

(x) Lgl
R y then

x L

gl
R y.

Proof. Assume �

gl
LA

(x) L

gl
R y. Then by applying Lemma 3.35 we get

�

gl
LA

(x) Lgl
R �

gl
LB

(y) and by applying Lemma 3.36 we get x L

gl
R y.
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x ⇡1 y

def
== x L(=1) y

x ⇡
⌧1+⌧2 y

def
== x L( ⇡

⌧1 + ⇡
⌧2 ) y

x ⇡
⌧1⇥⌧2 y

def
== ⇡1(x) ⇡⌧1 ⇡1(y) and ⇡2(x) ⇡⌧2 ⇡2(y)

f ⇡
�!⌧

g

def
== ⇧(x, y : J�K).x ⇡

�

y ! f(x) ⇡
⌧

g(y)

x ⇡
µ↵.⌧

y

def
== x . ⇡

⌧ [µ↵.⌧/↵] y

FIGURE 3.38.1: The logical relation ⇡⌧ is a predicate over
denotations of ⌧ of type J⌧K⇥ J⌧K! U

3.6.4 Relating terms up to extensional equivalence

Figure 3.38.1 defines for each FPC type ⌧ the logical relation ⇡
⌧

: J⌧K⇥J⌧K!
U. The definition is by guarded recursion, and the well-definedness can be
formalised using an argument similar to that used for well-definedness of ✓
in equation (3.13). The case of recursive types is well typed by Lemma 3.16.
The figure uses the following lifting of relations to sum types.

Definition 3.38. Let R : A⇥ B ! U and R

0 : A0 ⇥ B

0 ! U. Define (R + R

0) :
(A+A

0)⇥ (B +B

0)! U by case analysis as follows (omitting false cases)

inl(x) (R+R

0) inl(y) def
== x R y

inr(x) (R+R

0) inr(y) def
== x R

0
y

The logical relation can be generalised to open terms and the global
interpretation of terms as in the next two definitions.

Definition 3.39. For � ⌘ x1 : �1, · · · , xn : �
n

and for f , g of type J�K ! J⌧K
define

f ⇡�,⌧ g

def
== ⇧(~x, ~y : J~�K).~x ⇡

~�

~y ! f(~x) ⇡
⌧

g(~y)

Definition 3.40. For x, y of type J�! ⌧Kgl,

x ⇡gl
�,⌧ y

def
== 8.x[] ⇡�,⌧ y[]

3.6.5 Properties of ⇡�,⌧

The weak-bisimulation relation behaves similarly to the applicative functor
rule.

Lemma 3.41. For all f, g of type . J⌧ ! �K and x, y of type . J⌧K, if f . ⇡
⌧!�

g

and x . ⇡
⌧

y then (f ~ x) . ⇡
�

(g ~ y).

Proof. Assume f . ⇡
⌧!�

g and x . ⇡
⌧

y. By Definition 3.26 f . ⇡
⌧!�

g is
. [f 0 � f, g

0 � g] .(f 0 ⇡
⌧!�

g

0) which by unfolding Figure 3.38.1 is

.

⇥
f

0 � f, g

0 � g

⇤
.(⇧(x, y : J�K).x ⇡

⌧

y ! f

0(x) ⇡
�

g

0(y))
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By applying x, y and x . ⇡
⌧

y to the above we get

.

⇥
f

0 � f, g

0 � g, a � x, b � y

⇤
.(f 0(a) ⇡

�

g

0(b))

By (3.27)

next
⇥
f

0 � f, a � x

⇤
.(f 0(a)) . ⇡

�

next
⇥
f

0 � g, b � y

⇤
.(g0(b))

which by rule (3.23) is equal to

(f~]x) . ⇡
�

(g~]y)

The following lemma generalises the second case of ⇡1 to all types.

Lemma 3.42. Let x, y of type . J�K, if (x . ⇡
�

y) then ✓
�

(x) ⇡
�

✓

�

(y)

Proof. We prove the statement first by guarded recursion. Thus, we assume
the statement holds “later” and we proceed by induction on �. All the cases
for the types that are interpreted using the lifting – namely the unit type and
the sum type – in Definition 3.33 hold by definition of the lifting relation.

Now the case for the function space. Assume � = ⌧1 ! ⌧2 and assume
x and y of type . J⌧1 ! ⌧2K such that x . ⇡

⌧1!⌧2 y. We must show that if
x

0
, y

0 : J⌧1K and x

0 ⇡
⌧1 y

0 then (✓
⌧1!⌧2(x))(x

0) ⇡
⌧2 (✓

⌧1!⌧2(y))(y
0)).

So suppose x

0 ⇡
⌧1 y

0, then also .(x0 ⇡
⌧1 y

0), which by (3.27) is equal to
next(x0) . ⇡

⌧1 next(y0). By applying Lemma 3.41 to this and x . ⇡
⌧1!⌧2 y

we get
x

� (nextx0) . ⇡
⌧2 y

� next y0

By induction hypothesis on ⌧2, we get ✓
⌧2(x � (nextx0)) ⇡

⌧2 ✓

⌧2(y �
(next y0)).

We conclude by observing that by definition of ✓, ✓
⌧1!⌧2(x)(y) = ✓

⌧2(x �
next(y)), thus concluding the proof.

Now the case of the product. This is by definition of ⇡
⌧1⇥⌧2 and by

induction hypothesis.
Now the interesting case, namely the fixed-point. Assume � . ⇡

µ↵.⌧

 .
This is type equal to

. [x � �, y �  ] .(x ⇡
µ↵.⌧

y)

By definition this is equal to

. [x � �, y �  ] .(x . ⇡
⌧ [µ↵.⌧/↵] y)

By guarded recursive hypothesis we get

. [x � �, y �  ] .(✓
⌧ [µ↵.⌧/↵](x) ⇡⌧ [µ↵.⌧/↵] ✓⌧ [µ↵.⌧/↵](y))

By (3.27) this is equal to

(next [x � �] .(✓
⌧ [µ↵.⌧/↵](x))) . ⇡⌧ [µ↵.⌧/↵] (next [y �  ] .(✓

⌧ [µ↵.⌧/↵](y)))

This equals

(next(✓
⌧ [µ↵.⌧/↵])~ � . ⇡

⌧ [µ↵.⌧/↵] (next(✓
⌧ [µ↵.⌧/↵])~  
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By Lemma 3.42 next(✓
⌧ [µ↵.⌧/↵])~ � is equal to ✓

µ↵.⌧

(�) thus we can derive

✓

µ↵.⌧

(�) . ⇡
⌧ [µ↵.⌧/↵] ✓µ↵.⌧ ( )

which by definition of ⇡
µ↵.⌧

is

✓

µ↵.⌧

(�) ⇡
µ↵.⌧

✓

µ↵.⌧

( )

Lemma 3.43. Let � be a closed FPC type and let x and y of type J�K, if x ⇡
�

y

then �
�

(x) ⇡
�

y and x ⇡
�

�

�

(y).

Proof. The proof is by guarded recursion and then by induction on the
type �. Thus, assume this lemma holds “later”. Now by induction on �

we first show the statement for the unit type. In this case ⇡1 is defined
as the lifting of the equality L(=) so Lemma 3.34 applies and similarly
for the co-product case. For the case of the product assume x ⇡

⌧1⇥⌧2 y

which by definition of the relation the left/right projection of x is related
to the left/right projection of y. We show how to add a delay on the left-
hand side. The other case is similar. We use the induction hypothesis on
⌧1 and ⌧2, thus getting �

⌧1(⇡1(x)) ⇡⌧1 ⇡1(y) and the same for ⌧2. Since
�

⌧1(⇡1(x)) is equal by definition of � for the product type to ⇡1(�⌧1⇥⌧2(x)) we
get ⇡1(�⌧1⇥⌧2(x)) ⇡⌧1 ⇡1(y) and same for ⌧2. This means by definition that
�

⌧1⇥⌧2(x) ⇡⌧1⇥⌧2 y thus concluding the case.
Now the case of the function space. Assume for two functions f and

g that f ⇡
�!⌧

g holds. For x and y such that x ⇡
�

y, we have to prove
�

�!⌧

(f)(x) ⇡
⌧

g(y). Assume thus such an x and y, from the hypothesis
we know that f(x) ⇡

⌧

g(y) holds. By induction hypothesis on ⌧ we
know that �

⌧

(f(x)) ⇡
⌧

g(y) and by definition of �
�!⌧

that is equal to
�

�!⌧

(f)(x) ⇡
⌧

g(y) which is what we wanted.
Now the case for the recursive types. Assume x ⇡

µ↵.⌧

y which by def-
inition is x . ⇡

⌧ [µ↵.⌧/↵] y. By (3.26) we pull the later out together with
two variables x

0 and y

0, thus getting . [x0 � x, y

0 � y] .x0 ⇡
⌧ [µ↵.⌧/↵] y

0.
By the guarded recursion assumption we can add a delay, thus deriv-
ing . [x0 � x, y

0 � y] .x0 ⇡
⌧ [µ↵.⌧/↵] �

⌧ [µ↵.⌧/↵](y
0). Note that the delay op-

erator is the composition ✓ � next, thus y

0 appears under next. We can
thus employ the eta rule of gDTT(3.25) and push y back in thus getting
. [x0 � x] .x0 ⇡

⌧ [µ↵.⌧/↵] ✓⌧ [µ↵.⌧/↵](y). By (3.26) we push the later back thus
getting x . ⇡

⌧ [µ↵.⌧/↵] next(✓
⌧ [µ↵.⌧/↵](y)). By distributing the next over the ap-

plication as in rule (3.2), next(✓
⌧ [µ↵.⌧/↵](y)) is equal to next(✓

⌧ [µ↵.⌧/↵])~next(y)
which is equal to ✓

µ↵.⌧

(next(y)) by Figure 3.16.1. Finally, the logical rela-
tion on the case of the recursive type as in Figure 3.38.1 gives us x ⇡

µ↵.⌧

✓

µ↵.⌧

(next(y)) thus proving the case and the lemma. Note that adding the
delay to the other side of the relation is similar.

Lemma 3.44. Let � be a closed FPC type and let x, y of type J�Kgl, if x ⇡gl
�

y then
x ⇡gl

�

�

gl
�

(y) and �gl
�

(x) ⇡gl
�

y

Proof. Direct from Lemma 3.43.

Contextual equivalence of FPC is defined in the standard way by observ-
ing convergence at unit type.
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�[M ]
def
== M

(�x.C)[N ]
def
== �x.(C[N ])

(CM)[N ]
def
== (C[N ])M

(MC)[N ]
def
== M(C[N ])

(fst C)[M ]
def
== fst C[M ]

(snd C)[M ]
def
== snd C[M ]

(hC,Ni)[M ]
def
== hC[M ], Ni

(hN,Ci)[M ]
def
== hN,C[M ]i

(fold C)[N ]
def
== fold C[N ]

(unfold C)[N ]
def
== unfold C[N ]

(inl C)[M ]
def
== inl C[M ]

(inr C)[M ]
def
== inr C[M ]

(case C of x1.M ;x2.N)[L]
def
== case C[L] of x1.M ;x2.N

(case L of x1.C;x2.N)[M ]
def
== case L of x1.C[M ];x2.N

(case L of x1.M ;x2.C)[N ]
def
== case L of x1.M ;x2.C[N ]

FIGURE 3.45.1: Definition of the “fill hole” function

Definition 3.45 (Contexts).

Ctx := � | �x.Ctx | CtxN | M Ctx

| inl Ctx | inr Ctx | hCtx,Mi | hM,Ctxi | fst Ctx | snd Ctx

| case Ctx of x1.M ;x2.N

| case L of x1.Ctx;x2.N | case L of x1.M ;x2.Ctx

| unfold Ctx | fold Ctx

Intuitively, a context is a term that takes a term and returns a new term.
Formally, we define a function that takes a syntactic context and turns it
into a function that takes a term and returns a term. Thus, we define ·[·] as a
function of type Ctx⇥TermFPC ! TermFPC by induction on the context as in
Figure 3.45.1.

We define the typing judgment for well-typed context as a function of
type Ctx⇥(Env⇥TypeFPC )

2 ! U as in Figure 3.45.2.

Definition 3.46. Let � ` M,N : ⌧ . We say that M,N are contextually equivalent,
written M ⇡

CTX

N , if for all contexts C of type (�, ⌧)! (�, 1)

8.C[M ] + hi () 8.C[N ] + hi

Finally we can state the main theorem of this section.
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� : (�, ⌧)! (�, ⌧)

C : (�, ⌧)! ((�, x : �0),�)

(�x.C) : (�, ⌧)! (�,�

0 ! �)

C : (�, ⌧)! (�, ⌧

0 ! �) � ` N : ⌧ 0

CN : (�, ⌧)! (�,�)

C : (�,�)! (�, ⌧

0) � ` M : ⌧ 0 ! �

MC : (�,�)! (�,�)

C : (�,�)! (�, µ↵.⌧)

unfold C : (�,�)! (�, ⌧ [µ↵.⌧/↵])

C : (�,�)! (�, ⌧ [µ↵.⌧/↵])

fold C : (�,�)! (�, µ↵.⌧)

C : (�, ⌧)! (�, ⌧1 ⇥ ⌧2)
fst C : (�, ⌧)! (�, ⌧1)

C : (�, ⌧)! (�, ⌧1 ⇥ ⌧2)
snd C : (�, ⌧)! (�, ⌧2)

C : (�, ⌧)! (�, ⌧1) � ` N : ⌧2

hC,Ni : (�, ⌧)! (�, h⌧1, ⌧2i)
C : (�, ⌧)! (�, ⌧2) � ` M : ⌧1

hM,Ci : (�, ⌧)! (�, h⌧1, ⌧2i)

C : (�, ⌧)! (�, ⌧1 + ⌧2) �, x1 : ⌧1 ` M : � �, x2 : ⌧2 ` N : �

case C of x1.M ;x2.N : (�, ⌧)! (�,�)

� ` L : ⌧1 + ⌧2 C : (�, ⌧)! ((�, x1 : ⌧1),�) �, x2 : ⌧2 ` N : �

case L of x1.C;x2.N : (�, ⌧)! (�,�)

� ` L : ⌧1 + ⌧2 �, x1 : ⌧1 ` M : � C : (�, ⌧)! ((�, x2 : ⌧2),�)

case L of x1.M ;x2.C : (�, ⌧)! (�,�)

C : (�, ⌧)! (�, ⌧1)

inl C : (�, ⌧)! (�, ⌧1 + ⌧2)

C : (�, ⌧)! (�, ⌧2)

inr C : (�, ⌧)! (�, ⌧1 + ⌧2)

FIGURE 3.45.2: Typing judgment for contexts
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Theorem 3.47 (Extensional Computational Adequacy). If � `M,N : ⌧ and
JMKgl ⇡gl

�,⌧ JNKgl then M ⇡
CTX

N

We now give the proof of Theorem 3.47. The first lemma needed for
the proof states that the interpretation of any term is related to itself. This
needs to be proved by induction over terms, as the logical relation is not
reflexive, as also noted by Escardó [Esc99]. As a counter example, consider a
function f : J1K! J1K which diverges if its input takes a step and converges
otherwise. Such a function is definable in the metalanguage, but not in FPC.

Lemma 3.48. If � ` M : �, then JMK ⇡�,� JMK.

Proof. Assume a variable context � such that � ⌘ x1 : �1, · · · , xn : �
n

.
Assume also � ` M : � and ~x, ~y of type J~�K such that ~x ⇡

~�

~y. By
Definition 3.39 we have to prove JMK (~x) ⇡

�

JMK (~y). We proceed by
induction on the typing judgment � ` M : �. In the case of � ` hi : 1 we
have to prove that JhiK (~x) ⇡1 JhiK (~y). Since hi is interpreted as ⌘(v) and
⇡1 is defined to be the lifting of the equality, namely L(=), the above is
straigthforward. The introduction cases for the co-product are by definition
and by induction hypothesis. In particular, when � ` inl M : ⌧1 + ⌧2 and
� ` inr M : ⌧1 + ⌧2 by definition ⇡

⌧1+⌧2 is L( ⇡
⌧1 + ⇡

⌧1 ) which just
requires to relate the denotations of M which are indeed related by induction
hypothesis. Now the case for the elimination of the co-product. We have
that � ` case L of x1.M ;x2.N : ⌧ and we have to prove that

Jcase L of x1.M ;x2.NK(~x) ⇡
⌧

Jcase L of x1.M ;x2.NK(~y)

It suffices to prove that

J�x.case x of x1.M ;x2.NK(~x) ⇡
�!⌧

J�x.case x of x1.M ;x2.NK(~y)
(3.35)

Thus that for all x, y s.t. x ⇡
⌧1+⌧2 y

J�x.case x of x1.M ;x2.NK(~x)(x) ⇡
⌧

J�x.case x of x1.M ;x2.NK(~y)(y)

holds. We prove (3.35) by guarded recursion. Thus, we assume the statement
holds “later” and we proceed by case analysis on x and y. When x is ⌘(x0)
and y is ⌘(y0) the statement holds by definition and by induction hypoth-
esis. Now we consider the case when x is ✓

⌧1+⌧2(x
0) and y is ⌘(v). Since

by assumption x ⇡
⌧1+⌧2 y there exists n and w such that x = �

n

⌧1+⌧2
(⌘(w))

and w ⇡
⌧1+⌧2 v. Because of this latter fact if w is inl(w0) for some w

0

then also v is inl(v0) for some v

0 and w

0 ⇡
⌧1 v

0. The other case of inr is
similar. By inductive hypothesis we know that JMK(~x) ⇡

⌧1!⌧

JMK(~y)
and thus that JMK (~x)(w0) ⇡

⌧

JMK (~y)(v0). Now we add n delays to
the left-hand side by using Lemma 3.43 thus getting �n

⌧

(JMK (~x)(w0)) ⇡
⌧

JMK (~y)(v0). By definition of the interpretation we know that JMK (~x)(w0)
is equal to J�x.case x of x1.M ;x2.NK)(~x)(⌘(w)), thus �n

⌧

(JMK (~x)(w0)) is
equal to �

n

⌧

(J�x.case x of x1.M ;x2.NK)(~x)(⌘(w))) . By repeated applica-
tion of Lemma 3.19 we push the delays on the argument of the left-hand
side denotation, thus getting

J�x.case x of x1.M ;x2.NK (~x)(�n
⌧1+⌧2

(⌘(w)))
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The relation thus becomes

J�x.case x of x1.M ;x2.NK (~x)(�n
⌧1+⌧2

(⌘(w))) ⇡
⌧1+⌧2

J�x.case x of x1.M ;x2.NK)(~x)(⌘(v))

which is what we wanted to show. The last case is when x is ✓
⌧1+⌧2(x

0) and
y is ✓

⌧1+⌧2(y
0). By guarded recursion we know that

.(J�x.case x of x1.M ;x2.NK (~x) ⇡
⌧1+⌧2!⌧

(J�x.case x of x1.M ;x2.NK)(~y))

By (3.27) we get

next(J�x.case x of x1.M ;x2.NK(~x)) . ⇡
⌧1+⌧2!⌧

next(J�x.case x of x1.M ;x2.NK (~y))

Since ✓
⌧1+⌧2(x

0) ⇡
⌧1+⌧2 ✓

⌧1+⌧2(y
0), by definition of the logical relation we get

x

0
. ⇡

⌧1+⌧2 y

0. By Lemma 3.41 we apply this latter fact with the hypothesis
which gives us

next(J�x.case x of x1.M ;x2.NK)(~x)~ x

0
. ⇡

⌧

next(J�x.case x of x1.M ;x2.NK)(~y)~ y

0

By Lemma 3.42 we add a tick on both sides of the relation

✓

⌧

(next(J�x.case x of x1.M ;x2.NK)(~x)~ x

0) ⇡
⌧

✓

⌧

(next(J�x.case x of x1.M ;x2.NK)(~y)~ y

0)

By Lemma 3.19 we push the tick inside thus getting

(J�x.case x of x1.M ;x2.NK(~x)(✓
⌧1+⌧2x

0)) ⇡
⌧

(J�x.case x of x1.M ;x2.NK)(~y)✓
⌧1+⌧2(y

0))

and concluding the case.
We now show the case for the elimination of the product. We show

the case for the first projection as the second projection is very similar.
By induction hypothesis we know that JMK (~x) ⇡

⌧1⇥⌧2 JMK (~y) which
by definition implies ⇡1(JMK (~x)) ⇡

⌧1 ⇡1(JMK (~y)) and same for ⌧2. This
concludes the case immediately by definition of the first projection. As
for the introduction case of the product we know by induction hypothesis
that JMK (~x) ⇡

⌧1 JMK (~y) and that JNK (~x) ⇡
⌧2 JNK (~y). By definition

JMK (~x) ⇡
⌧1 JMK (~y) is equal to ⇡1 JhM,NiK (~x) ⇡

⌧1 ⇡1 JhM,NiK (~y) and
the same for the second project. This proves by definition what we wanted.
We now prove the case for function application. By induction hypothesis we
know that JMK ⇡�,⌧!�

JMK, hence we know that JMK (~x) ⇡
⌧!�

JMK (~y).
Also by induction hypothesis we know that JNK ⇡�,⌧ JNK, hence we know
that JNK (~x) ⇡

⌧

JNK (~y). By composing the two we get

JMK (~x) JNK (~x) ⇡
�

JMK (~y) JNK (~y)

which is equal to JMNK (~x) ⇡
�

JMNK (~y), which proves that JMNK ⇡�,�

JMNK.
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As for the case for the lambda abstraction we have to prove that J�x.MK ⇡�,⌧!�

J�x.MK. To prove this it suffices to show that

J�x.MK (~x) ⇡
⌧!�

J�x.MK (~y)

for all related ~x, ~y in the context J�K. By definition of ⇡
⌧!�

we can as-
sume x and y of type J⌧K such that x ⇡

⌧

y and prove JMK (~x)(x) ⇡
�

JMK (~y)(y). But this follows directly from the induction hypothesis, namely
JMK ⇡(�,x:⌧),� JMK by applying the context arguments.

Now we prove the two cases for the recursive types. We first prove the
case for unfold M of type ⌧ [µ↵.⌧/↵]. We have to show that

Junfold MK(~x) ⇡
⌧ [µ↵.⌧/↵] Junfold MK(~y)

By induction hypothesis we know that JMK(~x) ⇡
µ↵.⌧

JMK(~y) which by
definition of ⇡

µ↵.⌧

is JMK(~x) . ⇡
⌧ [µ↵.⌧/↵] JMK(~y). By Lemma 3.42 we get

✓

⌧ [µ↵.⌧/↵](JMK(~x)) ⇡
⌧ [µ↵.⌧/↵] ✓⌧ [µ↵.⌧/↵](JMK(~y))

and by definition of the interpretation function this is what we wanted.
Now the case for fold M of type µ↵.⌧ . By induction hypothesis we
know that JMK(~x) ⇡

⌧ [µ↵.⌧/↵] JMK(~y) by “nexting” the assumption we
get .(JMK(~x) ⇡

⌧ [µ↵.⌧/↵] JMK(~y)) which is equal to next(JMK(~x) . ⇡
⌧ [µ↵.⌧/↵]

next(JMK(~y)). By definition of ⇡
µ↵.⌧

this is precisely next(JMK(~x) ⇡
µ↵.⌧

next(JMK(~y)) which by definition of the interpretation function is

Jfold MK(~x) ⇡
µ↵.⌧

Jfold MK(~y)

Lemma 3.49. For all terms M and N , if JMK ⇡�,⌧ JNK then for all contexts C
such that C : �, ⌧ ! �,�, JC[M ]K ⇡�,�

JC[N ]K

Proof. Assume JMK ⇡�,⌧ JNK and C : �, ⌧ ! �,�. We proceed by in-
duction on the typing judgement C : �, ⌧ ! �,�. Also, assume � ⌘ x1 :
�1.., xn : �

n

and ~x ⇡
~�

~y. For the empty context the case follows directly
from the assumption.

Now we prove the case for the application context on the right case.
Assume a context of the form M

0
C : (�, ⌧)! (�,�). We have to prove that

JM 0
C[M ]K ⇡�,�

JM 0
C[N ]K. By Lemma 3.48 we know that JM 0K(~x) ⇡

⌧

0!�

JM 0K(~y). By definition of the typing context we know that C is of type
�, ⌧ ! �, ⌧

0 and that M 0 is such that � ` M

0 : ⌧ 0 ! �. Thus, by induction
hypothesis we know that JC[M ]K(~x) ⇡

⌧

0 JC[N ]K(~y) and by applying it to
the hypothesis on M

0 we obtain JM 0K(~x)JC[M ]K(~x) ⇡
�

JM 0K(~y)JC[N ]K(~y)
which is equal to JM 0

C[M ]K(~x) ⇡
�

JM 0
C[N ]K(~y) by applying the definition

of the interpretation for the application.
Now the left case for function application context. Assume CN

0 :
(�, ⌧) ! (�,�). We have to prove that JC[M ]N 0K(~x) ⇡

�

JC[N ]N 0K(~y).
By Lemma 3.48 we know that JN 0K(~x) ⇡

⌧

0 JN 0K(~y). The context C has
type C : (�, ⌧) ! (�, ⌧

0 ! �), thus by induction hypothesis we have
JC[M ]K(~x) ⇡

⌧

0!�

JC[N ]K(~y). By applying the hypothesis on N

0 and the
one on C[M ] we get JC[M ]K(~x)JN 0K(~x) ⇡

�

JC[N ]K(~y)JN 0K(~y), which by
definition of the interpretation we get what we wanted.
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Now case for the introduction of the co-product. Assume a context
inl C of type (�, ⌧)! (�, ⌧1+⌧2). By induction C has type (�, ⌧)! (�, ⌧1)
so JC[M ]K(~x) ⇡

⌧1 JC[N ]K(~y). By Lemma 3.48 and by applying the context
parameters for �, we get J�x.inl xK(~x) ⇡�,⌧1!⌧1+⌧2 J�x.inl xK(~y) by
applying the hypothesis on �x.inl x and C[M ] conclude. The case for
inr C is similar to the previous one.

Now the case for the elimination of the co-product. For a context of the
form case L of x1.C;x2.N 0 of type (�, ⌧) ! (�,�) we have by induction
that C has type (�, ⌧) ! ((�, ⌧1, )�) and thus by induction hypothesis we
know by applying the context parameters that JC[M ]K(~x) ⇡

⌧1,� JC[N ]K(~y).
From this we also know that J�x1.C[M ]K(~x) ⇡

⌧1!�

J�x1.C[N ]K(~y) By
Lemma 3.48 and by applying the context parameters we get J�x.case L of x1.x(x1);x2.N 0K(~x) ⇡(⌧1!�)!�

J�x.case L of x1.x(x1);x2.N 0K(~y). By applying the induction hypothesis to
this latter fact we conclude. The case for case L of x1.M ;x2.C : (�, ⌧)!
(�,�) and for The case for case C of x1.M ;x2.N : (�, ⌧)! (�,�) is simi-
lar to the previous one. Now the case for the lambda abstraction context. For
a context of the form �x.C and type (�, ⌧)! (�,�

0 ! �) we have to prove
that for x and y such that x ⇡

�

0
y, J�x.C[M ]K(~x)(x) ⇡

�

J�x.C[N ]K(~y)(y)
holds. But this exactly the induction hypothesis instantiated with first ~x and
~y, then with x and y.

Now the case for the terms of the recursive types. For a context unfold C

of type (�,�) ! (�, ⌧ [µ↵.⌧/↵]) we have by induction that C has type
(�,�)! (�, µ↵.⌧) and thus induction hypothesis we know that JC[M ]K(~x) ⇡

µ↵.⌧

JC[N ]K(~y). By Lemma 3.48 we know that J�x.unfold xK ⇡(µ↵.⌧)!(⌧ [µ↵.⌧/↵])

J�x.unfold xK. By applying this latter fact to the induction hypothesis we
obtain Junfold C[M ]K(~x) ⇡

⌧ [µ↵.⌧/↵] Junfold C[N ]K(~y) which is what we
wanted. Now the case for the fold context, namely fold C of type (�,�)!
(�, µ↵.⌧). By induction, C has type (�,�) ! (�, ⌧ [µ↵.⌧/↵]) and thus by
induction hypothesis we know that JC[M ]K(~x) ⇡

⌧ [µ↵.⌧/↵] JC[N ]K(~y). By
Lemma 3.48 we get J�x.fold xK ⇡(⌧ [µ↵.⌧/↵])!(µ↵.⌧) J�x.fold xK. By apply-
ing this latter fact to the induction hypothesis we get Jfold C[M ]K(~x) ⇡

µ↵.⌧

Jfold C[N ]K(~y) which is what we wanted.

The global lifting of the logical relation is closed under context.

Lemma 3.50. If � ` M,N : ⌧ and JMKgl ⇡gl
�,⌧ JNKgl then for all contexts C of

type (�, ⌧)! (�, 1), JC[M ]Kgl ⇡gl
(�,1) JC[N ]Kgl

Proof. By specialising Lemma 3.49.

The following lemma states that if two computations of unit type are
related then the first converges iff the second converges. Note that this
lemma needs to be stated using the fact that the two computations are
globally related.

Lemma 3.51. For all x, y of type J1Kgl, if x ⇡gl
(�,1) y then

⌃n.x = (�gl1 )
n(⌘(?)), ⌃m.y = (�gl1 )

m(⌘(?))

Proof. (Sketch). We show the left to right implication, so suppose x =

(�gl1 )
n(⌘(?)). The proof proceeds by induction on n. If n = 0 then since by

assumption 8.x[] ⇡1 y[], by definition of ⇡1 , for all , there exists an m
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such that y[] = �

m

1 (⌘(?)). By type isomorphism (3.31), since m is a natural
number, this implies there exists m such that for all , y[] = �

m

1 (⌘(?)) which
implies y = (�gl1 )

m(⌘(?)) by clock extensionality.
In the inductive case n = n

0+1, since by Lemma 3.37 (�gl1 )
n

0
(JvKgl) ⇡gl

1 y,
the induction hypothesis implies ⌃m.y = (�gl1 )

m(⌘(?)).

Proof of Theorem 3.47. Suppose JMKgl ⇡gl
�,⌧ JNKgl and that C has type (�, ⌧)!

(�, 1). We show that if 8.C[M ] + hi also 8.C[N ] + hi. So suppose
8.C[M ] + hi. By definition this means 8.⌃n.C[M ] +n hi. Since n is a
natural number, i.e. a type that does not mention any clock variable, by type
isomorphism (3.31) we have that there exists n such that 8.C[M ] +n hi. By
the Global Adequacy Corollary 3.32 we get 8. JC[M ]K = (�1)n(⌘(?)) which
is equivalent to JC[M ]Kgl = (�gl1 )

n(⌘(?)). We can apply Lemma 3.50 together
with the assumption and get JC[M ]Kgl ⇡gl

1 JC[N ]Kgl, so by Lemma 3.51 there
exists an m such that JC[N ]Kgl = (�gl1 )

m(⌘(?)) which means there exists an m

8. JC[N ]K = (�1)m(⌘(?)). By applying the Global Adequacy Corollary 3.32
once again we get 8.C[N ] + hi as desired.

3.7 Conclusions and Future Work

We have shown that programming languages with recursive types can
be given sound and computationally adequate denotational semantics in
guarded dependent type theory. The semantics is intensional, in the sense
that it can distinguish between computations computing the same result
in different number of steps, but we have shown how to capture exten-
sional equivalence in the model by constructing a logical relation on the
interpretation of types.

This work can be seen as a first step towards a formalisation of domain
theory in type theory. Other, more direct formalisations have been carried
out in Coq, e.g. [BKV09; Ben+10] but we believe that the synthetic viewpoint
offers a more abstract and simpler presentation of the theory. Moreover,
we hope that the success of guarded recursion for operational reasoning,
mentioned in the introduction, can be carried over to denotational models
of advanced programming language features in future work.

Future work also includes implementation of gDTT in a proof assistant,
allowing for the theory of this paper to be machine verified. Currently, initial
experiments are being carried out in this direction.
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Chapter 4

Verifying Exceptions in
Low-level code with Separation
Logic

Marco Paviotti and Jesper Bengtson

Abstract. Exceptions in low-level architectures are implemented as synchronous
interrupts: upon the execution of a faulty instruction the processor jumps to a piece
of code that handles the error. Previous work has shown that assembly programs
can be written, verified and run using higher-order separation logic [JBK13]. How-
ever, execution of faulty instructions is then specified as either being undefined or
terminating with an error. In this paper, we study synchronous interrupts and show
their usefulness by implementing a memory allocator. This shows that it is indeed
possible to write positive specifications of programs that fault. All of our results are
mechanised in the interactive proof assistant Coq.

4.1 Introduction

Assembly code is difficult to prove correct. When verifying imperative pro-
grams, standard Hoare-logics often make implicit assumptions about the
control flow of programs and assume that the code c in a triple {P}c{Q} has
one entry point and one exit point, even though it may internally contain
loops and method calls. In assembly programs we cannot make this assump-
tion as the control flows of these languages are inherently unstructured.

Control flow is altered primarily by two mechanisms – jump commands
and interrupts. Jump commands allow developers to execute code stored
nearly anywhere in memory; their use is an active choice, much like writing
a loop or calling a method. Interrupts, on the other hand, occur either when
something has gone catastrophically wrong (such as dividing by zero or
reading from un-mapped memory) or when an action from the environment
requires processing (such as the user pressing a key, a change to the file
system is made, or the processor clock ticks).

While some of the aspects of interrupts might resemble that of function
calls, there are substantial differences: synchronous interrupts are not called
explicitly but triggers unpredictably as a result of a particular operation on
a particular state, .e.g. division by zero, secondly, there cannot be infinitely
many calls as after three nested interruptions the machine automatically
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reboots. Interrupts that trigger as a result of an error are typically referred to
as synchronous, while asynchronous interrupts are external requests. An-
other name for synchronous interrupts is exceptions, due to their similarity
with the exceptions encountered in languages like Java or ML, and we will
use the terms interchangeably.

We build on the existing Coq [Tea12] formalisation of the x86 instruction
set [Cor13] by Jensen et al. [Ken+13]. Their memory-model (explained in
Section 4.3.1) is very close to that of the actual x86 chipset – control flow
is implemented using jumps which are inherently unstructured and code
is stored in memory. This allows for self-modifying code. Secondly, their
program logic [JBK13] is able to handle non-structured control through
jumps in a clean and concise manner (explained in Section 4.3.2).

In this paper we present a monadic semantics and a program logic
to verify x86-assembly programs that feature synchronous interrupts. By
building on this existing work we are able to model synchronous interrupts
very closely to the way they run on real processors.

On x86-architectures, interrupts operate by using an Interrupt Descrip-
tion Table (IDT). The IDT is stored in memory and contains one pointer to a
handler for every type of interrupt. When an interrupt is fired, the proces-
sors state is saved, the address to the interrupt handler is retrieved from the
table and the code of the handler is executed. Barring catastrophic failure,
the original processor state is then typically restored and its execution is
resumed. Similarly to how Jensen stores code in memory, we store the IDT
and the interrupt handlers in memory, which opens up for possibilities like
having programs updating the various handlers dynamically.

Our contributions are the following.

• We extend the semantics of Jensen et al. to support synchronous
interrupts (Section 4.4.1).

• We add rules to the program logic to cover cases where synchronous
interrupts are thrown, for example when reading from unmapped
memory (Section 4.4.2), allowing users to verify programs that use
interrupts.

• We verify a small memory allocator that uses synchronous interrupts
(Section 4.5). To do this some technical – yet crucial – lemmas (Sec-
tion 4.5.1) need to be shown for proving the specification of the alloca-
tor (Section 4.5.2)

• All of our results are mechanised in Coq.

The source code to our mechanisation can be found at http://www.
itu.dk/people/mpav/downloads/coqdev.zip. The increment to the
previous development amounts to 1084 lines of code. The code is compiled
with coqc version 8.4pl3 with OCaml 4.00.1.

4.2 Memory allocation using exceptions

We use the standard AT&T syntax for assembly notation. For this example,
’mov r, v’ stores the value v in the register r, ’[r]’ dereferences a pointer
stored in r, ’add r, v’ adds the value v to the value stored in the register r –
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allocImp(info, n, fail)
def
== mov ESI, info;

mov EDI, [ESI];
add EDI, n;
jc fail ;
cmp [ESI+ 4], EDI;
jc fail ;
mov [ESI], EDI.

FIGURE 4.0.1: Standard Allocation mechanism

if the result to be stored in r exceeds the capacity of the register (232 � 1) the
carry flag is set. The instruction ’jc a’ jumps to address a if the carry flag is
set. Finally, ’cmp r u’ checks the carry flag. If the value stored in register r is
greater than or equal to the value stored in u.

Jensen et al. [JBK13] implemented and verified a simple bound-and-
check memory allocator, whose behavior and code is depicted in Figure 4.0.1.
It takes three arguments, info, n and fail, where info is a pointer to an informa-
tion block of two cells pointing to the beginning and at the end of the storage
respectively, n is the number of words to be allocated, and fail is an address
that the allocator jumps to if n bytes are not available. The program does
two comparisons – the first checks if adding n to the memory start address
causes the register value to wrap around (by resulting in a value greater than
232 � 1), the second checks if that number is outside the memory available
to the allocator. In both cases, the allocator jumps to fail if the test succeeds.

We verify an alternative version of this memory allocator using our new
semantics and program logic for exceptions, whose behaviour and code is
depicted in Figure 4.0.2. In our allocator we use the exception mechanism to
jump to a handler in case of failure, thus there are no checks for overflow or
memory bounds. Instead, we mark the end of the available memory with
an unmapped location. Our allocator only has one argument info that is a
single pointer to the start of memory. We only allow one word of memory
to be allocated at a time and by writing a value to the word of memory we
wish to allocate we will trigger an exception if that memory is unmapped,
i.e. when the end of the memory available to the allocator has been reached.
It is then up to the interrupt handler to catch the exception, but by jumping
to the fail address it will mimic the behaviour of the handler in Figure 4.0.1.

4.2.1 Interrupt mechanism

Every interrupt is identified by a unique number which is an index into a
record of pointers to the handlers. This list is commonly referred to as the
Interrupt Descriptor Table (IDT) and it is a chunk of memory pointed to by the
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allocImpExp(info)
def
== mov ESI, info;

mov EDI, [ESI];
mov [EDI], 0;
add EDI, 4;
mov [ESI], EDI.

FIGURE 4.0.2: Allocation mechanism with exceptions

IDT Register (IDTR) and further divided into records. Every record of the
IDT contains a pointer to an interrupt handler.

In the Intel architecture when segmentation is used every address is
uniquely calculated by giving a pair of addresses called base and offset. For
example, the pair CS:EIP is the address of a piece of code with offset EIP
inside the segment indicated by the value of CS. However, when referring
to addresses inside the same segment, the segment register can be omitted.

When an interrupt triggers, the CPU looks up its number, saves the CS,
EIP and the flags to the stack and jumps to the handler. In most operating
system, only one segment is used so we chose not to worry about the segment
selector – in particular the code selector – as it would be an easy fix if needed.
The reader can safely skip this detail as we will not make any use in this
paper.

Thus, the CPU is in charge of storing the return address in the stack
and jump to the handler. Though, is responsibility of the programmer
implementing a “safe” handler, i.e. a handler that leaves the machine in a
state that the original program can continue from without faulting.

For example, a transparent interrupt handler is programmed such that
there is no trace of its execution in the memory, i.e. the memory looks the
same before and after the interrupt fired. This kind of handler saves the CPU
state by pushing all the registers to the stack, handles the interrupt, and then
restores the state as it was before it was interrupted. Finally, it executes the
IRET instruction (Return from Interrupt). This signals the CPU to restore
the triple CS:EIP and FLAGS, thus performing a far jump back where the
program was interrupted.

However, the exception mechanism is slightly different in the presence of
a faulty handler. If the handler produces an error the machine raises a Double
Fault exception, which behaves the same as the other exceptions. Should this
handler fail, the whole machine reboots. This situation is called Triple Fault.
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4.3 Assembly semantics and logic

4.3.1 Semantics

In this section we present the semantics from Jensen et al. [JBK13]. The
semantics of the assembly operates on a total state as all registers, flags, and
memory :

S def
== (reg! DWORD)⇥

(flag! {true, false, undef})⇥
(DWORD! (BYTE ] {unmapped}))

(4.1)

Here, S is made of three total functions: the register state, mapping each
register to a DWORD (a 32-bit value); the flag state, mapping each flag to
a boolean value or bottom; and the memory, mapping each 32-bit address
to a BYTE (an 8-bit value), plus an unmapped value. The unmapped value
stands for an inaccessible byte of memory. For example, it can be used when
the memory is protected for some reason or inaccessible, e.g. some parts of
the BIOS [Cor13]. Let E be the set of numbers from 0 to 255. These represent
the errors that can occur, e.g. Division By Zero, General Protection and so
on.

The result of a computation is either an error in E, an unspecified behavior
or a result of type X along with the updated state:

R

X

def
== error E | unspecified | update S X

The semantics of the machine are monadic: programs are functions
that takes a state S and produce a result. The type of a computation is the
following:

ST X

def
== S! R

X

ST is a state monad with the usual return (⌘ : A ! ST A) and bind
operations »= : ST A ! (A ! ST B) ! ST B. We use let x  c;c0 for
c »= �x.c0 and do c;c0 for c »= �_.c0. For each field of the state, we have read
and write operations: readFlags, readReg and readMem to read the value of flags,
registers and memory locations respectively, and setFlags, setReg, setMem to
write to the state.

The instruction set Instr is inductively defined. The interpreting function
interprets an instruction instr into an element JintrK of the monad ST unit,
i.e. a function that takes a state a returns a result along with the modified
state or an error. For example the interpretation for the jmp instruction:

Jjmp iK def
== setReg(EIP := i)

A jump instruction is a computation that updates the EIP register with the
address specified by the instruction.

The semantics of the machine are defined in terms of a step function
of type ST unit which fetches and decodes an instruction and it inside the
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monad as follows:

step
def
== let eip readReg(EIP);

let (instr, neweip) decode(eip);

do setMem(EIP := neweip); JinstrK

where decode is a function which takes a 32-bit address and decodes it into
an instruction and the new instruction pointer or returns an error. If the
decoding fails, the entire step-function fails with the same error.

The semantics of the machine is defined by means of the function run of
type N ⇥ ST unit ! ST unit together with the step function defined above.
run is defined recursively on its first argument and takes as input a natural
number n which is the number of steps and a computation and executes that
computation for n steps.

4.3.2 Separation Logic for low-level code

In this section we give a background on the program logic devised for
reasoning about low-level code [JBK13].

A program logic or specification logic for a typical structured language
has a judgment of the form ` {P}c{Q}, where P and Q are assertion logic
formulas that represent the pre- and post-conditions of the command c

respectively. Separation logic [RY04; Rey02; ORY01; IO01; COB03; COY07] is
a logic for assertions. This logic is characterised by the separating conjunction
⇤where, for P and Q predicates on the heap, P ⇤Q means that P holds for
one part of the heap and Q holds for another disjoint part of the heap.

However, in Hoare logic the statement ` {P}c{Q} suggests that the
program moves forward and if it terminates, eventually will reach a state
satisfying the post-condition. In assembly language, however, it is not clear
what the post-condition for a jump instruction would be. This instruction
may jump to itself forever and never terminate. Nonetheless, the post-
condition of the instruction would be satisfied after every each step, thus
leading to a very intensional specification. Moreover, in assembly code is
data. This means the code lives in the heap, hence it can be mentioned inside
the assertion logic. This suggests that the specification logic should be able
to model higher-order behaviours.

The solution is to define an unstructured continuation-passing-style
specification logic where only preconditions are mentioned. A specification
is a family of propositions indexed over natural numbers and assertions
where the natural numbers is a step-index and the assertion plays the role of
an invariant extension [BTY05]. In Coq this is formalised as:

N⇥ (⌃! Prop)! Prop

where N is the set of natural numbers, ⌃ is the partial state obtained by taking
the total state (4.1) and redefining it using partial functions instead of total
ones and Prop is the proof-irrelevant universe of Coq. Every specification
s of this type is downward closed on the index and upward closed w.r.t.
the extension order on the separation logic formula. This will be explained
shortly.
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In the assertion logic, besides the separating conjunction, there are points-
to relations for registers and flags, 7_, and for the memory, 7!. As code is
data, code can be specified in the assertion logic by using the 7! relation, e.g.
i..j 7! c means the memory between i and j contains the program c. We are
going to use the question mark r?, when r is a register, as syntactic sugar
for 9v, r 7_ v and similarly for the memory. Separation logic entailments
are solved conveniently within Charge! [Ben+11; BJB12], a comprehensive
set of Coq tactics for working with a shallow embedding of a higher-order
separation logic.

As an example, safe is the predicate which contains the set of pairs (k,R)
such that the machine starting from a state satisfying R can run for k steps
without faulting:

safe = �k.�P. 8� 2 P. run � k = �

0 s.t. �0 6= error and �0 6= unspecified (4.2)

Note that safe is indeed a predicate in the specification logic as for all k
and P , if (k, P ) 2 safe holds then also (k � 1, P ) 2 safe holds, and moreover,
for all R, also (k, P ⇤R) 2 safe holds.

If S is a specification then ` S means that for all k and R, (k, R) 2 S

holds. For example, the statement ` safe means that the machine can run for
any number of steps and from any state of the memory. This is obviously
false, so we need a way to specify some sort of constraint on what the
memory looks like.

For a specification S and a separation logic formula P , the invariant
extension operator ⌦ gives a new specification S ⌦ P . From the previous
example, ` safe⌦ P means for all k and R, the machine starting from P ⇤R
can run for k steps. The variant S ↵P is the read-only version for ⌦ and it is
meant for disallowing self-modifying code. The ⌦ operator distributes over
the implication and satisfies

(S ⌦ P )⌦Q = S ⌦ (P ⇤Q) (4.3)

among other rules. Moreover, the upward closure on the assertions implies
the higher-order frame rule, S ` S ⌦ R [BTY05]. However, this fact is not
used in the current paper.

In order to be able to specify a program behaviour that has a finite num-
ber of instructions we need to say what happens after the programs reaches
its exit point (e.g. a jump out of the code fragment). Thus, a specification
has the following continuation-passing style form:

` (safe⌦ EIP 7! j ⇤Q) safe⌦ EIP 7! i ⇤ P )↵ i..j 7! c (4.4)

which states that a program c stored in the memory from the address i and
the address j is safe to run from P provided that there is a continuation that
runs safely from Q.

The ⌦ operator is an invariant extension operator in the following sense

(safe⌦P ) safe⌦Q)↵i..j 7! c⌦R a` safe⌦(P ⇤R)) safe⌦(Q⇤R)↵i..j 7! c

where R is the assertion that is preserved through the computation. This can
be shown by distributing R over the implication and by (4.3).
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As an example, the mov instruction can be specified using the rule for-
mat 4.4 by instantiating as follows:

Q

def
== r1 7_ pd ⇤ pd 7! v2 ⇤ r2 7_ v2

P

def
== r1 7_ pd ⇤ pd 7! v1 ⇤ r2 7_ v2

c

def
== mov [r1], r2

(4.5)

If the machine is safe to run from a state where EIP points to j and r1 and r2

are two registers containing a memory region that contains v2 and the value
v2 itself respectively, then the machine is safe to execute the mov instruction
which is located at the address i and the register r1 is pointing to a different
value.

Since the mov instruction does not alter the control flow the usual Hoare-
triple specification can be used here: by setting {P} c {Q} as notation for
the specification in (4.4). Only in this specific case, i.e. when c is a code block
that does not alter the control flow, the usual rules for composition and the
frame rule applies.

This is not the case for the following example. An assembly program
that sits in a tight loop forever is indeed safe:

` safe⌦ EIP 7_ i↵ i..j 7! jmp i (4.6)

In order to prove this statement, however, we need to prove the same
statement after one step of computation, i.e. after the jump has been made.
A convenient way to express this inside the logic is to use the . modality1,
pronounced “later”. If S is a specification, .S means that S is true one step
from now.

The . operator also introduces the notion of Löb Induction [App+07]
which is made formal by the Löb rule

.S ` S LÖB` S

To prove that S holds it suffices to prove it assuming that “later” it will be
true.

As an example, in order to prove (4.6) it suffices to prove the following:

.(safe⌦ (EIP 7_ i ⇤ i..j 7! jmp i)) ` safe⌦ (EIP 7_ i ⇤ i..j 7! jmp i)

and the Löb rule allows us to do exactly that.
Note, the later-operator is not used to count the actual steps of the pro-

gram as there is no tight connection between the modality and the number
of steps the program performs. The . operator is only useful for breaking
circularity, i.e. when a proof of a specification needs a proof of the same
specification. Every program that jumps backwards and then after a while
gets to the same point it was before is in this situation, e.g. (4.6).

Since we cannot know a priori whether the program is going to jump
forwards or backwards every instruction that behaves as a jump needs to
be specified with the . modality. For most of the instructions, on the other

1 This modality was originally devised by Nakano [Nak00] and afterwards introduced by
Birkedal et al. [Bir+12] as a synthetic form of step-indexing.
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hand, this is not needed, as we just need a normal Hoare-triple form of
specification where we assume that the next instruction is going to be safe.

Finally, it is possible to compose specification of programs in a modular
way. It is possible to give a more general composition rule where the program
is just a generic separation logic formula. Though, we are only going to need
a special case in Section 4.5 , we give an instantiation of the former, i.e. when
the program is composed by an instruction and the rest of another program:

` (safe⌦ EIP 7_ i1 ⇤Q1) safe⌦ EIP 7! i ⇤ P1)↵ i..i1 7! c1

P ` P1 ⇤RP
` (safe⌦Q) safe⌦ EIP 7_ i1 ⇤Q1 ⌦RP)↵ i1..j 7! c1; c

` (safe⌦Q) safe⌦ EIP 7_ i ⇤ P )↵ i..j 7! c1; c

(4.7)

The code snippet c1; c is the composition of the first instruction c1 and the
rest of the program c. In order to prove the whole program is safe to start
from the beginning with memory in P we have to prove that P satisfies
the precondition required by the first instruction c1. Secondly, we have to
prove the rest of the program is safe to execute from the part of the memory
modified, namely Q1 and part of P left untouched, namely R

P

. Note that
the code part of the specification is left unchanged. What changed is the
program pointer to the memory where the code lies.

4.3.3 Memory representation

The formalisation covers a subset of the x86 allowing a user to write actual
assembly x86 code, verify it, extract it as machine code and run it. To achieve
this level of confidence the semantics of the machine has to be formalised
in accordance with the specifications of the Intel machine [Cor13]. Values
are encoded as vectors of booleans (lists of a set length), representing binary
numbers.

Definition BITS (n: nat) := list n bool.

where n is the length of the list. Double words are defined similarly using
the previous definition as a list of 32 bits:

Definition DWORD := BITS 32.

The definition of these types and their functions use modulo 2n arithmetic
in Coq. This is not suitable for points-to predicates in separation logic.
Consider the predicate p..q 7! v for p and q of type DWORD. Assuming this
predicate it is not possible to infer that p  q in arithmetic modulo 232 as
p+ 4 might wrap around. A work-around consists in defining an additional
type dependent on n that adds a top element representing the end of the
memory:

Inductive Cursor (n: nat) := mkCursor (p: BITS n) | top.

a cursor is either a list of bits or the memory beyond the last representable
address.

This representation of bit values pervades the whole framework and
some challenges arise when trying to reason about points-to relations. In
particular, when reasoning about lists of memory cells. We defer this issue
to Section 4.5.1.



108 Chapter 4. Applications to step-indexing

4.4 Semantics and logic for exceptions

4.4.1 Semantics for exceptions

We lift the semantics from Section 4.3.1 to catch the exceptions. The exception
mechanism is implemented by the throw function. We currently do not
handle double faults, but leave that behaviour unspecified.

throw(n : nat)
def
== let level readRegINTL;

if (level=0) then

let idt readReg(IDTR);

let eip readReg(EIP);

do push(eip);

let new  readMem(idt+ n ⇤ 4);
setReg(EIP := new)

setReg(INTL := level + 1)

else

raiseUnspecified

The former routine can be read as follows: if the INTL register is zero the
machine raises it to one otherwise we leave the semantics unspecified; in
the former case, the semantics looks up the address of the IDT, by reading
the address from the IDTR, saves the address of the current execution point
by pushing it to the stack pointed by ESP – denoted by push(eip) – fetches
the address of the corresponding exception by looking up the value of the
nth record inside the IDT, and sets this value (the address of the interrupt
handler) to the EIP register.

In order to catch the error and throw an exception we define a catch
function of type catch : ST unit ! ST unit which takes a computation and
gives a computation such that if the former ends up in a fault it throws an
exception otherwise it returns the same result:

catch (c : ST unit)(s : S) def
== case (c s) of

| error(n)) throw(n)

| x) x

end

Whenever we have a computation c, we obtain a computation catch c of
type ST unit which turns errors into exceptions. We can then use the catch
function with the interpretation function for instructions from Section 4.3.1: if
instr 2 Instr then catch(JinstrK) is the computation that throws an exception
whenever the instruction instr fails to execute.

Note that, we might have just as well modified each instruction semantics
to throw the exception and remove the errors from the state. We chose
instead to leave semantics untouched and build the catch function on top of
it. We believe this is more modular and maintainable.



4.4. Semantics and logic for exceptions 109

We substitute this term in the definition of step as follows:

step
def
== let eip readReg(EIP);

let (instr, neweip) decode(eip);

do setMem(EIP := neweip);catch(JinstrK)

Note that the only difference between this step function and the one from
the previous section is in the final command where we change JinstrK to
catch(JinstrK).

Whenever the instruction just fetched from the memory raises an ex-
ception, the machine jumps to the respective handler by updating the EIP
register and the machine continues executing from there.

4.4.2 Specification logic for exceptions

In order to be able to reason about these exceptions we need assertions
describing the state of the memory in which these events can be triggered.
One of these is the read or write operation to an unmapped memory region.
We define a predicate l 7! !! as the set of states such that the location l

maps to an unmapped location. This corresponds to a map that takes l to
unmapped w.r.t the state definition (4.1).

Every instruction that tries to read or write from an unmapped locations
now becomes a jump into the exception handler, provided that the IDT is
present in memory.

The specification of the mov instruction of example (4.5) is turned into a
jump-like specification using the later-operator. The rule has the following
shape:

` .(safe⌦Q) safe⌦ P )↵ i..j 7! mov [r1], c⌦ Inv (4.8)

We are going to explain the meaning of P , Q and Inv soon. Informally,
if the machine is “later” safe to run from inside the handler, where the
interrupt level is set to 1 and the stack pointer points to the top of the stack
where the return address j is stored, then it is safe to run from a state where
the interrupt level is zero and the stack pointer points to a cell of memory
such that the next cell is mapped.

First, we need an invariant stating the IDT is in the memory. With
IDT[ExpGP/fail ] we mean that the record in the IDT associated with the
general protection exception contains the address fail which points to the
handler. The location from l to l + 4 is unmapped, while r1 is pointing to l.
Note that even though a complete IDT contains pointers to all handlers we
do not need all of them, just the pointer to the handler associated with the
general protection exception.

Inv
def
== (r1 7_ l ⇤ l..(l+4) 7! !! ⇤ IDT[ExnGP/fail ]) (4.9)

Secondly, the precondition in (4.10) says that the program is starting from
i with interrupt level 0 and with the necessary space in the stack to allocate
the return address:

P

def
== (EIP 7_ i ⇤ INTL 7_ 0 ⇤ ESP 7_ sp ⇤ ((sp� 4)..sp)?) (4.10)
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Finally, we need a post-condition as in (4.11) stating that it is safe to jump
inside the handler. Thus, at this point in time the program pointer will be
the fail address with interrupt level set to 1 and the return address on top
of the stack:

Q

def
== EIP 7_ fail ⇤ INTL 7_ 1 ⇤ ESP 7_ (sp� 4) ⇤ (sp� 4)..sp 7! j (4.11)

Any instruction that makes use of an unmapped cell turns into a jump.
In the Coq development we proved similar rules for the read version of mov
and for push and pop instructions.

We proved that the push instruction is safe to execute when the parameter
refers to an unmapped location:

` 8i : DWORD, j : DWORD.
(.(safe⌦ (EIP 7_ fail ⇤ INTL 7_ 1 ⇤ ESP 7_ (sp�4) ⇤ (sp�4)..sp 7! j)))
safe⌦ (EIP 7_ i ⇤ INTL 7_ 0 ⇤ ESP 7_ sp ⇤ (sp�4)..sp 7! v))
↵(i..j 7! push[r])
⌦(r 7_ l ⇤ l..(l+4) 7! !! ⇤ IDT[ExnGP/fail ])

(4.12)
the structure is the same as in rule (4.8), but here we read from an unmapped
memory address and the destination is the top of the stack. It may be worth
noting that if the destination address is unmapped, i.e. the top of the stack,
this rule is not sound: the push instruction is going to fail after having written
a value on the stack which is unmapped and the interrupt mechanism is
also going to store the return address on the stack resulting in a double fault
which for the same reason leads to a triple fault.

The pop rule, similarly, reads from the stack and put the value on the cell
pointed by the register r:

` 8ij : DWORD. (.(safe⌦ (EIP 7_ fail ⇤ INTL 7_ 1 ⇤ (sp� 4)..sp 7! j⇤
ESP 7_ (sp� 4)))
) safe⌦ (EIP 7_ i ⇤ INTL 7_ 0 ⇤ (sp� 4)..sp 7! spv ⇤ ESP 7_ sp))
↵(i..j 7! (pop[r]))
⌦IDT[ExnGP/fail ] ⇤ r 7_ l ⇤ l..(l + 4) 7! !!

(4.13)
the structure of the rule is again similarly to the previous ones and again,
the rule would be unsound if we tried to pop a value from a stack whose
memory is unmapped.

4.5 Memory allocation using exceptions

In this section we show how to prove the allocator correct. We first show
how to reason about predicates that talk about chunks of memory with
boundaries. More specifically, we need to be able to decide whether the
current cell in a storage is available or not. Secondly, we use this result to
prove the allocator correct.

4.5.1 The memory datatypes in Coq

As explained in Section 4.3.3 32-bit addresses binary are represented by the
DWORD type. On the other hand, the points-to relation is a function from
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Cursor 32⇥Cursor 32 to an assertion logic formula such that for all p, q and v,
p..q 7! v ` p  q. The type Cursor 32 is making sure that p is actually smaller
that q and that no wrap-around has occurred.

On the other hand, when using this predicate we need to know that the
cursor represents a valid location in the memory and not the top element
in order to reason about 32-bit address. Since a DWORD is a Cursor we can
state p..q 7! v for p and q of type DWORD.

Although, for convenience many instruction rules use p 7! v as a notation
for 9(q : Cursor 32), p..q 7! v. This implies that if we had more information
about q by using these rules we would lose it. We worked around this
problem by restating and proving the instruction rules, but in other cases it
turned out to be easier to prove the following lemma:

Lemma 4.1. Let p, q be two DWORDs and v a value also of type DWORD, p..q 7!
v ` q = p+ 4

which required some non-trivial Coq hacking. The reader should note
the subtlety of this lemma. The predicates p and q are cursors that came from
a DWORD. Hence their value cannot be top. This means that the predicate
p..q 7! v is implicitly saying that p+ 4 is not wrapping around since p and q

are cursors and in this datatype the addresses are sequential.
By virtue of this effort we can now decide whether a chunk of memory

is at its end or not:

Lemma 4.2. Let base and limit be of type Cursor and let buf be a list of memory
cells of type DWORD. If base..limit 7! buf ⇤ limit ..(limit + 4) 7! !! then either

9s1.base..(base +4) 7! s1 ⇤ 9s2.(base +4)..limit 7! s2 ⇤ limit ..(limit +4) 7! !!
(4.14)

or
base = limit (4.15)

Proof. The proof is by case analysis on buf . If buf is the empty list then this
implies base is equal to limit , thus satisfying (4.15).

If buf is composed by a cell a and the rest of the list l then there exists
a p of type Cursor such that base..p 7! a and p..limit 7! l. We proceed by
case analysis on p. If p is a DWORD by Lemma 4.1 then p is equal base + 4,
thus satisfying (4.14). If p is > then base..> 7! a is false. Since this was an
assumption the case is vacuously true.

4.5.2 Specification for the allocator

The specification for the example in Figure 4.0.2 has the following pattern,

allocSpec
def
== ` ((safe⌦Q1 ^ safe⌦Q2)) safe⌦ P )↵ i..j 7! c⌦ Inv

Two continuations, namely Q1 and Q2 are defined to state what happens
upon success and failure, a pre-condition P together with an invariant Inv
specifying that there exists a storage whose ends are bounded by an un-
mapped memory region and that there exists an IDT containing the pointers
to the handlers.
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More precisely, the precondition is defined as follows:

P

def
== EIP 7_ i ⇤ INTL 7_ 0 ⇤ EDI? ⇤ ESP 7_ sp ⇤ (sp�4..sp)? (4.16)

The EIP points to the beginning of the code, INTL is the register keeping
track of the level of interruptions, EDI is a temporary register and ESP is the
stack pointer.

We have to ensure there is a handler taking care that machine will be
safe upon failure. This is stated by the first of the two post-conditions:

Q1
def
== EIP 7_ fail ⇤ INTL 7_ 1 ⇤ EDI? ⇤ ESP 7_ (sp�4) ⇤ (sp�4..sp)? (4.17)

which states that there exists a handler which is going to take on the
computation from the address fail with the INTL set to 1 and the stack
pointer containing the return address to the original code.

Also, we make sure the machine will be safe upon success. We do this by
defining the other post-condition:

Q2
def
==EIP 7_ j ⇤ INTL 7_ 0 ⇤ ESP 7_ sp ⇤ ((sp�4)..sp)?⇤

9p,EDI 7_ (p+4) ⇤ (p..(p+ 4))?
(4.18)

which states that there is a program which is safe run from the address j

with the EDI register pointing to the end of the allocated memory and with
the interrupt level set at zero in case the allocator succeeds.

Furthermore, we have the following invariant:

Inv
def
== 9base count .infoBlock 7! base ⇤ 9s, base..count 7! s

⇤ count ..(count + 4) 7! !! ⇤ IDTR 7_ idt

⇤ Flags ⇤ IDT[exn.ExnGP/fail ]

(4.19)

which states that the information block infoBlock points to a chunk of mem-
ory delimited on top by the unmapped region and the Interrupt Descriptor
Table is properly set up in the memory.

4.5.3 Proof of the specification

We prove that implementation of the allocator respects the specification:

Theorem 4.3. Let P , Q1, Q2 and Inv as respectively in (4.16), (4.17), (4.18) and
(4.19). Moreover, let c be the code in Figure 4.0.2. The specification

` ((safe⌦Q1 ^ safe⌦Q2)) safe⌦ P )↵ i..j 7! c⌦ Inv

is sound. [Coq proof]

Proof. (Sketch). By unfolding the definition of the program there exists
i1, i2,i3 and i4 of type DWORD pointing at each single instruction of the
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program:

i..i1 7! mov ESI, infoBlock ⇤
i1..i2 7! mov EDI, [ESI] ⇤
i2..i3 7! mov [EDI], 0 ⇤
i3..i4 7! add EDI, 4 ⇤
i4..j 7! mov [ESI],EDI

Proving the first two instructions correct is only a matter of applying the
proper rules using the composition rule (4.7).

First, we apply the instruction rule for the first instruction by instantiat-
ing it with the proper parameters:

`safe⌦ EIP 7_ i1 ⇤ ESI 7_ infoBlock ) safe⌦ EIP 7_ i ⇤ ESI?
↵ i..i1 7! mov ESI, infoBlock

For the second instruction we apply the following rule:

`safe⌦ (EIP 7_ i2 ⇤ EDI 7_ v ⇤ ESI 7_ infoBlock ⇤ infoBlock 7! base)

) safe⌦ (EIP 7_ i1 ⇤ EDI? ⇤ ESI 7_ infoBlock ⇤ infoBlock 7! base)

↵ i1..i2 7! mov EDI, [ESI]

We end up with the following precondition which we name P

0 with the
program pointer pointing to the third instruction:

P

0 = safe⌦ EIP 7_ i2 ⇤ EDI 7_ base ⇤ ESI 7_ infoBlock ⇤ infoBlock 7! base

⇤ INTL 7_ 0 ⇤ ESP 7_ sp ⇤ (sp� 4)..sp 7! spval ⇤ Inv

The instruction in i2 is going to perform a write operation to the location
pointed by base. By unfolding the invariant Inv we know there exists base

and limit of type DWORD bounding the memory:

infoBlock 7! base ⇤ base..limit 7! s ⇤ limit..(limit+ 4) 7!!! ⇤ IDTR 7_ idt⇤
Flags ⇤ IDT[ExnGP/fail]

on the other hand we do not know whether there is space left between them.
So we case analyse the memory chunk by applying Lemma 4.2 thus getting

base..(base + 4) 7! s ⇤ (base + 4)..limit 7! s ⇤ limit..(limit+ 4) 7!!!

_ base = limit ⇤ base..base + 4 7! !!

This assertion is indeed part of P 0. Thus, when applying (4.7) we will have
to prove that P 0 implies the precondition of the instruction that we are going
to use. This means the disjunction above will appear in the negative position.
So we have to first split the disjunction into two sub cases. For the case
in which the memory has run out we will apply (4.8) and for the other we
will apply (4.5). We skip the second case as it is the standard one, i.e. the
memory is available and the program goes through successfully satisfying
post-condition Q2.

In the case where base = limit the move operation performs a write
operation into the unmapped location. Let P 00 be the precondition obtained
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from P

0 where base = limit. We use rule (4.8) instantiated as follows:

.(safe⌦(EIP 7_ fail ⇤ INTL 7_ 1 ⇤ ESP 7_ sp� 4 ⇤ (sp� 4)..sp 7! j))

) safe⌦ (EIP 7_ i2 ⇤ INTL 7_ 0 ⇤ ESP 7_ sp ⇤ (sp� 4)..sp 7! spval)

↵ (i2..i3 7! (mov[EDI], 0))

⌦ (EDI 7_ limit ⇤ limit..(limit+ 4) 7! !! ⇤ IDTR 7_ IDT[ExnGP/fail ])

This rule can be turned into a pattern suitable for applying (4.7) by commut-
ing ⌦ with ↵ and distributing ⌦ over the implication. We have to prove
that P 00 entails the precondition of the instruction rule above. In solving this
entailment all the resource get consumed and the post-condition Q implies
the post-condition for the instruction in i2

4.6 Related Work

The work most closely related to ours is naturally the work by Jensen et
al. that we build off of [JBK13]. It allows specifications to be written in a
clean and intuitive manner even for code that does not follow a basic-block
like structure with only one entry and one exit point. It should be noted,
however, that there are program logics that use Hoare triples on code with
multiple exit points, such as programs containing break-statements from
loops. One example is Appel’s mechanised semantics library in Coq for
C-minor [App+14] and the mechanisation of x86 and ARM assembly by
Myreen et al. in HOL4 [MG07]. Both these mechanisations have special
post-conditions that are used to handle non-structured control flow. To
our mind, the higher-order frame connective (⌦) is a better solution as it
provides a uniform way to write specifications for programs regardless of
their internal control flow. Other relevant work includes Chlipala’s Bedrock
framework that allows assembly-like programs to be verified in Coq [Chl11].
Chlipala’s work focusses heavily on automation and the expressivity of the
specification logic is toned down somewhat. None of the work mentioned
above currently support interrupts.

Seminal work on mechanising interrupts was made by Feng et al. in
2008 [Fen+08]. They focus on what they call an Abstract Interrupt Machine,
which is an abstract model of a machine supporting both synchronous and
asynchronous interrupts. They do, however, make some simplifications.
Scheduling, for instance, is handled using a scheduling queue that is part of
the model rather than being coded using interrupts from the clock. In our
approach, the interrupt handlers are programs, just like any other, allowing
our model to be closer to real world applications.

4.7 Conclusions and Future Work

We have extended an existing mechanisation of x86-assembly created by
Jensen et al. to support synchronous interrupts. Jensen’s model is expres-
sive enough to reason about mutable code and we stay true to this design
philosophy by storing the IDT and all handlers in memory, allowing them
to be dynamically updated by the processor. Our extensions to the pro-
gram logic are also very conservative. By allowing the memory points-to
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predicate to state that certain memory is unmapped (and not only what it
contains), we obtain a logic that is expressive enough to verify programs
that use synchronous interrupts. We believe that this is a testament not only
to the validity of our design decisions, but also of the quality of the original
mechanisation.
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Appendix A

Set theory vs Type Theory

This thesis is motivated by the fact the constructive theories are more suitable
for working with programming languages and that constructive mathemat-
ics are to be preferred.

On the other hand, it is not our intention to make religious claims about
what theory is the best. Our opinion is that only practical motivations should
lead research in computer science and that philosophical issues should be
left out to philosophers.

Therefore, we try to unbiasedly explain the differences between classical
and constructive mathematics by giving the reader some crunchy details
that can be brod over. Our hope is that an outsider can hone its perception
of the problems in formalising programming languages in one theory rather
than another.

A.0.1 Set theory

Set theory is a formal system consisting of a set of axioms sitting on a
predicate logic. Formally, the grammar of a predicate logic consists of a set
of terms inductively defined as

t := x | f(~t)

where x is a set of variables and f is a set functions symbol with variable
arity. Constant symbols are 0-ary function symbols. Formulas are inductively
defined as

A,B := A ^A | 8x.A | A! B | ¬A | t = t | R(~t)

where ^, 8,!, ¬ are the usual logical operators and where = is an equality
on terms and R is a set of relational symbols. The substancial difference
about terms and formulas is that the former have as domain an codomain
values of some kind whereas formulas carry the truth of statements such as
equality or relational symbols.

ZFC is the most used version of set theory and is defined by setting f

as the empty set, R by the set of relational symbols containing the binary
relation on terms 2 and by adding a set of axiom ruling the interaction of
this one relational symbols with the other formulas. Before going into some
of the most important axioms and attentive reader will immediately notice a
small peculiarity arising from the definitions. In fact, the grammar (nor the
rules) do not prevent the user of the logic to write statements such as x 2 x.
The provability or non-provability of this statement is irrelevant. What is
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relevant is that it is even possible to write such a “query” into the formal
system. We are going back to these problem shortly.

ZFC postulates the existence of a particular kind of object called set.
Formally, 9x.(x = x). This is the Set Existence axiom and informally says
that the universe is not void. Moreover, any set is extensional by means of
the Extensionality axiom. This means that two sets are equal if they contain
the same elements. Formally,

8x, y, z.(z 2 x$ z 2 y)! x = y (A.1)

Another central axiom is the Comprehension Scheme Axiom which allows
for creation of new sets. If A is a set and P is a predicate logic formula,
i.e. predicate, on A then the set {x : A | P (x)} exists and is precisely the set
containing all and only those elements of A which satisfy P .

One might try to formalise this axiom as 9y.8x.(x 2 y $ �. However, if
one chooses � to be x 62 x then the above becomes 8x.(x 2 y $ x 62 x for
an existing y. Therefore, the statement y 2 y $ y 62 x holds leading to the
Russel Paradox.

In ZFC, the Comprehension Scheme axiom is formulated by restricting
the elements of the new set to a subset of another given set. We defer the
reader to [REF Set theory] for a precise formulation.

Other axioms permit to constructs sets out of other sets, such as the
cartesian product, the union and the power set. Another important axiom is
the one that postulates the existence of the set of natural numbers N (Infinity
Axiom). The last axiom is the Axiom of Choice which states that whenever
w‘se have a set of non-empty sets we can pick one element out of any of
these sets. The axiom of choice implies A _ ¬A for all A thus making the
logic classical.

In logic, if S is a list of formulas, S is consistent iff for no formula � it
holds that both � and ¬� is derivable from S. If S is inconsistent if for all
formulas �, S ` �.

A.0.2 Type theory

Type theory can be read both from a computer science and from a logic point
of view via the Curry-Howard correspondence which is the observation
that “a proof is a program and the formula it proves is a type for the pro-
gram”. The correspondence has been the starting point of a large spectrum
of new research after its discovery, leading in particular to a new class of
formal systems designed to act both as a proof system and as a typed func-
tional programming language. Martin-Löf’s intuitionistic type theory [ML84;
NPS90; NPS00] and Coquand’s Calculus of Constructions [CH] underpinned
proof-assistants like Agda [Nor07] or Coq [Tea12].

In type theory the basic judgment is formed by a context �, a proof t
and a formula A. Syntactically, � ` t : A means A has a proof t using
assumptions in �. In the empty context, t : A is read as “t is an element of
A”. Moreover, in type theory every object has a type. Thus, a type A has
type U, the universe of types. Since being the universe a type it must have a
type too, but if we allowed the “universe of all types” U : U, as in set theory,
then also the empty type would be in there leading to the Russel Paradox.
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Thus, in type theory, we have a hierarchy of types

U1 : U2 : U3 · · ·

where every universe U
i

is an element of the next universe U
i+1. Furthermore,

functions are first-class object. The type A! B represent the function space
of all total functions. More generally, for a family of types x : A ` B : U,
we can form the dependent product ⇧(x : A).B. Similarly, we can form the
dependent sum or constructive existential ⌃(x : A).B.

Under the Curry-Howard correspondence, the types A! B, ⇧(x : A).B
and ⌃(x : A).B can be equivalently read as formulas. Because of the strength
of constructivism curiously enough some type theoretic counterparts of the
axioms of set theory can be proven within type theory. For instance the
axiom of choice can be proven in its type theoretic reformulation:

(⇧(x : A)⌃(y : B)R(x, y))! (⌃(f : A! B)⇧(x : A)R(x, f(x))) (A.2)

which means there exists a function that takes a proof of R(x, y) for all x and
y and constructs f and the proof that f behaves as the relation R.

A.0.3 Relating type theory and set theory

Type theory differs from set theory in many aspects. While set theory sits
on top of first-order logic with the additional notion of sets, type theory has
its own formal system where the basic notion is the one of types. Formally,
whereas the basic judgment in set theory is the one of first-order logic ` A

in type theory the judgment is a relation vdasht : A between a term t and a
type type A. Moreover, in type theory the type – under the Curry-Howard
correspondence – is a formula in intuitionistic logic.

The first consequence of this is a different notion of “membership”. The
type theoretic counterpart of ` t 2 A is the judgment ` t : A. Although,
this relation might make sense at first sight, it is not really a good intuition
to have in the long run as the judgment in type theory ` t : A is not a
formula. As a consequence, once we stated that t is a proof of A, A cannot
be disproven. On the other hand, t 2 A is a formula in set theory that
can be falsified. In trying to explain set theory in type theory one would
have to encode the relational symbol 2 more appropriately as a map into
the universe of types, so that one can ask what is the proof p such that
` p : t 2 A.

The treatment of equality is also different. In set theory the equality is
the least relation that contains all pairs (x, x) for x in some set A, whereas
in type type theory the equality is a dependent type: a map from the type
A⇥A to the universe type U. Thus, to prove the identity type is inhabited
for two terms we must show a proof. However, sometimes we want to prove
two terms are “equal by definition”. For instance, 2 + 2 equals 4 by just
unfolding the definition of the function +. However, using the former notion
of equality this could not be done as we would need a proof. To overcome
this problem, in type theory we have also a notion of “judgmental equality”.
In other words, two terms t and t

0 of type A can be equal up-to � and ⌘

reduction under the judgment ` t ⌘ t

0 : A.
The treatment of the equality, however, is far from being totally under-

stood. Mathematicians have always deemed isomorphic structures to be
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equal. On the other hand, only in type theory this identification can be
made precise. Homotopy type theory (HoTT) [Uni13] is a type theory where
types are spaces (sets with points) and identity proofs are paths between two
points in the space. The identification of isomorphic structure is made possi-
ble by the so called univalent axiom which states that the type of equivalent
objects is equivalent to the identity type.

In set theory this axiom is inconsistent. This is easily seen by taking two
singleton sets with two different elements in them, namely the set {1} and
the set {2}. This two sets are clearly isomorphic and thus by univalence they
are equal. However, by Extensionality(A.1) they contain the same elements
and thus 1 = 2.
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