
IT University of Copenhagen

Ph.D. Dissertation

Flexible Process Notations
for Cross-organizational

Case Management Systems

Author:
Tijs Slaats

Supervisor:
Dr. Thomas T. Hildebrandt

Co-supervisor:
Dr. Marco Carbone

Evaluation Committee:

Dr. Wil van der Aalst Eindhoven University of Technology,
The Netherlands

Dr. Hagen Völzer IBM Research - Zurich, Switzerland
Dr. Andrzej Wasowski IT University of Copenhagen, Denmark

January 2015

Abstract

In recent times western economies have become increasingly focussed on knowl-
edge work. Knowledge work processes depend heavily on the expert knowledge
of workers and therefore tend to require more flexibility then the processes seen
in traditional production work. Over-constrained processes cause frustration
and inefficiency because they do not allow workers to use their expert experi-
ence to make the best judgements on how to solve the unique challenges they are
faced with. However some structuring of their work is still required to ensure
that laws and business rules are being followed.

IT Systems for process control have a large role to play in structuring and
organizing such processes, however most of these systems have been developed
with a focus on production work and fail to support the more flexible processes
required by knowledge workers. The problem arises at the core of these systems:
the notations in which the processes are defined. Traditional process notations
are flow-based: control of the process flows from one activity to the next. This
paradigm inherently encourages modellers to think in terms of strict orderings
instead of supporting flexibility. Flow-based models that do try to capture a
large degree of flexibility tend to turn into so-called ”spaghetti models”, because
all possible paths through the process need to be modelled explicitly. Over the
last decade new, more flexible, process notations have been researched by using
a constraint-based paradigm, where one directly models the rules of a process.

Dynamic Condition Response (DCR) Graphs, which have been developed at
the process and systems models group at IT University of Copenhagen (ITU),
are one such notation. They stand apart from other constraint-based notations
by having a small set of 4 basic constraints, yet offering the full formal expres-
siveness of both regular and ω-regular languages. They also offer an operational
semantics based on transformations of markings, which means that the notation
can represent a process at both design- and runtime, facilitating easy reasoning
about the execution of the process and techniques for runtime adaptation.

This dissertation reports on the results of the Technologies for Flexible Cross-
organizational Case Management Systems (FLExCMS) research project which
was started in cooperation between ITU and the company Exformatics A/S. The
goals of the project were to strengthen the industrial adoption of constraint-
based notations and techniques by further developing DCR Graphs to be in-
dustrially applicable, with a particular focus on guaranteeing safety for cross-
organizational processes. We will show how DCR Graphs have been extended
with new dimensions such as time, data and hierarchy and we will report on the
development of techniques for the safe distribution and run-time adaptation of
cross-organizational processes based on DCR Graphs. We brought this research
into practice at Exformatics by developing tools for modelling and executing
DCR Graphs and applying these tools within customer projects, we report on a
number of case studies based on these projects. Finally we report on a new an-
gle of research within the Business Process Management field tentatively called
Hybrid BPM Technologies, which aims to combine the advantages of both the
flow- and constraint-based paradigms.

1

Acknowledgements

Some people appear to be under the impression that pursuing a PhD is a rather
lonely affair, but this has not been my personal experience. Many people have
to a greater or lesser extend contributed to the work I will present in this
dissertation and without them I would not have been where I am today.

I’d like to start by thanking my supervisor Thomas Hildebrandt, without
whom I might never have started out on my path as researcher: Thomas believed
in my ability to work in academia long before I had much faith in myself and has
been a driving factor in helping me apply for funding. Throughout my project
he has been an excellent mentor, pushing my limits on all fronts.

Morten Marquard, as the founder and proprietor of Exformatics, has per-
sonally played a large part in getting my PhD project funded. In addition he
has been a great company supervisor during the project and had a large hand
in successfully applying the research in practice.

Raghava Rao Mukkamala has been my most prominent co-author and has
always been a pleasure to work and attend conferences with. I hope we will get
to work and travel together again in the future.

Soren Debois comes in as a close second, while we only started cooperating
in the last year of my PhD our work together has been extremely rewarding and
he made a great addition to Thomas in helping me fully understand some of
the more foundational topics we worked on, such as process algebra and session
types. In addition, his sharp wit always makes for entertaining discussions.

Michael Westergaard has been an excellent host during my stay abroad at
the Architecture of Information Systems group of Eindhoven University of Tech-
nology. Working together with Michael was an interesting experience and I was
sad to learn that he moved to industry.

During my stay in Eindhoven I met with Hajo Reijers and we discovered a
common interested in declarative and hybrid process technologies. I’ve strongly
enjoyed working together with Hajo and hope that we will continue our coop-
eration in the near future.

Additional thanks go out to Fabrizio Maria Maggi, Marco Carbone, Nobuko
Yoshida, Christian Stahl and Francesco Zanitti, who have also all been great to
work with.

I would also like to thank Wil van der Aalst, Hagen Völzer and Andrzej
Wasowski for joining the assessment committee for this dissertation and take
the time to come to Copenhagen for my PhD defence.

Last, but certainly not least, my girlfriend Merete has had the patience of a
saint while I worked on my PhD and I consider it a small miracle that I have
not been forbidden from further pursuing a career in academia.

Finally I would like to thank all the people that were not mentioned by name,
but have been great colleagues regardless during my time at the IT University,
Exformatics and my stay abroad in Eindhoven.

2

Contents

1 Introduction 5
1.1 Dynamic Condition Response (DCR) Graphs 9
1.2 The Technologies for Flexible Cross-organizational Case Manage-

ment Systems Research Project 14
1.3 Related Work . 16

2 Structure of the Dissertation 21

3 Conclusion 25
3.1 Industrial Results . 26
3.2 Future Work . 28

List of Publications 30

References 32

4 Hierarchical Dynamic Condition Response Graphs 39
4.1 Nested Dynamic Condition Response Graphs 40
4.2 Designing a Cross-organizational Case Management System using

Dynamic Condition Response Graphs 48
4.3 Hierarchical Declarative Modelling with Refinement and Sub-

processes . 58
4.4 A Case for Declarative Process Modelling: Agile Development of

a Grant Application System . 74

5 Dynamic Condition Response Graphs with Time and Data 82
5.1 Contracts for Cross-organizational Workflows as Timed Dynamic

Condition Response Graphs . 83
5.2 Exformatics Declarative Case Management Workflows as DCR

Graphs . 132

6 Safe Cross-Organizational Flexible Processes 148
6.1 Safe Distribution of Declarative Processes 149
6.2 Declarative Modelling and Safe Distribution of Healthcare Work-

flows . 165
6.3 Live Sessions with Responses . 183
6.4 Type Checking Liveness for Collaborative Processes with Bounded

and Unbounded Recursion . 186

7 Safe Runtime Adaptation of Flexible Processes 201
7.1 Towards Trustworthy Adaptive Case Management with Dynamic

Condition Response Graphs . 202
7.2 Modular Context-Sensitive and Aspect-Oriented Processes with

Dynamic Condition Response Graphs 212

3

7.3 Towards a Foundation for Modular Run-time Adaptable Process-
Aware Information Systems? . 218

8 Hybrid BPM Technologies 243
8.1 Declarative Modeling – An Academic Dream or the Future for

BPM? . 244
8.2 Mixing Paradigms for More Comprehensible Models 260
8.3 The Automated Discovery of Hybrid Processes 268

4

1 Introduction

Over the last few decades the focus of western economies has steadily shifted
from production work to so-called knowledge work [10, 5]. Production work
tends to be highly structured, take for example a car manufacturing factory: the
work is typically done along an assembly line and while there may be a certain
amount of variability (the colour of the cars, materials used in the interior,
additional features, etc), these variations in the production process tend to be
well-defined. Processes in knowledge industries on the other hand tend to be
much less rigid: for example legal cases may often share similarities but are
rarely exactly the same and the lawyers handling such cases typically have the
freedom to make their own decisions in how to handle the various challenges
each case presents. Knowledge workers therefore require a new level of flexibility
in their work processes [44, 62, 36]: they have strong insights into what the best
solution to a problem is and are not helped by being constrained to a standard
solution aimed at a generic version of the problem which does not take into
account the unique challenges for the specific case they are working on. At the
same time some structuring of their work is still required: there may be (legal
or business) rules that need to be followed in all cases and these can constrain
the ways they are allowed to approach their work.

Within the field of computer science we can employ formal methods to en-
sure that the software systems developed for process support strictly follow the
rules specified for them. This is achieved by modelling both the behaviour of
these systems and the rules as mathematical constructs and then using verifica-
tion techniques such as state-space exploration and syntax checking to ensure
that they follow the rules and do not contain any errors (bugs). If a sound
mapping exists from the notations used to describe the processes and rules to
such mathematical constructs then verification of the models can be automated
without the risk of human translation error. Additionally, if the models of the
process are directly executable by the workflow system then the running pro-
cesses can be guaranteed to be correct (assuming that no mistakes were made
in the specification of the rules).

Most state-of-the-art process and workflow systems have been developed
with a focus on production work and fail to support the more flexible work
processes that knowledge workers require. The problem arises at the core of
these systems: the notations in which processes and workflows are defined.
Traditional workflow notations are grounded in the concept of flow: control
of the process progresses from one activity to the next. For example in the
case of the car manufacturing factory, the main process will describe in discrete
steps how the components of a car are put together along the assembly line.
Depending on the features selected for the specific car some of the steps may be
skipped, or a choice between different optional components may be made, but
the overall process will always follow the same ordering in which the components
are put together.

One such flow-based workflow notation is the Business Process Model and
Notation (BPMN) [39, 61] which is considered the industry standard within

5

the field of Business Process Management [64, 54] and being maintained by
the Object Management Group. We will exemplify what a BPMN model looks
like by using the process of writing this dissertation as a running example. We
recognize that this is mostly a toy example, but found it useful for illustrating
these concepts succinctly. For more realistic examples taken from industry we
refer to the papers within this dissertation, in particular 4.2, 4.4 and 6.2.

Many of the main concepts underlying BPMN are shared with other nota-
tions such as flowcharts and UML activity diagrams [12] and therefore most of
the observations made in the following paragraphs can be generalized to these
other flow-based notations.

Start

Select Papers

Write
Introduction
and Related

Work

Write
Conlcusion and

Future Work
Write Abstract

End

Figure 1: BPMN Diagram of Example 1

Example 1. Writing a paper-based dissertation starts by 1) selecting the papers
to be used 2) writing the introduction and related work 3) writing the conclusion
and future work and finally 4) writing the abstract. This process is drawn
using BPMN in Figure 1. The circle at the start is called the start event and
represents the start of the process, the four rectangles represent the activities
listed above and the final bolded circle, called the end event represents the end of
the process. The arrows are called sequence flow and describe the flow between
the start of the process, the four activities and the end of the process. To
understand the semantics of a BPMN model it can be useful to imagine a token
moving through the diagram indicating our current position in the process. The
token starts at the start event and by starting the process is moved on to the
sequence flow between the start event and the Select Papers activity. When
we start the Select Papers activity, the token is moved into its box, indicating
that it is currently being performed and when we finish the activity the token
is moved onto the outgoing sequence flow, enabling the Write Introduction and
Related Work activity to be started. This continues until the token reaches the
end event, which ends the process.

A strict ordering as described in Example 1 is not very realistic, in particular
this author has a habit of working on different sections intermixedly, as for
example ideas for the conclusion may arise while writing the introduction and
it can be beneficial to write these down immediately. BPMN and other flow-
based languages support having activities occur at the same time with a concept
known as parallelism which we will demonstrate in the following example.

Example 2. In Figure 2 we have changed Example 1 to allow the activities
Write Introduction and Related Work, Write Conclusion and Future Work and Write

6

Start

Select Papers

Write
Introduction
and Related

Work

Write
Conlcusion and

Future Work

Write Abstract

End

Figure 2: BPMN Diagram of Example 2

Abstract to occur at the same time. To do so we use the parallel split gateway,
drawn as a diamond with a plus sign inside which, using the token-based seman-
tics introduced in the previous example, takes a token on the incoming sequence
flow and places an outgoing token on every outgoing sequence flow, enabling all
three activities at the same time. We can now move any of the three created
tokens as we see fit, doing these activities in any order (or even truly concurrent
by doing them at the same time). All the activities lead into a parallel join
gateway, which takes a token on each incoming sequence flow and places a to-
ken on the single outgoing sequence flow, thereby guaranteeing that the process
can not end before all activities have completed. Note that the split and join
gateways use the same symbol but can be distinguished by the fact that the
split gateway has one incoming and multiple outgoing sequence flows, whereas
the join gateway has multiple incoming and only one outgoing sequence flow.

While the preceding example gives a good abstract view of the process, it
makes a somewhat unrealistic assumption that we know exactly when we are
done writing each section of the dissertation. If one was to directly implement
the process in an IT system then each activity could occur only once and when
it was closed, it could not be reopened. This would force users to be very care-
ful about closing an activity, ie, if the author of this dissertation first finished
writing the introduction and closed that activity, then did more work on the
conclusion and realised some possible improvements on the introduction, the
process as given above would not allow him to make these changes. A real user
of such a system would likely learn this limitation and always choose to leave
activities open until all can be closed together, but this would be a work-around
for a flaw in the process description and instead it is preferable to extend the
process model to allow for repetition of these activities. This can be accom-
plished in flow-based languages by using decision points and loops as we will

7

demonstrate in the following example.

Start

Select Papers

Write
Introduction
and Related

Work

Write
Conlcusion and

Future Work

Write Abstract

End

repeat?

repeat?

repeat?

Decide to
Repeat or Finish

Decide to
Repeat or Finish

Decide to
Repeat or Finish

no

no

no

ye
s

ye
s

ye
s

Figure 3: BPMN Diagram of Example 3

Example 3. In Figure 3 We extend Example 2 and allow the activities Write
Introduction and Related Work, Write Conclusion and Future Work and Write Ab-
stract to be repeated by using the exclusive (XOR) gateway construct. Exclusive
gateways are similar to parallel gateways in that they denote a point where the
control splits into different paths and a join where different control paths merge
back together, however, whereas in the case of the parallel gateway control con-
tinues on each path, in the case of the exclusive gate way control continues only
on one of the possible paths. Which path is taken is based on a condition at-
tached to the gateway. Within BPMN these conditions must be data-based, so
if one wants to model a split based on a user decisions then making that decision
must be modelled explicitly as an activity before the gateway. In the case of
Figure 3 this means for example that when we end the activity Write Introduc-
tion and Related Work, we first have an additional activity where we decide if we
want to work more on the introduction or finish the dissertation. Typically one
will leave this activity open as long as one has not decided to either repeat or
finish. After the new activity the token moves into an exclusive gateway with
the condition ”repeat?”, it is assumed that the data necessary to evaluate the
condition is provided by the preceding activities. If we chose ”yes” the token
moves back to exclusive join gateway before the Write Introduction and Related
Work activity and we can repeat it, if we choose ”no”, the token moves on to
the parallel join gateway and once all tokens arrive here we can end the process.

As we illustrated in Example 1-3, flow-based notations such as BPMN are
not particularly well-suited for describing more flexible processes. The first
problem we encountered was that because these notations inherently require one

8

to think in terms of a strict ordering enforced by a notion of flow, a process will
often be modelled more rigidly then is required in reality. Secondly, when we do
remember to make a flexible model, as in Example 3, we can see that the required
number of visual elements in the model starts to grow disproportional to the
simple process we are trying to describe. This happens because all the possible
paths need to be modelled explicitly. While the example process is relatively
small and still understandable, for larger flexible processes this often means that
the model turns into a so-called spaghetti model and becomes unreadable.

Over the last decade there have been a number of research initiatives to
develop notations to support such flexible processes[40, 47, 17, 38, 20], usu-
ally by grounding the work in a constraint- instead of flow-based paradigm.
In a constraint-based notation one does not model flow, but instead directly
describes the rules of the process such as ”we need to select papers before we
can perform other activities” and ”every activity needs to be performed at least
once”. It is then up to the workflow system to determine all possible actions
for the user and allow him the freedom to make his own decisions as long as
they fall within the rules (optionally suggesting best-practice solutions, but not
enforcing them). Within academia constraint-based notations are commonly
called declarative notations, whereas flow-based notations are often referred to
as imperative or procedural notations, a practice stemming from an original
comparison to declarative (functional) and imperative (procedural) program-
ming languages. Within the papers of this dissertation we primarily use the
terms declarative and imperative to refer to respectively constraint-based and
flow-based notations.

1.1 Dynamic Condition Response (DCR) Graphs

One such declarative notation called Dynamic Condition Response (DCR) Graphs
[17, 35] was developed at the IT University of Copenhagen by Thomas T. Hilde-
brandt and Raghava Rao Mukkamala as a part of the TrustCare project1 and
the latter’s dissertation [34]. DCR Graphs are a generalization of Event Struc-
tures [37, 65, 66, 67, 59] and consist of events (which can be used to model both
activities and BPMN events such as timers), a marking over the events and
four possible relations between these events. When not constrained (through
relations or the marking) events can be executed at any time and any number
of times.

The marking of a DCR Graph keeps track of 1) which events have been
executed (at least once), 2) which events are still required to be done (often
referred to as being pending) and 3) which events are currently included. Events
can only be executed if they are included and are also only considered relevant
to the process while they are included, this in particular means that while an
event is excluded (not included), we can disregard if it is required. This ties
into the accepting condition of a DCR Graph which determines when exactly a

1Trustworthy Pervasive Healthcare Processes (TrustCare) Research Project - http://www.
trustcare.dk/

9

http://www.trustcare.dk/
http://www.trustcare.dk/

process is allowed to end: we can finish executing a DCR Graph whenever there
are no events that are both included and required. There is no default initial
marking for a DCR Graph, this means that it is for example possible to have
certain events be initially required, in essence modelling a to-do list at the start
of the process.

The relations describe how events constrain each other and effect the mark-
ing: the condition relation states than one event can not be executed before
another event is executed (unless the latter event is excluded), the response re-
lation states that doing one event makes another event required (i.e. doing one
activity adds another activity to the list of things that need to be done before we
can end our process) and finally the dynamic exclusion and dynamic inclusion
relations respectively remove and add events back into the workflow. We will
now show how the process from Example 3 can be modelled as a DCR Graph.

Figure 4: DCR Graph of the process in Example 3

Example 4. The DCR Graph in Figure 4 represents the same process as in
Figure 3. Similar to BPMN, the boxes represent events(activities). The ear of
the box is reserved for adding roles to the activities, but these are not used in the
current example. The relations are drawn as arrows between the events. The
red arrow with a percentage sign at the end denotes the exclude relation, in this

10

case stating that the Select Papers activity excludes itself, meaning that when
we can execute this activity only once because afterwards it removes itself from
the workflow. Note that this rule was implicit in the case of the BPMN model
because there is no loop around the activity. The orange arrows with a dot at
the end denote the condition relation, in this case Select Papers is a condition
for Write Introduction and Related Work, Write Conclusion and Future Work and
Write Abstract meaning that these activities can not be performed before the
papers for the dissertation have been selected. Finally the exclamation marks on
the events denote that they are required in the initial marking, thereby ensuring
that they all need to be done at least once before the process can end.

Figure 3 and Figure 4 demonstrate how describing a flexible process can be
done more succinctly using DCR Graphs then BPMN. Perhaps counter intu-
itively, further restricting the behaviour of a flexible process by adding additional
rules can make it even more cumbersome to model it in a flow-based notation,
while it is fairly straight-forward to do so in a constraint-based notation. We
will demonstrate this in the following example.

Example 5. We want to extend the previous example with an additional rule,
namely that after making changes to the introduction or conclusion, one always
needs to update the abstract to make sure that it accurately represents any
new or changed content. In Figure 5 we extended the BPMN model with this
new rule, as one can see we require quite a large amount of new elements in
the model, most importantly many of the activities are now represented by two
separate instances. This is because the first block ensures that each activity is
done at least once (this is not ensured by the flower pattern in the second block),
while the second part ensures that the abstract is always updated after making
changes to the introduction and conclusion. Note that in the first block we also
added the possibility to skip writing the abstract because the process model
needs to support an execution where one chooses to only work on the abstract
once at the end of writing the dissertation. One may argue that only having
the first block, followed by only the Write Abstract activity would represent the
same language as the given diagram, but note that this would force to user to
choose a ”final” update to the abstract, whereas in the model given here the
user is still able of making further edits to the introduction and conclusion after
each update to the abstract, which is important because the user may realise
while updating the abstract that he would like to make further changes to one
of the other sections and if he had indicated that this was the ”final” version of
the abstract he would not be allowed to do so.

In Figure 6 we extend the DCR graph with the new rule. We add two
response relations, drawn as a blue arrow with a dot at its source, which state
that 1) whenever Write Introduction and Related Work is done it makes Write
Abstract required and 2) whenever Write Conclusion and Future Work is done it
makes Write Abstract required. This way we ensure that if either of the two
other activities is performed the process can not be completed unless we do
Write Abstract afterwards.

11

Start

SelectyPapers

Write
Introduction
andyRelated

Work

Write
Conlcusionyand

FutureyWork

WriteyAbstract

End

repeat?

repeat?

repeat?Skip?

Write
Introduction
andyRelated

Work

Write
Conlcusionyand

FutureyWork

Workyon?

WriteyAbstract

Finish?

Decideyto
RepeatyoryFinish

Decideyto
RepeatyoryFinish

Decideyto
RepeatyoryFinish

DecideytoySkip
Writing

Abstract

Decideyonynext
Activity

Decideyto
Finishyor
Continue

no

no

ye
s

ye
s

ye
s

no no

ye
s

conclusion

in
tr

od
uc

tio
n

abstract

yes

no

Figure 5: BPMN Diagram of the process in Example 5

12

Figure 6: DCR Graph of the process in Example 5

This final example highlights a third advantage of declarative notations,
namely that the rules of the process are much more directly embedded in the
notation then in the case of flow-based notations. Looking at Figure 5 it is not
apparent where exactly in the diagram it is stated that ”after making changes
to the introduction or conclusion, one always needs to update the abstract”,
however in Figure 6 the two response relations exactly denote: ”after making
changes to the introduction one always needs to update the abstract” and ”after
making changes to the conclusion one always needs to update the abstract”. If
a modeller who did not originally design the model is asked to remove the new
rule again then this will be straightforward in the case of the DCR Graph:
one simply removes the two response relations; but in the case of the BPMN
diagram this is not as straightforward, for example there is a realistic risk that
the modeller removes the second block but forgets to remove the possibility to
skip writing the abstract in the first step, resulting in an error in the model
where writing the abstract can be skipped altogether.

The semantics of DCR Graphs are usually formalized as step-wise transfor-
mations of the marking of the graph, where each step represents the execution
of an event. In [35] it has been shown how one can encode DCR Graphs as
Büchi automata, thereby providing a straightforward mechanism for verifying

13

them for deadlock, livelock and non-emptiness of their language. In [34] the
author expanded on this work by proposing a new verification technique em-
ploying the SPIN model checker. In addition it has been shown [34] that the
formal expressive power of DCR Graphs is exactly that of the union of regular
and omega-regular languages.

1.2 The Technologies for Flexible Cross-organizational Case
Management Systems Research Project

While a number of declarative notations and techniques have been developed
within academia, this research has not really been adopted by industry yet. Dif-
ferent reasons for this have been suggested [14, 69], in particular the paradigm
change from flow- to constraint-based notations not only requires modellers to
learn new notations, but also change the way they think about modelling pro-
cesses. Instead of describing possible process flows as they are used to, they need
to learn to specify the constraints and rules of their processes. Secondly declar-
ative notations and techniques are still relatively immature when compared to
imperative notations and techniques, for example research on extensions such as
hierarchy, time and data is abundant in the imperative world but rather sparse
in the declarative community.

In 2011 we began to cooperate with Exformatics A/S, a Danish software
developer providing Electronic Case Management (ECM) [58, 46] Systems to
knowledge-intensive businesses and organizations in the public and private sec-
tor. Exformatics shared our vision that flow-based notations did not offer ad-
equate flexibility for modern ECM systems and together we carried out a case
study with one of their customers where we used DCR Graphs to model their
processes (reported on in paper 4.2). Exformatics was pleased with the results
of the case study and interested in developing tools based on DCR Graphs while
continuing the research cooperation in the form of an industrial PhD project.
We therefore initiated the Technologies for Flexible Cross-organizational Case
Management Systems (FLExCMS) project with the overall goal of strengthen-
ing and encouraging industrial adaptation of declarative process notations and
techniques.

The research goals of the project focussed on further developing the DCR
Graphs notation to be industrially applicable, with a particular focus on guaran-
teeing safety for cross-organizational processes [25, 8, 15, 63]. By guaranteeing
safety we both mean ensuring that processes follow the rules, but also that the
rules do not give rise to classical problems such as deadlock (getting stuck in a
process, i.e. one is able to make bad decisions after which it is impossible to
move on) or livelock (a situation in which one is still able to move in the process,
but the available steps do not provide progress towards its goals). By focussing
on cross-organizational processes we brought a new dimension to the work that
has not been explored for flexible processes notations before and for which the
issue of safety is of particular relevance: problems such as deadlock and livelock
are prevalent in distributed settings where for example it can happen that two
parties are unable to progress in their work because each party is waiting for

14

input from the other (deadlock), or two parties continually ”pass the ball” to
each other, satisfying their own local rules that require them to pass on their
work, but never satisfying the global goal of the process (livelock).

The industrial goals of the project were to develop tools, based on the ex-
tended notation and new techniques and methods, for modelling and executing
flexible processes and to carry out a number of case studies with customers of
Exformatics where we applied these tools and methodologies. These case studies
in turn providing feedback for the research activities.

In addition to the original project goals we investigated two more areas of
interest. First of all we researched techniques for the safe runtime adaptation
of flexible processes. Runtime adaptation of processes is particularly relevant
for long-running processes, for example the handling of mortgages by a credit
institution, where rules and regulations can change during the lifetime of a
process. In such cases running processes need to be adapted to the changes in
the regulations without introducing errors to the process. Different approaches
can be used to ensure that adaptations are made safely, one can check for each
process individually if the adapted process contains the possibility for errors such
as deadlock and livelock, but one can also check formally that certain classes of
adaptations can always be made without introducing unforeseen issues.

Finally we participated in starting up a new research area within the BPM
field which we tentatively call Hybrid BPM Technologies. This new research area
is founded on the observation that in reality few domains contain exclusively
structured or flexible processes and in many cases even a single process can
contain both distinctly structured and flexible parts. For example in hospitals
the processes handling patient care may contain both very rigid treatment plans
(because they deal with potentially dangerous medicine) and much more flexible
treatment plans which leaves a lot of the decision making to the doctor so that
he may fine-tune the treatment to specific patients. There has been some work
on the overlap and combination of the flow- and constraint-based paradigms [45,
56] in the past, but only more recently (paper 8.1) has it been proposed that
investigating such hybrid approaches is a worthwhile field of research on its own
with many open research questions.

Based on the original research goals and the new angles of work that arose
during the project, this dissertation addresses four primary hypotheses:

1. The declarative DCR Graph model can be extended to cover all the
required aspects of flexible workflow, in particular hierarchy, deadlines
(time) and data.

2. We can support safe cross-organizational flexible process models by de-
veloping distribution techniques for the declarative DCR Graph notation.

3. We can support safe runtime adaptation of flexible process models by
developing adaptation techniques for the declarative DCR Graph notation.

15

4. Creating a bridge between the traditional imperative and new declarative
notations will allow for a) more straightforward adoption of the latter
and 2) more concise and understandable hybrid models that combine the
strengths of the two paradigms.

1.3 Related Work

There is a significant overlap between this dissertation and the work presented
by Raghava Rao Mukkamala in his dissertation [34] resulting from our projects
partially running concurrently and a large degree of cooperation as we both
worked on similar topics. However, whereas Mukkamala’s main contribution
was to introduce DCR Graphs as a formal model for Declarative processes, this
dissertation’s main contribution is to extend the notation and techniques to
make them industrially applicable. In particular completely new contributions
in this dissertation (which will be introduced in more detail further on) are the
work on live session types, hierarchical DCR Graphs and hybrid notations and
techniques.

Select Papers

1

Write Abstract

1..*

Write Introduction
and Related Work

1..*

Write Conclusion
and Future Work

1..*

Figure 7: Declare model of the process in Example 3

Declare

Declare [55, 40, 50] was the first large-scale effort within the BPM community
to create a declarative notation for business processes. In essence Declare is
a template language: it consists of a fairly large number of predefined con-
straints between activities which are formalized as Linear Temporal Logic(LTL)

16

formulae. The semantics of a declare model is defined as the conjunction of
the formulae of all the constraints in the model. More recent papers have pro-
posed formalizing Declare in other languages such as coloured automata [31] and
SCIFF [33, 32]. Declare has gained traction in the academic BPM community
and is a commonly used notation when investigating declarative techniques [70],
for example common in process mining [29], however to our knowledge there is
very little documented usage of Declare in industry. There are a number of fac-
tors that set DCR Graphs apart from declare: first of all formal expressiveness
results show that DCR Graphs, using only the four basic relations, can express
exactly the union of regular and ω-regular languages. To our knowledge there
are no published results on the formal expressiveness of Declare. It is sometimes
argued that one can always just add new constraint templates and therefore the
expressiveness of Declare is that of the underlying language chosen, however
this assumes that it is possible to add an infinite number of constraints and
requires that the modellers are able of modelling in terms of the underlying
language and not just Declare. Secondly the runtime semantics of DCR Graphs
are given in terms of DCR Graphs (i.e. as transformations of the marking),
this benefits reasoning about DCR Graphs at runtime, allowing for reusing the
design-time graphical notation to also visualize run-time models and easing the
development of run-time adaptation techniques. The third difference is that be-
cause declare models are defined as the conjunction of their constraints, adding
additional constraints to a declare model always limits the possible behaviours.
This is not the case for DCR Graphs, where relations can affect each other
in ways where adding an additional relation to the model actually allows new
behaviours, which may be unexpected for inexperienced modellers and meant
that we had to develop a theory of refinement for DCR Graphs as discussed in
paper 6.4.

Figure 7 shows how example 3 can be modelled using Declare. It looks
somewhat similar to the DCR Graph, the main difference being that Declare
has cardinality constraints that can be used to state that Select Papers should
happen exactly once (denoted by the 1 over the activity) and that the other
activties should happen at least once (denoted by the 1..∗ over the activity).
The arrow that looks like the condition relation from DCR Graphs has a similar
semantics in Declare, but is named the precedence constraint.

Petri nets

Petri nets [41] are a graph-based formal model particularly well-suited to de-
scribing distributed and concurrent systems [24] which have become a popular
choice within academia for modelling workflows [52, 57, 11]. A Petri net is
a bipartite graph that consists of transitions and places, connected by directed
arcs. Places represent the presence of resources (which can be for example data,
documents and human resources, but also simply the fact that some activity has
been performed previously), whereas transitions represent activities and events.
The resources themselves are represented as tokens which occupy a place when
they are present. To fire (execute) a transition at least one token needs to be

17

Select Papers

Write Introduction
and Related Work

Write Abstract

Write Conclusion
and Future Work

1`()

Finish Dissertation

Figure 8: Petri net of the process in Example 3

present on each place connected to it by an incoming arc. When the transition
fires these tokens are consumed and removed from their places, in their place a
new token is created in each place that is connected through an outgoing arc
with the transition. There are many variations of Petri nets, some based on
limiting the original notation to make certain decision problems easier to anal-
yse [13] such as WorkFlow nets (WF-nets) [52, 1], which are aimed specifically
at modelling business processes, while others provide extensions to make them
more expressive such as Coloured Petri nets (CPN) [23, 22, 43] which add types
and values to places and tokens and guards to arcs and transitions, allowing for
the modelling of traditional data structures and value-based constraints.

Figure 8 shows how example 3 can be modelled as a Petri net. On the
left is an initial place with a single token in it (denoted by the 1‘()), executing
Select Papers removes this token and places a token in each of the following
three places. We can now no longer execute Select Papers because there is no
token in the initial place, but we can execute all the other activities. Each of
the other three activities will take a token from their preceding place and put
it back after executing, thereby ensuring that they can be executed again any
number of times. They will also place a token in an additional place to their
right, which counts the number of executions for each activity. To signal when
we are done with the dissertation we added a Finish Dissertation activity. It
will only be enabled when all activities have been done at least once and when
firing will remove the three tokens that enable the writing activities, thereby
disabling all activities and ending the process. One could do without the Finish
Dissertation activity if one defines an acceptance criteria for the Petri net where
any marking in which each of the three counting places on the outer right has
at least one token in it is accepting.

18

Process Mining

Process mining [53] is an emerging topic within the BPM field with the aim
”to discover, monitor and improve real processes (i.e., not assumed processes)
by extracting knowledge from event logs readily available in today’s (informa-
tion) systems” [49]. As such it can be seen as a specialization of data mining
and machine learning and indeed many process mining approaches make use of
existing data mining and machine learning techniques, such as association rule
mining [28] and inductive logic programming[4, 26]. Supported by strong inter-
est from industry, where process mining techniques can be used to get insights
into the way companies actually do their work in practice and thereby improve
process efficiency, the topic has received increased attention in the business pro-
cess management community, leading to the creation of an special task force on
the subject2. One particular area of interest in the process mining community is
process discovery [48, 2], which concerns itself with developing algorithms that
based on event logs attempt to build a models of the underlying processes that
could have generated the logs. In the last few years many different process dis-
covery techniques have been proposed both for flow-based models, in particular
Petri nets [51, 27] and declarative models [28, 4, 26, 9, 30].

Session Types

Session types [18, 68, 60] are a behavioural typing system, meaning that their
focus is not on typing data but instead the behaviour of processes. The goal
is therefore not to guarantee type-compatibility of variables and expressions,
but instead behavioural compatibility of interacting π-calculi processes. The
session type specifies the protocol that process interactions should adhere to,
usually referred to as session fidelity. Session types have the additional benefit
that well-typed processes are guaranteed to be deadlock free, which provides
a means of verifying safety of processes by syntax checking instead of state-
space exploration. Session types have seen many extensions, for example to
multi-party session types [19] which allow the specification of protocols with
more then two parties. It has also been proposed that session types can be
used to provide a behavioural typing system for BPMN processes which involve
communication between distributed actors modelled as choreographies [7].

Guard-Stage-Milestone model

The Guard-Stage-Milestone (GSM) model [21] developed at IBM Research is
based on the earlier work on artifact-centric business processes [3]. A GSM
model is divided into stages which contain the atomic tasks of the model. A
stage can have guards which need to be satisfied before the stage becomes active
and its tasks can be executed. A stage can also contain milestones which can be
seen as the acceptance criteria of the stage, through performing the tasks of the
stage the milestones can become satisfied, which can in turn be part of satisfying

2IEEE CIS Task Force on Process Mining - http://www.win.tue.nl/ieeetfpm/

19

http://www.win.tue.nl/ieeetfpm/

the guards of other stages. While GSM has a distinct declarative flavour it is
mainly a data-centric model. The GSM model has had a strong influence on
the development of the Case Management Model And Notation (CMMN) [38],
which is a new standard notation developed by the Object Management Group
aimed in particular at case management.

20

2 Structure of the Dissertation

The body of this dissertation consists of the papers that resulted from the
FlexCMS project, separated into the following five areas of interest:

Hierarchical Dynamic Condition Response Graphs

In section 4 we present four publications that deal with adding different forms
of hierarchy to DCR Graphs. The papers focus on validating the first part of
hypothesis 1, by showing that indeed DCR Graphs can be successfully extended
with a notion of hierarchy.

In Nested Dynamic Condition Response Graphs we introduce an extension
to DCR Graphs that allows for the nesting of events. Nesting in this case is
mainly cosmetic: only atomic events are executable, while higher-level events
are used to group sets of events together and relations to and from super-events
apply to all their atomic sub-events. This can be used to make process diagrams
more succinct, for example if a process contains two phases and doing all the
activities in the first phase is a prerequisite for the activities in the second
phase, then we can use two super-events to represent the phases and draw a
single condition relation between them (instead of n × m condition relations
for each pairing of events between the first and second phase). Another main
contribution of the paper is the milestone relation which inherently captures the
accepting condition of DCR Graphs, namely that for one event to be executable
another event needs to either not be required or be excluded. Using this relation
together with nesting means that one can disable a phase as long as all the
required tasks in a previous phase have not been performed yet.

In the second paper, Designing a Cross-organizational Case Management
System using Dynamic Condition Response Graphs, we report on a case study
performed together with Exformatics and Landsorganisationen i Danmark (LO),
an umbrella organization for trade unions in Denmark. During the case study
we used nested DCR Graphs to model the main process underlying the cross-
organizational case management system aimed at handling conflicts between
employees and their employers that Exformatics was developing for LO.

In Hierarchical Declarative Modelling with Refinement and Sub-processes we
introduce Hierarchical Dynamic Condition Response (Hi-DCR) Graphs, which
add a notion of dynamically spawned sub-processes to DCR Graphs. A sub-
process is in itself a Hi-DCR Graph that is spawned as a side-effect to executing
an event. In the sub-process we distinguish between interface and local events:
interface events are merged with equally named events in the parent process,
whereas local events are always copied into the main process with a new unique
name, allowing one to define multi-instance sub-processes. The spawning of a
sub-process is formally defined through the composition of the main graph with
the sub-process graph and the paper also identifies a class of compositions that
guarantee language-refinement, which is investigated further in paper 7.3.

The final paper A Case for Declarative Process Modelling: Agile Develop-
ment of a Grant Application System reports on the development of a case man-

21

agement system for a Danish funding agency by Exformatics. The processes
for handling funding requests were modelled as DCR Graphs and these models
were used directly as executable code within the implementation of the case
management system for workflow enactment. The paper has been included
in this section because the project demonstrated a clear need for support for
multi-instance sub-processes and (an abstracted version of) one of the processes
identified during the case study has been used in the previous paper as a running
example.

Dynamic Condition Response Graphs with Time and Data

In section 5 we present two publications that deal with adding time and data
dimensions to DCR Graphs. The papers primarily focus on validating the second
part of hypothesis 1, by showing how DCR Graphs can be successfully extended
with a notion of time and data.

The first paper, Contracts for Cross-organizational Workflows as Timed Dy-
namic Condition Response Graphs, is a journal publication in which we extend
DCR Graphs to support discrete time deadlines. We also provide a technique for
verifying safety and liveness properties through a mapping to finite state tran-
sition systems. We also prove that the general technique for safe distribution
of DCR Graphs provided in Paper 6.1 can be extended to timed DCR Graphs.
We exemplify the use of timed DCR Graphs and the distribution technique in
practice on a timed extension of the process from paper 4.2.

In the second paper, Exformatics Declarative Case Management Workflows
as DCR Graphs, we give an informal presentation of an extension to DCR
Graphs with data, show how DCR Graphs are used by Exformatics to model
workflows through a case study of an invoice workflow and give an overview
of the tools that have been developed by Exformatics to support working with
DCR Graphs. We report on the use of these tools both in commercial projects
and in a bachelor level course at ITU.

Safe Cross-Organizational Flexible Processes

In section 6 we present four publications that deal with different techniques
aimed at supporting cross-organizational processes. The papers focus on vali-
dating hypothesis 2 by developing distribution techniques for DCR Graphs and
laying the foundations for bridging the work on DCR Graphs to the highly
relevant work on session types.

In Safe Distribution of Declarative Processes we present a technique that,
given a declarative global description of a process and a separation of the activ-
ities of the process over collaborating actors, projects a local declarative process
for each actor that only describes the parts of the process that are relevant
for them. We show how these local processes can be safely executed in a syn-
chronous distributed setting by only communicating the execution of activities
or events, all the while adhering to the original global specification. We exem-
plify the distribution technique on the process identified in the case study that

22

we reported on in paper 4.2.
In Declarative Modelling and Safe Distribution of Healthcare Workflows we

present a case study based on an oncology treatment process from a Danish
hospital that applies the techniques developed in the previous paper. We also
extend the techniques from the previous paper to cover nesting and the milestone
relation as defined in paper 4.1.

In the third publication, RSVP: Live Sessions with Responses we propose
extending session types to allow for specifying liveness properties. Concretely
we do so by introducing sessions with responses, where branching and selec-
tion labels can be annotated with the expected responses given in conjunctive
normal form (without negation). A process is considered live when whenever a
label is selected, one of the labels in each of the disjunctive responses is even-
tually selected, similar to the response semantics of DCR Graphs. The typing
system for guaranteeing that well-typed processes are live in this sense is given
informally.

The fourth paper Type Checking Liveness for Collaborative Processes with
Bounded and Unbounded Recursion continues the work initiated in the previous
paper. Unlike the other paper we define responses as a single set of labels,
however we give a formally proven sound typing system guaranteeing request-
response liveness of well-typed processes and prove that the extended types are
strictly more expressive than standard session types. We apply the new types
to a process calculus similar to collaborative BPMN processes and exemplify
the use of the calculus and type system on a concrete example.

Safe Runtime Adaptation of Flexible Processes

In section 7 we present three publications that deal with different techniques
aimed at runtime adaptation of flexible processes. The papers mainly focus on
validating hypothesis 3 by developing several approaches that can be used for
the run-time adaptation of DCR Graphs.

In Towards Trustworthy Adaptive Case Management with Dynamic Con-
dition Response Graphs we discuss techniques for safe run-time adaptation of
DCR Graphs. We introduce three basic operations that can be used for adapt-
ing DCR Graphs: compose, change and discard. Composition allows one to
add new events and relations to a DCR Graph by composing it with a process
fragment defined as a second DCR Graph that contains exactly the events and
relations one wants to add. The change operator allows one to change the names
of events and labels. The discard operation allows one to remove events and
relations from the Graph. The composition and discard operations can also be
used to modify the run-time marking of a DCR Graph. To ensure safety of
adapted DCR Graphs we show how they can be verified for deadlock freedom
and liveness after adaptation.

In Modular Context-Sensitive and Aspect-Oriented Processes with Dynamic
Condition Response Graphs we show how DCR Graphs, supported by the tech-
niques introduced in the previous paper, can be used as a formal foundation for
the modular design and implementation of context-sensitive and aspect-oriented

23

processes. We exemplify the approach with a context-sensitive authorization
process.

The final paper in this section Towards a Foundation for Modular Run-
time Adaptable Process-Aware Information Systems? is the only draft paper
in this dissertation. It is an extension of the work started in paper 4.3, but
here we instead focus on the refinement of processes through composition by
introducing the DCR Process Language, a calculus-based representation of DCR
Graphs providing easier reasoning about the composition of processes. We show
how run-time adaptation can be achieved through composition and when such
adaptations can be considered safe refinements. The paper also contains formal
proofs for the expressiveness results of both regular DCR Graphs and Hi-DCR
Graphs.

Hybrid BPM Technologies

In section 8 we present three publications that investigate hybrid process nota-
tions and techniques. The papers lay the foundations for validating hypothesis 4
by 1) documenting an industrial interest in hybrid process notations, 2) propos-
ing such a notation and 3) initiating work on developing relevant technologies
that use hybrid notations.

In Declarative Modeling - An Academic Dream or the Future for BPM? we
present a study performed at a Dutch developer of ECM software on what
practitioners think of declarative modelling. We conclude that the practitioners
involved in the study are receptive to the idea of a hybrid approach combining
imperative and declarative techniques, rather than making a full shift from the
imperative to the declarative paradigm. Moreover, we report on requirements,
use cases, limitations, and tool support of such a hybrid approach. Based on
the gained insight, we propose a research agenda for the development of this
novel modelling approach.

In Mixing Paradigms for More Comprehensible Models we propose an ap-
proach to modelling workflows that combines colored Petri nets with the declar-
ative languages Declare and DCR Graphs. The combined approach makes it
possible to use both imperative and declarative constructs in a single language
and allows one to model data in both Declare and DCR Graphs. We provide
considerations necessary for enactment and describe how the approach has been
implemented in CPN Tools 4.

In The Automated Discovery of Hybrid Processes we introduce an algorithm
for mining hybrid process models. The approach first identifies structured and
flexible parts of the log and then mines these parts separately using respectively
a declarative or flow-based miner. This results in a number of declarative and/or
flow-based sub-processes which are then combined in a root process that is itself
modelled either declarative or flow-based. The approach can be used iteratively
to generate a multi-level sub-processes hierarchy. In our implementation we use
Declare as a declarative notation and Petri nets as a flow-based notation, but
the approach does not prescribe the use of specific miners and other notations
could be used. We evaluated the approach on the BPI 2012 challenge log.

24

3 Conclusion

Overall we believe that we brought the FlexCMS project to a very success-
ful conclusion. The two initial hypotheses of the project were validated by 1)
developing notions of hierarchy, time and data for DCR Graphs and 2) devel-
oping techniques for the safe distribution of such declarative models. The third
hypothesis, which arose during the project, was successfully validated by de-
veloping two distinct approaches for the run-time adaptation of DCR Graphs.
Finally we laid a clear foundation for further investigating the usability and
feasibility of hybrid process notations. Further experimental research is needed
to verify the final hypothesis, but this is not surprising as it arose closer to the
end of the project and was not a part of the initial goals. More precisely we
produced valuable research results in the following areas:

We investigated two different methods for adding hierarchy to DCR Graphs,
the first being Nested DCR Graphs, an extension aimed at representing complex
diagrams with fewer visual elements and thereby improving understandability of
the models. As a part of this work we also introduced the additional milestone
relation, which has proven to be useful for modelling acceptance criteria in
processes. While it can be proven that the relation does not make the notation
formally more expressive, it is also not readily apparent how the relation can
be modelled as a pattern using only the other basic relations. The second
method, Hierarchical DCR (Hi-DCR) Graphs, offers a semantic extension that
adds support for multiple instance sub-processes to DCR Graphs which was
seen as an important feature by the industrial partner to model the processes
that they were encountering in practice. We believe that these two extensions
together greatly improve the usability of DCR Graphs.

We also developed extensions for time and data, respectively supporting
the modelling of deadlines and delays/durations and the modelling of global
variables that can be used as guards on both events and relations, satisfying
two more needs from industry for modelling real-life processes.

To support cross-organizational processes we researched a technique for
safely projecting a DCR Graph over sets of events. The projection technique
ensures that the projected graphs can be executed on separate platforms as long
as communication between them is performed synchronously. A strong benefit
of this approach is that given a global view of how the entire process should
work one can generate local views for the participating parties that only show
the activities that directly relate to their work, allowing for a distribution of con-
cerns where the collaborators in a process do not necessarily need to be aware
of the details of the other parties role in the process. We also extended this
technique to work on Timed DCR Graphs. In addition we worked on extending
the theory of session types with the ability of checking for liveness constraints,
which enables verification of processes for safety and liveness properties based
on syntax checking instead of state space exploration. Making the mapping
between DCR Graphs and session types is left for future work, once this has
been completed the approach will also allow for DCR Graphs to be combined
with processes specified in other notations as long as their shared interfaces are

25

defined using session types.
We developed two methods for run-time adaptation. The first method de-

fines a number of operators that can be used for making both incremental and
decremental changes to DCR Graphs and provides techniques for checking the
adapted graphs for deadlock and livelock. The second method allows only in-
cremental updates to a DCR Graph through composition, but also identifies a
safe subset of adaptations that guarantee refinement of the original model. Note
that the terms incremental and decremental here are used in terms of the ele-
ments (events, relations, etc.) of the DCR Graph and not the behaviour of the
DCR Graph. In fact, incremental updates to a DCR Graph can both decrease
and increase the possible behaviours: one can add a new event, enabling an
activity that was not present before, or one can add an unsatisfiable condition
to an existing event, disabling an activity that was enabled before.

We also reported on a number of case studies: we showed how nested DCR
Graphs have been used to model the case management system of a Danish
umbrella organization of trade unions, how the projection technique can be
used to safely distribute the responsibilities of different actors in the oncology
workflow of a Danish hospital and how DCR Graphs were used by Exformatics to
design and develop a case management system to support the grant application
process of a Danish foundation.

Finally we participated in opening up a new research area in the BPM field
focussing on Hybrid Process Technologies, which make use of both imperative
and declarative notations and techniques. In particular we set out a research
agenda for the new field, proposed how specific imperative and declarative nota-
tions could be combined and investigated process discovery of hybrid processes.

We feel that these research results have made a significant contribution to
the field of declarative process modelling. To our knowledge we were the first to
investigate techniques for supporting cross-organizational declarative processes
and by extending DCR with time, data and hierarchy we enabled declarative
notations to be used for modelling more complex real-life processes. Being able
of supporting run-time adaptation has also shown to be a vital property for the
industrial partner, who regularly encounters situations where running processes
need to be adapted to the changing needs of customers. The work on hybrid
process notations and techniques arose during the project and was not planned
in advance but appears to be well received by the community with several other
research groups showing interest in such notations and the interplay between
declarative and imperative notations in general [6, 16, 42].

This dissertation has been primarily focussed on presenting the academic
results of the authors PhD project, however in the next subsection we will
shortly touch upon the industrial results of the project as well. Afterwards we
will discuss opportunities for future work.

3.1 Industrial Results

Paper 5.2 reports on the tool development that was taking place at Exformatics
around the mid-way point of the project, which included a webservice-based

26

Figure 9: Screenshot of the Web-based DCR Graphs Editor

engine for executing DCR Graphs and a Windows-based graphical modelling
tool. Since then we have focussed on developing a new web-based modelling tool
that is available on all platforms, shown in Figure 9. Whereas the original tools
were developed by the author and the modelling tool in particular was mostly
a prototype, the new tool has been developed mainly by the development team
at Exformatics. This has facilitated the dissemination of knowledge generated
during the project within the company and provided the resources to quickly
develop a tool of production quality. At the BPM 2014 conference we organized
a tutorial on process modelling with DCR Graphs where we used this online
modelling tool. The tutorial consisted of 3 parts: first we gave a 20 minutes
presentation explaining the basic principles behind DCR Graphs and showed
how to use the tool to model a basic process. Afterwards we gave the audience
a number of assignments to solve, the first few assignments concerned basic
usage of the tool, whereas the last assignment had the audience model a process
by themselves. Finally we asked the audience to fill out a questionnaire on
the perceived usability of both DCR Graphs themselves and the tool. We were

27

pleasantly surprised by the reactions given in the questionnaire, overall both the
tool and DCR Graphs themselves scored significantly above average in regards
to understandability and usability. In all fairness the tutorial was done with an
academic audience, which may not be a fair representation of the actual users
of DCR Graphs. The near future we plan to do a number of similar workshops
with regular business users and publish the results.

During the project the attitude towards DCR Graphs within Exformatics
changed, originally the intention was mainly to use DCR Graphs as a workflow
language within their proprietary Electronic Case Management System, but
during the project and especially after the development of the online modelling
tool the company is now considering also offering more consultancy-oriented
services, where DCR Graphs are used to model and analyse customers processes
and where the tools are offered as a product of their own without needing to
be embedded within the ECM system. We believe that this development shows
that there is a strong confidence within Exformatics that DCR Graphs are a
useful tool for modelling and developing flexible processes.

3.2 Future Work

During the project we worked on formally mapping DCR Graphs to other nota-
tions such as Petri nets, Declare and the Guard-Stage-Milestone model. Because
of other angles taking priority none of these initiatives were finalized and pub-
lished, but we still believe they hold merit and it would be useful to continue
the work as time allows. In the case of mapping to Petri nets, the work would
also tie in nicely with the work on Hybrid Process Technologies, as being able
of formally mapping between DCR Graphs and Petri nets would facilitate using
them together in a hybrid approach.

The long-term goal of adding liveness constraints to session types is to be
able of combining the work on session types and DCR Graphs and thereby be
able of specifying the interfaces of declarative processes as behavioural types.
Introducing a calculus representation of DCR Graphs is another step in this
direction, but a true mapping that would allow session types to be used together
with DCR Graphs still needs to be researched.

Paper 8.1 made a first step towards empirically testing the perceived under-
standability and usability of DCR Graphs by actual practitioners. At BPM 2013
we followed up on this initial effort by organising a hands-on tutorial session
on DCR Graphs, including a questionnaire to be filled out by the participants
aimed at gauging the understandability of the notation. We believe this work
has a lot of merit and it would be good to continue investigating the usability
of DCR Graphs (and declarative notations in general) in the future, both as a
way to improve upon the notations by identifying their weak points and build
trust in their actual applicability.

One area of future work that is of particular interest to the author is that
of hybrid BPM technologies as we believe there are many open research oppor-
tunities in this field. In terms of notations it would be interesting to look at
combining declarative notations with BPMN. Because it is the flow-based no-

28

tation most widely adopted by industry a combined approach that supports it
would have the best chance of reaching practitioners, with the additional benefit
of making practitioners more aware of declarative approaches.

We also believe that it would be worthwhile to investigate existing notations
and evaluate to what extend they already fall within the hybrid paradigm.
Petri nets are a good example of a notation that we believe has both flow-
and constraint-based aspects to it: while the tokens moving around in a Petri
net have a strong sense of flow to them, arcs blocking transitions from firing
have a strong resemblance to constraints. Of particular note is that transitions
that do not have any incoming arcs are allowed to fire at any time and any
number of times, similar to how unconstrained activities can fire at any time in
DCR Graphs and Declare, something that is often considered a main property
of declarative notations. As we noted in paper 8.2 this property makes Petri
nets particularly well-suited to combining with the more traditional declarative
notations.

In terms of hybrid process mining the approach we developed in paper 8.3
still has ample room for improvements, in particular it is not very good at
distinguishing parallelism from flexibility and only allows activities to occur in
a single sub-process.

We are also interested in other hybrid approaches, for example the possibility
of using flow-based and declarative notations together, but not necessarily in-
termixed within a single model, for specifying different properties of a process.
For example one could use declarative notations for the initial requirements
specifications of a system and then derive (guided by user input) one or more
flow-based models that implement the desired processes from these rules, which
could be used to implement the actual running processes. In this case it would
be up to the modeller that derives the flow-based models from the constraint-
based specification to decide how much flexibility should be maintained in the
actual implementation. By logging the derivation steps taken it would also be
possible to relate the flow-based implementation back to the constraint-based
specification that gave rise to it.

29

List of Publications

Journal publications

1. Contracts for Cross-organizational Workflows as Timed Dynamic Condi-
tion Response Graphs, Thomas Hildebrandt, Raghava Rao Mukkamala,
Tijs Slaats and Francesco Zanitti, In Journal of Logic and Algebraic Pro-
gramming Special issue on Contract Oriented Software.

Conference publications

1. Hierarchical Declarative Modelling with Refinement and Sub-processes, Soren
Debois, Thomas Hildebrandt and Tijs Slaats, 12th International Confer-
ence on Business Process Management (BPM 2014).

2. The Automated Discovery of Hybrid Processes, Fabrizio Maria Maggi, Tijs
Slaats and Hajo A. Reijers, 12th International Conference on Business
Process Management (BPM 2014).

3. A Case for Declarative Process Modelling: Agile Development of a Grant
Application System, Sren Debois, Thomas Hildebrandt, Morten Marquard
and Tijs Slaats, 3rd International Workshop on Adaptive Case Manage-
ment and other non-workflow approaches to BPM (AdaptiveCM 2014).

4. Type Checking Liveness for Collaborative Processes with Bounded and
Unbounded Recursion, Soren Debois, Thomas Hildebrandt, Tijs Slaats
and Nobuko Yoshida, Accepted for 34th IFIP International Conference
on Formal Techniques for Distributed Objects, Components and Systems
(FORTE 2014).

5. Dynamic Condition Response Graphs for Trustworthy Adaptive Case Man-
agement, Thomas Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats and
Morten Marquard, In Proceedings of International Workshop on Adaptive
Case Management and other non-workflow approaches to BPM (Adap-
tiveCM 2013).

6. Towards Trustworthy Adaptive Case Management with Dynamic Condi-
tion Response Graphs, Raghava Rao Mukkamala, Thomas Hildebrandt
and Tijs Slaats, In Proceedings of The Enterprise Computing Conference
(EDOC 2013).

7. Exformatics Declarative Case Management Workflows as DCR Graphs,
Thomas Hildebrandt, Morten Marquard, Raghava Rao Mukkamala and
Tijs Slaats, In Proceedings of International Conference on Business Pro-
cess Management (BPM 2013).

8. Declarative ModelingAn Academic Dream or the Future for BPM?, Hajo
A. Reijers, Tijs Slaats and Christian Stahl, In Proceedings of International
Conference on Business Process Management (BPM 2013).

30

9. Mixing Paradigms for More Comprehensible Models, Michael Westergaard
and Tijs Slaats, In Proceedings of International Conference on Business
Process Management (BPM 2013).

10. Rsvp: Live sessions with responses, Thomas Hildebrandt, Marco Car-
bone, and Tijs Slaats, In Proceedings of 1st International Workshop on
Behavioural Types (BEAT13).

11. Modular Context-Sensitive and Aspect-Oriented Processes with Dynamic
Condition Response Graphs, Thomas Hildebrandt, Raghava Rao Mukka-
mala, Tijs Slaats and Francesco Zanitti, In Proceedings of Foundations of
Aspect-Oriented Languages workshop (FOAL 2013).

12. Safe Distribution of Declarative Processes, Thomas Hildebrandt, Raghava
Rao Mukkamala and Tijs Slaats, In Proceedings of 9th International Con-
ference on Software Engineering and Formal Methods (SEFM’11).

13. Designing a Cross-organizational Case Management System using Dy-
namic Condition Response Graphs, Thomas Hildebrandt, Raghava Rao
Mukkamala and Tijs Slaats, In Proceedings of Fifteenth IEEE Interna-
tional EDOC Conference (EDOC’11).

14. Declarative Modelling and Safe Distribution of Healthcare Workflows, Thomas
Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. In Proceedings
of 1st International Symposium on Foundations of Health Information
Engineering and Systems (FHIES’11).

15. Nested Dynamic Condition Response Graphs, Thomas Hildebrandt, Raghava
Rao Mukkamala and Tijs Slaats, In Proceedings of 4th International Con-
ference on Fundamentals of Software Engineering (FSEN’11).

31

References

[1] Wil M. P. van der Aalst. Verification of workflow nets. In Proceedings of
the 18th International Conference on Application and Theory of Petri Nets,
ICATPN ’97, pages 407–426, London, UK, UK, 1997. Springer-Verlag.

[2] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining pro-
cess models from workflow logs. In Proceedings of the 6th International Con-
ference on Extending Database Technology: Advances in Database Technol-
ogy, EDBT ’98, pages 469–483, London, UK, UK, 1998. Springer-Verlag.

[3] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen
Su. Towards formal analysis of artifact-centric business process models. In
In preparation, pages 288–304, 2007.

[4] Federico Chesani, E. Lamma, Paola Mello, M. Montali, F. Riguzzi, and
S. Storari. Exploiting Inductive Logic Programming Techniques for Declar-
ative Process Mining. Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC), Special Issue on Concurrency in Process-Aware
Information Systems, 5460:278–295, 2009.

[5] Thomas H Davenport, Sirkka L Jarvenpaa, and Michael C Beers. Improving
knowledge work processes. Sloan management review, 1996.

[6] Johannes De Smedt, Jochen De Weerdt, and Jan Vanthienen. Multi-
paradigm process mining: Retrieving better models by combining rules and
sequences. In Robert Meersman, Herv Panetto, Tharam Dillon, Michele
Missikoff, Lin Liu, Oscar Pastor, Alfredo Cuzzocrea, and Timos Sellis, ed-
itors, On the Move to Meaningful Internet Systems: OTM 2014 Confer-
ences, volume 8841 of Lecture Notes in Computer Science, pages 446–453.
Springer Berlin Heidelberg, 2014.

[7] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet
communicating automata. In ESOP, pages 194–213, 2012.

[8] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A
methodology for modeling and evolving cross-organizational business pro-
cesses. ACM Trans. Softw. Eng. Methodol., 19(2):6:1–6:45, October 2009.

[9] C. Di Ciccio and M. Mecella. Mining constraints for artful processes. In
BIS, 2012.

[10] Peter F. Drucker. Management Challenges for the 21st Century. Harper-
Business, 2001.

[11] Rik Eshuis and Juliane Dehnert. Reactive petri nets for workflow modeling.
In Applications and Theory of Petri Nets 2003, pages 296–315. Springer,
2003.

32

[12] Rik Eshuis and Roel Wieringa. A formal semantics for uml activity
diagrams-formalising workflow models. 2001.

[13] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a Survey.
Bulletin of the European Association for Theoretical Computer Science,
52:245–262, 1994.

[14] Dirk Fahland, Daniel Lbke, Jan Mendling, Hajo Reijers, Barbara Weber,
Matthias Weidlich, and Stefan Zugal. Declarative versus imperative pro-
cess modeling languages: The issue of understandability. In Terry Halpin,
John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, Pnina Soffer,
and Roland Ukor, editors, Enterprise, Business-Process and Information
Systems Modeling, volume 29 of Lecture Notes in Business Information
Processing, pages 353–366. Springer Berlin Heidelberg, 2009.

[15] Paul Grefen, Karl Aberer, Heiko Ludwig, and Yigal Hoffner. Crossflow:
Cross-organizational workflow management for service outsourcing in dy-
namic virtual enterprises. Bulletin of the Technical Committee on Data
Engineering, 24(1):52–57, 2001.

[16] Vivian C.T. Hermans. A hybrid process modelingapproach. Master’s thesis,
Eindhoven University of Technology, the Netherlands, 2014.

[17] Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-
based workflow as distributed dynamic condition response graphs. In Post-
proceedings of PLACES 2010, 2010.

[18] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In
ESOP, pages 122–138, 1998.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, pages 273–284, 2008.

[20] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier,
Manmohan Gupta, Fenno Terry Heath, III, Stacy Hobson, Mark Linehan,
Sridhar Maradugu, Anil Nigam, Piwadee Noi Sukaviriya, and Roman Va-
culin. Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In Proc. of DEBS ’11,
pages 51–62, New York, NY, USA, 2011. ACM.

[21] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta,
Fenno Terry Heath, III, Stacy Hobson, Mark Linehan, Sridhar Maradugu,
Anil Nigam, Piyawadee Sukaviriya, and Roman Vaculin. Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. In
Proc. of WS-FM’10, pages 1–24, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Val-
idation of Concurrent Systems. Springer, 2009.

33

[23] Kurt Jensen. Coloured petri nets. Springer, 1987.

[24] Ekkart Kindler, Wolfgang Reisig, Hagen Vlzer, and Rolf Walter. Petri net
based verification of distributed algorithms: An example. Formal Aspects
of Computing, 9, 1996.

[25] Marjanca Koetsier, Paul Grefen, and Jochem Vonk. Contracts for cross-
organizational workflow management. In Kurt Bauknecht, SanjayKumar
Madria, and Gnther Pernul, editors, Electronic Commerce and Web Tech-
nologies, volume 1875 of Lecture Notes in Computer Science, pages 110–
121. Springer Berlin Heidelberg, 2000.

[26] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying inductive logic
programming to process mining. In Inductive Logic Programming, volume
4894. 2008.

[27] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Dis-
covering block-structured process models from event logs - a constructive
approach. In Jos Manuel Colom and Jrg Desel, editors, Petri Nets, volume
7927 of Lecture Notes in Computer Science, pages 311–329. Springer, 2013.

[28] F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. Efficient discovery
of understandable declarative models from event Logs. In CAiSE, pages
270–285, 2012.

[29] F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-Guided Discovery
of Declarative Process Models. In 2011 IEEE Symposium on Computational
Intelligence and Data Mining. IEEE, 2011.

[30] F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-guided discovery
of declarative process models. In CIDM, pages 192–199, 2011.

[31] Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil M. P.
van der Aalst. Monitoring business constraints with linear temporal logic:
An approach based on colored automata. In Business Process Management
(BPM) 2011, volume 6896 of Lecture Notes in Computer Science, pages 32–
147, 2011.

[32] Marco Montali. Specification and Verification of Declarative Open Inter-
action Models: a Logic-Based Approach, volume 56 of Lecture Notes in
Business Information Processing. Springer, 2010.

[33] Marco Montali, Maja Pesic, Wil MP van der Aalst, Federico Chesani, Paola
Mello, and Sergio Storari. Declarative specification and verification of ser-
vice choreographiess. ACM Transactions on the Web (TWEB), 4(1):3,
2010.

[34] Raghava Rao Mukkamala. A Formal Model For Declarative Workflows -
Dynamic Condition Response Graphs. PhD thesis, IT University of Copen-
hagen, March 2012.

34

[35] R.R. Mukkamala and T.T. Hildebrandt. From dynamic condition response
structures to büchi automata. In Theoretical Aspects of Software Engineer-
ing (TASE), 2010 4th IEEE International Symposium on, pages 187 –190,
aug. 2010.

[36] N. A. Mulyar, M. H. Schonenberg, Mans, and van der Aalst. Towards a
Taxonomy of Process Flexibility (Extended Version). 2007.

[37] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event
structures and domains. In Gilles Kahn, editor, Semantics of Concurrent
Computation, volume 70 of Lecture Notes in Computer Science, pages 266–
284. Springer Berlin / Heidelberg, 1979. 10.1007/BFb0022474.

[38] Object Management Group. Case Management Model and Notation, ver-
sion 1.0. Webpage, may 2014. http://www.omg.org/spec/CMMN/1.0/PDF.

[39] Object Management Group BPMN Technical Committee. Business Process
Model and Notation, version 2.0. Webpage, january 2011. http://www.

omg.org/spec/BPMN/2.0/PDF.

[40] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full
Support for Loosely-Structured Processes. In Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference, pages
287–. IEEE Computer Society, Washington, DC, USA, 2007.

[41] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universitt
Hamburg, 1962.

[42] Johannes Prescher, Claudio Di Ciccio, and Jan Mendling. From declar-
ative processes to imperative models. In Proceedings of the 4th Interna-
tional Symposium on Data-driven Process Discovery and Analysis (SIM-
PDA 2014), Milan, Italy, November 19-21, 2014., pages 162–173, 2014.

[43] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Ja-
cob Frank Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren
Christensen, and Kurt Jensen. Cpn tools for editing, simulating, and
analysing coloured petri nets. In Applications and Theory of Petri Nets
2003, pages 450–462. Springer, 2003.

[44] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems: Challenges, Methods, Technologies. Springer,
Berlin-Heidelberg, 2012.

[45] Shazia Sadiq, Wasim Sadiq, and Maria Orlowska. Pockets of flexibility
in workflow specification. In Hideko S.Kunii, Sushil Jajodia, and Arne
Slvberg, editors, Conceptual Modeling ER 2001, volume 2224 of Lecture
Notes in Computer Science, pages 513–526. Springer Berlin Heidelberg,
2001.

35

http://www.omg.org/spec/CMMN/1.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF

[46] Keith D. Swenson. Mastering the Unpredictable: How Adaptive Case Man-
agement Will Revolutionize the Way That Knowledge Workers Get Things
Done. Meghan-Kiffer Press, 2010.

[47] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative work-
flows: Balancing between flexibility and support. Computer Science - R&D,
23(2):99–113, 2009.

[48] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey of
issues and approaches. Data Knowl. Eng., 47(2):237–267, November 2003.

[49] Wil van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco
Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter
van den Brand, Ronald Brandtjen, Joos Buijs, Andrea Burattin, Josep
Carmona, Malu Castellanos, Jan Claes, Jonathan Cook, Nicola Costantini,
Francisco Curbera, Ernesto Damiani, Massimiliano de Leoni, Pavlos Delias,
Boudewijn van Dongen, Marlon Dumas, Schahram Dustdar, Dirk Fahland,
Diogo R. Ferreira, Walid Gaaloul, Frank van Geffen, Sukriti Goel, Chris-
tian Gunther, Antonella Guzzo, Paul Harmon, Arthur ter Hofstede, John
Hoogland, Jon Espen Ingvaldsen, Koki Kato, Rudolf Kuhn, Akhil Kumar,
Marcello La Rosa, Fabrizio Maggi, Donato Malerba, Ronny Mans, Alberto
Manuel, Martin McCreesh, Paola Mello, Jan Mendling, Marco Montali,
Hamid Motahari Nezhad, Michael zur Muehlen, Jorge Munoz-Gama, Luigi
Pontieri, Joel Ribeiro, Anne Rozinat, Hugo Seguel Perez, Ricardo Seguel
Perez, Marcos Sepulveda, Jim Sinur, Pnina Soffer, Minseok Song, Alessan-
dro Sperduti, Giovanni Stilo, Casper Stoel, Keith Swenson, Maurizio Ta-
lamo, Wei Tan, Chris Turner, Jan Vanthienen, George Varvaressos, Eric
Verbeek, Marc Verdonk, Roberto Vigo, Jianmin Wang, Barbara Weber,
Matthias Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and
Moe Wynn. Process mining manifesto. In F Daniel, K Barkaoui, and
S Dustdar, editors, Lecture Notes in Business Information Processing, vol-
ume 99, pages 169–194. Springer, 2012.

[50] Wil van der Aalst, Maja Pesic, Helen Schonenberg, Michael Westergaard,
and Fabrizio M. Maggi. Declare. Webpage, 2010. http://www.win.tue.

nl/declare/.

[51] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Trans. on Knowl. and
Data Eng., 16(9):1128–1142, September 2004.

[52] Wil M. P. van der Aalst. The application of petri nets to workflow man-
agement. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[53] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer Publishing Company, Incor-
porated, 1st edition, 2011.

36

http://www.win.tue.nl/declare/
http://www.win.tue.nl/declare/

[54] Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofstede, and Mathias Weske.
Business process management: A survey. In Proceedings of the 2003 In-
ternational Conference on Business Process Management, BPM’03, pages
1–12, Berlin, Heidelberg, 2003. Springer-Verlag.

[55] Wil M.P van der Aalst and Maja Pesic. DecSerFlow: Towards a truly
declarative service flow language. In M. Bravetti, M. Nunez, and Gianluigi
Zavattaro, editors, Proceedings of Web Services and Formal Methods (WS-
FM 2006), volume 4184 of LNCS, pages 1–23. Springer Verlag, 2006.

[56] W.M.P. van der Aalst, M. Adams, A.H.M. ter Hofstede, M. Pesic, and
H. Schonenberg. Flexibility as a service. In Lei Chen, Chengfei Liu, Qing
Liu, and Ke Deng, editors, Database Systems for Advanced Applications,
volume 5667 of Lecture Notes in Computer Science, pages 319–333. Springer
Berlin Heidelberg, 2009.

[57] Wil van van der Aalst and Christian Stahl. Modeling Business Processes:
A Petri Net-Oriented Approach. The MIT Press, 2011.

[58] W Vanderaalst, M Weske, and D Grunbauer. Case handling: a new
paradigm for business process support. Data & Knowledge Engineering,
53(2):129–162, 2005.

[59] Daniele Varacca, Hagen Vlzer, and Glynn Winskel. Probabilistic event
structures and domains. Theoretical Computer Science, 358(23):173 – 199,
2006. Concurrency Theory (CONCUR 2004) 15th International Conference
on Concurrency Theory 2004.

[60] Vasco Vasconcelos. Fundamentals of session types. I&C, 217:52–70, 2012.

[61] Hagen Vlzer. An overview of bpmn 2.0 and its potential use. In Jan
Mendling, Matthias Weidlich, and Mathias Weske, editors, Business Pro-
cess Modeling Notation, volume 67 of Lecture Notes in Business Informa-
tion Processing, pages 14–15. Springer Berlin Heidelberg, 2010.

[62] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change pat-
terns and change support features - enhancing flexibility in process-aware
information systems. Data and Knowledge Engineering, 66(3):438–466,
September 2008.

[63] Hans Weigand and Willem-Jan van den Heuvel. Cross-organizational work-
flow integration using contracts. Decis. Support Syst., 33(3):247–265, July
2002.

[64] Mathias Weske. Business Process Management: Concepts, Languages, Ar-
chitectures. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[65] Glynn Winskel. Events in Computation. PhD thesis, Edinburgh University,
1980.

37

[66] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig,
and Grzegorz (Eds.) Rozenberg, editors, Advances in Petri Nets, volume
Vol. 255 of Lecture Notes in Computer Science,, pages 325–392. Springer,
1986.

[67] Glynn Winskel. Events, causality and symmetry. The Computer Journal,
54(1):42–57, 2011.

[68] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives
and type discipline for structured communication-based programming re-
visited: Two systems for higher-order session communication. ENTCS,
171(4):73–93, 2007.

[69] Stefan Zugal, Pnina Soffer, Cornelia Haisjackl, Jakob Pinggera, Manfred
Reichert, and Barbara Weber. Investigating expressiveness and understand-
ability of hierarchy in declarative business process models. Software &
Systems Modeling, June 2014.

[70] Stefan Zugal, Pnina Soffer, Jakob Pinggera, and Barbara Weber. Expres-
siveness and understandability considerations of hierarchy in declarative
business process models. In BMMDS/EMMSAD, volume 113 of Lecture
Notes in Business Information Processing, pages 167–181. Springer, 2012.

38

4 Hierarchical Dynamic Condition Response Graphs

39

Nested Dynamic Condition Response Graphs

Thomas Hildebrandt1, Raghava Rao Mukkamala1, and Tijs Slaats1?

IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark,
{hilde, rao, tslaats}@itu.dk,

Abstract. We present an extension of the recently introduced declarative process
model Dynamic Condition Response Graphs (DCR Graphs) to allow nested sub-
graphs and a new milestone relation between events. The extension was devel-
oped during a case study carried out jointly with our industrial partner Exformat-
ics, a danish provider of case and workflow management systems. We formalize
the semantics by giving first a map from Nested to (flat) DCR Graphs with mile-
stones, and then extending the previously given mapping from DCR Graphs to
Büchi-automata to include the milestone relation.

1 Introduction

Declarative process models have been suggested by several research groups [1–5,15,16,
18, 19] as a good approach to describe case management and other non-rigid business
and workflow processes where it is generally allowed to redo or skip activities, and even
dynamically adapt the set of activities and constraints. The rationale is that if a strict
sequencing is the exception, then the implicit specification of control flow in declarative
models is more appropriate than notations based on explicit control flows such as the
(typical use of) Business Process Model and Notation (BPMN) 2.0 [13].

A drawback of the declarative approaches in general, however, is that the implicit
definition of the state and control flow makes it more complex to perceive the state and
execute the process. To find out what are the next possible activities it is necessary to
evaluate a set of constraints defined relatively to the history of the execution.

This motivates finding an expressive declarative process language that allows for a
simple run-time scheduling which is easily visualized for the case worker. As a candi-
date for such a language we recently introduced in [7, 11] a declarative process model
called Dynamic Condition Response Graphs (DCR Graphs). The model is a general-
ization of the classic event structure model for concurrency [20] and is inspired by the
Process Matrix model [10,12] developed by one of our industrial partners Resultmaker,
a Danish provider of workflow and case-management systems.

The core DCR Graphs model consists of a set of events and four binary relations
between the events: The dynamic inclusion and dynamic exclusion relations, and the
condition and response relations. The dynamic inclusion and exclusion relations gen-
eralize the usual symmetric conflict relation of event structures by splitting it in two
? This research is supported by the Danish Research Agency through a Knowledge Voucher

granted to Exformatics (grant #10-087067, www.exformatics.com), the Trustworthy Pervasive
Healthcare Services project (grant #2106-07-0019, www.trustcare.eu) and the Computer Sup-
ported Mobile Adaptive Business Processes project (grant #274-06-0415, www.cosmobiz.dk).

40

II

asymmetric relations: If an event A excludes an event B, written A →% B, then B
can not happen until after the occurrence of an event C that includes event B, which is
written C →+ B. Similarly, the condition and response relations generalize the usual
causal order relation of event structures by splitting it in two relations: If an eventB has
event A as condition, written A→• B, then event A must either be currently excluded
or have happened forB to happen. Dually, if an eventA has eventB as response, written
A •→ B, then event B must eventually happen or always eventually be excluded after
an occurrence of event A. To express that events are executed by actors with different
roles the core model is extended with roles assigned to the events.

In [7] we show that the run-time state of DCR Graphs can be represented as a mark-
ing consisting of three sets of events, recording respectively the executed events, the
currently included events, and the pending response events, i.e. events that must even-
tually happen or be excluded. From the marking, it is easy to evaluate if an event can
happen (by checking if all its conditions are either executed or excluded) and to verify
if the graph is in a completed state (by checking if the set of included pending responses
is empty). It is also easy to update the state when executing an event by adding it to the
set of executed events, remove the event from the pending response set and add new
response events according to the response relation, and include/exclude events in the
set of currently included events according to the include/exclude relations. In [7,11] we
express the acceptance condition for infinite runs (no pending response is continuously
included without being executed) by giving a map to a Büchi automaton.

In the present paper we describe how to extend the model to allow for nested sub-
graphs as is standard in most state-of-the art modelling notations. The work was carried
out during a case study, in which we are applied Nested DCR Graphs in the design phase
of the development of a distributed, inter-organizational case management system car-
ried out by our industrial partner, Exformatics, a company that specializes in solutions
for knowledge sharing, workflows and document handling.

Fig. 1. Nested DCR Graphs with Arrange meeting sub-graph

Fig. 1 shows the
graphical notation for
nested DCR graphs
and illustrates the use
of nested sub-graphs
in a sub part of the
model arising from
our case study. The
Arrange meeting event
represents the arrange-
ment of a meeting be-
tween two of the organizations (DA and LO) using the distributed case management
system being developed. It has been refined to a sub-graph including four sub events
for proposing and accepting dates for the meeting. The dashed boxes indicate that the
events Accept DA and Accept LO for accepting meeting dates are initially excluded.
Described briefly, when the organization (U) creates a case, it triggers as a response the
event Propose dates-LO, representing LO proposing dates for a meeting. This event
triggers as a response and includes the event Accept DA, representing DA accepting

41

III

the dates. But it also enables that DA can propose other dates, represented by the event
Propose Dates-DA. Now, this event triggers as a response and includes the event Ac-
cept LO, representing LO accepting the dates. Again, LO may do this, or again propose
dates. The proposal of dates may continue forever, and as long as no one accepts there
will be a pending response on at least one of the accept events. As soon as one of the ac-
cept events happen, they will both be excluded, and there will be none of the included
events in the sub-graph having pending responses. This corresponds to the accepting
condition for finite runs of DCR graphs [7], and thus intuitively reflects that the sub-
graph is in a completed state. Now, we want to express that the event Hold meeting can
only be executed when this is the case. To do this, we introduced a new core relation
between events called the milestone relation. If an event A is a milestone for an event
B, written A →� B, then B can not happen if A is included and required to be exe-
cuted again (i.e. as a response). The new milestone relation allow us to define nesting as
simply a tree structure on events that can be flattened to (flat) DCR Graphs by keeping
all atomic events (i.e. events with no sub-events) and letting them inherit the relations
defined for their super-events. In particular, the flattening does not introduce new events
(in fact it removes all super events) and at most introduce an order of n2 new relations.
Thus, we need not define a new operational semantics for nested DCR Graphs, instead
we can make the much simpler extension of the semantics for (flat) DCR Graphs to
consider the new milestone relation. It is worth noting that while the milestone relation
makes it very direct to express completion of subgraphs, we conjecture that it does not
add expressiveness to DCR Graphs.

Related work: Our approach is closely related to the work on ConDec [18, 19]. The
crucial difference is that we allow nesting and a few core constraints making it possi-
ble to describe the state of a process as a simple marking. ConDec does not address
nesting (nor dynamic inclusion/exclusion), but allows one to specify any relation ex-
pressible within Linear-time Temporal Logic (LTL). This offers much flexibility with
respect to specifying execution constraints. In particular the condition and response re-
lations are standard verification patterns and also considered in [18, 19] (the condition
relation is called precedence), and we have used the same graphical notation. How-
ever, the execution of a process expressed as LTL (which typically involves a transla-
tion to a Büchi-automaton) is more complex and the run-time state is difficult to relate
to the original ConDec specification. Moreover, we conjecture that DCR Graphs are
as expressive as Büchi-automata, and thus more expressive than LTL. Finally, Nested
DCR Graphs relates to the independent (so far unpublished) work on the declarative
Guard-Stage-Milestone model by Hull, presented in invited talks at WS-FM 2010 and
CASCON 2010.

Structure of paper: In Sec. 2 we define Nested DCR Graphs formally, motivated by the
case study, and define the mapping to flat DCR Graphs with milestones. In Sec. 3 we
then define the lts semantics and the mapping from flat DCR Graphs with milestones to
Büchi-automata. The two maps together define the semantics of Nested DCR Graphs.
Due to space limitations we refer to [8] and the full version [9] for a detailed description
of the case study and tool support. We conclude in Sec. 4 and give pointers to future
work.

42

IV

2 Nested DCR Graphs and Milestones

We now give the formal definition of the Nested DCR Graph model described infor-
mally above, which extends the model in our previous work [7] with nesting and the
new milestone relation→� between events.

Definition 1. A Nested Distributed dynamic condition response graph with milestones
is a tuple (E,B,M,→•, •→,→�,±,Act, l,R,P, as), where

(i) E is the set of events
(ii) B : E ⇀ E is a partial function mapping an event to its super-event (if defined),

and we also write eBe′ if e′ = Bk(e) for 0 < k, referred to as the nesting relation
(iii) M = (E,R, I) ⊆ atoms(E) × atoms(E) × atoms(E) is the marking, contain-

ing sets of currently executed events (E), currently pending responses (R), and
currently included events (I).

(iv) →•⊆ E× E is the condition relation
(v) •→⊆ E× E is the response relation

(vi) →�⊆ E× E is the milestone relation
(vii) ± : E × E ⇀ {+,%} is a partial function defining the dynamic inclusion and

exclusion relations by e→+ e′ if ±(e, e′) = + and e→% e′ if ±(e, e′) = %
(viii) Act is the set of actions

(ix) l : E→ Act is a labeling function mapping events to actions.
(x) R is a set of roles,

(xi) P is a set of principals (e.g. persons or processors) and
(xii) as ⊆ (P ∪ Act)× R is the role assignment relation to principals and actions.

where atoms(E) = {e | ∀e′ ∈ E.B (e′) 6= e} is the set of atomic events.
We require that the nesting relation B ⊂ E × E is acyclic and that there are no

infinite sequence of events e1 B e2 B We will write e D e′ if e B e′ or e = e′, and
eEe′ if e′Be or e = e′. We require that the nesting relation is consistent with respect to
dynamic inclusion/exclusion in the following sense: If eBe′ or e′Be then±(e, e′′) = +
implies ±(e′, e′′) 6= % and ±(e, e′′) = % implies ±(e′, e′′) 6= +.

The new elements are the nesting relation B ⊂ E × E and the milestone rela-
tion→�⊆ E× E. The consistency between the nesting relation and the dynamic inclu-
sion/exclusion is to ensure that when we map a nested DCR Graph to the corresponding
flat DCR Graph as defined in Def. 2 below, no atomic event both includes and excludes
another event. That is, if an event e includes (excludes) another event e′′, then any of its
super or sub events e′ can not exclude (include) the event e′′.

The new elements conservatively extend the DCR Graphs defined in [7] in the sense
that given a Nested dynamic condition response graph as defined in Def. 1, the tu-
ple (atoms(E),M,→•, •→,±,Act, l,R,P, as) is a (Distributed) dynamic condition re-
sponse graph as defined in [7]. In particular, the semantics will be identical if both the
B map and the milestone relation are empty.

A nested distributed dynamic condition response graph can be mapped to a flat
distributed dynamic condition response graph with at most the same number of events.
Essentially, all relations are extended to sub events, and then only the atomic events

43

V

are preserved. The labelling function is extended by labelling an atomic event e by
the sequence of labels labelling the chain of super events starting by the event itself:
eB e1 . . . ek 6 B. The role assignment is extended to sequences of actions by taking the
union of roles assigned to the actions.

Definition 2. For a Nested DCR GraphG = (E,B,M,→•, •→,→�,±,Act, l,R,P, as)
define the underlying flat DCR Graph as

G[= (atoms(E),M,→•[, •→[,→�[,±[,Act+, l[,R,P, as[),

where rel[= DrelE for some relation rel ∈ {→•, •→,→�} and±(e, e′)[= ±(es, e′s)
if ±(es, e′s) is defined and eD es and e′ E e′s and l[(e0) = a0.a1.a2 . . . ak if e0 B e1 B
e2 . . .B ek and l(ei) = aifor 0 ≤ i ≤ k and as[(a0.a1.a2 . . . ak) = {as(ai) | 0 ≤ i ≤
k} and as[(p) = p for p ∈ P.

It is easy to see that the size of the relations may increased by an order of at most
n2 where n is the number of atomic events.

3 Semantics

Below we define the semantics of DCR Graphs with milestones by giving a labelled
transition semantics and a mapping to Büchi-automata.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A ofA we write→ ξ and ξ → for the set {a ∈ A | (∃a′ ∈
ξ | a→ a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively.

Definition 3. For a dynamic condition response graph with milestonesG = (E,M,→•
, •→,→�,±, l,Act,R,P, as), we define the corresponding labelled transition systems
T (G) to be the tuple (S,M,→⊆ S ×Act×S) where S = P(E)×P(E)×P(E) is the
set of markings of G and M = (R, I,E) ∈ S is the initial marking,→⊆ S × E× (P×
Act× R)× S is the transition relation given by M′ (e,(p,a,r))−−−−−−→ M′′ where

(i) M′ = (E′, R′, I ′) is the marking before transition
(ii) M′′ = (E′ ∪ {e}, R′′, I ′′) is the marking after transition

(iii) e ∈ I , l(e) = a, p as r, and a as r,
(iv) →•e ∩I ′ ⊆ E′,
(v) →�e ∩I ′ ∩R′ = ∅,

(vi) I ′′ = (I ′ ∪ e→+) \ e→%,
(vii) R′′ = (R′ \ {e}) ∪ e•→,

(viii) E′′ = E′ ∪ {e}

We define a run (e0, (p0, a0, r0)), (e1, (p1, a1, r1)), . . . of the transition system to be a

sequence of labels of a sequence of transitions Mi
(ei,(pi,ai,ri))−−−−−−−−−→ Mi+1 starting from

the initial marking. We define a run to be accepting if ∀i ≥ 0, e ∈ Ri.∃j ≥ i.(e =
ej ∨ e 6∈ Ij). In words, a run is accepting if no response event is included and pending
forever, i.e. it must either happen at some later state or become excluded.

44

VI

Condition (iii) in the above definition expresses that, only events e that are currently
included, can be executed, and to give the label (p, a, r) the label of the event must be
a, p must be assigned to the role r, which must be assigned to a. Condition (iv) requires
that all condition events to e which are currently included should have been executed
previously. Condition (v) states that the currently included events which are milestones
to event e must not be in the set of pending responses (R′). Conditions (vi), (vii) and
(viii) are the updates to the sets of included events, pending responses and executed
events respectively. Note that an event e′ can not be both included and excluded by the
same event e, but an event may trigger itself as a response.

If one considers only finite runs then the acceptance condition degenerates to re-
quiring that no pending response is included at the end of the run. If infinite runs are
also of interest (as e.g. for reactive systems and LTL) the acceptance condition can be
captured by a mapping to a Büchi-automaton with τ -event defined as follows.

Definition 4. A Büchi-automaton with τ -event is a tuple (S, s, Evτ ,→⊆ S × Evτ ×
S, F) where S is the set of states, s ∈ S is the initial state, Evτ is the set of events
containing the special event τ ,→⊆ S×Evτ ×S is the transition relation, and F is the
set of accepting states. A (finite or infinite) run is a sequence of labels not containing
the τ event that can be obtained by removing all τ events from a sequence of labels
of transitions starting from the initial state. The run is accepting if the sequence of
transitions passes through an accepting state infinitely often.

Since we at any given time may have several pending responses we must make sure
in the mapping to Büchi-automata that all of them are eventually executed or excluded.
To do this we assume any fixed order of the finite set of events E of the given dynamic
condition response graph. For an event e ∈ E we write rank(e) for its rank in that
order and for a subset of events E′ ⊆ E we write min(E′) for the event in E′ with the
minimal rank.

Definition 5. For a finite distributed dynamic condition response graphG = (E,M,→•
, •→,→�,±,Act, l,R,P, as) where E = {e1, . . . , en}, marking M = (E,R, I) and
rank(ei) = i, we define the corresponding Büchi-automaton with τ -event to be the
tuple B(G) = (S, s,→⊆ S × Evτ × S, F) where

– S = P(E)× P(E)× P(E)× {1, . . . , n} × {0, 1} is the set of states,
– Evτ = (E× (P× Act× R)) ∪ {τ} is the set of events,
– s = (M, 1, 1) if I ∩R = ∅, and s = (M, 1, 0) otherwise
– F = P(E)× P(E)× P(E)× {1, . . . , n} × {1} is the set of accepting states and
– →⊆ S × Evτ × S is the transition relation given by (M′, i, j)

τ−−−→ (M′, i, j′)
where

(a) M′ = (E′, R′, I ′) is the marking
(b) j′ = 1 if I ′ ∩R′ = ∅ otherwise j′ = 0.

and (M′, i, j)
(e,(p,a,r))−−−−−−−−−→ (M′′, i′, j′) where

(i) M′ = (E′, R′, I ′)
(e,(p,a,r))−−−−−−−−−→ (E′′, R′′, I ′′) = M′′ is a transition of T (D).

45

VII

(ii) For M = {e ∈ I ′ ∩R′ | rank(e) 〉 i} let j′ = 1 if
(a) I ′′ ∩R′′ = ∅ or
(b) min(M) ∈ (I ′ ∩R′\(I ′′ ∩R′′)) ∪ {e} or
(c) M = ∅ and min(I ′ ∩R′) ∈ (I ′ ∩R′\(I ′′ ∩R′′)) ∪ {e}
otherwise j′ = 0.

(iii) i′ = rank(min(M)) if min(M) ∈ (I ′ ∩R′\(I ′′ ∩R′′)) ∪ {e} or else
(iv) i′ = rank(min(I ′∩R′)) ifM = ∅ andmin(I ′∩R′) ∈ (I ′∩R′\(I ′′∩R′′))∪{e}

or else
(v) i′ = i otherwise.

We prove that the mapping from the labelled transition semantics to Büchi-automata is
sound and complete in the full version of the paper [9].

The formal semantics of DCR graphs mapped to Büchi-automata enabled us to per-
form model checking and formal verification of processes specified in DCR graphs. The
prototype implementation allows us to perform verification of both safety and liveness
properties using the SPIN [17] model checker and only verification of safety properties
using the ZING [14] model checker. The prototype has also been extended to support
runtime verification, for monitoring of properties specified using Property Patterns [6].

4 Conclusion and Future Work

We have given a conservative extension of the declarative process model Distributed
DCR Graphs [7] to allow for nested sub-graphs motivated and guided by a case study
carried out jointly with our industrial partner. A detailed description of the case study
and tool support for DCR Graphs can be found in [8]. The main technical challenge
was to formalize the execution and in particular completion of sub-graphs. We do this
by introducing a new milestone relation A→� B, which blocks the event B as long as
there are events inA required to be executed (i.e. required responses). We believe this is
the right notion of completeness of nested sub-graphs. First of all, it coincides with the
definition of acceptance of finite runs in DCR Graphs [7] recalled in Sec. 3 above. Sec-
ondly, its formalization is a simple extension of the labelled transition semantics given
in [7, 11] since it is a condition on the set of pending responses already included in the
states. Finally, it allows for a nested sub-graph to alternate between being completed
and not completed, as is often the case in ad hoc case management. This is not possible
in the related ad-hoc sub-process activity in BPMN 2.0. Future work within the Trust-
Care and CosmoBiz projects, which are the context of the work, includes exploring the
expressiveness of DCR Graphs, extending the theory and tools for analysis, verification
and model-driven engineering, extending the model to be able to express other relevant
features such as multi-instance sub-graphs, time, exceptions, data, types and run-time
adaption, i.e. dynamic changes of the model.

References

1. Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su. Towards
formal analysis of artifact-centric business process models. In LNCS, volume 4714, pages
288–304, 2007.

46

VIII

2. Christoph Bussler and Stefan Jablonski. Implementing agent coordination for workflow
management systems using active database systems. In Research Issues in Data Engineering,
1994. Active Database Systems. Proceedings Fourth International Workshop on, pages 53–
59, Feb 1994.

3. David Cohn and Richard Hull. Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

4. Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakrishnan. Logic based
modeling and analysis of workflows. In Proceedings of ACM SIGACT-SIGMOD-SIGART,
pages 1–3. ACM Press, 1998.

5. Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verification of data-
centric business processes. In Proceedings of the 12th International Conference on Database
Theory, ICDT ’09, pages 252–267, New York, NY, USA, 2009. ACM.

6. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification patterns
for finite-state verification. In Proceedings of the second workshop on Formal methods in
software practice, FMSP ’98, pages 7–15, New York, NY, USA, 1998. ACM.

7. Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Programming Language Approaches to
Concurrency and communication-cEntric Software 2010 (PLACES10). EPTCS, 2010.

8. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-
organizational case management system using dynamic condition response graphs. In Ac-
cepted for IEEE International EDOC Conference, 2011.

9. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-
organizational case management system using nested dynamic condition response graphs.
Technical Report TR-2011-141, IT University of Copenhagen, 2011.

10. Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based
clinical practice guidelines to declarative workflow management. In Proceedings ProHealth
08 workshop, 2008.

11. Raghava Rao Mukkamala and Thomas Hildebrandt. From dynamic condition response struc-
tures to büchi automata. In Proceedings of 4th IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2010), August 2010.

12. Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker
online consultant: From declarative workflow management in practice to LTL. In Proceeding
of DDBP, 2008.

13. Object Management Group BPMN Technical Committee. Business Process Model and No-
tation, version 2.0, 2010. http://www.omg.org/cgi-bin/doc?dtc/10-06-04.pdf.

14. Microsoft Research. Zing model checker. Webpage, 2010. http://research.microsoft.com/en-
us/projects/zing/.

15. Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework for scheduling
workflows under resource allocation constraints. In VLDB, pages 694–705, 2002.

16. Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C. Attie. An event algebra
for specifying and scheduling workflows. In Proceedings of DASFAA, pages 53–60. World
Scientific Press, 1995.

17. Spin. On-the-fly, ltl model checking with spin. Webpage, 2008.
http://spinroot.com/spin/whatispin.html.

18. Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

19. Wil M.P van der Aalst and Maja Pesic. A declarative approach for flexible business processes
management. In Proceedings of DPM 2006, LNCS. Springer Verlag, 2006.

20. Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozen-
berg, editors, Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science,
pages 325–392. Springer, 1986.

47

Designing a Cross-organizational Case Management
System using Dynamic Condition Response Graphs

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Raghava Rao Mukkamala
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

rao@itu.dk

Tijs Slaats
IT University of Copenhagen and

Exformatics A/S
2100 Copenhagen, Denmark

tslaats@itu.dk

Abstract—We present a case study of the use of Dynamic Con-
dition Response (DCR) Graphs, a recently introduced declarative
business process model, in the design of a cross-organizational
case management system being developed by Exformatics A/S,
a Danish provider of knowledge and workflow management
systems. We show how DCR Graphs allow to capture directly
both the behavioral constraints identified during meetings with
the customer and the operational execution as markings of the
graph. In comparison, imperative models such as BPMN, Petri
Net, UML Sequence or Activity diagrams are only good at
describing the operational way to fulfill the constraints, leaving
the constraints implicit. In particular, we point out that the
BPMN ad-hoc sub process activity, intended to support more
loosely structured goal driven ad-hoc processes, is inconsistently
described in the final version of the BPMN 2.0 standard. The
case study motivated an extension of the DCR Graphs model
to nested graphs and the development of graphical design and
simulation tools to increase the understanding of the models. The
study also revealed a number of challenges for future research
in techniques for model-driven design of cross-organizational
process-aware information systems combining declarative and
imperative models.

Index Terms—Case Study, Declarative Workflow, Model-driven
Design

I. INTRODUCTION

The purpose of a Case Management System as used in for
instance Human Resource (HR) departments, hospitals, finan-
cial, and governmental institutions, is to guide case workers to
perform the right tasks and to record the history of the case.

Since the initial work on office automation and workflow
systems [9], [10], [32] it has been advocated to base the
implementation of such systems, subsequently referred to as
process-aware information systems [8], on explicit process de-
scriptions described in some high-level process notation such
as Petri Net or UML activity diagrams. The key motivations
for using explicit process models are to allow the system to be
more easily adapted to different work processes and to make
the rules governing the system more visible to the users.

Authors listed alphabetically. This research is supported by the Danish
Research Agency through a Knowledge Voucher granted to Exformatics (grant
#10-087067, www.exformatics.com), the Trustworthy Pervasive Healthcare
Services project (grant #2106-07-0019, www.trustcare.eu) and the Computer
Supported Mobile Adaptive Business Processes project (grant #274-06-0415,
www.cosmobiz.dk).

The rise of web service standards such as SOAP, WSDL
and WS-BPEL has given new momentum to process-aware
information systems. SOAP and WSDL standardize how to
access external IT systems as web services in a service
oriented architecture and WS-BPEL provides a standard high-
level programming language for combining individual service
calls into process flows, also referred to as a process or-
chestration. Following WS-BPEL, the BPEL4People [1] and
WS-HumanTask [20] specifications were the first attempt to
standardize the inclusion of human tasks into BPEL to encom-
pass workflows. Moreover, W3C started in 2004 developing
the Web Services Choreography Description Language (WS-
CDL) [29] which can be used to provide a global view of
the intended interactions between different actors of a system,
similar to the view of interactions provided by UML sequence
diagrams. Within the last 5 years focus has moved from WS-
BPEL and BPEL4People to the development of Business Pro-
cess Model and Notation (BPMN) [19] which standardizes the
graphical notation used for business processes, encompassing
both human and automated tasks, and including both notations
for orchestrations and choreographies.

However, as pointed out in e.g. [10], [27], the imperative
process notations with explicit control and message flows
underlying all of the above models describe the operational-
ization of business process goals and constraints, and not the
goals and constraints themselves. Consequently, the notations
are best suited for well-defined, rigid and repeatable workflows
following a predefined sequence of service invocations and
human tasks and one need to use ad hoc annotations to record
the constraints and goals of the process. Moreover, it has
proven to be non-trivial to support changes of the processes
on-the-fly [26]. This does not match well the typical more ad-
hoc nature of case work where it is often needed to redo and
skip tasks and possibly adapt the set of tasks and their mutual
constraints dynamically [25].

An alternative approach studied by several research groups
is the use of declarative process models [3], [6], [22], [23],
[27], [28], which describes the temporal constraints on process
flows, not how to fulfill them. As part of the PhD project of
the second author within the Trustworthy Pervasive Healthcare
Services (TrustCare) research project [11] we have developed
a declarative process model called Dynamic Condition Re-

48

sponse Graphs (DCR Graphs) [12]–[14], [17]. The model is
both a generalization of the Process Matrix model [16], [18]
developed by Resultmaker, a danish provider of workflow and
case-management systems and the classical event structure
model for concurrency [30], [31]. DCR Graphs relate to
DECLARE [28], which is a graphical notation that allows
any temporal constraint pattern expressible as Linear-time
Temporal Logic (LTL) formulas. However, instead of allowing
the generality of expressing any constraint expressible in LTL,
DCR Graphs only has a fixed handful of constraints which
can be understood without reference to LTL. Still it maintains
the full expressive power of LTL (described in a follow
up paper). Moreover, it is possible to give an operational
semantics expressed directly as transitions between a novel
type of markings of the tasks. In this way DCR Graphs
combine the declarative view (constraints between tasks) with
the imperative view (markings of tasks) allowing to trace the
constraints even at run-time.

In the present paper we first briefly review the definition
of DCR Graphs in Sec. II and then in Sec. III describe a
case study of applying DCR graphs in the design phase of
the development of a cross-organizational case management
system. In Sec. IV we briefly describe the current status of
our development of tools for supporting design, simulation and
verification of DCR Graphs. Finally, in Sec. VI we outline
challenges identified in the case study and the proposal for
the continued development of the DCR Graphs model, tech-
nologies and tools to make them applicable to component and
model based design of distributed process-aware information
systems.

II. DYNAMIC CONDITION RESPONSE GRAPHS

A Dynamic Condition Response Graph as introduced in [13]
and extended in [14] consists of a set of events, a marking
defining the execution state, and five binary relations between
the events defining the conditions for the execution of events,
the required responses and a novel notion of dynamic inclusion
and exclusion of events. Hereto comes a set of actions, a
labeling function assigning an action to each event, a set of
roles, a set of principals and a relation assigning roles to
actions and principals.
Notation: For a set A we write P(A) for the power set of A.
For a binary relation →⊆ A×A and a subset ξ ⊆ A of A we
write → ξ and ξ → for the set {a ∈ A | (∃a′ ∈ ξ | a→ a′)}
and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively.

Formally we define a DCR Graph as follows.
Definition 1: A Dynamic Condition Response Graph is a

tuple (E,M,→•, •→,→�,±,Act, l,R,P, as), where

(i) E is the set of events
(ii) M ∈ M(G) is the marking, and M(G) =def P(E) ×
P(E)× P(E)

(iii) →•⊆ E× E is the condition relation
(iv) •→⊆ E× E is the response relation
(v) →�⊆ E× E is the milestone relation

(vi) ± : E × E ⇀ {+,%} is a partial function defining the
dynamic inclusion and exclusion relations by e→+ e′ if
±(e, e′) = + and e→% e′ if ±(e, e′) = %

(vii) Act is the set of actions
(viii) l : E → Act is a labeling function mapping events to

actions.
(ix) R is a set of roles,
(x) P is a set of principals (e.g. actors, persons, processors,

services) and
(xi) as ⊆ (P ∪ Act) × R is the role assignment relation to

principals and actions.
An event labelled with an action, e.g. Create Case, thus

represents an execution of a (human or automated) task/activ-
ity/action Create Case in the workflow process. There may
be several events with the same label, but in all our examples a
label is assigned to a unique event, and thus we simply assume
the set of events to be identical to the set of actions.

By default an event may be executed at any time and any
number of times. However, the marking (defining the run-time
state of the graph) and the five relations defined in (iii)-(vi)
constrain the execution. The marking M = (Ex,Re, In) ∈
M(G) consists of three sets of events, capturing respectively
which events have previously been executed (Ex), which
events are pending responses required to be executed (Re), and
finally which events are currently included (In). Only events
e ∈ In, i.e. that are currently included, can be executed, and
only if all currently included condition events e′, as specified
by the condition relation e′ →• e, have been executed and
no currently included events e′ which are milestones for e,
as specified by the milestone relation e′ →� e, are pending
responses.

When an event e is executed, it is added to the set of
executed events (Ex) of the marking and all response events
e′, as specified by the response relation e •→ e′, are added
to the set of pending responses Re. Moreover, the set of
included events is updated by adding (removing) all events
e′ included (excluded) by e as specified by the inclusion
(exclusion) relation e→+ e′ (e→% e′).

The execution semantics of DCR Graphs is defined [12],
[14] as a labelled transition system between markings as
follows.

Definition 2: For a DCR Graph G = (E,M,→•, •→,→�
,±, l,Act,R,P, as), we define the corresponding labelled tran-
sition systems T (G) to be the tuple (M(G),M,→⊆M(G)×
L(G)×M(G)) where L(G) =def E× (P× Act× R) is the
set of transition labels, M = (Ex,Re, In) ∈ M(G) is the
initial marking, →⊆M(G)×L(G)×M(G) is the transition

relation given by M′
(e,(p,a,r))−−−−−−→ M′′

where
(i) M′ = (Ex′, Re′, In′) is the marking before transition

(ii) M′′ = (Ex′ ∪ {e}, Re′′, In′′) is the marking after
transition

(iii) e ∈ In′, l(e) = a, p as r, and a as r,
(iv) (→•e ∩In′) ⊆ Ex′,
(v) (→�e ∩In′) ∩Re′ = ∅,

49

(vi) In′′ = (In′ ∪ e→+) \ e→%,
(vii) Re′′ = (Re′ \ {e}) ∪ e•→,
We define a run (e0, (p0, a0, r0)), (e1, (p1, a1, r1)), . . . of the
transition system to be a sequence of labels of a sequence
of transitions Mi

(ei,(pi,ai,ri))−−−−−−−−−→ Mi+1 starting from the initial
marking. We define a run to be accepting if ∀i ≥ 0, e ∈
Rei.∃j ≥ i.(e = ej ∨e 6∈ Inj+1). In words, a run is accepting
if no response event is pending forever, i.e. it must either
happen at some later state or become excluded.
Condition (iii) in the above definition expresses that, only
events e that are currently included, can be executed, and to
give the label (p, a, r) the label of the event must be a, p
must be assigned to the role r, which must be assigned to
a. Condition (iv) requires that all condition events to e which
are currently included should have been executed previously.
Condition (v) states that the currently included events which
are milestones to event e must not be in the set of pending
responses (Re′). Condition (vi) and (vii) are the updates to
the sets of included events and pending responses respectively.
Note that an event e′ can not be both included and excluded by
the same event e, but an event may trigger itself as a response.

In this paper we only consider finite runs. In this case, the
acceptance condition degenerates to requiring that no pending
response is included at the end of the run. This corresponds
to defining all states where Re ∩ In = ∅ to be accepting
states and define the accepting runs to be those ending in
an accepting state. Infinite runs are also of interest especially
in the context of reactive systems and the LTL logic. The
execution semantics and acceptance condition for infinite runs
are captured by mapping to a Büchi-automaton with τ -event
as formalized in [12], [17].

During the case study (Sec. III), we realized the need to
extend our model with nested sub-graphs to allow for modeling
of hierarchical sub structures. To address this need, so-called
Nested DCR Graphs were introduced in [14]. It can be defined
as an incremental extension to DCR Graph given in Def. 1
above as follows.

Definition 3: A Nested dynamic condition response graph
is a tuple (E,B,M,→•, •→,→�,±,Act, l,R,P, as), where
B : E⇀ E is a partial function mapping an event to its super-
event (if defined) and (E,M,→•, •→,→�,±,Act, l,R,P, as)
is a DCR Graph, subject to the condition that the marking
M = (Ex,Re, In) ⊆ atoms(E)×atoms(E)×atoms(E) where
atoms(E) = {e | ∀e′ ∈ E. B (e′) 6= e} is the set of atomic
events.
A nested DCR Graph can be mapped to a flat DCR Graph
by extending all relations to the sub events and by preserving
only the atomic events. This flattening of a nested DCR Graph
into a DCR Graph is defined formally in [14]. In particular, the
semantics of a Nested DCR Graph is given as the labelled tran-
sition semantics for its corresponding flattened DCR Graph.

III. CASE STUDY: A CROSS-ORGANIZATIONAL CASE
MANAGEMENT SYSTEM

In this section we demonstrate how we have applied DCR
Graphs in practice within a project that our industrial partner

Exformatics carried out for one of their customers. In the
process, we acted as consultants, applying DCR Graphs in
meetings with Exformatics and the customer to capture the
requirements in a declarative way, accompanying the usual
UML sequence diagrams and prototype mock-ups. Sequence
diagrams typically only describe examples of runs, and even
if they are extended with loops and conditional flows they do
not capture the constraints explicitly.

The customer of the system is Landsorganisationen i Dan-
mark (LO), which is the overarching organization for most of
the trade unions in Denmark. Their counterpart is Dansk Ar-
bejdsgiverforening (DA), which is an overarching organization
for most of the Danish employers organizations.

At the top level, the workflow to be supported is that a
case worker at the trade union must be able to create a case,
e.g. triggered by a complaint by a member of the trade union
against her employer. This must be followed up by a meeting
arranged by LO and subsequently held between case workers
at the trade union, LO and DA. After being created, the
case can at any time be managed, e.g. adding or retrieving
documents, by case workers at any of the organizations.

Fig. 1 shows the graphical representation of a simple DCR
Graph capturing these top level requirements of our case study.

Figure 1. Top level requirements as a DCR Graph

Four top-level events were identified, shown as boxes in
the graph labelled Create case, Manage case, Arrange
meeting and Hold meeting. For the top-level events we
identified the following requirements:

1) A case is created by a union case worker, and only once.
2) The case can be managed at the union, LO and DA after

it has been created.
3) After a case is created, LO can and must arrange a

meeting between the union case worker, the LO case
worker and the DA case worker.

4) After a meeting is arranged it must be held (organized
by LO).

The requirements translate to the following DCR Graph role
assignments (shown as ”ears” on the event boxes) and relations
shown as different types of arrows between the events in Fig.
1:

50

1) Create case has assigned role U and excludes itself.
2) Create case is a condition for Manage case, which has

assigned role U, LO and DA.
3) Create case has Arrange meeting as response, which

has assigned role LO.
4) Arrange meeting has Create case as a condition and

Hold meeting as response, which has assigned role LO.

For example, the U on Create case indicates that only a
case worker at the trade union (U) can create a case, and the U,
LO, DA on Manage case indicate that both the trade union,
LO and DA can manage the case.

The arrow Create case→•Manage case denotes that
Manage case has Create case as a (pre) condition. This
simply means that Create case must have happened before
Manage case can happen. Dually, Arrange meeting has
Hold meeting as response, denoted by the arrow Arrange
meeting•→Hold meeting This means that Hold meeting
must eventually happen after Arrange meeting happens. Fi-
nally, the arrow Create case →%Create case denotes that
the event Create case excludes itself.

In the subsequent meetings, we came to the following
additional requirements:

1) a) To create a case, the case worker should enter meta-
data on the case, inform about when he/she is available
for participating in a meeting and then submit the case.

b) When a case is submitted it may get a local id at the
union, but it should also subsequently be assigned a
case id in LO.

c) When a case is submitted, LO should eventually pro-
pose dates.

2) a) Only after LO has assigned its case id it is possible to
manage the case and for LO to propose dates.

b) Manage case consists of three possible activities (in any
order): editing case meta data, upload documents and
download documents. All activities can be performed
by LO and DA. Upload and download documents can
also be performed by the Union.

3) a) The meeting should be arranged in agreement between
LO and DA: LO should always propose dates first -
and then DA should accept, but can also propose new
dates. If DA proposes new dates LO should accept,
but can also again propose new dates. This could in
principle go on forever.

b) The union can always update information about when
they are available and edit the metadata of the case.

4) a) No meeting can be held while LO and DA are negoti-
ating on a meeting date. Once a date has been agreed
upon a meeting should eventually be held.

These requirements led to the extension of the model
allowing nested events as recalled in the previous section and
given in full detail in [14].

The requirements could then be described by first adding the
following additional events to the graph: A new super event
Edit (E) which has the sub events: Metadata (E-M) and Dates
available (E-D) and is itself a sub event to Create case (CC).

The Create case (CC) event has two sub events: Submit
(SC) and Assign case Id (ACI). The Manage case (MC)
event has two sub events: Edit metadata (EM) and Document
(D), which in turn has two sub events: Upload (D-U) and
Download (D-D). The Arrange meeting (AM) event has four
sub events: Propose dates-LO (PLO), Propose dates-DA
(PDA), Accept LO (ALO) and Accept DA (ADA). The Hold
meeting (HM) event remains an atomic top-level event.

Subsequently, the relations was adapted to the following
(Nested) DCR Graph relations, as shown in Fig 2:

Figure 2. Case Handling Process

1) Edit is a condition to Submit and is assigned role U.
2) Within the Create case superevent:

a) Submit is a condition to Assign case Id and also
requires it as a response.

b) Assign case Id is a condition for Manage case (and
therefore also all it’s sub events).

c) Assign case Id is now the condition for Propose
dates-LO and Submit requires it as a response.

3) Within the Arrange meeting superevent:
a) Arrange meeting still has Hold meeting as response,

but is now also required as a milestone for Hold
meeting

b) Propose dates-LO is a condition for Propose
dates-DA

c) Propose dates-LO includes Accept DA and requires
it as a response

d) Propose dates-DA includes Accept LO and requires
it as a response

e) Accept LO excludes itself and Accept DA
f) Accept DA excludes itself and Accept LO

4) Within the Manage case superevent:

51

a) Edit metadata has roles LO and DA assigned to it.
b) Upload and Download have been grouped under a su-

perevent Document with roles U, LO and DA assigned
to it.

c) Upload is a condition for Download.
The case handling process described above and shown in

figure 2 can be represented formally as follows.

G = (E,B, M, →•, •→, →�, ±, Act,l, R,P, as), where
Act = atoms(E) = {E-M, E-D, SC, ACI, EM, D-U, D-D, PLO,
PDA, ALO, ADA, HM}
E = {CC, AM, MC, E, D} ∪ atoms(E)
B = {(E-M, E), (E-D, E), (E, CC), (SC, CC), (ACI , CC), (PLO,
AM), (PDA, AM), (ALO, AM), (ADA, AM), (ALO, D-D), (D-U,
D), (D, MC), (EM, MC)}
M = (∅, ∅, atoms(E) \ { ALO, ADA })
→• = {(E, SC), (SC, ACI), (ACI, MC), (ACI, PLO), (D-U, D-D),
(PLO, PDA)}
•→ = {(SC, ACI), (SC, PLO), (PLO, ADA), (PDA, ALO), (AM,
HM)}
→� = {(AM, HM)}
→+ = {(PLO, ADA), (PDA, ALO)}
→% = {(SC, SC), (ALO, ALO), (ALO, ADA), (ADA, ADA),
(ADA, ALO)}
l = {e ∈ atoms(E) | (e, e) }
R = {U, LO, DA} and P= {U, LO, DA}
as = {(SC, U), (E, U), (D, U), (ACI, LO), (EM, LO), (D, LO),
(PLO, LO), (ALO, LO), (HM, LO), (EM, DA), (D, DA), (PDA,
DA), (ADA, DA), (U, U), (LO, LO), (DA, DA)}

During the case study it became clear that it would be
useful to have design tools allowing to quickly create and
simulate models. In the following section we describe the tools
developed so far. In Sec. VI we describe the plans for future
development of tools along with the challenges for extending
the theory identified in the case study.

IV. PROTOTYPE TOOLS

To support designing with DCR Graphs, making the model
available to a wider audience and allow interested parties to
experiment with the notation, we are developing prototype im-
plementations of various tools for DCR Graphs. Development
up to this point includes:

1) A process repository; a service which can be used to store
and retreive DCR processes and process instances.

2) An execution host; a service which can be used to execute
DCR process instances.

3) A windows-based graphical editor; which can be used to
model DCR Graphs and run simple simulations on them.

4) A windows-based desktop client for executing process
instances.

5) A platform independent web client; which can also be
used to execute process instances. In the future we
aim to support the creation of processes through this
webinterface as well. (Fig. 3)

(a) Execution by LO

(b) Execution by DA

Figure 3. Execution in the Web Tool

6) A model checking and runtime verification tool; which
interfaces to SPIN [24] and ZING [21] model checkers
for model checking.

7) A runtime-monitor that can subscribe to the execution
host and verify that the execution of processes adheres to
given properties.

Fig. 4 shows how these tools interact: Usually, a process
modeller will first create a process in the graphical editor (Fig.
5) , which will be stored in the process repository. The process
modeller can use the verification tool to check if his process
adheres to the properties that he desires. Both safety and
liveness properties on models can be verified with the help of
SPIN [24] model checker, where as only safety properties on
DCR Graphs can be verified using ZING [21] model checker,
as ZING does not support liveness properties. A user can
login to the web or desktop-client and select the process for
execution. The client will request that the process repository
start a new instance and the repository will provide the client
with the description of the process and runtime information
on the process instance. Execution requests are made to the
execution server, which handles these requests atomically,

52

Figure 4. Protoype Architecture

making updates to the instance stored on the repository. If
a request is invalid, the execution server will notify the user
and leave the process instance in its original state. The runtime
monitor can subscribe to the execution server and will get
notified of every execution request. It will then check if the
execution of the process follows the properties described for
it.

Listing 1 shows a brief overview of the XML format of
DCR Graphs that is being used in all prototype tools. A single
XML format is used to contain information about both the
specification and the runtime of a DCR Graph. The resources
section of the specification contains information about roles,
principals, events and actions, whereas the access controls
section contains the mapping of principals and actions to roles.
The last part of the specification contains the binary relations
between the events. Note that the XML format supports
nesting of events and the binary relations in between them
and that flattening of nested events and their relations will be
done at the beginning of executing a DCR Graph.

The second part of the XML format for a DCR Graph
holds the runtime information, which primarily contains the
execution trace and information about the current state. The
execution trace records the actual sequence of events executed
and the current state holds the information about the current
marking which contains sets of included, executed and pending
response events. In addition to the marking, the current state
also holds additional information such as index of state copy,
state accepted to support the acceptance condition for infinite
computations that were characterized by mapping to Büchi-
automata in [12], [17].

Listing 1. Overview of DCR Graph Xml
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f−8” ?>
<d c r g : p r o c e s s x m l n s : d c r g =” h t t p : / / i t u . dk / t r u s t c a r e / d c r / 2 0 1 1 / ”>

<d c r g : s p e c i f i c a t i o n p r o c e s s I d =” ” modelName=” ”>

<d c r g : r e s o u r c e s>
<d c r g : r o l e s></ d c r g : r o l e s>
<d c r g : p r i n c i p a l s></ d c r g : p r i n c i p a l s>
<d c r g : e v e n t s></ d c r g : e v e n t s>
<d c r g : a c t i o n s></ d c r g : a c t i o n s>

</ d c r g : r e s o u r c e s>

<d c r g : a c c e s s C o n t r o l s>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t s></

d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : a c t i o n R o l e A s s i g n m e n t s></

d c r g : a c t i o n R o l e A s s i g n m e n t s>
</ d c r g : a c c e s s C o n t r o l s>

<d c r g : c o n s t r a i n t S e t s>
<d c r g : c o n s t r a i n t S e t t y p e =” c o n d i t i o n ”> . . .</

d c r g : c o n s t r a i n t S e t>
<d c r g : c o n s t r a i n t S e t t y p e =” r e s p o n s e ”> . . .</

d c r g : c o n s t r a i n t S e t>
</ d c r g : c o n s t r a i n t S e t s>

</ d c r g : s p e c i f i c a t i o n>

<d c r g : r u n t i m e p r o c e s s I n s t a n c e I d =” ”>
<d c r g : e x e c u t i o n T r a c e> </ d c r g : e x e c u t i o n T r a c e>
<d c r g : c u r r e n t S t a t e s t a t e I d =” ”>

<d c r g : e v e n t s I n c l u d e d></ d c r g : e v e n t s I n c l u d e d>

<d c r g : e v e n t s E x e c u t e d></ d c r g : e v e n t s E x e c u t e d>

<d c r g : e v e n t s P e n d i n g R e s p o n s e s></
d c r g : e v e n t s P e n d i n g R e s p o n s e s>

<d c r g : s t a t e A c c e p t i n g> </ d c r g : s t a t e A c c e p t i n g>

<d c r g : s t a t e I n d e x> </ d c r g : s t a t e I n d e x>

<d c r g : e v e n t s E n a b l e d></ d c r g : e v e n t s E n a b l e d>

</ d c r g : c u r r e n t S t a t e>
</ d c r g : r u n t i m e>

</ d c r g : p r o c e s s>

The specification section of the XML document for the Case
Handling Process shown in the figure 2 is given in listing 2.

Listing 2. DCRG specification in Xml
<d c r g : s p e c i f i c a t i o n>

<d c r g : r e s o u r c e s>
<d c r g : r o l e s>

<d c r g : r o l e>U</ d c r g : r o l e>
<d c r g : r o l e>LO</ d c r g : r o l e>
<d c r g : r o l e>DA</ d c r g : r o l e>

</ d c r g : r o l e s>
<d c r g : p r i n c i p a l s>

<d c r g : p r i n c i p a l>u</ d c r g : p r i n c i p a l>
<d c r g : p r i n c i p a l>l o</ d c r g : p r i n c i p a l>
<d c r g : p r i n c i p a l>da</ d c r g : p r i n c i p a l>

</ d c r g : p r i n c i p a l s>
<d c r g : e v e n t s>

<d c r g : e v e n t e v e n t I d =” 0 ” name=” C r e a t e c a s e ” a c t i o n I d =”
C r e a t e c a s e ”>

<d c r g : e v e n t e v e n t I d =” 1 ” name=” Submit ” a c t i o n I d =”
Submit ” />

<d c r g : e v e n t e v e n t I d =” 2 ” name=” Ass ign c a s e Id ”
a c t i o n I d =” Ass ign c a s e Id ” />

<d c r g : e v e n t e v e n t I d =” 3 ” name=” E d i t ” a c t i o n I d =” E d i t ”>
<d c r g : e v e n t e v e n t I d =” 4 ” name=” Metada ta ”

a c t i o n I d =” Metada ta ” />
<d c r g : e v e n t e v e n t I d =” 5 ” name=” Dates a v a i l a b l e

” a c t i o n I d =” Da tes a v a i l a b l e ” />
</ d c r g : e v e n t>

</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 6 ” name=” Manage c a s e ” a c t i o n I d =”

Manage c a s e ”>
<d c r g : e v e n t e v e n t I d =” 7 ” name=” E d i t m e t a d a t a ” a c t i o n I d

=” E d i t m e t a d a t a ” />
<d c r g : e v e n t e v e n t I d =” 8 ” name=” Document ” a c t i o n I d =”

Document ”>

53

<d c r g : e v e n t e v e n t I d =” 9 ” name=” Upload ”
a c t i o n I d =” Upload ” />

<d c r g : e v e n t e v e n t I d =” 10 ” name=” Download ”
a c t i o n I d =” Download ” />

</ d c r g : e v e n t>
</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 11 ” name=” Arrange Meet ing ” a c t i o n I d

=” Submit ”>
<d c r g : e v e n t e v e n t I d =” 12 ” name=” Propose d a t e s−LO”

a c t i o n I d =” Propose d a t e s−LO” />
<d c r g : e v e n t e v e n t I d =” 13 ” name=” Accept LO” a c t i o n I d =”

Accept LO” />
<d c r g : e v e n t e v e n t I d =” 14 ” name=” Accept DA” a c t i o n I d =”

Accept DA” />
<d c r g : e v e n t e v e n t I d =” 15 ” name=” Propose d a t e s−DA”

a c t i o n I d =” Propose d a t e s−DA” />
</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 16 ” name=” Hold mee t ing ” a c t i o n I d =”

Hold mee t ing ” />
</ d c r g : e v e n t s>
<d c r g : a c t i o n s>

<d c r g : a c t i o n a c t i o n I d =” C r e a t e c a s e ” />
<d c r g : a c t i o n a c t i o n I d =” Submit ” />
<d c r g : a c t i o n a c t i o n I d =” E d i t ” />
<d c r g : a c t i o n a c t i o n I d =” Metada ta ” />
<d c r g : a c t i o n a c t i o n I d =” Da tes a v a i l a b l e ” />

</ d c r g : a c t i o n s>
</ d c r g : r e s o u r c e s>
<d c r g : a c c e s s C o n t r o l s>

<d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t r o l e−name=”U”>

<p r i n c i p a l>u</ p r i n c i p a l>
</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t r o l e−name=”LO”>

<p r i n c i p a l>l o</ p r i n c i p a l>
</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t>

</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : a c t i o n R o l e A s s i g n m e n t s>

<d c r g : a c t i o n R o l e A s s i g n m e n t a c t i o n I d =” Submit ”>
<d c r g : r o l e>U</ d c r g : r o l e>

</ d c r g : a c t i o n R o l e A s s i g n m e n t>
<d c r g : a c t i o n R o l e A s s i g n m e n t a c t i o n I d =” Document ”>

<d c r g : r o l e>U</ d c r g : r o l e>
<d c r g : r o l e>LO</ d c r g : r o l e>
<d c r g : r o l e>DA</ d c r g : r o l e>

</ d c r g : a c t i o n R o l e A s s i g n m e n t>
</ d c r g : a c t i o n R o l e A s s i g n m e n t s>

</ d c r g : a c c e s s C o n t r o l s>
<d c r g : c o n s t r a i n t S e t s>

<d c r g : c o n s t r a i n t S e t t y p e =” c o n d i t i o n ”>
<d c r g : c o n s t r a i n t s o u r c e =” 1 ” t a r g e t =” 2 ” />
<d c r g : c o n s t r a i n t s o u r c e =” 3 ” t a r g e t =” 1 ” />

</ d c r g : c o n s t r a i n t S e t>
<d c r g : c o n s t r a i n t S e t t y p e =” r e s p o n s e ”>

<d c r g : c o n s t r a i n t s o u r c e =” 1 ” t a r g e t =” 2 ” />
</ d c r g : c o n s t r a i n t S e t>

</ d c r g : c o n s t r a i n t S e t s>

</ d c r g : s p e c i f i c a t i o n>

All the prototype tools support the basic DCR Graph
notation containing condition, response, include and exclude
relations. We are currently working on extending the prototype
to support milestone relations and nested events. In Fig. 6, 7, 8,
we have illustrated how the execution state of the case-
handling process may be visualized in the simulator in the
future.

The graph in the figure. 6 shows the state after a run where
the union started by creating a case: they edited meta-data,
indicated the dates they were available and submitted. When
LO received the case they assigned their own case ID to it.
Some time later LO proposed possible dates for a meeting
to DA. DA did not agree with these dates and responded by
proposing some of their own. In the graph both Accept LO
and Accept DA are included and have a pending response
because both LO and DA have proposed dates. Because of

Figure 5. The Graphical Editor

Figure 6. Case Handling Process Runtime

these pending responses Hold meeting is disabled. Because
no files have been uploaded to the document yet, Download
is also disabled. The listing 3 shows the runtime information
for the case handling process from the figure 6.

Listing 3. DCRG Runtime in Xml
<d c r g : r u n t i m e p r o c e s s I n s t a n c e I d =” ”>

<d c r g : e x e c u t i o n T r a c e>4 , 5 , 4 , 1 , 2 , 1 2 , 1 5</
d c r g : e x e c u t i o n T r a c e>

<d c r g : c u r r e n t S t a t e s t a t e I d =” S6 ”>

54

<d c r g : e v e n t s I n c l u d e d>2 , 4 , 5 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6</
d c r g : e v e n t s I n c l u d e d>

<d c r g : e v e n t s E x e c u t e d>1 , 2 , 4 , 5 , 1 2 , 1 5</
d c r g : e v e n t s E x e c u t e d>

<d c r g : e v e n t s P e n d i n g R e s p o n s e s>13 ,14 ,16</
d c r g : e v e n t s P e n d i n g R e s p o n s e s>

<d c r g : s t a t e A c c e p t i n g>0</ d c r g : s t a t e A c c e p t i n g>
<d c r g : s t a t e I n d e x>0</ d c r g : s t a t e I n d e x>
<d c r g : e v e n t s E n a b l e d>1 , 2 , 4 , 5 , 7 , 8 , 1 2 , 1 3 , 1 4 , 1 5</

d c r g : e v e n t s E n a b l e d>
</ d c r g : c u r r e n t S t a t e>

</ d c r g : r u n t i m e>

The graph in the figure. 7 shows the runtime state after the
union has uploaded an agenda for the meetings. Note that,
since the union has uploaded a file to the case, Download is
now enabled. But at the same time, Accept LO and Accept
DA still remain the same as the previous graph, as the proposed
dates have not been accepted yet by either LO or DA.

Figure 7. Case Handling Process Runtime After Upload Document

Figure 8 shows the graph representing the state after LO
has accepted one of the dates proposed by DA. Note that both
Accept LO and Accept DA are excluded due to the mutual
exclude relation between them. Even though there is a pending
response on Accept DA, it is not considered relevant as it is
excluded and Hold meeting has become pending because of
the response relation. Continuing by executing Hold meeting
as LO will cause the graph to reach an accepting state, as there
will be no included pending responses.

V. COMPARISON TO OTHER APPROACHES

As already mentioned in the introduction, our approach is
closely related to the work on DECLARE [27], [28]. In partic-
ular the condition and response relations are also considered
in [27], [28], and we have used the same graphical notation
as loc. cit. The crucial difference is that we focus on a few
core constraints allowing to describe the state and operational
semantics of processes as a labelled transitions between simple

Figure 8. Case Handling Process Runtime After Accept Dates

markings consisting of three sets of respectively executed,
included and required events. As also pointed out in [27], [28],
the generality of LTL offers much flexibility with respect to
specifying execution constraints but makes it more complex
to execute processes given in DECLARE and to describe
and understand their run-time state. It typically requires a
translation of the constraints to LTL and subsequent using the
standard mapping of an LTL formula to a Büchi-automaton.
In particular, there is no obvious way to trace the graphical
constraints in DECLARE to the states of the Büchi-automaton.
Moreover, we show in a follow up paper that every set of
traces expressible in LTL (and thus DECLARE) can also be
expressed using DCR Graphs.

We have shown in [18] it is possible, but much more
complex to represent in LTL the interplay between dynamic
inclusion/exclusion and the other relations. Neither this novel
notion of dynamic inclusion/exclusion relations nor nesting are
considered in [27], [28].

The DCR Graphs model also relates to the independent
work on the Guard-Stage-Milestone model [15] by Hull et
al presented as an invited talk at the WS-FM 2010 workshop
and part of the work on artifact-centric business processes [2],
[5], [7].

Finally, BPMN 2.0 includes the ad-hoc sub-process activity
which allows one to group a set of activities that can be
carried out in an ad-hoc way. Fig. 9 below shows how one
may attempt to describe the top level requirements described
in Fig. 1 as a BPMN 2.0 ad-hoc sub-acitivity. According to the
informal description of BPMN 2.0 ad-hoc sub-process activity
in the current BPMN 2.0 specification ([19]) Create case is
a condition for Manage case since the latter cannot start
without the data object case as input, which is produced

55

Figure 9. BPMN 2.0 ad-hoc sub-process activity

by the former. Moreover, quoting from the specification, the
sequence flow between Create case and Arrange meeting
(and similarly between Arrange meeting and Hold meeting):
”creates a dependency where the performance of the first
Task MUST be followed by a performance of the second
Task. This does not mean that the second Task is to be
performed immediately, but there MUST be a performance
of the second task after the performance of the first Task.”.
This seems exactly to correspond to the response relation in
DCR Graphs. However, when reading the semantics section
of the specification ([19], Sec.13.2.5, 445-446) it appears
that the sequence flow introduces just a standard precondition.
Thus, the specification is not consistent in the description of
sequence flows within ad-hoc sub-activities. Also, it is not
clear how to specify roles on actions (swim lanes seem not to
be allowed within ad-hoc sub-activities) nor how to specify
that an activity within an ad-hoc sub activity only can be
executed once. In particular, Create case can be executed
any number of times in the above process.

VI. CONCLUSIONS AND FUTURE WORK

Our case study showed that the DCR Graphs model is well
suited to give a global description of the temporal constraints
between the individual tasks which is helpful in capturing the
requirements of the overall system.

However, there are still many points for future develop-
ments.

First of all there is the need to extend the expressiveness
of DCR Graphs. In the ongoing PhD project of the second
author we intend to extend the DCR Graphs model to be
able to express relevant features such as multi-instance sub-
graphs (allowing the dynamic creation of sub-graphs repre-
senting dynamic sub process instantiation), time, exceptions
and data. Along with this we intend to continue developing
the technology for model checking and run time verification
and apply it within case studies.

Second, our industrial partner Resultmaker who already
use a declarative process model based on the primitives in
the DCR Graphs model expects to investigate the use of the
formalization to support safe dynamic changes to the process
constraints at run time.

Thirdly, the DCR Graphs model presently describe a global
view of the process. Through our discussions with Exformatics
during the case study we identified the wish to be able to
automatically synthesize distributed views of the process. In
particular, they wanted to be able to derive descriptions of
communication protocols and message exchange between the
individual local components in a distributed implementation
of the system.

Derivations of descriptions of communication protocols
between local components from a global model is been re-
searched for the imperative choreography language WS-CDL
in the work on structured communication-centred program-
ming for web services by Carbone, Honda and Yoshida [4].
Put briefly, the work formalizes the core of WS-CDL as the
global process calculus and define a formal theory of end point
projections projecting the global process calculus to abstract
descriptions of the behavior of each of the local ”end-points”
given as pi-calculus processes typed with session types.

We are currently working on the challenge of synthesizing
a distributed view of a DCR Graph as a set of interacting
DCR Graphs, thus providing a declarative notion of end-point
projections. As a challenge for future work we propose to
provide a formal map between DCR Graphs and imperative
choreographies formalized in the global process calculus [4].

REFERENCES

[1] Active Endpoints, Adobe Systems, BEA Systems, IBM, Oracle,
SAP. Ws-bpel extension for people (bpel4people) version 1.0,
2007. http://www.adobe.us/content/dam/Adobe/en/devnet/livecycle/pdfs/
bpel4people spec.pdf.

[2] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and
Jianwen Su. Towards formal analysis of artifact-centric business process
models. In In preparation, pages 288–304, 2007.

[3] Christoph Bussler and Stefan Jablonski. Implementing agent coordina-
tion for workflow management systems using active database systems.
In Research Issues in Data Engineering, 1994. Active Database Systems.
Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.

[4] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In 16th
European Symposium on Programming (ESOP’07), LNCS, pages 2–17.
Springer, 2007.

[5] David Cohn and Richard Hull. Business artifacts: A data-centric
approach to modeling business operations and processes. IEEE Data
Eng. Bull., 32(3):3–9, 2009.

[6] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakr-
ishnan. Logic based modeling and analysis of workflows. In Proceedings
of ACM SIGACT-SIGMOD-SIGART, pages 1–3. ACM Press, 1998.

[7] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic
verification of data-centric business processes. In Proceedings of the
12th International Conference on Database Theory, ICDT ’09, pages
252–267, New York, NY, USA, 2009. ACM.

[8] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede.
Process Aware Information Systems: Bridging People and Software
Through Process Technology. Wiley-Interscience, 2005.

[9] Clarence A. Ellis and Gary J. Nutt. Office information systems and
computer science. ACM Comput. Surv., 12:27–60, March 1980.

[10] Clarence A. Ellis and Gary J. Nutt. Workflow: The Process Spectrum.
In Amit Sheth, editor, Proceedings of the NSF Workshop on Workflow
and Process Automation in Information Systems, pages 140–145, May
1996.

[11] Thomas Hildebrandt. Trustworthy pervasive healthcare processes (Trust-
Care) research project. Webpage, 2008. http://www.trustcare.dk/.

[12] Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-
based workflow as distributed dynamic condition response graphs. In
Post-proceedings of PLACES 2010, 2010.

56

[13] Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic
condition response structures. In Pre-proceedings of International
Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 10), March 2010.

[14] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested
dynamic condition response graphs. In Fundamentals of Software
Engineering Confereence 2011 (to appear), April 2011.

[15] Richard Hull. Formal study of business entities with lifecycles: Use
cases, abstract models, and results. In Proceedings of 7th International
Workshop on Web Services and Formal Methods, volume 6551 of Lecture
Notes in Computer Science, 2010.

[16] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala.
From paper based clinical practice guidelines to declarative workflow
management. In Proceedings ProHealth 08 workshop, 2008.

[17] Raghava Rao Mukkamala and Thomas Hildebrandt. From dynamic
condition response structures to büchi automata. In Proceedings of
4th IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE 2010), August 2010.

[18] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth.
The resultmaker online consultant: From declarative workflow manage-
ment in practice to LTL. In Proceeding of DDBP, 2008.

[19] Object Management Group BPMN Technical Committee. Business
Process Model and Notation, version 2.0, 2010. http://www.omg.org/
spec/BPMN/2.0/.

[20] Organization for the Advancement of Structured Information Standards
(OASIS). Web services human task (ws-humantask) specification, ver-
sion 1.1, 2009. http://docs.oasis-open.org/bpel4people/ws-humantask-1.
1-spec-cd-06.pdf.

[21] Microsoft Research. Zing model checker. Webpage, 2010. http:
//research.microsoft.com/en-us/projects/zing/.

[22] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework
for scheduling workflows under resource allocation constraints. In In
VLDB, pages 694–705, 2002.

[23] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C.
Attie. An event algebra for specifying and scheduling workflows. In
Proceedings of DASFAA, pages 53–60. World Scientific Press, 1995.

[24] Spin. On-the-fly, ltl model checking with spin. Webpage, 2008. http:
//spinroot.com/spin/whatispin.html.

[25] Keith D. Swenson. Mastering the Unpredictable: How Adaptive Case
Management Will Revolutionize the Way That Knowledge Workers Get
Things Done. Meghan-Kiffer Press, 2010.

[26] Wil M. P. van der Aalst and S Jablonski. Dealing with workflow change:
Identification of issues and solutions. International Journal of Computer
Systems, Science, and Engineering, 15(5):267–276, 2000.

[27] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative
workflows: Balancing between flexibility and support. Computer Science
- R&D, 23(2):99–113, 2009.

[28] Wil M.P van der Aalst and Maja Pesic. A declarative approach for
flexible business processes management. In Proceedings DPM 2006,
LNCS. Springer Verlag, 2006.

[29] W3C. Web services choreography description language, version 1.0,
2005. http://www.w3.org/TR/ws-cdl-10/.

[30] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig,
and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255
of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[31] Glynn Winskel and Mogens Nielsen. Models for concurrency. pages
1–148, 1995.

[32] M. D. Zisman. Representation, Specification and Automation of Office
Procedures. Philadelphia, Pa.: University of Pennsylvania, Wharton
School, Department of Decision Sciences, Ph.D. Thesis, Sep, 1977.

57

Hierarchical Declarative Modelling with
Refinement and Sub-processes

Søren Debois1, Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{debois,hilde,tslaats}@itu.dk

2 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. We present a new declarative model with composition and
hierarchical definition of processes, featuring (a) incremental refinement,
(b) adaptation of processes, and (c) dynamic creation of sub-processes.
The approach is motivated and exemplified by a recent case manage-
ment solution delivered by our industry partner Exformatics A/S. The
approach is achieved by extending the Dynamic Condition Response
(DCR) graph model with interfaces and composition along those inter-
faces. Both refinement and sub-processes are then constructed in terms of
that composition. Sub-processes take the form of hierarchical (complex)
events, which dynamically instantiate sub-processes. The extensions are
realised and supported by a prototype simulation tool.

1 Introduction

Business process design technologies today are predominantly based on flow-
oriented process notations such as the Business Process Model and Notation
(BPMN) standard [18], which imperatively describes how a process should pro-
ceed from start to end. Often, business processes are required to be compliant
with regulations and constraints given by busines polices, standards and laws.
E.g., a customer must be informed about alternatives and risks before getting a
loan in a bank, or a decision on a grant application cannot be made before the
deadline for submissions of applications has been reached.

Since the flow-oriented notations only captures how to fulfill the compliance
rules, the description and verification of compliance rules require other notations
and techniques. This leaves the process designers with three modelling tasks:
To describe the compliance rules, to describe the process, and to verify that
the process is compliant to the rules. Typically, compliance rules are described
declaratively using a variant of temporal logic such as Linear-time Temporal
Logic (LTL) [21]. Compliance can then be verified during execution using run-
time verification techniques [12] and, if the flow-diagrams are based on a formal
model, also at design time [6]. In most industrial design tools, the flow-diagrams
are however not based on a formal model, and consequently, design time verifi-
cation is not supported. This means that the process designers have to figure out
manually how to interpret the constraints, and compliance is then subsequently

58

verified informally and approved by, e.g., a lawyer. At best, a formal run-time
or post-execution verification is performed against the execution log.

In these situations there is a high risk that processes become either non-
compliant or over-constrained by design, to faciliate manual verification. Over-
constrained processes, however, rarely fits reality or are simply not suitable for
knowledge-intensive processes. A way to avoid these problems is to use the declar-
ative approach (also) for the process design. Several declarative process mod-
elling notations and techniques have been proposed in the last decade, includ-
ing DECLARE [2,1], CLIMB [13], GSM [11] and Dynamic Condition Response
(DCR) graphs [8,14]. However, sometimes the declarative approach makes it less
clear from the end-user, how a process will proceed from start to end. Even
with a graphical notation (as in DECLARE, GSM and DCR graphs), it may be
difficult to comprehend the interactions between different constraints.

The DCR graph process modelling notation stands out by supporting a sim-
ple and efficient run-time execution, which mitigates the complexity of com-
prehending the constraints and allows for run-time adaptation [15], while still
being more expressive than (propositional) LTL (and thus DECLARE), in that
it allows to describe every union of a regular and an ω-regular language [3,16,14].

DCR Graphs were conceived as both a generalization of event structures [22]
and a formalization and generalization of the Process Matrix [17] invented by
Danish company Resultmaker. Since its inception, the DCR Graph notation
and theory have been developed further in collaboration with Exformatics A/S,
a Danish provider of case, document and knowledge management systems. A ver-
sion of DCR graphs with a simple notion of nesting [9], an additional milestone
relation, and support for data now forms the core their workflow engine [20,7].
However, DCR graph models as currently implemented become difficult to com-
prehend and present at a certain size. They seem to lack encapsulation, mod-
ularity and hierarchy; the key techniques to make large models comprehensible
in both imperative [19] and declarative settings [23]. Also, practical modelling
efforts by Exformatics A/S has revealed that DCR graphs emphatically needs a
notion of “dynamically created” or “instantiated” sub-process.

In the present paper, we seek to remedy these shortcomings of DCR graphs.
Our contributions are as follows.

1. We introduce refinement-by-composition for DCR graphs.

2. We add to DCR graphs a notion of dynamically spawned sub-process, defining
Hi-DCR graphs.

3. We demonstrate the use of both incremental process design using an example
exctracted from a recent case management solution delivered by Exformatics
A/S to a Danish funding agency.

4. We provide a publicly available Hi-DCR graph tool.

The tool allows simulation, model-checking of the finite fragment, automatic
visualisation and more. The compositions and refinements presented in examples
were not made by hand, they were executed by the tool; all DCR diagrams in
this paper has been generated by it, and all examples are fully executable by it.

59

Hi-DCR graphs are fully formalised; we prove both soundness of refinement—
that refinement cannot accidentally remove constraints of the extant model—as
well as Hi-DCR being strictly more expressive than ω-regular languages.

1.1 Related Work

Hierarchy for declarative languages was studied in [23], where the authors add
complex activities to DECLARE [2,1]. The authors make a compelling case that
hierarchy is a necessity for constructing understandable declarative models. Our
industry partner’s experiences fully supports this thesis; this is in part what has
led to our investigation of sub-processes.

A complex activity is one which contains a nested DECLARE model govern-
ing when that activity may complete. The nested model starts when the com-
plex activity opens, and the complex activity conversely may only close once the
nested model completes. Otherwise, there is no interaction between the nested
model and the parent model. In the present paper, a sub-process may interact
with its parent process: there can be multiple ways to start the sub-process, it
can have different observable outcomes, and it is allowed to interact with other
activities in the parent process.

Questions about concurrency are left open by [23]: the authors do not report
a formal semantics, and the paper has no examples of interleavings of complex
activities. In the present approach, sub-process executions are naturally inter-
leaved with other events and even other instances of the same sub-process; we
shall see this in examples.

We believe it is straightforward to formalize complex activities of [23] in Hi-
DCR Graphs: Use Hi-DCR relations to allow only a single start and end event
for each sub-process, and cut off interaction between sub- and super-process by
choosing only empty interfaces.

The Guard-Stage-Milestone (GSM) approach [11] to business modelling pro-
vides a data-centric notation with declarative flavour. The notation consists of
stages, which in turn have guards, controlling when and how the stage may start,
and milestones, controlling when and how a stage may close. Stages can con-
tain sub-stages, giving GSM an inherent hierarchy. Where GSM is data-centric,
the present formalism is event-based. Nonetheless, the sub-processes of Hi-DCR
graphs are strongly reminiscent of GSM stages, with Hi-DCR interface events
assuming the rôle of guards and milestones. In future work, we plan to further
investigate the similarities between GSM and Hi-DCR Graphs, in the hope of
providing a formal connection between them.

2 DCR graphs

In this section, we recall DCR graphs as introduced in [8,14] and introduce
our running example. The example is based on a workflow of a Danish funding
agency; our industry partner, Exformatics A/S, has implemented system sup-
port for this workflow using the basic DCR graphs of this Section [20]. While

60

vindicating DCR graphs as a flexible and practical modelling tool, that work
also highlighted the potential need for refinement and sub-processes, which we
introduce in the following Sections. One key idea will be the development of
models by refinement : start from a very abstract model, then successively refine
it until it becomes suitably concrete. In this section, we introduce DCR graphs
alongside such a very abstract model.

As the name suggests, DCR graphs are graphs, and we tend to represent them
visually, as in Fig. 1. This figure depicts a highly abstracted model of the funding
agency workflow. Events (boxes) with labels (the text inside them) are related
to other events by various arrows. In this model there are only four events: the
beginning of the application round Start round; receiving an application (Receive
application); the deadline for application submission occurring (Application dead-
line); and finally the board meeting (Board meeting), at which the board of the
funding institution decide which applications warrant grants and which do not.

(Accepting)

Application deadline

Receive application

%

Board meeting

Start round

Fig. 1. A basic DCR graph

Relations between these events govern
their relative order of occurrence. When not
constrained by any relations, events can hap-
pen in any order and any number of times.

The condition relation, e →• e′, seen be-
tween Start round and Receive application in-
dicates that the former must occur before the
latter: we do not receive applications before
the round has started. In the initial state of
the DCR graph, Start round have yet to hap-
pen, and so Receive application cannot exe-
cute; hence it has been greyed out in the visual representation. The notation
and semantics of this relation is similar to the precedence constraint in DE-
CLARE [2,1].

Between Receive application and Board meeting we have a response relation,
e •→ e′. This indicates that if Receive application happens, then Board meeting
must subsequently happen. This does not necessarily mean that each occurrence
of the former is followed by a unique occurrence of the latter; it’s quite all right to
receive seven applications, have a board meeting, receive five more applications,
then have a final board meeting. If Receive application has been executed without
a following Board meeting, we say that Board meeting is pending.

Finally, between the Application deadline and Receive application events we
have an exclusion relation, e→% e′. Once the Application deadline event occurs,
the Receive application event becomes excluded, which means that it is from
then on considered irrelevant for the rest of the workflow. While excluded, it
cannot execute; any response obligations on it are considered void; and if it
is a condition for some other event, that condition is disregarded. Dual to the
exclusion relation is the inclusion relation. It is not exemplified in this DCR
graph, but its meaning is straightforward: it re-includes an event in the workflow.
DCR graph have also a fifth and final relation, the milestone relation e →� e′;
we will postpone explaining that until we use it in the next Section.

61

A key advantage of DCR graphs is that the graph directly represents the
state of execution. There is no distinction between design-time and run-time.
We will illustrate this by example: in Fig. 2 we have a finite execution of Fig. 1.
In the upper-left corner, (1) is the initial state, the DCR graph presented in

(Accepting)

Application deadline

Receive application

%

Board meeting

Start round

(Accepting)

Application deadline

Receive application

%

Board meeting

Start round ✓

(Not accepting)

Application deadline

Receive application ✓

%

Board meeting !

Start round ✓

1. Initial state. 2. After executing Start
round.

3. . . .Receive application.

(Not accepting)

Application deadline

Receive application ✓

%

Board meeting !

Start round ✓

(Not accepting)

Application deadline ✓

Receive application ✓

%

Board meeting !

Start round ✓

(Accepting)

Application deadline ✓

Receive application ✓

%

Board meeting ✓

Start round ✓

4. . . .Receive application
(again)

5. . . .Application deadline 6. . . .Board meeting

Fig. 2. Execution of the DCR graph of Fig. 1.

Fig. 1. The Start round event executes, taking us to (2). We can observe events
having been executed in the state of the graph: executed events have little check-
marks next to them, so in (2), Start round has such a check-mark. Also, with
Start round executed, the condition for Receive application is fulfilled; it is now
executable and thus no longer greyed out. We execute it to get to (3). Because
there is a response from Receive application to Board meeting, that execution puts
a pending response on Board meeting. This is indicated in (3) by the red text
and the exclamation mark.

We execute Receive application to get to (4). This execution brings no change
to the graph, which already had Receive application marked as previously exe-
cuted, and already had a response on Board meeting. So we execute Application
deadline, getting to (5). Because of the exclusion relation from that to Receive
application, the latter becomes excluded, indicated by its box being dotted in (5).
Even though excluded events cannot be executed, we do not grey them out; the
dotted box is enough. Finally, we execute Board meeting to get to (6). This of
course fulfils the pending response, which disappears: the text of Board meeting
goes back to black, and the exclamation mark disappears.

A DCR graph is accepting if it has no included pending responses. (An infinite
run is accepting if every incurred response is eventually executed or excluded.)
The acceptance state of the graph is indicated in the lower-right corner of each

62

graph. That indication is technically superfluous: the graph will be accepting
exactly if it has no red labels/labels with exclamation marks. For large graphs,
it can be convenient to have the single indicator anyway.

3 Hierarchy & Refinement

We now come to the core contributions of this paper. We present a notion of
“refinement” of DCR graphs, defined in terms of a more primitive notion of
“composition” of DCR graphs. Refinement is always achieved by composing an
abstract DCR Graph with a refinement DCR Graph, which introduces new events
and/or add additional constraints.

3.1 Refinement

We wish to refine our model to express in greater detail the decision mechanics
of the board. We will model board meetings by the DCR graph in Fig. 3. The
results of an application round must be gathered in a report. This report is
updated and approved repeatedly during the application round. This gives rise
to two new events: Update report and Approve report.

(Accepting)

Approve report

Board meeting

Update report

Fig. 3. Expanded model
of the Board meeting

Applications are discussed over the course of several
board meetings and the results of the board meetings
must be worked into the report. To allow the secretary
to work efficiently she is not required to formally up-
date the report after every single board meeting, but
she may combine the outcomes of several of them in
a single update. This constraint is represented by the
response relation from Board meeting to Update report.

While there are such pending changes to the report,
it can of course not be approved. This is modelled using
a milestone relation Update report →� Approve report.
This relation means that while Update report is pend-
ing, Approve report can not execute.

Note that this model does not preclude the board from re-approving a report
that has not been updated. While not a particularly sensible thing to do, it is
not against the rules, and as such should be permitted by the model.

Now, we wish to add these new details about board meetings to our original
abstract model of Fig. 1; that is, we wish to refine Fig. 1 by Fig. 3. We do so by
composing them: we fuse together events that are the same in both graphs. In
this case only Board meeting. The result can be seen in Fig. 4. (The dashed box
in that figure has no semantic ramifications; it is there are simply to make the
graph easier to understand. See also [23].)

It is of course important that such a refinement does not accidentally re-
move constraints of the original model. Because of the inclusion and exclusion
relations, that might happen, e.g., inclusions in the refining model might cause
events excluded in the abstract one to be suddenly allowed. We shall prove in

63

Theorem 4.10 that, roughly, when the two models agree on when fused events
are included or excluded, the composition will not admit new behaviour; in this
case we call it a refinement. In the present case, the only fused event is Board
meeting, which has no inclusions or exclusions going into it in either model, so
this composition is really a refinement.

(Accepting)

Approve report

Board meeting

Update report

Application deadline

Receive application

%

Start round

Fig. 4. Refinement of Fig. 1 by Fig.3.

Refinement-as-composition in con-
junction with DCR graphs having
no distinction between design-time
and run-time means that we can
refine a running model. Suppose,
for instance, that we have deployed
our initial abstract model of Fig. 1,
and have reached state (5) in Fig. 2
when it is decided that compli-
ance with the board meeting re-
port procedure of Fig. 3 must be
enforced. We may add in these new
constraints by refining the running
model (Fig. 2, part 5) with the new
constraints (Fig. 3). Doing so yields
the new DCR graph seen in Fig. 5.
Note how the pending state of the
fused Board meeting event is pre-

served. And again, by virtue of the refinement Theorem 4.10, we can be assured
that all constraints on execution of the original model is still preserved in this
new refined one.

3.2 Subprocesses

Refinement gives us a disciplined method for extending models with new com-
ponents; thus it gives us a hierarchical notion of process design. However, it
does not fully capture the notion of sub-processes in traditional business mod-
elling notations. Here, a sub-processes is a complex activity in the model that
has underlying behaviour which is instantiated when the sub-process is started
and closed when the sub-process ends. Such sub-processes can both be single-
instance, meaning that only one instance of the sub-process will be active at any
time, or multi-instance, meaning that multiple instances of the sub-processes can
execute concurrently.

To enable modelling such sub-processes we extend DCR graphs to Hi-DCR
graphs. In these, we may associate with an event an entire other Hi-DCR graph
which, when the event fires, is composed onto the current graph. We exemplify
Hi-DCR Graphs by adding to our funding agency model a more detailed de-
scription of the process for an individual application. As many applications may
be received and evaluated at the same time, we need a notion of sub-processes
(and in particular multi-instance sub-processes) to fully capture this behaviour.

64

(Not accepting)

Approve report

Board meeting !

Update report

Application deadline ✓

Receive application ✓

%

Start round ✓

Fig. 5. Refinement of Fig. 2 part 5
by Fig. 3

An application must receive some
number of reviews, with at least one from
a lawyer. The reviews are collected in a re-
view report. Based on the review report,
the application is accepted or rejected and
the round report is updated with this de-
cision. It is not uncommon that the deci-
sion on an application is reverted, chang-
ing an “accept” to a “reject” or vice versa,
and this may even happen several times
as discussions progress. Of course, each
change in the decision requires an update
to the round report. Finally, each appli-
cations cannot remain in limbo and must
always eventually be either accepted or re-
jected.

The DCR graph in Fig. 6 models this
process. At the top is Lawyer review and
Other review. Of these two only Lawyer re-

view is a condition for Review report, with the effect that we cannot write the
review report unless we have at least a review from a lawyer.

After the Review report is completed, the reviewers may Accept or Reject the
application; as mentioned, there is no restriction that these events happen only
once. However, each new verdict requires Update report because of the response
relation from Accept and Reject to Update report.

(Not accepting)

Accept

Decision !

%

Update report

Lawyer review

Review report

Other review

Reject

%

Fig. 6. The per-application sub-
process.

Finally we need to model the fact that
either Accept or Reject needs to occur at
least once, similar to the choice construct in
DECLARE. Hi-DCR graphs contain no con-
struct directly analogue to choice; but for-
tunately, there is a straightforward way—a
DCR graph idiom, if you will—to achieve the
intended semantics. We explicitly model the
fact that a decision is needed as an event De-
cision. We make this event a condition of it-
self, meaning that it cannot possibly be ex-
ecuted. We also make it initially included
and pending, so that once the application
is started, a decision needs to eventually be
made. Finally we let both Accept and Reject
exclude Decision, indicating that these two
both represents a valid decision. Once Decision becomes excluded, it no longer
prevents the larger graph from achieving an accepting state.

Now, we wish the entire sub process of Fig. 6 to be instantiated once per
application. In Hi-DCR graphs this is achieved by associating with the event

65

Receive application in Fig. 5 the entire application processing DCR graph of
Fig. 6. After executing Receive application a new copy of the application DCR
Graph is composed with the main DCR Graph, and we get the DCR graph of
Fig. 7.

Observe that once again, the common event Update report has been fused be-
tween the two DCR graphs. So far, this should be unsurprising: it is a straight-
forward application of the composition mechanism of DCR graphs. The key
difference is that a Hi-DCR graphs is equipped also with a partitioning of its
events into interface events (indicated by boxes with rounded corners in Fig. 6)
and local events (indicated by boxes with non-rounded corners). This parti-
tioning has the effect that under composition, only interface events are fused,
whereas local events are not, even if their labelling overlap. The effect of these
interfaces and local events will be apparent if we consider what happens when
Receive application executes a second time; refer to Fig. 8. Here, we see that the

(Not accepting)

Accept

Decision !

%

Update report

Lawyer review

Review report

Other review

Reject

%

Approve report

Board meeting !

Application deadline

Receive application ✓

%

Start round ✓

Fig. 7. Updated model with one spawned subprocess.

second application process has fused its interface event Update report, but has
duplicated its remaining events, which are all local. This has the following two
important consequences:

1. Each application process is represented separately.
2. Approve report effectively synchronises decisions: whenever the decision on

any application is changed, the report needs to be updated.

Connecting local and interface event is a highly expressive mechanism. For in-
stance, if we want to have a review report ready for every application before the
board meeting commences, it is enough to have, in the sub-process definition
in Fig. 6 a condition from the local event Review report to a new interface event
Board meeting.

66

(Not accepting)

Accept

Decision !

%

Update report

Lawyer review

Review report

Other review

Reject

%

Accept

Decision !

%

Lawyer review

Review report

Other review

Reject

%

Approve report

Board meeting !

Application deadline

Receive application ✓

%

Start round ✓

Fig. 8. After spawning a second subprocess in Fig. 7.

4 Foundations

In this section, we review the formal theory of DCR graphs, then formally in-
troduce their refinement and their generalisation to Hi-DCR graphs.

We distinguish between events and labels. In a single workflow, the same
label may occur multiple times. For instance, the label “Review report” occurs
twice in Fig. 8. We accommodate such multiplicity by considering events (the
boxes), as distinct from their label (the text in the boxes). When the distinction
between events and labels does not matter, we use the words interchangeably.
For instance, in Fig. 1 and 3 we speak of “the event Board meeting”, since the
label Board meeting uniquely identifies an event. To simplify the presentation we
will let the labelling of events remain implicit in the formal definitions.

Definition 4.1 (DCR Graph [8]). A DCR graph is a tuple (E,R,M) where

– E is a finite set of (labelled) events, the nodes of the graph.
– R is the edges of the graph. Edges are partioned into five kinds, named and

drawn as follows: The conditions (→•), responses (•→), milestones (→�),
inclusions (→+), and exclusions (→%).

– M is the marking of the graph. This is a triple (Ex,Re, In) of sets of events,
respectively the previously executed (Ex), the currently pending (Re), and the
currently included (In) events.

When G is a DCR graph, we write, e.g., E(G) for the set of events of G, as well
as, e.g., Ex(G) for the executed events in the marking of G.

Notation. For a binary relation → ⊆ X × Y we write “→ Z” for the set
{x ∈ X | ∃z ∈ Z. x → z}, and similarly for “Z→”. For singletons we usually
omit the curly braces, writing →e rather than →{e}.

67

With the definition of DCR graphs and notation in place, we define the
dynamic semantics of a DCR graph. First, the notion of an event being enabled,
ready to execute.

Definition 4.2 (Enabled events). Let G = (E,R,M) be a DCR graph, with
marking M = (Ex,Re, In). We say that an event e ∈ E is enabled and write
e ∈ enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c) In ∩ (→�e) ⊆ E\Re.
That is, enabled events (a) are included, (b) their included conditions already
executed, and (c) have no included milestones with an unfulfilled responses.

Definition 4.3 (Execution). Let G = (E,R,M) be a DCR graph with marking
M = (Ex,Re, In). Suppose e ∈ enabled(G). We may execute e obtaining the
resulting DCR graph (E,R,M′) with M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e
2. Re′ = (Re \ e) ∪ (e•→)
3. In′ = (In \ (e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events. (2) Update the currently required responses Re by first removing e, then
adding any responses required by e. (3) Update the currently included events by
first removing all those excluded by e, then adding all those included by e.

Definition 4.4 (Transitions, runs, traces). Let G be a DCR graph. If e ∈
enabled(G) and executing e in G yields H, we say that G has transition on e to
H and write G −→e H. A run of G is a (finite or infinite) sequence of DCR
graphs Gi and events ei such that: G = G0 −→e0 G1 −→e1 . . .
A trace of G is a sequence of labels of events ei associated with a run of G. We
write runs(G) and traces(G) for the set of runs and traces of G, respectively

Not every run or trace represents an acceptable execution of the graph: We need
also that every response requested is eventually fulfilled or excluded.

Definition 4.5 (Acceptance). A run G0 −→e0 G1 −→e1 . . . is accepting iff
for all n with e ∈ In(Gn) ∩ Re(Gn) there exists m ≥ n s.t. either em = e, or
e 6∈ In(Gm). A trace is accepting iff it has an underlying run which is.

Acceptance tells us which workflows a DCR graph accepts, its language.

Definition 4.6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We now know enough to formalise the first DCR graph we saw.

Example 4.7. The DCR graph of Fig. 1 and 2 has events a, s, r, b labelled Ap-
plication deadline (a), Start round (s), Receive application (r), and Board meet-
ing (b). It has relation R given by →%= {(a, r)}, →+= ∅, →•= {s, r}, •→=
{r, b} and →�= ∅. We can find a run of this DCR graph in Fig. 2: B1 −→s

B2 −→r B3 −→r B4 −→a B5 −→b B6

Here, B1, B2 are accepting, whereas B3–B5 have b pending and so are not.

68

4.1 Composition & interfaces

Composition of DCR graphs was originally introduced in [10].

Definition 4.8 (Composition of DCR graphs). The composition G | H of
DCR graphs G and H is defined by taking the union of all components.
Formally: G | H = (E ∪ E′,R ∪ R′, (Ex ∪ Ex′,Re ∪ Re′, In ∪ In′))
The empty or zero DCR graph, 0, is the unique DCR graph with no events.

Composition does not in itself give “refinement” in the classical sense: in
DCR graphs, even if G,H share events and labels, the language of G | H might
actually be larger than either G or H. The following definition helps narrow
down what are “good” compositions.

Notation. The projection of a sequence σ to a set E is obtained by removing
every element of σ not in E. For instance, the projection of σ = AABCABC to
E = {A,C} is σ|E = AACAC. We lift projection to sets of sequences pointwise.

Definition 4.9 (Refinement). H refines G iff
(
lang(G | H)

)
|E(G) ⊆ lang(G).

To help establish refinements, we have the following theorem, which states
that a DCR graph G is refined by a DCR-graph H if they have no shared event
which may be included or excluded unilaterally by H.

Theorem 4.10. H refines G if in H shared labels are associated only with
shared events, and for all f ∈ E(G) ∩ E(H) and e ∈ E(H) we have that:

1. If e→%H f then also e→%G f, 3. Ex(H) ∩ E(G) ⊆ Ex(G),

2. if e→+H f then also e→+G f, 4. In(H) ∩ E(G) ⊆ In(G).

Conditions (1) and (2) mean that H cannot unilaterally include or exclude
shared events; conditions (3) and (4) that the marking of H does not change the
inclusion- or execution-state of shared events.

Example 4.11. As an example, taking G to be the DCR graphs of Fig. 1 and H
to be the one of Fig. 3, then both G,H fulfil the criteria of Theorem 4.10. Thus,
we can be sure that when we compose them to obtain G | H in Fig. 4, their
local behaviour is preserved: the valid execution orders of Application deadline,
Start round, Receive application, and Board meeting in Fig. 4 are all also valid
according to Fig. 1.

4.2 Hi-DCR graphs

Towards DCR-graphs with sub-processes, we need first DCR graphs with inter-
faces, i-DCR graphs.

Definition 4.12 (i-DCR graph). An i-DCR graph is a tuple G = (E,R,M, I)
such that (E,R,M) is a DCR graph and I ⊆ E. Events L = E \ I are local events.
An i-DCR graph inherits notions of enabled events, execution, and zero from its
underlying DCR-graph.

69

We note that once we can speak of execution, we have using Definitions 4.4, 4.5,
and 4.6 also definitions of transistions, runs, traces, acceptance, and language.

The point of the interface I is to allow us to choose which events should fuse
with similar events in composition, and which should be considered private. To
avoid fusing of private events, we must sometimes employ renamings.

Definition 4.13 (Freshness, compatibility). If G,H are i-DCR graphs we
say an that G is fresh for H iff L(G)∩E(H) = ∅. We say that they are compatible
iff they are both fresh for the other. We say that G,H are equivalent if they are
structurally identical up to the choice of local events.

The composition of i-DCR graphs guarantees that local events of compatible
graphs do not overlap.

Definition 4.14 (i-DCR composition). The composition G | H of i-DCR
graphs G,H is defined as for DCR graphs, taking interfaces of the combined
graph to be I(G) \ L(H) ∪ I(H) \ L(G).

For compatible i-DCR graphs, this definition is equivalent to taking simply I∪ I′.

Definition 4.15 (Hi-DCR). A Hi-DCR graph is a tuple G = (E,R,M, I,S)
where S is a map taking events to Hi-DCR graphs and (E,R,M, I) is the under-
lying i-DCR graph G|ι of G. An event e of G is enabled in G iff it is in G|ι.

Note that if one wants an event e to not spawn any sub-process, one simply
maps it to sub-process definition to zero, i.e., takes S(e) = 0.

Definition 4.16 (Hi-DCR execution). Suppose e is an event of the Hi-DCR
graph G, that e ∈ enabled(G) and that S(e) = H. Then to execute e in G:

1. Pick some H ′ equivalent to H but fresh for G.
2. Execute e in G | H ′ (considered a DCR graph) to obtain H.

That is, if G | H ′ = (E,R,M, I,S), we execute e in (E,R,M) obtaining (E,R,M′),
then declare the execution of e in G | H ′ to be (E,R,M′, I,S).

Example 4.17. The notion of i-DCR graph and the definition of Hi-DCR graph
execution explains formally why the event Approve decisions is not duplicated
when a subprocess is spawned between Fig. 7 and 8: it is an interface event, and
so is fused in the composition that happens when new sub-processes are spawned.
The event Review report in the sub-process, on the other hand, is duplicated: It
is local, and because execution of Hi-DCR graphs choose fresh names for local
events during spawning, it is duplicated.

Theorem 4.18. Hi-DCR graphs are strictly more expressive then DCR Graphs
and therefore also strictly more expressive then ω-regular languages.

Proof. Hi-DCR graphs conservatively extend DCR graphs, which are known to
express exactly ω-regular languages [14]. But in Fig. 8, every time we execute
Receive application we are will execute at least one Accept or Reject. This requires
counting Receive application which is impossible for ω-regular languages.

70

5 Implementation

For experimentation, we have implemented a prototype tool for working with
Hi-DCR graphs. This tool features a simulation engine capable of executing
transitions, and of dynamic re-configuration using both unconstrained composi-
tion (Definition 4.8) and refinement (Definition 4.9). For finite-state graphs, the
tool can do also basic model-checking tasks, such as finding a path to dead-lock,
termination, acceptance, or some event being enabled. Whereas in the other sec-
tions of this paper, we represented DCR graphs graphically, as figures produced
by the tool, the tool inputs a textual representation. As an example of that rep-
resentation, consider again Fig. 6. Its equivalent textual representation is below.

"Other review" 1

"Lawyer review" 2

-->* "Review report" 3

-->* ("Accept" "Reject") 4

-->% !"Decision" 5

"Decision" -->* "Decision" 6

("Accept" "Reject") -->% "Decision" 7

("Accept" "Reject") 8

*--> "Update report" 9

10

/("Other review" "Lawyer review" 11

"Review report" 12

"Accept" "Reject" "Decision") 13

All events are interface events by
default; local events are specified
by prefixing them with a slash
‘/’ (line 11-13). Events can also
be prefixed ‘+’, ‘%’, and ‘!’, (line
5) indicating that they are ini-
tially included, excluded, respec-
tively pending. For convenience,
the language allows both chaining
of events and relations (line 2–5)
as well as relating multiple things
(line 7).

The tool uses Graphviz [5] to
automatically produce diagrams.
The diagrams in the present paper were all so generated. The tool is imple-
mented in F# and runs on the major platforms. The executable and source code
can be found at [4].

6 Conclusion

In this paper we first demonstrated how DCR Graphs can be used for incremen-
tal, declarative design of processes, by introducing a notion of compositional re-
finement that guarantees language inclusion (with respect to the labels of events
present in the original process) and thus preserves compliance for accepting
executions. We then used these techniques to introduce Hi-DCR Graphs, a con-
servative extension of DCR graphs, which allows events to spawn sub-processes.
The extensions have been presented and motivated using as an example an ab-
straction of a real-world case supplied by our industry partner, Exformatics
A/S. We provided a formal semantics for Hi-DCR Graphs and demonstrated
by example that they are more expressive then ω-regular languages. Finally we
reported on a prototype implementation of Hi-DCR Graphs which supports a
programming-like syntax, automatic visualisation, simulation, and rudimentary
model-checking.

71

6.1 Future Work

While the notion of refinement introduced in the present paper preserves com-
pliance for accepting executions, it may in fact introduce errors such as livelocks
and deadlocks. The simplest example would be to refine a process with a DCR
graph containing a single, included (local) event having itself as condition and
being initiatlly required as response. In [15] it is shown how adaptations can
be verified for safety and liveness, by relying on the map from DCR Graphs
to Büchi-automata [16], which is further mapped to Promela and verified in the
SPIN model-checker. However, as demonstrated in [15], this approach is not very
efficient. We are therefore currently investigating techniques for more efficient
verification of DCR Graphs in the presense of adaptations.

As was mentioned in the related work section the development of Hi-DCR
Graphs brings us closer to the GSM notation, and we plan to use this work in the
future as a basis for formal mappings between GSM and DCR Graphs models.

The question of the precise expressive power of Hi-DCR graph remains open.
We conjecture that they are Turing-equivalent. This points to another relevant
question, namely how to constrain Hi-DCR graphs to allow safety and liveness
guarantees. An obvious possible constraint would be to bound the number times
each sub-process can be spawned by a constant. Because of the formalization of
spawning based on composition, it follows that this constrains the model to the
expressiveness of standard DCR Graphs, that is, to Büchi-automata.

Formal expressive power aside, in practice many idiomatic constructs, like
the “disjunctive responses” used in Fig. 8 could be formalised as derived con-
structs in their own right, potentially making them more accessible to end-users,
much like DECLARE is formalised in terms of LTL. Similarly, other questions
regarding the usability of the approach will be investigated in future studies
through empirical investigations undertaken in cooperation with our industrial
partners and end-users.

Acknowledgments. We gratefully acknowledge fruitful discussions with Rik Es-
huis. The work is supported by grant VELUX 33295, 2014-2017 and the Danish
Agency for Science, Technology and Innovation.

References

1. van der Aalst, W., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010), http://www.win.tue.nl/declare/

2. van der Aalst, W.M., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer (2006)

3. Carbone, M., Hildebrandt, T.T., Perrone, G., Wasowski, A.: Refinement for tran-
sition systems with responses. In: FIT. EPTCS, vol. 87, pp. 48–55 (2012)

4. Debois, S.: DCR exploration tool v.6. IT University of Copenhagen (2014), http:
//www.itu.dk/research/models/wiki/index.php/DCR_Exploration_Tool

5. Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.: Graphviz— open
source graph drawing tools. In: Graph Drawing, LNCS, vol. 2265, pp. 483–484.
Springer (2002), http://dx.doi.org/10.1007/3-540-45848-4_57

72

6. Groefsema, H., Bucur, D.: A survey of formal business process verification: From
soundness to variability. In: Proceedings of the Third International Symposium on
Business Modeling and Software Design. p. 198–203 (2013), http://www.cs.rug.
nl/ds/uploads/pubs/groefsema-bmsd.pdf

7. Hildebrandt, T.T., Marquard, M., Mukkamala, R.R., Slaats, T.: Dynamic condition
response graphs for trustworthy adaptive case management. In: OTM Workshops.
LNCS, vol. 8186, pp. 166–171. Springer (2013)

8. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69, pp.
59–73 (2010)

9. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition re-
sponse graphs. In: FSEN. LNCS, vol. 7141, pp. 343–350. Springer (2011)

10. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative
processes. In: SEFM. LNCS, vol. 7041, pp. 237–252. Springer (2011)

11. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Line-
han, M.H., Maradugu, S., Nigam, A., Sukaviriya, P., Vacuĺın, R.: Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. In: WS-
FM. LNCS, vol. 6551, pp. 1–24. Springer (2010)

12. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of ltl-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV. Lecture Notes in Computer Science, vol. 7186, pp. 131–146. Springer (2011)

13. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach, Lecture Notes in Business Information Processing,
vol. 56. Springer (2010)

14. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition
Response Graphs. Ph.D. thesis, IT University of Copenhagen (June 2012)

15. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC. pp. 127–136.
IEEE (2013)

16. Mukkamala, R.R., Hildebrandt, T.T.: From dynamic condition response structures
to büchi automata. In: TASE. pp. 187–190. IEEE Computer Society (2010)

17. Mukkamala, R.R., Hildebrandt, T.T., Tøth, J.B.: The resultmaker online consul-
tant: From declarative workflow management in practice to ltl. In: EDOCW. pp.
135–142. IEEE Computer Society (2008)

18. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0, http://www.omg.org/spec/BPMN/2.0/PDF

19. Reijers, H., Mendling, J., Dijkman, R.: On the usefulness of subprocesses in busi-
ness process models. BPM Reports 1003, Eindhoven (2010)

20. Slaats, T., Mukkamala, R.R., Hildebrandt, T.T., Marquard, M.: Exformatics
declarative case management workflows as DCR graphs. In: BPM. LNCS, vol.
8094, pp. 339–354. Springer (2013)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G.M. (eds.) Banff Higher Order Workshop. Lecture Notes in Com-
puter Science, vol. 1043, pp. 238–266. Springer (1995)

22. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets. LNCS, vol. 255, pp. 325–392. Springer (1986)

23. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandabil-
ity considerations of hierarchy in declarative business process models. In: BM-
MDS/EMMSAD. Lecture Notes in Business Information Processing, vol. 113, pp.
167–181. Springer (2012)

73

A Case for Declarative Process Modelling:
Agile Development of a Grant Application System

Søren Debois, Thomas Hildebrandt and
Tijs Slaats

IT University of Copenhagen
Rued Langgaardsvej 7

2300 Copenhagen, Denmark
Email: {debois,hilde,tslaats}@itu.dk

Morten Marquard and
Tijs Slaats

Exformatics A/S
Copenhagen, Denmark
www.exformatics.com

Email: {mmq,ts}@exformatics.com

Abstract—We report on a recent industrial project carried out
by Exformatics A/S in which the company used the declarative
DCR Graphs notation to model and implement the grant appli-
cation process of a Danish foundation. We present the process
and discuss the advantages of the approach and challenges faced
both while modelling and implementing the process. Finally, we
discuss current work on extensions to the DCR Graphs notation
aiming to address the challenges raised by the case study and to
support the declarative, agile approach.

I. INTRODUCTION

In the private as well as public sector, front-end customer
services and their corresponding back-end processes and work-
flows are increasingly being digitalised by so-called Process
Aware Information Systems (PAIS) [1]. The technology is
pushed forward by promises of more usable, efficient and agile
business processes, ensured to be compliant with business rules
and the law.

Traditionally, functionality and user-experience of software
systems have been described in a requirement specification
before implementation. The requirements for functionality
may be supported by semi-formal models such as e.g. UML
sequence and activity diagrams and requirements for user-
experience may be supported by use cases, user-interface
descriptions and scenarios.

The new generation of PAIS are based on explicit, graphical
and executable process models such BPMN [2], which sup-
ports a more agile development process, in which developers
jointly with domain-experts during implementation, can design
and simulate business processes and evaluate user-experiences.

However, the need for changes and adaptation to a PAIS
does not end, when the system is being delivered to the
customer. It is more the rule than the exception that the
processes need to be adapted after the system has been put into
use, either because the requirements where wrong or the needs
changed before the final delivery. Indeed, often adaptations due
to changes in business processes will be needed repeatedly
throughout the entire lifetime of the system.

Moreover, it has been recognised in research, that imper-
ative process descriptions such as BPMN that are based on
explicit process flows tend to capture processes too rigidly,
introducing un-justified dependencies and order between ac-

tivities [1], [3], thereby increasing the need for adaptations to
processes, even during execution of a process.

An explanation for this is, that the explicit flow graphs
describe how a process is to be carried out, not why. By
analogy to a way-finding service, it corresponds to describing a
single route through a city, perhaps remembering to take a few
possible exceptions into account. However, if the goal or map
later changes, or the route is questioned regarding a potential
improvement the flow-graph does not contain the information
needed to derive a new route.

As an alternative, declarative process descriptions have
been proposed by several research groups [3], [4], [5], [6],
[7] as a way to achieve more flexible PAIS, by having process
models that capture the why and not the how. The declarative
approach has not seen wide-spread industrial adaptation yet
and tool support has generally been limited to academic
prototypes, which had led to the question if practitioners see
actual opportunities to use declarative techniques. This has led
to a study investigating what process modelling practitioners
think of declarative modelling [8], which showed that the
audience was receptive to the underlying concepts of the
declarative modelling paradigm and the Declare [3], [4] and
DCR Graphs notations, but also discovered that they had
some difficulty getting used to the new paradigm and that the
graphical notations used by the current notations were found
to not always be intuitive, which made them relatively difficult
to work with.

Exformatics A/S have during the past three years jointly
with researchers at IT University of Copenhagen been devel-
oping, applying and implementing the declarative DCR graphs
model [5], [6] in their standard Adaptive Case Mangement
system. A key feature of DCR graphs is that they do not rely
on a transformation before execution: The graphs describe both
the initial state and the intermediate states, and thus support
process adaptation during execution.

In the present paper we report on a recent industrial
project in which Exformatics used the declarative DCR Graphs
notation to model and implement the grant application process
of a Danish foundation, the Dreyer foundation.

In Sec. II we first present the background for introducing a
PAIS at the Dreyer foundation, and then in Sec. III we describe
the key process(es) to be supported. In Sec. IV we first give the

74

formal definition of DCR Graphs used in the Exformatics ECM
Standard System, then we describe some of the sub processes
of the grant application process in detail, showing how the
models look like in the Exformatics process design tool, and
finally we review the formal execution semantics of DCR
Graphs. In Sec. V we briefly describe the Exformatics ECM
system. We then discuss in Sec. VI the lessons learned during
the implementation and discuss the advantages of the approach
and challenges faced both while modelling and implementing
the process. Finally, we conclude and discuss in VII current
work on extensions to the DCR Graphs notation aiming to
address the challenges raised by the case study and to support
the declarative, agile approach.

II. THE GRANT APPLICATION PROCESS

The Dreyer foundation handles applications from architects
and lawyers in two annual application rounds. Previously, the
foundation received the applications by mail and send them to
an appropriate board member who is an expert in the domain
of the application (that is, either architect or lawyer) for initial
review. The number of applications is around 500-700 annually
and the amount of paper being distributed is considerable.
After the initial expert review, the applications are send to
the other board members for review. This manual distribution
and review process could easily take more than a month. After
the reviews, a board meeting was held, typically lasting two
long working days, to go through the applications and come up
with a final recommendation. It was assumed that this process
could be simplified by digitalising it. The aim is to be able to
start voting earlier than today and enable the board to focus on
the important applications at the board meeting, while simpler
cases could be handled before the meeting as the members
already had voted and agreed. The foundation had three major
requirements for the solution:

1) Applications should be filled out by the appli-
cants electronically in order to avoid lots of paper
and facilitate easy distribution of the applications.
The electronic form can be seen at http://formular.
dreyersfond.dk/ (in Danish)

2) The board should be able to review and vote on the
applications in an easy way.

3) The system should support the unique application
case management process used by the foundation.
The processes should be flexible and adaptive, in that
it should be possible to handle exceptions within the
system.

Exformatics responded to a request for proposal with its
standard Adaptive Case Management tool which uses DCR
graphs for supporting individual tailored adaptive processes.
As mentioned in the second requirement above, it was a critical
user experience requirement that board members could easily
access, comment and vote on applications for a specific round.
An idea of using traffic lights proposed by the foundation
was prototyped, as shown in Fig. 1, demonstrating how the
board members could easily view and change the status of
each application.

III. THE PROCESS(ES) TO BE SUPPORTED

Based on the task descriptions in the requirement spec-
ification and a few initial meetings with the foundation the

following three processes were outlined as fundamental for
supporting their case management process and requirements.

a) Round: Twice each year, the foundation has an
application round. A round consists of a preparation, receiving,
reviewing/voting, board meeting, payment, and a final closed
phase. In each phase various events can happen. In preparation
for a round, amounts are first reserved to be granted to
architects and lawyers. When the round is initiated, appli-
cations are received. Applications have their own individual
process life-cycle described below, including in particular the
reviewing/voting done by four board members, whereof two
acts as experts, one architect and one lawyer. After the appli-
cation deadline, the decisions for all applications are finalised
after a board meeting when the board meeting summary is
approved. After this, applicants are informed, and each granted
application enter the payment phase described in more detail
below, until the last payment has been made.

b) Application: Each application is associated with a
round and goes through a process of its own. After it is
received an initial assessment is done by a case worker. If
approved by the case worker, the application continues to an
expert board member which does the first review, i.e. architect
and lawyer applications are forwarded to the architect and
lawyer board member respectively.

Once the expert board member has voted, the rest of the
board can view the application and vote. The case worker can,
provided the four board members agree, process the application
before the board meeting. If so, the application is pre-approved
or rejected. Other applications await the board meeting where
all applications are voted for and decided by the board.

Once all applications are decided on, a summary of the
board meeting is created and distributed among the board
members. Once all approves the summary, the decision for
all applications associated with the round is final, i.e. either
approved or rejected, and the applicants are informed. If
approved, a payment schedule and any need for further in-
formations from the applicant are decided before the applicant
is informed.

Once the supplementary information is received (if re-
quested), a granted application continues to payment. By
default, only a single payment is carried out. However, the case
worker can decide to split the payment into several payments
each with its own payment date. After delivery of the system,
it was discovered, that if the applicants account number is
modified during the application, the accountant must approve
the modification before any payment can be done. As we will
see, this could be handled by simple addition of a requirement
to the process model and implementing a database trigger
observing changes of account numbers.

Once all payments are completed, the application enters
a feedback phase. In this phase, the applicant must send a
summary of the project to the foundation. This information
might be used in marketing material. Once the summary is
received, the application is closed.

c) Payment: Each month the foundation collects the
payments from each application that is ready to be paid
out. The case worker review and approves the list, which is
then transferred to Microsoft Dynamics (MD). The accountant

75

is then asked to post the list and prepare and approve the
payouts. After the accountant has done her work, the case
worker is asked to approve the payouts. Once done the payouts
are automatically transferred to the applicant through the
integrated banking solution. Further, the case worker retrieves
tax information about the applicants which is uploaded to the
Danish tax authorities. Once all steps are done all payments
are marked as completed. Any errors during the payout, e.g.
invalid account numbers, are handled simply by manually
removing the payment event from MD and modifying the
account number.

IV. THE DCR GRAPH PROCESS MODEL

In this section, we first recall DCR graphs introduced
in [5], [6] and further developed (e.g. by adding data) and
implemented in the Exformatics ECM [9], [10], [11]. We
then show how some of the sub processes in the Dreyer case
management process described above where modelled as DCR
Graphs.

Definition 1 (DCR Graph and DCR Graph with Data):
A DCR Graph is a tuple (E, l,R,M) where

• E is a finite set of events (the nodes of the graph).

• l is a labelling function, assigning a label to each event

• R is a finite set of relations between events (the edges
of the graph). The relations are partioned into five
kinds, the conditions (→•), responses (•→), mile-
stones (→�), inclusions (→+), and exclusions (→%).

• M is the marking of the graph. A marking represent
the state of the process and is a triple (Ex,Re, In)
of sets of events, respectively the executed (Ex), the
pending (Re), and the included (In) events.

A DCR Graph with data is a tuple (E, l,R,Md, g,V) where V
is a set of data variables, Md = (M, ev), (E, l,R,M) is a DCR
Graph, ev is an evaluation function mapping data variables to

values, and g is a (partial) relation guard mapping from (some
of) the relations to boolean expressions over variables.

Events are atomic and may represent the beginning or end of
an activity, e.g. ”start application round” or ”review done”.
An event may also represent a decision being made (e.g.
”vote reject”) or indeed an atomic event, e.g. account number
changed. In the ECM implementation, data variables of DCR
Graphs with data are mapped to entries in the case database,
and events can be triggered from the case management user-
interface, by the system itself or by triggers set up in the
database. The database may be changed by events externally
to the model. This provides a very flexible implementation,
but also somewhat limits what can be verified formally.

Before giving the formal semantics, we will give some
example models of parts of the Dreyer process.

A. The review sub-process

As the name suggests, DCR graphs are graphs. They are
represented visually in the DCRGraph editor [12] as in Fig. 2
illustrating the review sub process for an application.

Events (boxes) with labels (the text inside them) are related to
other events by various arrows. If two events have the same
label, the event ID is shown in italics in the bottom right corner.
Otherwise, the editor chooses by default the event ID to be the
same as the label and then it is not shown. In review process
there are only four events, representing the four (submission
of) review events by the four board members. The labels are
Lawyer Review, Architect Review, Review, and Review.
Note also that each box has an ”ear” with the role assignment.

Relations between the events govern their relative order of
occurrence. When not constrained by any relations, events can
happen in any order and any number of times. The review
sub process only uses guarded condition relations. The guard
expressions are referring to the variable R which indicates if

Fig. 1. Board overview: Clicking on the round circles, grey, yellow, red or green, the board members can cast their vote and give a public and private comment.
76

Fig. 2. A DCR graph for the review sub-process

this is an application for Lawyer projects (R = 1) or Architect
projects (R = 2). The meaning of the guarded relation is that
it is only present if the guard is true. The figure shows the
state if R = 2, and the ”stop signs” indicate that Lawyer
Review, Review, and Review are disabled because the guard
on the condition from Lawyer Review, evaluates to true, while
Architect Review is enabled because its constraint on the con-
dition relation from Architect Review evaluates to false. The
notation and semantics of the (unguarded) condition relation
is similar to the precedence constraint in DECLARE [3], [4].

A key advantage of DCR graphs is that the graph directly
represents the state of execution. There is no distinction be-
tween design-time and run-time. After executing the Architect
review event, all events are possible. (Also Architect review,
thereby allowing a new review to be submitted). The marking
is visualised in the editor and simulation tool by adding a
check mark to the Architect Review event indicating that it
has been executed, as shown in Fig. 3.

B. The payment sub-process

A more complex example illustrating the use of all five
kinds of relations is provided by the payment sub process in
Fig. 7.

Changes of account numbers happen outside the case
management system, but account numbers are registered in
the database. By implementing a trigger that monitors account
numbers in the database, any change can execute an event
Account number changed in the case management process.
Once this event is executed, the approve account number
is made a required response by the (blue) response relation

Fig. 3. A DCR graph for the review sub-process after the architect review

Fig. 4. A DCR graph for the payment sub-process

77

Fig. 5. A DCR graph for the payment sub-process after change of account
number.

with a bullet at the tail. In the marking, this is recorded by
adding Approve Account Number to the set Re of pending
responses. In the editor, it is visualised graphically by adding a
(red) exclamation mark to the event, as shown in Fig. 5. As the
approve account number event is a milestone, indicated by
the (purple) relation with diamond at the head, for the payment
phase, any payment event will be blocked until the approve
account number has been executed, e.g. completed by the
accountant.

The event First payment has role DBAutomatic, which
means that it is carried out by the system and not a use
(technically, it is scheduled for a date). Once it is executed
it excludes itself, since it is related by the (red) exclusion
relation with a % at the end to itself. This in turns enables
a new event Undo payment allowing the case worker to undo
a payment. If the Undo payment is executed, it includes
the payment again, due to the (green) inclusion relation with
a + at the end, and makes it a required response, because
of the (blue) response relation. Note that once the payment
has been registered as completed (notified by the Payment
complete database trigger, Undo payment is excluded and
thus the payment can no longer be undone. The idea of this
processes is, that if an error occurred in the payment (i.e. it is
not completed) the error can be fixed by manually executing
the Undo paymentevent, but once the payments is send to
the bank without any errors the caseworker cannot redo the
payment anymore by marking the payment as having an error.

C. Dynamic addition of sub processes

If the case worker adds one more payment to the applica-
tion, the graph is dynamically modified resulting in the graph

Fig. 6. A DCR graph for the payment sub-process with two payouts

shown in Fig. IV-C

Notice that adding a payment result in three new events, a
pattern of events, which has the same structure as the initial
payment event. The pattern is added dynamically to the DCR
graph modifying the logic. Notice also that Approve account
number is a milestone for all the nested events in the Payout
phase. Doing so simplifies the logic as any change to account
number will block any payment event.

D. Cross-process synchronization

In the example of payment sub-processes above, dynamic
addition of processes was handled by directly modifying
the graph at runtime, and there were no relations connected
directly to the payment sub-processes.

We can also add sub processes by starting new instances of
processes, and synchronise execution through database triggers
(i.e. events with role DBtrigger) and auto-execution events (i.e.
events with role DBautomatic).

Such synchronization exists allowing applications to be
pre-approved before handled formally at the board meeting, if
the board cast 4 equal votes, or the board simply informs the
case worker to pre-approve the application and start payment.
At a certain point, such pre-approval cannot happen anymore,
but must await board meeting summary approval, i.e. approval
from all four board members that the meeting summary has
been approved. The round therefore has an event Block Further

78

Fig. 7. A DCR graph for the payment sub-process

Decisions which once executed blocks the ability to pre-
approve any applications. As the existing DCR model does
not support cross-process events we have a database triggers
which monitors this event. Once the Block Further Decision
is executed the DBTrigger event Round block pre-approve is
executed on all applications belonging to the round.

One this event is executed the event pre-approve applica-
tion is excluded which means that the case worker cannot pre-
approve the application anymore. Further the event Meeting in
progress is included (green arrow). The reason for this event
is to block the Ready nesting which contains the Approve
and Reject application events. Using database triggers we
can support events between processes. Each event acts as an
interface for the process.

E. Formal Semantics

The formal execution semantics of DCR Graphs is given by
notions of enabledness, transitions and acceptance. To keep the
exposition simple we only give the formal semantics of plain
DCR Graphs without data.

For a binary relation “→” we write “→ Z” for the set
{x | ∃z. x → z}; similarly for “Z →”. We omit braces on
singletons, writing →e rather than →{e}.

Definition 2: Let G = (E, l,R,M) be a DCR Graph, with
marking M = (Ex,Re, In). We say that an event e ∈ E is
enabled and write e ∈ enabled(G) iff (a) e ∈ In and (b)
In ∩ (→•e) ⊆ Ex, and (c) In ∩ (→�e) ⊆ E\Re.

That is, enabled events (a) are included, (b) their included con-
ditions already executed, and (c) have no included milestones
with an unfulfilled responses.

Definition 3: Let G = (E, l,R,M) be a DCR Graph, with
marking M = (Ex,Re, In). If e ∈ enabled(G) we may execute
e obtaining the DCR Graph H = (E,R, (Ex ∪ e,Re \ e ∪
(e•→), In \ (e→%) ∪ (e→+)). In this case we say that G
has transition on e to H and write G e−→ H . A run of G is

sequence G = G0
e0−→ · · ·. A run is accepting iff for all n with

e ∈ In(Gn) ∩ Re(Gn) there exists m ≥ n s.t. either em = e,
or e 6∈ In(Gm).

V. THE EXFORMATICS ECM STANDARD SYSTEM

Exformatics Adaptive Case Management (ACM) enables
knowledge workers to handle structured as well as unstructured
information along a process. Both unstructured information,
such as emails, documents and small messages in activity
streams similar to Yammer and Facebook, and structured
information, such as process responsible, application amount,
account number, applicant name, is registered on the case, i.e.
within the context of the process. A case can support different
processes, each defined by a DCR graph. Exformatics ACM
leverages Microsoft SharePoint and SQL Servers for hosting
documents, emails and data. The front-end is build using REST
services and jQuery based web parts hosted in a SharePoint
portal. Applications are received using a semantics based
form where the foundation can configure columns and rules,
such as a mandatory column, themselves. Applications can
contain documents which are stored in SharePoint document
libraries. Processes are described using DCR graphs, and are
executed by the Exformatics Process Engine, running as a
cloud based web service. For each event executed, the DCR
graphs of the process is extracted and send to the process
engine for executing, and the resulting DCR graph is received
and imported into the ACM platform. Any exchange of DCR
graph use a common DCR xml standard briefly described
in [13].

Such a model prepares processes for cross-corporate integra-
tion as only a few processes are intra-company only. Further
DCR graphs are prepared to be used by other ACM systems.

The events can be exposed at the user-interface using cus-
tomized visualization, as exemplified by the overview screen
shown in Flg.1. The vote events for each application is linked
directly to the trafic light bullets.

VI. LESSONS LEARNED

In the following we describe some of the key lessons
learned during the implementation of the adaptive case man-
agement system for the Dreyer foundation.

79

A. On-the-fly Process adaptation and creation of sub pro-
cesses

Since the run-time-state is simply a marking of the graph,
processes can be modified on-the-fly simply by changing the
DCR graph. We benefited from this to allow for payment sub-
processes to be dynamically added. Initially, support for one
payment is included, which consist of the pattern of three
events described above and shown in Fig. IV-C, which can deal
with payment errors, e.g. due to errors in Microsoft Dynamics
or the banking integration. End-users can, while the process is
being executed, add more payments, which triggers adding a
pattern of events as outlined above.

Since this is an expected adaptation, it could be have been
good to have a way to model in the graph that sub-processes
are dynamically added when an event, e.g. Add payment,
is executed. Simliarly, each individual applications can be
considered a sub-process of a round.

As the current DCR model does not support sub-processes,
we had to implement synchronization between the round and
the set of applications using database triggers. An example
database trigger can be the Round Approved, which occurs
on the application once the Round has been approved, which
happens once the board meeting summary has been approved.
Using a database trigger we fire this event for all applications
of a given round once the round is approved. Creating such
database triggers are not easy as we have to handle the concept
of a sub-process outside the DCR logic. The ability to describe
relations between a process and its subprocesses as formalized
in the submitted paper [14] simplifies this logic, and the ability
to describe a sub-process within the context of a process would
ease the description and implementation.

A possible challenge when dealing with sub-processes
identified in the present case study, is how to handle and
formalize moving an application from one round to another.
This sometimes happens if the board cannot decide what to do
and postpone decision to the next board meeting. This would
likely require formalizing passing identifies of events between
processes, similar to the passing of names in the π-calculus.

This is not possible in the version of DCR Graphs im-
plemented in the Exformatics tool. However, the theoreti-
cal extension of dynamic creation of sub processes called
Hierarchical DCR Graphs has been described in a recently
submitted paper [14] and implemented in a prototype, web-
based simulation tool for DCR Graphs to be found at [15].

To handle un-expected additions to the process, we need
support for end-users to define such patterns and add them to a
running process, which in the simplest case would ammount to
adding (or removing) a single event or relations to a graph. As
described in [13], such run-time adaptations could in principle
benefit from the formal verification supported by DCR Graphs,
guaranteeing that adaptations are roboust, e.g. they do not
introduce deadlocks, livelocks or other violations of specified
properties. However, in practice this would require better
verification techniques than what is currently implemented.
Also, if extended with dynamic creation of sub processes, DCR
Graphs becomes Turing-expressive [16] which in makes a
general verification covering all possible processes impossible.

B. Iterative, agile process design

Defining and configuring the processes in DCR graphs was
done in several phases where more and more details were
added. During this process the process, e.g. the application,
could be simulated in the DCR drawing tool, as well as in the
system itself. This helped end-user understand the process and
facilitated discussions on how the process should work and not
work.

Despite a detailed analysis and many end user reviews, it
(of course) turned out, that a requirement was still lacking
in the designed and implemented process after delivery. The
requirement that any modification to an account number re-
quires accountant approval before payouts can be done was
simply missing. Adding this requirement to the graph turned
was very easy, as we just needed to adjust the DCR graph
by adding the database trigger event event Account changed
with a response relation to the approve account event, add
logic to the customer object in the database to monitor changes
to account numbers, and firing the Account changed if this
occurs. Database triggers are simple to create and understand
for such requirements and avoiding having the treatment of
account numbers in the graph itself.

C. Understandability

DCR graphs as supported in the current editor are hard to
read and edit. Support for compositional models and zooming
in and out in details are needed for end users. Also, better
descriptions of the DCR primitives and a modelling method-
ology is needed. The condition relation is easily understood,
and the required response relation is also explainable. For the
present case, milestones, inclusion and exclusions and also the
nesting of events in phases were experienced as hard to explain
and understand. Some other graphical representation for many-
to-many relations than the nesting is likely needed. We also
believe that it would be very useful if the system supported
typical (happy) paths through the process, analalogous to a
navigation system suggesting possible routes to a driver. The
system should be able of adjusting the proposed paths to
changing needs of the user, similar to how a navigation system
can adapt to when a driver wants to make a detour to a gas
station.

VII. CONCLUSION AND FUTURE WORK

We have described an industrial project delivering an
adaptive case management solution based on the Exformatics
standard system and processes described as DCR Graphs.

DCR graphs have been a very valuable component to
ensure Exformatics ACM can support the unique processes
required by the foundation as well as run-time modifications to
the processes as outlined in the payment event pattern. Rather
than creating custom code the DCR graph describe the business
rules and dependencies which enables us to support unique
business requirements using a standard solution. As a product
company this is important, as managing several code bases
with unique customer requirements is too expensive.

The entire delivery was made in less than 4 months, from
the first presentation of the requirement specification to the sys-
tem as described in the present paper. The successful delivery

80

demonstrated some of the claimed benefits of DCR Graphs
in practice, in particular: 1) They support agile, rule based
modelling that can be easily adapted when new requirements
are discovered during and after delivery, 2) they support run-
time addition of sub-processes which can be utilised for e.g.
customised payment schemes, and 3) the resulting processes
are allow maximal flexibility at run-time since they do not
constrain the flow unnecessary - if some constraints are found
unnecessary, they can simply be removed. The case study
also demonstrated areas for future work and improvement, in
particular: 1) support for dynamic creation of sub-processes
should be part of the formal model, 2) if sub-processes are
included in the model, formal verification of processes would
me more likely to be possible, but we need to deal with
the fact that the model becomes Turing-expressive, 3) the
modelling notation, its graphical visualisation and design tools
need to be improved to make the models more comprehensible
and ultimately allow the business users to adapt processes
themselves in a robust way. Enabling business users to take
ownership of their processes, enables businesses to develop
without changing the IT systems supporting the processes. As
business processes evolves all the time we need to support
such changes. Having to await a new product version from a
vendor often does not suit the business requirement. Customer
development does support the requirements either, as their
require IT people for development and maintenance, is very
time consuming and expensive.

ACKNOWLEDGMENT

This work was supported in part by the Computational
Artifacts project (VELUX 33295, 2014-2017), by the Danish
Agency for Science, Technology and Innovation, by Exformat-
ics A/S, and by the IT University of Copenhagen. The authors
would like to thank VisualIT for their contribution to the initial
requirement elucidation.

REFERENCES

[1] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Springer,
2012.

[2] Object Management Group BPMN Technical Committee, “Business
Process Model and Notation, version 2.0,” http://www.omg.org/spec/
BPMN/2.0/PDF.

[3] W. M. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM 2006, ser. LNCS, vol.
4184. Springer, 2006, pp. 1–23.

[4] W. van der Aalst, M. Pesic, H. Schonenberg, M. Westergaard, and F. M.
Maggi, “Declare,” Webpage, 2010, http://www.win.tue.nl/declare/.

[5] T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based work-
flow as distributed dynamic condition response graphs,” in PLACES, ser.
EPTCS, vol. 69, 2010, pp. 59–73.

[6] R. R. Mukkamala, “A formal model for declarative workflows: Dy-
namic condition response graphs,” Ph.D. dissertation, IT University of
Copenhagen, June 2012.

[7] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath, S. Hobson,
M. H. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculı́n,
“Introducing the guard-stage-milestone approach for specifying business
entity lifecycles,” in WS-FM, ser. LNCS, vol. 6551. Springer, 2010,
pp. 1–24.

[8] H. A. Reijers, T. Slaats, and C. Stahl, “Declarative modeling-an
academic dream or the future for bpm?” in Proceedings of 11th In-
ternational Conference on Business Process Management (BPM 2013),
2013, pp. 307–322.

[9] T. T. Hildebrandt, R. R. Mukkamala, and T. Slaats, “Safe distribution
of declarative processes,” in SEFM, ser. LNCS, vol. 7041. Springer,
2011, pp. 237–252.

[10] T. Slaats, R. R. Mukkamala, T. T. Hildebrandt, and M. Marquard,
“Exformatics declarative case management workflows as DCR graphs,”
in BPM, ser. LNCS, vol. 8094. Springer, 2013, pp. 339–354.

[11] T. T. Hildebrandt, M. Marquard, R. R. Mukkamala, and T. Slaats,
“Dynamic condition response graphs for trustworthy adaptive case
management,” in OTM Workshops, ser. LNCS, vol. 8186. Springer,
2013, pp. 166–171.

[12] T. Slaats, “DCR graph editor,” 2013, http://www.itu.dk/research/models/
wiki/index.php/DCR Graphs Editor.

[13] R. R. Mukkamala, T. Hildebrandt, and T. Slaats, “Towards trustworthy
adaptive case management with dynamic condition response graphs,”
in EDOC. IEEE, 2013, pp. 127–136.

[14] S. Debois, T. Hildebrandt, and T. Slaats, “Hierarchical declarative mod-
elling with refinement and sub-processes,” Submitted for publication,
2014.

[15] S. Debois, “DCR exploration tool v.6,” IT University of Copen-
hagen, 2014, http://www.itu.dk/research/models/wiki/index.php/DCR
Exploration Tool.

[16] S. Debois, T. Hildebrandt, and T. Slaats, “Dynamic conditions, restless
events and reproduction: ω-regular languages and beyond,” Submitted
for publication, 2014.

81

5 Dynamic Condition Response Graphs with Time
and Data

82

Contracts for Cross-organizational Workflows as Timed
Dynamic Condition Response Graphs

Thomas Hildebrandta,1, Raghava Rao Mukkamalaa, Tijs Slaatsa,b, Francesco
Zanittia

aIT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
bExformatics A/S, 2100 Copenhagen, Denmark

Abstract

We conservatively extend the declarative Dynamic Condition Response (DCR)
Graph process model, introduced in the PhD thesis of the second author, to allow
for discrete time deadlines. We prove that safety and liveness properties can be
verified by mapping finite timed DCR Graphs to finite state transition systems.
We exemplify how deadlines can introduce time-locks and deadlocks and violate
liveness. We then prove that the general technique for safe distribution of DCR
Graphs provided in previous work can be extended to timed DCR Graphs. We
exemplify the use of timed DCR Graphs and the distribution technique in praxis
on a timed extension of a cross-organizational case management process arising
from a previous case study. The example shows how a timed DCR Graph can be
used to describe the global contract for a timed workflow process involving several
organizations, which can then be distributed as a network of communicating timed
DCR Graphs describing the local contract for each organization.

Key words: Time, Contracts, Declarative process models, Cross-organizational
workflow, Safety, Liveness

Email addresses: hilde@itu.dk (Thomas Hildebrandt), rao@itu.dk (Raghava Rao
Mukkamala), tslaats@itu.dk (Tijs Slaats), frza@itu.dk (Francesco Zanitti)

1Authors listed alphabetically. This research is supported by the Danish Research
Agency through the Trustworthy Pervasive Healthcare Services project (grant #2106-07-0019,
www.trustcare.eu), an Industrial PhD grant, and the Genie Project (grant # 2106-080046)

Preprint submitted to Logic and Algebraic Programming November 13, 2012

83

1. Introduction

The idea of constructing process-aware information systems [1] to support
correct execution and analysis of workflows based on explicit models of the pro-
cesses dates back to the work on office-automation [2, 3, 4, 5] in the late 70ties.
The early work was influenced by the Petri Net process model [6], which has also
heavily influenced subsequent process modeling standards such as UML activity
diagrams [7, 8] and BPMN [9] and the work on formal semantics and analysis of
workflow and business processes (e.g. [10, 11, 12, 13]).

The heavy influence of the Petri Net model is quite natural. It is the first
process model explicitly representing the concurrent execution of activities, it has
a formal semantics supporting analysis and verification, and it has an intuitive
graphical notation. To briefly recall, a Petri Net is a directed graph with nodes
alternating between transitions and places, and a marking assigning zero or more
tokens to each place. A transition is enabled if all places connected to it by an
incoming edge is marked by at least one token. If an enabled transition is fired,
one token from each place connected by an incoming edge is removed and one
token is added to each place connected by an outgoing edge. Firing a transition
thus represents the execution of an activity and the tokens represent resources
needed to execute activities.

(a) First A, then B (b) A is a condition for B (c) B is a response to A

Figure 1: Condition and response relations as Petri Nets

However, the notion of places and tokens in the Petri Net model is intrinsically
linear and imperative. It describes a way to implement dependencies between
activities where the ability to redo an activity must be explicitly modeled. This
has been recognized, in particular in the incarnation of BPMN, to increase the risk
of over-specification and be best suited for processes that follow a strict flow of
control [14, 15]. As an example consider the property activity A is a condition for
activity B, i.e. an execution of B must be preceded by an execution of A in the

2

84

past. The Petri Net in Fig. 1(a) is likely to be the first choice of representation, but
it really describes the more rigid implementation that activity A can be executed
first (and only once) and then activity B can be executed (and only once). The
Petri Net in Fig. 1(b) describes the general property, if all markings are allowed as
accepting (terminating). The dual property, that activity B is a response to activity
A, i.e. an execution of A must be followed by an execution of B at some point in
the future, is also implemented by the Petri Net in Fig. 1(a). However, in order
to allow all possible executions one needs a less restrictive Petri Net as the one in
Fig. 1(c) with the initial marking being the only accepting marking.

As an alternative, declarative models such as temporal logics like LTL [16] or
CTL [17] can be employed in order to maintain more flexibility of the execution
and provide a specification of the dependencies between activities which abstracts
from any particular implementation. This can in particular be used as a contract
for a subsequent implementation or compliance verification [18]. Temporal logics
are however in general considered to be difficult to understand by end-users and
typically proposed to be replaced by patterns of properties, such as the condition
and response patterns considered in Fig. 1(b) and Fig. 1(c) [19, 20, 18]. However,
before the contract can be checked for a workflow process it is usually required
that the contract is rewritten either to a particular (normal) form [21] or translated
to an (imperative) automaton [20, 22, 23], which is difficult to understand and
relate to the original contract.

This motivates finding a declarative process model which both can be under-
stood by end-users of workflow management systems, e.g. by capturing patterns
in a direct way, and supports verification and monitoring without rewriting the
process. Dynamic Condition Response (DCR) Graphs [24, 25, 26, 27] is a can-
didate for such a declarative process language developed in the PhD project [28]
of the second author as part of the Trustworthy Pervasive Healthcare Services
(TrustCare) [29] research project.

From a practical perspective, DCR Graph model generalizes and formalizes
the core primitives of the declarative Process Matrix model [30], developed, patented
and used successfully for more than a decade by Resultmaker [31], the industrial
partner of the project. The goal of the formalization was to provide the basis for
formal verification and safe distributed execution of flexible, cross-organizational
workflow processes as found in the healthcare sector.

From a technical perspective, a DCR Graph is a directed graph described by
a 9-tuple (E,M,→•, •→,→�,→+,→%, L, l). The nodes of the graph are given
by the set E of events. The event represents that some activity, as indicated by
the labeling function l : E → P(L), happens in the workflow. The edges of the

3

85

(a) DCR Graph condition relation (b) DCR Graph response relation

Figure 2: Condition and response relations in DCR Graphs

graph are given by five relations: The condition (→•), response (•→), milestone
(→�), include(→+), and exclude (→%) relation respectively. The condition and
response relations thus directly captures the condition and response patterns as
shown by the DCR Graphs in Fig.1 . Before explaining the milestone relation,
it is helpful to take a look the 2nd element of the DCR Graph tuple, which is
the marking M. The marking consists of a triple of sets of events (Ex,Re, In)
representing the state of the process. The set Ex ⊆ E of executed events records
which events have been executed in the past. The set Re ⊆ E of response events
records which events are required to be executed (i.e. responses) in the future in
order for the entire execution to be accepting. The milestone relation means that
an event can not execute while another event is pending response, it is particularly
useful for descibing that a process can not continue on to a new phase while a
previous phase hasn’t been completed. Finally, the set In ⊆ E of included events
records the events which are currently included. If e →% e′ then e′ is removed
from the set In when e is executed, and if e →+ e′ then e′ is added to the set In
when e is executed. This notion of dynamic inclusion and exclusion of events is
the key new ingredient of DCR Graphs compared to other declarative approaches.
Only currently included events in Re are required in order for the execution to be
accepting, and only included condition events e′ of an event e need to be in the set
Ex in order for the event e to be enabled.

The markings can also be seen as the state of a (kind of Kripke) logical pro-
gram given by the DCR Graph [32]. Then Ex is the set of basic facts that has been
proven, Re is what has to be proven (possibly again) or excluded from the world to
complete the proof, and In is the set of facts that are relevant in the current world.
The markings also form the states of a Büchi-automata representation of DCR
Graphs [25], which allows verification of safety and liveness properties using the
SPIN model checking tool [28, 33].

The main new contribution of the present paper is to conservatively extend
the DCR Graph model to allow for (discrete) time deadlines, while preserving the

4

86

Propose

dates-LO
Accept

LO

Lo

Propose

dates-DA

Accept

DA

Lo

DA DA+

+

%

%

Hold

meeting

LOOpen

case

U

3

3

3

14

ω

ω

Extend

Deadline

LO

14

14

%

%

%

Close

case

U
+

Update

Case

U+

%

Figure 3: A timed DCR graph describing the global contract for a cross-organizational case man-
agement system.

simple operational semantics and that safety and liveness properties of the mod-
els can be formally verified by mapping the graphs to finite state Büchi-automata.
Fig. 3 shows an example of a timed DCR Graph which we will use as exam-
ple in the paper. The graph extends an untimed DCR Graph from a case study
described in [34] which captures the global requirements of a distributed, cross-
organizational case management system being developed by Exformatics A/S.
The system spans three different types of organizations. The first is the unions
for employees in Denmark, which creates, closes and updates cases on behalf of
their members (represented by the events labelled with the U and respectively
Open case, Close case and Update Case. The two other organizations are
respectively the umbrella organization for the unions (LandsOrganisationen, LO)
and the umbrella organization for the employers (Dansk Arbejdsgiverforening,
DA). When a case is created by a union, LO and DA must agree on a date for a
meeting and hold the meeting within 14 days from when the case was created.
The deadline is expressed by the number 14 attached to the response relation from
Open case to Hold meeting. If the meeting is not ready to be held after 14
days however, the deadline can be extended by LO by executing the event Extend
Deadline. However, this event only becomes enabled 14 days after the case has
been created, which is represented by the number 14 attached to the condition
relation from Open case and Extend Deadline.

As described in [27], the DCR Graphs model admits a very general technique
for distributing a graph describing a global contract for e.g. a cross-organizational
process, as a network of synchronously communicating graphs describing the con-

5

87

tracts for each local organization, and which combined describe the same process
as the global contract. Another new contribution of the present paper is to extend
this technique to timed DCR Graphs and provide a detailed proof of the correct-
ness of the distribution technique. It is the first step of the further development
of the DCR Graph model and its use for specification and safe execution of dis-
tributed, cross-organizational workflow processes to be carried out in the recently
initiated industrial PhD project of the third author.

The rest of the paper is structured as follows. In Sec. 2 below we briefly survey
related work. In Sec. 3 we first recall the formal definition of DCR Graphs and
their semantics, and then proceed to define the extension to timed DCR Graphs.
We then in Sec. 4 define and exemplify timed notions of safety and liveness for
timed DCR Graphs. In Sec. 5 we exemplify and provide the technique for dis-
tributing a global timed DCR Graph, extending the technique for un-timed DCR
Graphs given in [27]. Finally we conclude and comment on future work in Sec. 6.

2. Related Work

The DCR Graph model and graphical representation is similar to the Declare
workflow language [35, 20]. Indeed the graphical representation of events and
condition and response relations are the same in DCR Graphs and Declare. How-
ever, the two approaches differ in a crucial way. While the Declare model includes
a fairly rich set of patterns as relations between events based on the patterns iden-
tified in [19], the DCR Graph model in addition to the condition and response
relations only allows the milestone relation and the dynamic inclusion and ex-
clusion relations. Still, the DCR Graphs model is more expressive: It allows to
express all ω-regular languages [28], while Declare only allow expressing prop-
erties covered by finitary LTL. Moreover, Declare models are translated to either
LTL or a new notion of colored automata [36] before they are verified or executed.
The DCR Graph model directly supports execution of the process model based on
the simple notion of markings of the graph.

There are many researchers [10, 11, 37, 12, 13, 38, 39] who have explicitly
focussed on the problem of verifying the correctness of inter-organizational work-
flows based on variants of Petri nets. In [10], message sequence charts are used
to model the interaction between local workflows modeled as Petri nets. In [11]
Kindler et. al. follows a similar approach, using a set of scenarios given as se-
quence diagrams to specify the interactions. Criteria of local soundness guarantee
the global soundness of an inter-organizational workflow. In [37], so-called Query
Nets based on predicate/transition Petri nets are used to guarantee global termina-

6

88

tion. Besides the use of Petri nets, a key difference between the present paper and
the work in [10, 11, 37] is that while we take a top down approach and synthesize
models of the local workflows from a model of the global workflow, the latter
work take a bottom up approach, assuming that the models of the local workflows
are given.

A top down approach is taken in [13, 38], where a shared public view of an
inter-organizational workflow given as a workflow net is partioned among the par-
ticipating entities. A notion of projection inheritance is used to generate a private
view that is a subclass to the relevant public view and guarantee deadlock and
live-lock freedom. A more liberal and weaker notion than projection inheritance
is used in [12] to guarantee weak termination in multiparty contracts based on
open nets.

Modeling global behavior as a set of conversations among participating ser-
vices has been studied by many researchers [40, 41, 42, 43, 44, 45] in the area
business processes. An approach based on guarded automata studied in [40], for
the realizability analysis of conversation protocols, whereas the authors in [41]
used colored petri nets to capture the complex conversations. Similarly, but using
process calculus to model service contracts, Bravetti-Zavattaro proposed confor-
mance notion for service composition in [44] and further enhanced their correct-
ness criteria in [45] by the notion of strong service compliance. The synthesis of
local components from a global model has also been researched for process calcu-
lus formalizations of the imperative choreography language WS-CDL in the work
on structured communication-centred programming for web services by Carbone,
Honda and Yoshida [46]. To put it briefly, the work formalizes the core of WS-
CDL as the global process calculus and defines a formal theory of end-point pro-
jections projecting the global process calculus to abstract descriptions of the be-
havior of each of the local ”end-points” given as pi-calculus processes typed with
session types.

Also researchers [47, 48, 49, 50] in the web services community have been
working on web service composition and decentralized process execution using
BPEL [51] and other related technologies to model web services. A technique
to partition a composite web service using program analysis is studied in [48]
and [49] explore decomposition of a business process modeled in BPEL. Using
a formal approach based on I/O automata representing the services, the authors
in [50] study the problem of synthesizing a decentralized choreography strategy,
that will have optimal overhead of service composition in terms of costs asso-
ciated with each interaction. In [52, 53, 54] foundational work is presented on
synthesizing distributed transition systems from global specification for the mod-

7

89

els of synchronous product and asynchronous automata[55]. In [54] structural and
behavioral characterizations of the synthesis problem for synchronous and loosely
cooperating communication systems are given, based on three different notions of
equivalence: state space, language and bisimulation equivalence. Further Castel-
lani et. al. [52] characterizes when an an arbitrary transition system is isomorphic
to its product transition systems with a specified distribution of actions and they
have shown that for finite state specifications, a finite state distributed implemen-
tation can be synthesized. Complexity results for distributed synthesis problems
for the three notions of equivalences were studied in [53].

A methodology for deriving process descriptions from a business contract for-
malized in a formal contract language is studied in [56], while in [57] is proposed
an approach to extract a distributed process model from collaborative business
process. In [58, 47] is proposed a technique for flexible decentralization of a
process specification with necessary synchronization between the processing en-
tities using dependency tables, whereas the authors in [59] present a framework
for optimizing the physical distribution of workflow schemas based on families of
communicating flow charts.

Common to all the approaches discussed above are that they are confined to
imperative process models such as Petri nets, workflow/open nets and automata.
To the best of our knowledge, there exists very few works [60, 61] that have stud-
ied the synthesis problem in declarative modeling languages and none where both
the global and local processes are given declaratively. Fahland [60] studies top
down synthesis of Petri Net workflows from a limited subset of the declarative
Declare/DecSerFlow [20] model, while Montali [61] studies the bottom-up com-
position of Declare [35] models with respect to conformance with a given chore-
ography.

None of the work above study synthesis or conformance of cross-organizational
workflow with time constraints. [62] provides a good overview of various tem-
poral logics that have been used for specification of real-time systems. Similar to
the extension to DCR Graph proposed in the present paper, Time Petri nets [63]
extend regular Petri nets by allowing transitions to be labelled with time bounds
0 ≤ a ≤ b∧a 6=∞, such that a transition can only fire after a delay of a time steps
after it has been enabled last and must either fire or be disabled before b time has
passed. Time Petri nets have been studied as a formalism to model and verify time
dependent concurrent systems in [64]. In [65, 66] the properties of reachability,
boundedness and liveness for time Petri nets are studied, while [67] defines the
semantics of time Petri nets in terms of timed automata. Time Workflow nets, a
subclass of time Petri nets, have been introduced in [68] as a method for modeling

8

90

time management in workflow processes. Timed Petri nets [69] are a variation
of Petri nets where a (rational) time duration is assigned to every transition and
transitions are required to fire as soon as they become enabled. Timed Petri nets
are mainly used for performance evaluation [70]. Timed-arc Petri nets [71, 72]
are another variation of Petri nets where tokens are annotated with an age and
arcs from places to transitions are labelled with a time interval. The tokens that a
transition can consume are then limited to those whose age falls within these time
intervals. For Timed-arc Petri nets there is no notion of urgency. Transitions are
neither required to fire when adequate tokens are available nor when those tokens
are about to expire.

3. Timed Dynamic Condition Response Graphs

We employ the following notations in the rest of the paper.
Notation: We write∞ for the set of finite ordinals and the least infinite ordinal ω.
For an ordinal k ∈ ∞ we write [k] for the (possibly infinite) set {i | 0 ≤ i < k}.
For a set E we write P(E) for the power set of E (i.e. set of all subsets of E).
For a binary relation→⊆ E × E and a subset ξ ⊆ E of E we write→ξ and ξ→
for the set {e ∈ E | (∃e′ ∈ ξ | e→ e′)} and the set {e ∈ E | (∃e′ ∈ ξ | e′ → e)}
respectively, and abuse notation writing → e and e → for → {e} and → {e}
respectively when e ∈ E.

We first recall in Def. 3.1 the formal definition of DCR Graphs and their se-
mantics.

Definition 3.1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple
(E,M,→•, •→,→�,→+,→%, L, l), where

(i) E is a set of events (or activities),

(ii) M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking

(iii) →•, •→,→�,→+,→%⊆ E × E is the condition, response, milestone, in-
clude and exclude relation respectively.

(iv) L is the set of labels and l : E→ P(L) is a labeling function mapping events
to sets of labels.

We define that an event e ∈ E is enabled, written M `G e, if e ∈ In ∧ (In∩ →•e
) ⊆ Ex and (In∩ →�e) ⊆ E\Re.
Finally, we define the result of executing an event e as (Ex,Re, In) ⊕G e =def(
Ex ∪ {e}, (Re \ {e}) ∪ e•→, (In \ e→%) ∪ e→+

)
.

9

91

Intuitively, the marking of a DCR Graph records the state. An event is then e
is enabled in a marking, if it is included and every event which is a condition for
e is either excluded or executed or, and every event which is a milestone for e is
either excluded or not required as a response, i.e. it is in a completed state. Below
we give a simple example of a DCR Graph and execution of an event based on the
graph in Fig. 3.

Example 3.1. As an example consider the underlying (untimed) DCR Graph G
of the timed DCR Graph Gt in Fig. 3: the initial marking of G is M = (∅, ∅,E \
{Accept LO,Accept DA,Close Case,Update Case}). The only enabled event
is Open case, all other events are either blocked through the condition relation,
or not in the set of included events. After executing Open case, the new marking
M′ ofG becomes: M′ = M⊕GOpen case = ({Open case}, {Propose dates-LO,
Hold meeting,Close Case},E \ {Accept LO,Accept DA}). Open case is
added to the set of executed events, Close Case, Propose dates-LO and Hold
meeting are responses to Open case and therefore added to the set of pending
responses and finally Close case and Update Case are added to the set of in-
cluded events through the include relation from Open case. The enabled events
for M′ are Extend Deadline, Propose dates-LO, Update Case and Close
case. Note that the event Open case is not enabled because there is a milestone
relation from Close case, and Close case is in the response set. In other words,
the case has to be closed by the union before it can be opened again.

We now proceed to define the conservative extension of DCR Graphs to allow
(discrete) time constraints. The aim is to allow modeling interesting timed systems
while preserving that finite DCR Graphs have tractable finite state semantics and
the technique for distribution of DCR Graphs still applies. The basic idea is to
annotate response relations with discrete (possibly infinite) time constraint k ∈ ∞
and condition relations with a finite time constraint j ∈ ω. A response relation

e
k•→ e′ then specifies that the response event e′ must happen within k time steps

after the last time e happened. The condition relation e
j→• e′ specifies that the

last time the condition event e happened must be at least j time steps before e′

can happen. That is, the time constraint e
ω•→ e′ means that the event e′ should

happen eventually after e happens, and the time constraint e
0→• e′ means that

event e should have happened before e′ can happen, corresponding to respectively
the response and condition constraints in un-timed DCR Graphs. For this reason
we often write e •→ e′ for e

ω•→ e′ and e→• e′ for e
0→• e′.

10

92

To be able to evaluate the timed constraints we extend markings to include
two functions, a function tex : Ex→ ω recording the time since the event was last
executed, and tre : Re→∞ recording the time deadline of the pending responses.

If there exists a maximal condition deadline, which is always the case if the
timed DCR Graph is finite, we say that it is bounded. For bounded timed DCR
Graphs we only need to record the time since last execution if it is below the max-
imal time constraint and otherwise record it as the maximal condition deadline.

Definition 3.2. A Timed Dynamic Condition Response Graph (Timed DCR Graph)
G is a tuple (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l), where

(i) Mt = (M, tex, tre) ∈ M(G) is the timed marking, forM(G) =def (P(E)×
P(E)× P(E))× Ex→ ω × Re→∞ if M = (Ex,Re, In),

(ii) (E,M,→•, •→,→�,→+,→%, L, l) is a DCR Graph, referred to as the un-
derlying DCR Graph,

(iii) tex : Ex→ ω is the time since the event happened,

(iv) tre : Re→∞ is the maximal time deadline of the required response,

(v) tc : (→•)→ ω is the (minimal) required time delay since the condition event
happened,

(vi) tr : (•→)→∞ is the maximal time deadline of the response event.

We write e
k•→ e′ for e •→ e′ and tr(e, e′) = k and similarly write e

k→• e′ for
e→• e′ and tc(e, e′) = k. We define the maximal condition delay as maxcG =def

sup{k | ∃e, e′ ∈ E.e
k→• e′} and the minimal included response deadline by

minrG = min{tre(e) | ∃e ∈ Re ∩ In}.

Notation: We introduce the following shorthand notation for annotating the events
in the executed and response sets with the their timestamp according to respec-
tively tex and tre: For a marking Mt = (({e1, e2}, {e2, e3}, In), tex, tre) we write
({e1 : tex(e1), e2 : tex(e2)}, {e2 : tre(e2), e3 : tre(e3)}, In).

In Def. 3.3 below we formalize when events are enabled and the result of
executing an event in a timed DCR Graph. An event e is enabled in a timed DCR
Graph if it is enabled in the underlying un-timed DCR Graph and for all condition

events e′
k→• e the time tex(e′) since the last execution of e′ is greater or equal than

11

93

k. If an event e is executed the sets (Ex,Re, In) are updated as for the un-timed
DCR Graphs, and in addition, the execution time for e is set to 0 and all response

deadlines for events e′ where e
k•→ e′ are set to k.

Note that the execution of an event does not advance time. Instead we intro-
duce the notion of time advance steps n ∈ ω, which increases the execution time
of events in Ex and decreases the response deadlines for events in Re. A time
advance step n is only enabled if n ≤ minrG, that is, all currently included re-
sponse deadlines are greater than or equal to n. This means that time can not pass
a response deadline of an included event, but it may pass a response deadline of
an excluded event. In the latter case, the deadline becomes zero.

Definition 3.3. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l), and timed marking Mt =

(
(Ex,Re, In), tex, tre

)

we define that an event e ∈ E is enabled, written Mt `G e, if M `G′ e, where G′ is

the underlying un-timed DCR Graph ofG and ∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex(e

′).
Moreover, for n ∈ ω we define that the time advance step n is enabled, written
Mt `G n if minrG ≥ n.

We define the result of executing an event e as Mt ⊕G e =def

(
(Ex,Re, In)⊕G

e, t′ex, t
′
re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We define the result of advancing time with n by Mt ⊕G n =def

(
(Ex,Re, In),

tex⊕n, tre	n
)
, where tex⊕n(e) =def min{tex(e)+n,maxcG} and tre	n(e) =def

max{tre(e)− n, 0}.

Example 3.2. As an example, consider again the Timed DCR Graph Gt from
Fig. 3: the initial marking of Gt is Mt = (∅, ∅,E \ {Accept LO,Accept DA,
Close Case,Update Case}), note that because of our shorthand notation and
the empty Ex and Re sets the marking looks the same as the marking M of the
underlying DCR Graph G. The only enabled event for the initial marking Mt

is Open case. Executing Open case results in the marking Mt
′ = Mt ⊕G

Open case = ({Open case : 0}, {Propose dates-LO : 3,Hold meeting :

12

94

14,Close Case : ω},E \ {Accept LO,Accept DA}). Except for the timed part
Mt’ is the same as M’ that resulted from executing Open case on the underlying
DCR Graph G. In the timed marking we also record the time that has passed
since Open case was executed and the deadlines for which the responses on
Propose dates-LO, Hold meeting and Close case need to be satisfied. Note
that unlike the untimed example Extend Deadline is not enabled because of the
time constraint on the condition.

The timed response on Propose dates-LO limits the time to advance from the
marking Mt’ to a maximum of 3 steps. Doing a time advance step of size 3 results
in the new marking Mt

′′ = Mt
′⊕G3 = ({Open case : 3}, {Propose dates-LO :

0,Hold meeting : 11,Close Case : ω},E \ {Accept LO,Accept DA}). We
can now no longer advance time before Propose dates-LO has been executed or
excluded.

It follows directly from the definition above that if an event is enabled in a
timed DCR Graph then it is also enabled in the underlying (un-timed) DCR Graph.
Moreover, the result on the sets (Ex,Re, In) in the marking when executing an
event in a timed DCR Graph is the same as when it is executed in the underlying
DCR Graph and time advance steps do not change the marking of the underlying
DCR Graph. Conversely, a DCR Graph G can be regarded as a timed DCR Graph
Gt havingG as the underlying DCR Graph and all condition delays (and execution
times in the marking) 0 and all response deadlines (in the graph and the marking)
ω. It then holds that, if an event is enabled in the DCR Graph G, then it is also
enabled in the corresponding timed DCR Graph Gt. Moreover, the execution
times and response deadlines in the marking will always be 0 and ω respectively.

We define in Def. 3.4 timed (must) executions and the corresponding labelled
transition system for timed DCR Graphs as for un-timed DCR Graphs, except that
executions can now also contain time advance steps. Moreover, for an execution
to be accepting it is required that it is accepting in the underlying DCR Graph
and moreover contains infinitely many time advance steps. Thus, an accepting
execution may contain only finitely many events, but then it will after the last
event contain an infinite sequence of time advance steps. It follows directly that
(accepting) executions in a timed DCR Graph correspond to (accepting) execu-
tions in the underlying DCR Graph (where the time advance steps are removed).
Moreover, an (accepting) execution in a DCR Graph G will have infinitely many
corresponding (accepting) executions in the corresponding timed DCR Graph Gt

obtained by interleaving the untimed execution with any infinite sequence of time
advance steps.

13

95

Definition 3.4. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) we define a timed execution σM of G of length
k ∈ ∞ from M to be a (finite or infinite) sequence of tuples σ : [k] → M(G) ×
(E× L ∪ ω)×M(G) such that if for i ∈ [k],

• σ(i) = (Mi, ei, ai,M
′
i) ∧ ai = l(ei) ∧Mi `G ei ∧M′i = Mi ⊕G ei or

• σ(i) = (Mi, n,M
′
i) ∧Mi `G n ∧M′i = Mi ⊕G n

and M = M0 and ∀i ∈ [k − 1].M′i = Mi+1.
We say the execution σ is a must execution if ∀i ∈ [k].σ(i) = (Mi, ei, ai,M

′
i) =⇒

ei ∈ Ini ∩ Rei and accepting if

(i) ∀i ∈ [k].
(
∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j)

)
and

(ii) ∀i ∈ ω.∃k ∈ ω.∃j > i.σ(i) = (Mi, k,M
′
i)

where Mi = ((Exi, Ini,Rei), texi, trei) and M′j = ((Ex′j, In
′
j,Re′j), t

′
exj, t

′
rej). Let

exeMt(G), mexeMt(G), accMt(G)and maccMt(G) denote respectively the set of all
executions, all must executions, all accepting executions, and all accepting must
executions of G starting in marking Mt.

We say that a marking M′ is reachable inG (from the marking M) if there exists
a finite execution ending in M′ and letMM→∗(G) denote the set of all reachable
markings from M.

We define the corresponding labeled transition system for G as TS(G) =
(M(G),Mt, EL(G),→) where EL(G) = E × L ∪ ω is the set of labels of the
transition system, Mt is the initial marking, and→⊆ M(G) × EL(G) ×M(G)

is the transition relation defined by M
φ−→ M′ if there exists a timed execution σM

of G of length 1 from M such that σ(0) = (M, φ,M′).
Finally we define a zeno-run to be an infinite run with only finitely many time

steps.

It is worth noting that if the DCR Graph is finite, the reachable set of states for
the corresponding labelled transition system will be finite.

Lemma 3.1. The LTS for any finite timed DCR Graph G has a finite number of
reachable states.

14

96

Proof The sets of executed events, pending responses and included events are
limited to the power set of the finite set of events since (Ex,Re, In) ∈ (P(E) ×
P(E)×P(E)). The execution times of executed events are limited to the maximum
condition time, i.e. ∀e ∈ Ex | tex(e) ∈ [0 . . .maxcG]. The response times of
pending responses are limited to the maximum response time or ω, i.e. ∀e ∈ Re |
tre(e) ∈ [0 . . .max{k | ∃e, e′ ∈ E.e

k•→ e′}] ∪ ω.

4. Safety and Liveness Properties

In this section we define safety and liveness properties of timed DCR Graphs
and prove they are decidable for finite, bounded timed DCR Graphs.

First we identify the unwanted markings, referred to as time-locked, from
where time can no longer progress. Note that zeno runs may still exist from a
time-locked marking.

Definition 4.1. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) with a timed marking Mt =

(
(Ex,Re, In), tex, tre

)

we define that Mt is time-locked , written TL(Mt), if ∀Mt
′ ∈ MMt→∗ .¬Mt

′ `G 1,
meaning that there is no reachable marking from which time can progress. We
define that G is timelock free, if ∀M′ ∈ MM→∗ .¬TL(M′), meaning that there
exists no reachable time-locked marking.

Proposition 4.1. Time-lock and time-lock freedom is decidable for finite bounded
DCR Graphs.

Proof To determine if a marking Mt is time-locked, we must check for the exis-
tence of a transition labelled by a time-step from any of the reachable markings
from Mt, which is finite by Lem. 3.1. To determine time-lock freedom for a graph
G we just have to check every of the finitely many reachable markings from the
initial marking if it is time-locked.

A timed DCR Graph is said to be deadlock free if and only if for any reachable
marking, there is either an enabled event or no included required responses. Fur-
thermore, it is to be strongly deadlock free if and only if for any reachable marking,
there is either an enabled event which is also a required response or no included
required responses.

Definition 4.2. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) with a timed marking Mt =

(
(Ex,Re, In), tex, tre

)

15

97

we define that Mt is in deadlock, written DL(Mt), if ∀e ∈ E.Mt 6`G e∧(In∩Re 6= ∅)
and that Mt is in strong deadlock, written SDL(Mt), if ∀e ∈ Re.Mt 6`G e ∧ (In ∩
Re 6= ∅) We define that G is deadlock free, if ∀Mt

′ ∈ MMt→∗ .¬DL(Mt
′) and we

say that G is strongly deadlock free, if ∀Mt
′ ∈MMt→∗ .¬SDL(Mt

′).

Proposition 4.2. Deadlock and strong deadlock freedom is decidable for finite
DCR Graphs.

Proof Follows easily from the definition and Lem. 3.1.

A timed DCR Graph is said to be live if and only if, in every reachable mark-
ing, it is always possible to continue along an accepting run. We say it is strongly
live if and only if, from any reachable marking there exists an accepting must
execution.

Definition 4.3. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) we define that the G is live, if ∀M′ ∈MM→∗ .
accM′(G) 6= ∅, and strongly live, if ∀M′ ∈MM→∗ .maccM′(G) 6= ∅,

Proposition 4.3. Liveness and strong liveness is decidable for finite DCR Graphs.

Proof (Outline) First of all note that it is sufficient to consider the sub graph
where all time steps increment the time with 1. In [25, 28] is given a construction
of a Büchi-automaton from an un-timed DCR Graph which accepts the same exe-
cutions as the DCR Graph and essentially having markings of the DCR Graph as
states. This construction can be extended to timed DCR Graphs by adding the time
functions to the markings (increasing the number of states by a constant factor),
adding time steps and adding new marked copies of all states which are states
reached by a time advance step from a state which would have been accepting for
the underlying un-timed DCR Graph. These marked states will be the accepting
states of the automata. The definition guarantees that an execution is accepting if
and only if does not leave a response pending and included continuously (as for
the un-timed DCR Graphs), and it does make a time step infinitely often. This is
the definition of acceptance for timed DCR Graphs. Decidability of liveness and
strong liveness then follows from the decidability of language emptiness of finite
Büchi-automata.

Fig. 4(a) shows a timed DCR Graph which, depending on the time constraints
as shown in table 1, may have time-locks, deadlocks and violate liveness. The

16

98

(a) (b)

Figure 4: Examples of time-lock and (strongly) deadlock freedom in timed DCR Graphs

Time-lock free Deadlock free Live
m > p

m ≤ p ∧ n > 0 ∧ p < ω x
(m ≤ p ∧ n = 0) ∨ p = ω x x x

Table 1: Values for p, m and n in Fig. 4(a)

17

99

graph consist of three events: A, B, and C. The event A is a condition for B, and
the time deadline requires that the last execution of Amust have happenedm time
steps before B can happen. Similarly, the B is a condition for C, and the time
deadline requires that the last execution of B must have happened n time steps
before B can happen. The event C is a response to the event A, and the deadline
requires that it must happen within p time steps after the last execution of A. The
milestone relation from C to A is a kind of alternation pattern, it enforces that A
can not happen as long as C is required as a response, i.e. two As can not happen
without at least one C in between.

Now, if m > p then the graph enters both a marking which is both time-
locked and deadlocked if A happens and time advances with p steps. Since B is
a condition for C it must be executed before C can be executed, but this is not
possible since the delay constraint m is greater than p. The event A can not be
executed before C has been executed due to the milestone relation, thus we have
a deadlock. And since C is required urgently, i.e. within deadline 0, time can not
progress either, i.e. we have a time-lock.

This deadlock can be resolved if m ≤ p. Then B can be executed before the
deadline p expires, and we can repeat doingB infinitely often. However, the graph
may still contain a time-lock, and thus also violate liveness: If n > 0 and p < ω
and we do B exactly p time steps after A, then we can not do C since it requires
a delay of n > 0 after the execution of B, and time can not progress because C
is required urgently, i.e. within deadline 0. The time-lock is resolved if n = 0 or
p = ω, since then we can either do C just after B (without advancing time) or the
deadline on C will never expire and lead to time-lock.

The graph in Fig. 4(a) is neither strongly deadlock free nor strongly live for
any of the parameters. If A is executed it is not possible to execute C if only
required events are executed. This can be resolved by making B a response to A
as shown in Fig. 4(b). Strongly deadlock and live DCR Graphs may be needed if
the process is distributed between different roles as considered in the next section.
If A and B are carried out by role N , and C by role M , then role N may believe
that it is not necessary to do more after doing A. However, role M will then be
stuck with a required action C which is blocked because B has not been executed.

5. Timed DCR Graphs as Global Contracts

The DCR Graphs model admits a very general technique for distributing a
graph describing a global contract for e.g. a cross-organizational process, as a net-
work of synchronously communicating graphs describing the contracts for each

18

100

local organization [27]. The technique is based on a notion of projection, restrict-
ing the graph to a subset of the events and labels. The projection introduces a
notion of interface events, that can be regarded as a subscription to executions of
events in other components.

In Fig. 5 it is shown how the technique can be used to project the global graph
in Fig. 3 to three local graphs, representing the part of the process to be carried out
by respectively the unions (U), the umbrella organization for the unions (LandsOr-
ganisationen, LO) and the umbrella organization for the employers (Dansk Arbe-
jdsgiverforening, DA). The Open case event with the double border in the LO
local graph indicate that it needs to subscribe to the event Open case in order to
know when it can and must propose dates and hold a meeting. The unions on the
other hand need not subscribe to any external events, they only need to consider
their own events Open case, Close case and Update case.

5.1. Projection
First we define how to project a DCR Graph G with respect to a projection

parameter δ = (δE, δL) where δE ⊆ E is a subset of the events of G and δL ⊆ L is
a subset of the labels.

Intuitively, the projection G|δ contains only those events and relations that are
relevant for the execution of events in δE and the labeling is restricted to the set
δL. This includes both the events in δE and any other event that can affect the
marking, or the ability to execute an event in δE. The technical difficulty is to
infer the events and relations not in δE, referred to as external events below, that
should be included in the projection because they influence the execution of the
workflow restricted to the events in δE. The external events are never executed by
the local component but can be executed by other components, in which case the
local component must be notified so that it can update its marking accordingly.

Definition 5.1. If G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) then G|δ =
(E|δ,Mt|δ,→•|δ, tc|δ, •→|δ, tr|δ,→�|δ,→+|δ,→%|δ, δL, l|δ) is the projection of G
with respect to δ = (δE, δL), δE ⊆ E and δL ⊆ L where:

(i) E|δ =→ δE, for →=
⋃

c∈C
c, and C = {id, →•, •→, →�, →+, →%, •→→�,

→+→•,→%→•,→+→�,→%→�}

(ii) l|δ(e) =

{
l(e) ∩ δL if e ∈ δE

∅ otherwise

19

101

(iii) Mt|δ = ((Ex|δ,Re|δ, In|δ), tex|δ, tre|δ) where:

(a) Ex|δ = Ex ∩ E|δ

(b) Re|δ = Re ∩ (δE∪ →� δE)

(c) In|δ = In ∩ (δE∪ →• δE∪ →� δE)

(d) tex|δ (e) = tex (e) if e ∈ Ex|δ

(e) tre|δ (e) = tre (e) if e ∈ Re|δ

(iv) →•|δ=→• ∩((→• δE)× δE)

(v) tc|δ : (→•|δ)→ ω
tc|δ (e, e′) = tc (e, e′)

(vi) •→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE))

(vii) tr|δ : (•→|δ)→∞
tr|δ (e, e′) = tr (e, e′)

(viii) →�|δ=→� ∩((→� δE)× δE)

(ix) →+|δ=→+ ∩
((

(→+ δE) × δE

)
∪
(
(→+→• δE) × (→• δE

)
∪
(
(→+→�

δE)× (→� δE

))

(x) →%|δ=→% ∩
((

(→% δE) × δE

)
∪
(
(→%→• δE) × (→• δE

)
∪
(
(→%→�

δE)× (→� δE

))

In (i) we define the set of events as the union of the set δE of events that we
project over, any event that has a direct relation towards an event in δE and events
that exclude or include an event which is either a condition or a milestone for
an event in δE. The additional events will be included in the projection without
labels, as can be seen from the definition of the labeling function in (??). This
means that the events can not be executed locally. However, when composed in a
network containing other processes that can execute these events, their execution
will be communicated to the process. For this reason we refer to these events as
the (additional) external events of the projection. As proven in Prop. A.1-A.3 the
communication of the execution of this set of external events in addition to the

20

102

local events shared by others ensures that the local state of the projection stays
consistent with the global state.

Further (iii) defines the projection of the marking: The executed events remain
the same, but are limited to the events in E|δ. The responses are restricted to events
in δE and events that have a milestone relation to an event in δE because these are
the only responses that will affect the local execution of the projected graph. Note
that these events will by definition be events in E|δ but may be external events. In
case of set of included events, we take the actual included status of the events in
projection parameter along with the events that are conditions and milestones to
the events in projection parameter, as the include status of those events will have
an influence on the execution of events in local graph. All other external events of
the projected graph are not included in the projected marking regardless of their
included status in the marking of the global graph, because their include/exclude
status will have no influence on the execution of events in local graph.

Finally, (iv), (vi), (viii), (ix) and (x) state which relations should be included
in the projection. For the events in δE all incoming relations should be included.
Additionally inclusion and exclusion relations to events that are either a condition
or a milestone for an event in δE are included as well.

Fig. 5 shows how the case management example from fig. 3 can be pro-
jected over the three roles. The projection parameters for these projections are:
δU = ({Open case,Update Case}, {(Open case,U), (Update Case,U)}),
δLO = ({Propose Dates - LO,Accept LO,Extend Deadline,Hold Meeting},
{(Propose Dates - LO,LO), (Accept LO,LO), (Extend Deadline,LO),
(Hold Meeting,LO)}) and δDA = ({Propose Dates - DA,Accept DA},
{(Propose Dates - DA,DA), (Accept DA,DA)}). From the figure one can see
that the union needs to know nothing about the global contract. It can only open,
close and update the case and because these events are not depending on any of
the events of LO and DA, the union does not have to be aware of any other events.
LO on the other hand needs to know about most of the events and relations in the
contract because many of its internal events depend directly on events of the union
or DA. This reflects the role of LO as an intermediary between the union and DA,
which gives it a central role in the process. DA is only involved in arranging a
meeting and needs to be aware of a few of the events of LO to properly play its
role in this, but all other events that do not directly affect the meeting arrange-
ment part of the contract are not relevant for DA and therefore do not have to be
projected to the local graph for DA.

Prop. 5.1 below states the key correspondence between global execution of
events and the local execution of events in a projection. We have provided the

21

103

Hold

meeting

LO
Open

Case

U

Update

Case

U

Propose

dates-LO

Accept

LO

LO

Propose

dates-DA

LO

Open

Case

+

+

LOU

3

%

%

Accept DA

ω

Extend

Deadline

LO

14

14

14

3

3

ω

%

%

+

3

ω

%

%

Propose

dates-LO

Accept

LO

Propose

dates-DA

DA

Accept

DA

DA

DA

%

Close

case

U
+

+

%

Figure 5: Projection of the timed DCR graph in fig. 3 over the roles U, LO and DA

details of the proof in the appendix. In order to prove the time extension, we
first show the correspondence between global execution of events and the local
execution of events in a projection of the underlying DCR Graph. We then use
this result to prove the correspondence between the global and local execution of
events for the time extension to the marking, tex and tre.

Proposition 5.1. Let G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) be a Timed
DCR Graph and G|δ its projection with respect to a projection parameter δ =
(δE, δL). Then,

1. if e ∈ δE and l(e) ∩ δL 6= ∅ then Mt `G e ∧Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′ if
and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt

′′

2. if e 6∈ E|δ then Mt `G e ∧Mt ⊕G e = Mt
′ implies Mt|δ = Mt

′
|δ

22

104

3. if e ∈ E|δ (and l(e) ∩ δL = ∅) then Mt `G e ∧ Mt ⊕G e = Mt
′ implies

Mt|δ ⊕G|δ e = Mt
′
|δ.

Proof can be found in App. 1.

Example 5.1. We consider the projection in Fig. 5. Recall from Ex. 3.2 that the
execution of Open case in the initial marking

Mt = (∅, ∅,E \ {Accept LO,Accept DA,Close Case,Update Case})

gave rise to the marking

Mt
′ = ({Open case : 0},

{Propose dates-LO : 3,Hold meeting : 14,Close case : ω},
E \ {Accept LO,Accept DA})

We now give the projected markings of Mt and Mt’ for the three projection
parameters δU = (δUE , δ

U
L), δLO = (δLOE , δLOL), and δDA = (δDAE , δDAL):

Mt|δU
= (∅, ∅, {Open case})

Mt
′
|δU

= ({Open case : 0}, {Close Case : ω},
{Open case,Close case,Update case})

Mt|δLO
= (∅, ∅, {Open case,Propose dates-LO,
Extend deadline,Hold meeting})

Mt
′
|δLO

= ({Open case : 0}, {Propose dates-LO : 3,Hold meeting : 14},
{Open case,Propose dates-LO,Extend deadline,Hold meeting})

Mt|δDA
= Mt

′
|δDA

= (∅, ∅, {Propose dates-LO,Propose dates-DA})

Let us verify that each of the properties 1.-3. in Prop. 5.1 holds for the pro-
jection parameters δU , δLO and δDA when executing the event e = Open case in
the initial marking Mt.

23

105

1. This property applies to the projection over the union because e ∈ δU
E and

l(e) ∩ δU
L 6= ∅. First of all the property requires us to verify that e is only

enabled in the global graph if and only if it is enabled in the local graph.
This is the case because both Mt `G e and Mt|δU

`G e. Secondly the
property requires us to verify that the result of executing e on the global
graph and then projecting the resulting marking over δU is the same as
executing e on the projected graph. This is the case because: Mt|δU

⊕G|δU
e =

Mt
′
|δU

.

2. This property applies to the projection over DA because e 6∈ E|δDA
. It re-

quires us to verify that if e does not occur in the events of the projected
graph G|δDA

, then the marking projected over δDA will be the same before
and after the execution of e. This is the case because Mt|δDA

= Mt
′
|δDA

.

3. This property applies to the projection over LO because e ∈ E|δLO
and

l(e) ∩ δLO
L = ∅. It requires us to show that if e is an external event in

the projected graph G|δLO
, then it must be the case that if we execute e on

G|δLO
, the resulting marking must be the same as if we had first executed

e on G and then projected the result over δLO. This is the case because
Mt|δLO

⊕G|δLO
e = Mt

′
|δLO

.

5.2. Composition
Now we define the binary composition of two DCR Graphs. The composition

of G1 and G2 is simply the component-wise union of the respective components.

Definition 5.2. G1 ∪ G2 = (E1 ∪ E2,Mt,→•1 ∪ →•2, tc1 ∪ tc2, •→1 ∪ •→2

, tr1 ∪ tr2,→�1 ∪ →�2,→+1 ∪ →+2,→%1 ∪ →%2, L1 ∪ L2, l1 ∪ l2), where
Mt = ((Ex1 ∪ Ex2,Re1 ∪ Re2, In1 ∪ In2), tex1 ∪ tex2, tre1 ∪ tre2)

Definition 5.3. The composition G1 ∪ G2 is well-defined when:

(i) ∀(e ∈ E1 ∩ E2 | (e ∈ Ex1 ⇔ e ∈ Ex2))

(ii) ∀(e ∈ (Ei
1∪ →•Ei

1∪ →�Ei
1) ∩ (Ei

2∪ →•Ei
2∪ →�Ei

2) | (e ∈ In1 ⇔ e ∈ In2)

(iii) ∀(e ∈ (Ei
1∪ →�Ei

1) ∩ (Ei
2∪ →�Ei

2) | (e ∈ Re1 ⇔ e ∈ Re2)

(iv) ∀(e ∈ Ex1 ∩ Ex2 | (tc1 e = tc2 e))

(v) ∀(e ∈ Re1 ∩ Re2 | (tr1 e = tr2 e))

24

106

(vi) ∀(e, e′ ∈→•1 ∩ →•2| tc1(e, e′) = tc2(e, e
′))

(vii) ∀(e, e′ ∈•→1 ∩ •→2| tr1(e, e′) = tr2(e, e
′))

Where: Ei
i = {e ∈ Ei | l(e) 6= ∅} for i ∈ {1, 2}

(i) ensures that those events that will be glued together have the same exe-
cution marking. (ii) ensures that events that will be glued together and in both
DCR Graphs belong to either the set of internal events or the set of events that
have a condition/milestone relation towards an internal event, have the same in-
clusion marking. (iii) ensures that events that will be glued together and in both
DCR Graphs belong to the set of internal events have the same pending response
marking. (iv) ensures that executed events that will be glued together have the
same timed execution marking. (v) ensures that responses on events that will be
glued together have the same deadline. (vi) ensures that shared conditions have
the same required time delay. (vii) ensures that shared responses have the same
maximal deadline. If G1 ∪ G2 is well-defined, then we also say that G1 and G2

are composable with respect to each other.

Lemma 5.1. The composition operator ∪ is commutative and associative.

Proof According to definition 5.2, elements of the tuple defining the graph G =
G1 ∪ G2 are constructed from the union of the same elements in G1 and G2.
Composition is therefore commutative and associative, because the union operator
is commutative and associative.

Definition 5.4. We call a vector ∆ = δ1 . . . δk of projection parameters covering
for some DCR Graph G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) if:

1.
⋃

i∈[k]
δEi = E and

2. (∀a ∈ L.∀e ∈ E.a ∈ l(e)⇒ (∃i ∈ [k].e ∈ δEi ∧ a ∈ δLi)

Proposition 5.2. If some vector ∆ = δ1 . . . δk of projection parameters is cover-
ing for some DCR Graph G then:

⋃

i∈[k]
G|δi = G

Proof Since the vector of projection parameters is covering, every event and la-
bel is covered in at least one of the projections. Moreover the definition of com-
position 5.2, is defined over union of individual components. Hence when all
projections are composed, we will get the same graph and hence

⋃

i∈[k]
G|δi = G.

25

107

5.3. Safe Distributed Synchronous Execution of Timed DCR Graphs
Networks of timed DCR Graphs are defined exactly as networks of un-timed

DCR Graphs introduced in [27].

Definition 5.5. A network of timed DCR Graphs is a finite vector of timed
DCR Graphs G sometimes written as Πi∈[n]Gi or G0‖G2‖ . . . ‖Gn−1. Assum-
ing Gi = (Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li), we define the set of
events of the network by E(Πi∈[n]Gi) = ∪i∈[n]Ei and the set of labels of the
network by L(Πi∈[n]Gi) = ∪i∈[n]Li and we write the network marking as M =
Πi∈[n]Mi. Finally, letM(G) denote the set of network markings of G.

We define when an event is locally enabled in one of the components and the
result of executing an event locally as for un-timed DCR Graphs, except that we
instead use the definition of timed enabled and timed update of the marking. That
is, an event can be executed if it is locally enabled, and the result of executing
it is that it is synchronously executed in all components of the network sharing
the event. A time advance event is however defined to be enabled only if it is
enabled in all components and the result of advancing the time is to advance it in
all components. This ensures that time advances globally in the network.

Definition 5.6. For a network of timed DCR Graphs G = Πi∈[n]Gi where Gi =
(Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li), an event e ∈ E(Πi∈[n]Gi) is en-
abled at a location i in the distributed marking M = Πi∈[n]Mi, written M `G,i e,
if e ∈ Ei ∧Mi `Gi e, i.e. it is locally enabled in the ith timed dynamic condition
response graph. The result of executing an event e ∈ E(Πi∈[n]Gi) in a marking
M = Πi∈[n]Mi is the new marking M ⊕Gi e = Πi∈[n]M′i where M′i = Mi ⊕G e if
e ∈ Ei and M′i = Mi otherwise. For a network marking M = Πi∈[n]Mi we define
that the time advance event n is enabled, written M `G n, if Mi `Gi n for all
i ∈ [n] and the result of advancing time with n by M⊕G n = Πi∈[n]Mi ⊕Gi n.

We define executions of networks as follows. As for un-timed DCR Graphs, an
event can be executed if it is locally enabled in a component where it has assigned
at least one label. Time can be advanced globally if the time advance event is
enabled as defined above.

Definition 5.7. For a network of timed DCR Graphs G = Πi∈[n]Gi where li is the
labeling function of Gi, we define a timed execution σM of G of length k ∈ ∞
from marking M to be a (finite or infinite) sequence of tuples σ : [k] →M(G)×
([n]× E(Πi∈[n]Gi)× L(Πi∈[n]Gi) ∪ ω)×M(G) such that for i ∈ [k]

26

108

• σ(i) = (Mi, hi, ei, ai,M
′
i) ∧ ai ∈ lhi(ei) ∧Mi `G,hi ei ∧M

′
i = Mi ⊕G ei or

• σ(i) = (Mi, n,M
′
i) ∧Mi `G n ∧M

′
i = M⊕G n

and M0 = M and ∀i ∈ [k − 1].M
′
i = Mi+1.

We say the execution is accepting if

(i) ∀i ∈ [k], h ∈ [n].
(
∀e ∈ Inh,i ∩ Reh,i.∃j ≥ i.ej = e ∨ e 6∈ In′h,j)

)
, where

Mi = Πh∈[n](Exh,i, Inh,i,Reh,i) and M
′
j = Πh∈[n](Ex′h,j, In

′
h,j,Re′h,j)

(ii) ∀i ∈ ω.∃h ∈ ω.∃j > i.σ(i) = (Mi, h,M
′
i)

We define the global transition system for a network of timed DCR Graphs as
follows.

Definition 5.8. For a network of timed DCR Graphs G = Πi∈[n]Gi where Gi =

(Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li) and M = Πi∈[n]Mi, we define
the corresponding global transition system TS(G) to be the tuple

(M(G),M, EL(G),→N)

where EL(G) = (E(Πi∈[n]Gi)× L(Πi∈[n]Gi)) ∪ ω is the set of labels of the tran-
sition system, M is the initial marking, and →N⊆ M(G) × EL(G) × M(G)

is the transition relation defined by M
′ (e,a)−−→N M

′′
if there is a timed execution

σ
M
′ from M

′
of length 1 such that σ

M
′(0) = (M

′
, i, e, a,M

′′
) for some i ∈ [n]

and M
′ h−→N M

′′
if there is a timed execution σ

M
′ from M

′
of length 1 such that

σ
M
′(0) = (M

′
, h,M

′′
). (Accepting) executions of length k of the transition system

is defined as sequences transitions obtained similarly from (accepting) executions
σ of length k of the graph.

We are now ready to state the main theorem which follows from Def 3.4,
Def. 5.8 and Prop. 5.1.

Theorem 5.1. For a timed DCR Graph G, a covering vector of projection pa-
rameters ∆ = δ1 . . . δn and G∆ = Πi∈[n]G|δi it holds that the relation R =

{(M,M∆) | M ∈ M(G) and M∆ = Πi∈[n]M|δi} is a bisimulation between TS(G)

and TS(G∆) such that an execution is accepting in TS(G) if and only if the bisim-
ilar execution is accepting in TS(G∆).

27

109

Proof (outline) In order to prove bisimilarity, we show (1) ∃M
(e,a)−−→ M′ in TS(G)

if and only if ∃M∆
(e,a)−−→ M′∆ in TS(G∆) and (2) ∃M

h−→ M′ in TS(G) if and only
if ∃M∆

h−→ M′∆ in TS(G∆).

1. According to Def 3.4, M
(e,a)−−→ M′ in TS(G) implies M

(e,a)−−→ M ⊕G e,
M `G e and a ∈ l(e). From Prop. 5.1 it then follows that M∆

(e,a)−−→ M′∆.

Similarly, if M∆
(e,a)−−→ M′∆ in TS(G∆) then again using Prop. 5.1, there

exists in TS(G) a transition M
(e,a)−−→ M′.

2. Since the time advances globally and synchronously in the network, it easily
follows that time advance steps can be mutually simulated and result in
consistent updates of the deadlines in the markings.

Now we have to prove that a timed execution in TS(G) is accepting if and only if
the corresponding execution is accepting in TS(G∆). If an execution in TS(G∆)
is accepting, then

1. according to Def. 5.8, in the network of projected graphs, ∀i ∈ [k], h ∈
[n].
(
∀e ∈ In|δh,i ∩ Re|δh,i .∃j ≥ i.ej = e ∨ e 6∈ In′|δh,i)

)
, where M∆i

=

Πh∈[n](Ex|δh,i , In|δh,i ,Re|δh,i) and M
′
∆j

= Πh∈[n](Ex′|δh,i , In
′
|δh,i ,Re′|δh,i). Ac-

cording to proposition 5.1 and since TS(G) ∼ TS(G∆), if there exists an
execution where an included response is eventually executed or excluded in
TS(G∆), then we will also have the corresponding execution satisfying that
an included response is eventually executed or excluded in TS(G).

2. As the time advances globally in the network, ∀i ∈ ω.∃h ∈ ω.∃j >

i.σ(i) = (Mi, h,M
′
i) in TS(G∆) implies that ∀i ∈ ω.∃h ∈ ω.∃j > i.σ(i) =

(Mi, h,M
′
i) in TS(G).

Therefore, if a timed execution is accepting in TS(G∆) then it is also accepting in
TS(G). On the similar lines, it trivially follows that if a timed execution in TS(G)
is accepting the corresponding execution in TS(G∆) is also accepting.

6. Conclusion

We have conservatively extended the declarative Dynamic Condition Response
(DCR) Graph process model introduced in the PhD thesis of the second author [24,

28

110

28] to allow for (discrete) time deadlines. In particular, the simple operational
semantics of DCR Graphs is conservatively extended with time steps, preserv-
ing that safety and liveness properties of the models can be formally verified by
mapping bounded timed DCR Graphs to finite state automata. We proceeded to
extend to timed DCR Graphs the general technique provided in [27] for safe dis-
tribution of a global DCR Graph as a network of communicating DCR Graphs
which has the same behavior as the global DCR Graph. We have exemplified
timed DCR Graphs and the distribution technique on a timed extension of the
cross-organizational case management process studied in [34, 27]. The exam-
ple shows how a timed DCR Graph can be used to describe the global contract
for a timed workflow process involving several organizations, which can then be
distributed as a network of communicating timed DCR Graphs, having a graph
describing the local contract for each organization. Finally we have exemplified
how the time deadlines may introduce both deadlocks and so-called time-locks
where time cannot proceed in the model.

We plan for future work to study the application of the techniques in the
present paper for contract-oriented programming of distributed event-based sys-
tems and context-sensitive services. In particular, we are currently developing an
event-based programming language based on an extension of DCR Graphs with
data and sub processes. We will also study the formal relation between timed
DCR Graphs and other timed process models, in particular timed LTL [21], vari-
ants of Petri Net with time [63, 68, 71, 72] and timed automata [], and explore
verification of timed DCR Graphs using existing tools for these models. Finally
we intend to investigate the relation to the work on structured communication-
centred programming for web services by Carbone, Honda and Yoshida [46].

References

[1] M. Dumas, W. M. van der Aalst, A. H. ter Hofstede, Process Aware Informa-
tion Systems: Bridging People and Software Through Process Technology,
Wiley-Interscience, 2005.

[2] M. D. Zisman, Representation, Specification and Automation of Office Pro-
cedures, Ph.D. thesis, Wharton School, University of Pennsylvania, 1977.

[3] J. C. BURNS, The evolution of office information systems, Datamation vol.
23,no. 4 (1977) 60–64.

29

111

[4] C. A. Ellis, Information control nets: A mathematical model of office in-
formation flow, Proceedings of the Conference on Simulation, Measure-
ment and Modeling of Computer Systems, ACM SIGMETRICS Perfor-
mance Evaluation Review 8 (1979) 225–240.

[5] C. A. Ellis, G. J. Nutt, Office information systems and computer science,
ACM Comput. Surv. 12 (1980) 27–60.

[6] C. A. Petri, Kommunikation mit Automaten, Ph.D. thesis, Universitet Ham-
burg, 1962.

[7] H. Eshuis, Semantics and Verification of UML Activity Diagrams for Work-
flow Modelling, Ph.D. thesis, Univ. of Twente, 2002. CTIT Ph.D.-thesis se-
ries No. 02-44.

[8] R. Eshuis, R. Wieringa, Tool support for verifying uml activity diagrams,
Software Engineering, IEEE Transactions on 30 (2004) 437 – 447.

[9] Object Management Group BPMN Technical Committee, Business Process
Model and Notation, version 2.0, Webpage, 2011. http://www.omg.
org/spec/BPMN/2.0/PDF.

[10] W. M. P. van der Aalst, Interorganizational workflows: An approach based
on message sequence charts and petri nets., Systems Analysis - Modelling -
Simulation 34 (1999) 335–367.

[11] E. Kindler, A. Martens, W. Reisig, Inter-operability of workflow applica-
tions: Local criteria for global soundness, in: Business Process Manage-
ment, Models, Techniques, and Empirical Studies, Springer-Verlag, London,
UK, 2000, pp. 235–253.

[12] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, K. Wolf, Multi-
party Contracts: Agreeing and Implementing Interorganizational Processes,
The Computer Journal 53 (2010) 90–106.

[13] W. M. P. v. d. Aalst, M. Weske, The p2p approach to interorganizational
workflows, in: Proceedings of the 13th International Conference on Ad-
vanced Information Systems Engineering, CAiSE ’01, pp. 140–156.

[14] W. Vanderaalst, M. Weske, D. Grunbauer, Case handling: a new paradigm
for business process support, Data & Knowledge Engineering 53 (2005)
129–162.

30

112

[15] M. Pesic, M. H. Schonenberg, N. Sidorova, W. M. P. Van Der Aalst,
Constraint-based workflow models: change made easy, in: Proceedings
of the 2007 OTM Confederated international conference on On the move
to meaningful internet systems: CoopIS, DOA, ODBASE, GADA, and IS
- Volume Part I, OTM’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp.
77–94.

[16] A. Pnueli, The temporal logic of programs, in: Proceedings of 18th IEEE
FOCS, pp. 46–57.

[17] E. M.Clarke, O. Grumberg, D. A.Peled, Model Checking, MIT Press, 1999.

[18] M. Papazoglou, Making business processes compliant to standards and reg-
ulations, in: Enterprise Distributed Object Computing Conference (EDOC),
2011 15th IEEE International, pp. 3 –13.

[19] M. Dwyer, G. Avrunin, J. Corbett, Patterns in property specifications for
finite-state verification, in: Software Engineering, 1999. Proceedings of the
1999 International Conference on, pp. 411 –420.

[20] W. M. van der Aalst, M. Pesic, DecSerFlow: Towards a truly declarative ser-
vice flow language, in: M. Bravetti, M. Nunez, G. Zavattaro (Eds.), Proceed-
ings of Web Services and Formal Methods (WS-FM 2006), volume 4184 of
LNCS, Springer Verlag, 2006, pp. 1–23.

[21] K. J. Kristoffersen, C. Pedersen, H. R. Andersen, Runtime verification of
timed ltl using disjunctive normalized equation systems, Electronic Notes in
Theoretical Computer Science 89 (2003) 210 – 225.

[22] G. J. Holzmann, The model checker spin, IEEE Trans. Softw. Eng. 23 (1997)
279–295.

[23] M. Y. Vardi, An automata-theoretic approach to linear temporal logic, in:
Logics for Concurrency: Structure versus Automata, volume 1043 of Lec-
ture Notes in Computer Science, Springer-Verlag, 1996, pp. 238–266.

[24] T. T. Hildebrandt, R. R. Mukkamala, Declarative event-based workflow as
distributed dynamic condition response graphs, in: K. Honda, A. Mycroft
(Eds.), PLACES, volume 69 of EPTCS, pp. 59–73.

31

113

[25] R. Mukkamala, T. Hildebrandt, From dynamic condition response structures
to büchi automata, in: Theoretical Aspects of Software Engineering (TASE),
2010 4th IEEE International Symposium on, pp. 187 –190.

[26] T. Hildebrandt, R. R. Mukkamala, T. Slaats, Nested dynamic condition re-
sponse graphs, in: Proceedings of Fundamentals of Software Engineering
(FSEN).

[27] T. Hildebrandt, R. R. Mukkamala, T. Slaats, Safe distribution of declarative
processes, in: Proceedings of the 9th international conference on Software
engineering and formal methods, SEFM’11, Springer-Verlag, Berlin, Hei-
delberg, 2011, pp. 237–252.

[28] R. R. Mukkamala, A Formal Model For Declarative Workflows - Dynamic
Condition Response Graphs, Ph.D. thesis, IT University of Copenhagen,
2012. Forthcomming.

[29] T. Hildebrandt, Trustworthy pervasive healthcare processes (TrustCare) re-
search project, Webpage, 2008. http://www.trustcare.dk/.

[30] R. R. Mukkamala, T. Hildebrandt, J. B. Tøth, The resultmaker online consul-
tant: From declarative workflow management in practice to ltl, in: Proceed-
ings of the 2008 12th Enterprise Distributed Object Computing Conference
Workshops, EDOCW ’08, IEEE Computer Society, Washington, DC, USA,
2008, pp. 135–142.

[31] Resultmaker, 2008. http://www.resultmaker.com/.

[32] T. Hildebrandt, Dynamic condition response graphs - a dynamic temporal
logic for event-based processes, in: 8th Scandinavian Logic Symposium,
pp. 52–54.

[33] T. Hildebrandt, R. R. Mukkamala, T. Slaats, Verifying liveness and safety for
declarative event-based workflows in spin, 2012. Sumitted for publication.

[34] T. Hildebrandt, R. Mukkamala, T. Slaats, Designing a cross-organizational
case management system using dynamic condition response graphs, in:
Enterprise Distributed Object Computing Conference (EDOC), 2011 15th
IEEE International, pp. 161 –170.

32

114

[35] M. Pesic, W. M. P. van der Aalst, A declarative approach for flexible business
processes management, in: Proceedings of the 2006 international conference
on Business Process Management Workshops, BPM’06, Springer-Verlag,
Berlin, Heidelberg, 2006, pp. 169–180.

[36] F. Maria Maggi, M. Montali, M. Westergaard, W. M. P. van der Aalst, Moni-
toring business constraints with linear temporal logic: An approach based on
colored automata, in: Business Process Management (BPM) 2011, volume
6896 of Lecture Notes in Computer Science, pp. 32–147.

[37] A. ter Hofstede, R. van Glabbeek, D. Stork, Query nets: Interacting work-
flow modules that ensure global termination, in: Business Process Manage-
ment, Springer Berlin / Heidelberg, 2003, pp. 184–199.

[38] W. van der Aalst, Inheritance of interorganizational workflows: How to
agree to disagree without loosing control?, Information Technology and
Management 4 (2003) 345–389.

[39] A. Martens, Analyzing web service based business processes, in: Proceed-
ings of the 8th international conference, held as part of the joint European
Conference on Theory and Practice of Software conference on Fundamen-
tal Approaches to Software Engineering, FASE’05, Springer-Verlag, Berlin,
Heidelberg, 2005, pp. 19–33.

[40] X. Fu, T. Bultan, J. Su, Realizability of conversation protocols with message
contents, in: Proceedings of the IEEE International Conference on Web
Services, ICWS ’04, IEEE Computer Society, Washington, DC, USA, 2004,
pp. 96–.

[41] X. Yi, K. Kochut, Process composition of web services with complex con-
versation protocols., in: Design, Analysis, and Simulation of Distributed
Systems Symposium at Adavanced Simulation Technology.

[42] S. Rinderle, A. Wombacher, M. Reichert, Evolution of process choreogra-
phies in dychor, in: On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, volume 4275 of LNCS, Springer,
2006, pp. 273–290.

[43] D. Wodtke, G. Weikum, A formal foundation for distributed workflow exe-
cution based on state charts, in: Proceedings of the 6th International Confer-
ence on Database Theory, Springer-Verlag, London, UK, 1997, pp. 230–246.

33

115

[44] M. Bravetti, G. Zavattaro, Contract based multi-party service composi-
tion, in: International Symposium on Fundamentals of Software Engineer-
ing (FSEN), volume 4767, Springer, 2007, pp. 207–222.

[45] M. Bravetti, G. Zavattaro, A theory of contracts for strong service compli-
ance, Mathematical. Structures in Comp. Sci. 19 (2009) 601–638.

[46] M. Carbone, K. Honda, N. Yoshida, Structured Communication-Centred
Programming for Web Services, in: 16th European Symposium on Pro-
gramming (ESOP’07), LNCS, Springer, 2007, pp. 2–17.

[47] W. Fdhila, C. Godart, Toward synchronization between decentralized or-
chestrations of composite web services., in: CollaborateCom’09, pp. 1–10.

[48] M. G. Nanda, S. Chandra, V. Sarkar, Decentralizing execution of composite
web services, SIGPLAN Not. 39 (2004) 170–187.

[49] R. Khalaf, F. Leymann, Role-based decomposition of business processes
using BPEL, in: Web Services, 2006. ICWS ’06. International Conference
on, pp. 770 –780.

[50] S. Mitra, R. Kumar, S. Basu, Optimum decentralized choreography for web
services composition, in: Proceedings of the 2008 IEEE International Con-
ference on Services Computing - Volume 2, pp. 395 –402.

[51] OASIS WSBPEL Technical Committee, Web Services Business Process
Execution Language, version 2.0, 2007. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

[52] I. Castellani, M. Mukund, P. Thiagarajan, Synthesizing distributed transition
systems from global specifications, in: Foundations of Software Technology
and Theoretical Computer Science, volume 1738, Springer Berlin / Heidel-
berg, 1999, pp. 219–231.

[53] K. Heljanko, A. Stefanescu, Complexity results for checking distributed
implementability, in: Proceedings of the Fifth International Conference on
Application of Concurrency to System Design, pp. 78–87.

[54] M. Mukund, From global specifications to distributed implementations, in:
Synthesis and Control of Discrete Event Systems, Springer, 2002, pp. 19–35.

34

116

[55] W. Zielonka, Notes on finite asynchronous automata., Informatique
Théorique et Applications 21(2) (1987) 99–135.

[56] Z. Milosevic, S. Sadiq, M. Orlowska, Towards a methodology for deriving
contract-compliant business processes, in: Business Process Management,
volume 4102 of Lecture Notes in Computer Science, Springer Berlin / Hei-
delberg, 2006, pp. 395–400.

[57] W. Sadiq, S. Sadiq, K. Schulz, Model driven distribution of collaborative
business processes, in: Services Computing, 2006. SCC ’06. IEEE Interna-
tional Conference on, pp. 281 –284.

[58] W. Fdhila, U. Yildiz, C. Godart, A flexible approach for automatic process
decentralization using dependency tables, International Conference on Web
Services (2009).

[59] G. Dong, R. Hull, B. Kumar, J. Su, G. Zhou, A framework for optimizing
distributed workflow executions, in: Revised Papers from the 7th Interna-
tional Workshop on Database Programming Languages: Research Issues in
Structured and Semistructured Database Programming, DBPL ’99, Springer-
Verlag, London, UK, 2000, pp. 152–167.

[60] D. Fahland, Towards analyzing declarative workflows, in: J. Koehler, M. Pi-
store, A. P. Sheth, P. Traverso, M. Wirsing (Eds.), Autonomous and Adap-
tive Web Services, volume 07061 of Dagstuhl Seminar Proceedings, In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007, p. 6.

[61] M. Montali, Specification and Verification of Declarative Open Interaction
Models: A Logic-Based Approach, volume 56 of Lecture Notes in Business
Information Processing, Springer, 2010.

[62] P. Bellini, R. Mattolini, P. Nesi, Temporal logics for real-time system speci-
fication, ACM Comput. Surv. 32 (2000) 12–42.

[63] P. M. Merlin, A study of the recoverability of computing systems., Ph.D.
thesis, University of California, Irvine, 1974. AAI7511026.

[64] B. Berthomieu, M. Diaz, Modeling and verification of time dependent sys-
tems using time petri nets, Software Engineering, IEEE Transactions on 17
(1991) 259 –273.

35

117

[65] L. Popova-Zeugmann, On time petri nets, Elektronische Informationsverar-
beitung und Kybernetik 27 (1991) 227–244.

[66] L. Popova-Zeugmann, D. Schlatter, Analyzing paths in time petri nets, Fun-
dam. Inform. 37 (1999) 311–327.

[67] F. Cassez, O. H. Roux, Structural translation from time petri nets to timed
automata, Electr. Notes Theor. Comput. Sci. 128 (2005) 145–160.

[68] S. Ling, H. Schmidt, Time petri nets for workflow modelling and analysis,
in: Systems, Man, and Cybernetics, 2000 IEEE International Conference on,
volume 4, pp. 3039 –3044 vol.4.

[69] C. Ramchandani, Analysis of asynchronous concurrent systems by timed
petri nets, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1974.

[70] W. M. Zuberek, Timed petri nets and preliminary performance evaluation,
in: Proceedings of the 7th annual symposium on Computer Architecture,
ISCA ’80, ACM, New York, NY, USA, 1980, pp. 88–96.

[71] B. Walter, Timed petri-nets for modelling and alalyzing protocols with real-
time characteristics, in: Protocol Specification, Testing, and Verification, pp.
149–159.

[72] H.-M. Hanisch, Analysis of place/transition nets with timed arcs and its ap-
plication to batch process control, in: M. Ajmone Marsan (Ed.), Application
and Theory of Petri Nets 1993, volume 691 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 1993, pp. 282–299.

A. Proofs to propositions in Sec. 5

Lemma A.1. e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
Proof According to def 5.1-vi, the response relation in projected graph is
•→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE)).
Informally it contains relations which can cause a response on an event which
is either included in the set of events in the project parameter (δE) or in a set of
events which are milestones to events in project parameter (→� δE).
•→|δ= {(e′′, e′) | e′′ •→ e′ ∧ e′ ∈ (δE∪ →� δE)} and hence
e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}

36

118

Lemma A.2. e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE)

Proof According to def 5.1-ix, the include relation in projected graph is
→+|δ=→+ ∩

((
(→+ δE)×δE

)
∪
(
(→+→• δE)×(→• δE

)
∪
(
(→+→� δE)×(→�

δE

))

→+|δ= {(e′′, e′) | e′′ →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ= {e′ | e→+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE)

Lemma A.3. e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE)

Proof According to def 5.1-x, the exclude relation in projected graph is
→%|δ=→% ∩

((
(→% δE)×δE

)
∪
(
(→%→• δE)×(→• δE

)
∪
(
(→%→� δE)×(→�

δE

))

→%|δ= {(e′′, e′) | e′′ →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ= {e′ | e→% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE)

Proposition A.1. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then,
for e ∈ δE and a ∈ δL it holds that M `G e ∧M ⊕G e = M′ ∧M′|δ = M′′ if and
only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.

Proof In order to prove the proposition, we have to show that the proposition in
both directions.

(G→P) for e ∈ δE and a ∈ δL. M `G e ∧ M ⊕G e = M′ ∧ M′|δ = M′′ =⇒
M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.
We will split the proof into 2 steps:

(A) M `G e =⇒ M|δ `G|δ e
From def 3.1, we have M `G e =⇒ e ∈ In ∧ (In∩ →• e) ⊆ Ex and
(In∩ →�e) ⊆ E\Re.
In order to prove that M|δ `G|δ e, we have to show that
e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ. We will
prove each part individually as follows,

37

119

(i) To prove: e ∈ In|δ.
From def 5.1-iiic we have,
In|δ = In ∩ (δE∪ →• δE∪ →� δE) therefore
e ∈ In ∧ e ∈ δE =⇒ e ∈ In|δ.

(ii) To prove: (In|δ∩ →•|δ e) ⊆ Ex|δ.
∀e′ ∈ (In|δ∩ →•|δ e),
(a) e′ ∈ In|δ =⇒ e′ ∈ In

(b) e′ ∈→•|δ e =⇒ e′ ∈→•e from def 5.1-iv
Using above 2 statements and from M `G e
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ e′ ∈ (In∩ →•e) =⇒ e′ ∈ Ex,
Further, (In|δ∩ →•|δ e) ⊆ Ex|δ, from def 5.1-iiia

(iii) To prove: (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ
∀e′ ∈ (In|δ∩ →�|δ e)
(a) e′ ∈ In|δ =⇒ e′ ∈ In

(b) e′ ∈→�|δ e =⇒ e′ ∈→�e, from def 5.1-viii

Using above 2 statements and from M `G e
e′ ∈ (In|δ∩ →�|δ e) =⇒ e′ ∈ (In∩ →� e) =⇒ e′ ∈ E\Re =⇒
e′ 6∈ Re,
According to def 5.1 iiib, we have Re|δ = Re ∩ (δE∪ →� δE). and
so e′ 6∈ Re =⇒ e′ 6∈ Re|δ.
Further, e′ ∈ E|δ ∧ e′ 6∈ Re|δ =⇒ e′ ∈ E|δ \ Re|δ.
Hence we can conclude that (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ

From (G→P)-A-i, (G→P)-A-ii and (G→P)-A-iii, we have proved that
e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ is valid.
Therefore we can conclude that M `G e =⇒ M|δ `G|δ e.

(B) To prove: M⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′.
We have M⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′)
and from the def 3.1, we can infer Ex′ = Ex ∪ {e},Re′ = (Re \
{e})∪ e•→, and In′ = (In ∪ e→+)\ e→%.
In projected graph, we have M|δ = (Ex|δ,Re|δ, In|δ), M′′ = (Ex′′|δ,Re′′|δ, In

′′
|δ)

and from above result we know that M|δ `G|δ e. Hence we can in-
fer that Ex′′|δ = Ex|δ ∪ {e},Re′′|δ = (Re|δ \ {e})∪ e•→|δ, and In′′|δ =
(In|δ∪ e→+|δ)\ e→%|δ.
We have to prove that M′|δ = M′′. In order to prove this equivalence,

38

120

we will show that Ex′|δ = Ex′′|δ, Re′|δ = Re′′|δ and In′|δ = In′′|δ individually
as follows,

(i) To prove: Ex′|δ = Ex′′|δ.
Ex′|δ = (Ex ∪ {e}) ∩ E|δ from def 5.1-iiia

= (Ex ∩ E|δ) ∪ ({e} ∩ E|δ) distributive law of sets
= Ex|δ ∪ {e} according to def 5.1-iiia and e ∈ δE ⊆ E|δ.
= Ex′′|δ.
Hence we can conclude that Ex′|δ = Ex′′|δ.

(ii) To prove: Re′|δ = Re′′|δ.
Re′|δ =

(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE) from def 5.1-iiib

=
(
(Re\{e})∩ (δE∪ →� δE)

)
∪
(
e•→ ∩(δE∪ →� δE)

)
distribu-

tive law
=
(
Re∩(δE∪ →� δE)\({e}∩(δE∪ →� δE)

)
∪
(
e•→ ∩(δE∪ →�

δE)
)

set intersection distributes over set difference
= (Re|δ \ {e}) ∪

(
e•→ ∩(δE∪ →� δE)

)

= (Re|δ \ {e}) ∪ {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
= (Re|δ \ {e})∪ e•→|δ using lemma A.1
= Re′′|δ
Hence we can conclude that Re′|δ = Re′′|δ.

(iii) To prove: In′|δ = In′′|δ
In′|δ = In′ ∩ (δE∪ →• δE∪ →� δE), from def 5.1-iiic

But we know that In′ = (In ∪ e→+)\ e→%
In′|δ =

(
(In ∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE)

In′|δ =
(
(In∪ e→+)∩(δE∪ →• δE∪ →� δE)

)
\
(
e→% ∩(δE∪ →•

δE∪ →� δE)
)

set intersection distributes over set difference
In′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE)

)
∪
(
e→+ ∩(δE∪ →•

δE∪ →� δE)
)
\
(
e→% ∩(δE∪ →• δE∪ →� δE)

)
distributive law

In′|δ =
((

In ∩ (δE∪ →• δE∪ →� δE)
)
∪ e→+|δ

)
\ e→%|δ using

lemmas A.2 and A.3
But we know that the marking in projected graph before executing
event e is In|δ = In ∩ (δE∪ →• δE∪ →� δE). Using this fact, we
can rewrite the above statement as follows,
In′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′|δ = In′′|δ

39

121

Hence we can conclude that In′|δ = In′′|δ.

From (G→P)-B-i, (G→P)-B-ii and (G→P)-B-iii, we have proved that
Ex′|δ = Ex′′|δ, Re′|δ = Re′′|δ and In′|δ = In′′|δ. and there by we can conclude
that M′|δ = M′′.

Since we have proved both parts: ((G→P)-A and (G→P)-B), the proposi-
tion M⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′ holds.

(P→G) for e ∈ δE and a ∈ δL. M|δ `G|δ e ∧ M|δ ⊕G|δ e = M′′ =⇒ M `G
e ∧M⊕G e = M′ ∧M′|δ = M′′

Again, we will split the proof into 2 parts.

(A) M|δ `G|δ e =⇒ M `G e
From def 3.1, we have M|δ `G|δ e =⇒ e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆
Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ
In order to prove that M `G e, we have to show that
e ∈ In ∧ (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re

(i) To prove: e ∈ In
From def 5.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)
e ∈ In|δ ∧

(
In|δ = In ∩ (δE∪ →• δE∪ →� δE)

)
=⇒ e ∈ In.

(ii) To prove: (In∩ →•e) ⊆ Ex
From def 5.1-iv, we have→•|δ=→• ∩((→• δE)× δE)
∀e′.e′ ∈→•|δ e =⇒ (e′, e) ∈→•|δ =⇒ (e′, e) ∈→• =⇒
e′ ∈→•e and therefore→•|δ e =→•e.
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→•|δ e) =⇒
(e′ ∈ In) ∩ (e′ ∈→•e) =⇒ e′ ∈ (In∩ →•e), and hence
(In|δ∩ →•|δ e) = (In∩ →•e).
(In|δ∩ →•|δ e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex|δ.
according to def 5.1-iiia : Ex|δ = Ex ∩ E|δ.
Hence (In∩ →•e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex

(iii) To prove: (In∩ →�e) ⊆ E\Re
From def 5.1-viii, we have→�|δ=→� ∩((→� δE)× δE),
∀e′.e′ ∈→�|δ e =⇒ (e′, e) ∈→�|δ =⇒ (e′, e) ∈→� =⇒
e′ ∈→�e and therefore→�|δ e =→�e.
∀e′.e′ ∈ (In|δ∩ →�|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→�|δ e) =⇒
(e′ ∈ In) ∩ (e′ ∈→�e) =⇒ e′ ∈ (In∩ →�e), and hence
(In|δ∩ →�|δ e) = (In∩ →�e).

40

122

(In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →� e) ⊆ E|δ\Re|δ =⇒
∀e′ ∈ (In∩ →�e).e′ 6∈ Re|δ.
according to def 5.1-iiib : Re|δ = Re ∩ (δE∪ →� δE),
∀e′ ∈ (In∩ →� e).e′ 6∈ Re|δ =⇒ e′ 6∈ (Re ∩ (δE∪ →� δE)).
Further, as e′ →� e, we know that e′ ∈ (δE∪ →� δE). The only
way e′ 6∈ (Re ∩ (δE∪ →� δE)) becomes true is when e′ 6∈ Re.
Hence (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →�e) ⊆ E\Re.

Form (P→G)-A-(i), (P→G)-A-(ii) and (P→G)-A-(iii), we can con-
clude that M|δ `G|δ e =⇒ M `G e .

(B) M|δ ⊕G|δ e = M′′ =⇒ M⊕G e = M′ ∧M′|δ = M′′

We have M|δ⊕G|δe = M′′ in the local graph where M|δ = (Ex|δ,Re|δ, In|δ),
M′′ = (Ex′′|δ,Re′′|δ, In

′′
|δ) and from the def 3.1, we can infer

Ex′′|δ = Ex|δ∪{e},Re′′|δ = (Re|δ\{e})∪ e•→|δ, and In′′|δ = (In|δ∪ e→+|δ
)\ e→%|δ.
In main graph, we know M `G e where M = (Ex,Re, In) and hence
we can workout the new marking as M ⊕G e = M′ where M′ =
(Ex′,Re′, In′) with Ex′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and
In′ = (In ∪ e→+)\ e→%.
We have to prove that M′′ = M′|δ.

(i) To prove: Ex′′|δ = Ex′|δ
Let us start with Ex′′|δ
Ex′′|δ = Ex|δ ∪ {e}
= (Ex ∩ E|δ) ∪ {e} from def 5.1-iiia
= (Ex ∪ {e}) ∩ (E|δ ∪ {e})
= Ex′ ∩ E|δ
= Ex′|δ
Hence we can conclude that Ex′′|δ = Ex′|δ.

(ii) To prove: Re′′|δ = Re′|δ
Let us start with Re′′|δ

Re′′|δ = (Re|δ \ {e})∪ e•→|δ
=
(
(Re ∩ (δE∪ →� δE)) \ {e}

)
∪ e•→|δ from def 5.1-iiib

=
(
(Re\{e})∩(δE∪ →� δE)

)
∪ e•→|δ (set relative complements)

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ (e•→ ∩(δE∪ →� δE)) using

lemma A.1
=
(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE)

= Re′ ∩ (δE∪ →� δE)

41

123

= Re′|δ according to def 5.1-iiib.
Hence we can conclude that Re′′|δ = Re′|δ.

(iii) To prove: In′′|δ = In′|δ

Let us starts with In′′|δ and show that it will be equal to the projec-
tion over included set from global graph (In′|δ).
In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ

)
\ e→%|δ, from

def 5.1-iiic.
In′′|δ =

(
(In∩(δE∪ →• δE∪ →� δE))∪(e→+ ∩(δE∪ →• δE∪ →�

δE))
)
\(e→% ∩(δE∪ →• δE∪ →� δE)) using lemmas A.2 and A.3

In′′|δ =
(
(In∪ e→+)∩ (δE∪ →• δE∪ →� δE)

)
\ (e→% ∩(δE∪ →•

δE∪ →� δE)).
In′′|δ =

(
(In∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE).

In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).
In′′|δ = In′|δ.
Hence we can conclude that In′′|δ = In′|δ.

From (P→G)-B-i, (P→G)-B-ii and (P→G)-B-iii, we have proved that
Ex′′|δ = Ex′|δ, Re′′|δ = Re′|δ and In′′|δ = In′|δ and there by we can conclude
that M′′ = M′|δ.

Since we have proved both parts: ((P→G)-A and (P→G)-B), the propo-
sition for e ∈ δE and a ∈ δL. M|δ `G|δ e ∧ M|δ ⊕G|δ e = M′′ =⇒
M `G e ∧M⊕G e = M′ ∧M′|δ = M′′ holds.

Finally, we have proved the proposition in both ways
(
(G→P) and (P→G)

)
, there-

fore the proposition: for e ∈ δE and a ∈ δL it holds that M `G e ∧ M ⊕G e =
M′ ∧M′|δ = M′′ if and only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ holds.

Proposition A.2. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then,
for e 6∈ E|δ it holds that M `G e ∧M⊕G e = M′ implies M|δ = M′|δ.

Proof According to projection definition 5.1, e 6∈ E|δ =⇒ e 6∈ G|δ, therefore
there will not be any change in the marking. Hence M|δ = M′|δ.

42

124

Proposition A.3. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then for
e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge = M′ implies M|δ⊕G|δ e = M′|δ.

Proof The proof for this proposition is more or less similar to proof in the part
(P→G)-(B) of proposition A.1 with minor changes.

We have M ⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′) and
from the def 3.1, we can infer Ex′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and
In′ = (In ∪ e→+)\ e→%.
In projected graph, we have marking projected from global graph, according to
def 5.1 as M|δ = (Ex|δ,Re|δ, In|δ). The result of executing event e in projected
graph will be a marking, let us say M′′|δ = M|δ ⊕G|δ e, then we have to prove that
M′′|δ = M′|δ.
Let us say that M′′|δ = (Ex′′|δ,Re′′|δ, In

′′
|δ), and since in the projected graph we have

M′′|δ = M|δ ⊕G|δ e, we can infer from the def 3.1, Ex′′|δ = Ex|δ ∪ {e},Re′′|δ =

(Re|δ \ {e})∪ e•→|δ, and In′′|δ = (In|δ ∪ e→+|δ)\ e→%|δ.
In order to prove this equivalence of M′′|δ = M′|δ, we will show that Ex′′|δ = Ex′|δ,
Re′′|δ = Re′|δ and In′′|δ = In′|δ individually as follows,

(i) To prove: Ex′′|δ = Ex′|δ
Let us start with Ex′′|δ
Ex′′|δ = Ex|δ ∪ {e}
= (Ex ∩ E|δ) ∪ {e} from def 5.1-iiia
= (Ex ∪ {e}) ∩ (E|δ ∪ {e})
= Ex′ ∩ E|δ
= Ex′|δ
Hence we can conclude that Ex′′|δ = Ex′|δ.

(ii) To prove: Re′′|δ = Re′|δ
Let us start with Re′′|δ

Re′′|δ = (Re|δ \ {e})∪ e•→|δ
=
(
(Re ∩ (δE∪ →� δE)) \ {e}

)
∪ e•→|δ from def 5.1-iiib

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ e•→|δ (set relative complements)

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ (e•→ ∩(δE∪ →� δE)) using lemma A.1

=
(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE)

= Re′ ∩ (δE∪ →� δE)

43

125

= Re′|δ according to def 5.1-iiib.
Hence we can conclude that Re′′|δ = Re′|δ.

(iii) To prove: In′′|δ = In′|δ
Let us starts with In′′|δ and show that it will be equal to the projection over

included set from global graph (In′|δ).
In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ

)
\ e→%|δ from def 5.1-iiic.

In′′|δ =
(
(In ∩ (δE∪ →• δE∪ →� δE)) ∪ (e→+ ∩(δE∪ →• δE∪ →� δE))

)
\

(e→% ∩(δE∪ →• δE∪ →� δE)) using lemmas A.2 and A.3
In′′|δ =

(
(In∪ e→+) ∩ (δE∪ →• δE∪ →� δE)

)
\ (e→% ∩(δE∪ →• δE∪ →�

δE)).
In′′|δ =

(
(In∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE).

In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).
In′′|δ = In′|δ.
Hence we can conclude that In′′|δ = In′|δ.

From (i), (ii) and (iii), we have proved that Ex′′|δ = Ex′|δ, Re′′|δ = Re′|δ and In′′|δ = In′|δ
and there by we can conclude that M′′ = M′|δ.
Therefore the proposition: for e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge =
M′ implies M|δ ⊕G|δ e = M′|δ is proved.

Proof of Proposition 5.1.1. Let G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l)
be a Timed DCR Graph and G|δ its projection with respect to a projection param-
eter δ = (δE, δL). Then, for e ∈ δE and a ∈ δL it holds that Mt `G e ∧Mt ⊕G e =
Mt
′ ∧Mt

′
|δ = Mt

′′ if and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt
′′.

In order to prove the proposition, we have to show that the proposition in both
directions.

(G→P) for e ∈ δE and a ∈ δL. Mt `G e ∧ Mt ⊕G e = Mt
′ ∧ Mt

′
|δ = Mt

′′ =⇒
Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt

′′.
We will split the proof into 2 steps:

(A) Mt `G e =⇒ Mt|δ `G|δ e
From def 3.3, we have
Mt `G e =⇒ M `G′ e ∧ ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′).

M `G′ e has been proved in the (G→P)(A) part of the proof of propo-

sition A.1, therefore we have to show that ∀e′ ∈ In.e′
k→• e =⇒ k ≤

44

126

tex(e
′) implies that ∀e′ ∈ In|δ.e′

k→•|δ e =⇒ k ≤ tex|δ(e′), where

e′
k→•|δ e =def e

′ →•|δ e and tc|δ(e, e′) = k.

∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex(e

′)

= ∀e′ ∈ In.e′
k→•|δ e =⇒ k ≤ tex(e

′), from def 5.1-iv

= ∀e′ ∈ In|δ.e′
k→•|δ e =⇒ k ≤ tex(e

′), from def 5.1-iiic

= ∀e′ ∈ In|δ.e′
k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex), by definition of
tex

= ∀e′ ∈ In|δ.e′
k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex ∩ δE), since
M|δ `G′ e ∧ e′ ∈ In|δ, it preserves the tex behavior

= ∀e′ ∈ In|δ.e′
k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex|δ), from def 5.1-
iiia
= ∀e′ ∈ In|δ.e′

k→•|δ e =⇒ k ≤ tex|δ(e′) from def 5.1-iiid.
Hence proved.

(B) To prove: Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′ =⇒ Mt|δ ⊕G|δ e = Mt
′′

From def. 3.3 we have Mt⊕Ge =def

(
(Ex,Re, In)⊕Ge, t′ex, t′re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We proved the (Ex,Re, In)⊕G e part in the (G→P)(B) part of the proof
of proposition A.1. We then need to show that (tex

′)|δ =⇒ tex
′′ and

that (tre
′)|δ =⇒ tre

′′

(tex
′)|δ(e′)

= t′ex(e
′) if e′ ∈ Ex′|δ, according to def 5.1-iiid

=

({
0 if e′ = e

tex(e
′) otherwise

)
if e′ ∈ (Ex ∪ {e}) ∩ E|δ, according to

def 3.3, and def 5.1-iiia

=

{
0 if e′ = e ∧ e′ ∈ (Ex ∪ {e}) ∩ E|δ
tex(e

′) if e′ ∈ (Ex ∪ {e}) ∩ E|δ
, by moving the projec-

tion inward

45

127

But we know that if e′ = e, trivially e ∈ Ex ∪ {e} and e ∈ E|δ, by
def 5.1-i. Moreover, the second branch will be used only if e′ 6= e,
therefore

=

{
0 if e′ = e

tex(e
′) if e′ ∈ (Ex ∩ E|δ)

= tex
′′(e′), according to def 5.1-iiia, and def 3.3

(tre
′)|δ(e′)

= t′re(e
′) if e′ ∈ Re′|δ, according to def 5.1-iiie

=

({
k if e

k•→ e′

tre(e
′) otherwise

)
if e′ ∈ Re′|δ, according to def 3.3

=

{
k if e

k•→|δ e′ ∧ e′ ∈ Re′|δ
tre(e

′) if e′ ∈ Re′|δ
, according to def 5.1-vi and mov-

ing the projection inward

=

{
k if e

k•→|δ e′ ∧ e′ ∈ ((Re \ {e}) ∪ e•→) ∩ (δE∪ →� δE)

tre(e
′) if e′ ∈ ((Re \ {e}) ∪ e•→) ∩ (δE∪ →� δE)

,

according to def 5.1-iiib and def 3.1

But we know that if e
k•→|δ e′, trivially e′ ∈ e •→, and also that the

second branch will be used only if (e, e′) 6∈•→|δ, therefore

=

{
k if e

k•→|δ e′
tre(e

′) if e′ ∈ Re ∩ (δE∪ →� δE)

=

{
k if e

k•→|δ e′
tre|δ(e′) otherwise

, by def 5.1-vi, and def 5.1-iiie

= tre
′′(e′), according to def 3.3

Since we have proved both parts: ((G→P)-A and (G→P)-B), the proposi-
tion Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′ =⇒ Mt|δ ⊕G|δ e = Mt
′′ holds.

(P→G) for e ∈ δE and a ∈ δL. Mt|δ `G|δ e ∧ Mt|δ ⊕G|δ e = Mt
′′ =⇒ Mt `G

e ∧Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′

Again, we will split the proof into 2 parts.

(A) Mt|δ `G|δ e =⇒ Mt `G e

46

128

From def 3.3, we have
Mt `G e =⇒ M `G′ e ∧ ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′).

M|δ `G′ e has been proved in the (P→G)(A) part of the proof of propo-

sition A.1, therefore we have to show that ∀e′ ∈ In|δ.e′
k→•|δ e =⇒

k ≤ tex|δ(e′) implies that ∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex(e

′), where

e′
k→• e =def e

′ →• e and tc(e, e′) = k.

∀e′ ∈ In|δ.e′
k→•|δ e =⇒ k ≤ tex|δ(e′)

= ∀e′ ∈ In.e′
k→•|δ e =⇒ k ≤ tex|δ(e′) from A.1-i

= ∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex|δ(e′) from A.1-ii

= ∀e′ ∈ In.e′
k→• e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex|δ), according to
def 5.1-iiid
= ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′) since M `G′ e∧e′ ∈→• e∧e′ ∈

In =⇒ e′ ∈ Ex|δ.
Hence proved.

(B) Mt|δ ⊕G|δ e = Mt
′′ =⇒ Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′

From def. 3.3 we have
Mt ⊕G e =def

(
(Ex,Re, In)⊕G e, t′ex, t′re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We proved the (Ex,Re, In)⊕G e part in the (P→G)(B) part of the proof
of proposition A.1. We then need to show that tex′′ =⇒ (tex

′)|δ and
that tre′′ =⇒ (tre

′)|δ

tex
′′(e′)

=

{
0 if e′ = e

tex|δ(e′) otherwise
, according to def 3.3 and considering that if

e′ 6= e, the underlying tex behaves exactly like tex|δ

=

{
0 if e′ = e

tex(e
′) if e′ ∈ Ex|δ

, according to def 5.1-iiid

47

129

=

({
0 if e′ = e

tex(e
′) otherwise

)
if e′ ∈ (Ex|δ)∪{e}, since the overall func-

tion will continue to behave the same
= t′ex(e

′) if e′ ∈ (Ex∩ δE)∪ {e}, according to def 3.1, and def 5.1-iiia
= t′ex(e

′) if e′ ∈ (Ex ∪ {e}) ∩ (δE ∪ {e})
= t′ex(e

′) if e′ ∈ Ex′|δ, according to def 3.1, and def 5.1-iiia
= (tex

′)|δ(e′), according to def 3.3

tre
′′(e′)

=

{
k if e

k•→|δ e′
tre|δ(e′) otherwise

, according to def 3.3 and considering that

if (e, e′) 6∈•→|δ, the underlying tre behaves exactly like tre|δ

=

{
k if e

k•→|δ e′
tre(e

′) if e′ ∈ Re|δ
, according to def 5.1-iiie

({
k if e

k•→ e′

tre(e
′) otherwise

)
if e′ ∈ (Re|δ \ {e}) ∪ e •→|δ, according to

def 5.1-vi, and since the overall function will continue to behave the
same
= tre

′(e′) if e′ ∈ (Re|δ \ {e}) ∪ e•→|δ, according to def 3.3
= tre

′(e′) if e′ ∈ ((Re ∩ (δE∪ →� δE) \ {e}) ∪ e •→|δ), according to
def 5.1-iiib
= tre

′(e′) if e′ ∈ ((Re \ {e}) ∪ e•→|δ) ∩ (δE∪ →� δE)
= tre

′(e′) if e′ ∈ Re′|δ, according to def 3.1, and def 5.1-vi
= (tre

′)|δ(e′), according to def 5.1-iiie

Since we have proved both parts: ((P→G)-A and (P→G)-B), the propo-
sition for e ∈ δE and a ∈ δL. Mt|δ `G|δ e ∧ Mt|δ ⊕G|δ e = Mt

′′ =⇒
Mt `G e ∧Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′ holds.

Finally, we have proved the proposition in both ways
(
(G→P) and (P→G)

)
,

therefore the proposition: for e ∈ δE and a ∈ δL it holds that Mt `G e∧Mt⊕G e =
Mt
′ ∧Mt

′
|δ = Mt

′′ if and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt
′′ holds.

Proof of Proposition 5.1.2. Follows trivially from result of proposition A.2.

48

130

Proof of Proposition 5.1.3. Considering the result of proposition A.3, since the
marking of the underlying DCR Graph is the same, this proposition is proved by
the result from the part (P→G)-(B) of proposition 1.

49

131

Exformatics Declarative Case Management Workflows
as DCR Graphs

Tijs Slaats1,2, Raghava Rao Mukkamala1, Thomas Hildebrandt1, and Morten
Marquard2 ?

1 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

{hilde, rao, tslaats}@itu.dk, http://www.itu.dk
2 Exformatics A/S

Lautrupsgade 13, 2100 Copenhagen, Denmark
{mmq, ts}@exformatics.com, http://www.exformatics.com

Abstract. Declarative workflow languages have been a growing research subject
over the past ten years, but applications of the declarative approach in industry are
still uncommon. Over the past two years Exformatics A/S, a Danish provider of
Electronic Case Management systems, has been cooperating with researchers at
IT University of Copenhagen (ITU) to create tools for the declarative workflow
language Dynamic Condition Response Graphs (DCR Graphs) and incorporate
them into their products and in teaching at ITU. In this paper we give a status
report over the work. We start with an informal introduction to DCR Graphs. We
then show how DCR Graphs are being used by Exformatics to model workflows
through a case study of an invoice workflow. Finally we give an overview of the
tools that have been developed by Exformatics to support working with DCR
Graphs and evaluate their use in capturing requirements of workflows and in a
bachelor level course at ITU.

Keywords: workflows, declarative specifications, tools, teaching, case study

1 Introduction

Declarative workflow modelling [8,9,16] is an emerging field in both academia and in-
dustry which offers a new paradigm that supports flexibility and adaptability in business
processes. Traditional imperative workflow languages describe how a process is carried
out as a procedure with explicit control flow. This often leads to rigid and overspecified
process descriptions, that fails to capture why the activities must be done in the given
order. Declarative workflow languages on the other hand specify processes by the con-
straints describing why activities can or must be executed in a particular order, and not
how the the process is to be executed, i.e. activities can be executed in any order and
any number of times, as long as not prohibited by a constraint [15, 19]. This may lead
to under specified process descriptions and make it difficult to perceive the path from

? This research is supported by the Danish Research Agency through an industrial PhD Grant.

132

2 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

start to end, but captures the reason for the ordering of activities and leaves flexibility
in execution.

An example a constraint between activities is the response constraint [4, 16] (e.g.
A •! B), which requires that an execution of one task (A) is eventually followed by
an execution of another task (B), but it does not put any further limits on the number
of times and order in which the tasks are executed. For example, it would be perfectly
valid if the second task occurs first, as long as it also occurs after the first task. In other
words, B, AB, BAB, AAB, ... are all valid runs, where as A, BA, BBA, ... are not
valid runs, as they fail to satisfy the constraint by having an occurence of A that is not
followed by an occurence of B.

Examples of processes that require more flexibility are commonly found in the
healthcare [5] and case management [1] domains. In those processes, the work is be-
ing carried out by knowledge workers who typically have the experience and expertise
needed to deal with the complexity of a process whose requirements may vary from
case to case. For this reason, knowledge-intensive processes require flexible workflow
systems that support the users in their work (instead of dictating them what to do) and
allow them to make their own choices as long as they do not break those constraints
that do need to be strictly followed in all cases (e.g. laws or organizational policies).

Over the last decade, several declarative languages for business processes have been
proposed in academic literature. The first of these languages is Declare [15, 19] which
gave a number of common workflow constraints formalized in Linear-time Temporal
Logic (LTL). More recently, DCR Graphs [4] have been developed as a generalization
of event structures [21], where processes are described as a graph of events related
by only 4 basic constraints. A simple operational semantics based on markings of the
process graph makes it possible to clearly visualize the runtime state. Furthermore,
the Guard-Stage-Milestone [10] has been developed, which is a data-centric workflow
model with declarative elements for modeling life cycles of business artifacts.

Even though by now these techniques have become well known in academia, their
application in the industry is relatively uncommon. Over the last two years Exformat-
ics A/S, a Danish provider of Electronic Case Management(ECM) systems, has been
collaborating with researchers of IT University of Copenhagen (ITU), to develop tools
for the declarative workflow language DCR Graphs with the aim to apply and evaluate
the use of DCR Graphs on real world scenarios in the case management domain and in
teaching at ITU.

The goal of the present paper is to give a status report, presenting and evaluating
the tools developed so far. As the first step, the core DCR Graphs model were used
by Exformatics A/S in a case study to capture some of the requirements in the design
phase of a cross-organizational case management system [1]. The case study led to
the further development of the DCR Graphs model by adding support for hierarchical
modelling using nested events and a (milestone) constraint [6], making it possible to
concisly specify that some event(s) must not be pending in order for some event to
happen. It also encouraged developing a graphical design, simulation and verification
tool [18] which is being used successfully in further case studies with industry and in
teaching at ITU.

133

Exformatics Declarative Case Management Workflows as DCR Graphs 3

In the remainder of this paper we will first introduce DCR Graphs informally in
Sec. 2, in Sec. 3 we will explain how they are used as the underlying formalism for
workflows within the Exformatics ECM system and in Sec. 4 we will give an overview
of the tools for managing DCR Graphs that have been developed by Exformatics. We
evaluate and describe related work in Sec. 5 and conclusions and future work in Sec. 7.

2 DCR Graphs by Example

This section describes DCR Graphs informally by giving an overview of the declarative
nature of the language and its graphical modeling notation. (All figures shown are pro-
duced in the developed graphical editor and simulation tool [18]). The formal semantics
of DCR Graphs are given in [4, 6, 12].

A DCR Graph specifies a process as a set of events, typically representing the (pos-
sibly repeated) execution of activities in the workflow process, changes to a dataset or
timer events. The events are represented graphically as rectangular boxes with zero or
more roles in a small box on top of the event as depicted in Fig. 1, showing an excerpt
of an invoice workflow with three events: Recieve Invoice, Enter Invoice Data and
Responsible Approval and two roles: Administration (Adm), representing the admin-
istration office of a company and Responsible (Res), the person responsible for the
invoice. The administation office has access to the tasks Recieve Invoice and Enter
Invoice Data and the responsible has access to the task Responsible Approval.

Fig. 1. DCR Graphs: Tasks and Roles

The concrete principals/actors (either human or automated) are typically not shown
in the graphical notation, but will at runtime be assigned one or more of the roles and
can then execute any of the events that are assigned to one of these roles.

The events in a DCR Graph can happen any number of times and in any order, unless
prevented by a constraint relation. The graph in Fig. 1 has no constraints, so it would be
valid to e.g. just receive an invoice and do nothing else, or to receive an invoice and then
approve the invoice twice. Constraints are defined using five different kinds of relations
between the events, named the condition, response, milestone, inclusion and exclusion
relation respectively.

Fig. 2(a) gives an example of a condition relation (depicted graphically as !•)
between Recieve Invoice and Enter Invoice Data, which states that before Enter In-
voice Data can happen, the event Recieve Invoice must first have happened. In other
words, we have to receive an invoice before we can enter the details of the invoice into

134

4 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

the system. The DCR Graph shown in Fig. 2(a) allows possible runs such as Recieve
Invoice.Enter Invoice Data or Recieve Invoice.Enter Invoice Data.Recieve In-
voice or Recieve Invoice.Recieve Invoice.Enter Invoice Data, but it does not allow
e.g. Enter Invoice Data. Recieve Invoice as it invalidates the condition constraint.
As a help for the user, the graphical editor shows a ”no entry” sign at the event Enter
Invoice Data to indicate that it is not enabled.

(a) The Condition Relation (b) The Response Relation

Fig. 2. The Condition and Response relations

In Fig. 2(b) is given an example of the response relation (depicted graphically as
•!), which states that if Enter Invoice Data happens, Responsible Approval even-
tually has to happen in order for the workflow to be completed. Note that this relation
is not counting, i.e., it is not required to execute Responsible Approval once for each
execution of Enter Invoice Data. In other words, the response relation offers the flex-
ibility of approving one to many invoices just by executing Responsible Approval
once. Examples of completed runs in the process represented by the graph in Fig. 2(b)
are: Enter Invoice Data.Responsible Approval, and Enter Invoice Data.Enter In-
voice Data.Responsible Approval. An example of a run which is possible, but not
completed is Enter Invoice Data.Responsible Approval.Enter Invoice Data as the
last Enter Invoice Data is not (yet) followed by Responsible Approval.

In [6] we extended DCR Graphs to allow nested events as shown in Fig. 3. Nesting
both acts as a logical grouping and as a shorthand notation for having the same relation
between many events. For instance, the response relation from Enter Invoice Data in
Fig. 3 represents a response relation from Enter Invoice Data to all three sub events of
the super event Approval.

Adding nesting to the model, made it apparant, that it is useful to be able of express,
that an event can not happen when a nested subgraph is not in an accepting state. We
call this relation the milestone relation (depicted graphically as!⇧), and is exemplified
shown in Fig. 3 from the Approval super event to Pay Invoice. The meaning is, that
after doing Enter Invoice Data, we will have a pending response on each approval task
and therefore we can’t execute Pay Invoice until each of these tasks has been done.
Note that in contrast to the condition relation, by using a combination of the response
and milestone relations we can require approval again after it was already given.

Finally, the exclude relation (depicted graphically as!%) and its dual the include
relation (depicted graphically as!+) allows for dynamically respectively exclude and
include events from the workflow. Fig. 4(a) shows a typical example of the use of the

135

Exformatics Declarative Case Management Workflows as DCR Graphs 5

Fig. 3. Example of Nesting and the Milestone Relation

dynamic include and exclude relations to model exclusive choice between events: The
responsible may choose between approving or request a change to the invoice. The
choice is modelled by letting the two events mutually exclude each other. If a change
is requested, the administration is required to enter data again (because of the response
relation from Request Change to Enter Invoice Data), and when data is entered
again, the two events nested under the Approval super event is included again because
of the include relation from Enter Invoice Data to Approval. This example illustrates
the flexible nature of DCR Graphs in process modeling, as compared to the typical
BPMN procedural model in Fig. 4(b). In the DCR Graph, invoice data can be entered
any number of times before approval, and changes can also be requested any number of
times before data is entered again, while the BPMN process only allows every task to
be executed once for each cycle in the loop. It is of course possible to model the more
flexible execution in BPMN, but not in a natural way.

2.1 Execution Semantics

The runtime state of a DCR Graph is defined by a marking of the graph, formally given
by 3 finite sets of events representing respectivly which events are executed (at least
once), pending responses and included. By keeping track of which events have been
executed at least once in the executed set, we can determine which conditions have been
satisfied. The pending responses set keeps track of which events need to be executed
before the workflow is in a completed state. Finally, the included set keeps track of the

136

6 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

(a) Modeling choice with include and exclude (b) Imperative BPMN model

Fig. 4. Declarative DCR Graph and imperative BPMN model of invoice approval

currently included events. An event is enabled for execution if it is currently included
(i.e. part of the included set in the current marking) and all of its conditions are either
executed or excluded (i.e all condition events that are currently included should be part
of the executed events set) and no event related to it by the milestone relation is included
and a pending response. A (finite or infinite) execution is defined to be accepting, when
no event from some point stays included and as a pending response forever without
eventually being executed.

The excluded events are graphically depicted by a dashed border, the executed
events by a green checkmark at the event, and pending response events by a red ex-
clamation mark. This is shown in Fig. 5, where Enter Invoice Data and Request
Change are executed, and thereby Responsible Approval is a pending response, but
it is also excluded and Enter Invoice Data is a pending response too.

A DCR Graph contains an initial marking defined as part of the graph. For example,
a graph may have a number of initial pending responses (representing tasks that are
required to be executed mandatorily for the workflow to be considered finished), or
initially excluded events.

2.2 DCR Graphs with Global Data

In one of the more recent extensions to DCR Graphs [12], we have introduced the
concept of global data. In DCR Graphs, data is modelled as a global store that contains
a number of named variables. The variables are mapped to events so that we can specify
which events can read/write to specific variables. Furthermore, guards are defined as
boolean expressions over the values of variables. Guards can be placed on both events
and relations. If a guard is assigned to an event, then as long as the guard does not
evaluate to true, the event is blocked from execution. On the other hand, having a guard
on a relation means that the relation is only evaluated when the guard evaluates to true,
in other words the condition constraint only needs to hold and an event is only recorded
as a response while the guard holds.

137

Exformatics Declarative Case Management Workflows as DCR Graphs 7

Fig. 5. Example marking after executing Enter Invoice Data followed by Request Change

For example, the response between Enter Invoice Data and Manager Approval
in Fig 6 is only recorded when the amount of the invoice is equal or larger than 1000
euro, if the amount is lower than 1000 euros, executing Enter Invoice Data will not
make Manager Approval a pending response.

3 Exformatics Workflows as DCR Graphs

Before the introduction of (Nested) DCR Graphs, the Exformatics workflow model
consisted of tasks grouped under phases. There was always one active phase, which
could be changed manually by the user, tasks belonging to that phase were then enabled.
When introducing DCR Graphs we chose to map tasks to events and to maintain the
phase model, mapping it to a single-level nesting structure. We removed the practice
that tasks were enabled when their phase was active and allowed the active phase to
be changed automatically through the execution of certain tasks. In the new model, the
active phase no longer controls the workflow but instead just gives a general indication
of the state that the case is in. We introduced all five relations of DCR Graphs as ways of
constraining the flow of tasks. One distinction from the traditional DCR Graph approach
is that tasks in the Exformatics system are normally only done once. As a result, when
a task is executed, it is not shown in the list of tasks that need to be done anymore.
However, unless it is exlicitely excluded through the exclude relation it remains possible
to open the task again manually and do it again, so the execution semantics remains
faithful to the DCR Graphs semantics.

138

8 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

Fig. 6. Exformatics Invoice Workflow as a DCR Graph

Fig. 6 shows a workflow that is being used internally by Exformatics and has been
modelled using DCR Graphs. It describes how to handle the process of receiving in-
voices.

The workflow contains five roles: 1) the administration department (Adm), which is
responsible for receiving the invoice, scanning it and creating an invoice case . 2) The
invoice responsible (Res), which is responsible for the invoice, usually because they are
the person that bought the items that the invoice concerns, they are expected to check
and approve the invoice. 3) The manager of the responsible (Man), whose approval
may be needed in certain circumstances. 4) The CEO (CEO) who may also need to
give approval in certain exceptional cases. And finally 5) the finance department (Fin),
which takes care of paying the invoice and confirming that payment has succeeded.
The tasks are divided into three phases, the Initial Phase which contains the tasks of
the administration department, the Approval Phase which consists of the approval
tasks and the Payment Phase which contains the tasks that handle the payment of the
invoice.

139

Exformatics Declarative Case Management Workflows as DCR Graphs 9

The process starts when an invoice is received by the administration department,
because Exformatics wants to keep all their documents in an electronic format it is re-
quired (through the response relation from Receive Invoice to Scan Invoice) that the
invoice is scanned. The administration department is also required to decide if the in-
voice should be entered into the system (sometimes fake or wrong invoices are received
which can be easily filtered out at first sight, for example because they are addressed to
a non-existent employee). If they decide that the invoice appears legit then they enter all
relevant data into the system, in particular the amount the invoice is for, which is used
by the workflow system to determine whose approval is needed for the invoice. The re-
sponsible for the invoice should always approve the invoice (modelled by an unguarded
response relation), if the amount of the invoice is higher then 1000 euros, approval from
the responsible’s manager is required as well (modelled by a response relation with the
guard amount � 1000). In special cases where the amount is higher then 20000 euros,
approval from the CEO of the company is required as well.

It is possible that data is entered again, for example because a mistake was made
by the administration department, or because a correction on the invoice was received,
in this case new approvals will be required. When all necessary approvals have been
received the invoice can be paid, this is modelled through the milestone relation from
the Approval Phase to the task Pay Invoice, which means that Pay Invoice can not
be done while there are pending responses in the Approval Phase. Once payment is
confirmed, the invoice case should be closed, modelled through an exclusion relation
from Confirm Payment to all three phases. There are five conditions in the workflow:
first of all, Receive Invoice is required before the administration department can exe-
cute Enter Invoice Data or Scan Invoice. Enter Invoice Data is required before any
approval can be given and all of the tasks in the Initial Phase should be done before
any of the tasks in the Payment Phase can be done. Finaly, we have to pay the invoice
before we can confirm payment.

4 Tool support

Several tools have been developed at Exformatics to design and execute DCR Graphs
internally or externally when presenting DCR Graphs at seminars or when interacting
with customers. First of all, to facilitate the exchange of process descriptions between
the tools developed by Exformatics and the tools being developed at IT University of
Copenhagen, we defined a common XML format, which we will show in the first sub-
section. Secondly we developed a set of webservices that provide functionality for the
execution, verification, storage and visualization of DCR Graphs, we named this set of
services the Process Engine. Finally, as already mentioned above, we developed a stand-
alone graphical editor to support the visual modelling and simulation of DCR Graphs,
called the DCR Graphs Editor, which has also been used for teaching at a bachelor level
course on Business Processes and IT at the IT University of Copenhagen.

Fig. 7 gives an overview of these tools and how they interact with eachother and
the Exformatics ECM. The Process Engine is central to our tools and is used by the
ECM to execute, verify and visualize workflows. The DCR Graphs Editor allows for
execution of single steps by itself, but also uses the Process Engine for verification

140

10 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

Process Engine
http://processengine.exformatics.net

Execution Repository

Visualization Verification

Other Applications
at Customer

Exformatics ECM

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs Editor

Fig. 7. Overview of the Exformatics DCR Graphs Tools

of DCR Graphs. Finally the purpose of the Process Engine is to be easily plugged in
to other case management solutions as well, so that we may provide only workflow
functionalities such as execution, verification, visualization and storage to customers
without them being required to adopt the full Exformatics ECM package.

4.1 DCR Graphs XML Format

In listing 1 we give an example of the XML format for describing DCR Graphs.
The xml file consists of two main parts: the specification of the DCR Graph and the

runtime state of the DCR Graph. The specification is split up into a section decribing
resources and section describing constraints. The resource section contains subsections
for events (possibly nested), labels, a mapping from labels to events, variables, expres-
sions and variable acccess rights. The constraint section contains five subsections for
the DCR Graph relations. The runtime section contains a subsection for the marking,
containing the set of executed events, pending responses and included events, and a
subsection for the state of the globalstore, which contains the values assigned to the
variables in the current state.

Listing 1. Overview of DCR Graph XML Format
<? xml v e r s i o n = ” 1 . 0 ” e n c o d i n g = ” u t f 8 ” ?>
<d c r g r a p h>

<s p e c i f i c a t i o n>
<r e s o u r c e s>

<e v e n t s>
<e v e n t i d =” I n i t i a l Phase ”>

<e v e n t i d =” E n t e r I n v o i c e Data ” />
. . .

</ e v e n t>

141

Exformatics Declarative Case Management Workflows as DCR Graphs 11

. . .
</ e v e n t s>
< l a b e l s>

<l a b e l i d =”CEO Approva l ” />
. . .

</ l a b e l s>
<l a b e l M a p p i n g s>

<l a b e l M a p p i n g e v e n t I d =”CEO Approva l ” l a b e l I d =”CEO Approva l ” />
. . .

</ l a b e l M a p p i n g s>
<v a r i a b l e s>

<v a r i a b l e i d =” amount ” v a l u e =” 0 ” />
</ v a r i a b l e s>
<e x p r e s s i o n s>

<e x p r e s s i o n i d =” g te1000 ” v a l u e =” amount >= 1000 ” />
. . .

</ e x p r e s s i o n s>
<v a r i a b l e A c c e s s e s>

<r e a d A c c e s s e s>
<r e a d A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” />
. . .

</ r e a d A c c e s s e s>
<w r i t e A c c e s s e s>

<w r i t e A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” />
</ w r i t e A c c e s s e s>

</ v a r i a b l e A c c e s s e s>
</ r e s o u r c e s>
<c o n s t r a i n t s>

<c o n d i t i o n s>
<c o n d i t i o n s o u r c e I d =” Rece ive I n v o i c e ” t a r g e t I d =” Scan I n v o i c e ” />
. . .

</ c o n d i t i o n s>
<r e s p o n s e s>

<r e s p o n s e s o u r c e I d =” E n t e r I n v o i c e Data ” t a r g e t I d =” Manager Approva l ”
e x p r e s s i o n I d =” g te1000 ” />

. . .
</ r e s p o n s e s>
<e x c l u d e s>

<e x c l u d e s o u r c e I d =” Confirm Payment ” t a r g e t I d =” Approva l Phase ” />
. . .

</ e x c l u d e s>
<i n c l u d e s />
<m i l e s t o n e s>

<m i l e s t o n e s o u r c e I d =” Approva l Phase ” t a r g e t I d =” Pay I n v o i c e ” />
</ m i l e s t o n e s>

</ c o n s t r a i n t s>
</ s p e c i f i c a t i o n>
<r u n t i m e>

<marking>
<e x e c u t e d />
<i n c l u d e d>

<e v e n t i d =” Approva l Phase ” />
. . .

</ i n c l u d e d>
<p e n d i n g R e s p o n s e s />

</ marking>
<g l o b a l S t o r e>

<v a r i a b l e i d =” amount ” v a l u e =” 0 ” />
</ g l o b a l S t o r e>

</ r u n t i m e>
</ d c r g r a p h>

Next to the standard elements described above, it is possible to insert custom ele-
ments at all nodes of the XML tree. This allows one to add additional data for specific
tools that is not required for the formal definition of a DCR Graph. Examples of these
are the roles (they are not a part of the formal model as they are not necesairily interest-

142

12 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

ing for applications in other domains than BPM) and the location of events when drawn
in the visual editor as shown in listing 2.

Listing 2. Example of how custom data can be insterted into the XML format.
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f 8 ” ?>
<e v e n t i d =”CEO Approva l ”>

<custom>
<v i s u a l i z a t i o n>

<l o c a t i o n xLoc=” 449 ” yLoc=” 123 ” />
</ v i s u a l i z a t i o n>

<r o l e s>
<r o l e>CEO</ r o l e>

</ r o l e s>
</ custom>

</ e v e n t>

4.2 Process Engine

Currently the Process Engine consists of three main webservices: the first for execution,
the second for storage of DCR Graphs and the third for visualization of DCR Graphs.
The execution service contains methods for executing and verifying DCR Graphs. The
execution methods support the global data model, verification consists of checking for
deadlock and livelock, but only for standard DCR Graphs without data. In the future
we plan to extend the verification aspect and move it to its own service. The repository
service for storage of DCR Graphs is currently very limited and mainly a proof of
concept, it is planned to extend this in the future so it can be used to support sharing
of workflows between cooperating organizations. The visualization service can be used
to automatically layout and draw DCR Graphs, currently limited to the basic model
without guards on data. All of these services are used by the Exformatics ECM for
modelling and executing workflows.

4.3 DCR Graphs Editor

The DCR Graphs Editor is a graphical editor for modelling and simulating DCR Graphs.
There are two main screens in the tool: in the Process Model screen one can design DCR
Graphs by drawing events, changing the name, label and initial marking, adding roles
and adding relations between events. In he Process Simulation Screen one can simulate
DCR Graphs by clicking on the events that one wants to execute, the tool will give
feedback on the current trace of executed events, which events can be executed and if
the DCR Graph is in an accepting state. The tool can also interact with the verifica-
tion methods of the Process Engine to check DCR Graphs for deadlock and livelock.
It currently supports nested DCR Graphs including the milestone relation and work is
underway to also add support for the global data model. All the images of DCR Graphs
in this paper come directly from the editor.

5 Related Work

As mentioned in the introduction Declare [15, 19] was the first serious attempt at cre-
ating a declarative notation for describing business processes. Tool support for Declare

143

Exformatics Declarative Case Management Workflows as DCR Graphs 13

consists of a design tool, a server and corresponding user client for executing Declare
processes. The designer is similar to the DCR Graphs Editor, allowing modellers to
draw and verify Declare models (including a notion of data) by using a graphical user in-
terface. The server is similar to the execution webservices contained in the Process En-
gine, allowing execution of Declare models by client programs. Finally the user client
is somewhat comparable to the simulation part of the DCR Graphs Editor, although it
offers more features to support the user in the execution of the process. These tools have
been in development since the inception of the Declare language and therefor have seen
a fair amount of iterations and reached a high level of maturity. The DCR Graphs tools
on the other hand can be seen as being an advanced prototype version (with the most
mature parts, such as the execution engine, currently being brought into production),
where new features are still frequently being added. Both Declare and DCR Graphs
are being included as extensions to the newest version of CPN Tools [20], for Declare
it is the intention that this will become the main vehicle for further developments on
the language and that no further features will be added to the previously mentioned
tools. Declare also offers extensive support for analysis of Declare logs through ProM
and support for process mining through the Declare Miner [11]. At the moment nothing
comparable exists for DCR Graphs, however there is an interest in investigating process
mining on running instances of DCR Graphs, particularly in the context of adaptive pro-
cesses, with the goal of identifying common adaptation patterns. DCR Graphs also offer
extended tool support for verification, allowing users to specify properties to be verified
as a DCR Graph and then verifying processes modelled as DCR Graphs against these
properties [13]. These tools are being developed at the IT University of Copenhagen
and are therefor not described in detail this paper, however since these tools use the
common XML format described in sec. 4.1, the Exformatics tools can easily interact
with them.

The business artifacts [14] model developed by IBM Research combines both data
and process aspects in a holistic manner. An artifact type contains both an information
model (data for business objects) and a lifecycle model, which describes the possible
ways a business entity might progress through and responds to events and external
activities. A declarative approach using Guard-Stage-Milestone (GSM model) [9] based
on ECA(Event Condition Action)-like rules for specification of life cycles on business
artifacts has been developed in the recent years. Compared to DCR Graphs, the GSM-
model has a richer support for data, but also a more complex semantics that does not
capture acceptance criteria for infinite executions.

6 Evaluation

This work provides an initial report on tools being developed at Exformatics A/S ex-
amplified by a use-case being used internally within the company itself. As such no
concrete quantitative evaluation of the usefulness and commercial viabilty of the tools
exists yet. However, DCR Graphs as a modelling paradigm and the Exformatics tools
themselves have already seen both commercial and academic use. As a modelling
paradigm, DCR Graphs were applied in a commercial project involving Exformat-
ics and Landsorganisationen i Danmark (LO), the umbrella organisation for Danish

144

14 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

unions. During this project DCR Graphs were used to model the IT system that Ex-
formatics developed for LO [1], but the lack of tool support for design and simulation
limited its use. In [5] we showed how DCR Graphs can be used to model a distributed
healthcare process encountered in a Danish hospital. DCR Graphs and the tools are cur-
rently employed in a project jointly with a danish research foundation for modelling the
case management process for handling funding applications from submission to decis-
sion. All of these cases have been demonstrated for industry at seminars with positive
feedback resulting in several requests for follow up meetings. Finally, Exformatics has
recently started a commercial project for the Danish Cancer Society, including the de-
velopment of an invoice approval solution based on the example used in this paper and
using the Process Engine for execution of the workflows in the solution.

In the recent paper [17] we give the first empirical evaluation on what practitioners
think of declarative modelling based on a study performed at a Dutch provider of ECM
software. During the study some of those participating were presented Declare, while
others were presented DCR Graphs. While the overall results of the study point in the
direction of a hybrid model combining the imperative and declarative paradigms, it was
also clear that the declarative paradigm by itself was percieved as useful for the right
application domains.

In the Spring 2012 and 2013, the DCR Graphs model has been introduced in a
bachelor course in IT and Business Process Modelling at the IT University of Copen-
hagen [2]. Each year, the course was followed by about 40 students, and the DCR Graph
model was introduced for capturing process requirements, along with BPMN 2.0 for
modelling processes imperatively. The students worked in groups, modelling their own
processes identified in a field study performed in a previous course. They first modelled
the process in BPMN and subsequently were asked to model the requirements in DCR
Graphs and compare the models. They all experienced that the initial BPMN was good
at describing a procedure of how to carry out the process. However, when turning to
the DCR Graph model, they also realized that in most cases their BPMN model only
described a fairly rigid, happy path through the process. In most cases it took the group
two iterations to change their mindset to model requirements instead of the procedure.
This may however be influenced by the fact, that they did no longer have access to the
company in which they had performed the field study. Only in 2013, the DCR Graphs
editor was available, and we experienced that it made it much easier for the students
to learn the notation and semantics, and to appreciate its use for modelling process re-
quirements. However, it was also clear that it still could be difficult for some of the
students to visualize the possible paths of the process specified as DCR Graphs.

7 Conclusion

In this paper, we have given an informal introduction to DCR Graphs and briefly de-
scribed current tool support, and how DCR Graphs and the tools are being used by
Exformatics and in teaching at ITU university to model workflows.

Even though the uses in practice and teaching so far is limited, it has been very
encouraging. At presentations for industry the models have generally been appreciated
and easily understood. At the course the students were able to apply DCR Graphs to

145

Exformatics Declarative Case Management Workflows as DCR Graphs 15

model processes obtained from their own field studies in a previous course. They re-
ported back that using the simulation facility in the tool was a great help to understand
both the constraints of their own process and DCR Graphs as a model language.

As part of the future work, we plan to further develop the tools, making them more
easily accessible and user-friendly to process modelers, based on the usability studies
and feedback from students and clients of Exformatics. Furthermore, we also intend
to upgrade the tools to support some of the latest extensions on DCR Graphs such as
time [7], a distributed data model and more advanced verification techniques. Simi-
larly, we are also working on extending the theory of DCR Graphs to provide a behav-
ioral type system for cross-organizational workflows as initiated in [3]. In the future we
also want to research the challenge of developing business processes for knowledge-
intensive and adaptive case management processes as initiated in [13], which require
more focus on evolutionary process data and adaptability of the process during execu-
tion.

References

1. T. Hildebrandt, R.R. Mukkamala, and T. Slaats. Designing a cross-organizational case man-
agement system using dynamic condition response graphs. In Enterprise Distributed Object
Computing Conference (EDOC), 2011 15th IEEE International, pages 161 –170, 29 2011-
sept. 2 2011. 2, 14

2. Thomas Hildebrandt. It and business process modelling course. IT University of Copen-
hagen, 2013. https://blog.itu.dk/BIMF-F2013/. 14

3. Thomas Hildebrandt, Marco Carbone, and Tijs Slaats. Rsvp: Live sessions with responses.
In Proceedings of BEAT’13, 1st International Workshop on Behavioural Types, 2013. 15

4. Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Post-proceedings of PLACES 2010, 2010.
2, 3

5. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Declarative modelling and
safe distribution of healthcare workflows. In International Symposium on Foundations of
Health Information Engineering and Systems, Johannesburg, South Africa, August 2011. 2,
14

6. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic condition
response graphs. In Proceedings of Fundamentals of Software Engineering (FSEN), April
2011. 2, 3, 4

7. Thomas Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and Francesco Zanitti. Contracts
for cross-organizational workflows as timed dynamic condition response graphs. Journal
of Logic and Algebraic Programming (JLAP), may 2013. http://dx.doi.org/10.
1016/j.jlap.2013.05.005. 15

8. Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Kohei Honda and Alan Mycroft, editors,
PLACES, volume 69 of EPTCS, pages 59–73, 2010. 1

9. Richard Hull. Formal study of business entities with lifecycles: Use cases, abstract models,
and results. In Tevfik Bravetti, Mario; Bultan, editor, 7th International Workshop on Web
Services and Formal Methods, volume 6551 of Lecture Notes in Computer Science, 2010. 1,
13

10. Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta, Fenno Terry Heath, III,
Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam, Piyawadee Sukaviriya, and

146

16 T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard

Roman Vaculin. Introducing the guard-stage-milestone approach for specifying business
entity lifecycles. In Proc. of WS-FM’10, pages 1–24, Berlin, Heidelberg, 2011. Springer-
Verlag. 2

11. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-Guided Discovery of Declarative
Process Models. In 2011 IEEE Symposium on Computational Intelligence and Data Mining.
IEEE, 2011. 13

12. Raghava Rao Mukkamala. A Formal Model For Declarative Workflows - Dynamic Condition
Response Graphs. PhD thesis, IT University of Copenhagen, March 2012. Forthcomming.
3, 6

13. Raghava Rao Mukkamala, Thomas Hildebrandt, and Tijs Slaats. Towards trustworthy adap-
tive case management with dynamic condition response graphs. In Proceedings of the 17th
IEEE International EDOC Conference, EDOC 2013, 2013. 13, 15

14. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.
IBM Syst. J., 42:428–445, July 2003. 13

15. M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. Van Der Aalst. Constraint-based
workflow models: change made easy. In Proceedings of the 2007 OTM Confederated interna-
tional conference on On the move to meaningful internet systems: CoopIS, DOA, ODBASE,
GADA, and IS - Volume Part I, OTM’07, pages 77–94, Berlin, Heidelberg, 2007. Springer-
Verlag. 1, 2, 12

16. M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business processes
management. In Proc. of the 2006 international conference on Business Process Manage-
ment Workshops, BPM’06, pages 169–180. Springer-Verlag, 2006. 1, 2

17. Hajo A. Reijers, Tijs Slaats, and Christian Stahl. Declarative Modeling—An Academic
Dream or the Future for BPM? . Accepted for BPM 2013. 14

18. Tijs Slaats. Dcr graphs wiki. IT University of Copenhagen, 2013. http://www.itu.
dk/research/models/wiki/index.php/DCR_Graphs_Editor. 2, 3

19. W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows: Balancing
between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009. 1, 2, 12

20. M. Westergaard and T. Slaats. Mixing Paradigms for More Comprehensible Models. Ac-
cepted for BPM 2013. 13

21. Glynn Winskel. Events in Computation. PhD thesis, Edinburgh University, 1980. 2

147

6 Safe Cross-Organizational Flexible Processes

148

Safe Distribution of Declarative Processes

Thomas Hildebrandt1, Raghava Rao Mukkamala1, and Tijs Slaats1,2 ?

1 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{hilde, rao, tslaats}@itu.dk, http://www.itu.dk

2 Exformatics A/S, 2100 Copenhagen, Denmark

Abstract. We give a general technique for safe distribution of a declarative (global)
process as a network of (local) synchronously communicating declarative pro-
cesses. Both the global and local processes are given as Dynamic Condition Re-
sponse (DCR) Graphs. DCR Graphs is a recently introduced declarative process
model generalizing labelled prime event structures to a systems model able to
finitely represent ω-regular languages. An operational semantics given as a tran-
sition semantics between markings of the graph allows DCR Graphs to be conve-
niently used as both specification and execution model. The technique for distri-
bution is based on a new general notion of projection of DCR Graphs relative to a
subset of labels and events identifying the set of external events that must be com-
municated from the other processes in the network in order for the distribution to
be safe. We prove that for any vector of projections that covers a DCR Graph that
the network of synchronously communicating DCR Graphs given by the projec-
tions is bisimilar to the original global process graph. We exemplify the distribu-
tion technique on a process identified in a case study of an cross-organizational
case management system carried out jointly with Exformatics A/S.

1 Introduction

A model-driven software engineering approach to distributed information systems typi-
cally include both global models describing the collective behavior of the system being
developed and local models describing the behavior of the individual peers or compo-
nents.

The global and local descriptions should be consistent. If the modeling languages
have formal semantics and the local model language support composition of individual
processes, the consistency can be formally established, which we will refer to as the
consistency problem: Given a global model and a set of local models, is the behavior of
the composition of the local models consistent with the global model? In order to sup-
port ”top-down” model-driven engineering starting from the global model, one should
address the more challenging distributed synthesis problem: Given a global model and

? Authors listed alphabetically. This research is supported by the Danish Research
Agency through a Knowledge Voucher granted to Exformatics (grant #10-087067,
www.exformatics.com), the Trustworthy Pervasive Healthcare Services project (grant #2106-
07-0019, www.trustcare.eu) and the Computer Supported Mobile Adaptive Business Processes
project (grant #274-06-0415, www.cosmobiz.dk).

149

2 Hildebrandt, Mukkamala, Slaats

some formal description of how the model should be distributed, can we synthesize a
set of local processes with respect to this distribution which are consistent to the the
global model?

In past work, briefly surveyed below, the result of the distributed synthesis have been
a network of local processes described in an imperative process model, e.g. as a network
of typed pi-calculus processes or a product automaton. The global process description
has either been given declaratively, e.g. in some temporal logic, or imperatively, e.g. as
a choreography or more generally a transition system.

In the present paper we address the distributed synthesis problem in a setting where
both the global and the local processes are described declaratively as Dynamic Con-
dition Response Graphs (DCR Graphs). DCR Graphs is a declarative workflow model
introduced previously in [14, 15] as a generalization of the classical event structure
model [47] allowing finite specification of infinite behavior (by allowing events to be
executed more than once and replacing the symmetric conflict relation by asymmet-
ric exclusion and (re-)inclusion relations) and specification of progress conditions (by
replacing the causal order relation of event structures with two relations, respectively
defining the conditions for and required responses to the execution of an event).

The motivation for introducing the DCR Graph model is to give, as part of the
Trustworthy Pervasive Healthcare Services [13] project, a declarative model that can be
used both as specification language and execution language for flexible workflow and
business process. Indeed, the DCR Graphs model is inspired by and formalizes the core
primitives of the process model employed by the industrial partner (Resultmaker) in the
TrustCare project and is now being implemented in the workflow engine developed at
Exformatics. As identified in e.g. [6,43] declarative process languages make it easier to
specify loosely constrained systems. Also, we believe the declarative approach is more
promising when it comes to composition, and (dynamic) changes of processes which is
one of the main objectives of the TrustCare project.

To safely distribute a DCR Graph we first define (Def. 3, Sec. 3.1) a new general
notion of projection of DCR Graphs relative to a subset of labels and events. The key
point is to identify the set of events that must be communicated from other processes
in the network in order for the state of the local process to stay consistent with the
global specification (Prop. 1, Sec. 3). To also enable the reverse operation, building
global graphs from local graphs, we then define the composition of two DCR Graphs,
essentially by gluing joint events. As a sanity check we prove (Prop. 2, Sec. 3.2) that if
we have a collection of projections of a DCR Graph that cover the original graph (Def. 7,
Sec. 3.2) then the composition yields back the same graph. We then finally proceed to
the main technical result, defining networks of synchronously communicating DCR
Graphs and stating (in Thm. 1, Sec. 3.3) the correspondence between a global process
and a network of communicating DCR Graphs obtained from a covering projection
(relying on Prop. 1). Throughout the paper we exemplify the distribution technique on
a simple cross-organizational process identified within a case study carried out jointly
with Exformatics A/S using DCR Graphs for model-driven design and engineering of
an inter-organizational case management system. We conclude in Sec. 4 and provide
pointers to future work.

150

Safe Distribution of Declarative Processes 3

1.1 Related Work

There are many researchers [1, 20, 21, 40–42, 46] who have explicitly focussed on the
problem of verifying the correctness of inter-organizational workflows in the domain
of petri nets. In [41], message sequence charts are used to model the interaction be-
tween the participant workflows that are modeled using petri nets and the overall work-
flow is checked for consistency against an interaction structure specified in message
sequence charts. In [20] Kindler et. al. followed a similar but more formal and con-
crete approach, where the interaction of different workflows is specified using a set
of scenarios given as sequence diagrams and using criteria of local soundness and
composition theorem, guaranteed the global soundness of an inter-organizational work-
flow. The authors in [40] proposed Query Nets based on predicate/transition petri nets
to guarantee global termination, without the need for having the global specification.
The work on workflow nets [1, 46] use a P2P (Public-To-Private) approach to parti-
tion a shared public view of an inter-organizational workflow over its participating en-
tities and projection inheritance is used to generate a private view that is a subclass
to the relevant public view, to guarantee the deadlock and livelock freedom. Further a
more liberal and a weaker notion than projection inheritance, accordance has been used
in [42] to guarantee the weak termination in the multiparty contracts based on open nets.

Fig. 1. Key problems studied in related work

Modeling global
behavior as a set of
conversations among
participating services
has been studied by
many researchers [2,
3, 11, 35, 48, 49] in
the area business pro-
cesses. An approach
based on guarded au-
tomata studied in [11],
for the realizability
analysis of conver-
sation protocols, whereas
the authors in [49]
used colored petri nets to capture the complex conversations. A framework for cal-
culating and controlled propagation of changes to the process choreographies based
on the modifications to partner’s private processes has been studied in [35]. Similarly,
but using process calculus to model service contracts, Bravetti-Zavattaro proposed con-
formance notion for service composition in [2] and further enhanced their correctness
criteria in [3] by the notion of strong service compliance.

Researchers [9,19,23,29] in the web services community have been working on web
service composition and decentralized process execution using BPEL [30] and other re-
lated technologies to model the web services. A technique to partition a composite web
service using program analysis was studied in [29] and on the similar approach, [19]
explored decomposition of a business process modeled in BPEL, primarily focussing
on P2P interactions . Using a formal approach based on I/O automata representing the

151

4 Hildebrandt, Mukkamala, Slaats

services, the authors in [23] have studied the problem of synthesizing a decentralized
choreography strategy, that will have optimal overhead of service composition in terms
of costs associated with each interaction.

The derivation of descriptions of local components from a global model has been
researched for the imperative choreography language WS-CDL in the work on struc-
tured communication-centred programming for web services by Carbone, Honda and
Yoshida [4]. To put it briefly, the work formalizes the core of WS-CDL as the global
process calculus and defines a formal theory of end-point projections projecting the
global process calculus to abstract descriptions of the behavior of each of the local
”end-points” given as pi-calculus processes typed with session types.

A methodology for deriving process descriptions from a business contract formal-
ized in a formal contract language was studied in [22], while [36] proposes an approach
to extract a distributed process model from collaborative business process. In [9, 10],
the authors have proposed a technique for the flexible decentralization of a process
specification with necessary synchronization between the processing entities using de-
pendency tables.

In [5, 12, 27] foundational work has been made on synthesizing distributed transi-
tion systems from global specification for the models of synchronous product and asyn-
chronous automata [50]. In [27] Mukund categorized structural and behavioral charac-
terizations of the synthesis problem for synchronous and loosely cooperating commu-
nication systems based on three different notions of equivalence: state space, language
and bisimulation equivalence. Further Castellani et. al. [5] characterized when an an ar-
bitrary transition system is isomorphic to its product transition systems with a specified
distribution of actions and they have shown that for finite state specifications, a finite
state distributed implementation can be synthesized. Complexity results for distributed
synthesis problems for the three notions of equivalences were studied in [12].

Many commercial and research workflow management systems also support dis-
tributed workflow execution and some of them even support ad-hoc changes as well.
ADEPT [34], Exotica [24], ORBWork [7], Rainman [31] and Newcastle-Nortel [39]
are some of the distributed workflow management systems. A good overview and dis-
cussion about distributed workflow management systems can be found in [32, 33].

So far the formalisms discussed above are more or less confined to imperative mod-
eling languages such as Petri nets, workflow/open nets and automata based languages.
To the best of our knowledge, there exists very few works [8, 25] that have studied the
synthesis problem in declarative modeling languages and none where both the global
and local processes are given declaratively. In [8], Fahland has studied synthesizing
declarative workflows expressed in DecSerFlow [45] by translating to Petri nets. Only
a predefined set of DecSerFlow constraints are used in the mapping to the Petri nets
patterns, so this approach has a limitation with regards to the extensibility of the Dec-
SerFlow language. On the other hand, in [25] Montali has studied the composition of
ConDec [44] models with respect to conformance with a given choreography, based on
the compatibility of the local ConDec models. But his study was limited to only com-
position, whereas the problem of synthesizing local models from a global model has
not been studied.

152

Safe Distribution of Declarative Processes 5

2 Dynamic Condition Response Graphs

Dynamic Condition Response (DCR) Graphs has recently been introduced [15] as a
declarative process model generalizing labelled event structures [47] to allow finite rep-
resentations of infinite behavior (i.e. a systems model [37, 38]) and representation of
progress properties.

A DCR Graph consists of a set of labelled events, a marking defining the executed
events, pending response events and included events, and four binary relations between
the events, defining the temporal constraints between events and dynamic inclusion and
exclusion of events.

We employ the following notations in the rest of the paper.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A × A and a subset ξ ⊆ A of A we write → ξ and ξ → for the set {a ∈ A |
(∃a′ ∈ ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we
write→−1 for the inverse relation. Finally, for a natural number k we write [k] for the
set {1, 2, . . . , k}.

We then formally define a DCR Graph as follows.

Definition 1. A Dynamic Condition Response Graph G is a tuple (EG,MG,→•, •→
,±, LG, lG), where

(i) EG is the set of events
(ii) MG = (ExG,ReG, InG) ∈ P(EG)× P(EG)× P(EG) is the marking,

(iii) →•⊆ EG × EG is the condition relation
(iv) •→⊆ EG × EG is the response relation
(v) ± : EG × EG ⇀ {+,%} is a partial function defining the dynamic inclusion and

exclusion relations by e→+ e′ if ±(e, e′) = + and e→% e′ if ±(e, e′) = %
(vi) LG is the set of labels

(vii) lG : EG → P(LG) is a labeling function mapping events to sets of labels.

We writeM(G) for the set P(EG)× P(EG)× P(EG) of markings of G.

The marking MG = (ExG,ReG, InG) is a tuple of three sets defining respectively the
previously executed events (ExG), the set of required responses (ReG), and the currently
included events (InG). The set of required responses are the events that must eventu-
ally be executed (or excluded) in order to accept the execution, also referred to as the
pending responses. The set of included events are the events that currently are relevant
for conditions and may be executed (if their conditions are met). The condition relation
→• defines which (of the currently included) events must have been executed before an
event can be executed. That is, for an event e to be executed, it must be included, i.e.
e ∈ InG and the included conditions must be executed: (→• e) ∩ InG ⊆ ExG. The re-
sponse relation •→ defines which responses are required after executing an event. That
is, if the event e is executed, the events e •→ are added to the set of required responses
in the marking. The dynamic inclusion and exclusion relations define how the set of
included events changes by executing an event: If the event e is executed, the events
e →+ are added to the set of included events in the marking and the events e →%
are removed. Finally, an event is labelled by zero or more labels. (This is slightly more

153

6 Hildebrandt, Mukkamala, Slaats

general than previous work, where labels of events were sets of triples consisting of an
action, a role and a principal.)

Fig. 2 below shows an example DCR Graph identified during the development by
Exformatics of a cross-organizational case management system for the umbrella orga-
nization of unions in Denmark, named LO.

Fig. 2. Cross-organizational case management example

The graph has 7 events, drawn as boxes with ”ears”, and captures a process of cre-
ating a case, agreeing on meeting dates and holding meetings. The names of the events
are written inside the box and the set of actions for each event, representing the roles
that can execute the event, is written inside the ”ear”. That is, the event Create Case
in the upper left has label U and represents the creation of a case by a case manager at
a union (role U). The rightmost event, Hold meeting has two different labels, LO and
DA, representing a meeting held by LO and DA (the umbrella organization of employ-
ers) respectively.

The semantics for DCR Graphs has been given in [14, 15] as a labelled transition
system with acceptance condition for infinite computations. The set of accepted runs of
DCR Graphs was characterized by a mapping to Büchi-automata in [26].

Definition 2. For a DCR Graph G = (EG,MG,→•, •→,±, LG, lG), we define the cor-
responding labelled transition system TS(G) to be the tuple (M(G),MG, EL(G),→)
where EL(G) = EG×LG is the set of labels of the transition system, MG = (ExG, InG,ReG) ∈
M(G) is the initial marking, and→⊆ M(G) × EL(G) ×M(G) is the transition re-

lation defined by MG
′ (e,a)−−−→ MG

′′ if

(i) MG
′ = (ExG

′, InG
′,ReG

′) is the marking before transition
(ii) MG

′′ = (ExG
′′, InG

′′,ReG
′′) is the marking after transition

(iii) e ∈ InG
′, a ∈ lG(e)

(iv) →•e ∩InG
′ ⊆ ExG

′,
(v) ExG

′′ = ExG
′ ∪ {e}

(vi) InG
′′ = (InG

′ ∪ e→+) \ e→%,

154

Safe Distribution of Declarative Processes 7

(vii) ReG
′′ = (ReG

′ \ {e}) ∪ e•→,

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions MGi
(ei,ai)−−−−→ MGi+1 starting from the initial marking. We define

a run to be accepting if for the underlying sequence of transitions it holds that ∀i ≥
0, e ∈ ReGi.∃j ≥ i.(e = ej ∨ e 6∈ InGj+1). In words, a run is accepting if every
response event either happen at some later state or become excluded.

Condition (iii) in the above definition expresses that, only events that are currently in-
cluded and mapped to the labels in LG can be executed, Condition (iv) requires that
all condition events to e which are currently included should have been executed previ-
ously. Condition (v), (vi) and (vii) are the updates to the sets of executed, included events
and required responses respectively. Note that an event e′ can not be both included and
excluded by the same event e, but an event may trigger itself as a response.

To ease keeping track of transition systems of different DCR Graphs we extend the

transition system to transitions between graphs in the obvious way, writing G
(e,a)−−−→ G′

ifG = (EG,MG,→•, •→,±, LG, lG), MG
(e,a)−−−→ MG

′ in TS(G) andG′ = (EG,MG
′,→•

, •→,±, LG, lG).

3 Projection and Composition

In this section we define projections and compositions of dynamic condition response
graphs.

3.1 Projection

First we define how to project a DCR Graph G with respect to a projection parameter
δ = (Eδ, Lδ), where Eδ ⊆ EG is a subset of the events of G and Lδ ⊆ LG is a subset of
the labels.

Intuitivly, the projection G|δ contains only those events and relations that are rele-
vant for the execution of events in Eδ and the labeling is restricted to the set Lδ . This
includes both the events in Eδ and any other event that can affect the marking, or ability
to execute of an event in Eδ through one or more relations.

Definition 3. If G = (EG,MG,→•, •→,±, LG, l) then G|δ = (EG|δ,MG|δ,→•|δ, •→|δ
,±|δ, Lδ, l|δ) is the projection of G with respect to δ ⊆ EG where:

(i) EG|δ =→Eδ , for→=
⋃

c∈C
c, and C = {id,→•, •→,→+,→%,→+→•,→%→•}

(ii) l|δ(e) =

{
lG(e) ∩ Lδ if e ∈ Eδ

∅ if e ∈ EG|δ\Eδ
(iii) MG|δ = (ExG|δ,ReG|δ, InG|δ) where:

(a) ExG|δ = ExG ∩ EG|δ
(b) ReG|δ = ReG ∩ Eδ
(c) InG|δ = (InG ∩ ((id∪ →•)Eδ)) ∪ (EG|δ \ ((id∪ →•)Eδ))

155

8 Hildebrandt, Mukkamala, Slaats

(a) Projection Over
Role U

(b) Projection Over Role DA

(c) Projection Over Role LO

Fig. 3. Projecting of Arrange Meeting Example Over Roles

(iv) →•|δ=→• ∩((→• Eδ)× Eδ)
(v) •→|δ=•→ ∩((•→ Eδ)× Eδ)

(vi) →+|δ=→+ ∩(((→+→• Eδ)× (→• Eδ)) ∪ ((→+ Eδ)× Eδ))
(vii) →%|δ=→% ∩(((→%→• Eδ)× (→• Eδ)) ∪ ((→% Eδ)× Eδ))

(i) defines the set of events as the union of the set Eδ of events that we project over,
any event that has a direct relation towards an event in Eδ and events that exclude or
include an event which is a condition for an event in Eδ . The additional events will be
included in the projection without labels, as can be seen from the definition of the la-
beling function in (ii). This means that the events can not be executed locally. However,
when composed in a network containing other processes that can execute these events,
their execution will be communicated to the process. For this reason we refer to these
events as the (additional) external events of the projection. As proven in Prop. 1 the
communication of the execution of this set of external events in addition to the local
events shared by others ensure that the local state of the projection stay consistent with
the global state. (iii) defines the projection of the marking: The executed events remain

156

Safe Distribution of Declarative Processes 9

the same, but are limited to the events in EG|δ . The responses are limited to events in Eδ
because these are the only responses that will affect the local execution of the projected
graph. The set of included events remains the same for events in Eδ or Eδ

→•, because
these can affect which events are enabled in the projected graph. All other external
events of the projected graph are included regardless of their state in the marking of the
global graph. This is because in the local process is only notified of the execution of
these events, not their in- or exclusion. Finally, (iv), (v), (vi) and (vii) state which rela-
tions should be included in the projection. For the events in Eδ all incoming relations
should be included. Additionally inclusion and exclusion relations to events that are a
condition for an event in Eδ are included as well.

To define networks of communicating DCR Graphs and their semantics we use the
following extension of a DCR Graph allowing any event to be executed with a special
input label. These transitions will only be used for the communication in a network and
thus not be visible as user events.

Definition 4. For a DCR GraphG = (EG,MG,→•, •→,±, LG, l) defineG[= (EG,MG,→•
, •→,±, LG ∪ {[}, l[), where l[= l(e) ∪ {[} (assuming that [6∈ LG).

We are now ready to state the key correspondence between global execution of
events and the local execution of events in a projection.

Proposition 1. Let G = (EG,MG,→•, •→,±, LG, l) be a DCR Graph and G|δ its pro-
jection with respect to a projection parameter δ = (Eδ, Lδ). Then

1. for e ∈ Eδ it holds that G
(e,a)−−−→ G′ if and only if G|δ

(e,a)−−−→ G′|δ ,

2. for e 6∈ EG|δ it holds that G
(e,a)−−−→ G′ implies G|δ = G′|δ ,

3. for e ∈ EG|δ it holds that G
(e,a)−−−→ G′ implies (G|δ)[

(e,[)−−−→ (G′|δ)
[,

3.2 Composition

Now we define the binary composition of two DCR Graphs. Intuitively, the composition
of G1 and G2 glues together the events that are both in G1 and G2.

Definition 5. Formally, the composite G1 ⊕ G2 = (EG,MG,→•, •→,±, LG, l), where
Gi = (EGi,MGi,→•i, •→i,±i, LGi, li), MGi = (ExGi,ReGi, InGi) and:

(i) EG = (EG1 ∪ EG2)
(ii) MG = (ExG,ReG, InG), where:

(a) ExG = ExG1 ∪ ExG2

(b) InG = (InG1 ∪ InG2) \ (((EG
i
1∪ →•EG

i
1) \ InG1) ∪ ((EG

i
2∪ →•EG

i
2) \ InG2))

(c) ReG = ReG1 ∪ ReG2

for EG
i
j = {e ∈ EGj | lj(e) 6= ∅}

(iii) →=→1 ∪ →2 for each→∈ {→•, •→,→+,→%}
(iv) l(e) = l1(e) ∪ l2(e)
(v) LG = LG1 ∪ LG2

157

10 Hildebrandt, Mukkamala, Slaats

(iib) states that events are included, if they’re either included in G1 or G2, unless
they are events that are either internal or have a condition towards an internal event
and are excluded in G1 or G2. The intuition here is that if an event is internal or has a
condition towards an internal event, then it affects the enabled events of the graph, so
it’s inclusion status should be the same in the composed graph. The inclusion/exclusion
status of other external events however may simply not have been updated because the
graph is not aware of all relations towards these events. This is not unsafe because
the inclusion of these events does not affect the execution of the graph. Therefor the
definition states that if an event is internal or has a condition towards an internal event
in G1 or G2, then it’s inclusion status should be the same in the composed graph, and
in any other case the event is included if it was included in G1 or G2. (iic) states that
the events with pending responses are those events that have a pending response in G1

or G2.

Definition 6. The composition G1 ⊕ G2 is well-defined when:

(i) ∀(e ∈ EG1 ∩ EG2 | (e ∈ ExG1 ⇔ e ∈ ExG2)
(ii) ∀(e ∈ (EG

i
1∪ →•EG

i
1) ∩ (EG

i
2∪ →•EG

i
2) | (e ∈ InG1 ⇔ e ∈ InG2)

(iii) ∀(e ∈ EG
i
1 ∩ EG

i
2 | (e ∈ ReG1 ⇔ e ∈ ReG2)

(iv) ∀(e, e′ ∈ EG1 ∩ EG2 | ¬((e→+1 e
′ ∧ e→%2 e

′) ∨ (e→%1 e
′ ∧ e→+2 e

′)))

(i) ensures that those events that will be glued together have the same execution
marking. (ii) ensures that events that will be glued together and in both DCR Graphs
belong to either the set of internal events or the set of events that have a conditional
relation towards an internal event, have the same inclusion marking. (iii) ensures that
events that will be glued together and in both DCR Graphs belong to the set of internal
events have the same pending response marking. (iv) ensures that by composing the
two DCR Graphs no event both includes and excludes the same event. If G1 ⊕ G2 is
well-defined, then we also say thatG1 andG2 are composable with respect to eachother.

Lemma 1. The composition operator ⊕ is commutative and associative.

Definition 7. We call a vector ∆ = δ1 . . . δk of projection parameters covering for
some DCR Graph G = (EG,MG,→•, •→,±, LG, lG) if:

1.
⋃

i∈[k]
Eδi = EG and

2. (∀a ∈ LG.∀e ∈ EG.a ∈ lG(e)⇒ (∃i ∈ [k].e ∈ Eδi ∧ a ∈ Lδi)

Proposition 2. If some vector ∆ = δ1 . . . δk of projection parameters is covering for
some DCR Graph G then:

⊕

i∈[k]
G|δi = G

3.3 Safe Distributed Synchronous Execution

In this section we define networks of synchronously communicating DCR Graphs and
prove the main technical theorem of the paper stating that a network of synchronously
communicating DCR Graphs obtained by projecting a DCR Graph G with respect to a
covering set of projection parameters has the same behavior as the original graph G.

158

Safe Distribution of Declarative Processes 11

Definition 8. We define a network of synchronously communicating DCR Graphs N
by the grammar

N := G | N‖N
and let NE×L be the set of all networks with events in E and labels in L.

We write Πi∈[n]Gi for G1‖G2‖ . . . ‖Gn. We define the set of events of a network
of graphs inductively by E(G) = EG and E(N1‖N2) = E(N1) ∪ E(N2). Similarly,
we define the set of labels of a network of graphs inductively by L(G) = LG and
L(N1‖N2) = L(N1) ∪ L(N2).

Definition 9. The semantics of networks of buffered DCR Graphs are given by the fol-
lowing inference rules:

input
G[1

(e,[)−−−→ G[2

G1
Be G2

sync input
N1

Be N ′1 N2
Be N ′2

N1‖N2
Be N ′1‖N ′2

local input
Ni

Be N ′i e /∈ E(N1−i)

N0‖N1
Be N ′0‖N1

N1−i = N ′1−i, i ∈ {0, 1}

sync step
Ni

(e,a)−−−→ N ′i N1−i
Be N ′1−i

N0‖N1
(e,a)−−−→ N ′0‖N ′1

i ∈ {0, 1}

local step
Ni

(e,a)−−−→ N ′i e /∈ E(Ni−1)

N0‖N1
(e,a)−−−→ N ′0‖N1

N1−i = N ′1−i, i ∈ {0, 1}

For a network of synchronously communicating DCR GraphsN we define the corre-
sponding transition system TS(N) by (NEL(N), N, EL(N),→⊆ NEL(N) ×EL(N)×
NEL(N)) where EL(N) = E(N) × L(N) and the transition relation→⊆ NEL(N) ×
EL(N)×NEL(N) is defined by the inference rules above.

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions Ni
(ei,ai)−−−−→ Ni+1 starting from the initial network. We define

a run for a network N = Πi∈[n]Gi to be accepting if for the underlying sequence of
transitions it holds that ∀j ∈ [n],∀i ≥ 0, e ∈ ReGj,i.∃k ≥ i.(e = ek ∨ e 6∈ InGj,k+1),
where ReGj,i is the set of required responses in the jth DCR Graph in the network in
the ith step of the run. In words, a run is accepting if every response event in a local
DCR Graph in the network either happen at some later state or become excluded.

We are now ready to give the main theorem of the paper, stating the correspondence
between a global DCR Graph and the network of synchronously communicating DCR
Graph obtained from a covering projection.

159

12 Hildebrandt, Mukkamala, Slaats

Theorem 1. For a Dynamic Condition Response Graph G and a covering vector of
projection parameters ∆ = δ1 . . . δn it holds that TS(G) is bisimilar to TS(G∆),
where G∆ = Πi∈[n]G|δi . Moreover, a run is accepting in TS(G) if and only if the
bisimilar run is accepting in TS(G∆).

3.4 Example

In this section, we will use the arrange meeting example from Sec. 1 and show how
events are executed in distributed setting. We assume the arrange meeting example is
projected to a network G1

u || G1
da || G1

lo of three DCR Graphs as shown in the Fig. 3
and described in Sec. 3 and abbreviate the names for the events.

1. Using sync step, local input, and input we get the transitionG1
u || G1

da || G1
lo

(Cc,U)−−−−→
G2
u || G1

da || G2
lo capturing the local execution of the event Cc labelled with U in

G1
u which is communicated synchronously to G1

lo. This updates the markings by
adding the event Cc to the set of executed events in both G1

u and G1
lo. But since

Cc has an exclude relation to itself in both G1
u and G1

lo (see Fig. 3(a) and 3(c)), the
event is also excluded from the set of included events in both markings. Finally,
because of the response relation to the event PdLO in G1

lo (see Fig. 3(c)), the event
PdLO is added to the set of required responses in the resulting marking G2

lo.
2. We can now execute the event PdLO in the DCR graph G2

lo concurrently with the
event Uc in DCR graph G2

u.
As the event Uc is only local to G2

u we get by using local step the transition G2
u ||

G1
da || G2

lo

(Uc,U)−−−−→ G3
u || G1

da || G2
lo that only updates the marking of G2

u.
In addition to being local to G2

lo, the event PdLO is also external event in graph
G1
da, so as in the first step by using sync step local input, and input we get the

transition G3
u || G1

da || G2
lo

(PdLO,LO)−−−−−−→ G3
u || G2

da || G3
lo, where the event PdLO has

been added to the executed event set of both the marking of G1
da and G2

lo. Again,
because of the self-exclusion relations, the event PdLO is also excluded from the
sets of included events in the two markings, and because of the response relations,
the events ADA and Hm are added to the set of pending responses in G1

da and the
event Hm is added to the set of pending responses in G2

lo.
3. In response to the dates proposed by LO, the DA may choose to propose new dates

by executing the event PdDA in the graph graph G2
da.

G3
u || G2

da || G3
lo

(PdDA,DA)−−−−−−→ G3
u || G3

da || G4
lo This triggers the exclusion of

the events PdDA and ADA and the inclusion of the events PdLO and ALO in the
markings of both G2

da and G3
lo. It will also include the event ALO in the required

response set in the resulting marking G4
lo.

4. Now LOmay choose to accept the new dates proposed by DA by executing the event
ALO in the graph graph G4

lo, giving the transition

G3
u || G3

da || G4
lo

(ALO,LO))−−−−−−→ G3
u || G4

da || G5
lo. This records the event ALO as

executed in markings of both G4
da and G5

lo and excludes PdLO in both markings
(i.e. it is not possible to propose new dates after acceptance).

160

Safe Distribution of Declarative Processes 13

5. Since the event ALO is recorded as executed in markings of both G4
da and G5

lo

and the event ADA is excluded, the hold meeting event Hm will be enabled in both
graphs G5

lo and G4
da. The LO may choose to hold the meeting, giving the transition

G3
u | BG4

da || G5
lo

(Hm,LO)−−−−→ G3
u || G5

da || G6
lo

Note that this event is also communicated to DA, added to the set of executed events
and removed from the set of pending responses. Since there are no pending re-
sponses in any of the local graphs the finite run is in an accepting state.

4 Conclusion

We have given a general technique for distributing a declarative (global) process as a
network of synchronously communicating (local) declarative processes and proven the
global and distributed execution to be equivalent.

The global and local processes are given as Dynamic Condition Response (DCR)
Graphs, a recently introduced declarative process model generalizing labelled prime
event structures to a systems model able to finitely represent ω-regular languages. The
DCR Graph model has the advantage that it is on the one hand declarative and compo-
sitional, and on the other hand it has a simple and intuitive operational semantics given
as a transition semantics between markings of the graph. This allows the model to be
used both as specification and execution model.

As briefly surveyed in Sec. 1.1 there have been a lot of related work on synthesis of
distributed systems and proving consistency with respect to a global model or property.
We believe this is the first treatment where both the local and global models are given
declaratively in the same model. This maintains the flexibility of a declarative model
for the local processes, and allows local processes to be further distributed if necessary.

We exemplified the safe distribution technique on a process identified in a case study
of an inter-organizational case management system carried out jointly with Exformatics
A/S.

We leave for future work to study the harder problem of asynchronously commu-
nicating distributed processes. This may benefit from researching the true concurrency
semantics inherent in the model and extend the transition semantics to include con-
currency, e.g. like in [18, 28]. We also plan to study behavioral types describing the
interfaces between communicating DCR Graphs, extending the work on session types
in [4] to a declarative setting. Moreover, we intend to address extension of the DCR
Graph model with time, data and dynamic instantiation of sub processes (also referred
to multiple instances) to be able to model more realistic workflow processes. A first
step is taken in [17] extending DCR Graphs to allow nested sub graphs. This exten-
sion introduced an additional relation between events, the milestone relation, making
it possible to express the acceptance of a sub graph succinctly. We believe the results
in the present paper can be extended to nested DCR Graphs and the milestone relation,
although it will complicate the definition of projections.

Finally, we plan to continue the ongoing implementation of tools for DCR Graphs,
and in particular to implement the safe distribution technique in the current prototype
design and simulation tools briefly described in [16].

161

14 Hildebrandt, Mukkamala, Slaats

References

1. Wil M. P. van der Aalst and Mathias Weske. The p2p approach to interorganizational work-
flows. In Proceedings of the 13th International Conference on Advanced Information Sys-
tems Engineering, CAiSE ’01, pages 140–156, 2001.

2. Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composition. In
International Symposium on Fundamentals of Software Engineering (FSEN), volume 4767,
pages 207–222. Springer, 2007.

3. Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance.
Mathematical. Structures in Comp. Sci., 19:601–638, June 2009.

4. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centred
Programming for Web Services. In 16th European Symposium on Programming (ESOP’07),
LNCS, pages 2–17. Springer, 2007.

5. Ilaria Castellani, Madhavan Mukund, and P. Thiagarajan. Synthesizing distributed transition
systems from global specifications. In Foundations of Software Technology and Theoretical
Computer Science, volume 1738, pages 219–231. Springer Berlin / Heidelberg, 1999.

6. David Cohn and Richard Hull. Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

7. S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah. Orbwork: A reliable distributed corba-
based workflow enactment system for meteor2. Technical report, The University of Georgia,
1996.

8. Dirk Fahland. Towards analyzing declarative workflows. In Autonomous and Adaptive Web
Services, 2007.

9. Walid Fdhila and Claude Godart. Toward synchronization between decentralized orchestra-
tions of composite web services. In CollaborateCom’09, pages 1–10, 2009.

10. Walid Fdhila, Ustun Yildiz, and Claude Godart. A flexible approach for automatic process
decentralization using dependency tables. International Conference on Web Services, 2009.

11. Xiang Fu, Tevfik Bultan, and Jianwen Su. Realizability of conversation protocols with mes-
sage contents. In Proceedings of the IEEE International Conference on Web Services, ICWS
’04, pages 96–, Washington, DC, USA, 2004. IEEE Computer Society.

12. Keijo Heljanko and Alin Stefanescu. Complexity results for checking distributed imple-
mentability. In Proceedings of the Fifth International Conference on Application of Concur-
rency to System Design, pages 78–87, 2005.

13. Thomas Hildebrandt. Trustworthy pervasive healthcare processes (TrustCare) research
project. Webpage, 2008. http://www.trustcare.dk/.

14. Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Post-proceedings of PLACES 2010, 2010.

15. Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic condition response
structures. In Pre-proceedings of International Workshop on Programming Language Ap-
proaches to Concurrency and Communication-cEntric Software (PLACES 10), March 2010.

16. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-
organizational case management system using dynamic condition response graphs. In Pro-
ceedings of IEEE International EDOC Conference, 2011. (to appear) http://www.itu.
dk/people/rao/pubs_accepted/dcrscasestudy-edoc11.pdf.

17. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic condition
response graphs. In Proceedings of Fundamentals of Software Engineering (FSEN), April
2011. to appear.

18. Thomas Hildebrandt and Vladimiro Sassone. Comparing transition systems with indepen-
dence and asynchronous transition systems. In Ugo Montanari and Vladimiro Sassone,
editors, CONCUR ’96: Concurrency Theory, volume 1119 of Lecture Notes in Computer
Science, pages 84–97. Springer Berlin / Heidelberg, 1996.

162

Safe Distribution of Declarative Processes 15

19. R. Khalaf and F. Leymann. Role-based decomposition of business processes using BPEL.
In Web Services, 2006. ICWS ’06. International Conference on, pages 770 –780, sept. 2006.

20. Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of workflow appli-
cations: Local criteria for global soundness. In Business Process Management, Models,
Techniques, and Empirical Studies, pages 235–253, London, UK, 2000. Springer-Verlag.

21. Axel Martens. Analyzing web service based business processes. In Fundamental Approaches
to Software Engineering. Springer Berlin / Heidelberg, 2005.

22. Zoran Milosevic, Shazia Sadiq, and Maria Orlowska. Towards a methodology for deriving
contract-compliant business processes. In Business Process Management, volume 4102 of
Lecture Notes in Computer Science, pages 395–400. Springer Berlin / Heidelberg, 2006.

23. Saayan Mitra, Ratnesh Kumar, and Samik Basu. Optimum decentralized choreography for
web services composition. In Proceedings of the 2008 IEEE International Conference on
Services Computing - Volume 2, 2008.

24. C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Guenthoer, and M. Kamath. Exotica: a
project on advanced transaction management and workflow systems. SIGOIS Bull., 16:45–
50, August 1995.

25. Marco Montali. Specification and Verification of Declarative Open Interaction Models: A
Logic-Based Approach, volume 56 of Lecture Notes in Business Information Processing.
Springer, 2010.

26. Raghava Rao Mukkamala and Thomas Hildebrandt. From dynamic condition response struc-
tures to büchi automata. In Proceedings of 4th IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2010), August 2010.

27. M. Mukund. From global specifications to distributed implementations. In Synthesis and
Control of Discrete Event Systems. Springer, 2002.

28. Madhavan Mukund and Mogens Nielsen. Ccs, locations and asynchronous transition sys-
tems. In Rudrapatna Shyamasundar, editor, Foundations of Software Technology and The-
oretical Computer Science, volume 652 of Lecture Notes in Computer Science, pages 328–
341. Springer Berlin / Heidelberg, 1992.

29. Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing execution of com-
posite web services. SIGPLAN Not., 39:170–187, October 2004.

30. OASIS WSBPEL Technical Committee. Web Services Business Process Execution Lan-
guage, version 2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf.

31. Santanu Paul, Edwin Park, and Jarir Chaar. Rainman: a workflow system for the internet. In
Proceedings of the USENIX Symposium on Internet Technologies and Systems on USENIX
Symposium on Internet Technologies and Systems, 1997.

32. F. Ranno and S. K. Shrivastava. A review of distributed workflow management systems.
In Proceedings of the international joint conference on Work activities coordination and
collaboration, 1999.

33. M. U. Reichert, T. Bauer, and P. Dadam. Flexibility for distributed workflows. In Hand-
book of Research on Complex Dynamic Process Management: Techniques for Adaptability
in Turbulent Environments, pages 137–171. IGI Global, Hershey, PA, 2009.

34. Manfred Reichert and Thomas Bauer. Supporting ad-hoc changes in distributed workflow
management systems. In Robert Meersman and Zahir Tari, editors, On the Move to Meaning-
ful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, volume 4803 of Lecture
Notes in Computer Science, pages 150–168. Springer Berlin / Heidelberg, 2007.

35. Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. Evolution of process chore-
ographies in dychor. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, volume 4275 of LNCS, pages 273–290. Springer, 2006.

163

16 Hildebrandt, Mukkamala, Slaats

36. W. Sadiq, S. Sadiq, and K. Schulz. Model driven distribution of collaborative business pro-
cesses. In Services Computing, 2006. SCC ’06. IEEE International Conference on, pages
281 –284, sept. 2006.

37. V. Sassone, M. Nielsen, and G. Winskel. A classification of models for concurrency. In 4th
International Conference on Concurrency Theory, CONCUR ’93., volume Lectur of LNCS,
pages 82–96. Springer, 1993.

38. Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency: Towards
a classification. Theoretical Computer Science, 170:297–348, 1996.

39. Wheater Shrivastava, S. M. Wheater, S. K. Shrivastava, and F. Ranno. A corba compliant
transactional workflow system for internet applications. In Proc. Of IFIP Intl. Conference
on Distributed Systems Platforms and Open Distributed Processing, Middleware 98, pages
1–85233. Springer-Verlag, 1998.

40. Arthur ter Hofstede, Rob van Glabbeek, and David Stork. Query nets: Interacting workflow
modules that ensure global termination. In Business Process Management. Springer Berlin /
Heidelberg, 2003.

41. W. M. P. van der Aalst. Interorganizational workflows: An approach based on message
sequence charts and petri nets. Systems Analysis - Modelling - Simulation, 34(3):335–367,
1999.

42. Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl, and Karsten Wolf.
Multiparty Contracts: Agreeing and Implementing Interorganizational Processes. The Com-
puter Journal, 53(1):90–106, January 2010.

43. Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

44. Wil M.P van der Aalst and Maja Pesic. A declarative approach for flexible business processes
management. In Proceedings DPM 2006, LNCS. Springer Verlag, 2006.

45. Wil M.P van der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative service flow
language. In M. Bravetti, M. Nunez, and Gianluigi Zavattaro, editors, Proceedings of Web
Services and Formal Methods (WS-FM 2006), volume 4184 of LNCS, pages 1–23. Springer
Verlag, 2006.

46. W.M.P. van der Aalst. Inheritance of interorganizational workflows: How to agree to disagree
without loosing control? Information Technology and Management, 4:345–389, 2003.

47. Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozen-
berg, editors, Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science,
pages 325–392. Springer, 1986.

48. Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow execu-
tion based on state charts. In Proceedings of the 6th International Conference on Database
Theory, pages 230–246, London, UK, 1997. Springer-Verlag.

49. X. Yi and K.J Kochut. Process composition of web services with complex conversation pro-
tocols. In Design, Analysis, and Simulation of Distributed Systems Symposium at Adavanced
Simulation Technology, 2004.

50. W. Zielonka. Notes on finite asynchronous automata. Informatique Thorique et Applications,
21(2):99–135, 1987.

164

Declarative Modelling and Safe Distribution of
Healthcare Workflows

Thomas Hildebrandt1, Raghava Rao Mukkamala1, and Tijs Slaats1,2 ?

1 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{hilde, rao, tslaats}@itu.dk, http://www.itu.dk

2 Exformatics A/S, 2100 Copenhagen, Denmark

Abstract. We present a formal technique for safe distribution of workflow pro-
cesses described declaratively as nested Dynamic Condition Response (DCR)
Graphs and apply the technique to a distributed healthcare workflow. Concretely,
we provide a method to synthesize from a nested DCR Graph and any distribu-
tion of its atomic events a set of local process graphs communicating by shared
events, such that the distributed execution of the local processes is equivalent
to executing the original process. The technique extends our recent work on safe
distribution of non-nested DCR Graphs applied to cross-organizational case man-
agement. The main contributions of the present paper is to adapt the technique to
allow for nested processes and milestones and to apply it to a healthcare work-
flow identified in a previous field study at danish hospitals. We also provide a
new formalization of the semantics of DCR Graphs which highlights its declara-
tive nature.

1 Introduction

The overall goal of the interdisciplinary Trustworthy Pervasive Healthcare Services
(TrustCare) project [16] is to develop a foundation for trustworthy it-supported health-
care workflows. Healthcare workflows involve coordination of a heterogeneous set of
professionals, patients, organizations and sectors, and must be able to adapt to inevitable
changes of treatment processes and organization of the work [23, 40]. This challenges
traditional workflow management systems using an imperative process modeling lan-
guage such as Business Process Model and Notation (BPMN) [35] in which the control
flow is modeled explicitly. Typically a flow diagram will only cover the normal flow
and a few possible exceptionally flows, leading to rigid and inflexible, over-specified
workflows. Declarative process languages, allowing any flow that fulfill the specified
constraints, have been suggested by a number of researchers as being more appropriate
for representing workflow processes requiring a high degree of flexibility [8–10,33,43].

The TrustCare project combines research in pervasive user-interfaces [2,3] with re-
search in formal logic and domain specific process languages, taking as starting point [31]
? Authors listed alphabetically. This research is supported by the Danish Research Agency

through the Trustworthy Pervasive Healthcare Services project (grant #2106-07-0019,
www.trustcare.eu) and the Computer Supported Mobile Adaptive Business Processes project
(grant #274-06-0415, www.cosmobiz.dk).

165

2 Hildebrandt, Mukkamala, Slaats

the declarative workflow process language developed and used by Resultmaker, the in-
dustrial partner of the project.

The present paper focus on and extends our work on formal process languages, in
particular the development of a basic formal declarative workflow language called Dy-
namic Condition Response Graphs (DCR Graphs) introduced in [17] and extended to
allow nested (i.e. hierarchical) process definitions in [19, 20] and a new milestone rela-
tion between activities. In [21] we have shown how, given a (non-nested) DCR Graph
describing a global, collaborative process and any distribution of the activities, to derive
a set of local DCR Graphs corresponding to the activity distribution and achieving the
same global behavior by synchronously communicating the relevant events between the
local processes. The main new contributions of the present paper is to adapt the distribu-
tion technique given in [21] to allow for nested processes and the new milestone relation
between activities as introduced in [20] and demonstrate the use of the technique on an
oncology healthcare workflow previously identified during a field study at danish hos-
pitals [26]. The workflow was described loc. cit. using an early formalization of the
Resultmaker workflow process language. Another contribution of the present paper is
to formalize the workflow process as a nested DCR Graphs. Finally, we also provide a
new presentation of the formal semantics of DCR Graphs that highlights the declarative
nature. The present paper extends the results presented in the pre-proceedings of FHIES
2011 [22] which omitted the primitives of DCR Graphs for dynamically changing the
set of included activities in the workflow.

The intention of the oncology healthcare workflow is to illustrate two important
kinds of flexibility appearing in healthcare workflows: 1) The need for reconsidering
a previous activity if its validity at a later stage is questioned by a co-worker and 2)
The need for distribution of collaborative tasks and ability to tailor this distribution to
local conditions (e.g. the size and organization of work within a hospital). These needs
have also been identified during field studies of case management processes [19] and
appears to be generally relevant for knowledge work processes and not only healthcare
workflows.

The rest of the paper is structured as follows. In Sec. 1.1 ending the introduction we
briefly discuss related work. We present the oncology workflow example in Sec. 2 as
a nested Dynamic Condition Response (DCR) Graph, describing the semantics infor-
mally. In Sec. 3 we recall the formal definition of nested DCR Graphs and provide a new
presentation of their semantics. We then in Sec. 4 formalize the distribution technique
and exemplify it on the oncology workflow. Finally we conclude in Sec. 5.

1.1 Related Work

The problem of verifying the correctness of cross-organizational workflows described
as variants of Petri nets has been studied in [1, 25, 27, 39, 41, 42, 46] and models of
global behavior based on conversations among participating services have been studied
in [4, 5, 14, 36, 48, 49]. A technique to partition a composite web service using program
analysis was studied in [34] and using a similar approach, [24] explored decomposition
of a business process modeled in BPEL, primarily focussing on P2P interactions . Using
a formal approach based on I/O automata representing the services, the authors in [29]
have studied the problem of synthesizing a decentralized choreography strategy, that

166

Declarative Modelling and Safe Distribution of Healthcare Workflows 3

will have optimal overhead of service composition in terms of costs associated with
each interaction.

The derivation of descriptions of local components from a global model has also
been researched in the work on structured communication-centred programming for
web services by Carbone, Honda and Yoshida [6]. The work formalizes the core of WS-
CDL as the global process calculus and defines a formal theory of end-point projections
projecting the global process calculus to abstract descriptions of the behavior of each
of the local ”end-points” given as pi-calculus processes typed with session types.

A methodology for deriving process descriptions from a business contract formal-
ized in a formal contract language was studied in [28], while [38] proposes an approach
to extract a distributed process model from collaborative business process. In [12, 13],
the authors have proposed a technique for the flexible decentralization of a process spec-
ification with necessary synchronization between the processing entities using depen-
dency tables. In [7,15,32] foundational work has been made on synthesizing distributed
transition systems from global specification for the models of synchronous product and
asynchronous automata [50].

The formalisms discussed above are all confined to imperative modeling languages
such as Petri nets, workflow/open nets and automata based languages. To the best of
our knowledge, there exists very few works on distributed cross-organizational work-
flows which consider declarative modeling languages and none where both the global
and local processes are given declaratively using the same formalism. In [11], Fahland
has studied synthesizing declarative workflows expressed in DecSerFlow [45] by trans-
lating to Petri nets. Only a predefined set of DecSerFlow constraints are used in the
mapping to the Petri nets patterns, so this approach has a limitation with regards to the
extensibility of the DecSerFlow language. On the other hand, in [30] Montali has stud-
ied the composition of ConDec [44] models with respect to conformance with a given
choreography, based on the compatibility of the local ConDec models. But his study
was limited to only composition of local models, whereas the problem of splitting a
global model in local models has not been studied.

2 Distributed Declarative Healthcare Workflows by Example

In Fig. 1 below we show the graphical representation of the nested Dynamic Condition
Response Graph formalizing a variant of the oncology workflow studied in [26]. In this
section we informally describe the formalism and the distribution technique formalized
in the rest of the paper using the example workflow. For details of the field study and
the workflow we refer the reader to [26].

The boxes denote activities (also referred to as events in the following sections).
Administer medicine is a nested activity having sub activities give medicine and
trust. Give medicine is an atomic activity, i.e. it has no sub activities. Trust is again a
nested activity having sub activities sign nurse 1 and sign nurse 2. Finally, medicine
preparation is a nested activity having seven sub activities dealing with the preparation
of medicine. An activity may be either included or excluded, the latter are drawn as a
dashed box as e.g. the edit and cancel activities.

167

4 Hildebrandt, Mukkamala, Slaats

Fig. 1. Oncology Workflow as a nested DCR Graph

A run of the workflow consists of a (possibly infinite) sequence of executions of
atomic activities. (A nested activity is considered executed when all its sub activities
are executed). An activity can be executed any number of times during a run, as long as
the activity is included and the constraints for executing it are satisfied, in which case
we say the activity is enabled.

The constraints and dynamic exclusion and inclusion are expressed as five different
core relations between activities represented as arrows in the figure above: The condi-
tion relation, the response relation, the milestone relation, the include relation, and the
exclude relation.

The condition relation is represented by an orange arrow with a bullet at the arrow
head. E.g. the condition relation from the activity sign doctor to the activity don’t trust
prescription(N) means that sign doctor must have been executed at least once before
the activity don’t trust prescription(N) can be executed.

The response relation is represented by a blue arrow with a bullet at its source.
E.g. the response relation from the activity prescribe medicine to the activity give
medicine means that the latter must be executed (at some point) after (any execution

168

Declarative Modelling and Safe Distribution of Healthcare Workflows 5

of) the activity prescribe medicine. We say that a workflow is in a completed state
if all such response constraints have been fulfilled (or the required response activity is
excluded). However, note that a workflow may be continued from a completed state
and change to a non-completed state if an activity is executed that requires another
response or includes an activity which has not been executed since it was last required as
a response. Also note that the response constraint may cause some infinite runs to never
pass through a complete state if the executed activities keep triggering new responses.
In the following section we make precise when such infinite runs can be regarded as a
complete execution.

The third core relation used in the example is the milestone relation represented
as a dark red arrow with a diamond at the arrow head. The milestone relation was
introduced in [20] jointly with the ability to nest activities. A relation to and/or from
a nested activity simply unfolds to relations between all sub activities. A milestone
relation from a nested activity to another activity then in particular means that the entire
nested activity must be in a completed state before that activity can be executed. E.g.
medicine preparation is a milestone for the activity administer medicine, which
means that none of the sub activities of administer medicine can be carried out if any
one of the sub activities of medicine preparation is included and has not been executed
since it was required as a response.

Two activities can be related by any combination of these relations. In the graphi-
cal notation we have employed some shorthands, e.g. indicating the combination of a
condition and a response relation by and arrow with a bullet in both ends.

Finally, DCR Graphs allow two relations for dynamic exclusion and dynamic in-
clusion of activities represented as a green arrow with a plus at the arrow head and a
red arrow with a minus at the arrow head respectively. The exclusion relation is used
in the example between the cancel activity and the treatment activity. Since all other
activities in the workflow are sub activities of the treatment activity this means that all
activities are excluded if the cancel activity is executed. The inclusion relation is used
between the prescribe medicine activity and the manage prescription activity

The run-time state of a nested DCR Graph can be formally represented as a pair
(Ex,Re, In) of sets of atomic activities (referred to as the marking of the graph). The set
Ex is the set of atomic activities that have been executed at least once during the run.
The set Re is the set of atomic activities that, if included, are required to be executed
at least one more time in the future as the result of a response constraint (i.e. they are
pending responses). Finally, the set In denotes the currently included activities.

The set Ex thus may be regarded as a set of completed activities, the set Re as the
set of activities on the to-do list and the set In as the activities that are currently relevant
for the workflow.

Note that an activity may be completed once and still be on the to-do list, which
simply means that it must be executed (completed) again. This makes it very simple to
model the situation where an activity needs to be (re)considered as a response to the
execution of an activity. In the oncology example this is e.g. the case for the response
relation between the don’t trust prescription(N) activity (representing that a nurse
reports that he doesn’t trust the prescription) and the sign doctor activity. The effect
is that the doctor is asked to reconsider her signature on the prescription. In doing that

169

6 Hildebrandt, Mukkamala, Slaats

she may or may not decide to change the prescription, i.e. execute prescribe medicine
again.

We indicate the marking graphically by adding a check mark to every atomic activity
that has been executed (i.e. is included in the set Ex of the marking), an exclamation
mark to every atomic activity which, if included, is required to be executed at least
once more in the future (i.e. is included in the set Re), and making a box dashed if the
activity is not included (i.e. is not included in the set In of the marking). In Fig. 1 we
have shown an example marking where prescribe medicine has been executed. This
has caused manage prescription and its sub activities edit and cancel to be included,
and sign doctor and give medicine to be required as responses, i.e the two activities
are included in the set Re of the marking (on the to-do list).

As described above, an activity can be executed if it is enabled. Sign doctor is
enabled for execution in the example marking, since its only condition (prescribe
medicine) has been executed and it has no milestones. Give medicine on the other
hand is not enabled since it has the (nested) activity trust as condition, which means
that all sub activities of trust (sign nurse 1 and sign nurse 2) must be executed before
give medicine is enabled. Also, both give medicine and trust are sub activities of
administer medicine which further has sign doctor as condition and milestone, and
medicine preparation as milestone. The condition relation from sign doctor means
that the prescription must be signed before the medicine can be administered. The mile-
stone relations means that the medicine can not be given as long as sign doctor or any
of the sub activities of medicine preparation is on the to-do list (i.e. in the set Re of
pending responses).

Most activities should only be available to a subset of the users of the workflow
system. For this reason the commercial implementation of the workflow management
system provided by Resultmaker employs a role based access control, assigning to ev-
ery atomic activity a finite set of roles and assigning to every role a set of access rights
controlling if the activity is invisible or visible to users fulfilling the role. If an activ-
ity is visible it is specified wether the role is allowed to execute the activity or not.
Users are either statically (e.g. by login) or dynamically assigned to roles (e.g. by email
invitation).

In the formalization presented in this paper, the assigned roles are given as part of
the name of the activity. In the graphical representation we have shown the roles within
small ”ears” on the boxes. In the example workflow we have the following different
roles: Doctor (D), Controlling Pharmacist (CP), Pharmacist Assistant (PA) and Nurse
(N). Hereto comes roles N1 and N2 which must dynamically be assigned to two differ-
ent authorized persons (nurses or doctors). This is at present the only way to implement
the constraint stating that two different authorized persons must sign the product pre-
pared by the pharmacists before the medicine is administered to the patient. Future work
will address less ad hoc ways to handle these kind of constraints between activities re-
ferring to the identify of users.

The commercial implementation is based on a centralized workflow manager con-
trolling the execution of the entire, global workflow. However, workflows often span
different units or departments within the organization, e.g. the pharmacy and the patient
areas, or even cross boundaries of different organizations (e.g. different hospitals). In

170

Declarative Modelling and Safe Distribution of Healthcare Workflows 7

some situations it may be very relevant to execute the local parts of the workflow on a
local (e.g. mobile) device without permanent access to a network, e.g. during prepara-
tion of the medicine in the pharmacy. Also, different organizations may want to keep
control of their own parts of the workflow and not delegate the management to a cen-
tral service. This motivates the ability to split the workflow in separate components,
each only referring to the activities relevant for the local unit and being manageable
independently of the other components.

The technique for distributing DCR Graphs introduced in [21] and extended in the
present paper is a first step towards supporting this kind of splitting of workflow def-
initions. Given any division of activities on local units (assigning every activity to at
least one unit) it describes how to derive a set of graphs, one for each unit, describing
the local part of the workflow. Such a local process, referred to as a projection is again
a DCR Graph. It includes the activities assigned to the unit but also the relevant exter-
nal activities executed within other units for which an event must be send to the local
process when they are executed. An example of a projection relative to the activities
assigned the doctor role (D) is given in Fig. 2(a) in Sec. 4. The diagram shows that
the projection also includes the two external activities (indicated as double line boxes)
don’t trust prescription (N) and don’t trust prescription (CP). These two activities,
representing respectively a nurse and a controlling pharmacist reporting that the pre-
scription is not trusted, are the only external activities that may influence the workflow
of the doctor by requiring sign doctor as a response. Similarly, Fig. 2(b),2(c), and 2(d)
shows projections corresponding to the nurse, controlling pharmacist, and pharmacist
assistant roles. However, if for instance the roles of the controlling pharmacist and the
pharmacist assistant are always assigned to the same persons one may instead choose
to keep all these activities together in a unit. This can be obtained by simply projecting
on all activities assigned either the CP or the PA role.

3 Nested Dynamic Condition Response Graphs

Dynamic Condition Response Graphs (DCR Graphs) [17] is both a generalization of
labelled event structures [47] and the Process Matrix workflow model developed by
Resultmaker, our industrial partner in the TrustCare research project. The DCR Graphs
were extended in [20] to Nested DCR Graphs, supporting sub graphs and a new mile-
stone relation, motivated by a case study of cross-organizational case management [19].
Further in [21], we have considered safe distribution of DCR Graphs without milestone
relation where as in [18], we have defined projection and distribution for a restricted
nested model Condition Response Graphs, simplified by not allowing the dynamic in-
clusion and exclusion. In the present paper, we will consider full version of Nested DCR
Graphs with both milestone and dynamic inclusion/exclusion relations and provide dis-
tribution of nested DCR Graphs. We employ the following notations in the paper.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write→ξ and ξ→ for the set {a ∈ A | (∃a′ ∈
ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number k we write [k] for the set
{1, 2, . . . , k}.

171

8 Hildebrandt, Mukkamala, Slaats

We then formally define nested dynamic condition response graph as follows.

Definition 1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple (E,M,→•
, •→,→�,→+,→%, L, l), where

(i) E is the set of events (or activities),
(ii) M = (Ex,Re, In) ∈M(G) is the marking, forM(G) =def P(E)×P(E)×P(E),

(iii) →•⊆ E× E is the condition relation,
(iv) •→⊆ E× E is the response relation,
(v) →�⊆ E× E is the milestone relation,

(vi) →+,→%⊆ E×E is the dynamic include relation and exclude relation, satisfying
that ∀e ∈ E.e→+ ∩e→%= ∅,

(vii) L is the set of labels,
(viii) l : E→ P(L) is a labeling function mapping events to sets of labels.

A Nested Dynamic Condition Response Graph (Nested DCR Graph) G is a tuple (E,B,M,→•
, •→,→�,→+,→%, L, l), where

(i) (E,M,→•, •→,→�,→+,→%, L, l) is a DCR Graph,
(ii) B : E ⇀ E is a partial function mapping an event to its super-event (if defined),

(iii) M ∈ P(atoms(E)) × P(atoms(E)) × P(atoms(E)), where atoms(E) = E\{e ∈
E | ∃e′ ∈ E.B (e′) = e} is the set of atomic events.

We write eB e′ if e′ = Bk(e) for 0 < k and write eD e′ if eB e′ or e = e′, and eE e′
if e′ B e or e = e′. We require that the resulting relation,D ⊂ E ×E, referred to as the
nesting relation, is a well founded partial order. We also require that the nesting relation
is consistent with respect to dynamic inclusion/exclusion in the following sense: If eBe′
or e′ B e then e→+ ∩e′ →%= ∅.

We already introduced the graphical notation for Nested DCR Graphs by example in
the previous section. We will not write out the complete formal specification. The events
are all boxes, e.g. E = {treatment,manage prescription, prescribe medicine, ...}, the
nesting relation captures the inclusion of boxes, e.g.B(e) = administer medicine, if e ∈
{give medicine, trust} andB(e) = trust, if e ∈ {sign nurse1, sign nurse2} and so forth.
The inital marking is the triple M = (∅, ∅,E\{manage prescription, edit, cancel}),
meaning no events have been executed, no events are initially required as responses and
all events except the events {manage prescription, edit, cancel} are included. The con-
dition relation includes e.g. the pairs sign doctor →• don′t trust prescription(N) and
trust→• give medicine, the response relation includes e.g. the pairs prescribe medicine •→
sign doctor and edit •→ sign doctor, the milestone relation includes e.g. the pairs
sign doctor →� administer medicine and sign PA →� sign CP, the dynamic inclusion
relation includes the single pair prescribe medicine →+ manage prescription and the
dynamic exclusion includes exactly the two pairs prescribe medicine→% prescribe medicine
and cancel →% treatment. We take as labels pairs of action names and roles, i.e. the
set of labels L includes e.g. the pairs (edit,D), (cancel,D), (give medicine,N), and
(sign PA,PA). Super events with no role assigned such as manage prescription are as-
signed the empty set of labels.

Note that the labels of events consist of the name of the event and a role which
defines who can execute that event. In our implementation every event can be assigned

172

Declarative Modelling and Safe Distribution of Healthcare Workflows 9

any number of roles and every user of the system can have multiple roles. A user can
then execute an event if she has at least one role that is assigned to the event.

To define the execution semantics for Nested DCR Graphs we first define how to
flatten a nested graph to the simpler DCR Graph. Essentially, all relations to and/or
from nested events are extended to sub events, and then only the atomic events are
preserved.

Definition 2. For a Nested DCR Graph G = (E,B,M,→•, •→,→�,→+,→%, L, l)
define the underlying flat Dynamic Condition Response Graph as

G[lf = (atoms(E),M,→•[, •→[,→�[,→+[,→%
[
, L, l)

where rel[= DrelE for some relation rel ∈ {→•, •→,→�,→+,→%}.
It is easy to see from the definition that the underlying DCR Graph has at most as

many events as the nested graph and that the size of the relations may increase by an
order of n2 where n is the number of atomic events.

Below we give a new presentation of the semantics of DCR Graphs stressing its
declarative nature.

First we formalize in Def. 3 that an event e of a (flat) DCR Graph is enabled when it
is included in current marking (e ∈ In), all the included events that are conditions for it
are in the set of executed events (i.e. (In∩ →•e) ⊆ Ex) and none of the included events
that are milestones for it are in the set of pending response events (i.e. (In∩ →�e) ⊆
E\Re).

Definition 3. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l), and M = (Ex,Re, In) we define that an event e ∈ E is enabled, written
G ` e, if e ∈ In, (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re.

Def. 4 below then defines the change of the marking when an enabled event is
executed: First the event is added to the set of executed events and removed from the
set of pending responses. Then all events that are a response to the event are added to
the set of pending responses. Note that if an event is a response to itself, it will remain
in the set of pending responses after execution. Similarly, the included events set will
updated by adding all the events that are included by the event and by removing all the
events that are excluded by the event.

Definition 4. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l), where M = (Ex,Re, In) and an enabled event G ` e , the result of
executing e is a Dynamic Condition Response Graph G = (E,M′,→•, •→,→�,→+
,→%, L, l), where M′ = (Ex,Re, In)⊕Ge =def

(
Ex∪{e}, (Re\{e})∪e•→, (In∪e→+

) \ e→%
)
.

We now define the semantics for Nested DCR Graph by using the corresponding
flat graph.

Definition 5. For a Nested Condition Response Graph G = (E,B,M,→•, •→,→�
,→+,→%, L, l), where M = (Ex,Re, In) we define that e ∈ atoms(E) is enabled,
written G ` e, if G[` e. Similarly, the result of executing G ` e is defined as:
(Ex,Re, In)⊕G[e.

173

10 Hildebrandt, Mukkamala, Slaats

As an example, in the intial markingM = (∅, ∅,E\{manage prescription, edit, cancel})
we have that G ` prescribe medicine, i.e. the event prescribe medicine is enabled.

After executing prescribe medicine the new markingM ′ =M⊕Gprescribe medicine =
({prescribe medicine}, {sign doctor, give medicine},E\{prescribe medicine}). That is,
prescribe medicine is added to the set of executed events, and sign doctor and give medicine
are added to the set of pending responses, because prescribe medicine •→ sign doctor
and prescribe medicine •→ give medicine}. The event prescribe medicine is removed
from the set of included events because prescribe medicine →% prescribe medicine.
The events {manage prescription, edit, cancel} are included since prescribe medicine→+
manage prescription, and the inclusion relation is ”flattened” to include also prescribe medicine→+
edit and prescribe medicine→+ cancel.

From the definition of enabling and execution above we can construct a labelled
transition semantics for a nested DCR Graphs, with acceptance conditions for finite
and infinite computations.

Definition 6. For a nested DCR Graph G = (E,B,M,→•, •→,→�,→+,→%, L, l)

we write G
(e,a)−−−→ G′ if G′ = (E,B,M′,→•, •→,→�,→+,→%, L, l), G ` e, a ∈ l(e),

and M′ = M⊕G[e. We then define the corresponding labelled transition system TS(G)
to be the tuple (GE×L, G,E× L,→⊆ GE×L × E× L × GE×L) where GE×L is the set of
all nested DCR Graphs with events in E and labels in L.

We define a run a0, a1, . . . of a nested DCR Graph G to be a sequence of labels of a

sequence of transitionsGi
(ei,ai)−−−−→ Gi+1. starting fromG0 = G. Assuming the marking

of Gi is (Exi,Rei, Ini), define a run to be accepting if for the underlying sequence of
transitions it holds that ∀i ≥ 0, e ∈ Rei.∃j ≥ i.(e = ej ∨ e 6∈ Inj). In words, a run
is accepting if every required response event happens at some later stage or become
excluded.

4 Projections and Distributed Execution

In Sec. 4.1 below we define the notion of projection of a nested DCR Graphs, restricting
the graph to a subset of the events, and in Sec. 4.2 we define the technique for distribut-
ing a nested DCR Graph as a set of local nested DCR Graphs obtained as projections
and communicating by notifications of event executions.

4.1 Projections

A nested DCR GraphG is projected with respect to a projection parameter δ = (δE, δL),
where δE ⊆ E is a subset of the events ofG satisfying thatB(δE) ⊆ δE, i.e. the subset is
closed under the super event relation, and δL ⊆ L is a subset of the labels. The intuition
is that the graph is restricted to only those events and relations that are relevant for the
execution of events in δE and the labeling is restricted to the set δL. The technical diffi-
culty is to infer the events and relations not in δE, referred to as external events below,
that should be included in the projection because they influence the execution of the
workflow restricted to the events in δE.

174

Declarative Modelling and Safe Distribution of Healthcare Workflows 11

(a) Projection over D (b) Projection over N and N1

(c) Projection over CP (d) Projection over PA

Fig. 2. Oncology workflow projected with respect to different roles

Fig. 2 shows examples of projections of the oncology workflow with respect to
different roles. For instance, Fig. 2(a) shows the projection with respect to the pro-
jection parameter (δE, δL) where δE={manage prescription, edit, cancel, prescribe
medicine, sign doctor} and δL={(edit, D), (cancel, D), (prescribe medicine, D),
(sign doctor, D)}. The two events don’t trust prescription (N) and don’t trust pre-
scription (CP) shown with double line borders are external events included in the pro-
jected graph even though they don’t appear in the projection parameter. It is interesting
to note that the doctor only needs to be aware of these two activities carried out by
other participants. In comparison, the projection over the roles for nurses (N and N1)
contains all the events since they may influence (because of the milestone relations) the
execution of the events with roles N and N1. In other words, the doctors can carry out
workflows highly independent of the other activities while the nurses are dependent on
any event carried out by the other roles.

175

12 Hildebrandt, Mukkamala, Slaats

The formal definition of projection for nested DCR Graphs is given in 7 below. It
generalizes the definition of projection introduced in [21] for DCR Graphs to support
nesting and milestones.

Definition 7. IfG = (E,B,M,→•, •→,→�,→+,→%, L, l) thenG|δ = (E|δ,B|δ,M|δ,→•|δ
, •→|δ,→�|δ,→+|δ,→%|δ, δL, l|δ) is the projection of G with respect to δ ⊆ E where:

(i) E|δ =→δE, for→=
⋃

c∈C
c, and C = {id,→•[, •→[,→�[,→+[,→%

[, •→[→�[,

→+[→•[,→%
[→•[,→+[→�[,→%

[→�[}
(ii) B|δ(e) = B(e), if e ∈ E|δ

(iii) l|δ(e) =

{
l(e) ∩ δL if e ∈ δE

∅ if e ∈ E|δ\δE

(iv) M|δ = (Ex|δ,Re|δ, In|δ) where:
(a) Ex|δ = Ex ∩ E|δ
(b) Re|δ = Re ∩ (δE ∪→�[δE)
(c) In|δ = In ∩ E|δ

(v) →•|δ=→• ∩((→•[δE)× δE)

(vi) •→|δ=•→ ∩((•→[→�[δE)× (→�[δE)) ∪ ((•→[δE)× δE))

(vii) →�|δ=→� ∩((→�[δE)× δE)

(viii) →+|δ=→+ ∩
((

(→+[δE)×δE

)
∪
(
(→+[→•[δE)×(→•[δE

)
∪
(
(→+[→�[δE)×

(→�[δE

))

(ix) →%|δ=→% ∩
((

(→%
[
δE)×δE

)
∪
(
(→%

[→•[δE)×(→•[δE

)
∪
(
(→%

[→�[δE)×
(→�[δE

))

(i) defines the set of events in the projection as all events that has a relation pointing
to an event in the set δE, where the relation is either the identity relation (i.e. it is an
event in δE), one of the core relations (flattened) or the relations such as •→[→�[which
includes all events that triggers as a response some event that is a milestone to an event
in δE or the relations that include/exclude conditions and milestones to an event in the
set δE.

Events in E|δ\δE are referred to as external events and will be included in the pro-
jection without labels, as can be seen from the definition of the labeling function in (iii).
As we will formalize below, events without labels can not be executed by a user locally.
However, when composed in a network containing other processes that can execute
these events, their execution will be communicated to the process.

(iv) defines the projection of the marking: The executed and included event sets
are simply restricted to the events in E|δ . The responses are restricted to events in δE

and events that have a milestone relation to an event in δE because these are the only
responses that will affect the local execution of the projected graph. Note that these
events will by definition be events in E|δ but may be external events.

Finally, (v) - (ix) state which relations should be included in the projection. For the
events in δE all incoming relations should be included. Additionally response relations
to events that are a milestone for an event in δE are included as well.

176

Declarative Modelling and Safe Distribution of Healthcare Workflows 13

To define networks of communicating nested DCR Graphs and their semantics we
use the following extension of a nested DCR Graph adding a new label to every event.

Definition 8. For an DCR Graph G = (E,B,M,→•, •→,→�,→+,→%, L, l) define
Gε = (E,B,M,→•, •→,→�,→+,→%, L∪{ε}, lε), where lε = l(e)∪{ε} (assuming
that ε 6∈ L).

We are now ready to state the key correspondence between global execution of
events and the local execution of events in a projection.

Proposition 1. LetG = (E,B,M,→•, •→,→�,→+,→%, L, l) be a nested DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then

1. for e ∈ δE and a ∈ δL it holds that G
(e,a)−−−→ G′ if and only if G|δ

(e,a)−−−→ G′|δ ,

2. for e 6∈ E|δ it holds that G
(e,a)−−−→ G′ implies G|δ = G′|δ ,

3. for e ∈ E|δ it holds that G
(e,a)−−−→ G′ implies (G|δ)ε

(e,ε)−−−→ (G′|δ)
ε,

4.2 Distributed Execution

We are now ready to define networks of nested DCR Graphs and give the main technical
theorem of the paper stating that a network of nested DCR Graphs obtained by project-
ing a nested DCR Graph G with respect to a covering vector of projection parameters
has the same behavior as the original graph G.

Intuitively, a vector of projection parameters is covering if every event is included
in at least one projection parameter and every label that is assigned to an event occurs
at least once together with that event.

Definition 9. We call a vector ∆ = (δ1, . . . , δk) of projection parameters covering for
some DCR Graph G = (E,B,M,→•, •→,→�,→+,→%, L, l) if:

1.
⋃

i∈[k]
δEi = E and

2. (∀a ∈ L.∀e ∈ E.a ∈ l(e)⇒ (∃i ∈ [k].e ∈ δEi ∧ a ∈ δLi)

Definition 10. We define a network of DCR Graphs N by the grammar

N := G | N‖N
and let NE×L be the set of all networks with events in E and labels in L.

We write Πi∈[n]Gi for G1‖G2‖ . . . ‖Gn. We define the set of events of a network
of graphs inductively by E(G) = E and E(N1‖N2) = E(N1) ∪ E(N2). Similarly,
we define the set of labels of a network of graphs inductively by L(G) = L and
L(N1‖N2) = L(N1) ∪ L(N2).

Definition 11. The transition semantics of networks of DCR Graphs are given by the
following inference rules:

177

14 Hildebrandt, Mukkamala, Slaats

input
Gε1

(e,ε)−−−→ Gε2

G1
Be G2

sync input
N1

Be N ′1 N2
Be N ′2

N1‖N2
Be N ′1‖N ′2

local input
Ni

Be N ′i e /∈ E(N1−i)

N0‖N1
Be N ′0‖N1

N1−i = N ′1−i, i ∈ {0, 1}

sync step
Ni

(e,a)−−−→ N ′i N1−i
Be N ′1−i

N0‖N1
(e,a)−−−→ N ′0‖N ′1

i ∈ {0, 1}

local step
Ni

(e,a)−−−→ N ′i e /∈ E(Ni−1)

N0‖N1
(e,a)−−−→ N ′0‖N1

N1−i = N ′1−i, i ∈ {0, 1}

For a network of nested DCR Graphs N we define the corresponding transition
system TS(N) by (NEL(N), N, EL(N),→⊆ NEL(N) × EL(N) × NEL(N)) where
EL(N) = E(N)×L(N) and the transition relation→⊆ NEL(N)×EL(N)×NEL(N)

is defined by the inference rules above.
We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions Ni
(ei,ai)−−−−→ Ni+1 starting from the initial network. We define

a run for a network N = Πi∈[n]Gi to be accepting if for the underlying sequence of
transitions it holds that ∀j ∈ [n],∀i ≥ 0, e ∈ Rej,i.∃k ≥ i.(e = ek ∨ e 6∈ Ink), where
Rej,i is the set of required responses in the jth nested DCR Graph in the network in the
ith step of the run. In words, a run is accepting if every response event in a local nested
DCR Graph in the network happens at some later state or become excluded.

Thm. 1 below now states the correspondence between a nested DCR Graph and the
network of nested DCR Graphs obtained from a covering projection.

Theorem 1. For a nested DCR Graph G and a covering vector of projection param-
eters ∆ = (δ1, . . . , δn) it holds that TS(G) is bisimilar to TS(G∆), where G∆ =
Πi∈[n]G|δi . Moreover, a run is accepting in TS(G) if and only if the bisimilar run is
accepting in TS(G∆).

The generality of the distribution technique given above allows for fine tuned pro-
jections where we select only a few events for a specific role and actor, but in most
cases the parameter is likely to be chosen so that the projected graph shows the full re-
sponsibilities of a specific role or actor. A set of nested DCR Graphs can be maintained
and executed in a distributed fashion, meaning that there is a separate implementation
for every graph and that the execution of shared events is communicated between them.
Through the distributed execution of projected graphs, nested DCR Graphs can be used
as a (declarative) choreography model to the line of work (on typed imperative process

178

Declarative Modelling and Safe Distribution of Healthcare Workflows 15

models) in [6]: The original graph can be seen as the choreography, describing how
the system as a whole should function, from which we project multiple end-points for
individual roles or actors that can be implemented independently.

5 Conclusion and Future Work

We have presented a formal technique for safe distribution of collaborative, cross-
organizational workflows modeled declaratively in the model of Nested Dynamic Con-
dition Response (Nested DCR) Graphs [17,20]. The key difference between the present
work and the related work surveyed in Sec. 1.1 is that Nested DCR Graphs is a declar-
ative model while most previous work has focussed on imperative models. We have
argued for the use of a declarative approach for flexible workflows of knowledge work-
ers and exemplified the techniques on a small workflow identified during a previous
field study at danish hospitals [26]. The example is not supposed to demonstrate com-
pleteness of the technique but to capture two common examples of flexibility, namely
the need to reconsider previous activities and the flexibility to distribute the execution
of a workflow across different units within or across organizations.

The distribution technique presented is an extension of a method developed recently
for flat DCR Graphs [21] to allow for nesting of events and the co-called milestone
relations. This again allows us to apply the technique to the oncology workflow which
we believe is an important new contribution in order to communicate the ideas better to
people working within the healthcare domain.

A number of interesting questions are left for future work. We have implemented a
prototype tool for design, simulation and verification (model checking via the SPIN and
ZING model checkers) of DCR Graphs as reported on in [19]. These tools should be ex-
tended to nested graphs and the distribution technique should be implemented. This then
leads to considering what can be achieved by performing verification of local compo-
nents individually. We also aim to investigate how to support dynamic changes to local
components, using the underlying idea of the distribution technique to determine what
should be changed in other components when a local component is changed. Finally
we are working on extending the model to allow for data and time to be represented
and developing a prototype implementation integrated with the work on pervasive user
interfaces carried out in the other track of the TrustCare project. This would allow us
to carry out a larger demonstration project jointly with a hospital evaluating both the
workflow modeling and the pervasive user interfaces. Along the same lines, it would be
interesting to relate our work to the approach in the OpenKnowledge and Safe & Sound
projects based on the Lightweight Coordination Calculus (LCC) [37].
Acknowledgements: We are grateful to the anonymous reviewers for valuable feed-
back.

References

1. Wil M. P. van der Aalst and Mathias Weske. The p2p approach to interorganizational work-
flows. In Proceedings of the 13th International Conference on Advanced Information Sys-
tems Engineering, CAiSE ’01, pages 140–156, 2001.

179

16 Hildebrandt, Mukkamala, Slaats

2. Jakob E. Bardram, Jonathan Bunde-Pedersen, Afsaneh Doryab, and Steffen Sorensen. Clin-
ical surfaces: Activity-based computing support for distributed multi-display environments
inside hospitals. In INTERACT 2009: 12th IFIP TC13 Conference in Human-Computer In-
teraction, Uppsala, Sweden, 2009.

3. Jakob E. Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard. Support for activity-
based computing in a personal computing operating system. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 211–220, New York,
NY, USA, 2006. ACM Press.

4. Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composition. In
International Symposium on Fundamentals of Software Engineering (FSEN), volume 4767,
pages 207–222. Springer, 2007.

5. Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance.
Mathematical. Structures in Comp. Sci., 19:601–638, June 2009.

6. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centred
Programming for Web Services. In 16th European Symposium on Programming (ESOP’07),
LNCS, pages 2–17. Springer, 2007.

7. Ilaria Castellani, Madhavan Mukund, and P. Thiagarajan. Synthesizing distributed transition
systems from global specifications. In Foundations of Software Technology and Theoretical
Computer Science, volume 1738, pages 219–231. Springer Berlin / Heidelberg, 1999.

8. Federico Chesani, Pietro De Matteis, Paola Mello, Marco Montali, and Sergio Storari. A
framework for defining and verifying clinical guidelines: A case study on cancer screening.
In Floriana Esposito, Zbigniew Ras, Donato Malerba, and Giovanni Semeraro, editors, Foun-
dations of Intelligent Systems, volume 4203 of Lecture Notes in Computer Science, pages
338–343. Springer Berlin / Heidelberg, 2006.

9. Federico Chesani, E. Lamma, P. Mello, M. Montali, S. Storari, P. Baldazzi, and M. Man-
fredi. Compliance Checking of Cancer-Screening Careflows: an Approach Based on Com-
putational Logic, chapter Computer- Based Medical Guidelines and Protocols: a Primer and
Current Trends. IOS Press, 2008.

10. Federico Chesani, Paola Mello, Marco Montali, and Sergio Storari. Testing careflow pro-
cess execution conformance by translating a graphical language to computational logic. In
Riccardo Bellazzi, Ameen Abu-Hanna, and Jim Hunter, editors, Artificial Intelligence in
Medicine, volume 4594 of Lecture Notes in Computer Science, pages 479–488. Springer
Berlin / Heidelberg, 2007.

11. Dirk Fahland. Towards analyzing declarative workflows. In Autonomous and Adaptive Web
Services, 2007.

12. Walid Fdhila and Claude Godart. Toward synchronization between decentralized orchestra-
tions of composite web services. In CollaborateCom’09, pages 1–10, 2009.

13. Walid Fdhila, Ustun Yildiz, and Claude Godart. A flexible approach for automatic process
decentralization using dependency tables. International Conference on Web Services, 2009.

14. Xiang Fu, Tevfik Bultan, and Jianwen Su. Realizability of conversation protocols with mes-
sage contents. In Proceedings of the IEEE International Conference on Web Services, ICWS
’04, pages 96–, Washington, DC, USA, 2004. IEEE Computer Society.

15. Keijo Heljanko and Alin Stefanescu. Complexity results for checking distributed imple-
mentability. In Proceedings of the Fifth International Conference on Application of Concur-
rency to System Design, pages 78–87, 2005.

16. Thomas Hildebrandt. Trustworthy pervasive healthcare processes (TrustCare) research
project. Webpage, 2008. http://www.trustcare.dk/.

17. Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Post proceedings of International Work-
shop on Programming Language Approaches to Concurrency and Communication-cEntric
Software (PLACES 10), 2011.

180

Declarative Modelling and Safe Distribution of Healthcare Workflows 17

18. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Declarative modelling and
safe distribution of healthcare workflows. In International Symposium on Foundations of
Health Information Engineering and Systems, Johannesburg, South Africa, August 2011.

19. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-
organizational case management system using dynamic condition response graphs. In Pro-
ceedings of IEEE International EDOC Conference, 2011. to appear.

20. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic condition
response graphs. In Proceedings of Fundamentals of Software Engineering (FSEN), April
2011. to appear.

21. Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Safe distribution of declar-
ative processes. In 9th International Conference on Software Engineering and Formal Meth-
ods (SEFM) 2011, 2011. to appear.

22. International symposium on foundations of health information engineering and systems, Au-
gust 2011.

23. Ali Rahmanzadeh John Fox, Nicky Johns. Disseminating medical knowledge: the proforma
approach. Artificial intelligence in medicine, 14:157–182, September 1998.

24. R. Khalaf and F. Leymann. Role-based decomposition of business processes using BPEL.
In Web Services, 2006. ICWS ’06. International Conference on, pages 770 –780, sept. 2006.

25. Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of workflow appli-
cations: Local criteria for global soundness. In Business Process Management, Models,
Techniques, and Empirical Studies, pages 235–253, London, UK, 2000. Springer-Verlag.

26. Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based
clinical practice guidelines to declarative workflow management. In Proceedings of 2nd
International Workshop on Process-oriented information systems in healthcare (ProHealth
08), pages 36–43, Milan, Italy, 2008. BPM 2008 Workshops.

27. Axel Martens. Analyzing web service based business processes. In Fundamental Approaches
to Software Engineering. Springer Berlin / Heidelberg, 2005.

28. Zoran Milosevic, Shazia Sadiq, and Maria Orlowska. Towards a methodology for deriving
contract-compliant business processes. In Business Process Management, volume 4102 of
Lecture Notes in Computer Science, pages 395–400. Springer Berlin / Heidelberg, 2006.

29. Saayan Mitra, Ratnesh Kumar, and Samik Basu. Optimum decentralized choreography for
web services composition. In Proceedings of the 2008 IEEE International Conference on
Services Computing - Volume 2, 2008.

30. Marco Montali. Specification and Verification of Declarative Open Interaction Models: A
Logic-Based Approach, volume 56 of Lecture Notes in Business Information Processing.
Springer, 2010.

31. Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker
online consultant: From declarative workflow management in practice to LTL. In Proceeding
of DDBP, 2008.

32. M. Mukund. From global specifications to distributed implementations. In Synthesis and
Control of Discrete Event Systems. Springer, 2002.

33. Nataliya Mulyar, Maja Pesic, Wil M. P. Van Der Aalst, and Mor Peleg. Declarative and pro-
cedural approaches for modelling clinical guidelines: addressing flexibility issues. In Pro-
ceedings of the 2007 international conference on Business process management, BPM’07,
pages 335–346, Berlin, Heidelberg, 2008. Springer-Verlag.

34. Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing execution of com-
posite web services. SIGPLAN Not., 39:170–187, October 2004.

35. Object Management Group BPMN Technical Committee. Business Process Model and No-
tation, version 2.0. Webpage, january 2011. http://www.omg.org/spec/BPMN/2.
0/PDF.

181

18 Hildebrandt, Mukkamala, Slaats

36. Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. Evolution of process chore-
ographies in dychor. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, volume 4275 of LNCS, pages 273–290. Springer, 2006.

37. David Robertson. A lightweight coordination calculus for agent systems. In In Declarative
Agent Languages and Technologies, pages 183–197, 2004.

38. W. Sadiq, S. Sadiq, and K. Schulz. Model driven distribution of collaborative business pro-
cesses. In Services Computing, 2006. SCC ’06. IEEE International Conference on, pages
281 –284, sept. 2006.

39. Arthur ter Hofstede, Rob van Glabbeek, and David Stork. Query nets: Interacting workflow
modules that ensure global termination. In Business Process Management. Springer Berlin /
Heidelberg, 2003.

40. P Terenziani, S Montani, A Bottrighi, M Torchio, G Molino, and G. Correndo. The glare
approach to clinical guideline: Main features. Symposium on Computerized Guidelines and
Protocols, 101:62–6, April 2004.

41. W. M. P. van der Aalst. Interorganizational workflows: An approach based on message
sequence charts and petri nets. Systems Analysis - Modelling - Simulation, 34(3):335–367,
1999.

42. Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl, and Karsten Wolf.
Multiparty Contracts: Agreeing and Implementing Interorganizational Processes. The Com-
puter Journal, 53(1):90–106, January 2010.

43. Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

44. Wil M.P van der Aalst and Maja Pesic. A declarative approach for flexible business processes
management. In Proceedings DPM 2006, LNCS. Springer Verlag, 2006.

45. Wil M.P van der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative service flow
language. In M. Bravetti, M. Nunez, and Gianluigi Zavattaro, editors, Proceedings of Web
Services and Formal Methods (WS-FM 2006), volume 4184 of LNCS, pages 1–23. Springer
Verlag, 2006.

46. W.M.P. van der Aalst. Inheritance of interorganizational workflows: How to agree to disagree
without loosing control? Information Technology and Management, 4:345–389, 2003.

47. Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz (Eds.)
Rozenberg, editors, Advances in Petri Nets, volume Vol. 255 of Lecture Notes in Computer
Science,, pages 325–392. Springer, 1986.

48. Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow execu-
tion based on state charts. In Proceedings of the 6th International Conference on Database
Theory, pages 230–246, London, UK, 1997. Springer-Verlag.

49. X. Yi and K.J Kochut. Process composition of web services with complex conversation pro-
tocols. In Design, Analysis, and Simulation of Distributed Systems Symposium at Adavanced
Simulation Technology, 2004.

50. W. Zielonka. Notes on finite asynchronous automata. Informatique Thorique et Applications,
21(2):99–135, 1987.

182

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work on sessions with responses as an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are specified by anno-
tating branching and selection labels with a finite conjunction of
disjunctive responses. A disjunctive response is a finite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential infinite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types first appeared in [7] as types for abstracting commu-
nication patterns within a session. As a benefit, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such as safety (lack of communication
errors) and progress (a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning of liveness, i.e. that something
good will eventually happen, and not just something will eventually
happen.

A fundamental and very common form of liveness property is
the request-response property: ”Whenever some event a occurs,
some event b will eventually occur in the future” [2]. The request-
response property may be specified by the LTL formula G(a =⇒
Fb), where G is read as generally, i.e. in all future steps, and F
reads future, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as the disjunctive response property:
”Whenever some event a occurs, one event out of a given finite

set of response events {b1, . . . , bn} will eventually occur in the fu-
ture”. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas G(a =⇒ Fρ),
where ρ = δ0 ∧ δ1 ∧ . . . ∧ δn−1 for δi = b1 ∨ . . . ∨ bmi .

Instead of using the LTL notation, we will use the shorter nota-
tion a •→ ρ as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes defined as a property that can not be violated in finitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
finite executions. For instance, the request-response property can
be violated if the process terminates with an ”open” request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential infinite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the seller’s behaviour could be specified
by the following session type:

µt. &

{
offer :?(int). ⊕ { more : t, ok : t},
stop : t

}

The type above describes a non terminating session, where the
seller is offering the buyer two options, namely offer and stop.
If the first option is selected by the buyer then the seller expects to
receive an integer and then selects either more or ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k&

offer : k?(x). if (notEnough(x)) then
k ⊕ more. X else k ⊕ ok. X

stop : X

gives an implementation where, for some values of x, the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

µX. k&

{
offer : k?(x). k ⊕ ok. X
stop : X

}

183

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &

{
offer[ok ∨ stop] :?(int). ⊕ { more : t, ok : t},
stop : t

}

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we may use a variant of the π-calculus with
sessions [7, 11] which outlaws restriction on public channels, and
allows replicated behaviour only for services. This choice is not
crucial for the definition of live-sessions.

Semantics As semantics we use the standard reduction seman-
tics→ [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr(P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response ρ =
δ0 ∧ δ1 ∧ . . .∧ δn−1 for δi = li,1 ∨ . . .∨ li,mi . A trace σ ∈ Tr(P)
of a process P then satisfies the request-response liveness property
l •→ ρ if for all k < |σ|, if σk = l then for all i ∈ {0, . . . , n− 1}
there exists j ∈ {1, . . . ,mi} such that there exists k′ > k for
which σk′ = li,j .

We say that a process P has the liveness property wrt a set of
response liveness propertiesP whenever each trace σ of P satisfies
every property in P .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l •→ δ for
δ = l1 ∨ . . . lm if any occurrence of the label l is eventually
followed by a label li for some i ∈ {0, . . . ,m}, and in general,
a trace satisfies the property l •→ ρ for ρ = δ0 ∧ . . . δn−1 if it
satisfies l •→ δj for all j ∈ {0, . . . , n− 1}.

3. Live Session Typing
Session Types with Responses. The generalization of session
types to session types with responses is given by the following
grammar:

α ::= ?(θ). α | !(θ). α | &{li[ρi] : αi} | ⊕{li[ρi] : αi} |
end | µt. α | t

θ ::= S | α S ::= basic | 〈α〉
ρ ::= > | δ | ρ ∧ ρ δ ::= l | δ ∨ δ

Here, ?(θ). α and !(θ). α denote in-session input and output
followed by the communications in α. The type θ abstracts what
is communicated: a basic value (basic denotes basic types, e.g., int

or bool), a service channel of type 〈α〉, or a session channel of type
α. Finally, &{li[ρi] : αi} and ⊕{li[ρi] : αi} denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (ρ) as
introduced in the previous section. The response> (true) represents
the empty response, and thus we will usually write l for l[>].

4. Conclusions, Ongoing and Future Work
Above we have suggested extending session types to allow ex-
pressing liveness properties. As a starting point, we considered
liveness properties stated as a generalisation of the fundamental
request-response pattern. We proposed that these properties could
be expressed in session types by annotating labels in selections and
branchings with disjunctive responses.

This is ongoing work. We believe we have a sound and complete
set of live session type rules conservatively generalising standard
session types. Soundness means in this setting, that every well-
typed process satisfy the liveness property expressed by the re-
sponse annotations as defined in Def. 1 and is well-typed according
to the underlying (standard) session type. Completeness means that
each process which is well-typed according to the underlying ses-
sion type and satisfy the liveness property expressed as response
annotations will be well-typed according to the live session type
rules.The general idea of the typing rules are to keep track of accu-
mulated response requirements for each session, and also for each
loop within sessions, and check fulfilment of responses at recursion
points and when sessions end.

Note that a consequence of the response annotations, for a given
live session type there may be no well-typed processes if a required
response is not allowed by the underlying session type, e.g. if none
of the requested responses are possible future labels.

The response annotations relate to the recent work on transition
systems with responses in [3] and also the work on DCR Graphs
in [6, 9] and declarative process models in [10].

For future work we consider generalising the liveness proper-
ties to also allow session start as a request event, and session-end
as a response event. This would e.g. allow expressing the general
property that if a particular session is started, it must be ended. As
liveness constraints are often verified under some fairness assump-
tions of the process, it would also be relevant to consider extensions
where fairness, or even more general liveness assumptions, can also
be expressed for the processes. For instance, a fair parallel, or fair
branching operators could be introduced in the session calculus.
This should then be taken into account when type checking against
the live session types.

References
[1] B. Alpern and F. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, 1987.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[3] Marco Carbone, Thomas T. Hildebrandt, Gian Perrone, and Andrzej
Wasowski. Refinement for transition systems with responses. In FIT,
pages 48–55, 2012.

[4] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
interactional exceptions for session types. In 19th Int’l Conference on
Concurrency Theory (Concur’08), LNCS, pages 402–417. Springer,
2008.

[5] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils
Gesbert, and Alexandre Z. Caldeira. Modular session types for dis-
tributed object-oriented programming. In POPL, pages 299–312,
2010.

[6] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declara-
tive event-based workflow as distributed dynamic condition response

2

184

graphs. In Kohei Honda and Alan Mycroft, editors, PLACES, vol-
ume 69 of EPTCS, pages 59–73, 2010.

[7] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Lan-
guage Primitives and Type Disciplines for Structured Communication-
based Programming. In 7th European Symposium on Programming
(ESOP’98), volume 1381 of LNCS, pages 22–138. Springer-Verlag,
1998.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. In 35th Symposium on Principles of
Programming Languages (POPL’08), pages 273–284. ACM, 2008.

[9] Raghava Rao Mukkamala. A Formal Model For Declarative Work-
flows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for flex-
ible business processes management. In Proceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPM’06, pages 169–180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. In PARLE’94, volume 817 of
LNCS, pages 398–413. Springer-Verlag, 1994.

3

185

Type Checking Liveness
for Collaborative Processes

with Bounded and Unbounded Recursion

Søren Debois1, Thomas Hildebrandt1, Tijs Slaats1,2, and Nobuko Yoshida3

1 IT University of Copenhagen
{debois,hilde,tslaats}@itu.dk

2 Exformatics A/S
3 Imperial College

yoshida@doc.ic.ac.uk

Abstract. We present the first session typing system guaranteeing re-
sponse liveness properties for possibly non-terminating communicating
processes. The types augment the branch and select types of the standard
binary session types for the π-calculus with a set of required responses,
indicating that whenever a particular label is selected, a set of other
labels, its responses, must eventually also be selected. We prove that
these extended types are strictly more expressive than standard session
types. We provide a type system for a process calculus similar to collab-
orative BPMN processes and prove that this type system is sound, i.e.,
it guarantees request-response liveness for dead-lock free processes. We
exemplify the use of the calculus and type system on a concrete example
of an infinite state system.

1 Introduction

Session types were originally introduced as typing systems for particular π-
calculi, modelling the interleaved execution of some number of two-party proto-
cols. Here, a well-typed process is guaranteed freedom from race-conditions and
compatibility of communications, usually referred to as session fidelity [12,20,18].
Session types have subsequently been the subject of intense study, with much
work on applications, typically to programming languages, e.g., [8,14,11,15]. A
number of generalisations of the theory has been proposed, notably to multi-
party session types [13]. Multi-party session types have a close resemblance to
choreographies as found in standards for business process modelling languages
such as Business Process Model and Notation (BPMN) [16] and Web-Services
Choreography Description Language (WS-CDL) and has been argued in theory
to be able to provide typed BPMN processes [5].

So far, behavioral types have focussed on safety properties, notably progress
and lock-freedom [2,1,3,7,19]. The main contribution of the paper is the first
extension of binary session types to allow specification of liveness—the property
of a process eventually getting to “do something good”.

186

Liveness properties have normally been dealt with by resorting to model-
checking techniques (typically requiring a state-space exploration) or dependent
types explicitly representing bounds of iterations. In the present paper we show
that a common and fundamental class of liveness properties, so-called request-
response properties, can be dealt with statically in the type rules, that is, without
resorting to statespace exploration or the detail (and complexity) of dependent
types. This means in particular, that we can deal with infinite state systems as
we will exemplify below. Other benefits of the session type-checking approach
are that it allows to specify properties as types that can be understood and used
as interface specifications and for compositional reasoning.

We develop the theory in the setting of a process calculus with value pass-
ing, conditional branching, external branching and selection, and bounded and
unbounded recursion. This calculus corresponds to a core subset of collaborative
BPMN processes with structured loops and bounded iteration, in which both live
and non-live infinite state space BPMN processes can be defined. As a running
example we use the collaborative shopping cart process shown in Fig. A.

Fig.A. A Potentially Non-live Shopping Cart BPMN Process

The diagram contains two pools: The Buyer and the ShoppingCart. Only the
latter contains a specified process, which consists of two parts: Ordering and
Delivery. Ordering is a loop that starts with an event-based gateway, branch-
ing according to the message (AddItem, Checkout, RemoveItem) sent by the
customer: AddItem and RemoveItem messages respectively provides an item to
be added or removed from the order after which the loop repeats. A Checkout
message provides delivery details of the order, exits the loop and proceeds to the
Delivery part. Delivery is again a loop, delivering the ordered items and then
sending the invoice.

A buyer who wants to communicate safely with the Shopping Cart, must
follow the protocol described above, and in particular be able to receive an
unbounded number of items before receiving the invoice. Writing AI,RI,CO,DI,
and SI for the actions “Add Items”, ”Remove Items”, “Checkout”, “Deliver

2

187

Items” and “Send Invoice”; we can describe this protocol with a session type:

µt.&{AI.?.t,RI.?.t,CO.?.µt′.⊕ {DI.!.t′,SI.!.end}}

This session type can be regarded as a behavioral interface, specifying that the
process first expects to receive either an AI (AddItem), RI (RemoveItem) or
a CO (CheckOut) event. The two first events must be followed by a message
(indicated by ?), which in the implementation provides the item to be added
or removed, after which the protocol returns to the initial state. The checkout
event is followed by a message (again indicated by a ?) after which the protocol
enters a new loop, either sending a DI (DeliverItem) event followed by a message
(indicated by a !) and repeating, or sending an SI (SendInvoice) event followed
by a message (the invoice) and ending.

However, standard session types can not specify the very relevant liveness
property, that a CheckOut event is eventually followed by an invoice event. This
is an example of a so-called response property: an action (the request) must be
followed by a particular response. Thus, we conservatively extend binary session
types to specify such response properties, and we show that this extension is
strictly more expressive than standard session types. We do so by annotating
the checkout selection in the type with the required response:

µt.&{AI.?.t,RI.?.t,CO[{SI}].?.µt′.⊕ {DI.!.t′,SI.!.end}} .

Intuitively: “if CO is selected, then subsequently also SI must be selected.”

Fig. B. Live delivery with MI Sub-Process

It is not possible to determine
from the flow graph alone, if this re-
sponse property is guaranteed. The
second loop may not terminate, e.g.,
if the Order is not updated prop-
erly when items are sent or the Item-
sToSend condition is defined wrongly.
However, we can remove this depen-
dency on the data if we replace the
delivery loop with a looping primitive
which is guaranteed to be finite. In BPMN this can be achieved with e.g. the
Sequential Multiple Instance Sub-process, which sequentially executes a finite
number (determined by an expression computed at run-time) of instances of a
sub-process. This allows us to re-define the Delivery as shown in Fig. B, yield-
ing a re-defined Shopping Cart process, for which it can be inferred from the
structure of the process that it satisfies the response property. In general, we
want also to be able to check processes where responses are requested within
(potentially) infinite loops. The type system we present gives such guarantees,
essentially by collecting all requested responses in a forward analysis, exploit-
ing that potentially infinite loops can guarantee a particular response only if
every path through the loop can; and that order (request-response vs response-
request) is in this case irrelevant. We prove that, if the system is lock free, then

3

188

the typing system indeed guarantees that all requested responses are eventually
fulfilled. Lock-freedom is needed because as is well known, collaborative processes
with interleaved sessions may introduce dependency locks. Lock-freedom is well-
studied for binary session types [2,1,3,7,19], or may alternatively be achieved by
resorting to global types [13], the combination with which we leave for future
work. In summary, our contributions are as follows.

– We extend binary session types with a notion of required response. This
allows types to express that whenever a particular pattern of communication
is chosen (a label selected in branch/select), that choice must subsequently
be followed by a particular other choice, its required response.

– We prove that this extension induces a strictly more expressive language
class than standard session types.

– We give a typing system conservatively extending standard binary session
types which gives the further guarantee that a lock-free well-typed process
will, in any execution, provide all its required responses.

– We exemplify the use of these extended types to guarantee both safety and
liveness properties for a non-trivial, infinite state collaborative process, which
exhibits both possibly infinite looping and bounded iteration.

Overview of this paper. In Sec. 2 we define our calculus and introduce a shop-
ping cart process which will serve as a running example; in Sec. 3 we give an
LTS-semantics for the calculus. In Sec. 4 extend binary session types to allow
specification of response liveness properties, give a transition semantics for the
types, and sketch a proof that these extended types induce a strictly larger class
of languages than does standard binary session types. In Sec. 5 we define ex-
actly how our extended session types induce a notion of liveness on processes.
In Sec. 6 we give our extended typing rules for sessions with responses and state
its subject reduction result. In Sec. 7 we prove that the extended typing rules
guarantees liveness for lock-free processes. Finally, in Sec. 8 we conclude. For
want of space, this paper omits details and proofs; for these, refer to [4].

2 Process Terms

Processes communicate only via named communication (session) channels by
synchronizing send and receive actions or synchronizing select and branch events
(as in standard session typed π-calculus). The session typing rules presented in
the next session guarantees that there is always at most one active send and
receive action for a given channel. To distinguish dual ends of communication
channels, we employ polarised names [10,20]: If c is a channel name, c+ and c−

are the dual ends of the channel c. We call these polarised channel names, with
“+” and “-” polarities. If k is a polarised channel name, we write k for its dual,
e.g., c+ = c−. In general c ranges or channel names; p over polarities +,−; k, h
over polarised channel names; x over data variables; i over recursion variables
(explained below); v over data values including numbers, strings and booleans;

4

189

e over data expressions; and finally X,Y over process variables.

P ::= k!〈e〉.P | k?(x).P | k!l.P | k?{li.Pi}i∈I | 0 | P |Q
| recX.P | (receX(i).P ;Q) | X[k̃] | if e then P else Q

The first four process constructors are prefixes taking part in a communica-
tion. These are standard for session typed π-calculi, except we allow only data
and not channel names to be sent. The process k!〈e〉.P sends data v over chan-
nel k when e ⇓ v, and proceeds as P . Dually, k?(x).P receives a data value over
channel k and substitutes it for the x binding in P . A branch process k?{li.Pi}i∈I
offers a choice between labels li, proceeding to Pi if the i’th label is chosen. The
process 0 is the standard inactive process (termination), and P | Q is the parallel
composition of processes P and Q.

Recursion comes in two forms: a general, potentially non-terminating recur-
sion recX.P , where X binds in P ; and a primitive recursion, guaranteed to
terminate, with syntax (receX(i).P ;Q). The latter process, when e ⇓ n + 1,
executes P{n/i} and repeats, and when e ⇓ 0, evolves to Q. By convention
in (receX(i).P ;Q) neither of 0, recY.Q, (recQ Y (i).R;) and P | Q occurs as
subterms of P . These conventions ensure that the process (receX(i).P ;Q) will
eventually terminate the loop and execute Q. Process variables X[k̃] mentions
the channel names k̃ active at unfolding time for technical reasons.

We define the free polarised names fn(P) of P as usual, with fn(X[k̃]) = k̃;
substitution of process variables from X[k̃]{P/X} = P ; and finally value substi-
tution P{v/x} in the obvious way, e.g., k!〈e〉.P{v/x} = k!〈e{v/x}〉.(P{v/x}).
Variable substitution can never affect channels.

Example 2.1. We now show how to model the example BPMN process given
in the introduction. To illustrate the possibility of type checking infinite state
systems, we use a persistent data object. As our calculus does not contain such
a primitive, a data object will be represented by a process DATA(o) communi-
cating on a session channel o.

DATA(o) = recX. o+?(x). recY. o+?

read. o+!〈x〉. Y [o+]

write. X[o+]

quit. 0

After having received its first initial value, this process repeatedly accepts com-
mands read and write on the session channel o for respectively reading and writing
the value of the variable, or the command quit for discarding the data object.

To make examples more readable, we employ the following shorthands. We
write init(o, v).P for o−!〈v〉.P , which initializes the data object; we write free o
for o−!quit. 0, the process which terminates the data object session; we write
read o(x).P for o−!read. o−?(x).P., the process which loads the value of the data
object o into the process-local variable x; and finally, we write o := e.P for
o−!w.o−!〈e〉.P , the process which sets the value of a data-object.

5

190

The shopping cart process can then be modelled as

P (Q) = DATA(o) | init(o, ε). recX.k

AI. k?(x). read o(y). o := add(y, x). X[ko−]

RI. k?(x). read o(y). o := rem(y, x). X[ko−]

CO. k?(x). read o(y). o := add(y, x). Q

.

Here k is the session channel for communicating with the customer and o is the
session channel for communicating with the data object modelling order data.
We assume our expression language has suitable operators “add” and “rem”,
adding an removing items from the order. Finally, the process Q is a stand-in
for either the (non live) delivery part of the BPMN process in Fig. A or the live
delivery part shown in Fig. B.

The non-live delivery loop can be represented by the process

D0 = recY. read o(y). if n(y) > 0

{
then k!DI. k!〈next(y)〉. o := update(y). Y [ko−]

else k!SI. k!〈inv(y)〉. free o

where n(y) is the integer expression computing from the order y the number
of items to send, next(y), update(y) and inv(y) are, respectively, the the next
item(s) to be sent; an update of the order to mark that these items have indeed
been sent; and the invoice from the order. Note that whether or not this process
terminates is entirely dependent on the data operations.

The live delivery with the bounded iteration can be represented by a process
using the bounded recursion

D = read o(y). (recn(y) Y (i).

k!DI.read o(y). k!〈pickitem(y, i)〉.Y [ko−];

k!SI. read o(y). k!〈inv(y)〉. free o)

(The second line is the body of the loop; the third line is the continuation.) Here
pickitem(y, i) is the expression extracting the ith item from the order y. ut

3 Transition Semantics

We give a labelled transition semantics in Figure C. We assume a total evaluation
relation e ⇓ v. Note the absence of a structural congruence. Transition labels are
λ ::= k!v | k?v | k⊕l | k&l | τ | τ : l. We assume τ is neither a channel nor
a polarised channel, define subj(k!v) = subj(k?v) = subj(k&l) = subj(k ⊕ l) = k
and subj(τ) = subj(τ : l) = τ , and τ = τ . We use these rules along with
symmetric rules for [C-ParL] and [C-Com1/2]. Compared to standard CCS or
π semantics, there are two significant changes: (1) In the [C-ParL], a transition λ
of P is not preserved by parallel if the co-channel of the subject of λ is in P ′; and
(2) in prefix rules, the co-name of the subject cannot appear in the continuation.
We impose (1) because if the co-channel of the subject of λ is in P ′, then P | P ′

6

191

[C-Out]
e ⇓ v

k!〈e〉.P k!v−−→ P
k 6∈ fn(P) [C-In]

k?(x).P
k?v−−→ P{v/x}

k 6∈ fn(P)

[C-Sel]
k!l.P

k⊕l−−→ P
k 6∈ fn(P) [C-Bra]

k?{li.Pi}i∈I k&li−−−→ Pi
k 6∈ fn(P)

[C-ParL]
P

λ−→ Q

P | P ′ λ−→ Q | P ′
subj(λ) 6∈ fn(P ′)

[C-Com1]
P

k!v−−→ P ′ Q
k?v−−→ Q′

P | Q τ−→ P ′ | Q′
[C-Com2]

P
k⊕l−−→ P ′ Q

k&l−−→ Q′

P | Q τ :l−−→ P ′ | Q′

[C-Rec]
P{recX.P/X} λ−→ Q

recX.P
λ−→ Q

[C-Prec0]
e ⇓ 0 Q

λ−→ R

(receX(i).P ;Q)
λ−→ R

[C-PrecN]
e ⇓ n+ 1 P{n/i}{(recnX(i).P ;Q)/X} λ−→ R

(receX(i).P ;Q)
λ−→ R

[C-CondT]
e ⇓ true P

λ−→ P ′

if e then P else Q
λ−→ P ′

[C-CondF]
e ⇓ false Q

λ−→ Q′

if e then P else Q
λ−→ Q′

Fig. C. Transition semantics for terms

does not offer synchronisation on λ to its environment; the synchronisation is
offered only to P ′. As an example, the process P = c+!〈v〉.Q | c−?(x).R does

not have a transition c+!〈v〉.Q | c−?(x).R
c+!v−−−→ Q | c−?(x).R. If it had such a

transition, no environment U able to receive on c− could be put in parallel with
P and form a well-typed process, since both U and c−?(d).R would then contain

the name c− free. The reason for (2) is similar: If a process k!〈e〉.P k!v−−→ P , and
P contains k, again no well-typed environment for that process can contain k.

4 Session Types with Responses

In this section, we generalise binary session types to session types with responses.
In addition to providing the standard communication safety properties, these
also allow us to specify response liveness properties.

We have deliberately omitted types of values (e.g. integers, strings, booleans)
being sent, since this can be trivially added and we want to focus on the be-
havioural aspects of the types. Note also, that compared to standard session
types, we do not consider delegation (name passing). Firstly, as illustrated by
our example calculus, the types are already expressive enough to cover a non-
trivial subset of collaborative processes. Secondly, as we show in the end of the
section, session types with responses are already in some sense strictly more
expressive than standard session types. Finally, admitting delegation introduces

7

192

some non-trivial challenges and choices with respect to how to define and guar-
antee liveness, which we have left for future work.

We first define request/response liveness in the abstract. In general, we shall
take it to be the property that “a request is eventually followed by a response”.

Definition 4.1. A request/response structure is a tuple (A,R, req, res) where A
is a set of actions, R is a set of responses, and req : A→ R and res : A→ R are
maps defining the set of responses requested respectively performed by an action.

Notation. We write ε for the empty string, we let φ, ψ range over finite strings,
and we let α, β, γ range over finite or infinite sequences. We write sequence
concatenation by juxtaposition, i.e., φα.

Definition 4.2. Suppose (A,R, req, res) is a request/response structure and α a
sequence over A. Then the responses res(α) of α is defined by res(α) = ∪{res(a) |
∃ϕ, β. α = ϕaβ}. Moreover, α is live iff α = φaβ =⇒ req(a) ⊆ res(β).

Definition 4.3 (LTS with requests/responses). Let (S,L,−→) be an LTS.
When the set of labels L is the set of actions of a request/response structure,
we say that (S,L,−→) is an LTS with requests/responses, and that a transition
sequence of this LTS is live when its underlying sequence of labels is.

Next, the syntax of session types with responses. Let l range over labels and L
sets of labels.

S, T ::= &{li[Li].Ti}i∈I | ⊕{li[Li].Ti}i∈I | !.T | ?.T | µt.T | t | end

By convention, the li in each &{li[Li].Ti}i∈I resp. ⊕{li[Li].Ti}i∈I are distinct.
A session type is a (possibly infinite) tree of actions permitted for one partner

of a two-party communication. The type &{li[Li].Ti}i∈I , called branch, is the
type of offering a choice between different continuations. If the partner chooses
the label li, the session proceeds as Ti. Compared to standard session types,
making the choice li also requests a subsequent response on every label mentioned
in the set of labels Li; we formalise this in the notion of responsive trace below.
Dual to branch is select ⊕{li[Li].Ti}i∈I : the type of making a choice between
different continuations. Like branch, making a choice li requests every label
in Li as future responses. The type !.T and ?.T are the types of sending and
receiving data values. Note that unlike standard session types, channels cannot
be communicated. Finally, session types with responses include recursive types.
We take the equi-recursive view, identifying a type T and its unfolding into a
potentially infinite tree. We define the central notion of duality between types
as the symmetric relation induced coinductively by the following rules.

end ./ end

T ./ T ′

!.T ./ ?.T ′
Ti ./ T

′
i J ⊆ I

&{li[Li].Ti}i∈I ./ ⊕{lj [L′j].T ′j}j∈J
(1)

The first rule says that the dual processes agree on when communication stops.
The second says that if a process sends a message its dual must receive. Finally,

8

193

the third says that if one process offers a branch, its dual must select from the
offered choices. However, required responses do not need to match for branch
and select to be duals: the two participants in a session need not agree on the
notion of liveness for the collaborative session.

Example 4.4. Recall from Ex. 2.1 the processes DATA(o) encoding data-object
and P (D) encoding the shopping-cart process with live delivery. The former
treats the channel o as TD = µt.?.µs.&{read.!.s, write.t, quit.end }. The latter
treats its channel k to the buyer as TP = µt.&{AI.?.t, RI.?.t, CO[{SI}].?.µt′. ⊕
{DI.!.t′, SI.!.end}}. ut

Having defined the syntax of session types with responses, we proceed to
give their semantics. The meaning of a session type is the possible sequences
of communication actions it allows, requiring that pending responses eventually
be done. Formally, we equip session types with a labeled transition semantics in
Fig. D. We emphasise that under the equi-recursive view of session types, the

Type transition labels: ρ ::= ! | ? | &l[L] | ⊕l[L]
Type transition label duality: ! ./ ? and &l[L] ./ ⊕l[L′]

[D-Out]
!.T

!−→ T ?.T
?−→ T

[D-In]

[D-Bra]
i ∈ I

&{li[Li].Ti}i∈I &li[Li]−−−−→ Ti

i ∈ I
⊕{li[Li].Ti}i∈I ⊕li[Li]−−−−→ Ti

[D-Sel]

Fig.D. Transitions of types (1)

transition system of a recursive type T may in general be infinite.
Taking actions A to be the set of labels ranged over by ρ, and recalling that L

is our universe of labels for branch/select, we obtain a request/response structure
(A,P(L), req, res) with the latter two operators defined as follows.

res(!) = res(?) = ∅ res(&l[L]) = res(⊕l[L]) = {l}
req(!) = req(?) = ∅ req(&l[L]) = req(⊕l[L]) = L

Selecting a label l performs the response l; pending responses L associated with
that label are conversely requested. The LTS of Fig. D is thus one with responses,
and we may speak of its transition sequences being live or not.

Definition 4.5. Let T be a type. We define:

1. The traces tr(T) = {(ρi)i∈I | (Ti, ρi)i∈I transition sequence of T }
2. The responsive traces trR(T) = {α ∈ tr(T) | α live }.

That is, in responsive traces any request is followed by a response.

Definition 4.6. A type T is a standard session type if it requests no responses,
that is, every occurrence of L in it is has L = ∅. Define sel(T) = l by when
T = sel(&l[L]) or T = sel(⊕l[L]) = l, otherwise ε. We then define:

1. The selection traces str(T) = {sel(α) | α ∈ tr(T)}

9

194

2. The responsive selection traces strR(T) = {sel(α) | α ∈ trR(T)}.
3. The language of standard session types
T = {α | α ∈ str(T), T is a standard session type}.

4. The language of responsive session types
R = {α | α ∈ strR(T), T is a session type with responses}.

That is, we compare standard session types and session types of responses by
considering the sequences of branch/select labels they admit. This follows recent
work on multi-party session types and automata [5,6].

Example 4.7. The type TP of Example 4.4 has (amongst others) the following
two selection traces.

t = AI CODIDI SI

u = AI CODIDIDI · · ·

Of these, only t is responsive; u is not, since it never selects SI as required by its
CO action. That is, u, v ∈ str(TP) and u ∈ strR(TP), but v 6∈ strR(TP). ut

Theorem 4.8. The language of session types with responses R is strictly more
expressive than that of standard session types T ; that is, T ⊂ R.

Proof (Sketch). The non-strict inclusion is immediate by definition; it remains
to prove it strict. For this consider the session type with responses T = µt. ⊕
{a[b].t; b[a].t}, which has as responsive traces all strings that have both inifitely
many as and infinitely many bs. We can find every sequence an as a prefix of
such a trace. But, (by regularity) any standard session type that has all an as a
prefix of the traces must also have the trace aω, which is not a responsive trace
of T , and thus the responsive traces of T can not be expressed as the traces of
a standard session type.

5 Session Typing

Recall that the standard typing system [12,20] for session types has judgements
Θ `std P . ∆. We use this typing system without restating it; refer to either
[12,20] or the full version of this paper [4]. In this judgement, Θ takes process
variables to session type environments; in turn, a session typing environment ∆
is a finite partial map from channels to types. We write ∆,∆′ for the union of
∆ and ∆′, defined when their domains are disjoint. We say ∆ is completed if
∆(T) = end when defined; it is balanced if k : T, k : U ∈ ∆ implies T ./ U .

We generalise transitions of types (Fig. D) to session typing environments in
Fig. E, with transitions δ ::= τ | τ : l, L | k : ρ. We define subj(k : ρ) = k and
subj(τ : l, L) = subj(τ) = τ . We lift sel(−), req(−), and res(−) to actions δ in
the obvious way, e.g., req(τ : l, L) = L. The type environment transition is thus
an LTS with responses, and we may speak of its transition sequences being live.

10

195

[E-Lift]
T

ρ−→ T ′

k : T
k:ρ−−→ k : T ′

[E-Par]
∆

δ−→ ∆′

∆,∆′′
δ−→ ∆′,∆′′

[E-Com1]
∆1

k:!−→ ∆′1 ∆2
k:?−−→ ∆′2

∆1,∆2
τ−→ ∆′1,∆

′
2

[E-Com2]
∆1

k:⊕l[L]−−−−→ ∆′1 ∆2
k:&l[L′]−−−−−→ ∆′2

∆1,∆2
τ :l,L∪L′
−−−−−→ ∆′1,∆

′
2

Fig. E. Transitions of types (2)

Definition 5.1. We define a binary relation on type transition labels δ and
transition labels λ, written δ ' λ, as follows.

τ ' τ k : &l[L] ' k&l k : ! ' k!v

τ : l, L ' τ : l k : ⊕l[L] ' k ⊕ l k : ? ' k?x

Theorem 5.2. If Γ `std P .∆ and P
λ−→ Q, then there exists δ ' λ s.t. ∆

δ−→ ∆′

and Γ `std Q . ∆′.

Definition 5.3. The typed transition system is the transition system which has

states Γ `std P . ∆ and transitions Γ `std P . ∆
λ,δ−−→ Γ `std P ′ . ∆′ whenever

there exist transitions P
λ−→ P ′ and ∆

δ−→ ∆′ with δ ' λ.

We can now say what it means for a process to be live.

Definition 5.4 (Live process). A well-typed process Θ `std P .∆ is live wrt.
Θ,∆ iff for any maximal transition sequence (Pi, λi)i of P there exists a live
type transition sequence (∆i, δi)i of ∆ s.t. ((Pi, ∆i), (λi, δi))i is a typed transition
sequence of Θ `std P . ∆.

Example 5.5. Wrt. the standard session typing system, both of the processes
P (D0) and P (D) of Example 2.1 are typable wrt. the types we postulated for
them in Example 4.4. Specifically, we have · `std P (D0) . k : TP , o

+ : TD, o
− :

TD and similarly P (D). The judgement means that the process P (D) treats k
according to TP and the (two ends of) the data object according to TD and
its dual TD. The standard session typing system of course does not act on our
liveness annotations, and so does not care that P (D0) is not live.

6 Typing system for liveness

We now give our extended typing system for session types with responses. The
central judgement will be Γ ;L ` P . ∆, with the intended meaning that “with
process variables Γ and pending responses L, the process P conforms to ∆.”
We shall see in the next section that a well-typed lock-free P is live and will
eventually perform every response in in L. We need:

1. Session typing environments ∆ defined at the start of Section 5.
2. Response environments L are simply sets of branch/select labels.

11

196

3. Process variable environments Γ are finite partial maps from process vari-
ables X to tuples (L,L,∆) or (L,∆). We write these (A, I,∆) for (A)ccumu-
lated selections and request (I)nvariant. We define (Γ+L)(X) = (A∪L, I,∆)
when Γ (X) = (A, I,∆) and Γ (X) otherwise, writing Γ+l instead of Γ+{l}.

The liveness-guaranteeing type systems is in Fig. F. We explain the rules; first,

[F-Out]
Γ ;L ` P . ∆, k : T

Γ ;L ` k!〈e〉.P . ∆, k : !.T
[F-In]

Γ ;L ` P . ∆, k : T

Γ ;L ` k?(x).P . ∆, k : ?.T

[F-Bra]
∀i ∈ I : Γ + li; (L \ li) ∪ Li ` Pi . ∆, k : Ti
Γ ;L ` k?{li.Pi}i∈I . ∆, k : &{li[Li].Ti}i∈I

[F-Sel]
Γ + lj ; (L \ lj) ∪ Lj ` P . ∆, k : Tj
Γ ;L ` k!lj .P . ∆, k : ⊕{li[Li].Ti}i∈I

(j ∈ I)

[F-Par]
Γ ;L1 ` P1 . ∆1 Γ ;L2 ` P2 . ∆2

Γ ;L1 ∪ L2 ` P1 | P2 . ∆1,∆2
[F-Inact]

∆ completed

Γ ; ∅ ` 0 . ∆

[F-Var]
L ⊆ I ⊆ A dom(∆) = k̃

Γ,X : (A, I,∆);L ` X[k̃] . ∆
[F-VarP]

L ⊆ L′ dom(∆) = k̃

Γ,X : (L′,∆);L ` X[k̃] . ∆

[F-RecP]
Γ,X : (L′,∆);L′ ` P . ∆ Γ ;L′ ` Q . ∆ L ⊆ L′

Γ ;L ` (receX(i).P ;Q) . ∆

[F-Rec]
Γ,X : (∅, I,∆); I ` P . ∆ L ⊆ I

Γ ;L ` recX.P . ∆
[F-Cond]

Γ ;L ` P . ∆ Γ ;L ` Q . ∆

Γ ;L ` if e then P else Q . ∆
Fig. F. Typing System

branch/select, rules [F-Bra]/[F-Sel]. To type k!l.P wrt. k : ⊕l[L′].T , we must
verify that P performs every response in L′. We maintain an environment L
of currently pending responses for this. In the hypothesis, when typing P , we
add the new pending responses L′. But selecting l performs the response l, so
altogether, to support pending responses L in the conclusion, we must have
pending responses L \ {l} ∪ L′ in the hypothesis. Branching is similar.

For finite processes, if the inactive process must be typed with the empty
request environment, liveness is ensured. Hence in the rule 0, the pending re-
sponses environment is required to be empty. For infinite processes there is no
particular point at which we can insist there is no pending responses. Consider
recX.k ⊕ a. k ⊕ b. X[k] typeable under k : µt.⊕ {a[b].t; b[a].t}. This process has

the single transition sequence P
k⊕a−−−→ k ⊕ b. P k⊕b−−→ P

k⊕a−−−→ · · ·. At each state
but the initial one, the process has a pending response: in states P it needs to
respond b; in states k ⊕ b. P it needs to respond a. Yet the process is live: any
response requested in the body of the recursion is also discharged in the body,
although not necessarily in the proper order. In general, infinite behaviour arises

12

197

because of unfolding of recursion, so if the body of every recursion discharges
the requests of that body, even if not in the proper order, responses are ensured.

For general recursion, [F-Rec] and [F-Var], we need to check that there
exists an invariant, a set of responses, such that the body of a recursion requests
at most that set, and reponds with at least that set. In the process variable
environment Γ we record this response invariant for each variable, along with a
tally of the responses performed since the start of the recursion. That tally is
then updated by the rules [F-Sel]/[F-Bra] for select and branch. The rule for
process variable [F-Var] typing then check that the tally includes the invariant,
and that the invariant includes every currently pending response.

Definition 6.1. We define the standard process variable environment std(Γ)
associated with a process variable environment Γ std(Γ)(X) = ∆ when Γ (X) =
(A, I,∆) or Γ (X) = ∆.

Theorem 6.2. If Γ ;L ` P . ∆ then also std(Γ) `std P . ∆.

Theorem 6.3 (Subject reduction). Suppose that ·;L ` P .∆ with and P
λ−→

Q. Then there exists a type transition ∆
δ−→ ∆′ with δ ' λ, such that ·; (L \

res(δ)) ∪ req(δ) ` Q . ∆′. Moreover, if ∆ balanced then also ∆′ balanced.

Example 6.4. Wrt. the typing system of Figure F, the process P (D) is typable
wrt. the types we postulated for it in Example 4.4. The process P (D0) on the
other hand is not. That is, we have ·; ∅ ` P (D) . k : TP , o

+ : TD, o
− : TD, but

the same does not hold for P (D0).
We also exemplify a typing judgment with non-trivial guaranteed responses.

The process D, the order-fulfillment part of P (D), can in fact be typed

·; {SI} ` D . k : µt′.⊕{DI.!.t′,SI.!.end}, o− : TD

The interesting bit is the left-most {SI}, indicating intuitively that this process
will eventually select SI in any execution. If you look back at the actual process
D in Example 2.1, you will see that D has this property precisely because it
implements a bounded recursion.

7 Liveness

We prove that a lock-free process well-typed under our liveness typing system
is indeed live under fair executions. For defining lock-freedom and fairness, we
must track occurrences of prefixes across transitions. This is straightforward in
the absence of a structural congruence; refer to [9] for a formal treatment.

Definition 7.1. A prefix M is a process on one of the forms k!〈e〉.P , k?(x).P ,
k?{li.Pi}, or k!l.P . An occurence of a prefix M in a process P is a path in the
abstract syntax tree of P to a subterm on the form M (see [9] for details). An

occurrence of a prefix P in M where P
λ−→ Q is preserved by the latter if M has

the same occurrence in Q; executed otherwise. It is enabled if it is executed by
some transition, and top-level if it is not nested in another prefix.

13

198

Definition 7.2. An infinite transition sequence s = (Pi, λi)i∈N is fair iff when-

ever a prefix M occurs enabled in Pn then some m ≥ n has Pm
λm−−→ Pm+1

executing that occurence.

Definition 7.3. A transition sequence sis terminated iff it has length n and
Pn 6−→. It is maximal iff it is finite and terminated or infinite and fair.

Definition 7.4. A maximal transition sequence (Pi, λi) is lock-free iff whenever
there is a top-level occurence of a prefix M in Pi, then there exists some j ≥
i s.t. Pj

λj−→ Pj+1 executes that occurrence. A process is lock-free iff all its
transition sequences are.

The central liveness result hinges on the following proposition, which links
the typing judgment to the semantics of a process.

Definition 7.5. For a process transition label λ, define sel(λ) by sel(k!v) =
sel(k?v) = sel(τ) = ∅ and sel(k&l) = sel(k ⊕ l) = sel(τ : l) = l. Given a trace α
we lift sel(−) pointwise, that is, sel(α) = {sel(λ) | α = φλα′}.
Proposition 7.6. Suppose · ;L ` P . ∆ with P lock-free, and let s = (Pi, αi)i
be a maximal transition sequence of P . Then L ⊆ sel(α).

Example 7.7. We saw in Example 6.4 that the process D of Example 2.1 is
typable ·; {SI} ` D . · · · . By Proposition 7.6 above, noting that D is clearly
lock-free, every maximal transition sequence of D must eventually select SI.

Theorem 7.8. Suppose · ;L ` P . ∆ with P lock-free. Then P is live for · , ∆.

Example 7.9. We saw in Example 6.4 that P (D) is typable as ·; ∅ ` P (D0) . k :
TP , o

+ : TD, o
− : TD and so, according to the above Theorem, it is live, and

so must will always uphold the liveness guarantee in TP : if CO is selected, then
eventually also SI is selected. Or in the intuition of the example: If the buyer
performs “Checkout”, he is guaranteed to subsequently receive an invoice.

8 Conclusion and Future Work

We introduced a conservative generalization of binary session types to session
types with responses, which allows to specify response liveness properties as part
of the types. We showed that session types with responses are strictly more ex-
pressive (wrt. the classes of behaviours they can express) than standard binary
session types. We provided a typing system for a process calculus of processes
similar to a non-trivial subset of collaborative BPMN processes with possibly in-
finite loops and bounded iteration and proved that lock-free, well typed processes
are live. We have identified several interesting directions for future work: Firstly,
the present techniques could be lifted to multi-party session types, which guaran-
tees lock-freedom outright. Second, investigate more general liveness properties.
Third, add delegation (channel passing). It seems trivial to allow delegation of
sessions, if they have no pending (unfulfilled) responses, but not otherwise. Fi-
nally, and more speculatively, we plan to investigate relations to “fair subtyping”
studied in [17].

14

199

References

1. Bettini, L., M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini and
N. Yoshida, Global progress in dynamically interleaved multiparty sessions, in:
CONCUR, 2008, pp. 418–433.

2. Carbone, M. and S. Debois, A graphical approach to progress for structured com-
munication in web services, in: ICE, 2010, pp. 13–27.

3. Coppo, M., M. Dezani-Ciancaglini, L. Padovani and N. Yoshida, Inference of global
progress properties for dynamically interleaved multiparty sessions, in: COORDI-
NATION, 2013, pp. 45–59.

4. Debois, S., T. Hildebrandt, T. Slaats and N. Yoshida, Type checking liveness for
collaborative processes with bounded and unbounded recursion (full version).
URL http://www.itu.dk/~hilde/liveness-full.pdf

5. Deniélou, P.-M. and N. Yoshida, Multiparty session types meet communicating au-
tomata, in: ESOP, 2012, pp. 194–213.

6. Deniélou, P.-M. and N. Yoshida, Multiparty compatibility in communicating au-
tomata: Characterisation and synthesis of global session types, in: ICALP (2), 2013,
pp. 174–186.

7. Dezani-Ciancaglini, M., U. de’Liguoro and N. Yoshida, On progress for structured
communications, in: TGC, 2007, pp. 257–275.

8. Dezani-Ciancaglini, M., S. Drossopoulou, D. Mostrous and N. Yoshida, Objects and
session types, Inf. Comput. 207 (2009), pp. 595–641.

9. Fossati, L., K. Honda and N. Yoshida, Intensional and extensional characterisation
of global progress in the π-calculus, in: CONCUR, 2012, pp. 287–301.

10. Gay, S. J. and M. Hole, Subtyping for session types in the pi calculus, Acta Inf. 42
(2005), pp. 191–225.

11. Honda, K., A. Mukhamedov, G. Brown, T.-C. Chen and N. Yoshida, Scribbling
interactions with a formal foundation, in: ICDCIT, 2011, pp. 55–75.

12. Honda, K., V. Vasconcelos and M. Kubo, Language primitives and type discipline
for structured communication-based programming, in: ESOP, 1998, pp. 122–138.

13. Honda, K., N. Yoshida and M. Carbone, Multiparty asynchronous session types,
in: POPL, 2008, pp. 273–284.

14. Hu, R., N. Yoshida and K. Honda, Session-based distributed programming in Java,
in: J. Vitek, editor, ECOOP ’08, LNCS 5142, 2008 pp. 516–541.

15. Mostrous, D. and V. T. Vasconcelos, Session typing for a featherweight Erlang, in:
COORDINATION, 2011, pp. 95–109.

16. Object Management Group BPMN Technical Committee, Business Process Model
and Notation, v2.0, Webpage (2011), http://www.omg.org/spec/BPMN/2.0/PDF.

17. Padovani, L., Fair subtyping for open session types, in: ICALP (2), 2013, pp. 373–
384.

18. Vasconcelos, V., Fundamentals of session types, I&C 217 (2012), pp. 52–70.
19. Vieira, H. T. and V. T. Vasconcelos, Typing progress in communication-centred

systems, in: COORDINATION, 2013, pp. 236–250.
20. Yoshida, N. and V. T. Vasconcelos, Language primitives and type discipline for

structured communication-based programming revisited: Two systems for higher-
order session communication, ENTCS 171 (2007), pp. 73–93.

15

200

7 Safe Runtime Adaptation of Flexible Processes

201

Towards Trustworthy Adaptive Case Management with Dynamic Condition
Response Graphs

Raghava Rao Mukkamala
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

rao@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen and

Exformatics A/S
2100 Copenhagen, Denmark

tslaats@itu.dk

Abstract—We describe how the declarative Dynamic Condi-
tion Response (DCR) Graphs process model can be used for
trustworthy adaptive case management by leveraging the flexi-
ble execution, dynamic composition and adaptation supported
by DCR Graphs. The dynamically composed and adapted
graphs are verified for deadlock freedom and liveness in the
SPIN model checker by utilizing a mapping from DCR Graphs
to PROMELA code. We exemplify the approach by a small
workflow extracted from a field study at a danish hospital.

Keywords-Adaptive Case Management, Declarative Business
Processes, Verification

I. INTRODUCTION

It has been recognized early [2], [29], that supporting
dynamic (i.e. run-time) changes of process descriptions is
one of the key challenges in workflow management sys-
tems. The challenge has been receiving increasing interest
recently as a consequence of the demand for efficient IT
systems supporting so-called adaptive case management
(ACM) processes [14], [23], [24], [27], characterized by
being unpredictable and individual in nature and being
carried out by knowledge workers.

Healthcare services are typical sources of case man-
agement processes that exercise the challenges of evolu-
tionary changes and being unpredictable and individual in
nature. And the lack of support for dynamic adaptation
and composition of processes is indeed one of the limiting
factors for the usage in practice of the many standardized
treatment plans and clinical guidelines being defined around
the world [15], [16].

Changing a process description while process instances
are executing may cause side effects such as un-intentional
repetition or skipping of tasks and introduction of deadlocks
and livelocks. This situation is referred to as the dynamic
change bug. Elimination of the dynamic change bug calls
for the use of formal process models and development of
verification techniques that support dynamic changes and
analysis for deadlocks and livelocks. In particular, formal
declarative models [4], [12], [31] have been put forward
as offering more flexibility in execution than the traditional
approaches using explicit flow-graphs.

In the present paper, we propose an approach to specifica-
tion and execution of trustworthy adaptive case management
processes based on Dynamic Condition Response Graphs
(DCR Graphs) [4], [6]–[8], [19]. DCR Graphs is a formal,
declarative process modeling language developed in the
Trustworthy Pervasive Healthcare Services (TrustCare.dk)
research project as part of the first author’s PhD project [17],
and currently being embedded in the Exformatics case
management tools as part of the industrial PhD project
carried out by the last author. A brief overview of the
DCR Graphs Tools implemented in Exformatics is presented
in [26] and a graphical editor for DCR Graphs can be
downloaded from [25].

A DCR Graph specifies a process as a set of labelled
events related by five different relations specifying the
constraints on the execution of events. The label of an event
typically indicates the name of an atomic activity and by
whom/which role the activity can be executed, while the
constraints declare rules for the ordering of events.

As a running example, we will consider a simple health-
care process inspired by a previous field study at a danish
hospital [15]. A fragment of the process is shown as a DCR
Graph in Fig. 1 below.

Figure 1. Prescribe medicine process fragment

The graph consists of four events shown as boxes labelled
by the name of the activity (prescribe medicine, sign,
give medicine, and don’t trust) and the roles of whom
can perform the activities, in this example either (D)octor or
(N)urse. Intutivively, the process allows a doctor to prescribe
medicine (any number of times) and subsequently being
required to certify the prescription by a signature. The nurse

202

must then give the medicine (to a patient) or alternatively
indicate that the prescription is not trusted. In the latter case
the doctor is required to sign again (possibly after making
a new prescription).

The prescribe medicine event is related to the sign
event by a condition relation (→•), which declares that the
sign event can not happen before at least one prescribe
medicine event has happened. Similarly, the sign event is
related to the give medicine and don’t trust events, meaning
that the sign event must have happened before the give
medicine and don’t trust events can happen.

Dually, the prescribe medicine event is related to the
sign and give medicine events by a response relation
(•→). The response relation declares that if the prescribe
medicine event happens during an execution, it must even-
tually be followed (as a response) by a sign event and
a give medicine event for the execution to be accept-
ing (completed). But note, a single sign event and give
medicine event can fulfill the response requirement of
several preceeding prescribe medicine events. For instance,
an execution starting with two prescribe medicine events
and then a sign event is possible (because the condition for
the sign event is fullfilled) but not (yet) completed since
the give medicine event is a pending response. Now, if the
execution is continued with a give medicine event then it
is completed. It may still however continue, e.g. with a new
prescribe medicine event. In this case the execution is no
longer completed, since sign and give medicine are again
pending responses.

The give medicine and don’t trust events are related
to each other by the exclude relation (→%). The exclude
relation from give medicine to don’t trust declares that
the don’t trust event will be excluded from the process if
give medicine is executed. Similarly, the exclude relation
from don’t trust to give medicine declares that the give
medicine event will be excluded from the process if don’t
trust is executed. That is, the two events are mutually
exclusive. However, sign is related to give medicine and
don’t trust by an include relation (→+), which means that
whenever sign happens, the two events give medicine and
don’t trust are included again (if they were excluded).
Note that condition relations from an excluded event are
not considered, and if an excluded event is required to be
executed (as a response), this requirement is also ignored as
long as the event is excluded.

The intuition is that give medicine will be executed if the
nurse trusts the prescription and don’t trust if the nurse does
not trust the prescription. In the latter case, the sign event
is required to be executed again due to the response relation
from don’t trust to sign. In that case, the doctor will check
his prescription, and may make new prescriptions but must
sign again, whereafter the choice of giving the medicine or
not trusting is made possible again by the inclusion relation.

A key feature of DCR Graphs is that the operational

semantics indicated above can be formalized by representing
the state of a process by a marking of the graph. The
marking consists of three finite sets of events, (Ex,Re, In),
representing respectively the previously executed events,
the events that are required to be executed in the future
(as responses) or excluded, and the currently included
events. This information is sufficient to infer enabledness
of an event from the relations of the graph and to infer
if an execution is completed. If we again consider the
execution starting with two prescribe medicine events
and then a sign event, this execution leads to the marking
({prescribemedicine, sign}, {givemedicine},E), where
E = {prescribemedicine, sign, givemedicine, don′t trust} is
the set of all events in the graph. Continuing the execution
by the give medicine event then leads to the marking
({prescribemedicine, sign, givemedicine}, ∅,E\{don′t trust}).

In [17], [19] it is shown that the operational semantics
of DCR Graphs can be mapped to Büchi-automata [19].
This makes it possible to formally verify temporal properties
of the processes, and in particular deadlock freedom and
liveness, using standard tools as for instance the SPIN
verification tool [10], [11], [18].

A. DCR Graphs for ACM

The new contribution of the present paper is to describe
how DCR Graphs and formal verification of such can be
used for trustworthy, adaptive case management. Due to its
emergent nature, visibility and control of an ACM process
can only be achieved in the context of the execution of a
process instance [27]. Therefore, case/knowledge workers
continuously adapt the process activities to achieve their
(sub)goals successfully [20]. At the same time, due to
frequent adaptation, a process may end up in a situation,
where it is no longer possible to achieve the overall goal of
the process. We primarily use the term trustworthy to indi-
cate that the adapted processes represented as DCR Graphs
can be verified before execution is continued. Ideally, the
application of formal verification techniques will not only
enhance the trustworthiness of the processes, but also help
knowledge workers in making suitable adaptive changes.

We demonstrate below, that the declarative nature of
DCR Graphs makes it well suited for handling run-time
changes and thus the emergent nature of an ACM pro-
cess. Declarative models are usually considered harder to
perceive than imperative process models based on explicit
flow graphs. However, the simple representation of the
run-time state by a marking on the DCR Graph and the
verification step, help to perceive the meaning (and state) of
the process and to ensure that the process execution can still
be completed, i.e. the goal of the process can be met.

Fig. 2 below illustrates the normal iteration cycle through
three phases of a trustworthy execution of a DCR Graph.

The execution starts in the phase model & adapt, where
an ACM process is modelled either from scratch or by

203

Figure 2. Execution phases of a DCR Graph for ACM

selecting one or more DCR Graphs process fragments (e.g.
provided in repositories) which are composed and adapted.
In dynamic environments, process knowledge can be local
and fragmentary, confined to a certain situation or context.
Process Fragments [1] represent a notion of partial and
local knowledge, which can be integrated or composed
dynamically at design time or run-time. Adopting the notion
of process fragments, DCR Graphs can be used as process
fragments to represent a partial perspective of a complex
process, which can be combined through dynamic compo-
sition. Formally speaking, there is no difference between a
normal DCR Graph and a DCR Graph representing a pro-
cess fragment, except that the fragment DCR Graph might
represent a subgoal or partial functionality like reusable tem-
plates. Fig 3 shows two such fragments for our healthcare
example, to be explained in Sec. IV.

(a) prescribe medicine (b) order tests

Figure 3. DCR Graph fragments

In the next phase, verify, formal verification techniques
will be applied to the process. For instance, one could verify
that the process does not allow deadlocks, always allows
progress and to achieve the overall goal, i.e. completion by
(continued) execution or exclusion of all pending response
events.

After successful verification of the process, the execution
can proceed to the next phase, partial execution, where the
process can be executed further until it reaches a point where

further adaptation is required and the execution moves to
the model & adapt phase, starting a new iteration. However,
note that (in the spirit of ACM) it should also be possible
to go back to the modelling phase after verification, to skip
verification after the modelling phase, or go back to the
verify phase after the partial execution.

In this way, an ACM process represented as DCR Graphs
can be modelled, verified and executed iteratively, where
the emergence of new knowledge can be used by the case
workers to adapt the processes at run-time.

However, one may ask why the proposed approach can not
simply prevent adoptions that will lead to dead/livelocks. We
believe that the general approach allowing to compose/adapt
and have intermediate models containing potential deadlock-
s/livelocks would be valuable as it gives more flexibility
in the modeling and adaptation phase. It can be seen as
analogous to be able to write a program that does not type
check, and then correct the errors, as opposed to only be
able to add code parts that lead to a well-typed program.

B. Structure of paper

The rest of the paper is structured as follows. We discuss
related work in Sec. II whereas in Sec. III we further
elaborate the idea of using DCR Graphs for ACM by our
healthcare example. In Sec. IV we then formally define the
adaptation operations on DCR Graphs, after recalling the
formal definition of DCR Graphs and their execution. In
Sec. V we then formally define what it means for a DCR
Graph to be deadlocked and live, introducing new notions of
strongly deadlock free and live processes which guarantee
progress even if only events that are required as responses
are executed. This is in particular relevant if the execution
of the DCR Graphs is distributed on different peers (e.g.
according to the different roles) as considered in [7]. In
Sec. VI we then describe how to verify safety and liveness
properties on DCR Graphs (as defined in Sec. V) using
the SPIN model checking tool and based on the mapping
of DCR Graphs to Büchi-automata [19]. Finally, Sec. VII
concludes the paper.

II. RELATED WORK

The issue of dynamic change [2] in workflow systems
has been investigated thoroughly for Petri net and graph
based models. In [29] Van der Aalst described an approach
to find change regions in WorkFlow nets, which represent
the parts of a model that are effected by a change. He
also proved that a change can be safely applied to a part
outside the change region, simultaneously preserving the
soundness of a workflow instance. In [22] Reichert et al.
presented a framework for the support of adaptive changes
in the graph-based workflow model ADEPT. They developed
a complete and minimal set of change operations that will
allow for modifying an ADEPT workflow at run-time, while
still preserving its consistency and correctness.

204

The previous work often take as a correctness criteria
in previous approaches [2], [22], [29], that the state of the
instance after applying the change, could have been reached
from the initial state by replaying the past run. We find
that only allowing changes that are consistent with the past
history too strong for ACM. Instead we advocate recording
the change as part of the execution sequence.

Recent studies [24], [28] have indicated that BPMN-like
languages are not suitable for ACM. One reason is that the
processes are described as procedures. Procedures tend to
over-specify the processes, and also, the changes one can ap-
ply must be formulated as changes to the procedure. On the
other hand, declarative workflow models [4], [12], [23], [31],
including DCR Graphs, have been proposed as a alternative
to traditional workflow models to handle unpredictability
and emergent nature of ACM processes. Here process are
described by declaring the constraints and goals, which
usually under-specify the process and supports changes to
the constraints and goals. Declare [30] is a constraint-
based declarative workflow model formalized using linear
time logic (LTL). Similar to DCR Graphs, Declare also
supports adaptive changes such as add/remove constraints
and activities, however, since they can not be interpreted in
an immediate state, it is required that the trace of the past
execution satisfies the LTL formulae corresponding to the
change. That is, as discussed above, only changes that are
consistent with the run so far are allowed.

A declarative approach using Guard-Stage-Milestone [12]
based on ECA-like rules for specification of life cycles
on Business artifacts was proposed in the recent years. To
the best of our knowledge, no work on adaptive changes
for the GSM model has been published yet. However, it
has been advocated as a model for ACM due to its rich
data-centric approach and declarative nature and forms the
basis for the recent Case Management Model And Notation
(CMMN) [21] proposed by OMG, which includes support
for dynamic changes. Also the IBM case manger [3] in-
cludes some support for dynamic changes. Furthermore,
a modeling approach based on Declarative Configurable
Process Specifications [24] is being developed for automated
support of case management processes. Using declarative
modeling, their model supports process adaptability by using
configurable data objects and context based configuration
rules, but does not support process run-time adaptation when
compared to DCR Graphs.

The use of SPIN for verification of business processes was
studied earlier. In [13], authors used SPIN to verify business
processes by translating an imperative process specification
into state machine description in Promela. In this paper, we
translated a declarative process specification in DCR Graphs
to Promela by mapping it to Buc̈hi-automata [19].

Finally, we have recently proposed a join operator [8]
for modular composition and refinement of DCR Graphs
and to use it as a formal basis for modular implementation

of context sensitive and aspect oriented processes. The
compose and change operations can be derived from the
join operator, however, in this paper we have chosen to
define the adaptation operations directly to make them more
straightforward and easier to understand.

III. DCR GRAPHS FOR ACM BY EXAMPLE

In this section, we will discuss the adaptation opera-
tions for DCR Graphs and exemplify the adaptiveness of
DCR Graphs for ACM using the healthcare example.

As adaptation operations we consider the operations of
adding/removing an event, adding/removing a constraint
between two events, changing an event, relabelling an event,
adapting the marking and forcing execution of a non-enabled
event. The operations of adding events (to the graph or
the marking) and constraints are facilitated by a general
compositition operation, which simply takes the union of
two graphs as described formally in the next section.

As an example of an ACM process, consider a healthcare
workflow where a doctor during the initial consultation
realizes that some medical tests are needed before giving
the medicine to a patient. In the initial modelling phase, the
doctor thus selects in a repository the prescribe medicine
DCR Graph fragment in Fig. 3(a) and the order tests process
fragment in Fig. 3(b) and compose them. The doctor then
proceeds to execute the order test event resulting in the
DCR Graph instance shown in Fig. 4.

Figure 4. Composed prescribe medicine example with live lock.

The tick mark in the green circle on order tests represents
that order tests has been executed, i.e. it is in the executed
events set of the marking. Additionally, due to the response
relation from order tests to the examine tests and sign
events, they have a pending response, i.e. they are in the
response events set of the marking. This is indicated by
red circle with an exclamation mark. Now, the arrow from
examine tests to prescribe medicine having a diamond at
its head is the last constraint that we have not yet explained,
called the milestone constraint. The milestone constraint
disables the target event (in this case prescribe medicine)
if the source event has a pending response and is included,
as it is the case in Fig. 4. The intuition is that the source
event must be in a completed state (the milestone reached)

205

before the target event can be executed. Disabled events are
indicated with red stop signs. Note that the sign, examine
tests and give medicine events are also not enabled because
of the condition constraints from prescribe medicine, do
tests and sign respectively.

Looking carefully at the DCR Graph in Fig. 4, one may
notice that, in order to sign for ordering the tests, the
prescribe medicine event must have been done first, which
requires the examine tests has been done first (to remove
the pending response), which then requires that do tests
event has to be done first, because of the condition relation
from do tests to examine tests. Alas, the do tests event is
blocked by the sign step. In other words, we have a cycle of
events blocking each other, in which two of the events are
actually required to be executed to complete the workflow.
The DCR Graph is not deadlocked, since the order tests
event can be repeatedly executed, but this will not change
the marking and thus not allow the doctor to make further
progress. Hence, the DCR Graph is live locked as explained
in Def. 9, as it will never be able to execute or exclude the
pending response events (sign and examine tests).

The process instance can be adapted in many ways to
remove the live-lock. One way to solve the problem is to
force execution of the disabled sign event. However, in
fact, the live lock happens because of a modeling error.
The doctor should have two separate sign events, one for
prescribe medicine and one for order tests. This can again
be achieved in many ways. A simple way is to rename
the sign events to fresh event names before composing the
graphs, which would result in the DCR Graphs in 5 (again
after the execution of order tests). Verification of this graph
shows that it is deadlock and livelock free.

Figure 5. Adapted prescribe medicine example

IV. ADAPTIVE DCR GRAPHS FORMALLY

In this section we first recall from [17] the formal defi-
nitions of DCR Graphs and then give the formal definitions
of the new adaptation operations. We employ the following
notation: We assume infinite sets E and L for events and
labels respectively. For a set E we write P(E) for the
power set of E (i.e. set of all subsets of E). For a binary

relation →⊆ E × E and a subset ξ ⊆ E we write → ξ
and ξ → for the set {e ∈ E | (∃e′ ∈ ξ | e → e′)} and
the set {e ∈ E | (∃e′ ∈ ξ | e′ → e)} respectively, and
abuse notation writing → e and e→ for →{e} and {e}→
respectively when e ∈ E.

A. Basic Definitions

Formally, a DCR Graph is defined as follows.
Definition 1: A Dynamic Condition Response Graph

(DCR Graph) G is a tuple (E,M,→•, •→,→�,→+,→%
, L, l), where

(i) E ⊂ E is a finite set of events,
(ii) M ∈ P(E)× P(E)× P(E) is the marking,

(iii) →•, •→,→�,→+,→%⊆ E × E is the condition, re-
sponse, milestone, include and exclude relation respec-
tively.

(iv) L ⊂ L is the finite set of labels and l : E→ P(L) is a
labeling function mapping events to sets of labels.

As explained in the introduction, the marking (ii) represents
the state of the DCR Graph and the five binary relations
over the events (iii) define the constraints on the events
and dynamic inclusion and exclusion. Finally, each event
is mapped to a set of labels (iv). In our running example
simply assign a singleton set containing a pair consisting of
the name of the activity and the role able to perform the
activity.

In Def. 2 we formally define when an event e of a
DCR Graph is enabled for a marking M = (Ex,Re, In),
written M `G e. To be enabled, the event e must be included,
i.e. e ∈ In, all the included events that are conditions for it
must be in the set of executed events, i.e. (In∩ →•e) ⊆ Ex,
and none of the included events that are milestones for
it can be in the set of scheduled response events, i.e.
(In∩ →�e) ⊆ E\Re.

We then further define the new marking M′ =
(Ex′,Re′, In′), resulting from executing an event e in the
marking M. Firstly, the event e is added to the set of
executed events, i.e. Ex′ = (Ex ∪ {e}). Secondly, the event
e is removed from the set of scheduled responses and all
events that are a response to the event e are added, i.e.
Re′ = ((Re\{e})∪e•→). Note that if an event is a response
to itself, it will be removed and immediately added again,
and thus remain in the set of scheduled responses after its
execution. Finally, all the events that are excluded by e are
removed from the included events set, and all the events that
are included by e are added, i.e. In′ = (In \ e→%)∪ e→+.

Definition 2: For a Dynamic Condition Response Graph
G = (E,M,→•, •→,→�,→+,→%, L, l), and M =
(Ex,Re, In), we define that an event e ∈ E is enabled, written
M `G e, if e ∈ In∧ (In∩ →•e) ⊆ Ex∧ (In∩ →�e) ⊆ E\Re.
The result of executing the event e in the marking M of
a DCR Graph G is the marking (Ex,Re, In) ⊕G e =def(
Ex ∪ {e}, (Re \ {e}) ∪ e•→, (In \ e→%) ∪ e→+

)
.

206

Having defined when events are enabled for execution
and the effect of executing an event we define in Def. 3 the
notion of finite and infinite executions and when they are
accepting (or completed). Intuitively, an execution is accept-
ing if any required, included response in any intermediate
marking is eventually executed or excluded in a subsequent
marking during the execution.

We further define the subset of executions in which only
events that are required as responses are executed, which
we refer to as must executions. The reason for considering
must executions is that if a process is deadlock and livelock
free even when restricted to must executions, then we are
guaranteed progress, even if the participants in any step only
perform activities that are required as responses.

Definition 3: For a Dynamic Condition Response Graph
G = (E,M,→•, •→,→�,→+,→%, L, l) we define an ex-
ecution of G to be a (finite or infinite) sequence of pairs
of events and labels: ē = (e0, a0), (e1, a0), . . . such that
ai ∈ l(ei) and Mi `G ei for M0 = M, Mi+1 = Mi ⊕G ei.

Assuming Mi = (Exi, Ini,Rei) we say the execution ē is
a must execution if for all (ei, ai) ∈ ē, ei ∈ Rei and an
accepting (or completed) execution if for all (ei, ai) ∈ ē,
∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ ej →% e. Let exeM(G),
mexeM(G), accM(G)and maccM(G) denote respectively the
set of all executions, all must executions, all accepting
executions, and all accepting must executions of G starting
in marking M.

B. Adaptation Operations on DCR Graphs

In order to support adaptive changes for case manage-
ment, we define three operations on DCR Graphs: compose,
change and discard.

The first operation compose is a binary composition of
two DCR Graphs, where we glue together (take the union
of) the events, constraints, labels and markings of both the
DCR Graphs as formally defined in Def. 4. Note that the
compose operation also glues the markings of DCR Graphs,
therefore it really defines composition of process instances.

Definition 4: Let Gi = (Ei,Mi,→•i, •→i,→�i,→+i

,→%i, Li, li), Mi = (Exi,Rei, Ini) for i ∈ {1, 2}. Then
G1 ⊕ G2 = (E,M,→•, •→,→�,→+,→%, L, l), where

(i) E = (E1 ∪ E2)
(ii) M = (Ex1 ∪ Ex2,Re1 ∪ Re2, In1 ∪ In2),

(iii) →=→1 ∪ →2 for each→∈ {→•, •→,→�,→+,→%}

(iv) l(e) = l1(e) ∪ l2(e) and L = L1 ∪ L2
In Def. 5 we define event substitution operation on DCR

Graphs, which is used for renaming of events. We use the
shorthand e′′[e 7→ e′] to refer to the event e′ if e′′ = e and
e′′ otherwise. First, the new event is substituted in the set
of events (i) and labeling function is updated accordingly
(ii). Further, all the constraints sets (iii) and the sets in
the marking (iv) are updated accordingly for the event
substitution. Note that there are no restrictions on the new

name for the event, therefore if the new name already
exists in the DCR Graph, then substitution operation allows
merging of events.

Definition 5: Let G = (E,M,→•, •→,→�,→+,→%
, L, l), M = (Ex,Re, In) and e ∈ E, e′ ∈ E. The event sub-
stitution operation is defined as G[e 7→ e′] = (E′,M′,→•′
, •→′,→�′,→+′,→%

′
, L, l′) where

(i) E′ = E\{e} ∪ {e′}
(ii) (e′′[e 7→ e′], a) ∈ l′ if (e′′, a) ∈ l

(iii) ∀ →∈ {→•, •→,→�,→+,→%}.e1[e 7→ e′] →′

e2[e 7→ e′] if e1 → e2
(iv) M′ = (Ex′,Re′, In′) and ∀R ∈ {Ex,Re, In}.e′′[e 7→

e′] ∈ R′ if e′′ ∈ R
The change operation can be used for renaming labels

as formally defined in Def. 6. First, an event substitution
operation is applied (i) and then new labels are added to the
set of labels. Finally, the labeling function is updated (ii) for
the new labels.

Definition 6: Let G = (E,M,→•, •→,→�,→+,→%
, L, l), M = (Ex,Re, In) and e ∈ E, e′ ∈ E, A ⊂ L. The
change event operation is defined as G[e 7→ (e′, A)] =
(E′,M′,→•′, •→′,→�′,→+′,→%

′
, L ∪A, l′′) where

(i) G[e 7→ e′] = (E′,M′,→•′, •→′,→�′,→+′,→%
′
, L, l′)

(ii) l′′(e′′) =

{
A if e′′ = e
l′(e′′) otherwise

In the Def. 7, we introduce three overloaded versions of
the discard operation to delete: an event from a DCR Graph
(a), a constraint from a DCR Graph (b) and an event from
a marking (c). Discarding an event from a DCR Graph
will delete it from the set of events along with its label
mapping from the labeling function (ai), additionally, it will
also be removed from all the sets in the marking (aii) and
finally all the constraints from and to the event will also be
deleted from the respective constraints sets (aiii). Similarly,
discarding a constraint from a DCR Graph will delete it
from the respective constraint set (b), where as discarding an
event from a set in the marking of a DCR Graph is simply
removing that event from the set (c).

Definition 7: Let G = (E,M,→•, •→,→�,→+,→%
, L, l) with M = (Ex,Re, In). We define three discard
operations by

(a) G	e = (E′,M′,→•′, •→′,→�′,→+′,→%
′
, L, l′) where

(i) E′ = E \ {e}, l′ = l \ {(e, l(e))}
(ii) ∀R ∈ {Ex,Re, In}.R′ = R \ {e}

(iii) ∀ →∈ {→•, •→,→�,→+,→%}.
→′=→ \{(e, e′), (e′, e), (e, e) | e′ ∈ E}

(b) G 	 (e →c e′) = (E,M,→•′, •→′,→�′,→+′,→%
′

, L, l′) where → ∈ {→•, •→,→�,→+,→%}, and

→′=
{
→ \{(e, e′)} if → c =→
→ otherwise

207

(c) G	(e,R) = (E,M′,→•, •→,→�,→+,→%, L, l) where
M′ is the obtained by removing the event from a set
R ∈ {Ex,Re, In} in M.

V. SAFETY AND LIVENESS

A deadlock state of a DCR Graph is a marking where
there is an included, required response but no enabled events.
Thus, a DCR Graph is deadlock free if and only if for any
reachable marking, there is either an enabled event or no
included required responses. It is strongly deadlock free
if and only if for any reachable marking there is either
an enabled event which is also a required response or no
included required responses. As exemplified below, strongly
deadlock freedom guarantees progress even if the execution
of the DCR Graphs is distributed (e.g. according to the
different roles) and every peer only executes events that are
required as responses.

Definition 8: LetMM→∗(G) denotes the set of all reach-
able markings from M. For a dynamic condition response
graph G = (E,M,→•, •→,→�,→+,→%, L, l) we de-
fine that G is deadlock free, if ∀M′ = (Ex′, In′,Re′) ∈
MM→∗ .(∃e ∈ E.M′ `G e ∨ (In′ ∩ Re′ = ∅)). We say
that G′ is strongly deadlock free, if ∀M′ = (Ex′, In′,Re′) ∈
MM→∗ .(∃e ∈ Re′.M′ `G e ∨ (In′ ∩ Re′ = ∅)).

If G is the DCR Graph in Fig. 1, then G is both
deadlock free and also strongly deadlock free. However,
the adapted graph G 	 (prescribe medicine •→ sign) in
which the response relation from prescribe medicine to
sign is discarded will only be deadlock free, but not strongly
deadlock free. If the doctor starts by prescribing medicine,
then there will be a pending response on give medicine (but
not on sign), therefore there will be no enabled event which
also is a pending response. The workflow is not deadlocked
since the sign activity may be executed, even though it
is not required as a response. The workflow is not in an
accepting state either, since there is a required response for
give medicine. However, if every participant only does what
is required, i.e. scheduled as a response, the workflow will
never progress to a completed state. This may in particular
be a problem if the execution of the workflow is distributed,
e.g. according to the roles, as supported by the algorithm
given in [7]. If the doctor only sees activities assigned to the
doctor role, she may never sign after doing a prescription
if it is not required as response. However, the nurse will be
required to perform the give medicine activity, but it is not
enabled since the sign must have been done first.

Note that deadlock freedom only guarantees that the
process can make some progress, but not that it can proceed
a long an accepting (completed) execution. A DCR Graph is
defined to be live if and only if, in every reachable marking,
it is always possible to continue along an accepting run (i.e.
eventually execute or exclude any of the pending responses).
We defined that it is strongly live if and only if, from any

reachable marking there exists an accepting must execution.

Definition 9: For a dynamic condition response graph
G = (E,M,→•, •→,→�,→+,→%, L, l) we define that the
DCR Graph is live, if ∀M′ ∈ MM→∗ .accM′(G) 6= ∅, and
strongly live, if ∀M′ ∈MM→∗ .maccM′(G) 6= ∅,

The give medicine example G in Fig. 1 is again both live
and strongly live, and G	 (prescribe medicine •→ sign)
will be live, but not strongly live.

VI. VERIFICATION OF DCR GRAPHS

This sections describes how the safety and liveness prop-
erties on DCR Graphs can be verified by using the Spin [10]
model checking tool. Spin supports verification of properties
for asynchronous process models and distributed systems,
specified in the language called PROMELA.

Figure 6. Verification of DCR Graphs using Spin tool

Fig. 6 shows the overall methodology of the verification of
DCR Graphs using Spin. The DCR verification tool accepts
a DCR Graph specification as an XML file and generates the
necessary PROMELA code, compiles it and verifies it using
Spin. The DCR Graph verification tool is available through
a web interface [18].

The properties to be verified can be expressed as a Linear
Temporal Logic (LTL) formula in the tool. The Spin LTL
compiler generates a finite automaton for the negation of
the formula, referred to as a never claim. Similarly, a finite
automaton is generated for the DCR Graph model specified
in PROMELA code. Finally, the Spin verifier searches for
an acceptance cycle in the synchronous product of the two
automata. In case the verifier finds an acceptance cycle,
it reports an error by providing a trace for the property
violation.

A. DCR Graphs to PROMELA

In the encoding of a DCR Graph to PROMELA, we
employ the mapping from DCR Graphs to Büchi automata
from [9], [19], as liveness properties are to be verified
over infinite runs. The event names of a DCR Graph are
mapped to integers, as PROMELA does not have support
for strings. The constraint sets and marking of a DCR Graph

208

are encoded as arrays, as PROMELA does not support sets.
Furthermore, the language only supports fixed size arrays,
therefore we have defined an event set of a DCR Graph as a
bit array, where the index of an array represents the integer
code of an event and the value (0 or 1) at that index defines
whether the event is part of the set or not. The marking (M)
of a DCR Graph is encoded as three bit arrays.

The PROMELA language supports one-dimensional ar-
rays only. Therefore the constraints sets of a DCR Graph are
defined by using typedef for two-dimensional arrays where
the indices of the array are the integer codes of events and
the values (0 or 1) represents whether the constraint exists
from the first to the second event as shown in Fig. 7.

The assignment included[2] = 1; defines that the event gm
(with integer code = 2) is part of the included set. Since all
data types of PROMELA are initialized to 0 by default, all
the events which are not explicitly mentioned in the initial
marking or specification are not included.

PROMELA does not have procedure/function construct to
structure the code, therefore the inline construct was used
to group a sequence of statements related to one logical
function as shown in Fig. 7.

Figure 7. Specification of give medicine example

The main logic for verification of safety and liveness
properties is shown in Fig. 8. The main process function
(proctype dcrs) contains one do loop in which code from
different inline blocks will be executed.

The model specification() inline block contains the spec-
ification of a DCR Graph as described previously and
the clear enabled events block clears the list of events
in the enabled set. The next inline block is Com-
pute enabled events, which loops through the events in the
included set and verifies whether all its included condition
events have been executed. Similarly, all included milestone
events of an event are also checked to make sure that none
of them are part of the pending response set. An event
satisfying these checks will be added to the enabled events
set.

The next inline block, nondeterministic execution(), con-
tains code for executing one of the events from the enabled
set. The tool generates options for an if block with a guard

matching to status bit of an event in the enabled set. During
verification, Spin will evaluate all the guards and choose one
of the enabled options non-deterministically, by assigning it
to the variable random event executed.

Figure 8. PROMELA code for main process

B. Deadlock and Liveness

In nondeterministic execution(), if none of the guards are
evaluated to true, then the else block will be executed.
The code in the else blocks declares a deadlock if there
are any included pending responses. In the absence of
included pending responses, the program jumps to end state
to terminate the program.

In the case of enabled events in every marking, the else
block will never get executed and thereby the do loop will
continue forever without breaking. Spin detects such kind
of cycles and terminates the program after inspecting all the
states of the automaton.

Liveness properties of a DCR Graph can be verified by
specifying a never claim in LTL. In the tool, liveness
verification is done by specifying a correctness claim as
�♦ accepting state visited in LTL, from which Spin
generates a never claim based on the negation of the formula.

C. Strong Deadlock freedom and Liveness

The encoding of deadlock for must executions is very
much similar to that of the deadlock property introduced in
the previous paragraphs. In the nondeterministic execution,
an additional check for included and enabled pending re-
sponses will be made, before choosing any enabled event
for non-deterministic execution. In case of existence of a
pending response without any enabled pending response, a
violation of strongly deadlock freedom will be declared.

For verification of the strong liveness property on a
DCR Graph, we generate an encoding for every possible
reachable marking of the DCR Graph. In addition a check

209

will be made in the non-deterministic execution of events,
to make sure that the enabled events are also pending
responses.

D. Evaluation of Spin Verification
Table. I shows statistics for the Spin verification of the

healthcare workflow from the previous sections. The second
and third columns represent the number of events and
constraints in the DCR Graph. The number of reachable
markings in the DCR Graph is shown in column 4. The last
three columns display the statistics from Spin verification:
the number of Spin program states, time taken in seconds
and memory usage in megabytes respectively.

DCR Graph Spin statistics

Model E → states program
states

time
sec.

memory
MB.

prescribe
medicine 3 4 13 14,741 0.04 613.04

order tests 5 7 72 231,731 0.60 759.70
prescribe
+ order 6 11 116 602,289 1.67 775.20

adapted
prescribe
+ order

7 11 460 3,267,596 9.37 880.70

create
case [5] 17 28 1386 15,614,513 63.1 1432.5

Table I
SPIN VERIFICATION STATISTICS

Even though Spin verification on DCR Graphs is quite
useful, we have noticed certain drawbacks. First of all, the
number of Spin program states grows exponentially with
the number of events in a DCR Graph. For example, the
adapted prescribe medicine example from Fig. 5 contains
7 events and 11 constraints. But as shown in Table. I, the
Spin program states are more than three million, even though
there are only 460 unique reachable markings in the büchi
automaton for the DCR Graph. The automata construction is
inherently exponential, however, a further blow-up of Spin
program states is caused by the lack of good data structures
in PROMELA for encoding sets and other complex types.
This means that the event sets of a DCR Graphs have to
be encoded as fixed size arrays and these arrays have to
be iterated many times to calculate the updated markings.
Moreover, every value change of a variable (e.g. loop index)
is considered as unique program state in Spin. Additionally,
the increase of Spin memory usage (last column) is also an
alarming issue, which could be problematic in verification
of larger models.

In addition to the above limitations, the output generated
by Spin is also not user friendly. Especially, it is difficult for
modellers to figure out the counter example from the Spin
error trails. Therefore, we strongly believe that by perform-
ing the verification directly on the reachable markings of a
DCR Graph, it is possible to verify much larger models and
provide intuitive validation results.

VII. CONCLUSION

We have presented an approach to adaptive case manage-
ment based on the recently introduced declarative process
model Dynamic Condition Response (DCR) Graphs. Our
work leverages three key features of DCR Graphs: 1) Its
declarative nature with implicit definition of states allow for
simple definitions of process composition and change, 2) its
simple operational semantics based on markings of the graph
allowed us to extend the definitions of process composition
and change to running instances, and 3) the mapping of
DCR Graphs to the SPIN model checking tool allowed us
to formally verify deadlock freedom and liveness for the
dynamically changed adapted models.

The definition of deadlocks for DCR Graphs is new,
and exploited that the markings of DCR Graphs allow to
distinguish between which events may happen now (the
enabled events), and which events must eventually happen
(the required future responses). This allowed us to define
a deadlock as a state where some event must eventually
happen, but no events may happen now. Moreover, we in-
troduced a new notion of strongly deadlock freedom, which
intuitively means that even in a situation where every actor
only perform required actions there will be no deadlocks. We
also introduced the notion of liveness and strong liveness for
DCR Graphs

We found that the PROMELA language and its ability to
verify both safety and liveness properties made SPIN easy
to use as back-end verification tool for DCR Graphs and
benchmarked the verification on a small set of examples.
However, the benchmarks also show that the resulting SPIN
models reach a quite large number of states for even small
DCR Graphs, which indicate that there may be an advantage
to implement the verification algorithms directly for DCR
Graphs. This could potentially explore the partial order
information of DCR Graphs and avoid constructing the
interleaved transition system model.

In future work we plan to investigate a native implemen-
tation of model checking for DCR Graphs. We also plan to
extend the approach to ACM presented in the present paper
to DCR Graphs extended with data and nested sub graphs
as defined in [17] and relate and compare our work to the
GSM-approach [12].

REFERENCES

[1] Hanna Eberle, Tobias Unger, and Frank Leymann. Process
fragments. In OTM ’09, pages 398–405. Springer-Verlag,
2009. 3

[2] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg.
Dynamic change within workflow systems. In Proceedings
of conference on Organizational computing systems, COCS
’95, pages 10–21, New York, NY, USA, 1995. ACM. 1, 3, 4

[3] Wei-Dong Zhu et. al. Advanced Case Management with IBM
Case Manager. IBM Redbooks, 2013. http://www.redbooks.
ibm.com/redbooks/pdfs/sg247929.pdf. 4

210

[4] Thomas Hildebrandt and Raghava Rao Mukkamala. Declar-
ative event-based workflow as distributed dynamic condition
response graphs. In PLACES, volume 69 of EPTCS, pages
59–73, 2011. 1, 4

[5] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Designing a cross-organizational case management
system using dynamic condition response graphs. In Pro-
ceedings of IEEE International EDOC Conference, 2011. 9

[6] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Nested dynamic condition response graphs. In Pro-
ceedings of Fundamentals of Software Engineering (FSEN),
April 2011. 1

[7] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs
Slaats. Safe distribution of declarative processes. In 9th In-
ternational Conference on Software Engineering and Formal
Methods (SEFM) 2011, 2011. 1, 3, 7

[8] Thomas Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats,
and Francesco Zanitti. Modular context-sensitive and aspect-
oriented processes with dynamic condition response graphs.
In Foundations of Aspect-Oriented Languages 2013, 2013. 1,
4

[9] Thomas T. Hildebrandt and Raghava Rao Mukkamala.
Declarative event-based workflow as distributed dynamic con-
dition response graphs. In PLACES, pages 59–73, 2010. 7

[10] Gerard J. Holzmann. The model checker spin. IEEE Trans.
Softw. Eng., 23:279–295, May 1997. 2, 7

[11] Gerard J. Holzmann. SPIN Model Checker, The: Primer and
Reference Manual. Addison-Wesley Professional, 2004. 2

[12] Richard Hull. Formal study of business entities with life-
cycles: Use cases, abstract models, and results. In Tevfik
Bravetti, Mario; Bultan, editor, 7th International Workshop on
Web Services and Formal Methods, volume 6551 of Lecture
Notes in Computer Science, 2010. 1, 4, 9

[13] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Spring-
intveld. Verifying business processes using spin. In Proceed-
ings of the 4th International SPIN Workshop, pages 21–36,
1998. 4

[14] Jana Koehler, Joerg Hofstetter, and Roland Woodtly. Capabil-
ities and levels of maturity in it-based case management. In
Business Process Mangement (BPM), LNCS. Springer Verlag,
2012. 1

[15] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao
Mukkamala. From paper based clinical practice guidelines
to declarative workflow management. In Process-oriented
information systems in healthcare (ProHealth 08), pages 36–
43. BPM 2008 Workshops, 2008. 1

[16] K.M. Lyng. Clinical guidelines in everyday praxis, implica-
tions for computerization. Journal of Systems and Information
Technology, 2009. 1

[17] Raghava Rao Mukkamala. A Formal Model For Declarative
Workflows: Dynamic Condition Response Graphs. PhD thesis,
IT University of Copenhagen, June 2012. http://www.itu.dk/
people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf. 1, 2,
5, 9

[18] Raghava Rao Mukkamala. Formal verification of dcr graphs
using spin. http://trustcare.itu.dk/dcrgraphs-verification/
verificationWebUI.aspx, 2012. 2, 7

[19] Raghava Rao Mukkamala and Thomas Hildebrandt. From
dynamic condition response structures to büchi automata.
In Proceedings of 4th IEEE International Symposium on
Theoretical Aspects of Software Engineering (TASE 2010),
August 2010. 1, 2, 3, 4, 7

[20] Nicolas Mundbrod, Jens Kolb, and Manfred Reichert. To-
wards a system support of collaborative knowledge work. In
1st Int’l Workshop on Adaptive Case Management (ACM’12),
BPM’12 Workshops, LNBIP. Springer, September 2012. 2

[21] Object Management Group (OMG). Case management model
and notation (cmmn). http://www.omg.org/spec/CMMN/,
January 2013. 4

[22] Manfred Reichert and Peter Dadam. A framework for
dynamic changes in workflow management systems. In
Conference on Database and Expert Systems Applications,
1997. 3, 4

[23] I. Rychkova and S. Nurcan. Towards adaptability and con-
trol for knowledge-intensive business processes: Declarative
configurable process specifications. In Hawaii International
Conference on System Sciences, 2011. 1, 4

[24] Irina Rychkova. Towards automated support for case manage-
ment processes with declarative configurable specifications.
In BPM Workshops. Springer Berlin Heidelberg, 2013. 1, 4

[25] Tijs Slaats. Dcr graphs editor. http://www.itu.dk/research/
models/wiki/index.php/DCR Graphs Editor, February 2013.
1

[26] Tijs Slaats, Raghava Rao Mukkamala, Thomas Hildebrandt,
and Morten Marquard. Exformatics declarative case manage-
ment workflows as dcr graphs. In International Conference
on Business Process Management (BPM2013), 2013. 1

[27] Keith D. Swenson. Mastering the Unpredictable: How
Adaptive Case Management Will Revolutionize the Way That
Knowledge Workers Get Things Done. Meghan-Kiffer Press,
2010. 1, 2

[28] KeithD. Swenson. Position: Bpmn is incompatible with acm.
In Marcello Rosa and Pnina Soffer, editors, BPM Workshops,
volume 132 of Lecture Notes in Business Information Pro-
cessing, pages 55–58. Springer Berlin Heidelberg, 2013. 4

[29] W. M. P. Van Der Aalst. Exterminating the dynamic change
bug: A concrete approach to support workflow change. In-
formation Systems Frontiers, 3(3):297–317, September 2001.
1, 3, 4

[30] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg.
Declarative workflows: Balancing between flexibility and
support. Computer Science - R&D, 23(2):99–113, 2009. 4

[31] Wil M.P van der Aalst and Maja Pesic. A declarative
approach for flexible business processes management. In
Proceedings DPM 2006, LNCS. Springer Verlag, 2006. 1,
4

211

Modular Context-Sensitive and Aspect-Oriented Processes
with Dynamic Condition Response Graphs

Thomas Hildebrandt1 Raghava Rao Mukkamala1 Tijs Slaats1,2 Francesco Zanitti1
1 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

2 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark
{rao, hilde, tslaats, zanitti}@itu.dk

Abstract
We propose the recently introduced declarative and event-based
Dynamic Condition Response (DCR) Graphs process model as a
formal basis for modular implementation of context-sensitive and
aspect-oriented processes. The proposal is supported by a new join
operator allowing modular composition and refinement of DCR
Graphs. We give small illustrative examples of DCR Graphs defin-
ing context-sensitive processes where context-events dynamically
enable and disable the need for authentication and the join opera-
tor is used to add authentication to a process. Finally, we discuss
the use of formal verification to ensure that processes satisfy safety
and liveness properties, and define two liveness properties (dead-
lock freedom and liveness) that can be verified directly on the state
graph for DCR Graphs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory - Semantics, Syntax

General Terms Design, Languages, Reliability, Verification

1. Introduction
The terms context-sensitivity, context-awareness and context-dependency
are generally used to describe systems that adapt their behavior ac-
cording to changes in their context. Changes in the context are nat-
urally described as events, either provided by sensors, user inputs
or messages from other programs. This suggests the application of
event-driven programming to implement context-aware systems.
Event-driven systems are normally based on the publish-subscribe
pattern. That is, at any time the system subscribes to specific (pat-
terns of) events. Whenever a pattern has been detected, the system
reacts by performing a block of code, possibly publishing new
events.

In the present paper we propose to use the recently introduced
event-based declarative process model, Dynamic Condition Re-
sponse Graphs (DCR Graphs) [3, 6, 7, 13], as a formal basis for
modular and aspect-oriented construction of context-sensitive sys-
tems. The modular and aspect-oriented construction is facilitated
by a new, general join operator. We give small examples that il-
lustrate how the join operator can be used to merge processes, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’13, March 26, 2013, Fukuoka, Japan.
Copyright c© 2013 ACM 978-1-4503-1865-5/13/03. . . $15.00

discuss how merging is similar to adding advices and weaving of
aspects in AOP. The examples also show how the join operator can
be used to refine and more generally adapt behavior of a process,
i.e. by replacing an event or a complete sub process with a new
process.

It should be stressed that the proposal in the present paper is
very initial work. The DCR Graph model was developed with an-
other application area in mind as a foundation for flexible work-
flow languages as part of the second author’s PhD project [12].
It has then subsequently been continued in the (ongoing) PhD
projects of the third and fourth authors focussing on respectively
developing a formal foundation for the implementation of flexi-
ble, cross-organizational workflow systems [5] and developing a
process-oriented event-based programming language (PEPL) [4]
for context-sensitive services based on DCR Graphs.

In Fig. 1 below we give a concrete example of a context-
sensitive authorization process that we will use as running example.
The example is inspired by a concrete case study of an oncology
workflow process at a danish hospital [11].

The graph consists of five events (shown as boxes). Each event
corresponds to the (possibly repeated) execution of an activity,
which is indicated by a label assigned to the event and shown inside
the box. The activities in the example are thus action, authorize,
reauthorize, normal and emergency.

Figure 1. Context-sensitive authorization process as DCR Graph.

One way to think of a DCR Graph is as an event-driven reactive
program, where the code-blocks usually executed when an event
pattern is detected have been replaced by specifications of response
events, specifying activities that must eventually be executed (by
the process or the environment) whenever possible. That is, the
occurrence of an event schedules other events that must be executed
in the future in order for the process to progress. The response
events are specified in the graph by the response relation, indicated

212

graphically by the arrow with a bullet at the source and coloured
blue to make it more easily visible. In the example we thus have a
response relation from the reauthorize to the authorize event.

Moreover, every event can have a list of condition events and
milestone events. In order for an event to be enabled, i.e. its activity
to be executable, its condition events must have been executed at
least once in the past and its milestone events must not currently be
scheduled for execution. In the example, the authorize event is a
condition for the reauthorize event and a milestone for the action
event. The condition relation means in this example that reautho-
rize can not be executed if authorize has not been executed at least
once in the past. The milestone relation means that the action event
is blocked if an authorize event is scheduled for execution.

Finally, in addition to the specification of response, condition
and milestone events, a novel idea of DCR Graphs is the specifica-
tion of events that are excluded and included when an event hap-
pen. Exclusion and inclusion of events have a cross-cutting effect
on the system similar to turning aspects on and off in aspect ori-
ented programming: An excluded event is ignored as condition and
milestone of events and even if it is currently scheduled it will not
be required to be executed unless it is included again.

In the example, the event emergency excludes the authorize
and reauthorize events and the event normal includes the two
events. Note we use the nested DCR Graphs notation introduced
in [6], a relation to a box around events is simply a short hand for
having the relation to all the sub events. Now, if an emergency
event happens (e.g. representing that the condition of the patient
becomes critical), then the events authorize and reauthorize are
excluded. This means that even if authorize is scheduled for exe-
cution and a milestone for action, then it is not disabling the action
event. However, if the normal event happens, then authorize and
reauthorize are again included.

The five relations (condition, response, milestone, include and
exclude) completely describe the dynamic behavior of the process.
Moreover, the state of a running process can be described by a triple
of finite sets of events, (Ex,Re, In) similar to markings of Petri
Nets [15, 16]. The set Ex records the previously executed events,
the set Re describes the events scheduled for execution, and the set
In denotes the currently included events. The set Re thus contains
events schedules as responses to events that have been executed,
but we also allow to define that some events are scheduled in the
initial marking of the graph.

We graphically visualize a marking (Ex,Re, In) by adding a
(green) checkmark to every box for events in the Ex set, a (red)
exclamation mark to every box for events in the Re set, and making
the border dashed of boxes for events which are not in the In set.
A run of a DCR Graph is then a (possibly infinite) sequence of
markings, where the (n + 1)th marking is obtained by executing
one of the enabled events in the nth marking (adding it to the set
Ex) and updating the Re and In sets according to the relations.

An example run of the process in Fig. 1 is shown in Fig. 2. In the
initial marking (at the top), nothing has been executed, the events
action and authorize are scheduled, and every event is included.
This state is described by the marking (∅, {action, authorize},E),
where E is the set of all five events. In this state, only the events
authorize, normal and emergency are enabled. The event action
is blocked because it has authorize as milestone and authorize
is scheduled for execution. The event reauthorize is blocked be-
cause it has authorize as condition, and this event has never been
executed.

Now, if the emergency event is executed then the state changes
to the marking ({emergency}, {action, authorize},E\{authorize,
reauthorize}), shown at the graph in the middle of Fig. 2. That is,
emergency is recorded as executed, whereas action and autho-
rize are still scheduled, but authorize and reauthorize are ex-

cluded. This implies that authorize is not longer considered as
milestone for action, which therefore is enabled. The marking
shown at the bottom of Fig. 2 shows the state if the event action
is executed.

Figure 2. An example run of the authorization process.

Note that action can be executed several times. However, if
normal is now executed, i.e. if the patient condition is no longer
critical, then system moves to the marking shown in Fig. 3, where
authorize and reauthorize are included again.

Figure 3. If the normal event is executed, then authorize is again
required before action can be executed.

Since authorize is still scheduled in the marking in Fig. 3,
the event action is not enabled and can not be executed unless

213

authorize is executed or excluded because the event emergency
is executed again.

Runs may be finite or infinite. We say that a run is accepting
if whenever an event is scheduled, it eventually gets excluded or
executed. As shown in [12, 13], DCR Graphs can be mapped to
the standard Büchi-automata model, characterizing all runs as well
as fair runs as the accepting runs, and subsequently verified for
safety and liveness properties using the SPIN model checker [9].
However, it can also be represented directly (and more compactly)
as a so-called transition system with responses [2], which is simply
a labelled transition system where each state is annotated by a set
of labels, referred to as the response actions. The accepting runs
of a transition system with responses is then the finite or infinite
runs where whenever a label is included in the response set of an
intermediate state in the run, it will be excluded from the response
set in a subsequent state or executed.

It is worth stressing that there is no explicit sequencing of com-
mands in the DCR Graphs process model. This makes it possible to
weave, refine and adapt processes by the general join operator in-
troduced in Sec. 3. If a new event is joined as a milestone for some
existing events in a process, and such that this new event is sched-
uled whenever the existing events are scheduled as responses, then
the new event must be executed before the existing events become
enabled. Thus, the new event is similar to an advice in AOP, that
must be executed before the targetted set of existing events which
correspond to join points.

After briefly recalling the formal definition of DCR Graphs
in Sec. 2, we exemplify this aspect-oriented modularity in Sec. 3
where the DCR Graph shown in Fig. 1 is joined with a another
process describing a context-sensitive request/reply process shown
in Fig. 4

We end by briefly summarizing the techniques for formal ver-
ification and distribution of DCR Graphs developed so-far in the
above mentioned research projects and briefly touch on related
work.

2. DCR Graphs
In this section we give the formal definitions of DCR Graphs. We
employ the following notation.
Notation: For a setE we writeP(E) for the power set ofE (i.e. set
of all subsets of E). For a binary relation→⊆ E ×E and a subset
ξ ⊆ E we write → ξ and ξ→ for the set {e ∈ E | (∃e′ ∈ ξ |
e → e′)} and the set {e ∈ E | (∃e′ ∈ ξ | e′ → e)} respectively,
and abuse notation writing → e and e→ for → {e} and {e} →
respectively when e ∈ E.

Formally, a DCR Graph is defined as follows.

DEFINITION 1. A Dynamic Condition Response Graph (DCR Graph)
G is a tuple (E,M,→•, •→,→�,→+,→%, L, l), where

(i) E is a set of events,
(ii) M ∈ isthemarking,P(E)× P(E)× P(E),

(iii) →•, •→,→�,→+,→%⊆ E × E is the condition, response,
milestone, include and exclude relation respectively.

(iv) L is the set of labels and l : E → P(L) is a labeling function
mapping events to labels.

As explained in the introduction, the marking (ii) represents the
state of the DCR Graph and the five binary relations over the events
(iii) define the constraints on the events and dynamic inclusion and
exclusion. Finally, each event is mapped to a set of labels (iv).

In Def. 2 we formally define that an event e of a DCR Graph
with marking M = (Ex,Re, In) is enabled, written G ` e, when e
is included in the current marking, i.e. e ∈ In, and all the included
events that are conditions for it are in the set of executed events,
i.e. (In∩ →• e) ⊆ Ex, and none of the included events that are

milestones for it are in the set of scheduled response events, i.e.
(In∩ →�e) ⊆ E\Re. We then further define the change of the
marking when an enabled event e is executed: Firstly, the event
e is added to the set of executed events (Ex ∪ {e}). Secondly,
the event is removed from the set of scheduled responses and all
events that are a response to the event e are added to the set of
scheduled responses ((Re \ {e}) ∪ e •→). Note that if an event is
a response to itself, it will remain in the set of scheduled responses
after its execution. Finally, the included events set is updated to the
set (In\e→%)∪e→+, i.e. all the events that are excluded by e are
removed, and then all the events that are included by e are added.

DEFINITION 2. For a Dynamic Condition Response Graph G =
(E,M,→•, •→,→�,→+,→%, L, l), and M = (Ex,Re, In) we
define that an event e ∈ E is enabled, written G ` e, if e ∈
In ∧ (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re. We further
define the result of executing the event e as (Ex,Re, In)⊕G e =def(
Ex ∪ {e}, (Re \ {e}) ∪ e•→, (In \ e→%) ∪ e→+

)
.

Having defined when events are enabled for execution and the
effect of executing an event we define in Def. 3 the notion of finite
and infinite executions and when they are accepting. Intuitively, an
execution is accepting if any event which is scheduled and included
in any intermediate marking, is eventually executed or excluded.

DEFINITION 3. For a Dynamic Condition Response Graph G =
(E,M,→•, •→,→�,→+,→%, L, l) we define an execution of G
to be a (finite or infinite) sequence of tuples {(Mi, ei, ai,M

′
i)}i∈[k]

each consisting of a marking, an event, a label and another marking
(the result of executing the event) such that M = M0 and ∀i ∈
[k].ai ∈ l(ei)∧Gi ` ei∧M′i = Mi⊕G ei and ∀i ∈ [k−1].M′i =
Mi+1, where Gi = (E,Mi,→•, •→,→�,→+,→%, L, l). We say
the execution is accepting if ∀i ∈ [k].

(
∀e ∈ Ini ∩ Rei.∃j ≥

i.ej = e ∨ e 6∈ In′j)
)
, where Mi = (Exi, Ini,Rei) and M′j =

(Ex′j , In
′
j ,Re

′
j). Let exeM(G) and accM(G) denote respectively the

set of all executions and all accepting executions of G starting in
marking M. Finally we say that a marking M′ is reachable in G
(from the marking M) if there exists a finite execution ending in M′

and letMM→∗(G) denote the set of all reachable markings from
M.

A marking in a DCR Graph is accepting, if there are no included
scheduled events that required as responses. Thus, a deadlock state
can be defined as a state where there is an included scheduled
event, but without any enabled events. We say that a DCR Graph
is deadlock free if and only if there is no reachable deadlock state.

DEFINITION 4. For a dynamic condition response graph G =
(E,M,→•, •→,→�,→+,→%, L, l) we define that G is deadlock
free, if ∀M′ = (Ex′, In′,Re′) ∈ MM→∗ .(∃e ∈ E.G′ ` e ∨ (In′ ∩
Re′ = ∅)), for G′ = (E,M′,→•, •→,→�,→+,→%, L, l).

A DCR Graph is defined to be live if and only if, in every reach-
able marking, it is always possible to continue along an accepting
run.

DEFINITION 5. For a dynamic condition response graph G =
(E,M,→•, •→,→�,→+,→%, L, l) we define that the DCR Graph
is live, if ∀M′ ∈MM→∗ .accM′(G) 6= ∅.

3. Process Composition
In this section we define a new general join operation on DCR
Graphs which supports modular, aspect-oriented composition and
refinement of DCR Graphs. The join operation is defined relative
to two join relations C and B, which specify which events in the
left (right) graph are replaced by events in the right (left) graph.

214

In particular the join operation allows in special cases for basic
union of graphs and refinement of events, that is, substituting an
event by an entire new sub graph.

Before giving the formal definition, we will give an example of
how to join a process graph with another, where one event in the
former graph is refined by two events in the latter process.

The DCR Graph Grr in Fig. 4 below shows a process for a
context-sensitive request/reply pattern.

Figure 4. A context-sensitive request/reply process

If a request event happens, the reply is scheduled as response.
The reply event is excluded if it is executed, or a cancel event sub-
sequently happens. However, it will be included (and scheduled)
again if a new request event happens. As for the example given in
the introduction, the cancel event may be triggered by some change
of conditions in the context of the process.

We can now use the join operation to define a context-sensitive
request/reply process where the reply needs (context-sensitive) au-
thorization as defined in the DCR Graph Gauth given in Fig. 1 in
the introduction.

The intention is to merge the two process graphs, but such
that the reply event in Grr is replaced by the authorize
and action events in Gauth. The result is the graph shown in
Fig. 5 and formally defined as Grrauth = Grr CB Gauth for
C= {(reply, {authorize, action})} and B= ∅.

Figure 5. Joining context-sensitive request/reply and authorization
processes

Informally, the two event sets have been joined, replacing the
reply event in the graph Grr with the two events authorize
and action in the Gauth graph, while inheriting all relations
between the replaced event and other events in Grr . Recall, that
relations to the box around authorize and action is merely

a convinient way to represent relations to both authorize and
action.

To ease readability we may adopt a programming language
notation for the join operation, writing the above join as follows.

Listing 1. Using Join to Authorize a Reply
CSRequestReplyAuth =
j o i n CSRequestReply and C S A u t h o r i z a t i o n
where r e p l y < { a u t h o r i z e , a c t i o n }

Below we give the formal definition of the join operator.

DEFINITION 6. Assume DCR Graphs Gi = (Ei,Mi,→•i, •→i

,→�i,→+i,→%i, Li, li) where Mi = (Exi,Rei, Ini) for i ∈
{1, 2} and join relations C: E1 ⇀ P(E2) and B: E2 ⇀ P(E1).
The join of G1 and G2 relative to C and B is defined as G1 CB
G2 = (E,M,→•, •→,→�,→+,→%, L, l), where

(i) ∀e ∈ dom(C). C (e) ∩ dom(B) = ∅ and ∀e ∈ dom(B). B
(e) ∩ dom(C) = ∅

(ii) E = E′1 ∪ E′2 for E′1 = E1\dom(C) and E′2 = E2\dom(B)
(iii) M = (Ex,Re, In), where: Ex = Ex1 ∩ E′1 ∪ Ex2 ∩ E′2,

In = In1 ∩ E′1 ∪ In2 ∩ E′2 and Re = Re1 ∩ E′1 ∪ Re2 ∩ E′2,
(iv) →=E−1→1 ∪ →1E ∪ D−1→2 ∪ →2D for each→∈ {→•

, •→,→�,→+,→%} and E= {(e, e′) | e ∈ E1 ∧ e′ ∈C
(e) ∪ {e}} and D= {(e, e′) | e ∈ E2 ∧ e′ ∈B(e) ∪ {e}}

(v) L = L1 ∪ L2

(vi) l(e) =

l1(e) ∪ l2(e) if e ∈ E′1 ∩ E′2
l1(e) if e ∈ E′1\E′2
l2(e) if e ∈ E′2\E′1

The first condition, (i), guarantees that there are no circular refine-
ments. That is, an event in G1 can not be refined by an event in G2

which is also refined by an event in G1 and vice versa. The sec-
ond condition, (ii), states that the set of events in the joined graph
consists of all the events of the two graphs, that have not been re-
fined by events in the other graph. The third condition, (iii), defines
the join of the markings of the graphs. It simply inherits the mark-
ings from the two graphs. Note that the fact that markings are also
joined means that we can also apply the join operator on computing
processes. Condition (iv) defines the extension of the relations to
the refining events. The relationE is the reflexive closure of the left
joinC relation, i.e. e E e′ if and only if e C e′ or e = e′. Similarly,
D is the reflexive closure of B. The relation E−1→1 is then the re-
lational composition ofE−1 (the inverse ofE) and the relation→1,
and similarly the relation→1E is the relational composition of→1

and E. That is, e(E−1→1 ∪ →1E)e′ if

• e→1 e
′, or

• e→1 e
′′′ and e′′′ C e′, or

• e′′ C e and e′′ →1 e
′.

Considering our example in Fig. 5, this definition implies that e.g.
cancel will exclude both action and authorize. But note
that the self-exclude relation on reply, enforcing the ”linearity”
constraint that only one reply can only be carried out for each
request, is not kept. This is because relations between events that
are replaced, and thus in particular self-relations are not kept. The
rationale for not keeping these relations are that a join should
allow for removing constraints on the refined events. To keep the
property that the action can only be carried out once for each
request, the refining graph Gauth should have an exclude relation
from action to itself.

Finally, conditions (v) and (vi) define the label set as the union
of the two label sets, and the labeling of events by the original la-
bel for events that are not shared and the union of the label set

215

for shared events. Since we have not used the label function in the
present paper it can safely be ignored. For the curious reader, the la-
beling function allows to have distinct events with the same ”exter-
nal” label, which is useful for some practical applications, as well
as for proving that every Büchi-automaton can be represented by a
DCR Graph. This means in particular that the DCR Graphsmodel
is more expressive that LTL.

As indicated in the beginning of the section, we may derive
operations G\e, G[e C G′] and G∪G′ for respectively discarding
an event e, refining an event e by G′ and taking the union of two
graphs G and G′ as special cases of the join operator.

DEFINITION 7. For a DCR Graph G = (E1,Mi,→•i, •→i,→�i
,→+i,→%i, Li, li) for i ∈ {1, 2} and e ∈ E1 define

• (Discard) G1\e = G1 CB G∅ where C= (e, ∅) and G∅ is the
empty DCR Graph, i.e. the DCR Graph with no events,
• (Refine) G1[e C G2] = G1 CB G2 where C= (e, E2) and
B= ∅,
• (Union) G1 ∪G2 = G1 CB G2 where C= ∅ and B= ∅.

As an example of the discard operation, we may remove the
ability to cancel requests in the graphGrrauth in Fig. 5 by discard-
ing the cancel event, taking the graph Grrauth\cancel.

As an example of the refine operation, we may add the ”linear-
ity” constraint to action in Grrauth, i.e. that it can be executed
at most once for every request. This is done with a refine operation
Grrauth[action C Glinact], where Glinact is the DCR Graph
({action}, (∅, ∅, ∅), ∅, ∅, ∅, ∅, (action, action), ∅, ∅), i.e. the
graph with an empty marking and a single event action related
to itself by the exclude relation, and no other relations.

3.1 Aspect Oriented and Modular DCR Graphs
In an aspect oriented language based on DCR Graphs, we propose
using the join operator to define an operator for adding ”before”
advices for a subset of events (the joincut). This could for instance
be done by refining every event e in the joincut by a DCR Graph
that adds an advice sub process as a milestone before the event
e, ad e.g. the authorize event before the action event in
Fig. 1. Then, every time an event e in the join cut is scheduled
for execution, every event in the advice sub process will also be
scheduled for execution, and must be executed before executing e
due to the milestone relation.

Dually, an ”after” advice may be added to an event e by joining
a graph that has a response, condition and include relation from e to
the advice sub process, like for the request and reply events
in the Grr graph in Fig. 4. This ensures that the advice must be
carried out once after the event e. These two operations can then be
combined to have both ”before” and ”after” advices.

Toggling of advices, e.g. as a result of context-events, can be
achieved by joining in events that include and exclude the advice
sub processes, e.g. like the normal and emergency events in
Fig. 1. One can further constrain when an advice can be toggled as
in Fig. 4, where the reply action can be cancelled, but only after the
request has happened.

Finally, the join operator can also be considered as a general
way of allowing modular definition of DCR Graphs. However, it
should be stressed, that the join operator provide no guarantees for
preserving safety and liveness properties. Indeed, it is easy to join
graphs and achieve a circular condition dependency between events
that may lead to a deadlock state if one of the events are required
as response (and can not be excluded). Similarly, the join operator
may introduce the possibility of a life lock, i.e. a DCR Graph with
an infinite run that is not accepting and has no way of breaking out
of the loop.

It is possible to verify safety and liveness properties of the com-
posed DCR Graphs, e.g. by mapping the DCR Graph to a Büchi-
automaton and verify the properties using the SPIN model checker
as shown in [12]. This is however time consuming when the size of
the processes grow. A more efficient verification currently explored
is to carry out the verification on the corresponding transition sys-
tems with responses. Finally, an even more efficient guarantee of
well-behaved modular composition, which we are currently inves-
tigating, is to define a notion of behavioral type for DCR Graphs
based on the work on session types, which then guarantee that 1)
well-typed graphs are safe and live, and 2) if compatible, well-
typed DCR Graphs are joined, then the resulting graph is again
well-typed.

4. Conclusion
We have proposed the declarative, event-based DCR Graphs model
as a foundation for modular construction of context-sensitive,
aspect-oriented processes. Concretely, we showed how the dynamic
exclusion and inclusion primitives of DCR Graphs allow to turn the
relevance of events as conditions/milestones and responses for any
other event in the model on and off. It was exemplified by a simple
authorization process fragment, where the need for authorization
can be toggled by events signaling wether the context situation is
an emergency or normal. Another example was a request/reply pro-
cess fragment, where the reply can be cancelled by a cancel event in
the context. Moreover, we presented a new join operator for DCR
Graphs, allowing both modular composition and refinement, exem-
plified by joining the request/reply process and the authorization
process, by which the reply was refined into two events, an action
event (i.e. representing the reply) and an authorization event, and
the remaining events and relations for authorization were inherited.

A key point is that aspects are not turned on and off when
processes are initiated, but asynchronously at any point during
the execution of the process. Another key point is that the formal
semantics allows us to verify if the defined process, e.g. obtained
by joining processes, have safety or liveness problems. As shown
in [12, 13], DCR Graphs can be mapped to Büchi-automata. In [12]
an implementation of this mapping and its application to verify
safety and liveness properties of DCR Graphs using the SPIN
model-checker are described. Recently we have developed a model
checker that allows to verify properties directly on DCR Graphs. It
avoids the translation to Büchi-automata and seems more efficient,
however this is still work in progress. In [7] we have developed a
technique for distributing DCR Graphs, which is somehow reverse
to the composition operator. It allows to divide a DCR Graph in a
collection of (not necessarily disjoint) sub graphs, which can then
be executed at different locations. Finally, the fourth author has
developed a prototype implemenation of PEPL [4] where events
are extended with data, and the third author has implemented a
workflow engine at Exformatics A/S based on DCR Graphs with
data.

Related work: It goes beyond the scope of the present paper to
give a comprehensive overview of related work. Context-oriented
programming (e.g. [8, 18]) introduces the notion of layers in nor-
mal object-oriented, block structured programming languages such
as Java, allowing features (aspects) to be activated or deactivated
depending on the current context. The selection of active layers
are typically done using the with primitive when methods are in-
voked. In [10], the event-driven and context-oriented approaches
are combined, allowing events triggered in other threads to activate
and de-activate layers somewhat similar to the include and exclude
primitives of DCR Graphs.

The use of declarative primitives for the description of pro-
cesses, and workflow processes in particular, is also treated in the
work on Declare [19, 20]. Declare is similar to DCR Graphs in

216

that processes are specified by temporal relations between events,
indeed, the condition and responses relations are specified using
the same graphical notation. Another related approac would be
to specify processes using a temporal logic like LTL [14, 17]
or CTL [1]. In [14] is shown that primitives similar to those
used in DCR Graphs can indeed be represented in LTL. How-
ever, neither Declare, LTL nor CTL have explicit operators for
the inclusion and exclusion of events as in DCR Graphs. Con-
sequently, toggling of aspects can not simply be added by join-
ing additional constraints. It is instead necessary to rewrite the
logical formula (or Declare process) in a non trivial way. As an
example, consider the request-reply-cancel pattern in Fig. 4. The
request-reply pattern alone would typically be expressed in LTL by
a formula like G(request =⇒ Freply) ∧ (Freply =⇒
¬replyUrequest) ∧ G(reply =⇒ N(Freply =⇒
¬replyUrequest)), where G reads Generally, F reads Future,
U reads Until and N is the Next operator. That is, 1) it is gen-
erally the case that if a request happens, then a reply happens
in the future, 2) if a reply happens, then that reply can not hap-
pen before at least one request has happened, and 3) if a reply
happens, then if another reply happens some time in the future,
it will not happen before a new request has happened. Now, to
add the cancel option, it is ncecessary to rewrite the formula, it is
not possible simply to add new constraints e.g. as a conjunction.
This is because 1) a reply is not required if a cancel event hap-
pens, i.e. one must change the first conjunct to G(request =⇒
F (reply ∨ cancel)), 2) after a cancel event, a reply should
not occur until we have seen a new request, i.e. the third con-
junct becomes G(reply ∨ cancel =⇒ N(Freply =⇒
¬replyUrequest)) and 3) a cancel event should not occur be-
fore the first request has happened, i.e. we should add an additional
conjunct (Fcancel =⇒ ¬cancelUrequest). In general, if
the LTL formula does not have this specific form as given by DCR
Graphs, we claim that it would be non-trivial to define how for-
mulas should be changed to toggle aspects on and off, and at least
not as simple as the join operator of DCR Graphs proposed in the
present paper.

Acknowledgments
This research is supported by IT University of Copenhagen, Ex-
formatics A/S, an Industrial PhD grant and the Danish Council for
Strategic Research through the Jingling Genies project, grant no.:
2106-080046. We would like to thank the anonymous reviewers for
careful reviews and suggestions.

References
[1] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching

time. In J. White, R. J. Lipton, and P. C. Goldberg, editors, POPL,
pages 164–176. ACM Press, 1981. ISBN 0-89791-029-X. 6

[2] M. Carbone, T. T. Hildebrandt, G. Perrone, and A. Wasowski. Refine-
ment for transition systems with responses. In S. S. Bauer and J.-B.
Raclet, editors, FIT, volume 87 of EPTCS, pages 48–55, 2012. 3

[3] T. Hildebrandt and R. R. Mukkamala. Declarative event-
based workflow as distributed dynamic condition response
graphs. In PLACES, volume 69 of EPTCS, pages 59–73, 2011.
URL http://www.itu.dk/people/rao/rao_files/
dcrsplacescamredver.pdf. 1

[4] T. Hildebrandt and F. Zanitti. A process-oriented event-based pro-
gramming language. In F. Bry, A. Paschke, P. T. Eugster, C. Fetzer,
and A. Behrend, editors, DEBS, pages 377–378. ACM, 2012. ISBN
978-1-4503-1315-5. 1, 5

[5] T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Designing a cross-
organizational case management system using dynamic condition re-
sponse graphs. In Proceedings of IEEE International EDOC Confer-

ence, 2011. URL http://www.itu.dk/people/rao/pubs_
accepted/dcrscasestudy-edoc11.pdf. 1

[6] T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Nested dynamic con-
dition response graphs. In Proceedings of Fundamentals of Software
Engineering (FSEN), April 2011. URL http://www.itu.dk/
people/rao/pubs_accepted/fsenpaper.pdf. 1, 2

[7] T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Safe distribution of
declarative processes. In 9th International Conference on Software
Engineering and Formal Methods (SEFM) 2011, 2011. 1, 5

[8] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3):125151, March Aprile
2008. 5

[9] G. J. Holzmann. SPIN Model Checker, The: Primer and Reference
Manual. Addison-Wesley Professional, 2004. 3

[10] T. Kamina, T. Aotani, and H. Masuhara. Eventcj: a context-oriented
programming language with declarative event-based context tran-
sition. In Proceedings of the tenth international conference on
Aspect-oriented software development, AOSD ’11, pages 253–264,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0605-8. doi:
10.1145/1960275.1960305. URL http://doi.acm.org/10.
1145/1960275.1960305. 5

[11] K. M. Lyng, T. Hildebrandt, and R. R. Mukkamala. From paper based
clinical practice guidelines to declarative workflow management. In
Process-oriented information systems in healthcare (ProHealth 08),
pages 36–43. BPM 2008 Workshops, 2008. URL http://www.
itu.dk/people/hilde/Papers/ProHealth08.pdf. 1

[12] R. R. Mukkamala. A Formal Model For Declarative Workflows:
Dynamic Condition Response Graphs. PhD thesis, IT University of
Copenhagen, June 2012. http://www.itu.dk/people/rao/
phd-thesis/DCRGraphs-rao-PhD-thesis.pdf. 1, 3, 5

[13] R. R. Mukkamala and T. Hildebrandt. From dynamic con-
dition response structures to büchi automata. In Proceed-
ings of 4th IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2010), August 2010.
URL http://www.itu.dk/people/rao/rao_files/
dcrsextendedabstractTase2010.pdf. 1, 3, 5

[14] R. R. Mukkamala, T. Hildebrandt, and J. B. Tøth. The resultmaker
online consultant: From declarative workflow management in practice
to LTL. In Proceeding of DDBP, 2008. 6

[15] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN 0136619835. 2

[16] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universitet
Hamburg, 1962. 2

[17] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977. 6

[18] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-oriented pro-
gramming: A programming paradigm for autonomic systems. CoRR,
abs/1105.0069, 2011. 5

[19] W. van der Aalst, M. Pesic, H. Schonenberg, M. Westergaard, and
F. M. Maggi. Declare. Webpage, 2010. http://www.win.tue.
nl/declare/. 5

[20] W. M. van der Aalst and M. Pesic. A declarative approach for flexible
business processes management. In Proceedings DPM 2006, LNCS.
Springer Verlag, 2006. ISBN 978-3-540-38444-1. 5

217

Towards a Foundation for Modular Run-time
Adaptable Process-Aware Information Systems?

Søren Debois1, Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen
debois,hilde,tslaats@itu.dk

2 Exformatics A/S
tslaats@itu.dk

Abstract. We present the DCR∗ process language as a first step towards
a foundation for modular process-aware information systems allowing
dynamic creation of sub-processes with independent life-cycles and safe,
run-time adaptation. The DCR∗ process language is a constraint-based
process language generalising event structures. As the first main technical
result we formalise when an adaptation is conservative, i.e. preserves the
constraints of the adapted process and provide a decidable approxima-
tion to conservative adaptation referred to as non-intrusive adaptations.
Such approximation is crucial, since we as the second main technical
contribution prove that the DCR∗ language is Turing complete. This
is in contrast to the sub-language of DCR processes, without dynamic
sub-processes. This language corresponds to the model of DCR graphs
introduced in previous work and known to charatise exactly languages
that are the union of a regular and an ω-regular language. The devel-
opments throughout the paper is exemplified with a running example
inspired by a process-aware information system for handling grant ap-
plications, for which our industrial partner has recently provided a DCR
graph based implementation. Also, an online prototype implementation
of the DCR∗ language can be found at http://tiger.itu.dk:8018/.

1 Introduction

Software systems today control increasingly complex processes operating in un-
predictable contexts. At the same time, it is becoming more and more critical
that the software behaves correctly, e.g. that it is compliant with safety, security
and legal regulations. The combination of complexity, unpredictability and need
for compliancy has lead to a general understanding that a foundation for the
implementation of modular, run-time adaptable and formally verifiable software
systems is needed. This is not least the case in the fields of Process-Aware In-
formation Systems (PAIS) [34] and Business Process Management (BPM) [3],
which constitute the context of the present work. The fields deal with systems
driven by explicit process designs for the enactment and management of busi-
ness processes and human workflows, and the study of formalisms for describing

? supported by the Velux foundation (grant 33295) and Innovation Fund Denmark.

218

processes has always been central in these fields: As a vehicle for communica-
tion, it is vital that a business process model is unambiguous; as a vehicle for
understanding, it is vital that it is analysable; and as a foundation for practical
systems, it is vital that it can be made executable. Popular models include in
particular models which specify explicit sequencing of business activities as flow
graphs, such as Petri Nets and Workflow Nets [2] which are the closest formal
counterpart to the industrial standard Business Process Model and Notation
(BPMN) [32].

However, an approach to process implementation based on flow graphs im-
plicitly assumes the initial design of a pre-specified process graph, that imple-
ments the believed best practice given the initial required set of business rules
and legal constraints. This is problematic in several ways: Firstly, the explicit
flow graph often imposes more constraints than necessary. Secondly, procedures,
rules and regulations change or the process graph turns out not to be the de-
sired practice anyway. For long running processes, such as control software in
hardware systems that can not be stopped or mortgages of credit institutions,
the changes need to be reflected in running processes. And while the graph may
be initially verified to implement the given business rules and legal constraints,
it does typically not represent the rules explicitly. Thus, it is very difficult if at
all possible to identify the required changes to the flow graph.

Declarative process languages [4,18] address this deficiency by leaving the
exact sequencing of activities undefined, yet specifying the constraints processes
must respect. This gives a workflow system the maximum flexibility available
under the rules and regulations of the process. In practice, the caseworker or
process engine is empowered to take what is considered the appropriate steps
(e.g. considering resource usage) for the process and situation at hand, subject
only to the constraints expressed in the process model. If the constraint language
is well designed, the constraints can directly represent the business and legal
regulations, making it easy to add or update constraints if the regulations change.

As a running example, we consider a grant application process of a funding
agency that our industry partner, Exformatics, has recently implemented in a
commercial solution [14].3 The high-level requirements are: 1) applications can
be received after a round is opened and until the deadline, 2) if a round is opened,
the board must eventually meet, and 3) a board meeting can only happen when
a round is open (i.e. before the deadline), if at least one application was received.
A BPMN process implementing the requirements may be defined as shown in
Fig. 1 below.

������		
�������

����

����
���

����

������������

Fig. 1. Grant Application BPMN Process

The process is initi-
ated by an event Round
indicating the start of a
round, followed by a loop
for receiving applications
until the deadline, after
which a board meeting is

3 We deviate from the implemented solution when it makes our examples clearer.

219

held. However, the requirements are not explicitly represented in the process
diagram, and moreover, the process introduces unnecessary, or at least unspeci-
fied constraints. For instance, no board meeting can be held before the deadline,
even if applications are received, and it is not possible to reopen the round, e.g. if
insufficiently many good applications were received. Of course, these possibilities
may be modelled, but with the cost of making the process graph more complex.

Our industry partner Exformatics employs a declarative, graphical process
notation, Dynamic Condition Response (DCR) Graphs, introduced in [18,30] and
developed further in [19,7,31,20,12]. As exemplified in Fig. 2 below (produced
with the tool at http://tiger.itu.dk:8018/), the DCR Graphs notation al-
lows to specify the process by the four events (Receive, Deadline, Round, Board
Meeting) and four relations between the events.

Fig. 2. Grant Application
DCR Graph Process

The Receive event is dashed, representing that
it is initially excluded from the process. The line
from Round to Receive with a + sign at the end
is an include relation, meaning that Receive is dy-
namically included if the event Round (the start of
a round) happens. Dually, the line from Deadline to
Receive with a % sign is an exclude relation, mean-
ing that Receive is dynamically excluded if the event
Deadline happens. Together, these two relations rep-
resent the first requirement. The arrow from Round
to Board Meeting with a bullet at the start repre-
sents that Board Meeting is a response to (i.e. must
happen eventually after) the Round event, as stated
in the second requirement. Dually, the arrow from
Receive to Board Meeting with a bullet at the end
represents that Receive is a condition for Board Meeting, meaning that if Receive
is included, i.e. a round is open, it must have happened before Board Meeting
can happen, as stated in the third requirement.

The operational semantics of a DCR Graph is defined in terms of a marking
assigning a triple of booleans (h, i, r) to each event, indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless.
An event may be excluded in the initial marking and be dynamically included
and excluded if it is related to other events by include and exclude relations,
as illustrated by the Receive event above. Similarly, an event may be restless in
the initial marking or become restless because it is a response to an event that
happened as for the Board Meeting event above. Finite or infinite executions are
then defined to be accepting only if every restless event is executed or excluded
at a later point in the execution. As described in [18,30], (labelled) DCR Graphs
is a conservative generalisation of (labelled) prime event structures, allowing
finite representations of infinite behaviour and to express liveness properties.
The former is achieved by allowing an event to happen more than once and
change dynamically between being in conflict (excluded) and being consistent

220

(included) with the current state. The latter is achieved via the notion of restless
events and the acceptance criteria described above.

Recently, an extension of DCR Graphs to so-called hierarchical DCR Graphs,
supporting dynamic creation of sub-processes with (local) events and indepen-
dent life cycles has been presented [12]. This extension was motivated in practice
by the funding agency process above, e.g. to allow each received application to
have its own approval events and decision life cycle, and thereby recording the
decision made for each application. However, although the graphical notation
of DCR Graphs has been adopted by industry, it does not scale well to larger
and more complex processes due to lack of compositionality. Also, the expressive
power of hierarchical DCR Graphs was left open by [12].

The central contribution of the present paper is to provide the DCR∗ process
language, a core constraint-based process language for modular process-aware
information systems with dynamic creation of sub-processes with independent
life-cycles, based on the primitives introduced in (hierarchical) DCR Graphs,
but equipped with a compositional operational semantics. The compositional
semantics provides means for modular definition of and reasoning for DCR∗ pro-
cesses. As an application, we show that the DCR∗ language supports run-time
adaptation by composition. We formalise when an adaptation is conservative,
i.e. preserve requirements of the adapted process and provide as our first techni-
cal contribution a syntactic, and thus decidable, approximation to conservative
adaptation referred to as non-intrusive adaptations. Such approximation is cru-
cial, since we as a second technical contribution prove by an encoding of Minsky
machines, that the DCR∗ language is in fact Turing complete. This is in con-
trast to the sub-language of DCR processes corresponding to DCR Graphs, i.e.
without dynamic sub-processes and local events, that can be shown to charatise
exactly languages that are the union of a regular and an ω-regular language
(sketched in [30] and proven in the full version of the paper).

Overview of the paper: In Sec. 2 we provide the DCR process language and
its compositional semantics. We then extend the language in Sec. 3 to DCR∗ sup-
porting dynamic creation of interacting sub-processes with fresh (local) events.
We address run-time adaptation by composition in Sec. 4, formalise when and
adaptation is conservative and provide the syntactic, non-invasiveness approxi-
mation to conservative adaptation. In Sec. 5 we prove that the DCR∗ language is
Turing complete. Finally, we conclude and outline in Sec. 6 related, current and
future directions of work exploiting the results in the present paper. An online, re-
search prototype implementation of the process languages presented in the paper,
with a mapping to DCR Graphs, can be found at http://tiger.itu.dk:8018/.

2 Dynamic Condition Response (DCR) Processes

Below we introduce the Dynamic Condition Response (DCR) process language.
As already informally described in the introduction, it is based on the notions
of dynamic inclusion and exclusion of labelled events, related by conditions and
response relations introduced in DCR Graphs [30,18].

221

We assume fixed universes of events E and labels L; each event e ∈ E has an
associated label `(e) ∈ L. A DCR process [M] T comprises a marking M and a
term T . The syntax of both are given in Fig. 3 below.

T,U ::= f →• e condition

| f ←• e response

| f +← e inclusion

| f %← e exclusion

| T | U parallel

| 0 unit

φ ::= t | f boolean value

Φ ::= (φ, φ, φ) event state

M,N ::= M, e : Φ marking

P,Q ::= [M] T process

Fig. 3. DCR Processes Syntax.

A term is a parallel composition of relations between events. We recall from
the introduction how the relations regulate what behaviour the term may exhibit:

1. A condition f →• e imposes the constraint that for event e to happen, the
event f must either previously have happened or currently be excluded.

2. A response f ←• e imposes the effect that when e happens, f becomes
restless and must eventually happen or be excluded.

3. An exclusion f %← e imposes the effect that when e happens, it excludes f .
An excluded event cannot happen; it is ignored as a condition; and it need
not happen if restless, unless it is re-included by the final relation:

4. An inclusion f +← e imposes the effect that when the event e happens, it
re-includes the event f .

All four relations refer to a marking M , a finite map from events to triples of
booleans (h, i, r), referred to as the event state and indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless. A
restless event represents an unfulfilled obligation: once it happens, it ceases to
be restless. As commonly done for environments, we write markings as finite
lists of pairs of events and event states, e.g. e1 : Φ1, . . . , ek : Φk but treat them
as maps, writing dom(M) and M(e), and understand M, e : Φ to be undefined
when e ∈ dom(M). The free events fe(T) of a term T is (for now) simply the set
of events appearing in it. (This changes when we introduce local events in Sec. 3
below.) We require of a process P = [M] T that fe(T) ⊆ dom(M), and so define
fe(P) = dom(M). The alphabet alph(P) is the set of labels of its free events.

Example 1 (Grant process term). The example of fig. 2 can be mapped to the
following term:

T0 = recv %← deadline | recv +← round | bm←• round | recv→• bm
Initially, no event has happened, no event is restless, and every event but recv is
included, giving us the marking:

M0 = round : (f, t, f), deadline : (f, t, f), recv : (f, f, f), bm : (f, t, f) .

222

ut

Example 2 (Event structures). A labelled prime event structure [38] can be de-
fined as a tuple E = (E,≤,#, `, L) where E is a set of events, ≤ is a partial order
on events defining the causal dependency relation (satisfying an axiom of finite
cause), # is the binary, symmetric and irreflexive conflict relation (satisfying an
axiom of hereditary conflict) and ` is a labelling function assigning every event
to a label. A finite event structure E can be represented as the DCR term

TE =
∏

e<e′

e→• e′ |
∏

e#e′∨e=e′
e %← e′

A state of an event structures is referred to as a configuration, defined as a finite,
downwards closed and conflict free set C ⊆ E of events. Define C# = {e | ∃e′ ∈
C.e#e′}. A configuration for finite event structures can then be represented by
the marking ME defined by ME(e) = (t, f, f) for e ∈ C, ME(e) = (f, f, f) for
e ∈ C# and ME(e) = (f, t, f) for e 6∈ C ∪ C#. The DCR process [ME] TE then
represent a pair of a configuration and an event structure, which indeed will
have the same behaviour as the event structure. An event structure with a set
R ⊆ E of restless events as considered in [37] is then defined in the same way,
except that the events in R will initially be restless in the marking representing
the configuration, i.e. the third component of the event state will be t. ut

We give semantics to DCR processes incrementally. First, the notion of an
event being enabled and what effects it has. The judgement [M] T ` e : E, I,R,
defined in Fig. 4, should be read: “in the marking M , the term T allows the
event e to happen, with the effects of excluding events E, including events I,
and making events R restless.”

[M, f : (h, i,), e : (, t,)] f →• e ` e : ∅, ∅, ∅ (when i⇒ h)

[M, e : (, t,)] f ←• e ` e : ∅, ∅, {f}
[M, e : (, t,)] f +← e ` e : ∅, {f}, ∅
[M, e : (, t,)] f %← e ` e : {f}, ∅, ∅

[M, e : (, t,)] 0 ` e : ∅, ∅, ∅
[M, e : (, t,)] f ′ R f ` e : ∅, ∅, ∅ (when e 6= f)

Fig. 4. Enabling & effects. We write “ ” for “don’t care”, i.e., either true t or false f,
and write R for any of the relations →•,←•, +←,%←.

The first rule says that if f is a condition for e, then e can happen only if (1)
it is itself included, and (2) if f is included, then f previously happened. The
second rule says that if f is a response to e and e is included, then e can happen
with the effect of making f restless. The third (fourth) rule says that if f is
included (excluded) by e and e is included, then e can happen with the effect of

223

including (excluding) f . The fifth rule says that the completely unconstrained
process 0, an event e can happen if it is currently included. The last rule says
that a relation allows any included event e to happen without effects when e is
not the relation’s right-hand–side event.

Given enabling and effects of events, we define the action of respectively an
event e and an effect δ = (E, I,R) on a marking M pointwise by the action on
individual event states f : (h, i, r) as follows.

(Event action) e ·
(
f : (h, i, r))

) def
= f :

(
h ∨ (f=e)︸ ︷︷ ︸
happened?

, i, r∧(f 6=e)︸ ︷︷ ︸
restless?

)

(Effect action) δ ·
(
f : (h, i, r)

) def
= f :

(
h, (i ∧ f 6∈E) ∨ f ∈I︸ ︷︷ ︸

included?

, r ∨ f ∈R︸ ︷︷ ︸
restless?

)

That is, for the event action, if f = e, the event is marked “happened” (first
component becomes t) and it ceases to be restless (last component becomes f).
For the effect action, the event only stays included (second component) if f 6∈ E
(it is not excluded) or f ∈ I (it is included). This also means that if an event is
both excluded and included by the effect, inclusion takes precedence. Finally, f
is marked restless (third component) if either it was already restless or it became
restless (f ∈ R). We then define the combined action of an event and effect by
(e : δ) ·M = δ · (e ·M).

In defining the compositional semantics, we need to merge parallel markings
and effects. Merge on markings is partial, since it is only defined on markings
that agree on their overlap:

(M1, e : m)⊕ (M2, e : m) = (M1 ⊕M2), e : m

(M1, e : m)⊕M2 = (M1 ⊕M2), e : m when e 6∈ dom(M2)

The merge of effects δ is always defined; it is simply the pointwise union:

(E1, I1, R1)⊕ (E2, I2, R2) = (E1 ∪ E2, I1 ∪ I2, R1 ∪R2)

With these mechanics in place, we give transition semantics of processes in Fig. 5.

[M] T ` e : δ

[M] T
e:δ−−→ T

[intro]
[M] T1

e:δ1−−→ T ′1 [M] T2
e:δ2−−→ T ′2

[M] T1 | T2
e:δ1⊕δ2−−−−−→ T ′1 | T ′2

[par]

[M] T
e:δ−−→ T ′

[M] T
e−→ [e : δ ·M] T ′

[effect]

Fig. 5. Basic transition semantics.

We use two form of transitions: the effect transition [M] T
e:δ−−→ T ′ says that

[M] T may exhibit event e with effect δ, in the process updating the term T

224

to become T ′. (At this stage we will always have T = T ′; we will need updates
only when we extend the calculus in Section 3 below.) The process transition

[M] T
e−→ [N] U takes a process to another process, applying the effect of e to

the marking M , and thus only exhibiting the event e. The [intro] rule elevates
an enabled event with an effect to an effect transition. The [par] rule combines
effect transitions from the two sides of a parallel when they have compatible
markings. The [effect] rule lifts an effect transition to a process transition by
applying the effect to the marking. Process transitions gives rise to an LTS, which
we equip with a notion of acceptance defined formally below, corresponding to
that for DCR Graphs [10]: a run is accepting if every restless event eventually
either happens or is excluded.

Definition 1. A DCR process defines an LTS with states [M] T and (process)

transitions [M] T
e−→ [N] U . A run of [M] T is a finite or infinite sequence of

transitions [M] T = [M0] T0
e0−→ · · · . A run is accepting iff for every state

[Mi] Ti, when Mi(e) = (, t, t) then there exists j ≥ i s.t. either Mj(e) = (, f,)

or [Mj] Tj
e:δ−−→ [Mj+1] Tj+1. A trace of a process [M] T is a possibly infinite

string s = (si)i∈I s.t. [M] T has an accepting run [Mi] Ti
ei−→ [Mi+1] Ti+1 with

si = `(ei).

Example 3 (Grant process transitions). As transitions change only marking, not
terms, we show a run by showing changes in the marking. In the table below, rows
indicate changes to the marking as the event on the left happens. Columns “h,i,r”
indicate whether an event is marked (h)appened, (i)ncluded, and/or (r)estless.
The column “Accepts?” indicates whether the current marking is accepting or
not and the final column “Enabled” indicates which events are enabled after
executing the event on the left.

Event round deadline recv bm Accepts? Enabled
happening h i r h i r h i r h i r
(none) f t f f t f f f f f t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
deadline t f f {round, deadline, bm}
bm t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
recv t f {round, deadline, recv, bm}
bm f t {round, deadline, recv, bm}

After the first round event, bm cannot happen because of recv →• bm. When
deadline happens, it excludes recv because of bm %← recv, and exclusion of recv
voids the condition recv→• bm; so after deadline, bm may again happen. When
round subsequently re-includes recv, bm is again disabled. Acceptance of the pro-
cesses changes throughout. Because of bm←• round, whenever round executes it
makes bm restless, preventing the process from accepting until bm later happens,
ceasing to be restless. In our examples, we identify events and labels, so the above
table indicates an accepting trace 〈round, deadline, bm, round, recv, bm〉. ut

225

We conclude by noting that DCR processes as presented here correspond
exactly to DCR graphs [30,36,12].

Theorem 1. There exists a language-preserving map from DCR processes to
DCR graphs; and vice versa.

3 DCR∗ Processes: Local events and Reproduction

As stated in the introduction, through our cooperation with industrial partners
we identified a need for instantiating sub-processes dynamically [12]. We there-
fore extend the DCR process language by adding local events and reproductive
events, giving rise to the DCR∗ process language.

T,U ::= . . .
| (νe : Φ) T local event
| e{T} reproductive event

Fig. 6. DCR∗ syntax.

The extended syntax is given
in Fig. 6 to the right. We as-
sume that for each label l ∈
L, there exists infinitely many
events e with that label, that
is, with `(e) = l.

The local event (νe : Φ) T asserts that e is local to the term T . This con-
struct is binding, and we take terms up to label preserving α-conversion, i.e.,
(νe : Φ) T = (νf : Φ) T [f/e] iff `(e) = `(f) and f not free in T . As usual, we
assume the Barendrecht-convention and may thus assume binders are distinct.
A reproductive event e{T} unfolds a copy of T whenever it happens.

We define free events and alphabet for DCR∗ processes.

Definition 2. The free events fe(T) of a term T is defined recursively as follows.

fe(e R f) = {e, f}
fe(T | U) = fe(T) ∪ fe(U)

fe(0) = ∅
fe((νe : Φ) T) = fe(T) \ {e}

fe(e{T}) = {e} ∪ fe(T)

The free events of a process fe([M] T) is simply fe([M] T) = dom(M); we main-
tain the requirement that a process [M] T has fe(T) ⊆ dom(M). The alphabet
alph(P) of a process is the set of labels associated with its events, defined recur-
sively as follows.

alph(e R f) = {`(e), `(f)}
alph(T | U) = alph(T) ∪ alph(U)

alph(0) = ∅
alph((νe : Φ) T) = {`(e)} ∪ alph(T)

alph(e{T}) = {`(e)} ∪ alph(T)

The following Lemma states that transitions preserve free events and alphabet.

226

Lemma 1. Transitions [M] T
λ−→ T ′ and [M] T

γ−→ [M ′] T ′ preserve free events
and alphabet, that is fe(M) = fe(M ′), fe(T) = fe(T ′), alph(T) = alph(T ′), and
alph(M) = alph(M ′).

Proof. Preservation of free events and alphabet of terms for effect transitions
follows by easy induction on the derivation of the transition. For preservation
for process transitions, observe that by cases on the rules admitting a transition

[M] T
γ−→ [M ′] T ′, we must have dom(M) = dom(M ′) by definition of the action

operator − ·M ; the desiderata now follows.

The transition rules for the new constructs are given in Fig. 7. Only terms
and transition rules are extended; markings are the same.

[M, f : Φ] T
e:δ−−→ T ′ f : Φ′ = (e : δ) · (f : Φ) γ = νe if e = f , o.w. γ = e

[M] (νf : Φ) T
γ:(δ\f)−−−−−→ (νf : Φ′) T ′

[local]

[M] T
νe:δ−−→ T ′

[M] T | U νe:δ−−→ T ′ | U
[par-2]

[M] T
e:δ−−→ T ′

[M] e{T} e:δ−−→ e{T} | T ′
[rep]

[M] T
νe:δ−−→ T ′

[M] T
νe−→ [δ ·M] T ′

[effect-2]

Here δ\f = (E\{f}, I\{f}, R\{f}). We omit the obvious rule symmetric to [Par-2].

Fig. 7. Transition semantics for local and reproductive events.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An effect on the local event is recorded in the marking in the
binder of that event. The event might have effects on non-local events, e.g., in
(νf : M) e +← f , the local f has effects on the non-local e. Thus the effects
are preserved in the conclusion, except that part of the effect which pertain
only to f . Rule [par-2] propagates a local effect through a parallel composition.
It’s possible that the effect δ mentions events in U ; however, it cannot mention
events local to U . So the effects of δ on U are fully expressed in the (eventual)
effect of δ on M . Rule [effect-2] lifts effect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If
the guarding event e happening would update the body T to become T ′, then e
can unfold to such a T ′.

To define accepting runs we need to track local restless events across tran-
sitions. Fortunately, DCR∗ is simple enough that we can simply assume that
α-conversion happens only during replication (i.e., local events duplicated by
[rep] are chosen globally fresh).

227

Definition 3. A run of a DCR∗ process [M] T is a finite or infinite sequence

[Mi] Ni
λi−→ [Mi+1] Ni+1 with λ = ei or λ = νei. The trace of a run is the

sequence of labels of its events, i.e., the string given by `(λi) where `(νe)
def
= `(e).

A run is accepting if whenever an event e is marked as restless in Mi respectively
a local event νe is marked as restless by its binder in Ti, then there exists some

j ≥ i s.t. either [Mj] Tj
λi−→ [Mj+1] Tj+1 with λi = e respectively λi = νe; or the

event state of e in Mj respectively Tj has e excluded.

Example 4 (Grant process with reproductive and local events). We now consider
the requirement that when an application is received, a committee recommends
either approval or rejection to the board. The committee might rescind an ap-
proval, but cannot reverse a rejection. Moreover, when applications are compet-
ing for resources, the board cannot make a final decision until it has a recom-
mendation for every received application. We again use events recv and bm for
receiving an application and convening a board meeting. We use local events
νapprove and νreject to model the per-application evaluation process replicated
by recv. We first give a term A modelling a single recommendation sub-process.

A = (νapprove : (f,t, t)) (νreject : (f,t, f))
(
approve %← reject | approve→• bm

)

Note that approve and reject are local and can thus not be constrained further
outside the scope, yet approve has a condition relation to the non-local bm. We
make the approve event initially restless, which will mean that in order for the
process to be accepting either approve must happen or be excluded (because
reject happens).
We can now model a process [M1] T1 reproducing the per-application sub-process
A every time recv happens

T1 = recv{A} | recv→• bm M1 = recv : (f, t, f), bm : (f, t, f)

(To keep the process simple, we only retained from the previous example the
constraint that a board meeting requires receiving an application). In DCR∗ ,
the term does change as the process evolves. Let’s see [M1] T1 evolve:

[M1] T1
recv−−→ [M2] T1 | A1

recv−−→ [M2] T1 | A1 | A2 (1)
νapprove1−−−−−−→ [M2] T1 |

(
(νapprove1 : (t , t, f)) (νreject1 : (f, t, f)) (2)

approve1 %← reject1 | approve1 →• bm
)
| A2

νreject2−−−−→ [M2] T1 |
(
(νapprove1 : (t, t, f)) (νreject1 : (f, t, f)) (3)

approve1 %← reject1 | approve1 →• bm
)

(
(νapprove2 : (f, f , t)) (νreject2 : (t , t, f))

approve2 %← reject2 | approve2 →• bm
)

bm−−→ [M3] T1 | · · · (4)

228

Here M2 = recv : (t , t, f), bm : (f, t, f) and M3 = recv : (t, t, f), bm : (t , t, f).
At (1), the processes A1 and A2 are copies of A where the local events approve

and reject have been α-converted to approve1, approve2 and reject1, reject2 respec-
tively, following the convention of unique local names. Moreover, because they
have not happened in the local markings under the binders, bm cannot happen.
To see this, observe that by the [par]-rule, for the whole process to exhibit bm,
every part of it must also exhibit bm. But (νapprove1 : (f, t, t)) . . . approve1 →•
bm cannot: the hypothesis of rule [Local], that bm could happen if approve1 is
considered global with marking (f, t, t), cannot be established.

When a local approvei event happens, its local marking changes to reflect that
the event happened and is no longer restless, as indicated with grey background
in (2). However, approve1 happening is not enough to enable bm; it is still disabled
by the other copy. Also, the entire process is not in an accepting state, since
approve2 is still restless and included. Once reject happens in the second copy
(3), excluding approve in that copy, bm is enabled and the process is in an
accepting state: of the two local approve events bm is conditional upon, one has
happened (and thus also no longer restless), and the other is excluded (and thus
also no longer required for acceptance).

ut

4 Run-time adaptation by composition

In this section, we consider run-time adaptation by dynamic composition. The
section ends with the first main technical result of the paper (Theorem 2), that
we can find a (practically useful and) decidable approximation to adaptations
that preserve compliancy with existing requirements.

Definition 4. Given DCR∗ processes [M] T and [N] S their merge is defined
when M ⊕N is, in which case it is [M] T ⊕ [N] S = [M ⊕N] T | S. When the
merge of two processes is defined, we say that they are marking compatible.

Example 5. Suppose now as the grant process runs, a new requirement comes
up: For regulatory reasons, a board meeting must eventually be followed by an
audition. We easily model this constraint using restlessness and a new event,
audit. However, as we are introducing a new event, we must also introduce ad-
ditional marking. The following process R1 embodies the adaptation we wish to
achieve.

R1 = [bm : (f, t, f), audit(f, t, f)] audit←• bm

We can now adapt the process P = [M1] T1 of Example 4 with respect to R1:

P1 = P ⊕R1 = [M1, audit : (f, t, f)] T1 | audit←• bm

Note that adaptation is not restricted to apply only to the initial process. As a
second example, suppose further that it is also decreed that during an audit, no

229

further applications can be received. We adapt P1 with R2 as follows:

R2 = [recv : (f, t, f), audit : (f, t, f), pass : (f, t, f)] recv %← audit | recv +← pass

P2 = P1 ⊕R2

= [M1, audit : (f, t, f), pass : (f, t, f)] T1 | audit←• bm
| recv %← audit | recv +← pass

ut
However, when we extend the set of requirements, the run-time adaptation

of P to P ′ should ideally not allow traces that were not allowed by the old set
of requirements. We may try to formulate this property by language inclusion
lang(P ′) ⊆ lang(P). But as we have seen, run-time adaptation might entail
adding new events (audit), so we cannot in general expect language inclusion.
Hence, we consider language inclusion only w.r.t. the alphabet of P . In doing so
we employ the following notation.

Notation. Given a sequence s, write s|Σ for the largest sub-sequence s′ of s s.t.
s′i ∈ Σ; e.g, if s = AABC then s|A,C = AAC. We lift projection to sets of
sequences point-wise.

Definition 5. Given marking compatible DCR∗ processes P and Q, we say that
Q is conservative for P iff lang(P ⊕Q)|alph(P) ⊆ lang(P).

Example 6. Continuing the above example, we now see a distinction between the
adaptation by R1 and R2: the former is conservative for P , whereas the latter
is not for P1. To see that R1 is conservative, observe that it only makes P2 less
accepting (because of the potential restlessness of the new event audit). To see
that R2 is not conservative, observe that P1 ⊕ R2 has the following accepting
execution:

P1 ⊕R2
audit−−−→ bm−−→ audit−−−→

Here audit excludes recv, and so enables bm to execute; bm in turn makes audit
restless, so after a second audit, we have an accepting trace t = 〈audit, bm, audit〉.
However, bm cannot not be the first event of a trace of P1 because it is conditional
on the non-executed recv. Formally, we found a counter-example to conservation:

t|alph(P1) = 〈audit, bm, audit〉|{bm,recv,approve,reject} = 〈bm〉 6∈ lang(P1)

Inspecting the adaptation R2 more closely, one see that the problem comes
from the dynamic exclusion of the recv event, since it does not only makes the
reception of applications impossible, but also enables events such as bm that
are conditioned on recv. A better way is to block recv by introducing a new
condition:

R′2 = [recv : (f, t, f), audit : (f, t, f)] audit{(νpass : (f, t, f)) pass→• recv}

Here, once audit happens, recv is barred from executing until the local event pass
has happened. The corresponding adaptation is conservative. ut

230

4.1 A Decidable Approximation of Conservative Adaptations

We shall see in the next section that it is unfortunately undecidable to identify
the language of a DCR∗ process, so we will need an approximation of whether
some P is conservative for some Q. The key problem is that new exclusions
might remove conditions preventing events from firing, as we saw above, and
that new inclusions might enable events to fire. This leads us to the following
approximation:

Definition 6 (Non-invasive adaptation). Let P1 = [M1] T1 and P2 = [M2] T2
be processes. We say that P1 non-invasive for P2 iff

1. For every context C(−), such that T1 = C(e →% f) or T1 = C(e →+ f),
either f is bound in C(−) or f 6∈ fe(P2); and

2. For every label l ∈ alph(P1) ∩ alph(P2), no bound event of T1 is labelled l,
and if e ∈ fe(P1) is labelled l, then e ∈ fe(P2).

It’s straightforward to verify that non-invasiveness is decidable and that R1

is non-invasive for P , whereas R2 is not for P2 (because of the exclusion of bm).
It takes more to prove that non-invasiveness guarantees conservative adap-

tations. We first observe that transitions do not introduce new constraints or
effects on free events.

Lemma 2 (Transitions reflect relational sub-terms). If [M] T
λ−→ T ′ and

T ′ = C ′(e R f), then there exists a context C(−,−) s.t. T = C(e R f) with f
free in C ′ iff it is in C.

Proof. Easy induction on the derivation of the transition.

Next we prove that for processes that are composed of two processes, the mark-
ing can be canonically separated in the three disjoint parts: The events only
occurring in the first process, the events that are shared, and the events only
occurring in the second process.

Definition 7 (Separation of Processes). Let P = [M] T1 | T2. A separation
of P comprises disjoint markings M1,M2, S such that M = M1 ⊕ S ⊕ M2,
that fe(T1) ∩ fe(T2) ⊆ dom(S), and that fe(Ti) \ fe(T3−i) ⊆ dom(Mi). A process
[M1 ⊕ S ⊕M2] T1 | T2 is separated iff M1,M2, S is a separation.

Lemma 3 (Canonical Separation). Let P1 = [M1] T1 and P2 = [M2] T2
with P1⊕P2 defined. Then there exists a unique separation N1, N2, S of P1⊕P2

satisfying dom(Ni) = dom(Mi)\dom(M3−i) and dom(S) = dom(M1)∩dom(M2).
We call this separation the canonical separation of P1 ⊕ P2.

Lemma 4. If a process [M] T1 | T2 with canonical separation M1⊕S ⊕M2 has
a transition

[M] T1 | T2 λ−→ T ′ or [M] T1 | T2 γ−→ [M ′] T ′

then the following holds:

231

1. For some T ′1, T
′
2 we have T ′ = T ′1 | T ′2.

2. There exists a unique separation M ′1,M
′
2, S
′ of M ′ with dom(Mi) = dom(M ′i)

and dom(S) = dom(S′).
3. This separation satisfies alph([Mi ⊕ S] Ti) = alph([M ′i ⊕ S′] T ′i)
4. If the original separation was canonical for P1 = [M1 ⊕ S] T1 and P2 =

[S ⊕M2] T2, then so is M ′1,M
′
2, S
′ for P ′1 = [M ′1 ⊕ S′] T ′1 and P ′2 = [S′ ⊕M ′2] T ′2.

5. If P non-invasive for Q, then also P ′ non-invasive for Q′.

Proof. Note that only the rules [par] and [par-2] allows term transitions for a
term on the form T1 | T2; part 1 is then immediate by inspection of these rules;
and part 2 and 3 follows from Lemma 1. Part 4 is then immediate from parts 2
and 3. Part 5 follows (1) by Lemma 2 and (2) by parts (2–4) and Lemma 1.

We will need the following auxiliary ordering on markings with identical
domains: Smaller markings have more restless events.

Definition 8. We order states (h, i, r) v (h′, i′, r′) iff h = h′, i = i′ and r′ = t
implies r = t. We order markings M v N point-wise when dom(M) = dom(N).

Lemma 5. If M v N and both [M] T and [N] T are processes, then:

1. [M] T ` e : δ iff [N] T ` e : δ;

2. [M] T
λ−→ T ′ iff [N] T

λ−→ T ′; and

3. For every process transition [M] T
γ−→ [M ′] T ′, there exists a unique N ′

s.t. [N] T
γ−→ [N ′] T ′. This N ′ satisfies M ′ v N ′.

Proof. Part 1 is immediate by Definition of “`”. Part 2 then follows by induction
on the derivation of the term transition, using part 1 in the base case [Intro].
Part 3 follows by cases on the process transition rules [Effect] and [Effect-2],
observing that for any M v N and any event or effect x, x ·M v x ·N .

Lemma 6. Both term and process transitions are unique in the following sense:

1. If [M] T
γ:δ−−→ T ′ and [M] T

γ:δ′−−→ T ′′ then δ = δ′ and T ′ = T ′′.
2. If P

γ−→ Q and P
γ−→ Q′ then Q = Q′.

Proof. (1) By induction on the derivation of the transition. For the base case,
[intro], by assumption we have

[M ⊕N] T
e:δ−−→ T and [M ′ ⊕N ′] T e:δ′−−→ T ,

with M ⊕N = M ′ ⊕N ′ and [M] T ` e : δ and [M ′] T ` e : δ′. We now find by
cases on T and inspection of the rules in Figure 4 that M = M ′ and δ = δ′.

The cases [par], [par-2], and [rep] cases are straightforward; we exemplify

with [par-2]. Suppose [M] T | U νe:δ1−−−→ T1 and [M] T | U νe:δ2−−−→ T2. By [par-2]

we must have T1 = T ′1 | U and T2 = T ′2 | U , and moreover [M] T
νe:δ1−−−→ T ′1 and

[M] T
νe:δ2−−−→ T ′2. But then by IH δ1 = δ2 and T ′1 = T ′2 whence T1 = T2.

232

Finally, [local]. Suppose

[M] (νf : Φ) T
γ:δ1−−→ T1 and [M] (νf : Φ) T

γ:δ2−−→ T2 .

By [local] we must have

[M,f : Φ] T
e:δ1−−→ T ′1 and [M,f : Φ] T

e:δ2−−→ T ′2 ,

with T1 = (νf : Φ1) T ′1 and T2 = (νf : Φ2) T ′2. By IH δ1 = δ2 and T ′1 = T ′2. It
remains to prove that also Φ1 = Φ2. But again by [local] we have f : Φ1 =
(e : δ1) · (f : Φ) = (e : δ2) · (f : Φ) = f : Φ2.

(2) Straightforward by inspection of the rules [effect] and [effect-2] using
part (1) of this Lemma.

Lemma 7 (Weakening). Suppose [M ⊕N] T
λ−→ T ′. If λ = e : δ and fe(T) ∪

{e} is disjoint from dom(N), or λ = νe : δ and fe(T) is disjoint from dom(N),

then also [M] T
λ−→ T ′.

Proof. By induction on the derivation of the transition.
For [intro], note that we must have λ = e : δ and for some M ′, N ′ with

M ′ ⊕N ′ = M ⊕N that

[M ⊕N] T
e:δ−−→ T ′ and [M ′] T ` e : δ

By inspection of the rules for the enabling relation in Figure 4 we find that
dom(M ′) ⊆ fe(T) ∪ {e} and so dom(M ′) disjoint from dom(N) and so M =

M ′ ⊕M ′′ for some M ′′, whence [M] T
λ−→ T ′.

For [par] we have for some δ1, δ2 that λ = e : δ1 ⊕ δ2 with

[M ⊕N] T1
e:δ1−−→ T ′1 and [M ⊕N] T2

e:δ2−−→ T ′2

and fe(T1 | T2)∪ {e} disjoint from dom(N), so also fe(T1)∪ {e} and fe(T2)∪ {e}
disjoint from dom(N). By IH we find then transitions

[M] T1
e:δ1−−→ T ′1 and [M] T2

e:δ2−−→ T ′2

establishing by [par] a transition [M] T1 | T2 e:δ1⊕δ2−−−−−→ T ′1 | T ′2.
For [local] we are given a transition

[M ⊕N] (νf : Φ) T
γ(δ\f)−−−−→ (νf : Φ′) T ′ .

such that for some e

[M ⊕N, f : Φ] T
e:δ−−→ T ′ and f : Φ′ = (e : δ) · f : Φ

and either e = f and γ = νe or γ = e. In the former case, we have by assump-
tion fe(T) = fe((νf : Φ) T) disjoint from dom(N) and by the bound variable

233

convention we may assume e = f also not in the domain of dom(N). Hence

fe(T) ∪ {e = f} also disjoint from N and by IH we have [M,f : Φ] T
e:δ−−→ T ′

which by [local] yields the requisite transition. In the latter case, we have be-
cause γ = e that fe(T) ∪ {e} = fe(f{Φ}T) ∪ {e} disjoint from N and again by
IH we find the requisite transition.

Finally, the cases [rep] and [par-2] are straightforward applications of IH,
noting for the former that fe(T) = fe(e{T}) and for the latter that fe(T) ⊆
fe(T | U) and so in both cases disjointness with N is preserved as we move to
the hypothesis.

Lemma 8. If [M] T
γ:δ−−→ T ′ with δ = (X, I,R) then e ∈ X resp. e ∈ I implies

T = C(f →% e) resp. T = C(f →+ e) with e not bound in C(−).

Proof. Easy induction on the derivation of the transition.

Lemma 9. Let P be non-invasive for Q, and suppose M1, S,M2 is the canonical

separation of P ⊕Q = [M1 ⊕ S ⊕M2] T1 | T2. If also [M1 ⊕ S ⊕M2] T1
γ:δ−−→ T ′1

with δ = (X, I,R), then X, I are both disjoint from fe(Q).

Proof. Immediate from the Definition of non-invasiveness and Lemma 8.

Lemma 10. Let P be non-invasive for Q, and suppose M1, S,M2 is the canoni-

cal separation of P⊕Q = [M1 ⊕ S ⊕M2] T1 | T2. If also [M1 ⊕ S ⊕M2] T1 | T2 γ:δ−−→
T ′1 | T ′2 then the following are true.

1. If `(γ) ∈ alph(Q) then for some δ′ we have [S ⊕M2] T2
γ:δ′−−→ T ′2 and (γ : δ) ·

(S ⊕M2) v (γ : δ′) · (S ⊕M2).
2. If `(γ) 6∈ alph(Q) then (γ : δ) · (S ⊕M2) v S ⊕M2.

Proof. We proceed by cases on γ; suppose first γ = νe. If νe is a binder of
T2, we must have `(γ) ∈ alph(Q) and the transition must arise by (the rule
symmetric to) [par-2]. By definition of canonical separation we have fe(T2) dis-

joint from dom(M1) and so by Lemma 7 we find a transition [S ⊕M2] T2
νe:δ−−→

T ′2, altogether establishing (1). If instead νe is a binder of T1, we must have
`(γ) 6∈ alph(Q) lest non-invasiveness be contradicted. In that case we must have
a transition

[M1 ⊕ S ⊕M2] T1
νe:δ−−→ T ′1

by Lemma 9 we find (γ : δ) · (S ⊕M2) v S ⊕M2.
Suppose instead γ = e. In this case the transition must be derived by [par],

and so by Lemma 6 there exists unique δ1, δ2 such that

[M1 ⊕ S ⊕M2] T1
e:δ1−−→ T ′1 and [M1 ⊕ S ⊕M2] T2

e:δ2−−→ T ′2

Suppose for (1) that `(e) ∈ alph(Q). By non-invasiveness and canonicity of sepa-
ration we then have that e 6∈ dom(M1) and that fe(T2) is disjoint from dom(M1),
and so by Lemma 7 we have a transition

[S ⊕M2] T2
e:δ2−−→ T ′2

234

By Lemma 9 it now follows that (e : δ1 ⊕ δ2) · (S ⊕M2) v (e : δ2) · (S ⊕M2).
Suppose instead for (2) that `(e) 6∈ alph(Q). It follows that e 6∈ fe(T2), and so
δ2 = (∅, ∅, ∅). We now find (γ : δ) · (S ⊕M2) v S ⊕M2 by Lemmas 7 and 9.

Lemma 11. Let P be non-invasive for Q, and suppose M1, S,M2 is the canoni-

cal separation for P⊕Q = [M1 ⊕ S ⊕M2] T1 | T2. If also [M1 ⊕ S ⊕M2] T1 | T2 γ−→
[M ′1 ⊕ S′ ⊕M ′2] T ′1 | T ′2 = R where the latter is also a canonical separated then
the following are true.

1. If `(γ) ∈ alph(Q) then [S ⊕M2] T2
γ−→ [N] T ′2 where S′ ⊕M ′2 v N .

2. If `(γ) 6∈ alph(Q) then S′ ⊕M ′2 v S ⊕M2.

Proof. Immediate from the preceding Lemma and rules [effect] and [effect-2].

We are now finally ready for the first main technical result of the paper: That
the syntactically decidable non-invasiveness property implies conservation.

Theorem 2. If P is non-invasive for Q then P is conservative for Q.

Proof. Let M = M1⊕S⊕M2 be the canonical separation of P ⊕Q, and consider
a finite or infinite run of R0 = P ⊕Q = [M] T1 | T2:

R0
γ0−→ R1

γ1−→ . . .

By induction on i using Lemma 4, we can write eachRi as a canonically separated
process

Ri = [M i
1 ⊕ Si ⊕M i

2] T i1 | T i2 = ([M i
1 ⊕ Si] T i1)⊕ ([M i

2 ⊕ Si] T i2)

where alph([M i
1 ⊕ Si] T i1) = alph(P) and alph([Si ⊕M i

2] T i2) = alph(Q), and
[M i

1] T i1 is non-invasive for [M i
2] T i2. We prove by induction that there exists

a sequence N i satisfying (a) N0 = S0 ⊕M0
2 , (b) Si ⊕M i

2 v N i, and (c)

N i+1 = N i when `(γi) 6∈ alph(Q)

[N i] T i2
γi−→ [N i+1] T i+1

2 when `(γi) ∈ alph(Q)

The Theorem then follows. We have immediately N0, obtaining (a). For (b) and
(c), consider some i > 0, and assume first `(γi) 6∈ alph(Q). By Lemma 11, Part
2, we then have Si+1 ⊕Mi+1 v Si ⊕Mi v Ni = Ni+1, obtaining (b) and (c).
Assume instead `(γi) ∈ alph(Q). Then take N i+1 = N where N is given by
Lemma 11, Part 1, immediately obtaining (b) and (c).

5 Turing completeness of DCR∗

In this section we show that DCR∗ has the full power of Turing machines by
reduction from the Halting Problem for Minsky machines [28]. This is in contrast
to the fact that the DCR process language of Section 2 can be shown (essentially

235

via encoding to and from Büchi-automata) to characterise exactly languages that
are the union of a regular and an ω-regular language.4

A Minsky machine m = (R1, R2, P, c) comprises two unbounded registers
R1, R2; a program P , which is a list of pairs of addresses and instructions; and
a program counter c, giving the address of the current instruction. It has the
following instruction set.

inc(i, a) Add 1 to the contents of register i. Proceed to a.

decjz(i, a, b) If register i is zero, proceed to a. Otherwise subtract 1 from
register i and proceed to b.

halt Halt execution (wlog assumed to appear exactly once).

We construct, given a Minsky machine m, a term t(m) and a marking m(m).
We model machine instructions as events. To maintain execution order, we model
program addresses explicitly as events a. These events serve only to constrain
the execution of other events; they should not themselves happen, and we pre-
vent them from doing so with a condition a →• a for each a. By making each
instruction event e conditional on its program point a, a →• e, we ensure that
only if a is excluded may e happen. To move the program counter from a to b, we
re-include a and exclude b. We define a shorthand insn(e, a, b) for an instruction
event e at program point a proceeding to program point b as follows:

insn(e, a, b) = a→• e | a +← e | b %← e

Now, registers. We model each a : decjz(i, b, c) by two events: one, decjza,
which can happen only when the register is zero, and a second, decjna, which
can happen only when it is not. Then we model increments by making each
increment reproductive, replicating a new copy of decjna for every decrement
instruction a : decjz(i, b, c) in P . The copies produced by a single increment
represents the opportunity for exactly one of these instructions to decrement.
Thus, we make the copies in a single increment exclude each other. To make
sure that decjza cannot happen if the register is non-zero, that is, if no decjna

is present, we make the latter a condition of the former: decjna →• decjza.
Altogether, the term for one increment is constructed by the following function.
(We write (Ni∈Ixi : M) for (νxi1 : M) . . . (νxin : M) when I = {i1, . . . , in}.)

one(i) =
(

N
a:decjz(i,c,d)

decjna : (f,t, f)
) ∏

a:decjz(i,c,d)

(
insn(decjna, a, d) |

decjna →• decjza |
∏

a′:decjz(i,b′,c′)

decjna
′

%← decjna
)

Adding one to a register i is accomplished by making a new copy of one(i).

inc(a, i, b) = insn(inca, a, b) | inca{one(i)}
4 This result is similar to the expressiveness result for DCR Graphs sketched in [30],

and can be found in the full version [11].

236

We put it all together and define t(m) for a Minsky machine m = (R1, R2, P, c).

t(m) =
∏

a:inc(i,b)∈P
inc(a, i, b) |

∏

a:decjz(i,b,c)∈P
insn(decjza, a, b)

|
∏

a:halt∈P
a→• halt |

∏

a:I∈P
a→• a |

∏

i<R1

one(1) |
∏

i<R2

one(2)

Finally, the marking m(m) is given below. (Recall that c is the program counter.)

c a when a 6= c decjza inca halt
Happened f f f f f

Included f t t t t
Restless f f f f t

Example 7. As an example, let us consider a Minsky machine adding the con-
tents of register 2 to register 1. We’ll consider the machine (0, 1, P, 1), where P
is the program:

1 : decjz(2, 3, 2)
2 : inc(1, 1)
3 : halt

Applying the above construction, we get the following term (split out in a
table for readability).

∏

a:inc(i,b)∈P
inc(a, i, b)

∏

a:decjz(i,b,c)∈P
insn(decjza, a, b)

2→• inc2 1→• decjz1
2 %← inc2 1 +← decjz1

1 +← inc2 3 %← decjz1

inc2{0}
∏

a:halt∈P
a→• halt

∏

a:I∈P
a→• a

∏

i<R1

one(1)
∏

i<R2

one(2)

3→• halt 1→• 1 0 (νdecjn1 : (f,t, f))
2→• 2 1→• decjn1
3→• 3 1 +← decjn1

2 %← decjn1

decjn1 →• decjz1
decjn1 %← decjn1

We emphasise that in the column Πi<R2
one(2), all instances of decjn1 are within

the scope of the binder and thus local. ut

Theorem 3. A Minsky machine m halts iff [m(m)] t(m) has an accepting run.

Proof. (Sketch) The proof is based on a bisimulation relation between finite ex-
ecution traces of the Minsky machine m and reachable markings of the encoding
[m(m)] t(m). First we observe that in every reachable marking of [m(m)] t(m)

237

exactly one of the program address events will be included and exactly one event
is enabled. The bisimulation relation will relate an execution trace of the Minsky
machine ending in address j to a marking in which that event is excluded. Next
we prove that for every pair, the machine can perform an instruction iff the
encoding can execute the corresponding event, and that the form of the process
t(m) is preserved as well as the global marking m(m), except that instruction
events are being recorded as executed (and excluded in the case of decjn) is
preserved by steps. It follows that the restless halt event can be eventually
executed if and only if the machine can execute the halt command.

6 Conclusion, Related and Future Work

We first presented the constraint-based Dynamic Condition Response (DCR)
language, which generalises event structures using the notions of dynamic in-
clusion and exclusion of events, and conditions and responses introduced in our
work on DCR Graphs. We provided a compositional semantics for the DCR
language and noted that it provides a term language for (modular definition
of) DCR Graphs. We then extended the DCR language to the DCR∗ language,
allowing dynamic creation of sub processes with (fresh) local events. This exten-
sion was inspired by the recent extension of DCR Graphs to hierarchical DCR
Graphs [12], which is motivated in practice and exemplified in the paper by a
grant application process, in which each grant application needs an independent
decision of accept or reject. As the next contribution we introduced a notion
of run-time adaptation by composition for DCR∗ and formalised when an adap-
tation is conservative, i.e. preserves the constraints of the adapted process. As
a key technical result, we provided a decidable approximation to conservative
adaptation referred to as non-intrusive adaptations. We illustrated that non-
intrusive adaptation is useful in practice by showing examples, and also showing
how an intrusive adaptation could be replaced by a non-intrusive one. As the
final technical contribution we proved that the DCR∗ language is Turing com-
plete. This also means that the notion of conservative adaptation is undecidable,
and thus establish the importance of the decidable approximation. The Turing
completeness result should be seen in contrast to the fact that the DCR process
language corresponds to the DCR graphs model, which is known to characterise
exactly languages that are the union of a regular and an ω-regular language.

Related Work. As the DCR language is essentially a term language for DCR
Graphs [30,36,18]; which in turn is a descendant of event structures that are
closely related to Petri Nets, DCR processes are also naturally related to Petri
Nets. Petri Nets have been extended to allow modular definition (e.g. via shared
transitions [27]) and to represent infinite computations and ω-regular languages
(e.g. Büchi Net [15]). However, as mentioned in the introduction, Petri net in-
troduces the intentional construct of places marked with tokens, as opposed to
event structures and DCR∗ processes only relying on causal and conflict relations
between events. A number of variants of event structures with asymmetric con-
flict relation related to the asymmetric exclude relation of DCR processes have

238

been proposed, including extended bundle event structures [25,17], dual event
structures [24,26], asymmetric event structures [6], and precursor event struc-
tures [16]. Automata based models like Event automata [33] and local event
structures [21] also allows for asymmetric conflicts, but they introduce the no-
tion of states explicitly and do not express the notion of causality and conflicts
as relations between events. Besides the early work on restless events in [37], we
are not aware of other published work generalising event-structures to be able to
express liveness properties or to distinguish between events that may and events
that must eventually be executed. Reproductive events of the DCR∗ process lan-
guage relate to replication in process calculi and higher-order Petri nets [23]. We
are not aware of other work combining such higher-order features and liveness.

Run-time adaptation is emerging as an important topic in many branches of
computer science. Much previous work dealt with imperative process notations
such as Petri nets [35] and process calculi [5,8,9] requiring predefined adapta-
tion points and often dealing with adaptations via higher-order primitives. In
contrast, adaptation in DCR∗ is dealt with by composition, which due to the
declarative nature allow for cross-cutting adaptations without the need for pre-
specified adaptation points.

Within the BPM community, interest in declarative languages arose with the
work on Declare [4,1]. Declare is in essence a template language, consisting of
typical constraints encountered in business processes which are given a formal
semantics by mapping them to LTL formulae. In contrast to DCR Graphs, where
there is a close connection between the design-time and run-time of a model, the
execution and analysis of Declare models relies on a mapping to LTL and then to
automata (in fact, Declare semantics only consider finite executions). Addition-
ally Declare has a relatively large set of basic constraints, for which the formal
expressiveness is still an open question, but is clearly limited to at most that
of LTL, while DCR Graphs with only 4 basic constraints offers the full expres-
siveness of regular and ω-regular languages. As another alternative [29] provides
a mapping from Declare constraints to the CLIMB Computational Logic-based
language, which allows the use of its reasoning techniques for support and veri-
fication of Declare processes at design- and run-time.

More recently the Guard-Stage-Milestone (GSM) approach [22] has been de-
veloped at IBM Research, which offers a data-centric business process modelling
notation. The notation consists of stages, which have guards controlling when
the stage may start, and milestones controlling when and how a stage may close.
While the guards and milestones give a declarative flavour to the notation, it
is still mainly data-centric, whereas DCR is mainly focussed on describing the
events (or activities) of the system and the relations between them.

While imperative process models such as BPMN [32] have supported dy-
namic sub-processes for some time now, they are only recently being studied
for declarative languages [39]. In most cases, there is a tendency to emphasise
sub-processes that do not have independent life cycles, that is, a sub processes
is spawned, and must run to completion before the super process may resume;
this includes [39]. Interestingly, it is noted in ibid. that extending the model with

239

sub-processes seems to increase its expressive power; we formally confirm that
supposition here, finding DCR graphs with sub-processes to be Turing complete.

Future work. The work opens several interesting paths for future work. Firstly,
the DCR∗ processes as defined only interact via shared events. We are currently
working on adding interaction between concurrent events, labelled with send
and receive labels as found e.g. in the π-calculus, thereby lifting the results of
the present paper to π-like languages. In relation to that, we also work on ex-
ploring independence model (also referred to as true-concurrency) semantics of
DCR∗ processes, which benefits from the explicit definition of events in DCR∗

processes. An independence model semantics could support partial order ver-
ification techniques and refinement of events. We have also initiated work on
exploiting the idea of responses and restless events in the domain of behavioural
types [13] and run-time monitoring [30], which provides an avenue for analysing
infinite-state systems. Along another path, we have in [10] initiated an explo-
ration of branching simulations between transition systems with responses, a
generalisation of the LTS-with-acceptance of Def. 1, which we believe will gener-
alise modal transition systems and refinement to models expressing more general
liveness properties. The next step from that exploration will be to investigate
branching bisimulation congruences. The DCR∗ process language should also
be formally related to the hierarchical DCR Graphs introduced in [12] and the
relation to modular [27] and higher-order Petri Nets [23] should be investigated.
We conjecture that DCR∗ and hierarchical DCR Graphs are equivalent, but
the mapping is not as straightforward as the one between basic DCR processes
and Graphs. Finally, time constraints and more general adaptations as initi-
ated in [20,31], e.g. allowing to remove constraints and events should be further
investigated.

Acknowledgments. We thank the anonymous reviewers for helpful comments.

References

1. van der Aalst, W., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010), http://www.win.tue.nl/declare/

2. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) Business Process Management, International Conference, BPM 2003, Eind-
hoven, The Netherlands, June 26-27, 2003, Proceedings. Lecture Notes in Com-
puter Science, vol. 2678, pp. 1–12. Springer (2003), http://dx.doi.org/10.1007/
3-540-44895-0_1

4. van der Aalst, W.M., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer (2006)

5. Anderson, G., Rathke, J.: Dynamic software update for message passing programs.
In: Jhala, R., Igarashi, A. (eds.) APLAS. Lecture Notes in Computer Science, vol.
7705, pp. 207–222. Springer (2012)

6. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event
structures, and processes. Information and Computation 171, 1–49 (2001)

240

7. Barthe, G., Pardo, A., Schneider, G. (eds.): Software Engineering and Formal
Methods - 9th International Conference, SEFM 2011, Montevideo, Uruguay,
November 14-18, 2011. Proceedings, LNCS, vol. 7041. Springer (2011)

8. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Steps on the road to
component evolvability. In: Proceedings of the 7th International Conference on
Formal Aspects of Component Software. pp. 295–299. FACS’10 (2012), http:

//dx.doi.org/10.1007/978-3-642-27269-1_19

9. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Adaptable processes. Logical
Methods in Computer Science 8(4) (2012)

10. Carbone, M., Hildebrandt, T.T., Perrone, G., Wasowski, A.: Refinement for tran-
sition systems with responses. In: FIT. EPTCS, vol. 87, pp. 48–55 (2012)

11. Debois, S., Hildebrandt, T., Slaats, T.: Towards a foundation for modular run-time
adaptable process-aware information systems (full version), http://www.itu.dk/

~hilde/dcrpl-full.pdf

12. Debois, S., Hildebrandt, T.T., Slaats, T.: Hierarchical declarative modelling with
refinement and sub-processes. In: Business Process Management - 12th Inter-
national Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8659, pp. 18–33. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-10172-9_2

13. Debois, S., Hildebrandt, T.T., Slaats, T., Yoshida, N.: Type checking liveness for
collaborative processes with bounded and unbounded recursion. In: FORTE. Lec-
ture Notes in Computer Science, vol. 8461, pp. 1–16. Springer (2014)

14. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: A case for declarative process
modelling: Agile development of a grant application system. In: 3nd International
Workshop on Adaptive Case Management and other non-workflow approaches to
BPM (AdaptiveCM 2014) (2014)

15. Esparza, J., Melzer, S.: Model checking ltl using constraint programming. In:
Azéma, P., Balbo, G. (eds.) Application and Theory of Petri Nets 1997, Lecture
Notes in Computer Science, vol. 1248, pp. 1–20. Springer Berlin Heidelberg (1997),
http://dx.doi.org/10.1007/3-540-63139-9_26

16. Fecher, H., Majster-Cederbaum, M.: Event structures for arbitrary disruption. Fun-
dam. Inf. 68(1-2), 103–130 (Apr 2005)

17. van Glabbeek, R., Vaandrager, F.: Bundle event structures and ccsp. In: Ama-
dio, R., Lugiez, D. (eds.) CONCUR 2003 - Concurrency Theory, Lecture Notes
in Computer Science, vol. 2761, pp. 57–71. Springer Berlin Heidelberg (2003),
http://dx.doi.org/10.1007/978-3-540-45187-7_4

18. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69, pp.
59–73 (2010)

19. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition re-
sponse graphs. In: FSEN. LNCS, vol. 7141, pp. 343–350. Springer (2011)

20. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Log.
Algebr. Program. 82(5-7), 164–185 (2013), http://dx.doi.org/10.1016/j.jlap.
2013.05.005

21. Hoogers, P., Kleijn, H., Thiagarajan, P.: An event structure semantics for general
petri nets. Theoretical Computer Science 153(1–2), 129 – 170 (1996), http://www.
sciencedirect.com/science/article/pii/0304397595001204

22. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Line-
han, M.H., Maradugu, S., Nigam, A., Sukaviriya, P., Vacuĺın, R.: Introducing the

241

guard-stage-milestone approach for specifying business entity lifecycles. In: WS-
FM. LNCS, vol. 6551, pp. 1–24. Springer (2010)

23. Janneck, J.W., Esser, R.: Higher-order petri net modelling: Techniques and ap-
plications. In: Proceedings of the Conference on Application and Theory of Petri
Nets: Formal Methods in Software Engineering and Defence Systems. pp. 17–25.
CRPIT ’02 (2002), http://dl.acm.org/citation.cfm?id=846335.846338

24. Katoen, J.P.: Quantitative and qualitative extensions of event structures. Ph.D.
thesis, University of Twente, Enschede (April 1996)

25. Langerak, R.: Transformations and Semantics for LOTOS. Universiteit Twente
(1992), http://books.google.dk/books?id=qB4EAgAACAAJ

26. Langerak, R., Brinksma, E., Katoen, J.P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR ’97:
Concurrency Theory, Lecture Notes in Computer Science, vol. 1243, pp. 317–331.
Springer Berlin Heidelberg (1997)

27. Latvala, T., Mäkelä, M.: Ltl model checking for modular petri nets. In: Cortadella,
J., Reisig, W. (eds.) Applications and Theory of Petri Nets 2004, Lecture Notes
in Computer Science, vol. 3099, pp. 298–311. Springer Berlin Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-27793-4_17

28. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
29. Montali, M.: Specification and Verification of Declarative Open Interaction Models

- A Logic-Based Approach, Lecture Notes in Business Information Processing,
vol. 56. Springer (2010)

30. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition
Response Graphs. Ph.D. thesis, IT University of Copenhagen (June 2012)

31. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC. pp. 127–136.
IEEE (2013)

32. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0, http://www.omg.org/spec/BPMN/2.0/PDF

33. Pinna, G., Poigné, A.: On the nature of events: another perspective in con-
currency. Theoretical Computer Science 138(2), 425 – 454 (1995), http://www.

sciencedirect.com/science/article/pii/030439759400174H, meeting on the
mathematical foundation of programing semantics

34. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

35. Sibertin-Blanc, C., Mauran, P., Padiou, G.: Safe Adaptation of Compo-
nent Coordination. Proceedings of the Third International Workshop on
Coordination and Adaption Techniques for Software Entities 189, 69–85 (juil-
let 2007), http://www.sciencedirect.com/science?_ob=MImg&_imagekey=

B75H1-4P5RTKV-6-1&_cdi=13109&_user=4373277&_orig=browse&_coverDate=

07%252F17%252F2007&_sk=998109999&view=c&w
36. Slaats, T., Mukkamala, R.R., Hildebrandt, T.T., Marquard, M.: Exformatics

declarative case management workflows as DCR graphs. In: BPM. LNCS, vol.
8094, pp. 339–354. Springer (2013)

37. Winskel, G.: Events in Computation. Ph.D. thesis, University of Edinburgh (1980)
38. Winskel, G.: Event structures. In: Advances in Petri Nets. LNCS, vol. 255, pp.

325–392. Springer (1986)
39. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandabil-

ity considerations of hierarchy in declarative business process models. In: BM-
MDS/EMMSAD. Lecture Notes in Business Information Processing, vol. 113, pp.
167–181. Springer (2012)

242

8 Hybrid BPM Technologies

243

Declarative Modeling—An Academic Dream or
the Future for BPM?

Hajo A. Reijers1,2, Tijs Slaats3,4, and Christian Stahl1

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{H.A.Reijers, C.Stahl}@tue.nl
2 Perceptive Software, Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands

3 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
TSlaats@itu.dk

4 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. Declarative modeling has attracted much attention over the
last years, resulting in the development of several academic declarative
modeling techniques and tools. The absence of empirical evaluations on
their use and usefulness, however, raises the question whether practi-
tioners are attracted to using those techniques. In this paper, we present
a study on what practitioners think of declarative modeling. We show
that the practitioners we involved in this study are receptive to the idea
of a hybrid approach combining imperative and declarative techniques,
rather than making a full shift from the imperative to the declarative
paradigm. Moreover, we report on requirements, use cases, limitations,
and tool support of such a hybrid approach. Based on the gained insight,
we propose a research agenda for the development of this novel modeling
approach.

1 Introduction

Imperative modeling is currently the most prominent modeling paradigm in
BPM. Imperative modeling techniques are implemented in almost every model-
ing tool, and many imperative modeling languages have been developed, most
prominently, Event-Driven Process Chains (EPCs) and Business Process Mod-
eling Notation. Imperative models take an “inside-out” approach; that is, every
possible execution sequence must be modeled explicitly. As a consequence, im-
perative modeling may lead to over-specification and lack of flexibility, making
it difficult to defer decisions at runtime and to change existing process mod-
els [21,2].

To overcome these shortcomings, declarative modeling approaches have been
proposed [3]. In contrast to imperative approaches, declarative models take an
“outside-in” approach. Instead of describing how the process has to work ex-
actly, only the essential characteristics are described. To this end, constraints
are specified that restrict the possible execution of activities.

244

2

Research on declarative modeling has gained increasing interest over the last
years. Declarative languages, such as Declare [3] (formerly known as DecSer-
Flow), DCR Graphs [12] and SCIFF [14], have been developed. These languages
have been integrated in academic and industrial modeling tools [24].

Beside the development of declarative techniques, also empirical research
has been conducted to study the relation between imperative and declarative
approaches [8,9,22,20]. It is well understood how to specify properties of a busi-
ness process, but it is still not clear how to define a business process modeling
languages that is understandable [8] on the one hand, and enables maintainabil-
ity [9], expressiveness and modeling comfort, on the other hand.

To the best of our knowledge, there does not exist any studies that reflect
on the question whether declarative techniques can be used in practise from a
practitioner’s standpoint. This raises a question, which has not been answered
yet: Do practitioners see opportunities to use declarative techniques?

The contribution of this paper is to present what practitioners think of declar-
ative modeling. In that way, we close the gap between research on declarative
techniques and empirical investigations on declarative modeling. Our results are
based on a workshop on declarative modeling with ten professionals from in-
dustry, including both consultants involved in modeling projects and developers
of industrial modeling tools. During the workshop, we introduced declarative
modeling techniques, performed two modeling assignments, and discussed the
prospects of a declarative approach. The evaluation, both qualitative and quan-
titative, shows that practitioners see good opportunities for a hybrid approach
combining imperative and declarative techniques while they are skeptical regard-
ing a purely declarative approach. With the gained insight from the discus-
sion, we present requirements on such a hybrid approach, use cases, limitations,
and requirements concerning tool support. Shifting the focus from imperative
and declarative modeling to a hybrid approach raises many research questions.
Therefore, we propose a research agenda for the BPM community to make the
hybrid approach work.

We continue with a brief introduction to Declare and DCR Graphs, two
declarative approaches we used throughout the workshop. In Sect. 3, we de-
scribe the outline of the workshop and our evaluation method. The quantitative
evaluation is described in Sect. 4, and Sect. 5 reports on the qualitative evalua-
tion. In Sect. 6, we present our research agenda. We close with a conclusion and
directions for future work.

2 Declare and DCR Graphs by Example

In this section, we briefly introduce two declarative modeling approaches, De-
clare [3,24] and DCR Graphs [12], using the following example of a document
management system. To simplify the presentation, we restrict ourselves to the
control flow dimension and do not consider data or resources.

Example 1. Every case of the document management system is initially created
and eventually closed. For a created case, an arbitrary number of documents can

245

3

Fig. 1. Declare model of the document management system

be uploaded. An uploaded document can be downloaded or searched. At any time,
a case can be locked. After locking a case, it is not possible to upload a document;
still, uploaded documents can be downloaded and searched. Furthermore, in
every case, meetings can be held. To hold a meeting, it has to be (re-)scheduled.
Meetings can be rescheduled arbitrarily often, but it is not possible to schedule
more than one meeting in advance.

2.1 Declare

A Declare model consists of activities and constraints. An activity is depicted
as a rectangle and a constraint as a hyper-arc (i.e., a constraint connects one
or more activities). From the specification, we identify eight activities which are
highlighted in the description. Figure 1 shows the Declare model of the example.
The init symbol on top of activity Create Case specifies that every case of the
document management system starts with activity Create Case. Likewise, the
last symbol on top of activity Close Case specifies that the final activity of every
case of the document management system is Close Case.

There are three types of arcs in Fig. 1. Each arc type specifies one type of
constraint. The precedence constraint, modeled as an arc from Upload Document
to Download Document specifies that a document has to be uploaded before
it can be downloaded. Likewise, we can only search a document once it has
been uploaded (arc from Upload Document to Search Document). The second
type of constraint is the not-succession constraint, which is modeled by an arc
from Lock Case to Upload Document. It specifies that after a case has been
locked, we cannot upload new documents. The third type of constraint, alternate
precedence, is the arc from Schedule Meeting to Hold Meeting. It means that a
meeting can only be held after it has been (re-)scheduled at least once. Moreover,
after a meeting has been held, the next meeting has to be (re-)scheduled before

246

4

Fig. 2. DCR Graph model of the document management system

it can be held (i.e., activity Hold Meeting has to be followed by Schedule Meeting
before Hold Meeting can be executed again).

As mentioned in the introduction, a declarative model only describes the
essential characteristics of a process rather than how the process has to work
exactly. For example, holding and (re-)scheduling meetings is independent from
handling documents. Therefore the respective activities are not connected by
arcs; that is, no constraint restricts their interplay. To execute the model in Fig. 1,
one has to determine which activities are enabled by evaluating all constraints.
Initially, it is the start activity, Create Case. After this activity is executed,
any of the activities Schedule Meeting, Upload Document, Lock Case and Close
Case can occur. A Declare model can be enacted and executed. The tool then
computes the enabled transitions for every state [24].

2.2 DCR Graphs

A DCR Graph model consists of activities, relations, and a runtime marking.
Activities are depicted as rectangles with an “ear” that can contain the roles
which can execute the activity. Activities can be nested under super-activities,
depicted by drawing an activity inside the rectangle of another activity, in which
case any relation that applies to the super-activity, applies to all its sub-activities.
Only the atomic activities (that do not contain any sub-activities of their own)
are executable. The relations are drawn as arrows between activities.

Figure 2 shows the DCR model of the example. The first activity is Create
Case, which should occur before all other activities can occur. We model this
behaviour by the yellow condition relation from Create Case to the super-activity
Manage Case, containing all other activities. The condition relation states that
the second activity (in this case any sub-activity of Manage Case) can not occur
before the first activity (in this case Create Case). We also require that Create

247

5

Case happens only once, which we model through the dynamic exclusion relation
drawn as a red arrow with a percentage sign at the end. Through this relation
Create Case excludes itself from the workflow when it is executed, meaning that
it can not be executed anymore afterward. The next two activities are Schedule
Meeting and Hold Meeting. We should always schedule a meeting before we can
hold a meeting, but it might be the case that a meeting is rescheduled before it
is held. We model this in the following way: Hold Meeting is initially excluded,
meaning that at the start of the workflow it can not be executed before it is
included. Hold Meeting is included by doing Schedule Meeting, modelled by the
dynamic inclusion relation, drawn as a green arrow with a plus sign in the end.
Hold Meeting excludes itself meaning that it can not be executed again before
there has been a new occurrence of Schedule Meeting. The next three activities
are Upload Document, Download Document, and Search Documents. We can not
download or search documents before at least one document has been uploaded,
therefore those activities are initially excluded and will be included by Upload
Document. The case can also be locked through the activity Lock Case, which
makes it impossible to upload further documents, therefore Lock Case excludes
Upload Document. Finally we can close the case by executing the activity Close
Case. We model this by having Close Case exclude the super-activity Manage
Case. Because all activities are nested under Manage Case, Close Case will
exclude all activities from the workflow.

The final two relations of DCR Graphs are not used in the example. First
there is the response relation which states that one activity requires another
activity to happen in the future, when this occurs we say that the second activity
is a pending response and annotate it with an exclamation mark. A workflow is in
an accepting state while there are no included pending responses, in case there
are included pending responses these should be executed before the workflow
can be closed. The second relation that is not shown is the milestone relation, it
captures this accepting condition on the level of activities by stating that while
some activity is a pending response, some other activity can not be executed.

We represent the runtime of a DCR Graph by showing which activities have
been executed at least once before by drawing them with a green check-mark,
showing which activities are pending responses by drawing them with a red
exclamation mark and showing which activities are currently excluded by draw-
ing them with a dashed line instead of a solid line. We call these three sets of
activities the marking of the DCR Graph. Based on the marking we can deter-
mine which activities are enabled: Activities which are excluded (drawn with
a dashed line) are not enabled and activities that are blocked by a condition
and/or milestone relation are also not enabled. In the latter case, we show this
by drawing a red stop-mark on the activity. In Fig. 2, one can see that the only
initially enabled activity is Create Case. All other activities are either excluded
(drawn with dashed lines) or blocked through the condition relation (drawn with
a red stop-mark). We distinguish between being excluded and blocked by a con-
dition/milestone relation because we consider these two as essentially different
states of the activity: When it is blocked it is still a part of the workflow, but

248

6

being stopped from executing. When it is excluded it is not considered as a part
of the workflow at that time. This is also why only included pending responses
will block the workflow from being closed.

2.3 Comparison

Figures 1 and 2 clearly illustrate the idea behind declarative modeling. The main
difference between DCR Graphs and Declare is that the DCR Graph approach
allows to define any constraint using the five basic relations, while one has to
define many more constraint for Declare (some of them are logical combinations
of simpler constraints). Also, Declare represents the runtime of a workflow by
showing the state of the individual constraints—that is, which constraints are
(possibly) satisfied, and which constraints are (possibly) violated. DCR Graphs,
by contrast, represents the runtime of a workflow by showing which tasks have
been executed at least once before, which tasks are pending as a response and
should be done some time in the future, and which tasks are currently included in
the workflow. While on infinite traces DCR Graphs are strictly more expressive
than Declare, this has no impact on practical business process modeling: The
processes under consideration typically produce finite traces.

3 Method

For our evaluation, we worked together with Perceptive Software, a provider of
enterprise content management and BPM technologies. We invited both consul-
tants, who engage with clients to model their processes and implement BPM
suites using such models, and professionals who contribute to the development
of the toolsets. We planned a single workshop that went through the four phases,
as depicted in Fig. 3.

In the first phase (Introduction), we provided the participants with the mo-
tivation for organizing the workshop and gave them a generic introduction to
declarative principles. After this phase, we split the groups into two sub-groups
of equal size. We first randomly assigned half of the consultants to group 1 and
the other half to group 2. We did the same for the developers after that. In
this way, we ensured an even distribution of consultants and developers over the
groups.

The second phase was specific for each group and consisted of a tutorial on
the techniques under consideration (Explanation). In other words, one group
received the tutorial on DCR Graphs and the other on Declare. The tutorials
were provided by separate moderators for each group. Each moderator had deep
expertise in the technique that he explained. The tutorials were synchronized
beforehand between the moderators to guarantee a similar level of depth and
the same duration.

Following up on the tutorials, each group received two assignments. These
assignments were the same for both groups and required the participants to
translate the assignment material into process models (Modeling). Clearly, the

249

7

Explanation ModelingIntroduction

DCR Graphs

Declare

Assignment 1
Assignment 2

Participant 1

Participant n

Assignment 1
Assignment 2

Participant n/2

Participant n/2+1

Discussion

Participant 1

Participant n

Participant n/2

Participant n/2+1

Workshop

Fig. 3. Organization of the workshop

sub-group who received the tutorial on DCR Graphs used this technique; the
other sub-group used Declare. The assignments can be found back at http://

www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013. As we were
not so much interested in checking the correctness of the solutions but in trans-
ferring knowledge on the techniques to the participants, we encouraged them to
work in pairs within each sub-group.

The final phase re-united the sub-groups (Discussion). During this phase,
we first had the participants fill out a questionnaire on usefulness, ease of use,
and intent to use as proposed by Moody [17]. The questionnaire can be used
to get a broad-brush insight into the perceived quality of an IS design method,
building on the concepts known from the Technology Acceptance Model as pro-
posed by Davis [6]. We extended the questions with some more to gather de-
mographic data on the group. The used questions can also be found at http:

//www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013. After the
questionnaire, we engaged in a semi-structured discussion with the group. This
discussion was moderated by one of the authors, while the other authors took
notes. The independently taken notes were used to reach consensus on how the
participants reflected on the questions.

The insights that we gathered during the last phase of the evaluation with
the questionnaire will be referred to as the quantitative evaluation, because the
design of Davis’ list allows for measuring the strength of the perceptions on ease
of use, usefulness, and intent to use. Our insights on the modeling phase and the
open part of the discussion phase will be dealt with as the qualitative evaluation,
as they add a qualifying lens on the results. These respective evaluations will be
discussed next.

250

8

4 Quantitative Evaluation

4.1 Demographics

Overall, ten professionals participated in the workshop. Of these, five are ac-
tive as consultants, modeling processes at client sites and implementing process
management software, while the other five are involved in different roles associ-
ated to the development of process modeling and workflow tools (product man-
ager/architect/developer). For the entire group, the average number of years of
experience in the BPM domain was more than 11 years. Of the ten participants,
on a scale of 1 to 5, three considered themselves to have an intermediate exper-
tise in process modeling (level=3), three to have an advanced level of expertise
(level=4), and the remaining four people considered themselves to be experts
(level=5). Finally, the participants indicated that on average they had each read
close to 15 different process models in the preceding 12 months, while each had
created or updated nearly four models on average in the same period. We are
aware that the number of professionals is rather low. However, within a given
time frame, we were choosing the day for which most professionals indicated
their availability.

4.2 Validity and Reliability

Prior to performing an in-depth analysis of the data that had been gathered
through the questionnaire, the validity and reliability of the empirical indicators
were checked. We determined all correlations between the responses for ques-
tions that were used to measure to same construct (inter-item correlations) and
identified no item that displayed a low convergent validity. In other words, the
questions and their grouping to measure the constructs appeared valid. Next, we
used Cronbach’s alpha to test the reliability of the items to measure the various
constructs. This is a test to check internal consistency of the questions. While
there is no authoritative level for Cronbach’s alpha, it is generally assumed that
levels above 0.7 point at a good reliability of the items [18]. Adequate levels were
established for Perceived Usefulness (0.743) and Perceived Ease of Use (0.826).
However, Intention to Use scored too low (0.600). For this reason, we removed
the latter construct from our main analysis and will only report on the mean
scores of the items. Note that it was the only construct measured using just two
items—an approach to be reconsidered in future applications of the question-
naire.

4.3 Results

Our main analysis then focused on this question: Are the considered techniques,
DCR Graphs vs. Declare, perceived differently by the groups? To select the
appropriate technique, we established with the Shapiro-Wilk test that the re-
spondent answers were normally distributed. We could, therefore, proceed with
applying a one-way ANOVA test with Perceived Usefulness and Perceived Ease

251

9

Perceived
Usefulness

Mean = .29
Std. Dev. = .453
N = 10

Perceived
Ease of Use

Mean = .62
Std. Dev. = .629
N = 10

(Very negative) (Very negative) (Very positive) (Very positive)

Fig. 4. Histograms for Perceived Usefulness and Perceived Ease of Use

of Use as dependent variables and the technique employed as factor. The test
generated p-values of 0.116 and 0.939 for Perceived Usefulness and Perceived
Ease of Use, respectively. By maintaining a confidence level of 95%, both of
these values exceed the 0.05 threshold. In other words, any differences in per-
ception between the used techniques are not statistically significant. Therefore,
we must reject the idea that people perceive the techniques as different in either
their usefulness or their ease of use.

This first important insight allows us to aggregate the responses received from
both groups to determine a view on the usefulness and ease of use of declarative
techniques on a more general level. Figure 4 shows the histograms for the two
constructs under consideration, Perceived Usefulness and Perceived Ease of Use,
aggregating the responses from all ten respondents. Also displayed is the fitted
normal distribution for both constructs.

The histograms display the frequencies of the scores on a scale of -2.0 (very
negative) to +2.0 (very positive). The 0 value indicates the neutral stance (not
negative, not positive). What can be seen is that the averages of the distri-
butions for both constructs are positive, hinting at a receptive mood toward
declarative techniques in terms of both constructs. Note that the mean values
for the two items under consideration for Intention to Use are 0.00 and 1.00. Sec-
ond, Perceived Ease of Use seems to be more positively evaluated than Perceived
Usefulness, with respective mean values of 0.62 and 0.29.

To determine whether the optically favorable outcomes are indeed statisti-
cally significant, we applied one sample t-tests. Like in our previous test, we used
a confidence level of 95%, which means that we will only treat p-values below 0.05
as statistically significant. The outcomes of the t-tests are that the positive mean
score for Perceived Ease of Use is significantly different from zero (p=0.013),
but that this is—just—not the case for Perceived Usefulness (p=0.076). In other
words, one can trust that the positive stance toward the ease of use is not a

252

10

matter of chance. However, this cannot be ruled out for usefulness, despite its
closeness to the cut-off value. Apparently, the involved respondents can easily
use the method, despite the limited amount of training received. They were
not similarly outspoken about the usefulness of a declarative technique, albeit
certainly not negative either.

We finally checked whether the years of experience, the level of expertise, the
type of role (consultant vs. non-consultant), or the modeling intensity in terms
of models read or created had any relation to the outcomes. Interestingly, we
could see that the most negative responses on Perceived Usefulness came from
those respondents who assessed their own level of process modeling expertise
as relatively low. While on average the three respondents with an intermediate
expertise assessed the usefulness of the declarative techniques as negative (-
0.208), the advanced modelers and the experts were positive (0.417 and 0.563,
respectively). Tukey’s HSD (Honestly Significant Difference) confirmed that the
self-assessed level of expertise was a significant factor to explain differences in
scores on Perceived Usefulness (p=0.042). In other words, the higher the level of
expertise, the more merit a participant saw in the declarative techniques. The
other factors had no noticeable effects on the scores.

5 Qualitative Evaluation

In this section, we present the qualitative evaluation of the workshop. In partic-
ular, we report on the results of the modeling assignment and of the discussion
with the professionals.

5.1 Modeling Assignment

As reported in Sect. 3, we split the ten professionals into two groups of five. One
group got an introduction to Declare and the other group to DCR Graphs. After
this introduction of about 30 minutes, each group was asked to work on two small
modeling assignments. One assignment was the document management system,
which we used to illustrate Declare and DCR Graphs in Sect. 2. The second
assignment was a hospital process of similar size and level of difficulty. The
professionals worked in groups of two and three on the two assignments. Each
assignment took less than 15 minutes, after which we presented and discussed
our solution. All four groups came up with a correct solution for each of the two
assignments.

The way we organized the assignment does not allow us to derive overly
strong conclusions. Still, we gained two interesting insights. First, the result
of the assignment shows that it is possible to teach declarative modeling to
practitioners. Although it was difficult for the professionals to get used to the
declarative way of modeling and to the graphical notations of the techniques,
they came up with correct models in reasonable time. Second, we were told
that the graphical notation of Declare and DCR Graphs are too academic and
for practitioners neither convincing nor intuitive. Moreover, also the informal

253

11

description, which we provided for each introduced constraint, did not help them
to easily identify the constraint they needed. These comments hold for both
techniques, DCR Graphs and Declare. This comes, indeed, not as a surprise
as both formalisms have an academic background. However, we expected DCR
Graphs to be more comprehensible and easier to use than Declare because DCR
Graphs only consist of five relations, whereas Declare requires to learn a larger
set of constraints.

5.2 Opportunities for a Declarative Approach

In the subsequent discussion with the professionals, we tried to figure out whether
they see opportunities for a declarative modeling approach. Clearly, such a ques-
tion is difficult to answer given the the short tutorials and only taking two assign-
ments. The participants did indicate that there are probably processes that can
be modeled most naturally using the imperative approach, while others would
fit better with the declarative approach. For example, a clearly well-structured
process of registering a newborn at a townhall can be modeled most naturally
in an imperative way whereas the document management system of Sect. 2 is
an example of a process that can be modeled most natural in a declarative way.
In addition, in almost all processes the professionals came across, there were
always at least parts or subprocesses where an imperative approach seems most
natural. So, the conclusion to this question is that a purely declarative approach
seems less attractive than a hybrid approach, which combines imperative and
declarative modeling aspects.

5.3 Requirements Concerning a Declarative/Hybrid Approach

In the previous section, we showed that practitioners see opportunities for a
hybrid approach. Next, we report on the practitioners’ requirements concerning
the specification, the constraints, the process, and tool support.

The consensus was that the efficient design of a declarative model (or of
the declarative part of a hybrid model) will require a declarative specification.
The reason is that it can be nontrivial to derive constraints from an impera-
tive specification. We received one comment that it might be difficult to get a
declarative specification at all, but we are not that pessimistic. Based on our
experience, it depends on how one formulates questions to domain experts; that
is, asking about the relationship between two activities (i.e., declarative) rather
than which steps can be performed in a certain state (i.e., imperative) will allow
one to come up with a declarative specification.

Other requirements concern the constraints. The involved professionals
brought forward that too many constraints may negatively influence the quality
of a declarative model. For example, many constraints affecting few activities
may result in an unreadable model. Furthermore, they assumed the complete-
ness of the constraints to be crucial, although that is similar to the completeness
of the branching conditions in an imperative model.

254

12

Looking at the process model or the specification to identify “candidate”
parts that may benefit from a declarative modeling approach, the profession-
als suggested to identify parts that have many dependencies (e.g., spaghetti-
like parts). Although such parts seem good candidates, it is unclear whether
a declarative way of modeling results in a better model. Another suggestion
was to identify those parts where much modeling freedom is; for example, a set
of concurrent activities (that preferably occur more than once) with only few
dependencies may result in a simpler declarative model than their imperative
counterpart.

Finally, also proper tool support is a hard requirement. Here, in particular,
the professionals saw deficits in the usability of the academic techniques when
used in a pen-and-paper fashion. We shall discuss tool support in Sect. 5.6 in
more detail.

5.4 Use Cases for a Declarative/Hybrid Approach

In this section, we list use cases for the declarative approach as identified during
the discussion.

Process evolution [21] was mentioned as the main use case by the involved
professionals—that is, manage processes along the various changes it encounters.
Having a set of constraints rather than a graph-based model seems to be bene-
ficial to visualize changes over time, on the one hand and to actually change a
process model, on the other hand. This is, in fact, one of the claimed advantages
of declarative modeling [3,15]. The “outside-in” approach of declarative models
allows for a higher level of abstraction than an imperative process model. There-
fore, it is often simpler to add or remove constraints than changing a BPMN
model, for instance.

The discussion also suggested that the use case for declarative models is tied
to model purpose. Process models serve different purposes—for example, as a
medium to communicate with stakeholders (i.e., communication model) or to
execute a process (i.e., executable model). Especially with respect to the com-
munication aspect, the professionals saw good opportunities for using declarative
techniques. Communication models are rather imprecise (e.g., exceptions may
be left out), and business analysts do not tend to stick to model conventions.
Instead, they may prefer to use short hands to illustrate behavior in a simpli-
fied way, for instance. Here, a hybrid approach looks promising as the business
analyst is provided with a lot of different ways to present the model. Again,
this follows from the higher level of abstraction of declarative models. In con-
trast, there was no common agreement on a declarative approach being useful
for specifying executable models. As an executable model contains all behavior,
a hybrid approach will only be beneficial if it allows for designing more readable
or simpler models.

Another interesting aspect mentioned was that a hybrid approach may result
in fewer errors in the model than using a purely imperative approach. This may
lead to shorter development cycles. We think that this is also a consequence
of the higher level of abstraction in declarative modeling. A modeler has to

255

13

identify the constraints rather than encode it in terms of control flow. However,
no experience report or empirical results exist that confirm this assumption.

5.5 Limitations of a Declarative/Hybrid Approach

In this section, we report on limitations of a declarative/hybrid approach con-
cerning the specification, the modeling paradigm, and the usability.

The main concern regarding the specification is that currently all specifica-
tions are imperative (e.g., “we first do this, then that”), and it seems to be very
difficult to produce a declarative model for such a specification. As discussed in
Sect. 5.3, we think that it is possible to receive declarative specifications.

There has been a paradigm shift in system development from monolithic
systems to component-based systems that are distributed within and across or-
ganizational boundaries. One prominent computing paradigm that implements
this trend is service-oriented computing (SOC) [19]. We received concerns that
in this setting declarative modeling techniques may be less applicable compared
to imperative techniques. The reason for this concern lies in the fact that cer-
tain constraints affect activities of an individual component, whereas other con-
straints affect activities of different components. Declarative techniques have,
however, been successfully applied in the service-oriented setting [14,15], and
it has been studied how a declarative cross-organizational workflow containing
global constraints can be projected to its individual localized components [11],
so we are convinced that this concern is unsubstantiated.

Another limitation concerns the usability of existing techniques and tools.
Current tool support is mainly academic by nature and seems, therefore, not
overly concerned with usability issues. Moreover, the declarative paradigm also
requires a different way of thinking, making it perhaps difficult for practition-
ers to understand declarative models. Here, more research is required to make
declarative techniques more comprehensible.

5.6 Requirements Concerning Tool Support

In this section, we report on feedback we received concerning Declare and DCR
Graphs and general requirements concerning tool support.

Several requirements on tools that were discussed deal with the specification
and visualization of constraints. As mentioned earlier in Sect. 5.1, the profes-
sionals mentioned that working with constraints was relatively difficult for them.
The graphical notations used in Declare and DCR Graphs were not always that
intuitive. Moreover, specifying constraints in plain English is not always help-
ful either, because it is often nontrivial to identify the differences between two
constraints. Therefore, the professionals proposed that constraints should be au-
tomatically derived from an informal textual specification. This problem has
indeed been investigated in the field of computer-aided verification, for instance.
Different approaches have been proposed, for example [7,5], but none of them
could solve the problem entirely.

256

14

A given set of constraints makes it necessary to check for conflicting con-
straints. This is a feature which has been implemented in most declarative mod-
eling tools [24], but has also been investigated in the context of compliance
rules [4], for instance. Another important feature is to generate a model from a
given set of constraints and to identify missing features. This problems is related
to scenario-based programming [10]. In case an implementation and recorded
event logs exist, process mining techniques to automatically derive missing con-
straints from the logs are required. First attempts at dealing with this topic
exist, see [13].

Besides modeling support, tools should preferably also provide operational
support. For example, event logs may be exploited to provide at runtime the best
possible next step. Such features are implemented in recommender systems.

Finally, usability plays an important role. Specification of constraints, their
graphical representation and the complete interplay between the tool and an end
user must be on an abstraction level that is adequate to the task at hand.

6 Research Agenda

In this section, we pick up the results from the discussion with the professionals
as presented in the previous section. We propose a research agenda for the devel-
opment of a hybrid modeling approach that combines imperative and declarative
techniques. The aim is thereby to point out necessary steps for developing and
actually using a hybrid technique rather than a complete research agenda.

Model guidelines In order to apply the hybrid approach, a modeler has to know
when to model in an imperative and when in a declarative way. In other words,
we need to identify modeling guidelines to guide modelers through the modeling
process. This requires rules for identifying imperative and declarative “candi-
date” parts on the level of an existing (imperative) process model (e.g., for
process redesign), on the level of event logs (e.g., for process discovery), and on
the level of (informal) specifications (e.g., for designing a new model).

Identify the hybrid technique Modeling in a hybrid way requires a well-suited
modeling language. It needs to be investigated whether we can combine existing
imperative and declarative languages or whether a new language has to be de-
signed. For instance, we can integrate a declarative part as a subprocess into an
imperative model (e.g., as a hierarchical transition in a Petri net or subprocess
task in BPMN) or we can allow declarative and imperative constructs to coexist
within a single subprocess. The modeling language must in any case support
hierarchy. In the latest version of CPN Tools [23], Westergaard integrated DCR
Graphs and Declare into Colored Petri nets. It turned out that defining the
semantics of such models is nontrivial.

Beside that, it needs to be settled which constraints are relevant for practise
and, thus, what the expressiveness of the declarative part of the language is.
Empirical research has shown [8,9] that certain declarative constructs may be

257

15

more difficult to understand. Thus, we think the language should not contain
too many declarative constructs, but this needs further empirical investigation.

Also, the graphical representation of hybrid models must be investigated. Dif-
ferent graphical notations exist, for example, compare DCR Graphs and Declare.
Insights from [16] may aid the design of a hybrid notation.

Analysis of hybrid models The novel modeling approach needs analysis tech-
niques including the verification of models, performance analysis, and property-
preserving abstraction and refinement techniques. Also, process mining tech-
niques [1] are needed—for example, checking the conformance of an event log
and a hybrid model and discovering a hybrid model from a given event log.

Tool support To show the applicability of the hybrid modeling technique, tool
support is a sine qua no. As reported in Sect. 5.6, research has to be performed
to simplify the use of declarative techniques, for example, finding a way to derive
constraints from informal specifications that can be used by business analysts
without requiring knowledge about temporal logics.

7 Conclusion

We reported on a workshop on declarative modeling given to professionals from
industry. The goal of this workshop was to gain insight into what practitioners
think about declarative modeling and what opportunities they see to use this
technique. Our quantitative evaluation showed that they were mostly positive
and open to this modeling paradigm. In particular, the techniques were rather
easy to learn. The qualitative evaluation showed that the practitioners did single
out the use of declarative techniques in the context of a hybrid approach, which
combines imperative and declarative modeling. Although our study is only based
on a small group of practitioners, we are convinced that practise can benefit from
such a hybrid modeling approach. To arrive at such an approach, we proposed
a research agenda for the development of a hybrid approach.

In our ongoing research, we plan to work on the development of model-
ing guidelines. We will investigate techniques to identify “candidate” parts of
a model for which a declarative way of modeling seems most natural. Also, we
plan to study event logs and process models and try to use the results to iden-
tify constraints that frequently occur. In a second branch of research, we will
investigate what a hybrid technique may look like, thereby using Declare, DCR
Graphs and CPN Tools as starting points for our studies.

References

1. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. Aalst, W.M.P.v.d.: Business process management: A comprehensive survey. ISRN
Software Engineering 2013 (2013)

258

16

3. Aalst, W.M.P.v.d., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

4. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules. In:
BIS 2010. LNBIP, vol. 47, pp. 106–118 (2010)

5. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: SIGSOFT FSE. pp. 208–218. ACM (2006)

6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13(3), 319–340 (1989)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999. pp. 411–420. ACM (1999)

8. Fahland, D., Lübke, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M.,
Zugal, S.: Declarative versus imperative process modeling languages: The issue of
understandability. In: BMMDS. LNBIP, vol. 29, pp. 353–366. Springer (2009)

9. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declar-
ative versus imperative process modeling languages: The issue of maintainability.
In: BPM Workshops. LNBIP, vol. 43, pp. 477–488. Springer (2010)

10. Harel, D.: Come, let’s play - scenario-based programming using LSCs and the
play-engine. Springer (2003)

11. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: SEFM 2011. pp. 237–252. Springer (2011)

12. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES 2010. EPTCS, vol. 69,
pp. 59–73 (2010)

13. Maggi, F.M., Bose, R.P.J.C., Aalst, W.M.P.v.d.: Efficient discovery of understand-
able declarative process models from event logs. In: CAiSE 2012. LNCS, vol. 7328,
pp. 270–285. Springer (2012)

14. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach, LNBIP, vol. 56. Springer (2010)

15. Montali, M., Pesic, M., Aalst, W.M.P.v.d., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. TWEB 4(1)
(2010)

16. Moody, D.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35(6), 756–779 (2009)

17. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods. In: ECIS 2003. pp. 1327–1336 (2003)

18. Nunnally, J.: C.(1978). Psychometric theory. New York: McGraw-Hill (1978)
19. Papazoglou, M.P.: Web Services - Principles and Technology. Prentice Hall (2008)
20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-

tive versus declarative process modeling languages: An empirical investigation. In:
BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer (2012)

21. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer (2012)

22. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The declarative approach to business
process execution: An empirical test. In: CAiSE 2009. LNCS, vol. 5565, pp. 470–
485. Springer (2009)

23. Westergaard, M.: CPN Tools 4: Multi-formalism and extensibility. In: Petri Nets
2013. LNCS, Springer (2013), accepted for publication

24. Westergaard, M., Maggi, F.M.: Declare: A tool suite for declarative workflow mod-
eling and enactment. In: BPM (Demos) 2011. CEUR Workshop Proceedings, vol.
820. CEUR-WS.org (2011)

259

Mixing Paradigms

for More Comprehensible Models

Michael Westergaard1,2? and Tijs Slaats3,4

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

2 National Research University Higher School of Economics,
Moscow, 101000, Russia

3 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

4 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark
m.westergaard@tue.nl, tslaats@itu.dk

Abstract. Petri nets e�ciently model both data- and control-�ow.
Control-�ow is either modeled explicitly as �ow of a speci�c kind of data,
or implicit based on the data-�ow. Explicit modeling of control-�ow is
useful for well-known and highly structured processes, but may make
modeling of abstract features of models, or processes which are highly
dynamic, overly complex. Declarative modeling, such as is supported by
Declare and DCR graphs, focus on control-�ow, but does not specify it
explicitly; instead speci�cations come in the form of constraints on the
order or appearance of tasks. In this paper we propose a combination of
the two, using colored Petri nets instead of plain Petri nets to provide
full data support. The combined approach makes it possible to add a
focus on data to declarative languages, and to remove focus from the
explicit control-�ow from Petri nets for dynamic or abstract processes.
In addition to enriching both procedural processes in the form of Petri
nets and declarative processes, we also support a �ow from modeling
only abstract data- and control-�ow of a model towards a more explicit
control-�ow model if so desired. We de�ne our combined approach, and
provide considerations necessary for enactment. Our approach has been
implemented in CPN Tools 4.

1 Introduction

Petri nets provide a powerful formalism for specifying many real-life systems,
including business processes. Petri nets excel by having a duality between data
and events, yielding a very powerful tool for specifying how data �ows though a
system. Control-�ow of a Petri net model is often modeled explicitly as �ow of a
speci�c kind of data, similar to a program counter in traditional programming.
Alternatively, the control-�ow is not modeled at all, and just manifests as a con-
sequence of the data-�ow. As such, we call a Petri net model a procedural model

? Support from the Basic Research Program of the National Research University
Higher School of Economics is gratefully acknowledged.

260

as the control-�ow when disregarding data is close to procedural programming
languages: modelers specify how to solve a problem. An example where such
a language is useful, is classical �lling of forms, such as a patient registration
process at a hospital.

Declarative speci�cation of processes is an emerging trend for specifying espe-
cially business processes, but it has not seen massive use in practice. Declarative
models often focus primarily on �ow of control, but instead of explicitly modeling
control-�ow as a program counter, constraints between the di�erent events are
described. Declarative languages resemble declarative programming languages:
modelers specify what the intention of the control-�ow is, but not how to achieve
that. An example where such languages are useful, is a patient treatment process
at a hospital; here, many tests need to be run and many treatments are possi-
ble. There is no strict order of tests and treatments, but some treatments are
incompatible with each other, and some treatments need follow-up treatments.

Declarative processes are typically better at describing highly dynamic en-
vironments, where actions can take place in many di�erent orders, or early in
the design, where the exact order of events is unknown. On the other hand,
Petri nets are far better at modeling data-�ow, and the strict control-�ow model
makes it easier to model processes with a strict and well-understood control-
�ow, which also makes it much easier to extract experiences from the model to
an eventual implementation [10]. In this paper, we propose to merge two declar-
ative approaches, Declare [15,19] and DCR graphs [7,13], with a high-level Petri
nets formalism, colored Petri nets [9], to obtain a formalism that o�ers the best
of both worlds. We aim to do so in a manner that makes it possible to use all
three formalisms completely independently of each other or to mix all three for-
malisms in a single model. This makes it also possible to initially construct a
purely declarative model, optionally with data, and during re�nement make it
more procedural as applicable. If we consider a hospital, this allows us to make
a single model comprising both patient registration, diagnosis, and treatment.
The reason for using both DCR graphs and Declare for the declarative parts
is that the languages have di�erent focus areas: Declare provides higher level
primitives, often resulting in more comprehensible models, but DCR graphs do
not su�er from the computational overhead of detecting con�icts necessary to
ensure correct execution of Declare models.

We introduce our combined approach in Sect. 2, including pointers on how to
allow analysis of combined models and our implementation in CPN Tools 4 [17].
In Sect. 3, we sum up our conclusions and compare with related work.

2 Combined Models

In this section we informally introduce our hybrid model and its semantics, and
provide analysis considerations important for implementation. Actual implemen-
tation details are deferred to the next section.

The idea behind the hybrid approach is to identify transitions of CP-nets
with tasks of Declare models and events of DCR graphs and then allow places

261

and arcs (with annotations) from CP-nets, constraints from Declare models,
and the relations from DCR graphs to be added to the model to constrain the
possible executions.

The reason for including these three languages is that CP-nets is a widely
used procedural formalism with a strong theoretical background. It provides
great support for data �ow, both theoretically and practically in the form of
tool support. We also prefer to use both Declare and DCR graphs for specifying
the declarative parts of the model. We choose these two languages because they
are on the surface very similar, yet they have di�erent focus areas.

Declare o�ers a large set of contraints which have been identi�ed as com-
monly used in business processes, making it well-suited to the BPM domain.
DCR Graphs on the other hand aim to provide a formal language for describing
processes in general, containing only 4 basic constrains while still being formally
more expressive than LTL.

By providing both languages, we can use pre-existing tools and techniques to
analyze our combined models, automatically switching from one kind of analysis
to the other as needed.

An execution is considered accepting if it is accepting for all three underlying
models. In other words, the execution should be accepting for the CP-net that
one gets when removing all Declare constraints and DCR Graph relations, it
should be accepting for the Declare model one gets by removing all places, arcs
and DCR Graph relations and it should also be accepting for the DCR Graph
model that one gets by removing all places, arcs and Declare constraints. For-
mally, we can de�ne the semantics of all three languages in terms of transition
systems, and the semantics of the combined language is just the synchroniza-
tion of the three transition systems we get from the individual semantics by
projecting the combined model onto each of the three languages.

2.1 Analysis

We would like to provide a step-wise semantics for combined models. This is
necessary for e�cient simulation. For CP-nets isolated, this is easy because every
state is accepting, so if a binding element sequence is enabled, the execution will
inevitably end in an accepting state. For Declare models and DCR graphs, this
is possible using a preprocessing step: we simply compute the pre�x automaton,
which is possible as they both have a semantics yielding �nite automata, and
only allow a transition if it leads to an accepting state in the pre�x automaton.
For the combined models, however, this is not in general decidable. While we
can construct the transition system product of the 3 automata on the �y, we
cannot employ any of the techniques to ensure we can end up in an accepting
state: as not all states of Declare models and DCR graphs are accepting, not all
states of the product are necessarily accepting, so we cannot just execute any
enabled binding element sequence and be sure to end in an accepting state. As
the transition system we get from a CP-net is not necessarily �nite, neither is
the product, so we cannot compute the pre�x automaton. If either the CP-net
model is bounded (yielding a �nite state space), or the Declare model automaton

262

and the DCR graph automaton only have accepting states, we can use the fact
that these properties are preserved by transition system product and use the
appropriate technique. Otherwise, we must settle for weaker guarantees.

When talking about runtime veri�cation of Declare models [12], each con-
straint can be in not just the two states satis�ed and violated , but also in two
weaker states, where a constraint is only temporarily satis�ed or violated, but
future execution may violate or satisfy it. Only when the execution is termi-
nated, is it possible to collapse possible satis�ed/violated constraints into their
(permanently) satis�ed/violated counterparts.

For DCR Graphs we do not keep track of the state of individual constraints,
instead we have a current marking and on execution check that the executed
event is enabled and calculate the new marking. If a marking contains no pending
included responses, the DCR Graph is in an accepting state and the process can
terminate. Feedback to the user consists of showing which events have occured
before, are enabled and need to occcur.

Simple simulation. As demonstrated in [18], even if Declare is decidable,
constructing the automaton for the full system can be very time and memory
consuming � it is exponential in the number of constraints. To avoid this over-
head, we can instead create an automaton for each individual constraint. If we
do so, we can avoid ever violating individual constraints, while retaining fast
simulation (we can update the model in the initial state in constant time). CPN
Tools o�ers a mixed mode, where simulation and editing are interleaved. This
is useful for testing and debugging, but requires that the simulation can resume
very quickly, so performing an operation that is exponential in the size of the
model may be undesirable (at least for large models). By constructing the indi-
vidual automata, we can avoid ever (permanently) violating constraints, and for
some constraints, e.g., init, this is su�cient. For other constraints, this provides a
best-e�ort but fast simulation mode (we can update the model in constant time
in the initial state). We call this the simple simulation approach. The simple
simulation approach for DCR Graphs comes down to doing basic runtime veri�-
cation as described previously: checking that an event is enabled in the current
marking and calculating a new marking can be done in constant time.

Smart simulation. As shown in [11] some Declare constraints can be in a
con�icted state: they are not violated, but also cannot all be (possibly) satis�ed
at the same time. We can only catch this if we construct the automaton for the
full Declare model. By making the product explicit, we can compute the pre�x
automaton. Unfortunately, the product of the pre�x automata is not su�cient.
As demonstrated in [18], this can still be fairly fast for moderately-sized models
(in the order of seconds for models with 30-50 constraints). We call this smart

simulation: we avoid executing any transition that would lead to a con�icted
state. We can also do smart simulation of the DCR Graph constraints by build-
ing the �nite automaton that corresponds to the graph and only allowing the
execution of events that can lead to an accepting state (i.e., the DCR Graph

263

does not contain any deadlocks). The e�ciency of this approach has not been
investigated structurally yet, but for the models that we have considered to date
the state space tends to be modest. We can compute the product of the automata
from the underlying Declare model and the underlying DCR Graph model to
ensure that the two kinds of declarative constraints cannot con�ict with other
as well.

Data-aware simulation. When combining declarative models with CP-nets,
we get an additional type of con�icts: a declarative constraint might require some
task to be executed, while the the CP-net model blocks its execution (f.e. because
of a missing token). Smart simulation cannot catch this on its own as it only
looks at the declarative (and computable) parts of the model. To handle such
situations we need constraints that yield automata which only have accepting
states, which severely limits the usability, or that the state-space is �nite. Thus,
data-aware simulation is as hard as state space analysis.

For simple examples with small domains, we can just generate the state-space
and perform the synchronization, typically in minutes or hours. If the state-space
is larger but still �nite, we can perform many simulations using smart simulation
and discard any not ending in an accepting state, similar to how simulation is
used for bug-�nding until a �nal veri�cation often is used. After computing the
synchronization, it can be stored e�ciently (often only few states are con�icted).
If we deal with large domains, it is su�cient if we can generate an equivalence-
reduced state-space. This is for example the case if all types are integers or
reals, and we only compare all tokens with integers, similarly to region or zone
reduction for timed automata.

2.2 Implementation

We have implemented our combined models in CPN Tools 4 [5,17]. CPN Tools 4
adds support for simulator extensions [17], a mechanism which makes it possible
to extend CPN Tools using Java code. Each extension can add operations to
CPN Tools and also modify existing operations. The integration comprises 4
parts: GUI extension, syntax check extension, enabling restriction, and analysis.
In Fig. 1, we see how combined models look and are constructed in CPN Tools.

3 Conclusion

In this paper we have introduced a new approach to modelling work�ows com-
bining the procedural formalism colored Petri nets, and the two declarative for-
malisms, Declare and DCR graphs. The combined formalism can be seen as
adding declarative control-�ow to CP-nets or as adding data-�ow to declarative
formalisms. Declarative approaches are typically better for abstract descriptions
or highly dynamic processes, where procedural approaches are better for well-
known and structured processes. Combining the two allows us the best of both

264

Fig. 1: Declare and DCR graphs in CPN Tools 4.

worlds and allows declarative processes to also deal with data. We have consid-
ered what is needed to provide simulation that avoids future con�icts in e�cient
ways, and introduce three modes of simulation: simple, smart, and data-aware,
where the simple mode only avoids individual con�icts, smart avoids con�icts
not related to data, and data-aware makes sure that even in the presence of
data, all executions can terminate successfully. We have brie�y introduced our
implementation in CPN Tools.

3.1 Related Work

The Guard-Stage-Milestone (GSM) model [8] by Hull et al, which originated
from the work on artifact-centric business processes [3], takes an approach to
modelling business processes where a process consists of a number of (possibly
nested) stages, which in turn contain a number of tasks. A stage also has guards
and milestones; it is activated by satisfying its guards and through perform-
ing the tasks in the stage its milestones can become enabled, which can then
in turn satisfy the guards of other stages. We see the GSM model as a hybrid
model combining procedural and declarative structures in a single language,
whereas our approach is based on combining existing procedural and declarative
languages. In [14] the authors introduce a declarative version of the Computer-
Interpretable Guidelines (CIG) language for modelling clinical guidelines, they

265

conclude that because both the procedural and declarative languages have their
disadvantages it would be best to combine them into a single model, but leave
this for future work. In [16] the authors have examined the understanding of
procedural and declarative process models by users. In their conclusions they
note that while it appears that procedural models are more comprehensible, it
remains uncertain to what extent this is caused by participants being skewed
towards procedural models because of their general acceptance and availability.
They do not consider a hybrid approach using both procedural and declarative
concepts. In [6] Fahland bridges the gap between declarative and procedural
work�ow approaches by proposing a general compositional mechanism for trans-
lating declarative work�ow models to procedural work�ow models. He exem-
pli�es the general approach by giving a translation from Declare to Petri nets.
The main di�erence to our approach is that while in [6] a declarative model is
translated to a procedural version to facilitate using existing modeling, analysis
and management techniques, we aim to combine the declarative and procedural
approaches and provide tools and techniques for the hybrid approach.

3.2 Future Work

Here we have assumed that a user creates and re�nes a model. Another approach
is to have the tool do that. For example, a precedence(A,B) constraint is trivially
modeled using a single place of type boolean, initially marked by false. Then
A changes the value indiscriminately to true and B checks that the value on
the place is true. not co-existence(A,B) can be implemented using a place with
three possible values: {A,B,UNDECIDED}. init(A) is less elegant, but can be
implemented using, e.g., inhibitor arcs. This will not catch con�icts, but we can
do that (and translate all constraints in a uniform way) by constructing the �nite
automaton either just equate the states of the automaton with new places or
use a (not data-aware) process mining algorithm [1] or the theory of regions [4]
to construct a Petri net for the control �ow. Future work includes investigating
the best way to make such a translation (semi-)automatically.

The current approach works as long as we describe a single run of a single
process. That is, our example in the �gures handles one treatment of one patient.
It would be interesting to investigate multiple instances, which would essentially
be a folding of the current model. We could also have multiple processes com-
municate, e.g., like Proclets [2], resulting in a more artifact-driven result. Using
a translation from declarative constraints would essentially result in process-
partitioned CP-nets in the sense of [10], which means it would be possible to
automatically derive code from the resulting model. It would also be interest-
ing to look into making a proper notion of a process in CP-net models, where
instances cannot just terminate in any state. This would also include adding a
notion of instances to the declarative languages.

266

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. van der Aalst, W., Barthelmess, P., Ellis, C.A., Wainer, J.: Work�ow Modeling
using Proclets. In: Proc. of CoopIS'00. pp. 198�209. LNCS, Springer (2000)

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Proc. of BPM'07. pp. 288�304 (2007)

4. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Dis-
covering Petri Nets from Event Logs. In: Proc. of BPM. LNCS, Springer (2008)

5. CPN Tools webpage. Online: cpntools.org
6. Fahland, D.: Towards analyzing declarative work�ows. In: Autonomous and Adap-

tive Web Services. Dagstuhl Seminar Proceedings, vol. 07061, p. 6. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI) (2007)

7. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based work�ow as dis-
tributed dynamic condition response graphs. In: Post-proc.of PLACES 2010 (2010)

8. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, III, F.T., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing
the guard-stage-milestone approach for specifying business entity lifecycles. In:
Proc. of WS-FM'10. pp. 1�24. Springer-Verlag, Berlin, Heidelberg (2011)

9. Jensen, K., Kristensen, L.: Coloured Petri Nets � Modelling and Validation of
Concurrent Systems. Springer (2009)

10. Kristensen, L., Westergaard, M.: Automatic Structure-Based Code Generation
from Coloured Petri Nets: A Proof of Concept. In: Proc. of FMICS. pp. 215�230.
LNCS, Springer (2010)

11. Maggi, F., Montali, M., Westergaard, M., Montali, M., van der Aalst, W.: Runtime
Veri�cation of LTL-Based Declarative Process Models. In: Proc. of RV. LNCS, vol.
7186, pp. 131�146. Springer (2011)

12. Maggi, F., Montali, M., Westergaard, M., van der Aalst, W.: Monitoring Busi-
ness Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Proc. of BPM. LNCS, vol. 6896, pp. 132�147. Springer (2011)

13. Mukkamala, R.R.: A Formal Model For Declarative Work�ows - Dynamic Condi-
tion Response Graphs. Ph.D. thesis, IT University of Copenhagen (March 2012)

14. Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and proce-
dural approaches for modelling clinical guidelines: Addressing �exibility issues. In:
Proc. of BPM'07. pp. 335�346 (2007)

15. Pesic, M.: Constraint-Based Work�ow Management Systems: Shifting Controls to
Users. Ph.D. thesis, Beta Research School for Operations Management and Logis-
tics, Eindhoven (2008)

16. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: An empirical investigation. In:
Proc. of ER-BPM '11. pp. 383�394 (2011)

17. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. Submitted to
Petri Nets 2013

18. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Work-
�ow Languages Using LTL. In: Proc. of BPM. LNCS, vol. 6896, pp. 83�98. Springer
(2011)

19. Westergaard, M., Maggi, F.: Declare: A Tool Suite for Declarative Work�ow Mod-
eling and Enactment. In: Business Process Management Demonstration Track (BP-
MDemos 2011). CEUR Workshop Proceedings, vol. 820. CEUR-WS.org (2011)

267

The Automated Discovery of Hybrid Processes

Fabrizio Maria Maggi1, Tijs Slaats2,3, and Hajo A. Reijers4,5

1 University of Tartu, Estonia
2 IT University of Copenhagen, Denmark

3 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark
4 Eindhoven University of Technology, The Netherlands

5 Perceptive Software, The Netherlands
f.m.maggi@ut.ee, tslaats@itu.dk, h.a.reijers@tue.nl

Abstract. The declarative-procedural dichotomy is highly relevant when choos-
ing the most suitable process modeling language to represent a discovered pro-
cess. Less-structured processes with a high level of variability can be described in
a more compact way using a declarative language. By contrast, procedural pro-
cess modeling languages seem more suitable to describe structured and stable
processes. However, in various cases, a process may incorporate parts that are
better captured in a declarative fashion, while other parts are more suitable to
be described procedurally. In this paper, we present a technique for discovering
from an event log a so-called hybrid process model. A hybrid process model is
hierarchical, where each of its sub-processes may be specified in a declarative
or procedural fashion. We have implemented the proposed approach as a plug-in
of the ProM platform. To evaluate the approach, we used our plug-in to mine a
real-life log from a financial context.

1 Introduction

Process models are an important aid to capture how business operations are organized.
One direction to simplify the tasks of creating, maintaining, and reading such mod-
els involves the use of declarative techniques for process modeling. In contrast to the
procedural approach, which is dominant for modeling business processes, a declarative
approach leaves implicit in what exact sequences activities must be carried out. Instead,
the emphasis is on the constraints that must be respected in carrying out the process –
any behavior that respects these goes. In contexts where activities can be executed in
highly different combinations, a declarative approach arguably produces simpler rep-
resentations of the involved process logic. Examples of concrete declarative modeling
techniques are Declare, DCR Graphs [3], and SCIFF.

In [10], we reported that a hybrid process modeling technique was considered by
practitioners as more attractive than a completely declarative or procedural one. Hy-
brid, in this context, refers to the potential use of both procedural and declarative model
elements in the same model. The rationale is that the two types of modeling paradigms
allow for a natural fit with different types of process behavior. In places where the pro-
cess is highly flexible, a declarative modeling approach leads to a compact and simple
description of such a “pocket of flexibility” [11]. Instead of describing all the differ-
ent types of feasible behavior, the focus is then on ruling out what is not allowed (if

268

anything). By contrast, for parts of the process that are highly structured, a procedural
description may be the way to go: It is then simpler to describe what is allowed than
what is to be ruled out. For processes that both incorporate structured and unstructured
pockets, a hybrid model delivers a compact and simple description.

This paper should be seen as a direct follow-up to our earlier work. Specifically, we
developed a technique to automatically generate a hybrid model from an event log. This
is a novel contribution, since existing techniques can only generate a process model
that is either procedural or declarative. By contrast, our technique flexibly alternates
between employing a procedural or declarative mining approach in accordance with the
nature of the traces it processes. By doing so we are able to avoid the “spaghetti”-like
process models that are commonly generated by traditional process mining techniques.

Against this background, the paper is structured as follows. In Section 2, we will
outline the notion of a hybrid model and pinpoint its semantics. Section 3 describes
our core contribution, the discovery approach. We will will evaluate this approach in
Section 4 on a real-life log. After a discussion of related work, we conclude this paper
with a reflection on the presented work and future steps in Section 6.

2 Semantics of a Hybrid Model

Our interest in this paper is with hybrid models where the procedural and declarative
parts are contained in separate sub-processes. In this sense, there is a resemblance with
the pockets of flexibility concept [11]. A hybrid process consists of a procedural or
declarative top-level process, which may contain a number of atomic activities as well
as sub-processes. Each sub-process can be either procedural or declarative and may
contain sub-processes of its own. Our approach is applicable to any combination of
procedural and declarative languages, but in this paper we will apply Petri nets for
our procedural models and Declare [9] for our declarative models. Sub-processes are
considered atomic, meaning that once a sub-processes is started the control is passed
from the parent process to that sub-process. No other activities can be executed until
the sub-process has completed. A sub-process can only complete while it is accepting.
When exactly it is accepting depends on the language used. In the case of a Petri net
this means reaching a final marking, while for a Declare model it means having no
violated constraints. For the language of a hybrid model we consider the start and com-
pletion of sub-processes as silent transitions, which means that there will be no start-
and complete-events for the sub-processes in the log. This underlines the fact that the
sub-processes are really just a tool for improving the understanding of the process and
not a part of the actual enactment of the process.

3 Discovering Hybrid Process Models

Fig. 1 gives an overview of our approach. In the following paragraphs we describe our
approach step by step.

Distinguishing Structured and Unstructured Events. We start by separating the events
of the log into two distinct sets: one containing those events that occur in a structured

269

Find (Un)
structured

Events

Divide Log into
(Un)structured

Sequences
Mine Top- level

Process
Create Hybrid
Process Model

Find Declarative
Sub-processes

Mine Procedural
Sub-processes

Mine Declarative
Sub-processes

Find Procedural
Sub-processes

Fig. 1. Overview of our approach

context and one containing those events that occur in an unstructured context. To dis-
tinguish structured from unstructured events we use a novel technique, which we refer
to as context analysis. Our first step is to determine for each event the number of unique
predecessors and successors to that event. We then consider an event with a large num-
ber of both predecessors and successors to be unstructured (according to a user-defined
threshold, in our experimentation we used 4), while an event with a small number of
predecessors or a small number of successors is considered to be structured. The rea-
soning behind these cases is as follows: if an event has a high number of predecessors
and a high number of successors, then there are few rules constraining when exactly the
event can occur. We then consider it likely to fit well into a declarative model. Similarly,
if an event has only a small number of predecessors and a small number of successors,
then it is probably more easily modeled procedurally, for example, as a sequence or a
choice from a low number of options. In the case that an event has a small number of
predecessors, but a large number of successors, we consider it likely that the event is
either the last element in a structured sequence, which is followed by an unstructured
sequence, or that the event is followed by a choice from a large number of options. In
both cases it makes sense to consider this as a structured event and model it procedu-
rally. Similarly, in the case that an event has a small number of successors, but a large
number of predecessors we consider it likely that the event is either the first element in
an structured sequence, which was preceded by an unstructured sequence, or that the
event joins a choice from a large number of options. In both cases it seems fitting to
consider this as a structured event and model it procedurally.

Dividing the Log into Structured and Unstructured Sequences. The context analysis
gives us two sets: one that contains structured events and one that contains unstructured
events. In the following step, we use these events to identify structured and unstructured
sequences by parsing the log and starting a new sequence whenever an event does not
belong to the same set as its preceding event. After this step, our approach splits into two
branches, one handling the structured sub-logs and the other handling the unstructured
sub-logs.

Finding and Mining procedural Sub-processes. By grouping together each structured
event with all the direct successors and all the direct predecessors, we obtain a set of
disjoint clusters of the structured sequences. We then mine procedural sub-processes for

270

each of these clusters. Finally, we abstract the main log by replacing each sequence with
the identifier of the sub-process that it belongs to. It should be noted that the clusters
of procedural sequences that are discovered could be further split up using existing
clustering techniques. This did not seem necessary on basis of the examples we used in
our experimentation with the technique.

Finding and Mining Declarative Sub-processes. For finding declarative sub-processes,
we first use an indirect association rule mining algorithm on the set of unstructured
sequences to find declarative patterns. Recall that an indirect association rule can be
used to find events that rarely occur together, yet there are other “mediator events” with
which they appear relatively frequently. We use this type of algorithms since it gives us
the opportunity to not only discover Declare constraints that express positive relations,
but also constraints like, for example, not coexistence constraints, which are more likely
to be satisfied when the events involved do not occur together in the same trace. In a
second stage, we use a mining algorithm for standard association rules on the remaining
sequences. These rules reflect relationships that exist between events that often co-occur
in common transactions. For this reason, these rules allow us to group together events
that are very likely connected with each other through positive relations in Declare. The
patterns are abstracted in the main log, and any remaining event that is at this point not
identified as belonging to a declarative pattern is left as an atomic event.

Mining the Top-level Process. When we are done finding (but not necessarily mining)
procedural and declarative sub-processes and have all sub-processes abstracted in the
main log, we can then either choose to apply the approach iteratively on the abstracted
log, starting from the first step where we distinguish structured and unstructured activ-
ities based on their context, or we can choose to finalize the approach by mining the
main log. In the latter case, we compute the average string edit distance for all traces in
the abstract main log and in case of a high similarity among the traces (>50%) we mine
the log procedurally using a procedural miner. In case of a lower similarity, we mine it
using a declarative miner. The use of the string edit distance is a simple way to distin-
guish between structured and unstructured logs. We validated this approach based on
experiments on synthetic logs. The results of these experiments have shown that traces
in structured logs are more similar to each other with respect to traces in an unstructured
log. Of course, more sophisticated techniques can be used for discriminating between
them.

Creating a Hybrid Process Model. When all mining tasks have finished, we can com-
bine the resulting process models into a single hybrid model, based on which abstract
activities in the top-level model correspond to which sub-process. The exact method
will depend on the miners used and the languages that they use to generate models.
In our implementation, we simply generated separate Petri nets and Declare models.
However, to improve usability, a tool that supports the visualization and management
of such hybrid models would be needed (for example, to graphically represent a De-
clare sub-process within a top-level Petri net model). At this point, this is left for future
work.

271

(a) Alpha Miner (b) Heuristic Miner

(c) ILP Miner

Fig. 2. Procedural Models

4 Evaluation

To evaluate our approach, we have implemented it as a plug-in of the process mining
tool ProM.1 For the evaluation, we turned to the real-life event log, which was made
available as part of the BPI Challenge 2012.2 The process represented in the event log
is an application process for a personal loan within a global financing organization. The
log itself contains some 262.200 events in 13.087 cases.

Our evaluation took on the following form. We set out to compare a model that
would result from a traditional mining approach on the selected log with a hybrid model
that is generated as proposed in this paper. We will refer to these as the procedural and
the hybrid models. The aim then is to compare these models specifically with respect
to the understandability of the generated models. We decided to create three procedural
models of the event log by using the Alpha, Heuristic, and ILP miner, respectively. The
resulting procedural models are shown in Fig. 2.

We created the hybrid model by using the Declare miner on the clusters of unstruc-
tured sequences, while using the Heuristic miner on the clusters of structured sequences.
Since the root model in this case also could be classified as structured, it was mined with
the Heuristic miner as well. The hybrid model can be seen in Fig. 3. In this figure, the
procedural root net is shown, as well as links to its sub-nets. Note that two sub-nets are
of a declarative nature (D1.1 and D2.1); the other sub-nets are procedural.

To make sure that a comparison with respect to the simplicity of the various models
is fair, we first reflect on their fitness [13]. This expresses how well the model is able
to “replay” the observed behavior in the log. The values are provided in Table 1. As
can be seen, the fitness values for the procedural models range from 0.01 for the ILP

1 http://www.promtools.org/prom6/HybridMiner
2 http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

272

Fig. 3. Hybrid Model

miner to 0.58 for the Alpha miner. For the hybrid model, the fitness values are provided
for each of the sub-nets. These values vary from 0.69 to 1.00 (perfect fitness). Without
an integrated fitness measure available for hierarchical nets, we propose to take the
minimum value as a conservative approximation for the fitness of the hybrid net. On
this basis, the replay fitness of the hybrid net can be seen to be at least as good as
that of the procedural models. Also, it is not particularly “flower-like", which can be a
drawback of aiming at a well-fitting model [13].

A visual inspection of the models seems to indicate that the hybrid model is vastly
simpler than the procedural models. All procedural models can be characterized as
“spaghetti-like”. The hybrid model, by contrast, is composed of 9 different sub-nets,
each of which having a fairly simple structure. Arguably the most difficult of these
sub-nets are P1.2 and D1.1, which are the largest procedural and declarative sub-nets,
respectively. While the modularity of the hybrid model to some extent seems to help the
understanding of the process, the overall lack of visual clutter is apparent. The proposed

Procedural Hybrid
Alpha Heuristic ILP

Root P1.1 P1.2 P1.3 P1.4 P2.1 P2.2 D1.1 D1.2
0.58 0.40 0.01 1.00 0.84 0.73 0.69 0.81 1.00 0.86 1.00 1.00

Table 1. Fitness values for the generated models

273

approach, therefore, seems to have the potential to automatically generate behaviorally
accurate process models that are simple to read.

5 Related Work

Several approaches in the literature focus on the discovery of declarative process mod-
els [1,4,2,5,6,7,8]. The algorithms proposed in [4,2,6,8] are tailored to discover Declare
specifications. In particular, the technique proposed in [4,2] is based on a two-step ap-
proach. First, the input event log is parsed to generate a knowledge base containing in-
formation useful to discover a Declare model. Then, in a second phase, the knowledge
base is queried to find the set of constraints that hold on the input log. The work pro-
posed in [6] is based on an Apriori algorithm for association rule mining and has been
used in this paper for the discovery of the declarative sub-processes of a hybrid model.
The approaches proposed in [1,5] are more general and allow for the specification of
rules that go beyond the traditional Declare templates. However, these approaches can
be hardly used in real-life settings since they are based on supervised learning tech-
niques thus requiring negative examples that are difficult to be derived from real data.
In the work proposed in [7], a first-order variant of LTL is used to specify a set of data-
aware patterns. Such extended patterns are used as the target language for a process
discovery algorithm to produce data-aware Declare constraints from raw event logs.

A recent implementation of a hybrid process modeling technique is made available
in CPN Tools 4.0 [15]. Different than what is proposed in the paper at hand, a hybrid
CPN net allows for the use of procedural and declarative modeling elements within the
same sub-process. Already at an earlier stage, modeling approaches have been proposed
that embrace “pockets of flexibility”. Specifically, in [11] it is proposed to define at
build-time in a workflow process pockets in a way that is highly similar to a declarative
style to match their highly flexible behavior; at runtime one has to pick a specific pro-
cedural instantiation of the workflow that fits the definition. Two other approaches that
combine procedural and declarative elements worth noting are Flexibility-as-a-Service
(FAAS) [14] and the Guard-Stage-Milestone model [12]. It should be noted that for
none of these approaches automated discovery techniques exist.

6 Conclusion

In this paper, we presented an automated discovery technique for hybrid process mod-
els. By analyzing the traces that are available in an event log and clustering them to-
gether according to their structure (or lack thereof), we are able to mine the structured
and less structured pockets within a process with procedural and declarative mining al-
gorithms, respectively. The result is a hierarchical process model with both procedural
and declarative sub-processes. Our evaluation on a real-life event log suggests that the
proposed technique is indeed capable of producing a much simpler representation of a
process than traditional, purely procedural approaches can.

The proposed approach could be improved along theoretical, technical, and empiri-
cal angles. On a theoretical side, there is a need to establish proper metrics that tie to the
established quality dimensions of fitness, precision, generalization and simplicity [13]

274

for hybrid, hierarchical process models. At this point, it is not entirely clear how a qual-
ity measure for a subprocess propagates to the quality of the overall model. Establishing
this will pave the way for a more thorough insight into the strengths and weaknesses
of the proposed discovery technique. Technically, a step ahead would be to allow for
duplicate events, i.e. the same event can be part of a procedural as well as a declarative
sub-process. We did not allow for this at this point, but this could be done by identifying
“recurrent" predecessors/successors even if these appear only in a certain percentage of
cases. From an empirical angle, end users need to be confronted with hybrid models for
a thorough evaluation of their usefulness and ease of use.

As to stimulate the uptake of hybrid process models, a number of other develop-
ments are called for as well. As we pointed out in our earlier work [10], modeling
guidelines and tool support will be essential to allow for the manual creation and main-
tenance of hybrid process models. We are currently experimenting with such guidelines
and our initial insights are that modelers with an intermediate experience with procedu-
ral modeling approaches do not find the composition of hybrid models all that difficult.
We hope to report on more substantial insights in the near future.

References
1. F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Exploiting inductive

logic programming techniques for declarative process mining. ToPNoC, 2009.
2. Claudio Di Ciccio and Massimo Mecella. A two-step fast algorithm for the automated dis-

covery of declarative workflows. In CIDM, 2013.
3. Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Hierarchical declarative modelling with

refinement and sub-processes. In BPM, 2014.
4. C. Di Ciccio and M. Mecella. Mining constraints for artful processes. In BIS, 2012.
5. E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying inductive logic programming to

process mining. In Inductive Logic Programming, volume 4894. 2008.
6. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of understandable

declarative models from event Logs. In CAiSE, pages 270–285, 2012.
7. F.M. Maggi, M. Dumas, L. García-Bañuelos, and M. Montali. Discovering data-aware

declarative process models from event logs. In BPM, pages 81–96, 2013.
8. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-guided discovery of declarative

process models. In CIDM, pages 192–199, 2011.
9. M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support for Loosely-

Structured Processes. In EDOC 2007, pages 287–298, 2007.
10. H.A. Reijers, T. Slaats, and C. Stahl. Declarative modeling – An academic dream or the

future for BPM? In BPM, pages 307–322, 2013.
11. S.W. Sadiq, M.E. Orlowska, and W. Sadiq. Specification and validation of process constraints

for flexible workflows. Information Systems, 30(5):349–378, 2005.
12. R. Vaculín, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya. Declarative business

artifact centric modeling of decision and knowledge intensive business processes. In EDOC,
pages 151–160, 2011.

13. W.M.P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer, 2011.

14. W.M.P. van der Aalst, M. Adams, A.H.M. ter Hofstede, M. Pesic, and H. Schonenberg.
Flexibility as a service. In Database Systems for Advanced Applications, 2009.

15. M. Westergaard and T. Slaats. Mixing paradigms for more comprehensible models. In
Business Process Management, pages 283–290. 2013.

275

	Introduction
	Dynamic Condition Response (DCR) Graphs
	The Technologies for Flexible Cross-organizational Case Management Systems Research Project
	Related Work

	Structure of the Dissertation
	Conclusion
	Industrial Results
	Future Work

	List of Publications
	References
	Hierarchical Dynamic Condition Response Graphs
	Nested Dynamic Condition Response Graphs
	Designing a Cross-organizational Case Management System using Dynamic Condition Response Graphs
	Hierarchical Declarative Modelling with Refinement and Sub-processes
	A Case for Declarative Process Modelling: Agile Development of a Grant Application System

	Dynamic Condition Response Graphs with Time and Data
	Contracts for Cross-organizational Workflows as Timed Dynamic Condition Response Graphs
	Exformatics Declarative Case Management Workflows as DCR Graphs

	Safe Cross-Organizational Flexible Processes
	Safe Distribution of Declarative Processes
	Declarative Modelling and Safe Distribution of Healthcare Workflows
	Live Sessions with Responses
	Type Checking Liveness for Collaborative Processes with Bounded and Unbounded Recursion

	Safe Runtime Adaptation of Flexible Processes
	Towards Trustworthy Adaptive Case Management with Dynamic Condition Response Graphs
	Modular Context-Sensitive and Aspect-Oriented Processes with Dynamic Condition Response Graphs
	Towards a Foundation for Modular Run-time Adaptable Process-Aware Information Systems?

	Hybrid BPM Technologies
	Declarative Modeling – An Academic Dream or the Future for BPM?
	Mixing Paradigms for More Comprehensible Models
	The Automated Discovery of Hybrid Processes

