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Abstract

by Morten Stöckel

The growth in information technology during the last decade has brought a great increase

in the number of users that have access to computers or mobile phones, as well as an

increase in the number of data-based services offered to users. For instance, the number

of web servers almost doubled from 70 to 135 million during 2005-2007. The growth in

users, combined with the growth in services, means that the amount of total data to

manage is exploding.

An important query in the field of algorithms asks how much two data sets intersect, that

is, the “overlap” between the pieces of data. Such a query is fundamental in applications

such as recommender systems, where the answer would be used to measure similarity

over shopping patterns and, based on that, recommend items to the user.

In this dissertation we examine the problem of computing intersection sizes among data

sets in several applications and in the context of the information explosion. That is, we

consider that the data in our applications is too large to be stored entirely or too large

to fit in the main memory of the computer. The main contribution of the dissertation is

improvement of several fundamental applications of such data intersection computations,

such as approximating the set intersection size and multiplying two matrices. The

improvements over the current state of the art methods are either in the form of less

space required or less time needed to process the data to compute the answer to the

query.
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Abstract, Danish

by Morten Stöckel

Den voksende udbredelse af informationsteknologi over de sidste årtier har medført en

betydelig stigning i antallet af brugere, der har adgang til computere eller mobiltelefoner.

Ligeledes har vi set en stigning i antallet af data-baserede services, som bliver udbudt

til brugerne. Som et eksempel er antallet af web-servers næsten fordoblet fra 70 til 135

millioner servere i tidsperioden 2005−2007. Denne stigning af brugere, kombineret med

stigningen af udbudte services, har resulteret i, at den samlede mængde data der skal

h̊andteres er eksploderet.

En vigtig type forespørgsel i algoritmik søger svar p̊a hvor stort overlappet er mellem

to eller flere mængder af data. En s̊adanne forespørgsel er fundamental for anvendelser

s̊asom rekommandations-systemer, hvori man søger at anbefale en bruger eksempelvis

varer at købe. Denne anbefaling kan være baseret p̊a forbrugsmønstre, hvori overlap

mellem tidligere indløb indg̊ar til at foretage en klassificering af brugeren.

I denne afhandling tager vi udgangspunkt i flere algoritmiske problemstillinger og anven-

delser, der har det til fælles, at udregningen af overlap mellem mængder er nødvendig.

Vi undersøger disse problemer i konteksten af den førnævnte “informations-eksplosion”,

idet vi undersøger scenarier hvori datamængderne er store. Hovedbidraget af afhan-

dlingen er forbedringer til adskillige fundamentale problemer i algoritmik, der relaterer

til overlap-udregninger, eksempelvis udregning af matrix-produkter og approximation af

mængde-overlap. Forbedringerne i afhandlingen tager form af enten mindre plads brugt,

eller et lavere antal operationer nødvendigt for at foretage en udregning, sammenlignet

med hidtil kendt arbejde p̊a samme problemstillinger.
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Chapter 1

Introduction

1.1 Motivation

The amount of data in the world is expanding at a rapid pace. This is a consequence

of a global desire to save information: when a person performs an action anywhere, the

world as a whole has an interest in storing information about that action in order to be

able to learn from that experience. Say we could save such information for all actions

performed. Then, in theory, a mistake should never be made twice, and if a question

has been posed before it could always be answered quickly. However, technical issues

arise in such a “store everything” paradigm:

1. Space. Since storing information requires an amount of storage capacity and there

are many actions performed in the world, we simply cannot store everything.

2. Time. Even if storage of “everything” were possible, the time required to navigate

the information might be infeasible. Methods to quickly answer queries on massive

amounts of information would be needed.

Of course, everything is not stored now, but a lot is. In particular, performing actions on

the Internet will likely trigger the storage of information about what actions were per-

formed and their results. The facts that the number of users on the Internet is steadily

growing,1 and that the amount of published information is growing as well, equates to

the much-discussed problem of information explosion. Soon, all books ever written —

estimated to be around 130 million 2 — will be available online; and the number of

1http://www.internetlivestats.com/internet-users/
2http://booksearch.blogspot.dk/2010/08/books-of-world-stand-up-and-be-counted.html

1

http://www.internetlivestats.com/internet-users/
http://booksearch.blogspot.dk/2010/08/books-of-world-stand-up-and-be-counted.html
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search engine searches in a single month of 2014 is beyond 17 billion3. In short, there

is a massive number of users asking questions whose answers are based on a massive

amount of information - usually called data in the scope of computers. Consider then

the following fundamental question:

What is the intersection between two data sets?

Such a question (or query) has well-founded applications, e.g. the answer can be used

as a measure of similarity between data as the size of the intersection, informally speak-

ing, states the overlap between the pieces of data. Consider, as a motivating example,

recommender systems. In this setting the data consists of shopping baskets containing

items. The intersection size of two shopping baskets is the number of items the baskets

have in common. In this thesis, the aim is to answer such a question with the two main

problems (space and time) from above in mind. The main results of the thesis can,

broadly speaking, be grouped in three groups:

(a) Data can (often) be “summarized” in order to save space, and yet the question can

still be answered based on such summaries. In the recommender systems setting

this means that space usage can be reduced by only storing a few cleverly picked

items and intersection sizes on the original baskets can still be approximately

answered.

(b) Intersection sizes can in certain settings be predicted well. In recommender systems

this is essential: predicting the probability of a customer making a specific purchase

and then recommending items to buy based on that probability.

(c) If data can be represented sparsely, i.e. it contains little information, then the

question can be answered quickly. Likewise, if the answer can be represented

sparsely then the answer can be computed quickly. This is generally the case for

real life data such as shopping baskets. The number of items in a basket is typically

much smaller than the total number of items offered by the shop, which motivates

algorithms that uses computational resources proportional to the input size rather

than the universe size.

This thesis, in short, aims to provide solutions to a small part of the information explo-

sion issue related to computing intersection among data.

3http://searchengineland.com/google-search-share-stable-bing-continues-cannibalize-

yahoo-187124

http://searchengineland.com/google-search-share-stable-bing-continues-cannibalize-yahoo-187124
http://searchengineland.com/google-search-share-stable-bing-continues-cannibalize-yahoo-187124
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1.2 Organization

In general the level of the technical writing in this thesis is such that it should be

possible to understand the main ideas as an undergraduate and the technical details as

a computer science graduate.

The thesis is organized as follows. We start by stating the models of computation in

Section 1.3. Then in Section 1.4 we introduce the technical problems which the thesis

provides insight to as well as stating the results achieved and the closest related work.

In Section 1.10 we provide a short summary of the fundamental technical tools and

notation which are used throughout the thesis.

In Chapter 2 we show how to summarize arbitrary sets into small size such that in-

tersection size queries can still be answered approximately. in Chapter 3 we go into

the problems of input- and output-sparse matrix multiplication, which can be seen as

many exact intersection queries. Following this, in Chapter 4 we show how the maxi-

mum entropy estimate can be used to predict intersection size of three sets in certain

settings and in Chapter 5 we consider the problem of reporting point sets that “ap-

proximately intersect” in high dimensions. Motivated by the fact that almost all our

solutions use hash functions, we examine in Chapter 6 the power of hash functions of

limited independence in a fundamental load balancing setting. Finally, in Chapter 7 we

end the thesis by summarizing all results presented and propose related open problems

and future research directions.

1.3 Models of computation

The goal of theoretical computer science in general is to show upper bounds, i.e., algo-

rithms and data structures to perform some computation and lower bounds which give

formal guarantees on how low the upper bound can go. To carry out such arguments

we need precise mathematical models in which we can analyze an algorithm or a data

structure. The common struggle for such computational models is how well they predict

actual (real life) performance vs how hard they are to work with. For upper bounds in

this thesis, i.e. to show existence of algorithms and data structures, we use the word-

RAM model and the external memory model. For a specific space lower bound we use

the communication complexity model. All three models have been extensively researched

and the related work discussed in this thesis will constrained to only be closely related

problems or techniques.
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The word-RAM model is the standard model to use when designing new upper bounds

and has been shown to have good predictive power. In short, the cost an algorithm/data

structure in this model is the number of “C-style” operations it performs, i.e. each such

operation has a price of one in this model. See Section 1.3.1 for full definitions.

When the input data is so large that it does not fit in internal memory of the computer

then the number of CPU operations (as counted approximately by the word-RAM model)

does not apply. Since disks are slow and the input data resides on a disk then the

bottleneck of a computation is now the number of times the disk is read from or written

to. This case is captured in the external memory model by Aggarwal and Vitter [1]. In

this model the cost of an algorithm or a data structure does not depend on the number

of CPU operations but only on how many times the disk is accessed. This model has

shown good predictive power for massive data sets and has been widely applied. See

Section 1.3.2 for full definitions.

To show lower bounds on space usage we wish to be independent of the instruction

set and memory parameters of the machine, that is, it would be preferable to argue

that no matter such parameters then we still have a lower bound. Such arguments for

lower bounds on space usage can be carried out using communication complexity [2, 3].

The model can be used to make arguments of the following form. If two players, Bob

and Alice, hold input x and y respectively and they wish to compute function f(x, y),

then how much do they need to communicate in order to compute the function? The

application of such a setting to space lower bounds of data structures is non-obvious

and will be elaborated upon in Chapter 2 and the model itself is discussed further in

Section 1.3.3

1.3.1 The word-RAM model

The most used model of computation is the (unit cost) word-RAM model due to its

intuitiveness and predictive power. Algorithms and data structures in this model have a

random access memory that holds a (theoretically infinite) number of words. Each word

consists of w bits and so the address space is [2w] = {0, . . . , 2w − 1}. It assumed that a

word has enough bits to store a pointer to any other word and a common assumption

is that w = Ω(log n) where n is the input size. This assumption is reasonable in the

sense that for w = o(log n) then one cannot even write the number of input elements in

a word.

The time cost of an algorithm or data structure in the word-RAM model is the number

of word operations performed during computation. The instructions denoted as word

operations are the standard “C-style” instructions such as OR, AND, XOR, shifts as well
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as integer operations such as addition, subtraction, multiplication and division and also

comparison operations such as equality check, greater than and smaller than. Further

note that it is assumed that a memory access takes constant time. The space cost in this

model is simply the largest memory address used during computation as this denotes

the maximum number of words that were in use.

1.3.2 The external memory model

When the size of the input data is much larger than the main memory of the computer

then the word-RAM from the previous section no longer predicts computation time on

real life machines. The reason being that since the input can not reside in the fast

main memory it needs to reside in slow external memory (such as a harddisk). Hence

the time spent accessing the slow external memory dominates the time spent on CPU

instructions. On the other hand, the (latency wise) slow disks are very fast at reading

consecutive disk addresses. This is captured in the external memory model, also called

the I/O model, by Aggarwal and Vitter [1].

In the model we have a disk which consists of a (theoretically infinite) number of words,

where words are usually assumed to be big enough to contain one input element and

optionally a pointer or an address. Then connected to the CPU is a main memory that

can hold at most M words. The CPU can only do CPU instructions on words that reside

in the main memory and these CPU instructions are free. Words are transferred from

the disk to the main memory in blocks of B consecutive words. One such block transfer

is called an I/O. The time complexity of an algorithm or data structure in this model

is then the number of I/Os performed during computation and the space complexity is

the maximum number of words residing on disk during computation.

We make a distinction between cache-aware algorithms, that explicitly use model param-

eters B or M , and cache-oblivious [4] algorithms, that do not use the model parameters.

The latter is the most desirable property as it implies optimality on all levels of the

memory hierarchy and does not require parameter tuning when executed on different

physical machines. The cache-oblivious model assumes that the cache is ideal in the

sense that it has optimal cache-replacement policy that can evict the block that is used

the farthest in the future, and also that a block can be placed anywhere in the cache

(full associativity). The model is justified by the fact that such an optimal cache loses

only a constant factor in terms of I/Os when converted to a LRU or FIFO cache with

limited associativity, [4, Lemmas 12 and 16].
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The main tool to show lower bounds on I/O complexity is by Hong and Kung [5] who

proved I/O lower bounds e.g. for dense matrix multiplication, n-point fast fourier trans-

form. In the thesis we shall apply an extension of their technique to achieve a lower

bound on sparse matrix multiplication, see Section 3.2.6.

1.3.3 Communication complexity

The theory of communication complexity [2, 3] is a well-studied category of complexity

theory. Lower bounds for communication complexity have in recent years been the

primary tool to prove space lower bounds for streaming algorithms and has been widely

applied to show data structure lower bounds as is the case in this thesis, see Section 2.4.

Communication complexity deals with the following scenario. Two players, Alice and

Bob, are given input vectors x ∈ {0, 1}d and y ∈ {0, 1}d respectively. Neither players

know each others input vector and the goal is to collaborate to compute f(x, y) where

the function f : {0, 1}d × {0, 1}d 7→ {0, 1} is known to both players. The strategy of

communication, denoted a protocol, is however fixed in advance by the players. The cost

of a protocol is then the number of bits communicated for worst case inputs x, y. There

are several variations of the scenario - in this thesis we will restrict ourselves to that of

one-way communication: The inputs arrive, Alice sends one message to Bob and then

Bob must output f(x, y).

At a high level, lower bounds for bits communicated by any protocol can be used to prove

data structure lower bounds due to reductions: Say a solution to the data structure

problem implies computing f(x, y), and computing f(x, y) must use Ω(g(n)) bits. Then

if there was a solution to the data structure problem that used o(g(n)) bits Alice could

just run that solution, send the working memory to Bob who would then output f(x, y)

using only o(g(n)) bits communication. Hence Ω(g(n)) can not be a lower bound on

computing f(x, y) and thus a contradiction is reached.

1.4 Overview of problems and results

This section is meant as a brief overview of the problems worked on and new results

presented in this thesis. The articles that make up the thesis [6–11] are listed below (in

order of appearance).
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1. Rasmus Pagh, Morten Stöckel, and David P. Woodruff. Is min-wise hashing opti-

mal for summarizing set intersection? In Proceedings of the 33rd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, 2014

Chapter 2

2. Rasmus Pagh and Morten Stöckel. The input/output complexity of sparse matrix

multiplication. In Algorithms - ESA, 2014

Chapter 3

3. Riko Jacob and Morten Stöckel. Fast output-sensitive matrix multiplication. In

Algorithms - ESA, 2015

Chapter 3

4. Rasmus Pagh and Morten Stöckel. Association rule mining using maximum en-

tropy. CoRR, abs/1501.02143, 2015

Chapter 4

5. Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. I/O-efficient

similarity join. In Algorithms - ESA, 2015

Chapter 5

6. Mathias Bæk Tejs Knudsen and Morten Stöckel. Quicksort, largest bucket, and

min-wise hashing with limited independence. In Algorithms - ESA, 2015

Chapter 6

We will define the fundamental problem of computing intersection sizes, which is the

general umbrella under which the problems dealt with in this thesis fall under. After

the general discussion we will introduce the specific problems which the thesis contains

improvements to as well as go through the most basic solutions in order to offer some

intuition on the problems, followed by stating the most closely related state of the art

solutions. The following Section 1.4.1 can be skipped by readers familiar with the basic

relation between dot products and set intersection sizes.

1.4.1 Intersections and applications

Perhaps the most fundamental type of data in computer science is that of binary data.

A binary variable is one that can take only two values: 0 or 1. From a statistical point

of view a binary variable is the outcome of a Bernoulli trial, which is a (probabilistic)

experiment with only two possible outcomes. We say that binary data or a binary data

set is a collection of such binary variables. Binary data is fundamental also due to ease of

representation - a binary data set can on a computer be seen as just a bit string/vector,
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S1

S2

Figure 1.1: The binary strings a and b as sets S1 and S2. The intersection size S1∩S2

(colored red) denotes the dot product a · b.

which in turn can be manipulated by bitwise operations that are known to run very fast

in practice.

Consider the following simple relation between binary data and sets. Say that we have

universe U = {0, 1}5 and let a, b ∈ U be bit strings from U . For the two binary strings

a and b consider then the dot product of a and b:

a · b =

4∑
i=0

aibi.

This fundamental quantity describes exactly the overlap the two bit vectors have. Now

consider constructing the sets S1 and S2 from a and b: Let sets S1 and S2 hold item i

if and only if ai = 1 and bi = 1 respectively. Clearly S1 and S2 are now a collection of

items hence they are sets. The intersection of S1 and S2 is then

S1 ∩ S2 = {x |x ∈ S1 ∧ x ∈ S2}.

We then have that the size of the set intersection of sets S1 and S2 is exactly the dot

product of bit strings a and b since on a position in the bit vectors there is a distinct

item in the set if and only if the position has value 1. See Figure 1.1 for a view of the

setting. Clearly, the word-RAM complexity of computing the dot product and hence

the set intersection size of two bit vectors of length n is O(n) as this is just a sum of n

terms each using O(1) operations. In the I/O model it can be done trivially in O(n/B)

I/Os as this is just the time it takes to scan both bit strings.

In this thesis, we deal with questions related to dot products and set intersection which

are not as trivial to compute as above.
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In Section 1.5 we answer the question: If we have m sets and wish to return set inter-

section sizes of arbitrary subsets of those sets then how many bits do we need to store

per set to be approximately correct?

In Section 1.6 we consider matrix multiplication when either the input or output matrices

have few nonzero entries. Notice that a matrix product of two U × U matrices can be

seen as U2 dot products between length U vectors.

In Section 1.7 we consider how to predict future behavior of the intersection size of three

sets based on previous observations of the set sizes and the pair-wise intersection sizes.

Closely related to the above is that of similarity in high dimensions. Note that set

intersection and dot products can be seen as a distance measure. In Section 1.8 we

consider two collections of points from the same metric space and we wish to find the

pairs with one element from each collection that are “close” by the distance metric

provided. Note that this can simply be seen as regular set intersection except being a

member of the intersection requires “closeness” instead of equality.

Finally in Section 1.9 we consider a problem related to the techniques used in the

previous sections: Almost all our solutions in this thesis use random hash functions.

Typically for analysis one will assume full independence to ease the math, however in

practice there exists only efficient hash functions that provide limited independence (see

Definition 1.9). In light of this, we ask and answer the following fundamental question:

If n balls are thrown into 2n bins using a l-independent hash function then what is the

maximum number of balls in a single bin? This question has obvious connections to

load balancing and many applications of hash functions require the largest bin to not

be “too large”.

1.5 Multiple set intersection

In this part of the thesis we will consider the problem of estimating set intersection sizes

of many sets. In particular we deal with the issue of storing as little as possible infor-

mation from each set and still being able to provide a good estimate of the intersection

size. Estimates of multiple set intersection have direct applications in approximation

algorithms but can be used to optimize performance for exact computation as well. For

example, conjunctive queries in databases essentially use running time proportional to

the intersection between two relations and for such a sequence of relations the order

in which the intersections are computed has a large impact on performance - having

a good estimate in short time can be used by an algorithm to optimize this order of

computation.
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S1

S2

S3

S4

S5

Query

Result size

Figure 1.2: The setting. We have multiple sets S1, . . . , S5 with the sets S1, S2, S3, S5

being the query sets (grey color) and the return value is the size of the black region

The setting is as follows (see Figure 1.2). We have m ≥ 2 sets S1, . . . , Sm where each

Si ⊆ [u] and |Si| = n. A query is then of them form: For a particular subset of the m

sets what is their intersection size? Formally, let the query q be the set of indices of the

sets of interest, then we are interested in the quantity

t =
∣∣⋂
j∈q

Sj
∣∣.

If one stores the entire sets S1, . . . , Sm then one can easily compute the intersection size

t: Simply make a pass over the sets and count the elements they have in common using

O(mn) operations in the word-RAM model. On the contrary we consider computing

a summary of each set and then answering the query approximately based on those

summaries alone. The summaries are to be computed independently of each other, i.e.,

one cannot store intermediate intersection sizes or information about other sets. The

need for such an approach comes from the growth of data sizes while many applications

still require fast query times (see Section 2.1 for further discussion). First recall the

definition of an (ε, δ)-estimate:

Definition 1.8. Let X ∈ R and let X̂ be a random variable. We say that X̂ is an

(ε, δ)-estimate of X if Pr
[∣∣∣X̂ −X∣∣∣ ≥ εX] ≤ δ. We use ε-estimate as shorthand for

(ε, 1/3)-estimate.

We address the question: How many bits is it necessary to allocate to each set summary

in order to get a ε-estimate?
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1.5.1 Our results

The models used here are the word-RAM for the upper bounds (stated in bits) and the

communication complexity model is used to derive the lower bound.

Informally this result is about how much information one can get from storing the

elements that have the smallest hash values - such a summary is called a “MinHash”. The

state-of-the-art technique for minimizing the summary size, for any desired estimation

error, is b-bit min-wise hashing due to Li and König (Communications of the ACM,

2011). Say we wish to store k elements from each set. Then the approach of Li and

König is to use k random hash functions to, for each hash function, determine the

element from the set with the smallest hash value and then store that element. Our

approach is to use a single random hash function and then store the k elements with the

k smallest hash values. Another point of view is from the angle of random permutations:

They permute the set k times and store the first element of each permutation while we

permute the elements once and store the k first elements. The effect we gain by using the

one-permutation approach is similar to that of sampling with replacement vs sampling

without replacement. Further we show a lower bound which our new approach nearly

reaches when there are many sets. Our results can be summarized as follows.

1. Using information complexity arguments, we show that b-bit min-wise hashing is

space optimal for m = 2 sets in the sense that the estimator’s variance is within a

constant factor of the smallest possible among all summaries with the given space

usage. But for m > 2 sets we show that the performance of b-bit min-wise hashing

(and more generally any method based on “k-permutation” min-hash) deteriorates

as m grows.

2. We describe a new summary that nearly matches our lower bound for m ≥ 2.

It asymptotically outperforms all k-permutation schemes (by around a factor

Ω(m/ logm)), as well as methods based on subsampling (by a factor Ω(log nmax),

where nmax is the maximum set size).

The specific space usage in bits of the new upper and lower bounds are highlighted in

Table 1.1. We will postpone the discussion of the other related techniques present in

the table until Chapter 2.

1.6 Matrix multiplication

We will now consider the problem of computing the product of two matrices, typically

denoted as the problem of matrix multiplication. Matrix multiplication is interesting as
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Method Required space (bits) Time

Inclusion-exclusion s ≥ ε−2 (mn/t)2 + log n 2m

Subsampling s ≥ ε−2(n/t) logm log2 n sm
b-bit min-wise hashing s ≥ ε−2(mn/t) sm
New upper bound s ≤ ε−2(n/t) log(m) log(n/εt) sm
New general lower bound s ≥ ε−2(n/t) -

Table 1.1: Comparison of estimators of intersection size t for relative error ε and
constant error probability, with m sets of maximum size n. Bounds on the summary

size s ignore constant factors.

it sees massive use both in theory and in practice. In practice it is used in computer

graphics as well as computational algebra and statistics and in theory many algorithmic

problems reduce to matrix multiplication. We refer to Section 3.2 for example applica-

tions and discussion.

A U × U matrix A can be seen as U row vectors each containing U values. The matrix

multiplication problem can be stated as follows: Let the input matrices be A and C

both of size U × U . The task is then to multiply A and C to create the output matrix

AC which is also of dimensions U ×U . If the values of the entries of A and C can only

take values 0 and 1 we call it boolean matrix multiplication. Letting [U ] denote the set

{0, . . . , U − 1}, the output matrix AC is defined as

∀i, j ∈ [U ] : (AC)i,j =

U−1∑
k=0

Ai,kCk,j . (1.1)

In this section and in parts of our results the input matrices will be assumed to be

quadratic - see Figure 1.3 for an illustration of the general case. Notice that such a

matrix product can simply be seen as U2 dot products between size U row and column

vectors. In such a dot product between a row and column vector we say that the product

cancels if there are nonzero summands but the sum - hence the output entry - is zero.

Cancellation of terms proves to be a challenge to achieve good matrix multiplication

algorithms: One would like to spend number of operations proportional to the size of

the output matrix, but terms that cancel does not count towards the output size but

must still be computed.

The standard solution in the word-RAM model is simply to compute Equation (1.1)

directly using O(U3) operations. In the I/O model the basic solution is to divide the

matrices into size c
√
M × c

√
M blocks where c is picked such that three c

√
M × c

√
M

fit into internal memory of size M . This reduces the problem to O((U/
√
M)3) matrix

products that fit in main memory, costing O(M/B) I/Os each, and hence O(U3/B
√
M)

in total [12]. Hong and Kung [5] also provided a tight lower bound Ω(U3/B
√
M) that
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a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp




A : n rows p columns

c11 c12 . . . c1q

c21 c22 . . . c2q

...
...

. . .
...

cp1 cp2 . . . cpq





C : p rows q columns

ac11 ac12 . . . ac1q

ac21 ac22 . . . ac2q

...
...

. . .
...

acn1 acn2 . . . acnq





a 21
×
c 12

a 22
×
c 22

a 2p
×
c p2

+

+ . . .+

AC = A× C : n rows q columns

Figure 1.3: Matrix A of size n × p is multiplied with matrix C of size p × q to
create matrix AC of size n × q. Drawing credit to http://www.texample.net/tikz/

examples/matrix-multiplication/

holds for algorithms that work over a semiring. In the word-RAM model, the naive

O(U3) bound was improved by Strassen [13] who showed aO(Uω) algorithm for ω = log 7

by exploiting clever cancellations. The algorithms that use cancellations to its advantage

are called “fast matrix multiplication” algorithms or “Strassen-like” algorithms.

We consider the problem of sparse matrix multiplication. We say that the input or

output matrices are sparse if the number of nonzero entries in them is low. Say N is the

number of nonzero entries in the input and Z is the number of nonzero entries in the

output. In this thesis we present two new matrix multiplication algorithms, in the I/O

and word-RAM model respectively. They share that their running time is proportional

to the sparsity of the matrices, namely N and Z instead of the matrix dimension U .

This is a natural parametrization of the problem and is justified by the fact that in many

applications there are sparse matrices involved.

http://www.texample.net/tikz/examples/matrix-multiplication/
http://www.texample.net/tikz/examples/matrix-multiplication/
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1.6.1 Our results

For this problem we have new results that improve upon the state of the art in both the

I/O model and the word-RAM model. Our algorithms for this problem are all Monte

Carlo - they succeed with high probability.

In the I/O model we consider the natural case where we have N nonzero entries in the

input matrices and Z nonzero entries in the output matrix and the task is then to get

an I/O complexity that depends on those parameters instead of the matrix dimension

U . The previous state of the art algorithm for this setting was by Amossen and Pagh

[14], which had I/O complexity Õ(N
√
nnz(AC)/BM1/8). We improve this bound by a

factor of M3/8. Contrary to the previous algorithm we also handle cancellations. Our

results summarized:

1. We show that using Õ
(
N
B min

(√
Z
M ,

N
M

))
I/Os, AC can be computed with

high probability. This is tight (up to polylogarithmic factors) when only semiring

operations are allowed, even for dense rectangular matrices:

2. We show a lower bound of Ω

(
N
B min

(√
Z
M ,

N
M

))
I/Os, hence closing the gap

between lower and upper bounds for this problem.

In the word-RAM model we consider the case of exploiting fast matrix multipli-

cation to get a speedup when the output matrix is sparse. In fact for any matrix

multiplication algorithm that can multiply two U ×U matrices in O(Uω) for 2 ≤ ω ≤ 3

we can use that directly in our new algorithm. For matrix size dimension U , number

of nonzeros in input N and number of nonzeros in output Z our new algorithm uses

Õ
(
U2(Z/U)ω−2 + Z +N

)
operations. In Table 1.2 we show our algorithm against the

most related results. We postpone discussion of the related results to Section 3.3.2 but

note that we improve upon the start of the art for Z = ω(U) (when Z is asymptotically

larger than U) and we support cancellations.

1.7 Association Rule Mining using Maximum Entropy

In this chapter we consider association rules on triples of random variables. For example:

Suppose that a customer belongs to categories A and B, each of which is known to have

positive correlation with buying product C, how do we estimate the probability that she

will buy product C? Making such predictions has practical applications in recommender

systems, query completion and more. We consider the case of low support : When there

is a low (or no) number of observations that correlates A,B and C. Notice the relation
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Method Time Assumptions

General dense O (Uω)

Lingas Õ
(
U2Zω/2−1

)
Boolean matrices.

Iwen-Spencer, Le Gall O
(
U2+ε

)
O
(
U0.3

)
nonzeros per column.

Williams-Yu, Pagh Õ
(
U2 + UZ

)
This thesis, Theorem 3.15 Õ

(
UZ

ω−1
2 + Z +N

)
Balanced rows and columns.

This thesis, Theorem 3.16 Õ
(
U2(Z/U)ω−2 + Z +N

)
Table 1.2: Comparison of matrix multiplication algorithms of two U × U in the
RAM model. N denotes the number of nonzeros in the input matrices, Z the number
of nonzeros in the output matrix and ω is the currently lowest matrix multiplication

exponent.

to set intersection and dot products: We are here trying to predict intersection size of

three sets based on the observed set sizes and their pairwise intersection sizes.

For a big data set D we consider a sample D ⊂ D. Given such D we wish to estimate

event frequencies of D also in the difficult cases where the events do not occur in D. In

particular we will focus on triples: Let I be the set of possible items, |I| = n, and D be

an m×n binary data set where each of the m rows Di encodes a transaction Di ⊆ I. For

all singleton- and pair-subsets of I we assume that we know the number of transactions

which they occur in, i.e., all singleton and pair frequencies are known. For each X ⊂ I,

|X| = 3 where the frequency θX in D is 0 we then wish to estimate θX in D.

The standard approach would be that of extrapolation. If you have observed an event X

to happen occ(X) times in data set D then the extrapolation estimate for the probability

of X in D is occ(X)/|D|. However since occ(X) is low or zero then one would expect

this estimate to be imprecise at best. Another approach is to assume independence.

Say event X is the occurrence of events X1,X2,X3 at the same time and we know the

probabilities of these three events in D then the independence estimate is simply those

three probabilities multiplied. This has the downside that real life data typically does

not behave independently.

1.7.1 Our results

We propose instead to use the Maximum entropy estimate which is the probability

according to the possible distribution with the highest entropy. In other words the

distribution with the least bias possible based on the given observations, which in this

case are the single and pair probabilities. Our new results in this can be summarized as:

1. It has been an open problem to provide an explicit formula for the maximum en-

tropy estimate. We partially answer this by providing an explicit formula that
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under realistic assumptions gives an approximation to the maximum entropy esti-

mate for triples.

2. Through an experimental evaluation on several real life data sets we show that the

maximum entropy estimate gives meaningful estimates where the independence

and extrapolation estimates do not.

1.8 Similarity joins in high dimensions

For two sets we consider the problem of computing not the intersection but the subset of

points from the two sets that are “close” to being equal, where the measure of closeness

is given by the metric space of the input sets. The problem has applications such as web

deduplication, document clustering and click fraud detection.

For a space U and a distance function d : U × U → R. The similarity join of sets

R,S ⊆ U is the following: Given a radius r, compute the set

R ./
≤r
S = {(x, y) ∈ R× S | d(x, y) ≤ r} .

Let the total number of points be N = |R|+ |S|. Since there are O(N2) number of pairs

the naive approach is to just perform this number of comparisons and so the trivial

time bounds for this problem depend on this number of pairs. We go below this barrier

by using a special kind of hash function called a locality sensitive hash function(LSH):

Informally such a hash function will guarantee that two close points hash to the same

value with probability p1 and that two far away points hash to the same value with

probability p2 where p1 > p2. The rough idea is that since close points hash to the same

value often and far away points hash to the same value rarely, then by examining only

pairs that hash to the same value we avoid looking at many of the far away pairs.

1.8.1 Our results

We consider the I/O model only and we use the LSH idea as described above in order

to avoid comparing far away pairs. Ideally one would like an algorithm that depends on

the output size |R ./≤r S| and a subquadratic dependency in the number of points N .

However it turns out that this requires that the “c-near” join R ./≤cr S, for a constant

c, has few pairs in it. Our main result is the first I/O-efficient (in fact cache-oblivious)

algorithm for similarity join that has provably sub-quadratic dependency on the data

size and at the same time inverse polynomial dependency on M . The I/O complexity
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of our algorithm is

Õ

p−1
1

(
N

M

)ρN
B

+

|R ./
≤r
S|

MB

+

|R ./
≤cr

S|

MB

 I/Os.

Here ρ ∈ (0; 1) is a parameter of the LSH and p1 is the lower bound on the probability

given by the hash function on points that are within distance r hashing to the same

value. Where previous methods have an overhead factor of either N/M or (N/B)ρ we

obtain an overhead of (N/M)ρ, strictly improving both.

1.9 Load Balancing with Limited Independence

Finally we consider a problem that concerns strength of the hash functions used. In

both the set intersection, the matrix multiplication and the similarity join results, hash

functions are a central part in achieving the stated complexities. For ease of analysis

it is convenient to assume that the hash function is fully independent (Definition 1.9).

However in practice efficient hash functions exist only for low independence and the lower

independence that is needed the faster hash function can be used, roughly speaking.

Alon et al. [15] posed and answered the question “Is linear hashing good?” by among

other things showing the following. Let F be a finite field and let H be the family

of all linear transformations between two vector spaces over F . Then they show that

there exists a F with a bad set B ⊂ F2 of size n such that a randomly chosen linear

transformation from H on B has constant probability of mapping Ω(
√
n) elements to the

same value. That is, in hashing terms, the largest bucket has size Ω(
√
n) when hashing

n keys to 2n buckets using a linear transformation as a hash function.

Since linear transformations are known to be 2-wise independent functions then the

natural question arises if the result generalises, namely it would be ideal to examine the

question Is polynomial hashing good? This would include considering if hashing using

a degree l − 1 polynomial, which are known to be l-wise independent, implies that the

largest hash bucket is of size Ω(n1/l) with constant probability.

1.9.1 Our results

We partially answer this question: We examine if l-wise independence in itself is enough

to guarantee small hash buckets. Our main result is a family of l-wise independent hash

functions, that when used to throw n balls into 2n bins, there is a constant probability

of the largest bin being of size Ω(n1/l). Such a bound was unknown previously for all
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Symbol Meaning

S Set
n Set size
m Number of sets
t Intersection size
k Summary size
l l-wise independence
u Universe size
c Constant
N Input size
U Dimension
M Internal memory size
B Block size

Table 1.3: Recurring symbols used in the thesis and their meaning

values of l except 2, which is implied by the bound of Alon et al. Further, an interesting

property of our hash function is that it is “almost” degree l−1 polynomial hashing that

is used, hinting that perhaps the true generalization of Alon et al. can be achieved.

1.10 Technical preliminaries

1.10.1 Notation

We state notation that is used throughout the thesis.

Unless explicitly stated otherwise then for an integer n we use [n] as shorthand for the

set {0, 1, . . . , n− 1}. For finite sets S we will use |S| to denote the cardinality of S and

Si to denote the i’th element of S. For a finite set S we denote by x ∈ Sd that x is

length d vector with a member of S in each position.

We will let nnz(·) denote the number of nonzero entries of a matrix or vector.

For a constant c we let Õ(f(n)) denote O(f(n) logc f(n)) unless stated otherwise, e.g.

in Chapter 3 we let Õ also hide polylog factors in the dimension size U .

We refer to Table 1.3 for a list of recurring symbols and what they denote. For symbols

not in the list we will allow them to denote different things in each chapter, and in

specific sections we will allow symbols from the table to be used not as stated, e.g. k as

summand variable, when it is clear from the context that the symbol doesn’t represent

the meaning stated in the table.
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1.10.2 Probability and randomized analysis

We state the probability theoretical tools and definitions that are widely used in the

technical chapters of the thesis. See e.g. [16, 17] for more details on the probability

theoretical tools used to analyze randomized algorithms. Readers familiar with analysis

of randomized algorithms and data structures can skip this section.

Definition 1.1. A random variable X : E 7→ V is a random function from space E to

outcome space V . If the range of V is finite then X is called a discrete random variable

All random variables in this thesis should be considered discrete unless explicitly stated

otherwise.

Definition 1.2. For a random variable X : E 7→ V we say that its expectation is the

value given by

E(X) =
∑
x∈V

xPr(X = x).

Definition 1.3. Let X1, . . . , Xn be random variables with outcome ranges A1, . . . , An.

The random variables are independent if for every ai ∈ Ai

Pr(X1 = a1) ∧Pr(X2 = a2) ∧ . . . ∧Pr(Xn = an) =
∏
j

Pr(Xj = aj).

When the above definition holds, the variables are also said to be fully independent.

Such full independence is often not needed and thus the below definition is needed.

Definition 1.4. Let X1, . . . , Xn be random variables with outcome ranges A1, . . . , An.

The random variables are l-wise independent if for any distinct 1 ≤ i1 ≤ i2 ≤ . . . ≤ il

and ai1 ∈ Ai1 , . . . , ail ∈ Ail it holds that

Pr(Xi1 = ai1) ∧Pr(Xi2 = ai2) ∧ . . . ∧Pr(Xil = ail) =
l∏

j=1

Pr(Xij = aij ).

Note that for l = n we have full independence.

The algorithms and data structures in this thesis are mostly randomized and to analyze

their behavior some fundamental tools are used throughout, namely Markov’s inequal-

ity, Chernoff’s inequality and Chebychev’s inequality. When steps of an analysis are

attributed as “by standard application of Markov/Chernoff/Chebychev”, then the three

results below or slight variations of them are used.
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Fact 1.5. (Markov’s inequality) For a nonnegative random variable X and a scalar λ > 1

then it holds

Pr[X ≥ λE[X]] ≤ 1

λ
.

Fact 1.6. (Chernoff’s inequality) For a random variable X with E[X] = µ and scalar

ε > 0 then it holds

Pr [|X − µ| > εµ] ≤ 2e−ε
2µ/2.

Fact 1.7. (Chebychev’s inequality) For a random variable X with variance σ2 and a

scalar λ > 0 then it holds

Pr[|X − E[X]| ≥ λσ] ≤ 1

λ2
.

A common property of some randomized algorithms is the notion of an estimate, that

is, the algorithm will as a result output not the true answer but instead a quantity

close to the true answer. Sometimes such an estimate is close to the true answer with a

probability - the setting is captured by the definition below.

Definition 1.8. Let X ∈ R and let X̂ be a random variable. We say that X̂ is an

(ε, δ)-estimate of X if Pr
[∣∣∣X̂ −X∣∣∣ ≥ εX] ≤ δ. We use ε-estimate as shorthand for

(ε, 1/3)-estimate.

Throughout the thesis the fundamental notion of hash functions will be used repeatedly.

A hash function h : U 7→ [b] is a random function that maps a universe U to a (typically

smaller) set {0, . . . , b− 1}. Such hash functions will broadly speaking be used to divide

data into smaller parts that can then be processed. The optimal hash function would

divide U independently and uniformly over [b] but there are no practical implementa-

tions of such functions [18]. To achieve practicality we re-introduce the notion of l-wise

independence onto hash functions.

Definition 1.9. Let h : U 7→ V be a random hash function, l ∈ N and let u1, . . . , ul be

any distinct l elements from U and v1, . . . , vl be any l elements from V .

Then h is l-wise independent if it holds that

Pr [h(u1) = v1 ∧ . . . h(ul) = vl] =
1

|V |l
.

The above definition is interesting since often times full (l = |U |) is not needed and there

are practical implementations for lower l, see e.g. [19, 20] for very fast families of hash

functions for l = 2 and l = 3 respectively and [21, 22] for families that are practical for

l = O(log |U |) for universe U .
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1.10.3 Algebra

The thesis contains algorithms where it is crucial to distinguish between the input al-

lowed. In particular, the matrix multiplication results of Chapter 3 rely on the input

being from a ring, semiring or a field.

Definition 1.10. A semiring R is a set S and two binary operators + and ∗ where for

all a, b, c ∈ S it holds:

(a) (a+ b) + c = a+ (b+ c).

(b) a+ b = b+ a.

(c) (a ∗ b) ∗ c = a ∗ (b ∗ c).

(d) a ∗ (b+ c) = a ∗ b+ a ∗ c and (b+ c) ∗ a = b ∗ a+ b ∗ c.

Definition 1.11. A ring R is a semiring for which it additionally holds:

(a) There exists an additive identity 0 ∈ S s.t. for all a ∈ S, 0 + a = a+ b = a.

(b) There exists an additive inverse for every a ∈ S denoted −a ∈ S s.t. a + (−a) =

(−a) + a = 0.

Further the following two conditions may hold optionally:

1. There exists an multiplicative identity 1 ∈ S s.t. for all a 6= 0 ∈ S, 1∗a = a∗1 = a.

2. There exists an multiplicative inverse for every a 6= 0 ∈ S denoted a−1 ∈ S s.t.

a ∗ a−1 = a−1 ∗ a = 1.

Definition 1.12. A field F is a set of elements that satisfy associativity, commutativity,

distributivity, identity and the existence of inverses for both addition and multiplication.
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Multiple Set Intersection

2.1 Introduction

Many basic information processing problems can be expressed in terms of intersection

sizes within a preprocessed collection of sets. For example, in databases and data ana-

lytics, aggregation queries often use a conjunction of several simple conditions such as

“How many sales occurred in June 2013, in Sweden, where the sold object is a car?” In

this chapter we consider the problem of quickly estimating the size of the intersection of

several sets, where a succinct precomputed summary of s bits is available for each set.

Specifically, we answer the question:

How many bits is it necessary to allocate to each summary in order to get an estimate

with 1± ε relative error?

Note that we require the summaries to be independently computed, which for example

prevents solutions based on precomputing all answers. This restriction is motivated by

yielding scalable and flexible methods for estimating intersection sizes, with no need for

a centralized data structure.

2.1.1 Motivation

Estimates of intersection size can be used directly as part of algorithms with approxima-

tion guarantees, but are also useful for exact computation. For example, when evaluating

conjunctive database queries the order in which intersections are computed can have a

large impact on performance. Good estimates of intersection sizes allow a query opti-

mizer to make a choice that is near-optimal. In other settings, estimates of intersection

22
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sizes can be used as a filter to skip parts of an exact computation that would not influ-

ence the output (e.g., we might only be interested in a particular sales figure if it exceeds

some threshold).

In data warehouses it is common to perform extensive precomputation of answer sets

and summaries of simple queries, so that these can be combined to answer more complex

queries quickly (see e.g. [23, 24]). At PODS 2011 Wei and Yi [25] showed that a number

of different summaries of sets fulfilling a range condition can be efficiently extracted from

augmented B-tree indexes. The number of I/Os for creating a summary of all data in a

given range is close to the number of I/Os needed for reading a precomputed summary

of the same size. That is, the efficiency is determined by the size of each summary,

which motivates the question of how small a summary can be. Though Wei and Yi do

not consider this explicitly, it is easy to see that (at least when efficient updates of data

is not needed) their ideas apply to the kind of summaries, based on min-wise hashing,

that we consider in the upper bounds of this chapter.

2.1.2 Brief history

Motivated by document similarity problems encountered in AltaVista, Broder [26] pi-

oneered algorithms for estimating set intersection sizes based on independently pre-

computed “summaries” of sets. More specifically he presented a summary technique

called “min-wise hashing” where, given summaries kmin(S1) and kmin(S2) of sets S1 and

S2, it is possible to compute a low-variance, (asymptotically) unbiased estimator of the

Jaccard similarity J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|. Assuming that |S1| and |S2| are

known, an estimate of J(S1, S2) with small relative error can be used to compute a good

estimate of |S1 ∩ S2|, and vice versa. In fact, we state many of our results in terms of

the ratio between the size of the intersection and the largest set, which is Θ(J).

Li and König [27] presented “b-bit min-wise hashing”, a refinement of Broder’s approach

that reduces the summary representation size by storing a vector of b-bit hash values

of elements from kmin(X). Even though the resulting hash collisions introduce noise in

the estimator, this can be compensated for by a small increase in the size of kmin(X),

yielding a significantly smaller summary with the same variance. Specifically, with b = 1

and using s bits of space, the variance is 2(1−J)/s.1 In order to get an estimation error

of at most εJ with probability (say) 1/2, by Chebychev’s inequality it suffices that

(1 − J)/s < (εJ)2, i.e., s > (1 − J)/(εJ)2. It is not hard to show that the estimator is

1The variance bound stated in [27] is more complex, since it deals with min-wise hashing based on
permutations, which introduces correlations. By replacing this with full independence one arrives at the
stated variance.
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well-concentrated, and this bound is tight up to constant factors. Increasing the value

of b (while keeping the space usage fixed) does not improve the variance.

2.1.3 Our contribution

First, we show that the variance of any estimator for Jaccard similarity based on sum-

maries of s bits must be Ω(1/s) for fixed J between 0 and 1. More specifically, there

exists a distribution of input sets such that with constant probability any such estimator

makes an error of Ω(
√

1/s) with constant probability. This means that b-bit min-wise

hashing cannot be substantially improved when it comes to estimating intersection size

(or Jaccard similarity) of two sets, except perhaps when J is asymptotically close to 0

or 1.

Second, we show that it is possible to improve existing estimators for the intersection

size of m = ω(1) pre-processed sets. In fact, we show that estimators (such as b-bit

min-wise hashing) that are based on many permutations are inherently less precise than

their one-permutation counterpart when considering the intersection of many sets. We

then show that a suitable approximate encoding of one-permutation min-wise hashing

summaries is always competitive with b-bit min-wise hashing, while reducing the space

required for accurately estimating the intersection size of many sets.

2.2 Related work

Problem definition. Let S1, S2, . . . be sets of size ni = |Si| where all Si ⊆ [u] and the

largest set is nmax = maxni. A query is a subset I ⊆ N of the set indices and the output

to the query is the intersection size |∩i∈ISi|. For ease of notation we assume that the

query is I = {1, . . . ,m} and intersection size to estimate is then t = |S1 ∩ . . . ∩ Sm|.

In this chapter we consider estimators for the intersection size t. As previously noted

we focus on the setting where the sets S1, S2, . . . , Sm are available for individual pre-

processing. Storing only a small summary of each set, which requires not even approx-

imate knowledge of t, we provide an estimator for the intersection size t. Note that in

this model, we allow ourselves only to pre-process the sets independently of each other,

i.e., intersection sizes or other information that rely on more than the set currently be-

ing pre-processed cannot be stored. See [28] for work on (exact) set intersection in the

model where information about all sets can be used in the pre-processing phase.

For the applications, we seek to obtain bounds that are parameterized on the size of

the summary required of each set as a function of largest set size nmax, the intersection
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size t, and the relative error ε. Further, let s denote the space in bits stored per set

and k the number of permutations or number values taken from one permutation for

k-permutation and one-permutation min-wise hashing respectively.

2.2.1 Lower bounds

Several well-known problems in communication complexity imply lower bounds for spe-

cial cases of the set intersection problem:

In the Index problem Alice is given a subset of {1, . . . , n}, and Bob is given a set of size

1. The task is to determine whether the intersection size is 0 or 1. It is known that

even for randomized protocols with error probability 1/3, the one-way communication

complexity of this problem is Ω(n) bits (see [29]). Informally, this shows that the cost

of estimating set intersection grows with the ratio between the intersection size t and

the size nmax of the largest set.

In the GapAnd problem Alice and Bob are both given subsets of {1, . . . , n}, and the task

is to determine if the intersection size is below n/4−
√
n or above n/4 +

√
n (if it is in-

between, any result is okay). This is a variant of the well-studied GapHamming problem,

for which the randomized one-way communication complexity is Ω(n) bits [30, 31]. In

fact, the randomized two-way communication complexity for this problem is also Ω(n)

bits [32], though in our application of first preprocessing the sets in order to then answer

queries, we will only need the result for one-way communication. Informally, this lower

bound means that the cost of estimating set intersection is inversely proportional with

the square of the relative error.

Informally, our lower bound shows that these results generalize and compose, such that

the lower bound is the product of the cost due to Index and the cost due to GapAnd,

each with constant error probability. That is, our lower bound will be Ω(nmaxε
−2/t),

which we can use to bound the variance of any estimator for Jaccard similarity. The

intuitive idea behind the lower bound is to compose the two problems such that each

“bit” of GapAnd is encoded as the result of an Index problem. Unlike typical arguments

in information complexity, see, e.g., the PODS 2010 tutorial by Jayram [33], we instead

measure the information a protocol reveals about intermediate bits in Claim A.4, rather

than about the inputs themselves. See the beginning of Section 2.3 for a more detailed

intuition.

We note that using the output bits of multiple instances of one problem as the input

bits to another problem was also used in [34], though not for our choice of problems,

which are specific to and arguably very useful for one-way communication given the



Chapter 2. Multiple set intersection 26

widespread usage of Index and GapAnd problems in proving encoding size or “sketching”

lower bounds. We note that our problems may become trivial for 2-way communication,

if e.g., one set has size nmax while the other set has size 1, while the lower bounds for the

problems considered in [34] are qualitatively different, remaining hard even for 2-way

communication.

2.2.2 Min-wise hashing techniques

Min-wise hashing was first considered by Broder [26] as a technique for estimating the

similarity of web pages. For completeness, below we define min-wise independence along

with the standard algorithm to compute an unbiased estimator for resemblance.

Definition 2.1 ([35, Eq. 4]). Let Sn be the set of all permutations on [n]. Then a

family F ⊆ Sn is min-wise independent if for any set X ⊆ [n] and any x ∈ X, when

permutation π ∈ F is chosen at random we have

Pr [minπ(X) = x] = 1/|X| .

In particular, for two sets X,Y ⊆ [n] and a randomly chosen permutation π ∈ F we

have

Pr (minπ(X) = minπ(Y )) = J =
|X ∩ Y |
|X ∪ Y |

.

This can be used to compute an estimate of the Jaccard similarity. Specifically, given k

independent min-wise permutations π1, . . . , πk then

Ĵ =
1

k

k∑
i=1

[minπi(X) = minπi(Y )]

is an unbiased estimator of J (where [α] is Iverson Notation for the event α) with variance

Var(Ĵ) = J (1− J) /k.

In both theory and practice it is often easier to use a hash function with a large range

(e.g. size u3) instead of a random permutation. The idea is that the probability of

a collision among the elements of a given set should be negligible, meaning that with

high probability the order of the hash values induces a random permutation on the set.

We will thus use the (slightly misleading) term “one-permutation” to describe methods

using a single hash value on each set element.

Min-wise summaries. For a given set X the k-permutation min-wise summary of size k

is the vector

(minπ1(X), . . . ,minπk(X)).
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The one-permutation min-wise summary (sometimes called bottom-k sketch) of size k

for a permutation π is the set kmin(X) = {π(x) |x ∈ X,π(x) < τ}, where τ is the

k+ 1’th largest permutation rank (hash value) of the elements in X. That is, intuitively

k-permutation summaries store the single smallest value independently for each of k

permutations, while one-permutation summaries store the k smallest values for one

permutation. It is not hard to show that |kmin(X ∪Y )∩ kmin(X)∩ kmin(Y )|/k is a good

estimator for J , where kmin(X ∪Y ) can be computed from kmin(X) and kmin(Y ). For k-

permutation min-wise summaries, if π1, . . . , πk are independent min-wise permutations

then

1

k

k∑
1

|minπi(X) ∩minπi(Y )|

is analogously an estimator for J .

2.2.3 Previous results on set intersection

For m sets S1, . . . Sm let the generalized Jaccard similarity be J = | ∩i Si|/| ∪i Si|. If

we multiply an estimate of the generalized Jaccard similarity of several sets and an

estimate of the size of the union of the sets, we obtain an estimate of the intersection

size. Using existing summaries for distinct element estimation (also based on hashing,

e.g. [36, 37]) we get that previous work on (generalized) Jaccard similarity implies results

on intersection estimation [26, 35, 38, 39]. Recently, b-bit variations of min-wise hashing

were proposed [40] but so far it is not clear how they can be used to estimate Jaccard

similarity of more than three sets [41]. See Section 2.5.2 for further discussion.

The problem of computing aggregate functions (such as set intersection) over sets when

hash functions are used to sample set elements has been widely studied [42–44]. In the

general case of arbitrary aggregate functions, Cohen and Kaplan [44] characterizes for

a given aggregate function f if an unbiased estimator for f with finite variance can be

achieved using one- or k-permutation summaries. For the specific case of set intersection,

RC (Rank Conditioning) estimators [42, 43] have been shown to provide an unbiased

estimator based on both one- and k-permutation summaries and these can be extended to

work with limited precision, analogous to b-bit min-wise hashing. Further, experimental

work show that estimators based on one-permutation summaries outperform those based

on k-permutation summaries [42] on the data sets used.

In contrast, this chapter provides an explicit worst-case analysis of the space requirement

needed to achieve ε error with error probability at most δ for set intersection using one-

permutation summaries, where signatures (2.5.2) are used to shave off a logarithmic

factor for the upper bound, making the bound close to being tight.
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Method Required space (bits) Time

Inclusion-exclusion s ≥ ε−2 (mn/t)2 + log n 2m

Subsampling s ≥ ε−2(n/t) logm log2 n sm
b-bit min-wise hashing∗ s ≥ ε−2(mn/t) sm
New upper bound s ≤ ε−2(n/t) log(m) log(n/εt) sm
General lower bound s ≥ ε−2(n/t) -

Table 2.1: Comparison of estimators of intersection size t for relative error ε and
constant error probability, with m sets of maximum size n. Bounds on the summary
size s ignore constant factors. The subsampling bound assumes that no knowledge of
t is available, and thus log n levels of subsampling are needed. ∗The bound for b-bit
min-wise hashing assumes that the number of hash functions needed in the analysis of

min-wise summaries is optimal, see Section 2.7.

Table 2.1 shows the performance of different algorithms along with our estimator based

on one-permutation min-wise hashing. The methods are compared by time/space used to

achieve an (ε, δ)-estimate (Definition 1.8) of the intersection size t of m sets of maximum

size n for constant δ.

The Jaccard estimator computed using k-permutation min-wise hashing, as described in

Section 2.2.2, can trivially be used to estimate intersection when cardinality estimate of

the union of the sets is given (by simply multiplying by the union estimate). However,

there are instances of sets where J can be as low as t/(t+m(n−t)) for a “sunflower”, i.e.,

m sets of n elements that are disjoint except for the t intersection elements. Following

from Chernoff bounds, such an instance requires to store 1
Jε2

elements to get an ε-

estimation of J with constant probability. See Section 2.7 for a discussion of the bound

for “b-bit min-wise hashing” in Table 2.1.

In contrast, the one-permutation approach described in this chapter stores s ≥ n
t

logm log u
ε2

bits for m sets of maximum size n, while maintaining estimation time sm. Recent work

investigated a different way of doing min-wise hashing using just one permutation [45],

but this method seems to have the same problem as k-permutation min-wise hashing

for the purpose of m-way set intersection. Intersection estimation can also be done

by applying inclusion-exclusion to union size estimates of all subset unions of the m

sets. To achieve error εt then by Chernoff bounds for sampling without replacement

we need sample size s > (
∑

i ni/(εt))
2. As there are 2m − 1 estimates to do for m sets

this yields time 2ms. Bloom filters [46] also support set intersection operations, and

cardinality estimation, but to work well need the assumption that the sets have similar

size. Therefore we will not discuss them further.
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2.3 Our results

We show a lower bound for the size of a summary for two-way set intersection by a

reduction from one-way communication complexity. More specifically, any summary that

allows a (1 + ε)-approximation of the intersection size implies a one-way communication

protocol for a problem we call GapAndIndex, which we think of as the composition of

the Index and GapAnd communication problems. Namely, Alice has r = Θ(1/ε2) d-bit

strings x1, . . . , xr, while Bob has r indices i1, . . . , ir ∈ [d], together with bits b1, . . . , br.

Bob’s goal is to decide if the input falls into one of the following cases, for a constant

C > 0:

a For at least r
4 + Cεr of the j ∈ [r], we have xjij ∧ bj = 1.

b For at most r
4 − Cεr of the j ∈ [r], we have xjij ∧ bj = 1.

If neither case occurs, Bob’s output may be arbitrary (i.e., this is a promise problem).

A straightforward reduction shows that if you have an algorithm that can (1 + ε)-

approximate the set intersection size |S1 ∩ S2| for sets S1 and S2, then you can solve

GapAndIndex with the parameter d roughly equal to |S1|/t and |S2| ≤ 4t. Let the

randomized communication complexity R1−way
1/3 (f) of problem f be the minimal com-

munication cost (maximum message transcript) of any protocol computing f with error

probability at most 1/3.

The crux of our lower bound argument is to show:

Theorem 2.2. For r = Θ(1/ε2), d = nmax/t,

R1−way
1/3 (GapAndIndex) = Ω(dr).

In terms of the parameters of the original set intersection problem, the space lower

bound is proportional to the ratio d between the largest set size and the intersection size

multiplied by ε−2. Since d = Θ(1/J) this is Ω(ε−2/J), which is a lower bound on the

space needed for a 1± ε approximation of J . If we consider the problem of estimating J

with additive error ≤ εadd with probability 2/3, observe that in this case ε = Θ(εadd/J),

so the lower bound becomes Ω(J/ε2
add). Conversely, for fixed J > 0 and space usage s

we get εadd = Ω(1/
√
s) with probability 1/3 so the variance is Ω(1/s).

Our second result is a simple estimator for set intersection of an arbitrary number of

sets, based on one-permutation min-wise hashing. The intuition behind our result is that
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when using k-permutation min-wise hashing, the probability of sampling intersection

elements relies on the size of the union, while in contrast our one-permutation approach

depends on the maximum set size, hence we save almost a factor of the number of input

sets in terms of space. We show the following:

Theorem 2.3. Let sets S1, . . . , Sm ⊆ [u] be given and let nmax = maxi |Si|, t = |S1 ∩
. . . ∩ Sm| and k be the summary size |kmin(Si)|. For 0 < ε < 1/4, 0 < δ < 1/

√
k,

consider the estimator

X =

∣∣∣⋂i∈[m] kmin(Si)
∣∣∣nmax

k
.

With probability at least 1− δ
√
k:

t ∈

[X/(1 + ε);X/(1− ε)] if X > 3nmax log(2m/δ)/kε2

[0; 4nmax log(2m/δ)/kε2] otherwise

That is, we either get an (ε, δ)-estimate or an upper bound on t. Whenever k ≥
4nmax log(2m/δ)

ε2t
we are in the first case with high probability. We note that the lower

and upper bounds presented are parameterized on the estimand t, i.e., the bounds de-

pend on the size of what we are estimating. This means that the error bound ε will

depend of t, so the relative error is smaller for larger t.

Theorem 2.3 follows from two main arguments: First we show that if the summary

of each set is constructed by selecting elements independently using a hash function

then we get a good estimate with high probability. As our summaries are of fixed size,

there is a dependence between the variables denoting whether an element is picked for

a summary or not. The main technical hurdle is then to bound the error introduced by

the dependence.

We then extend the use of signatures, which are well-known to reduce space for k-

permutation min-wise hashing, to one-permutation min-wise hashing as used in our

estimator. This reduces the number of bits s by a logarithmic factor. Section 2.5.2

discusses this further.

Result structure. We will start by showing the general space lower bound in Sec-

tion 2.4. Following this we show the upper bound - a new estimator for set intersection

size - in Section 2.5. We end by discussing the amount of independence the hash functions

used in our estimator uses in Section 2.6 and in Section 2.7 we provide the bad instance

for our (in spirit) nearest related estimator, the k-permutation min-wise estimator.
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2.4 Lower Bound

2.4.1 Preliminaries

We summarize terms and definitions from communication complexity that are used in

the lower bound proof.

Communication model. We consider two-player one-way communication protocols:

Alice is given input x, Bob is given input y and they need to compute function f(x, y).

Each player has his/her own private randomness, as well as a shared uniformly dis-

tributed public coin W of some finite length. Since the protocol is 1-way, the transcript

of protocol Π consists of Alice’s single message to Bob, together with Bob’s output bits.

For a protocol Π, the maximum transcript length in bits over all inputs is called the

communication cost of Π. The communication complexity Rδ(f) of function f is the

minimal communication cost of a protocol that computes f with probability at least

1− δ.

High level proof strategy. We briefly summarize the general approach used to prove

the space lower bound of Theorem 2.2 and how communication complexity applies to

space lower bounds. In general, say Alice gets input string x and Bob gets input string

y and the communication problem that they need to compute is the function f(x, y).

Now assume the set intersection computation corresponds to computing f(x, y) via a

reduction argument and let f(x, y) have communication complexity Ω(g(n)) bits. Then

the set intersection computation must have space complexity Ω(g(n)) bits. Otherwise,

assume there is an algorithm A that computes intersection using o(g(n)) bits. Then

in the communication problem, simply run A on Alice’s input, send the entire working

memory to Bob who then finishes the computation. This protocol is a o(g(n)) bit

protocol for f(x, y), contradicting that Ω(g(n)) was a lower bound for f(x, y).

Mutual information. For random variables X and Y with support X and Y and let

p(x, y), p(x), p(y) be the joint and marginal distributions respectively. The entropy and

conditional entropy are defined as:

H(X) = −
∑
x∈X

p(x) log p(x)

H(X | Y ) =
∑

x∈X ,y∈Y
p(x, y) log

p(y)

p(x, y)

The mutual information is given as:

I(X;Y ) = H(X)−H(X | Y ) =
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
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We make use of the following rule:

Fact 2.4. (Chain Rule) For discrete random variables

X,Y, Z it holds that I(X,Y ;Z) = I(X;Z) + I(X;Y | Z).

For a protocol Π that uses public random coins W and has transcript Π(X,Y, Z) for

random variables X,Y, Z ∼ µ, the conditional information cost of Π with respect to

distribution µ is I(X,Y, Z; Π(X,Y, Z) |W). For function f we have that the conditional

information complexity CICµδ (f) is the minimal conditional information cost of any δ-

error protocol Π with respect to distribution µ.

Fano’s inequality. We make use of Fano’s equality which intuitively relates the error

probability of a function between random variables to the conditional entropy between

them.

Definition 2.5. Given domains X and Y and random variables X,Y on these domains

with distribution µ, we say a function g : Y → X has error δg if

PrX,Y∼µ[g(Y ) = X] ≥ 1− δg.

Fact 2.6. Let X and Y be a random variables chosen from domains X and Y respectively

according to distribution µ. There is a deterministic function g : Y → X with error δg,

where δg ≤ 1− 1
2H(X | Y ) .

Fact 2.7. (Fano’s inequality.) Let X and Y be a random variables chosen from domains

X and Y respectively according to distribution µ. For any reconstruction function

g : Y → X with error δg,

Hb(δg) + δg log(|X | − 1) ≥ H(X | Y ).

2.4.2 A Communication Problem and its Application to Set Intersec-

tion

Let r = Θ(1/ε2), and d = nmax/t. We consider a two-party one-way communication

problem:

Definition 2.8. In the GapAndIndex problem, Alice has bit vectors x1, . . . , xr ∈ {0, 1}d

while Bob has indices i1, . . . , ir ∈ [d], where [d] = {1, 2, . . . , d}, together with bits

b1, . . . , br ∈ {0, 1}. Let x = (x1, . . . , xr), i = (i1, . . . , ir), and b = (b1, . . . , br) and
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C > 0 be a fixed constant. The output of GapAndIndex(x, i,b) is:

1 if
r∑
j=1

(xj
ij
∧ bj) ≥ r

4
+ Cεr

0 if
r∑
j=1

(xj
ij
∧ bj) ≤ r

4
− Cεr.

This is a promise problem, and if neither case occurs, the output can be arbitrary.

If the input (x, i,b) is in either of the two cases we say the input satisfies the promise.

We say a one-way randomized protocol Π for GapAndIndex is δ-error if

∀x, i,b satisfying the promise :

Pr[Π(x, i,b) = GapAndIndex(x, i,b)] ≥ 1− δ,

where the probability is over the public and private randomness of Π.

Let κ be the set of randomized one-way δ-error protocols Π. We note that κ is finite

for any problem with finite input, as we can always have one player send his/her entire

input to the other player.

Then,

R1−way
δ (GapAndIndex) = min

Π∈κ
max
x,i,b,

randomness of Π

|Π(x, i,b)|,

where |Π(x, i,b)| denotes the length of the transcript with these inputs. Since the

protocol is 1-way, we can write this length as |M(x)|+ 1, where M(x) is Alice’s message

function in the protocol Π given her input x, and we add 1 for Bob’s output bit. Here,

implicitly M also depends on the private randomness of Alice, as well as the public coin

W.

Let µ be the uniform distribution on x ∈ ({0, 1}d)r. We use the capital letter X to denote

random x distributed according to µ. We introduce a distribution on inputs solely for

measuring the following notion of information cost of the protocol; we still require that

the protocol is correct on every input satisfying the promise with probability 1− δ over

its public and private randomness (for a sufficiently small constant δ > 0).

For a uniformly distributed public coin W, let

CICµ,1−wayδ (GapAndIndex) = min
Π∈κ

I(M(X); X |W),

where for random variables Y,Z and W , I(Y ;Z | W ) = H(Y | W ) − H(Y | Z,W ) is

the conditional mutual information. Recall that the conditional entropy H(Y | W ) =
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∑
wH(Y | W = w) · Pr[W = w], where w ranges over all values in the support of W .

For any protocol Π,

max
x,i,b
|Π(x, i,b)| = max

x
|M(x)|+ 1

> max
x
|M(x)|

≥ H(M(X) |W)

≥ I(M(X); X |W),

which implies that

R1−way
δ (GapAndIndex) ≥ CICµ,1−wayδ (GapAndIndex).

We now consider the application to set intersection. Let r = 10/ε2 and d be the desired

ratio between the intersection size t and the largest set. The idea is to give Alice a

subset of elements from [dr], where the characteristic vector of her subset is x1, . . . , xr.

Also, for each j ∈ [r], Bob is given the element d · (j − 1) + ij if and only if bj = 1. If

Alice and Bob’s sets are constructed in this way then the intersection is either of size at

most r/4−Cεr, or of size at least r/4+Cεr. Hence, a 1-way protocol for approximating

the intersection size up to a relative (1 + Θ(ε))-factor can be used to distinguish these

two cases and therefore solve the GapAndIndex promise problem.

To get intersection size t without changing the problem, we duplicate each item 4t/r

times, which means that the problem becomes distinguishing intersection size at most

t(1 − Θ(ε)) and at least t(1 + Θ(ε)). By rescaling ε by a constant factor, a 1-way

protocol for (1+ε)-approximating the intersection of Alice and Bob’s sets with constant

probability can be used to solve GapAndIndex with constant probability. Hence, its

space complexity is ≥ CICµ,1−way1/3 (GapAndIndex). This holds for any distribution µ for

measuring information, though we shall use our choice of µ above.

Hence, the final step is showing that the stated conditional information complexity of

GapAndIndex is Ω(dr) for d = nmax/t and r = Θ(1/ε2). The proof details of the argument

can be seen in Appendix A.

2.5 Upper bound

Recall that sets S1, . . . , Sm ⊆ [u] of sizes n1, . . . , nm where nmax = maxi ni are given, and

we wish to obtain an (ε, δ)-estimate of t = |S1 ∩ . . . ∩ Sm| using one-permutation k-min

summaries as described in Section 2.2.2. Theorem 2.3 defines an estimator (see Figure

2.2 for pseudocode). In our proof of Theorem 2.3 we will assume that the hash function
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used to construct the summaries is random and fully independent. In many applications

it will be possible to achieve this by simply maintaining a hash table of values during the

construction phase. However, Section 2.6.1 shows how to replace the full randomness

assumption with concrete hash functions in case the number of different hash values is

too large to store. The space needed to store a summary that gives an (ε, δ)-estimate is

O
(
nmax log(m/δ) log u

tε2

)
bits. In Section 2.5.2 we show that this can be reduced almost by

a factor log u by use of signatures. The time to compute the estimation of t of m sets is

sm.

For an intersection query on m sets the main insight is that our estimator relies only

on the maximum set size nmax in contrast to the known k-permutation estimator that

depends on the size of the union, making it less accurate given the same space (see

Table 2.1). The difference is illustrated in Figure 2.1: We have two sets, Smax and S2,

one is big and is of size nmax, the other is smaller of size n and the intersection size

is t. The intuitive argument can be made by considering sampling : If we sample an

element from the intersection with probability p then we must store 1/p elements in

order to in expectation have one intersection element stored. Roughly speaking, for k-

permutation summaries there is probability around the intersection size divided by the

union size per permutation to have one of the t intersection elements being the sampled

one. It follows from this observation that an input that maximizes space usage k-

permutation summaries is a set instance with large union size and small intersection size -

see Section 2.7 for the argument on such an instance. For one-permutation summaries as

used by our estimator the space saving comes from the fact that for sufficient summary

size k, when an element from the intersection is sampled from Smax then it is also

sampled from S2 with high probability, meaning roughly sampling probability t/nmax.

This comes from the fact that if elements of the intersection hashes among the k smallest

hash values in the big set, then this is likely the case for the smaller set as well, since

we use the same hash function to sample.

2.5.1 Proof of Theorem 2.3

Recall that kmin(Si) denotes the size-k one-permutation min-wise summary of Si and

the indicator variable X̂
(i)
j denotes the event that item j is chosen for the size-k one-

permutation min-wise summary of Si as defined below: X̂
(i)
j = 1 if j ∈ kmin(Si) and

X̂
(i)
j = 0 otherwise.

High-level proof strategy. Observe that Pr[X̂
(i)
j = 1] = k/ni. Our algorithm uses

size k summaries so for each set Si we have
∑ni

j=1 X̂
(i)
j = k, which causes negative

dependence between the indicator variables [47], i.e., when an item is in the summary



Chapter 2. Multiple set intersection 36

Smax

S2

t = |Smax ∩ S2|

Figure 2.1: k-perm vs one-perm intuition. For k-perm we have probability around
t/|Smax ∪ S2| to sample an intersection element. For one-perm and high enough k the
big set dictates and so we get probability roughly t/|Smax|. Higher sampling probability

implies lower space usage.

Input: Sets S1, S2, . . . ⊆ [u]
Output: k-min summaries for all Si

1 h ←− fully independent random hash
function

2 foreach Si do
3 ki ← the kth smallest h(x) for x ∈ Si
4 kmin (Si)← {x |x ∈ Si ∧ h(x) ≤ ki}

(a) Pre-processing the sets.

Input: k-min summaries and set sizes
kmin(S1), n1 = |S1|, . . . and query
set M ⊆ N

Output: X: An (ε, δ)-estimation of
t =

∣∣⋂
i∈M Si

∣∣
1 nmax ←− maxi∈M ni
2 X ←−

∣∣⋂
i∈M kmin(Si)

∣∣nmax/k

(b) Computing the estimator. The out-
put is an (ε, δ)-estimator whenever X >

3nmax log(1/δ)/kε2 (See Theorem 2.3).

Figure 2.2: Pseudocode for performing pre-processing and computing the estimator.

of a set then the other items have smaller probability of being in the that summary.

The main technical hurdle is showing that even with such a dependence one can use the

intersection size between the summaries to estimate the intersection size of the sets.

To do this we analyze the case where for each Si, the variables X
(i)
1 , X

(i)
2 , . . . , X

(i)
ni are

independent random variables:

X
(i)
j =

{
1 if h(j) ≤ k/ni
0 otherwise

(2.1)

where h : u 7→ [0, 1] is a fully random hash function. Let the setting with negative

dependence be called the dependent case and the case using (2.1) be the independent

case. The independent case conditioned on the sum of the variables being k is identically
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distributed as the dependent case. Therefore the final step is to bound the additional

error probability of going from the independent case to the dependent one.

First we bound the probability of sampling k specific items given the number of sampled

items is k. Let i ∈ [m] and S̃i = {x ∈ Si |h(x) ≤ k/ni } be a sample of Si ⊆ [u] picked

according to (2.1). An important consequence of picking elements to be in summaries is

that of consistent sampling: If the hash value of an element from the intersection is one

of the k smallest hash values computed, it will be guaranteed to be sampled in all sets.

The following lemma shows that any specific outcome of a sample has equal probability

given we restrict a sample to be size k.

Lemma 2.9. If Si ⊆ [u] and {i1, i2, . . . , ik} is a specific size k outcome then

Pr
[
S̃i = {i1, i2, . . . , ik} |

ni∑
j=1

X
(i)
j = k

]
=

1(
ni
k

)
Proof. We have:

Pr
[
S̃i = {i1, i2, . . . , ik}

]
=

(
k

ni

)k (
1− k

ni

)ni−k
Pr

 ni∑
j=1

X
(i)
j = k

 =

(
ni
k

)(
k

ni

)k (
1− k

ni

)ni−k

The final step of the lemma follows from Bayes theorem:

Pr
[
S̃i = {i1, i2, . . . , ik} |

ni∑
j=1

X
(i)
j = k

]
=

Pr
[
S̃i = {i1, i2, . . . , ik}

]
Pr
[∑ni

j=1X
(i)
j = k

] =
1(
ni
k

) .

We show the lower bound on the probability of the size of any S̃i being equal to its

expectation k:

Lemma 2.10. For a sample S̃i of Si we have

Pr
[
|S̃i| = k

]
= Ω

(
1√
k

)
. (2.2)

Proof. The mean µ of |S̃i| is the most likely outcome, i.e,

Pr
[
|S̃i| = k

]
≥ Pr

[
|S̃i| = j

]
for 1 ≤ j ≤ u
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holds due to E
[∑ni

j=1X
(i)
j

]
= k and the mode of binomial distributions [48]. Next step

is showing that |S̃i| is within 2
√
k of the mean µ = k with probability at least 1/2, that

is:

Pr

∣∣ ni∑
j=1

X
(i)
j − k

∣∣ ≥ 2
√
k

 ≤ 1

2
.

This follows from the Chernoff bounds on the sum
∑ni

j=1X
(i)
j :

Pr

∣∣ ni∑
j=1

X
(i)
j − k

∣∣ ≥ 2
√
k

 ≤ 2 exp

−k
(

2
√
k

k

)2

2


≤ 1

2
∀k, i > 0 .

Let S be the elements of the size-t intersection and S̃max be the sample of the largest

set Smax. We show that if the summary size k satisfies

k ≥ 2nmax log (2m/δ)

ε2t
(2.3)

then properties 1 and 2 below are satisfied.

Property 1.
∣∣∣S̃max ∩ S

∣∣∣ is an (ε, δ/2)-estimate of t k
nmax

.

Property 2. ∀i
∣∣∣S̃i ∩ S∣∣∣ ≥ t(1− ε) k

nmax
with probability at least 1− δ/2m.

We show that the given properties hold for sufficiently large k, given by (2.3).

Lemma 2.11. If (2.3) holds and 0 ≤ ε, δ ≤ 1 then properties 1 and 2 hold.

Proof. We show that property 1 holds when (2.3) holds. This follows from Chernoff

bounds on
∑t

j=1X
(max)
j :

γ1 = Pr

[
|S̃i ∩ S| /∈

[
t
k

nmax
(1− ε), t k

nmax
(1 + ε)

]]

= Pr

 t∑
j=1

X
(max)
j ≤ t k

nmax
(1− ε)

+ Pr

 t∑
j=1

X
(max)
j ≥ t k

nmax
(1 + ε)


< 2 exp

(
− ε2tk

3nmax

)
.

Since k ≥ 2nmax log(2m/δ)
ε2t

the error probability is γ1 ≤ δ
2 , thus property 1 holds.

Now we are to show that the given k implies property 2 holds, i.e., the size of the

intersection between any single S̃i sample and intersection S is at least the expected size
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of the intersection between the sample of the largest set, S̃max and S. The intersection

of any sample S̃i and S has expectation µ = E
[
|S̃i ∩ S|

]
= t kni . Since nmax ≥ ni, it

holds that ∀it k
nmax

≤ t kni and thus we bound error γ2:

γ2 = Pr

 t∑
j=1

X
(max)
j < (1− ε)t k

nmax


≤ Pr

 t∑
j=1

X
(i)
j < (1− ε)t k

|Si|

 ≤ exp

(
− ε2tk

2nmax

)
.

Since k ≥ 2nmax log(2m/δ)
ε2t

the error probability is γ2 ≤ δ
2m , thus property 2 holds.

We will now show that the independent case provides an estimator with the desired

guarantees.

Lemma 2.12. If (2.3) holds and we have 0 ≤ ε, δ ≤ 1 then
|⋂i∈[m] S̃i|nmax

k is an (ε, δ)-

estimate of t.

Proof. First we need that
∣∣∣S̃max ∩ S

∣∣∣ ≤ (1 + ε)t k
nmax

with probability ≥ 1 − δ. By

Lemma 2.11 this holds, as property 1 holds since k satisfies (2.3). We now argue:∣∣∣∣∣∣
⋂
i∈[m]

S̃i

∣∣∣∣∣∣ ≥ (1− ε) t k

nmax
with probability ≥ 1− δ . (2.4)

Let z = (1− ε) t k
nmax

. By Lemma 2.11 we have that for each set Si its sample S̃i contains

at least z items from the intersection set S with probability ≥ 1 − δ/2m. Also from

Lemma 2.11 we have that the biggest set has at least z items from S in its sample S̃max.

By the definition of how we sample, if the sampled values from the largest set are present

in a smaller set then they will be sampled as well, which holds here since the z are in

the intersection S.

To show that ∣∣∣∣∣∣
⋂
i∈[m]

S̃i

∣∣∣∣∣∣ ≤ (1 + ε) t
k

nmax
with probability ≥ 1− δ (2.5)

holds we need that
∣∣∣S̃max ∩ S

∣∣∣ ≤ (1 + ε)t k
nmax

with probability ≥ 1 − δ. This follows

directly from property 1 holding since k satisfies (2.3) as shown in Lemma 2.11.

We now show that our estimator computes an (ε, δ)-estimate, i.e., it holds that,∣∣∣⋂i∈[m] S̃i

∣∣∣nmax

k
∈ [(1− ε) t, (1 + ε) t]
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with probability at least

1−
(
δ

2
+m

δ

2m

)
≥ 1− δ .

By (2.5) and (2.4) we have the relative error of at most ε as required. To bound the

error probability we apply the union bound on the error probabilities given by Lemma

2.11. As we have error probability δ/2 on property 1 and error probability δ/2m on

property 2, by the union bound we get ≤ (δ/2 +mδ/2m) = δ where the factor m on the

second term comes from the union bound over all m sets.

For each set Si let Bi denote the set of samples where property 1 or 2 does not hold.

We have probability Pr
[
S̃i ∈ Bi

]
of the estimator based on samples S̃i being bad. We

now relate the independent case where a sample has expected size k to the case where

k-min summaries are used and thus we have samples of strictly size k.

Lemma 2.13. If (2.3) holds and 0 ≤ ε, δ ≤ 1 then Pr
[
S̃i ∈ Bi | |S̃i| = k

]
≤ δ
√
k.

For a specific itemset I = {i1, i2, . . . , ik} we have

Pr

S̃i = I |
ni∑
j=1

X
(i)
j = k

 = Pr [kmin(Si) = I] =
1(
ni
k

) (2.6)

Proof. An upper bound of the conditional probability can be obtained through Bayes

theorem:

Pr
[
S̃i ∈ B | |S̃i| = k

]
≤

Pr
[
S̃i ∈ B

]
Pr
[
|S̃i| = k

] .

The probability of the sample being of size k was bounded in (2.2) and by union bound

on the error probabilities found in Lemma 2.11 we get

Pr
[
S̃i ∈ B | |S̃i| = k

]
≤

Pr
[
S̃i ∈ B

]
Pr
[
|S̃i| = k

] ≤ δ/ 1√
k

= δ
√
k .

Now we argue that (2.6) holds, i.e., that the conditional distribution of any sample

|S̃i| = k is the same as that of kmin(Si). This follows directly from Lemma 2.9 and from

Pr [kmin(Si) = I] =
1(
ni
k

) .

Proof. (Theorem 2.3.) By Lemma 2.12 we have that X is an (ε, δ)-estimate of t in

the independent case whenever the expected number of elements k in our summaries
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satisfy (2.3). Lemma 2.13 relates the independent case to the dependent case with

fixed summary size, showing that X is an (ε, δ
√
k)-estimate when (2.3) holds. To show

Theorem 2.3 we consider two cases for t.

1. If t ≥ 2nmax log(2m/δ)/kε2 then (2.3) is satisfied, so X is an (ε, δ
√
k)-estimate of

t. Since ε < 1/4 we get that X < 3nmax log(2m/δ)/kε2 implies

X/(1− ε) < 4nmax log(2m/δ)/kε2 .

So as long as t ∈ [X/(1 + ε);X/(1− ε)], which happens with probability 1− δ
√
k,

we get a true answer regardless of whether the first or second answer is returned.

2. If t < 2nmax log(2m/δ)/kε2 then the probability that X > 3nmax log(2m/δ)/kε2)

is at most δ
√
k. This is because X is dominated by an estimator X ′ derived from

X by artificially increasing the intersection size to that required by (2.3). This

means that with probability 1 − δ
√
k the algorithm correctly reports that t is in

the interval [0; 4nmax log(2m/δ)/kε2].

2.5.2 Use of signatures for the upper bound

An advantage of k-permutation min-wise hashing is that it can easily be combined with

signatures to decrease space usage, i.e., elements from u in the min-hash can be replaced

with hash values using significantly fewer bit. As shown by Li and König [40], using

b-bit signatures, where b is a small integer, allows us to increase k by a factor log(u)/b

without increasing the space usage. With a suitable estimator that takes the signature

collisions into account, the net result is an increase in precision for a given space usage.

It is a nontrivial matter to extend the estimator to work for the intersection of more

than two sets when b is small. The case of three sets was investigated in [41].

It seems to be less well known that one-permutation hashing allows a similar space

saving. The idea is to consider signatures of log(k)+b bits, and store the set of signatures

for each set kmin(X). By using an appropriate encoding of the signature set the space

usage becomes roughly k(b + log e) bits, see e.g. [49]. There even exist methods that

use word-level parallelism to compute the set of signatures that are in common between

two such encodings [50, Lemma 3], meaning that there is a speedup in comparing two

summaries that is similar to the factor saved in space usage. At least in theory, this

means that the difference between the efficiency of k-permutation and one-permutation

schemes compressed using signatures is not so large.
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We now argue that if we choose a signature hash function h : [u] → {0, 1}b where

b ≥ log(2k2/δ), a signature collision that affects the estimate will occur with probability

at most δ/2, independent of the number of sets considered. Recall that k is the size of a

min-hash, and consider a specific set of min-hashes kmin(Sj), j = 1, . . . ,m. If we replace

kmin(Sj) by the set h(kmin(Sj)) of signatures there is a chance that | ∩j h(kmin(Sj))|
is different from | ∩j kmin(Sj)| because of collision of elements in some set I with at

least one element in each min-hash. We define an i-cover as a set I where |I| = i and

∀j : I ∩ kmin(Sj) 6= ∅, i.e., an i-cover is a set of i elements that includes an element from

every minhash. We now argue that there is a low probability that there exists an i-cover

with i > 1 for which all elements have the same signature under h. For now we assume

that h is fully random, which means that the probability a particular i-cover colliding

is at most

(2−b)i−1 =

(
δ

2k2

)i−1

.

For i ≤ m we have at most ki possible i-covers, so by a union bound the probability of

any colliding i-cover occurring is at most

m∑
i=2

ki
(

δ

2k2

)i−1

≤ δ/2 .

We conclude that with probability at least 1− δ/2 we end up with exactly |
⋂
i kmin(Si)|

signatures in the intersection, meaning that the result is the same as when storing the

elements of kmin(S1), . . . , kmin(Sm). Hence one can simply think of the sets kmin(Si),

with the understanding that they can be replaced by a representation of size roughly

k log(e2k2/δ) bits using a suitable encoding of signatures.

2.6 Hash functions of limited independence

Until now we have assumed to have access to a fully random hash function on the sets.

In this section we show that there are realizable hash functions of limited independence

such that our results hold. Thorup [51] recently showed that for Jaccard similarity (and

hence intersection size) estimation with one-permutation min-wise summaries it suffices

to use a pairwise independent hash function. However, this does not extend to the

setting where we seek the intersection size of many sets (see Theorem 2.14).

We argue that k-wise independence is sufficient for the hash function used to construct

the one-permutation min-wise summaries and that m-wise independence is sufficient for

the hash functions used to create signatures as described in Section 2.5.2.
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2.6.1 Hash functions for one-permutation min-wise summaries

We will argue that k-wise independent hash functions are sufficient for the hash function

used to create the summaries.

For n variables X1, . . . Xn, X =
∑n

i Xi, µ = E[X] and δ > 0 then by [52] we have that

if the variables X1, . . . Xn are d µδ
1−µ/ne-wise independent, the Chernoff tail bounds hold.

Examining the tail bounds used in Section 2.5.1 we see that if we impose the additional

constraint δ ≤ 1− k/n then d µδ
1−µ/ne ≤ k and hence k-wise independence is sufficient for

the construction of our summaries.

2.6.2 Hash functions for signatures

We will now argue that m-wise independent hash functions are sufficient to obtain error

probability ≤ δ when being used to create signatures. This follows directly from the fact

that we consider collisions in terms of i-covers for i ≤ m and apply a summation of m

terms to bound the error probability to be ≤ δ/2. For the family of hash functions we

will use the construction of Siegel [22]. This construction gives a RAM data structure

of space O
(
u
√

lg k/ lg u+ε lg v
)

bits when hashing from {0, . . . , u−1} to {0, . . . , v−1}. A

function from the family can be evaluated in constant worst-case time and it is k-wise

independent with high probability. In particular, for m = k = uO(1) we have space usage

O(uε lg v) for some constant ε > 0.

2.6.3 Lower bound for l-wise independent hash functions

Motivated by recent work by Thorup [51] showing 2-wise independent hash functions to

work well for Jaccard estimation we will now consider an instance where any estimator

based on the k smallest hash values of a O(1)-wise independent hash function will not

be unbiased. In particular the argument follows from the existence of small families of

hash functions.

Theorem 2.14. Let [u] be the universe of elements and h : [u] 7→ 0, . . . , v − 1 be any

l-wise independent hash function for l = O(1). There exists an instance on v2 sets

S1, . . . , Sv2 with intersection size t = | ∩i Si| = n − k. For any estimator t̃ for t that

guarantees a relative error bound and is based on k size min-wise summaries constructed

using h it holds that t̂ is not unbiased.

For Theorem 2.14 we construct an instance on vl sets where one of the k one-permutation

min-wise summaries will hold no elements from S with high probability.
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Proof. Let h : [u] 7→ {0, . . . , v − 1} be a l-independent hash function where l < logvm.

We will consider an instance on m > vl sets that has large intersection S, but where

an unbiased estimator of the intersection size |S| using the smallest k hash values is not

possible with high probability.

For any h there exists a set Bz of size k where h(Bz) = {0, . . . , k − 1}, i.e., the k

elements of Bz map to the k smallest possible hash values. Let Si = Bi ∪ S for 0 ≤
i < vl be n-sized sets where S is the intersecting elements to be specified later. We

have h(Sz) = h(Bz) ∪ h(S) = {0, . . . , k − 1} ∪ h(S) and z ∈ {0, . . . , vl}, i.e., by the

existence of size vl families of hash function there is a hash function that hashes k

elements from a particular set Sz to the k smallest possible hash values. It follows that

if ∀j ∈ h(S) : j ≥ k then the set of the k smallest hash values will contain no elements

from S, even though we have size |S| = n− k. For a uniformly random n− k-sized set

S we have Pr [∀j ∈ h(S) : j ≥ k] =
(
1− k

v

)n−k
which is ≈ 1 for k � n.

Hence if we consider the intersection S of all m > vl sets Si it will hold with high

probability that this instance will have intersection size |S| = n − k but no elements

from S in the set of the k smallest hash values. Consider the case of there being no

elements from S in the set of the k smallest hash values and let t̃ be an estimate of |S|.
Any estimate t̃ of |S| with relative bounded error that is based on vl min-wise summaries

will be unable to distinguish the case of |S| = 0 from |S| = n − k when there are no

elements from S in the set of the k smallest hash values. Thus when presented with

such a set the estimate will always be that t̃ = 0. Let φ be the probability of there being

no elements in from S in the set of the k smallest hash values. Then let the outcome

of the random variable X be the estimate t̃. We have E[X] ≤ φ0 + (1 − φ)n where

φ =
(
1− k

v

)n−k
.

To obtain an unbiased estimator E[X] = n−k for this instance we need (1−φ)n ≥ n−k
hence φ < k/n. Now assuming n and v are polynomial is sufficient: if v = k3 and n = k2

then we have φ =
(
1− k

v

)n−k
=
(
1−

k2

)k2−k
> 1/e. Since we have k/n = 1/k then

assuming k > e implies that that φ > k/n. Thus when v and n are polynomial in k it

is not possible to create an unbiased estimator on the intersection size.

2.7 Space of k-permutation min-wise summaries on sun-

flower sets

Sunflower sets. In this final section we give details on the hard instance that gives the

bound for k-permutation min-wise hashing of Table 2.1. For m sets S1 . . . Sm each of

size n, let t = | ∩i Si| be the intersection size of all sets. Then a sunflower instance has
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S1

S2

S3

S4
t

Figure 2.3: Hard instance for k-permutation summaries for set intersection. Must
store number of elements inversely proportional to the sampling probability which is t
over the union size. A sunflower instance of size m (shown for m = 4) has union size

t+m(n− t).

the property ∀i 6=j |Si ∩ Sj | = t, i.e., the m sets are disjoint except for the t intersection

elements. The union size of such an instance is | ∪i Si| = t + mn −mt = t + m(n − t)
as there are t elements in the intersection and each of the m sets hold additional n− t
elements. It follows that the Jaccard similarity for a sunflower instance is t/(t+m(n−t)).
The hard instance is illustrated in Figure 2.3.

As we have sampling probability t over the union size to get an element from the inter-

section it is easy to show that to get a good estimate we need to store roughly inversely

proportional to the sampling rate. Note that Lemma 2.15 below is not a true lower

bound in the sense that it is in fact an upper bound argument with the conjecture that

it should not be possible to do better than sampling independently.

Lemma 2.15. Given m sets of size n with intersection size t. To obtain an (ε,O(1))-

estimate of t using k-permutation min-wise hashing one needs to store O
(
mn
tε2

)
elements

from each set.

Proof. The upper bound for k-permutation min-wise hashing of Table 2.1 is derived

as follows. Let X1 . . . Xr be independent Bernoulli trials where Pr[Xi] = J and let

X =
∑r

i=1Xi and µ = E[X] = rJ . There exists a r for which there is constant

probability of the event that the outcome of X is a relative factor ε from E[X]. This

can be bounded applying a Chernoff-Hoeffding bound on X as follows.

Pr [|X − E[X]| ≥ (1 + ε)E[X]] = Pr [|X − rJ | ≥ (1 + ε)rJ ]

= δ ≥ 2e(−rJε2)/3
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Then isolating c we have r ≥ 3 log(2/δ)
Jε2

, which for δ = O(1) is O
(

1
Jε2

)
= O

(
t+m(n−t)

tε2

)
following from the Jaccard similarity of the sunflower instance above. For t < n/2 we

have r = O
(
mn
tε2

)
, the sample size required for k-permutation min-wise summaries.

We note that the argument presented is of an upper bound, but conjecture that it is

tight as well.



Chapter 3

Matrix Multiplication

3.1 Chapter overview

This chapter will deal with the topic of computing matrix products where either the

input matrices or the output matrix contains few nonzero entries. For both cases we

present algorithms that in the I/O model and word-RAM model respectively improve

upon current state of the art algorithms for significant parts of the parameter space.

Specifically, in Section 3.2 we present an algorithm that is optimal in the number of

I/Os when parameterized on the number of nonzero entries in the input N and the

number of nonzero entries in the output Z. Followed by this we present in Section 3.3

an algorithm that when the input matrices are dense and the output matrix is sparse

improves upon state of the art methods. The two algorithms relate to each other only

by dealing with the same problem in different models as they use different techniques

to achieve their complexity. However a common trait of them is that they are both

Monte Carlo and hence can fail with probability polynomially small in the input size.

The complexity of the two algorithms is summarized here, see Sections 3.2.2 and 3.3.2

for a discussion on the most related algorithms and their complexities.

The two new algorithms summarized. We use N as the number of nonzero entries in the

input, Z as the number of nonzero entries in the output, U as the matrix dimensions,

M as the internal memory size, B as the block size and ω is the exponent for which it

is possible to multiply two U × U matrices in time O(Uω).

1. In the I/O model we achieve a Õ
(
N
√
Z/(B

√
M)
)

I/Os upper and lower bound.

2. In the word-RAM model we achieve a Õ
(
U2(Z/U)ω−2

)
RAM operations upper

bound.

47
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3.2 Sparse matrix multiplication in the I/O model

First we consider the fundamental problem of multiplying matrices that are sparse,

that is, the number of nonzero entries in the input matrices (but not necessarily the

output matrix) is much smaller than the number of entries. Matrix multiplication is

a fundamental operation in computer science and mathematics, due to the wide range

of applications and reductions to it — e.g. computing the determinant and inverse of

a matrix, or Gaussian elimination. Matrix multiplication has also seen lots of use in

non-obvious applications such as bioinformatics [53], computing matchings [54, 55] and

algebraic reasoning about graphs, e.g. cycle counting [56, 57].

Matrix multiplication in the general case has been widely applied and studied in a pure

math context for decades. In an algorithmic context matrix multiplication is known to

be computable using O(Uω) ring operations, for some constant ω between 2 and 3. The

first improvement over the trivial cubic algorithm was achieved in 1969 in the seminal

work of Strassen [13] showing ω ≤ log2 7 and most recently Vassilevska Williams [58]

improved this to ω < 2.373.

Matrix multiplication over a semiring, where additive inverses cannot be used, is better

understood. In the I/O model introduced by Aggarwal and Vitter [59] the optimal matrix

multiplication algorithm for the dense case already existed (see Section 4.1.3) and since

then sparse-dense and sparse-sparse combinations of vector and matrix products have

been studied, e.g. in [60–62].

The main contribution of this chapter to the sparse setting is a tight bound for matrix

multiplication over a semiring in terms of the number of nonzero entries in the input and

output matrices, generalizing the classical result of Hong and Kung on dense matrices [5]

to the sparse case.

3.2.1 Preliminaries

Let A and C be matrices of U rows and U columns and let every entry (A)i,j , (C)i′,j′ ∈ R
for semiring R. Further for matrix A let Ai∗ denote row i of A and let A∗j denote

column j of A. The matrix product AC, where each entry (AC)i,j , i, j ∈ [U ] is given as

(AC)i,j =
∑

k(A)i,k(C)k,j . A nonzero term (A)i,k(C)k,j is referred to as an elementary

product. We say that there is no cancellation of terms when (AC)i,j = 0 implies that

(A)i,k(C)k,j = 0 for all k. For sparse semiring matrix multiplication, the number of

entry pairs with nonzero product measures the number of operations performed up

to a constant factor assuming optimal representation of the matrices. Specifically, let∑n
k=1 |{j | (A)j,k 6= 0}||{i | (C)k,i 6= 0}| be the number of such nonzero pairs of matrix



Chapter 3. Matrix multiplication 49

entries. Finally let nnz(A) = |{i, j | (A)i,j 6= 0}| denote the number of nonzero entries of

matrix A. When no explicit base is stated, logarithms in this chapter are base 2.

Semiring I/O model. The model of computation used for this result is the standard

I/O model [59] introduced in Section 1.3.2 extended slightly. Here we will also use

Õ(·)-notation to suppress polylogarithmic factor in input size N and matrix dimension

U .

We assume that a word is big enough to hold a matrix element from a semiring as well

as the matrix coordinates of that element, i.e., a block holds B matrix elements. We

restrict attention to algorithms that work with semiring elements as an abstract type,

and can only copy them, and combine them using semiring operations. We refer to this

restriction as the semiring I/O model. Our upper and lower bounds use a slight extension

of this model in which equality check is allowed, which allows us to take advantage of

cancellations, i.e., inner products in the matrix product that are zero in spite of nonzero

elementary products. The lower bound holds for an even more general setting where an

algorithm uses P internal memory units each connected to a processing unit and thus it

matches the model of the upper bound for P = 1.

The problem we solve. Given matrices A and C of dimension U × U , containing

nnz(A) and nnz(C) non-zero semiring elements from semiring R, respectively, we wish

to output a sparse representation of the matrix product AC in the external memory

model. We are dealing with sparse matrices represented as a list of tuples of the form

(i, j, (A)i,j), where (A)i,j ∈ R is a (nonzero) matrix entry. To produce output we must

call a function emit(e) for every nonzero entry e = (i, j, (AC)i,j) of AC. We only allow

emit(·) to be called once on each output element, but impose no particular order on the

sequence of outputs.

We note that the algorithm could be altered to write the entire output before termina-

tion by, instead of calling emit(·), simply writing the output element to a disk buffer,

outputting all nnz(AC) elements using O(nnz(AC)/B) additional I/Os. However, in

some applications such as database systems (see [14]) there may not be a need to mate-

rialize the matrix product on disk, so we prefer the more general method of generating

output.

3.2.2 Related work

The external memory model was introduced by Aggarwal and Vitter in their seminal

paper [59], where they provide tight bounds for a collection of central problems.
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An I/O-optimal matrix multiplication algorithm for dense semiring matrices was shown

by Hong and Kung [5]: Group the matrices into c
√
M×c

√
M submatrices where constant

c is picked such that three
√
M×
√
M matrices fit into internal memory. This reduces the

problem to O((U3/
√
M)3) matrix products that fit in main memory, costing O(M/B)

I/Os each, and hence O(U3/B
√
M) in total [12]. Hong and Kung also provided a tight

lower bound Ω(U3/B
√
M) that holds for algorithms that work over a semiring. (It does

not apply to algorithms that make use of subtraction, such as fast matrix multiplication

methods, for which the blocking method described above yields an I/O complexity of

Uω/(Mω/2−1B) I/Os.)

For sparse matrix multiplication the previously best upper bound [14], shown for Boolean

matrix products but claimed for any semiring, is Õ(N
√
nnz(AC)/BM1/8). However this

bound requires “no cancellation of terms” (or more specifically, the output sensitivity is

with respect to the number of output entries that have a nonzero elementary product).

Our new upper bound of this section improves upon this: The Monte Carlo algorithm

of Theorem 3.1 has strictly lower I/O complexity for the entire parameter space and

makes no assumptions about cancellation.

An important subroutine in our algorithm is dense-vector sparse matrix multiplica-

tion: For a vector y and sparse matrix A we can compute their product using optimal

Õ((nnz(A) + nnz(y))/B) I/Os [60] - this holds for arbitrary layouts of the vector and

matrix on disk.

Our algorithm has an interesting similarity to Williams and Yu’s recent output sensitive

matrix multiplication algorithm [63, Section 6]. Their algorithm works by splitting the

matrix product into 4 submatrices of equal dimension, running a randomized test to de-

termine which of these subproblems contain a nonzero entry. Recursing on the non-zero

submatrices, they arrive at an output sensitive algorithm. We perform a similar recur-

sion, but the splitting is computed differently in order to recurse in a balanced manner,

such that each subproblem at a given level of the recursion outputs approximately the

same number of entries in the matrix product.

Size estimation of the number of nonzeros in matrix products was used by Cohen [64, 65]

to compute the order of multiplying several matrices to minimize the total number

of operations. For constant error probability this algorithm uses O(ε−2N) operations

in the RAM model to perform the size estimation. For ε > 4/ nnz(AC)1/4 Amossen

et al. [66] improved the running time to be expected O(N) in the RAM model and

expected O(sort(N)) in the I/O model. Contrary to the approaches of [64–66] our new

size estimation algorithm presented in Section 3.2.4 is able to deal with cancellation of

terms, and it uses Õ(ε−3N/B) I/Os. Informally, the main idea of our size estimation

algorithm is to multiply a sequence of vectors x with certain properties onto AC but in
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the computationally inexpensive order (xA)B, in order to produce linear sketches of the

rows (columns) of AC.

3.2.3 Our results

We present a new upper bound in the I/O model for sparse matrix multiplication over

semirings. Our I/O complexity is at least a factor of roughly M3/8 better than that

of [14]. We show the following theorem:

Theorem 3.1. Let A and C be dimension U ×U matrices with entries from a semiring

R, and let N = nnz(A) + nnz(C), Z = nnz(AC). There exist algorithms (a) and (b)

such that:

(a) emits the set of nonzero entries of AC with probability at least 1 − 1/U , using

Õ
(
N
√
Z/(B

√
M)
)

I/Os.

(b) emits the set of nonzero entries of AC, and uses O
(
N2/(MB)

)
I/Os.

For every A and C, using Õ (N/B) I/Os we can determine with probability at least

1 − 1/U if one of the two I/O bounds is significantly lower, i.e., distinguish between

N
√
Z/(B

√
M) > 2N2/(MB) and 2N

√
Z/(B

√
M) < N2/(MB).

The above theorem makes no assumptions about cancellation of terms. In particular,

nnz(AC) can be smaller than the number of output entries that have nonzero elementary

products.

Our second main contribution is a new lower bound on sparse matrix multiplication in

the parallel semiring I/O model.

Theorem 3.2. For all positive integers N and Z < N2 there exist matrices A and C

with nnz(A), nnz(C) ≤ N , nnz(AC) ≤ Z, such that an algorithm computing AC in the

parallel semiring I/O model requires Ω
(

min
(

N2

PBM ,
N
√
Z

PB
√
M

))
I/Os.

We note that our lower bound holds in the more general parallel setting with P processing

units with internal memories. Since we can determine and run the algorithm satisfying

the minimum complexity of the lower bound (for P = 1), our bounds are tight.

Result structure. Section 3.2.4 describes a new size estimation algorithm which we

will use as a subprocedure for our sparse matrix multiplication algorithm. The new size

estimation algorithm may be of independent interest since to the knowledge of the au-

thors there are no published size estimation procedures that handle cancellation of terms.
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Section 3.2.5 first describes a simple output insensitive algorithm in Section 3.2.5.1, al-

gorithm (b) of Theorem 3.1. Then we describe how algorithm (a) of Theorem 3.1 works:

In Section 3.2.5.4 we describe how to divide the sparse matrix product into small enough

subproblems (with respect to output size), and Section 3.2.5.3 describes how a version of

Pagh’s “compressed matrix multiplication” algorithm yields an I/O efficient algorithm

for subproblems with a small output. Finally in Section 3.2.6 we show the new tight

lower bound of Theorem 3.2.

3.2.4 Matrix output size estimation

We present a method to estimate column/row sizes of a matrix product AC, represented

as a sparse matrix. In particular, for a column C∗k (or analogously row Ak∗) we are

interested in estimating the number of nonzeros nnz(A(C)∗k) (nnz((A)k∗B)). We note

that there are no assumptions about (absence of) cancellation of terms in the following.

We show the existence of the following algorithm.

Lemma 3.3. Let A and C be dimension U × U matrices with entries from semiring

R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute estimates z1, . . . , zU

using Õ(ε−3N/B) I/Os and O(ε−3N log(U/δ) logU) RAM operations such that with

probability at least 1 − δ it holds that (1 − ε) nnz((AC)∗k) ≤ zk ≤ (1 + ε) nnz((AC)∗k)

for all 1 ≤ k ≤ U .

We note that Lemma 3.3 by symmetry can give the same guarantees for rows of the

matrix product, which is done analogously by applying the algorithm to the product

(AC)T = CTAT . Further, from Lemma 3.3 we have, following from combining of all

column estimates, an estimate of nnz(AC).

Corollary 3.4. Let A and C be dimension U × U matrices with entries from semiring

R, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1. We can compute Ẑ in Õ(ε−3N/B) I/Os

and O(ε−3N log(U/δ) logU) RAM operations such that with probability at least 1− δ it

holds that (1− ε) nnz(AC) ≤ Ẑ ≤ (1 + ε) nnz(AC).

At a high level, the algorithm is similar in spirit to Cohen [64, 65], but uses linear F0

sketches (see e.g. [36, 67]) that serve the purpose of capturing cancellation of terms.

We will make use of a well-known F0-sketching method [67, 68], where F0(f) denotes

the number of non-zero entries in a vector f . Consider a data stream of items of the

form ((i, j), r), where (i, j) ∈ U ×U and r ∈ R. The stream defines a vector indexed by

U × U (which can also be thought of as a matrix), where entry (i, j) is the sum of all

ring elements r that occurred with index (i, j) in the stream.
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For a matrix A of dimension U ×U the number of distinct indices is the sum of distinct

indices over all column vectors F0(A) =
∑

i∈[U ] F0(Ai∗). One can compute in space

O(ε−3 logU log δ−1) [67, 68] a linear sketch over a length U vector that can output a

number ẑ, where

(1− ε)F0 ≤ ẑ ≤ (1 + ε)F0

holds with at least constant probability.

High-level algorithm description. We compute a linear sketch F followed by the

matrix product v = FAC. From v for a given T we can distinguish between a column

having more than (1 + ε)T and less than (1 − ε)T nonzero entries - we repeat this

procedure for suitable values of T to achieve the final estimate. We use the following

distinguishability result:

Fact 3.5. ([68], Section 2.1) There exists a projection matrix P ′ ∈ {0, 1}n×d such that

for each frequency vector f ∈ R1×n we can be estimate F0(f) from fP ′. In particular,

for fixed T ′ > 0, 0 < ε′, δ′ ≤ 1 with probability 1 − δ′ we can distinguish the cases

F0(f) > (1 + ε′)T ′ and F0(f) < (1− ε′)T ′ using space d = O(ε′−2 log δ′−1).

We will apply this distinguishability sketch to the columns of the product AC, since

F0(AC) > (1 + ε)T implies nnz(AC) > (1 + ε)T and analogously for the second case.

This follows trivially from the definition of F0 and the number of nonzeros in a matrix

product. From Fact 3.5 we have a sketch F ∈ {0, 1}d×U which multiplied with a matrix A

we can for the columns [FA]∗k distinguish nnz(A∗k) > (1+ε)T from nnz(A∗k) < (1−ε)T
with probability 1− δ.

Proof. (Lemma 3.3) Let F ∈ {0, 1}d×U be a F0-distinguishability sketch as described in

Fact 3.5. To ensure that for every of the U columns in v = FAC we can distinguish

the two cases with probability at least 1 − δ it is sufficient to invoke the algorithm

from Fact 3.5 with δ′ = δ/U . By the union bound over the error probabilities we have∑
1≤i≤U δ/U = δ. By linearity of F we have that from v we can for all columns k ∈ [U ]

distinguish the cases [AC]∗k < (1− ε)T and [AC]∗k > (1 + ε)T .

Also by linearity, the order of operations in the computation of v is chosen to be

v = (FA)C, hence the computation of v can be seen as 2d dense-vector sparse-matrix

multiplications of dimension 1× U × U .

Remember that dense vector y1×U and sparse matrix A of dimension U × U we can

compute yA in

O((nnz(A)/B) logM/B(U/M))I/Os [60].
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Letting N = nnz(A) + nnz(C) computing v for a value of T has I/O complexity

O(2d(N/B) logM/B(U/M) = O(ε−2(N/B) logM/B(U/M) log(U/δ)

= Õ(ε−2N/B). (3.1)

We note that for sparse matrices this bound is Õ(sort(U)). Analogously, the number of

RAM operations needed to compute v for a specific T is O(ε−2N log(U/δ)).

Since for a given T we can now using I/Os given in (3.1) distinguish [AC]∗k < (1− ε)T
and [AC]∗k > (1 + ε)T we simply repeat this procedure for O(ε−1 logU) values T =

1, (1 + ε), (1 + ε)2, . . . ,O(U), which yields a 1± ε estimate of the number of nonzeros in

each column, from which we have the desired estimate of the total number of nonzeros.

We note that the algorithm of Lemma 3.3 can be obtained using any linear F0 sketch

in I/O complexity O(ξ(N/B) logM/B(U/M)), where ξ is the space complexity of the

sketch used. From Lemma 3.3 we get Corollary 3.4 by combining all column estimates,

an estimate of nnz(AC). This size estimation algorithm will be used both in our I/O

efficient coloring scheme of Section 3.2.5.4 as well as in partitioning the problem into

approximately dense subproblems in our RAM-model result of Section 3.3.6.

3.2.5 Cache-aware upper bound

As in the previous section let A and C be dimension U ×U matrices with entries from a

semiring R, and let N = nnz(A)+nnz(C) be the input size. We will start by describing a

sample “output insensitive” algorithm in Section 3.2.5.1 followed by the main algorithm,

an output sensitive Monte Carlo algorithm. The reason for describing the simple output

insensitive algorithm is that it is needed to a tight upper bound for the entire parameter

space.

3.2.5.1 Output insensitive algorithm

We first describe algorithm (a) of Theorem 3.1, which is insensitive to the number of

output entries nnz(AC). It works as follows: First put the entries of C in column-major

order by lexicographic sorting. For every row ai of A with more than M/2 nonzeros,

compute the vector-matrix product aiC in time Õ(N/B) using the algorithm of [60].

There can be at most 2N/M such rows, so the total time spent on this is Õ(N2/(MB)).

The remaining rows of A are then gathered in groups with between M/2 and M nonzero

entries per group. In a single scan of C (using column-major order) we can compute the
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A C

× =

× + × + × + ×

Figure 3.1: Partitioning of the input matrices A and C. The matrix product can be
rewritten as a sum of smaller matrix products. Unfortunately such a simple partitioning

scheme as shown is not possible in general.

product of each such row with the matrix C. The number of I/Os is O(N/B) for each

of the at most 2N/M groups, so the total complexity is Õ(N2/(MB)).

3.2.5.2 Monte Carlo algorithm overview

We next describe algorithm (b) of Theorem 3.1 The algorithm works by first performing

a step of coloring, the purpose of which is to partition the matrix product into subma-

trices, each of which can be computed efficiently. Consider this basic fact about matrix

multiplication of matrices A and C: If you partition the rows of A and the columns

of C then the matrix product can be written as a sum of products of the partitions.

See illustration in Figure 3.1. Intuitively, if there was such a partitioning scheme for ϕ

colors as shown in Figure 3.1 for ϕ = 2 where each row-column partition combination

has few output entries, then we would be able to compute this efficiently in the I/O

model. However, there are matrices where such a simple scheme would fail. Instead

we employ a different coloring scheme: We create ϕ partitions that together form the

matrix product and each of the ϕ partitions only consist of subproblems that are small

enough to fit in main memory.

The overall idea is to color matrix rows A using ϕ colors and for each of the ϕ sets

of colored rows we color matrix C also using ϕ colors, such that every combination

of colored rows from A and colored columns from C yields a low number of non-zero

output entries. The situation can be seen in Figure 3.2 for ϕ = 2. The main point is that

every partition of rows from A has its own partitioning of the columns of C, meaning ϕ

different partitions in total.

If there was no cancellation of terms possible, this would be the algorithm in full. How-

ever, the difficulty of handling cancellations come from the subtlety that even though

the number of outputs generated from all our subproblems are small enough to fit in

memory, the intermediate number of nonzero elementary products can only be bounded
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× + ×

Figure 3.2: How we partition. We create ϕ different partitions (shown for ϕ = 2)
that make up the result. It turns out that for arbitrary matrices there is such a scheme

where each subproblem is small enough to fit in memory.

by the dimension of the subproblem. Informally, the situation is that we need to com-

pute a big number of elementary products to know which of them cancel out to produce

the output but on the other hand we do not have enough I/Os to spare, since we want

our algorithm to run proportional to the number of output entries Z and the number of

input entries N . To solve this, we use a “compressed” matrix multiplication algorithm

(described by Lemma 3.6) to compute the output entries of every such combination.

The number ϕ of colors needed to achieve the algorithm, to be specified later, depends

on an estimate of nnz(AC), found using Corollary 3.4.

A technical hurdle is that there might be rows of A and columns of C that we cannot

color because they generate too many entries in the output. However, it turns out

that we can afford to handle such rows/columns in a direct way using vector-matrix

multiplication.

3.2.5.3 Compressed matrix multiplication in the I/O model

Let γ > 0 be a suitably small constant, and define r = 4γM/ logU . We now describe

an I/O-efficient algorithm for matrix products AC with nnz(AC) ≤ γM/ logU = r/4

nonzeros. If A is stored in column-major order and C is stored in row-major order, the

algorithm makes just a single scan over the matrices.

The algorithm is a variation of the one found in [62], adapted to the semigroup I/O

model. Specifically, for some constant ` and d = 1, . . . , ` logU let hd, h
′
d : [U ] → [r]

be pairwise independent hash functions. The algorithm computes the following ` logU

polynomials of degree at most 2r:

pd(x) =
U∑
k=1

(
U∑
i=1

Ai,kx
hd(i)

) U∑
j=1

Ck,jx
h′d(j)

 .

It is not hard to see that the polynomial
∑U

i=1Ai,kx
hd(i) can be computed in a single

scan over column i of A, using space r. Similarly, we can compute the polynomial∑U
j=1Ck,jx

h′d(j) in space r by scanning row j of C. As soon as both polynomials have

been computed, we multiply them and add the result to the sum of products that will
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eventually be equal to pd(x). This requires additional space 2r, for a total space usage

of 4r.

Though a computationally less expensive approach is described in [62], we present a sim-

ple method that (without using any I/Os) uses the polynomials pd(x), d = 1, . . . , ` logU ,

to compute the set of entries in AC with probability 1 − U−3. For every i and j,

to compute the value of (AC)i,j consider the coefficient of xhd(i)+h′d(j) in pd, for d =

1, . . . , ` logU . For suitably chosen c, with probability 1−U−5 the value (AC)i,j is found

in the majority of these coefficients. The majority coefficient can be computed using

just equality checks among semigroup elements [69]. The analysis in [62] gives us, for a

suitable choice of γ and `, the following:

Lemma 3.6. Suppose matrix A is stored in column-major order, and C is stored in

row-major order. There exists an algorithm in the semiring I/O model augmented with

equality test, and an absolute constant γ > 0, such that if nnz(AC) < γM/ logU the

algorithm outputs the nonzero entries of AC with probability 1−U−3, using just a single

scan over the input matrices.

3.2.5.4 Computing a balanced coloring

Let color set Si contain rows Ak∗ that are assigned color i, and for each color i assigned

to rows of A let color set S
(i)
j contain columns C∗k that are assigned color j. Also, let

A|Si be the input matrix A restricted to contain only elements in rows from Si (and

analogously for C and S
(i)
j ).

The goal of the coloring step is to assign the colors such that for every pair of color sets

(Si, S
(i)
j ), 1 ≤ i, j ≤ ϕ it holds that nnz((A|Si)(C|S(i)

j )) < γM/ logU . This can be seen

as coloring the rows of A once and the columns of C ϕ times, each time with ϕ colors,

creating ϕ2 subproblems whose output fits in memory.

Lemma 3.7. Let A and C be dimension U × U matrices with N = nnz(A) + nnz(C)

nonzero entries.

Using Õ
(
N
√

nnz(AC)

B
√
M

)
I/Os a coloring with ϕ =

√
nnz(AC) logU

M + O(1) colors can be

computed that assigns a color to rows of A and for each such color i, assigns colors to

columns of C such that:

1. For every i, j ∈ [ϕ] it holds that nnz
(

(A|Si)(C|S(i)
j )
)
< M/ logU .

2. Rows from A and columns from C that are not in some color sets Si and S
(i)
j has

had their nonzero output entries emitted.
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Proof. At a high level, the coloring will be computed by recursively splitting the matrix

rows in two disjoint parts to form matrices A1 and A2 where A1 contains the nonzeros

from the first d−1 rows, for some d, andA2 contains the nonzeros from the last U−d rows.

Row number d, the “splitting row”, will be removed from consideration by generating

the corresponding part of the output using I/O-efficient vector-matrix multiplication.

We wish to choose d such that:

I nnz(A1C) ∈
[
(1− log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2

]
.

II nnz(A2C) ∈
[
(1− log−1 U) nnz(AC)/2; (1 + log−1 U) nnz(AC)/2

]
.

And after logϕ + O(1) recursive levels of such splits, we will have O(ϕ) disjoint sets

of rows from A. For each such set we then compute disjoint column sets of C in the

same manner, and we argue below that this gives us subproblems with output size

nnz(AC)/ϕ2 = M/ logU , where each subproblem corresponds exactly to a pair of color

sets as described above.

In order to compute the row number d around which to perform the split, we invoke

the estimation algorithm from Corollary 3.4 with ε = log−1 U such that for every row in

(AC)k∗ we have access to an estimate ẑk where it holds with probability at least 1−U−c

(for fixed c > 0 chosen to get sufficiently low error probability):

ẑk ∈
[
(1− log−1 U) nnz((AC)k∗)/2; (1 + log−1 U) nnz((AC)k∗)/2

]
. (3.2)

In particular for any set of rows r we have that

(1− log−1 U) nnz

(∑
i∈r

(AC)i∗

)
≤
∑
i∈r

ẑi ≤ (1 + log−1 U) nnz

(∑
i∈r

(AC)i∗

)
. (3.3)

We will now argue that if we can create a split of the rows such that (I) and (II) hold,

then when the splitting procedure terminates after logϕ+O(1) recursive levels, we have

that for each pair of colors it is the case that (A|Si)(C|S(i)
j ) < M/ logN . Consider

the case where each split is done with the maximum positive error possible, i.e., on

recursive level q we have divided the nnz(AC) nonzeros into subproblems where each

are of size at most nnz(AC)(1/2 + 1/(2 logU))q. After logϕ+O(1) recursive levels we

have subproblem size:

nnz(AC)

(
1

2
+

1

2 logU

)logϕ2

= nnz(AC)2− logϕ2

(
1 +

1

logU

)logϕ2

≤ nnz(AC)2− logϕ2
e

logϕ2

logU (3.4)

≤ nnz(AC)O(1)/ϕ2 = O(M/ logU) (3.5)
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The main observation to see that we get the right subproblem size as in (3.5) is that

for each recursion we decrease the output size by a factor Ω(ϕ). For (3.4) we use

(1 + 1/x)y ≤ ey/x, and (3.5) follows from nnz(AC) ≤ U2 and the definition of ϕ. The

analysis for the case where each split is done with the maximum negative error possible

is analogous and thus omitted.

We will now argue that with access to the ẑi estimates as in (3.2) we can always construct

a split such that (I) and (II) hold. Let partitions 1 and 2 be denoted P1 and P2 and

ẑ =
∑

i ẑi be the estimate of the total number of outputs for the current subproblem.

Create P1 by examining rows (A)k∗ one at a time. If the estimated number of nonzeros of

P1∪(A)k∗ is less than ẑ/2 then add (A)k∗ to P1. Otherwise perform dense-vector sparse-

matrix multiplication (A)k∗C using Õ(nnz(C)/B) I/Os [60] and emit every nonzero

of that product - this eliminates the row vector (A)k∗ from matrix A as all outputs

generated by row (A)k∗ has now been emitted. Because of Equation (3.3) we have that

the remaining rows of A can now be placed in partition P2 and the sum of their outputs

will be at most (1 + log−1 U) nnz(AC)/2. The procedure and analysis is equivalent for

the case of columns. From Equation (3.5) we had that even with splits of nnz(AC)(1/2+

log(U)/2) nonzeros then the subproblem size is the desired O(M/ logU) after all logϕ2

splits are done.

In terms of I/O complexity consider first the coloring of all rows in A. First we perform

the size estimates of Corollary 3.4 in Õ(N/B) such that we know where to split. Then

we perform ϕ splits and each split also emits the output entries for a specific row using

dense-vector sparse-matrix multiplication, hence this split takes Õ (ϕN/B) I/Os. Finally

for each of the ϕ sets of rows of A we partition columns of C in the same manner, first

by invoking ϕ size estimations taking Õ(N/B) due to the sum of the nonzeros in the ϕ

subproblems being at most N . Then for each of the ϕ row sets we perform ϕ splits and

output a column from C. This step takes time Õ(ϕN/B) and hence in total we use

Õ(ϕN/B +N/B) = Õ

(
N
√
nnz(AC)

B
√
M

)
.

3.2.5.5 I/O Complexity Analysis

Next, we will use Lemma 3.7 for the algorithm that shows part (b) of Theorem 3.1.

We summarize the steps taken and their cost in the external memory model.
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Proof. (Theorem 3.1, part (b)) The algorithm first estimates nnz(AC) with parameters

ε = 1/ logN and δ = 1/U which by Corollary 3.4 uses Õ(N/B) I/Os. We then perform

the coloring, outputting some entries of AC and dividing the remaining entries into ϕ2

balanced sets for ϕ =

√
nnz(AC) logU

M + O(1). By Lemma 3.7 this uses Õ
(
N
√

nnz(AC)

B
√
M

)
I/Os. Finally we invoke the compressed matrix multiplication algorithm from Lemma 3.6

on each subproblem. This is possible since each subproblem has at most γM/ logU

nonzeros entries in the output (for small constant γ). The total cost of this is O(ϕN/B)

I/Os, since each nonzero entry in A and C is part of at most ϕ products, and the cost

of each product is simply the cost of scanning the input.

3.2.6 Lower bound

Our lower bound generalizes that of Hong and Kung [5] on the I/O complexity of dense

matrix multiplication. We extend the technique of [5] while taking inspiration from

lower bounds in [70–73]. A related previous work is the lower bound in [72] on the

I/O complexity of triangle enumeration in a graph and machinery from [60] is used to

argue that allowing comparisons of semiring elements and constants does not give any

computational power.

Our lower bound holds in a parallel version of Hong and Kung [5], namely in a parallel

semiring model where:

• Computation is done in P parallel internal memory units with a processing unit

for each of them.

• A memory block holds up to B matrix entries (from the semiring), and internal

memory can hold M/B memory blocks.

• Semiring elements can be multiplied and added, resulting in new semiring elements.

• Semiring elements can be compared to constants and other semiring elements.

• No other operations on semiring elements are allowed (e.g. subtraction, division)

Constants are here defined as being expressions involving semiring operations on 1 and

0. The model allows us to store sparse matrices by listing just non-zero matrix entries

and their indices. We note that our algorithm respects the constraints of the semiring

model and thus the model matches the one used for the upper bound I/O complexity.

We require the algorithm to work for every semiring, and in particular over fields of

infinite size such as the real numbers, and for arbitrary values of nonzero entries in A
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and C. Note that our model doesn’t prohibit the use of randomization, i.e. the lower

bound holds for randomized algorithms such as the one shown in this chapter.

Proof structure. We will in Lemma 3.12 show that a program (Definition 3.10) must

use Ω

(
N
PB min

(√
Z
M ,

N
M

))
I/Os in the parallel semiring I/O model described above.

We then apply Lemma 3.13 to argue that comparisons doesn’t add computational power

to this model and hence an algorithm (Definition 3.8) that uses comparisons must use

at least the same number of I/Os.

Definition 3.8 (Algorithm). An algorithm A is allowed to perform instructions: Read,

write, comparison to a constant, emit, compute. In one parallel I/O an algorithm can

perform P read/write operations. For an algorithm the conformation of the input defines

the layout (to be e.g. column-major).

An algorithmA consists of a tree TA that has tertiary decision nodes and unary operation

nodes. The tree TA can have infinitely many nodes, but for all valid inputs it must hold

that:

1. A leaf node is reached.

2. On the root to leaf path emit(.) has been invoked on every correct output element

(e.g. entries of AC) once and not otherwise.

The cost of algorithm A on an input is the number of read/write nodes on the root to

leaf path in TA, since at every such node one parallel I/O is used.

The tertiary comparison nodes of an I/O tree are due to working with an ordered

semiring, where if the semiring is unordered the comparison nodes are binary. We will

use the following general definition of a computation. For the definition of computation

we will as in the upper bound restrict emit(.) to only be invoked on values that are in

internal memory.

Definition 3.9 (Computation). We say that algorithm A computes a function on semir-

ings f : Sd 7→ Se if for all conformations of input there is a layout s.t. every for all

semirings the output of function f is emitted once.

In the parallel semiring I/O model the external memory is shared between the P pro-

cessors. We allow concurrent read reads from a cell but need not concurrent writes.

It follows that no read/write conflicts occur. We define a program to be an algorithm

without comparison nodes as follows.
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Definition 3.10 (Program). A program is a root to leaf path of TA,f : it is a finite se-

quence of unary nodes that has no read/write conflicts between the P parallel processing

units.

We will first argue that for every N and Z there exist matrices A and C with nnz(A) +

nnz(C) = Θ(N) and nnz(AC) = Θ(Z), for which every execution of a program in the

parallel semiring I/O model must use Ω

(
N
PB min

(√
Z
M ,

N
M

))
I/Os. The argument will

depend crucially on the fact that we are in the semiring model: By the Schwartz-Zippel

theorem [17, Theorem 7.2] we know that two polynomials agree on all inputs if and only

if they are identical. Let S ⊆ [N ] be the set of elementary products that contribute to

a nonzero output entry
∑

k∈S Ai,kCk,j , i.e. we have that
∑

k∈[N ]\S Ai,kCk,j = 0. Since

we are working in the parallel semiring model, the only way to get the term Ai,kCk,j in

an output polynomial is to directly multiply these input entries. That means that to

compute an output entry (AC)i,j we need to compute a polynomial that is identical to the

sum of elementary products
∑

k∈S Ai,kCk,j . The hard instance for this lower bound is a

rectangular dense matrix product, which maximizes the number of elementary products.

In particular, since we ignore constant factors, we may assume that
√
Z and N/

√
Z are

integers. Let A be a (
√
Z)-by-(N/

√
Z) dense matrix, and let C be a (N/

√
Z)-by-(

√
Z)

dense matrix. Without loss of generality, every semiring element that is stored during

the computation is either:

1. An input entry, or

2. Part of a sum that will eventually be emitted as the value of a unique nonzero

element (AC)i,j .

This is because these are the only values that can be used to compute an output entry

(making use of the fact that additive and multiplicative inverses do not exist). This

implies that every output entry can be traced through the computation, and it is possible

to pinpoint the time in the execution where an elementary product is computed and

stored in internal memory.

To upper bound the number of elementary products that can be computed in internal

memory M we use the following lemma.

Lemma 3.11 ([70]). In space M the number of elementary products that can be computed

and stored is at most M3/2.

Following [72], observe that any execution of an I/O efficient algorithm can be split into

phases of M/B parallel I/Os. For a phase that uses M/B parallel I/Os there are at



Chapter 3. Matrix multiplication 63

most 2M entries that can be used by the computation of the phase: M from external

memory and M that were residing in memory from the previous phase. Analogously a

phase can compute at most 2M entries to be used in the next phases. For every phase

we can therefore identify the set of at most 2M input and output entries that are used

or computed in the phase. The lower bound will follow from bounding the number of

rounds needed to compute all elementary products in the parallel setting. We are ready

to show the following lemma.

Lemma 3.12. Let A be a dimension α × β matrix and C a dimension β × γ matrix,

α, β, γ > 1, over semiring S.

Then any correct program must use Ω

(
N
PB min

(√
Z
M ,

N
M

))
I/Os to compute AC.

Proof. To argue a lower bound for parallel Hung-Kung rounds we use Lemma 2.4 of [73].

It states that a parallel program on P processors, Φ being a potential function describing

how many computations are performed (Φ(h) and Φ(0) denoting potential at the end

and the beginning respectively) and ∆(2M) being an upper bound on the change in

potential in a round involving 2M input and output entries then a lower bound is given

by (3.6) below. ⌈
Φ(h)− Φ(0)

P∆(2M)
− 1

⌉
M

B
I/Os. (3.6)

We will pick the potential function Φ to be defined as the number of elementary products

that have been computed and will be used in an output, i.e. we have

Φ(h) = N
√
Z

Φ(0) = 0

Next we wish to upper bound ∆(2M). We split the emit cases in two groups: direct

and indirect outputs. If all values needed for emitting a particular output entry are

present in a phase there may not be any storage location that can be associated with it.

We first account for direct outputs: Each direct output requires two vectors of length

N/
√
Z to be stored in main memory. In each parallel phase we can store at most

M
√
Z/N such vectors, resulting in at most (2M)2Z/N2 output pairs. An upper bound

on the number of elementary products in a parallel phase with only direct inputs is thus

((2M)2Z/N2)(N/
√
Z) = ((2M)2

√
Z)/N .

Next, we focus on indirect output entries for which a partial sum is written to disk in

some phase. Again we wish to upper bound the number of elementary products that

can be computed. By Lemma 3.11 the number of elementary products computed and

stored in internal memory of size 2M is at most (2M)3/2.
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We now have the lower bound due to (3.6).⌈
Φ(h)− Φ(0)

P∆(2M)
− 1

⌉
M

B
≥ N

√
Z − 0

P
(
M2
√
Z

N + (2M)3/2
)M
B

≥ 1

2
min

(
N2

4M2
,
N
√
Z

(2M)3/2

)
M

PB

= Ω

(
N
PB min

(√
Z
M ,

N
M

))

Matrix multiplication over a semiring can be seen as a mapping Rd 7→ Re between real

input vector x ∈ Rd and output vector y ∈ Re, since the real numbers are a ring (and

hence a semiring) and we require our bound to hold for any semiring.

It is easy to see that by the definition of matrix multiplication, the output is a polynomial

over the input and hence the computation can be seen as computing a polynomial over

nonzero entries of the input matrices. Due to the lower bound of programs computing the

matrix product AC and the fact that the output of matrix multiplication is a polynomial

over the input, we can now relate the program lower bound of Lemma 3.12 to that of

an algorithm. We use the following lemma from [60].

Lemma 3.13 ([60], Lemma 9.4). For a polynomial p : Rd 7→ Re let A be an algorithm

that computes p in the parallel semiring I/O model using r I/Os. Then there exists a

program that computes p in the parallel semiring I/O model using at most r I/Os.

By the lower bound on programs from Lemma 3.12 and the fact that using comparisons

give no computational power to the model as stated in Lemma 3.13 we get the bound

of Theorem 3.2 in the parallel semiring I/O model with comparison against constants

allowed and we note that for P = 1 it matches our upper bound complexity.
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3.3 Fast output-sparse matrix multiplication in the RAM

model

In this section of the chapter we consider computing the matrix product AC of two

matrices A and C in the case where the number of nonzero entries of the output AC

is sparse. The case of sparse output is well-motivated by real-world applications such

as computation of covariance matrices in statistical analysis. See the introduction in

Section 3.2 for more examples of applications.

The main result of this section is a new output sensitive Monte Carlo algorithm, that

for number of nonzero entries Z of AC uses Õ
(
U2
(
Z
U

)ω−2
+ Z +N

)
operations in the

word-RAM model and outputs the set of nonzero entries of AC with high probability.

This time bound is strictly better than all state of the art methods for Z = ω(U) and is

never worse than O(Uω). Additionally, our algorithm works with arbitrary cancellations

according to the field.

3.3.1 Preliminaries

Let A be a U1 ×U3 matrix and C be a U3 ×U2 matrix over any field F, then remember

that Ai,j is the entry of A located in the i’th row and j’th column and Ai,∗ will be used

as shorthand for the entire i’th row (likewise for column). Remember that the matrix

product is given as (AC)i,j =
∑U3

k=1Ai,kCk,j and that we say that a sum of elementary

products cancel if the sum over the group equals zero and there are nonzero entries in

the group. As we assume the matrix entries can come from any field F we make no

assumptions about cancellation occurring or not, i.e., “fast” Strassen-like methods are

allowed. We assume wlog that logU (where U ∈ {U1, U2, U3}) is integer.

We will use the following easy fact about the number of arithmetic operations needed

to multiply an m× n matrix with a n× p matrix.

Fact 3.14. Let O(nω) be the number of arithmetic required to multiply two n × n

matrices. Then an m×n matrix can be multiplied with an n×p matrix using O
(
αβω−2

)
arithmetic operations where β = min(m,n, p) and α = mnp/β.

Proof. Assume wlog that β divides α. Since α is the smallest dimension we can divide

the matrices into α/β2 submatrices of size β × β, which can each be solved in O (βω)

operations.
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3.3.2 Related work

Two U × U matrices can trivially be multiplied in O(U3) arithmetic operations by

U2 inner products of length U vectors. The first to improve upon the O(U3) barrier

was Strassen [13] who for ω = log2 7 showed an O(Uω) algorithm by exploiting clever

cancellations. Since then there has been numerous advances on ω, e.g. [58, 74, 75] and

as of this writing most recently ω < 2.3728639 was shown due to Le Gall [76].

The closest algorithm in spirit to our general algorithm of Theorem 3.16 is due to

Williams and Yu [63]. They recursively, using time Õ
(
U2
)
, with high probability

compute all positions of nonzero output entries and following this can then compute

each output value in time O(UZ) for a total number of Õ
(
U2 + UZ

)
operations. This

matches the exact case of Paghs compressed matrix multiplication result [62], which is

significantly more involved but also gives a stronger guarantee: Using time Õ
(
U2 + Ub

)
it gives the exact answer with high probability if Z > b, otherwise it outputs a matrix

where each entry is close to AC in terms of the Frobenius norm. Contrary to this we use

only polylog(Z) time to compute the position of each output entry after having done an

estimation output size that takes time Õ(N) in general and then we can partition and

compute the product using time Õ
(
U2(Z/U)ω−2

)
by Theorem 3.16, which for Z > U

matches the above complexity of Williams-Yu and Pagh, and specifically for Z = ω(U)

(any function asymptotically greater than U) we improve upon this bound.

Iwen and Spencer [77] showed that if every column of the output matrix has O(U0.29462)

nonzero entries, then the matrix product can be computed using time O(U2+ε) for con-

stant ε > 0. Recently due to Le Gall [76] this result now holds for output matrices

with columns of at most O(U0.3) nonzeros. In this case our balanced matrix multipli-

cation algorithm of Theorem 3.15 uses time Õ
(
U2.19

)
(for ω = 2.3728639), which is

asymptotically worse, but our method applies to general balanced matrices.

For boolean input matrices, the output sensitive algorithm of Lingas [78] runs in time

Õ
(
U2Zω/2−1

)
, which we improve on for 1 ≤ Z < U2 by a relative factor of Z1−ω/2 and

match when Z = U2. Additionally our algorithm works on any field. The author however

shows a partial derandomization that achieves the same bound using only O(log2 U)

random bits, which is a direction not pursued in this thesis.

The general case, i.e. dense input and output, for multiplying two boolean matrices has

time complexity O
(
U3 (log logU)3 / log3 U

)
due to Chans recent combinatorial algo-

rithm [79]. His algorithm is en essence an enhancement of the old Four Russians speedup

trick which works roughly as: 1) divide the matrix into small t× t blocks 2) pre-compute

results of all t× t blocks and store them in dictionary. Typically t = O(logU) and the

gain is that we now work with (U/t)2 = U2/ log2 U blocks instead of U2 cells.
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In the case of sparse input matrices, Yuster and Zwick [80] showed how to exploit

sparseness of input using an elegant and simple partitioning method. Their result was

extended to be both input and output sensitive by Amossen and Pagh [14], leading to

a time bound of Õ
(
N2/3Z2/3 +N0.862Z0.408

)
based on current ω. In our (non-input

sensitive) case where N = U2 we are strictly better for all U > 1 and Z > U . We note

that the algorithm of Amossen and Pagh is presented for boolean input and claimed

to work over any ring, however both the result of Yuster-Zwick and Amossen-Pagh do

not support cancellations, i.e. their bounds are in terms of the number of vector pairs

of the input that have nonzero elementary products. It remains as an fundamental

open problem to achieve the optimal input- and output-sensitive complexity tradeoff for

matrix multiplication.

Comparison summary. The general algorithm of Theorem 3.16 works over any field (and

supports cancellation), is never worse than O(Uω) and improves upon the current state

of the art methods algorithms when Z = ω(U).

3.3.3 Our results

We show the following theorem, that provides an output sensitive fast matrix multipli-

cation algorithm granted that the output is balanced.

Theorem 3.15. Let A and C be U × U matrices over the field F that contain at most

N nonzero entries and the product AC contains at most Z nonzero entries in total and

at most Θ(Z/U) per row and column. Then there exists an algorithm for which it holds:

(a) The algorithm uses time Õ
(
UZ

ω−1
2 + Z +N

)
time in the RAM model.

(b) With probability at least 1−1/U2 the algorithm outputs the nonzero entries of AC.

We then show the main theorem, a fast matrix multiplication algorithm that works on

any input and is sensitive to the average number of nonzero entries in the rows and

columns of the output.

Theorem 3.16. Let A and C be U × U matrices over field F that contain at most N

nonzero entries and the product AC contains at most Z nonzero entries in total. Then

there exists an algorithm for which it holds:

(a) The algorithm uses time Õ
(
U2(Z/U)ω−2 + Z +N

)
time in the RAM model.

(b) With probability at least 1−1/U2 the algorithm outputs the nonzero entries of AC.
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Method Time Notes

General dense O (Uω)

Lingas Õ
(
U2Zω/2−1

)
Requires boolean matrices.

Iwen-Spencer, Le Gall O
(
U2+ε

)
Requires O

(
n0.3

)
nonzeros per column.

Williams-Yu, Pagh Õ
(
U2 + UZ

)
This thesis, Thm. 1 Õ

(
UZ

ω−1
2 + Z +N

)
Requires balanced rows and columns.

This thesis, Thm. 2 Õ
(
U2(Z/U)ω−2 + Z +N

)
Table 3.1: Comparison of matrix multiplication algorithms of two U × U in the
RAM model. N denotes the number of nonzeros in the input matrices, Z the number
of nonzeros in the output matrix and ω is the currently lowest matrix multiplication

exponent.

The algorithm of Theorem 3.15 has asymptotically lower running time compared to

that of Theorem 3.16 for 1 < Z < U2 (for current ω) and for Z = U2 they both

match Õ(Uω). However, the algorithm from Theorem 3.15 requires balanced rows and

columns and in fact the algorithm from Theorem 3.16, which works in the general case,

is based on calling it on balanced partitions. We note that Theorem 3.16 is restricted

to square input for sake of simplicity of presentation, as the algorithm applies to the

general rectangular case. We summarize the results of this section and the closest related

results in the table below.

Result structure. The result is split into three parts: compressing the output, recov-

ering output entries from compressed matrices and partitioning the input. Intuitively,

the compression step of Section 3.3.4 uses that many row-column vector products of

the input yields no output entry as we only have Z output entries and thus we can

“‘collapse” rows and columns of the input. This makes the matrices smaller and is what

gives the speedup. In the recovery step of Section 3.3.5 we show how to in polylog

locate the position of a nonzero output entry and compute the entry value. The two

first parts make up the algorithm of Theorem 3.15 as the compression step assumes bal-

anced rows/columns of the output. Finally in Section 3.3.6 we show how to partition the

matrix product into smaller balanced products, such that the algorithm that requires

balance can be invoked - Theorem 3.16 follows from this step.

3.3.4 Compressing the output

We describe a procedure to compress the computation of a matrix product AC that in

its output matrix has bounded number of nonzero entries per row and column. The

overall idea is simply to collapse rows of matrix A and columns of matrix C such that

the size of output matrix of the compressed matrix product is around the same size as

the (upper bound of) the number of nonzero entries of AC. The high level perspective
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is then that we subdivide the original matrix multiplication problem into several of such

balanced subproblems and invoke the method described here on each of them.

Lemma 3.17. Let A be an U1 × U3 matrix and C an U3 × U2 matrix over a field F
and let Z = nnz(AC). Let d1/8, d2/8, where d1 = Θ(Z/U1), d2 = Θ(Z/U2), be an upper

bound on the number of nonzero entries of each row and column respectively in AC.

Then there exist a compression matrix G s.t. each nonzero entry of AC maps to an

entry of G and

(a) G is of size
√
U1d1 ×

√
U2d2.

(b) For each entry (AC)i,j: with probability at least 5/8 there is a corresponding entry

of G with the value (AC)i,j.

(c) G can be computed by three matrix multiplications using time

O
(
U3Z

ω−1
2

)
in the RAM model.

Proof. The construction follows similar in spirit to that of count-min sketches [81]: we

hash the entries of AC to G using two d1- and d2-wise independent hash functions

hi : Ui 7→
√
Uidi, i ∈ {1, 2} where h1 maps rows of AC to rows of G and h2 maps

columns of AC to columns of G. We will argue that a constant fraction of the entries

are collision free. The intuition is simply to collapse rows of A into each other and the

same for columns of C. The amount of “collapsing” done is proportional to (an upper

bound of) the output size Z such that when we multiply the collapsed matrices onto

each other afterwards to form our matrix G then each entry of AC is in G with constant

probability.

Consider a specific entry Gi,j . We will bound the probability pc of nothing colliding with

that entry. Let p1 denote the probability of all entries from row i not colliding with i, j.

We assume without loss of generality that U1 < U2 (The converse case U1 ≥ U2 follows

analogously). Since h1 is d1-wise independent and random we have:

p1 ≥
(

1− 1√
U1d1

)d1/8
≥
(

1− 1

d1

)d1/8
= e−1/8.

Equivalently, the probability p2 of no entry from column j mapping to i, j is at most

e−1/8, where we use that there are at most d2/8 nonzero entries per column. Let p3 be

the probability of an entry not from row i or column j mapping to i, j. As there are

U1d1 possible entries of matrix G and at most U1d1/8 nonzero entries of AC we have:

p3 ≥
(

1− 1

U1d1

)U1d1/8

= e−1/8.
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Now, by the union bound over the three collision probabilities we have a lower bound

for pc:

pc ≥ 1− ((1− p1) + (1− p2) + (1− p3)) > 5/8.

Remember that Z = nnz(AC). Hash functions h1 and h2 used for compressing can

themselves be represented as matrices R and K of size
√
Z×U1 and U2×

√
Z respectively.

However since the matices are very sparse the time spent on compressing is linear. The

dominating term is the computation (RA)×(CK) which is a
√
Z×U3 matrix multiplied

with a U3 ×
√
Z matrix. This can be done in time O

(
U3Z

ω−1
2

)
using Fact 3.14.

We will from here denote matrices of the above form as compressed matrices. The

following corollary states that the entries of interest, the nonzero entries of AC, can be

constructed from O(logU) compressed matrices Gi as above by for each entry taking the

median over all matrices Gi. Note that we will not construct the compressed matrices

and do a vote directly as below, but will do a ”recovering” process before, which gives

the positions of the nonzero entries of AC.

Corollary 3.18. Let G1, . . . , G5 logU be compressed matrices from Lemma 3.17 of AC

where for each Gi we pick the hash functions h1, h2 independently at random. Then,

with probability at least 1 − 1/U3, we can from G1, . . . , G5 logU compute every nonzero

entry of AC.

Proof. Each entry of AC appears correctly in Gi with probability at least 5/8. By

a standard application of Chernoff bounds over the median of all 5 logU entries of

G1, . . . , G5 logU we have that the probability of there being more than 5/2 logU correct

entries is at least 1 − exp(5 logU) ≥ 1 − 1/U5. By the union bound over at most U2

values we get the desired error probability 1− 1/U3.

3.3.5 Recovering nonzero entry in polylog time

We wish to with high probability recover the nonzero entries of AC from compressed

matrices as in Lemma 3.17, G1, . . . , G5 logU , in time polylog(U) per nonzero entry after

performing some preprocessing. We will make use of the following easy lemma, that

shows that a vector from a given field can be summarized by a single value, such that

with probability at least 1/2 we can determine if the vector has nonzero elements or not.
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Lemma 3.19. Let g be a length d vector over a field F and let r be a vector where each

entry ri is chosen uniformly at random from F. Let be a mapping v : Fd 7→ F defined as

v(g) = r · g. Over the random choice of r it holds for v(g) that:

(a) if v(g) 6= 0 then nnz(g) > 0.

(b) if v(g) = 0 then with probability at least 1/2 nnz(g) = 0.

Proof. Let r be a vector where each entry of r is picked independently and uniformly at

random from field F. For simplicity consider the mapping v to be a mapping to 1 or 0

as follows.

v(g) =

1 if r · g 6= 0

0 otherwise
(3.7)

Note that if nnz(g) = 0 then multiplying onto it any vector will yield 0, hence this holds

for random vector r as well. For a g with nnz(g) > 0 then with probability at least 1/2

we have v(g) = 1, as the probability is lower bounded by the case of one nonzero entry,

say at position gi, and the field being GF2. Since for any F g has one nonzero entry

gi 6= 0 the random entry ri has probability 1/|F| to make r · g = 0 and hence v(g) = 0.

Thus if entry gi 6= 0 then

r · g = 0 ⇐⇒ ri = −r \ ri · g \ gi
gi

= 0.

Since |GF2| = 2 and only one of the values from the field satisfies the above, we get the

claimed probability lower bound of 1/2 over the random choice of the vector r.

The compressed matrices G1, . . . , G5 logU contains the set of nonzero entries of AC,

which is the goal to compute. The algorithm of the following lemma, denoted the

recovery algorithm, will instead of doing the simple majority vote as in Corollary 3.18

use a ”compressed” version that uses Lemma 3.19 to test for nonzero entries. This

will allow us to compute the set of nonzero entries of AC with high probability, using

O(Zpolylog(U)) operations instead of O(ZU) operations.

Lemma 3.20. Let G1, . . . , G5 logU be compressed matrices where in each Gi an entry

of matrix product AC over F appears correctly with at least probability 5/8, let Z =

nnz(AC) and let U be the biggest dimension of AC.

There exists an algorithm which uses Õ
(
UZ

ω−1
2

)
preprocessing time, after which in time

Õ (Z) with probability at least 1− 1/U3 the set of nonzero entries of AC is computed.
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Proof. Consider the matrices G1, . . . , G5 logU as in Corollary 3.18, which with probability

at least 1 − 1/U3 can be used to create the output. We will make use of the random

mapping of Lemma 3.19 and we will for the sake of simplicity of presentation assume

the binary definition from Equation (3.7).

The recovering algorithm will at a high level consider, for each row of the output matrix

AC, a binary tree of depth logU where each node corresponds to a group of positions

of the row. A node (group) is represented by value either 1 or 0: A leaf has value 0 if

the vector it represents has no nonzero entries and 1 otherwise. An internal node has

value 0 if and only if all its children have value 0 and 1 otherwise. The preprocessing

step constructs this tree, and afterwards the position of a nonzero entry can be found

by walking the root to leaf paths of only 1s. When a position can be computed we do

majority vote over the 5 logU compressed matrices.

Construction of the tree. The value v(gi) of either 1 or 0 is computed by Lemma 3.19.

Due to the fact that the mapping v from Lemma 3.19 is just a dot product we can define a

matrix Pj as follows. Let Pj be a U2×U1 matrix (remember that AC is a U1×U2 matrix)

with its nonzero entries picked independently at random from F. Consider a specific row

ACx,∗ of AC. We wish to store values representing if there are nonzero entries in intervals

of ACx,∗. Specifically, for matrix Pj we consider consecutive intervals of size 2j of each

row, i.e., we partition each row into U2/2
j intervals and summarize each interval by

value 1 or 0 using Lemma 3.19. Matrix Pj is then defined as having random elements

of F in positions such that ACPj gives a matrix of summarized values. Note that Pj is

linear hence we can pick the cheap order A(CPj) of computation. We repeat this for

every j ∈ [5 logU ] and thus have matrices P1, . . . , P5 logU and the corresponding 5 logU

matrix products A(CPj). For each row of AC we now have values as in Lemma 3.19 for

U2/2
j intervals of size 2j . Since for each matrix Pj we have that each summary value

of the matrix A(CPj) has false negatives with probability at most 1/2 we repeat each

matrix Pj and hence matrix product A(CPj) 5 logU times with random vectors drawn

independently at random each time. Then the probability p4 of a summary value being

wrong is

p4 ≤ 1/25 logU = 1/U5.

By the union bound over all at most U2 summary values of a Pj we have that the

summary values and hence summary products A(CPj) are correct with probability at

least 1− 1/n3.

Extraction from the tree. For every row in ACi,∗ we now implicitly have a tree Ti, which

has logU levels (with each level being repeated 5 logU times) and on level j we have

the nodes corresponding to summary values of A(CPj). Remember that a summary

value of 1 indicates that there is at least none nonzero entry in the summarized interval
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and 0 indicates no nonzero entries. Extracting a nonzero entry from row ACi,∗ then

corresponds to following a root to leaf path in the tree where every node, corresponding

to an interval of halving size, is 1. This can be done by directly accessing the summary

values of A(CPj). When a path has been followed from root to leaf, the position of a

nonzero entry has been located by construction of the summary values. As we now have

the position of a nonzero entry, by Corollary 3.18 we can then do a majority vote over

all 5 logU matrices G1, . . . , G5 logU to get with probability at least 1−1/U5 the nonzero

entry on that position.

RAM Complexity. The number of matrix multiplications needed for the preprocessing,

i.e., creation of the implicit tree is polylog(U) since the tree has depth logU and each

level of the tree is repeated 5 logU times. The dimensions of the matrices is
√
Z × U ,

since the preprocessing is done in compressed space using Lemma 3.17 and so computing

a level of the tree corresponds to polylog(U) repetitions of a matrix product of the form

(RA)C(PjK) where R and K are size at most U ×
√
Z compression matrices as in

Lemma 3.17, Pj is a matrix of random field elements and AC is the matrix product of

interest. Since we have dimensions at most
√
Z × U on the matrices this can be done

in time O
(
UZ(ω−1)/2

)
using Fact 3.14. Hence in total we use O

(
UZ(ω−1)/2 log2 U

)
=

Õ
(
UZ(ω−1)/2

)
RAM operations used for the preprocessing. To perform the extraction

of one nonzero entry of AC we traverse the tree of depth logU , for each level check the

values of all 5 logU repetitions of the level. Every such check is a constant time direct

access and hence the extraction is polylog(U) per position containing a nonzero element.

Finally we do the majority vote over the 5 logU positions in the compressed matrices,

yielding in total polylog(U) time per nonzero entry from AC.

We have the two ingredients for Theorem 3.15 since we can compress the output for the

balanced case and afterwards extract the nonzero entries of AC.

Proof. (Theorem 3.15) We consider first the RAM complexity. For a square matrix

the compression step of Lemma 3.17 takes time Õ
(
UZ

ω−1
2

)
to get 5 logU compressed

matrices. After this the recovery step from Lemma 3.20 uses time Õ
(
UZ(ω−1)/2 + Z

)
and we need an additional O(N) to read the input.

The probability bound holds trivially since by a union bound over error probabilities

of compression and recovery we have that we compute the nonzero entries of AC with

probability at least 1− (2/U3) > 1− 1/U2 as stated by the theorem.
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3.3.6 Subdivision

By Theorem 3.15 we have that a matrix product with Z nonzero entries distributed

evenly in the output can be computed in time Õ(UZ(ω−1)/2 + Z). We will now show

that an arbitrary matrix product can be divided into subproblems of that form.

We shall use the following algorithm that given arbitrary matrices can output an estimate

of the number of nonzeros of each column (or row) of the matrix product. We will later

use this estimate to perform subdivisions of the input.

Fact 3.21 (word-RAM part of Lemma 3.3). Let A and C be U ×U matrices with entries

of field F, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1.

We can compute estimates z1, . . . , zU using O(ε−3N log(U/δ) logU) RAM operations

such that with probability at least 1 − δ it holds that (1 − ε) nnz([AC]∗k) ≤ zk ≤
(1 + ε) nnz([AC]∗k) for all 1 ≤ k ≤ U .

We note that Fact 3.21 makes no assumptions about cancellation and is applicable for

matrix products over arbitrary fields. For certain matrices it is possible to perform

size estimation faster, which can then yield a faster total running time for the methods

presented here. Consider U1 ×U matrix A and U ×U2 matrix C, where the N nonzero

locations are random and independent: The expected value of nnz(AC) is N/U and the

expected row and column size is N/(U1U) and N/(U2U), hence an upper bound can be

computed in polylog(max(U1, U, U2)) time that holds with high probability.

Lemma 3.22. Let AC be a matrix product of two U1 × U3 and U3 × U2 matrices over

field F. Let Z = nnz(AC) and U = max(U1, U2, U3).

There is a division procedure that partitions the matrix product into polylog(U) smaller

matrix products where with probability at least 1− 1/U5 it holds:

(a) A specific matrix product with Z ′ nonzero entries in its output has d1 and d2

number of nonzeros in rows and columns in its output and further d1 = Θ(Z ′/U)

and d2 = Θ(Z ′/U).

(b) The partitioning takes time Õ(N + U) to compute.

Proof. We will argue how to perform a partition of the input such that the conditions

of the lemma is satisfied. The partitioning will be done by invoking the size estimation

algorithm of Fact 3.21 with parameters ε = O(logU) and δ = 1/U5. We now have

access to U1 values z1, . . . , zU1 where it holds that zk is an logU -estimate of the number

of nonzero entries of row k. We then sort the output rows by their z-values and divide

the rows into logU groups where it holds that group i consists of si = 1
2i

∑
j zj nonzero
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entries for i ∈ [logU ]. By error bounds of the size estimation [7] we have that for group

size si it holds that (1− logU) 1
2i
nnz(AC) ≤ si ≤ (1 + logU) 1

2i
nnz(AC). We now have

logU disjoint subproblems that are approximately balanced, i.e. the heaviest output

rows are grouped together. The guarantees of at most d1 entries per row and d2 per

column can with probability at least 1− 1/U5 be read directly from the zi values. The

time complexity of computing this subdivision is the time complexity of size estimation

plus sorting, which in general is Õ(N) +O(U logU) = Õ(N + U).

We now show the main theorem, which gives the time bound for arbitrary input matrices

over any field.

Proof. (Theorem 3.16) From Lemma 3.22 we have a subdivision into logU dense sub-

problems on which the compression and aggregation algorithms of Lemmas 3.17 and 3.20

will be invoked on. Let xi and yi be the dimensions of the output of subproblem i. If

xi < yi, then by Fact 3.14 we can compute problem i using O
(
Uyix

ω−2
i

)
arithmetic op-

erations. However since the dimension varies in size the total cost of this step is upper

bounded by

U

(
logU∑
i=1

xiy
ω−2
i +

logU∑
i=1

xω−2
i yi

)
. (3.8)

To bound 3.8 note that we have
∑

i xi = U and
∑

i xiyi ≤ 2Z. We relax the last

inequality and assume xiyi = Z for every i. It follows that yi = U/2i and xi = (Z/U)2i

and that 3.9 below is an upper bound for 3.8.

U

(
logU∑
i=1

Z

U
2i(U/2i)ω−2 +

logU∑
i=1

(
Z

U
2i)ω−2U/2i

)
. (3.9)

We will bound 3.8 by the sum of the terms in the limit values for 2i, namely 1 and U , this

will provide and upper bound for the equation up to logarithmic factors. By insertion

in 3.9 and by using that there can be at most U nonzero entries in a row/column we get

an upper bound of

U
(
ZUω−3 + U + U(Z/U)ω−2 + Zω−2

)
.

The third term dominates asymptotically and hence an upper bound on the total cost

is given by

Õ

(
U2

(
Z

U

)ω−2
)
.

The error probability follows from a standard union bound argument.
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Association Rule Mining using

Maximum Entropy

4.1 Introduction

Recommender systems that try to assess probabilities, e.g. for estimating probabilities

based on the context of a particular user, may be faced with ambiguous statistical

evidence. For example, consider the task: Customer is known to belong to categories S1

and S2, each of which is known to increase the probability of buying product S3 by 50%,

how do we estimate the probability that she will buy product S3? Is it increased by 50%,

100%, or perhaps 125%?

Of course we may have enough data on S1, S2, and S3 to make this assessment by

computing the observed probability. But for rare terms or products there may not be

enough data to directly produce such an estimate — perhaps we never directly observed

a connection between S1, S2, and S3. In the extreme case, what can we do when there is

no support for estimating the probability by simply computing the observed frequency?

Most likely, even the number of observations of proper subsets of S1, S2, and S3 will then

be small enough that there is nonnegligible uncertainty about the pairwise correlations.

The difficulty of estimating probabilities of events occurring clearly depends on the

distribution of the input, and on how much information we have about this distribution.

So rather than a classical approach that considers worst-case data, we should consider

ideas from statistical analysis. The Maximum Entropy (maxent) Model is a method

of statistical inference that based on partial knowledge of a distribution provides a

maximum entropy estimate. Informally, it provides a probability prediction based on

the distribution that has “the least bias possible” based on the given observations. In

76
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this chapter we consider the use of maximum entropy estimates in information retrieval

contexts where estimates are sought of the probability that an item or term is of interest

to a user.

4.1.1 Motivating examples

Movie recommendation. Suppose you know that a user loved “The Rock” and “The

Matrix”. What is the probability that he already saw and gave 5 stars to “One Flew

Over the Cuckoo’s Nest”? We will try to answer this question using the smallest possible

sample of the MovieLens data set, which is examined further in Section 4.3. The difficulty

is that only about 1 in 1000 people has seen all three movies and given them 5 stars. This

means that to get a statistically significant answer (in absence of other information) we

need to ask a very large set of people. Obviously, the less mainstream films you consider,

the bigger this problem will become. See Figure 4.1 for visualization of the setting.

However, it is considerably easier to obtain information on pairs of movies. About 2.5%

of people will have seen at least two of these movies and given them 5 stars. This means

that we can reliably estimate conditional probabilities based on significantly less data.

Using the information that your user loved “The Rock” gives a probability of about

11% that he loves “One Flew Over the Cuckoo’s Nest”. However, if we instead use the

information that he loved “The Matrix” we get an estimate of about 7%. It seems that

both these movies make it more likely that he will love “One Flew Over the Cuckoo’s

Nest”, but how do we combine these pieces of information? It seems that anywhere in

the range 11-18% is a reasonable guess.

To resolve this ambiguity we again use a maximum entropy estimate based on subset

frequencies. This estimate takes the correlation of “The Rock” and “The Matrix” into

account, and arrives at an estimate of 14% based on a data set of 673 people in which

nobody has given all three movies 5 stars. When we consider a data set 100 times larger

it is possible to see how well this estimate fares: In the larger data set, 15% of those

who gave 5 stars to “The Rock” and “The Matrix” also gave 5 stars to “One Flew Over

the Cuckoo’s Nest”. We generally find that maximum entropy estimates are surprisingly

accurate across a wide range of data sets from different areas. 4

Query completion. Consider the case where a search engine user types the words

“jordan air” (followed by a space). What words should be suggested to complete the

query?

We consider the simple method of ignoring the order of words and relying on association

rules, in our case obtained from a set of 2.1 million queries from a major US search engine.



Chapter 4. Association Rule Mining using Maximum Entropy 78

(a) Venn diagram of distribution based on
the sample.

(b) Venn diagram of distribution for the
whole data set.

Figure 4.1: Two distributions of movie watchers who love three selected movies.
Figure 4.1a shows the observed probabilities in a sample of 1% of the data set, from
which we want to approximate S1 ∩ S2 ∩ S3. This is consistent with S1, S2, and S3

never occurring together. Figure 4.1b shows the probabilities in the whole data set, and
indeed it is not the case that loving two of the movies precludes loving the third one.
Our findings are that a maximum entropy estimate in such a case is well-concentrated as
opposed to independence or extrapolation estimators. In this example an independence
assumption yields an estimate of 36 occurrences, our maxent estimate yields 82, while

the true number of occurrences is 90.

Suppose we have two competing suggestions, “force” and “wholesale” (occurring in

around 0.03% and 0.06% of queries, respectively). Around 9% of the queries that contain

the word “air” also contain the word “force”. On the other hand, less than 0.00003%

of past queries contain “jordan” and “force”, which means that the maximum entropy

estimate for the probability of completing with “force” becomes less than 1%. For

comparison, both “air” and “jordan” significantly increase the probability that the

word “wholesale” occurs, to around 0.3% and 1%, respectively. Figure 4.2 summarizes

the association rules involving two words.

If the combination of words had been just slightly more rare, we might have had no past

queries containing them. Thus, for “long tail” queries we need to rely on other methods

for estimating the likelihood of a particular completion.

A maximum entropy estimate, or more precisely the approximation formula of (4.1),

shows that the user has a 5% probability of completing with “wholesale”. This is
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Assoc. rule Confidence

air => force 0.091
jordan => wholesale 0.010
air => wholesale 0.0030
jordan => force 0.00097

Figure 4.2: Association rules for the words force and wholesale in the query set
jordan and air, respectively. The probabilities are sorted in decreasing order. In
the whole data set, wholesale occurs in a fraction 0.00064 of queries, and force in a
fraction 0.00028. By the first association rule, presence of the word air increases the
probability of the word force hundreds of times, to over 9%. However, a maximum
entropy estimate correctly predicts less than 1% probability of seeing force when both
air and jordan are present. On the other hand, the presence of air and jordan yield
a maximum entropy probability for wholesale of 3%, close to the observed frequency

of 5%.

consistent with the data, which contains 31 queries including {jordan, air, wholesale}
out of a total of 575 queries containing “jordan” and “air”.

We will argue by experimental evidence that in scenarios such as the one above, the

maximum entropy estimate will give a better prediction than both extrapolation and

the independence model (see Section 4.2.2 for definitions), while still being efficiently

computable.

4.1.2 Our results

Problem definition. We consider the problem of estimating probabilities of conjunc-

tions of boolean random variables, where each such conjunction occurs a statistically

insignificant number of times in a data set of samples from the joint distribution (e.g.,

given by a complete data set). For some big data set D we consider a sample D ⊂ D.

Given such D we wish to estimate event frequencies of D also in the difficult cases where

the events do not occur in D. In particular we will focus on triples: Let I be the set of

possible items, |I| = n, and D be an m × n binary data set where each of the m rows

Di encodes a transaction Di ⊆ I. For all singleton- and pair-subsets of I we assume

that we know the number of transactions which they occur in, i.e., all singleton and pair

frequencies are known. For each X ⊂ I, |X| = 3 where the frequency θX in D is 0 we

then wish to estimate θX in D.

Our contribution. We consider triple frequency estimation based on the principle

of maximum entropy. Our main theoretical result is that a maximum entropy estimate

based on a sample, which implies that the frequencies used as input to the estimator will

have some relative error ε, will yield an estimate close to the true triple frequency under

the maximum entropy assumption. We show this through a surprisingly simple estimator
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p̃ that approximates the maximum entropy estimate well when triple frequencies are

small. For a boolean random X we let X denote the event X = 0.

Theorem 4.1. Consider the scenario where X,Y,W are boolean random variables and

Pr(X), Pr(Y ), Pr(W ), Pr(XY ), Pr(XW ) and Pr(YW ) are given. Assume that the

maximum entropy distribution consistent with these probabilities satisfies

Pr(XYW ) ≤ εmin(Pr(XYW ),Pr(XYW ),Pr(XYW ),Pr(XYW ),

Pr(XYW ),Pr(XYW ),Pr(XYW )) .

Then given probability estimates p··· such that

pXYW
Pr(XYW )

,
pXYW

Pr(XYW )
,

pXYW
Pr(XYW )

,
pXYW

Pr(XYW )
,

pXYW
Pr(XYW )

,
pXYW

Pr(XYW )
,

pXYW
Pr(XYW )

∈ [(1− ε), (1 + ε)],

it holds that

p̃ =
pXYW pXYW pXYW pXYW

pXYW pXYW pXYW

∈ [(1−O(ε))Pr(XYW ), (1 +O(ε))Pr(XYW )]

It follows from Theorem 4.1 that a) using sampled data to perform maximum entropy

estimates of probabilities in the bigger data is theoretically well-founded b) there is

a simple explicit estimator, p̃, that approximates the maximum entropy estimate in

the interesting case where the triple frequency is significantly smaller than the pair

frequencies.

It is instructive to consider a less precise, but even simpler estimator for the case where,

informally, there is no strong positive correlation among X, Y , and W , and Pr(XYW )

is close to 1. Then pXYW /ppXYW ≈ pY |X , the observed probability of Y given X, and

similarly pXYW /ppXYW ≈ pX|W and pXYW /ppXYW ≈ pW |Y , so we can approximate the

triple frequency by:

p∗ = pY |XpX|W pW |Y (4.1)

Applying (4.1) to estimate Pr(W |XY ), we get the estimator

p# = pY |XpX|W pW |Y /pXY = pW |XpW |Y /pW ;

that is, the factors by which conditioning on X and Y influence the probability of W

get multiplied.
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Empirical study. Our experimental evaluation on real data sets shows that maximum

entropy estimates give meaningful, and often quite precise, frequency predictions also

in cases where the independence estimate θiX and the extrapolation estimate θeX do not.

The error of the estimator is well modeled by the assumption that transactions are

independently sampled from a distribution having the estimated subset probabilities.

Result structure. In Section 4.2.1 we introduce basic terms and notation followed

by a description in Section 4.2.3 of how the maximum entropy estimate of an item set

is computed. We then prove in Section 4.2.3.2 that the maxent estimate is not too

sensitive to error on the input distribution. For the experimental evaluation we first

show in Section 4.3.1 that the maximum entropy estimate achieves better concentration

in general and then in Section 4.3.2 we discuss results on item sets of low statistically

insignificant support.

4.1.3 Related work

The principle of maximum entropy dates far back, but was introduced to information

theory in a seminal work by E. T. Jaynes [82]. It has since seen applications in a large

number of areas.

The maximum entropy distribution of n random variables is known to be computable

in time exponential in n using the well-known Iterative Scaling algorithm [83]. The

running time is due to the fact that for n variables, there are 2n subsets of variables. In

the general case, that is with no knowledge of the distribution, Tatti has proved that

querying the model is PP-hard [84], which is (believed to be) harder than NP.

Association rule mining [85, 86] is a well-known and extensively studied problem, where

a rule has the form X =⇒ Y with X,Y being disjoint subsets of random variables.

In transactional data sets association rule mining traditionally relies on finding frequent

itemsets, i.e., for some set of items I and a set of transactions D over I then one wishes

to report back the sets X ⊆ I that are contained in more than s transactions, for a fixed

threshold s.

The maxent distribution has been used as a model to measure how significant an itemset

is, in the framework of frequent itemset mining, e.g. [87, 88]. The general approach is

to compute the maximum entropy distribution (via the Iterative Scaling algorithm)

and then compute the Kullback-Leibler divergence with the empirical distribution, from

which a p-value can be found that is used to rank the item sets. Our approach is that

we observe some sample of the subsets of the set of interest and then use these subsets

to efficiently compute the maxent estimate.
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For the case where all frequencies of the strict subsets are known, the maximum entropy

model has been used by R. Meo [89] by comparing the probability estimate under max-

imum entropy to the empirical probability in order to achieve a measure of ranking an

itemset. One of the main open problems of [89] was determining the existence of a closed

form formula for a maxent estimate given the subset probabilities. This was partially

resolved in [90], where the author provides a formula for the 1-dimensional search space

in which the maxent estimate lies, which is then traversed by binary search that is shown

to converge to the maxent estimate.

Comparisons. Our estimator takes as parameter all single and pair-frequencies. The

hypothesis present implicitly in our model is that data generally has weak third-order

dependencies. This is also the reason Chow-Liu trees[91], which model only first and

second-order dependencies, are known to be a good approximations of many observed

distributions. The maximum entropy estimate used can be seen as an application of [89],

where singleton and pair frequencies are used to efficiently compute a maxent estimate

in the interesting case where the estimand has no observed occurrences. One of the

main open problems of [89] is an explicit formula for the maxent estimate - Theorem 4.1

in this chapter shows an explicit formula for an approximation of the maxent estimate

under certain conditions. As the 1D search of the maximum entropy estimate θmX is

determined when having all subset frequencies of X, we can compute a good maximum

entropy estimate using a small constant number of iterations of binary search as opposed

to computing the full maximum entropy distribution. We give a proof of this that is

similar to that of Meo [90], with the distinction that where she shows that there exists

constants such that the maxent estimate can be classified by setting particular equations

to be equal to each other, in our proof the constants are explicitly stated.

4.2 Frequency estimates of itemsets

4.2.1 Preliminaries

We provide some definitions and notation that will be used throughout the chapter.

Remember that a boolean random variable X is a variable with values in {0, 1}. For a

boolean random variable let X let X be the event of X = 0.

A binary data set D of observations of boolean random variables is an m × n matrix

consisting of m binary n-sized vectors, index 0 ≤ i ≤ n−1 corresponding to the outcome

of boolean random variable Xi. For a particular subset of the boolean variables S ⊆ [n]

a binary vector ω covers S iff Xi = 1 implies ωi for every i ∈ S. The frequency θS of a
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set of boolean variables is the proportion of the m row vectors in D that covers S.

A distribution p over data D is mapping p : {0, 1}n 7→ [0, 1] s.t.
∑

ω∈{0,1}n p(ω) = 1.

For a distribution p and a vector of 1s v we denote by p(S = v) = p(S = 1) = θS the

probability Pr(ω covers S).

The empirical distribution over data set D is given as

qD(a1 = v1, . . . , an = vn) =
|{t ∈ D|t = v}|

m
(4.2)

We will denote by empirical frequency the frequency according to the empirical distri-

bution

Let a family of random variable sets F be satisfied by a distribution p : {0, 1}n 7→ [0, 1]

iff for every S ∈ F it holds that p(ω covers S) = θS .

Finally, we say that a set of binary variables X is downard closed if for all strict subsets

S ⊂ X we have θS , e.g., if we consider the triple of items s = {I1, I2, I3} then s is

downward closed if we know the empirical singleton frequencies θI1 , θI2 , θI3 and empirical

pair frequencies θ{I1,I2}, θ{I2,I3}, θ{I1,I3}.

We consider specifically the case where all itemsets of size 3 (triples) are downward

closed and the triples are the itemsets which we wish to estimate the frequency of.

4.2.2 Estimation by extrapolation and independence assumption

We briefly describe the two estimators used for comparison. Let X = {I1, I2, I3} ⊂ I,

|X| = 3, be the triple of interest from sampled data set D ⊂ D. The independence

model assumes the occurrences of random variables to not be correlated, thus we have:

θiX = θI1θI2θI3

For the extrapolation estimator, let occ(X) be the number of occurrences of X in D. To

estimate the frequency θX in D we have:

θeX = occ(X)/|D|

Following from Chernoff bounds on independent variables θeX is known to be a good

estimate when θX is significant in D.
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4.2.3 Maximum entropy of itemsets

We are interested in estimating the frequency of a specific set of items G ⊆ I. We will

estimate such a frequency using the maximum entropy distribution, which intuitively

can be thought of as the most uniform distribution given some observed frequencies.

We will compute the needed entries of the maximum entropy distribution to be used to

compare to the empirical distribution.

For a family of itemsets F and a variable set G let the projected family FG be defined

as

FG = {X ∈ F|X ⊂ G,X 6= ∅}.

Then letting P be the set of all possible probability distributions that satisfy FG, the

entropy of a distribution p is given as

H(p) = −
∑

ω∈{0,1}|G|
p(ω) log p(ω) (4.3)

The maximum entropy distribution p∗ can be found by maximizing H(p) over all p ∈ P

p∗ = arg max
p∈P

H(p) (4.4)

We note that |FG| = O
(
2|G|
)

and if FG = ∅ then p∗ is the uniform distribution. The

set P contains the empirical distribution (Equation (4.2)) and hence is non-empty by

construction. We shall denote by maximum entropy estimate θmX of an itemset X the

frequency of the itemset according to the maximum entropy distribution.

4.2.3.1 Classifying and computing the maxent estimate

For completeness we will state the approach used to compute the maximum entropy

estimate of itemset frequency. We note that a similar proof of how to find the maxent

estimate appears in [90], however we give explicit constants in Equation (4.14) whereas

their proof shows existence of the constants.

High-level description. The overview of the proof is that for any z > 1 variables,

when {θX |X ⊂ G} is given for each variable then the subspace of the joint probability

space of z random boolean variables is 1-dimensional. It follows from this that the

frequency estimate according to the maximum entropy distribution p∗ is located on a

line segment. The estimate thus be computed by doing a simple binary search on this

line segment and the main point of doing this is that we avoid computing the entire

maximum entropy distribution.
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Given z random boolean variables and the marginal probabilities {θX |X ⊂ G} then

the joint probability space is given by 2z linear equations, where the rank of the corre-

sponding matrix is 2z − 1. Let the z boolean random variables Y1, . . . , Yz have proba-

bilities Pr[Y1], . . . ,Pr[Yz]. For x ⊆ [z], y = [z] \ x then denote by f=
x the probability

Pr [∀i∈xYi = 1 ∧ ∀j∈yYj = 0]. and by θx the probability Pr [∀i∈xYi = 1].

Lemma 4.2. For random boolean variables Y1, . . . , Yz with feasible marginal probabilities

{θX |X ⊂ [z]} then the space of feasible distributions is determined entirely by f=
[z]. More

generally, for S ⊆ [z] then f=
S follows from Equation (4.5).

f=
S =

∑
S′⊇S

(−1)|S
′\S|θS′ (4.5)

Proof. We prove this by induction on |S|. For |S| = i we have

f=
S =

∑
S′⊇S

(−1)|S
′\S|θS′

For the inductive step we assume Equation (4.5) to hold for |S| > i. Then for |S| = i,

Equation (4.6) holds as the sum is over supersets of S. By applying Equation (4.5) to

the second term of the right hand side of Equation (4.6) we get Equation (4.7).

f=
S = θS −

∑
S′⊃S

f=
S′ (4.6)

f=
S = θS −

∑
S′⊃S

∑
S′′⊇S′

(−1)|S
′′\S′|θS′′ (4.7)

The double sum of Equation (4.7) can be split into two as shown in Equation (4.8)

f=
S = θS −

∑
S′⊇S

∑
S′′⊇S′

(−1)|S
′′\S′|θS′′ −

∑
S′=S

∑
S′′⊇S′

(−1)|S
′′\S′|θS′′

 (4.8)

The first double sum can be split into two parts

∑
S′⊃S

∑
S′′⊃S′

(−1)|S
′′\S′|θS′′ +

∑
S′=S

∑
S′′=S′

(−1)|S
′′\S′|θS′′

the first for which we will use Fact 4.3 below.

Fact 4.3. For a set space X and function g : X → R, for a double sum of sign-alternating

supersets of any x ∈ X we have

∑
x′⊃x

∑
x′′⊃x′

(−1)|x
′′\x′|g(x) = 0

due to summands canceling out.
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Then by application of Fact 4.3 to Equation (4.8) we get Equation (4.9), where the first

double sum consists only of the element θS , hence we now arrive at the induction basis

in Equation (4.10).

f=
S = θS −

∑
S′=S

∑
S′′=S′

(−1)|S
′′\S′|θS′′ −

∑
S′=S

∑
S′′⊇S′

(−1)|S
′′\S′|θS′′

 (4.9)

f=
S = θS −

θS − ∑
S′=S

∑
S′′⊇S′

(−1)|S
′′\S′|θS′′


f=
S =

∑
S′′⊇S

(−1)|S
′′\S|θS′′ (4.10)

Intuitively, Lemma 4.2 states that the space of probability distributions that satisfy the

marginal probabilities can be traversed by varying f=
[z]. We note that Lemma 4.2 was

shown earlier (using a slightly different argument) by Calders & Goethals [92, eq. (1)]

and that we include the proof for sake of completeness.

We shall now argue that on this line through 2z dimensional space, there is a unique

point, i.e. a unique feasible distribution p, that maximizes the entropy H(p) and thus

computing this point allows us to query the maximum entropy distribution p∗ for a

z-sized set of variables. Given a feasible distribution x consisting of entries xS ≥ 0 for

every S ⊆ [z], then by Lemma 4.2 the feasible distribution space Pf can be traversed

by Equation (4.11).

Pf = x+ t · v, t ∈ (l, r) (4.11)

where v is a 2z-sized {−1,+1}-vector with entries vS = (−1)z−|S| for every S ⊆ [z]

and the range (l, r) is the range for which all coordinates in the vector x+ t · v are non-

negative. Consider the partitioning of subsets S ⊆ [z] into Seven = {S | (z − |S|) is even}
and Sodd = {S | (z − |S|) is odd}. Then the t-value borders are given below.

l = max{xS |S ∈ Seven}

r = min{xS |S ∈ Sodd}

We note that feasible solution x exists by construction since we have observed a feasible

distribution and that vector v corresponds to the null space of the 2z-row matrix denoting

the linear equalities which the joint distribution adheres to.

Location of the unique point corresponding to querying the max entropy distribution p∗

is shown in Lemma 4.4 below.
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Lemma 4.4. For a feasible distribution space Pf = x+ t ·v, t ∈ (l, r) there exists a point

pmax ∈ Pf s.t. ∀p ∈ Pf , p 6= pmax =⇒ H(pmax) ≥ H(p). In particular, Equation (4.13)

below holds.

d

dt
H(x+ t · v) =

d

dt

∑
S⊆[z]

(xS + (−1)z−|S|t) log

(
1

xS + (−1)z−|S|t

) (4.12)

=
∑
S⊆[z]

(−1)z−|S| log

(
1

xS + (−1)z−|S|t

)
(4.13)

Proof. We wish to show the existence of the scalar tmax that optimizes the entropy, i.e.

pmax = x+ tmax · v. Equation (4.13) follows form standard derivative rules, from which

we arrive at

d

dt
H(x+ t · v) =

∑
S⊆[z]

(−1)z−|S|

(
log

(
1

xS + (−1)z−|S|t

)
+

(
xS + (−1)z−|S|t

)2(
xS + (−1)z−|S|t

)2
)

where the rightmost term will cancel out due to there being an equal number of odd-

and even-sized subsets of [z] for any integer z.

Corollary 4.5. The value tf ∈ (l, r) that maximizes H(x + t · v) while x + t · v is a

feasible solution can be found as tf = median{l, r, tmax}.

Proof. From Lemma 4.4 we have that tmax is the t-value that maximizes the entropy

function H(x+ t · v), which is at its unique maximum when Equation (4.14) holds.

∑
S∈Sodd

log

(
1

xS − t

)
=

∑
S∈Seven

log

(
1

xS + t

)
(4.14)

Let tf = median{l, r, tmax}. For the line segment spanned by end points l and r, we

have 3 cases: tmax < l then tf = l, l ≤ tmax ≤ r then tf = tmax and tmax > r then

tf = r. The median of the values l, r, tmax distinguishes these cases.

The t for which Equation (4.14) holds is tmax, that is, the equation holds strictly un-

der maximum entropy. Since the solution space of (l, r) is always 1-dimensional if all

frequencies of the 2z − 1 subsets are given, then we compute the value tmax by binary

search in the space. We note that this search is an approximation, but the binary search

converges to values arbitrarily close to tmax quickly in practice, e.g., 30 iterations of

binary search was used to produce the results in this chapter. For an itemset X, the

t-value we hold after 30 such iterations in the search space is then the maximum entropy

estimate θmX .
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We note that by using a constant number of iterations and assuming a constant number

of itemsets, then for each binary search the computation takes time linear in the number

of itemsets for which we wish to compute the maximum entropy estimate. Up to a

constant factor this is equivalent to the extrapolation and independence estimators.

4.2.3.2 Maxent on noisy inputs

Recall that a view on data is that all data comes from some smaller sample D sampled

independently from a larger data set D. As we wish to use the data from D to reason

about triples from D we will show that the error introduced by sampling does not hurt

the maxent estimate too much, in particular we will show that a maxent estimate based

onD will not be far from a maxent estimate based onD. We will show that the maximum

entropy estimate on a triple computed on input with relative error 0 ≤ ε < 0.5 is only a

factor O(ε) from the maximum entropy estimate computed using the true distribution

from D as input.

For a distribution d over 3 variables X,Y,W we have d = (Pr(XYW ),Pr(XY ∧
W ), . . . ,Pr(XYW )), i.e., |d| = 23. Let |di| be the number of non-negated literals in di.

The entries of d can (as in Section 4.2.3.1) be partitioned into two sets, o = o1, . . . , o4

and e = e1, . . . , e4 where di ∈ o if 3− |di| is odd and di ∈ e if it is even.

Let two polynomials Eε1(t) and Oε1(t) with error 0 ≤ |ε1| < 1 be defined

Eε1(t) = (e1 + ε1 + t)(e2 + ε1 + t)(e3 + ε1 + t)t (4.15)

Oε1(t) = (o1 + ε1 − t)(o2 + ε1 − t)(o3 + ε1 − t)(o4 + ε1 − t) (4.16)

where t = Pr(XYW ) is the triple frequency. When we have

E0(t) = O0(t) (4.17)

then t is the triple frequency under maximum entropy. We seek to bound the error on

the output caused by the input error ε1. Letting t0 be the solution to E0(t) = Q0(t) and

tε1 be the solution to Eε1(t) = Oε1(t) we wish to bound the error on tε1 in terms t0. We

will show the following lemma.

Lemma 4.6. Let two polynomials with additive error t on the terms and where 0 <

ei, oi,≤ 1 be defined as below.

Ẽ(t) = (e1 + t)(e2 + t)(e3 + t) (4.18)

Õ(t) = (o1 − t)(o2 − t)(o3 − t)(o4 − t) (4.19)
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For all t ∈ [0; εmin o1, . . . , o4, e1, . . . , e3], where 0 < ε ≤ 1, the following bounds on

Equations (4.15) and (4.16) hold

Ẽ(0)t ≤ E0(t) ≤ (1 + ε)3Ẽ(0)t (4.20)

(1− ε)4O0(0) ≤ Õ(t) ≤ O0(0) (4.21)

Proof. The first inequality of eq. (4.20) follows trivially from t > 0 and from Ẽ being

monotonically increasing in t. For the second inequality let emin = min e1, . . . , e3 and

t ≤ εemin, 0 < ε ≤ 1. It follows that

E0(t) ≤ (e1 + εemin)(e2 + εemin)(e3 + εemin)εemin

≤ (1 + ε)3e1e2e3t

= (1 + ε)3Ẽ(0)t

The first inequality of eq. (4.21) follows analogously; let omin = min o1, . . . , o4 and t ≤
εomin, 0 < ε ≤ 1. We then have

Õ(t) ≥ (o1 − εomin)(o2 − εomin)(o3 − εomin)(o4 − εomin)

≥ (1− ε)4O0(0)

The second inequality again follows from t > 0 and Õ being monotonically decreasing

in t.

It follows that a simple approximate formula for maximum entropy estimates on triples

exist.

Lemma 4.7. For a triple with distribution over entries D = e1, . . . , e3, o1, . . . , o4 let

t̃ =
o1o2o3o4

e1e2e3
.

The triple frequency under maximum entropy t < εminD for 0 < ε ≤ 0.5 can be bounded

in terms of t̃

t ∈
[
(1− 6.5ε)t̃, t̃

]
(4.22)
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Proof. Recall that t takes value under maximum entropy when O0(t)/E0(t) = 1. By

Lemma 4.6 we have a lower bound on O0(t)/E0(t)

(1− ε)4O0(0)/(1 + ε)3Ẽ(0) ≤ O(t)0/E0(t)

(1− ε)4o1o2o3o4/(1 + ε)3e1e2e3 ≤ O0(t)/E0(t)

(1− ε)4

(1 + ε)3
t̃ ≤ O0(t)/E0(t)

By expansion and using 0 < ε ≤ 0.5 we get the needed lower bound of eq. (4.22).

1− c ∗ ε ≥ (1− ε)4

(1 + ε)3

c ≥ −ε3 + 5ε2 − 3ε+ 7

c ≥ 6.5

Equivalently we have the needed upper bound

O0(t)/E0(t) ≤ O0(0)/Ẽ(0)

O0(t)/E(t) ≤ o1o2o3o4/e1e2e3

O0(t)/E(t) ≤ t̃

We will now assume relative error on the distribution entries ei, oi. The following lemma

holds analogously to Lemma 4.7.

Lemma 4.8. Let distribution d = (e1, . . . e3, o1, . . . , o4). Let an approximation of dis-

tribution d be defined by o′i ∈ [(1− ε)oi, (1 + ε)oi] and e′i ∈ [(1− ε)ei, (1 + ε)ei] for each

oi, ei ∈ d and letting

t̃r =
o′1o
′
2o
′
3o
′
4

e′1e
′
2e
′
3

,

t̃ =
o1o2o3o4

e1e2e3
,

it holds that

t̃r ∈
[
(1− 6.5ε′)t̃, t̃

]
(4.23)

Proof. (Theorem 4.1) The theorem follows directly from Lemmas 4.7 and 4.8.
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4.3 Experimental Results

Our experiments were conducted on 5 real datasets shown in Table 4.1. For each dataset

we prune the singletons with support below a specified threshold. We perform this

pruning in order to construct datasets where intuitively the independence model has a

chance to do well as it relies solely on the singletons, but also to keep the number of items

down to a practical level, as the time complexity with n items is O(n3) per experiment.

AOL Queries 1 is a uniform sample of the infamous AOL search terms dataset. Docwords

is transactions of words occurring together in documents. From MovieLens 2 we create a

dataset where a transaction is the set of movies which a particular user rated 5/5 stars.

Retail 3 is shopping baskets from an anonymous Belgian supermarket.

Overview of experiments. We start by showing how the independence and maxent

estimators perform on the full datasets, i.e., when there is significant support for the

triple whose frequency is to be estimated as well as its subsets. The maxent estimator

shows better concentration and less variance even for the low-support triples. We then

perform experiments for all datasets where 1% of the transactions are sampled and we

wish to estimate the frequency of triples in the whole data set. For every triple X with

30 ≤ occ(X) ≤ 100 we use the three estimators θmX , θiX and θeX . As X occurs at most

100 times in the full dataset, it occurs in expectation at most once in the sample.

We also study precision and recall for the problem of approximating the set of frequent

triples based on the estimators. Again we consider two cases: 1) Estimates are based on

the full dataset, where the set to approximate consists of the 10% highest frequencies

among all triples, and 2) as in the first case, but with estimates based on a 1% sample.

In the latter case, if the threshold for being in top 10% is ∆, then we include in the

estimate all triples that are estimated to have at least 0.9∆ occurrences. The number

0.9 was experimentally found to yield a good precision/recall tradeoff for the maximum

entropy estimates.

Finally, using again a 1% sample of the data, we compute the average ratio between the

error made by our maximum entropy estimate and estimates made by independence and

extrapolation, respectively.

In summary our experiments show:

1. In most cases, the maximum entropy estimator provides the best estimate for

low-support triples.

1http://www.gregsadetsky.com/aol-data/
2http://www.grouplens.org/node/73
3http://fimi.ua.ac.be/data/

http://www.gregsadetsky.com/aol-data/
http://www.grouplens.org/node/73
http://fimi.ua.ac.be/data/
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Name Occ. Threshold #Items #Transactions

AOL Queries 500 211 144038
Docwords 3000 142 49078
Movielens 3000 85 67312

Retail 500 85 88162

Table 4.1: Datasets used. All datasets are from real data and have previously been
used for data mining purposes.

Independence Maxent
Dataset Precision Recall Precision Recall

AOL Queries 0.0 0.0 0.54 1.0
Docwords 0.93 0.43 0.92 0.93
MovieLens 1.00 0.003 0.80 0.96
Retail 1.00 0.43 0.99 0.97

Table 4.2: Precision-recall for full datasets. Relevant triple threshold ∆ is such that
relevant triples are among the 10% most frequent.

Ind. Maxent Extrapol.
Dataset Prec Rec Prec Rec Prec Rec

AOL Queries 1.0 0.001 0.23 0.89 0.31 0.67
Docwords 0.88 0.44 0.56 0.72 0.53 0.58
MovieLens 1.0 0.009 0.51 0.90 0.49 0.85
Retail 0.93 0.40 0.51 0.78 0.49 0.73

Table 4.3: Precision-recall for sampled datasets. Relevant triple threshold ∆ is such
that relevant triples are among the 10% most frequent. Triples are reported when

occ ≥ 0.9∆ as this was observed to maximize precision/recall for θeX .

Dataset Independence Extrapolation

AOL Queries 7.91 7.58
Docwords 6.31 14.32
MovieLens 11.55 7.22
Retail 3.22 4.42

Table 4.4: For n estimates and estimators est1 and est2 the table shows the normal-
ized absolute error ratio: 1

n

∑
X (|est1(X)− occ(X)|/|est2(X)− occ(X)|), where est2

is maximum entropy and est1 is independence and extrapolation respectively for the
two columns.

2. Sampling with higher probability increases concentration greatly for θmX even when

the sample is still of insufficient size for θeX to be useful.

3. In almost all cases studied, the precision and recall are strictly better for θeX (see

tables 4.2 and 4.3).

4. When predicting the occurrences of triples in the full dataset using a 1% sample,

we show θmX improves the absolute error by a factor 3 – 14 compared to θiX and

θeX (see Table 4.4).
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4.3.1 Maxent vs. independence for full datasets

For all datasets we ran the estimators on every triple with occ > 30 on the full (unsam-

pled) dataset. The figures show the concentration of the estimates by for each triple

plotting its observed value (Y-axis) and estimated value (X-axis). The plots are shown

in Figures 4.3 and 4.4.

For the Docwords dataset both the maxent estimate (Figure 4.3a) and the independence

estimate (Figure 4.3b) are concentrated around the X = Y , which denote the line of

optimal estimations while for MovieLens we observe similar concentration for maxent

(Figure 4.3c) while the independence estimator underestimates slightly (Figure 4.3d)

and Retail behaves equivalently in this setting. For AOL Queries (Figure 4.4) using

independence estimates we observe similar great under estimation due to high positive

correlation, while the maxent estimator overestimates slightly but is far more concen-

trated.

Our precision and recall computations (Table 4.2) is based on relevance threshold ∆

being such that relevant triples are among the top 10% most frequent and we report a

triple if the estimate is at least ∆. Note that the high precision for the independence

estimate is due to high underestimation - the estimators report too few triples as relevant,

as the recall shows. An extreme case of this is the AOL dataset that reports zero triples.

Maxent has similar precision but much higher recall for all datasets.

4.3.2 Low-support itemsets

On the same datasets we now examine triples X where 30 ≤ occ(X) ≤ 100 and we

sample independently at random every transaction with probability 1/100. We wish

to estimate the θX in the full dataset, but since we have occ(X) ≤ 100 then following

from independent sampling the expected number of occurrences of X in our sample is

≤ 1. We will perform estimates using the extrapolation estimate θeX , the independence

estimate θiX and the maxent estimate θmX . We restrict ourselves to triples where all pairs

occur in the sample.

The extrapolation estimator θeX performs similarly on all datasets. While θeX is an

unbiased estimator of θX , the variance is large as a consequence of the sampling -

by the mode of independent Bernoulli trials we have that the most likely outcome of

a triple is dµe = 1, with the outcome 0 and 2 slightly less probable. On the AOL,

Retail and MovieLens datasets our experiments conclude similarly: θeX doesn’t give

meaningful estimates, e.g., zero for the unsampled triples and overestimates on the

sampled triples, while θiX underestimates greatly and θmX is fairly concentrated. See
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(a) Max. entropy estimates for all triples
of occ > 30 in Docwords.

(b) Independence estimates for all triples
of occ > 30 in Docwords.

(c) Max. entropy estimates for all triples
of occ > 30 in Movielens.

(d) Independence estimates for all triples
of occ > 30 in Movielens.

Figure 4.3: Concentration plots for Docwords and Movielens datasets. Each point is
a triple, the Y-value of a point is the empirical number of occurrences (occ) of the triple
while the X-value is the estimated number of occurrences, using either independence
or maxent estimators. The red line is X=Y. We observe better concentration on the

maxent estimates, in particular when the statistical significance is high.

(a) Maxent estimates for all triples of occ
> 30 in AOL Queries.

(b) Independence estimates for all triples
of occ > 30 in AOL Queries.

Figure 4.4: Concentration plots for AOL Queries. Each point is a triple, the Y-value
of a point is the empirical number of occurrences (occ) of the triple while the X-value is
the estimated number of occurrences, using either independence or maxent estimators.
The red line is X=Y. We observe better concentration for Maxent for all occurrences.
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Figure 4.5: est/obs distribution plots for AOL Queries sampled at 1/100. We observe
that independence underestimates greatly, while maxent has better concentration than

extrapolation, in particular for the low occurrence triples.

Figure 4.5 for example of all three estimators on AOL. For Docwords in this setting,

we get better concentration for θiX than θmX - this can be explained by pair frequencies

being more vulnerable to noise introduced by sampling than single frequencies and θiX

being well concentrated for Docwords (recall Figure 4.3b). However, we observe that if

we raise the sampling probability to 1/20 from 1/100 then θmX has better concentration.

In summary, there is a sampling rate where θeX is very poorly concentrated where θmX

outperforms θiX on all datasets.

Precision and recall values (Table 4.3) were computed by setting the relevance threshold

∆ to be s.t. if occ(X) ≥ ∆ then triple X is among the 10% most frequent triples in the

entire dataset with occ(X) ≥ 30. Triples are reported if the occurrence estimate, which

is based on the 1/100 independent sample of all transactions, is at least 0.9∆ as this

value was observed experimentally to yield a good tradeoff. AOL and MovieLens using

θiX has full precision due to reporting very few triples. Note that θeX has an advantage

in terms of precision/recall due to it mostly performing overestimates, i.e., if a triple

occurs in the sample then it will likely be reported – even so we see θmX being better

than θeX except for AOL where only recall is better.

In the same setting, i.e., triples where occ(X) ≥ 30 and using an independent 1% sample

we compute the normalized ratio of the absolute error between estimators θiX , θeX and

θmX . That is, letting estm(X), esti(X) denote estimates of triple X by maxent and inde-

pendence respectively, the normalized ratio is 1
n

∑
X
|esti(X)−occ(X)|
|estm(X)−occ(X)| . This experiments

show (see Table 4.4) that for all datasets in this setting we would improve, on average,

our absolute error by a factor of 3 – 14 by switching from independence or extrapolation

to maximum entropy.



Chapter 5

I/O-efficient Similarity Join in

High Dimensions

5.1 Introduction

The ability to handle noisy or imprecise data is becoming increasingly important in

computing. In database settings this kind of capability is often achieved using similarity

join primitives that replace equality predicates with a condition on similarity. To make

this more precise consider a space U and a distance function d : U × U → R. The

similarity join of sets R,S ⊆ U is the following: Given a radius r, compute the set

R ./
≤r
S = {(x, y) ∈ R× S | d(x, y) ≤ r} .

This problem occurs in numerous applications, such as web deduplication [93, 94], doc-

ument clustering [95], data cleaning [96, 97], click fraud detection [98], and many oth-

ers [99, 100]. As such applications arise in large-scale datasets, the problem of scaling

up similarity join for different metric distances is getting more important and more

challenging.

Many known similarity join techniques (e.g. prefix filtering [96, 97], positional filter-

ing [94], inverted index-based filtering [101]) are based on filtering techniques that often,

but not always, succeed in reducing computational costs. If we let N = |R|+ |S| these

techniques generally require Ω(N2) comparisons for worst-case data. Another approach

is locality-sensitive hashing (LSH) where candidate output pairs are generated using col-

lisions of carefully chosen hash functions. LSH is able to break the N2 barrier in cases

where for some constant c > 1 the number of pairs in R ./≤cr S is not too large. In

other words, there should not be too many pairs that have distance within a factor c

96
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of the threshold, the reason being that such pairs are likely to become candidates, yet

considering them does not contribute to the output.

In this chapter we consider I/O efficient similarity join methods based on LSH. That

is, we are interested in minimizing the number of I/O operations where a block of B

points from U is transferred between external memory and an internal memory with

capacity for M points from U . Our main result is the first I/O-efficient (in fact cache-

oblivious) algorithm for similarity join that has provably sub-quadratic dependency on

the data size and at the same time inverse polynomial dependency on M . In essence,

where previous methods have an overhead factor of either N/M or (N/B)ρ we obtain

an overhead of (N/M)ρ, where ρ ∈ (0; 1) is a parameter of the LSH employed, strictly

improving both.

In the context of I/O-efficient algorithms it is natural to not require the listing of all

near pairs (i.e., pairs with distance not greater than r), but rather we simply require

that the algorithm enumerates all such near pairs. More precisely, the algorithm calls

for each near pair (x, y) a function emit(x, y). This is a natural assumption in external

memory since it reduces the I/O complexity, and it is desired in many applications where

join results are intermediate results pipelined to a subsequent computation, and are not

required to be stored on external memory. Our upper bound can be easily adapted to

list all instances by increasing the I/O complexity of an unavoidable additive terms of

Θ (|R ./≤r S|/B) I/Os. Whereas most methods in the literature focus on a single (or a

few) distance measures, our methods work for an arbitrary space and distance measure

that allows locality-sensitive hashing, e.g., Hamming, Manhattan (`1), Euclidean (`2),

Jaccard, and angular metric distances.

5.2 Related work

The problem of performing similarity joins in high dimensions has attracted significant

attention from the database and data mining community. We review some of the results

most closely related to our work.

Index-based similarity join. A popular approach is to make use of indexing tech-

niques to build a data structure for one relation, and perform queries using the points

of the other relation. The indexes typically perform some kind of filtering to reduce the

number of points that a given query point is compared to.

Solutions based on filtering techniques include PrefixFilter [97], PartEnum [96], All-

Pairs [101], PP-Join [94], as well as I/O-efficient methods based on LSH [102, 103].
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Satuluri and Parthasarathy [104] proposed the Bayesian LSH variant for performing

candidate pruning, but provided no theoretical guarantees on the performance of the

algorithm.

Indexing can be space consuming, in particular for LSH, but in the context of similarity

join this is not a big concern since we have many queries, and thus can afford to construct

each hash table “on the fly”. On the other hand, it is clear that index-based similarity

join techniques will not be able to take significant advantage of internal memory when

N � M . Indeed, the query complexity stated in [102] is O ((N/B)ρ) I/Os. Thus the

I/O complexity of using indexing for similarity join will be high.

Sorting-based. The indexing technique of [102] can be adapted to compute similarity

joins more efficiently by making use of the fact that many points are being looked up

in the hash tables. This means that all lookups can be done in a batched fashion using

sorting. This results in a dependency on N that is O
(
(N/B)1+ρ

)
I/Os, where ρ ∈ (0; 1)

is a parameter of the LSH family. In addition, there will be a cost that depends on the

distribution of distances.

Generic joins. When N is close to M the I/O-complexity can be improved by using

general join operators optimized for this case. We will make use of the following result

on cache-oblivious nested loop joins:

Theorem 5.1. (He and Luo [105]) For an arbitrary join condition the join of relations

R and S can be computed by a cache-oblivious algorithm using

O ((|R|+ |S|)/B + (|R||S|)/(MB)) I/Os.

This number of I/Os suffices to generate the result in memory, but may not suffice to

write it to disk.

Distributed computation. Recently, Bahmani et al. [106] proposed the Layered

LSH variant, which leverages the Entropy LSH scheme [107] to improve the network

communication cost for similarity join in a distributed setting. This approach attempts

to collocate near points on the same machine, and distribute far points on different

machines. Though Layered LSH achieves improvements on the communication cost

over the simple distributed LSH, the I/O cost is unclear since the number of repetitions

required to guarantee a correct result has not been analyzed. Our recursive algorithm

will also be using repeated LSH, so may be seen as a development of the ideas in [106]

with provable guarantees and working for any distance measure with a suitable LSH.
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Many techniques have recently been suggested to perform similarity join using the

MapReduce framework [100, 108–110]. However, the MapReduce-based algorithms of-

ten suffer from the problem of load imbalance among reducers due to heuristic data

partitioning schemes on skewed data distributions. Moreover, there is no analysis to

guarantee the I/O and communication cost of these solutions.

5.3 Preliminaries

5.3.1 Locality-sensitive hashing

Definition 5.2. Fix a distance function d : U × U → R. For positive reals r, c, p1, p2,

and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive if for uniformly

chosen h ∈ H and all x, y ∈ U :

• If d(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;

• If d(x, y) > cr then Pr [h(x) = h(y)] ≤ p2.

We say that H is monotone if Pr [h(x) = h(y)] is a non-increasing function of d(x, y).

We say that H uses space s if a function from H can be stored and evaluated using space

s.

In what follows we will talk about near pairs at distance at most r (those that should be

reported), c-near pairs at distance between r and cr, and far pairs at distance greater

than cr. One will often concatenate hash function values to increase the gap of collision

probability between near pairs and far pairs. The gap between near and far collision

probability is polynomial, with an exponent of ρ = log p1/ log p2.

For `1 there is a simple construction of an (r, cr, pρ, p)-sensitive family with ρ = 1/c,

which is optimal [111–113]. For `2 the strongest constructions are (r, cr, pρ, p)-sensitive

family with ρ = 1/c2 + o(1) [114]. Internal memory LSH solutions that do not consider

I/O-efficiency make use of (r, cr, p1, p2)-sensitive functions with p2 = 1/N . This means

that in expectation each x ∈ R has collided with at most one point y ∈ S with d(x, y) >

cr, so O (N) comparisons suffice in expectation to investigate all such “false positives”

of a given hash function.

It is worth noting that the standard LSHs for metric distances, including Hamming,

`1, `2, Jaccard and angular distances, are monotone. Most common LSHs are space-

efficient, and use space comparable to that required to store a point. One exception is the
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LSH of [114] which requires space No(1). We did not explicitly require the hash values

themselves to be particularly small. However, using universal hashing we can always

map to small bit strings while introducing no new collisions with high probability. Thus

we may assume that B hash values fit in one memory block.

5.3.2 Computational model

This chapter will study algorithms for similarity join in the external memory model as

defined in Section 1.3.2. For simplicity we will here measure block and memory size

in units of points from U , such that a block can contains B points. We let sort(N) =

O
(

(N/B) logM/B(N/B)
)

be shorthand for the I/O complexity [115] of sorting N points.

Our simplest algorithm (Section 5.5.1) is cache-aware: it uses the parameter M explicitly

to achieve its I/O complexity. But the main algorithm of Theorem 5.3 is cache-oblivious

as it does not explicitly use any model parameters. As a technical note, since we are not

concerned with log-factors we do not need the so-called tall cache assumption.

5.4 Our results

In this chapter we show:

Theorem 5.3. Consider R,S ⊆ U , let N = |R|+ |S|, assume M < N , M ≥ 20 logN +

3B and that there exists a monotone (r, cr, p1, p2)-sensitive family of functions with

respect to distance measure d, using space B and with p2 < p1 < 1/2. Then there exists

a cache-oblivious randomized algorithm computing R ./≤r S (wrt. d) with probability

1−O
(

1
N

)
using

Õ

p−1
1

(
N

M

)ρN
B

+

|R ./
≤r
S|

MB

+

|R ./
≤cr

S|

MB

 I/Os,

where ρ = log p1/ log p2 and the Õ (·)-notation hides a polylog(N) factor.

A primary technical hurdle is that we cannot use any kind of strong concentration

bounds on the number of points having a particular value, since hash values of an LSH

family may be correlated by definition. Our algorithm allows the same output pair to be

generated more than once. If such duplicates are to be eliminated an additional sorting

step is required. In Section 5.5.3 we discuss how to limit the number of times a pair is

emitted.
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Discussion We now argue (informally) that it seems reasonable to conjecture that

the bound in Theorem 5.3 is close to the best possible for the class of “signature based”

algorithms that work by generating a set of LSH values (from a black-box, monotone

family) and checking all pairs that collide. We can split the I/O complexity of Theorem

5.3 in two parts:

T1 = p−1
1 (N/M)ρ

(
N/B + |R ./

≤r
S|/(MB)

)
T2 = |R ./

≤cr
S|/(MB)

To see why T1 I/Os may be needed first notice that to ensure N/B I/Os per hash function

(including the necessary comparisons), matching the cost of writing hash values to disk

to find collisions, we need a collision probability for far pairs that ensures at most NM

far collisions in expectation. This is because during N/B I/Os we can bring at most

NM distinct pairs into memory.

Now consider the case where there are Ω
(
N2
)

pairs at distance cr. Then the collision

probability for each pair must be O (M/N). In turn, this means that the collision

probability for pairs at distance r must be at most O ((M/N)ρ). But since we have a

black-box LSH the only way of reducing the collision probability is by composing several

hash values, which means that we may “overshoot” the desired collision probability at

distance r by a factor of close to p1. So Ω
(
p−1

1 (N/M)ρ
)

repetitions (different hash

values) are needed before we expect a pair at distance r to collide at least once.

Then, we might need to examine, for each of the Ω ((N/M)ρ) hash functions, a constant

fraction the pairs in R ./≤r S whose collision probability is constant. For example, this

can happen if R and S include two clusters of close points. One could speculate that

some pairs could be marked as “finished” during computation such that we do not have

to compare their hash values again. However, it seems hard to make this idea work for

an arbitrary distance measure where there may be very little structure to the output

set.

To argue that the term T2 is needed consider the case where all pairs in R ./≤cr S have

distance r+ ε for a value ε small enough to make the collision probability of at distance

r + ε indistinguishable the collision probability of at distance r. Then the every pair

in R ./≤cr S must be brought into internal memory to ensure a correct result, which

requires T2 I/Os.

Note that when M = N we have T1 = O (N/B) as we would expect, since just reading

the input is optimal. At the other extreme, when B = M = 1 our bound matches the

time complexity of internal memory techniques.



Chapter 5. I/O-efficient similarity join in high dimensions 102

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Jaccard and cosine similarity

(a) Enron email dataset

C
D

F
 o

f p
ai

rw
is

e 
si

m
ila

rit
ie

s

 

 

Jaccard similarity
Cosine similarity

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L1 and L2 distance

(b) MNIST dataset

C
D

F
 o

f p
ai

rw
is

e 
di

st
an

ce
s

 

 
L1 distance
L2 distance

Figure 5.1: The cumulative distributions of pairwise distances on samples of 10,000
points from Enron Email and MNIST datasets.

Finally, we carried out experiments to demonstrate that the first term T1 often dominates

the second term T2 in real datasets. In particular, we depict the cumulative distribution

function (cdf) in log-log scale of all pairwise distances (i.e., `1, `2) and all pairwise

similarities (i.e., Jaccard and cosine) on two commonly used datasets: Enron Email1

and MNIST2, as shown on Figure 5.1.

Figure 5.1.a demonstrates an almost monomial relationship with some small exponent

m between the number of pairwise similarities greater than the similarity threshold s

and such s, where s > 0.5. This setting s > 0.5 is commonly used in many applications

for both Jaccard and cosine similarities [94, 96, 101]. Similarly, Figure 5.1.b also shows

an monomial relationship between the distance threshold r and the number of pairwise

distances smaller than r. In turn, this means that the number of c-near pairs |R ./≤cr S|
is not much greater than cm|R ./≤r S|. In other words, the second term T2 is often much

smaller than the first term T1.

5.5 Our algorithms

In this section we describe our I/O efficient algorithms. As a warm-up, we start in

Section 5.5.1 with a simple cache-aware algorithm, which uses an LSH family where the

value of the collision probability is set to be a function of the internal memory size. Then,

in Section 5.5.2, we propose our main result, that is the recursive and cache-oblivious

algorithm. The algorithm uses the LSH with a black-box approach and does not make

any assumption on the value of collision probability. Finally, in Section 5.5.3, we show

how to reduce the expected number of times each near pair is emitted.

1https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
2http://yann.lecun.com/exdb/mnist/
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5.5.1 Warm-up: Cache-aware algorithm

To outline the main ideas we first outline a simple cache-aware algorithm (explicitly using

the parameter M) that achieves the error probability and I/O bound of Theorem 5.3.

The algorithm repeatedly hashes all points into buckets using LSH. By composing several

hash functions from H we can obtain collision probabilities p′1 and p′2 of the LSH such

that:

1. For a point x the number of far points it collides with is in expectation at most

M .

2. Near points collide with probability roughly p′1 ≥ p1(M/N)ρ.

We iterate through each bucket and look at all the pairs (x, y) ∈ R×S in the bucket. If

a bucket has less than M/2 points from either R or S the cost of comparing all pairs in

the bucket is bounded by the cost of reading the points. If a point has collided with a

near point we emit that pair, if a point has collided with a c-near point we ignore it, but

we count the number of times a point collides with far points. If a point reaches 4 times

its expected number of collisions with far points we throw that point away. Using 1/p′1

LSH functions we have at least a constant probability of a near pair colliding in one of

them, and we have probability above 3/4 that a point stays within 4 times its expected

number of far collisions. We note that one of the primary technical difficulties is that

since we distribute points using an LSH we do not have independence and hence all tail

bounds must be done by Markov-like arguments. After constant success probability has

been reached we boost the success rate by a standard repetition argument to be at least

1− 1/N using O (logN) repetitions.

We note that we have strong spatiality: In one block transfer of size B we can compute

BM distance pairs since each point in the block can compared to each point residing

in memory. The I/O bound is achieved the following way: For each of the 1/p′1 LSH

functions we spend sort(N) on rehashing and O (N/B) on far collisions since there are

N points in total, and in expectation each point collides with at most M far points so

O (NM/(BM)) = O (N/B) I/Os. Each near pair collides at most once for each of the

1/p′1 hash functions, and the c-near pairs collide in expectation a constant number of

times due to monotonicity of the LSH family. See proof details below.

Proof. (of cache-aware warmup-algorithm) First assume 0 < ρ ≤ 1 and let p1 =

(M/4N)ρ, p2 = M/4N , L = 5/p1 (assumed wlog to be integer). Further let h1, . . . , hL

be hash functions drawn independently from the family of (r, cr, p1, p2)-sensitive hash

functions.
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For each hi, i ∈ {1, . . . , L} we will hash all the points into buckets: For a fixed hash

function hi let Rj ⊆ R and Sj ⊆ S be the points that hash to bucket j. For each hash

function, the hashing step happens by computing all N hash values and then sorting

them all by their hash values using O (sort(N)) I/Os.

For each hash function algorithm proceeds by examining each such Rj , Sj pair. Assume

without loss of generality that |Rj | ≤ |Sj |. Assume a bucket is an ordered array or list.

The two cases to handle are then:

1. If |Rj | ≤M then scan over Sj , computing all distances of pairs in Rj × Sj .

2. Otherwise we have |Rj | > M and hence |Rj × Sj | > M2. Then the algorithm

proceeds by iteratively reading into memory size M subsets R′j ⊂ Rj and for each

of such |Rj |/M subsets scan over Sj and compute all distance pairs in R′j × Sj .

Since we wish to bound the I/Os spent in terms of the size of the c-near pairs R ./≤cr S,

we are going to keep count of the number of bad collisions. Specifically, we are with

each point x ∈ R ∪ S going to associate with it a counter, Cx, that denotes the number

of collisions with far away points, i.e. it is the size of the multiset of points y where

d(x, y) > cr and the pair collide. The counter Cx will be associated with the point x

and can be thought of as adding another dimension to the point, however hash functions

and comparisons do not take this dimension into account. We will allow ourselves for

each x ∈ R∪S to compute 2LM distances d(x, y) that are above cr and if this threshold

is exceeded we will remove the point from the set. When processing a bucket pair Rj ,

Sj and a point x ∈ Sj reaches the threshold then after the current scan over Sj , replace

the bucket with Sj \ x using N/B + O (1) I/Os. Since the scan uses O (N/B) itself

this replacement doesn’t change the complexity. Since |Rj ≤ |Sj | nothing needs to be

removed when the threshold is reached for a point in Rj as it wastes no I/Os. In both

cases (1) and (2) we have the following crucial spatiality property: When the algorithm

scans Sj then for each block transfer of size B we compute distances between pairs in

that block and our current size M subset of Rj hence MB distances are computed using

one I/O.

I/Os spent on near pairs. Since we repeat for L = 5/p1 hash functions and at most each

pair from R ./≤r S collides in all of them, the I/Os spent on the near pairs is at most

O
(
(1/p1)|R ./≤r S|/(BM)

)
.

I/Os spent on c-near pairs. A pair from R ./≤cr S appears in a bucket with probability

at least p2 due to monotonicity of our LSH family. Since we repeat for L = 5/p1 hash

functions for p1 > p2 we use in expectation O
(
|R ./≤cr S|/(MB)

)
I/Os.
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I/Os spent on far pairs. For each point x ∈ R∪S we throw x away as described above if

it exceeds 2LM collisions with points that are more than distance cr away. The number

of far away collisions examined is thus 2LM + M as due to case (2) we do not stop

until before the full scan of Sj is complete. As we still get BM distance pairs computed

for one block transfer of size B the total number of I/Os spent on far away collisions is

O ((2NLM +M)/MB) = O (2NL/B).

Correctness. Consider a point x ∈ Rj ∪ Sj and let for a fixed hash function hi let

F ix,j = {y | y ∈ Sj ∧ d(x, y) ≥ cr}

be the set of far collisions with point x. By choice of p2 we have E [|Fx,j |] = M/4 and

hence by Markov we have:

Pr
[
|F ix,j | ≥ 2M

]
≤ 1/8.

Then looking at the number of far collisions over all L hash functions we trivially have:

Pr

 ∑
i∈{1,...,L}

|F ix,j | ≥ 2LM

 ≤ 1/8.

Consider a point x ∈ Rv ∪ Sv and let for a fixed hash function hi let F ix,v = {y | y ∈
Sv ∧ d(x, y) ≥ cr} be the set of far collisions with point x. By choice of p′2 we have

E|Fx,v| ≤M and hence by Markov we have: Pr|F ix,v| ≥ 4M ≤ 1/4. Then looking at the

number of far collisions over all L hash functions we trivially have:

Pr
∑

i∈{1,...,L}

|F ix,v| ≥ 4LM ≤ 1/4.

Consider then a pair x ∈ R, y ∈ S. By an union bound over the probability of the points

being removed, the pair is removed with probability at most 1/2. If for a pair x ∈ R,

y ∈ S it holds that d(x, y) ≤ r, then by our choice of hash function they collide with

probability at least p′1. If we repeat for L hash functions we have that the probability

of the pair not colliding in any of the L hash functions is at most (1 − p′1)L ≤ 1/e.

Therefore, we have that the probability that during the repetitions a near pair is not

removed and collides is at least 1 − (1/2 + 1/(2e)) = 1/2 − 1/(2e) ≥ 0.31. When this

event happens the pair is examined and if it is near it is reported.

I/Os spent in total. Initially we use N/B+O (1) I/Os to read the input. For each hash

function we use O (sort(N)) I/Os on hashing and sorting the points by their hash value

and on far points we use at most O (N/B) I/Os. The I/Os spent on c-near pairs in total

over all L hash functions is O
(
|R ./≤cr S|/MB

)
. Since we use L = 5/p1 = (4N/M)ρ
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1 If ψ = Ψ then compute R ./≤r S using the algorithm of Theorem 5.1 and return;
2 If |R| > |S| then swap (the references to) the sets such that |R| ≤ |S|;
3 Pick a random sample S′ of 20∆ points from S (or all points if |S| < 20∆);
4 Permute R such that the set R′ of points from R that have distance > cr to at most 10∆

points in S′ is in the first positions;
5 Compute R′ ./≤r S using the algorithm of Theorem 5.1;
6 Repeat L = 1/p1 times:
7 Choose h ∈ H uniformly at random;
8 Use h to partition (in-place) R\R′ and S in buckets Rv, Sv of points with hash value v;
9 For each v where Rv and Sv are nonempty, recursively call SimJoin(Rv, Sv, ψ + 1);

Algorithm SimJoin(R,S, k): R,S are the input sets, and ψ is the recursion depth.

hash functions and repeat everything 2 logN times the stated I/O complexity follows.

5.5.2 Cache-oblivious algorithm

We are now ready to describe our cache-oblivious I/O efficient algorithm for similarity

join, named SimJoin. The algorithm receives in input two setsR and S of join attributes,

and a parameter ψ denoting the depth in the recursion tree (initially, ψ = 0). Without

loss of generality, we assume that S denotes the largest set (i.e., |R| ≤ |S|) and let

N = |R| + |S|. The input sets are stored in arrays and, since the order is immaterial,

the algorithm is allowed to rearrange their points such that all manipulation of R and

S is done in-place.

We use a monotone (r, cr, p1, p2)-sensitive family of functions H.3 As discussed in the

introduction, monotonicity is a property of most LSH families. For the sake of simplicity,

we initially assume that 1/p1 and 1/p2 are integers, and further assume without loss of

generality that N is a power of two.

Pseudocode for a description of SimJoincan be seen at the top of the page. The pa-

rameters ∆ = logN and Ψ = dlog1/p2 Ne in the pseudocode are global values that are

kept invariant in the recursive levels (i.e., N is the initial input size). The recursion ends

when there are no more points in an input sets, or when a subproblem reaches recursion

level Ψ. We note that the cache-oblivious nested loop join algorithm of Theorem 5.1 is

used for computing the similarity join in subproblems at level Ψ, as well as the similar-

ity join in Step 5. If 1/p1 is not integer the last iteration is performed with probability

1/p1 − b1/p1c, such that L ∈ {b1/p1c, d1/p1e} and E [L] = 1/p1.

3The monotonicity requirement can be relaxed to the following: Pr [h(x) = h(y)] ≥ Pr [h(x′) = h(y′)]
for every two pairs (x, y) and (x′, y′) where d(x, y) ≤ r and d(x′, y′) > r. A monotone LSH family clearly
satisfies this assumption.
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A single call to SimJoin(R,S) outputs a given pair with probability o(1). To boost the

probability to 1 − O (1/N) that all pairs in the join result are output, SimJoin(R,S)

needs to be called O
(

log3/2N
)

times.

5.5.2.1 Analysis of I/O complexity

We will bound the expected number of I/Os of the algorithm rather than the worst case.

This can be converted to a fixed time bound by a standard technique of restarting the

computation when the expected number of I/Os is exceeded by a factor 2. To succeed

with probability 1−1/N it suffices to do O (logN) restarts to complete within twice the

expected time bound, and the logarithmic factor is absorbed in the Õ-notation. If the

computation does not succeed within this bound we fail to produce an output, slightly

increasing the error probability. In this section, we let R and S denote the initial input

sets, and let R̃ and S̃ denote the subsets given in input to a particular subproblem (note

that R̃ can be a subset of R but also of S; similarity for S̃).

Our first lemma says that two properties of the choice of random sample in Step 3 are

almost certain.

Lemma 5.4. Consider a run of Steps 3 and 4 in any subproblem SimJoin(R̃, S̃). Then

with probability at least 1−O (1/N) over the choice of sample S̃′ we have:

|R̃′ ./
≤cr

S̃| > |R̃
′||S̃|
5

, (5.1)

|(R̃\R̃′) ./
>cr

S̃| > 4|R̃\R̃′||S̃|
5

. (5.2)

Proof. If |R̃| ≤ 20∆, the claims are clearly true with probability 1. Assume now that

|R̃| > 20∆. Both claims follow from Chernoff bounds. Let x ∈ R̃ be a point which

is c-near to at most one fifth of the points in S̃. A point x enters R̃′ if there are at

least 10∆ c-near points in S̃′ and this happens with probability at most 1/N4.5 since

the entries in S̃′ are randomly and independently chosen from S̃ and there is probability

1/5 that an entry in S̃ is near to x.

Each point of R ∪ S appears in at most in 2LΨ ≤ 2N2 subproblems and there are at

most N points in R ∪ S. Thus by an union bound we get that, in any subproblem

SimJoin(R̃, S̃), with probability 1 − 2N3N−4.5 ≤ 1 − 2N−1 every point in R̃′ has at

least |S̃|/5 c-near points in S̃, and thus the bound in Equation 5.1 follows. Similarly,

we have that all points in R̃\R̃′ are far from at least 4/5 points of S̃ with probability at

least 1− 2N−1, getting Equation 5.2.
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In the remainder of the analysis, we assume that Equations 5.1 and 5.2 in Lemma 5.4

always hold, and thus our claims apply with probability at least 1−O (1/N).

To analyze the number of I/Os for subproblems of size more than M we bound the

cost in terms of different types of collisions, i.e., pairs in R × S that end up in the

same subproblem of the recursion. We say that (x, y) is in a particular subproblem

SimJoin(R̃, S̃) if (x, y) ∈ (R̃× S̃)∪(S̃×R̃). Observe that a pair (x, y) is in a subproblem

if and only if x and y have colliding hash values on every step of the call path from the

initial invocation of SimJoin.

Definition 5.5. Given Q ⊆ R × S let Ci (Q) be the number of times a pair in Q is in

a call to SimJoin at the ith level of recursion. We also let Ci,k (Q), with 0 ≤ k ≤ logN

denote the number of times a pair in Q is in a call to SimJoin at the ith level of recursion

where the smallest input set has size in [2k, 2k+1) if 0 ≤ k < logM , and in [M,+∞) if

k = logM . The count is over all pairs and with multiplicity, so if (x, y) is in several

subproblems at the ith level, all these are counted.

Our next lemma expresses the I/O complexity of SimJoin in terms of Ci (R ./≤cr S)

and Ci (R ./>cr S), for any 0 ≤ i < Ψ. We will later upper bound the expected size of

these quantities in Lemma 5.7 and then get the claim of Theorem 5.3.

Lemma 5.6. Let ` = dlog1/p2(N/M)e and M ≥ 20 logN +3B. With probability at least

1−O (1/N), the I/O complexity of SimJoin(R,S) is

Õ

NL`B
+
∑̀
i=0

Ci

(
R ./
≤cr

S

)
MB

+
Ψ−1∑
i=`

logM∑
k=0

Ci,k

(
R ./

>cr
S
)
L

B2k

 .

Proof. To ease the analysis we assume that no more than 1/3 of internal memory is

used to store blocks containing elements of R and S, respectively. Since the cache-

oblivious model assumes an optimal cache replacement policy this can not decrease the

I/O complexity. Also, internal memory space used for other things than data (input and

output buffers, the recursion stack of size at most Ψ) is less than M/3 by our assumption

that M ≥ 20∆ + 3B = Ω (logN). As a consequence, we have that the number of

I/Os for solving a subproblem SimJoin(R̃, S̃) where |R̃| ≤ M/3 and |S̃| ≤ M/3 is

O
(

(|R̃|+ |S̃|)/B
)

, including all recursive calls. This is because there is space M/3

dedicated to both input sets and only I/Os for reading the input are required. By

charging the cost of such subproblems to the writing of the inputs in the parent problem,

we can focus on subproblems where the largest set (i.e., S̃) has size more than M/3.

We notice that the cost of Steps 3 and 4 is dominated by other costs by our assumption

that the set S̃′ fits in internal memory, which implies that it suffices to scan data once
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to implement these steps. This cost is clearly negligible with respect to the remaining

steps and thus we ignore them.

We first provide an upper bound on the I/O complexity required by all subproblems

at a recursive level above `. Let SimJoin(R̃, S̃) be a recursive call at the ith recursive

level, for 0 ≤ i ≤ `. The I/O cost of the nested loop join in Step 5 in SimJoin(R̃, S̃)

is O
(
|S̃|/B + |R̃′||S̃|/(MB)

)
by Theorem 5.1. We can ignore the O

(
|S̃|/B

)
term

since it is asymptotically negligible with respect to the cost of each iteration of Step 6,

which is upper bounded later. By Equation 5.1 we have that R̃′ ./≤cr S̃ contains more

than |R̃′||S̃|/5 collisions, and thus the cost of Step 5 in SimJoin(R̃, S̃) can be bounded

by O
(
|R̃′ ./≤cr S̃|/(MB)

)
. This means that we can bound the total I/O cost of all

executions of Step 5 at level i of the recursion with O (Ci (R ./≤cr S) /(MB)) since each

near pair (x, y) appears in Ci((x, y)) subproblems at level i. The second major part

of the I/O complexity is the cost of preparing recursive calls in SimJoin(R̃, S̃) (i.e.,

Steps 7-8). In fact, in each iteration of Step 6, the I/O cost is Õ
(

(|R̃|+ |S̃|)/B
)

, which

includes the cost of hashing and of sorting to form buckets. Since each point of R̃ and

S̃ is replicated in L subproblem in Step 6, we have that each point of the initial sets R

and S is replicated Li+1 times at level i. Since the average cost per entry is Õ (1/B),

we have that the total cost for preparing recursive calls at level i is Õ
(
NLi+1/B

)
. By

summing the above terms, we have that the total I/O complexity of all subproblems in

the ith recursive level is upper bounded by:

Õ

Ci
(
R ./
≤cr

S

)
MB

+
NLi+1

B

 . (5.3)

We now focus our analysis to bound the I/O complexity required by all subproblems

at a recursive level below `. Let again SimJoin(R̃, S̃) be a recursive call at the ith

recursive level, for ` ≤ i ≤ Ψ. We observe that (part of) the cost of a subproblem at

level i+1 > ` can be upper bounded by a suitable function of collisions among far points

in SimJoin(R̃, S̃). More specifically, consider an iteration of Step 6 in a subproblem at

level i. Then, the cost for preparing the recursive calls and for performing Step 5 in each

subproblem (at level i+ 1) generated during the iteration, can be upper bounded as

Õ
(

(|R̃\R̃′|+ |S̃|)/B + |(R̃\R̃′) ./
≤cr

S̃|/(BM)

)
,

since each near pair in (R̃\R̃′) ./≤cr S̃ is found in Step 5 in at most one subproblem at

level i+ 1 generated during the iteration. Since |(R̃\R̃′) ./≤cr S̃| ≤ |R̃\R̃′||S̃|, we easily
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get that the above bound can be rewritten as

Õ
(
|R̃\R̃′||S̃|/(Bmin{M, |R̃\R̃′|})

)
.

We observe that this bound holds even when i = Ψ−1: in this case the cost includes all

I/Os required for solving the subproblems at level Ψ called in the iteration and which are

solved using the nested loop in Theorem 5.1 (see Step 1). By Lemma 5.4, we have that

the above quantity can be upper bounded with the number of far collisions between R̃

and S̃, getting Õ
(

(|R̃\R̃′ ./>cr S̃|)/(Bmin{M, |R̃\R̃′|})
)

. Recall that Ci,k (Q) denotes

the number of times a pair in Q is in a call to SimJoin at the ith level of recursion

where the smallest input set has size in [2k, 2k+1) if 0 ≤ k < logM , and in [M,+∞)

if k = logM . Then, the total cost for preparing the recursive calls in Step 7-8 in all

subproblems at level i and for performing Step 5 in all subproblems at level (i+ 1) is:4

Õ

(
logM∑
k=0

Ci,k (R ./>cr S)L

B2k

)
. (5.4)

The L factor in the above bound follows since far collisions at level i are used for

amortizing the cost of Step 5 for each one of the L iterations of Step 6.

To get the total I/O complexity of the algorithm we sum the I/O complexity required

by each recursive level. We bound the cost of each level as follows: for a level i < `

we use the bound in Equation 5.3; for a level i > ` we use the bound in Equation 5.4;

for level i = `, we use the bound given in Equation 5.4 to which we add the first term

in Equation 5.3 since the cost of Step 5 at level ` is not included in Equation 5.4 (note

that the addition of Equations 5.3 and 5.4 gives a weak upper bound for level `). The

lemma follows.

Next, we analyze the expected sizes of the terms in Lemma 5.6. Clearly each pair from

R × S is in the top level call, so the number of collisions is |R||S| < N2. But in lower

levels we show that the expected number of times that a pair collides either decreases

or increases geometrically, depending on whether the collision probability is smaller or

larger than p1 (or equivalently, depending on whether the distance is greater or smaller

than the radius r):

Lemma 5.7. With probability 1−O (1/N) and for each 0 ≤ i ≤ Ψ, we have

1. E
[
Ci

(
R ./

>cr
S
)]
≤ |R ./

>cr
S| (p2/p1)i

4We note that the true input size of a subproblem is |R̃| and not |R̃\R̃′|. However, the expected value
of Ci,k (R ./>cr S) is computed assuming the worst case where there are no close pairs an thus R̃′ = ∅.
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2. E
[
Ci

(
R ./

>r,≤cr
S

)]
≤ |R ./

>r,≤cr
S|

3. E
[
Ci

(
R ./
≤r
S

)]
≤ |R ./

≤r
S|Li

4. E
[
Ci,k

(
R ./

>cr
S
)]
≤ N2k+1 (p2/p1)i, for any 0 ≤ k < logM

Proof. Let x ∈ R and y ∈ S. We are interested in upper bounding the number of

collisions of the pair at the ith recursive level. We envision the problem as branch-

ing process (more specifically a GaltonWatson process, see e.g. [116]) where the ex-

pected number of children (i.e., recursive calls that preserve a particular collision) is

Pr [h(x) = h(y)] /p1 for random h ∈ H. It is a standard fact from this theory that the

expected population size at generation i (i.e., number of times (x, y) is in a problem at

recursive level i) is (Pr [h(x) = h(y)] /p1)i [116, Theorem 5.1]. If d(x, y) > cr, we have

that Pr [h(x) = h(y)] ≤ p2 and each far pair appears (p2/p1)i times in expectation at

level i, from which follows Equation 1. Moreover, since the probability of collisions is

monotonic in the distance, we have that Pr [h(x) = h(y)] ≤ 1 if r < d(x, y) ≤ cr, and

Pr [h(x) = h(y)] ≤ 1/p1, from which follow Equations 2 and 3.

In order to get the last bound we observe that each entry of R and S is replicated

Li = p−i1 times at level i. Thus, we have that N2k+1Li is the total maximum number of

far collisions in subproblems at level i where the smallest input set has size in [2k, 2k+1).

Each one of these collisions survives up to level i with probability pi2, and thus the

expected number of these collisions is N2k+1(p1/p2)i.

We are now ready to prove the I/O complexity of SimJoin as claimed in Theorem 5.3.

By the linearity of expectation and Lemma 5.6, we get that the expected I/O complexity

of SimJoin is

Õ

NL`B
+
∑̀
i=0

E
[
Ci

(
R ./
≤cr

S

)]
MB

+
Ψ−1∑
i=`

logM∑
k=0

E
[
Ci,k

(
R ./

>cr
S
)]
L

B2k

 ,

where ` = dlog1/p2(N/M)e. Then, by noticing that Ci,logM (R ./>cr S) ≤ Ci (R ./>cr S),

|R ./>cr S| ≤ N2 and Ci (R ./≤cr S) = Ci (R ./≤r S) + Ci (R ./>r,≤cr S), and by plug-

ging in the bounds on the expected number of collisions given in Lemma 5.7, we get the

claimed result.
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5.5.2.2 Analysis of correctness

Next, we would like to argue that a pair (x, y) with d(x, y) ≤ r is output with good

probability. Let Xi = Ci((x, y)) be the number of subproblems at level i containing

(x, y). Recall that E [Xi] = (Pr [h(x) = h(y)] /p1)i. If Pr [h(x) = h(y)] /p1 > 1 then in

fact there is positive constant probability that (x, y) survives indefinitely, i.e., does not

go extinct [116]. Since at every branch of the recursion we eventually compare points

that collide under all hash functions on the path from the root call, this implies that

(x, y) is reported with positive constant probability.

In the critical case where Pr [h(x) = h(y)] /p1 = 1 we need to consider the variance of

Xi, which by [116, Theorem 5.1] is equal to iσ2, where σ2 is the variance of the number

of children (hash collisions in recursive calls). If 1/p1 is integer the number of children

in our branching process follows a binomial distribution with mean 1. This implies that

σ2 < 1. Also in the case where 1/p1 is not integer it is easy to see that the variance is

bounded by 2. That is, we have Var (Xi) ≤ 2i, which by Chebychev’s inequality means

that for some integer j∗ = 2
√
i+O (1):

∞∑
j=j∗

Pr [Xi ≥ j] ≤
∞∑
j=j∗

Var (Xi) /j
2 ≤ 1/2 .

Since E [Xi] =
∑∞

j=1 Pr [Xi ≥ j] = 1 this implies that
∑j∗−1

j=1 Pr [Xi ≥ j] > 1/2, and since

Pr [Xi ≥ j] is non-increasing with j this implies that Pr [Xi ≥ 1] ≥ 1/(2j∗) = Ω
(
1/
√
i
)
.

Since the recursion depth is O (logN) this implies that the probability that a close pair

is found is Ω
(
1/
√

logN
)
. Thus, by repeating O

(
log3/2N

)
times we can make the error

probability O
(
1/N3

)
for a particular pair and O (1/N) for the entire output by applying

the union bound.

5.5.3 Removing duplicates

The definition of LSH requires that the probability p(x, y) = Pr [h(x) = h(y)] of two

near points x and y of being hashed on the same value is at least p1. If p(x, y) � p1,

our SimJoin algorithm can emit (x, y) many times. As an example suppose that the

algorithm ends in one recursive call: then, the pair (x, y) is expected to be in the same

bucket for p(x, y)L iterations of Step 6 and thus it is emitted p(x, y)L � 1 times in

expectation. Moreover, if the pair is not emitted in the first recursive level, the expected

number of emitted pairs increases as (p(x, y)L)i since the pair (x, y) is contained in

(p(x, y)L)i subproblems at the ith recursive level. A simple solution requires to store

all emitted near pairs on the external memory, and then using a cache-oblivious sorting
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algorithm [4] for removing repetitions. However, this approach requires Õ
(
κ
|R./≤rS|

B

)
I/Os, where κ is the expected average replication of each emitted pair, which can dom-

inate the complexity of SimJoin.

In this section we show how the number of emitted replica can be easily reduced, without

storing near pairs on the external memory. The approach requires that the probability

Pr [h(x) = h(y)] can be explicitly computed in O (1) time and no I/Os for each pair (x, y)

at distance ≤ r. This is the case of LSHs for many metrics, including Hamming [111], `1

and `2 [117], Jaccard [95], and angular [118] distances. The approach is the following:

for each near pair (x, y) that is found at the ith recursive level, with i ≥ 0, the pair is

emitted with probability 1/(p(x, y)L)i and is ignored otherwise.

Theorem 5.8. The above approach guarantees that each near pair is emitted with con-

stant probability.

Proof. Consider a near pair (x, y). Let Gi and Hi be random variables denoting re-

spectively the number of subproblems at level i containing the pair (x, y), and the

number of subproblems at level i where (x, y) is not found by the cache-oblivious

nested loop join algorithm in Theorem 5.1. Let also Ki be a random variable de-

noting the actual number of times the pair (x, y) is emitted at level i. We have:

(1) E [Ki|Gi, Hi] = (Gi − Hi)/(p(x, y)L)i since a near pair is emitted with probability

1/(p(x, y)L)i only in those subproblems where the pair is found by the join algorithm;

(2) E [Gi] = (p(x, y)L)i since a near pair is in the same bucket with probability p(x, y)i

(it follows from the previous analysis based on standard branching); (3) G0 = 1 since

each pair exists at the beginning of the algorithm; (4) HΨ = 0 since each pair surviving

up to the last recursive level is found by the nested loop join algorithm.

We are interested in upper bounding E
[∑Ψ

i=0Ki

]
. We prove by induction that

E

[
l∑

i=0

Ki

]
= 1− E [Hl]

(p(x, y)L)l
,

for any 0 ≤ l ≤ Ψ. For l = 0 (i.e., the first call to SimJoin) the equality is verified since

E [K0] = E [E [K0|G0, H0]] = E [G0 −H0] = 1− E [H0] ,

since E [G0] = G0 = 0. Consider now a generic level l > 0. Since a pair propagates

in a lower recursive level with probability p(x, y), we have E [Gl] = E [E [Gl|Hl−1]] =

p(x, y)LE [Hl−1]. Thus

E [Kl] = E [E [Kl|Gl, Hl]] = E
[
Gl −Hl

(p(x, y)L)l

]
=

E [H`−1]

(p(x, y)L)l−1
− E [H`]

(p(x, y)L)l
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By exploiting the inductive hypothesis, we get

E

[
l∑

i=0

Ki

]
= E [Kl] + E

[
l−1∑
i=0

Ki

]
= 1− E [Hl]

(p(x, y)L)l
.

Since HΨ = 0, we have E
[∑Ψ

i=0Ki

]
= 1 and the claim follows.

We observe that the proposed approach is equivalent to use an LSH where p(x, y) = p1

for each near pair. Thus, the probability of emitting a pair is at least Ω
(

1/
√

Ψ
)

as

shown in the second part of Section 5.5.2.2 and O
(

log3/2N
)

repetitions of SimJoin

suffices to find all pairs with high probability (however, the expected number of replica

of a given near pair becomes O
(

log3/2N
)

, even with the proposed approach).



Chapter 6

Load Balancing with Limited

Independence

6.1 Introduction

This chapter will deal with a technical problem, motivated by the repeated use of hash

functions in the algorithms of this thesis (and algorithms and data structures in general).

The unifying metric of strength of the hash functions is the independence of the function

(see Definition 1.9). Hence a question of theoretical interest is, for each algorithmic ap-

plication, how much independence is required? A typical assumption when performing

algorithmic analysis is to just assume full independence, that is, that for input size n

then the hash function is n-wise independent. In fact, we did this previously in this thesis

in Section 2.5 but then relaxed the assumption afterwards in Section 2.6.1. Besides the

interest from a theoretic perspective, the question of how much independence is required

is in fact interesting from a practical perspective: Hash functions with lower indepen-

dence are as a rule of thumb faster in practice than those with higher independence,

hence if it is proven that the algorithmic application needs only l1-wise independence to

work, then it can provide a speedup for the implementation to specifically pick a fast

construction that provides the required l1-independence.

We will in this chapter consider one of the most fundamental applications of random

hashing: Throwing n balls into 2n bins using an l-wise independent hash function and

analyzing the size of the largest bin. This can be seen as a load balancing as the balls can

represent “tasks” and the bins represent processing units. Our main result is a family

of l-wise independent hash functions, which when used in this setting implies Ω(n1/l)

load with constant probability. This result was unknown for the entire range of l except

115
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l = 2 due to Alon et al. [15], who partially posed the result of this chapter as an open

problem.

As an example of the usefulness of such load balancing bounds, consider the fundamental

data structure; the dictionary. Widely used algorithms books such as Cormen et a [119]

teaches as the standard method to implement a dictionary as an array with chaining

used to handle collisions between keys. Chaining here simply means that for each key,

corresponding to an entry in the array, we have a linked list and when a new key-value

pair is inserted then simply insert it on the end of the linked list. Clearly then, searching

for a particular key-value pair takes worst-case time proportional to the size of the largest

chain. Hence, if one is interested in worst-case lookup time guarantees then the expected

maximal bucket size formed by the keys in the dictionary is of great importance.

6.2 Related work

We will briefly review related work on the topic of bounding the independence used as

well as mention some of the popular hash function constructions.

As briefly mentioned earlier, our result is almost the generalization of Alon et al.,

STOC’97, specifically [15, Theorem 2]. They show that for a (perfect square) field

F then the class H of all linear transformations between F2 and F has the property that

when a hash function is picked uniformly at random from h ∈ H then there exists an

input set of size n such that largest bucket has size at least
√
n.

On the upper bound side, remember that a family Hu of hash functions that map from

U to [n] is universal [120] if for a h picked uniformly from Hu it holds

∀x 6= y ∈ U : Pr(h(x) = h(y)) ≤ 1/n.

Universal hash functions are known to have expected largest bucket size at most
√
n+

1/2, hence essentially tight compared to the bound
√
n lower bound of Alon et al. On the

other end of the spectrum, full independence is known to give expected largest bucket

size Θ(log n/loglogn) due to a standard application of Chernoff bounds. This bound

was proven to hold for Θ(log n/loglogn)-wise independence as well [52]. In Section 6.4

we state an upper bound that coincides with our new lower bound, however we consider

it to be folk lore as it uses standard methods.

The line of research that considers the amount of independence required is deep. As

examples, Pagh et al. [121] showed that linear probing works with 5-wise independence.

For the case of ε-min-wise hashing (“almost” min-wise-hashing as used e.g. in Chapter 2
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Indyk showed that O(log 1
ε )-wise independence is sufficient. For both of the above

problems Thorup and Patrascu [122] showed optimality: They show existence of explicit

families of hash functions that for linear probing is 4-wise independent and leads to

Ω(log n) probes and for ε-min-wise hashing is Ω(log 1
ε )-wise independent that implies

2ε-min-wise hashing. Additionally, they show that the popular multiply-shift hashing

scheme by Dietzfelbinger et al. [19] is not sufficient for linear probing and ε-min-wise

hashing.

Since the question of how much independence is needed from a practical perspective

often could be rephrased “how fast of a hash function can I use and maintain algorith-

mic guarantees?” we will briefly recap some used hash functions. Functions with lower

independence are typically faster in practice than functions with higher. The formaliza-

tion of this is due to Siegel’s lower bound [123] where he shows that in the cell probe

model, to achieve l-wise independence and number of probes t < l then you need space

l(n/l)1/t. Since space usage scales with the independence l then for high l the effects

of the memory hierarchy will mean that even if the time is held constant the practical

time will scale with l as cache effects etc. impact the running time.

The most used hashing scheme in practice is, as mentioned, the 2-wise independent

multiply-shift by Dietzfelbinger et al. [19], which can be twice as fast [124] compared to

even the simplest linear transformation x 7→ (ax+b) mod p. For 3-wise independence we

have due to (analysis by) Thorup and Patrascu the simple tabulation scheme [20], which

can be altered to give 5-universality [125]. For general l-wise independent hash functions

the standard solution is degree l− 1 polynomials, however especially for low l these are

known to run slowly, e.g. for l = 5 then polynomial hashing is 5 times slower than

the tabulation based solution of [125]. Alternatively for high independence the double

tabulation scheme by Thorup[126], which builds on Siegels result [123], can potentially

be practical. On smaller universes Thorup gives explicit and practical parameters for

100-wise independence. For generating l-wise independent variables then Christiani and

Paghs constant time generator [127] performs well - their method is at an order of

magnitude faster than evaluating a polynomial using fast fourier transform. We note

that even though constant time generators as the above exists, the practical evaluation

will actually scale with the independence, as the memory usage of the methods depend

on the independence and so the effects of the underlying memory hierarchy comes to

effect.

Finally, we would like to note that the paradigm of independence has its limitations in

the sense that even though one can prove that l-wise independence in itself doesn’t imply

certain algorithmic guarantees, it is not ruled out there exists l-wise hash functions that

do. That is, lower bound proofs typically construct artificial families to provide counter
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examples, which in practice would not come into play. As an example, consider that

linear probing needs 5-wise independence to work as mentioned above but it has been

proven to work with simple tabulation hashing, which only has 3-wise independence.

6.3 Our results

We consider the fundamental case of throwing n balls into 2n bins. The main result

is a surprisingly simple l-wise independent hash function (family) which when used to

throw the balls imply that with constant probability the largest bin has Ω(n1/l) balls.

We show the theorem below.

Theorem 6.1. Consider the setting where n balls are distributed among 2n bins using

a random hash function h. For all constants l ∈ N there exists a family H of l-wise

independent hash functions such that the max load is Ω
(
n1/l

)
with probability Ω(1) when

h is chosen uniformly at random from H.

An implication of Theorem 6.1 is that we now have the full understanding of the param-

eter space for this problem, as it was well known that independence l = O(log n/loglogn)

implied Θ(log n/loglogn) balls in the largest bin. We summarize with corollary below.

Corollary 6.2. Consider the setting where n balls are distributed among 2n bins using

a random hash function h. There exists two families that are l-wise independent for

1 ≤ l ≤ n1/l and l > n1/l respectively, such that given an l and drawing a h uniformly

at random from the corresponding family we get mad load L as:

(a) if l ≤ n1/l then L = Ω
(
n1/l

)
with probability Ω(1).

(b) if l > n1/l then L = Ω (log n/ log log n) with probability Ω(1).

We note that the result of Theorem 6.1 is not quite the generalization of the lower bound

of Alon et al: They show Ω(n1/2) load for any linear transformation while our result

gives a concrete worst-case l-wise scheme to achieve load Ω(n1/l). However, as is evident

from the proof in the next section, our scheme is not that artificial: In fact it is “almost”

simply standard polynomial hashing, which gives hope that the true generalization of

Alon et al. can be shown.
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6.4 Upper bound

We will briefly show the upper bound that matches our lower bound presented in the

next section. We are unaware of literature that includes the upper bound, but note that

it follows from a standard argument and is included for the sake of completeness.

Lemma 6.3. Consider the setting where n balls are distributed among n buckets using

a random hash function h. For m = Ω
(

logn
log logn

)
and any l ∈ N such that l < n1/l then

if h is l-independent the largest bucket size is O(m) with probability at least 1− n
ml

.

Proof. Define xl as x(x − 1) . . . (x − (l − 1)) for real x and positive integer l. Consider

random variables B1, . . . , Bn, where Bi denotes the number of balls that are distributed

to bin i. By definition, the largest bucket size is maxiBi. Since (maxiBi)
l ≤

∑
i(Bi)

l

for any threshold t we see that

Pr(max
i
Bi ≥ t) = Pr

(
(max

i
Bi)

l ≥ tl
)
≤ Pr

(∑
i

(Bi)
l ≥ tl

)
.

Since
∑

i(Bi)
l is exactly the number of ordered l-tuples being assigned to the same

bucket we see that E
(∑

i(Bi)
l
)

= nl · 1
nl−1 , because there are exactly nl ordered l-tuples.

Hence we can apply Markov’s inequality

Pr

(∑
i

(Bi)
l ≥ tl

)
≤

E
(∑

i(Bi)
l
)

tl
=
nl

nl
· n
tl
≤ n

tl
.

Since l < n1/l implies l = O
(

logn
log logn

)
we see that l + m = Θ(m). Letting t = l + m

we get the desired upper bound n
ml

on the probability that maxiBi ≥ m + l since

(m+ l)l > ml.

6.5 Lower bound

We explore the standard case of throwing n balls into 2n bins. The max load of a

distribution is then size of the bin with the largest number of balls in it. Particularly, we

wish to construct a family of hash functions that are l-wise independent (Definition 1.9)

and where the maximum load is Ω
(
n1/l

)
.

At a high level, our hashing scheme is to divide the keys into buckets and in each bucket

polynomial hashing is used if the bucket is “not full”. The key point is then to see that

for polynomial hashing, the probability that a particular polynomial hashes some set

of keys to the same value can be bounded by the probability of all coefficients of the
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polynomial being zero. Using this along with the bound of the number of buckets that

are “not full” provides the result.

Proof. (of Theorem 6.1) Our hash function h will be composed of two hash functions h1

and h2 where h1 will be used to hash elements into “super buckets” and h2 will be used

inside the super buckets to hash into the 2n bins. Note that the bits that make up the

hash value of a key can then simply be seen as the concatenation of the bits of the hash

values from h1 and h2.

Let p ∈
(
n1/l, 2n1/l

)
be a prime. By Bertrand’s Postulate [128] such a p exists. Assume

wlog that p divides n, as if this is not the case we would simply have another super

bucket of size at most p where would always use independent hashing and the result

would not change.

We will hash an element from [n] independently and uniformly at random into one of

the n/p super buckets, i.e. we have

h1 : [n] 7→ [n/p].

We will in each super bucket distribute the balls to the bins based on how many are

distributed to the super buckets. If the load in a super bucket is d ≤ p then we will

distribute the d balls by polynomial hashing. We define the distribution scheme to the

p bins in the super bucket to be

h2(x) =
(
al−1x

l−1 + al−2x
l−2 + . . .+ a0

)
mod p.

In a super bucket with load d ≤ p we distribute the balls as h2(0), h2(1), . . . , h2(d− 1).

If the load in a super bucket is d > p then we distribute the balls uniformly at random

to the p bins. Inside a super bucket the names 0, . . . , d− 1 are given to keys according

to the ordering of the keys. That is, the keys are given names according to rankBh1 (x),

which maps key x to the zero-indexed rank inside bucket Bh1 according to the total

ordering on the keys.

We now examine the maximum bin size due to the distribution scheme as above. We

have n balls and 2n bins and so for any super bucket c ∈ [n/p] we have in expectation

a number of balls

E (|{x ∈ [n] |h1(x) = c}|) =
n/2

n/p
= p/2.

Since the distribution to super buckets is independent random processes (since h1 dis-

tributes independently and uniformly) we have by standard Chernoff bounds that

Pr (|{x ∈ [n] |h1(x) = c}| ∈ [p/5, 3p/5]) = 1− e−Ω(p). (6.1)



Chapter 6. Load Balancing with Limited Independence 121

By a union bound over the error probability of Equation (6.1) then with probability

1− o(1) all super buckets contain between p/5 and 3p/5 balls. Consider the case where

load of a super bucket is d ≤ p. Then the event that every ball maps to the same of the

p possible bins happens when all random coefficients of h2 are drawn to be 0, i.e. the

probability of that event is at least

Pr (al−1 = al−2 = . . . = a1 = 0) =
1

pl−1
(6.2)

We have n/p super buckets each with probability 1
pl−1 of having large load. We wish to

bound the probability of the event that no bucket has large load. This corresponds to

n/p boolean variables that are 1 with probability 1
pl−1 and 0 otherwise and we wish to

bound the probability of the sum of those variables being 0. The expected number of 1

variables is
n

p

1

pl−1
=
n

pl
= Ω(1),

where we use that we picked p = Θ(n1/l). It follows directly from Chernoff bounds that

the probability of there being no large buckets is 1− Ω(1).

In a super bucket where all balls map to the same bin, we will by Equation (6.1) have

at least p/5 balls, hence the max load is Θ(p) = Θ
(
n1/l

)
which completes the proof for

(a) of the theorem.

Part (b) of the theorem follows trivially: In the case of d ≤ p balls in a bin we use

polynomial hashing by a degree l−1 polynomial, which is known to be l-wise independent

over the p bins of the super bucket (see e.g. [129]). If the load of a super bucket is d > p

then we distribute the balls fully independently to the bins. This completes the proof.

Since it is well known that using O(log n/loglogn)-wise uniform hash function to dis-

tribute the balls will imply Ω (logn/ log log n) maximum load, Corollary 6.2 provides the

full understanding of the maximum bin size.

Proof. (of Corollary 6.2) Part (a) follows directly from Theorem 6.1. Part (b) follows

since l > n1/l implies l > log n/ log log n and so we apply the Ω (log n/ log log n) bound

from [52].



Chapter 7

Summary and open problems

Here we will make concluding remarks on all the presented results as well as discuss

possible future directions of the work.

In general, the thesis deals with the computation of dot products and set intersection

sizes of various kinds. The motivation is that methods to compute set intersection sizes

and dot products are highly applicable in several areas and due to the “data flood”

the demand for algorithms with lower time and space complexity is present. The thesis

presents results that beat state of the art methods for summarizing set intersection sizes,

sparse matrix multiplication in both the I/O and the word-RAM model, similarity join

in the I/O model as well as providing the full understanding of how large the biggest bin

is when hashing n balls to O(n) bins using a hash function with limited independence.

In Chapter 2 we presented a new method to “summarize” set intersection: For each set

in the input, we compute a randomized subset - a summary - of each set, such that by

querying only those summaries we can answer approximately intersection size queries on

the original sets. Our new method relies on one-permutation min-wise hashing, that is,

computing one random permutation and storing the k first elements whereas the most

closely related previous method computed k permutations and stored the first element

of each. For m sets in the input our method yields a factor O(m/ logm) improvement on

the space used to achieve an (ε, δ)-estimate of the intersection size, as compared to the k

permutation method. However, for constant number of input sets our new lower bound of

Ω(ε−2(n/t)) bits per set implies that the old k-permutation method was in fact optimal

and that our new method is optimal up to log-factors for non-constant m. In terms

of future work directly related to the results mentioned we have the two obvious ones,

namely improving the lower bound to match the k-permutation upper bound entirely

(currently missing is a factor log(1/δ)) and also improve the upper bound to be tight, if

possible.
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Open Problem 7.1. Show a lower bound on summarizing set intersection that holds

already for two sets of size n and that states the required space is Ω(ε−2(n/t) log(1/δ))

bits to achieve an (ε, δ)-estimate on the set intersection size t.

Open Problem 7.2. Does there exist an upper bound on the space usage for summariz-

ing set intersection that improves the dependence on the number of sets m, e.g. the

dependency is logm in our estimator.

If the answer to Open Problem 7.2 is that the space usage must depend on m, it would

likewise be interesting to see a lower bound that incorporates the number of sets m into

the space usage. A possible proof direction could be via multi-party communication

complexity, see e.g. [130], which incorporates several players contrary two only two,

Alice and Bob, in the two-party one-way model used for the lower bound in this thesis.

In Chapter 3 we focused on the problem of computing the product of two matrices A and

C where the number of nonzero entries in A and C was N and the number of nonzero

entries of the output matrix AC was Z. In the I/O model we improved the current start

of the art by a factor M3/8 to achieve I/O complexity Õ
(
N
√
Z/(B

√
M)
)

. Contrary

to most previous work our algorithm works with arbitrary cancellations of terms. This

bound was further proved to be tight by extending the technique of Hong and Kung [5],

in fact the lower bound is more general as it incorporates a factor 1/P for P processing

units. An interesting future direction would be to remove the Monte Carlo component

from the upper bound.

Open Problem 7.3. For matrices A and C with N nonzero entries in total and Z nonzero

entries in AC, does there exist an algorithm that uses Õ
(
N
√
Z/(B

√
M)
)

I/Os and

always computes the nonzero entries of AC?

It should be clear that Open Problem 7.3 requires ideas and techniques different from

those used in this thesis: We crucially use Monte Carlo methods to partition the matrix

and even more crucially to handle cancellations of terms. Since the number of nonzero

elementary products is bounded only in terms of the number of nonzeros in the input

it seems that creating an algorithm to not waste I/Os computing elementary products

that later cancel out requires significantly new techniques. Another interesting direction

would be to parallelize the algorithm.

Open Problem 7.4. For matrices A and C with N nonzero entries in total, Z nonzero

entries in AC and P being the number of processing units, does there exist an algorithm

that uses Õ
(
N
√
Z/(PB

√
M)
)

I/Os in the parallel external memory model?

It seems that the main hurdle to parallelize the method presented in this thesis is the

partitioning step, at least it would seem that it would be difficult to parallelize for
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larger P than the number of partitions. The size estimation sub-procedure is based

on distinct items estimation in a streaming setting and hence should parallelize easily.

A parallel version algorithm may even be interesting in practice (in particular if the

Monte Carlo component could be removed), as the number of hidden log-factors in the

stated complexity is not that large. Any algorithm that solves Open Problem 7.4 will

not work for arbitrary P and it would be interesting what amount of parallelization can

be achieved.

In the word-RAM model we considered the setting where the input matrices were U ×U
in dimensions and dense while the product had Z output entries. Further, we here

assume that we work over a field such that Strassen-like (“fast matrix multiplication”)

methods are applicable. In this setting we presented an algorithm that computes the

matrix product using Õ
(
U2(Z/U)ω−2 + Z +N

)
word-RAM operations, which beats

current state of the art methods when Z = ω(U) (see Table 3.1). The algorithm was

based on partitioning the input into smaller dense subproblems that could then be solved

efficiently using the fast square matrix multiplication black box. Besides the problem of

removing the Monte Carlo component of the algorithm, an intriguing direction for this

setting is to be able to exploit sparseness in the input as well as the output. To the

knowledge of the author, there doesn’t exist a nontrivial upper bound that depends on

density N instead of dimension U in this setting.

Open Problem 7.5. For matrices A and C over a field, with N nonzero entries in total and

Z nonzero entries in AC, does there exist an algorithm that uses a number of operations

proportional to N , e.g. Õ
(
N(Z/

√
N)ω−2 + Z +N

)
?

The main hurdle for Open Problem 7.5 is that in order to exploit the fast matrix mul-

tiplication black box, one needs to invoke it on dense input matrices or dense sub-parts

of input matrices, since the black box uses O(Uω) for two U × U matrices. And so the

problem is to come up with a partitioning scheme that can somehow group the nonzero

entries of the input together in a way that preserves the output. The complexity pro-

posed in Open Problem 7.5 seems to be the “correct” one to aim for: For N = U2 it

corresponds to our complexity.

In Chapter 4 we examined the setting where we are interested in computing the prob-

abilities of three random events occurring at the same time, where we knew the single

probabilities as well as all the pair-probabilities. The problem was well-motivated by

applications in recommender systems, where this could correspond to predicting a pur-

chase. In particular we considered the setting where the probability of all three events

occurring was so low that the event was not observed in the sample of the dataset that

was available to us. Our proposed solution to this problem is to use the maximum

entropy estimate. The theoretical contribution was an explicit formula that gives an
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approximation to the maximum entropy estimate under certain assumptions. Through

experiments we observed that the maximum entropy estimate of the triple probabilities

was superior to the estimates coming from assuming independence and extrapolation,

which often times gave estimates that were not useful. The standing open problem, as

also noted by Meo [89], is an explicit formula for the precise maximum entropy estimate.

Open Problem 7.6. Does there exist a closed form of the maximum entropy estimate?

Even such a formula for triple probabilities would be interesting, as this would enable

faster computation of the maximum entropy estimate, which judging by our experiments

should see more use than it currently does.

In Chapter 5 we examined the problem of computing the similarity join of two rela-

tions in an external memory setting. Our new cache-aware algorithm of Section 5.5.1

and cache-oblivious algorithm of Theorem 5.3 improve upon current state of the art by

around a factor of around M/B I/Os unless the number of c-near pairs is huge (more

than NM). We believe this is the first cache-oblivious algorithm for similarity join, and

more importantly the first subquadratic algorithm whose I/O performance improves

significantly when the size of internal memory grows. It would be interesting to investi-

gate if our approach is also practical, which it seems it might be after some parameter

tuning. Our I/O bound is probably not easy to improve significantly, but interesting

open problems are to remove the error probability of the algorithm and to improve the

implicit dependence on dimension in B and M : We assumed for simplicity that the

unit of M and B is number of points, but in general we may get tighter bounds by

taking into account the gap between the space required to store a point and the space

for e.g. hash values. The result in this thesis is made with general spaces in mind and

so an interesting direction would be to make a more specific algorithm for a fixed space.

Open Problem 7.7. For a specific high-dimensional metric space, does there exist a

similarity join algorithm that significantly improves upon the I/O complexity of the

algorithm presented here?

Finally in Chapter 6 we examined the fundamental technical problem of throwing n

balls into 2n bins using a l-wise independent hash function. The quantity of interest

was then the relationship between the size of the largest bin (the load) and the amount

of independence used. Here it was known that full independence gives Θ(log n/loglogn)

load and l = 2 implies load >
√
n. We provided a family of hash functions where

when one was picked at random and used to distribute the balls into the bins then with

constant probability the load would be Ω(n1/l). Since this new bound completes our
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understanding of this setting entirely the most interesting open problems related to this

work is to examine the independence needed for popular algorithms to work. As our

family is “artificial” in the sense that it is a worst-case family of functions constructed

specifically to imply high load, the natural related question is to replace the family with

degree l − 1 polynomial hashing and see if the bound still applies.

Open Problem 7.8. Distributing n balls to O(n) bins using a function picked uniformly

at random from the family of degree l−1 polynomials, is the load Ω(n1/l) with constant

probability?

We will note that this open problem is mainly of algebraic interest, at least for small

l, since polynomial hashing has been shown experimentally to run quite slow (see Sec-

tion 6.2 for discussion). However, as noted by Alon et al. [15], it is an interesting problem

to examine the strength of polynomials as they examined linear maps.



Appendix A

Communication Complexity

Lower Bound Proof Details

This appendix contains the proof details for the communication complexity lower bound

of Section 2.4 which implies Theorem 2.2.

A.1 The GapAnd Problem

For bit vectors z, z′ of the same length, let AND(z, z′) be the vector z′′ in which z′′i =

zi ∧ z′i. For a vector z, let wt(z) denote its Hamming weight, i.e., the number of its

coordinates equal to 1.

Definition A.1. In the GapAnd problem, Alice and Bob have z, z′ ∈ {0, 1}r, respec-

tively. We define GapAnd to be:

1 if wt(AND(z, z′)) ≥ r

4
+ Cεr

0 if wt(AND(z, z′)) ≤ r

4
− Cεr.

This is a promise problem, and if neither case occurs, the output can be arbitrary.

A.2 The Index Problem

Consider the following Index problem.

Definition A.2. In the Index problem, Alice has an input Y ∈ {0, 1}d and Bob has an

input K ∈ [d], where Y and K are independent and uniformly distributed over their
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respective domains. We define Index to be:

1 if YK = 1

0 if YK = 0

Suppose W is the public coin and κ is the set of randomized one-way δ-error protocols

Π. Let γ denote this distribution on the inputs. Say a 1-way protocol Π for Index with

private randomness R and public randomness W is δ-error if

Pr(Y,K)∼γ,R,W[Π(Y,K,R,W) = YK ] ≥ 1− δ.

Let M(Y) be the message function associated with the 1-way protocol Π (which is a

randomized function of R and W). Let

CICγ,1−wayδ (Index) = min
Π∈κ

I(M(Y); Y |W).

Fact A.3. For δ ≤ 1
2 − Ω(1), CICγ,1−wayδ (Index) = Ω(d).

Proof. We note that this fact is folklore, but existing references, e.g., Theorem 5.5 of

[131] only explicitly state the bound for deterministic protocols, whereas we want such

a bound for protocols with both private randomness and public randomness W. We

provide the simple proof here.

Let Π be a δ-error protocol with (randomized) message function M and Y = (Y1, . . . , Yd).

By the chain rule,

I(M(Y); Y |W) =
d∑
i=1

I(M(Y);Yi | Y1, . . . , Yi−1,W).

By independence and the fact that conditioning cannot increase entropy,

d∑
i=1

I(M(Y);Yi | Y1, . . . , Yi−1,W) ≥
d∑
i=1

I(M(Y);Yi |W).

If Π is δ-error for δ = 1/2 − Ω(1), then by Markov’s inequality, for an Ω(1) fraction of

i, Π(Y, i) = Yi with probability 1/2 + Ω(1). Call such an i good. Then

d∑
i=1

I(M(Y);Yi, |W) ≥ Ω(d) · min
good i

I(M(Y);Yi, |W)

= Ω(d) · min
good i

(1−H(Yi |M(Y),W)).
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By Fano’s inequality (Fact 2.7) and using that i is good, we have H(Yi | M(Y),W) =

1− Ω(1). This completes the proof.

A.3 Proof of Theorem 2.2

Proof. It suffices to prove the theorem for a sufficiently small constant probability of

error δ, since

R1−way
1/3 (GapAndIndex) = Θ(R1−way

δ (GapAndIndex).

Let Π be a 1-way randomized (both public and private) δ-error protocol for GapAndIndex.

For ease of presentation, we let M = M(X) when the input X is clear from context.

Note that M also implicitly depends on Alice’s private coins as well as a public coin W.

We need to show that I(M ; X |W) is Ω(rd), for r = Θ(ε−2).

We start with the following claim, which does not directly look at the information Π

conveys about its inputs, but rather the information Π conveys about certain bits in its

input.

Claim A.4. I(M ;X1
i1 , . . . , X

r
ir |W) = Ω(r).

Proof. We will need the following fact, which follows from work by Braverman et al.

[132].

Fact A.5. ([132]) Let ρ be the uniform distribution on bits c1, . . . , cr and d1, . . . , dr. Let

C = (C1, . . . , Cr) and D = (D1, . . . , Dr) for vectors C and D drawn from ρ.

There is a sufficiently small constant δ for which for any private randomness protocol Π

which errs with probability at most δ on GapAnd, over inputs C and D drawn from ρ

and the private randomness of Π and the public randomness W, satisfies

I(Π(C,D); C,D |W) = Ω(r).

Proof. The work of Braverman et al. [132] establishes this for the problem of deciding

if
∑r

i=1(Ci ⊕Di) ≥ r/2 +
√
r or

∑r
i=1(Ci ⊕Di) ≤ r/2−

√
r, which corresponds to the

Hamming distance ∆(C,D) of vectors drawn from ρ.

If wt(C) denotes the Hamming weight of C, then we have

wt(C) + wt(D)− 2 · And(C,D) = ∆(C,D),

where And(C,D) is the number of coordinates i for which Ci = Di = 1. Therefore,

if Alice and Bob exchange wt(C) and wt(D) using 2 log r bits, then together with a
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protocol Π for GapAnd, they can solve this Hamming distance problem. It follows that

I(Π(C,D),wt(C),wt(D); C,D |W) = Ω(r),

and so by the chain rule for mutual information one has I(Π(C,D); C,D |W) = Ω(r)−
I(wt(C),wt(D); C,D |W,Π(C,D)) = Ω(r)−H(wt(C),wt(D)) = Ω(r)−2 log r = Ω(r).

First, observe that if I denotes a uniformly random value of i, then

I(M ;X1
I1 , . . . , X

r
Ir | I,W)

= H(M | I,W)−H(M | X1
I1 , . . . , X

r
Ir , I,W)

= H(M)−H(M | X1
I1 , . . . , X

r
Ir)

= I(M ;X1
I1 , . . . , X

r
Ir |W),

where we use that M and X1
I1 , . . . , X

r
Ir are jointly independent of I, conditioned on W.

Hence, using also the independence of I and W,

I(M ;X1
I1 , . . . , X

r
Ir |W)

= I(M ;X1
I1 , . . . , X

r
Ir | I,W)

=
∑
i

I(M ;X1
i1 , . . . , X

r
ir | I = i,W) ·Pr[I = i]

≥ 1

2
min
i
I(M ;X1

i1 , . . . , X
r
ir | I = i,W).

We claim that for each i, I(M ;X1
i1 , . . . , X

r
ir | I = i,W) = Ω(r). To see this, define a

1-way protocol Πi for GapAnd as follows. Alice and Bob are given inputs C and D to

GapAnd, respectively, distributed according to ρ. For each j ∈ [r], Alice sets Xj
ij

= Cj ,

while Bob sets Bj = Dj . Alice then chooses an independent uniform random bit for

Xj
k for each j and k 6= ij . The players then run the protocol Π(X, i,B), and outputs

whatever Π outputs.

By construction, Πi(C,D) = GapAnd(X, i,B), and so the correctness probability of Πi

is at least 1− δ.

Moreover, if Mi denotes the message function of Alice in Πi, then by construction we

have that for a sufficiently small constant δ,

I(M ;X1
i1 , . . . , X

r
ir | I = i,W)

= I(Mi(X
1
i1 , . . . , X

r
ir);X

1
i1 , . . . , X

r
ir |W) = Ω(r)
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using Fact A.5.

By Claim A.4 and the chain rule, for Ω(1) fraction of j ∈ [r] we have I(M ;Xj
Ij
|

X1
I1 , . . . , X

j−1
Ij−1 ,W) = Ω(1). Call such an index j informative. For each informative j,

a value x of the vector (X1
I1 , . . . , X

j−1
Ij−1) is informative if I(M ;Xj

Ij
| (X1

I1 , . . . , X
j−1
Ij−1) =

x,W) = Ω(1). Since

I(M ;Xj
Ij
| X1

I1 , . . . , X
j−1
Ij−1 ,W) = Ω(1),

it follows that an Ω(1) fraction of x are informative for an informative j.

We now lower bound I(M(X); X |W). Let X<j = (X1, . . . , Xj−1). Applying the chain

rule, as well as the definition of informative and the bounds on informative j and x

above,

I(M(X); X |W)

=

r∑
j=1

I(M(X);Xj | X<j ,W)

≥
r∑
j=1

I(M(X);Xj | X1
I1 , . . . , X

j−1
Ij−1 ,W)

=
r∑
j=1

∑
x

I(M(X);Xj | (X1
I1 , . . . , X

j−1
Ij−1) = x,W)

·Pr[(X1
I1 , . . . , X

j−1
Ij−1) = x]

≥
∑

inform.j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1
Ij−1) = x,W)

·Pr[(X1
I1 , . . . , X

j−1
Ij−1) = x]

≥ Ω(r) · min
inform.j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1
Ij−1) = x,W),

where the first inequality follows from the fact that Xj is independent of X<j , together

with the fact that conditioning cannot increase entropy.

We now lower bound

min
informative j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1
Ij−1) = x,W).

To do so, we build a 1-way protocol Πj,x with j and x hardwired, for solving the Index

problem with a uniform distribution γ on its inputs. Suppose Alice is given the random

input Y ∈ {0, 1}d, and Bob is given the random input K ∈ [d], where Y and K are

uniformly distributed over {0, 1}d and [d], respectively. Alice and Bob create inputs for

protocol Π as follows. Namely, Alice sets Xj = Y , and uses the hardwiring of x to set
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(X1
I1 , . . . , X

j−1
Ij−1) = x. Further, Alice uses her private randomness to fill in the remaining

coordinates of X1, . . . , Xj−1, as well as to choose Xj+1, . . . , Xr (all coordinates of such

vectors are independent of Bob’s inputs and uniformly distributed, so Alice can choose

such inputs without any communication). Further, Bob sets Ij = K, and chooses Ij
′

for j′ 6= j uniformly and independently in [d]. Bob also chooses his input B to be

independent of all other inputs and uniformly distributed.

Given this setting of inputs, in Πj,x Alice and Bob then run protocol Π on these inputs,

resulting in a message function M ′(Y) = M(X). Since j and x are informative, it follows

that I(M(X);Xj
Ij
|(X1

I1 , . . . , X
j−1
Ij−1) = x,W) = Ω(1), which implies that I(M ′(Y);YK |

W) = Ω(1), or equivalently,

H(YK |M ′(Y),W) = 1− Ω(1).

It follows from Fact 2.6 that Bob, given M ′(Y) and W, can predict Yk with probability

1/2 + Ω(1), and solve Index on the uniform distribution γ. By Fact A.3, it follows

that I(M ′(Y); Y | W) = Ω(d). Notice, though, that by construction of Πj,x that

I(M ′(Y); Y |W) = I(M(X);Xj | (X1
I1 , . . . , X

j−1
Ij−1) = x,W).

We conclude that I(M(X); X |W) = Ω(dr), which completes the proof.
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Tardos. Is linear hashing good? In Proceedings of the Twenty-ninth Annual

ACM Symposium on Theory of Computing, STOC ’97, pages 465–474, New York,

NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258639. URL

http://doi.acm.org/10.1145/258533.258639.

[16] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the

Analysis of Randomized Algorithms. Cambridge University Press, New York, NY,

USA, 1st edition, 2009. ISBN 0521884276, 9780521884273.

[17] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, New York, NY, USA, 1995. ISBN 0-521-47465-5, 9780521474658.

[18] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal

space. SIAM J. Comput., 38(1):85–96, March 2008. ISSN 0097-5397. doi: 10.

1137/060658400. URL http://dx.doi.org/10.1137/060658400.

[19] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

A reliable randomized algorithm for the closest-pair problem. Journal of Algo-

rithms, 25(1):19 – 51, 1997. ISSN 0196-6774. doi: http://dx.doi.org/10.1006/

jagm.1997.0873. URL http://www.sciencedirect.com/science/article/pii/

S0196677497908737.
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[86] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. SIGMOD Rec., 22(2):207–216, June

1993. ISSN 0163-5808. doi: 10.1145/170036.170072. URL http://doi.acm.org/

10.1145/170036.170072.

[87] Nikolaj Tatti. Maximum entropy based significance of itemsets. Data Mining,

IEEE International Conference on, 0:312–321, 2007. ISSN 1550-4786. doi: http:

//doi.ieeecomputersociety.org/10.1109/ICDM.2007.43.

[88] Michael Mampaey, Nikolaj Tatti, and Jilles Vreeken. Tell me what i need to

know: succinctly summarizing data with itemsets. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, KDD

’11, pages 573–581, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7.

doi: 10.1145/2020408.2020499. URL http://doi.acm.org/10.1145/2020408.

2020499.

[89] Rosa Meo. Theory of dependence values. ACM Trans. Database Syst., 25(3):

380–406, September 2000. ISSN 0362-5915. doi: 10.1145/363951.363956. URL

http://doi.acm.org/10.1145/363951.363956.

[90] R. Meo. Maximum independence and mutual information. Information Theory,

IEEE Transactions on, 48(1):318 –324, jan 2002. ISSN 0018-9448. doi: 10.1109/

18.971763.

[91] C. Chow and C. Liu. Approximating discrete probability distributions with de-

pendence trees. Information Theory, IEEE Transactions on, 14(3):462–467, 1968.

ISSN 0018-9448. doi: 10.1109/TIT.1968.1054142.

[92] Toon Calders and Bart Goethals. Non-derivable itemset mining. Data Min. Knowl.

Discov., 14(1):171–206, February 2007. ISSN 1384-5810. doi: 10.1007/s10618-006-

0054-6. URL http://dx.doi.org/10.1007/s10618-006-0054-6.

[93] Monika Rauch Henzinger. Finding near-duplicate web pages: a large-scale evalu-

ation of algorithms. In Proceedings of SIGIR’06, pages 284–291, 2006.

[94] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins

for near duplicate detection. In Proceedings of WWW’08, pages 131–140, 2008.

[95] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.

[96] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity

joins. In Proceedings of VLDB’06, pages 918–929, 2006.

http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/2020408.2020499
http://doi.acm.org/10.1145/2020408.2020499
http://doi.acm.org/10.1145/363951.363956
http://dx.doi.org/10.1007/s10618-006-0054-6


Bibliography 142

[97] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator

for similarity joins in data cleaning. In Proceedings of ICDE’06, page 5, 2006.

[98] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Detectives: detecting

coalition hit inflation attacks in advertising networks streams. In Proceedings of

WWW’07, pages 241–250, 2007.

[99] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev

Motwani, Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations

without support pruning. IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[100] Ahmed Metwally and Christos Faloutsos. V-smart-join: A scalable mapreduce

framework for all-pair similarity joins of multisets and vectors. PVLDB, 5(8):

704–715, 2012.

[101] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs

similarity search. In Proceedings of WWW’07, pages 131–140, 2007.

[102] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high

dimensions via hashing. In Proceedings of VLDB’99, pages 518–529, 1999.

[103] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency in

high dimensional nearest neighbor search. In Proceedings of SIGMOD’09, pages

563–576, 2009.

[104] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensitive hashing

for fast similarity search. PVLDB, 5(5):430–441, 2012.

[105] Bingsheng He and Qiong Luo. Cache-oblivious nested-loop joins. In Proceedings

of CIKM’06, pages 718–727, 2006.

[106] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed local-

ity sensitive hashing. In Proceedings of CIKM’12, pages 2174–2178, 2012.

[107] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In

Proceedings of SODA’06, pages 1186–1195, 2006.

[108] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. Clusterjoin: A similarity joins

framework using map-reduce. PVLDB, 7(12):1059–1070, 2014.

[109] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins

using mapreduce. In Proceedings of SIGMOD’10, pages 495–506, 2010.

[110] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs sim-

ilarity search in metric spaces. In Proceedings of KDD’13, pages 829–837, 2013.



Bibliography 143

[111] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-

moving the curse of dimensionality. In Proceedings of STOC’98, pages 604–613,

1998.

[112] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality

sensitive hashing. In Proceedings of SOCG’06, pages 154–157, 2006.

[113] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-

sensitive hashing (except when q is tiny). TOCT, 6(1):5, 2014.

[114] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approx-

imate nearest neighbor in high dimensions. In Proceedings of FOCS’06, pages

459–468, 2006.

[115] Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Now

Publishers Inc., 2008.

[116] Theodore E Harris. The theory of branching processes. Courier Dover Publications,

2002.

[117] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of

SOCG’04, pages 253–262, 2004.

[118] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In

Proceedings of STOC’02, pages 380–388, 2002.

[119] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

ISBN 0070131511.

[120] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143 – 154, 1979. ISSN 0022-

0000. doi: http://dx.doi.org/10.1016/0022-0000(79)90044-8. URL http://www.

sciencedirect.com/science/article/pii/0022000079900448.

[121] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant in-

dependence. In Proceedings of the Thirty-ninth Annual ACM Symposium on

Theory of Computing, STOC ’07, pages 318–327, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-631-8. doi: 10.1145/1250790.1250839. URL http:

//doi.acm.org/10.1145/1250790.1250839.

[122] Mihai Ptracu and Mikkel Thorup. On the k-independence required by linear

probing and minwise independence. In Samson Abramsky, Cyril Gavoille, Claude

http://www.sciencedirect.com/science/article/pii/0022000079900448
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://doi.acm.org/10.1145/1250790.1250839
http://doi.acm.org/10.1145/1250790.1250839


Bibliography 144

Kirchner, Friedhelm Meyer auf der Heide, and PaulG. Spirakis, editors, Automata,

Languages and Programming, volume 6198 of Lecture Notes in Computer Science,

pages 715–726. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-14164-5. doi:

10.1007/978-3-642-14165-2 60. URL http://dx.doi.org/10.1007/978-3-642-

14165-2_60.

[123] A. Siegel. On universal classes of extremely random constant-time hash functions.

SIAM J. Comput., 33(3):505–543, 2004.

[124] Mikkel Thorup. Even strongly universal hashing is pretty fast. In Proceedings of

the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00,

pages 496–497, Philadelphia, PA, USA, 2000. Society for Industrial and Applied

Mathematics. ISBN 0-89871-453-2. URL http://dl.acm.org/citation.cfm?

id=338219.338597.

[125] Mikkel Thorup and Yin Zhang. Tabulation based 5-universal hashing and linear

probing. In ALENEX’10, pages 62–76, 2010.

[126] M. Thorup. Simple tabulation, fast expanders, double tabulation, and high inde-

pendence. In Proc. FOCS’13, pages 90–99, 2013.

[127] Tobias Christiani and Rasmus Pagh. Generating k-independent variables in con-

stant time. In 55th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 196–205, 2014.

doi: 10.1109/FOCS.2014.29. URL http://dx.doi.org/10.1109/FOCS.2014.29.

[128] S. Ramanujan. A proof of bertrand’s postulate. J. Indian Math. Soc, 11, 1919.

[129] A. Joffe. On a set of almost deterministic k-independent random variables. Ann.

Probab., 2(1):161–162, 02 1974. doi: 10.1214/aop/1176996762. URL http://dx.

doi.org/10.1214/aop/1176996762.

[130] Andrew Chi-Chih Yao. Some complexity questions related to distributive com-

puting(preliminary report). In Proceedings of the Eleventh Annual ACM Sympo-

sium on Theory of Computing, STOC ’79, pages 209–213, New York, NY, USA,

1979. ACM. doi: 10.1145/800135.804414. URL http://doi.acm.org/10.1145/

800135.804414.

[131] Ziv Bar-Yossef. The complexity of massive data set computations. PhD thesis,

University of California at Berkeley, 2002.

[132] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. Information

lower bounds via self-reducibility. In CSR, pages 183–194, 2013.

http://dx.doi.org/10.1007/978-3-642-14165-2_60
http://dx.doi.org/10.1007/978-3-642-14165-2_60
http://dl.acm.org/citation.cfm?id=338219.338597
http://dl.acm.org/citation.cfm?id=338219.338597
http://dx.doi.org/10.1109/FOCS.2014.29
http://dx.doi.org/10.1214/aop/1176996762
http://dx.doi.org/10.1214/aop/1176996762
http://doi.acm.org/10.1145/800135.804414
http://doi.acm.org/10.1145/800135.804414

	Abstract
	Abstract, Danish
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Organization
	1.3 Models of computation
	1.3.1 The word-RAM model
	1.3.2 The external memory model
	1.3.3 Communication complexity

	1.4 Overview of problems and results
	1.4.1 Intersections and applications

	1.5 Multiple set intersection
	1.5.1 Our results

	1.6 Matrix multiplication
	1.6.1 Our results

	1.7 Association Rule Mining using Maximum Entropy
	1.7.1 Our results

	1.8 Similarity joins in high dimensions
	1.8.1 Our results

	1.9 Load Balancing with Limited Independence
	1.9.1 Our results

	1.10 Technical preliminaries
	1.10.1 Notation
	1.10.2 Probability and randomized analysis
	1.10.3 Algebra


	2 Multiple Set Intersection
	2.1 Introduction
	2.1.1 Motivation
	2.1.2 Brief history
	2.1.3 Our contribution

	2.2 Related work
	2.2.1 Lower bounds
	2.2.2 Min-wise hashing techniques
	2.2.3 Previous results on set intersection

	2.3 Our results
	2.4 Lower Bound
	2.4.1 Preliminaries
	2.4.2 A Communication Problem and its Application to Set Intersection

	2.5 Upper bound
	2.5.1 Proof of Theorem 2.3
	2.5.2 Use of signatures for the upper bound

	2.6 Hash functions of limited independence
	2.6.1 Hash functions for one-permutation min-wise summaries
	2.6.2 Hash functions for signatures
	2.6.3 Lower bound for l-wise independent hash functions

	2.7 Space of k-permutation min-wise summaries on sunflower sets

	3 Matrix Multiplication
	3.1 Chapter overview
	3.2 Sparse matrix multiplication in the I/O model
	3.2.1 Preliminaries
	3.2.2 Related work
	3.2.3 Our results
	3.2.4 Matrix output size estimation
	3.2.5 Cache-aware upper bound
	3.2.5.1 Output insensitive algorithm
	3.2.5.2 Monte Carlo algorithm overview
	3.2.5.3 Compressed matrix multiplication in the I/O model
	3.2.5.4 Computing a balanced coloring
	3.2.5.5 I/O Complexity Analysis

	3.2.6 Lower bound

	3.3 Fast output-sparse matrix multiplication in the RAM model
	3.3.1 Preliminaries
	3.3.2 Related work
	3.3.3 Our results
	3.3.4 Compressing the output
	3.3.5 Recovering nonzero entry in polylog time
	3.3.6 Subdivision


	4 Association Rule Mining using Maximum Entropy
	4.1 Introduction
	4.1.1 Motivating examples
	4.1.2 Our results
	4.1.3 Related work

	4.2 Frequency estimates of itemsets
	4.2.1 Preliminaries
	4.2.2 Estimation by extrapolation and independence assumption
	4.2.3 Maximum entropy of itemsets
	4.2.3.1 Classifying and computing the maxent estimate
	4.2.3.2 Maxent on noisy inputs


	4.3 Experimental Results
	4.3.1 Maxent vs. independence for full datasets
	4.3.2 Low-support itemsets


	5 I/O-efficient Similarity Join in High Dimensions
	5.1 Introduction
	5.2 Related work
	Index-based similarity join.
	Sorting-based.
	Generic joins.
	Distributed computation.



	5.3 Preliminaries
	5.3.1 Locality-sensitive hashing
	5.3.2 Computational model

	5.4 Our results
	Discussion

	5.5 Our algorithms
	5.5.1 Warm-up: Cache-aware algorithm
	5.5.2 Cache-oblivious algorithm
	5.5.2.1 Analysis of I/O complexity
	5.5.2.2 Analysis of correctness

	5.5.3 Removing duplicates


	6 Load Balancing with Limited Independence
	6.1 Introduction
	6.2 Related work
	6.3 Our results
	6.4 Upper bound
	6.5 Lower bound

	7 Summary and open problems
	A Communication Complexity Lower Bound Proof Details
	A.1 The GapAnd Problem
	A.2 The Index Problem
	A.3 Proof of Theorem 2.2

	Bibliography

