
IT University of Copenhagen

Ph.D. Thesis

Optimizing Liner Shipping Fleet

Repositioning Plans

Author:
Kevin Tierney

Supervisor:
Assoc. Prof. Rune Møller Jensen

IT University of Copenhagen

Co-Supervisor:
Prof. David Pisinger

Technical University of Denmark

July 1, 2013

Acknowledgements

I feel truly privileged to have been able to work with, and be advised by, as many great
people as I have over the course of my studies and my PhD. I am grateful to you all,
and especially to those named below in no particular order.

First, thank you to my supervisor, Rune Møller Jensen, for his great advice, his
insights, and for always being a constructive and positive advisor. Thanks also to my
co-supervisor, David Pisinger, for his wisdom and his excitement about research.

My time in Copenhagen would not have been the same without friends and col-
leagues Dario Pacino and Alberto Delgado, who I thank for their comments on my
work, as well as for the times we avoided work. Thanks to Berit Dangaard Brouer,
Line Blander Reinhardt and Christian Edinger Munk Plum, who have given me advice
and assistance. I am also grateful to the Masters students who have worked with me
on project and thesis topics, with an extra thanks to those who are co-authors as well:
Tinus Abell, Björg Áskelsdóttir, Adam Britt, and Christian Kroer.

This PhD would definitely not have been possible without the help of Mikkel
Muhldorff Sigurd and Shaun Long at Maersk Line. Thanks to Mikkel for guiding
the ENERPLAN project and for opening the doors of Maersk to research. Thanks
to Shaun, who devoted considerable time to helping Rune and me understand fleet
repositioning and the operations of shipping lines.

I owe much gratitude to my masters advisor Meinolf Sellmann, who introduced me
to the world of research during my time at Brown University. Meinolf’s energy and wits
inspired and motivated me, and played a critical role in me continuing on to a PhD.
My thanks to the “Optimization Gang” at Brown: Yuri Malitsky, Serdar Kadıoğlu,
Carleton Coffrin, Justin Yip, Olga Ohrimenko, Marie Pellau and Lucile Robin. A
special thanks to Yuri, who is a hard working collaborator and a great friend.

I am also grateful to Stefan Voß at the University of Hamburg for hosting me during
my “research stay abroad”, as well as the entire Institut für Wirtschaftsinformatik for
welcoming me so warmly to Hamburg. I have been also fortunate to have had amazing
co-authors who have not yet been mentioned, and I therefore thank Carlos Ansótegui,
Amanda and Andrew Coles, Elena Kelareva, Philip Kilby, and Robert Stahlbock.

I have no doubt I would not be where I am today if it were not for Hans-Peter
Bischof’s encouragements during my bachelor’s degree for me to do a PhD. I thank him
for that, and for the study abroad he organized to Osnabrück, Germany that remains
a significant milestone of my life.

Finally, and most importantly, I wish to thank my parents for always putting my
education first and supporting me in everything I have done, even when moving halfway
around the world. I also thank my wife, Christine, for her love and support, especially
throughout my PhD, which is a daunting enough task without having a long distance
relationship as well. We’ve endured weeks and months of separation and the stress of
my deadlines, and I thank you for being with me through it all.

Abstract

With the incredible growth of containerization over the past half century, shipping
lines and ports are facing increasing challenges in ensuring that containers arrive at
their destinations on time and on budget. This dissertation addresses several critical
problems to the operations of shipping lines and ports, and provides algorithms and
mathematical models for use by shipping lines and port authorities for decision support.
One of these problems is the repositioning of container ships in a liner shipping network
in order to adjust the network to seasonal shifts in demand or changes in the world
economy.

We provide the first problem description and mathematical model of reposition-
ing and define the liner shipping fleet repositioning problem (LSFRP). The LSFRP
is characterized by chains of interacting activities with a multi-commodity flow over
paths defined by the activities chosen. We first model the problem without cargo flows
with a variety of well-known optimization techniques, as well as using a novel method
called linear temporal optimization planning that combines linear programming with
partial-order planning in a branch-and-bound framework. We then model the LSFRP
with cargo flows, using several different mathematical models as well as two heuristic
approaches. We evaluate our techniques on a real-world dataset that includes a sce-
nario from our industrial collaborator. We show that our approaches scale to the size
of problems faced by industry, and are also able to improve the profit on the reference
scenario by over US$14 million.

This dissertation also addresses the topic of inter-terminal transportation (ITT),
which involves minimizing the delay experienced by containers being transported be-
tween terminals in a port under varying infrastructure configurations and material
handling equipment properties. Minimizing the delay of ITT is an important problem
in the strategic planning of new ports and port expansions, and one that has not yet
been addressed in an optimization based approach. We provide the first mathematical
model of ITT and show how the model can be used to provide critical information to
port authorities on two real ports, the port of Hamburg, Germany, and the Maasvlakte
area of the port of Rotterdam, Netherlands.

Finally, this thesis gives a polynomial time algorithm for an open problem from the
container stowage literature, the capacitated k-shift problem with a fixed number of
stacks and stack heights, providing an answer to a 13 year old theoretical question in
the container stowage domain.

2

CONTENTS

Contents

1 Introduction 7

1.1 Approach and Contributions . 8

1.2 Secondary Thesis Objectives . 10

1.2.1 Inter-Terminal Transportation 10

1.2.2 Container Stowage . 11

1.3 Outline . 12

2 Containerized Shipping 13

2.1 Containers . 14

2.2 Liner Shipping Networks . 15

2.2.1 Services . 15

2.2.2 Network structure . 17

2.2.3 Vessels . 18

2.3 Ports and Container Terminals . 20

3 Liner Shipping Fleet Repositioning 23

3.1 Repositioning Overview . 24

3.2 Phase-out & Phase-in . 26

3.3 Repositioning Activities . 27

3.3.1 Sailing & Slow-steaming . 27

3.3.2 Sail-on-service . 28

3.3.3 Inducement & Omission . 30

3.3.4 Cargo Demands . 31

3.3.5 Equipment . 32

3.3.6 Flexible Visitations . 32

3.4 Asia-CA3 Case Study . 32

3.5 Related Problems . 33

3.5.1 Shipping Problems . 34

3.5.2 Vehicle Routing Problems . 35

3.5.3 Airline Disruption Management 35

3.6 Chapter Summary . 35

3

CONTENTS

4 Methodological Background 37
4.1 Automated Planning . 37
4.2 Partial-Order Planning . 38
4.3 Linear and Mixed-Integer Programming 42
4.4 Constraint Programming . 43

5 Liner Shipping Fleet Repositioning without Cargo 45
5.1 Dataset . 46
5.2 A PDDL Model of Fleet Repositioning 47

5.2.1 PDDL Model . 47
5.2.2 Planners . 50
5.2.3 POPF . 51
5.2.4 PDDL Model Computational Evaluation in POPF 56

5.3 Temporal Optimization Planning . 58
5.3.1 Linear Temporal Optimization Planning 61
5.3.2 Domain Independent Heuristic Cost Estimation 63
5.3.3 LTOP Model . 64
5.3.4 Fleet Repositioning Specific Heuristics 65
5.3.5 LTOP Computational Evaluation 66

5.4 A Mixed-integer Programming Model of Fleet Repositioning 67
5.4.1 Graph and MIP Description . 67
5.4.2 MIP Model Computational Evaluation in CPLEX 70

5.5 A Constraint Programming Model of Fleet
Repositioning . 70
5.5.1 Model Description . 71
5.5.2 CP Model Computational Evaluation in G12 75

5.6 Chapter Summary . 77

6 Liner Shipping Fleet Repositioning with Cargo 79
6.1 Graph Construction . 80

6.1.1 Phase-out . 81
6.1.2 Phase-in . 81
6.1.3 Flexible visitations . 82
6.1.4 Sail-on-service . 82
6.1.5 Sailing Cost . 83
6.1.6 Graph Formalization . 84

6.2 Arc Flow Model . 85
6.3 Path Based Model . 89

6.3.1 Master Problem . 89
6.3.2 Sub-problem . 90
6.3.3 Reduced Graph . 91

6.4 LSFRP with Inflexible Visitations . 91
6.4.1 Preprocessing . 94

4

CONTENTS

6.4.2 Equipment as Flows . 94

6.4.3 Equipment as Demands . 96

6.5 Heuristic Approaches . 96

6.5.1 Simulated Annealing . 97

6.5.2 Late Acceptance Hill Climbing 98

6.5.3 Solution Representation . 99

6.5.4 Initial Solution Generation . 100

6.5.5 Neighborhoods . 103

6.5.6 Objective Evaluation . 104

6.6 Computational Complexity . 107

6.7 Computational Evaluation . 107

6.7.1 Dataset . 108

6.7.2 Arc, Node and Path Flow Approach Evaluations 110

6.7.3 SA and LAHC Implementations 114

6.7.4 Initial Solution Heuristics Comparison 116

6.7.5 Neighborhood Analysis . 117

6.7.6 SA and LAHC Results . 119

6.7.7 Reference Instance Performance 125

6.8 Chapter Summary . 126

7 Inter-Terminal Transportation 129

7.1 Problem Description . 130

7.1.1 Vehicle Types . 130

7.1.2 Infrastructure . 131

7.2 Literature Review . 132

7.3 Mathematical Model . 132

7.3.1 Graph Construction . 133

7.3.2 Demand . 136

7.3.3 Time-space Graph Example . 136

7.3.4 IP Model . 137

7.3.5 Flow-first Solution Approach . 140

7.4 Computational Evaluation . 141

7.4.1 Data Generation . 141

7.4.2 Hamburg . 142

7.4.3 Maasvlakte 1 & 2 . 146

7.5 Chapter Summary . 151

8 Container Stowage Planning Complexity 153

8.1 The Capacitated k-Shift Problem . 154

8.2 Related Work . 154

8.3 A Polynomial Time Algorithm . 154

8.4 Chapter Summary . 157

5

CONTENTS

9 Conclusion 159

A No Cargo LSFRP PDDL Domain 177
A.1 PDDL Model . 177

A.1.1 Predicates . 177
A.1.2 Functions . 179
A.1.3 Time . 181
A.1.4 Initial and Goal States . 181
A.1.5 Actions . 182

A.2 Forward PDDL Domain . 188
A.3 Reversed PDDL Domain . 192

B An LTOP Model of Fleet Repositioning 197
B.1 Constants . 197
B.2 State Variables . 198
B.3 Optimization Variables . 198
B.4 Initial and Goal States . 198
B.5 Actions . 199

B.5.1 Phase-out . 199
B.5.2 Phase-in . 200
B.5.3 Sailing . 201
B.5.4 Sailing with equipment . 202
B.5.5 Sail-on-service . 202

C ISAC for Black-Box Optimization 205
C.1 ISAC . 207
C.2 BBO Dataset . 208

C.2.1 Solver portfolio . 209
C.3 Features . 209

C.3.1 Further potential features . 210
C.3.2 Feature computation . 211
C.3.3 Feature robustness . 211

C.4 Numerical Results . 212
C.4.1 Scoring and Penalized ERT . 213
C.4.2 ISAC Results . 214

C.5 Conclusion and Future Work . 217

6

Chapter 1. Introduction

Chapter 1

Introduction

Situated at the heart of global trade, liner shipping networks transported roughly 1.5
billion tons of cargo on over 5,000 container vessels in 2012 [168]. Liner shipping
networks primarily transport containers, which are steel boxes of one of several stan-
dardized dimensions that can be filled with goods for shipment. Despite a short period
of decline in 2009, container shipment volumes have been steadily increasing ever since
the container’s invention in the 1950s [101, 168], and this trend looks set to continue.

As the use of containers has increased, so too has the challenge of getting containers
to their destinations on time and on budget. Modern shipping lines have networks that
span the entire globe and use hundreds of container ships to move millions of containers.
In order to deal with the complexity and scale of the problems they are facing, shipping
lines are turning to algorithmic approaches and decision support systems in order to
assist their employees in making difficult decisions.

The research community has identified and modeled several well-known optimiza-
tion problems that attempt to alleviate the challenges that the liner shipping industry
faces (see, e.g., [28, 29]). At the strategic level, shipping lines must create the routes in
their network to satisfy their customers’ demands, a problem that despite a number of
years of research is still too difficult to solve for most realistic sized problems [6, 136].
At the tactical level, container ships are assigned to services in an existing shipping
network in order to minimize the sailing costs while keeping customer’s demands in
consideration [134]. And, finally, at the operational level, shipping lines must deter-
mine vessels’ sailing speeds [49, 175], which vessels carry which containers, and manage
disruptions [23].

Through our collaboration with Maersk Line, currently the world’s largest container
shipping line, we found that a key operational problem has not yet been addressed in
the liner shipping literature. Liner shipping networks are regularly adjusted in order
to handle fluctuations in seasonal demand, as well as to adjust the network to chang-
ing macroeconomic conditions. These adjustments can involve adding new routes to
the network, removing unprofitable routes, or expanding/contracting existing routes.
Container ships must be repositioned within the network to facilitate these changes.
Repositioning involves sailing vessels between routes in a liner shipping network in or-

7

Chapter 1. Introduction

der to minimize sailing costs, port fees, and disruptions to container flows. During
repositioning, ships may undertake a number of cost saving activities, such as bringing
empty containers to places where they are needed or temporarily taking over operations
on existing services.

Repositioning a ship can cost upwards of a million US dollars, and hundreds of ships
are repositioned each year by the world’s shipping lines. Finding plans of activities
that minimize the cost of repositioning, while avoiding the disruption of cargo flows
in the network, has the potential to save shipping lines significant amounts of money.
Currently, ship repositioning plans are created by hand by employees of shipping lines.
Furthermore, since one of the main cost components of repositioning ships is bunker
fuel, optimizing vessel activities can also help shipping lines reduce their CO2 output
and become more sustainable. This dissertation considers the following core question:

Can an algorithm be developed to create real-world realizable liner shipping
fleet repositioning plans within a reasonable amount of CPU time?

Fleet repositioning involves a number of side constraints. We aim to model key
constraints that determine a plan’s real-world feasibility, such as constraints on the
sailing speed and capacity of ships, and by ensuring the routes determined for ships
adhere to a number of liner shipping specific constraints. Our goal is to generate
repositioning plans in under an hour in order to allow repositioning coordinators to
use our algorithms in an interactive fashion in a decision support system. Since even
a small improvement in the objective function can translate to tens of thousands of
dollars in cost savings or increased revenue, our algorithms should find repositioning
plans that are within a few percent of the optimal solution.

We show that fleet repositioning problems can be solved in many cases to optimality
with or without cargo flows on a dataset based on real-world data from our industrial
collaborator. In addition, we compare our solution approaches for fleet repositioning to
a real world scenario from Maersk Line in 2011. Our solution methods are able to find
a repositioning plan with a profit of $32.1 million1, which is roughly $14 million higher
than the profit of the actual repositioning that was carried out by Maersk Line.

1.1 Approach and Contributions

We model fleet repositioning with and without cargo flows, and call the general problem
of repositioning the liner shipping fleet repositioning problem (LSFRP). We test both
models on datasets based on real scenarios from our industrial collaborator and crafted
scenarios using industrial data.

We first model the problem without cargo flows in order to focus on minimizing
the cost of the activities chosen during repositioning, and call this problem the no-
cargo LSFRP (NCLSFRP). This problem has a number of simplifications of the overall
problem with cargo flows that we present in detail in Chapter 5. A number of activities,

1All monetary units in this dissertation are US dollars.

8

Chapter 1. Introduction

such as sailing a vessel, have time-dependent task costs, i.e., the cost of performing an
activity is dependent on the action duration. The NCLSFRP is difficult to solve due to
these costs as well as because of the interactions of vessels in choosing which activities
each vessel should perform. Since the problem contains both scheduling and routing
components, it is not clear a priori which types of solution method will solve it most
effectively.

We present four different solution approaches and describe the trade-offs between
them, starting with an automated planning PDDL model. Since automated planning
techniques have difficulties with time-dependent task costs, we introduce a novel plan-
ning technique called linear temporal optimization planning (LTOP), which combines
the well-known partial-order planning paradigm with linear programming. We model
the NCLSFRP in the LTOP framework and show that planning and optimization need
not be mutually exclusive endeavors. We also provide a mixed-integer programming
(MIP) model and constraint programming (CP) model of the NCLSFRP, showing that
while the MIP has a difficult time with the scheduling aspects of the problem, CP is
able to outperform all other approaches, albeit with the least extensible model. Our
PDDL, LTOP and MIP models were first published in [161], and our CP model in [90].

We then move to a model of the LSFRP with cargo and equipment flows. In
addition to the challenge of optimizing activities with time-dependent task costs, we
incorporate a multi-commodity flow problem to handle cargo and equipment. We also
include a more realistic view of certain problem activities than in the NCLSFRP. We
create a graph based representation of the problem that includes a number of key
problem constraints and activities, such as sail-on-service opportunities, within the
graph itself. We use this graph in all of our solution methods for the LSFRP with
cargo and equipment flows.

We first model the problem as a MIP using an arc flow formulation and show that,
while small instances can be solved to optimality, larger instances prove challenging
for the MIP. We also introduce a node flow model for a special case of the LSFRP in
which all activities have a fixed start and end time. On those instances that conform to
this simplification of the LSFRP, we are able to find optimal solutions to nearly every
instance in our dataset, including several instances that the arc flow model cannot solve.

Furthermore, we introduce a path based model which is solved using a column
generation procedure. This approach solves even more problems that neither the arc
flow or node flow models can solve. This model iterates between a master problem
which selects vessel paths through the graph, and a sub problem that generates paths.
Since column generation can only be used for solving linear programs (rather than
mixed-integer programs), the path based model is only guaranteed, from a theoretical
perspective, to find a lower bound to the overall LSFRP. However, our path based
model finds solutions with integer values for 95% of our dataset, meaning it finds the
optimal solution.

Finally, we also introduce two heuristic approaches based off of simulated annealing
(SA) [91] and late acceptance hill climbing (LAHC) [24], respectively. Although our
heuristic approaches are not always able to find optimal solutions, they are effective

9

Chapter 1. Introduction

at providing good solutions quickly. We presented our work on the arc flow model of
the LSFRP in [163], the node flow model in [164], and on solving the LSFRP with
heuristics in [159] and [158].

The contributions of this dissertation are as follows:

1. A planning model of the NCLSFRP.

2. A formalism of temporal optimization planning and its linear instantiation, linear
temporal optimization planning.

3. A linear temporal optimization planning model of the NCLSFRP.

4. A mixed-integer programming model of the NCLSFRP.

5. A constraint programming model of the NCLSFRP.

6. A graph construction and arc flow mixed-integer programming model of the LS-
FRP with cargo flows.

7. A simulated annealing and late acceptance hill climbing approach to the LSFRP
with cargo flows.

8. A node flow mixed-integer programming model of a specialized version of the
LSFRP with cargo flows.

We therefore answer the core question of this thesis with “yes”; that is, an algorithm
can be developed to create liner shipping fleet repositioning plans for a decision support
system within a reasonable amount of CPU time.

1.2 Secondary Thesis Objectives

In addition to fleet repositioning, this dissertation considers two secondary thesis ques-
tions from the liner shipping and container port optimization domains.

1.2.1 Inter-Terminal Transportation

Container ports are facing new challenges as more and larger vessels increase container
traffic around the world. The world’s container port throughput in 2011 reached a new
record of 572.8 million TEU2 [168]. In order to handle such high volumes of containers,
ports, like shipping lines, are turning to automated decision support to assist employees
in their daily tasks. The research community has focused on solving a number of key
problems that ports face in order to increase their efficiency in the face of increasing
container flows. In particular, there has been an emphasis placed on modeling the
internal processes of container terminals, including automated guided vehicle (AGV)
and automated lift vehicle (ALV) routing (see [8]), berth scheduling (see [16]), crane
split optimization (e.g., [130]), and yard storage optimization (e.g., [26, 100]).

However, most ports consist of multiple terminals, and many containers travel from
one terminal to another as they are transported to their final destination. Inter-terminal

2TEU stands for “twenty-foot equivalent unit“, and is explained in detail in Section 2.1.

10

Chapter 1. Introduction

transportation (ITT) is concerned with the movement of containers between terminals
as they are transshipped or transferred between different transportation modes. New
ports include more and more terminals to keep up with demand, and old ports are
expanding the number of terminals present, such as the new Maasvlakte II area of the
port of Rotterdam, Netherlands [133]. Ports require decision support to help them in-
vestigate ITT using various configurations of vehicles and vehicle types, as well as under
varying types of infrastructure connections between the terminals. Several simulation
studies [46, 124, 125] have been proposed to investigate ITT, but no mathematical model
exists in the literature for finding minimal cost flows of containers between terminals.
With such a model, ports could analyze different infrastructure and vehicle options,
allowing them to make their port more competitive and reduce delays in containerized
transport. To this end, this dissertation examines the following question:

Can a general model of inter-terminal transportation be developed to mini-
mize delay that handles arbitrary types of material handling equipment and
transportation infrastructure, and be solved to optimality within an hour of
CPU time?

We provide a novel mathematical model using a time-space graph to minimize the
delay in delivering the containers in a set of inter-terminal demands. Our model han-
dles a variety of infrastructure configurations, as well as varying material handling
equipment, such as automated guided vehicles (AGVs), automated lift vehicles (ALVs),
multiple-trailer systems (MTSs) and barges. We show what kind of information the
model can provide to port and terminal operators on a dataset of instances representing
the ports of Rotterdam, Netherlands and Hamburg, Germany.

1.2.2 Container Stowage

We also solve an open problem from the field of container ship stowage, which concerns
itself with the safe and efficient loading of containers on to container ships. The stowing
of containers on container ships is a difficult problem that has to take into account a
number of constraints to ensure the stability of the vessel and the safe stowage of
containers (see, e.g., [127]). One of the main objectives of container stowage is the
minimization of shifting, in which containers must be removed from the vessel and
are placed back into the vessel in order to unload a container. Although there are a
number of successful approaches for solving container stowage problems, such as the
decomposition approach of Wilson and Roach (2000) [179] and the recent approaches
of Delgado, et al. (2012) [43] and Pacino, et al. (2011) [128], little is known about
the theoretical complexity of stowage planning. Avriel, et al. (2000) [13] introduced
the zero shift problem, in which they model a simplified version of stowage planning
that minimizes the number of shifts that must be performed in a set of container
stacks over some number of time points. However, they were unable to find a proof of
the complexity of the capacitated k-shift problem, which occurs when there is a fixed
number of stacks with fixed heights. We provide an algorithm and proof of runtime and

11

Chapter 1. Introduction

correctness showing that the capacitated k-shift problem with fixed stacks and fixed
stack heights is solvable in polynomial time.

1.3 Outline

The outline of this dissertation is as follows.

Chapter 2 We provide background on containerized shipping both at sea and on land.
We describe the components relevant to fleet repositioning, inter-terminal trans-
portation and the capacitated k-shift problem, including liner shipping networks,
container ships, and port operations.

Chapter 3 In this chapter, we describe liner shipping fleet repositioning in detail.
We introduce all of the cost saving (and revenue earning) activities present in
fleet repositioning, as well as describe a case study performed with our industrial
collaborator.

Chapter 4 We provide background information for the several different solution ap-
proaches used in this dissertation, including automated planning, mixed-integer
programming and constraint programming.

Chapter 5 We model and solve a simplification of fleet repositioning that ignores
cargo flows, but focuses on other difficult aspects of the problem, such as time-
dependent task costs. We use automated planning, an automated planning and
linear programming hybrid called linear temporal optimization planning, mixed-
integer programming and constraint programming to find optimal solutions on a
dataset of instances modeled on a real repositioning scenario.

Chapter 6 This chapter examines the LSFRP including cargo and equipment flows
using a specialized graph. We solve the problem by formulating models based on
an arc flow, path generation, and a node flow. In addition, we present two heuristic
solution approaches, simulated annealing and late acceptance hill climbing, in
order to solve problems that are too large for the optimal approaches.

Chapter 7 We shift our focus in this chapter to port operations and describe inter-
terminal transportation. We present a novel mathematical model that minimizes
the delay of container transports between port terminals.

Chapter 8 We present a polynomial time algorithm for the capacitated k-shift prob-
lem with a fixed number of stacks and fixed stack heights in this chapter. Our
proof of correctness and runtime provide an answer to a problem that has been
open since the year 2000.

12

Chapter 2. Containerized Shipping

Chapter 2

Containerized Shipping

Before Malcolm McLean invented the shipping container in 1956, transporting cargo
by sea was a long and arduous process. Longshoremen unloaded trucks and trains
and packed ships full of boxes and bags of goods, and then unloaded them again at
their destination, a process that could take several days for just one ship. Shipping
goods was not only expensive, but cargo often had a tendency to go missing or be
damaged along the way to its destination [40, 101]. Containers, which are large steel
boxes in which goods are placed, revolutionized seaborne trade, allowing cargo to be
securely, safely and quickly handled and transported to destinations around the world.
With containers, cargo can be quickly transferred not only to and from ships, but also
between various modes of transportation, such as between trains, trucks and ships.
Containers have significantly lowered the costs of maritime trade, and costs continue
to decline with the increasing size and efficiency of seagoing vessels [168].

Liner shipping encompasses most of the world’s seaborne containerized shipping,
in which specially built seagoing vessels carry thousands or even tens of thousands of
containers on a regular schedule between ports. The “liner” in liner shipping refers to
the way vessels follow one another in a line like fashion along a route. The fixed schedule
of liner shipping is a key selling point for the liner shipping industry, and is what
differentiates it from tramp or industrial shipping. A common analogy to understand
the difference between liner shipping and tramp shipping is that the regular schedule
of liner shipping is similar to that of a bus or rail network, except the periodicity is
generally weekly, rather than every few minutes or hours. In contrast, in tramp shipping
vessels act more like taxis, carrying cargo without a fixed schedule or route [30, 139].
In both tramp and liner shipping, the goal of shipping firms is to maximize their profit,
whereas in industrial shipping the goal is to minimize costs.

In the remainder of this chapter, we will discuss the innovation that makes con-
tainerized shipping possible, the container, followed by an overview of liner shipping
networks, which connect the ports of the world. Finally, we look at the components of
a container port, the interface between the land and the sea.

13

Chapter 2. Containerized Shipping

Figure 2.1: A twenty foot and a forty foot container, adapted from [127].

2.1 Containers

The centerpiece of containerized shipping is the intermodal container, a rectangular steel
box with castings on all of its corners to allow the safe stacking of multiple containers.
Standard containers have a width of 8 feet, a height of 8 feet 6 inches and are either
20 or 40 feet long, as depicted in Figure 2.1. A variety of variations on these standard
containers exist, such as high cubes and 45 foot length containers, which are outside
the scope of this work.

Quantities of containers are measured in either the twenty-foot equivalent unit (TEU)
or the forty-foot equivalent unit (FEU or FFE). A TEU represents a single twenty foot
container, and one FFE is equal to two TEU (i.e. two twenty-foot containers or one
forty-foot container). Even though there are a number of different sizes of containers,
not all of which have a length divisible by 20, their quantities are measured in TEU or
FFE nonetheless.

Numerous types of containers exist to fit the varied needs of shippers, such as tank
containers for liquids, open top containers for tall cargo, and refrigerated containers for
cargo that needs to be chilled, to name a few. Many non-standard containers require
special handling and storage procedures to ensure that their contents are not damaged
and to ensure the safety of the vessel and its crew.

This dissertation focuses primarily on dry and reefer (i.e. refrigerated) containers.
Dry containers are standard 20 or 40 foot containers requiring no special handling and
can be stored anywhere on a vessel. Reefer containers, which can also be either 20
or 40 feet in length, have an integrated refrigeration unit and therefore require access
to an electrical outlet on board a vessel. Most vessels only have a limited number of
locations where an outlet is available, meaning the number of reefer containers that can
be transported by a vessel tends to be less than the number of dry containers.

14

Chapter 2. Containerized Shipping

2.2 Liner Shipping Networks

The goal of a liner shipping network is to facilitate the transport of containers between
ports. A liner shipping network is defined by a published, periodic schedule, that
determines when vessels visit ports. The periodicity of the schedule is central to liner
shipping, in that seagoing vessels visit ports on a weekly or bi-weekly basis, at the same
time each week. Liner shipping networks can span the entire globe or be constrained
to a specific geographic region, depending on the shipping line and its customers. The
overall structure of a liner shipping network takes the form of either a hub-and-spoke,
a direct routing approach or a mix of hub-and-spoke and direct routing [76, 122].

2.2.1 Services

In order to achieve a weekly or bi-weekly regularity, vessels are sent on cyclical routes
called services1. Services are cyclical routes that visit ports on a regular, usually weekly,
schedule. A weekly service has as many vessels as the number of weeks a vessel requires
to complete a single rotation of the service. That is, a service with a rotation duration
of 5 weeks requires 5 vessels in order to maintain a weekly frequency. Each vessel is
assigned a slot on the service, thus, there are as many slots on the service as there are
vessels. A slot can be viewed as containing the specific schedule for each vessel. In
other words, while the schedule for a service specifies that a particular port is visited,
for example, on Mondays at 17:00, the schedule for a slot provides the exact day that
the vessel in that slot should visit the port (i.e., April 22, 2013 at 17:00). For a service
with a weekly regularity, the vessel in the subsequent slot would visit the port on April
29, and the vessel in the previous on April 15. Each port visited on a service slot is
referred to as a call. Shipping lines assign each call an arrival and departure time.
Between the arrival and departure time, the vessel sailing on the service loads and
unloads containers. Each slot contains multiple legs, and each leg begins at a port call
and ends at the next scheduled call.

An example service

Figure 2.2 shows an example liner shipping service in the North Sea, consisting of a
time-space graph in Figure 2.2a and a geographical representation of the service in
Figure 2.2b. The three week long service contains three vessels to visit its 5 port calls.
Notice the cyclical structure of the service, in which a vessel, upon reaching aar from
rtm, continues sailing to fxt. Additionally, all three vessels are sailing at the same
time with a temporal spacing of a week. The positions of each vessel, shown as red,
green and blue arrows, at the start of week three of the service is shown in Figure 2.2b.
Table 2.1 gives the schedule of the example service in Figure 2.2. The schedule displays

1In shipping parlance, services are sometimes called “strings”. We avoid this term to prevent
confusion with programming terminology.

15

Chapter 2. Containerized Shipping

(a) Time-space graph of a service. (b) Geographical representation of a service.

Figure 2.2: An example liner shipping service connecting several nations of Northern Europe
with the duration of a single rotation lasting three weeks. The position of each of the three
vessels required for the service in (b), represented by red, blue, green arrows, corresponds
to week three in (a).

Port Arrives Departs Days
aar Thursday 01:00 Thursday 08:00 0
fxt Sunday 12:00 Monday 02:00 3
dub Tuesday 23:00 Thursday 03:00 5
leh Wednesday 08:00 Wednesday 18:00 13
rtm Saturday 06:00 Saturday 14:00 16

Table 2.1: A time table showing the arrival and departure time of each call on the example
service from Figure 2.2.

the day of the week and the time of day that each vessel arrives and departs each port,
along with the number of days since the start of the rotation at aar.

Service structure

Due to trade imbalances on some services, the amount of containers carried on each
leg of a service may vary greatly. Many services can be split into two components,
the headhaul and the backhaul. On the headhaul, containers are carried from areas
of production to areas of demand, and vessels are generally at or near capacity. For
example, vessels traveling from Asia to the US or Asia to Europe are on the headhaul
of their service. On the backhaul, vessels are returning to areas of production and
are relatively empty. On some services, a single port separates the headhaul from
the backhaul. Such ports are called turn ports, and hold a special significance for
optimizing the movement of container vessels since the vessel tends to offload nearly all
of its containers and is close to empty before it loads more containers. Turn ports offer
opportunities to move vessels on to and off of services that avoid disrupting the flow of
cargo.

16

Chapter 2. Containerized Shipping

Figure 2.3: An example service along
the US and Canadian east coast.

Pick-up → Delivery US Flag Non-US Flag
Halifax → Newark 3 3
Halifax → Savannah 3 3
Halifax → Non-US Port 3 3
Newark → Savannah 3 7
Newark → Non-US Port 3 3
Savannah → Non-US Port 3 3

Table 2.2: Legal and illegal cargo pick-up and
delivery pairings due to US cabotage laws.

2.2.2 Network structure

Modern liner shipping networks are generally composed of a hub-and-spoke-like net-
work, with several ports serving as hubs between multi-port trunk services and regional
feeder services. Liner shipping networks do not conform exactly with a hub-and-spoke
design, and are often a mix of direct connections and feeder services.

Although there is no strict definition of trunk services, they generally connect ports
between geographic regions and have a long duration, requiring four or more weeks to
complete a rotation. Trunk services can connect hubs to each other, connect hubs to
distant markets, such as a hub in Asia to the ports of Northern Europe, or connect large
ports to each other, such as Shanghai, China and Oakland, USA. Panamax vessels or
larger usually sail on trunk services. Feeder services, in contrast, are the spokes of the
network, and ferry cargo from large hub ports to smaller ports that do not merit visits
by the trunk services. Small vessels, nearly always Panamax or smaller, travel on feeder
services. Small vessels are more economically viable on such routes [122] due to their
lower bunker consumption, which we will explore in Section 2.2.3.

Transshipments

Containers are moved between services through transshipments, in which a container
is offloaded from a vessel, temporarily stored at a container terminal, and then loaded
onto another vessel. Transshipments allow liner shippers to provide service to smaller
ports, as well as aggregate cargo along the trunk services in their networks. Containers
may undergo several transshipments on their way to their destinations. A number of
key ports act as the central transportation hubs for many shipping lines, such as Rot-
terdam, Netherlands; Singapore; Tanjung Pelepas, Malaysia; and Hong Kong, China.
Rotterdam is a local hub for cargo traveling to Europe, and Singapore, Tanjung Pelepas,
and Hong Kong collect cargo from ports around Asia before it is forwarded on vessels
sailing to the rest of the world.

17

Chapter 2. Containerized Shipping

Figure 2.4: A quay crane services the post-Panamax vessel Maersk Edinburgh at the Bur-
chardkai Terminal in the port of Hamburg, Germany.

Sailing restrictions

Liner shipping networks must be carefully constructed in order to avoid violating cab-
otage restrictions, which are laws that prohibit the shipment of domestic cargo with
a foreign flagged vessel. Note that a vessel’s flag denotes the country where it is reg-
istered. A vessel registered in one country is therefore not allowed to pick up cargo
in a different country with cabotage laws and deliver that cargo to the same country.
Although this is a simplification, as cabotage laws vary from country to country and
have many details, this understanding of cabotage laws is sufficient for the purposes of
this dissertation. Figure 2.3 shows an example service from Halifax, Canada to Newark
and Savannah USA, and Table 2.2 lists several possible cargo routes along the service.
The table lists which pick-ups and deliveries would be allowed for a US flagged vessel
versus a non-US flagged vessel, due to cabotage laws. Both vessels are allowed to carry
cargo in most cases. However, when sending cargo from Newark to Savannah, a US
flagged vessel must transport the cargo. Also note that in the case where cargo is being
shipped from Halifax to Savannah, if the cargo were to be transshipped in Newark to
a non-US flagged vessel it would be violating cabotage laws.

Shipping lines are further restricted in where their vessels may travel due to laws
preventing certain types of cargo, such as governmental aid or military equipment,
from traversing the ports of certain nations. For example, a ship carrying US mil-
itary equipment should not travel through, say, Iran or North Korea. Even though
these restrictions are taken into account during the design of a network, they must be
considered when dealing with disruptions or changes in the network.

2.2.3 Vessels

Container vessels are classified into several categories based on the length and width
of the vessel [138]. The class of Panamax class vessels describes any vessel able to
fit through the locks of the Panama canal. Panamax vessels have a maximum length

18

Chapter 2. Containerized Shipping

5 10 15 20 25
Speed (kn)

0

50

100

150

200

250

300

350

B
un

ke
r

C
on

su
m

pt
io

n
(t

/2
4h

r)

Figure 2.5: Bunker consumption in metric tonnes per 24 hours for a feeder vessel (green,
triangles), Panamax vessel (red, squares), and a post-Panamax vessel (cyan, circles). Data
source: Anonymized data from Maersk Line.

of 294.13 meters, beam (width) of 32.31 meters and draft of 12.04 meters. Pana-
max vessels, depending on their build specifications, can carry up to 5,000 TEU [138].
Post-Panamax vessels are vessels that exceed the maximum vessel dimensions of the
Panama canal in one or more dimensions, and can therefore not travel through the
canal. Figure 2.4 shows the post-Panamax vessel Maersk Edinburgh at call in Ham-
burg, Germany. The vessel is 366 meters long and can carry up to 13,092 TEU [137].
Feeder vessels are small vessels used on regional routes, such as within Northern Europe
or the Mediterranean Sea, that carry around 1,000 to 2,000 TEU.

Vessels consume a thick, heavy fuel called bunker fuel, usually heavy fuel oil (HFO) [121],
for propulsion. The amount of bunker consumption varies with the speed of the vessel.
Vessels have a minimum speed, and traveling at a speed lower than this value could cause
damage to the engine. Recently, shipping lines have begun slow-steaming, in which the
speed of vessels is reduced in order to reduce bunker fuel consumption [80, 112]. Fig-
ure 2.5 shows approximate bunker consumption curves for three vessel classes from
Maersk Line’s fleet2 in metric tons of fuel per 24 hours given the speed of the vessel in
knots. The green line with triangles shows the curve for a roughly 1000 TEU vessel used
for feeder services, the red line with squares gives the consumption curve for a Pana-
max vessel that can carry around 4500 TEU, and the cyan line with circles displays the
bunker usage of a post-Panamax vessel that can carry over 10,000 TEU. Slow-steaming
is especially valuable for Panamax and larger vessels. For example, traveling at its min-
imum speed from Shanghai, China to Los Angeles, USA, the post-Panamax vessel from
Figure 2.5 requires only 21.5% of the fuel it would require traveling at full speed, albeit
the journey takes over twice as much time. For the Panamax vessel, the savings are
even larger. It requires only 13.5% of the fuel it would need to travel at its maximum
speed, but its journey, as in the case of the post-Panamax vessel, becomes much longer.

Slow steaming and the bunker consumption of vessels has been the topic of several

2The curves are only approximate in order to protect the confidentiality of Maersk Line’s data.

19

Chapter 2. Containerized Shipping

Figure 2.6: A port with two sea terminals and a rail terminal.

recent works that have emphasized the importance of including a realistic view of bunker
consumption. Optimizing the sailing speed of a vessel on an existing service can result
in bunker fuel consumption reductions of up to 25% [49], and optimizing several services
also results in fuel reduction [175].

Bunker consumption can be approximated with a third-degree polynomial [175],
but can also be modeled with a linear approximation [22] in order to harness linear
programming and mixed-integer linear programming solvers for solving problems with
variable vessel speed.

2.3 Ports and Container Terminals

A container’s journey through a liner shipping network starts and ends at a port.
Ports consist of one or more container terminals, at which containers are loaded and
unloaded from ships and stored in the yard or transferred to land based transportation.
Terminals can be separated into a quayside, yard, and a landside [154]. The quayside is
the interface between the terminal and the liner shipping network, whereas the landside
is the juncture between the terminal and hinterland transportation or transportation
between terminals. Between the quay and land is the yard, in which containers are
stored until the next leg of their journey is ready to begin.

Figure 2.6 shows an example port containing two sea terminals and a rail terminal.
For incoming cargo, quay cranes unload containers from ships and place them on intra-
terminal container handling vehicles, such as automated-guided vehicles (AGVs) or
multi-trailer systems (MTSs), or the containers are positioned along the quay and are
retrieved by automated-lift vehicles (ALVs), which have the ability to load and unload
containers without the assistance of an external crane. The vehicles then bring the
containers to the container stacks in the yard. In this example, rail mounted gantry
cranes retrieve the containers from the vehicles and place them in the stacks, although

20

Chapter 2. Containerized Shipping

in some ports straddle carriers take this role [154]. At the landside of the terminal,
vehicles, such as trucks, retrieve containers to bring to customers. Some containers
may also be brought to other terminals in the port, such as other sea terminals or rail
terminals. This is called inter-terminal transportation and is the subject of Section 7.

Container terminals earn money through moving containers on and off of vessels and
storing them in the yard. Container terminals earn money for each move they perform,
which is the transfer of a single container, regardless of size, on or off a vessel. Rates
per move are usually in the range of $50 – $300 depending on the port and whether the
container is empty or full (empty container moves tend to be cheaper than full moves).
Transshipments tend to cost more than a single move, but are cheaper than performing
both a load and an unload move. Ports also earn money through yard storage fees,
although transshipments usually include a short period of yard storage in the price.

21

Chapter 2. Containerized Shipping

22

Chapter 3. Liner Shipping Fleet Repositioning

Chapter 3

Liner Shipping Fleet Repositioning

As production and demand wax and wane across the world, liner shipping networks,
must be constantly adjusted due to seasonal shifts in demand, and to ensure that they
are compatible with the current state of the world economy. Shipping lines must add,
remove and modify existing routes in their network in order to keep it relevant for their
customers. When a shipping line decides to change its network, vessels must be moved
between services in order to realize the changes. The process of moving vessels in such a
manner is called repositioning. Shipping lines perform one or two large network changes
requiring repositionings each year, along with several smaller repositionings throughout
the year.

Shipping lines must reposition vessels in order to stay in business, but repositioning
vessels is generally not a revenue earning endeavor. Shipping lines therefore seek to
minimize the cost of repositionings by reducing fuel consumption as well as avoiding,
as much as possible, the disruption of normal operations of the network. Repositioning
a single vessel can cost up to, and sometimes over, a million US dollars, according to
our industrial collaborator Maersk Line. Hundreds of repositionings are undertaken
every year by the world’s shipping lines, yet the problem of optimizing the movements
of repositioning vessels has been scarcely studied.

At first glance, vessel repositioning sounds like a standard vehicle routing problem
(VRP) in which vessels must be moved from one location to another. On the contrary,
the structure of liner shipping networks as well as liner shipping specific opportunities
result in a problem quite different from the well known vehicle routing variants. In
fact, a plethora of activities exist for repositioning vessels to save money or avoid
container flow disruptions, such as utilizing existing routes of the network, carrying
empty containers, varying the sailing speed, or re-scheduling certain parts of a route, to
name a few. Additionally, in repositioning problems there is no requirement of visiting
every port call. Rather, doing so would be extremely expensive and is discouraged.

Time-dependent task costs [90] complicate fleet repositioning problems. Time-
dependent task costs involve activities in which an activity’s cost varies with its du-
ration. Such activities are found in problems like the vehicle routing problem with
soft time windows (VRPSTW) (e.g., [135]) and ship scheduling with time-varying

23

Chapter 3. Liner Shipping Fleet Repositioning

draft [88, 89]. Time-dependent task costs create difficult to solve trade offs for op-
timizers, in that changing the duration of an activity may improve the cost of the
activity itself, but such changes also mean that the opportunities available after the
activity completes are different. Thus, improving changes in the objective for a single
activity could have a detrimental effect on the objective as a whole, in that later activ-
ities are now more expensive. Furthermore, predicting the consequences of adjusting
the duration of a single activity can be difficult to predict, due to the propagation of
this change to later activities.

We assume that the vessels involved in a repositioning are selected by a repositioning
coordinator, rather than chosen by an optimization model. This helps to prevent side
effects in the liner shipping network, and any consequences of the choice of vessels
involved can be handled directly by the repositioning coordinator.

In this chapter we describe all of the details of repositioning problems, starting with
an overview and definition of repositioning in Section 3.1. The procedures by which
vessels leave and enter services, and thus start and end a repositioning, are described
in Section 3.2, followed by a discussion of the activities that vessels may undertake
during a repositioning in Section 3.3. We go on to describe a real world repositioning in
the Pacific conducted by our industrial collaborator, Maersk Line, in Section 3.4. We
conclude the chapter in Section 3.5 with a discussion of well known problems from the
literature that are similar to repositioning problems.

3.1 Repositioning Overview

The goal of repositioning vessels is to carry out one of two types of network changes:
i) to create a new service, or ii) to expand an existing service. For both of these network
changes, vessels need to be brought from somewhere else in the network, which may
require shutting down a service or reducing the number of vessels on a service. We can
actually view the expansion of an existing service as the creation of a new service in
which several of the vessels happen to already be on schedule. This allows us to have a
unified understanding of repositioning in which multiple vessels must leave their initial
services in order to travel to a new, goal service that is being created. Vessels must
occasionally undergo repairs or routine maintenance, which also requires repositioning.
We view this as a special case of the above repositioning goals, with repairs being an
activity that must be performed during the repositioning (with some side constraints).
Nonetheless, we do not currently model repairs in this work, and thus do not describe
repair procedures in detail.

Figure 3.1 shows a geographic view of a repositioning, in which a vessel from the
red service (right) and a vessel from the green service (middle) are repositioned to start
the new blue service (left). A potential path of the vessel from the red service is shown
as a solid black line, and a dashed line shows a potential path for the vessel from the
green service. Note that there are a number of different options, and the repositioning
we show is only one possibility of many. The vessels sail from their initial services

24

Chapter 3. Liner Shipping Fleet Repositioning

Figure 3.1: Vessels are repositioned from the red and green services to the blue service.

to two different ports on the blue service. Behind this picture lie the many details of
repositioning: when and where the vessels should leave their initial services, what the
vessels should do along the way to the goal service, and when and where should the
vessels arrive at their goal service?

What makes repositioning problems particularly interesting is that repositioned ves-
sels have a number of decisions to make besides where to leave a service and where to
join their goal service. Vessels may undertake a number of activities along the way to
their destination, such as carrying empty containers (equipment), sailing on other ser-
vices within the network (sail-on-service), and adding (inducing) / removing (omitting)
port calls. All the while, the speed of the vessel can be optimized to either conserve
fuel or reach its destination faster, and containers are loaded and unloaded to prevent
the disruption of normal cargo flows.

There is considerable room for shipping lines to save money while repositioning.
Cleverly planned repositionings can result not only in lower costs for shippers, but also
profits in certain situations in which customer demands can be satisfied. Repositioning
is therefore a critical problem in the operations of shipping lines, and one that offers
great potential for cost savings through the use of automated techniques.

The goal of repositioning problems is to determine the minimal cost paths from
the vessels’ initial services to the goal service, such that cargo flows are minimally
disrupted. Avoiding cargo flow disruptions can be seen as a problem of maximizing
revenue in a subset of the network, thus, we will look at repositioning problems both
as a cost minimization problem, and as one of profit maximization.

Repositioning problems concern themselves with a subset of the overall network
that is being changed, which stands in sharp contrast to other liner shipping problems,
such as network design (e.g. [5, 22]). This is due to the fact that the repositioning of a
group of ships only has an impact only on those ships’ initial services, the goal service,
and services with specific trade structures identified by the repositioning coordinator
as potential sail-on-service opportunities. This helps keep the size of repositioning
problems manageable, but it by no means indicates that repositioning problems are
easy. On the contrary, the many activities available to vessels during repositionings
result in many different possibilities that solution methods must sift through to find

25

Chapter 3. Liner Shipping Fleet Repositioning

Figure 3.2: A time-space graph of a service with three vessels, with a latest phase-in require-
ment of port c in week 3.

the one (or ones) with the optimal cost.

Fleet repositioning is an NP-hard problem, which we show later in Chapter 6 through
a reduction to the knapsack problem.

3.2 Phase-out & Phase-in

The repositioning period for each vessel starts at a specific time when the vessel may
cease normal operations, that is, it may stop sailing to scheduled visitations and go
somewhere else. Each vessel is assigned a different time when it may begin its repo-
sitioning, or phase-out time. After this time, the vessel may undertake a number of
activities to lower the repositioning costs or earn revenue. Vessels may stay on their
initial service past the phase-out time if it is economically viable to do so.

In order to complete the repositioning, each vessel must phase in to a slot on the
goal service before a time set by the repositioning coordinator. After this time, normal
operations on the goal service are set to begin, and all scheduled calls on the service are
to be undertaken. In other words, the repositioning of each vessel and the optimization
of its activities takes place in the period between two fixed times, the vessel’s earliest
phase-out time and the latest phase-in time of all vessels. Before the phase-in time of
a service, vessels may begin regular operations on the service, if it is profitable to do
so. The overall goal during this time period is to maximize the revenue earned by the
repositioning vessel, which involves minimizing transportation costs and maximizing
container transports.

Consider Figure 3.2, which shows a service with a phase-in deadline at port c in
week 2 (circled). The solid lines connect all the visitations that must be undertaken,
whereas the dashed lines connect visitations that will only be carried out if they are
profitable during the repositioning.

26

Chapter 3. Liner Shipping Fleet Repositioning

Fixed costs

Between the phase-out and the phase-in, vessels pay a fixed hourly cost, in shipping
parlance the hotel cost, just for being in an operational state. This cost can be included
in fleet repositioning models or ignored, depending on whether coordinators want to
optimize the usage of vessels. The hotel cost manifests itself mainly in fuel costs, as the
cost of crews and vessels are considered a fixed cost of the shipping line that cannot
be optimized in an operational problem like repositioning. Note that the hotel cost
refers only to non-sailing costs incurred. These costs include, for example, generating
electricity for the ship, especially the reefer containers, and heat for the vessel. Vessels
require several metric tons of fuel per day depending on their size.

Trade zones

Trade zones are contiguous geographical areas consisting of a number of ports with a
common nationality or supra-nationality, such as the EU trade area. We use trade zones
to model restrictions preventing cargo from being brought somewhere it might violate
the law, or violate a customer’s contract on where the shipment may travel. Within
trade zones, we allow vessels to sail freely between ports. Trade zones are relevant for a
number of repositioning activities, such as the calling of ports with cargo or equipment,
as well as in cabotage restrictions that are present in certain repositioning activities.

3.3 Repositioning Activities

A number of activities are available to vessels as they travel from their initial services to
the goal service that can lower the cost of repositioning or earn money for the shipping
line.

3.3.1 Sailing & Slow-steaming

The core activity used by repositioning vessels is sailing, in which vessels travel between
ports across the open ocean. Sailing consumes bunker fuel, the consumption of which
increases cubically with the speed of the vessel (see Section 2.2.3 for more information).
Slow steaming, in which vessels sail near or at their minimum speed allows vessels to sail
cheaper between two ports than at higher speeds, albeit with a longer duration. Fig-
ure 3.3 shows the total cost of fuel for traveling between Boston, USA and Copenhagen,
Denmark by sea with three different vessels. This figure ignores fixed costs, but even if
they were to be included sailing slowly saves money. For a post-Panamax vessel (cyan
circles), the cost of sailing can be lowered from nearly $1 million to around $300,000
by doubling the voyage time. Large ships benefit the most from slow steaming, but
even the panamax vessel (red squares) and the feeder vessel (green triangles) see cost
reductions from slow steaming.

27

Chapter 3. Liner Shipping Fleet Repositioning

6 8 10 12 14 16 18 20 22
Travel time (days)

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
(M

ill
io

ns
of

U
SD

)

Figure 3.3: Travel cost (in millions of US dollars) from Boston, USA to Copenhagen, Denmark
for a feeder vessel (green, triangles), Panamax vessel (red, squares), and a post-Panamax
vessel (cyan, circles) with a bunker fuel price of 600 USD/mt. Data source: Anonymized
data from Maersk Line.

Repositioning problems must therefore take vessel speed into account when opti-
mizing vessel movements. Sometimes vessels must reach a tight phase-in deadline, and
increasing costs is acceptable, whereas when deadlines are loose, vessels can sail slowly
and reduce costs. However, slowing the speed of a vessel could reduce the amount of
cargo that can be carried, as some customers may desire a faster delivery time than
slow-steaming can provide.

3.3.2 Sail-on-service

While repositioning, vessels may use certain services designated by the repositioning
coordinator to cheaply sail between two parts of the network. These are called sail-
on-service (SOS) opportunities. There are two vessels involved in SOS opportunities,
referred to as the repositioning vessel, which is the vessel under the control of a repo-
sitioning coordinator, and the on-service vessel, which is the vessel assigned to a slot
on the service being offered as an SOS opportunity. Repositioning vessels use SOS
opportunities by replacing the on-service vessel and sailing in its place for a portion
of the service. We provide an example of an SOS which allows vessels to cheaply sail
across the pacific in our description of our case study in Section 3.4. SOS opportunities
save significant amounts of money on bunker fuel, since one vessel is sailing where there
would have otherwise been two. Using an SOS can even earn money from a time-charter
bonus, which is money earned by the liner shipper if the on-service vessel is leased.

SOS opportunities often take place on the headhaul of a service (see Section 2.2.1
for more details), rather than on the backhaul. This offers a valuable opportunity to
not only save money during repositioning, but also to save money for the shipper on
the generally money losing backhaul. How this works is that the repositioning vessel
travels on the headhaul of the service, eventually leaving the SOS service to continue
its repositioning. Normally, a vessel would continue sailing on the backhaul, however,

28

Chapter 3. Liner Shipping Fleet Repositioning

since the repositioning vessel leaves the service to continue its repositioning, no vessel
sails on the backhaul. Given the low amount of cargo present on the backhaul, this
presents money saving opportunities for shipping lines.

When planning a repositioning, coordinators at shipping lines may designate partic-
ular slots of various services as SOS slots. The port calls of a particular SOS opportunity
are divided into three contiguous sets, as designated by a repositioning coordinator: the
start, middle and end. We now describe the three components of an SOS, as well as
explain what happens to the on-service vessel once it is replaced by the repositioning
vessel.

Starting and ending an SOS

The repositioning vessel takes over normal operations from the on-service vessel at one
of the start ports. There are two ways in which the repositioning vessel may begin
service on an SOS: direct transshipment or parallel sailing. In a direct transshipment,
the repositioning vessel follows the on-service vessel to one of the start ports. All of the
containers on the on-service vessel are then transshipped to the repositioning vessel.
This can only be performed when such a transshipment will not violate a cabotage
restriction. Furthermore, transshipments can be expensive, sometimes exceeding cost
savings of an SOS. In such cases, a parallel sailing can be used for the repositioning
vessel to join the service. The repositioning vessel joins the on-service vessel at one
of the start ports, and the two vessels sail in tandem until either they reach the last
start port or perform a direct transshipment at an earlier port. During the parallel
sailing, the repositioning vessel loads cargo, and the on-service vessel discharges cargo.
Although this means paying twice the bunker fees for the duration of the parallel sailing,
this is sometimes still cheaper than transshipping large numbers of containers.

After joining the SOS, the vessel travels through a number of ports it is required
to pass. These ports are designated by the repositioning coordinator as SOS middle
ports. Vessels may not join or leave the SOS at this ports. This decision is made by
the coordinator, and can be due to contractual obligations or various other business
requirements. After the middle ports come the end ports, where the repositioning vessel
may leave the SOS opportunity and sail elsewhere. It may leave from any one of the
designated end ports.

Figure 3.4 shows an SOS opportunity and the various ways a repositioning vessel
could utilize it. The service has three start ports, A, B, and C, however due to cabotage
rules, B cannot be used for transshipment. The repositioning vessel may therefore
perform a direct transshipment in ports A or C, or it may sail in parallel with the
on-service vessel from A to C or from B to C. At C, the on-service vessel then leaves
the service. The repositioning vessel stays on the service through the middle ports D
and E. At the end ports F and G, the repositioning vessel may leave the service. A
third vessel, shown in blue, joins the service at port A after the repositioning vessel has
left. Note how there is a gap in service between either F and A or G and A, depending
on where the repositioning vessel leaves. When this gap corresponds to the backhaul

29

Chapter 3. Liner Shipping Fleet Repositioning

Figure 3.4: The various possibilities for starting and ending an SOS on a 7 port service (A
through G), where the red line is the on-service vessel, the black line the repositioning
vessel, and the blue line a third vessel continuing the service after the repositioning vessel
leaves. Due to cabotage restrictions, a transshipment at port B is not allowed.

of a service, shipping lines can save significant amounts of money and avoid sailing a
vessel empty.

On-service Vessel

When a repositioning vessel uses an SOS opportunity, the on-service vessel is displaced
and must be handled by the repositioning coordinator. The coordinator has three main
options. Vessels can be laid up, leased out, or repositioned to another service. Vessel lay
ups involve removing a vessel from service, reducing the amount of crew on board, and
mooring the vessel in or near a port for a period of time. Lay ups cost money, but can
be cheaper than keeping a vessel in full operation when trade volumes decline. Some
vessels can be leased out (time chartered) when they exit their service. Time charter
rates vary, and vessels are not always in demand, especially with the large growth in
the size of the world container ship fleet over the past several years [168]. It is up to
the repositioning coordinator to decide whether the on-service vessel should be laid up,
leased out, or itself repositioned. We consider the activities of the on-service vessel to
be outside the scope of a single repositioning problem, and only include the on-service
vessel insofar as its costs (or time charter profits) are accounted for.

3.3.3 Inducement & Omission

When a visitation is added to a service that is not part of the service’s regular schedule,
it is called an inducement. If a port on the initial or goal service is left off of the
repositioning vessel’s schedule, it is called an omission. Figure 3.5 shows a vessel’s
repositioning (solid blue line) from its initial service (dashed red) to its goal service
(dotted green) within a trade zone. Although fxt is on both the goal and initial
services, it is omitted from the repositioning. Note also that the ports rtm and brv
are induced onto the repositioning path.

30

Chapter 3. Liner Shipping Fleet Repositioning

Figure 3.5: An example repositioning (blue) from a vessel’s phase-out service (dashed red) to
its phase-in service (dotted green).

3.3.4 Cargo Demands

Revenue is earned through delivering cargo. In any repositioning scenario, there are a
number of cargo demands available, each of which has an origin visitation and a set
of destination visitations. Note that there is a set of visitations, rather than a single
destination, because the delivery visitation normally used may no longer exist in the
scenario, for example if its service is closed down. We replace such deleted destinations
with visitations at the same port with a time that is near the time the cargo was
originally meant to be delivered. For example, consider a container that is supposed to
be delivered as some port, p, on a particular Wednesday on the initial service. Due to
a repositioning vessel phasing out, that visitation will no longer take place. However,
perhaps the goal service of the vessel visits p on a Thursday, and an SOS opportunity
visits p on a Monday. We can add those two visitations as destinations of the demand
so that the containers are delivered. Delivering the demand to any of those destinations
represents a satisfactory completion of the demand. Demands contain some number of
TEU, and consist of either dry or reefer containers. Income is earned for each TEU of
a demand delivered. That is, demands are allowed to be partially delivered.

Loading and unloading containers at ports costs money. The profit earned per TEU
carried is therefore the revenue minus the loading and unloading costs. Vessels may
carry any cargo demand available as long as they do not exceed their capacity in either
the reefer or dry dimensions. Note that we only check whether the number of TEU
loaded is less than or equal to the capacity of the vessel, and perform no detailed
stowage planning (see, e.g., [127]) in order to check whether the vessel can sail or not.
To the best of our knowledge, such an integration of vessel loading and liner shipping
optimization, in terms of the fleet or network, has not been attempted.

The flow of cargo through the repositioning subset of a liner shipping network can be
seen as a fractional multi-commodity flow. Cargo demands in fleet repositioning differ
from, for example, pick-up-and-delivery problems (e.g., [47, 145]), in which all pickups
and deliveries must be satisfied. In the LSFRP, partial demands may be carried and
demands do not have to be satisfied if it would not be profitable.

31

Chapter 3. Liner Shipping Fleet Repositioning

3.3.5 Equipment

Trade imbalances result in empty container shortages and surpluses throughout a liner
shipping network. Empty containers amass in ports receiving many shipments, and
are often scarce in ports sending many shipments. Empty containers are important
to have on hand, as customers are often provided empty containers to load as part of
their contracts with a shipping line. Specifically, ports in North America and Europe
tend to have empty container surpluses, whereas ports in South East Asia, especially
China, generally have empty container deficits. In shipping parlance, empty containers
are referred to as equipment, which we will use throughout this work.

In contrast to cargo, which has a specific origin and destination, equipment can be
sent from any port where it is in surplus to any port where it is in demand. Each piece
of equipment brought from a port where it is in excess to a port where it is needed earns
a small revenue. The revenue earned is an estimation of how much money was saved
by bringing the equipment on a repositioning vessel instead of moving the equipment
through other, more expensive, means. Loading and unloading equipment is subject to
a per TEU move cost that is either the same price or cheaper than loaded containers.

3.3.6 Flexible Visitations

Some ports have equipment or cargo, but are not on any service visited by repositioning
vessels. Repositioning coordinators can try to schedule a repositioning vessel to go to
those ports. We call these ports flexible ports, and they are associated with flexible
visitations. All other visitations are called inflexible, because the time a vessel arrives
is fixed. Flexible visitations tend to be at ports that are not overloaded with vessels,
so acquiring a berth is not challenging. However, there is still no guarantee that the
berthing time desired by the repositioning coordinator will be available, meaning the
use of a flexible port comes with some risk that repositioning plans using such ports may
not be feasible. Due to a lack of integrated systems between container terminals and
shipping lines, an immediate check of berthing feasibility is not possible. This means
that repositioning coordinators must make a repositioning plan, and then confirm with
container terminals whether a berth is possible, and re-plan in the case that a berth
cannot be secured.

3.4 Asia-CA3 Case Study

We performed a case study with our industrial collaborator, Maersk Line, to find out
how they created new services in their network. We initially interviewed a number of
Maersk Line employees. These employees include those responsible for the initial plan-
ning of services, employees who scheduled vessel berthing times with terminals, network
planners who were concerned with the well-being of the overall network, employees man-
aging the use of vessels, and the repositioning coordinators responsible for creating a

32

Chapter 3. Liner Shipping Fleet Repositioning

Figure 3.6: A subset of the case study we performed with our industrial collaborator.

repositioning plan. We followed up these initial interviews with more targeted inter-
views with repositioning coordinators to find out more about how repositioning actually
works.

Our goal was to determine the decision making that went in to creating the Asia-
CA3 service that brings containers from Asia, primarily China, to Central and South
America. Over the course of this case study, we stumbled upon the problem of reposi-
tioning vessels, as the Asia-CA3 service was being used as an SOS opportunity during
repositionings to the Intra-WCSA service in South America.

Figure 3.6 shows a subset of the overall Asia-CA3 case study. Several vessels are
required to start the Intra-WCSA service, but these vessels are not available in South
America. There are, however, vessels available for use on the Intra-WCSA in Asia. The
Chennai Express service (left) is one of the several services from which vessels for the
Intra-WCSA were sourced. The Asia-CA3 service is offered as a SOS opportunity to
the vessel repositioning from Chennai Express to Intra-WCSA.

One example repositioning is for the repositioning vessel to leave the Chennai Ex-
press at tpp, and sail to hkg where it picks up the Asia-CA3, replacing the on-service
vessel. The repositioning vessel then sails along the Asia-CA3 until it gets to blb where
it can join the Intra-WCSA. Note that no vessel sails on the backhaul of the Asia-CA3,
and this is allowed because very little cargo travels on the Asia-CA3 towards Asia.

3.5 Related Problems

Fleet repositioning problems have received little attention in the literature and were
not mentioned in any of the most influential surveys of work in the liner shipping
domain [28, 30] or container terminals [152, 154]. We note that the latest review of
shipping research [29] also makes no mention of repositioning, despite the publications
of [161, 163] in 2012. The primary work on fleet repositioning is in [158, 159, 161, 163].
These articles are the focus of this dissertation and will be covered in the following
chapters.

33

Chapter 3. Liner Shipping Fleet Repositioning

3.5.1 Shipping Problems

There is a long history of research in the general shipping domain, which extends back
to Ronen’s well known reviews of ship scheduling and routing problems in the 70s and
early 80s [139] and the 80s and early 90s [140]. We briefly consider problems from the
liner shipping and tramp/industrial shipping literature and contrast them with fleet
repositioning.

Liner Shipping

Although there has been significant work on problems such as the Fleet Deployment
Problem (FDP) (e.g., [134]) and the Network Design Problem (NDP) (e.g. [5, 6, 22]),
these problems deal with strategic decisions related to building the network and assign-
ing vessels to services, rather than the operational problem of finding paths for vessels
through the network. Specifically, the NDP focuses on constructing a liner shipping
network given a set of ports and vessels. There are a number of different versions of the
problem, but in general the network is constructed either to satisfy as much demand as
possible (i.e., profit is maximized), or it is constructed to satisfy all demands at minimal
cost. While there are some similarities between the NDP and fleet repositioning in that
the NDP must build routes over which demands are then flowed in order to calculate
the network profit (or cost), the NDP lacks many of the fixed time components of fleet
repositioning, and the goal is to build a network, not move a vessel through a network.
In the case of the FDP, vessels are assigned to routes in a pre-determined liner shipping
network. The problem focuses on optimizing the operating costs of vessels on various
services, rather than on the task of repositioning the vessels to those services.

The liner shipping vessel schedule recovery problem (VSRP) [23] focuses on recov-
ering operations after a disruption, such as bad weather or mechanical failure, delays
a container vessel. Similar to fleet repositioning, the VSRP must respect the weekly
frequency of services and network cargo flows. However, the two problems differ in that
the VSRP lacks many cost saving aspects of the LSFRP because it is solved over a
much shorter time window.

Andersen’s PhD thesis [7] discusses a fleet repositioning problem called the Network
Transition Problem (NTP). No mathematical model or formal problem description is
provided, so it is difficult to exactly ascertain what the NTP solves. However, it is clear
that the NTP lacks cost saving activities like SOS opportunities, empty equipment flows
and slow steaming.

Tramp Shipping

Although tramp shipping problems, such as [27, 95], maximize cargo profit while ac-
counting for sailing costs and port fees as in fleet repositioning, they lack liner shipping
specific constraints, such as sail-on-service opportunities, phase-in requirements and
strict visitation times. In [153], the authors describe the maritime pickup and delivery

34

Chapter 3. Liner Shipping Fleet Repositioning

problem with time windows and split loads (MPDPTWSL), a ship routing and schedul-
ing problem in which vessels must service some number of mandatory demands, and
may carry other, optional demands if it would be profitable to do so. The primary
difference between fleet repositioning and the MPDPTWSL is that the vessels in the
MPDPTWSL are not required to sail to any particular locations the way they are in
the LSFRP. In other words, the goal is solely to satisfy cargo demands, rather than
to move the vessels to a particular location. Additionally, demands are handled quite
differently between the two problems, as the LSFRP does not allow split deliveries, due
to timeslots that are reserved for vessels to pick up and deliver containers.

3.5.2 Vehicle Routing Problems

Fleet repositioning shares some characteristics with the pickup and delivery problem
(PDP) and the pickup and delivery problem with time windows (PDPTW) [47, 145], in
that vehicles service some number of demands from customers. However, all demands
must be satisfied in the PDP and PDPTW, whereas in fleet repositioning demands
are only a way to increase profit. Equipment flows also represent a major difference
between the two types of problems, in that they have a many-to-many flow structure
not present in the PDPTW. The vehicle routing problem with split deliveries (SDVRP)
(see [10]) differs even more so from fleet repositioning in that cargo emanates from the
depot and is then brought to customers.

3.5.3 Airline Disruption Management

Airline disruption management (see [31, 93]), while also relying on time-based graphs,
differs from fleet repositioning in two key ways. First, airline disruption management
requires an exact cover of all flight legs over a planning horizon. Fleet repositioning
has no such requirement over visitations or sailing legs. Second, there are no flexible
visitations in airline disruption management.

3.6 Chapter Summary

In this chapter, we presented liner shipping fleet repositioning, an expensive task often
faced by the world’s shipping lines. We described the various activities container ships
may undertake while repositioning to a new service, as well as the liner shipping specific
restrictions that ships must obey. Despite this problem’s practical importance, and the
cost savings that could be achieved through the automated generation of repositioning
plans, it has not yet been considered in the literature.

35

Chapter 3. Liner Shipping Fleet Repositioning

36

Chapter 4. Methodological Background

Chapter 4

Methodological Background

We provide background information on several key topics for understanding the models
of fleet repositioning and inter-terminal transportation in this dissertation. Section 4.1
provides background on automated planning, a well-known technique for selecting and
sequencing activities in order to achieve a set of goals. We then describe partial-
order planning (POP), a specific type of automated planning used and extended in
this dissertation, in Section 4.2. Next, we cover mixed-integer programming (MIP),
a method for solving optimization problems with linear constraints and objectives in
Section 4.3. Finally, we describe constraint programming (CP), a branch-and-bound
technique for satisfaction and optimization problems that uses constraint propagation
techniques to solve problems.

4.1 Automated Planning

Automated planning is used to model problems where it is difficult to select and se-
quence activities in order to achieve specific goals starting from an initial state. Au-
tomated planning attempts to find a sequence of activities, which is generally a subset
of the overall set of activities, that modify a state representation such that some goals
are achieved. We describe a state variable based version of propositional STRIPS plan-
ning [51]. In state variable planning, a state is represented by an assignment of a set
of state variables. While state variables are not more expressive than propositional
planning, they allow for more intuitive modeling, as well as make mutual exclusivity of
variable values an explicit feature of a model. Activities are represented by actions that
can only be applied in states that satisfy their precondition. When applied, actions
change a state, thus reassigning some of the state variables representing the state.

Formally, let V = {v1, . . . , vn} denote a set of state variables with finite domains
D(v1), . . . , D(vn). A state variable assignment ω is a mapping of state variables to
values {vi(1) 7→ di(1), . . . , vi(k) 7→ di(k)} where di(1) ∈ D(vi(1)), . . . , di(k) ∈ D(vi(k)). We
also define vars(ω) as the set of state variables used in ω.

We define a state variable planning problem to be a tuple 〈V ,D,A, I,G, pre, eff 〉,

37

Chapter 4. Methodological Background

where D is the Cartesian product of the domains D(v1) × · · · × D(vn), A is a set of
actions, I is a total state variable assignment (i.e. vars(I) = V) representing the initial
state, G is a partial assignment (i.e. vars(G) ⊆ V) representing the goal states, prea
is a partial assignment representing the precondition of action a, and eff a is a partial
assignment representing the effect of action a.

In practice, is it often more convenient to represent actions in a more expressive form,
e.g. by letting the precondition be a general expression on states prea : S → B and
represent conditional effects like resource consumption by letting the effect be a general
transition function, depending on the current state of S, eff a,s : S → S. Such expressive
implicit action representations may also be a computational advantage. We have chosen
a ground explicit representation of actions because it simplifies the presentation and
more expressive forms can be translated into it.

Let S = {ω | vars(ω) = V} denote the set of all the possible states. An action a is
applicable in s ∈ S if prea ⊆ s and, if applied, is assumed to cause an instantaneous
transition to a successor state defined by the total assignment

succa,s(v) =

{
eff a(v) if v ∈ vars(eff a),

s(v) otherwise.
(4.1)

A plan is represented by a pair 〈A,O〉, where A ⊆ A is the set of actions in the
plan and O is a set of ordering constraints of the form a ≺ b, where a, b ∈ A. A plan is
a solution to a state variable planning problem iff for any total order of the actions in
the plan a1 ≺ a2 ≺ · · · ≺ a|A| that is consistent with O, there exists a state sequence
s0 . . . s|A| such that s0 = I, s|A| ⊇ G, and si = succai,si−1

for 1 ≤ i ≤ |A|.
Numerous planners exist for solving automated planning problems. For an overview

we refer to the reviews of several of the international planning competitions, [32, 59, 104]
in which planners were systematically compared against each other on a diverse dataset
of planning instances.

4.2 Partial-Order Planning

A well-known method for solving planning problems is partial-order planning (POP).
POP has a long history in the planning community, but has been recently eclipsed
by the strong performance of heuristic search based forward planners. Nonetheless,
partial-order style planners are still relevant within the planning community [119, 182],
and their ideas have been integrated into forward planning approaches [38, 99].

Starting from an empty plan, actions are bound together by causal links, in which
the effect of one action fulfills a precondition of another action. As its name implies,
POP imposes only a partial-order over the ordering of actions chosen for the plan,
rather than a total order as in classical planning. In classical planning, such actions
must be ordered, even when the ordering is superfluous. Consider, for example, two
ships with sailing actions. The actions are completely non-interacting, and in POP
these actions would not require an ordering. Actions that use a shared resource, such

38

Chapter 4. Methodological Background

as a crane picking up a container, however, require an ordering, as two cranes cannot
pick up the same container at the same time. POP methods detect these situations and
post ordering constraints between actions to ensure the feasiblity of a plan. Partial-
order planners also check for conflicts between actions that would prevent them from
executing simultaneously, and post the appropriate ordering constraints.

We use the same problem description for POP as in Section 4.1, and build off of
the definition of a plan. A POP plan is represented by a tuple π = 〈A,O,C〉, where A
and O are a set of actions and orderings as previously defined and C is a set of causal
links. A causal link a

µ−→ b, where a, b ∈ A, µ is a single state variable assignment v 7→ d
with v ∈ V , d ∈ D(v), µ ∈ eff a, and µ ∈ preb, represents the fulfillment of action b’s
precondition µ by the effect of action a. Causal links connect an effect of one action to
a precondition of another action, satisfying that particular precondition. Each causal
link is associated with a single state variable mapping that is in the effect of the action
linked from, and the precondition of the action linked to. Using causal links allow us to
build a representation of a plan that is not totally ordered. We adopt the same model
of state succession in partial-order planning as in equation (4.1).

An open condition
µ−→ b is an unfulfilled precondition µ of action b ∈ A, that is, µ ∈

preb and ∀a ∈ A, a µ−→ b 6∈ C. Open conditions indicate that a particular precondition
does not yet have support from an effect of another action or the initial state. The
addition of a causal link from an open condition to an action with a satisfying effect
removes the open condition. Note that the addition of a new action to the plan may
be necessary in order to satisfy an open condition. Formally, an open condition flaw
µ−→ b can be repaired by linking µ to an action a such that µ ∈ eff a and by posting an

ordering constraint over a and b. Thus, C ← C ∪ {a µ−→ b} and O ← O ∪ {a ≺ b}. In
the case that a 6∈ A, A ← A ∪ {a} and O ← O ∪ {a0 ≺ a, a ≺ a∞}. The action a0

represents the initial state of the problem, I, with prea0 = ∅ and eff a0 = I. The action
a∞ is represents the goal state, G, with prea∞ = G and eff a∞ = ∅

An unsafe link is a causal link a
µ−→ b that is threatened by an action c such that

i) vars(µ) ∈ vars(eff c), ii) µ 6∈ eff c, and iii) {a ≺ c ≺ b} ∪ O is consistent. Causal
links are threatened by actions that have an effect that changes their associated state
variable, if that action can be ordered between the actions connected to the causal link.
An unsafe link a

µ−→ b that is threatened by action c can be repaired by either adding
the ordering constraint c ≺ a (demotion) or b ≺ c (promotion) to O.

Together, open conditions and unsafe links constitute flaws in a plan. Let flaws(π) =
open(π) ∪ unsafe(π) be the set of flaws in the plan π, where open(π) is the set of open
conditions and unsafe(π) is the set of unsafe links. We say that π is a complete plan
if |flaws(π)| = 0, otherwise π is a partial plan. In other words, a plan is considered
complete when all of the preconditions of all of its actions, including the goal state, are
satisfied through a causal link to another action or to the initial state, and there are no
unsafe links.

POP solvers search through the space of partial plans, starting with a plan contain-
ing two actions, one representing the initial state, and one representing the goal state.

39

Chapter 4. Methodological Background

Algorithm 4.1 Partial-order planning algorithm, based on [178].

1: function POP(I, G)
2: Π← {InitialPlan(I,G)}
3: while Π 6= ∅ do
4: π ← SelectPlan(Π)
5: Π← Π \ {π}
6: if NumFlaws(π) = 0 then
7: return π
8: else
9: f ← SelectFlaw(π)

10: Π← Π ∪ RepairFlaw(π, f)
11: return “Infeasible problem”

POP solvers then iteratively eliminate flaws in the plan, by adding actions, causal links,
or ordering constraints, until all of the preconditions of the actions in the plan have
a causal link connecting them to other actions, or they prove that no satisfying plan
exists.

Algorithm 4.1 shows a generic method for solving a POP problem, based off of [178].
The algorithm is initialized with the initial state, I, and goal state, G. A set of partial
plans, Π, is initialized with a plan πinit from the InitialPlan function (line 2). Let
πinit = 〈{a0, a∞}, ∅, {a0 ≺ a∞}〉, where a0 and a∞ are as previously descrived.

The algorithm then selects a plan from Π (line 4) and checks the number of flaws in
the plan (line 6). If the selected plan has no flaws it is a complete plan and is therefore
returned, otherwise a flaw is selected and repaired (lines 9 and 10). This process repeats
until either a complete plan is found or Π is empty, in which case the POP problem is
infeasible.

SelectPlan(Π) returns a single plan from Π and SelectFlaw(π) returns a flaw
from π. These are generic procedures that could be based on any number of plan and
flaw selection heuristics in the literature for POP (e.g. [67, 107, 182]).

RepairFlaw(π, f) returns a set of plans representing all of the possible ways of
fixing the flaw f in π, unless f cannot be fixed, in which case the empty set is returned.
Under our definitions of SelectPlan, SelectFlaw and RepairFlaw, Algorithm 4.1
is a complete algorithm. That is, the algorithm will always return a complete plan if
there is one, and it will always return “Infeasible problem” if no complete plan is possible
to produce. The algorithm can be very easily modified to be a heuristic approach to
planning by changing the RepairFlaw function to only return a subset of the possible
partial plans for fixing a flaw. In order to illustrate partial-order planning, we construct
the following example based on a toy problem involving the loading of a railroad car
from several stacks of containers.

Example 4.1. In the container loading problem, the operator of a crane must load
containers onto a double-stack railroad car as shown in Figure 4.1. Slot v̄ must carry a

40

Chapter 4. Methodological Background

Figure 4.1: In Example 4.1, a container crane loads containers onto a double-stack railroad
car. The car carries two containers, a refrigerated container in slot v̄ and a regular container
in w. Refrigerated containers are marked ā and d̄, and b, c, e and f are regular containers.

Figure 4.2: A partial plan for the container loading problem. Actions are shown in boxes
with preconditions to the left and effects to the right. Actions are connected by causal
links (solid lines) and ordering constraints (dashed lines), and open conditions are shown
in bold.

refrigerated container, and slot w may not carry a refrigerated container. No container
may be placed in slot w until v̄ is full and containers can only be moved if they are at
the top of a stack. Finally, containers can only be moved from their stack to the car if
there are no tall container stacks blocking the path.

The task is to create a plan for the crane operator to fully load the railroad car. We
add the additional requirement that container b must be loaded into slot w. Figure 4.2
shows a partial plan for this problem, where the state variables occs ∈ B represents
whether or not slot s is occupied by a container, topt ∈ B denotes whether container t
is on the top of a stack, and ins ∈ t describes which container t is in slot s on the rail
car, with s ∈ {w, v̄} and t ∈ {ā, b, c, d̄, e, f}. There is a single action in the planning
domain, move(t, s), which moves container t from its location in the stacks onto the
rail car in slot s.

In the partial plan in Figure 4.2, an ordering constraint ensures that move(ā, v̄)
comes before move(b, w). This constraint is posted to the model in response to the
threat that the effect occw of move(b, w) poses to the causal link between I and
move(ā, v̄), which requires ¬occw.

Notice also that due to the height of stack 2, container b can only be loaded onto
the rail car if container ā is moved out of the way first. This will result in a causal link
between the actions later in the plan, when the open condition ¬topa of move(b, w) is
fulfilled by the effect ¬topa of move(ā, v̄).

41

Chapter 4. Methodological Background

4.3 Linear and Mixed-Integer Programming

Mixed-integer programs (MIPs)1 are optimization problems of the form:

minimize cᵀx

subject to Ax ≥ b

x ≥ 0

xi ∈ Z, ∀i ∈ I,
xi ∈ R, ∀i /∈ I,

in which x is a vector of n decision variables, c ∈ Rn is a vector of objective coefficients,
A ∈ Rm×n is an m × n matrix of constraint coefficients, b ∈ Rn is a vector of upper
bounds on constraints, and I ⊆ {1, . . . , n} indicates which decision variables take
an integer value. When I = {1, . . . , n}, i.e., all of the variables take integer values,
the problem is known as an integer program (IP). When I = ∅, the problem is a
linear program (LP). Unlike integer and mixed-integer programs, which are NP-hard
to solve [84], linear programs can be solved in polynomial time. However, the non-
polynomial simplex algorithm is often used [129].

MIPs are often solved using a branch-and-bound approach in which all of the possible
settings of the decision variables x are enumerated through a systematic tree search.
Tree nodes can be bounded using their LP relaxation, which provides a lower bound on
the value of a particular node. The LP relaxation is computed by modifying the original
MIP such that the integer restrictions on variables are relaxed. That is, all variables
are given a continuous domain. This allows the problem to be efficiently solved in an
LP solver. Another approach is branch-and-cut, which successively adds cuts, which are
linear constraints, to a problem. It does this in order to constrain the feasible region
of the problem such that the solution of the LP relaxation yields an integer solution,
which is the optimal solution to the problem.

Solution techniques for MIPs are well studied, and there are numerous algorithms
and heuristics for solving MIPs. A number of commercially available solvers exist to
solve MIPs, such as IBM CPLEX [75], SCIP [4], and Gurobi [63].

Column Generation

As the number of variables grows, LPs become increasingly difficult to solve. In some
problem formulations there can even be an exponential number of variables. Standard
approaches to solving linear programs are insufficient for these problems, as the problem
with all of its variables often cannot even be loaded into memory. Column generation
(also called delayed column generation) is a technique for solving such problems in which
only a subset of all of the columns, i.e., variables, of a problem are considered at anyone
time, and variables are added as needed to solve the problem. Column generation is

1In this work, we only refer to mixed-integer linear programs.

42

Chapter 4. Methodological Background

used to solve a number of optimization problems, including vehicle routing with time
windows [82] and ship scheduling [147].

We briefly describe column generation based on the description in [44] and adopt
its notation. We refer to [44] for a more general overview of column generation. In
column generation, we use a decomposition of the problem into a master problem and
sub problem in order to handle the large number of columns. Columns are iteratively
added to a restricted master problem (RMP) which only contains a subset of the columns
in the master problem. The RMP starts out only with the columns necessary to define
a starting feasible solution (or an artificial solution), and then relies on a subproblem to
determine which columns should be added at each iteration. The algorithm is finished
when there are no columns left for the subproblem to add that can improve the solution,
a notion that we will define formally.

The master problem takes the form:

minimize
∑
j∈J

cjλj

subject to
∑
j∈J

ajλj ≤ b

λj ≥ 0, ∀j ∈ J,
where J is the set of columns, aj is a row in the |J |×m matrix A, with m as the number
of constraints, λj is the decision variable corresponding to column j, and b is a vector
of constraint coefficients. The RMP is solved over a subset J ′ ⊆ J , as |J | tends to be
exponentially large in the size of the problem input. We associate the dual variables π
with the constraints (i.e. π is a length m vector).

In each iteration of column generation, the goal is to find a j ∈ J minimizing the
reduced cost c̄j := cj − πᵀaj. Since enumerating every column j would take too long,
columns are generated solving a pricing problem. Given π, the dual optimal solution
of the RMP, we can compute c̄∗ := min{cj − πᵀaj | j ∈ J ′}, where J ′ ⊆ J is the set
of columns currently not in the RMP. When c̄∗ ≥ 0, there are no more columns to
generate, and the solution to the RMP is optimal. Otherwise, a column with c̄j ≤ 0
is added to the RMP and it is resolved. Note that multiple columns can be added to
the RMP at a single time. Additionally, the column with the minimal c̄j value is not
required to be added; any column with a negative c̄j can be appended to the RMP. This
could be done through a heuristic procedure. However, in order to prove the optimality
of an RMP solution λ, it must be shown that no column exists with a c̄j < 0. For more
information, see, e.g., [115].

4.4 Constraint Programming

Constraint programming (CP) is a declarative modeling paradigm in which the relations
between variables are specified through a set of constraints [142]. In contrast to mixed-
integer programming, which only deals with linear objectives and constraints, CP is able

43

Chapter 4. Methodological Background

to handle general (i.e., non-linear) objectives and constraints. CP is used to solve two
types of problems: constraint satisfaction problems (CSPs) and constraint optimization
problems (COPs) (See [143]). The goal of a CSP is to find a satisfying assignment of
values to a set of variables under some constraints, whereas in a COP, the goal is to
find a satisfying assignment with an optimal (i.e., minimal or maximal) objective value
satisfying the constraints.

Formally, a CSP is defined by a tuple 〈X,D,C〉, where X is a set of variables
{x1, . . . , xn}, D is the set of domains {D0, . . . , Dn} such that xi ∈ Di, and C is a set
of m constraints {C1, . . . , Cm} where Ci : D0 × · · · × Dn → B defines which settings
of values are allowed by Ci. The goal of a CSP is to find an assignment of variables
{v1, . . . , vn}, such that vi ∈ Di, and

∧
1<j≤mCj(vi) is true [143].

A COP is defined similarly to a CSP using the tuple 〈X,D,C, f〉, where X,D and
C are as previously defined, and f : D0×· · ·×Dn → R is the objective function. COPs
can be solved through the iterated solving of CSPs where, after each solution s to a
CSP is found, a constraint is posted to C that forces the objective function of the next
solution to be less than the current solution [143]. When no further solution can be
found, the optimal solution is known.

CSPs and COPs are solved using constraint programming, which involves a back-
tracking search procedure combined with constraint propagation that performs deep
reasoning to remove infeasible values from the domains of variables. This type of rea-
soning is possible in CP thanks to global constraints, which provide domain filtering
algorithms to exploit the structure present in various types of constraints.

Consider, for example, the famous alldifferent(X) constraint. The constraint
accepts a set of variables, X, and enforces that every variable in X takes a different
value. This constraint can also be represented in a pairwise (i.e., non-global) fashion
for n variables, as follows: xi 6= xj,∀1 < i < j ≤ n. However, the alldifferent(X)
constraint is able to exploit the fact that it is imposing the not equals relation over
a number of variables in the way it filters the domains of constraints, providing an
advantage to models that utilize the global alldifferent(X) constraint over a pairwise
version. Numerous global constraints have been formulated in the literature, and we
refer the reader to [171] for an overview.

44

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Chapter 5

Liner Shipping Fleet Repositioning
without Cargo

In this chapter, we present the work on solving liner shipping fleet repositioning prob-
lems without cargo demands in [90, 160, 161]. These works focus on a simplification
of the overall fleet repositioning problem, in which cargo demands are not taken into
account, and the phase-out and phase-in times are optimized over a multiple week
period. We call this problem the no cargo liner shipping fleet repositioning problem
(NCLSFRP). Specifically, we include the following components of fleet repositioning in
our model of the NCLSFRP:

1. Individual vessels’ phase-out time and port are selected by the model over a multi
week period.

2. The latest phase-in time is chosen over a multi week period.

3. The phase-in must result in a liner shipping service with weekly visitation at all
ports on the service.

4. A single phase-in port is chosen for all vessels.

5. SOS opportunities must be started with a direct-transshipment.

6. Equipment opportunities are represented as reduced sailing costs between ports
with equipment surplus and ports with deficits.

7. Vessels’ sailing speeds are optimized as a linear function of the speed of the vessel.

8. The hotel cost is computed for each vessel from its phase-out time until its phase-
in time, except during SOS opportunities.

The goal of this problem is solely to minimize cost; no revenue earning components
are taken into consideration in a way that results in the overall cost of an activity
from becoming negative. In other words, we allow equipment to be carried, which is
a revenue earning activity. However, we model the carrying of equipment through the
reduction of sailing costs, and ensure that those costs can never be negative. Despite
its simplifications, the NCLSFRP has a number of interesting and difficult to solve

45

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

components. In particular, the interactions between the vessels and the time-dependent
task costs differentiate the NCLSFRP from other problems.

The NCLSFRP lies on the border of planning and scheduling, and it is not clear a
priori which type of method should be used to solve it. Scheduling is concerned with
the optimal allocation of scarce resources to activities over time [83]. Compared with
AI planning in general, scheduling research has focused on problems that only involve
a small, fixed set of choices, while planning problems often involve cascading sets of
choices that interact in complex ways [148]. Another limitation is that mainstream
scheduling research has focused predominately on the optimization of selected, simple
objective criteria such as minimizing makespan or minimizing tardiness [149].

To this end, we solve the NCLSFRP with a variety of methods, including mixed-
integer programming (MIP), constraint programming (CP), and automated planning.
In our quest to find good solutions to the NCLSFRP, we even go so far as to extend
automated planning with a optimizing, branch-and-bound version of partial-order plan-
ning (POP) called Temporal Optimization Planning (TOP). Although ultimately our
constraint programming approach has the best performance, our results for TOP are
very encouraging and suggest that planning is capable of solving difficult combinatorial
optimization problems when they have specific properties.

In this chapter, we first describe the dataset we use to test our approaches in Sec-
tion 5.1, which consists of 11 instances modeling a real-world repositioning scenario
from our industrial collaborator. We provide four models of the NCLSFRP and com-
pare them on our dataset. We model the NCLSFRP in PDDL, a domain specific
language for automated planning in Section 5.2, in the novel planning paradigm TOP
in Section 5.3, with mixed-integer programming in Section 5.4, and with constraint
programming in Section 5.5.

5.1 Dataset

We created eleven instances based on the Asia-CA3 case study shown in Section 3.4.
We generated a single instance based closely on a slightly modified version of the actual
repositioning scenario faced by our industrial collaborator. In this instance, there are
three Panamax sized vessels on three different services in Maersk Line’s network. The
instance takes place over an 11 week period with the goal of phasing in all three vessels
to the Intra-WCSA service. There are three SOS opportunities available using the
Asia-CA3 service, in weeks 3, 4 and 5 of the model. These correspond to times when
the repositioning coordinator can afford to lose the backhaul of the Asia-CA3 due to
the repositioning, if the SOS is chosen.

The SOS was modeled using three start ports: Yantian, China; Yokohama, Japan;
or Hong Kong, China. The end port was designated as Balboa, Panama, as this port is
a well known “turn-port” on the Asia-CA3 service. That is, the vessel tends to offload
all or almost all of its cargo at Balboa before continuing back towards Japan and China.
Sail equipment opportunities are provided from Dalian, China, where refrigerated con-

46

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

tainers are in surplus, to several ports in South America: Buenaventura, Colombia;
Callao, Peru; and Arica; Chile.

Given this instance, we then varied the opportunities available, as well as the number
of vessels, in order to gauge the scaling performance of our approaches. The instances
contain between one and three vessels and various combinations of SOS, equipment op-
portunities and cabotage restrictions. We adopt a naming scheme to identify instances
where the instance AC3 v sce is an instance with v vessels and s SOS opportunities.
The “c” indicates that the instance has cabotage restrictions on some ports in the SOS
opportunities, and the “e” means that there are sail equipment actions present.

5.2 A PDDL Model of Fleet Repositioning

We model the NCLSFRP using PDDL in order to utilize existing planners for solving
the problem. PDDL [48, 54, 108] is a well-known domain specific language for modeling
automated planning problems. It is a domain independent modeling language used by
the automated planning community, and has been a mainstay of the International
Planning Competition (IPC) since its inception in 1998 [32]. There are a number of
different PDDL specifications, many with features not necessary for this dissertation.
We use PDDL 2.2 [48] because it is sufficient for modeling the NCLSFRP, and is
supported by the planner popf [38]. A distinctive advantage of PDDL over other
problem modeling techniques, such as mixed-integer programming, is the extensibility
of models, in which extra actions can often be simply appended to a model. Other
modeling paradigms generally require new sets of variables that must then be integrated
with existing model components. Additionally, PDDL actions (generally) correspond
very closely with real-world activities. A sailing action in PDDL directly maps to the
sailing of a real vessel, meaning the models are significantly less abstract and easier for
domain experts without expertise in automated planning to understand. This section
is based off of our PDDL model description of the NCLSFRP in [160].

5.2.1 PDDL Model

The PDDL model is based around keeping track of the state of the vessel throughout its
repositioning, starting from the initial state, when all vessels are sailing on their initial
services. During the initial state, we do not need to take any costs into account, as
the vessel has not yet started the repositioning. The planner then makes a decision to
phase out each vessel from its initial service, putting the vessel into a state of transit.
While the vessel is in this state, its activities count towards the overall cost of the
repositioning. The planner finally makes a decision as to where the vessels should be
phased in and when each vessel should be phased in. Once phased-in to the goal service,
the vessels no longer generate any repositioning costs and the goal state of the model
is reached.

The PDDL model of the LSFRP [160] has interesting temporal features: required

47

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

concurrency [41], timed initial-literals (TILs) [48] and duration-dependent effects. We
describe the model at a high level and provide more details, as well as the PDDL model
in full, in Appendix A.

Initial and Goal States

The initial state of the PDDL model consists of all vessels being in a non-phased out
state, with all repositioning opportunities available for use. The initial state of the
NCLSFRP makes use of a PDDL construct called a timed initial literal (TIL). TILs
allow facts to be added and removed from the plan at specified time points. Thus,
instead of only having an initial state specified at time zero, TILs can be thought of as
allowing pieces of the initial state to be distributed over the planning horizon. We use
TILs to specify when particular actions may be used by a vessel. We do this by using
a TIL that introduces a fact that “opens” the action for use at a particular time, and
another TIL that deletes the fact in order to close the action when it may no longer be
used. For example, allowing a vessel to phase-out at some port p at time 40 would be
accomplished through a TIL adding an “allow phase-out” fact at time 40 and deleting
it at time 40.1. The goal state of the model requires that all vessels have reached their
destination, and that the hotel cost has been calculated.

Actions

The PDDL model of the NCLSFRP requires 6 types of actions: phase-out, phase-in,
calculate-hotel-cost, sail, sail-on-service and sail-with-equipment. We cre-
ate phase-out actions at every port call along each vessel’s initial service. Phase-out
actions may only be applied for a particular vessel when it is in its initial state, meaning
it has not yet begun its repositioning. Applying a phase-out action transitions a vessel
to a state of transit. Phase-in actions are created at each port on the goal service in
each week of the planning period. Vessels must be in a transit state to use a phase-in
action. The effect of a phase-in action indicates that a vessel has reached the goal
service, which satisfies the goal state of the model.

While a vessel is in transit (i.e., repositioning), it may use any sailing, SOS or sail
equipment action. Sailing actions are created between all ports in the model, except for
sailings with phase-out ports as the destination, as once a vessel leaves the phase-out
service it is not allowed to go back 1. We create SOS actions for each SOS specified by
the repositioning coordinator, and equipment sailing opportunities between all ports
with equipment surpluses and those with equipment demands.

Our actions describing sailing, SOS opportunities, equipment sailings, and hotel
cost are durative actions, meaning they take place over a time period that is specified
through the preconditions of the action. In the case of SOS actions, the amount of
time they require is fixed based on the start port and end port of the action. However,
sailing with and without equipment has a variable duration that must be between

1This is a simplification of the overall LSFRP that we handle in Chapter 6.

48

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Figure 5.1: An example plan generated by our PDDL model with a hotel envelope action.

the minimum and maximum speed of a vessel. Phase-out and phase-in actions are
instantaneous actions that have no duration.

We model sailing costs by setting the fixed cost of sailing (and sailing with equip-
ment) actions to the maximum possible cost of sailing between two ports, i.e., sailing
at maximum speed. We then subtract an amount from the action cost based on the
duration of the sailing, meaning longer sailing subtract more from the cost, making
them cheaper.

All repositioning plans contain, at the very least, a phase-out and a phase-in action
for each vessel. Sailings, SOS opportunities, and sail equipment actions can be ordered
between the phase-out and phase-in in order to bring the vessel to the goal service.

Hotel period The hotel cost represents a particularly challenging to model aspect
of the NCLSFRP. We use a so-called envelope action. Such actions are durative and
enclose other actions over their duration. In the case of the NCLSFRP, the hotel period
for a vessel extends from its phase-out until its phase-in, with the exception of any time
spent on an SOS. We compute the hotel cost based on the length of the hotel envelope
action.

Figure 5.1 shows an example PDDL plan in which vessel v1 phases out at port tpp
and sails to port blb, where it phases-in. Notice how the hotel action, hotel-cost-calc,
encompasses the entire repositioning of v1, including the sail action. Of further note is
the way the sail action does not require the entire time period between the phase-out
and the phase-in. If a vessel is sailing at its minimum speed, as in the case of v1, the
action cannot take any longer. The vessel must then wait at its destination until per-
forming another action. This waiting time period incurs hotel costs, which are captured
with envelope actions.

During SOS opportunities, the hotel cost is not applicable. However, if an SOS
opportunity is chosen during the hotel envelope, hotel costs would be erroneously cal-
culated over its duration. We split the hotel period into two envelope actions, one that
comes before an SOS, and one that comes after, in order to correctly exclude hotel costs
during an SOS. We note that there are other options for modeling such actions, and
describe our reasoning in detail in Appendix A.1.5.

49

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Reverse Model

A common practice when writing PDDL models is to create a reverse model, in which
the effects and preconditions of actions are swapped, as are the initial and goal states.
In a reverse model, for example, vessels sail “backwards” from their destination to their
source. Although such models become less understandable, they sometimes make mod-
els easier for planners to solve. Most modern planners use a forward search paradigm,
meaning that models where the difficult decisions come at the end can be hard to solve
in a forward model. The LSFRP is one of these problems, as the phase-in activities
create a number of interactions between vessels that the planner must resolve. Since
the reverse model is equivalent to the forward model, we do not describe it, but refer
to Appendix A.3, where the full domain model is provided.

5.2.2 Planners

The time-dependent task costs in the NCLSFRP pose a particular challenge to planners,
especially in regards to finding an optimal solution. Envelope actions and numerous
TILs pose additional challenges, requiring planners to not only support a broad swath
of PDDL 2.1, but also to have considered approaches for dealing with issues that, until
now, have not been present in many planning problems. We highlight a number of
temporal planners that have cost and makespan optimization components, and identify
why they cannot model the NCLSFRP.

IxTeT [60] and ZENO [132] are two notable, early partial-order temporal planners.
IxTeT uses a hierarchical planning approach with multi-valued domain attributes and
a discretized formulation of time. IxTeT focuses on achieving temporal feasibility of
domains, and does not perform any optimization. ZENO, unlike IxTeT, does not rely on
a discretized view of time and supports piecewise continuous linear change. Remarkably,
ZENO uses a linear programming solver internally for determining the feasibility of
time constraints in partial plans, similar to a number of modern planners. However,
ZENO ignores the optimization capabilities of linear programming and performs no
optimization of problem objectives.

The Sapa planner [45] can perform multi-objective optimization, for example opti-
mizing both makespan and plan cost simultaneously, and provides heuristics for solving
such problems. Sapa is not able to prove optimality, nor can it handle time-dependent
task costs with a non-fixed duration. The lpg planner [58, 57] plans using stochastic
local search on top of a special type of temporal planning graph. Thus, it does not
guarantee optimality, and it, like Sapa, is unable to model time-dependent task costs,
a critical features of the NCLSFRP.

Recent net-benefit planners (e.g. hsp∗, mips-xxl and Gamer) [69, 92], while also
strong at optimization, suffer from the same problem as Sapa and lpg; they do not
allow the duration of an action to influence its cost.

A number of powerful solvers have recently been developed for planning languages
with durative actions, real-valued state variables, and linear change of quantities during

50

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

action execution [36, 102, 146]. These planning languages can model domains where
activities depend on shared resources like electric power during execution. This situa-
tion is typical for popular application domains within robotics and aerospace systems
(e.g., [56, 113]). Most of these domain independent and application specific planning
systems, however, only allow simple objective criteria like makespan minimization.

Recently, a number of planners have taken an increased focus on scheduling and
problems with continuous numeric change. The planners Colin [37], popf [38], Kong-
ming [102] and tmlpsat [146] all use an LP or MIP internally to model continuous
change. This LP or MIP can also be used to model continuous change that is related to
action durations. Colin and its successor popf are the only two available planners that
can reason with all the necessary language features for the NCLSFRP. Kongming does
not allow multiple parallel updates to the same variable, but here total cost is updated
by multiple vessels sailing in parallel, and tmlpsat does not exist in a runnable form.
Colin and popf are not optimal planners, though popf can continue searching once a
solution is found to improve its quality [35]. The Optic planner from [15] extends the
popf planner to support preferences and time-dependent task costs, but offers no new
capabilities for the NCLSFRP not already present in popf.

5.2.3 POPF

We use the planner popf to solve the NCLSFRP PDDL domain, as it is the only
planner currently capable of doing so. We briefly describe how popf solves problems
and the features relevant to the NCLSFRP, and then describe several extensions that
we have made to popf (and published in [161]) in order to better orient the planner
towards problems like the NCLSFRP.

Popf is based on the colin planner [36, 39], which is itself based on the crikey3
planner [34]. All of these planners split durative actions into two instantaneous (“snap”)
actions representing the start and the end of the durative action. The starting action
contains the preconditions and effects at the start of the durative action, and the end
action has the preconditions and effects at the end of the action. The goal state is
modified such that a plan is not considered complete unless all start actions in the
plan have a corresponding end action. Preconditions that must hold over the entire
action require special handling, but since we do not use this for the NCLSFRP, we
refer readers to [39] for an overview.

At a high level, the search procedure of popf works as follows. Actions are assigned
a plan step in which they occur, which itself is assigned a timestamp from a scheduling
algorithm in the case of temporal planning. Actions are added to the plan to build a
plan from the initial state. Given a particular state not satisfying the conditions of the
goal state, popf must decide which action to apply to the current state based on the
available actions. The planner makes these decisions using an enforced hill climb [72],
which is a hill climbing (i.e., greedy local search) algorithm that enlists the assistance
of a breadth first search to choose good neighbors. Once a solution is found, popf
switches to a weighted A∗ (WA∗) with w = 5 to try to find improvements. Popf can

51

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

be set to find an optimal plan by using the A∗ algorithm from the start, however this
is not considered a standard use case of the planner.

Search guidance is provided by the temporal relaxed planning graph (TRPG), which
is an extension from [34] of the well known planning graph heuristic from the Graph-
Plan planner [17]. The graph can be used to estimate which actions are necessary
to complete a partial plan. After decision to add an action to add to the plan, popf
checks the plan for temporal feasibility and updates its continuous change variables.
The planner continues this process until it has found a complete plan. We now describe
the components of popf’s search in more detail, along with the extensions necessary
to make popf more effective at solving the NCLSFRP.

Temporal Consistency and Continuous Change

Temporal feasibility and continuous change are implemented in popf through an LP
that is built off of a given state (a partial plan). Minimum and maximum action
durations are enforced in popf using LP constraints that ensure the plan step with the
beginning of a durative action and the end of the same action are at least (or at most)
the necessary time units apart from each other. Each plan step is required to have a
time step of at least the step before it, plus a small epsilon value. Note that in contrast
to colin, which imposes a total order over the actions in the plans it finds, popf
has no such restriction. Rather, popf only imposes a partial-order over the actions
as in partial-order planning, but still performs a forward planning procedure. Popf
is thereby able to combine the temporal advantages of partial-order planning with the
powerful heuristics that have been developed for forward planning. In addition to the
temporal aspects of the plan, popf models continuous (linear) change. It does this in
the LP using decision variables representing the value of a continuous planning variable
at each step where the variable is modified or needed. Next, we define the LP used by
popf formally.

Parameters We are given a plan with n steps and m durative actions. Let the
function start : {1, . . . ,m} → {1, . . . , n} (end : {1, . . . ,m} → {1, . . . , n}) return the
step of the start (end) action corresponding to a particular durative action. Each
durative action j ≤ m has a minimum duration ∆min

j and maximum duration ∆max
j .

Let v be the number of continuous planning variables in the plan (i.e., those variables
that are modified by continuous change in the PDDL model). To avoid confusion, we
refer to variables in the LP as decision variables, whereas the variables in the PDDL
model of a planning problem are referred to as continuous planning variables. We use
the function prev : {1, . . . , v}× {1, . . . , n} → {1, . . . , n} to provide the previous step in
which a planning variable was modified.

The rate of change for a planning variable over time is given by δk, where 1 ≤ i ≤ v.
The action (or actions) in a given step can modify the planning variables in that step.
In each step of the plan, planning variables can be the subject of action effects. Let
θ(i, j) be the set of planning variables that are used to update variable i in step j,

52

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

i.e., θ : {1, . . . , v} × {1, . . . , n} → 2v. Let βijl be the coefficient associated with each
planning variable l ∈ θ(i, j), with i as the planning variable being modified and j the
plan step. Actions can require a linear combination of planning variables to respect a
given lower and upper bound. Let κj be the number of constraints in step j and φ(l)
be the set of planning variables in action precondition l ≤ κj. We assign a coefficient
αijl to each planning variable i in step j with constraint l ≤ κj. Each constraint over
the planning variables at each step is associated with a lower, `jl, and upper bound,
ujl.

We summarize the parameters in the following table.

v Number of continuous planning variables present, indexed by i.
n Number of steps in the plan, indexed by j.
m Number of durative actions in the plan, indexed by k.
start(k) Gives the start step of durative action k ≤ m.
end(k) Provides the end step of durative action k ≤ m.
∆min
k ,∆max

k Minimum and maximum duration of durative action k ≤ m, re-
spectively.

prev(i) Supplies the previous step in which a planning variable i ≤ v was
modified by an action.

δi Rate of change of planning variable i ≤ v.
θ(i, j) Set of planning variables used in the update of variable i ≤ v in

step j ≤ n.
βijl Coefficient of planning variable l ∈ θ(i, j).
κj Number of constraints over planning variables at step j ≤ n.
φ(l) Set of planning variables used in action precondition l ≤ κj.
αijl Coefficient of variable i ≤ v in step j ≤ n constraint l ≤ κj.
`jl, ujl Lower and upper bound of step j ≤ n constraint l ≤ κj, respec-

tively.

Decision variables There are three types of decision variables in the model. First,
the decision variable ti ∈ R≥0 represents the time of plan step i ≤ n. Next, we let the
decision variables xij, x

′
ij be the value of planning variable i directly before plan step j

and directly after, respectively.

Constraints Using the parameters and decision variables above , we define an LP
with no objective representing the temporal components of popf along with its con-
tinuous planning variables.

tj + ε ≤ tj+1 ∀ 1 ≤ j ≤ n (5.1)

∆min
k ≤ tend(k) − tstart(k) ≤ ∆max

k ∀ 1 ≤ k ≤ m (5.2)

xij = x′i,prev(i) + δi(ti − tprev(i)) ∀ 1 ≤ i ≤ v, 1 ≤ j ≤ n (5.3)

x′ij = xij +
∑
l∈θ(i,j)

βijlxlj ∀ 1 ≤ i ≤ v, 1 ≤ j ≤ n (5.4)

53

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

`jl ≤
∑
i∈φ(l)

αijlxij ≤ ujl ∀ 1 ≤ j ≤ n, 1 ≤ l ≤ κj (5.5)

tj ≥ 0 ∀ 1 ≤ j ≤ n (5.6)

Constraints (5.1) ensure each step has a time at least that of the step before it,
and constraints (5.2) force the steps of the plan to obey the minimum and maximum
duration of durative actions. Continuous planning variables have their values before
the step updated in constraints (5.3), and in constraints (5.4) the values after the step
are updated with the effects of the step. In constraints (5.5), linear combinations of the
planning variables are required to be within specified upper and lower bounds in order
for a step of the plan to begin. Finally, constraints (5.6) post the bounds of the time
step decision variables. In the event that this LP is infeasible, it means the current
plan is also infeasible and can be discarded.

The objective function of the above LP can take several forms. In the case of
makespan minimization, the objective is simply to minimize tn, the time of the last
action in the plan. For a cost based objective, the objective can be to minimize∑v

i=1

∑n
j=1 γijx

′
ij, where γij is the coefficient of variable i in step j. Such an objec-

tive allows the values of planning variables to be taken into account after each planning
step.

The Temporal Relaxed Planning Graph

The TRPG is used to estimate which actions will be necessary to complete a plan,
thereby providing a lower bound on the amount of time or cost that the plan will
require. The TRPG heuristic used in popf was first introduced in the crikey3 planner
as an extension to the TRPG present in Sapa [45] and Crikey [33]. The TRPG is
based off of a relaxed planning graph (RPG) with temporal components. The RPG
heuristic was first introduced in [73] in the FF planner. The RPG heuristic works by
building a so-called planning graph using a delete relaxation of the original problem.
The delete relaxation involves omitting the delete list from each action, i.e., no facts
can be removed from the plan.

The planning graph consists of alternating layers of actions and facts, starting with
a fact layer representing the initial state. That is, a fact node is created for each fact
in the initial state (ignoring TILs). Without going into detail about the algorithm for
generating a planning graph, which is not necessary for this dissertation, we describe the
steps for creating the relaxed planning graph. After the initial fact layer, an action layer
is applied in which nodes are created for each action which has all of its preconditions
supported by the facts available in the initial state. In addition, a no-op node is
created in the action layer for each fact in the initial layer. The no-op node represents
an action with a precondition and effect for a particular fact. The no-op nodes allow
facts to persist through the layers of the planning graph. Next, a new fact layer is
appended containing a fact node for each fact present in the actions in the previous
action layer, including no-op nodes. The algorithm iterates creating a fact layer and

54

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

then an action layer until a fact layer contains all of the facts present in the goal state.
At this point, a relaxed plan can be extracted from the graph by searching in reverse
from the goal state in which a set of actions are pulled from each layer of the graph.

We now explain how the RPG turns into the TRPG. First, each RPG layer is
assigned a timestamp determined through using the LP to provide a lower bound for
achieving the numeric preconditions for that layer. Second, TILs are included as dummy
actions that can only be applied at a specific time. When a TIL deletes a fact, the fact
is prevented from being used at a later time in the plan, unless it is independently
re-added. Furthermore, temporal separation between layers is introduced based on
the continuous change present. Finally, popf makes several inferences about the time
particular steps can occur based on the deletion and re-adding of facts, and prevents
actions from using these facts at times they would not be present in the plan.

TIL Multiple Time Window Abstraction

In popf, TILs have traditionally been treated as dummy actions that must be applied
at the time when the TIL fact becomes available. That is, at each point in search, the
planner can choose to apply an action or the next TIL. This is a sensible approach to
TIL handling when the number of TILs is not that large, but in the NCLSFRP the
number of TILs can be over 100. A dummy action representation of TILs results in
a significant increase in the size of the search space for the NCLSFRP, since at any
decision point there are many subsequent TILs that can be applied.

To this end, we introduce in [161] a domain-independent technique for abstracting
TILs in two circumstances. Both situations involve a TIL adding a fact that begins
a time window in which the fact is available, and a TIL deleting the same fact, thus
ending the time window. The first situation involves a single fact that has multiple
time windows in which it is available. The second also involves multiple time windows,
but all actions that use the fact delete it immediately after its use. For example, in the
phase-in for the NCLSFRP, a phase-in time slot is opened at each port each week, but
once it is used, the time slot is no longer available.

We model the above TIL situations by converting popf’s LP into a MIP through
the use of binary variables as follows. Given the set of facts with multiple TIL time
windows, F , and a fact f ∈ F , let ωf be the number of time windows for f . Each time
window has a beginning time defined by begin(f, w) and an end time end(f, w), where
f ∈ F and 1 ≤ w ≤ ωf . We introduce the binary decision variable yiwf ∈ {0, 1} which
is set to 1 if step i ≤ n occurs within time window w ≤ ωf of fact f ∈ F . To handle
the second case of TILs which are removed by planning actions, we let F ′ ⊆ F be the
set of facts that are deleted by all actions that require that fact in their precondition.

55

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

The set Sf ⊆ {1, . . . , n} contains all of the steps that refer to fact f ∈ F ′.
ωf∑
w=1

begin(f, w)yiwf ≤ ti ≤
ωf∑
w=1

end(f, w)yiwf ∀ f ∈ F, 1 ≤ i ≤ n (5.7)

ωf∑
w=1

yiwf = 1 ∀ f ∈ F, 1 ≤ i ≤ n (5.8)∑
i∈Sf

yiwf ≤ 1 ∀ f ∈ F ′, 1 ≤ w ≤ ωf (5.9)

Constraints (5.7) limit the time of a particular step to be within a particular fact time
window, if the time window is chosen through the variables yiwf . Constraints (5.8)
ensure that only a single time window per step is chosen for a particular fact. We
require that if a fact is deleted immediately after being used, that it be used in at most
one step of the plan in constraints (5.9).

The TRPG heuristic must also be modified to take into account TILs that are not
handled as dummy actions. The modification works as follows. Consider an action with
a set of preconditions, some of which are provided by TILs, and some which are not.
Given a layer t of the TRPG where the non-TIL provided preconditions are true, the
action is added in a layer t′ ≥ t such that the TIL provided preconditions are true. In
this way, the TRPG is actually no longer ignoring the deletion of certain TILs. In the
standard TRPG, a TIL is added at a particular time and the fact is then “stuck” in
the subsequent layers of the graph. However, by avoiding the conversion of TILs into
dummy actions, the TRPG need not have the facts of TILs represented explicitly by
nodes.

Cost Estimation

Time-dependent task costs pose a particular challenge for popf, since, although it
supports them, it was not designed with them in mind. Thus, we make the following
modification to the heuristic when time-dependent task costs are present. We use a
bounding procedure which prevents any actions from being appended to a plan if it
would increase the plan’s cost to be greater than the current incumbent solution cost.
Formally, given a solution with cost c, and a state s with cost c′ (which must be less
than c), any action with a minimum cost greater than c − c′ will result in a solution
worse than the current incumbent. Note that this assumes that the total plan cost is
monotonically increasing as actions are added to it, an assumption that holds for the
NCLSFRP and can be easily checked.

5.2.4 PDDL Model Computational Evaluation in POPF

We ran the popf planner on our NCLSFRP dataset (see Section 5.1 for an overview)
with and without the improvements discussed above. We used AMD Opteron 2425 HE

56

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Inst.
POPF (Optimal) POPF (Satisficing)

Forwards Reversed Standard Makespan No MIP relax No-TIL-Abs Reversed
AC3 1 0 0.7 1.4 0.4 (0.0) 0.1 (1.7) 0.7 (0.0) 105.8 (0.0) 0.4 (0.0)
AC3 2 0 - 809.6 32.5 (0.0) 3.2 (1.6) 113.2 (0.0) 13.0 (0.1) 78.1 (0.0)
AC3 3 0 - - 1105.1 (0.0) 117.5 (2.3) 3041.6 (0.0) 88.2 (0.1) 39.2 (0.8)
AC3 1 1e 3.3 4.0 1.7 (0.0) 0.1 (0.7) 2.3 (0.0) 1079.3 (0.3) 1.2 (1.2)
AC3 2 2ce - - 1550.6 (0.3) 1.1 (19) 2284.2 (0.0) 31.3 (3.7) 892.5 (1.6)
AC3 3 2c - - 399.2 (0.2) 9.2 (7.3) 26.3 (1.4) 303.4 (1.3) 602.8 (1.1)
AC3 3 2e - - 291.5 (1.3) 9.6 (11) 28.4 (2.4) 310.8 (2.3) 688.6 (1.9)

AC3 3 2ce1 - - 303.9 (1.3) 9.7 (11) 28.4 (2.4) 314.5 (2.3) 697.2 (1.9)
AC3 3 2ce2 - - 1464.2 (1.6) 10.0 (12) 204.9 (2.8) 303.4 (2.7) 690.1 (2.3)
AC3 3 2ce3 - - 348.0 (1.1) 10.3 (8.7) 29.4 (1.9) 308.4 (1.7) 603.3 (1.5)

AC3 3 3 - - 1975.5 (2.3) 10.1 (15) 226.0 (3.6) 352.6 (3.4) 699.6 (2.9)

Table 5.2: CPU times in seconds with optimality gaps in parenthesis for popf on the NCLS-
FRP dataset.

processors with a maximum of 4GB of RAM with CPLEX 12.3. We use this experimen-
tal setup throughout the chapter. We perform both optimal planning, in which popf
uses an A∗ algorithm to find optimal solutions, as well as satisficing planning, in which
popf attempts to improve the objective value of the solutions it finds heuristically.
Table 5.2 shows the CPU times and solution gaps in parenthesis (when satisficing). We
compute the optimality gap with the formula (c− c∗)/c∗, where c∗ is the optimal plan
cost and c is the cost of the best solution found. Thus, a gap of 0 means the solution
found is optimal, and the larger the optimality gap, the worse the solution’s cost.

We perform optimal planning with both the forward and reversed domain, without
much success. Popf only solves two instances using forward search, and three using
backwards search. Additionally, these are some of the smallest instances in our dataset.
Given that popf was not designed for finding optimal plans these results are not par-
ticularly surprising, and show that more work is needed in the area of optimal planning
for problems like the NCLSFRP.

We carry out satisficing planning using several different configurations of popf, all
of which use the improved cost estimation technique. The “standard” setup uses TIL
time window abstractions and solves the resulting MIP problem to optimality only at
goal nodes. The LP relaxation is solved at all other search nodes, which saves significant
amounts of CPU time at non-goal nodes. We can do this because the LP is sufficient to
determine temporal infeasibility and provides a reasonable lower bound on the cost of
the plan. Additionally, all continuous planning variable effects are modeled through the
LP, meaning they are unaffected by relaxing the integer variables. We then perform a
makespan optimization to show that the NCLSFRP cannot be solved effectively using
such techniques (“Makespan” column), and we also use the “standard” configuration
without using the MIP relaxation (“No-MIP-Relax”). That is, we solve the MIP to
optimality at each node. Next, we also use popf without the TIL abstraction tech-
niques introduced to evaluate their effectiveness (“No-TIL-Abs”). Finally, we use the
“standard” configuration of popf on the reversed domain (“Reversed”).

Standard popf finds the lowest gap, or ties with the reversed domain, on all but
one of the instances. The MIP relaxation technique used in “Standard” provides better

57

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

solutions than all other popf configurations except on one instance (AC 3 2 2ce), where
it is outperformed by turning off MIP relaxation. Disabling TIL abstractions (“No-TIL-
Abs”) results in popf losing the ability to find good solutions, with the optimality gaps
often twice as high as for the standard configuration. Finally, using makespan as an
optimization criterion results in poor plans with high costs. This is not surprising since
minimizing makespan means vessels will be sailing at their maximum speeds, which is
expensive.

Although popf succeeds in finding optimal solutions on smaller instances (AC3 1 0
– AC3 1 1e), and coming within two to three times the optimal solution cost on the
rest of the instances, there is still room for improvement. Furthermore, a certificate
of optimality is desirable in order to assure repositioning coordinators of the quality
of the answer they are being provided by the planning system. Popf is unable to
provide such a certificate unless it is set to optimal planning, which results in less
instances solved to optimality. One of the main difficulties for popf (especially in the
case of optimal planning) is that it spends too much time examining permutations of
hotel-cost-calc actions. Additionally, different orderings of sail actions are also
considered with hotel-cost-calc actions, perhaps indicating difficulties in dealing
with both envelope actions and time-dependent task costs in a single planning model.
New solutions and methods are required in order to solve the NCLSFRP to optimality
across the entire dataset.

5.3 Temporal Optimization Planning

Planning techniques offer strong heuristics and solving capabilities for the selection and
sequencing of activities with logical preconditions and effects in order to achieve some
set of goals. Such approaches seem like a natural fit for combinatorial optimization
problems with activity selection components, especially those like the NCLSFRP, with
time dependent task costs, where non-activity based formulations in, e.g., mixed-integer
or constraint programming, become mired in logical (i.e., if-then) constraints.

However, despite the many planners that exist for classical and temporal planning
domains, very few planners are able to support problems like the NCLSFRP, due to
a focus on satisfaction and fixed cost objective optimization within the planning com-
munity. In fact, the popf planner [38] is the only planner capable of handling the
repositioning domain we propose, but as is clear from the computational evaluation of
popf in Section 5.2.4, solving NCLSFRP problems to optimality is difficult for popf.
Given the large amount of money that can be saved through effective repositioning, find-
ing new methods of solving combinatorial optimization problems with time-dependent
task costs is a worthwhile endeavor.

To this end, we introduce Temporal Optimization Planning (TOP), which was first
described in [161] and [162]. The main contribution of TOP is to use automated plan-
ning to build and search through optimization models that involve continuous time,
metric quantities, and a complex mixture of action choices and ordering constraints.

58

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

The need to solve such problems is not new. TOP fundamentally diverges from classi-
cal automated planning approaches by introducing two sets of modeling variables that
decouple the planning problem from the optimization model. Thus, the optimization
model is not tightly bound to the semantics of actions. Actions are merely used as
handles to optimization components that are combined to complete optimization mod-
els using partial-order planning. In other words, TOP builds optimization models with
the help of automated planning, i.e., the focus of TOP is on the optimization model
of a problem, whereas classical planning approaches include optimization components
within actions merely as a byproduct of the overall planning process.

TOP is built on a state variable representation of propositional STRIPS planning
[51]. TOP utilizes partial-order planning [131], and extends it in several ways. First, an
optimization model is associated with each action in the planning domain. This allows
for complex objectives and cost interactions that are common in real world optimiza-
tion problems to be easily modeled. TOP can utilize any optimizer, including linear
programming, mixed-integer programming and constraint programming solvers. Sec-
ond, instead of focusing on simply achieving feasibility, TOP minimizes a cost function.
Finally, begin and end times can be associated with actions, making them durative.
Such actions can have variable durations that are coupled with a cost function.

TOP differs from existing temporal planners in two further ways. First, TILs are not
needed to model problems in which some actions are only available at specific times,
such as the phase-out and phase-in actions in the NCLSFRP. Rather, constraints
on the start or end time of an action can be built directly into actions’ optimization
models and exploited for search guidance. Second, through shared variables in their
optimization models, actions can refer directly to start/end times of other actions. This
means the encoding of, e.g., the hotel cost calculation can be embedded within the
effects of other actions that imply it. PDDL actions cannot directly refer to start/end
times of other actions, which is why the PDDL model must use envelope actions to
model the hotel cost. Such actions result in an expansion of the search space.

We extend the formulation of partial-order planning presented in Section 4.2 to in-
clude the optimization components that set TOP apart from other planning paradigms.
Formally, a TOP problem is represented by a tuple

P = 〈V ,D,A, I,G, pre, eff ,x, obj , con〉,

where V = {v1, . . . , vn} is the set of state variables, D is the Cartesian product of
the domains D(v1) × · · · × D(vn), A is the set of actions, I is a total state variable
assignment (i.e. vars(I) = V) representing the initial state, G is a partial assignment
(i.e. vars(G) ⊆ V) representing the goal states, prea is a partial assignment representing
the precondition of action a, eff a is a partial assignment representing the effect of action
a, x ∈ Rm is a vector of optimization variables2 that includes the begin and end time of
each action, xab and xae respectively, for all actions a ∈ A, obj a : Rm → R is a cost term
introduced by action a, and cona : Rm → B is a constraint expression introduced by

2We sometimes let x denote a set rather than a vector.

59

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

action a with cona |= xab ≤ xae ∧ xab ≥ 0 ∧ xae ≥ 0. Our formulation of TOP is general
enough to encompass any type of objective function, be it linear or non-linear, as well
as nearly any type of constraint.

We define Ma = min{obj a | cona}, which is the minimal cost of action a’s optimiza-
tion model component. In other words, Ma is the result of minimizing obj a subject to
the constraints cona.

We extend the notion of a partial-order plan to include an optimization model
that is built as the plan receives new actions and ordering constraints. A temporal
optimization plan is represented by a tuple 〈A,C,O,M〉, where A is the set of actions

in the plan, C is a set of causal links a
µ−→ b with a, b ∈ A and µ ∈ eff a ∪ preb, O is a

set of ordering constraints of the form a ≺ b with a, b ∈ A, and M is an optimization
model associated with the plan defined by

min
∑
a∈A

obj a(x) (5.10)

s.t. xaie ≤ x
aj
b ∀ai ≺ aj ∈ O (5.11)

cona(x) ∀a ∈ A. (5.12)

The objective of M (5.10) is to minimize the sum of the costs introduced by actions,
subject to action orderings (5.11) and the constraints associated with each action in π
(5.12). We require this optimization model to be valid for any valid partial plan. Let
cost(π) be the cost of an optimal solution to M for a partial plan π.

We define open conditions and unsafe links to be the same as in standard partial-
order planning. However, to deal with durative actions in TOP we need to keep track
of another type of flaw called interference. We adopt an interference model based
on the exclusive right to state variables [144]. Thus, two actions a and b interfere if
vars(eff a) ∩ vars(eff b) 6= ∅ and O implies neither a ≺ b nor b ≺ a. Similar to unsafe
links, an interference between actions a and b can be fixed by posting either a ≺ b or
b ≺ a to O. The idea behind interferences is that we want to prevent multiple actions
from modifying the same state variables at the same time.

Together, open conditions, unsafe links and interferences constitute flaws in a plan.
Let flaws(π) = open(π) ∪ unsafe(π) ∪ interfere(π) be the set of flaws in the plan π,
where open(π) is the set of open conditions, unsafe(π) is the set of unsafe links, and
interfere(π) is the set of interferences. As in the case of standard POP, we say that π
is a complete plan if |flaws(π)| = 0, otherwise π is a partial plan. A plan π∗ is optimal
if it is feasible and for all feasible solutions π, cost(π∗) ≤ cost(π).

Figure 5.2 shows an example TOP plan with 3 actions (excluding the initial and
goal dummy actions). The plan is a complete plan, as all goals are satisfied and there
are no flaws. Notice the ordering constraint (dashed line) between action a and c, due

60

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Figure 5.2: An example TOP plan with three actions and the start and end actions I and
G, respectively. Each action is shown in a box with preconditions to the left, effects to
the right, and the optimization model inside. Solid arcs represent causal links, and dashed
arcs ordering constraints.

to the interference on the w planning variable. The matching optimization model is:

min obj a(x) + obj b(x) + obj c(x)

s.t. cona(x) ∧ conb(x) ∧ conc(x)

xEa ≤ xBc , x
E
b ≤ xBc

xEI ≤ xBi , x
E
i ≤ xBG, x

B
i ≤ xEi ∀i ∈ {a, b, c, I, G}

The variables xBi and xEi represent the begin and end time of action i ∈ {a, b, c, I, G},
respectively. The optimization model combines all of the action objectives into a unified
objective for the plan. The constraints are also joined together into a conjunction,
followed by the ordering constraints that directly follow from the causal links and
ordering constraints in the plan.

5.3.1 Linear Temporal Optimization Planning

The TOP formalism provides a theoretical model for solving planning problems with
complex objectives and constraints, but in order to use TOP in practice it is necessary
to find a way of combining automated planning and optimization such that the prob-
lems are actually solvable. In the case of the NCLSFRP, only linear objectives and
constraints are necessary for solving the problem.

To this end, we introduce linear temporal optimization planning (LTOP). In LTOP,
all of the optimization models associated with planning actions have a linear cost func-
tion and a conjunction of linear constraints. Thus, obj a is of the form cax′, where
ca ∈ Rm and cona is of the form

∧
1≤i≤na (αaix

′ ≤ βi), where αai ∈ Rm, βi ∈ R, and na
is the number of constraints associated with action a. Thus, Ma and M are LPs. Note
that M is very similar to the LPs in popf, and serves a similar purpose: enforcing
temporal constraints and optimizing cost.

Figure 5.3 shows an example LTOP plan for the repositioning in the Asia-CA3
case study from Section 3.4. The optimization variables hb,v and he,v, representing the
begin and end of the hotel period, respectively, are of particular note, as they replace
the action calculate-hotel-cost required by our PDDL model. Each action updates
the upper bound of hb,v, this shared variable allows the hotel cost of the vessel to be
accounted for, even in a partial plan. An example of implicit TIL handling within LTOP

61

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Figure 5.3: A complete TOP plan showing a solution to the repositioning in the Asia-CA3 case
study. Boxes represent actions and contain their associated optimization models. Causal
links are shown with arrows. The optimization variables xab and xae represent the begin
and end time of action a, and hb,v, he,v are the begin and end hotel time of the vessel,
respectively. The state variable sv ∈ {i,t,g} represents the vessel being on its initial
service, in transit or at its goal service, respectively.

Algorithm 5.1 Temporal optimization planning algorithm.

1: function TOP(I, G)
2: Π← {InitialTOP(I,G)}
3: πbest ← null
4: u←∞ . Cost of the incumbent (upper bound)
5: while Π 6= ∅ do
6: π ← SelectPlan(Π)
7: Π← Π \ {π}
8: if NumFlaws(π) = 0 ∧ Cost(π) < u then
9: u← cost(π)

10: πbest ← π
11: else if EstimateCost(π) < u then
12: f ← SelectFlaw(π)
13: Π← Π ∪ RepairFlaw(π, f)
14: return πbest

can be seen in the out action. The starting time of the action is bound to tout
CHX ,TPP ,

which is a constant representing the time the vessel may phase out at port TPP.

Algorithm 5.1 shows a branch-and-bound algorithm that finds an optimal plan to
an LTOP problem, based on the POP algorithm in [178]. First, an initial plan πinit

is created by the InitialTOP function (line 2). We define πinit = 〈{a0, a∞}, ∅, {a0 ≺
a∞},Minit}〉, where a0 is an action representing I with prea0 = ∅ and eff a0 = I; a∞ is an
action representing G with prea∞ = G and eff a∞ = ∅; and Minit is an optimization model
with no objective and two constraints, cona0 and cona∞ , which are special constraints
on the dummy actions a0 and a∞ such that cona0 = (xa0b = xa0e ∧ xa0b ≥ 0) and
cona∞ = (xa∞b = xa∞e ∧ xa∞b ≥ 0). The optimization variables xa0b , x

a0
e , x

a∞
b and xa∞e

represent the begin and end times of actions a0 and a∞ respectively. The algorithm
then selects a plan from Π (line 6) and checks if it is a complete plan. If so, its cost
is compared with the current upper bound (u), and if the cost is lower, the incumbent
πbest is replaced with the current plan π and the upper bound is updated (lines 9 and
10). When π is a partial plan, an estimated lower bound of the plan is computed: if
it is higher than the cost of the incumbent solution, the plan is discarded (line 11).

62

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Otherwise, a flaw is selected and repaired (lines 12 and 13). This process is repeated
until Π = ∅, then the current incumbent is returned, if one exists.

Algorithm 5.1 is guaranteed to find the optimal solution (if there is one) as long as
EstimateCost does not overestimate the cost of completing a partial plan. To prune
as much of the branch-and-bound tree as possible, we need tight lower bounds. If we
require that the cost of each action subject to its constraints is non-negative, we can
prove that cost(π) is such a lower bound.

Proposition 5.1. Given any valid partial plan π = 〈A,C,O,M〉 where Ma ≥ 0,
∀a ∈ A, cost(π) ≤ cost(π̄) for any completion π̄ of π.

Proof. Let π′ be π with a single flaw repaired. The flaw is either i) an unsafe link, ii) an
interference, iii) an open condition being satisfied by an action in the plan, or iv) an
open condition being satisfied by an action not in the plan.

In cases i and ii the flaw is repaired by adding an ordering constraint to π, which
further constrains π, thus cost(π) ≤ cost(π′). Case iii results in a new causal link
and an ordering constraint, and is therefore the same as cases i and ii. In case iv, the
action’s optimization model is added to π, but since the cost function of the action
must be non-negative under its constraints, cost(π′) cannot be less than cost(π). By
applying this argument inductively on the complete branch-and-bound subtree grown
from π, we get cost(π) ≤ cost(π̄) for any completion π̄ of π.

5.3.2 Domain Independent Heuristic Cost Estimation

Although cost(π) provides a reasonable lower bound for π, the bound is only computed
over actions in the plan. The bound can be strengthened by also reasoning over actions
that are needed to complete the plan. We present an extension of hmax [67], called
hcost

max , which estimates the cost of achieving the open conditions of a plan π in a similar
manner to VHPOP [182]. The extension is that instead of using action cost, we use the
(precomputed) value of the minimized optimization model of an action (Ma).

hcost
max (ω, π) =

0 if ω ⊆ effsπ, else

min{a∈A\A|µ∈eff a}{Ma + hcost
max (prea, π)} if ω = {µ}, else

maxµ∈ω{hcost
max ({µ}, π)} if |ω| > 1,

(5.13)

where ω is a partial state variable assignment, µ is a single state variable assignment
v 7→ d, and effsπ =

⋃
a∈A eff a. The heuristic takes the max over the estimated cost of

achieving the elements in the given assignment ω. The cost is zero if the elements are
already in π, otherwise the minimum cost of achieving each element is computed by
finding the cheapest way of bringing that element into the plan. A comparison of hmax

to costed-RPG style heuristics (such as that of popf) can be found in [45]. Figure 5.4
shows an example of the hcostmax heuristic in action. Computing hcost

max can be done with
a dynamic programming approach that stores the cost of achieving individual state
variable mappings.

63

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Figure 5.4: In this example, the hcostmax heuristic is estimating the cost of achieving the
state variable mapping {x 7→ 1, y 7→ 4} in the plan π, where a1, . . . , a5 are actions with
{x 7→ 1} ∈ (eff a1 ∩ eff a2) and {y 7→ 4} ∈ (eff a3 ∩ eff a4 ∩ eff a5).

We now prove that the hcost
max heuristic combined with the lower bound cost(π) never

overestimate the cost of a partial plan.

Proposition 5.2. Given any valid partial plan π = 〈A,C,O,M〉 where Ma ≥ 0,
∀a ∈ A, cost(π) + hcost

max (open(π), π) ≤ cost(π̄) for any completion π̄ of π.

Proof. We have hcost
max (ω, π) =

∑
a∈RMa, where R is a set of actions not currently in

π (R ∩ A = ∅) that are required to resolve ω and among such sets has the minimum
cost. Thus, any completion π̄ of π as described in Proposition 5.1 must at least increase
cost(π) by hcost

max (ω, π) =
∑

a∈RMa.

It is possible to extend more recent work in admissible heuristics for cost-optimal
planning with the techniques and heuristics in, e.g, [65, 66, 70, 71, 85] in the same way
to produce even more accurate admissible estimates. We leave this for future work.

5.3.3 LTOP Model

We describe the main components of the LTOP model in this section. For a detailed
overview, we refer to Appendix B. Our model of the NCLSFRP shares a number of
similarities with the PDDL model, using most of the same types of actions: sail,
sail-on-service, sail-equipment, phase-out and phase-in. We model all of these
actions in the same way, with the repositioning of a vessel starting and ending with a
phase-out and phase-in action, respectively, and sailing, SOS and sail equipment actions
being ordered in between.

As in the PDDL model, we keep track of the state of the vessel, however in LTOP
we use state variables. We only allow a vessel to begin using sailing, SOS, and sailing
with equipment activities once it is in a transit state, meaning it has used a phase-out
action. We also only consider the vessel as having completed its repositioning once
it enters its goal state, which is accomplished through a phase-in. We also store the
location of each vessel in a state variable, and use this to determine which actions can
be applied for that vessel. Note that the state variables in LTOP make the mutual
exclusivity of the vessel state more explicit than in the PDDL model. For example, a
state variable vessel-at(ves) ∈ P , where ves is a vessel and P is the set of ports,

64

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

can only take a single value by its definition. In PDDL, there are predicates for each
port and vessel pair, e.g., (vessel-at ves p1) ∈ B and (vessel-at ves p2) ∈ B
meaning planners must spend time determining that ves can never be in both p1 and
p2 at the same time, whereas in LTOP this is known from the start.

The initial state of the model puts all vessels in a non-phased out state, meaning
they may not yet perform any repositioning activities. The vessels are only assigned a
location once they have phased out. The goal state of the model requires that every
vessel has performed a phase-in.

Hotel period

The LTOP model further differentiates itself from the PDDL model, in which we needed
an envelope action to model hotel costs, in that in LTOP, we can keep track of the hotel
costs directly with optimization variables. We associate the variables hBv and hEv with
the hotel begin and end time of vessel v, respectively. To update the hotel costs, we
associate the following constraints with every action a ∈ A:

hBv ≤ xBa ∀v ∈ V
hEv ≥ xEa ∀v ∈ V,

where V is the set of vessels, and xBa and xEa are the begin and end time of action a
as previously defined. In this way, the lower and upper bound of the hotel period is
updated every time an action is added to the current plan. We add the hotel cost to
the objective in the phase-in action because LTOP is a partial-order planner, meaning
it plans backwards from the goal state. Phase-in actions are therefore the first actions
added to the plan, as they satisfy the goal state. This ensures the hotel cost is taken
into account throughout the entire search.

5.3.4 Fleet Repositioning Specific Heuristics

We also implemented two domain specific heuristics in order to better solve the NCLS-
FRP. First, we modified the branching scheme of LTOP in order to avoid multiple sail

actions in a row, observing that it will never be cheaper to sail through an intermediate
port than to directly sail between two ports. This is straightforward to implement,
requiring only for LTOP to check if adding a sail action to a partial plan would re-
sult in two sailings in a row. We could also implement this through a state variable
that prevents multiple sailings like the can-sail fact in the PDDL model. However,
LTOP has a hard time coping with such a scenario because multiple sail actions can be
added, which then result in a plan infeasibility. Many of these infeasible plans must be
explored, meaning the gain from adding such a state variable is limited. We blame this
mainly on LTOP’s simple planning heuristics. Future work could focus on strength-
ening these heuristics in order to handle the above situation in a domain independent
way.

65

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Inst.
LTOP LTOP POPF (Optimal) POPF (Satisficing)

Actions DLH DL LH L Forwards Reversed Standard
AC3 1 0 99 1.1 1.1 1.1 1.1 0.7 1.4 0.4 (0.0)
AC3 2 0 182 51.0 51.5 50.4 53.5 - 809.6 32.5 (0.0)
AC3 3 0 252 188.3 196.8 193.3 202.0 - - 1105.1 (0.0)
AC3 1 1e 219 3.9 3.9 5.2 5.3 3.3 4.0 1.7 (0.0)
AC3 2 2ce 419 15.2 25.2 55.2 126.8 - - 1550.6 (0.3)
AC3 3 2c 447 203.2 362.2 2979.7 3715.8 - - 399.2 (0.2)
AC3 3 2e 590 217.1 263.0 1453.1 2092.8 - - 291.5 (1.3)

AC3 3 2ce1 590 218.2 260.8 1451.6 2068.4 - - 303.9 (1.3)
AC3 3 2ce2 590 192.4 216.0 2624.1 3094.3 - - 1464.2 (1.6)
AC3 3 2ce3 596 516.9 685.5 2959.1 - - - 348.0 (1.1)

AC3 3 3 477 80.0 102.4 735.0 1140.8 - - 1975.5 (2.3)

Table 5.3: CPU times for LTOP and popf solving instances from the NCLSFRP dataset to
optimality, as well as optimality gaps for popf when satisficing. We configure LTOP to
use the domain specific heuristics (D), the hcost

max heuristic (H), and the LP lower bound
heuristic (L),

Our second heuristic is able to complete a vessel’s repositioning once the vessel is
assigned a sail-on-service action. Since the starting time of the sail-on-service is
fixed, and so are the times of the phase-outs, the optimal completion to the plan can
be computed by simply looping over the vessel’s allowed phase-out ports and choosing
the one with the lowest cost. We add a phase-out action to the plan along with a sail

action, if necessary.

5.3.5 LTOP Computational Evaluation

We implemented LTOP in C++ and evaluate it on the NCLSFRP dataset. Table 5.3
shows the CPU times in seconds of using LTOP with varying heuristics to solve the
NCLSFRP dataset to optimality with a one hour timeout. Additionally, the table pro-
vides the number of grounded LTOP actions in each instance. We ran LTOP with
domain specific heuristics (D), the hcost

max heuristic (H) for computing lower bounds and
the LP lower bound heuristic (L). For comparison purposes, we show the optimal solu-
tion times of popf using both the forward and reverse NCLSFRP PDDL domain, as
well as the best performing satisficing configuration of popf. For the popf’s satisficing
solutions, we show the solution’s optimality gap in parenthesis. The lowest CPU time
on each instance found by an optimal planner is highlighted in bold.

LTOP is successful in solving all of the NCLSFRP instances to optimality, even
without domain specific heuristics, a feat popf is unable to match. The DLH heuris-
tic combination is most effective at solving NCLSFRP instances, achieving the best
performance on 9 out of 11 instances, and near-best performance on the remaining 2
instances. On instances larger than AC3 3 2c, domain specific heuristics are critical to
finding a solution quickly. Overall, using domain specific heuristics result in an over
14 times speed up than using just the LP and hcost

max . The hcost
max heuristic provides small

speed improvements over not using it when domain specific heuristics are involved, re-
sulting in DLH having a 16% better solution time on average than DL. However, in the

66

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

domain independent case, hcost
max is critical for finding an optimal solution to all instances

and results in a 51% speed up on all instances for LH over L.

LTOP, using the DLH heuristic combination, is also able to find an optimal solution
in less time than popf takes to find a satisficing solution on 7 instances. Popf is
actually able to find an optimal answer in the satisficing configuration faster than LTOP
in three cases: on instances AC3 1 0, AC3 2 0, and AC3 1 1e. However, since satisficing
popf cannot prove the optimality of the solution it finds we do not highlight this in
the table. Nonetheless, it indicates that popf excels mainly at the small instances in
the dataset, while LTOP is capable of handling even larger instances.

5.4 A Mixed-integer Programming Model of Fleet

Repositioning

Despite the success of LTOP in solving NCLSFRP instances, the question remains as
to how it performs versus more traditional combinatorial optimization techniques. To
find out, we create a mixed-integer programming (MIP) model of the NCLSFRP that
considers the activities that a vessel may undertake and connects activities based on
which ones can feasibly follow one another temporally. The structure of the NCLSFRP
is embedded directly into the graph of the MIP, meaning that it is unable to model
general automated planning problems as in [87] and [170]. Note that, unlike LTOP, the
MIP is capable of handling negative activity costs.

Since the vessel state in fleet repositioning is relatively simple, encompassing where
a vessel is and whether it has begun its repositioning or not, there is not an exponential
growth in the number of graph nodes as there would be in many planning problems if
they were modeled using a graph.

5.4.1 Graph and MIP Description

Given a graph G = (A, T), where A is the set of actions (nodes), and T is the set of
transitions, with (a, b) ∈ T iff action b may follow action a, let the decision variable
ya,b ∈ {0, 1} indicate whether or not the transition (a, b) ∈ T is used or not. The
auxiliary variable wa =

∑
(a,b)∈T ya,b indicates whether action a is chosen by the model,

and xsa, x
e
a ∈ R+ are action a’s start and end time, respectively. Finally, the variables

hsv and hev are the start and end time of the hotel cost period for vessel v.

Each action a ∈ A is associated with a fixed cost, ca ∈ R, a variable (hourly) cost,
αa ∈ R, and a minimum and maximum action duration, dmin

a and dmax
a . The set At ⊆ A

specifies actions that must begin at a specific time, ta. The use of a particular action
may exclude the use of other actions. These exclusions are specified by η : A → 2|A|.
There are also n sets of mutually exclusive actions, given by µ : {1, . . . , n} → 2|A|.
We differentiate between phase-out and phase-in actions for each vessel using the sets
Apo
v , A

pi
v ⊆ At, respectively, and let A′ = A \ ∪v∈V (Apo

v ∪ Api
v) be all actions that are

67

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

not related to the phase-out or phase-in. Finally, let cHv ∈ R+ represent each vessel’s
hourly hotel cost.

There are several “big-Ms” in the model, which are constants used in MIP models
to enforce logical constraints. The upper bound on the difference between the end and
start of two actions is given by My

a,b. The upper bound on the start of a vessel’s hotel
period, and the lower bound on the end of the vessel’s hotel period, are given by M s

v

and me
v respectively.

Parameters

We now summarize the parameters and variables used in our MIP model for easy
reference. The model uses the following parameters:

G = (A, T) Graph of nodes A (actions) and arcs T (transitions).
V Set of vessels.
Apov Set of phase-out actions for vessel v ∈ V .
Apiv Set of phase-in actions for vessel v ∈ V .
ca Fixed cost of action a.
αa Variable cost of action a.
cHv Hotel cost of vessel v ∈ V per hour.
dmin
a , dmax

a Minimum and maximum duration of action a.
My

a,b Maximum time difference between the start of actions a and b.

M s
v ,m

e
v Upper and lower bound of the start and end of vessel v ∈ V ’s

hotel period.
µ(a) Set of actions that are mutually exclusive with a.
η(a) Set of actions that are excluded by a (but not necessarily mutually

exclusive).

Variables

The model uses the following variables:

ya,b ∈ {0, 1} Indicates whether transition (a, b) ∈ T is used.
wa =

∑
(a,b)∈T ya,b Auxiliary variable indicating whether action a is used or not.

xsa, x
e
a ∈ R+ The start and end time of action a ∈ A, respectively.

Objective and constraints

The objective and constraints are as follows:

min
∑
a∈A

(cawa + αa(x
e
a − xsa)) +

∑
v∈V

cHv (hev − hsv) (5.14)

68

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

s.t.
∑

{(a,b)∈T | b∈A\Apo
v }

ya,b = 1 ∀a ∈
⋃
v∈V

Apo
v (5.15)

∑
(a,b)∈T

ya,b =
∑

(b,c)∈T

yb,c ∀b ∈ A′ (5.16)

∑
(a,b)∈T

ya,b ≤ 1 ∀b ∈ A′ (5.17)

xea − xsb ≤My
a,b(1− ya,b) ∀(a, b) ∈ T (5.18)

xsa ≤ xea ∀a ∈ A (5.19)

dmin
a wa ≤ xea − xsa ≤ dmax

a wa ∀a ∈ A (5.20)

xsa = tawa ∀a ∈ At (5.21)

hsv +M s
vwa ≤M s

v + ta ∀a ∈
⋃
v∈V

Apo
v (5.22)

hev +me
vwa ≥ me

v + ta ∀a ∈
⋃
v∈V

Api
v (5.23)∑

a∈µ(i)

wa ≤ 1 for i = 1, 2, . . . n (5.24)

|η(a)|wi +
∑
b∈η(b)

wb ≤ |η(a)| ∀a ∈ A (5.25)

The objective, (5.14), sums the fixed and variable costs of each action that is used
along with the hotel cost for each vessel. The single unit flow (i.e., node disjoint) struc-
ture of the graph is enforced in constraints (5.15) start the flow of vessels through the
graph, ensuring that every vessel transitions out of its phase-out. Constraints (5.16)
are flow balance constraints that ensure vessels sail traverse path in the graph. Con-
straints (5.17) limit the incoming number of vessels to any activity to one, meaning that
only a single vessel may undertake any particular activity. Constraints (5.18) enforce
the ordering of transitions between actions, preventing the end of one action from com-
ing after the start of another if the edge between them is turned on. Action start and
end times are ordered by (5.19), and the duration of each action is limited by (5.20).
Actions with fixed start times are bound to this time in (5.21). Constraints (5.22) and
(5.23) connect the hotel start and end times to the time of the first and last action,
respectively. Note that the objective forces hsv and hev as close together as possible, and
that the big/little-Ms are required because each action has a different start time. The
mutual exclusivity of certain sets of actions is enforced in constraints (5.24). Finally,
constraints (5.25) prevents actions from being included in the plan if they are excluded
by an action that was chosen. These constraints are primarily used to ensure the block
phase in structure necessary to have a weekly temporal spacing of vessels. When a
phase-in is chosen for a vessel, phase-ins that could not possibly be used with it are
disabled. For example, in a 3 vessel problem, any phase in more than 2 weeks later
from a particular phase-in is disabled if a vessel uses that phase-in.

69

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Inst. MIP
LTOP POPF (Optimal) POPF (Satisficing)

DLH DL LH L Forwards Reversed Standard
AC3 1 0 0.4 1.1 1.1 1.1 1.1 0.7 1.4 0.4 (0.0)
AC3 2 0 9.3 51.0 51.5 50.4 53.5 - 809.6 32.5 (0.0)
AC3 3 0 23.0 188.3 196.8 193.3 202.0 - - 1105.1 (0.0)
AC3 1 1e 3.8 3.9 3.9 5.2 5.3 3.3 4.0 1.7 (0.0)
AC3 2 2ce 27.7 15.2 25.2 55.2 126.8 - - 1550.6 (0.3)
AC3 3 2c 250.5 203.2 362.2 2979.7 3715.8 - - 399.2 (0.2)
AC3 3 2e 228.8 217.1 263.0 1453.1 2092.8 - - 291.5 (1.3)

AC3 3 2ce1 312.2 218.2 260.8 1451.6 2068.4 - - 303.9 (1.3)
AC3 3 2ce2 252.6 192.4 216.0 2624.1 3094.3 - - 1464.2 (1.6)
AC3 3 2ce3 706.5 516.9 685.5 2959.1 - - - 348.0 (1.1)

AC3 3 3 148.3 80.0 102.4 735.0 1140.8 - - 1975.5 (2.3)

Table 5.6: CPU times for the MIP model in CPLEX 12.3 versus LTOP using domain specific
heuristics (D), the hcost

max heuristic (H), and the LP lower bound heuristic (L), and popf.

5.4.2 MIP Model Computational Evaluation in CPLEX

Table 5.6 provides the CPU times of solving the MIP model in CPLEX 12.3 to opti-
mality. We also show the results from LTOP and popf which are explained in detail
in Sections 5.3.5 and 5.2.4, respectively.

The MIP outperforms LTOP on AC3 1 0 through AC3 1 1e, the smallest instances
in our dataset. However, once the instances begin growing in size with AC3 2 2ce,
LTOP requires only 75% of the time of the MIP with the DLH heuristics. The MIP
easily outperforms LTOP with only domain independent heuristics (LH and L), but this
is not surprising considering that the MIP is able to take our domain specific heuris-
tics into account through its graph construction. The instance that most realistically
represents the scenario our industrial collaborator faced is AC3 3 3, which LTOP is
able to solve in slightly over half the time of the MIP. Overall, the MIP requires an
average time of 178 seconds versus only 153 seconds for LTOP on our dataset. We
suspect this performance to be due to the multitude of big-“M” constraints, which are
difficult for MIP solvers to deal with. Planning techniques are better able to handle
these sorts of logical constraints and manage the state surrounding a vessel throughout
its repositioning.

5.5 A Constraint Programming Model of Fleet

Repositioning

In addition to our PDDL, LTOP and MIP models, we present a novel CP model for the
NCLSFRP, due to the success of CP in solving scheduling problems in the literature.
This CP model was first presented in [90]. Our model exploits the lack of chaining of
SOS and SE activities, which means it is significantly less extensible than the PDDL,
LTOP or MIP models, but is able to find solutions in less CPU time.

70

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

5.5.1 Model Description

Let Ov be the set of possible phase-outs for the vessel v, and let P be the be the set
of possible phase-in ports for the new service. Each phase-out is associated with a
particular port and time, which we will specify later. The decision variable ρ ∈ P is
the phase-in port for all vessels. The decision variables wv ∈ {1, . . . ,W} represent the
phase-in week for each vessel v, where W is the number of weeks considered in the
problem. For each vessel v we also define a decision variable qv ∈ Ov specifying the
phase-out action (port and time) used for that vessel.

For each vessel v and phase-out action o, the function t(v, o) specifies the phase-out
time for that action. Similarly, t(p, w) specifies the phase-in time for a vessel phasing in
at port p in week w. The function C(v, o, p, w) specifies the cost for vessel v using the
phase-out action o, and phasing in at port p in week w, with -1 as a flag that indicates
vessel v cannot phase in at port p in week w if it phased out using action q (for example,
if action q starts too late for vessel v to reach port p in time). The dependent variable
cv specifies the cost for vessel v when the vessel sails directly from the phase-out port
to the phase-in port. For each vessel v, CH(v) specifies its hourly hotel cost, and hv is
the duration of the hotel cost time period (from the phase-out to the phase-in).

We split each SOS opportunity into several SOS actions, where each SOS action
represents starting the SOS at a different port on the SOS service. SOS opportunities
save money by allowing vessels to sail for free between two ports, however a cost for
transshipping cargo at each side of the SOS is incurred. Let S be the set of available
SOS actions and S ′ be the set of SOS opportunities. The decision variable sv ∈ S
specifies the SOS action used for each vessel v, with 0 being a flag indicating that vessel
v does not use an SOS action. For each SOS action s ∈ S, the function y : S → S ′

specifies which SOS opportunity each SOS action belongs to, with y(s) = 0 being a flag
that specifies that the vessel is not using any SOS opportunity.

In order to use an SOS opportunity, a vessel must sail to the starting port of the
SOS opportunity before a deadline, and after using the SOS, it sails from the end port
at a pre-determined time to the phase-in port. The function C to(v, s, o) specifies the
cost of vessel v using SOS action s, phasing out at phase-out o going to the SOS action,
and C from(v, s, p, w) is the cost of vessel v to sail from SOS action s to phase in port p
in week w, with -1 as a flag that indicates that this combination of vessel, SOS action,
phase-in port and week is infeasible. The dependent variables σto

v and σfrom
v specify

the SOS costs for vessel v for sailing to and from the SOS, respectively. The function
A(v, s) specifies the cost savings of vessel v using SOS action s, and the dependent
variable σdur

v specifies the SOS cost savings for vessel v on the SOS.

Let Q be the set of sail-equipment (SE) opportunities, which are pairs of ports in
which one port has an excess of a type of equipment, e.g. empty containers, and the
other port has a deficit. Since we do not include a detailed view of cargo flows in
this version of the LSFRP, SE opportunities save money by allowing vessels to sail for
free between two ports as long as the vessel sails at its slowest speed. The cost then
increases linearly as the vessel sails faster. Let the decision variable ev ∈ E be the SE

71

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

opportunity undertaken by vessel v, with ev = 0 indicating that no SE opportunity is
used. Let the decision variables dto

v , d
dur
v and dfrom

v be the duration of vessel v sailing
to, during, and from an SE opportunity.

The functions C to(v, e, o), Cdur(v, e) and C from(v, e, p, w) specify the fixed costs of
sailing to, utilizing, and then sailing from SE opportunity e, where v is the vessel, o is
the phase-out port/time, p is the phase-in port and w is the phase-in week. Together
with the constant αv, which is the variable sailing cost per hour of vessel v, the hourly
cost of sailing can be computed. This is necessary since SE opportunities are not
fixed in time and, thus, must be scheduled. Let the dependent variables λto

v , λ
dur
v and

λfrom
v be the fixed costs sailing to, on and from an SE opportunity. Additionally, let

∆to
min(v, e, o), ∆dur

min(v, e) and ∆from
min (v, e, p, w) be the minimum sailing time of v before,

during and after the SE opportunity and ∆to
max(v, e, o), ∆dur

max(v, e) and ∆from
max (v, e, p, w)

be the maximum sailing time of v before, during and after the SE opportunity.
In this version of the LSFRP, the chaining of SOS and SE opportunities is not

allowed, meaning each vessel has the choice of either sailing directly from the phase-
out to the phase-in, undertaking an SOS, or performing an SE. The decision variable
rv ∈ {SOS, SE, SAIL} specifies the type of repositioning for each vessel v, where v utilizes
an SOS opportunity, SE opportunity, or sails directly from the phase-out to the phase-
in, respectively.

Parameters

We summarize the parameters used in the model in the following table.

V Set of vessels.
Ov Phase-out actions for vessel v ∈ V .
P Set of phase-in ports.
W Number of weeks in the problem.
t(v, o) Phase-out time of phase-out activity o ∈ Ov for vessel v ∈ V .
t(p, w) Phase-in time to join the goal service at port p ∈ P in week

w ≤ W .
C(v, o, p, w) Cost for vessel v ∈ V to use phase-out action o ∈ Ov and phase-in

at p ∈ P in week w ≤ W .
CH(v) Hourly hotel cost for vessel v ∈ V .
S ′ Set of SOS opportunities, each consisting of multiple SOS actions

representing sailings from an SOS start port to an end port.
S Set of SOS actions.
y(s) Maps each SOS action to the SOS opportunity it belongs to.
C to(v, s, o) Cost of sailing vessel v ∈ V from phase-out o ∈ Ov to SOS s ∈ S.
C from(v, s, p, w) Cost of sailing vessel v ∈ V SOS s ∈ S to phase in at port p ∈ P

in week w ≤ W .
Q Set of SE opportunities.
C to(v, e, o) Fixed cost of sailing vessel v ∈ V to SE e ∈ Q from phase-out

o ∈ Ov.

72

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Cdur(v, e) Fixed cost of sailing vessel v ∈ V on SE e ∈ Q.
C from(v, e, p, w) Fixed cost of sailing v ∈ V from SE e ∈ Q to phase in at port

p ∈ P in week w ≤ W .
αv Variable sailing cost coefficient for vessel v ∈ V .
∆to
min(v, e, o) Minimum sailing time for vessel v ∈ V to SE e ∈ Q from phase-

out o ∈ Ov.
∆to
max(v, e, o) Maximum sailing time for vessel v ∈ V to SE e ∈ Q from phase-

out o ∈ Ov.
∆dur
min(v, e) Minimum sailing time for vessel v ∈ V on SE e ∈ Q.

∆dur
max(v, e) Maximum sailing time for vessel v ∈ V on SE e ∈ Q.

∆from
min (v, e, p, w) Minimum sailing time for vessel v ∈ V from SE e ∈ Q to phase

in at port p ∈ P in week w ≤ W .
∆from
max (v, e, p, w) Maximum sailing time for vessel v ∈ V from SE e ∈ Q to phase

in at port p ∈ P in week w ≤ W .

Variables

We summarize the decision variables of the model in the following table. We make
a distinction between decision variables and dependent variables, in that dependent
variables are assigned values based on the values of decision variables. The solver need
not branch on any dependent variables; it is sufficient to branch solely on the decision
variables in order to find an optimal solution. The dependent variables are only present
in order to perform the objective computation.

ρ ∈ P Phase-in port used by all vessels.
dto
v , d

dur
v , dfrom

v ∈ R Sailing duration to, during, and from an SE for vessel v ∈ V .
ev ∈ E SE action used by vessel v ∈ V (if any).
hv ∈ R Hotel period duration for vessel v ∈ V .
qv ∈ Ov Phase-out action (which is a port and a time) for vessel v ∈ V .
rv ∈ {SOS, SE, SAIL} Type of repositioning for vessel v ∈ V .
sv ∈ S SOS action used by vessel v ∈ V (if any).
wv ∈ {1, . . . ,W} Phase-in week for each vessel v ∈ V .
λto
v , λ

dur
v , λfrom

v ∈ R Dependent variable specifying the costs of sailing to, during, and
from an SE opportunity for vessel v ∈ V .

σdur
v ∈ R Dependent variable containing the cost savings for vessel v ∈ V

over the duration of the SOS.
σto
v (σfrom

v) ∈ R Dependent variable containing the cost of vessel v ∈ V to sail to
(from) the phase-out to an SOS.

cv ∈ R Dependent variable specifying the cost for vessel v ∈ V to sail
directly from the phase-out to the phase-in.

73

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Objective and Constraints

min
∑
v∈V

(
CH(v) (t(ρ, wv)− t(v, qv)) + cv + σfrom

v + σdur
v + σto

v

+ λto
v + λdur

v + λfrom
v + αv(d

to
v + ddur

v + dfrom
v)

)
(5.26)

s. t. alldifferent(wv), v ∈ V (5.27)
max
v∈V

wv −min
v∈V

wv = |V | − 1 (5.28)

alldifferent except 0(sv), v ∈ V (5.29)

alldifferent except 0(y(sv)), v ∈ V (5.30)

rv = SAIL→ cv = C(v, qv, ρ, wv), ∀v ∈ V (5.31)

rv = SAIL→
(
sv = 0 ∧ y(sv) = 0 ∧ σdur

v = 0 ∧ σfrom
v = 0 ∧ σto

v = 0

∧ ev = 0 ∧ λto
v = 0 ∧ λdur

v = 0 ∧ λfrom
v = 0

)
, ∀v ∈ V (5.32)

rv = SOS→ sv > 0 ∧ y(sv) > 0 ∧ σdur
v = −A(v, sv)

∧ σfrom
v = C from(v, sv, ρ, wv) ∧ σto

v = C to(v, sv, qv), ∀v ∈ V (5.33)

rv = SOS→ cv = 0 ∧ ev = 0 ∧ λto
v = 0 ∧ λdur

v = 0 ∧ λfrom
v = 0, ∀v ∈ V (5.34)

sv > 0 ∨ y(sv) > 0→ rv = SOS, ∀v ∈ V (5.35)

alldifferent except 0(ev), ∀v ∈ V (5.36)

rv = SE→ ev > 0 ∧ λtov = Cto(v, ev, qv) ∧ λdurv = Cdur(v, ev)

∧ λfromv = Cfrom(v, ev, ρ, wv), ∀v ∈ V (5.37)

rv = SE→sv = 0 ∧ y(sv) = 0 ∧ σdur
v = 0 ∧ cv = 0

∧ σfrom
v = 0 ∧ σto

v = 0,∀v ∈ V (5.38)

ev > 0→ rv = SE (5.39)

∆to
min(v, ev, qv) ≤ dto

v ≤ ∆to
max(v, ev, qv), ∀v ∈ V (5.40)

∆dur
min(v, ev) ≤ ddur

v ≤ ∆dur
max(v, ev), ∀v ∈ V (5.41)

∆from
min (v, ev, ρ, wv) ≤ dfrom

v ≤ ∆from
max (v, ev, ρ, wv), ∀v ∈ V (5.42)

σto
v , σ

from
v , cv ≥ 0, ∀v ∈ V (5.43)

The objective function (5.26) minimises the sum of the hotel costs and reposition-
ing action costs minus the cost savings for SOS actions for the set of vessels. Con-
straints (5.27) and (5.28) specify that the vessels must all phase in to the new service
on different, successive weeks. Constraints (5.29) and (5.30) specify that all vessels us-
ing SOS actions must use different actions and action types. alldifferent except 0

is a global constraint that requires all elements of an array of variables to be different,
except those that have the value 0. This allows us to enforce the all different constraint
only when an SOS action is actually being used by a vessel.

Constraints (5.31) and (5.32) set the costs for a vessel if it uses a SAIL repositioning,
and ensures that the SOS/SE actions and costs are set to 0, as they are not being used.

74

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Constraints (5.33) and (5.34) specify that if vessel v uses an SOS (SOS) repositioning
action sv, then its repositioning cost is equal to the costs for sailing to and from that
SOS action based on the phase-out action, phase-in port and week, minus the cost
savings A(v, sv) for that SOS action. In addition, the normal repositioning cost cv and
the sail equipment action for that vessel are set to 0. We also add redundant constraints
(5.35) to reinforce that the repositioning type be set correctly when an SOS is chosen.

In constraints (5.36) we ensure that no two vessels choose the same SE action (unless
they choose no SE action), and constraints (5.37) and (5.38) bind the costs of the sail
equipment action to the dependent variables if an SE is chosen, as well as set the
costs of a direct sailing and SOS opportunities for each vessel to 0. The redundant
constraints (5.39) ensure that the repositioning type of vessel v is correctly set if an
SE action is chosen. The minimum and maximum durations of the parts of the SE
(sailing to the SE from the phase-out, the SE itself, and sailing from the SE to the
phase-in) are set in constraints (5.40), (5.41) and (5.42). Constraint (5.43) requires
that all SOS actions and phase-out/phase-in combinations must be valid for each vessel
(i.e. transitions with -1 costs must not be used).

5.5.2 CP Model Computational Evaluation in G12

We formulated the above CP model in the MiniZinc 1.6 modeling language [116, 117]
and solved it to optimality using the CPX solver in G12 2.0 [50, 174]. Note that in
our CP model for MiniZinc we had to add constraints on the maximum duration of SE
actions, as well as a constraint on the maximum sum of the objective, in order to prevent
integer overflows. These constraints do not cut off any valid solutions from the search
tree. Since MiniZinc does not support floating point objective values, the MiniZinc
model is an extremely close approximation of the true objective. The objectives it
computes can, at times, be several cents away from the true objective. In no case does
this rounding result in a non-optimal plan being found.

We also used several search annotations within MiniZinc to help guide the solver
to a solution. Search annotations are a way of providing advice to solvers about which
branching decisions to take and which values in a variable’s domain to explore first.

The first annotation we add is to branch on the type of repositioning, rv, before
other variables. The annotation further forces the solver to first try to find a SOS
option for each vessel, then moves on to SE options, and finally checks SAIL options.
This search order was the most efficient for the most complex models that include both
SOS and SE opportunities, since SE constraints are more complex than SOS constraints,
so searching SE options first is more time consuming for models that contain both SOS
and SE opportunities.

For instances with SE opportunities, we also add a search annotation to branch
on the SE opportunity, ev, using the indomain split functionality of MiniZinc, which
excludes the upper half of a variable’s domain. Both annotations use a first failure
strategy, meaning the variable the solver branches on is the one with the smallest
domain.

75

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

Inst LTOP-DLH MIP CP CP–A CP–AO CP–R CP–AOR
AC3 1 0 1.1 0.4 0.1 0.2 0.1 0.2 0.1
AC3 2 0 51.0 9.3 0.3 0.3 0.3 0.3 0.3
AC3 3 0 188.3 23.0 0.6 0.6 0.6 0.6 0.6
AC3 1 1e 3.9 3.8 0.7 0.7 0.7 0.8 0.4
AC3 2 2ce 15.2 27.7 - 83.9 25.5 - 11.3
AC3 3 2c 203.2 250.5 6.0 3.1 3.1 6.2 3.0
AC3 3 2e 217.1 228.8 1731.0 15.8 16.2 1742.8 13.2

AC3 3 2ce1 218.2 312.2 32.6 23.0 16.7 31.5 13.9
AC3 3 2ce2 192.4 252.6 64.4 25.4 23.3 63.7 17.1
AC3 3 2ce3 516.9 706.5 - - 695.4 - 470.3

AC3 3 3 80.0 148.3 18.1 11.0 11.0 18.6 11.2

Table 5.9: CPU times in seconds for the CP model with and with annotations (A), reposi-
tioning type order (O), and redundant constraints (R) vs LTOP and the MIP, solving to
optimality.

Table 5.9 compares the run times of the CP model against the MIP model and LTOP,
all of which find optimal solutions. We run the CP model without any annotations or
redundant constraints, with search annotations using a search order of SAIL/SOS/SE
(CP–A), with search annotations and the SOS/SE/SAIL ordering (CP–AO), with only
the redundant constraints and using the solver’s default search (CP–R), and using the
SOS/SE/SAIL ordering with redundant constraints (CP–AOR). CP–AOR is faster than
the MIP on all instances, often by an order of magnitude. The main challenge for the
CP model are instances with equipment, just as for LTOP and the MIP. The CP model
times out on two instances for CP and CP–R, as well as one for CP-A, whereas the MIP
and LTOP solve all instances. Of particular note is that the CP model is able to solve
AC3 3 3, which is the instance that most closely models the actual scenario faced by
our collaborator, in only 10 seconds. Such a quick solution time allows for interaction
and feedback with a repositioning coordinator within a decision support system. Note
that no single improvement alone is enough to give the CP model better performance
than both LTOP and the MIP.

Our CP model comes with two limitations. The first limitation is the model’s flex-
ibility. A natural extension to this model would be to allow for the chaining of SOS
and SE opportunities, which is easy to do in both the LTOP and MIP models, due to
automated planning’s focus on actions, and our MIP model’s focus on flows. However,
the CP model is structured around exploiting this piece of the problem. Other natural
changes, such as allowing vessels to undergo repairs, would also be difficult to imple-
ment. The second limitation is that many of the components of the CP model involve
pre-computations that multiply the number of phase-out actions with the number of
phase-in ports and weeks. Although the model works well on our real world instance,
these pre-computations pose an issue for scaling to larger liner shipping services.

76

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

5.6 Chapter Summary

We introduced the NCLSFRP, a simplification of the overall LSFRP that captures sev-
eral key difficult components of the LSFRP, including time-dependent task costs and
the coordination necessary between vessels to create a liner shipping service. We intro-
duced four different models of the problem, using PDDL, the LTOP framework, MIP
and CP. Through experimental analysis on a dataset of eleven instances based on a
real-world repositioning scenario, we were able to determine the strengths and weak-
nesses of the various methods. We achieved the best performance across the instances
using a highly domain specific CP model, as well as impressive performance from the
LTOP approach, which is not nearly as well studied or developed as the MIP or CP
methods. We showed that automated planning is capable of solving real-world com-
binatorial optimization problems, but that more work is needed in developing strong,
domain independent heuristics.

77

Chapter 5. Liner Shipping Fleet Repositioning without Cargo

78

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Chapter 6

Liner Shipping Fleet Repositioning
with Cargo

Although the model of the LSFRP presented in Chapter 5 is useful for certain types of
repositionings, taking into account the flows of containers through the network is im-
portant for ensuring the repositioning plans that are generated do not cause significant
disruptions to the on-time delivery of containers.

To this end, we present a version of the LSFRP that includes cargo flows and has
a fixed time window in which all vessels must be repositioned. In contrast with the
NCLSFRP, this version of the problem contains all aspects of the LSFRP discussed
in Chapter 3, including parallel SOS sailings, port inducement/omission, and a fixed
deadline after which normal service on the goal service must commence.

We create a specialized graph to model the problem in which nodes represent port
calls and the arcs of the graph define legal sailings between port calls. Using specialized
constructions in the graph, we are able to completely model SOS opportunities, the
phase-in and the phase-out without any additional mathematical constraints. Container
flows are represented with a maximal multi-commodity flow over this graph.

We present two models of the LSFRP with cargo flows using this graph, using an
arc flow and a path based approach. We then model a simplified version of the LSFRP
in which there are no flexible visitations, which we call the node flow model. We solve
the arc flow and node flow models in CPLEX and show their scaling behavior on two
real-world datasets of LSFRP instances. We solve the path based model using a column
generation procedure that provides optimal solutions on all instances in our dataset,
despite only guaranteeing a lower bound. Of our two datasets, one is a confidential
dataset consisting of real data from our industrial collaborator, and the other contains
anonymized information from the confidential dataset. This dataset is publicly avail-
able. These datasets differ from the instances presented in Chapter 5 in that they
include more components of the problem as well as cargo flows.

Furthermore, we introduce two heuristic methods for solving the LSFRP, simulated
annealing (SA) [91] and late acceptance hill climbing (LAHC) [24], that both use a set
of initial solution heuristics and neighborhood operators to find good solutions to the

79

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

LSFRP in less time than is generally required by the optimal approaches. We show
that SA outperforms LAHC on the LSFRP with cargo flows, and that both SA and
LAHC are able to scale to the largest instances of our dataset and provide solutions
with low optimality gaps. In fact, SA is able to find optimal solutions on a majority of
the dataset, indicating that it is well suited to solving the LSFRP with cargo flows.

We also compare the results of our optimal and heuristic approaches to a reference
instance from Maersk Line representing a real repositioning that was undertaken in
2011. We show that our methods improve the profit obtained during repositioning in
the reference scenario by nearly $14 million.

6.1 Graph Construction

We model the LSFRP with cargo flows on a graph G = (V,A), where V is the set
of nodes and A the set of directed arcs between nodes. Each node in V represents a
visitation of a vessel at a particular port1, and each arc in A represents an allowed
sailing between two visitations. The graph encompasses all of the activities each vessel
may undertake during a fixed repositioning period, which is the period from the time the
vessel is first allowed to leave its phase-out service until the time when normal operations
must begin on the phase-in service. The path of each vessel through the graph represents
the activities to be undertaken by that vessel, and we therefore require the paths to
be node disjoint to prevent multiple vessels from performing the same activity. This is
an important constraint because i) container port terminals assign timeslots to vessels,
meaning there is not enough room for two vessels, and ii) profit from carrying cargo
can only be earned a single time, removing any reason for multiple vessels to visit the
same node. Note that flexible visitations, i.e., visitations without a prior fixed schedule,
can be undertaken by multiple vessels, even simultaneously. For ease of modeling, we
therefore replicate flexible visitations for each vessel and consider them as node disjoint.
We give more details about this process (and justifications) later. We embed a number
of problem constraints and objectives directly in the graph, including sailing costs, sail-
on-service opportunities, cabotage restrictions, phase-in/out requirements, and canal
fees, which are described in detail in the next section, followed by our MIP model over
the graph.

We give a textual overview of the graph used in our model of the LSFRP with cargo
flows followed by a detailed description in Section 6.1.6. The visitations in the graph
are split into two disjoint sets, thus V = V i ∪ V f , where V i is the set of inflexible
visitations, i.e. visitations associated with a specific port call time, and V f is the set
of flexible visitations, which are assigned a time only if a vessel performs the visitation.
The set V f contains visitations in which a vessel can pick up/deliver equipment or
incremental cargo that are not on any phase-out, phase-in, or SOS service. Let S be
the set of ships.

1We use the terms visitation and node interchangeably.

80

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

The overall structure of the graph involves four types of visitations: phase-out,
phase-in, flexible, and SOS visitations. In addition to these visitations, we include a
graph sink, τ , which all vessels must reach for a valid repositioning. We let V ′ = V \ τ
be the set of all graph visitations excluding τ . The four types of visitations represent
four disjoint sets that make up V ′. We now describe the arc structure present in each
of the four types of visitations.

6.1.1 Phase-out

Each ship is assigned a particular visitation, vs ∈ V ′, at which the ship s ∈ S begins
its repositioning. This visitation represents the earliest allowed phase-out time for that
vessel. A visitation is then created for each subsequent port call of the ship on its
phase-out slot. Each phase-out visitation is connected to the next one with an arc.
Note that phase-out visitations do not connect to the phase-out visitations of other
ships.

Vessels may leave phase-out nodes to sail to SOS opportunities, flexible nodes,
or to a phase-in slot. Thus, arcs are created from each phase-out visitation to each
phase-in visitation and SOS start visitation such that sailing between the visitations
is temporally feasible (i.e. the starting time of the phase-in/SOS visitation is greater
than the end time of the phase-out visitation plus the sailing time). Since flexible nodes
have no fixed start and end time, arcs are created to and from all flexible nodes to all
phase-outs within the same trade zone. Finally, phase-out visitations have incoming
arcs from phase-in visitations in the same trade zone. This allows ships to avoid sailing
back and forth between ports when transferring directly between the phase-out and
phase-in.

6.1.2 Phase-in

We create visitations for each port call along a phase-in slot, and connect subsequent
phase-in visitations to each other. The final visitation in a slot, which represents the
time at which regular operations must begin on a service, is connected to the graph
sink, τ .

The phase-in graph structure ensures that the goal service has a vessel in each of
its slots. An example phase-in graph structure is portrayed in Figure 6.1, which shows
an example graph for a service with three slots. Each sequence of visitations (colored
red, green and blue) represents a slot on the goal service. Each visitation is labeled
with the port and week that it is visited. The last node in each sequence corresponds
to the on-time requirement (node (c, 2)) extended to each slot. After each of these
visitations, the service begins normal operations, and is no longer under the control
of the repositioning coordinator. This graph structure ensures that all vessels perform
a legal phase-in, namely that each slot is assigned a single vessel. Each phase-in slot
is guaranteed to be assigned a single vessel since there are as many slots as there are

81

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Figure 6.1: The phase-in graph structure for a service with 3 slots. Nodes are labeled (port,
week). The sets RPI

0 , RPI
1 , and RPI

2 contain the nodes for each phase-in slot. Each set of
nodes ends with a single visitation at port c on weeks 2, 3 and 4, ensuring that the weekly
structure of the service is enforced.

vessels (three), the graph sink τ only has a single incoming node from each slot, and
the paths of vessels are node disjoint (except for τ).

6.1.3 Flexible visitations

Flexible visitations are modeled by replicating each flexible visitation for each ship in the
model. Flexible visitations are connected to all inflexible and flexible visitations within
the same trade zone. Replicating flexible visitations for each vessel avoids requiring
special constraints in the MIP model to handle the fact that multiple vessels can visit
the same flexible visitation. This is because when a vessel visits a flexible visitation, the
visitation must be assigned a time when it can take place. Simply copying the flexible
nodes ensures that each flexible node can be scheduled along the path of a vessel
with simple constraints. Since our instances generally do not contain many flexible
visitations, this duplication does not significantly hinder the solvability of the instances.
Note that this opens the possibility that two vessels may visit the same flexible visitation
at the same time. We do not consider this to be a problem since flexible visitations are
at ports that will probably have the capacity to deal with multiple ships. Since flexible
visitations do not have fixed entry and exit times, the time required for a vessel to visit
them must be taken into account. The total port stay at a flexible visitation consists
of the piloting time, which is the time required to maneuver the vessel in to, and out
of, a port, and the cargo/equipment (un)loading time.

6.1.4 Sail-on-service

We introduce a number of disjoint sets of graph arcs and graph nodes to represent a
special graph structure that models SOS opportunities. We view an SOS as having
three types of ports; entry ports, where vessels may join the SOS, through ports, in
which a vessel must already be on the SOS, and end ports where a vessel may leave
the SOS. The designations of these ports is left to the repositioning coordinator. We
make this distinction in case there are circumstances outside the scope of the model
that require certain ports to be called if an SOS is used.

Figure 6.2 shows the graph structure of an example SOS opportunity, o. Vessels
may enter the SOS using arcs in the set ÂIn

o , either through parallel sailing nodes
(OP

o) or transshipment nodes (OTS
o), shown in red and green, respectively. Parallel

82

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Figure 6.2: The graph structure of an example SOS opportunity, which contains parallel nodes
OPo in red, transshipment nodes OTS

o in green, a cabotage restriction at port p1, through
nodes OTo in blue, and end nodes OEo in orange.

sailings end in a transshipment, in which cargo is moved to the repositioning vessel.
The parallel sailing nodes are connected to the transshipment nodes with the set of
arcs ÂPTS

o . The set of arcs ÂPP
o contains arcs connecting subsequent ports for parallel

sailings. These arcs have twice the sailing cost for each vessel as the other arcs in the
SOS graph structure, which have the normal sailing cost between two ports for each
vessel. Note that p3 has no parallel sailing node because transshipment is not allowed
in p4, which is a through port. Ports with cabotage restrictions, such as p1, do not
receive transshipment nodes, as transshipping at that particular port would violate the
law. Transshipment nodes connect to through nodes (blue) using the arcs ÂTST

o . Once
at a through node, a vessel must sail onward to the next through node using the arc
set ÂTT

o , until it reaches the arc âTE
o . This arc connects the through nodes to the end

nodes, and represents a bottleneck that ensures only one vessel uses a particular SOS.
Since the paths of the vessels are node disjoint, two vessels would have to visit the latest
node in OT

o and the earliest node in OE
o , which is not allowed. Finally, vessels may exit

the SOS through the end nodes (orange) in the set OE
o , using an arc in the set ÂOut

o .
End nodes are connected by the arcs in the set ÂEEo .

6.1.5 Sailing Cost

The fuel consumption of a ship is a cubic function of the speed of the vessel. We pre-
compute the optimal cost for each inflexible arc using a linearized bunker consumption
function, and compute the costs of flexible arcs during optimization in our MIP model.
All inflexible arcs in the model are assigned a sailing cost for each ship that is the
optimal sailing cost given the total duration of the arc. If the duration of the arc is
greater than the time required to sail on the arc at a ship’s minimum speed, the cost
calculated using the minimum speed and the ship simply waits for the remainder of the
duration. This is a common practice for shipping lines in order to add buffer to their
schedules, thus making the network more robust to disruptions.

83

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.1.6 Graph Formalization

We now provide a formalized description of the graph based on our previous description.
The following parameters are used to define the graph.

S Set of ships, indexed by s.
V i, V f Set of inflexible and flexible visitations, respectively.
Ai, Af Set of inflexible and flexible arcs, respectively.
A′ The set of arcs (i, j) ∈ A, where i, j ∈ V ′.
L Set of phase-in slots, where |L| = |S|, indexed by `.
SOS The set of SOS slots.
RPI
` Set of visitations of phase-in slot ` ∈ L.

RPO
s Set of phase-out visitations of vessel s ∈ S.

O
{P,TS ,T,E}
o Sets of parallel, transshipment, transit, and end visitations, with

o ∈ SOS .

V R Set of non-SOS inflexible visitations, V R =
⋃
`∈lR

pi
`

⋃
s∈sR

po
s .

TZ Set of trade zones.
zi ∈ TZ Trade zone of visitation i ∈ V .
tEi ∈ R+ Time a vessel begins inflexible visitation i ∈ V i.
tXi ∈ R+ Time a vessel ends inflexible visitation i ∈ V i.
τ ∈ V Graph sink, which is not an actual visitation.
V ′ = V \ τ Set of nodes without the graph sink.
dmin∗
ij Minimum time required for any ship to sail from visitation i to j.
ASD(R) Set of arcs connecting subsequent visitations in the visitation set R.
APO Set of arcs connecting phase-out slots to phase-in slots.
API Set of arcs from phase-in visitations to same trade zone phase-out

visitations.
Aτ Set of arcs from the final phase-in visitation to the graph sink.

ÂIn
o Set of arcs connecting to the start nodes of o ∈ SOS .

ÂOut
o Set of arcs extending from the end nodes of o ∈ SOS .

ÂPTS
o Set of arcs connecting the parallel nodes to transshipment nodes of

o ∈ SOS .

ÂTST
o Set of arcs connecting transshipment nodes to transit nodes of o ∈

SOS .

ÂTT
o Set of arcs between transit nodes of o ∈ SOS .

ÂEE
o Set of arcs between sequential end nodes of o ∈ SOS .

âTE
o Arc from the latest transit node in o ∈ SOS to its earliest end node.

We define the set of inflexible nodes as V i =
⋃
`∈lR

PI
`

⋃
s∈sR

PO
s

⋃
o∈SOS(OP

o ∪OT
o ∪

OTS
o ∪OE

o). The set of flexible visitations, V f , contains all visitations that have equip-
ment surpluses/deficits such that V f ∩ V i = ∅. In order to formally define the set of
arcs contained in the graph, let follows(i, j) ∈ B return true if and only if visitation j is
scheduled on any service to immediately follow visitation i, with i, j ∈ V i. In addition,

84

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

we let can-sail(i, j) ∈ B be true if and only if tEj ≥ tXi + ∆min∗
ij , where i, j ∈ V ′. This

indicates whether or not it is possible to sail between two visitations at the fastest speed
of the fastest vessel in the model. Note that all of the arc sets are disjoint. We now
formally define all of the previously mentioned sets of arcs.

ASD(R) = {(i, j) | i, j ∈ R ∧ follows(i, j)}, R ∈
⋃
s∈S

{RPO
s }

⋃
`∈L

{RPI
` }

APO = {(i, j) | i ∈
⋃
s∈S

RPO
s ∧ j ∈

⋃
`∈L

RPI
` ∧ can-sail(i, j)}

API = {(i, j) | i ∈
⋃
`∈L

RPI
` ∧ j ∈

⋃
s∈S

RPO
s ∧ zi = zj ∧ can-sail(i, j)}

Aτ = {(i, τ) | i ∈
⋃
`∈L

argmax
i′∈RPI`

{tXi′ }}

Af = {(i, j) |
(
(i ∈ V f ∨ j ∈ V R) ∧ (i ∈ V R ∨ j ∈ V f) ∧ (i ∈ V f ∨ j ∈ V f)

)
∧ zi = zj}

ÂIn
o = {(i, j) | i ∈

⋃
s∈S

RPO
s ∧ j ∈ (OP

o ∪OTS
o) ∧ can-sail(i, j)}⋃

{(i, j) | i ∈ V f ∧ j ∈ (OP
o ∪OTS

o) ∧ zi = zj ∧ can-sail(i, j)}

ÂOut
o = {(i, j) | i ∈ OE

o ∧ j ∈

⋃
`∈L

RPI
`

⋃
o′∈{SOS\o}

(OP
o′ ∪OTS

o′)

 ∧ can-sail(i, j)}

⋃
{(i, j) | i ∈ OE

o ∧ j ∈ V f ∧ zi = zj ∧ can-sail(i, j)}
ÂPTS
o = {(i, j) | i ∈ OP

o ∧ j ∈ OTS
o ∧ follows(i, j)}

ÂTST
o = {(i, j) | i ∈ OTS

o ∧ j ∈ OT
o ∧ follows(i, j)}

ÂTT
o = {(i, j) | i, j ∈ OT

o ∧ follows(i, j)}
ÂEE
o = {(i, j) | i, j ∈ OE

o ∧ follows(i, j)}
âTE
o = (argmax

i∈OTo
{tXi }, argmin

j∈OEo
{tEj })

The set of all arcs in the graph, A, is therefore defined by

A =
⋃
s∈S

(
ASD(RPO

s)
)⋃
`∈L

(
ASD(RPI

`)
)
∪ API ∪ Af ∪ Aτ⋃

o∈SOS

(
ÂIn
o ∪ ÂOut

o ∪ AST
o ∪ ÂTT

o ∪ ÂEE
o ∪ âTE

o

)
.

6.2 Arc Flow Model

We now define the MIP model that guides the vessels through the graph based on an
arc flow approach, in which the amount of containers and equipment flowing on each

85

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

arc is explicitly modeled with the decision variables of the model. We use the following
parameters and variables to supplement the parameters used to define the graph.

Parameters

S Set of ships.
V ′ Set of visitations minus the graph sink.
V i, V f Set of inflexible and flexible visitations, respectively.
Ai, Af Set of inflexible and flexible arcs, respectively.
A′ Set of arcs minus those arcs connecting to the graph sink, i.e.,

(i, j) ∈ A, i, j ∈ V ′.
Q Set of equipment types. Q = {dc, rf }.
M Set of demand triplets of the form (o, d, q), where o ∈ V ′, d ⊆ V ′

and q ∈ Q are the origin visitation, destination visitations and
the cargo type, respectively.

V q+ ⊆ V ′ Set of visitations with an equipment surplus of type q.
V q− ⊆ V ′ Set of visitations with an equipment deficit of type q.
V q∗ ⊆ V ′ Set of visitations with an equipment surplus or deficit of type q

(V q∗ = V q+ ∪ V q−).
uqs ∈ R+ Capacity of vessel s for cargo type q ∈ Q.

MOrig
i , (MDest

i) ⊆M Set of demands with an origin (destination) visitation i ∈ V .
vs ∈ V ′ Starting visitation of ship s ∈ S.
tMv
si ∈ R Move time per TEU for vessel s at visitation i ∈ V ′.
tEi ∈ R Enter time at inflexible visitation i ∈ V ′.
tXi ∈ R Exit time at inflexible visitation i ∈ V ′.
tPi ∈ R Pilot time at visitation i ∈ V ′.
rVar
t ∈ R+ Revenue for each TEU of equipment of type t ∈ T delivered.
r(o,d,q) ∈ R+ Amount of revenue gained per TEU for the demand triplet.
cSail
sij ∈ R+ Fixed cost of vessel s utilizing arc (i, j) ∈ A′.
cVarSail
sij ∈ R+ Variable hourly cost of vessel s ∈ S utilizing arc (i, j) ∈ A′.
cMv
i ∈ R+ Cost of a TEU move at visitation i ∈ V ′.
cPort
si ∈ R Port fee associated with vessel s at visitation i ∈ V ′.
dMin
ijs ∈ R+ Minimum duration for vessel s to sail on flexible arc (i, j).
dMax
ijs ∈ R+ Maximum duration for vessel s to sail on flexible arc (i, j).
a(o,d,q) ∈ R+ Amount of demand available for the demand triplet.
In(i) ⊆ V ′ Set of visitations with an arc connecting to visitation i ∈ V .
Out(i) ⊆ V ′ Set of visitations receiving an arc from i ∈ V .
τ ∈ V Graph sink, which is not an actual visitation.

86

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Variables

wsij ∈ R+
0 The duration that vessel s ∈ S sails on flexible arc (i, j) ∈ Af .

x
(o,d,q)
ij ∈ R+

0 Amount of flow of demand triplet (o, d, q) ∈M on (i, j) ∈ A′.
xqij ∈ R+

0 Amount of equipment of type q ∈ Q flowing on (i, j) ∈ A′.
ysij ∈ {0, 1} Indicates whether vessel s is sailing on arc (i, j) ∈ A.
zEi ∈ R+

0 Defines the enter time of a vessel at visitation i.
zXi ∈ R+

0 Defines the exit time of a vessel at visitation i.

Objective and Constraints

max −
∑
s∈S

 ∑
(i,j)∈A′

cSail
sij y

s
ij +

∑
(i,j)∈Af

cVarSail
sij wsij

 (6.1)

+
∑

(o,d,q)∈M

∑
j∈d

∑
i∈In(j)

(
r(o,d,q) − cMv

o − cMv
j

)
x

(o,d,q)
ij

 (6.2)

+
∑
q∈Q

∑
i∈V q+

∑
j∈Out(i)

(
rEqpq − cMv

i

)
xqij −

∑
i∈V q−

∑
j∈In(i)

cMv
i xqji

 (6.3)

−
∑
j∈V ′

∑
i∈In(j)

∑
s∈S

cPort
sj ysij (6.4)

s. t.
∑
s∈S

∑
i∈In(j)

ysij ≤ 1 ∀j ∈ V ′ (6.5)

∑
j∈Out(i)

ysij = 1 ∀s ∈ S, i = vs (6.6)

∑
i∈In(τ)

∑
s∈S

ysiτ = |S| (6.7)

∑
i∈In(j)

ysij −
∑

i∈Out(j)

ysji = 0 ∀j ∈ {V ′ \
⋃
s∈S

vs}, s ∈ S (6.8)

∑
(o,d,rf)∈M

x
(o,d,rf)
ij ≤

∑
s∈S

urf
s y

s
ij ∀(i, j) ∈ A′ (6.9)

∑
(o,d,q)∈M

x
(o,d,q)
ij +

∑
q′∈Q

xq
′

ij ≤
∑
s∈S

udc
s y

s
ij ∀(i, j) ∈ A′ (6.10)

∑
i∈Out(o)

x
(o,d,q)
oi ≤ a(o,d,q)

∑
i∈Out(o)

∑
s∈S

ysoi ∀(o, d, q) ∈M (6.11)

∑
i∈In(j)

x
(o,d,q)
ij −

∑
k∈Out(j)

x
(o,d,q)
jk = 0 ∀(o, d, q) ∈M, j ∈ V ′ \ (o ∪ d) (6.12)

87

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

∑
i∈In(j)

xqij −
∑

k∈Out(j)

xqjk = 0 ∀q ∈ Q, j ∈ V ′ \ V q∗ (6.13)

dMin
ijs y

s
ij ≤ wsij ≤ dMax

ijs y
s
ij ∀(i, j) ∈ Af , s ∈ S (6.14)

zEi = tEi
∑
s∈S

∑
j∈In(i)

ysij ∀i ∈ V i (6.15)

zXi = tXi
∑
s∈S

∑
j∈Out(i)

ysij ∀i ∈ V i (6.16)

zXi +
∑
s∈S

wsij ≤ zEj ∀(i, j) ∈ Af (6.17)∑
(o,d,q)∈MOrig

i

∑
j∈Out(o)

tMv
so x

(o,d,q)
oj +

∑
(o,d,q)∈MDest

i

∑
d′∈d

∑
j∈In(d′)

tMv
sd x

(o,d,q)
jd′

+
∑
q∈Q

 ∑
i′∈{V q+∩{i}}

∑
j∈Out(i′)

tMv
si′ x

q
i′j +

∑
i′∈{V q−∩{i}}

∑
j∈In(i′)

tMv
sj x

q
ji′

− zXi + zEi + tPi

∑
j∈In(i)

ysij ≤ 0 ∀i ∈ V f , s ∈ S (6.18)

The domains of the variables are as previously described. The objective consists of
several components. The sailing cost (6.1) takes into account the precomputed sailing
costs on arcs between inflexible visitations, as well as the variable cost for sailings to
and from flexible visitations. Note that the fixed sailing cost on an arc does not only
include fuel costs, but can also include canal fees or the time-charter bonus for entering
an SOS. The profit from delivering cargo (6.2) is computed based on the revenue from
delivering cargo minus the cost to load and unload the cargo from the vessel. Note
that the model can choose how much of a demand to deliver, even choosing to deliver
a fractional amount. We can allow this since each demand is an aggregation of cargo
between two ports, meaning at most one container between two ports will be fractional.
Equipment profit is taken into account in (6.3). Equipment is handled similar to cargo,
except that equipment can flow from any port where it is in supply to any port where
it is in demand. Finally, port fees are deducted in (6.4).

Multiple vessels are prevented from visiting the same visitation in (6.5). The flow of
each vessel from its source node to the graph sink is handled by (6.6), (6.7) and (6.8),
with (6.7) ensuring that all vessels arrive at the sink.

Arcs are assigned capacities if a vessel utilizes the arc in (6.9), which assigns the
reefer container capacity, and in (6.10), which assigns the total container capacity, re-
spectively. Note that constraints (6.9) do not take into account empty reefer equipment,
since empty containers do not need to be turned on, and can therefore be placed any-
where on the vessel. Cargo is only allowed to flow on arcs with a vessel in (6.11). The
flow of cargo from its source to its destination, through intermediate nodes, is handled
by (6.12). Constraints (6.13) balance the flow of equipment in to and out of nodes. In

88

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

contrast to the way cargo is handled, equipment can flow from any port where it is in
supply to any port where it is in demand. Since the amount of equipment carried is
limited only by the capacity of the vessel, no flow source/sink constraints are required.

Flexible arcs have a duration constrained by the minimum and maximum sailing
time of the vessel on the arc in (6.14). The enter and exit time of a vessel at inflexible
ports is handled by (6.15) and (6.16), and we note that in practice these constraints are
only necessary if one of the outgoing arcs from an inflexible visitation ends at a flexible
visitation. Constraints (6.17) sets the enter time of a visitation to be the duration
of a vessel on a flexible arc plus the exit time of the vessel at the start of the arc.
Constraints (6.18) controls the amount of time a vessel spends at a flexible visitation.
The first part of the constraint computes the time required to load and unload cargo
and equipment, with the final term of the constraint adding the piloting time to the
duration only if one of the incoming arcs is enabled (i.e. the flexible visitation is being
used).

The model forms a disjoint path problem in which a fractional multicommodity
flow is allowed to flow over arcs in the vessel paths, along with a small scheduling
component in the flexible nodes. Flexible arcs could be alternatively represented using
a discretized approach, however we forego a discretization because of the vast differences
in timescales between port activities and sailing activities, which are on the order of
hours and days, respectively. In order to achieve such a fine grained view of flexible arc
activities, we would require numerous extra arcs and nodes for each flexible node.

6.3 Path Based Model
The number of variables in the arc flow model grows in the number of demands times
the number of arcs. We formulate a path based model that has even more variables, but
can be solved in a structured manner using column generation that allows us to only
generate those variables that are necessary. This means that the resulting problem is
able to be solved with less variables than the arc flow approach. We use a Dantzig-Wolfe
decomposition to split the problem into a master and subproblem. This decomposition
only solves an LP, but the LSFRP is modeled by a MIP, meaning the path based
model is only able to find bounds on the optimal solution. However, on nearly all of
the instances in our dataset we find integer solutions to the LP, meaning we find the
optimal solution to most LSFRP instances with the path based model.

We note that in order to use the following method, a starting solution is required.
While an artificial solution can be used and then penalized, we generate a solution using
the methods that we present later in Section 6.5.4.

6.3.1 Master Problem

We formulate our master problem as a set packing problem with a convexity constraint
over the path chosen for each ship. We use the following parameters, variables, objective
and constraints in the master and sub-problem in addition to the parameters in model
in Section 6.2.

89

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Parameters

P s Set of all possible paths for ship s through the graph.
P Set of all possible ship paths, i.e. P =

⋃
s∈S P

s.
ρp ∈ R Reduced price of sailing, which is the profit of using path p ∈ P .
αip ∈ {0, 1} Indicates whether path p ∈ P uses node i ∈ V ′.
βijp ∈ R Sailing duration on for flexible arc (i, j) ∈ Af on path p ∈ P .

γ
(o,d,q)
pd′ ∈ R Amount of demand revenue for demand (o, d, q) delivered at d′ ∈ d

on path p ∈ P .
δijp ∈ {0, 1} Indicates whether path p ∈ P uses arc (i, j) ∈ A′
ηqijp ∈ R Amount of equipment revenue for equipment type q ∈ Q carried

from i ∈ V ′ to j ∈ V ′ on path p ∈ P .

Variables

The model contains the variables λp ∈ {0, 1}, which indicate whether ship path p ∈ P
should be chosen by the model.

Objective and Constraints

max
∑
s∈S

∑
p∈P s

ρpλp (6.19)

s. t.
∑
s∈S

∑
p∈P s

αipλp ≤ 1 ∀i ∈ V ′ (6.20)∑
p∈P s

λp = 1 ∀s ∈ S (6.21)

The objective, (6.19), consists of the profit earned on a particular vessel path. Con-
straints (6.20) enforce the node disjoint structure of the graph. Together, (6.19) and
(6.20) form the set packing component of the master problem. Each ship is assigned
exactly one path in constraints (6.21), which represent the convexity constraint over
the path variables for each ship.

6.3.2 Sub-problem

In order to compute the sub-problem objective, we associate the dual variables πi with
constraints (6.20) and ψs with constraints (6.21). The profit of a path p for a ship s is
given by

ρ̂p = ρp −
∑
i∈V ′

αipπi − ψs. (6.22)

90

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

The constant ρp is the cost of a path in the arc-formulated problem. Let

ρp = −
∑

(i,j)∈A′
δijpc

Sail
sij −

∑
(i,j)∈Af

βijpc
VarSail
sij −

∑
i∈V ′

αipc
Port
si

+
∑

(o,d,q)∈M

∑
d′∈d

γ
(o,d,q)
pd′ (r(o,d,q) − cMv

o − cMv
d′)

+
∑
q∈Q

∑
i∈V q+

∑
j∈V q−

ηqijp(r
Eqp
q − cMv

i − cMv
j) (6.23)

for some ship s ∈ S and a path p ∈ P S. We generate columns as long as ∃p ∈ P
such that ρ̂p > 0, which corresponds to finding the maximum profit path through the
subproblem graph.

6.3.3 Reduced Graph

Although the sub-problem is, in the worst case, just as hard as the original problem,
we can reduce the size of the graph (and thereby the number of demands present).
This generally makes the sub-problem easier to solve. The graph size reduction is
based on the fact that with only a single vessel present, the phase-out visitations of
other vessels must no longer be a part of the graph, along with any visitations that
are only reachable from those phase-outs. Additionally, several phase-in slots, SOS
opportunities and visitations with equipment may not be usable due to the time when
the vessel phases-out.

We formalize the graph size reduction as follows, using the same parameters as from
the graph in Section 6.1 and arc flow model in Section 6.2. We are given a ship s ∈ S for
which to compute the reduced graph. Additionally, let GT = (V T , AT) be the transitive
closure of the original graph, G = (V,A). The reduced graph, GR = (V R, AR) with
corresponding demands MR is thus defined by:

V R = {i ∈ V ′ | (vs, i) ∈ AT} (6.24)

AR = {(i, j) ∈ A | i, j ∈ V R} (6.25)

MR = {(o, d, q) ∈M | o ∈ V R ∧ ∃d′ ∈ d s.t. d′ ∈ V R} (6.26)

The nodes of the reduced graph, defined by V R in (6.24), are only those nodes which
are reachable from the start visitation of the vessel (vs). We then build the arc set AR

in (6.25) out of all arcs that have their start and end visitation in V R. Finally, MR

in (6.26) stores all demands that have their origin and at least one destination in the
reduced graph.

6.4 LSFRP with Inflexible Visitations

Many of the LSFRP instances we will later introduce do not have any flexible compo-
nents, which means that a method that can exploit the fixed times of visitations can

91

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

provide significant speed-ups versus a method that must also handle flexible visitations
and arcs. We call this version of the problem the inflexible visitation LSFRP (IVLS-
FRP). In order to solve the IVLSFRP, we provide a node flow based model. This model
exploits the fact that when all visitations are inflexible, a subset of visitations can only
be sequenced in one way. We use this fact in order to model demands based on the
graph nodes they can pass through. The following description is based on [164].

We provide two different node flow based models of the IVLSFRP, each of which uses
a different modeling of equipment. In our first model, which we call the equipment as
flows model, we do not change the way equipment is modeled from the arc flow model.
We also provide a model in which we model equipment flows as demands, which we call
the equipment as demands model.

In order to prevent a vessel from carrying too many containers, the amount of
containers loaded on the vessel must be accounted for throughout its repositioning. In
the arc flow model, this is done by explicitly keeping track of the amount of demand
flowing on each arc. In contrast, the node flow model is able to keep count of the number
of containers on the vessel implicitly based on the visitations on a vessel’s path, and
therefore only needs to determine how many containers from a particular demand are
flowing. That is, instead of a variable for each demand on each arc, the node flow
model has a variable for each demand on each vessel. In order to ensure a vessel is not
overloaded over the course of its repositioning, it suffices to ensure it is not overloaded
as it enters each visitation on its path, which corresponds to constraining the incoming
arcs of a visitation. Since demands must be loaded and unloaded at visitations, which
in the IVLSFRP have a fixed begin and end time, the times a demand can be loaded
and unloaded are fixed as well. We can therefore determine which demands can be
carried on each arc with a reachability analysis.

Since we know in advance which demands can be on the vessel at what times and
places, we can post constraints for each visitation to ensure the vessel is not overloaded
without explicitly modeling the path of the vessel. These constraints represent the state
of a vessel as it enters a visitation, and they neither over or under constrain the problem.
They are clearly sufficient to prevent the vessel from being loaded over capacity, since
they cover all demands that can possibly be on a vessel as it enters each visitation on
its path. They do not over constrain the problem because only those demands which
can be loaded on the vessel are constrained. Due to the fixed visitations times, there
is never a situation in which two demands are loaded in sequence on one potential
vessel path, and are loaded simultaneously on a different path. This means an optimal
solution can always be found, if the problem is not infeasible. Consider the following
example.

Example 6.1. Figure 6.3 shows two graphs. In the first graph (a), node b has no fixed
visitation time and must be scheduled, and in the second graph (b), all nodes have a
fixed visitation time. A single vessel must sail through the graph, starting at a and
ending at d. The demands in the instance are {(a, c), (b, d)}2, meaning there is a demand

2We ignore container types, as they are not relevant.

92

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

(a) A non-fixed time graph. (b) A fixed time graph.

Figure 6.3: Subsets of an LSFRP graph with potential vessel paths (red, blue).

from a to c and from b to d. First, consider the non-fixed time case in Figure 6.3a.
The red path (a, b, c, d) and blue path (a, c, b, d) show two potential voyages of a vessel.
On the red path, demand (a, c) is loaded while the vessel is at a, and then the vessel
continues to b, where it loads (b, d). Thus, on the red path both demands are loaded
on the vessel simultaneously. On the blue path, the vessel first loads the (a, c) demand,
sails to c where it is delivered, and continues to b where it loads (b, d). In this case, the
demands are loaded sequentially. Now consider the fixed time case in Figure 6.3b, in
which the time of visiting b is known in advance. The red path visits nodes (a, b, c, d),
and demand (a, c) and (b, d) are on the ship simultaneously at b. In fact, there is no
path in the fixed time case where (a, c) and (b, d) can be loaded sequentially; they are
either both on the ship or only (a, c) is on the ship.

In the LSFRP, a single demand can be delivered to any visitation in a set of desti-
nations. These destinations all correspond to a single real-world port being visited by
different services at different times. The arc flow model takes these multiple destina-
tions into account by simply having each destination visitation of a demand act as a
sink for that demand. This is advantageous for the model, since modeling each origin-
destination pair individually would require many variables. However, in the node flow
model, multiple destinations can cause a situation in which certain incoming arcs of
nodes are over-constrained. This could result in the optimal solution not being found.

Example 6.2. Consider Figure 6.4, which shows a graph with the vessel path (a, b, e, f)
shown with red, and the demands {(a, {b, f}), (e, {f})}, meaning there is a demand from
a that may be delivered to either b or f , and a demand from e to deliver to f . Since
it is possible for both demands to be flowing on arc (e, f), a constraint must be posted
ensuring that x(a,{b,f}) + x(e,{f}) ≤ udc

s . When a vessel travels on the path shown, the
first demand, rather than being delivered to f , is dropped off at b. The vessel then
continues to e where it loads the second demand. Consider the case where the capacity
of the vessel is 50 TEU and both demands have 50 TEU available. Due to the constraint
we must post on arc (e, f), we can only take a maximum of 50 TEU of both demands,
even though it is possible to carry both demands in full.

We remedy this problem by splitting each multiple destination demand into a de-
mand for each origin-destination pair, and add a constraint in the node flow model to
ensure that the amount of containers delivered to all of the destinations is not greater
than the amount of demand available. In the following models, we use the set M ′ to

93

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Figure 6.4: Sequential demand delivery in a multiple demand destination problem.

represent the set of single origin-destination pairs of demands in the following node flow
models. Formally, let M ′ =

⋃
(o,d,q)∈M

⋃
d′∈d(o, d

′, q).

6.4.1 Preprocessing

We base our node based model on the same graph and notation as in Section 6.2. In
order to model the flows based on nodes, we must determine which nodes a particular
demand can traverse. We do this using a simple reachability analysis based on the
transitive closure of the graph. Let GT = (V T , AT) be the transitive closure of the
graph G = (V,A), and

MVis′

i = {(o, d, q) ∈M ′ | (o, i) ∈ AT ∧ ∃d′ ∈ d s.t.
(
(i, d′) ∈ AT ∨ i = d′

)
}.

Each node is thereby assigned a set of demands (MVis′

i) based on whether the node is
reachable from the demand origin and at least one of the destinations of the demand.
We further define MVis′

i,rf = {(o, d, q) ∈ MVis′

i | q = rf } to be the set of reefer demands
at node i ∈ V ′. Using these sets of demands, we can now model demand flows on the
nodes of the IVLSFRP graph.

6.4.2 Equipment as Flows

We extend the parameters in Section 6.2 with the following three parameters: M ′, the
set of single origin single destination demands, MVis′

i , which is the set of demands (dry
and reefer) that could traverse node i, and MVis′

i,rf , the set of reefer demands that could
traverse node i.

Variables

xtij ∈ [0,maxs∈S u
dc
s] Amount of equipment of type q ∈ Q flowing on (i, j) ∈ A′.

x
(o,d,q)
s ∈ [0, a(o,d,q)] Amount of demand triplet (o, d, q) ∈M ′ carried on ship s ∈ S.
ysij ∈ {0, 1} Indicates whether vessel s is sailing on arc (i, j) ∈ A.

Objective and Constraints

max
∑
s∈S

∑
(o,d,q)∈M ′

(
r(o,d,q) − cMv

o − cMv
d

)
x(o,d,q)
s − (6.1)− (6.4) + (6.3) (6.27)

94

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

s. t. (6.5); (6.6); (6.7); (6.8); (6.13);

x(o,d,q)
s ≤ a(o,d,q)

∑
i∈Out(o)

ysoi ∀(o, d, q) ∈M ′, s ∈ S (6.28)

x(o,d,q)
s ≤ a(o,d,q)

∑
d′∈d

∑
i∈In(d′)

ysid′ ∀(o, d, q) ∈M ′, s ∈ S (6.29)

∑
(o,d,q)∈MVis′

i

x(o,d,q)
s +

∑
q∈Q

∑
j∈In(i)

xqij ≤ udc
s ∀s ∈ S, i ∈ V ′ (6.30)

∑
(o,d,q)∈MVis′

i,rf

x(o,d,q)
s ≤ urf

s ∀s ∈ S, i ∈ V ′ (6.31)

∑
q∈Q

xqij ≤
∑
s∈S

udc
s y

s
ij ∀(i, j) ∈ A′ (6.32)∑

d∈d′
x(o,d′,q)
s ≤ a(o,d,q) ∀s ∈ S, (o, d, q) ∈M ′. (6.33)

The objective (6.27) contains the same calculation of sailing costs, equipment profits,
and port fees as in the arc flow model. However, the demand profit is now computed
using the demand flow variables. Note that unlike in M , all (o, d, q) ∈M ′ have |d| = 1.
Thus, the constant cMv

d refers to the cost at a particular visitation.

We maintain constraints (6.5) through (6.8) and (6.13) directly from the arc flow
model in order to enforce node disjointness along vessel paths and create the vessel
and equipment flows. We refer readers to Section 6.2 for a full description of these
constraints.

Constraints (6.28) and (6.29) allow a demand to be carried only if a particular vessel
visits both the origin and a destination of the demand. Note that we do not need to
limit the demands to be taken only by a single vessel because of the node disjointness
enforced by constraints (6.5). Only a single vessel can enter the origin node of a demand,
ensuring that only one vessel can carry a demand.

In constraints (6.30) and (6.31) we ensure that the capacity of the vessel is not
exceeded at any node in the graph in terms of all containers and reefer containers,
respectively. Equipment flows are handled in the dry capacity constraints (6.30). Due
to the equipment balance constraints, ensuring that the equipment capacity is not
exceeded at a node is sufficient for ensuring that the vessel is not overloaded.

Constraints (6.32) prevent equipment from flowing on any arc that does not have
a ship sailing on it. When a vessel utilizes an arc, the constraint allows as much
equipment to flow as the capacity of the vessel. When an no vessel is assigned to
an arc, the corresponding equipment flow variables have an upper bound of 0. And,
finally, constraints (6.33) ensure that the amount of demand carried for each single
origin-destination demand does not exceed the amount of containers that are actually
available.

95

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.4.3 Equipment as Demands

As an alternative to modeling equipment as flows, we present a model that creates
demands for each equipment pair and adds them toM ′. We letME′

t = {(o, {d}, dc) | o ∈
V q+∧d ∈ V q−} be the set of demands corresponding to every pair of visitations with an
equipment surplus/deficit for type q ∈ Q. Note that we set the demand type of all of the
equipment demands to be dry (dc). We then append the equipment demands to M ′ as
follows: M ′ ←M ′ ∪⋃q∈QM

E′
q . In addition, let a(o,d,dc) =

∑
s∈S u

dc
s and r(o,d,dc) = rEqp

dc

for all q ∈ Q, (o, d, dc) ∈ ME′
q . Thus, the maximum amount of equipment available

for each equipment demand is equal to the sum of the capacities of all ships, and the
revenue per TEU delivered is equal to the equipment revenue for each equipment type.
Our model uses the same parameters as the arc flow model in Section 6.2 and the
equipment as flow model in Section 6.4.2. The majority of the model is the same as
the previous two models, however we include all of the objectives and constraints for
completeness.

Objective and Constraints

We use the variables ysij and x
(o,d,q)
s from the equipment as flows model and require no

additional variables. The model is as follows:

max−(6.1)− (6.4) + (6.27) (6.34)

subject to constraints (6.5), (6.6), (6.7), (6.8), from the arc flow model in Section 6.2,
and (6.28), (6.29), (6.31), and (6.33) from the model in Section 6.4.2. Instead of the dry
capacity constraint in the equipment as flows model, we impose the following constraint:∑

(o,d,q)∈MVis′
i

x(o,d,q)
s ≤ udc

s ∀s ∈ S, i ∈ V ′. (6.35)

The objective, (6.34), combines the sailing costs and port fees from the arc flow model
with the cargo demand objective from the equipment as demands model. Note the lack
of any objective relating to equipment, as it is now a part of the demand structure.

As in the equipment as flows model, we include several constraints from the arc
flow model to enforce node disjointness along vessel paths and control the vessel flows.
However, we omit the equipment flow balance constraints (6.13). We also include the
node demand constraints from the equipment as flows model, along with the reefer
capacity constraint, as they are unaffected by modeling equipment as demands. We
modify the dry capacity constraints (6.30) to produce constraints (6.35), in which the
sum of the demands carried at a particular node must respect the vessel capacity.

6.5 Heuristic Approaches

Although solving the LSFRP to optimality is desirable given the large amounts of money
at stake in the LSFRP, all of our optimal methods are only effective for problems up

96

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

to a certain number of arcs and demands, as one would expect when dealing with an
NP-complete problem. We therefore introduce two heuristic search procedures that use
common initial solution generation approaches and local search neighborhoods. The
two search procedures we use are simulated annealing (SA) [91] and late acceptance
hill climbing (LAHC) [24], due to their good performance on routing and scheduling
problems.

6.5.1 Simulated Annealing

We created a heuristic solution procedure for the LSFRP with cargo flows using an SA
algorithm. We choose SA over other heuristic approaches because of its successful use
in a wide range of scheduling and routing problems [155]. We forego large neighborhood
approaches, such as adaptive large neighborhood search [141], because the vessel paths
in the LSFRP are small subsets of the overall graph, meaning small changes are sufficient
for finding good solutions. Our SA uses a penalized objective in which certain types
of infeasible solutions are accepted in order to avoid getting stuck within the search
landscape.

We use a combined reheating and restart strategy similar to the one used in [157]
to overcome local optima. Reheating involves increasing the temperature of the SA
after convergence to a factor of the initial temperature. We combine reheating with full
restarts, in that we allow only several reheats before we restart the SA from the initial
solution. The idea behind such a restart is that several reheats could put the solution
of the SA in a part of the search space that is far away from the global optimum,
and continual reheating may not move it in the correct direction. Restarting from
the initial solution allows the SA to move in a different direction and find a better
solution. Our solution procedure can be viewed as a form of iterated local search [105],
in which reheating is the perturbation procedure and the local search to be iterated
over is simulated annealing.

Algorithm 6.1 shows the particular version of the SA algorithm that we are using
in this work, parameterized as follows: p represents the problem to solve, f is the
objective evaluation function, tInit is the initial temperature, α is the temperature
reduction factor, β is the reheating factor, tMin is the convergence temperature, rItrs

is the maximum number of non-improving iterations before reheating, rRestart is the
number of reheats before resetting the solution to the initial solution, rReheat is the
number of non-improving reheats before stopping the search.

After creating an initial solution on line 2 and initializing variables on the following
lines, the algorithm begins its outer reheat/restart loop. On lines 8 – 10 we reset
the solution used for the current reheat if the number of reheats exceeds a parameter
rRestart . This allows the SA to choose a different path from the starting solution, one
that could lead to better solutions. Within the SA inner loop on lines 11 – 19, a random
neighbor is selected and replaces the current solution if it has a higher objective value.
When the objective of the new solution is worse than that of the current solution,
we accept the solution according to the Metropolis criterion [91] (line 15). We then

97

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Algorithm 6.1 The SA algorithm with reheating and restarts.

1: function SA(p, f , tInit , α, β, tMin , rItrs , rRestart , rReheat)
2: sInit ← CreateSolution(p)
3: s∗ ← sInit ; s∗prev ← sInit

4: t← tInit

5: reheats ← 0; nonImprovingReheats ← 0
6: repeat . Reheat/restart loop.
7: nonImprovingItr ← 0;
8: if reheats ≥ rRestart then
9: s← sInit

10: reheats ← 0
11: repeat . SA loop.
12: s′ ← SelectNeighbor(s)
13: if f(s′) > f(s) then s← s′

14: else
15: if exp(f(s′)−f(s)

t) > Random() then s← s′ . Metropolis criterion.

16: nonImprovingItr ← nonImprovingItr + 1

17: if f(s′) > f(s∗) then s∗ ← s′

18: t← tα
19: until t < tMin or nonImprovingItr ≥ rItrs

20: t← tInitβ . Reheat to a factor β of the initial temperature.
21: reheats ← reheats + 1
22: if s∗ ≤ s∗prev then nonImprovingReheats ← nonImprovingReheats + 1

23: s∗prev ← max{s∗, s∗prev}
24: until Time limit reached or nonImprovingReheats ≥ rReheat

25: return s∗

update the incumbent solution (line 17) and reduce the temperature on an exponential
cooling schedule according to the factor α on line 18. We exit the inner loop if the
temperature falls below the threshold, tMin , or the number of iterations in which no
improving solution was found is greater than rItrs . We reheat the temperature to a
factor β of the original temperature and continue the search until either running out of
CPU time or we exceed the maximum number of non-improving reheats, rReheat .

6.5.2 Late Acceptance Hill Climbing

The LAHC algorithm was first introduced in [24] and was further investigated in [3,
25, 126, 173]. LAHC consists of a standard hill climbing (i.e., greedy local search)
algorithm with one key difference: the acceptance criterion compares candidate solution
to a solution ` iterations ago, in addition to the solution from the previous iteration.
Thus, LAHC is allowed to accept degenerating solutions as long as their objective is less
than the objective evaluation ` iterations ago, helping to prevent LAHC from becoming
trapped in a local optimum as in the case of a standard hill climbing algorithm.

Algorithm 6.2 shows a generic LAHC procedure. The LAHC function accepts three

98

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Algorithm 6.2 The LAHC algorithm, based on the pseudo code in [25].

1: function LAHC(p, f , `)
2: iter ← 0
3: s∗ ← CreateSolution(p)
4: s← s∗

5: sols ← Array(`)
6: for k ∈ {0, . . . , `− 1} do sols[k]← f(s∗)

7: repeat
8: v ← iter mod `
9: s′ ← SelectNeighbor(s)

10: if f(s′) < f(sols[v]) or f(s′) < f(s) then s← s′

11: if f(s′) < f(s∗) then s∗ ← s′

12: sols[v]← s
13: iter ← iter + 1
14: until Convergence criteria met
15: return s∗

parameters: the optimization problem to solve, p, the objective evaluation (i.e. the
fitness function), f , and the number of solutions to store, `. The LAHC is initialized in
lines 2 – 7. First, an initial solution is constructed. Then, an array for storing the last `
solutions is initialized to store ` copies of the initial solution. The following procedure
is then performed (lines 9 – 16) until some set of convergence criteria is satisfied. The
index of the solution ` iterations ago is stored in v, and a candidate solution, s′, is
proposed by the SelectNeighbor(s) function. When maximizing, the candidate
solution is accepted if the objective of s′ is greater than the objective of the solution `
iterations ago, or the objective is greater than the immediately previous solution. The
incumbent s∗ is then updated to store the best solution seen so far. Finally, the solution
is stored in the solution list and the iteration counter is incremented.

We use the generic LAHC procedure within the same restart procedure as the SA.
Replacing lines 11 – 19 in Algorithm 6.1 with the LAHC procedure in Algorithm 6.2
gives the LAHC with restarts procedure that we use in this work (ignoring temperature
considerations from the SA).

6.5.3 Solution Representation

Both SA and LAHC represent a solution to the LSFRP as a set of sequences of nodes
from the graph, V ′. Each sequence stores the nodes that a particular ship visits.
Formally, a solution to the LSFRP is represented by

⋃
s∈S{(vs1, . . . , vsχs)}, where χs is

the number of visitations on the path of ship s and vs1, . . . , v
s
χs ∈ V ′.

We allow the following types of infeasible solutions in both the SA and LAHC
approaches, and penalize such solutions in the objective. Any solution must enforce all
of the constraints of the LSFRP (as described in Section 6.2) except for two groups of
constraints. First, we soften the node disjointness constraints (6.5) and allow multiple

99

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

vessels to visit the same visitation, subject to a penalty for each violation. Note that
we still enforce node disjointness along a single vessel path, i.e., no loops are allowed.
Second, we allow paths that represent temporally infeasible routes, which corresponds
to softening constraints (6.15) – (6.18). Both of these cases allow the local search to
operate on a single path at a time, in that it lets ships sail to visitations that are
profitable without directly dealing with the feasibility repercussions of doing so.

6.5.4 Initial Solution Generation

We provide three solution generation heuristics that generate an initial solution from
which the local search can start. Our heuristics provide a diversity of approaches,
ranging from generating simple paths as in the direct route heuristic, to construct-
ing solutions while taking into account cargo flows in the greedy and shortest path
heuristics.

Direct route heuristic (DRH)

We model the connections between the starting visitation of each vessel with all of
the feasible phase-ins in a linear assignment problem. The cost of each vessel/phase-in
assignment is equal to the sailing cost of the vessel to the particular phase-in if the
sailing is feasible, or infinity if it is not. We solve the following problem with the
following parameters and variables using notation from our graph in Section 6.1. Let
τ` be the latest visitation in slot ` ∈ L. That is, τ` = argmaxi∈RPI

`
{tE

i }. We also let

cost(s, i, j) =

{
cSail
sij if (i, j) ∈ A′
∞ otherwise

be the fixed cost of sailing ship s ∈ S from i ∈ V ′ to j ∈ V ′, if the sailing is feasible.
If there is no sailing between i and j, the cost is set to infinity. The decision variables
xs` ∈ {0, 1} indicate whether ship s ∈ S should utilize phase-in ` ∈ L.

min
∑
s∈S

∑
`∈L

cost(s, vs, τ`)xs` (6.36)

s.t.
∑
s∈S

xs` = 1 ∀` ∈ L (6.37)∑
`∈L

xs` = 1 ∀s ∈ S (6.38)

xs` ∈ {0, 1} (6.39)

The objective (6.36) minimizes the cost of the arcs from the phase-out to the phase-
in chosen. Constraints (6.37) ensures that every vessel is assigned exactly one phase-in,
and constraints (6.38) guarantee that every phase-in is assigned a ship.

100

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

The direct route heuristic generates a feasible starting solution, but it is rarely, if
ever, an optimal solution to the LSFRP. Nonetheless, the solution provides a reason-
able blank slate from which vessel routes can be expanded. We use the Hungarian
algorithm [98] to solve the linear assignment problem.

Shortest paths heuristic (SPH)

We generate paths for vessels using a shortest path algorithm that iteratively creates
a path for each ship on a graph containing only those visitations that are not visited
in any previously generated path. While this ensures that any solution the heuristic
generates will be node disjoint3, it may not always be possible to generate any solution
at all since all of the feasible phase-in opportunities for a particular ship may already
have been assigned to another ship. We order the ships by their first possible phase-
out time and generate paths starting with the ship with the latest phase-out. We
found that with this ordering, only one out of our 44 instances could not generate a
feasible starting solution, whereas with random orderings or with an ascending phase-
out time ordering, feasible starting solutions could almost never be generated. If it is
not possible to generate a solution, we fall back on DRH, although this never happened
in our experiments.

Sailing costs on inflexible arcs as well as port fees are easy to take into account in
the shortest path algorithm, however flexible arcs and cargo/equipment revenues pose
a challenge. It is not possible to take these components fully into account within a
standard shortest path algorithm, since this would require the cost of a particular arc
to vary based on the scheduling of flexible arcs. Thus, the heuristic generates solutions
that do not re-use visitations between vessels, but are not necessarily temporally feasible
on instances with flexible arcs.

Flexible arc handling We allow flexible arcs to be used in the shortest path, even
though they represent a scheduling problem that cannot be solved while the shortest
path algorithm is running. We ignore temporal feasibility and focus only on the cost
of the flexible arc. We define a parameter γ in the range [0, 1] that represents how fast
the ship is sailing over its minimum speed, and we assign arcs a sailing cost based on
the speed of the vessel. This allows the heuristic to try to take into account some of
the costs that would be incurred using a flexible arc.

Cargo handling The profit for each cargo demand in the graph is represented by
computing the total possible profit from the demand (cargo revenue less move fees at
the origin and destination) and multiplying this value by a scaling parameter `Cargo ,
which is in the range [0, 1]. We then offset the sailing costs and port fees at the origin
and destination visitations using this scaled cargo profit. Thus, nodes where lots of
cargo originates or is delivered have a high profit and are desirable for the shortest path

3Note that the solution generated may be temporally infeasible.

101

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

algorithm to visit. Since cargo can only be delivered if both the origin and destination
are on the path of a ship, this heuristic cannot guarantee that the path taken is actually
one that has profitable cargo flows.

Equipment handling We perform a similar process of adding profit to visitations
with equipment surpluses/deficits. The primary difference is that we do not know
how much equipment can be loaded on to the vessel. Thus, we introduce a parameter
`Eqp ∈ Z+ that represents the amount of equipment to load or unload at a visitation.
We cannot guarantee the ship will have sufficient capacity to actually load or unload
that amount of cargo, but this allows the shortest path algorithm to visit visitations
with equipment, which might otherwise be ignored.

Shortest Path Implementation Since we take into account cargo and equipment
profits in this heuristic, arcs can have costs or revenues associated with them, meaning
the sign of all the arcs is not the same. We therefore use the Bellman-Ford algorithm
to sequentially compute the shortest path for each vessel. After a shortest path is
computed, we update a list of banned visitations that may not be used again. Any
visitation that is banned is considered to have a distance of infinity to and from all
visitations, ensuring the shortest path algorithm does not choose it. It is possible that
negative cycles are generated by the algorithm. We handle these by clearing the list of
banned visitations and starting the algorithm from the first vessel in the vessel ordering
using updated cargo and equipment profit parameters. After each failure, we subtract
0.1 from the cargo profit parameter `Cargo and 50 from `Eqp , until these parameters
hit 0. When both parameters are 0, the graph is guaranteed to not have any negative
cycles since arcs reflect only sailing costs. In practice, this is only necessary on several
instances.

Greedy heuristic (GH)

The greedy heuristic (GH) chooses the most profitable outgoing arc from each visitation
based on the same profit calculations and parameters as SPH. Similar to SPH, GH does
not allow vessels to visit the same visitation more than once, and does this by storing
a list of banned nodes after computing a greedy path for a vessel. The order the paths
are generated in is the same as in SPH, as nearly every other ordering we tried resulted
in failure of the algorithm to compute a solution. As in SPH, if a solution cannot be
generated we fall back on DRH. We also tried creating a greedy heuristic that is not
concerned with feasibility, however, we found that the solutions it generates tend to be
of poor quality, as many vessels sail to the same phase-in visitation. This means the
search procedure then wastes time trying to fix the phase-in infeasibility. This time can
be better spent searching for a good solution.

102

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.5.5 Neighborhoods

At each iteration of the SA and LAHC methods, one of the following neighborhood
operators is chosen uniformly at random to modify the current solution.

Visitation addition A ship, s, is selected uniformly at random along with an arc
(u, v) on the path of s. A new visitation, w, is chosen such that an arc exists from u
to w and from w to v, i.e. w ∈ out(u) and w ∈ in(v), and w is not already on the path
of s. The visitation w is then inserted into the path of s between u and v. If no such
visitation w exists, then the neighborhood performs no changes.

Visitation removal A ship, s, is selected uniformly at random along with a visitation
on its path, u, such that u is neither the first or last visitation on the path. Visitation
u is removed from the path if there exists an arc from the visitation before u to the
visitation after u. If no such arc exists, the solution is not changed.

Visitation swap Two ships s and s′, s 6= s′ are chosen uniformly at random, and a
visitation u is selected from the path of s. If a visitation w on the path of s′ exists such
that swapping u and w is possible, i.e. In(u) ∩ In(w) 6= ∅ and Out(u) ∩ Out(w) 6= ∅,
and swapping u and v would not introduce a duplicated node on either path, then u
and w are swapped between paths.

Random path completion (RPC) A random ship, s, is selected uniformly at
random along with a visitation, u, on its path. All visitations subsequent to u are
removed from the path of s, and are replaced with a random path from u to the graph
sink. Each visitation added to the random path must not already be on the path of s, to
ensure there are no loops over flexible visitations. If it is impossible to finish a random
path without containing a loop, the random path is abandoned and the solution is not
changed.

Demand destination completion (DDC) A random ship, s, is selected uniformly
at random along with a visitation on its path, u, from which demand is loaded. A
demand is chosen that could be loaded at u, but cannot be delivered because none of
its delivery visitations are on the path of s. The neighborhood attempts to connect the
current path to one of the destinations of the cargo using a breadth first search. Then,
another breadth first search is started from the destination back to any subsequent
visitation on the path, v. If no such path exists, or such paths can only be created by
introducing a duplicated node into the vessel’s path, then the solution is left unchanged.
All nodes in between u and v are deleted from the path and replaced with the nodes
from the breadth first searches.

103

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.5.6 Objective Evaluation

After applying a neighborhood operator to a solution and generating a candidate solu-
tion, the search procedure must update its objective value for the current solution. We
exploit the fact that the paths of vessels are disjoint and only update the objective for
the paths that a neighborhood operator changes. Note that since we admit infeasible
solutions as described above, it is possible that some cargo is carried multiple times.
However, the extra revenue that vessels can gain is significantly less than the penalty
for multiple vessels calling the same visitation.

The objective in the LSFRP consists of three components; the easy to calculate
fixed costs for inflexible arcs and port fees, the cost of sailing on flexible arcs, and the
profit from delivering cargo and equipment. Computing the cost of using flexible arcs
requires solving a simple scheduling problem for the vessel. Since the amount of time
it takes to load cargo and equipment is taken into account at flexible visitations, the
scheduling of flexible arcs and the handling of cargo and equipment must be solved
together. We therefore formulate a linear program to compute the objective and load
the most profitable cargo along the vessel’s path, and solve it using CPLEX. We adopt
the same notation as for the previous mathematical models.

We compute the cost of each ship’s path independently. Given the path of ship s
as per our solution representation, Vs = (vs1, . . . , v

s
χs), the cost of the path is defined

by an LP, and Vfs = Vs ∩ V f be the flexible nodes used on the path. We also let
As = ((vs1, v

s
2), (vs2, v

s
3), . . . (vsχs−1, v

s
χs)) be the sequence of arcs used on the path of ship

s, and Afs = As∩Af be the flexible arcs used on the path. Since the ship’s path is fully
defined by Vs, we can pre-compute which demands and equipment flows can be carried
by ship s. We merge equipment flows into the demand structure as in the equipment
as demands IVLSFRP model as this simplifies the constraints in the problem. Let

MLS
s = {(o, d, q) ∈M | o ∈ Vs ∧ ∃d′ ∈ d s.t. d′ ∈ Vs}

⋃
q∈Q

Eq

be the set of demands and equipment that can be carried by ship s, where

Eq = {(o, d, dc) | o ∈ V q+ ∩ Vs ∧ d ∈ V q− ∩ Vs}

is the set of origin-destination pairs for equipment that is available on the vessel path.
For any (o, d, dc) ∈ Eq,∀q ∈ Q, we let r(o,d,dc) = rEqp

q and a(o,d,dc) = udc
s . This sets

the revenue of delivering a demand representing equipment to the per TEU equipment
delivery revenue, and the amount of equipment available to be the dry capacity of the
ship, respectively.

In order to keep track of the portion of the objective penalizing infeasibility, we let
gsi = |{s′ ∈ S \ {s} | i ∈ Vs′}|, which is the number of paths in which visitation i is
contained, other than the path of ship s. The constant hi is equal to 1 iff i ∈ ⋃`∈LR

PI
` ,

meaning i is a phase-in visitation.

104

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Parameters Our LP uses the following parameters.

Vs,Vfs Sequence of visitations on the path of ship s ∈ S.
As,Afs Sequence of arcs on the path of ship s ∈ S.
Q Set of equipment types. Q = {dc, rf }.
MLS

s Set of demands and equipment that can be carried by ship s ∈ S,
consisting of demand triplets (o, d, q) defined as in Section 6.2.

cSail
sij ∈ R+ Fixed cost of vessel s utilizing arc (i, j) ∈ A′.
cVarSail
sij ∈ R+ Variable hourly cost of vessel s ∈ S utilizing arc (i, j) ∈ A′.
cMv
i ∈ R+ Cost of a TEU move at visitation i ∈ V ′.
cPort
si ∈ R Port fee associated with vessel s at visitation i ∈ V ′.
dMin
ijs , d

Max
ijs ∈ R+ Minimum and maximum duration for vessel s to sail on flexible

arc (i, j), respectively.
tEi , t

X
i ∈ R Enter and exit time at inflexible visitation i ∈ V ′, respectively.

tPi ∈ R Pilot time at visitation i ∈ V ′.
tMv
si ∈ R Move time per TEU for vessel s at visitation i ∈ V ′.
r(o,d,q) ∈ R+ Amount of revenue gained per TEU delivered for the demand

triplet (o, d, q).
uqs ∈ R+ Capacity of vessel s for cargo type q ∈ Q.
gsi Number of paths in which visitation i is included, not including

the path of ship s.
hsi Equal to 1 iff visitation i is a phase-in visitation.

Variables Our LP uses the following variables.

zEi ∈ R+ Enter time at visitation i ∈ Vs
zXi ∈ R+ Exit time at visitation i ∈ Vs
x(o,d,q) ∈ [0, a(o,d,q)] Amount of demand (o, d, q) carried.

Objective and constraints The LP is defined as follows.

max
∑

(o,d,q)∈MLS
s

(r(o,d,q) − cMv
o −max

d′∈d
{cMv
d′ })x(o,d,q) (6.40)

−
∑

(i,j)∈As

cSail
sij −

∑
(i,j)∈Afs

cVarSail
sij (zXj − zEi)−

∑
i∈Vs

cPort
si (6.41)

−
∑
i∈Vs

gsi
(
(1− hi)p+ hip

PI
)

(6.42)

subject to dMin
ijs ≤ zXj − zEi ≤ dMax

ijs ∀(i, j) ∈ Afs (6.43)

zEi ≤ zXi ∀i ∈ Vs (6.44)

zEi = tEi ∀i ∈ Vs \ Vfs (6.45)

105

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

zXi = tXi ∀i ∈ Vs \ Vfs (6.46)

zXi − zEi − tPi −
∑

(i,d,q)∈MLS
s

tMv
si x

(i,d,q) −
∑

{(o,d,q)∈MLS
s | i∈d}

tMv
si x

(o,d,q) ≥ 0 ∀i ∈ Vfs (6.47)

∑
(o,d,q)∈MVis′

i

x(o,d,q) ≤ udc
s ∀i ∈ Vs (6.48)

∑
(o,d,rf)∈MVis′

i,rf

x(o,d,rf) ≤ urf
s ∀i ∈ Vs (6.49)

The objective is to maximize the container carrying profit (including equipment) in
(6.40) minus the sailing costs, both flexible and inflexible, and port fees in (6.41), and
minus the penalization of infeasibility in (6.42). We apply the penalization factor p for
each path that visitation i is contained in other than that of ship s if the visitation is
not a phase-in visitation. If the visitation is a phase-in visitation, we apply the penalty
pPI . Note that the fixed sailing cost and port fees components of objective (6.41) are
simply constants that can be computed before computing the LP.

Constraints (6.43) require that the sailing time on flexible arcs is between the min-
imum and maximum sailing speed of the ship. Constraints (6.44) ensure that the
entrance time of a ship at a visitation is earlier than its exit time. Constraints (6.45)
and (6.46) fix the times of inflexible visitations on the path. Note that we replace these
variables with constants before passing the model into CPLEX to improve the solution
speed. The loading and unloading time of containers at flexible visitations is taken
into account in constraints (6.47). Constraints (6.48) and (6.49) prevent the vessel
from loading too many dry and reefer containers or reefer containers, respectively. The
bounds of the variables are as defined.

If the model is temporally infeasible, we ignore cargo and equipment and penalize
the objective by the constant pT . We choose this over making the timing constraints
sort because the sailing costs are not correctly computed in such a model, and even
offers some incentive for infeasibility.

Greedy objective computation

In certain situations it is possible to avoid calling CPLEX and thereby speed up the
computation of the objective. If a vessel’s path includes no flexible visitations and at
no visitation could the amount of cargo (both dry and reefer) loaded on to the vessel
exceed its capacity, then we can use a simple greedy algorithm to load cargo onto the
vessel. The greedy algorithm works by loading all available cargo at all visitations on
the path, and then fills the remaining capacity of the vessel with equipment. This will
always be the optimal loading of cargo and equipment as long as the profit earned
per TEU from carrying equipment is less than the profit per TEU of any demand. In
practice this is true, since customer’s cargo is preferred over empty containers. We then
combine the cargo profit computed by the greedy algorithm with the sailing costs and
port fees, which do not require an LP to compute.

106

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.6 Computational Complexity

We reduce the knapsack problem to the LSFRP with flexible visitations in order to show
that the LSFRP with flexible visitations is weakly NP-complete. Given n items, each
with a profit pi and a size si, and a knapsack with a capacity C, the knapsack problem
maximizes the objective

∑n
i=0 pixi where xi is a binary variable indicating whether or

not item i is in the knapsack, subject to the capacity constraint
∑n

i=0 sixi ≤ C.

Theorem 6.1. The LSFRP with flexible visitations is weakly NP-complete.

We first note that the LSFRP is clearly in NP, as the total profit can be easily
computed from the paths of the vessels through the graph. We initialize an LSFRP
with a single vessel and no cargo or equipment demands. The problem instance contains
a single phase-out visitation, ω, and a single phase-in visitation, λ. The port fees at
both ω and λ are 0, and we let tEω = tXω = 0 and tEλ = tXλ = C. In other words,
the timespan in which the repositioning must take place is limited to the capacity of
the knapsack. For each knapsack item, we create a flexible visitation, fi, which has
a duration of exactly si, i.e. tPfi = si. The port fee for visiting fi is −pi, since the
LSFRP maximizes profit (i.e. minimizes fees). All flexible nodes, as well as ω and λ,
are in a single trade zone. Therefore, the specification of the LSFRP graph ensures
that the phase-out node, ω, connects to all flexible nodes, all flexible nodes connect to
each other, and all flexible nodes connect to the phase-in node, λ. The sailing time of
the vessel between all nodes in the graph is set to 0.

Item i is included in the knapsack solution if and only if the vessel visits fi during
its repositioning. Since the vessel can only visit a single flexible visitation at a time, the
duration of each flexible visitation is fixed to the size of the item it represents, and the
phase-in visitation is fixed in time to the size of the knapsack, the capacity constraint of
the knapsack must be satisfied. Additionally, according to the objective of the LSFRP,
only the flexible visitations corresponding to the maximum profit knapsack items will
be chosen. Therefore, the LSFRP with flexible visitations is NP-complete.

We note that flexible ports are not present in every LSFRP problem, and this proof
only covers those with flexible ports. This is not to say that LSFRP problems without
flexible ports are necessarily polynomial time solvable. Indeed, the LSFRP without
flexible ports is likely NP-complete, however this is not trivial to prove and remains an
open problem at this time.

6.7 Computational Evaluation

We evaluate the performance of our our various approaches to the LSFRP across two
datasets of real-world and real-world inspired instances. One of the datasets contains
confidential data from our industrial collaborator, thus we created a second dataset
with an anonymized version of the confidential data. We are able to solve all but two
instances on the confidential dataset, and all but two instances on the public dataset,

107

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

to optimality. Our SA algorithm finds optimal solutions on many instances in our
dataset, and solutions with low optimality gaps on the rest of the instances. We also
find high quality solutions on our industrial collaborator’s reference scenario that earn
an additional profit of $14 million over the reference solution. All of the computational
results in this section were performed using AMD Opteron 2425 HE processors with
CPLEX 12.4 and a maximum of 10GB of RAM.

6.7.1 Dataset

We created a benchmark set of instances containing two real world repositioning sce-
narios, with three and eleven ships, respectively. The rest of our benchmark set consists
of scenarios that never took place, but were crafted using real liner shipping data to
examine how our algorithms scale. Since all of our data in the benchmark is confiden-
tial information from our industrial collaborator, we have duplicated the confidential
instances and perturbed the costs, revenues, amounts of cargo in demands, and ran-
domly deleted/added demands to create a publicly available benchmark. We combine
publicly available liner shipping data, such as ship information and port fees, from the
ENERPLAN benchmark [22] with randomly perturbed data from our collaborator. We
perturb all values not already contained in the ENERPLAN benchmark by ±20%, as
in [22], including non-cost/revenue related values such as port productivities, ensur-
ing that no private data is contained in the dataset. We have kept the schedules of
the ships in the repositioning scenarios the same, as this is public information. Our
public dataset is available at http://www.decisionoptimizationlab.dk/index.php/
datasets/17-research/datasets/59-lsfrpcf.

This dataset differs from the one in Chapter 5 in that it contains detailed data on
container demands, as well as has a stricter time window for when the repositioning is
allowed to happen. Thus, the instances in this dataset are not directly applicable to
the NCLSFRP.

Tables 6.3a and 6.3b give information about the instances in the confidential and
public datasets, respectively. The table gives the instance ID, the number of ships, |S|,
the number of nodes in the graph, |V |, the number of inflexible arcs, |Ai|, the number
of flexible arcs, |Af |, the number of demands, |M |, the number of ports with equipment
surpluses or demands, |E| = | ∪q∈Q V q∗ |, and finally the number of SOS opportunities,
|SOS |. The main difference between the confidential and public instances is their cost
structure, as well as the number of demands and amount of cargo in each demand. The
instances range in size from 3 to 11 ships with various SOS and equipment opportunities
made available in each instance. Our instances have between 30 and 379 nodes, and up
to 11979 arcs. The number of demands can be as high as 1748, although most instances
have less than 400 demands.

108

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

ID |S| |V | |Ai| |Af | |M | |E| |SOS |
repo1c 3 30 94 0 27 0 1
repo2c 3 30 94 0 27 0 2
repo3c 3 37 113 0 25 0 2
repo4c 3 40 143 0 21 0 3
repo5c 3 47 208 0 24 0 3
repo6c 3 47 208 0 24 0 3
repo7c 3 53 146 0 51 0 4
repo8c 3 104 1015 121 67 6 3
repo9c 3 104 1015 121 67 9 3
repo10c 4 58 389 0 150 0 0
repo11c 4 62 389 40 150 6 0
repo12c 4 74 469 0 174 0 2
repo13c 4 80 492 0 186 0 4
repo14c 4 80 492 0 186 24 4
repo15c 5 68 237 0 214 0 0
repo16c 5 103 296 0 396 0 5
repo17c 6 100 955 0 85 0 0
repo18c 6 133 1138 0 101 0 9
repo19c 6 133 1138 0 101 33 9
repo20c 6 140 1558 0 97 0 4
repo21c 6 140 1558 0 97 13 4
repo22c 6 140 1558 0 97 37 4
repo23c 6 152 1597 162 103 71 9
repo24c 7 75 395 0 196 0 3
repo25c 7 77 406 0 195 0 0
repo26c 7 77 406 0 195 16 0
repo27c 7 78 502 0 237 0 0
repo28c 7 89 537 0 241 0 4
repo29c 7 89 537 0 241 19 4
repo30c 8 126 1154 0 165 0 0
repo31c 8 126 1300 0 312 0 0
repo32c 8 140 1262 0 188 0 3
repo33c 8 209 2211 453 213 50 3
repo34c 9 304 9863 0 435 0 0
repo35c 9 357 11289 38 1075 118 4
repo36c 9 364 11078 0 1280 0 4
repo37c 9 371 10416 0 1270 114 7
repo38c 9 373 11979 38 1280 126 4
repo39c 9 379 10660 0 1371 0 7
repo40c 9 379 10660 0 1371 118 7
repo41c 10 249 7654 0 473 0 0
repo42c 11 275 5562 0 1748 0 5
repo43c 11 320 11391 0 1285 0 0
repo44c 11 328 11853 0 1403 0 4

(a) Confidential dataset.

ID |S| |V | |Ai| |Af | |M | |E| |SOS |
repo1p 3 36 150 0 28 0 1
repo2p 3 36 150 0 28 0 2
repo3p 3 38 151 0 24 0 2
repo4p 3 42 185 0 20 0 3
repo5p 3 51 270 0 22 0 3
repo6p 3 51 270 0 22 0 3
repo7p 3 54 196 0 46 0 4
repo8p 3 108 1185 126 50 6 3
repo9p 3 108 1185 126 50 10 3
repo10p 4 58 499 0 125 0 0
repo11p 4 62 499 38 125 6 0
repo12p 4 74 603 0 145 0 2
repo13p 4 80 632 0 155 0 4
repo14p 4 80 632 0 155 24 4
repo15p 5 71 355 0 173 0 0
repo16p 5 106 420 0 320 0 5
repo17p 6 102 1198 0 75 0 0
repo18p 6 135 1439 0 87 0 9
repo19p 6 135 1439 0 87 33 9
repo20p 6 142 1865 0 80 0 4
repo21p 6 142 1865 0 80 13 4
repo22p 6 142 1865 0 80 37 4
repo23p 6 153 1598 159 89 71 9
repo24p 7 75 482 0 154 0 3
repo25p 7 77 496 0 156 0 0
repo26p 7 77 496 0 156 16 0
repo27p 7 79 571 0 188 0 0
repo28p 7 90 618 0 189 0 4
repo29p 7 90 618 0 189 19 4
repo30p 8 126 1450 0 265 0 0
repo31p 8 130 1362 0 152 0 0
repo32p 8 144 1501 0 170 0 3
repo33p 8 212 2227 433 179 50 3
repo34p 9 304 10577 0 344 0 0
repo35p 9 357 11284 35 874 118 4
repo36p 9 364 11972 0 1048 0 4
repo37p 9 371 11371 0 1023 114 7
repo38p 9 373 11972 35 1048 126 4
repo39p 9 379 11666 0 1109 0 7
repo40p 9 379 11666 0 1109 118 7
repo41p 10 249 8051 0 375 0 0
repo42p 11 279 6596 0 1423 0 5
repo43p 11 320 13058 0 1013 0 0
repo44p 11 328 13705 0 1108 0 4

(b) Public dataset.

Table 6.3: Instance information for the confidential and public datasets.

109

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.7.2 Arc, Node and Path Flow Approach Evaluations

We evaluate the arc flow model on the entire dataset, as well as the node flow approaches
on those instances that have no flexible components. Tables 6.4 and 6.5 show the CPU
times in seconds of the arc flow model (AF) from Section 6.2, node flow model with
equipment modeled as flows (EAF) from Section 6.4.2, and the node flow model with
equipment modeled as demands (EAD) from Section 6.4.3 on the confidential and public
LSFRP datasets, respectively. Additionally, we report the time required for the path
based model to converge using the arc flow model as its sub-problem (PM-AF), the
EAF model as its sub-problem (PM-EAF) and the EAD model as its sub-problem
(PM-EAD). Note that the EAD and EAF models can only solve inflexible instances,
which are marked with an “I” in the Type column. This restriction also holds for the
path based model where only the AF sub-problem is able to handle instances with
flexible visitations and arcs.

On the confidential dataset, shown in Table 6.4, the AF model is unable to solve
any problem after repo34c, which corresponds to instances with 9 vessels or more, and
a graph size of nearly 10,000 arcs. On 8 of the 11 confidential instances that the AF
model cannot solve, CPLEX runs out of memory. This happens due to the large number
of variables needed to model the flow of demands through the graph. On instances the
AF model can solve, the performance varies greatly, with small instances solvable in as
little as 0.03 seconds (repo4c), to requiring as much as 2075.82 seconds on repo30c.

Both the EAF and EAD models are able to solve more instances than the AF model
within the 5 hour timeout period, with EAF solving 5 more instances and EAD solving
6 more instances. Additionally, for instances with between one and eight ships (repo1c
– repo33c), the CPU time is significantly improved, with an average decrease in CPU
time of 138 seconds for both EAF and EAD over AF. The largest speed improvement
is on instance repo30c, where EAF and EAD are roughly 500 times faster than AF.

Even on the instances where EAD or EAF timeout, CPLEX is able to provide
feasible solutions, unlike in the case of the AF model, where no feasible solution is
found for any instance that exceeds the memory allotment or CPU timeout. The EAD
model is able to find a solution with a 10.16% gap (to the LP relaxation) for repo42c,
a 96.41% gap on repo43c, and an 88.96% gap on repo44c. Although EAD requires over
an hour to solve several instances, it finds the optimal solution within an hour on both
repo37c and repo40c, but requires extra time to prove optimality. On repo39c and
repo40c, EAD is able to find an optimality gap of 8.31% and 10.07% within an hour,
respectively.

The path based model offers significant speed improvements over the AF, EAF and
EAD models, and using the EAF or EAD models in the sub-problem, instances repo42c
– repo44c can be solved. This leaves just two instances out of the entire dataset for which
we do not yet know the optimal solution. The path based model is only guaranteed
to provide a lower bound on the optimal value of the LSFRP. This is a product of
the column generation model we solve, which must use an LP to solve the restricted
master problem. This means that one or more variables could be provided non-integer

110

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

ID Type AF EAF EAD PM-AF PM-EAF PM-EAD
repo1c I 0.04 0.48 0.04 0.22 0.06 0.10
repo2c I 0.04 0.04 0.04 0.12 0.05 0.06
repo3c I 0.03 0.03 0.03 0.12 0.06 0.07
repo4c I 0.03 0.37 0.03 0.15 0.08 0.09
repo5c I 0.05 0.02 0.03 0.15 0.08 0.07
repo6c I 0.06 0.04 0.03 0.14 0.07 0.07
repo7c I 0.06 0.04 0.04 0.17 0.08 0.08
repo8c F 1.92 - - 3.04 - -
repo9c F 1.91 - - 3.14 - -
repo10c I 16.08 0.34 0.33 16.21 0.76 0.72
repo11c F 14.50 - - 21.94 - -
repo12c I 72.91 0.88 0.86 43.15 1.50 1.27
repo13c I 231.47 0.87 0.82 42.90 1.36 1.33
repo14c I 182.06 0.93 1.05 46.94 1.31 1.37
repo15c I 0.39 0.23 0.23 1.32 0.43 0.42
repo16c I 0.95 0.36 0.35 2.69 0.56 0.55
repo17c I 5.41 0.73 0.71 60.36 1.35 1.27
repo18c I 6.72 0.79 0.75 40.77 1.87 1.69
repo19c I 5.68 0.87 0.98 49.13 2.97 1.69
repo20c I 313.55 1.45 1.41 472.24 5.46 5.05
repo21c I 47.78 1.62 1.55 216.42 5.54 5.04
repo22c I 39.51 1.19 1.65 339.88 5.39 4.96
repo23c F 19.79 - - 71.30 - -
repo24c I 2.30 0.35 0.32 2.78 0.30 0.28
repo25c I 2.69 0.32 0.30 3.26 0.26 0.24
repo26c I 1.96 0.41 0.34 2.69 0.29 0.25
repo27c I 94.48 0.53 0.51 313.98 1.48 1.42
repo28c I 174.55 0.66 0.55 367.98 1.59 1.53
repo29c I 186.38 0.62 0.59 335.09 1.63 1.55
repo30c I 2075.82 3.76 4.15 302.02 7.64 7.33
repo31c I 99.02 4.93 4.76 13223.75 20.73 20.45
repo32c I 487.93 6.97 7.12 525.26 7.73 7.32
repo33c F 548.11 - - 1302.04 - -
repo34c I CPU 2256.99 2532.11 CPU 63.88 57.69
repo35c F Mem - - Mem - -
repo36c I Mem CPU 16203.26 Mem 127.84 99.08
repo37c I Mem 7033.32 6330.48 CPU 152.93 69.58
repo38c F Mem - - Mem - -
repo39c I Mem 7125.89 7142.55 Mem 119.04 105.07
repo40c I Mem 15857.61 10049.79 CPU 175.52 103.43
repo41c I CPU 2543.09 3954.17 CPU 77.23 70.94
repo42c I CPU CPU CPU CPU 4938.54 5886.86
repo43c I Mem CPU CPU Mem 5354.41 4343.04
repo44c I Mem CPU CPU Mem 5285.74 4859.72

Table 6.4: Time in seconds required to solve the arc flow model (AF), node flow with equip-
ment modeled as flows model (EAF), and the node flow with equipment modeled as de-
mands model (EAD), and the path based model the arc flow model as a sub problem
(PM-AF), using equipment as flows for the sub problem (PM-EAF), and equipment as
demands for the sub problem (PM-EAD) to optimality in CPLEX 12.4 on the confidential
dataset with a 5 hour timeout. Instances are marked as either inflexible (I) or flexible (F).

111

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

values. However, the path based approach finds integer solutions on every instance in
our dataset, meaning it finds the optimal solution. We note, however, that there is no
theoretical guarantee that this will occur across any arbitrary LSFRP instance.

The two instances the path based model cannot solve, repo35c and repo38c, both
have flexible components. On these problems, the sub-problem using the AF model
runs out of memory, and the EAD and EAF models cannot be used due to their lack of
support for flexible visitations. Both PM-EAD and PM-EAF significantly outperform
PM-AF, with the largest speed up on instance repo31c, where the path based model
requires over 600 times the CPU time to solve the problem. The path based approach
gets stuck in difficult to solve sub-problems that provide columns to the master problem
with only incrementally better objectives. Interestingly, the AF model only requires 99
seconds to solve repo31c compared to PM-AF’s over 13,000 seconds. In fact, PM-AF
requires on average 2.14 times the amount of CPU time on flexible instances as AF. AF
has an average CPU usage of 144.7 seconds on inflexible instances versus 539.7 seconds
for PM-AF. The average performance is heavily weighted by several instances which
require hundreds of seconds. However even looking at the geometric mean, PM-AF
requires 2.66 times the CPU time of AF, with a geometric mean of 15.35 for PM-AF
versus 5.78 for AF. This is mainly due to the slow solution of the sub-problem in PM-
AF, which happens a number of times over the course of optimization. For future work,
a dynamic programming or improved solution approach could be employed to solve the
sub-problem faster.

On instances repo1c – repo32c, PM-EAF and PM-EAD generally require slightly
more CPU time than the EAF or EAD models, with EAD taking on average 1.1 seconds
and PM-EAD taking 2.3 seconds, respectively. Additionally, EAF requires 1.1 seconds
while PM-EAF takes 2.5 seconds. However, on repo34c – repo41c, PM-EAF and PM-
EAD provide significant speedups on the inflexible instances over the EAF and EAD
models; with PM-EAD solving these instances in only 84.3 seconds on average versus
7702.1 seconds for EAD. Furthermore, PM-EAD and PM-EAF solve instances repo42c –
repo44c in under two hours of CPU time. We can conclude that there the path based
approach is most effective on large instances (at least 9 ships), and should be used in
conjunction with the EAD or EAF models for the sub-problem, when possible.

The CPU times of the arc flow, node flow and path based models on the public
instances are given in Table 6.5. We see similar performance of the various approaches
as on the confidential dataset, as the public instances are, for the most part, very similar
to their confidential counterparts. As in the case of the confidential instances that the
EAD and EAF approaches greatly outperform the AF model. The performance of PM-
AF is also often worse than AF, with repo30p requiring over 20 times the CPU time
with PM-AF than with AF. PM-EAD and PM-EAF solve every inflexible instance. For
instances above repo30p, PM-EAD and PM-EAF provide order of magnitude speed ups
on six instances (repo34p – reporepo42p) over EAD and EAF.

112

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

ID Type AF EAF EAD PM-AF PM-EAF PM-EAD
repo1p I 0.06 0.08 0.06 0.18 0.10 0.10
repo2p I 0.06 0.05 0.05 0.16 0.10 0.10
repo3p I 0.04 0.04 0.04 0.12 0.08 0.07
repo4p I 0.04 0.23 0.03 0.17 0.08 0.08
repo5p I 0.07 0.05 0.05 0.16 0.09 0.07
repo6p I 0.08 0.06 0.05 0.16 0.08 0.07
repo7p I 0.08 0.05 0.05 0.27 0.13 0.12
repo8p F 1.89 - - 2.64 - -
repo9p F 1.82 - - 2.61 - -
repo10p I 74.85 0.27 0.26 25.98 0.85 0.81
repo11p F 38.17 - - 32.06 - -
repo12p I 106.63 0.31 0.28 79.63 1.65 1.59
repo13p I 99.81 0.33 0.31 99.27 1.78 1.71
repo14p I 97.15 0.35 0.33 89.34 1.92 1.69
repo15p I 0.47 0.31 0.29 1.55 0.55 0.53
repo16p I 1.08 0.39 0.38 2.89 0.68 0.65
repo17p I 4.64 1.01 0.94 39.42 2.60 2.37
repo18p I 6.79 0.95 0.82 33.57 1.78 1.59
repo19p I 8.18 1.03 1.08 31.02 2.82 1.59
repo20p I 13.84 1.44 1.15 183.35 3.06 2.80
repo21p I 23.04 2.06 1.36 106.69 3.24 2.84
repo22p I 17.67 1.69 1.44 117.20 4.77 2.85
repo23p F 19.58 - - 47.84 - -
repo24p I 2.23 0.37 0.34 3.71 0.45 0.43
repo25p I 3.19 0.41 0.38 4.88 0.47 0.43
repo26p I 2.05 0.47 0.40 4.15 0.51 0.44
repo27p I 1394.44 0.57 0.50 199.79 0.68 0.65
repo28p I 1099.87 0.55 0.46 97.10 0.61 0.56
repo29p I 1183.01 0.57 0.54 96.43 0.72 0.57
repo30p I 307.12 13.10 12.60 7362.09 7.57 7.21
repo31p I 57.40 30.88 28.89 104.88 3.92 3.69
repo32p I 65.51 45.99 41.46 210.93 5.37 5.03
repo33p F 139.99 - - 384.63 - -
repo34p I CPU 7652.67 7388.75 CPU 48.34 31.16
repo35p F CPU - - CPU - -
repo36p I Mem CPU CPU Mem 92.42 66.10
repo37p I Mem 1408.75 790.74 CPU 112.02 53.96
repo38p F Mem - - Mem - -
repo39p I Mem 1701.53 1911.40 Mem 105.02 62.66
repo40p I Mem 3178.03 1859.09 Mem 121.14 62.10
repo41p I CPU 659.75 727.78 CPU 33.20 31.87
repo42p I CPU 4930.85 4006.27 CPU 143.85 133.84
repo43p I Mem CPU CPU Mem 2709.54 1870.06
repo44p I Mem CPU CPU Mem 2473.23 1646.40

Table 6.5: Time in seconds required to solve the arc flow model (AF), node flow with equip-
ment modeled as flows model (EAF), and the node flow with equipment modeled as de-
mands model (EAD), and the path based model the arc flow model as a sub problem
(PM-AF), using equipment as flows for the sub problem (PM-EAF), and equipment as de-
mands for the sub problem (PM-EAD) to optimality in CPLEX 12.4 on the public dataset
with a 5 hour timeout. Instances are marked as either inflexible (I) or flexible (F).

113

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

6.7.3 SA and LAHC Implementations

We implemented the SA algorithm described in Section 6.5.1 and the LAHC algorithm
from Section 6.5.2 in C++11 [77]. The implementations rely on CPLEX 12.4 [75] for
computing components of the objective function, as well as Google OR Tools [61] for
computing the assignment problem in the DRH heuristic. Our implementation is able
to process over 700,000 SA iterations per second on smaller instances, where an iteration
is an application of a neighborhood operator to the current solution and an update of
the objective function, and 7,100 iterations per second on our largest instance, repo44c.

Parameter Tuning

Both the SA and LAHC algorithms have several parameters which can affect their
performance, and in order to ensure a fair comparison of SA and LAHC against the MIP
model, we perform parameter tuning. There are many suggestions in the literature for
parameter settings of the components of SA algorithms [74, 78]. The LAHC is less well
studied, but its primary parameter, the solution list length, also has suggested values in
the literature [24]. We have used these guidelines in our parameter tuning procedure,
but ultimately rely on the performance of our SA and LAHC approaches on a training
set of instances to determine which parameters are the best for the LSFRP. In order to
avoid overtuning our algorithm to the instances of the LSFRP that we present, we tune
our SA algorithm on a training set of 15 instances from the confidential dataset and
validate the performance of the parameters on the entire set of instances. The instances
were chosen at random from the confidential instances. The training set consists of 15
instances, which is a little over one third of our dataset. This is a standard amount in
the machine learning and parameter tuning literature [9, 81]. The instances comprising
our training set are: repo15c, repo17c, repo18c, repo19c, repo21c, repo23c, repo32c,
repo35c, repo36c, repo37c, repo38c, repo39c, repo41c, repo42c, and repo43c.

We first tune the SA algorithm, for which there are 13 parameters to tune in total.
The feasible shortest paths heuristic has three parameters, γ, `Cargo and `Eqp , which
describe the cost factor to use when estimating flexible arc costs, the amount of cargo
profit to earn at the origin and destination visitations of a demand, and the amount
of equipment to “load” in the heuristic, respectively. The SA algorithm has seven
parameters, α, tInit , tMin , rItrs , rReheat , β, rRestart , which are the geometric temperature
decrease factor, the starting SA temperature, the SA convergence temperature, the
maximum number of non-improving iterations before convergence, the number of non-
improving reheats before convergence, the reheating factor, and the number of reheats
before resetting the current solution to the starting solution, respectively. Finally, there
are three parameters that control the penalization of infeasible solutions in the objective.
The parameters p, pPI , and pT are the penalization of multiple vessels utilizing the same
visitation in their paths, the penalty for two vessels using the same phase-in visitation,
and the penalty for a vessel’s path being temporally infeasible. Note that we penalize
phase-in disjointness violations separately from normal violations because they tend to
be a more difficult infeasibility for the SA to fix.

114

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Cat. Param. Discretized domain values. DRH SPH GH

GH/
SPH

γ 0.0, 0.1, 0.25, 0.5, 0.75 0.25 0.25 0.25
`Cargo 0.0, 0.1, 0.25, 0.5, 0.75, 0.95 0.95 0.95 0.95
`Eqp 0, 10, 50, 100, 250, 500, 1000 100 100 100

SA

α 0.997, 0.998, 0.999, 0.9999, 0.99999, 0.999999 0.999999 0.999999 0.999999
tInit 1×104, 5×104, 1×105, 5×105, 1×106 1×106 1×106 5×105

tMin 1×10−8, 1×10−10, 1×10−12, 1×10−15 1×10−8 1×10−8 1×10−8

rItrs 500, 1000, 2500, 5000, 7500, 1×104 7500 10000 7500
rReheat 1, 5, 10, 20 20 20 20
β 0.1, 0.25, 0.5, 0.75 0.75 0.75 0.75

rRestart 1, 5, 10, 20 10 10 20

Penalty
p 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 7×106 7×106 1×106

pPI 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 7×106 5×106 5×106

pT 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 1×105 1×105 7×105

Table 6.6: The discretized parameter domains used in hand tuning are given with parameters
classified into several categories. The best parameter for each initial solution heuristic as
determined through parameter tuning are given on the right side of the table.

We tune the SA algorithm by hand, running each parameter configuration ten times
on each training instance, each time with a different random seed. Running each
parameter configuration multiple times is necessary due to the stochastic nature of
the SA algorithm. In order to avoid a combinatorial explosion of parameter settings,
we assume that parameters are independent of each other. While this is clearly not
a true assumption, it is the only way to perform parameter tuning across so many
parameters without spending extraordinary amounts of CPU time. We then choose the
best parameter value for each parameter based on the total profit earned by using each
parameter.

Table 6.6 gives the discretized parameter domains we used during hand tuning, as
well as the best value for each parameter for each initial heuristic with all SA neighbor-
hoods enabled. We determined which parameter was the best by computing the total
profit earned by each parameter across the training set.

We perform the same parameter tuning on the LAHC approach as on SA. Table 6.7
gives an overview of the parameters considered for LAHC, along with the best param-
eters found during hand tuning. We use the greedy initial starting solution proposed
like we do for the SA. The parameters γ, `Cargo , and `Eqp control the cost of flexible
arcs, the factor of profit earned from cargo, and the factor of profit earned from equip-
ment, respectively, in the greedy initial heuristic. The LAHC parameters `, rItrs , and
rRestart determine the list length, the number of failed iterations before restarting, and
the maximum number of restarts, respectively. Finally, the parameters p, pPI , and pT

describe the amount of penalization in the objective for non-node disjoint paths, mul-
tiple vessels utilizing the same phase-in slot, and temporal infeasibility within a vessel
path, respectively.

115

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

Category Parameter Discretized domain values. LAHC

GH
γ 0.0, 0.1, 0.25, 0.5, 0.75 0.25

`Cargo 0.0, 0.1, 0.25, 0.5, 0.75, 0.95 0.1
`Eqp 0, 10, 50, 100, 250, 500, 1000 100

LAHC
` 10, 100, 1000, 10000, 100000 10000

rItrs 1000, 10000, 100000 10000

rRestart 10, 100, 1000 10

Penalty
p 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 2×106

pPI 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 2×106

pT 1×105, 2×105, 5×105, 7×105, 1×106, 2×106, 5×106, 7×106, 1×107 5×106

Table 6.7: The discretized parameter domains used in hand tuning are given with parameters
classified into several categories. The best parameter for LAHC is shown on the right.

DRH SPH GH
Best Obj. 29 30 13
Worst Obj. 9 13 31

Obj. Average -4.14×105 -1.34×106 -8.13×106

Obj. Median -1.93×106 -1.93×106 -3.76×106

Table 6.8: Starting solution statistics for all three heuristics on the confidential dataset.

6.7.4 Initial Solution Heuristics Comparison

We compare the performance of the initial solution heuristics introduced in Section 6.5.4
across our dataset using the tuned parameters from Section 6.7.3. Table 6.8 describes
the performance of the starting heuristics across the dataset.

The DRH and SPH heuristics achieve the best initial objectives out of the three
heuristics on 29 and 30 of the instances, respectively (on many instances both heuristics
return the same solution), while the GH heuristic only provides the best value on 13
instances. In order to determine the significance of the difference in the means of the
solutions, we use a one-way ANOVA test (see, e.g., [156]) with the null hypothesis that
the means of SPH, DRH and GH on the private dataset are not different from each
other. We are unable to reject the hypothesis given the value p = 0.581, which is right
on the border of significance. Although we can see that the solutions provided by each
heuristic are not exactly the same, we do not have significant enough evidence to say
that any one initial solution heuristic is better than another.

Once the SA algorithm finishes, the answers tend to be relatively similar between the
various starting heuristics. Figure 6.5 compares the final solutions of the SA algorithm
using different initial heuristics. Points below the line y = x mean that the heuristic
on the x-axis has better performance, points above the line mean the heuristic on the
y-axis has better performance. This speaks to the strength of our SA algorithm, in
that it is able to find high quality solutions despite having initial solutions of varying
quality. Of particular interest is the fact that SA tends to find better solutions when
starting from worse objective values. GH outperforms both SPH and DRH on instances
with high objective values.

116

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 1e7 2e7 3e7
GH

0

1e7

2e7

3e7
D

R
H

(a) GH vs. DRH

0 1e7 2e7 3e7
GH

0

1e7

2e7

3e7

SP
H

(b) GH vs. SPH

0 1e7 2e7 3e7
SPH

0

1e7

2e7

3e7

D
R

H

(c) SPH vs. DRH

Figure 6.5: Comparisons of the final objective of the SA algorithm with the three initial
heuristics on the confidential dataset.

6.7.5 Neighborhood Analysis

We perform an analysis of two of the neighborhoods from Section 6.5.5, the RPC
neighborhood and the DDC neighborhood, in order to determine if they are beneficial
to the SA algorithm. We do not analyze the visitation addition, removal and swapping
neighborhoods because they are basic building blocks that any LS would need to be
successful.

Random Path Completion

We tune the parameters of the SA algorithm with and without the RPC neighborhood
in order to determine whether the random paths generated are beneficial to the SA. We
perform this experiment both with and without the DDC neighborhood, and solve each
instance using 25 different seeds. Figures 6.6a and 6.6b show the performance of the
SA algorithm using an initial solution generated by GH with the RPC neighborhood
vs. not using the RPC neighborhood, both using the DDC neighborhood and without
using DDC, respectively. We only show data using the GH initial heuristic since the
performance of all three heuristics is similar after optimization. Points below the line
y = x in the scatter plots indicate better performance for the RPC neighborhood. The
RPC neighborhood’s usefulness is clear both with and without the DDC neighborhood.
Not using the RPC neighborhood outperforms using the neighborhood only on several
instances, and in many cases, the RPC neighborhood is able to find solutions that are
orders of magnitude better than without the neighborhood. The line like structures in
Figure 6.6b are due to multiple runs of instances that result a number of solutions with
similar objectives.

With the DDC neighborhood, the average objective of GH with the RPC neighbor-
hood is 8.6×106, versus an average objective of 7.3×106 without the RPC neighborhood.
A t-test confirms the statistical significance of our findings, with p < 1× 10−4, allowing
us to reject the null hypothesis that the RPC neighborhood does not improve the solu-
tion quality. The difference in objective quality becomes even more pronounced when

117

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 1e7 2e7 3e7
GH

0

1e7

2e7

3e7
G

H
(n

o
R

P
C

ne
ig

hb
or

ho
od

)

(a) With DDC neighborhood

-3e7 -2e7 -1e7 0 1e7 2e7 3e7
GH (no DDC neighborhood)

-3e7

-2e7

-1e7

0

1e7

2e7

3e7

G
H

(n
o

R
P

C
/D

D
C

ne
ig

hb
or

ho
od

s)

(b) Without DDC neighborhood

Figure 6.6: Effectiveness of the RPC neighborhood with and without the DDC neighborhood
using the GH initial solution heuristic.

the DDC neighborhood is turned off. In this case, using the RPC neighborhood has an
average objective of 7.4×106, but turning off RPC results in only -1.9×106.

We conclude that the RPC neighborhood is an important mechanism for the SA
to explore new paths in the graph and avoid getting stuck in a local optimum. In
contrast to the visitation addition, removal and swap operators, which can help refine
a solution, the RPC neighborhood creates large changes in solutions that are critical to
good performance from our SA algorithm.

Demand Destination Completion

We also test the effectiveness of the DDC neighborhood in order to see how much
the neighborhood benefits the solution. Figure 6.7 plots the performance of the SA
algorithm using initial solutions generated by GH with the DDC neighborhood vs.
without the DDC neighborhood on each instance in the confidential dataset with 25
different seeds per instance. We hand tuned parameters for the SA for both with
and without the neighborhood for fairness of comparison. Points below the line y =
x indicate a higher profit for the DDC neighborhood, whereas points above the line
indicate that turning the neighborhood off provides a higher profit. The benefit of
the DDC neighborhood is clearly demonstrated by the plot, with the majority of the
instances lying below the line. Indeed, a t-test confirms the statistical significance of the
result, allowing us to reject the null hypothesis that the mean of the SA performance
with the DDC neighborhood is the same as without the neighborhood with a significance
level of p < 1 × 10−4. The average objective across all instances and seeds with the
neighborhood is 8.6×106, and without the neighborhood is 7.4×106, an improvement
of 14%.

118

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 1e7 2e7 3e7
GH

0

1e7

2e7

3e7

G
H

(n
o

D
D

C
ne

ig
hb

or
ho

od
)

Figure 6.7: Performance of the SA algorithm with and without the DDC neighborhood using
the GH initial solution heuristic.

6.7.6 SA and LAHC Results

We ran the SA algorithm with all three starting heuristics, and LAHC with the GH
starting heuristic on all instances in our dataset with until the algorithm converges or
a 10 minute timeout is reached. Table 6.9 shows the best objective values obtained
over 25 runs of each configuration of SA and LAHC on the confidential dataset. For
comparison, we provide the optimal objective when it is known and the optimality gap
for the heuristic approaches. All objectives are given in tens of thousands. SA is able
to find the optimal solution on 29 instances using the SPH and GH initial solution
heuristics, and 28 optimal solutions with the DRH approach. LAHC-GH finds 27
optimal solutions. Instance repo9c poses a particular challenge for SA-DRH, although
all other methods are able to find optimal solutions on the instance. This is likely
due to the simplicity of DRH, which requires local search approaches to add many
extra visitations to the solution to find a good objective value. Both SA and LAHC
find solutions within 20% of the optimal solution in most cases, with the exception
of instance repo34c, where none of the local search approaches are able to find an
optimality gap under 52%. The reason for this is not entirely clear, especially since
repo34c has no flexible components, equipment or SOS opportunities, meaning several
difficult components of the problem are removed. The instance does have relatively high
cargo volumes, which could make this instance harder than others, although repo42c,
repo43c and repo44c also have many containers that are carried, but both SA and
LAHC find solutions of around a 20% gap or less. The best overall performance comes
from the SA approach with the GH starting heuristic, which is why we used GH for
LAHC as well.

The average optimality gap of LAHC-GH roughly 1.7 times larger than that of SA-
GH, however it is still under half the gap of SA-DRH. Although this gap indicates that
LAHC-GH is able to perform reasonably well across our dataset, we used a t-test to
test the null hypothesis that there is no difference between LAHC-GH and SA-GH. We
are able to reject this hypothesis across all instances solved with p < 1 × 10−4. This

119

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 1e7 2e7 3e7
SA-GH

0

1e7

2e7

3e7

L
A

H
C

-G
H

Figure 6.8: Performance of the SA-GH versus LAHC-GH.

provides strong evidence that SA outperforms LAHC on the LSFRP. Indeed, Figure 6.8
shows the performance of SA-GH versus LAHC-GH, where it can be clearly seen that
SA-GH outperforms LAHC-GH on nearly every instance in the dataset, across all runs.

Table 6.10 gives the best objective value found for SA and LAHC using varying
initial solution heuristics for the public dataset. As in the case of the confidential
dataset, LAHC-GH results in an optimality gap twice as high as SA-GH. We are able
to reject the null hypothesis that LAHC-GH and SA-GH have the same performance on
the public dataset across all instances with p < 1× 10−4. On the confidential dataset,
SA-GH had the lowest average optimality gap, however on the public dataset, SA-SPH’s
average gap is slightly lower. SA-GH has an average best objective of $3.471 million
versus only $3.328 million for SA-SPH. Nonetheless, there is no statistically significant
difference between using the various initial solution heuristics on the public dataset.
Using an ANOVA test across all instances found yields a high p value.

Table 6.11 provides the average objective and optimality gap across all 25 runs of
each confidential instance for the SA approach on three initial solution heuristics and
on LAHC with the GH heuristic. We also provide the mean of the objectives and
optimality gaps across all instances and individual runs. Note that two different means
of the optimality gap are provided, one including all gaps (�) and one where all gaps
over 1.0 are excluded (�∗). We provide both averages because several instances with
large gaps greatly influence the averages, in such a way as to provide slightly misleading
results. For example, the average gap of LAHC-GH is 0.139, which is almost half that of
SA-GH, but the performance SA-GH is significantly better than LAHC-GH, as shown
by a t-test with p < 1 × 10−4. When we remove these large gaps from both SA-GH
and LAHC-GH, we see that the average optimality gap of LAHC-GH is, in fact, almost
twice that of SA-GH.

Table 6.12 shows the average objective and optimality gap across all 25 runs of each
public instance for the SA approach on three initial solution heuristics and on LAHC
with the GH heuristic. The table is structured the same as Table 6.11. Once again, SA
is able to solve a number of instances to optimality across all runs that LAHC cannot.

120

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

ID Optimal
SA-DRH SA-SPH SA-GH LAHC-GH

Obj. Gap Obj. Gap Obj. Gap Obj. Gap
repo1c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000 -33.91 0.000
repo2c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000 -33.91 0.000
repo3c -55.58 -55.58 0.000 -55.58 0.000 -55.58 0.000 -62.54 0.125
repo4c -6.30 -6.30 0.000 -6.30 0.000 -6.30 0.000 -6.30 0.000
repo5c 0.44 0.44 0.000 0.44 0.000 0.44 0.000 0.44 0.000
repo6c 0.44 0.44 0.000 0.44 0.000 0.44 0.000 0.44 0.000
repo7c 83.20 83.20 0.000 83.20 0.000 83.20 0.000 83.20 0.000
repo8c 0.44 0.44 0.000 0.44 0.000 0.44 0.000 0.44 0.000
repo9c 0.44 -1.21 1.783 0.44 0.000 0.44 0.000 0.44 0.000
repo10c 205.76 205.76 0.000 205.76 0.000 205.76 0.000 205.76 0.000
repo11c 205.76 205.76 0.000 205.76 0.000 205.76 0.000 205.76 0.000
repo12c 210.34 210.34 0.000 210.34 0.000 210.34 0.000 210.34 0.000
repo13c 210.56 210.56 0.000 210.56 0.000 210.56 0.000 210.56 0.000
repo14c 210.56 210.56 0.000 210.56 0.000 210.56 0.000 210.56 0.000
repo15c 4.91 4.91 0.000 4.91 0.000 4.91 0.000 4.91 0.000
repo16c 4.91 4.91 0.000 4.91 0.000 4.91 0.000 4.91 0.000
repo17c -16.64 -16.64 0.000 -16.64 0.000 -16.64 0.000 -16.64 0.000
repo18c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000 -13.38 0.000
repo19c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000 -13.38 0.000
repo20c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000 -20.15 0.000
repo21c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000 -20.15 0.000
repo22c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000 -20.15 0.000
repo23c 14.07 14.07 0.000 14.07 0.000 14.07 0.000 12.42 0.117
repo24c -46.30 -46.30 0.000 -46.30 0.000 -46.30 0.000 -46.30 0.000
repo25c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000 -41.07 0.000
repo26c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000 -41.07 0.000
repo27c 2.89 2.89 0.000 2.89 0.000 2.89 0.000 2.89 0.000
repo28c 2.67 2.67 0.000 2.67 0.000 2.67 0.000 2.67 0.000
repo29c 2.67 2.67 0.000 2.67 0.000 2.67 0.000 2.67 0.000
repo30c 0.62 0.58 0.063 0.58 0.063 0.58 0.063 0.58 0.063
repo31c 3.55 3.45 0.027 3.45 0.027 3.45 0.027 3.45 0.027
repo32c 1.57 1.52 0.031 1.52 0.031 1.52 0.031 1.52 0.031
repo33c 2.38 2.33 0.020 2.33 0.020 2.33 0.020 2.33 0.020
repo34c 77.09 36.48 0.527 37.01 0.520 36.48 0.527 28.61 0.629
repo35c - 301.33 - 295.71 - 324.01 - 296.93 -
repo36c 354.83 322.79 0.090 313.38 0.117 341.49 0.038 324.49 0.086
repo37c 360.98 337.40 0.065 334.76 0.073 342.23 0.052 327.26 0.093
repo38c - 316.00 - 310.27 - 344.45 - 291.98 -
repo39c 377.74 351.14 0.070 352.40 0.067 366.81 0.029 345.52 0.085
repo40c 377.74 357.07 0.055 358.92 0.050 368.32 0.025 339.31 0.102
repo41c 34.46 32.68 0.052 32.43 0.059 31.84 0.076 32.40 0.060
repo42c 320.94 307.09 0.043 308.85 0.038 318.07 0.009 278.43 0.132
repo43c 383.02 320.10 0.164 304.87 0.204 332.45 0.132 308.66 0.194
repo44c 383.02 315.14 0.177 306.06 0.201 344.63 0.100 294.93 0.230

� 82.76 86.40 0.075 85.47 0.035 89.93 0.027 83.31 0.048
σ 145.98 140.38 0.281 138.79 0.090 146.33 0.083 136.09 0.107

Table 6.9: The best objectives (in tens of thousands) and optimality gaps found with SA
versus the optimal objective using all three starting heuristics out of 25 runs on each
instance of the confidential dataset.

121

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

ID Optimal
SA-DRH SA-SPH SA-GH LAHC-GH

Obj. Gap Obj. Gap Obj. Gap Obj. Gap
repo1p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000 -39.83 0.000
repo2p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000 -39.83 0.000
repo3p -61.77 -61.77 0.000 -61.77 0.000 -61.77 0.000 -61.77 0.000
repo4p -46.62 -46.62 0.000 -46.62 0.000 -46.62 0.000 -46.62 0.000
repo5p -8.21 -8.21 0.000 -8.21 0.000 -8.21 0.000 -8.21 0.000
repo6p -8.21 -8.21 0.000 -8.21 0.000 -8.21 0.000 -8.21 0.000
repo7p -11.49 -11.49 0.000 -11.49 0.000 -11.49 0.000 -11.49 0.000
repo8p -8.21 -11.54 0.405 -8.21 0.000 -11.54 0.405 -8.21 0.000
repo9p -8.21 -11.54 0.405 -8.21 0.000 -12.44 0.514 -8.21 0.000
repo10p 137.61 137.61 0.000 137.61 0.000 137.61 0.000 137.61 0.000
repo11p 137.61 137.61 0.000 137.61 0.000 137.61 0.000 137.61 0.000
repo12p 138.55 138.55 0.000 138.55 0.000 138.55 0.000 138.55 0.000
repo13p 138.86 138.86 0.000 138.86 0.000 138.86 0.000 138.86 0.000
repo14p 138.86 138.86 0.000 138.86 0.000 138.86 0.000 138.86 0.000
repo15p -36.59 -36.59 0.000 -36.59 0.000 -36.59 0.000 -36.59 0.000
repo16p -36.59 -36.59 0.000 -36.59 0.000 -36.59 0.000 -36.59 0.000
repo17p -9.36 -9.36 0.000 -9.36 0.000 -9.36 0.000 -9.97 0.066
repo18p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 5.22 0.000
repo19p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 5.22 0.000
repo20p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000 -13.73 0.159
repo21p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000 -11.85 0.000
repo22p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000 -13.67 0.154
repo23p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 5.22 0.000
repo24p -53.89 -53.89 0.000 -53.89 0.000 -53.89 0.000 -53.89 0.000
repo25p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000 -53.13 0.000
repo26p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000 -53.13 0.000
repo27p -28.20 -28.20 0.000 -28.20 0.000 -28.20 0.000 -28.20 0.000
repo28p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000 -32.13 0.000
repo29p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000 -32.13 0.000
repo30p 5.72 4.93 0.138 5.06 0.115 5.35 0.064 2.83 0.505
repo31p -12.08 -12.08 0.000 -12.08 0.000 -12.08 0.000 -12.08 0.000
repo32p -10.92 -10.92 0.000 -10.92 0.000 -10.92 0.000 -10.92 0.000
repo33p -10.92 -10.92 0.000 -10.92 0.000 -10.92 0.000 -11.05 0.011
repo34p -2.01 -2.01 0.000 -2.01 0.000 -2.01 0.000 -3.86 0.923
repo35p - 132.01 - 124.98 - 135.82 - 140.08 -
repo36p 160.02 147.67 0.077 148.86 0.070 154.34 0.036 154.92 0.032
repo37p 139.31 129.29 0.072 128.08 0.081 133.84 0.039 134.63 0.034
repo38p - 142.25 - 143.30 - 158.83 - 160.91 -
repo39p 161.53 146.22 0.095 143.63 0.111 149.44 0.075 151.51 0.062
repo40p 161.53 146.86 0.091 150.18 0.070 153.39 0.050 152.13 0.058
repo41p -39.60 -46.69 0.179 -51.33 0.296 -43.79 0.106 -58.58 0.479
repo42p 253.60 242.78 0.043 243.28 0.041 244.28 0.037 10.58 0.958
repo43p 223.98 174.68 0.220 183.38 0.181 188.67 0.158 171.24 0.235
repo44p 254.06 175.46 0.309 176.63 0.305 186.70 0.265 172.97 0.319

� 33.05 33.11 0.048 33.28 0.030 34.71 0.042 28.52 0.095
σ 91.57 84.44 0.104 84.76 0.072 86.70 0.107 79.93 0.223

Table 6.10: The best objectives (in tens of thousands) and optimality gaps found with SA
versus the optimal objective using all three starting heuristics out of 25 runs on each
instance of the public dataset.

122

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

SA-DRH SA-SPH SA-GH LAHC-GH

ID Optimal Obj. Gap Obj. Gap Obj. Gap Obj. Gap

repo1c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000 -33.91 0.000
repo2c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000 -33.91 0.000
repo3c -55.58 -55.58 0.000 -55.58 0.000 -55.58 0.000 -62.54 0.125
repo4c -6.30 -6.30 0.000 -6.30 0.000 -6.30 0.000 -6.30 0.000
repo5c 0.44 0.44 0.000 0.44 0.000 0.44 0.000 0.44 0.000
repo6c 0.44 0.44 0.000 0.44 0.000 0.44 0.000 0.44 0.000
repo7c 83.20 83.20 0.000 83.20 0.000 83.20 0.000 83.20 0.000
repo8c 0.44 -1.12 3.563 -1.20 3.755 -1.22 3.797 0.44 0.000
repo9c 0.44 -1.30 3.989 -1.07 3.453 -1.17 3.687 0.44 0.000
repo10c 205.76 205.76 0.000 205.76 0.000 205.76 0.000 205.74 0.000
repo11c 205.76 205.76 0.000 205.76 0.000 205.76 0.000 205.76 0.000
repo12c 210.34 210.34 0.000 210.34 0.000 210.34 0.000 210.09 0.001
repo13c 210.56 210.56 0.000 210.56 0.000 210.56 0.000 210.56 0.000
repo14c 210.56 210.56 0.000 210.56 0.000 210.56 0.000 210.53 0.000
repo15c 4.91 4.91 0.000 4.91 0.000 4.91 0.000 4.91 0.000
repo16c 4.91 4.91 0.000 4.91 0.000 4.91 0.000 4.91 0.000
repo17c -16.64 -16.64 0.000 -16.64 0.000 -16.64 0.000 -17.14 0.030
repo18c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000 -13.38 0.000
repo19c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000 -13.38 0.000
repo20c -20.15 -20.49 0.017 -20.57 0.020 -20.59 0.022 -23.04 0.143
repo21c -20.15 -20.59 0.022 -20.52 0.018 -20.53 0.019 -22.83 0.133
repo22c -20.15 -20.49 0.017 -20.46 0.015 -20.58 0.021 -23.45 0.164
repo23c 14.07 14.07 0.000 14.07 0.000 14.07 0.000 9.60 0.318
repo24c -46.30 -46.30 0.000 -46.30 0.000 -46.30 0.000 -46.30 0.000
repo25c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000 -41.07 0.000
repo26c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000 -41.07 0.000
repo27c 2.89 2.89 0.000 2.89 0.000 2.89 0.000 2.89 0.000
repo28c 2.67 2.67 0.000 2.67 0.000 2.67 0.000 2.67 0.000
repo29c 2.67 2.67 0.000 2.67 0.000 2.67 0.000 2.67 0.000
repo30c 0.62 0.58 0.063 0.58 0.063 0.58 0.063 0.07 0.895
repo31c 3.55 2.87 0.193 2.42 0.318 2.55 0.281 1.13 0.681
repo32c 1.57 1.51 0.037 1.52 0.031 1.51 0.040 1.13 0.281
repo33c 2.38 0.80 0.666 0.56 0.764 -0.37 1.157 0.61 0.746
repo34c 77.09 29.46 0.618 31.32 0.594 28.31 0.633 15.44 0.800
repo35c - 279.37 - 281.57 - 304.29 - 273.37 -
repo36c 354.83 303.18 0.146 299.63 0.156 318.52 0.102 298.24 0.159
repo37c 360.98 328.85 0.089 328.97 0.089 336.20 0.069 301.44 0.165
repo38c - 297.22 - 294.62 - 320.20 - 282.65 -
repo39c 377.74 323.20 0.144 324.16 0.142 359.15 0.049 323.23 0.144
repo40c 377.74 338.04 0.105 341.41 0.096 361.31 0.044 324.16 0.142
repo41c 34.46 29.91 0.132 29.98 0.130 25.58 0.258 30.34 0.120
repo42c 320.94 303.45 0.055 295.75 0.078 298.89 0.069 230.38 0.282
repo43c 383.02 291.79 0.238 289.50 0.244 315.95 0.175 296.23 0.227
repo44c 383.02 291.02 0.240 288.56 0.247 318.23 0.169 280.28 0.268

� 82.76 291.02 0.246 288.56 0.243 318.23 0.254 280.28 0.139
�∗ 82.76 291.02 0.059 288.56 0.060 318.23 0.059 280.28 0.111
σ 145.98 7.36 0.841 8.78 0.837 12.45 0.870 7.04 0.337

Table 6.11: The average objectives (in tens of thousands) and average optimality gaps found
with SA versus the optimal objective using all three starting heuristics out of 25 runs on
each instance of the confidential dataset.

123

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

SA-DRH SA-SPH SA-GH LAHC-GH

ID Optimal Obj. Gap Obj. Gap Obj. Gap Obj. Gap

repo1p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000 -39.83 0.000
repo2p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000 -39.83 0.000
repo3p -61.77 -61.77 0.000 -61.77 0.000 -61.77 0.000 -61.77 0.000
repo4p -46.62 -46.62 0.000 -46.62 0.000 -46.62 0.000 -46.62 0.000
repo5p -8.21 -9.28 0.130 -9.36 0.140 -8.98 0.094 -8.21 0.000
repo6p -8.21 -9.39 0.143 -9.15 0.115 -8.65 0.053 -8.21 0.000
repo7p -11.49 -11.49 0.000 -11.49 0.000 -11.49 0.000 -11.49 0.000
repo8p -8.21 -12.22 0.488 -12.10 0.473 -12.36 0.506 -8.21 0.000
repo9p -8.21 -12.36 0.506 -11.98 0.459 -12.44 0.514 -8.21 0.000
repo10p 137.61 137.61 0.000 137.61 0.000 137.61 0.000 137.61 0.000
repo11p 137.61 137.61 0.000 137.61 0.000 137.61 0.000 137.61 0.000
repo12p 138.55 138.55 0.000 138.55 0.000 138.55 0.000 138.55 0.000
repo13p 138.86 138.86 0.000 138.86 0.000 138.86 0.000 138.86 0.000
repo14p 138.86 138.86 0.000 138.86 0.000 138.86 0.000 138.86 0.000
repo15p -36.59 -36.71 0.003 -36.59 0.000 -37.73 0.031 -37.43 0.023
repo16p -36.59 -36.64 0.001 -36.59 0.000 -38.11 0.041 -36.59 0.000
repo17p -9.36 -9.41 0.006 -9.36 0.001 -9.37 0.001 -10.39 0.110
repo18p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 -0.44 0.486
repo19p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 0.46 0.398
repo20p -11.85 -12.94 0.092 -13.00 0.098 -12.64 0.067 -14.37 0.213
repo21p -11.85 -12.61 0.065 -12.25 0.034 -13.13 0.108 -14.29 0.207
repo22p -11.85 -12.97 0.095 -12.82 0.083 -12.50 0.056 -14.34 0.210
repo23p 5.22 5.22 0.000 5.22 0.000 5.22 0.000 3.94 0.245
repo24p -53.89 -53.89 0.000 -53.89 0.000 -53.89 0.000 -53.89 0.000
repo25p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000 -53.13 0.000
repo26p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000 -53.13 0.000
repo27p -28.20 -28.20 0.000 -28.20 0.000 -28.20 0.000 -28.20 0.000
repo28p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000 -32.13 0.000
repo29p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000 -32.13 0.000
repo30p 5.72 3.63 0.366 3.90 0.318 3.70 0.353 2.14 0.626
repo31p -12.08 -12.08 0.000 -12.08 0.000 -12.08 0.000 -12.19 0.009
repo32p -10.92 -10.92 0.000 -10.92 0.000 -10.92 0.000 -11.09 0.015
repo33p -10.92 -11.24 0.029 -11.32 0.037 -11.17 0.023 -11.38 0.042
repo34p -2.01 -2.41 0.203 -2.58 0.288 -2.48 0.237 -6.20 2.091
repo35p - 119.71 - 117.88 - 131.26 - 137.27 -
repo36p 160.02 140.67 0.121 142.39 0.110 149.68 0.065 150.68 0.058
repo37p 139.31 123.91 0.111 123.37 0.114 129.98 0.067 131.72 0.054
repo38p - 135.16 - 135.84 - 150.77 - 157.54 -
repo39p 161.53 140.13 0.132 139.29 0.138 146.33 0.094 147.17 0.089
repo40p 161.53 140.28 0.132 140.94 0.127 149.23 0.076 146.28 0.094
repo41p -39.60 -53.11 0.341 -54.01 0.364 -52.65 0.329 -64.31 0.624
repo42p 253.60 236.07 0.069 230.07 0.093 232.14 0.085 -51.27 0.794
repo43p 223.98 154.12 0.312 150.97 0.326 164.15 0.267 155.80 0.304
repo44p 254.06 160.93 0.367 160.92 0.367 168.39 0.337 154.93 0.390

� 33.05 160.93 0.088 160.92 0.088 168.39 0.081 154.93 0.169
�∗ 33.05 160.93 0.088 160.92 0.088 168.39 0.081 154.93 0.122
σ 91.57 8.34 0.152 9.17 0.157 8.40 0.151 10.28 0.380

Table 6.12: The average objectives (in tens of thousands) and average optimality gaps found
with SA versus the optimal objective using all three starting heuristics out of 25 runs on
each instance of the public dataset.

124

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 5 10 15 20 25 30 35 40
CPU Time (s)

-1.0e6

-5.0e5

0.0e0

5.0e5

P
ro

fit
(U

SD
)

(a) repo6c

0 100 200 300 400 500
CPU Time (s)

-1.0e6

-5.0e5

0.0e0

5.0e5

P
ro

fit
(U

SD
)

(b) repo8c

0 0.2 0.4 0.6 0.8 1.0 1.2
CPU Time (s)

1.8e7

1.8e7

1.8e7

1.9e7

2.0e7

2.0e7

2.0e7

2.1e7

P
ro

fit
(U

SD
)

(c) repo10c

0 100 200 300 400 500 600
CPU Time (s)

0.0e0

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

3.5e7

P
ro

fit
(U

SD
)

(d) repo44c

0 100 200 300 400 500 600
CPU Time (s)

-4.0e6

-3.0e6

-2.0e6

-1.0e6

0.0e0

P
ro

fit
(U

SD
)

(e) repo33c

0 100 200 300 400 500
CPU Time (s)

-1.0e7

0.0e0

1.0e7

2.0e7

3.0e7

P
ro

fit
(U

SD
)

(f) repo40c

Figure 6.9: The average performance of SA-GH as it solves several confidential instances.

Figure 6.9 shows the average performance of SA-GH when solving several instances
from the confidential dataset. The solid horizontal line shows the optimal objective
value for each instance. The error bars provide the standard error across the 25 runs
on each instance, and the dashed lines provide the solution value of the best and worst
solutions from all runs. On the small instances repo6c, repo8c, and repo10c, the per-
formance of SA-GH is mixed. Although it is able to quickly find the optimal solution
for repo10c, SA-GH is not competitive with the EAD or EAF approaches on repo6c or
repo8c, as even after several seconds the optimal solution is not found. On instances
repo44c, repo33c and repo40c we show the solutions found by PM-EAD as a blue line
with triangles. On repo44c and repo33c, SA-GH moves towards the optimal solution
more quickly than PM-EAD. However, on repo40c, PM-EAD roughly matches the per-
formance of SA-GH for the first 40 seconds or so, and then exceeds SA-GH, finding
the optimal solution in around 100 seconds, whereas SA-GH does not find the optimal
solution at all. These results show that there may be benefits to allowing SA-GH to
run for several seconds before the path model begins optimizing in some situations. We
save this for future work.

6.7.7 Reference Instance Performance

We foresee the approaches presented in this chapter for solving the LSFRP as being
used in a decision support system for the LSFRP. In order to test whether or not they
are effective at solving real problems, we compare the results of our algorithms with
a reference scenario from our industrial collaborator. The scenario, instance repo42c,

125

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

encompasses 11 vessels originating from 3 initial services. The vessels seek to create a
new service that visits the east coast of South America, Spain and the Middle East. The
vessels have a single SOS each week that can be used from Tanjung Pelepas, Malaysia,
to Jebel Ali, United Arab Emirates.

Since the reference solution to the scenario faced by our industrial partner was
created in advance of the repositioning happening (as one would expect), the people
who made it were at a disadvantage compared to our algorithm, which has a more
complete view of the opportunities available during the full repositioning period. In
order to counter act this unfairness, we calculate the profit of the reference solution
under varying relaxations of restrictions present in our model.

Figure 6.10a shows the total profit earned by the reference solution as the size of the
demand delivery window is increased. This window determines what visitations may be
used to deliver cargo. Our real-world data only specifies the date when demands were
delivered, not the deadline for delivery. Thus, in our model, we use a value of ±3 days
for the demand delivery window, which means that any visitation within three days
of the delivery date is used as a feasible delivery visitation for a demand. By relaxing
this demand window to larger values, we allow the reference solution more flexibility as
to where cargo gets delivered, which counter-acts the uncertainty planners had when
creating the solution. The reference solution profit peaks at $18,137,488 with a 14 day
delivery window.

Figures 6.10b and 6.10c show the profit of the incumbent solution of the SA algo-
rithm using the initial solution generated by GH in terms of the number of SA iterations
and the CPU time, respectively. Error bars display the standard error across all 25 runs
of the instance. The solid blue line shows the profit of the reference solution with a 14
day demand delivery window, and the solid black line the optimal value for the instance.
SA-GH is able to find a solution with a better objective than the reference solution,
even with a 14 day demand delivery window, in only 20 seconds or so of run time, and
only 150 iterations4. Figure 6.10d shows the performance of PM-EAD. While it takes
longer for PM-EAD to provide a solution that is better than the reference solution than
SA-GH, it is able to find an optimal solution in around 1.75 hours of execution time.

6.8 Chapter Summary

In this chapter, we presented a novel model of an important real-world problem, the
LSFRP with cargo flows, and solved it using three different styles of MIP models: an
arc flow, a node flow and a path flow model. We also solved the LSFRP with cargo
flows using SA and LAHC approaches that harness several initial solution methods and
five different neighborhood operators.

Our model takes into account all of the key aspects of the LSFRP, including liner
shipping service construction constraints, cargo flows, empty equipment repositioning,
cabotage restrictions, sail-on-service opportunities, and maximizes the profit earned

4Each iteration represents the evaluation of the objective function.

126

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

0 2 4 6 8 10 12 14
Demand delivery window

-2.5e7

-2.0e7

-1.5e7

-1.0e7

-5.0e6

0.0

5.0e6

1.0e7

1.5e7

2.0e7

P
ro

fit
(U

SD
)

(a) Reference solution objective.

100 101 102 103 104 105

Iterations

2.0e7

2.5e7

3.0e7

P
ro

fit
(U

SD
)

(b) SA-GH profit versus iterations.

0 100 200 300 400 500
CPU Time (s)

2.0e7

2.5e7

3.0e7

P
ro

fit
(U

SD
)

(c) SA-GH profit versus time.

0 1000 2000 3000 4000 5000
CPU Time (s)

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

P
ro

fit
(U

SD
)

(d) PM-EAD profit versus time.

Figure 6.10: The reference solution under varying demand delivery windows, and the perfor-
mance of SA-GH and PM-EAD on the reference instance, repo42c.

during repositioning. We evaluated our optimal and heuristic approaches, showing that
not only does the SA scale to real-world sized problems, but it is also able to find a
solution with a significantly higher profit than that of the reference solution from our
industrial collaborator.

Our modeling techniques, especially our graph construction, could be applicable to
other liner shipping problems, such as an extension to the Vessel Schedule Recovery
Problem [23] if SOS opportunities and flexible visitations were included. Additionally,
our SA and LAHC approaches, in particular our demand destination completion heuris-
tic and initial solution heuristics, could be useful in other combined multi-commodity
flow with vehicle path problems, in which a multi-commodity flow is directed through
a graph by the paths of vehicles.

For future work, we intend to integrate the LSFRP into other liner shipping prob-
lems, such as fleet deployment and network design, so that these problems can take into
account repositioning when making strategic decisions for liner shippers. Additionally,
we intend to develop a decision support system that allows user interaction during the
repositioning plan creation process.

127

Chapter 6. Liner Shipping Fleet Repositioning with Cargo

128

Chapter 7. Inter-Terminal Transportation

Chapter 7

Inter-Terminal Transportation

Around the world, ever larger ports are being constructed to keep up with the growth
of containerized shipping. Ports routinely contain multiple terminals serving container
ships, railways, barges and other forms of hinterland transportation. Containers are of-
ten transferred between terminals when they are transshipped between different modes
of transportation. The movement of containers between terminals, which is called
inter-terminal transportation (ITT), represents not only an operational problem for
port authorities and terminal operators to deal with, but also a strategic one to be
considered during the planning of new terminals and container ports.

The correct choice of the layout of terminals and the transportation connections
between them, as well as vehicle type and the number of vehicles, represent expensive
and critical decisions that ports must make. The goal of an efficient ITT system is
to minimize the delay of containers moving between terminals, so as to reduce and,
ideally, eliminate the delayed departure of containers. To this end, we introduce an
optimization model based on a time-space graph to determine optimal flows of vehicles
and containers in ITT scenarios in order to assist port authorities in their decision
making process.

We use an abstract view of ITT operations using a time-space graph with maximum
arc capacities and node throughput to model vehicles as flows through the network with
transportation demands given as a multi-commodity flow. We focus on minimizing the
overall delay experienced by containers, an important consideration for port planners,
as the costs of delaying outgoing shipments are usually very high.

Previous work in the area of strategic analysis of ITT primarily deals with simulating
inter-terminal operations at the Maasvlakte area of the port of Rotterdam and analyzing
the resulting delay of the pickup and delivery of containers ([124, 46, 125]). In contrast
to this work, we optimize the flows of containers through the network in order to provide
port planners with a better estimation of the cost of using particular vehicles, roadway
designs, new infrastructure or traffic planning. This chapter provides the following
novel contributions, also presented in [166]:

1. The first fully defined mathematical model of ITT.

2. Two exact approaches for minimizing ITT delivery delay.

3. Congestion modeling in the setting of vehicles servicing a multi-commodity flow.

129

Chapter 7. Inter-Terminal Transportation

7.1 Problem Description

ITT involves the movement of containers between terminals in a port. There are several
types of terminals, including waterside terminals that have a quay where container
ships and barges can dock and transfer containers, rail terminals where containers can
be loaded onto rail cars, as well as hinterland terminals which can be set far inland
and deal with barge, rail or truck transportation. ITT traffic generally consists of
either sea-to-sea transportation, i.e., containers being transshipped between vessels, or
land-to-sea/sea-to-land transportation, in which containers originating from overseas
(the hinterland) are carried to (from) the hinterland by another mode of transportation
such as a barge or train.

At first glance, ITT might seem avoidable, either through scheduling container ves-
sels that will transship containers to arrive at the same terminal, or by placing key
logistics components of a port all in the same location. However, in nearly every mid
to large sized port some amount of ITT is required, due to the fact that avoiding ITT
would involve building rail, barge, and container ship connections all in one place, and
there simply is not enough space.

There are, therefore, two important problems within the topic of ITT. The first is
the purely operational problem of dispatching and routing vehicles to move containers
between terminals on a day to day basis in an already constructed port. The second
problem is a strategic planning problem for new ports and the expansion of existing
ports, which involves several key questions:

1. Is the planned infrastructure sufficient to handle ITT forecasts?
2. What types of vehicles and how many of them are necessary to handle ITT con-

tainers?
3. What kind of delays will be experienced, on average, given a particular infras-

tructure and vehicle configuration?

In this chapter, we provide an optimization model that assists in answering these ques-
tions, as well as supports port and terminal authorities in examining the impact of
new infrastructure, such as tunnels or bridges, on the overall delay experienced by ITT
containers. Thus, while we primarily address the strategic planning issues, our model
is also capable of dispatching and routing vehicles in the operational problem at a high
level.

7.1.1 Vehicle Types

We consider a range of types of vehicles for ITT that each comes with pros and cons
that must be evaluated by decision makers.

Automated Guided Vehicles (AGV)

AGVs are driverless vehicles that can carry up to one forty-foot container or two twenty-
foot containers, and have no lifting capabilities of their own. This means that AGVs

130

Chapter 7. Inter-Terminal Transportation

require cranes for (un)loading operations. Current AGV systems are only allowed in
areas where there are no humans in order to prevent accidents. However, this is likely
to change as safer AGVs are developed.

Automated Lift Vehicles (ALV)

ALVs, like AGVs, are also driverless vehicles that can carry two twenty-foot containers
or one forty-foot container. As their name implies, ALVs have lifting capabilities and do
not require external assistance to transport containers. This makes ALVs significantly
more versatile than AGVs. However, they generally travel slower.

Multi-Trailer System (MTS)

MTSs consist of several container carrying trailers, that can generally transport up to
five 40-foot containers. MTSs require cranes to load them as in the case of AGVs.
MTSs are not automated and require a human to drive a tractor unit that pulls the
trailer. While this allows more flexibility in the places an MTS can travel, the coupling
time of the tractor unit to the trailer can result in a slower turn-around time for the
vehicles than AGVs or ALVs. This process is described in detail in [46].

Barges

Barges can be used to transport large quantities of containers between terminals all at
once and are driven by humans. Barges are loaded slowly and travel slowly, but have
an advantage over road vehicles in that waterways tend to offer shorter connecting
distances between terminals than roads, as well as being less congested. Additionally,
barges have high capacities in comparison to land based vehicles, and are generally able
to carry 40 to 50 containers.

7.1.2 Infrastructure

In order to solve the steep logistical challenges of ITT as container volumes around the
world substantially increase, new infrastructure ideas must be considered. The con-
struction of ropeways, monorails, dedicated lanes, tunnels and bridges to connect ports
to shunting yards/hinterland logistics centers or to avoid bottlenecks could provide an-
swers for effective ITT. For example, the cost of tunnels and ropeways were considered
for connecting the port of Hamburg to hinterland transportation depots in [42]. Al-
though ropeways using current engineering technology were found to be infeasible to
carry the weight of fully loaded containers, it shows that with new ideas come new
challenges for evaluating their effectiveness. Our goal is to be able to take any potential
infrastructure change into account in a general model.

131

Chapter 7. Inter-Terminal Transportation

7.2 Literature Review

Copious studies simulate and optimize container movements within container ports and
terminals; see [154, 152]. A particular focus has been placed on intra-terminal simula-
tion and optimization (see [8] for an overview), considering primarily AGV and ALV
dispatching and routing (e.g., [20, 62, 118]). Intra-terminal transportation is character-
ized by its short distances and lack of external traffic interaction. This stands in sharp
contrast to ITT, in which vehicles may travel several kilometers to deliver containers
over publicly accessible roads. Intra-terminal transportation models and simulations
are, therefore, usually not applicable to ITT. Transshipment has been considered in an
intra-terminal context in [96]. However, the network based model presented does not
take a flow based view of vehicles, meaning modeling congestion is not possible in this
framework.

The most relevant works to ITT are [46, 124, 125], which all describe simulation
approaches to ITT at the port of Rotterdam. The goal of these studies is to measure the
amount of non-performance, i.e., the number of containers arriving at their destination
terminal after the due time. While a simulation approach is able to model many details
of ITT operations, such as loading and unloading procedures and the usage of manned
traction units in multi-trailer systems, the approach does not perform optimization
other than to tune the parameters by which the optimization is run to try to reduce
non-performance. In particular, [125] consider more than just ITT in the simulation
approach, including also quay-side movement of containers from ships into stacks. Our
model stands in contrast to these approaches in that we optimize ITT using network
flows, providing ports with a different view of non-performance.

7.3 Mathematical Model

We model ITT on a time-space graph which has several specially designed structures
in order to model traffic congestion as well as the loading and unloading of vehicles.
We have created a general model that can incorporate essentially any type of vehicle
used for ITT, as well as different types of infrastructure. Our graph uses a carefully
designed structure in order to model the handling of slow loading vehicles like barges,
and includes components capable of modeling traffic congestion.

We base our model on several key assumptions. The first assumption is that differ-
ent types of vehicles do not interact with each other except through the loading and
unloading of containers at terminals. This means that graph arcs do not have multiple
vehicle types traveling on them. This assumption greatly reduces the size of the model,
reducing both the number of nodes and arcs considerably. This is due to the varying
speeds, load times, and congestion properties of vehicles. Second, we assume that ITT
containers should be penalized for late arrival, but being early is allowed. This stands
in contrast to [46], but we consider containers that are delivered early to be the respon-
sibility of intra-terminal operations. Such containers can be stored either in a stack in

132

Chapter 7. Inter-Terminal Transportation

the yard or in a rolling buffer. Third, we consider all types of containers as requiring a
single unit of capacity on vehicles. In practice this is not true since there are 20 and 40
foot containers, as well as out-of-gauge containers that must be transported between
terminals. Our model is capable of handling such containers with minor changes, but
we save these for future work. Finally, we abstract away short vehicle activities, such
as connecting a tractor to a trailer loaded with containers in an MTS. While many
short activities add up over time, modeling them in a network flow requires too fine a
discretization. However, due to the short length of such activities, excluding them from
the model does not represent a major source of error.

7.3.1 Graph Construction

We first consider a base graph which is a non-temporal graph that describes the basic
connections between terminals. Let n be the number of terminal nodes and m be the
number of intersection nodes. Thus, the base graph G = (V,A) where V = {1, . . . , n+
m} is the set of all nodes and A is the set of arcs (i, j) where i, j ∈ V .

Using the base graph, we can now construct a time-space graph containing the
special structures that are necessary to model ITT. Let τ be the number of time periods.
Let GT = (V T , AT) be the time-space graph where V T is the set of nodes and AT the
set of arcs. The time-space graph consists of three types of nodes: terminal nodes,
intersection nodes, and long-term nodes, or LT nodes. LT nodes are copies of the
terminal nodes, and model the long term loading/unloading of containers. We require
LT nodes because some vehicles, such as trains and barges, take more than a single time
discretization to fully (un)load. Without these extra nodes, these vehicles would be able
to load and unload at an unrealistic rate unless the model kept track of the remaining
capacity of each vehicle at each time step. LT nodes prevent the problem size from being
dependent on the number of vehicles in the problem. Let V T = {1, . . . , τ(βn + m)},
where β is a parameter that equals 2 if there are long-term vehicles, such as barges,
present in the model, and 1 otherwise. In other words, when LT nodes are needed we
create a time-space graph with two nodes in each time period for all terminals with
a single node in each period for intersections, and when LT nodes are not needed we
create a single node in each time period for both terminals and intersection nodes.

We first show how stationary arcs connect time-space nodes at the same terminal
from different periods, then describe LT nodes and their connection to other nodes in
the graph, portray how congestion is handled in our graph, discuss the properties of
arcs and nodes in the graph, and finally explain the graph’s demand structure.

Stationary Arcs

In order to allow vehicles and containers to remain in the same place across time periods,
we introduce stationary arcs that connect each terminal, intersection and LT node in

133

Chapter 7. Inter-Terminal Transportation

subsequent periods. Let AS be the set of stationary arcs defined as

AS =
⋃

0≤t<τ

⋃
1≤i≤βn+m

{(τi+ t, τ i+ t+ 1)}.

Thus, each node at each time step (τi + t) is connected to itself at the next time step
(τi+ t+ 1).

Long-Term Loading/Unloading

We introduce an LT node for each time-space terminal node in the graph when there
are long-term vehicles, such as barges, present and connect these nodes to each other
with an arc in each direction. Let

ALT =
⋃

0≤t<τ

⋃
1≤i≤n

{(τi+ t, τn+ τi+ t), (τn+ τi+ t, τ i+ t)},

where τ is the number of time periods and n is the number of terminals. Thus, each
time-space terminal node has both an incoming and outgoing arc to its associated LT
node. Figure 7.1 shows the relationship between time-space terminal nodes and LT
nodes, along with a depiction of the flow of a demand over the LT arcs. The solid lines
are stationary arcs (a subset of AS) for node i ∈ V , the dashed lines represent LT arcs
that connect node i to its LT counterpart (a subset of ALT), and the dotted lines are
arcs associated with the LT vehicle, either waterways or rail tracks. Solid gray lines
show arcs that only road vehicles (such as AGVs, ALVs, and MTSs) may traverse. The
figure shows a demand with 12 containers that is being loaded on to an LT vehicle from
time period 0 to period 2. Arcs are labeled with the amount of containers being carried
on them. The blue arcs show the path of an LT vehicle as it loads the 12 container
demand. In each time period, 4 containers are transferred from the terminal node to
the LT node until the entire demand is loaded, at which point the LT vehicle can travel
to the destination of the demand, or load containers from another demand at some
other terminal.

Congestion

Traffic congestion is a key issue facing many ITT systems, as they often utilize roadways
open to general traffic. Modeling the basic effects of congestion is an important compo-
nent of our model. For example, these allow us to assess the effects of rush hour on ITT,
the impact of high-occupancy/priority lanes for ITT vehicles in a port area, the effect
of tunnels for avoiding traffic, or how an intra-port road network could increase on-time
ITT delivery. We therefore impose a capacity on the number of vehicles that can travel
on certain arcs, corresponding to the number of vehicles that could be reasonably using
the roadway (or waterway) at a particular time, as well as limit the total throughput
of intersections in each time period. Congestion is thus modeled as spillover from one
time period to another, as stationary arcs have no capacity restrictions. That is, when

134

Chapter 7. Inter-Terminal Transportation

Figure 7.1: Time-space expansion of a terminal node i (left) and its LT node copies (right).
A demand originates at node i at time 0 and is slowly loaded over LT arcs (dashed) on to
a barge or railcar (blue arcs).

an arc or intersection is full, vehicles must wait until the next time period to use it. In
this way, delay is achieved for overutilized roadways and intersections. We save more
detailed congestion models for future work, such as those in [86] or [94], as the details
that they model are too fine for the time discretization currently necessary to solve
ITT problems. Additionally, neither congestion model is able to take into account our
multi-commodity flow or LT nodes, meaning the integration of such techniques into an
ITT model is non-trivial.

Arc Properties

Each arc in the time-space graph has a maximum number of vehicles that can travel
on it in a single time period, cij. Let H be the set of all vehicle types, each of which
is associated with a maximum container carrying capacity, µh. We associate each arc
with a specific vehicle type that may travel on the arc, ηij ∈ H ∪ {⊥}, with (i, j) ∈ AT
and ⊥ indicates that an arc connects a node to an LT node, as no vehicles utilize such
arcs. That is, ηij = ⊥ for all (i, j) ∈ ALT .

We define several functions to assist in accessing the arcs in the model. Let In(i) =
{j | (j, i) ∈ AT} (Out(i) = {j | (i, j) ∈ AT}) be the set of nodes with arcs to (from)
node i ∈ V T .

Time-space Node Properties

Each time-space node is associated a number of vehicles present at its location at the
start of the model, si, with i ∈ V T . In other words, si defines the origins of the vehicle
flow. In general, the only nodes with any vehicles before the optimization begins are
the terminal nodes at time zero. From a modeling perspective, when the vehicles are
made available is irrelevant so we leave this possibility open, even though we do not
foresee a scenario in which it would occur.

135

Chapter 7. Inter-Terminal Transportation

Each node is capable of performing mi load or unload moves per time period for
road vehicles, and mLT

i moves for barges. Note that although there are multiple types
of vehicles in the model, they do not interact at the same nodes, since only a single
type of road or water vehicle is allowed in a particular instance. Thus, each node is able
to have a single value for the number of loads/unloads that can be performed, rather
than an amount for each vehicle type. Since the maximum number of loads/unloads at
a terminal node only pertain to particular arcs, we define the set

V
−→
T
i = {j | (i, j) ∈ AT \ AS ∧ ηij 6= ⊥}

to be the set of nodes connected by outgoing, non-stationary, non-LT arcs from the
time-space terminal node i, and

V
←−
T
i = {j | (j, i) ∈ AT \ AS ∧ ηji 6= ⊥}

to be the set of nodes from incoming, non-stationary, non-LT arcs from the time-space
terminal node i.

7.3.2 Demand

We consider ITT demands using a multi-commodity flow. ITT requires a multi-
commodity flow in order to adequately model the flow of containers between terminals
at various times. Let Θ be the number of demands, and oθ ∈ V , dθ ∈ V , aθ ∈ Z+,
rθ ∈ {0, . . . , τ−1}, and uθ ∈ {0, . . . , τ−1} be the origin node, destination node, amount
of containers, release period and due period of demand 1 ≤ θ ≤ Θ. Each demand is also
associated with a penalty function pθ : {0, . . . , τ −1} → R that describes the penalty to
be assessed based on the delivery time of each container, where pθ is 0 if the container
is delivered early or on time. That is, pθ(t) = 0 for all t ≤ uθ. We use a piecewise linear
function to model the lateness, but any function can be used, even in the IP, because
of the discretization of time in the model.

Our demand structure does not differentiate between different types of containers,
such as refrigerated, out-of-gauge or dangerous goods. While some types of containers
may require special handling procedures for ITT, the vast majority of containers do
not, and we therefore treat all containers equally for the purposes of this model. For
modeling purposes, let

V D
θ = {i ∈ V T |bi/τc 6= oθ ∧ bi/τc 6= dθ}

be the set of time-space nodes that do not match either the origin or destination of θ
in the base graph.

7.3.3 Time-space Graph Example

Figure 7.2 shows the time-space graph for our model of the port of Hamburg over
a 25 minute period with a 5 minute discretization. The majority of the connections
are on public roadways, especially between B, E, I1 and I2. Each arc defines the

136

Chapter 7. Inter-Terminal Transportation

Figure 7.2: A time-space graph for an ALV in the port of Hamburg over a 25 minute period
with a 5 minute discretization. Solid arcs represent roads and dashed arcs represent sta-
tionary arcs. The terminals A, T , B and E are connected through intersections I1 and I2.
A vehicle path from E to B, passing through intersection node I2, is highlighted in red,
and a demand path from B to E (release at time 0) in blue.

travel time required for a vehicle based on its connections, and the travel time required
can be varied at different times in the model to model rush hour or significant traffic
disruptions. Note that we do not show arcs destined for nodes later than time 25, for
reasons of clarity. In the graph, there is a single vehicle located at node E at t = 0. A
demand originates at B at t = 0 and must be brought to E before time 15 to avoid a
penalty of 5 units per discretized period. The red line shows the path of the ALV as it
drives with no containers from E to B. The ALV loads the container at t = 10 when
it arrives at B and leaves in the same time period, as ALVs load containers quickly,
and returns to E. The blue line shows the location of the demand from the time it is
released until it is delivered. First, the demand stays at B on stationary arcs for two
time periods before it is picked up by the ALV and transported to E through I2. Since
the container is delivered one time period late, a penalty of 5 units is incurred. Note
that this is the optimal penalty for this instance, as delivering the container earlier is
not possible due to the location of the ALV at time 0.

7.3.4 IP Model

Using our time-space graph, we now present an IP model to solve ITT problems that
minimizes the late delivery of containers. Our IP model differentiates itself from other
time-space models in the way it handles LT arcs and nodes, as well as the parallel flows
of vehicles and containers. The goal of the model is to minimize the penalty incurred
from delivering containers past their due date.

137

Chapter 7. Inter-Terminal Transportation

Parameters

The following parameters are used in our IP model.
n Number of nodes in the base graph.
τ Number of time periods.
V Set of nodes in the base graph.
V T Set of nodes in the time-space graph.
AT Set of arcs in the time-space graph.
Θ Number of demands.
In(i) Set of nodes with an arc to node i ∈ V T .
Out(i) Set of nodes with an arc from node i ∈ V T .
V D
θ Set of nodes excluding any time-space node that matches the origin

or destination of θ.

V
−→
T
i Outgoing, non-stationary, non-LT arcs from node i ∈ V T .

V
←−
T
i Incoming, non-stationary, non-LT arcs from node i ∈ V T .
oθ Origin node in V of demand θ.
dθ Destination node in V of demand θ.
aθ Amount of containers in demand θ.
rθ Release time step of demand θ.
uθ Due time step of demand θ.
pθ Late delivery penalty function.
δijθ Equal to 0 iff arc (i, j) ∈ AT is a stationary arc from the demand

origin of θ or is an LT arc.
cij Maximum number of vehicles on arc (i, j) ∈ AT .
mi Maximum number of container load/unload moves during a time pe-

riod at node i.
mLT
i Maximum number of LT vehicle load/unload moves during a time

period at node i.
si Amount of vehicles present at node i ∈ V T at the start of optimization.
γi Maximum vehicle throughput of node i ∈ V T .
µij Maximum container capacity of a vehicle on arc (i, j) ∈ AT .

Variables

We introduce two sets of decision variables to control the flow of containers through
the model. Let xij ∈ {0, . . . , cij} be the amount of vehicles on arc (i, j) ∈ AT \ ALT .
We restrict xij to not include LT arcs, since LT nodes are only a modeling artifact,
and therefore require no vehicles to function. Let yijθ ∈ {0, . . . , aθ} be the amount of
containers flowing on arc (i, j) ∈ AT for demand θ.

138

Chapter 7. Inter-Terminal Transportation

Objective and Constraints

min
∑

1≤θ≤Θ

∑
uθ<t<τ

∑
i∈In(dθ)

pθ(t− uθ)yidθθ (7.1)

s. t.
∑

1≤θ≤Θ

δijθyijθ ≤ µijxij ∀ (i, j) ∈ AT (7.2)

∑
j∈Out(i)

xij −
∑

k∈In(i)

xki ≤ si ∀ i ∈ V T (7.3)

∑
j∈Out(i)

xij +
∑

j∈In(i)

xji ≤ γi ∀ i ∈ V T (7.4)

∑
j∈Out(o′)

yo′jθ = aθ ∀ 1 ≤ θ ≤ Θ, o′ = τoθ + rθ (7.5)

∑
j∈Out(i)

yijθ −
∑

k∈In(i)

ykiθ = 0 ∀ 1 ≤ θ ≤ Θ, i ∈ V D
θ (7.6)

∑
τdθ≤j<τ(dθ+1)

∑
i∈In(j)

yijθ = aθ ∀ 1 ≤ θ ≤ Θ (7.7)

∑
1≤θ≤Θ

 ∑
j∈V

−→
T
i

yijθ +
∑
j∈V

←−
T
i

yjiθ

 ≤ mi ∀ 0 ≤ i ≤ nτ (7.8)

∑
1≤θ≤Θ

(yijθ + yjiθ) ≤ mLT
i ∀ 1 ≤ i ≤ nτ, j = nτ + i (7.9)

The objective (7.1) is to minimize the lateness of container delivery, in which each
container delivered late is penalized as a function of the lateness. That is, each arc
entering a time-space node of a demand destination is assigned a cost computed from
the penalty function pθ(t−uθ), where θ is the demand, t is the time step, and uθ is the
due time of the demand.

The amount of containers flowing on an arc is constrained in (7.2) to be no more
than the total capacity of all the vehicles traveling on an arc, where δijθ ∈ {0, 1} is set
to 0 iff i) bi/τc = oθ and (i, j) ∈ AS, or ii) (i, j) ∈ ALT . Therefore, δijθ takes the value
0 only when (i, j) is a stationary arc from the origin of demand θ or (i, j) is an LT arc.
When a container is present on a stationary or LT arc, it corresponds to the container
not physically moving anywhere. Thus, no vehicle is required to carry the container.

Constraints (7.3) are vehicle flow balance constraints that allow vehicles to flow
within the time-space graph. The constraints enforce that there are never more vehi-
cles leaving a node than the number of vehicles entering a node added to the number
of vehicles that start at the node. Note that this constraint allowed vehicles to travel
empty anywhere in the graph. Constraints (7.4) cap the number of vehicles entering
and leaving a node in a particular time step. This cap on vehicle throughput is pri-
marily used on intersections. However, it can also be used on nodes to model a gate
entry/departure queue.

139

Chapter 7. Inter-Terminal Transportation

Constraints (7.5), (7.6) and (7.7) flow the containers through the network. Con-
straints (7.5) bind the origin of a demand to have an outflow of the amount of contain-
ers in the demand, (7.6) ensures an exact container flow balance through the graph,
and (7.7) requires that all of the containers of a demand arrive at the destination node,
respectively. Note that containers are allowed to arrive early at their destination node,
and may then flow on the stationary arcs until their due time is reached.

The time it takes to load and unload containers is taken into account in con-
straints (7.8), which bound the maximum number of load/unload moves that can be
made at a node in a single time step for each vehicle type. Note that this constraint
does not control the flow of containers over stationary arcs or LT arcs, in order to
allow containers to remain at their origin or to be loaded on to LT vehicles. The
containers flowing between LT nodes and the terminals they represent are handled in
constraints (7.9). By allowing only mLT

i containers between time-space node i and its
LT node, barges must be (un)loaded at the rate the quay cranes can handle.

There are several small improvements we can make to the model to help the presolver
reduce the problem size. First, we set all yijθ variables to 0 if rθ > i mod τ , i.e., the
release time of θ is greater than the starting time of node i. Second, we set all yijθ
variables to 0 if j = oθ, meaning demands are not allowed to re-enter their origin
node. While this seems like an obvious observation, this prevents the IP from searching
through many solutions in which the paths of demands travel in loops.

7.3.5 Flow-first Solution Approach

In addition to simply solving our IP model from the previous subsection in an IP
solver in one go, we propose a two-step solution method called the flow-first approach.
First, we post constraints (7.5) through (7.9), which correspond to the container multi-
commodity flow, and solve the corresponding IP. This IP generally takes little time to
solve, as solvers like CPLEX have strong cuts for multi-commodity flow structures. We
then post constraints (7.2), (7.3) and (7.4), which control the flow of vehicles and ensure
that containers are carried by vehicles. Finally, we re-solve the IP using the solution to
the pure multi-commodity flow problem as a starting solution (albeit infeasible).

Although the multi-commodity flow solution is essentially always infeasible due to
the routing of vehicles, CPLEX is able to use the solution as an internal guide for
tackling the larger problem. The idea behind this is that many of the paths of the
containers in the multi-commodity flow will still be valid once vehicles are brought
into the problem, and by computing these paths without the complication of vehicles,
CPLEX can focus on completing the transportation of more difficult containers when
solving the full problem. Alternatively, CPLEX can use a repair mechanism to try
to fix the solution. We determine the effectiveness of this approach in the following
computational evaluation.

140

Chapter 7. Inter-Terminal Transportation

7.4 Computational Evaluation

The following section describes the evaluation of our IP model on generated datasets
based on the port of Hamburg and the Maasvlakte 1 & 2 area of the port of Rotterdam.
We show that our model gives valuable and actionable information for the planning of
ITT systems.

7.4.1 Data Generation

We generated an artificial dataset based on communications from the port of Rotterdam
regarding the Maasvlakte 2 expansion and data gathered on the internet for the port
of Hamburg. We use the same vehicle properties as in [46] for AGVs, ALVs and MTSs
in terms of load/unload times, vehicle velocity and capacity, giving AGVs, ALVs and
MTSs velocities of 5.0 m/s, 4.0 m/s, 6.6 m/s, respectively. AGVs and ALVs may carry
a single container each, and an MTS can carry up to 5 containers. We allow AGVs
to load and unload containers at a rate of 30 moves per hour per crane available. We
allow MTSs a move rate of 35 moves per hour, corresponding to the efficiency gained
by quickly loading multiple containers in a set of trailers. Note that we do not take a
detailed view of MTSs involving the coupling and decoupling of tractor units. We allow
ALVs an essentially infinite load and unload rate. ALVs are reported in [46] to require
about a minute to load or unload a container, but unlike AGVs and MTSs, they do
not have to form a queue and wait for a crane. Since our model is unable to take into
account such fine grained interactions between ALVs, we allow them a fast load/unload
time at ports. We distribute vehicles amongst terminals uniformly at time zero, and
randomly distribute remaining vehicles if the number of vehicles is not divisible by the
number of terminals.

We assume barges in the model have a capacity of 50 containers and travel at a rate
of 2.2 m/s (slightly under 5 knots), as this is a common maximum speed in harbors.
Barges can load and unload containers at a rate of 30 moves per hour, and we assume
two cranes are used to load/unload barges, giving 60 moves per hour.

Congestion We take a view of congestion in which roadways (arcs) and intersections
(nodes) have a maximum throughput per time period. While such a model lacks the
detail of the directions vehicles turn and does not handle specific vehicle to vehicle
interactions, it is able to provide a reasonably good restriction on port throughput,
which is what is most important for our model. Furthermore, a detailed view of con-
gestion in which vehicle movements are precisely modeled would require significantly
more variables, likely too many to find a solution when several hundred vehicles are
present.

Demands Each demand is generated by choosing two different terminals within a port
uniformly at random, then choosing an amount of containers less than 50 containers
that must be transferred between the two terminals, and finally setting a release time

141

Chapter 7. Inter-Terminal Transportation

b Type h |AT | |V T |

0

U
AGV 1510

576

ALV 1506
MTS 1512

RH
AGV 1506
ALV 1502
MTS 1508

2

U
AGV 3726

960

ALV 3722
MTS 3728

RH
AGV 3722
ALV 3718
MTS 3724

Table 7.1: The number of nodes (|V T |) and arcs (|AT |) in the time-space graph for the
Hamburg instances.

and due time. In order to prevent obviously infeasible instances, we choose the release
time uniformly at random in the range [0, tmax−2time(a, b)], where tmax is the maximum
time of the model minus a constant tc, which we set to 1 hour for Hamburg instances
and 2 hours for Maasvlakte instances, a and b are the two terminals chosen for the
demand, and time(a, b) is the minimum time required for the slowest vehicle type to
travel between a and b. We choose the values of tc based on the size of the port areas
in order to prevent instances that will be infeasible nearly regardless of the type of
vehicle that is used to solve an instance. We compute time(a, b) using a simple all-pairs
shortest path algorithm. We multiply this time by a factor of 2 to further prevent
clearly infeasible instances. If tmax − 2time(a, b) is a negative number, we choose a
release time in the interval [0, tmax/10]. We then choose a due time of the demand that
is between the release time plus time(a, b), with the maximum value being tmax . Note
that this could mean some demands are infeasible for delivery for slow vehicles. We
view this as a necessary part of the evaluation of such vehicle types, as only generating
data that is feasible for all vehicle types could make slow vehicles look just as effective
as fast vehicles at delivering demands under tight deadlines, which is not always the
case.

Each demand is associated with a penalty function to discourage lateness. We
use three penalty functions for demands representing low, medium and high priority
containers. We use a triangular distribution to assign the majority of the demands to
be low priority demands, roughly 30% to be medium priority, and the rest to be high
priority (slightly over 10%).

7.4.2 Hamburg

We model the port of Hamburg with 4 terminals and 2 intersections in the base graph,
and compute ITT performance over a period of 8 hours with a 5 minute discretization.
We generate 10 sets of demands for 500, 1000, 1500, and 2000 containers. We then
generate instances with varying numbers of road vehicles (50, 100, 150, and 200), with
2 barges and with no barges (labeled by b in the following tables), as well as with

142

Chapter 7. Inter-Terminal Transportation

uniform traffic (U) and rush hour traffic (RH). We model rush hour traffic on specific
arcs that contain non-port traffic. During the first and last hour of a rush hour instance,
these arcs take longer to traverse than during the other 6 hours.

Table 7.1 shows the size of the time space graph for the Hamburg instances. The
size of the graph is independent of the number of containers. The number of arcs differs
between vehicle types because of their different speeds. Some connections at the end
of the 8 hour period are not possible to complete with slow vehicles. The number of
arcs for RH instances is slightly lower for similar reasons. That is, some arcs that take
longer to traverse due to rush hour, and therefore do not have end points within the 8
hour window.

We solved the instances in our Hamburg dataset to optimality using CPLEX 12.4
with AMD Opteron 2344 HE processors with a maximum of 3 GB of RAM per pro-
cess and a maximum CPU time of one hour. Table 7.2 gives the average penalty, in
thousands, for the Hamburg instances, which we present to show the kind of data our
model can provide to decision makers. The penalty is averaged across all 10 runs of
each combination of number of containers, number of barges, infrastructure type, and
vehicle type. In cases where the model was unable to find an optimal penalty, we use
the LP relaxation. We are able to to do this because the LP relaxation value is very
close to the optimal solution value across our dataset. Out of the 382 instances with
500 containers with and without barges that we solved to optimality, 91% of them had
an LP relaxation value at the root node equal to the optimal solution. This percentage
also holds in the case of 1000 and 1500 container instances. We were unable to solve
many 2000 container instances to optimality, but of the 7 that we did solve, all of them
had an LP relaxation equal to the optimal solution. While this could be a case of
survivorship bias, we note that the problems solved range in CPU time from just a few
seconds to almost an entire hour. When we lower the timeout to half an hour instead
of a full hour, we see little difference in the percentage of solved instances with their LP
relaxation equal to the optimal solution, even though less instances have been solved.

In computing the average penalty, we also combine the results of running the all-at-
once model, in which we plug our entire IP model into CPLEX, and the flow-first model
from the Section 7.3.5. If one method solves a problem to optimality, that objective
is used, or if an approach finds that an instance is infeasible, the instance is declared
infeasible even if the other approach timed out attempting to prove this. We provide
an analysis of the run time of these two approaches following our discussion of the
solutions found by the approaches.

Overall, MTSs offer the lowest penalized delivery across all instances. However,
AGVs in combination with barges provide nearly as good performance in the 500 and
1000 container cases, offering only a 6.5% increase in penalty over MTSs and barges
on both uniform and rush hour instances. With only 50 vehicles, only MTSs are able
to provide delivery for all of the cargo in all instances with 500 containers, and in
most of the instances with 1000 containers. Our model shows that, under the given
assumptions, 100 road vehicles are generally sufficient for performing ITT, and that
adding extra vehicles is unable to provide less penalties, due to road congestion.

143

Chapter 7. Inter-Terminal Transportation

|C| b Type h
50 100 150 200

Pen. Inf. Pen. Inf. Pen. Inf. Pen. Inf.

500

0

U
AGV 24.59 1 8.27 0 8.27 0 8.27 0
ALV 98.65 4 14.04 0 14.04 0 14.04 0
MTS 5.96 0 5.96 0 5.96 0 5.96 0

RH
AGV 40.42 1 8.27 0 8.27 0 8.27 0
ALV 134.60 4 14.04 0 14.04 0 14.04 0
MTS 5.96 0 5.96 0 5.96 0 5.96 0

2

U
AGV 5.39 0 4.98 0 4.98 0 4.98 0
ALV 9.84 0 9.17 0 9.17 0 9.60 1
MTS 3.49 0 3.49 0 3.49 0 3.88 1

RH
AGV 5.39 0 5.05 0 4.98 0 4.98 0
ALV 10.14 1 9.17 0 9.19 0 9.60 1
MTS 3.49 0 3.49 0 3.49 0 3.49 0

1000

0

U
AGV - 10 7.02 0 2.30 1 3.05 0
ALV - 10 29.36 2 9.10 0 8.96 0
MTS 0.93 0 0.93 0 0.93 0 0.93 0

RH
AGV - 10 14.90 0 4.52 0 4.48 0
ALV - 10 42.35 2 11.18 0 10.70 0
MTS 2.33 0 2.33 0 2.33 0 2.33 0

2

U
AGV 0.78 5 0.94 4 1.07 3 0.94 4
ALV 9.60 2 4.54 4 4.08 4 4.08 4
MTS 0.60 2 0.48 2 0.43 2 0.43 2

RH
AGV 2.88 4 2.31 4 2.25 3 2.25 3
ALV 6.85 3 5.68 4 6.85 3 7.72 3
MTS 1.43 1 1.44 2 1.44 2 1.44 2

1500
0

U
AGV - 10 - 10 58.57 9 2.17 8
ALV - 10 - 10 204.21 9 47.76 8
MTS 5.26 0 5.26 0 5.26 0 5.26 0

RH
AGV - 10 - 10 84.44 9 11.20 8
ALV - 10 - 10 - 10 77.55 9
MTS 5.26 0 5.26 0 5.85 1 5.26 0

2000 0

U
AGV - 10 - 10 - 10 - 10
ALV - 10 - 10 - 10 - 10
MTS 6.26 6 6.92 3 4.71 5 1.44 7

RH
AGV - 10 - 10 - 10 - 10
ALV - 10 - 10 - 10 - 10
MTS 5.74 1 5.30 0 4.67 3 5.30 0

Table 7.2: The average penalty (Pen.) for the Hamburg instances (in thousands) and the
number of infeasible instances (Inf.).

The effect of our congestion model, in which intersections have a maximum through-
put per time period, can be seen when the number of AGVs and ALVs is increased.
The performance of using 100 AGVs and ALVs instead of 50 generally increases across
all instance types and numbers of containers. However, moving from 100 to 150 or
more vehicles does not have the same increase in performance, despite the increase in
capacity. We conclude that this is due to intersections filling with AGVs and ALVs,
causing congestion, an important outcome for port authorities to take note of.

We do not include results for barges for 1500 and 2000 container instances as our
model timed out on the instances, due to their size. Above 1500 containers, AGVs and
ALVs begin to not be sufficient for satisfying all of the demands, and the instances are
proven infeasible. The low carrying capacity of AGVs and ALVs is their main drawback,
although their slower speed in comparison to MTS systems does not help, either. The
faster loading capabilities of ALVs do not seem to outweigh these drawbacks in these
scenarios.

We next present CPU time results for the flow-first method and the all-at-once

144

Chapter 7. Inter-Terminal Transportation

|C| b Type h
50 100 150 200

All-at-once Flow-first All-at-once Flow-first All-at-once Flow-first All-at-once Flow-first

CPU TO CPU TO CPU TO CPU TO CPU TO CPU TO CPU TO CPU TO

500

0

U
AGV 228.32 0 67.19 0 140.82 0 40.37 0 87.09 0 38.06 0 70.85 0 40.27 0
ALV 109.99 0 91.70 0 94.26 0 29.30 0 60.11 0 27.45 0 26.62 0 28.92 0
MTS 16.88 0 10.29 0 29.04 0 10.67 0 11.56 0 10.96 0 8.69 0 11.47 0

RH
AGV 167.37 0 85.38 0 97.30 0 39.41 0 155.49 0 38.80 0 42.24 0 32.19 0
ALV 176.23 0 159.41 0 48.68 0 28.78 0 55.27 0 26.31 0 28.61 0 25.48 0
MTS 7.78 0 11.42 0 11.05 0 10.51 0 11.73 0 10.96 0 8.26 0 8.80 0

2

U
AGV 2247.75 8 1870.34 8 1431.29 4 1880.01 3 2307.05 5 1248.89 5 1572.34 6 926.79 5
ALV 2527.08 8 996.59 9 1268.30 6 1074.24 5 2041.89 6 1696.38 1 1213.50 5 1115.30 6
MTS 826.13 0 568.49 0 1000.04 2 508.61 1 776.61 0 515.31 0 636.35 1 809.96 0

RH
AGV 1145.94 9 1784.89 9 1459.25 3 1745.30 5 2200.37 6 1849.84 5 1306.47 6 1855.37 3
ALV 3485.08 9 2575.76 9 1370.41 6 2131.32 5 1850.23 2 1529.20 3 1034.32 4 1079.74 4
MTS 537.29 0 709.63 1 580.88 0 729.37 0 349.40 0 756.55 0 421.67 0 775.63 0

1000

0

U
AGV 311.19 0 265.78 0 1782.91 2 680.35 0 1605.07 0 371.65 0 1046.37 0 211.99 0
ALV 184.20 0 204.24 0 1821.98 0 1534.83 1 676.54 0 271.67 0 779.25 0 382.77 0
MTS 605.93 0 161.87 0 1064.68 0 186.26 0 1070.92 0 205.12 0 889.05 0 226.60 0

RH
AGV 262.22 0 200.74 0 1794.92 0 567.61 0 977.78 1 439.21 0 1252.96 0 538.26 0
ALV 144.40 0 146.43 0 2491.01 2 1675.82 2 857.98 0 250.21 0 704.52 0 209.09 0
MTS 730.71 0 222.06 0 761.98 2 173.08 0 702.04 0 197.64 0 863.59 0 184.74 0

2

U
AGV 3547.19 6 - 10 3508.94 6 - 10 3507.11 7 - 10 3539.90 7 - 10
ALV 3516.36 9 - 10 3535.23 7 - 10 3540.58 6 - 10 3526.48 6 - 10
MTS 3469.34 9 2185.23 9 2940.14 7 1360.37 9 3538.27 9 1049.30 9 3509.75 7 - 10

RH
AGV 3533.51 6 - 10 3535.93 7 - 10 3533.78 7 - 10 3548.33 7 - 10
ALV 3483.57 9 - 10 3541.48 6 - 10 3521.27 7 - 10 3528.98 6 - 10
MTS 3485.23 9 - 10 3557.39 8 - 10 2635.16 7 2937.56 8 3544.85 8 1312.35 9

1500 0

U
AGV 358.01 0 531.58 0 1028.61 1 1109.88 0 656.48 1 774.13 1 1103.11 1 1008.99 3
ALV 487.42 0 525.03 0 910.38 0 825.71 0 1154.84 1 807.81 0 957.81 0 901.71 1
MTS 2751.50 6 2233.11 7 1829.49 4 719.57 0 2708.66 5 1278.82 5 1662.53 3 1017.96 0

RH
AGV 485.14 0 362.92 0 1028.61 1 1139.64 0 496.51 1 839.46 1 1076.15 1 739.97 1
ALV 505.89 0 523.73 0 435.24 1 726.22 0 608.54 2 1069.39 1 967.77 0 706.70 0
MTS 2071.16 8 2236.47 6 1997.59 3 863.15 3 2074.72 3 745.84 2 1911.20 3 828.75 3

2000 0

U
AGV 771.55 0 677.82 0 1060.56 1 1003.28 0 1703.92 1 1199.20 0 1055.61 0 1579.64 0
ALV 700.93 0 437.04 0 557.33 0 887.45 0 978.51 0 750.23 0 666.92 1 1610.26 0
MTS - 10 3575.37 8 - 10 2564.89 9 - 10 3554.95 8 2356.41 8 617.60 9

RH
AGV 752.73 0 1164.78 0 730.81 0 516.18 2 867.92 2 1027.32 2 596.03 1 1273.61 2
ALV 714.33 0 1199.34 0 478.02 0 812.61 1 486.44 1 1050.15 0 680.19 0 1191.28 0
MTS - 10 - 10 3553.14 9 2803.71 9 - 10 3117.29 7 - 10 606.06 9

Table 7.3: The CPU times in seconds and number of timeouts (TO) for the all-at-once and
flow-first approaches on the Hamburg instances.

approach for solving the IP model. The flow-first method’s first step, in which a multi-
commodity flow problem is solved, generally only takes several seconds in CPLEX. Even
with side constraints like our loading and unloading restrictions and LT arc capacity
constraints (Constraints (7.8) and (7.9), respectively), the resulting model poses no
large difficulties.

Table 7.3 shows the CPU times and number of timeouts on the Hamburg instances
for both the all-at-once and flow-first approaches. In terms of CPU time, the flow-first
method outperforms the all-at-once approach on non-barge instances of 1000 containers
or less. On 500 container instances, the average CPU time of the flow-first method is
53% of the all-at-once approach non-barge instances. On barge instances, however, the
average performance is nearly identical, with the flow-first approach slightly outper-
forming the all-at-once method on AGV and ALV instances, but underperforming on
MTS instances. For 1000 container instances, the flow-first method has an average CPU
time of 380.56 seconds as opposed to 956.11 for the all-at-once approach, meaning it
requires only slightly under 40% of the CPU time of the all-at-once approach, ignoring

145

Chapter 7. Inter-Terminal Transportation

timeouts. Despite the flow-first method’s numerous timeouts on 1000 container barge
instances, the all-at-once approach is so close to the timeout for most instances that
the average times are not greatly different between the two approaches.

On 1500 container instances, the flow-first approach has an average CPU time (in-
cluding timeouts at 3600 seconds) on 1500 container instances of only 1242.51 seconds,
as opposed to 1539.91 seconds of the all-at-once approach, a savings of 19%. However,
on 2000 container instances, flow-first only achieves an average run time of 1810.73 sec-
onds (including timeouts as before) against 1921.41 seconds for the flow-first method,
an increase of roughly 6%.

In terms of timeouts, the all-at-once approach achieves fewer timeouts than the
flow-first approach across the entire dataset, with only 116 timeouts versus 126 for 50
vehicles, 98 versus 105 timeouts for 100 vehicles, and 91 versus 105 timeouts for 200
vehicles. In the case of 150 vehicles, the flow first method achieves 2 fewer timeouts
than all-at-once, with only 98 timeouts as opposed to 100. However, a majority of
these timeouts are due to barge instances, which the flow-first method is unable to deal
with once the number of containers is greater than 500. Looking only at non-barge
instances, the flow-first method has only 113 timeouts as opposed to 136 for all-at-
once. We hypothesize that the loading and unloading restrictions of barges using LT
arcs makes finding a good multi-commodity flow solution in the flow-first approach
more difficult than in the road transportation only case, and in future work we will
investigate adding cuts to prevent this from happening.

We conclude that the flow-first method is best suited to non-barge instances, even
though it has competitive performance on barge instances in terms of CPU time. How-
ever, given that the two approaches often have large differences in performance even on
the same instance, a heuristic selection approach, such as the ISAC method [81], could
be employed to choose whether or not to apply the flow-first method to instances in
future work.

7.4.3 Maasvlakte 1 & 2

Our Maasvlakte 1 & 2 dataset is based off of instances generated with 10 sets of de-
mands in a similar fashion as the Hamburg instances over a 10 hour time period with
an 8 minute discretization. We have increased the time period due to the larger size of
the Maasvlakte area, which contains 8 terminals distributed across an area of roughly
15 km2. We model the road transportation connections of these terminals using 4
intersections and the waterway connections with three waterway intersections for the
6 terminals with quays. We generated 10 barges for waterway instances because the
Maasvlakte area is significantly larger than the port of Hamburg and has more termi-
nals. We set the maximum due time of demands to all be at most two hours before
the end of the time period, although deliveries may still occur in the last two hours.
We solve these instances on AMD 6386SE processors with a maximum of 3GB of RAM
per process using CPLEX 12.5. We solve all Maasvlakte instances with the flow-first
method.

146

Chapter 7. Inter-Terminal Transportation

b Type h |AT | |V T |

0

U
AGV 2806

900

ALV 2804
MTS 2812

RH
AGV 2798
ALV 2796
MTS 2808

FC
AGV 3102
ALV 3100
MTS 3108

10

U
AGV 5802

1575

ALV 5800
MTS 5808

RH
AGV 5794
ALV 5792
MTS 5804

FC
AGV 6098
ALV 6096
MTS 6104

Table 7.4: The number of nodes and arcs in the time-space graph for the Maasvlakte 1 & 2
instances.

In addition to the uniform traffic and rush-hour instances we solved for the port of
Hamburg, we propose an infrastructure addition in the Maasvlakte area to show that our
model can, with little modification of the underlying graph, model novel infrastructure
components. Fast-connector instances model two dedicated tunnels (or bridges) that
connect a terminal to a key intersection, and then travels further to another intersection.
The fast connector significantly shortens the distance vehicles must travel to reach the
far ends of the Maasvlakte area. This modification to our instances is realized simply
by adding extra arcs to the base graph.

Table 7.4 shows the size of the time-space graph for the Maasvlakte 1 & 2 instances,
where b is the number of barges, the instance type is either uniform traffic (U), rush-hour
(RH) or fast-connector (FC), and h is the non-barge vehicle type. Instances without
barges have 900 nodes, and instances with barges 1575. As in the case of the Hamburg
instances, the number of arcs varies slightly between vehicle types due to their differing
speeds.

Table 7.5 displays the average solution penalty (in thousands) across the 10 in-
stances solved, along with the number of instances found to be infeasible/the number
of timeouts. As in the presentation of the Hamburg instances, we compute the av-
erage solution penalty using the optimal objective for all instances that are solved to
optimality and the value of the LP relaxation for instances that have timed out. The
LP relaxation turns out to be a rather tight bound on the optimal solution found in
most cases. In fact, across the 1037 instances for which we have an optimal solution,
the value of the LP relaxation matches the solution value on 1020 of them, a total of
98.3%. These instances are not trivial to solve, either, with many taking over 1000
seconds to find a solution.

We solve instances for 500, 1000, 1500 with and without barges, and for 2000 con-

147

Chapter 7. Inter-Terminal Transportation

tainers without barges. Our instances with barges proved to be too large for CPLEX,
indicating that further work is needed to scale to very large ports with large numbers of
containers. Nonetheless, our model is capable of reaching real-world container through-
put volumes for actual ports. Several elements in the table have no penalty value
computed, and instead are labeled with a dash. In these few cases, the LP relaxation
could be solved on the problems that were not proven infeasible.

The lowest penalty across all amounts of cargo tends to be achieved by the MTS
systems. Despite their slow loading capabilities, they have two key advantages over
AGVs and ALVs. First, they can carry up to 5 containers, meaning less MTS vehicles
are needed to service large amounts of demands. Second, they travel faster than AGVs
or ALVs, allowing them to cover the large distances of the Maasvlakte area more effec-
tively. Without barges, MTSs have only 28% of the penalty of AGV and ALV instances
with 500 containers and 100 vehicles in uniform and rush hour scenarios, and 28% and
15% of the penalty of AGV and ALV instances, respectively, for 1500 container scenar-
ios with 200 vehicles. Barges alleviate some of the stress on AGV and ALV systems,
reducing the gap between AGVs/ALVs and MTSs by 36% and 38%, respectively, for
500 container instances with 100 vehicles, and by 87% and 85% for 1500 container in-
stances with 200 vehicles. Barges seem to have little effect on MTSs since they already
have the carrying capacity to handle high container volumes. Note that these results
do not indicate that ports should always use MTSs. Rather, these results give ports an
indication of the delivery delay they will experience by using one option over another.

The gap in performance between AGVs/ALVs and MTSs is narrowed in the FC
instances, as the distances between different parts of the port become more manageable.
In the case of 500 containers with 200 vehicles or more, the fast connector closes the
penalty gap by 50%, bringing the penalty of AGVs and ALVs down to only 3.75 away
from the MTS penalty. With 2000 containers, the fast connector reduces the number
of infeasible instances for AGVs with all three amounts of vehicles. Port authorities
can use this information to weigh the cost of such infrastructure changes with the cost
savings they can possibly achieve with automated as opposed to manned systems.

The effect of our congestion model, in which intersections have a maximum through-
put per time period, can be seen when the number of AGVs and ALVs is increased. The
performance of using 200 AGVs and ALVs instead of 100 generally increases across all
instance types and numbers of containers. However, moving from 200 to 300 vehicles
does not have the same increase in performance, despite the increase in capacity. We
conclude that this is due to intersections filling with AGVs and ALVs, an important
outcome for port authorities to take note of.

Rush hour (RH) instances show a marked increase in penalty over uniform traffic
instances for AGVs and ALVs, but not MTSs, in instances with 1000 containers or
more. This provides evidence that MTSs are a better solution than AGVs or ALVs
when port and non-port traffic are mixed, as the high numbers of AGVs and ALVs
necessary to service cargo contribute to the rush hour traffic.

The fast connector (FC) instances tend to show little improvement as the number
of vehicles is increased in both the 500 and 1000 container cases without barges, and

148

Chapter 7. Inter-Terminal Transportation

|C| b Type h
100 200 300

Pen. Inf. TO Pen. Inf. TO Pen. Inf. TO

500

0

U
AGV 17.19 0 0 12.53 0 0 12.53 0 0
ALV 17.71 0 0 12.61 0 0 12.61 0 0
MTS 4.93 0 0 4.93 0 0 4.93 0 0

RH
AGV 17.19 0 0 12.53 0 0 12.53 0 0
ALV 17.71 0 0 12.61 0 0 12.61 0 0
MTS 4.93 0 0 4.93 0 0 4.93 0 0

FC
AGV 8.71 0 0 8.71 0 0 8.71 0 0
ALV 8.71 0 0 8.71 0 0 8.71 0 0
MTS 4.96 0 0 4.96 0 0 4.96 0 0

10

U
AGV 12.81 0 6 12.01 0 4 12.01 0 7
ALV 12.89 0 3 12.09 0 5 12.09 0 4
MTS 4.93 0 0 4.93 0 0 4.93 0 0

RH
AGV 12.81 0 5 12.01 0 5 12.01 0 7
ALV 12.89 0 2 12.09 0 5 12.09 0 2
MTS 4.93 0 0 4.93 0 0 4.93 0 0

FC
AGV 8.71 0 2 8.71 0 1 8.71 0 0
ALV 8.71 0 1 8.71 0 1 8.71 0 2
MTS 4.96 0 0 4.96 0 0 4.96 0 0

1000

0

U
AGV 23.09 1 2 29.21 0 0 29.21 0 0
ALV 45.03 1 3 32.07 1 0 31.52 0 0
MTS 4.74 0 0 4.74 0 0 4.74 0 0

RH
AGV 36.91 1 2 46.31 0 0 38.78 0 0
ALV 23.59 1 5 42.55 1 0 41.38 0 0
MTS 4.82 0 0 4.82 0 0 4.82 0 0

FC
AGV 12.15 0 1 12.15 0 3 12.15 0 2
ALV 12.15 0 0 12.15 0 0 12.15 0 0
MTS 5.89 0 0 5.89 0 0 5.89 0 0

10

U
AGV 19.70 0 10 14.44 0 10 25.56 0 10
ALV 27.22 0 10 27.06 0 10 27.06 0 10
MTS 4.57 0 3 4.57 0 3 4.57 0 3

RH
AGV 29.53 0 10 29.53 0 10 29.53 0 10
ALV 30.51 0 10 31.03 0 10 28.18 0 10
MTS 4.57 0 2 4.57 0 1 4.57 0 2

FC
AGV 10.66 0 10 11.25 0 10 11.80 0 9
ALV 12.15 0 10 12.15 0 10 12.15 0 10
MTS 5.89 0 0 5.89 0 0 5.89 0 0

1500

0

U
AGV 320.96 1 9 20.13 1 7 29.63 1 6
ALV - 2 8 39.91 2 2 36.56 2 3
MTS 5.68 0 0 5.68 0 0 5.68 0 4

RH
AGV - 4 6 31.59 1 2 24.07 0 5
ALV - 4 6 38.56 1 2 49.38 3 0
MTS 5.68 0 2 5.68 0 2 5.68 0 0

FC
AGV 19.42 0 4 15.88 0 1 15.88 0 1
ALV 18.38 0 6 16.86 0 0 10.38 0 3
MTS 6.14 0 2 6.14 0 3 6.14 0 6

10

U
AGV 9.67 0 10 7.34 0 10 13.33 0 10
ALV 11.69 0 10 10.69 0 10 13.54 0 10
MTS 5.46 0 9 5.46 0 6 5.46 0 8

RH
AGV 9.67 0 9 10.56 0 9 6.38 0 9
ALV 8.84 0 9 16.99 0 9 20.08 0 9
MTS 5.46 0 6 5.46 0 6 5.46 0 6

FC
AGV 8.26 0 10 8.52 0 10 10.29 0 10
ALV 10.50 0 10 11.11 0 10 8.77 0 10
MTS 6.14 0 1 6.14 0 0 6.14 0 1

2000 0

U
AGV - 1 9 - 3 7 - 1 9
ALV - 4 6 - 5 5 - 5 5
MTS 9.05 0 6 9.05 0 7 9.05 0 7

RH
AGV - 3 6 - 2 7 3.69 1 8
ALV - 2 7 - 3 6 - 4 5
MTS 9.05 0 2 9.05 0 6 9.05 0 7

FC
AGV 37.85 0 10 19.98 0 8 13.81 0 9
ALV - 0 10 26.43 0 7 26.43 0 8
MTS 10.84 0 6 10.84 0 9 10.84 0 10

Table 7.5: Average delivery penalty (Pen.), the number of infeasible instances (Inf.) and
timeouts (TO) for the Maasvlakte 1 & 2 areas.

149

Chapter 7. Inter-Terminal Transportation

|C| b Type h
100 200 300

Cols Rows NZ CPU Cols Rows NZ CPU Cols Rows NZ CPU

500

0

U
AGV 12 31 129 234.30 13 34 134 292.33 13 33 131 296.77
ALV 12 31 128 200.14 13 33 136 167.77 13 33 134 149.72
MTS 13 34 126 72.15 13 34 123 65.13 13 34 122 59.86

RH
AGV 12 31 127 235.73 13 33 133 265.63 13 33 129 242.45
ALV 12 30 126 176.63 12 33 134 147.74 12 33 132 145.28
MTS 13 34 125 60.96 13 34 122 66.36 13 34 121 61.28

FC
AGV 13 37 157 314.28 13 37 152 352.48 13 37 148 328.96
ALV 13 37 157 182.81 13 37 153 165.08 13 37 152 172.67
MTS 13 37 144 77.88 13 37 135 81.01 13 37 135 73.46

10

U
AGV 24 70 266 853.38 24 70 261 367.48 24 70 257 417.90
ALV 24 70 265 738.92 24 70 262 1211.84 24 70 261 1101.01
MTS 24 70 249 240.89 24 70 246 259.45 24 70 246 257.72

RH
AGV 24 70 264 883.99 24 70 259 1133.96 24 70 255 1097.66
ALV 24 69 263 1623.02 24 70 261 781.92 24 70 260 718.49
MTS 24 70 248 244.26 24 70 244 259.48 24 70 244 260.35

FC
AGV 24 73 281 820.97 24 73 275 393.49 24 73 271 590.02
ALV 24 73 280 673.04 24 73 277 396.45 24 73 275 653.05
MTS 24 73 265 276.14 24 73 256 269.80 24 73 256 280.26

1000

0

U
AGV 18 52 221 1643.55 22 67 281 1376.75 22 67 276 1534.97
ALV 18 52 217 1315.84 22 67 280 1144.40 22 67 276 1173.18
MTS 22 68 275 305.75 22 68 246 343.82 22 68 244 327.41

RH
AGV 17 50 212 1362.70 22 66 278 1419.55 22 66 272 1418.00
ALV 18 54 227 999.90 22 66 276 794.49 22 66 272 867.48
MTS 22 67 272 315.31 22 67 244 318.25 22 67 242 397.22

FC
AGV 23 74 322 1238.28 23 74 317 1811.16 22 74 311 1784.32
ALV 22 74 320 1400.91 22 74 316 1111.14 22 74 311 1595.10
MTS 23 75 310 354.08 23 75 283 470.17 22 75 269 569.03

10

U
AGV 42 139 538 - 42 140 534 - 42 140 528 -
ALV 42 139 536 - 42 140 533 - 42 139 528 -
MTS 42 140 522 998.52 42 140 491 1053.41 42 140 489 1071.63

RH
AGV 42 139 535 - 42 139 532 - 42 139 525 -
ALV 42 138 533 - 42 139 530 - 42 139 525 -
MTS 41 139 518 994.31 41 138 487 1047.40 41 138 484 920.15

FC
AGV 42 145 569 - 42 146 564 - 42 146 558 1728.74
ALV 42 145 568 - 42 146 564 - 42 146 559 -
MTS 42 146 555 1112.12 42 146 528 1089.37 42 146 512 1166.89

1500

0

U
AGV 30 96 410 3372.53 30 96 408 2286.73 30 96 404 2359.99
ALV 30 95 409 1726.32 30 95 406 2157.89 30 95 403 2174.19
MTS 31 97 402 668.46 31 97 374 1072.48 30 97 348 1463.10

RH
AGV 30 94 404 2657.88 30 94 401 2253.62 30 94 397 2259.15
ALV 30 94 402 2402.91 30 94 400 1953.54 30 94 397 2279.97
MTS 30 96 398 1029.04 30 96 370 1053.60 30 96 345 1135.80

FC
AGV 30 102 443 2609.38 31 106 459 2147.40 31 106 455 2454.49
ALV 31 106 461 2489.79 31 106 459 2081.42 31 106 455 2117.69
MTS 31 107 453 839.60 31 107 424 1385.94 31 107 400 1879.76

10

U
AGV 56 196 759 - 57 200 770 - 57 200 766 -
ALV 56 196 757 - 57 199 769 - 57 199 766 -
MTS 57 200 758 3192.33 57 200 727 2490.89 57 200 699 1991.30

RH
AGV 56 195 752 - 57 199 766 - 57 199 762 -
ALV 56 194 750 - 57 199 765 - 57 198 762 -
MTS 57 198 751 2453.92 57 198 720 2179.10 56 198 693 2538.90

FC
AGV 57 206 809 - 57 208 814 - 57 208 810 -
ALV 57 206 808 - 57 208 814 - 57 208 810 -
MTS 57 209 805 2567.69 57 209 775 2617.02 57 209 750 2571.67

2000 0

U
AGV 39 127 546 3026.41 39 127 544 1983.65 39 127 541 2647.58
ALV 39 127 543 2935.70 39 127 542 3024.40 39 126 540 2252.41
MTS 38 125 526 1346.18 39 129 516 1901.32 39 129 488 1839.17

RH
AGV 39 125 537 3235.71 39 125 536 2610.28 38 125 533 1368.74
ALV 38 125 535 2947.57 38 125 534 3201.56 38 125 531 1595.43
MTS 39 128 538 1531.82 39 128 511 1857.69 39 128 483 2271.66

FC
AGV 39 141 613 - 39 141 612 2940.82 39 141 609 3417.00
ALV 39 140 612 - 39 140 610 3386.42 39 140 608 3556.95
MTS 40 142 610 2071.77 40 142 582 1465.52 39 142 554 -

Table 7.6: Size of the Maasvlakte 1 & 2 instances in terms of the number of post-processed
IP columns, rows and non-zeros (NZ) in thousands, and the average CPU times in seconds
for solving all instances that did not timeout.

150

Chapter 7. Inter-Terminal Transportation

in the 500 container case with barges. We suspect that this is due to congestion in
port intersections. Without the fast connector, vehicles spend more time traveling on
arcs and are unable to crowd the intersections. However, with the fast connector, more
cargo can be delivered on time, and this means more crowding of the intersections. This
could provide important information to a port in determining how many vehicles they
will need given an infrastructure change like in the FC instances. Since less vehicles are
required, the port can offset the costs of the infrastructure development. Furthermore,
this shows that our model can be used to test out scenarios to find out where the new
bottlenecks in a port will be. In our instances, the port would benefit from increasing
intersection throughput in addition to building the fast connector.

In our model, MTSs are the only way of servicing large amounts of containers within
the 10 hour time period; when the number of containers reaches 2000, AGV and ALV
instances begin timing out or returning infeasible solutions. In fact, on the ALV and
AGV instances with 2000 containers, an LP relaxation is often difficult to compute
within the one hour time limit, indicating there probably is no solution at all.

We report the number of columns, rows and non-zero entries (in thousands) in
the post-processed IP in CPLEX 12.5, along with the average CPU times in seconds
required to solve an instance in Table 7.6. Although the underlying model is the same
for various numbers of vehicles, with the only difference being the domain of the xij
variables, the number of post-processed rows, columns and non-zeros can vary, but not
significantly. The solution time does not have any strong correlation with the number
of vehicles in the model. However, the inclusion of barges always makes finding a
solution harder, due to the increased problem size. MTS instances are overall easier
than AGV and ALV instances, requiring only 24% and 41% of the CPU time of AGV
and ALV instances for 500 containers without barges, respectively, despite the fact that
the models are essentially the same size. For 1500 container instances without barges,
MTS instances solve 47% and 54% faster for AGVs and ALVs, respectively.

As the container volumes grow, the solution times approach, and often exceed, one
hour of CPU time. Developing faster algorithms to solve ITT problems is therefore
valuable future work. However, we do not view this as a major hindrance to the
utilization of our model in practice, as the planning of ports and port expansions is a
long term process for which significant computation power can be obtained.

7.5 Chapter Summary

Inter-terminal transportation (ITT) is a key factor in the decision making process for
the construction of new ports and expansion of existing ports. These projects represent
critical, long-term and expensive infrastructure investments that require effective analy-
sis of ITT for decision makers. To this end, we presented an integer programming model
to minimize container delivery delay that takes into account the key components of ITT,
including traffic congestion, multiple vehicle types and loading/unloading times, and
arbitrary terminal configurations. We also provided a two stage approach for solving

151

Chapter 7. Inter-Terminal Transportation

the model to optimality.
Our model scales to the sizes of real-world ports, time periods, and container

throughput, as shown using examples from the Maasvlakte area of the port of Rot-
terdam and the port of Hamburg, and provides important analysis on not only the
feasibility, but also the delay of containers reaching their destinations. Our model of
ITT is the first to incorporate optimization of vehicle routes and container flows in
order to provide ports and terminals with the best performance a particular configu-
ration of vehicles and infrastructure is capable of delivering. The model represents a
particularly difficult class of time-space models, in which interacting vehicle flows, a
multi-commodity flow, and congestion constraints all interact.

For future work, we intend to use our model to help analyze the costs of building
new infrastructure and/or purchasing new types of vehicles versus the improvements in
port efficiency and reductions in delays. In addition, we will use this model to guide
the input into a discrete even simulation of ports, thus providing a complete view of
the impact of strategic decisions on port efficiency. Our model could also be used to
assist ports in determining what vehicle characteristics would best fit their port from
an engineering perspective. Finally, we also intend to investigate the impact of long
distances on port design, such as those found in the port of Shanghai, China, or the
port of Rotterdam outside of the Maasvlakte area.

152

Chapter 8. Container Stowage Planning Complexity

Chapter 8

Container Stowage Planning
Complexity

Containers are constructed such that they can be stored space efficiently directly on
top of each other in stacks. Containers are stored this way both in stationary storage
areas, such as depots and port terminal yards, and moving storage areas such as bays
of container ships. Another characteristic of these storage areas is that containers
arrive and depart at discrete points in time. For a typical depot and yard, trucks load
and unload containers daily, while containers stowed in bays of ships are loaded and
unloaded at different ports. This, and the fact that stacks only can be accessed from
the top, complicates the decision of where to stow containers in a storage area. We call
this general discrete optimization problem stowage planning. Stowage planning is hard
because containers to be retrieved from the storage area must be at or near the top
positions of stacks.

If a container must be removed from a stack in order to retrieve a container un-
derneath it, that container is said to be overstowing the container being retrieved.
The process of removing an overstowing container is called shifting. Thus, the goal
of stowage planning is to minimize shifting or, equivalently, to minimize overstowage.
This is particularly important in the bays of container ships, because shifting requires
that the overstowing container is moved from the ship to the terminal yard and back,
which is very expensive.

Despite the practical importance of container stowage problems, the complexity of
several key stowage related problems remains unknown. To this end, we first solve an
open problem stated in [13] by showing that a change from uncapacitated to capacitated
stacks in their k-shift problem reduces its complexity from NP-complete to polynomial.
We do this by providing an algorithm that for any choice of the number of stacks
and stack capacities solve the problem in polynomial time. Although our algorithm
is impractical, the fact that such a problem can be solved in polynomial time gives
hope that efficient algorithms can be found in other areas within the container stowage
domain. This chapter is based on our paper [165].

153

Chapter 8. Container Stowage Planning Complexity

8.1 The Capacitated k-Shift Problem

The Capacitated k-Shift Problem (CkSP) is a decision problem that asks whether a set
of containers that must be stored and retrieved at discrete time points can be stowed
with less than k shifts in a fixed number of stacks with limited capacity. Formally, an
instance of the CkSP is a tuple 〈n,C, In,Out , S,m, k〉, where n is the number of time
points, C is a finite set of containers, In(c) ∈ {1, . . . , n} (Out(c) ∈ {1, . . . , n}) is the
time point that container c must be stowed in (retrieved from) one of the stacks, S is
a finite set of stacks, m ∈ N is the maximum number of containers that each stack can
hold at any time, and k is the maximum number of allowed shifts.

The question is whether the containers can be assigned to the stacks such that at
most k shifts are required to retrieve them. Formally, is there an assignment A : C → S
that is within the stack capacity (i.e., ∀t ∈ N, s ∈ S . | { c : A(c) = s, In(c) ≤ t <
Out(c)} | ≤ m) that requires at most k shifts (i.e., |{w ∈ C | ∃v, A(v) = A(w) ∧ In(v) <
In(w) < Out(v) ∧ In(w) < Out(v) < Out(w)}| ≤ k)?

8.2 Related Work

Although there is a significant amount of work for solving container stowage problems,
(See [127] for a full overview of the relevant approaches), the theoretical complexity of
stowage planning problems has not received significant consideration in the literature.
The uncapacitated version of the CkSP where m = ∞ has been shown to be NP-
complete for |S| ≥ 4 by a reduction from the coloring of overlap graphs [13] and is
known to be polynomial for |S| < 4 [11, 167]. For m = 1, the CkSP is solvable in
time polynomial in C using a minimal cost flow formulation for interval scheduling on
identical machines [18]. However, even for m = 2, it is not known whether the CkSP
can be solved with a polynomial time algorithm.

8.3 A Polynomial Time Algorithm

In this section, we show that a polynomial time algorithm exists to solve the CkSP for
any choice of |S| and m.

Example 8.1. Consider the CkSP depicted in Figure 8.1, in which C = {c1 . . . c13},
In(c1, . . . , c4) = 1, In(c5, c6) = 2, In(c7, . . . , c10) = 3, In(c11) = 4, In(c12, c13) = 5,
Out(c1, . . . , c4) = 3, Out(c5) = 4, Out(c6) = 6, Out(c7, . . . , c10) = 5, Out(c11, c12, c13) =
6, S = {s1, s2}, m = 3. The answer to this CkSP is “yes” for all k ≥ 3.

We define a configuration as a function q : {1, . . . ,m} × {1, . . . , |S|} → {1, . . . , n}
assigning slots to discharge times. In other words, when a container c is loaded into
a slot in a particular stack, we must only make note of its discharge time (Out(c))
in the configuration, yielding at most nσ configurations at any time point, where σ =
m|S| represents the total number of slots for stowing containers. Let ⊥ represent

154

Chapter 8. Container Stowage Planning Complexity

Figure 8.1: A CkSP instance with m = 3,|S| = 2 and |C| = 13. The instance is a “yes”-
instance for any k ≥ 3. Possible configurations are shown at each time step with the
discharge time of the container in each slot. Gray slots contain containers that must be
shifted, and each configuration is labeled with the number of containers that will be shifted
at that timestep. A path through the configurations represents a complete stowage plan,
and an optimal plan is shown with bold arcs.

an empty configuration. Given a configuration q and a time point t, let Q(q, t) be
the set of configurations that q may transition to at time t. We allow a transition
between configurations q and q′ at time t only when it is possible to re-stow the stacks
after unloading containers (including shifted containers) such that each slot in q with a
container that has a discharge time later than t and is not overstowing a container being
discharged at t, has the same slot assignment in q′. Additionally, Q(⊥, t) provides all
of the possible configurations at time t, with Q(⊥, 1) representing the initial (empty)
configuration.

We will now give an algorithm that exploits this polynomially bounded number of
configurations to solve the CkSP in polynomial time for any choice of m and S. The
minimal number of shifts is given by

k∗ = min
q∈Q(⊥,1)

CkSP -DP(q, 1),

CkSP -DP(q, t) =

0 if t = n,

shifts(q, t) + min
q′∈Q(q,t)

{CkSP -DP(q′, t+ 1)} otherwise.

The function CkSP -DP(q, t) represents the minimum number of shifts necessary for
unloading containers in configuration q from time t to time n, where shifts(q, t) returns
the number of shifts for the current configuration at time t, and Q(q, t) is as previously
defined.

Given a configuration q at time t, our dynamic program computes the number of
shifts q requires at time t, followed by the minimum cost transition to a state q′ at time

155

Chapter 8. Container Stowage Planning Complexity

t + 1. When t = n, all containers are discharged and no shifts are required, thus the
cost of all states when t = n is 0.

We return a “yes” answer to the CkSP if k∗ ≤ k and “no” otherwise. Figure 8.1
shows some of the states of the dynamic program as it solves the problem given in
Example 8.1. Each state represents a configuration and shows the discharge ports
of the containers loaded in each slot. An arc connects configuration q at time t to
configuration q′ at time t + 1 if q′ ∈ Q(q, t), meaning there is a transition between the
two configurations. A path through the states represents an assignment of containers
to stacks, and the total number of shifts is given by the sum of the number of shifts in
each state (shown above and below each state).

We first show that computing shifts(q, t) and determining the configurations that
can be transitioned to, Q(q, t), both take polynomial time to compute. We then leverage
these results to show that computing k∗ takes polynomial time, and thus, solving the
CkSP takes polynomial time.

Lemma 8.1. Given a configuration q and a time t, computing Q(q, t+1) has complexity
O(σnσ).

Proof. First, note that there are nσ possible configurations in total since each slot can
be assigned any discharge port. We must determine whether a transition from q exists
for each of the possible configurations q′ at time t + 1. This check involves ensuring
that all containers not leaving or entering the stacks at time t+ 1 in q and q′ are in the
same positions. Note that shifted containers are considered as leaving and re-entering
the stacks, meaning they are allowed to change positions between q and q′. Checking
configurations q and q′ takes time O(σ), since each slot in each stack is examined in
constant time. We perform this check between q and all nσ configurations, giving a
total time of O(σnσ).

Theorem 8.1. k∗ = minq∈Q(⊥,1) CkSP-DP(q, 1) can be computed in polynomial time
for any choice of m and |S|.

Proof. The minimal number of shifts, k∗, is computed through a dynamic programming
procedure which investigates O(nσ+1) different states, since there are n time steps and
nσ possible configurations at each one. The function shifts(q, t) computes the number
of overstowages at each state, and is clearly polynomial, as it involves looking at each
stack in q at time t and counting the number of shifts required. Thus, since shifts(q, t)
takes polynomial time, and by Lemma 8.1, processing each state takes polynomial time
for a fixed m and S.

Lemma 8.2. CkSP-DP(q, t) returns the minimal number of shifts for any configuration
q and time t.

Proof. We use a proof by induction on n. In the base case, when t = n,

CkSP -DP(q, n) = 0, ∀q ∈ Q(⊥, n),

156

Chapter 8. Container Stowage Planning Complexity

since all containers are unloaded at time n. For the inductive step, assume that
all configurations at time t have been assigned the minimal number of shifts, i.e.
CkSP -DP(q, t) returns the minimum number of shifts for any q ∈ Q(⊥, t), and the
dynamic program must compute CkSP -DP(q′, t − 1) for all q′ ∈ Q(⊥, t − 1). The
minimal number of shifts for CkSP -DP(q′, t− 1) is therefore

shifts(q′, t− 1) + min
q∈Q(q′,t−1)

{CkSP -DP(q, t)} ,

because in order to unload containers in state q′ at time t−1, shifts(q′, t−1) shifts must
be performed, and the latter part of the term holds by the inductive hypothesis.

Theorem 8.2. k∗ = minq∈Q(⊥,1) CkSP-DP(q, 1) is the minimum number of shifts.

Proof. By Lemma 8.2, CkSP -DP(q, t) returns the minimal number of shifts for any q
and t. Since k∗ takes the minimum number of shifts computed by CkSP -DP(q, t) on
each of the initial configurations, k∗ must equal the minimum number of shifts.

8.4 Chapter Summary

We investigated the complexity of stowage planning problems. We showed that the
capacitated k-shift problem (CkSP) is solvable in polynomial time for any choice of
stacks and stack capacities, which is an open problem from [13]. Even though the
algorithm we propose is not practical, knowing that the CkSP is solvable in polynomial
time under certain conditions is an interesting result for the scientific community, and
we hope that this will spur research into devising faster algorithms for solving k shift
problems that can be put into practice. The complexity of several variations of the
CkSP remain unknown, such as when the stack capacity is variable and the number of
stacks is either fixed or is variable, but greater than the number of time points, or when
the stack capacity is fixed and the number of stacks is variable and greater than three.

157

Chapter 8. Container Stowage Planning Complexity

158

Chapter 9. Conclusion

Chapter 9

Conclusion

This dissertation investigates a central problem of the liner shipping industry, the liner
shipping fleet repositioning problem (LSFRP), and solves it using a plethora of tech-
niques both ignoring and taking into account container flows. We provide the first
problem description and mathematical models of the LSFRP in the literature.

The central question of this dissertation is to determine whether an algorithm can be
developed to create real-world realizable liner shipping fleet repositioning plans within
a reasonable amount of CPU time. We answer this question with a clear “yes”, and
present algorithms for two versions of the LSFRP that are able to find optimal or near
optimal solutions in only minutes of CPU time.

For the LSFRP without cargo flows (NCLSFRP), we compare four different ap-
proaches, including automated planning, mixed-integer programming, constraint pro-
gramming and the novel linear temporal optimization planning method. We show that
constraint programming has the best performance of all the approaches, but the least
extensible model. The NCLSFRP is one of a number of problems with time-dependent
task costs that are receiving an increased focus in the literature [90].

We also introduce three mathematical models of the LSFRP with cargo flows using
a specialized graph structure to model problem specific constraints. We evaluate these
models, which we call the arc flow, path based, and node flow models, on a real world
dataset from our industrial collaborator. We show that nearly all of the dataset can
be solved to optimality within several hours, with many problems solvable in only a
few seconds. We also introduce two heuristic procedures based on simulated annealing
and late acceptance hill climbing in order to provide high quality solutions to problem
instances that we cannot solve to optimality. We also compare our approaches against a
reference solution from our industrial collaborator and show that we can achieve nearly
$14 million of additional profit compared to their repositioning plan.

The LSFRP is a new optimization problem, and there is much future work to be
done to bring the algorithms provided in this thesis into the industry. In particular, the
algorithms and models in this dissertation could be brought into an interactive decision
support tool to assist repositioning coordinators in creating repositioning plans. On the
algorithmic side of the LSFRP, more work is needed in order to solve large problems

159

Chapter 9. Conclusion

with non-fixed visitation times to optimality without running out of memory. There are
a number of model additions to the LSFRP that could increase the problem’s realism
and its applicability in industry, such as being able to send vessels to receive repairs,
or handle more detailed cabotage restrictions.

There are a number of opportunities for integrating the LSFRP into other areas
of liner shipping research. For example, combining the LSFRP with fleet deployment
would create a fleet re-deployment problem that would try to move vessels to places
in the network where they could be more profitable, but balance this with the costs
of repositioning the vessel. Additionally, the LSFRP can be combined with network
design to create a network transition problem (similar to that discussed in [7]), in which
a liner shipping network is transformed into a new one that can better carry customer
demands while taking into account the costs of transitioning.

Secondary problems

This dissertation also addresses two other liner shipping topics: inter-terminal trans-
portation (ITT) and a theoretical problem in container stowage.

The secondary question regards ITT, and asks whether a general model of ITT
can be developed to minimize delay that handles arbitrary types of material handling
equipment and transportation infrastructure, and can be solved to optimality within
an hour of CPU time. We answer this question with “yes” and present a novel math-
ematical model of ITT. We introduce a two step procedure for solving ITT problems
to optimality. We evaluate our approach on data based on the ports of Hamburg, Ger-
many and Rotterdam, Netherlands. We show that port authorities can gain significant
insight into how to structure the transportation infrastructure of their port and what
vehicles they should purchase in order to minimize the delay of containers reaching
their destination terminal.

In the area of ITT, a number of notable problems still remain for future work.
Determining the optimal mix of vehicles for minimizing delay could help ports lower
their costs, but the current model only supports a single vessel type on land and one
on rails or in the harbor. Future ITT models should support multiple vehicle types
interacting within a transportation network. Furthermore, ports could optimize the
specific features they desire of vehicles, such as their speed and carrying capacity, in
order to custom design vehicles fitting a specific port area.

In the area of container stowage, we solve an open problem called the capacitated
k-shift problem with fixed stacks and stack heights by presenting a polynomial time
algorithm for the problem. A number of theoretical questions remain in the area of
container stowage, such as when only stack heights or the number of stacks are not
fixed.

160

Chapter 9. Conclusion

Outlook

Over the coming decades, ports and shipping lines must overcome numerous challenges
in order to keep up with ever increasing containerized trade volumes. With container
volumes set to exceed 170 million TEU in 2013 [168] and forecasts showing further
growth [169], the importance of effective algorithms for decision support at sea and
on land grows as well. This dissertation has addressed several pressing issues in the
container shipping domain, bringing to light new problems and providing answers for
others. More collaboration is needed with the liner shipping industry to explore the
many combinatorial challenges of containerized trade. With ever more cargo being
shipped with containers, addressing these challenges is critical for increasing the afford-
ability of goods and improving the environmental sustainability of global trade.

161

Chapter 9. Conclusion

162

BIBLIOGRAPHY

Bibliography

[1] T. Abell, Y. Malitsky, and K. Tierney. Problem specific features for exploiting
black-box optimization problem structure. Technical Report TR-2012-163, IT
University of Copenhagen, December 2012.

[2] T. Abell, Y. Malitsky, and K. Tierney. Features for exploiting black-box opti-
mization problem structure. In Proceedings of the 7th Conference on Learning
and Intelligent Optimization (LION7). Springer, 2013. To appear.

[3] A. Abuhamdah. Experimental result of late acceptance randomized descent algo-
rithm for solving course timetabling problems. International Journal of Computer
Science and Network Security, 10:192–200, 2010.

[4] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1):1–41, 2009.

[5] R. Agarwal and Ö. Ergun. Ship scheduling and network design for cargo routing
in liner shipping. Transportation Science, 42(2):175–196, 2008.

[6] J.F. Álvarez. Joint routing and deployment of a fleet of container vessels. Maritime
Economics and Logistics, 11(2):186–208, June 2009.

[7] M.W. Andersen. Service Network Design and Management in Liner Container
Shipping Applications. PhD thesis, Technical University of Denmark, Department
of Transport, 2010.

[8] P. Angeloudis and M.G.H. Bell. A review of container terminal simulation models.
Maritime Policy & Management, 38(5):523–540, 2011.

[9] C. Ansotegui, M. Sellmann, and K. Tierney. A Gender-Based Genetic Algorithm
for the Automatic Configuration of Algorithms. In I.P. Gent, editor, Principles
and Practice of Constraint Programming (CP-09), volume 5732 of Lecture Notes
in Computer Science, pages 142–157. Springer, 2009.

[10] C. Archetti and M.G. Speranza. Vehicle routing problems with split deliveries.
International Transactions in Operational Research, 19(1-2):3–22, Jan 2012.

[11] A. Aslidis. Minimizing of overstowage in containership operations. Operations
Research, 90:457–471, 1990.

163

BIBLIOGRAPHY

[12] A. Auger, N. Hansen, V. Heidrich-Meisner, O. Mersmann, P. Posik, and
M. Preuss. GECCO 2012 Workshop on Black-Box Optimization Benchmarking
(BBOB). http://coco.gforge.inria.fr/doku.php?id=bbob-2012, 2012.

[13] M. Avriel, M. Penn, and N. Shpirer. Container ship stowage problem: Complexity
and connection to the coloring of circle graphs. Discrete Applied Mathematics,
103:271–279, 2000.

[14] R. Battiti and M. Brunato. Reactive search optimization: learning while opti-
mizing. Handbook of Metaheuristics, pages 543–571, 2010.

[15] J Benton, A.I. Coles, and A.J. Coles. Temporal planning with preferences and
time-dependent continuous costs. In Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling (ICAPS-12), 2012.

[16] C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane schedul-
ing problems in container terminals. European Journal of Operational Research,
202(3):615–627, May 2010.

[17] A.L. Blum and M.L. Furst. Fast planning through planning graph analysis. Ar-
tificial Intelligence, 90(1-2):281–300, 1997.

[18] K.I. Bouzina and H. Emmons. Interval scheduling on identical machines. Journal
of Global Optimization, 9:379–393, 1996.

[19] J. Boyan and A.W. Moore. Learning evaluation functions to improve optimization
by local search. The Journal of Machine Learning Research, 1:77–112, 2001.

[20] D. Briskorn and S. Hartmann. Simulating dispatching strategies for automated
container terminals. Operations Research Proceedings 2005, pages 97–102, 2006.

[21] C. Brooks and E. Durfee. Using Landscape Theory to Measure Learning Diffi-
culty for Adaptive Agents. In E. Alonso, D. Kudenko, and D. Kazakov, editors,
Adaptive Agents and Multi-Agent Systems, volume 2636 of LNCS, pages 561–561.
Springer, 2003.

[22] B.D. Brouer, J.F. Alvarez, C.E.M. Plum, D. Pisinger, and M.M. Sigurd. A base
integer programming model and benchmark suite for liner shipping network de-
sign. Transportation Science, 2012.

[23] B.D. Brouer, J. Dirksen, D. Pisinger, C.E.M Plum, and B. Vaaben. The Vessel
Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in
liner shipping. European Journal of Operational Research, 224(2):362–374, 2013.

[24] E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing for exam
timetabling problems. In Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling (PATAT-08), 2008.

[25] E.K. Burke and Y. Bykov. The late acceptance hill-climbing heuristic. Technical
Report CSM-192, University of Stirling, 2012.

164

BIBLIOGRAPHY

[26] M. Caserta, S. Schwarze, and S. Voß. A mathematical formulation and complexity
considerations for the blocks relocation problem. European Journal of Operational
Research, 219(1):96–104, May 2012.

[27] M. Christiansen. Decomposition of a combined inventory and time constrained
ship routing problem. Transportation Science, 33(1):3–16, 1999.

[28] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transporta-
tion. Handbooks in operations research and management science, 14:189–284,
2007.

[29] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Ship routing and
scheduling in the new millennium. European Journal of Operational Research,
228(3):467–483, Aug 2013.

[30] M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status
and perspectives. Transportation Science, 38(1):1–18, 2004.

[31] J. Clausen, A. Larsen, J. Larsen, and N.J. Rezanova. Disruption management
in the airline industry–concepts, models and methods. Computers & Operations
Research, 37(5):809–821, 2010.

[32] A.I. Coles, A.J. Coles, A.G. Olaya, S. Jiménez, C.L. López, S. Sanner, and
S. Yoon. A survey of the seventh international planning competition. AI Maga-
zine, 33(1):83–88, 2012.

[33] A.I. Coles, M. Fox, K. Halsey, D. Long, and A. Smith. Managing concurrency
in temporal planning using planner-scheduler interaction. Artificial Intelligence,
173(1):1–44, 2009.

[34] A.I. Coles, M. Fox, D. Long, and A. Smith. Planning with problems requiring
temporal coordination. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI-08), 2008.

[35] A.J. Coles, A.I. Coles, A. Clark, and S.T. Gilmore. Cost-sensitive concurrent
planning under duration uncertainty for service level agreements. In Proceed-
ings of the 21st International Conference on Automated Planning and Scheduling
(ICAPS-11), June 2011.

[36] A.J. Coles, A.I. Coles, M. Fox, and D. Long. Temporal planning in domains with
linear processes. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), 2009.

[37] A.J. Coles, A.I. Coles, M. Fox, and D. Long. Temporal planning in domains with
linear processes. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), July 2009.

[38] A.J. Coles, A.I. Coles, M. Fox, and D. Long. Forward-chaining partial-order
planning. In Proceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS-10), May 2010.

165

BIBLIOGRAPHY

[39] A.J. Coles, A.I. Coles, M. Fox, and D. Long. COLIN: Planning with continuous
linear numeric change. Journal of Artificial Intelligence Research, 44:1–96, 2012.

[40] B.J. Cudahy. Box Boats: How Container Ships Changed the World. Fordham
University Press, 2006.

[41] W. Cushing, S. Kambhampati, Mausam, and D. Weld. When is temporal plan-
ning really temporal planning? In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), pages 1852–1859, 2007.

[42] J.R. Daduna, R. Stahlbock, and S. Voß. Systems for linking seaport container
terminals and dedicated satellite terminals. Working paper, presented at The 12th
International Conference on Logistics and Maritime Systems (LOGMS), Aug 22–
24, 2012, University of Bremen, Germany, 2012.

[43] A. Delgado, R.M. Jensen, K. Janstrup, T.H. Rose, and K.H. Andersen. A con-
straint programming model for fast optimal stowage of container vessel bays.
European Journal of Operational Research, 220(1):251–261, 2012.

[44] J. Desrosiers and M.E. Lübbecke. A primer in column generation. Column Gen-
eration, pages 1–32, 2005.

[45] M.B. Do and S. Kambhampati. Sapa: A multi-objective metric temporal planner.
Journal of Artificial Intelligence Research, 20(1):155–194, 2003.

[46] M.B. Duinkerken, R. Dekker, S.T.G.L. Kurstjens, J.A. Ottjes, and N.P. Dellaert.
Comparing transportation systems for inter-terminal transport at the Maasvlakte
container terminals. OR Spectrum, 28(4):469–493, 2006.

[47] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with
time windows. European Journal of Operational Research, 54(1):7–22, 1991.

[48] S. Edelkamp and J. Hoffmann. PDDL2.2: The language for the classical part of
the 4th international planning competition. Technical Report No. 195, Institut
für Informatik, 2003.

[49] K. Fagerholt, G. Laporte, and I. Norstad. Reducing fuel emissions by optimizing
speed on shipping routes. Journal of the Operational Research Society, 61(3):523–
529, 2009.

[50] T. Feydy and P.J. Stuckey. Lazy clause generation reengineered. In Proceedings
of the 15th International Conference on Principles and Practice of Constraint
Programming (CP-09), volume 5732 of Lecture Notes in Computer Science, pages
352–366, 2009.

[51] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[52] S. Finck, N. Hansen, and R. Ros. Coco documentation, release 11.06, 2012.

166

BIBLIOGRAPHY

[53] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimiza-
tion benchmarking 2010: Presentation of the noisy functions. Technical report,
2009/21, Research Center PPE, 2010.

[54] M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

[55] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27:235–297, 2006.

[56] J. Frank, M.A.K. Gross, and E. Kürklü. Sofia’s choice: an ai approach to schedul-
ing airborne astronomy observations. In Proceedings of the 16th conference on
Innovative Applications of Artifical Intelligence (IAAI-04), pages 828–835. AAAI
Press, 2004.

[57] A. Gerevini and A. Saetti. Temporal planning with problems requiring concur-
rency through action graphs and local search. In Proceedings of the 20th Inter-
national Conference on Automated Planning and Scheduling (ICAPS-10), 2010.

[58] A. Gerevini, A. Saetti, and I. Serina. Planning through stochastic local search and
temporal action graphs. In Journal of Artificial Intelligence Research, volume 28,
pages 239–290, 2003,.

[59] A.E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic
planning in the fifth international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence, 173(5):619668, 2009.

[60] M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal
planner. In Proceedings of the 2nd International Conference on Artificial Intelli-
gence Planning Systems (AIPS-94), volume 94, pages 61–67, 1994.

[61] Google. Google OR-Tools. http://code.google.com/p/or-tools/, 2012.

[62] M. Grunow, H.O. Günther, and M. Lehmann. Strategies for dispatching AGVs
at automated seaport container terminals. In K.H. Kim and H.O. Günther, ed-
itors, Container Terminals and Cargo Systems, pages 155–178. Springer Berlin
Heidelberg, 2007.

[63] Gurobi Optimization. Gurobi optimizer reference manual. URL:
http://www.gurobi.com, 2012.

[64] G. Hamerly and C. Elkan. Learning the k in k-means. Proceedings of the 7th
Annual Conference on Advances in Neural Information Processing Systems, 2003.

[65] P. Haslum, B. Bonet, and H. Geffner. New Admissible Heuristics for Domain-
Independent Planning. In Proceedings of the 20th AAAI Conference on Artificial
Intelligence (AAAI-05), 2005.

[66] P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07), 2007.

167

BIBLIOGRAPHY

[67] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Pro-
ceedings of the 5th International Conference on Artificial Intelligence Planning
Systems (AIPS-00), pages 140–149, 2000.

[68] J. He, C. Reeves, C. Witt, and X. Yao. A note on problem difficulty measures in
black-box optimization: Classification, realizations and predictability. Evolution-
ary Computation, 15:435–443, December 2007.

[69] M. Helmert, M. Do, and I. Refanidis. The sixth international planning competi-
tion, deterministic track, 2008.

[70] M. Helmert and C. Domshlak. Landmarks, critical paths and abstractions: Whats
the difference anyway? In Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS-09), 2009.

[71] M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS-07), 2007.

[72] J. Hoffmann. The Metric-FF Planning System: Translating “Ignoring Delete
Lists” to Numeric State Variables. Journal of Artificial Intelligence Research,
20:291–341, 2003.

[73] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research, 14:253–
302, 2001.

[74] H.H. Hoos and T. Stützle. Stochastic local search: Foundations & applications.
Morgan Kaufmann, 2004.

[75] IBM. IBM CPLEX Reference manual and user manual. V12.4, 2012.

[76] A. Imai, K. Shintani, and S. Papadimitriou. Multi-port vs. Hub-and-Spoke port
calls by containerships. Transportation Research Part E: Logistics and Trans-
portation Review, 45(5):740–757, 2009.

[77] ISO/IEC. Information technology – Programming languages – C++, Third Edi-
tion. ISO/IEC 14882:2011, International Organization for Standardization / In-
ternational Electrotechnical Commission, Geneva, Switzerland, 2011.

[78] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning.
Operations Research, 37(6):865–892, 1989.

[79] T. Jones and S. Forrest. Fitness Distance Correlation as a Measure of Prob-
lem Difficulty for Genetic Algorithms. In Proceedings of the 6th International
Conference on Genetic Algorithms, pages 184–192, 1995.

[80] R. Jorgensen. Slow steaming – The full story. http://www.maersk.com/
Innovation/WorkingWithInnovation/Documents/Slow%20Steaming%20-%
20the%20full%20story.pdf. A.P. Moller-Maersk Group. Accessed: 27/3/2013.

168

BIBLIOGRAPHY

[81] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC – Instance-Specific
Algorithm Configuration. In H. Coelho, R. Studer, and M. Wooldridge, editors,
Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-10),
volume 215 of Frontiers in Intelligence and Applications, pages 751–756, 2010.

[82] B. Kallehauge, J. Larsen, O.B.G. Madsen, and M.M. Solomon. Vehicle routing
problem with time windows. In G. Desaulniers, J. Desrosiers, and M.M. Solomon,
editors, Column Generation, pages 67–98. Springer, 2005.

[83] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. CRC Handbook of
Computer Science, 1997.

[84] R.M. Karp. Reducibility among Combinatorial Problems. Complexity of Com-
puter Computations, 1972.

[85] M. Katz and C. Domshlak. Implicit abstraction heuristics. In Journal of Artificial
Intelligence Research, volume 39, pages 51–126, 2010,.

[86] D.E. Kaufman, J. Nonis, and R.L. Smith. A mixed integer linear programming
model for dynamic route guidance. Transportation Research Part B: Methodolog-
ical, 32(6):431–440, 1998.

[87] H. Kautz and J.P. Walser. State-space planning by integer optimization. In
Proceedings of the National Conference on Artificial Intelligence, pages 526–533,
1999.

[88] E. Kelareva, S. Brand, P. Kilby, S. Thiébaux, and M. Wallace. CP and MIP
methods for ship scheduling with time-varying draft. In Proceedings of the 22nd
International Conference on Automated Planning and Scheduling (ICAPS-12),
pages 110–118, 2012.

[89] E. Kelareva, P. Kilby, S. Thiébaux, and M. Wallace. Ship scheduling with time-
varying draft. In 5th International Workshop on Freight Transportation and Lo-
gistics (ODYSSEUS’12), 2012.

[90] E. Kelareva, K. Tierney, and P. Kilby. CP Methods for Scheduling and Routing
with Time-Dependent Task Costs. In C. Gomes and M. Sellmann, editors, Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 7874 of Lecture Notes in Computer Science, pages
111–127. Springer Berlin Heidelberg, 2013.

[91] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

[92] P. Kissmann and S. Edelkamp. Solving fully-observable non-deterministic plan-
ning problems via translation into a general game. In KI 2009: Advances in
Artificial Intelligence, page 18. Springer, 2009.

[93] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine. Airline disruption
management – Perspectives, experiences and outlook. Journal of Air Transport
Management, 13(3):149–162, 2007.

169

BIBLIOGRAPHY

[94] E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-
dependent transit times. In R. Möhring and R. Raman, editors, Algorithms —
ESA 2002, volume 2461 of Lecture Notes in Computer Science, pages 599–611.
Springer, 2002.

[95] J.E. Korsvik, K. Fagerholt, and G. Laporte. A large neighbourhood search heuris-
tic for ship routing and scheduling with split loads. Computers & Operations
Research, 38(2):474 – 483, 2011.

[96] E. Kozan. Optimising container transfers at multimodal terminals. Mathematical
and Computer Modelling, 31(10):235–243, 2000.

[97] C. Kroer and Y. Malitsky. Feature filtering for instance-specific algorithm config-
uration. In Proceedings of the 23rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI-11), pages 849–855. IEEE, 2011.

[98] H.W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[99] J. Kvarnström. Planning for loosely coupled agents using partial order forward-
chaining. In Proceedings of the 21st International Conference on Automated Plan-
ning and Scheduling (ICAPS-11), 2011.

[100] Y. Lee and N.Y. Hsu. An optimization model for the container pre-marshalling
problem. Computers & operations research, 34(11):32953313, 2007.

[101] M. Levinson. The box: how the shipping container made the world smaller and
the world economy bigger. Princeton University Press, 2006.

[102] H.X. Li and B.C. Williams. Generative planning for hybrid systems based on
flow tubes. In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS-08), 2008.

[103] D.C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

[104] D. Long and M. Fox. The 3rd international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20:159, 2003.

[105] H. Lourenço, O. Martin, and T. Stützle. Iterated Local Search. Handbook of
Metaheuristics, pages 320–353, 2003.

[106] Y. Malitsky and M. Sellmann. Stochastic offline programming. In Proceedings
of the 21st IEEE International Conference on Tools with Artificial Intelligence
(ICTAI-09), pages 784–791. IEEE, 2009.

[107] D. McDermott. A heuristic estimator for means-ends analysis in planning. In
Proceedings of the 3rd International Conference on Artificial Intelligence Planning
Systems (AIPS-96), pages 142–149, 1996.

170

BIBLIOGRAPHY

[108] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL – the planning domain definition language. Technical
report, 1998.

[109] V.V. Melo. Benchmarking the multi-view differential evolution on the noiseless
bbob-2012 function testbed. In Proceedings of the 14th international conference
on Genetic and evolutionary computation conference companion, pages 183–188.
ACM, 2012.

[110] P. Merz and B. Freisleben. Fitness Landscapes and Memetic Algorithm Design.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
245–260. McGraw–Hill, 1999.

[111] P. Merz and B. Freisleben. Fitness Landscapes, Memetic Algorithms, and Greedy
Operators for Graph Bipartitioning. Evolutionary Computation, 8:61–91, March
2000.

[112] J. Meyer, R. Stahlbock, and S. Voß. Slow steaming in container shipping. In
45th Hawaii International Conference on System Science (HICSS), 2012, pages
1306–1314. IEEE, 2012.

[113] N. Muscettola. HSTS: Integrating planning and scheduling. In M. Zweben and
M. Fox, editors, Intelligent Scheduling, pages 169–212. Morgan Kaufmann, 1993.

[114] B. Naudts and L. Kallel. A comparison of predictive measures of problem difficulty
in evolutionary algorithms. IEEE Transactions On Evolutionary Computation,
4(1):1 – 15, 2000.

[115] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization, vol-
ume 18. Wiley New York, 1999.

[116] N. Nethercote, K. Marriott, R. Rafeh, M. Wallace, and M.G. de la Banda. Spec-
ification of Zinc and MiniZinc, November 2010.

[117] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. MiniZ-
inc: Towards a standard CP modelling language. In C. Bessière, editor, Principles
and Practice of Constraint Programming (CP-07), volume 4741 of Lecture Notes
in Computer Science, pages 529–543. Springer, 2007.

[118] V.D. Nguyen and K.H. Kim. A dispatching method for automated lifting vehicles
in automated port container terminals. Computers & Industrial Engineering,
56(3):1002–1020, 2009.

[119] X. Nguyen and S. Kambhampati. Reviving partial order planning. In Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01),
pages 459–464, 2001.

[120] M. Nikolić, F. Marić, and P. Janičić. Instance-Based Selection of Policies for SAT
Solvers. In O. Kullmann, editor, Proceedings of the 12th International Conference
On Theory and Applications of Satisfiability Testing (SAT-09), volume 5584 of
Lecture Notes in Computer Science, pages 326–340. Springer, 2009.

171

BIBLIOGRAPHY

[121] T. E. Notteboom and B. Vernimmen. The effect of high fuel costs on liner service
configuration in container shipping. Journal of Transport Geography, 17(5):325–
337, 2009.

[122] T.E. Notteboom. A carrier’s perspective on container network configuration at
sea and on land. Journal of International Logistics and Trade, 1(2):65–87, 2004.

[123] G. Ochoa, S. Verel, and M. Tomassini. First-improvement vs. best-improvement
local optima networks of NK landscapes. Parallel Problem Solving from Nature
(PPSN XI), pages 104–113, 2011.

[124] J.A. Ottjes, M.B. Duinkerken, J.J.M. Evers, and R. Dekker. Robotised inter
terminal transport of containers. In Proc. 8th European Simulation Symposium
1996, pages 621–625, 1996.

[125] J.A. Ottjes, H.P.M. Veeke, M.B. Duinkerken, J.C. Rijsenbrij, and G. Lodewi-
jks. Simulation of a multiterminal system for container handling. OR Spectrum,
28(4):447–468, 2006.

[126] E. Ozcan, Y. Bykov, M. Birben, and E.K. Burke. Examination timetabling using
late acceptance hyper-heuristics. In Evolutionary Computation, 2009. (CEC-09).
IEEE Congress on, pages 997–1004. IEEE, 2009.

[127] D. Pacino. Fast Generation of Container Vessel Stowage Plans – using mixed
integer programming for optimal master planning and constraint based local search
for slot planning. PhD thesis, IT University of Copenhagen, June 2012.

[128] D. Pacino, A. Delgado, R.M. Jensen, and T. Bebbington. Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. In Computational
Logistics, volume 6971 of Lecture Notes in Computer Science, pages 286–301.
Springer, 2011.

[129] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Dover Publications, 1998.

[130] Y.M. Park and K.H. Kim. A scheduling method for berth and quay cranes. In
Container Terminals and Automated Transport Systems, pages 159–181. Springer,
2005.

[131] J.S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proceedings of the 3rd International Conference on Knowledge
Representation and Reasoning, 1992.

[132] J.S. Penberthy and D.S. Weld. Temporal planning with continuous change. In
Proceedings of the National Conference on Artificial Intelligence. John Wiley &
Sons Ltd, 1995.

[133] Port of Rotterdam. Projectorganisatie Maasvlakte 2. http://www.maasvlakte2.
com/en/. Accessed: 29/04/2013.

172

BIBLIOGRAPHY

[134] B.J. Powell and A.N. Perakis. Fleet deployment optimization for liner shipping:
An integer programming model. Maritime Policy and Management, 24(2):183–
192, Spring 1997.

[135] A.G. Qureshi, E. Taniguchi, and T. Yamada. An exact solution approach for
vehicle routing and scheduling problems with soft time windows. Transportation
Research Part E: Logistics and Transportation Review, 45(6):960–977, 2009.

[136] L.B. Reinhardt and D. Pisinger. A branch and cut algorithm for the container
shipping network design problem. Flexible Services and Manufacturing Journal,
24(3):349–374, Jul 2011.

[137] Rickmers Group. Rickmers “Pearl” Class 13,100 TEU Container Vessels.
http://www.rickmers.com/fileadmin/rl/download/pdf/pressreleases/
13000Naming/100622_Datasheet_13000.pdf. Accessed: 27/3/2013.

[138] J.P. Rodrigue, C. Comtois, and B. Slack. The geography of transport systems.
Routledge, 2009.

[139] D. Ronen. Cargo ships routing and scheduling: Survey of models and problems.
European Journal of Operational Research, 12(2):119–126, 1983.

[140] D. Ronen. Ship scheduling: The last decade. European Journal of Operational
Research, 71(3):325–333, 1993.

[141] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation science,
40(4):455–472, 2006.

[142] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming.
Elsevier Science, 2006.

[143] S.J. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice
Hall, 2010.

[144] E. Sandewall and R. Rönnquist. A Representation of Action Structures. In
Proceedings of 5th National Conference on Artificial Intelligence, pages 89–97,
1986.

[145] M.W.P Savelsbergh and M. Sol. The general pickup and delivery problem. Trans-
portation Science, 29(1):17–29, 1995.

[146] J. Shin and E. Davis. Processes and continuous change in a SAT-based planner.
Artificial Intelligence, 166(1-2):194–253, 2005.

[147] M.M. Sigurd, N.L. Ulstein, B. Nygreen, and D.M. Ryan. Ship scheduling with
recurring visits and visit separation requirements. In G. Desaulniers, J. Desrosiers,
and M.M. Solomon, editors, Column Generation, pages 225–245. Springer, 2005.

[148] D.E. Smith, J. Frank, and A.K. Jónsson. Bridging the gap between planning and
scheduling. The Knowledge Engineering Review, 15(1):47–83, 2000.

173

BIBLIOGRAPHY

[149] S. Smith. Is scheduling a solved problem? Multidisciplinary Scheduling: Theory
and Applications, pages 3–17, 2005.

[150] T. Smith, P. Husbands, P. Layzell, and M. O’Shea. Fitness Landscapes and
Evolvability. Evolutionary Computation, 10(1):1–34, 2002.

[151] P.F. Stadler and W. Schnabl. The landscape of the traveling salesman problem.
Physics Letters A, 161(4):337 – 344, 1992.

[152] R. Stahlbock and S. Voß. Operations research at container terminals: a literature
update. OR Spectrum, 30(1):1–52, 2008.

[153] M. St̊alhane, H. Andersson, M. Christiansen, J.F. Cordeau, and G. Desaulniers.
A branch-price-and-cut method for a ship routing and scheduling problem with
split loads. Computers & Operations Research, 2012.

[154] D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and oper-
ations research – a classification and literature review. OR spectrum, 26(1):3–49,
2004.

[155] B. Suman and P. Kumar. A survey of simulated annealing as a tool for single
and multiobjective optimization. Journal of the Operational Research Society,
57(10):1143–1160, Oct 2005.

[156] B.G. Tabachnick and L.S. Fidell. Using multivariate statistics. Pearson, 2012.

[157] J. Taheri and A.Y. Zomaya. A simulated annealing approach for mobile location
management. Computer communications, 30(4):714–730, 2007.

[158] K. Tierney. Late Acceptance Hill Climbing for the Liner Shipping Fleet Repo-
sitioning Problem. In Proceedings of the 14th EU/ME Workshop, pages 21–27,
2013.

[159] K. Tierney, B. Áskelsdóttir, R.M. Jensen, and D. Pisinger. Solving the liner
shipping fleet repositioning problem with cargo flows. Technical Report TR-
2013-165, IT University of Copenhagen, January 2013.

[160] K. Tierney, A.J. Coles, A.I. Coles, and R.M. Jensen. A PDDL Domain of the
Liner Shipping Fleet Repositioning Problem. Technical Report TR-2012-152, IT
University of Copenhagen, 2012.

[161] K. Tierney, A.J. Coles, A.I. Coles, C. Kroer, A.M Britt, and R.M. Jensen.
Automated planning for liner shipping fleet repositioning. In L. McCluskey,
B. Williams, J.R. Silva, and B. Bonet, editors, Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling, pages 279–287, 2012.

[162] K. Tierney and R.M. Jensen. Temporal optimization planning for fleet reposition-
ing. In The 5th International Scheduling and Planning Applications woRKshop
(SPARK-11), 2011.

174

BIBLIOGRAPHY

[163] K. Tierney and R.M. Jensen. The Liner Shipping Fleet Repositioning Problem
with Cargo Flows. In Hao Hu, Xiaoning Shi, Robert Stahlbock, and Stefan
Voß, editors, Computational Logistics, volume 7555 of Lecture Notes in Computer
Science 7555, pages 1–16. Springer, 2012.

[164] K. Tierney and R.M. Jensen. A node flow model for the inflexible visitation liner
shipping fleet repositioning problem with cargo flows. Submitted to the Third
International Conference on Computational Logistics, May 2013.

[165] K. Tierney, D. Pacino, and R.M. Jensen. On the complexity of container stowage
planning problems. Submitted to the Journal of Discrete Applied Mathematics,
Jan 2013.

[166] K. Tierney, S. Voß, and R. Stahlbock. A mathematical model of inter-terminal
transportation. Submitted to the European Journal of Operational Research,
May 2013.

[167] W. Unger. The complexity of coloring circle graphs. In Proceedings of the 9th
Annual Symposium on Theoretical Aspects of Computer Science (STACS-92),
volume 577 of Lecture Notes in Computer Science, pages 389–400. Springer, 1992.

[168] United Nations Conference on Trade and Development (UNCTAD). Review of
maritime transport. 2012.

[169] United Nations Economic and Social Commission for Asia and the Pacific (UN-
ESCAP). Regional Shipping and Port Development: Container Traffic Forecast
2007 Update. 2007.

[170] M. Van Den Briel, T. Vossen, and S. Kambhampati. Reviving integer program-
ming approaches for AI planning: A branch-and-cut framework. In Proceed-
ings of the 15th International Conference on Automated Planning and Scheduling
(ICAPS-05), pages 310–319, 2005.

[171] W.J. van Hoeve and I. Katriel. Global constraints. Foundations of Artificial
Intelligence, 2:169–208, 2006.

[172] V.K. Vassilev, T.C. Fogarty, and J.F. Miller. Information Characteristics and the
Structure of Landscapes. Evolutionary Computation, 8:31–60, March 2000.

[173] J. Verstichel and G.V. Berghe. A late acceptance algorithm for the lock scheduling
problem. Logistik Management, pages 457–478, 2009.

[174] M. Wallace. G12 – Towards the Separation of Problem Modelling and Problem
Solving. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, volume 5547 of Lecture Notes in Computer
Science, pages 8–10. Springer, 2009.

[175] S. Wang and Q. Meng. Sailing speed optimization for container ships in a liner
shipping network. Transportation Research Part E: Logistics and Transportation
Review, 48(3), 2012.

175

BIBLIOGRAPHY

[176] J. Watson. An Introduction to Fitness Landscape Analysis and Cost Models for
Local Search. In M. Gendreau and J. Potvin, editors, Handbook of Metaheuris-
tics, volume 146 of International Series in Operations Research & Management
Science, pages 599–623. Springer, 2010.

[177] E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell
the difference. Biological Cybernetics, 63:325–336, 1990.

[178] M. Williamson and S. Hanks. Flaw selection strategies for value-directed plan-
ning. In Proceedings of the 3rd International Conference on Artificial Intelligence
Planning Systems (AIPS-96), volume 23, page 244, 1996.

[179] I.D. Wilson and P. Roach. Container Stowage Planning: A Methodology for
Generating Computerised Solutions. Journal of the Operational Research Society,
51(11):248–255, 2000.

[180] L. Xu, H.H. Hoos, and K. Leyton-Brown. Hydra: Automatically Configuring
Algorithms for Portfolio-Based Selection. In Twenty-Fourth Conference of the
Association for the Advancement of Artificial Intelligence (AAAI-10), pages 210–
216, 2010.

[181] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based
algorithm selection for sat. Journal of Artificial Intelligence Research, 32(1):565–
606, 2008.

[182] H.L.S. Younes and R. Simmons. VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research, 20(1):405–430, 2003.

176

Appendix A. No Cargo LSFRP PDDL Domain

Appendix A

No Cargo LSFRP PDDL Domain

We provide a detailed description of our PDDL model, as well as the actual forward
and reversed PDDL domains for the NCLSFRP. The matching instance files for the
domain are available at:
http://www.decisionoptimizationlab.dk/lsfrp_pddl.

A.1 PDDL Model

This section covers all of the components of our PDDL model.

A.1.1 Predicates

We provide an overview of the predicates used in our PDDL model. A predicate can
be thought of as a state variable as described in Section 4.1 with only two values: true
and false. Our model uses a number of predicates to keep track of the state of the
vessel and which activities are available during repositioning. For clarity, we remove
the type declaration of parameters used in PDDL, and refer readers to the full domain
specification in Appendix A for these details.

Vessel state

The status of a vessel is governed by a number of facts:

(on-init-service ?vessel) indicates that the vessel is using its initial service, i.e.,
it has not yet phased out.

(vessel-at ?vessel ?port) specifies the location of a vessel (the port it is located
at), and is only valid once the vessel has phased out.

(can-sail ?vessel) indicates whether or not the vessel is allowed to sail somewhere,
and is used to prevent sequential sailings, in which a vessel sails in a sequence
rather than simply sailing from the first port of the sequence to the last port of
the sequence directly.

177

Appendix A. No Cargo LSFRP PDDL Domain

(in-transit ?vessel) is true when after a vessel has phased-out and before it has
phased-in.

(phased-in ?vessel) indicates the vessel has phased in, meaning its repositioning is
complete.

(sos-or-equipment-allowed ?vessel) specifies whether an SOS or a sail equipment
activity is allowed, as we disallow vessels from performing multiple SOS oppor-
tunities, multiple sail equipment actions, or a combination of the two. This fact
is true in the initial state and becomes false as soon as an SOS or sail equipment
action is used.

Activity Control

The following predicates control which activities are available for use, and are used to
prevent multiple vessels from utilizing the same activities.

(sailing-allowed ?pfrom ?pto) is true if sailing from port ?pfrom to ?pto is al-
lowed.

(sos-open ?sos ?pfrom ?pto) indicates whether the SOS opportunity ?sos is avail-
able from SOS start port ?pfrom to end port ?pto. Since SOSs are only available
at specific time points, this predicate is used to control when the SOS is used.

(unused ?sos) specified whether a particular SOS opportunity has been utilized by a
vessel. This predicate helps us ensure that SOS opportunities are only used by a
single vessel.

(equipment-sailing ?pfrom ?pto) is true if there is a sail equipment opportunity
available from port ?pfrom to ?pto.

Phase In

The phase-in is a particularly difficult for planning techniques and must be modeled
carefully to ensure that the PDDL model is solvable. The challenge comes in creating
the “block” structure of the phase-in, which ensures that vessels join the goal service
with a weekly temporal spacing.

(block-phase-in-start) indicates that no vessel has phased in yet.

(first-phasein-week-defined) becomes true once the first vessel has phased in.

(first-phasein-port ?port) specifies the phase-in port being used.

(vessel-may-phase-in ?portpi) is true only at times when vessels may phase-in to
a particular service.

(phasein-week-open) indicates that a phase-in may occur (as defined through a pro-
cess, which we will describe in detail later).

178

Appendix A. No Cargo LSFRP PDDL Domain

Phase Out

The phase-out predicates focus on ensuring that phase-outs only happen at specific
times when phase-outs are allowed.

(allowed-to-phase-out ?vessel) indicates that a phase-out is allowed to occur.
This is used to ensure that the hotel cost period begins with the phase-out.

(vessel-may-phase-out ?vessel ?port) is true only at times when the specified
vessel may phase out of its initial service at the given port.

Hotel Cost

The hotel cost requires special modeling in PDDL in the form of an envelope action,
which we will investigate in more depth in our discussion of the model actions. We use
several predicates in order to control the duration of the hotel envelope. During SOS
opportunities, the hotel cost is not applicable. This means that, multiple hotel periods
may be necessary for vessels using an SOS, and our predicates handle this case.

(allowed-to-start-cost-calc ?vessel) is true initially, and allows the hotel cost
counting action for a vessel to start. This predicate is also true after SOS actions
are completed.

(allowed-to-end-cost-calc ?vessel) indicates that a period in which hotel cost is
applicable has come to an end, such as when a vessel begins an SOS action or
performs its phase-in.

(cost-calc-mutex ?vessel) is true during a hotel cost period for a vessel and pre-
vents multiple hotel cost periods from overlapping.

A.1.2 Functions

PDDL functions can be thought of as real valued variables that are part of the planning
state. Planning actions can modify the contents of functions in their effect or require
certain variables to take specific values in their precondition. In this model, functions
are used for representing times when actions are allowed to take place, action costs,
and minimum/maximum action durations.

Phasing In

Three functions are used to encode the timing constraints on phasing in:

(first-phasein-week) specifies the week in which the first vessel phase-in occurs.

(weeks-within) encodes the number of vessels in the problem, which also determines
how many phase-in weeks there are.

(time-elapsed) provides the amount of time that has passed since time 0. It is
updated at a rate of 1 per unit time by a process [55].

179

Appendix A. No Cargo LSFRP PDDL Domain

Sailing Cost and Times

Due to the time-dependent task costs of the NCLSFRP, costs and times are intimately
linked. The function (total-cost) represents the cost of a plan. The hotel cost for
each vessel is stored in the variable (hotel-cost ?vessel), which is updated by the
hotel cost action.

The cost of sailing is calculated by pre-computing the maximum possible sailing
cost that is incurred when the vessel sails at its maximum speed, and when the vessel
sails slower, a negative cost factor is deducted from the maximum sailing cost based on
how much slower than the maximum speed the vessel is sailing. To implement this, we
use the following variables:

(min-time-to-sail ?vessel ?pfrom ?pto) is the minimum time required to sail be-
tween port ?pfrom to ?pto for a given vessel, i.e., the ship sails at full speed.

(max-time-to-sail ?vessel ?pfrom ?pto) is the maximum time required to sail be-
tween port ?pfrom to ?pto for a given vessel, i.e., the ship sails at minimum speed.

(fixed-sail-cost ?vessel ?pfrom ?pto) is the maximum operational cost of sail-
ing between two ports for a given vessel. This is paid when sailing at the maximum
speed.

(variable-sail-cost ?vessel ?pfrom ?pto) is a negative number that denotes the
cost of taking an extra hour to complete a given sail action.

Sail with Equipment

For sailing with equipment, the minimum and maximum sailing time are encoded in the
same way. However, when sailing with equipment the cost of sailing at the minimum
speed is zero, and the speed increases linearly as the vessel sails faster. We use the
following pair of functions:

(fixed-eqp-sail-cost ?vessel ?pfrom ?pto) is the maximum operational cost of
sailing with equipment between two ports for a given vessel. This is paid when
sailing at the maximum speed.

(variable-eqp-sail-cost ?vessel ?pfrom ?pto) is a negative number that denotes
the cost of taking an extra hour to complete a given sail action. This variable is
set such that when the sailing speed of the vessel is minimum, the cost of the sail
equipment action is nothing.

SOS Opportunities

SOS opportunities do not have any operational costs, nor do they incur a hotel cost
over their duration. However, SOS opportunities do have a fixed cost relating to the
cost of transshipping cargo between the on-service vessel and the repositioning vessel.
Thus, we have the following functions:

180

Appendix A. No Cargo LSFRP PDDL Domain

1 (:process time -is -passing

2 :parameters ()

3 :precondition (can -start -time)

4 : e f f e c t (increase (time -elapsed) (* #t 1.0)))

Figure A.1: The amount of time that has passed modeled with a process.

(sos-duration ?sos ?pfrom ?pto) is the fixed duration of a given SOS from the
start port ?pfrom to the end port ?pto.

(sos-transship-cost ?sos ?pfrom ?pto) is the fixed cost of transshipping contain-
ers to the repositioning vessel at the start of an SOS.

A.1.3 Time

We represent the passage of time with a PDDL process. Figure A.1 shows the PDDL
for the process, which uses the dummy precondition can-start-time which is true in
the initial state. This ensures that the process is executing from time 0, and does not
stop until the end of the plan. The process updates time-elapsed at each unit of time
by a single unit.

A.1.4 Initial and Goal States

As discussed in Section 5.2.1, our model uses TILs to encode the times when activities
are allowed to occur, such as port calls or SOS opportunities. Each PDDL time unit
represents an hour of repositioning time.

The phase-out service port calls of a vessel, i.e., the times at which it could leave that
service and be repositioned, are encoded using the predicate (vessel-may-phase-out

?vessel ?port). If a vessel v can phase out at at time t from port p, the relevant fact
is added as a TIL at time t, and subsequently deleted as a TIL shortly afterwards, to
reflect the fact that if the opportunity is not taken then, the vessel will continue on its
current service.

Similar to our use of TILs for the phase-out, we indicate what time slots are avail-
able at what ports using a TIL combined with the predicate (vessel-may-phase-in

?portpi). For instance, if one option is to start a service that calls at some port, once
a week, at mid-day on a Tuesday, then a TIL for this port will be added once per week
at time points corresponding to this. The TIL is deleted shortly afterwards.

In order to ensure that vessels phase-in one after the other with a weekly temporal
spacing we use the TIL (phasein-week-open), that triggers at the start of each week,
and any vessel that phases-in in that particular week, uses this fact in order to do so.
Thus, only one vessel can phase-in each week.

To encode SOS opportunities, we use the predicate (sos-open ?sos ?pfrom ?pto).
The fact denoting that an SOS opportunity is available is added by a TIL at the ap-
propriate time, and deleted by another shortly afterwards. Thus, if a vessel is to sail

181

Appendix A. No Cargo LSFRP PDDL Domain

1 (:action phase -out

2 :parameters (? vessel - vessel ?port - port)

3 :precondition (and
4 (on-init -service ?vessel)

5 (vessel -may -phase -out ?vessel ?port)

6 (allowed -to-phase -out ?vessel))

7 : e f fect (and
8 (not (on-init -service ?vessel))

9 (not (allowed -to-phase -out ?vessel))

10 (can -sail ?vessel)

11 (in-transit ?vessel)

12 (vessel -at ?vessel ?port)))

Figure A.2: The phase-out action.

on a service, it must do so then, and only then.

A.1.5 Actions

We now describe all of the ungrounded actions available to the PDDL model.

Phase-out

The phase out action, shown in Figure A.2, is parameterised by a vessel ?vessel and a
port ?port. The preconditions (lines 3 – 6) allow the action to be applied if i) the vessel
is on its initial service, ii) the vessel is at ?port at the time the phase-out is supposed
to happen, iii) and the hotel cost action has been started. The action immediately
deletes the first two facts from the plan (lines 8 and 9) to indicate that the vessel is now
performing its repositioning. We then add facts to i) indicate that the vessel is allowed
to undertake sailing actions, ii) set the state of the vessel to “in-transit”, meaning its
repositioning has started, iii) and that the vessel’s current position is ?port.

Phase-in

In order to ensure that vessels phase in to the goal service in subsequent weeks, we
split the phase-in action in to two actions: phase-in-1st and phase-in-block. In
this modeling construction, a vessel first uses phase-in-1st, which sets the port and
week of the first phase in. Once this action has been used, other vessels may phase in
using phase-in-block in a block of weeks subsequent to the week set in phase-in-1st,
where the size of the block of weeks is equal to the number of vessels.

There are multiple possibilities for modeling the phase-in. Another way would be
to pass the phase-in week into the model as a parameter, and put bounds on the
earliest and latest phase-in week, or require that the week is subsequent to the week
of the last phased-in vessel. Preliminary tests with such models resulted in extremely
poor performance, due to the number of extra actions introduced through grounding.
Alternatively, one could model phase-ins using a single action with conditional effects

182

Appendix A. No Cargo LSFRP PDDL Domain

1 (:action phase -in -1st

2 :parameters (? portpi - port ?vessel - vessel)

3 :precondition (and
4 (block -phase -in -start)

5 (in -transit ?vessel)

6 (vessel -at ?vessel ?portpi)

7 (vessel -may -phase -in ?portpi)

8 (phasein -week -open))

9 : e f fect (and
10 (not (phasein -week -open))

11 (not (block -phase -in -start))

12 (not (in -transit ?vessel))

13 (phased -in ?vessel)

14 (allowed -to -end -cost -calc ?vessel)

15 (first -phasein -port ?portpi)

16 (first -phasein -week -defined)

17 (when (and (>= (+ (time -elapsed) (fake -duration)) 0)

18 (< (+ (time -elapsed) (fake -duration)) 168))

19 (assign (first -phasein -week) 0))

20 (when (and (>= (+ (time -elapsed) (fake -duration)) 168)

21 (< (+ (time -elapsed) (fake -duration)) 336))

22 (assign (first -phasein -week) 1))

23 ...

24 (when (and (>= (+ (time -elapsed) (fake -duration)) 1680)

25 (< (+ (time -elapsed) (fake -duration)) 1848))

26 (assign (first -phasein -week) 10))))

Figure A.3: The phase-in-1st action.

and disjunctive preconditions, which are part of the PDDL 2.2 standard. However, no
existing planner actually supports both of these items1.

The phase-in-1st action is shown in Figure A.3. We discuss the preconditions on
lines 4 – 8 in order. In order to be applied, the action requires that the block-phase
in has not yet started, the vessel is in transit, the vessel has sailed to the phase-in
port ?portpi, the vessel is allowed to phase-in (from a temporal stand point), and
the week the vessel is to phase-in must be open. The effects of the action (lines 9 –
26) are as follows. First, the action deletes three facts to ensure that the week being
used is not open for a phase-in from another vessel, to indicate that the block phase-
in has been used, and to set the state of the vessel to be no longer in transit. The
vessel state is then set to be phased-in, indicating the vessel is done repositioning. The
(allowed-to-end-cost-calc ?vessel) predicate indicates that the hotel period for
the vessel is over. The first vessel that arrives at the goal service determines which port
is used for the entire phase-in, which is set in the (first-phasein-port ?portpi)

effect, and the first phase-in week is also defined. Finally, for each week we have
a conditional effect that assigns the week of the phase-in based on the current time
(time-elapsed). We repeat this for 10 weeks, which limits the model to a 10 week
period. This is sufficient for the purposes of this model.

The phase-in-block action in Figure A.4 is similar to the phase-in-1st action in

1Note that popf’s support for conditional effects is limited, and not sufficient for a single phase-in
action.

183

Appendix A. No Cargo LSFRP PDDL Domain

1 (:action phase -in-block

2 :parameters (?vessel - vessel ?portpi - port)

3 :precondition (and
4 (in -transit ?vessel)

5 (vessel -at ?vessel ?portpi)

6 (vessel -may -phase -in ?portpi)

7 (phasein -week -open)

8 (>= (time -elapsed) (* (first -phasein -week) 168))

9 (< (time -elapsed)

10 (+ (* (+ (weeks -within) (first -phasein -week)) 168) 168))

11 (first -phasein -week -defined)

12 (first -phasein -port ?portpi))

13 : e f fect (and
14 (not (phasein -week -open))

15 (not (in -transit ?vessel))

16 (phased -in ?vessel)

17 (allowed -to -end -cost -calc ?vessel)))

Figure A.4: The phase-in-block action.

many ways, with the exception that it requires that a vessel has used the phase-in-1st
to begin the repositioning block. The first three preconditions on lines 3 – 6 are the same
as in the phase-in-1st action. The action requires (phasein-week-open) to be true,
which is added by phase-in-1st. On lines 8 – 10, the current time is checked to make
sure it is larger than the first phase-in week, but smaller than the first phase-in week
plus the total number of weeks required for the phase-in. In this way, the block phase-in
structure is enforced. Lines 11 and 12 require that the first phase-in week was defined by
the phase-in-1st action, and that the first phase-in port matches the port this action
is attempting to phase-in at, respectively. The effects of the phase-in-block action
are the same as the phase-in-1st action, with the exception that the first phase-in
port and week are not assigned, as they were already provided values.

Sail

After the phase-out and before the phase-in, vessels must sail between ports in order
to complete the repositioning and undertake cost-saving activities. The sail action
allows vessels to transit from one port to another. The action is durative with a duration
constrained to be between the minimum and maximum sailing time between ?pfrom and
?pto (lines 4 – 5). The preconditions (lines 6 – 10) check, in order, whether the vessel
is allowed to sail (i.e., it has not just completed a sailing), whether sailing between the
two ports is allowed, whether the vessel’s state is in transit (i.e., it has phased out), and
whether the vessel’s current position is at port ?pfrom. The effects of the action (lines
11 – 17) are to move the vessel from ?pfrom to ?pto, prevent the vessel from performing
an immediately subsequent sailing, and to increase the cost based on the linear bunker
consumption function. Note that ?duration is a variable provided by the planner
indicating the total duration of the action. Preconditions (effects) marked “at start”
are checked (performed) at the time point at which the action begins, and preconditions

184

Appendix A. No Cargo LSFRP PDDL Domain

1 (:durative -action sail

2 :parameters (? vessel - vessel ?pfrom - port ?pto - port)

3 :duration (and
4 (>= ?duration (min -time -to-sail ?vessel ?pfrom ?pto))

5 (<= ?duration (max -time -to-sail ?vessel ?pfrom ?pto)))

6 :condition (and
7 (at start (can -sail ?vessel))

8 (at start (sailing -allowed ?pfrom ?pto))

9 (at start (in -transit ?vessel))

10 (at start (vessel -at ?vessel ?pfrom)))

11 : e f fect (and
12 (at start (not (vessel -at ?vessel ?pfrom)))

13 (at end (vessel -at ?vessel ?pto))

14 (at start (not (can -sail ?vessel)))

15 (at start (increase (total -cost)

16 (+ (fixed -sail -cost ?vessel ?pfrom ?pto)

17 (* (variable -sail -cost ?vessel ?pfrom ?pto) ?duration))))))

Figure A.5: The sail action.

1 (:durative -action sail -equipment

2 :parameters (? vessel - vessel ?pfrom - port ?pto - port)

3 :duration (and
4 (>= ?duration (min -time -to -sail ?vessel ?pfrom ?pto))

5 (<= ?duration (max -time -to -sail ?vessel ?pfrom ?pto)))

6 :condition (and
7 (at start (vessel -at ?vessel ?pfrom))

8 (at start (equipment -sailing ?pfrom ?pto))

9 (at start (sos -or -equipment -allowed ?vessel)))

10 : e f fect (and
11 (at start (not (vessel -at ?vessel ?pto)))

12 (at end (vessel -at ?vessel ?pto))

13 (at start (not (sos -or -equipment -allowed ?vessel)))

14 (at end (can -sail ?vessel))

15 (at start (increase (total -cost)

16 (+ (fixed -eqp -sail -cost ?vessel ?pfrom ?pto)

17 (* (variable -eqp -sail -cost ?vessel ?pfrom ?pto) ?duration))))))

Figure A.6: The sail-equipment action.

(effects) marked as “at end” are checked (performed) only at the time point at which
the action completes. This action shows how PDDL handles time-dependent task costs,
in which an action effect is used to increase the objective function total-cost. We
update the objective function at the start of the action due to the way popf handles
such task costs. From a PDDL standpoint, this update could also be at the end of the
action.

Sail Equipment

Another activity that vessels may perform while repositioning is to carry equipment
from one port to another. Since the NCLSFRP does not model cargo or equipment
flows, we model equipment sailing as a cost reduction in sailing. The sail-equipment

action allows vessels to carry equipment at a reduced bunker consumption cost between

185

Appendix A. No Cargo LSFRP PDDL Domain

1 (:durative -action sail -on-service

2 :parameters (? vessel - vessel ?pfrom - port ?pto - port ?sos - sos)

3 :duration (= ?duration (sos -duration ?sos ?pfrom ?pto))

4 :condition (and
5 (at start (vessel -at ?vessel ?pfrom))

6 (at start (sos -or -equipment -allowed ?vessel))

7 (at start (sos -open ?sos ?pfrom ?pto))

8 (at start (unused ?sos)))

9 (at start (in -transit ?vessel))

10 (at end (allowed -to-end -sos ?vessel))

11 : e f fect (and
12 (at start (not (sos -open ?sos ?pfrom ?pto)))

13 (at start (not (unused ?sos)))

14 (at start (not (sos -or -equipment -allowed ?vessel)))

15 (at start (not (vessel -at ?vessel ?pfrom)))

16 (at start (sailing -on -service ?vessel ?sos))

17 (at start (allowed -to -end -cost -calc ?vessel))

18 (at start (allowed -to -start -cost -calc ?vessel))

19 (at end (not (sailing -on-service ?vessel ?sos)))

20 (at end (vessel -at ?vessel ?pto))

21 (at end (can -sail ?vessel))

22 (at start (increase (total -cost) (sos -hotel -cost ?sos ?pfrom ?pto)))))

Figure A.7: The sail-on-service action.

ports. Figure A.6 shows the sail equipment action. The duration constraints are the
same as for the sail action, however the preconditions on lines 6 – 9 do not require
that the can-sail predicate be available, as sailing and then sailing with equipment
is not considered a sequential sailing. The preconditions require that a sail equipment
action is allowed between ?pfrom and ?pto, i.e. ?pfrom has an equipment surplus and
?pto a demand for equipment. The vessel is prevented from chaining SOS and sail
equipment opportunities in the final precondition. The effects first move the vessel
from ?pfrom to ?pto, followed by preventing SOS and sail equipment action chaining.
The vessel is allowed to perform a sail action after the sail equipment activity on line
14, and finally the cost of the sailing is updated with sail equipment specific bunker
consumption coefficients.

Sail on Service

The sail-on-service action shown in Figure A.7 allows vessels to move between ports
for little to no cost. As in the case of the sail-equipment action, the vessel must be at
the from port and not have performed a different SOS or sail equipment previously. On
lines 4 – 9, it is ensured that there is actually an SOS from ?pfrom to ?pto, that the
SOS is not being used by any other vessel, and that the current vessel has phased-out.
The last precondition on line 10 is used to help calculate the hotel cost, since over the
period of the SOS no hotel cost is incurred by the vessel using the SOS. The effects
at the start of the action, lines 11 – 18, close the SOS to other vessels, mark the SOS
as being used, prevent SOS and sail equipment action chaining, mark the vessel as no

186

Appendix A. No Cargo LSFRP PDDL Domain

1 (:durative -action hotel -cost -calc -phase -out

2 :parameters (? vessel - vessel)

3 :duration (and (>= ?duration 0.01) (<= ?duration 10000))

4 :condition (and
5 (at start (on -init -service ?vessel))

6 (at start (cost -calc -mutex ?vessel))

7 (at start (allowed -to -start -cost -calc ?vessel))

8 (at end (allowed -to-end -cost -calc ?vessel)))

9 : e f fect (and
10 (at start (not (allowed -to -start -cost -calc ?vessel)))

11 (at start (not (cost -calc -mutex ?vessel)))

12 (at start (allowed -to -phase -out ?vessel))

13 (at end (not (allowed -to-end -cost -calc ?vessel)))

14 (at end (cost -calc -mutex ?vessel))

15 (at end (hotel -cost -calculated ?vessel))

16 (at start (increase (total -cost)(* (hotel -cost ?vessel) ?duration)))))

Figure A.8: The hotel-cost-calc-phase-out action.

longer being at ?pfrom, indicate that the vessel is on the SOS, and regulate the end of
the previous hotel period and the start of the next hotel period, respectively. At the
end of the action, lines 19 – 21, the vessel is marked as having left the SOS, assigned
the location ?pto, and the vessel is allowed to perform a sail action. Finally, the cost
of using the SOS is increased by a small amount.

Hotel Cost

The hotel cost is computed using an envelope action, which means that the action
encloses a number of other actions over its duration. In the case of computing the
hotel cost, the envelope action encloses all repositioning activities (except for the SOS)
between the phase-out and phase-in.

The hotel cost is computed using two actions, hotel-cost-calc-phase-out, which
is starts the hotel period at the phase-out and continues until either a phase-in or
an SOS, and hotel-cost-calc-sos, which restarts the hotel period after an SOS.
Figure A.8 shows the hotel-cost-calc-phase-out action. The action requires that
the vessel is on its initial service, that no other hotel period is currently occurring
at the same time as this one for this vessel, and that the hotel period covers the en-
tire applicable time span. The allowed-to-end-cost-calc predicate is only added
at the end of the hotel period, ensuring the duration of the hotel cost spans the en-
tire relevant part of the repositioning. The effects of the action are to negate the
allowed-to-end-cost-calc predicate so another period could be used after an SOS if
necessary, prevent any other hotel period from happening at the same time as this one,
allow the vessel to phase out, and indicate that the hotel cost has been calculated (for
the goal state). Finally, the hotel cost is calculated over the duration of the action.

The hotel-cost-calc-sos action shares the same preconditions as hotel-cost-

calc-phase-out, except that the on-init-service predicate is replaced with the
sailing-on-service predicate, as the action only starts after an SOS takes place.

187

Appendix A. No Cargo LSFRP PDDL Domain

The effects of the action are also the same as hotel-cost-calc-sos, except that in-
stead of allowing the vessel to phase-out, the vessel is allowed to end its SOS with the
allowed-to-end-sos predicate.

While future planners may be able to handle a single hotel cost action, current
planners require this split of activities in order to have a “hole” in the hotel cost
period. For example, PDDL would support the following computation of hotel cost:

(increase (total-cost) (* (hotel-cost ?vessel) (- ?duration (sos-duration ?vessel))))

With this modification to the total plan cost, the time used for an SOS is subtracted
from the duration of the hotel period. This type of modeling is difficult for planners to
deal with, thus we simply split the hotel cost period in two when necessary.

A.2 Forward PDDL Domain

1 (define (domain fleetrepos)

2 (:requirements :typing : durative−actions : fluents : duration−inequal it ies : action−
costs : timed−in i t i a l−l i t e ra l s : conditional−ef fects : time)

3 (:types
4 sos - object

5 port locatable - object

6 vessel obj - locatable)

7 (:predicates
8 (on -init -service ?v - vessel)

9 (in -transit ?v - vessel)

10 (phased -in ?v - vessel)

11 (vessel -at ?obj - locatable ?loc - port)

12 (sailing -allowed ?pfrom ?pto - port)

13 (equipment -sailing ?pfrom ?pto - port)

14 (sos -open ?sos - sos ?pfrom ?pto - port)

15 (sos -or -equipment -allowed ?vessel - vessel)

16 (used ?s - sos)

17 (unused ?s - sos)

18 (sailing -on-service ?v - vessel ?s - sos)

19 (vessel -may -phase -out ?v - vessel ?p - port)

20 (vessel -may -phase -in ?p - port)

21 (hotel -cost -calculated ?v - vessel)

22 (cost -calc -mutex ?v - vessel)

23 (phasein -week -open)

24 (first -phasein -port ?port - port)

25 (first -phasein -week -defined)

26 (block -phase -in-start)

27 (can -start -time)

28 (allowed -to-phase -out ?v - vessel)

29 (allowed -to-start -cost -calc ?v - vessel)

30 (allowed -to-end -cost -calc ?v - vessel)

31 (allowed -to-end -sos ?v - vessel)

32 (not-moved ?v - vessel)

33 (can -sail ?v - vessel))

34
35 (: functions
36 (min -time -to -sail ?vessel - vessel ?pfrom ?pto - port)

37 (max -time -to -sail ?vessel - vessel ?pfrom ?pto - port)

38 (sos -transship -cost ?sos - sos ?pfrom ?pto - port)

39 (sos -duration ?sos - sos ?pfrom ?pto - port)

40 (total -cost)

41 (fixed -sail -cost ?v - vessel ?pfrom ?pto - port)

42 (fixed -eqp -sail -cost ?v - vessel ?pfrom ?pto - port)

43 (variable -sail -cost ?v - vessel ?pfrom ?pto - port)

188

Appendix A. No Cargo LSFRP PDDL Domain

44 (variable -eqp -sail -cost ?v - vessel ?pfrom ?pto - port)

45 (hotel -cost ?v - vessel) ; hotel cost per hour for v

46 (time -elapsed)

47 (first -phasein -week)

48 (weeks -within)

49 (fake -duration)

50 (number -sos))

51
52 (:process time -is-passing

53 :parameters ()

54 :precondition (can -start -time)

55 : ef fect (increase (time -elapsed) (* #t 1.0)))

56
57 (:durative -action HOTEL -COST -CALC -PHASE -OUT

58 :parameters
59 (?vessel - vessel)

60 :duration (and (>= ?duration 0.01) (<= ?duration 10000))

61 :condition
62 (and
63 (at start (on-init -service ?vessel))

64 (at start (cost -calc -mutex ?vessel))

65 (at start (allowed -to-start -cost -calc ?vessel))

66 (at end (allowed -to -end -cost -calc ?vessel)))

67 : ef fect
68 (and
69 (at start (increase (total -cost) (* (hotel -cost ?vessel) ?duration)))

70 (at start (allowed -to-phase -out ?vessel))

71 (at end (hotel -cost -calculated ?vessel))

72 (at end (not (allowed -to-end -cost -calc ?vessel)))

73 (at start (not (allowed -to-start -cost -calc ?vessel)))

74 (at start (not (cost -calc -mutex ?vessel)))

75 (at end (cost -calc -mutex ?vessel))))

76
77 (:durative -action HOTEL -COST -CALC -SOS

78 :parameters
79 (?vessel - vessel

80 ?sos - sos)

81 :duration (and (>= ?duration 0.01) (<= ?duration 10000))

82 :condition
83 (and
84 (at start (sailing -on-service ?vessel ?sos))

85 (at start (allowed -to-start -cost -calc ?vessel))

86 (at end (allowed -to -end -cost -calc ?vessel))

87 (at start (cost -calc -mutex ?vessel)))

88 : ef fect
89 (and
90 (at start (increase (total -cost) (* (hotel -cost ?vessel) ?duration)))

91 (at start (allowed -to-end -sos ?vessel))

92 (at end (not (allowed -to-end -cost -calc ?vessel)))

93 (at start (not (allowed -to-start -cost -calc ?vessel)))

94 (at start (not (cost -calc -mutex ?vessel)))

95 (at end (cost -calc -mutex ?vessel))))

96
97 (:action PHASE -OUT

98 :parameters
99 (?vessel - vessel

100 ?port - port)

101 :precondition
102 (and
103 (on -init -service ?vessel)

104 (vessel -may -phase -out ?vessel ?port)

105 (allowed -to-phase -out ?vessel))

106 : ef fect
107 (and
108 (can -sail ?vessel)

189

Appendix A. No Cargo LSFRP PDDL Domain

109 (not (on -init -service ?vessel))

110 (in -transit ?vessel)

111 (vessel -at ?vessel ?port)

112 (not (allowed -to-phase -out ?vessel))))

113
114 (:durative -action SAIL -ON -SERVICE

115 :parameters
116 (?vessel - vessel

117 ?pfrom - port

118 ?pto - port

119 ?sos - sos)

120 :duration (= ?duration (sos -duration ?sos ?pfrom ?pto))

121 :condition
122 (and
123 (at start (sos -open ?sos ?pfrom ?pto))

124 (at start (in-transit ?vessel))

125 (at start (vessel -at ?vessel ?pfrom))

126 (at start (sos -or-equipment -allowed ?vessel))

127 (at end (allowed -to -end -sos ?vessel))

128 (at start (unused ?sos)))

129 : ef fect
130 (and
131 (at start (sailing -on-service ?vessel ?sos))

132 (at end (not (sailing -on-service ?vessel ?sos)))

133 (at start (allowed -to-end -cost -calc ?vessel))

134 (at start (allowed -to-start -cost -calc ?vessel))

135 (at start (not (sos -open ?sos ?pfrom ?pto)))

136 (at start (not (vessel -at ?vessel ?pfrom)))

137 (at start (not (sos -or -equipment -allowed ?vessel)))

138 (at start (not (unused ?sos)))

139 (at end (vessel -at ?vessel ?pto))

140 (at start (increase (total -cost) (sos -transship -cost ?sos ?pfrom ?pto)))

141 (at end (used ?sos))

142 (at start (decrease (number -sos) 1))

143 (at start (not (not-moved ?vessel)))

144 (at end (can -sail ?vessel))))

145
146 (:action PHASE -IN -1ST

147 :parameters (? portpi - port ?vessel - vessel)

148 :precondition (and
149 (block -phase -in-start)

150 (in -transit ?vessel)

151 (vessel -at ?vessel ?portpi)

152 (vessel -may -phase -in ?portpi)

153 (phasein -week -open))

154 : ef fect (and
155 (not (phasein -week -open))

156 (not (in -transit ?vessel))

157 (phased -in ?vessel)

158 (allowed -to-end -cost -calc ?vessel)

159
160 (first -phasein -port ?portpi)

161 (not (block -phase -in-start))

162 (first -phasein -week -defined)

163 (when (and (>= (+ (time -elapsed) (fake -duration)) 0)

164 (< (+ (time -elapsed) (fake -duration)) 168))

165 (assign (first -phasein -week) 0))

166 (when (and (>= (+ (time -elapsed) (fake -duration)) 168)

167 (< (+ (time -elapsed) (fake -duration)) 336))

168 (assign (first -phasein -week) 1))

169 (when (and (>= (+ (time -elapsed) (fake -duration)) 336)

170 (< (+ (time -elapsed) (fake -duration)) 504))

171 (assign (first -phasein -week) 2))

172 (when (and (>= (+ (time -elapsed) (fake -duration)) 504)

173 (< (+ (time -elapsed) (fake -duration)) 672))

190

Appendix A. No Cargo LSFRP PDDL Domain

174 (assign (first -phasein -week) 3))

175 (when (and (>= (+ (time -elapsed) (fake -duration)) 672)

176 (< (+ (time -elapsed) (fake -duration)) 840))

177 (assign (first -phasein -week) 4))

178 (when (and (>= (+ (time -elapsed) (fake -duration)) 840)

179 (< (+ (time -elapsed) (fake -duration)) 1008))

180 (assign (first -phasein -week) 5))

181 (when (and (>= (+ (time -elapsed) (fake -duration)) 1008)

182 (< (+ (time -elapsed) (fake -duration)) 1176))

183 (assign (first -phasein -week) 6))

184 (when (and (>= (+ (time -elapsed) (fake -duration)) 1176)

185 (< (+ (time -elapsed) (fake -duration)) 1344))

186 (assign (first -phasein -week) 7))

187 (when (and (>= (+ (time -elapsed) (fake -duration)) 1344)

188 (< (+ (time -elapsed) (fake -duration)) 1512))

189 (assign (first -phasein -week) 8))

190 (when (and (>= (+ (time -elapsed) (fake -duration)) 1512)

191 (< (+ (time -elapsed) (fake -duration)) 1680))

192 (assign (first -phasein -week) 9))

193 (when (and (>= (+ (time -elapsed) (fake -duration)) 1680)

194 (< (+ (time -elapsed) (fake -duration)) 1848))

195 (assign (first -phasein -week) 10))))

196
197 (:durative -action SAIL -EQUIPMENT

198 :parameters
199 (?vessel - vessel

200 ?pfrom - port

201 ?pto - port)

202 :duration (and (>= ?duration (min -time -to -sail ?vessel ?pfrom ?pto))

203 (>= ?duration 0.01)

204 (<= ?duration (max -time -to -sail ?vessel ?pfrom ?pto)))

205 :condition
206 (and
207 (at start (vessel -at ?vessel ?pfrom))

208 (at start (equipment -sailing ?pfrom ?pto))

209 (at start (sos -or-equipment -allowed ?vessel)))

210 : ef fect
211 (and
212 (at end (can -sail ?vessel))

213 (at start (not (vessel -at ?vessel ?pto)))

214 (at start (not (sos -or -equipment -allowed ?vessel)))

215 (at end (vessel -at ?vessel ?pto))

216 (at start (increase (total -cost) (+ (fixed -eqp -sail -cost ?vessel ?pfrom ?pto)

(* (variable -eqp -sail -cost ?vessel ?pfrom ?pto) ?duration))))))

217
218 (:action PHASE -IN-BLOCK

219 :parameters
220 (?vessel - vessel

221 ?portpi - port)

222 :precondition
223 (and
224 (phasein -week -open)

225 (in -transit ?vessel)

226 (vessel -at ?vessel ?portpi)

227 (vessel -may -phase -in ?portpi)

228 (>= (time -elapsed) (* (first -phasein -week) 168))

229 (< (time -elapsed) (+ (* (+ (weeks -within) (first -phasein -week)) 168) 168))

230 (first -phasein -week -defined)

231 (first -phasein -port ?portpi))

232 : ef fect
233 (and
234 (not (vessel -at ?vessel ?portpi))

235 (not (phasein -week -open))

236 (not (in -transit ?vessel))

237 (phased -in ?vessel)

191

Appendix A. No Cargo LSFRP PDDL Domain

238 (allowed -to-end -cost -calc ?vessel)))

239
240 (:durative -action SAIL

241 :parameters
242 (?vessel - vessel

243 ?pfrom - port

244 ?pto - port)

245 :duration (and (>= ?duration (min -time -to -sail ?vessel ?pfrom ?pto))

246 (<= ?duration (max -time -to -sail ?vessel ?pfrom ?pto)))

247 :condition
248 (and
249 (at start (can -sail ?vessel))

250 (at start (sailing -allowed ?pfrom ?pto))

251 (at start (in-transit ?vessel))

252 (at start (vessel -at ?vessel ?pfrom)))

253 : ef fect
254 (and
255 (at start (not (vessel -at ?vessel ?pfrom)))

256 (at start (not (can -sail ?vessel)))

257 (at end (vessel -at ?vessel ?pto))

258 (at start (increase (total -cost) (+ (fixed -sail -cost ?vessel ?pfrom ?pto) (* (

variable -sail -cost ?vessel ?pfrom ?pto) ?duration)))))))

A.3 Reversed PDDL Domain

1 (define (domain fleetrepos)

2 (:requirements :typing : durative−actions : f luents : duration−inequal it ies : action−
costs : timed−in i t i a l−l i t e ra l s : conditional−ef fects : time)

3 (:types
4 sos - object

5 port locatable - object

6 vessel obj - locatable)

7 (:predicates
8 (on -init -service ?v - vessel)

9 (in -transit ?v - vessel)

10 (phased -in ?v - vessel)

11 (vessel -at ?obj - locatable ?loc - port)

12 (sailing -allowed ?pfrom ?pto - port)

13 (vessel -may -sail ?vessel - vessel)

14 (equipment -sailing ?pfrom ?pto - port)

15 (sos -open ?sos - sos ?pfrom ?pto - port)

16 (sos -or-equipment -allowed ?vessel - vessel)

17 (used ?s - sos)

18 (unused ?s - sos)

19 (sailing -on-service ?v - vessel ?s - sos)

20 (sos -closes ?s - sos ?pfrom - port ?pto - port)

21 (vessel -may -phase -out ?v - vessel ?p - port)

22 (vessel -may -phase -in ?p - port)

23 (hotel -cost -calculated ?v - vessel)

24 (cost -calc -mutex ?v - vessel)

25 (phasein -week -open)

26 (first -phasein -port ?port - port)

27 (first -phasein -week -defined)

28 (block -phase -in-start)

29 (can -start -time)

30 (allowed -to-phase -in ?v - vessel)

31 (allowed -to-phase -out ?v - vessel)

32 (allowed -to-start -cost -calc ?v - vessel)

33 (allowed -to-end -cost -calc ?v - vessel)

34 (allowed -to-end -sos ?v - vessel)

35 (not-moved ?v - vessel)

36 (can -sail ?v - vessel))

37
38 (: functions

192

Appendix A. No Cargo LSFRP PDDL Domain

39 (min -time -to -sail ?vessel - vessel ?pfrom ?pto - port)

40 (max -time -to -sail ?vessel - vessel ?pfrom ?pto - port)

41 (sos -transship -cost ?sos - sos ?pfrom ?pto - port)

42 (sos -duration ?sos - sos ?pfrom ?pto - port)

43 (total -cost)

44 (fixed -sail -cost ?v - vessel ?pfrom ?pto - port)

45 (fixed -eqp -sail -cost ?v - vessel ?pfrom ?pto - port)

46 (variable -sail -cost ?v - vessel ?pfrom ?pto - port)

47 (variable -eqp -sail -cost ?v - vessel ?pfrom ?pto - port)

48 (hotel -cost ?v - vessel)

49 (time -elapsed)

50 (first -phasein -week)

51 (weeks -within)

52 (fake -duration)

53 (number -vessels)

54 (number -sos))

55
56 (:process time -is-passing

57 :parameters ()

58 :precondition (can -start -time)

59 : ef fect (increase (time -elapsed) (* #t 1.0)))

60
61 (:durative -action HOTEL -COST -CALC -PHASE -IN-REVERSE

62 :parameters
63 (?vessel - vessel)

64 :duration (and (>= ?duration 0.01) (<= ?duration 10000))

65 :condition
66 (and
67 (at start (phased -in ?vessel))

68 (at start (cost -calc -mutex ?vessel))

69 (at start (allowed -to-start -cost -calc ?vessel))

70 (at end (allowed -to -end -cost -calc ?vessel)))

71 : ef fect
72 (and
73 (at start (increase (total -cost) (* (hotel -cost ?vessel) ?duration)))

74 (at start (allowed -to-phase -in ?vessel))

75 (at end (hotel -cost -calculated ?vessel))

76 (at end (not (allowed -to-end -cost -calc ?vessel)))

77 (at start (not (allowed -to-start -cost -calc ?vessel)))

78 (at start (not (cost -calc -mutex ?vessel)))

79 (at end (cost -calc -mutex ?vessel))))

80
81 (:durative -action HOTEL -COST -CALC -SOS -REVERSE

82 :parameters
83 (?vessel - vessel

84 ?sos - sos)

85 :duration (and (>= ?duration 0.01) (<= ?duration 10000))

86 :condition
87 (and
88 (at start (sailing -on-service ?vessel ?sos))

89 (at start (allowed -to-start -cost -calc ?vessel))

90 (at end (allowed -to -end -cost -calc ?vessel))

91 (at start (cost -calc -mutex ?vessel)))

92 : ef fect
93 (and
94 (at start (increase (total -cost) (* (hotel -cost ?vessel) ?duration)))

95 (at start (allowed -to-end -sos ?vessel))

96 (at end (not (allowed -to-end -cost -calc ?vessel)))

97 (at start (not (allowed -to-start -cost -calc ?vessel)))

98 (at start (not (cost -calc -mutex ?vessel)))

99 (at end (cost -calc -mutex ?vessel))))

100
101 (:action PHASE -OUT -REVERSE

102 :parameters
103 (?vessel - vessel

193

Appendix A. No Cargo LSFRP PDDL Domain

104 ?port - port)

105 :precondition
106 (and
107 (vessel -may -phase -out ?vessel ?port)

108 (vessel -at ?vessel ?port)

109 (in -transit ?vessel))

110 : ef fect
111 (and
112 (not (can -sail ?vessel))

113 (on -init -service ?vessel)

114 (not (in -transit ?vessel))

115 (not (vessel -at ?vessel ?port))

116 (allowed -to-phase -out ?vessel)

117 (allowed -to-end -cost -calc ?vessel)))

118
119 (:durative -action SAIL -ON -SERVICE -REVERSE

120 :parameters
121 (?vessel - vessel

122 ?pfrom - port

123 ?pto - port

124 ?sos - sos)

125 :duration (= ?duration (sos -duration ?sos ?pfrom ?pto))

126 :condition
127 (and
128 (at start (sos -closes ?sos ?pfrom ?pto))

129 (at start (in-transit ?vessel))

130 (at start (vessel -at ?vessel ?pto))

131 (at start (sos -or-equipment -allowed ?vessel))

132 (at end (allowed -to -end -sos ?vessel))

133 (at start (unused ?sos)))

134 : ef fect
135 (and
136 ;(at end (vessel -may -sail ?vessel))

137 (at start (sailing -on-service ?vessel ?sos))

138 (at end (not (sailing -on-service ?vessel ?sos)))

139 (at start (allowed -to-end -cost -calc ?vessel))

140 (at start (allowed -to-start -cost -calc ?vessel))

141 (at start (not (sos -open ?sos ?pfrom ?pto)))

142 (at start (not (vessel -at ?vessel ?pto)))

143 (at start (not (sos -or -equipment -allowed ?vessel)))

144 (at start (not (unused ?sos)))

145 (at end (vessel -at ?vessel ?pfrom))

146 (at start (increase (total -cost) (sos -transship -cost ?sos ?pfrom ?pto)))

147 (at end (used ?sos))

148 (at start (decrease (number -sos) 1))

149 (at start (not (not-moved ?vessel)))

150 (at end (can -sail ?vessel))))

151
152 (:action PHASE -IN -1ST -REVERSE

153 :parameters (? portpi - port ?vessel - vessel)

154 :precondition (and
155 (block -phase -in-start)

156 (phased -in ?vessel)

157 (vessel -may -phase -in ?portpi)

158 (phasein -week -open)

159 (allowed -to-phase -in ?vessel))

160 : ef fect (and
161 (vessel -at ?vessel ?portpi)

162 (in -transit ?vessel)

163 (not (phased -in ?vessel))

164 (not (phasein -week -open))

165 (first -phasein -port ?portpi)

166 (not (block -phase -in-start))

167 (first -phasein -week -defined)

168 (can -sail ?vessel)

194

Appendix A. No Cargo LSFRP PDDL Domain

169 (when (and (>= (+ (time -elapsed) (fake -duration)) 0)

170 (< (+ (time -elapsed) (fake -duration)) 168))

171 (assign (first -phasein -week) 0))

172 (when (and (>= (+ (time -elapsed) (fake -duration)) 168)

173 (< (+ (time -elapsed) (fake -duration)) 336))

174 (assign (first -phasein -week) 1))

175 (when (and (>= (+ (time -elapsed) (fake -duration)) 336)

176 (< (+ (time -elapsed) (fake -duration)) 504))

177 (assign (first -phasein -week) 2))

178 (when (and (>= (+ (time -elapsed) (fake -duration)) 504)

179 (< (+ (time -elapsed) (fake -duration)) 672))

180 (assign (first -phasein -week) 3))

181 (when (and (>= (+ (time -elapsed) (fake -duration)) 672)

182 (< (+ (time -elapsed) (fake -duration)) 840))

183 (assign (first -phasein -week) 4))

184 (when (and (>= (+ (time -elapsed) (fake -duration)) 840)

185 (< (+ (time -elapsed) (fake -duration)) 1008))

186 (assign (first -phasein -week) 5))

187 (when (and (>= (+ (time -elapsed) (fake -duration)) 1008)

188 (< (+ (time -elapsed) (fake -duration)) 1176))

189 (assign (first -phasein -week) 6))

190 (when (and (>= (+ (time -elapsed) (fake -duration)) 1176)

191 (< (+ (time -elapsed) (fake -duration)) 1344))

192 (assign (first -phasein -week) 7))

193 (when (and (>= (+ (time -elapsed) (fake -duration)) 1344)

194 (< (+ (time -elapsed) (fake -duration)) 1512))

195 (assign (first -phasein -week) 8))

196 (when (and (>= (+ (time -elapsed) (fake -duration)) 1512)

197 (< (+ (time -elapsed) (fake -duration)) 1680))

198 (assign (first -phasein -week) 9))

199 (when (and (>= (+ (time -elapsed) (fake -duration)) 1680)

200 (< (+ (time -elapsed) (fake -duration)) 1848))

201 (assign (first -phasein -week) 10))))

202
203 (:durative -action SAIL -EQUIPMENT

204 :parameters
205 (?vessel - vessel

206 ?pfrom - port

207 ?pto - port)

208 :duration (and (>= ?duration (min -time -to -sail ?vessel ?pfrom ?pto))

209 (>= ?duration 0.01)

210 (<= ?duration (max -time -to -sail ?vessel ?pfrom ?pto)))

211 :condition
212 (and
213 (at start (vessel -at ?vessel ?pto))

214 (at start (equipment -sailing ?pfrom ?pto))

215 (at start (sos -or-equipment -allowed ?vessel)))

216 : ef fect
217 (and
218 (at end (can -sail ?vessel))

219 (at start (not (vessel -at ?vessel ?pto)))

220 (at start (not (sos -or -equipment -allowed ?vessel)))

221 (at end (vessel -at ?vessel ?pfrom))

222 (at start (increase (total -cost) (+ (fixed -eqp -sail -cost ?vessel ?pfrom ?pto)

(* (variable -eqp -sail -cost ?vessel ?pfrom ?pto) ?duration))))))

223
224 (:action PHASE -IN-BLOCK -REVERSE

225 :parameters
226 (?vessel - vessel

227 ?portpi - port)

228 :precondition
229 (and
230 (phasein -week -open)

231 (phased -in ?vessel)

232 (vessel -may -phase -in ?portpi)

195

Appendix A. No Cargo LSFRP PDDL Domain

233 (>= (time -elapsed) (* (first -phasein -week) 168))

234 (< (time -elapsed) (+ (* (+ (weeks -within) (first -phasein -week)) 168) 168))

235 (first -phasein -week -defined)

236 (first -phasein -port ?portpi)

237 (allowed -to-phase -in ?vessel))

238 : ef fect
239 (and
240 (vessel -at ?vessel ?portpi)

241 (in -transit ?vessel)

242 (not (phasein -week -open))

243 (not (phased -in ?vessel))

244 (can -sail ?vessel)))

245
246 (:durative -action SAIL -REVERSE

247 :parameters
248 (?vessel - vessel

249 ?pfrom - port

250 ?pto - port)

251 :duration (and (>= ?duration (min -time -to -sail ?vessel ?pfrom ?pto))

252 (<= ?duration (max -time -to -sail ?vessel ?pfrom ?pto)))

253 :condition
254 (and
255 ;(at start (vessel -may -sail ?vessel))

256 (at start (can -sail ?vessel))

257 (at start (sailing -allowed ?pfrom ?pto))

258 (at start (in-transit ?vessel))

259 (at start (vessel -at ?vessel ?pto)))

260 : ef fect
261 (and
262 (at start (not (vessel -at ?vessel ?pto)))

263 ;(at start (not (vessel -may -sail ?vessel)))

264 (at start (not (can -sail ?vessel)))

265 (at end (vessel -at ?vessel ?pfrom))

266 (at start (increase (total -cost) (+ (fixed -sail -cost ?vessel ?pfrom ?pto) (* (

variable -sail -cost ?vessel ?pfrom ?pto) ?duration)))))))

196

Appendix B. An LTOP Model of Fleet Repositioning

Appendix B

An LTOP Model of Fleet
Repositioning

The LTOP model consists of six actions: sail, sail-equipment, sail-on-service,
phase-out, phase-in, phase-in-sos. Unlike in the PDDL model, LTOP does not
require any envelope actions to represent the hotel period. It does, however, have to
split the phase-in into two different actions in order to correctly calculate the hotel
cost when an SOS is present. We now describe each of these actions, along with the
optimization variables and state variables LTOP uses.

B.1 Constants

The following constants are used in the model and are set in the initial state. They
can be thought of as functions in the PDDL model. We use the following sets to help
describe the constants. Let P be the set of all ports, PPI ⊂ P be the set of ports on
the phase-in (i.e., goal) service, V be the set of vessels, S be the set of of SOSs, and Tp
be the set of times in which a phase-in is allowed at port p ∈ PPI . Note that each SOS
opportunity consists of multiple SOS actions, one for each start port.

hotel-cost(ves) provides the hourly fuel consumption cost of vessel ves ∈ V .

var-sail-cost(ves,pfrom,pto) provides the variable bunker cost coefficient of vessel
ves ∈ V between ports pfrom,pto ∈ P .

fixed-sail-cost(ves,pfrom,pto) specifies the fixed bunker cost coefficient of vessel
ves ∈ V between ports pfrom,pto ∈ P .

var-sail-equip-cost(ves,pfrom,pto) provides the variable bunker cost coefficient
for sail equipment actions of vessel ves ∈ V between ports pfrom,pto ∈ P .

fixed-sail-equip-cost(ves,pfrom,pto) specifies the fixed bunker cost coefficient
for sail equipment actions of vessel ves ∈ V between ports pfrom,pto ∈ P .

min-time(ves,pfrom,pto) is the minimum time required for vessel ves ∈ V to sail
from pfrom ∈ P to pto ∈ P .

197

Appendix B. An LTOP Model of Fleet Repositioning

max-time(ves,pfrom,pto) is the maximum time required for vessel ves ∈ V to sail
from pfrom ∈ P to pto ∈ P .

fixed-sos-cost(port,sos) is the fixed cost for using sos ∈ S at port ∈ P .

start-time(port, sos) is the starting time of sos ∈ S at port ∈ P .

end-time(sos) is the ending time of sos ∈ S.

B.2 State Variables

We introduce the following state variables for our model, using the previously defined
constants.

vessel-state(ves) ∈ {i,t,g} is the state of the vessel v ∈ V , where i means the
vessel is on its initial service, t means it is in transit (i.e., repositioning), and g
means it is on the goal service.

vessel-at(ves) ∈ P ∪ {⊥} describes the current port of the vessel, or is set to ⊥ if
the vessel has no location, such as when it has not yet phased out.

sos-open(sos) ∈ B is true when SOS opportunity sos ∈ S is being used by a vessel.

using-sos-or-se(ves) ∈ B indicates whether vessel ves ∈ V is using any SOS or sail
equipment opportunity.

pi-open(port, time) ∈ B is true when port port ∈ P at time ∈ Z is open for a
phase-in.

B.3 Optimization Variables

Actions in LTOP are automatically associated with a begin and end time optimization
variable which can be used in the objective and constraints of the action. The begin and
end time of each action is determined by the variables xB and xE, respectively, which
we create for each action. Since we present an ungrounded representation of actions,
we do not specify the individual begin and end time variables for each ungrounded
action. Let hBves and hEves be the beginning and end times of the hotel period for vessel
v, including any time in which an SOS occurs. To handle repositionings containing an
SOS, let ∆SOS

ves be the duration of the SOS undertaken for vessel v. If a vessel does not
use an SOS, then this variable is set to zero.

B.4 Initial and Goal States

In the initial state, all of the vessels are assigned to have an “initial” (meaning non-
phased out) status, all phase-in slots are set to be open, the vessel locations are set to
⊥ (meaning they are still performing regular duties), all SOS-opportunities are opened,

198

Appendix B. An LTOP Model of Fleet Repositioning

and all vessels are indicated as having not yet used an SOS or sail equipment oppor-
tunity. Formally, we represent the initial state with the following mappings of state
variables to values:

vessel-state(v)← i ∀v ∈ V
vessel-at(v)← ⊥ ∀v ∈ V

using-sos-or-se(v)← false ∀v ∈ V
sos-open(s)← true ∀s ∈ S
pi-open(p, t)← true ∀p ∈ PPI , t ∈ Tp

The goal state of the LTOP model of the NCLSFRP requires that all vessels have
reached the goal state, meaning that they have phased in. Thus, the goal state is
represented by the conjunction:

∧
v∈V vessel-state(v) = g.

B.5 Actions

We describe the actions used in the LTOP model using a custom, pseudo-code syntax.
LTOP is implemented as a C++ library, and does not accept PDDL. Furthermore,
LTOP does not support an ungrounded representation of actions, which we show for
succinctness. Creating the grounded representation of the model involves checking
the feasibility of certain actions, such as whether or not sailing between certain ports
is feasible. We discuss the non-model preconditions that must hold for each action
in order to add it to the model. In each of the ungrounded actions, we will do not
parameterize these variables. However, these begin and end time variables are present
for every ungrounded action in the model. This is similar to the way the ?duration

variable is used in PDDL models.

B.5.1 Phase-out

The ungrounded phase-out action is shown in Figure B.1. We create a grounded
phase-out action for each phase-out port at each potential phase-out time for each
vessel. In other words, consider the first port the vessel could be at at time 0. We
create a phase-out action at that port, substituting the phase-out time (a real value)
for time. We then create a phase-out action at the next port on the service, and so
on, until the phase-out time exceeds the maximum time of the model. The phase-out

action can only be applied for a particular vessel if the vessel has not yet phased-out
of its initial service. When the action is applied, the vessel is assigned the port of the
phase-out action and the state of the vessel is set to be in transit (t). Unlike in the
PDDL model, we do not require TILs to set the time of the phase-out. Rather, each
grounded phase-out action is assigned a time, and if the action is selected by the LTOP
planner the time is enforced in the constraints. Additionally, the phase-out action sets
the value of the hotel

199

Appendix B. An LTOP Model of Fleet Repositioning

phase−out(ves , port , time)

Pre: vessel -state(ves) = i

Eff : vessel -state(ves) = t ∧ vessel -at(ves) ← port

Obj: 0

Con: xB = xE = time ∧ hBves ≤ time

Figure B.1: The LTOP phase-out action for vessel ves ∈ V at port ∈ P at time ∈ Z.

phase−in(ves , port , time)

Pre: vessel -state(ves) = t ∧ vessel -at(ves) = port

∧ ¬using -sos -or -se(ves) ∧ pi-open(port , time)

Eff : vessel -state(ves) = g ∧ pi -open(port , time) ← false

∧ (pi -open(p, t) ← false , ∀p ∈ PPI \ {p}, t ∈ Tp)
∧ (pi -open(port , t) ← false , ∀t ∈ {t′ ∈ Tport | |t′ − t| ≥ |V |})

Obj: (hEves − hBves)·hotel -cost(ves)
Con: xB = xE = time ∧ hEves ≥ time ∧ hEves ≥ hBves ∧ hEves, h

B
ves ≥ 0

Figure B.2: The LTOP phase-in action for vessel ves ∈ V at port ∈ P at time ∈ Z.

B.5.2 Phase-in

Figures B.2 and B.3 show the ungrounded phase-in and phase-in-sos actions, re-
spectively. We perform a manual grounding process for phase-in actions as in the case
of phase-out actions, with one key difference. We create a phase-in action for each ves-
sel, port and time that the port could be visited by any vessel. That is, starting from
time 0, in each week there is a potential phase-in for each vessel at each port on the
phase-in service. Both phase-in and phase-in-sos may be applied when a vessel has
sailed to a phase-in port, is in transit, and the phase-in at that port at the particular
time chosen is open. The effects of the actions are the same, with both actions setting
the vessel to be in the “goal” state, and then the particular phase-in used by the vessel
is closed. Next, all phase-ins at other ports are disabled, and finally all phase-ins at
the same port with a weekly temporal difference to the current phase-in greater than
the number of vessels are disabled. This ensures a block (i.e., weekly) phase-in.

phase−in−sos(ves , port , time)

Pre: vessel -state(ves) = t ∧ vessel -at(ves) = port

∧ using -sos -or -se(ves) ∧ pi -open(port , time)

Eff : vessel -state(ves) = g ∧ pi -open(port , time) ← false

∧ (pi -open(p, t) ← false , ∀p ∈ PPI \ {p}, t ∈ Tp)
∧ (pi -open(port , t) ← false , ∀t ∈ {t′ ∈ Tport | |t′ − t| ≥ |V |})

Obj: (hEves − hBves −∆SOS
ves)·hotel -cost(ves)

Con: xB = xE = time ∧ hEves ≥ time ∧ hEves ≥ hBves + ∆SOS
ves

∧ hEves, h
B
ves,∆

SOS
ves ≥ 0

Figure B.3: The LTOP phase-in-sos action for vessel ves ∈ V at port ∈ P at time ∈ Z.

200

Appendix B. An LTOP Model of Fleet Repositioning

The two actions differ in that phase-in may only be applied for a particular vessel
if that vessel has not used an SOS. If the vessel has undertaken an SOS, phase-in-sos
must be used so that the hotel period is correctly calculated. We compute the hotel cost
in the objective of the phase-in since in a reverse planner like LTOP, the phase-in actions
are the first actions added to a plan, and thus the hotel cost is represented in the cost of
a partial plan throughout optimization. In the phase-in action, we multiply the total
hotel duration by the hotel-cost constant for the vessel ves. In the phase-in-sos

action, we subtract the time spent on the SOS (∆SOS
ves) before multiplying by the hotel

cost. The constraints of both actions ensure that the phase-in is set to the correct
time, that the hotel cost is at least as large as the phase-in time of the vessel, and that
the end time of the hotel period is at least as large as the beginning. In the case of
phase-in-sos, we ensure that the hotel period is at least as large as the beginning
time of the period plus the duration of the SOS. Note that with our calculation of the
hotel cost in the phase-in actions, along with the updating of the bounds of the hotel
period in the phase-out, no envelope action is necessary for modeling the hotel period.

We require two actions for the phase-in in order to subtract the SOS duration from
the hotel cost. Consider if we were to model only a single phase-in action with the same
objective as the phase-in-sos action. When an SOS is included in the model, its sets
∆SOS

ves to the duration of the SOS and the hotel cost is computed correctly. However,
when there is no SOS action in the model to set ∆SOS

ves , the optimization variable is free
to take any value above 0. The cost optimal value is clearly ∆SOS

ves = hEves−hBves, as this
(erroneously) eliminates the hotel cost.

The only way to prevent such a situation from occurring is for some action in the
plan to constrain ∆SOS

ves to take the value 0 when no SOS is used. If we were to do this
in, say, the phase-out or phase-in action, this would cause an infeasibility when an SOS
opportunity is utilized, as two different actions would be attempting to set the value of
∆SOS

ves . Thus, the only option for correctly computing the hotel cost minus SOS costs is
to have another action. One option could be a “no-SOS-present” action that could set
a fact required by the goal state that is also set in the SOS action. That is, either an
SOS or “no-SOS-present” action would be required in every plan.

Our solution stands in contrast to this approach, in that we avoid unnecessarily
increasing the plan length through extra actions. A phase-in action is always required,
so our actions allow the planner to make an early commitment to either having an SOS
or not having an SOS, and the hotel period can be correctly calculated throughout the
plan in both situations.

B.5.3 Sailing

The ungrounded sail action is shown in Figure B.4. The action can be applied when
the vessel is in transit (that is, it has phased out) and it is at a port pf. The action
moves the vessel to port pt. The vessel incurs a cost computed from the duration of
the sailing action using a fixed bunker consumption cost, which is the cost of sailing at
maximum speed, and a variable cost based on the duration. The longer the duration,

201

Appendix B. An LTOP Model of Fleet Repositioning

s a i l (ves , pf , pt)

Pre: vessel -at(ves) = pf ∧ vessel -state(ves) = t

Eff : vessel -at(ves) ← pt

Obj: fixed -sail -cost(ves ,pf,pt)

− (xE − xB)·var -sail -cost(ves ,pf ,pt)
Con: min -time(ves ,pf,pt) ≤ xE − xB ≤ max -time(ves ,pf ,pt)

∧ hBves ≤ xB

Figure B.4: The LTOP sail action for vessel ves ∈ V from port pf ∈ P to port pt ∈ P .

the lower the cost. The duration is constrained to be within the minimum and maximum
time for sailing between the two ports. We create a grounded sailing action between all
phase-out ports and all SOS start ports, ports with equipment, and phase-in ports. We
also create actions between ports with equipment and SOS end ports and the phase-in
ports. We update the beginning of the hotel period to be at the start of the sailing
action to improve LTOP’s lower bound calculation.

Note that in the PDDL model we included facts to avoid the chaining of sailing
actions. In LTOP, we do this through a domain specific heuristic described in Sec-
tion 5.3.4. We do this because LTOP must search through many infeasible partial
plans with such a domain independent modeling due to its weaker planning heuristics
in comparison to popf.

B.5.4 Sailing with equipment

The ungrounded sail-equipment action in Figure B.5 resembles the sail action except
for two key differences. The first is that sail-equipment cannot be chained with
other sail-equipment actions or with SOS actions, and thus the using-sos-or-se state
variable acts a mutex that prevents this. Second, the costs of the sail-equipment

action are different than the sail action, as sailing with equipment is nearly free when
the vessel uses its minimum speed. Note that since we make use of the using-sos-or-se
state variable, which also determines the type of phase-in we can use, we have to set
the SOS duration to 0 (i.e., ∆SOS

ves = 0).
We create grounded sail-equipment actions between all ports with equipment

deficits and ports with equipment surpluses, thus, no state variables or constants are
needed to determine whether a particular port has equipment; the action will only exist
in the grounded state if the equipment is present at pfrom and demanded at pto.

B.5.5 Sail-on-service

Finally, SOS opportunities are modeled with the sail-on-service action shown in
Figure B.6 (shown in its ungrounded form). The preconditions and effects are similar
to a sailing action, except that, like sail-equipment, the using-sos- or-se state
variable must be false in order to apply the action. We set using-sos-or-se to true

202

Appendix B. An LTOP Model of Fleet Repositioning

sa i l−equipment(ves , pf, pt)

Pre: vessel -at(ves) = pf ∧ vessel -state(ves) = t

∧ ¬using -sos -or -se(ves)
Eff : vessel -at(ves) ← pt ∧ using -sos -or-se(ves) ← true

Obj: fixed -sail -equip -cost(ves ,pf,pt)

− (xE − xB)·var -sail -equip -cost(ves ,pf ,pt)
Con: min -time(ves ,pf,pt) ≤ xE − xB ≤ max -time(ves ,pf ,pt)

∧ hBves ≤ xB ∧ ∆SOS
ves = 0

Figure B.5: The LTOP sail-equipment action for vessel ves ∈ V from port pf ∈ P to port
pt ∈ P .

sa i l−on−service (ves , port , sos)

Pre: vessel -at(ves) = port ∧ vessel -state(ves) = t

∧ ¬using -sos -or -se(ves) ∧ sos -open(sos)

Eff : vessel -at(ves) ← end -port(sos)

∧ using -sos -or -se(ves) ← true ∧ sos -open(sos) ←
false

Obj: fixed -sos -cost(port , sos)

Con: ∆sos
ves = sos -dur(port ,sos)

∧ hBves ≤ sos -start -time(port ,sos)

∧ xB = start -time(port , sos) ∧ xE = end -time(sos)

Figure B.6: The LTOP sail-on-service action for vessel ves ∈ V using start port ∈ P on
sos ∈ S.

after the sail-on-service action has been applied to prevent the vessel from using a
different SOS opportunity, or from carrying equipment.

203

Appendix B. An LTOP Model of Fleet Repositioning

204

Appendix C. ISAC for Black-Box Optimization

Appendix C

Instance Specific Algorithm
Configuration for Black-Box
Optimization

In addition to the research presented in the main body of this dissertation, we in-
vestigated algorithm configuration techniques on black-box optimization problems in
conjunction with Tinus Abell and Yuri Malitsky. This work was published in [1, 2].

We tackle the challenge of crafting a set of features that can capture the struc-
ture of black-box optimization (BBO) problem fitness landscapes for use in portfolio
algorithms. BBO problems are defined by:

min f(x1, . . . , xn)

s.t. li ≤ xi ≤ ui 1 ≤ i ≤ n

xi ∈ R 1 ≤ i ≤ n

BBO problems are found throughout the scientific and engineering fields, but are dif-
ficult to solve due to their expensive objective functions. These problems often arise
when an objective is too complicated to be defined by a simple mathematical expression,
such as objectives computed by simulations or neural networks, but can also involve
difficult to compute expressions that cannot be solved using standard mathematical
techniques. Although BBO algorithms do not guarantee discovery of the optimal solu-
tion, they are nonetheless an effective tool for finding approximate solutions. Different
BBO algorithms can show a wide range of performance across a set of problems. Thus,
deciding which solver to apply to a particular problem is a difficult task, especially for
practitioners who may not be experts in optimization. Portfolio algorithms, such as
the ISAC method, provide a way to automatically choose a solver for a particular BBO
instance using offline learning. However, such methods require a set of features that
consolidate the relevant attributes of a BBO instance into a vector that can then be
used for learning.

205

Appendix C. ISAC for Black-Box Optimization

Features that are able to capture the structure of BBO problems are essential to
portfolio approaches like ISAC, however generating features for BBO problems is partic-
ularly challenging because the problem structure, other than the number of dimensions
in the problem and the accuracy desired of the solver, is hidden within the black-box.
Thus, the only way to compute features is to sample the black-box, which is an expen-
sive way of gathering features. This contrasts with most non-black-box problems, e.g.
SAT or the set covering problem, where many features can be quickly inferred from the
problem definition itself.

Given a training set of instances and a collection of solvers, ISAC tries to find an
assignment of solver to instance that maximizes the quality of a performance metric.
Unlike the problems ISAC has previously been used on, such as SAT [81], set covering/-
partitioning [106], mixed-integer programming [81], and constraint programming [97],
BBO problems lack a representative feature set.

In this chapter, we propose a novel set of features that are fast to compute and
are descriptive enough of the instance structure to allow ISAC to accurately cluster
and tune for the benchmark. These features are based on well-known fitness landscape
measures and are learned through sampling the black box. They allow for the analysis
and classification of BBO problems so that anybody can take advantage of the recent
advances in the ISAC framework in order to more efficiently solve their BBO problems.

Related work

There has been extensive research studying the structure of BBO problems, although
none of this work has previously been used for creating features or in offline classification
of BBO problems. Copious measures have been proposed for determining the hardness
of local search problems by sampling their fitness landscape [74], such as the search
space diameter, optimal solution density/distribution [21], local optima networks [123],
fitness-distance correlation (FDC) [79], the correlation length [151, 177], epistasis mea-
sures [114], information analysis [172], modality and neutrality measures [150], and
fitness-distance analysis [111]. Difficulty measures for BBO problems in particular were
studied by [68], who concluded that in the worst case building predictive difficulty
measures for BBO problems is not possible to do in polynomial time1. Most recently,
Watson introduced several cost models for combinatorial landscapes in order to try to
understand why certain algorithms perform well on certain landscapes [176].

Our approach differs from online methods [19] and reactive techniques [14] that
attempt to guide algorithms based on information from previously explored states be-
cause ISAC performs all of its work offline. Additionally, neither of these approaches
uses a feature set based on the landscape structure.

1We note that our results do not contradict this conclusion, as we are not predicting the hardness
of instances.

206

Appendix C. ISAC for Black-Box Optimization

C.1 ISAC

ISAC is a recently proposed approach for selecting solvers from a portfolio in order to
more efficiently solve a set of instances. Unlike similar approaches, such as Hydra [180]
and ArgoSmart [120], ISAC does not use regression-based analysis. ISAC computes a
representative feature vector in order to identify clusters of similar instances. The data
is therefore clustered into non-overlapping groups and a single solver is chosen for each
group based on some performance characteristic. Given a new instance, its features are
computed and it is assigned to the nearest cluster. The instance is then solved with
the solver assigned to that cluster.

ISAC works as follows (see Algorithm C.1). In the learning phase, ISAC is provided
with a parameterized solver A, a list of training instances T , their corresponding feature
vectors F , and the minimum cluster size κ. In the case of a portfolio algorithm, as in
this paper, the metasolver, A, has a single parameter which specifies which solver should
be used. First, the gathered features are normalized so that every feature ranges from
[−1, 1], and the scaling and translation values for each feature (s, t) is memorized.
This normalization helps keep all the features at the same order of magnitude, and
thereby keeps the larger values from being given more weight than the lower values.
Then, the instances are clustered based on the normalized feature vectors. Clustering is
advantageous because it helps prevent overfitting by ensuring that solvers work across
a number of instances. This helps reduce the influence of noisy data in the training set.

To avoid specifying the desired number of clusters beforehand, the g-means [64]
algorithm is used. Robust parameter sets are obtained by not allowing clusters to
contain fewer than a manually chosen threshold, κ, a value which depends on the size
of the data set. In the case of this paper, we experimented with several limits on
the number of instances per cluster, showing that setting it correctly is important for
good performance from ISAC. Beginning with the smallest cluster, the corresponding
instances are redistributed to the nearest clusters, where proximity is measured by
the Euclidean distance of each instance to the cluster’s center. The final result of the
clustering is a number of k clusters Si, and a list of cluster centers Ci. Then, for each
cluster of instances Si, favorable parameters Pi are computed. ISAC was first introduced
using the GGA parameter tuner [9] on a single parameterized algorithm, however in the
case of a portfolio, the tuning step can be considered to consist of selecting the solver
that provides the best performance on the cluster.

When running algorithm A on an input instance x, ISAC first computes the features
of the input and normalize them using the previously stored scaling and translation
values for each feature. Then, the instance is assigned to the nearest cluster. Finally,
ISAC runs A on x using the solver for this cluster.

207

Appendix C. ISAC for Black-Box Optimization

Algorithm C.1 Instance-Specific Algorithm Configuration

1: ISAC-Learn(A, T, F, κ)
2: (F̄ , s, t)← Normalize(F)
3: (k, C, S)← Cluster (T, F̄ , κ)
4: for i = 1, . . . , k do
5: Pi ← Best(A, Si)

return (k, P, C, s, t)

1: ISAC-Run(A, x, k, P, C, d, s, t)
2: f ← Features(x)
3: f̄i ← 2(fi/si)− ti ∀ i
4: i← mini(||f̄ − Ci||) return A(x, Pi)

C.2 BBO Dataset

We evaluate the effectiveness and robustness of our features on a dataset from the
GECCO 2012 Workshop on Black-Box Optimization Benchmarking (BBOB) [12]. The
dataset contains the number of evaluations required to find a particular objective
value within some precision on one of 24 continuous, noise-free, optimization func-
tions from [53] in 6 different dimension settings for 27 solvers. The solvers are all run
on the data 15 times, each time with a different target value set as the artificial global
optimum. Note that the BBOB documentation refers to each of these target values as
an “instance”. To avoid confusion with the instances that ISAC uses to train and test
on, we will only refer to BBOB targets.

The dataset includes a number of well-known continuous functions, like the Rastri-
gin, Rosenbrock and Schwefel functions, and thus represents a high quality benchmark
for the effectiveness of our features on BBO problems. The functions range from uni-
modal to multi-modal, with some having extremely rugged landscapes. Although all
of our BBO problems are defined by mathematical expressions, they are treated as a
black-box and our features do not use any information about the expression.

Each instance in our dataset is defined by a triple 〈f, d, p〉, where f ∈ {1, . . . , 24} is
the function, d ∈ {2, 3, 5, 10, 20, 40} is the number of dimensions, and p ∈ {1× 10−i for
i = 0 . . . 8} is the precision demanded of the solver. After removing 7 instances from
the dataset for which no solver was able to find a solution, the dataset consists of 1289
instances.

Using this data, we compute the expected running time (ERT) [52] for each solver on
each function and dimension at a specified precision. The ERT refers to the expected
number of evaluations necessary to reach a target function value, including restarts.
Each ERT is based on all 15 BBOB targets of a function on a particular function-
dimension pair.

208

Appendix C. ISAC for Black-Box Optimization

C.2.1 Solver portfolio

ISAC requires a portfolio consisting either of highly parameterized solvers, or a diversity
of solvers. Our dataset is fixed in the sense that we do not have access to the underlying
solvers, i.e. the dataset consists of the amount of evaluations required for each solver on
each instance. We are therefore unable to exploit the parameterization of solvers. How-
ever, the diversity of solvers in the BBOB dataset is more than satisfactory. Although
there are 27 solvers in total in the dataset, we remove solvers from the dataset that
do not have solution data for all instances. This leaves 21 solvers, more than enough
for ISAC. The portfolio of solvers consists of a diverse set of continuous optimizers, in-
cluding 10 covariance matrix adaptation (CMA) variants, 8 differential evolution (DE)
variants, an ant colony optimization (ACO) algorithm, a genetic algorithm (GA), and
a particle swarm optimization (PSO) algorithm2. Very few of these solvers are “pure”
implementations, in that they include either advanced heuristics or are hybridized with
other algorithms, in particular BFGS [103]. No single solver dominates the dataset; in
other words, no solver has such high performance that it outperforms all of the other
solvers on all instances, meaning the BBOB data is ideal for use by ISAC.

C.3 Features

There are two key difficulties in computing features for BBO problems, the fact that
there is scarce information about a problem instance given in the instance definition,
and that evaluating the objective of a BBO problem is expensive. BBO problems offer
no hints about their underlying structure up front (e.g. in a problem definition file),
other than the number of dimensions and the accuracy desired of the solver. For ex-
ample, features for SAT problems include a deep analysis of the relationship between
variables and clauses using graphs, among other features [181]. In SAT, accessing this
information is cheap, since it is a part of the specification of a SAT problem. In the
absence of any structure in the problem definition, we have no choice but to sample the
fitness landscape to try to understand the landscape. However, sampling the landscape
is expensive, and therefore the amount of sampling that can be performed is severely
limited in comparison to the sampling that is performed in other domains. In fact, per-
forming more than about 600 objective evaluations results in so much time being spent
on feature computation, that using a portfolio approach is no longer worthwhile. It is
therefore critical that our features extract as much information about the search land-
scape as possible, while curtailing the number of evaluations to the maximum extent.
With these constraints in mind, we introduce a set of 10 features describing BBO prob-
lems that are based on well-studied aspects of search landscapes in the literature [176].
Our features are divided into three categories: problem definition features, hill climbing
features, and random point features. Our features are summarized in Table C.1 and
described below.

2Full details about the algorithms are available in [12]

209

Appendix C. ISAC for Black-Box Optimization

Problem definition features These features contain all the data that we can pos-
sibly extract from the problem itself: the desired accuracy of the continuous variables
(Feature 1), and the number of dimensions that the problem has (Feature 2). The num-
ber of dimensions and the desired accuracy together describe the size of the problem.

Hill climbing features These features perform a number of hill climbs that are
initiated from random points and continued until a local optimum or a fixed number
of evaluations is reached. We then calculate the average and standard deviation of
the distance between optima (Features 3 and 4), which describes the density of optima
in the landscape. Using the best optimum found, we then compute the average and
standard deviation of the distance between the optima and the best optimum (Features
5 and 6). If multiple optima qualify as the best, we use the nearest to each non-best
optimum for these features. Feature 7 describes what percentage of the optima are
equal to the best optimum, which indicates whether the optima are all clustered near
each other, or if they are spread out through the landscape. Some BBO problems have
large convex areas, in which multiple hill climbs will lead to the same position. Thus,
high values of feature 7 signal relatively convex landscapes.

Random point features Features 8 and 9 contain the average and standard devia-
tion of the distance of each random point to the nearest optimum, which describes the
distribution of local optima around the landscape. Feature 10 computes the fitness-
distance correlation, a measure of how effectively the fitness value at a particular point
can guide the search to a global optimum [79, 110]. In feature 10, we compute an
approximation to the FDC3 using a set of randomly sampled points, where we denote
s∗ as the optimum found by hill climbing with the minimal fitness value. Thus

FDC =
Cov(g, d)

σ(g) · σ(d)

where g is a vector containing the fitness evaluations of the random points, d is a vector
containing the distance of each random point to s∗, Cov(g, d) is the covariance of g and
d, and σ(g) (σ(d)) is the standard deviation of the random point objectives (distances).

C.3.1 Further potential features

There are a number of search landscape properties that have been investigated in the
literature that would be candidates for use as BBO features if not for their excessive
number of objective evaluations. The first possible features are the search position
types as described in [74], which require at least two evaluations for each dimension for
each random point analyzed. Second, the correlation length of landscape [151, 74, 176],
which measures a landscape’s ruggedness, could be used to assess the local optima

3Note that computing the exact FDC requires complete knowledge of the search space, including
the global minimum. With such knowledge running ISAC would be pointless.

210

Appendix C. ISAC for Black-Box Optimization

Problem definition features
1. Solver accuracy
2. Number of dimensions
Hill climbing features
3-4. Average distance between optima (average, std. dev.)
5-6. Distance between best optima and other optima (average, std. dev.)
7. Percent of optima that are the best optimum
Random point features
8-9. Distance to local optimum (average, std. dev.)
10. Fitness-distance correlation (FDC)

Table C.1: BBO problem features.

density in the landscape. Finally, many aspects of landscapes have been investigated
that require complete or near-complete knowledge of the local optima, such as local
optima networks [123], which creates a compact structure representing the local optima
in a landscape, or determining exact local optima density in regions of the landscape.
Although such measures can provide valuable information about the search space, the
goal of computing features is to quickly determine what solver can best solve a problem
instance, not to solve the instance with the feature computations. Note that these
measures stand in contrast to the FDC, which is an approximation, and does not
require a full view of the landscape.

C.3.2 Feature computation

In order to conserve objective evaluations during the computation of our features for
our robustness experiments, as well as in our numerical results, our set of random points
only includes the first point on each hill-climb, as these points are chosen uniformly at
random and must be evaluated for each hill climb anyway. While there is a risk that this
will bias some of our features, in particular the distances to the nearest local optimum
in features 8 and 9, the gains in evaluations are worth such a bias. The alternative
to this would be to select random points uniformly at random, separate from the hill
climbs. We further consider any local optimum with an objective within 5% of the best
optimum to be equivalent to the best optimum.

C.3.3 Feature robustness

Since our features are inherently stochastic, whether the features are robust or not
becomes an important question. If the feature computation greatly varies each time it
is run, it is difficult to learn an effective model to predict which solver will solve which
instance most effectively. Within the ISAC approach, features that vary greatly could
move instances between clusters and negatively effect performance.

211

Appendix C. ISAC for Black-Box Optimization

Figure C.1 shows the variability of several features on the functions in our dataset.
For each graph, the variability is computed as follows. We first compute the features for
each combination of number of hill climbs and maximum hill climb length. For a given
feature, we then compute the standard deviation of the feature on each instance across
all 15 BBOB targets. Finally, we take the average of the standard deviations from each
instance, giving us a measure of how much each feature varies over the dataset.

Three basic pictures emerge from this experiment. Feature 7 (Figure C.1a) has an
area of increased noisiness when the maximumFor hill climb length is set to 300. Note
that this feature measures the percent of optima that are the same as the best optimum
(within 5% of the objective value). When the hill climb length is short (less than 300),
we suspect that the hill climb does not go deep enough to cause much variation in the
number of optima that match the best optimum. When the hill climb is fairly long
(greater than 300), the hill climb is able to find or come close to the bottom of a basin
of attraction, leading to a stable feature. Around length 300, however, the hill climb
has not quite made it far enough to result in a stable feature. Features 3, 4, 5, 6 and
8 resemble feature 9 (Figure C.1b). The variability for these features is characterized
by highly stable features for short hill climb lengths, followed by a decrease in stability,
and then a plateau above length 400. We attribute this behavior to the fact that
hill climbs under length 400 simply are not long enough to yield much information,
resulting in features that do not vary much, but are not particularly useful. Feature 10
(Figure C.1c), which relies on both random points and hill climbs, has high variability
with a low hill climb length and becomes more stable as the hill climb length (and
number of hill climbs) increases. This is because the FDC measurement in feature 10
uses the best objective value found for its computations. When the hill climbs are short,
the best objective value bounces around the landscape. This influences the distances
to this value, causing them to change each time the features are computed, resulting in
an unstable feature. Feature 10 stabilizes after about 30 hill climbs or length 200 hill
climbs. An important, and not surprising, trend present in all of the features is that
low number of hill climbs lead to unstable features, whereas more hill climbs lead to
stable features. Furthermore, it is clear that the number of hill climbs has a larger effect
on the stability of features than the length of the hill climb. We forego an in depth
feature filtering using the methods from [97], despite its success in filtering constraint
programming features for ISAC, due to the low number of features we are using, and
due to the relative stability of all of our features across the dataset.

C.4 Numerical Results

In this section we describe the results of using our features, in full and in various
combinations, to train a portfolio solver using the ISAC method on the BBOB 2012
dataset.

212

Appendix C. ISAC for Black-Box Optimization

(a) Feature 7 (b) Feature 9 (c) Feature 10

Figure C.1: Measurements of the variability in our features with varying parameters.

C.4.1 Scoring and Penalized ERT

We measure the performance of each solver using a penalized score that takes into
account the relative performance of each solver on an instance. We do not directly use
the ERT value because the amount of evaluations can vary greatly between instances,
and too much focus would be placed on instances where a large number of evaluations
is required. In the case of low dimensional instances, which do not generally require
many evaluations, the choice of solver would essentially be irrelevant and the portfolio
would ignore them. While there are settings where this might be desirable, such as for
a practitioner who has thousands of instances to solve, our goal is to create a portfolio
that can efficiently solve any instance given to it. Thus, if a practitioner were to solve
several instances with a randomly distributed size, our portfolio would choose better
solvers for all of those instances than if the practitioner had used a single solver. The
penalized score of solver s on an instance i is given by:

score(s, i) =
PERT (s, i)− best(i)

worst(i)− best(i)

where PERT (s, i) is the penalized ERT defined by

PERT (s, i) =

{
ERT (s, i) if ERT (s, i) <∞
worst(i) · 10 otherwise,

best(i) refers to the lowest ERT score on instance i, and worst(i) refers to the highest
non-infinity ERT score on the instance. The penalized ERT therefore returns ten times
the worst ERT on an instance for solvers that were unable to find the global optimum.
We are forced to use a penalized measure because if a solver cannot solve a particular
instance, it becomes impossible to calculate its performance over the entire dataset.
Using a penalization of factor of 10 is standard for penalized average runtime (PAR)
scores in the literature [180]. The goal of such a high penalization factor is to discourage
ISAC from choosing solvers that cannot solve certain instances.

213

Appendix C. ISAC for Black-Box Optimization

κ
10/10 50/20 200/400

Test Train Test Train Test Train
� σ � σ � σ � σ � σ � σ

50

BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 30053.87 2.04 5.08 2474.66 30053.87 2.04 5.08 2474.64 30053.87 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02

F(1,2) 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07 189.10 6743.81 1.26 4.07
All 51.32 1801.27 1.21 3.96 96.15 3105.76 0.79 2.94 13.41 452.79 0.82 3.30

All∗ 51.42 1801.33 1.32 4.05 97.15 3110.46 1.82 9.90 95.25 1161.92 83.12 760.37
LSF 1.25 4.01 1.24 4.00 88.18 3137.52 0.82 3.03 0.53 2.73 0.55 2.75

LSF∗ 1.35 4.09 1.34 4.08 89.18 3142.23 1.85 9.93 99.44 1323.68 82.86 760.40

100

BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 30053.87 2.04 5.08 2474.66 30053.87 2.04 5.08 2474.64 30053.87 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02

F(1,2) 189.11 6743.81 1.27 4.07 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07
All 1.25 4.02 1.24 4.00 1.25 4.03 1.23 4.00 1.16 3.86 1.12 3.80

All∗ 1.35 4.10 1.34 4.08 2.28 10.21 2.26 10.20 83.46 760.60 83.43 760.34
LSF 1.25 4.02 1.24 4.01 1.22 3.99 1.19 3.93 1.20 3.85 1.15 4.00

LSF∗ 1.35 4.10 1.34 4.09 2.25 10.19 2.22 10.17 97.31 1223.98 83.45 760.34

Table C.2: The average and standard deviation of the scores across all instances for various
minimum cluster sizes, numbers of hill climbs and hill climb lengths for the best single
solver and ISAC using various features.

C.4.2 ISAC Results

Table C.2 shows the results of training and testing ISAC on the BBOB 2012 dataset. For
each entry in the table, we run a 10-fold cross validation using features from each of the
15 BBOB target values. The scores of each of the cross-validation folds are accumulated
for each instance, and the entries in the table are the average and standard deviation
across all instances in the dataset. We compare our results against the best single solver
(BSS) on the dataset, which is simply the best performing solver across all instances.
In our experiments, the solver MVDE [109], a differential evolution algorithm that
applies multiple mutations to the population and merges them using a tournament,
provided the best score across all instances. We test several different subsets of our
features. First, we train ISAC using only feature 1 (F1), only feature 2 (F2), and only
features 1 and 2 (F(1,2)) in order to ascertain whether we can simply use easy to acquire
information about BBO problems, or if a deeper landscape analysis is required. We
then train using all features (All), and only landscape features (LSF), i.e., features 3
through 10. All∗ and LFS∗ include the evaluations necessary to compute the features,
whereas all other entries do not include the feature computation in the results. We
used several different settings of the number of hill climbs and maximum hill climb
length: 10 hill climbs of maximum length 10, 50 hill climbs of maximum length 20,
and 200 hill climbs of maximum length 400. We choose these parameterizations of the
feature computation to show the performance of the features under varying numbers of
evaluations. In particular, we picked 200 hill climbs of length 400 based on our feature
robustness experiments, which emphasize the importance of the number of hill climbs,
as well as having over a hill climb length of over 400 or more. The closer a score is to 0,
which is the score of the virtual best solver, the better the performance of an approach.

214

Appendix C. ISAC for Black-Box Optimization

We report results for F1, F2 and F(1,2) in order to show that our easy to compute
BBO features alone are only able to give ISAC some information about the dataset,
and that a landscape analysis is justified. Note that F1, F2 and F(1,2) do not rely
on the number of hill climbs or the hill climb length. It is immediately clear that F1
and F(1,2) are not able to create an effective predictive model. Although the training
performance of F1 and F(1,2) is on average equal to or better than BSS, this does
not translate into good test performance, with the performance score of F1 and F(1,2)
being several orders of magnitude higher than BSS. On the other hand, F2, which is
the number of problem dimensions, outperforms BSS both for cluster size 50 and 100.
In fact, F2 performs as equally well as All and LSF for cluster 100 with 10 hill climbs of
length 10 and for 50 hill climbs of length 20. In addition, F2 significantly outperforms
All on cluster size 50, where it is clear that it overfits the training data. This is a clear
indication that 10 hill climbs of length 10, or 50 hill climbs of length 20, do not provide
enough information to train ISAC to be competitive with simply using the number of
dimensions of a problem.

The fact that LSF∗ is able to match the performance of F2 on 10 hill climbs of
length 10 for both cluster size 50 and 100 an important accomplishment. With so little
information learned about the landscape, the fact that ISAC can learn such an effective
model indicates that our features are indeed effective.

Once we move up to 200 hill climbs of length 400, LSF significantly outperforms F2,
and even outperforms All, which suffers from overfitting. In fact, LSF is able to cut the
total score to under a fourth of BSS’s score, and to one half of F2’s score, indicating
that the fitness landscape can indeed be used for a portfolio. In addition, LSF has a
lower standard deviation than BSS. LSF’s score on the training set of 0.53 and 0.55 on
the test set are surprisingly close to the virtual best solver, which has a score of zero,
indicating that ISAC is able to exploit the landscape features to nearly always choose
the best or second best solver for each instance. On the downside, 200 hill climbs of
length 400 requires too many evaluations to be used in a competitive portfolio, and All∗

needs 50 times the evaluations of BSS. However, the 200/400 features are still useful
for classifying instances into groups and analyzing the landscape.

Overall, cluster size does have an impact on ISAC performance, and seems to be
a factor in the overfitting behavior that occurs several times, such as for All and LSF
on cluster size 50 with 50 hill climbs of length 20 and All on 10 hill climbs of length
10. It has been observed that cluster size is important for preventing overfitting with
ISAC [81], and our results reaffirm this finding.

Note that we do not provide information from feature gathering to the solvers,
since the dataset from BBOB 2012 is fixed. The improvements of LSF over BSS thus
represent only a lower bound of what might be accomplished if information gained
during feature gathering could be used in the algorithm itself. Since the focus of this
chapter is primarily on evaluating whether the features work, we save this for future
work.

Several entries in Table C.2 show poor performance for the features in the average
case, mainly due to a couple of BBO targets having rather poor performance. Figure C.2

215

Appendix C. ISAC for Black-Box Optimization

displays the scores of test instances of several portfolios against BSS on BBOB target 1,
showing that while the average performance of some features and hill climb/hill climb
length combinations is not good, individual BBOB targets do get rather good results.
The figure shows the scores of each test instance of BSS against F2 (Figure C.2a), All
with 50 hill climbs of length 20 (Figure C.2b), and LSF with 200 hill climbs of length 400
(Figure C.2c), F(1,2) (Figure C.2d), LSF with 50 hill climbs of length 20 (Figure C.2e),
and All∗ with 200 hill climbs of length 400. Figures C.2 a, b and c use a cluster size of
50, and d, e and f a cluster size of 100. All figures are generated from BBOB target 1.
Instances are plotted using their BSS score on the x-axis and their score from F2, All
or LFS on the y-axis. Thus, BSS is outperformed when a point is above the line y = x,
and BSS outperforms the other approach when a point is below y = x.

In all cases shown for cluster size 50 it is clear that BSS is soundly outperformed,
with LSF 200/400 providing the best performance. The good performance of All on
50 hill climbs of length 20 on BBOB target one is in strong contrast to the overall
result of All on 50 hill climbs of length 20, which shows BSS soundly beating All. This
means that the performance can vary greatly across targets, as is seen by the standard
deviation of All on 50 hill climbs of length 20, which is over 3000 even though the average
score is 96. Thus, our features can actually be predictive and effective, even with an
elementary examination of the fitness landscape. Unfortunately, however, these results
are not robust, and bad results on the test data are often hidden by strong performance
on the training data. We see similar trends on cluster size 100, where F(1,2) is able to
outperform BSS, despite poor average performance over all of the BBOB targets. The
good performance of LSF with 50 hill climbs of length 20 is clearly displayed, with much
of its performance gain coming from choosing solvers that are slightly outperforming
the best solver. Finally, the effect of including feature computation evaluations in the
overall scoring is displayed for All∗ with 200 hill climbs of length 400. The added
evaluations for computing the features shifts the points up the y-axis, resulting in very
few instances outperforming BSS.

Statistical significance

We use a two-tailed t-test to determine the statistical significance of our results with
the following null hypothesis: The portfolios generated using the features introduced
in this chapter are not able to outperform BSS on a test set. If the portfolio is able to
outperform BSS at a statistically significant level, our features provided useful infor-
mation to ISAC when it generates a model. We are able to reject the null hypothesis
for F2 on both cluster sizes, LSF and LSF∗ for 10 hill climbs of length 10 and 200 hill
climbs of length 400 on clusters 50 and 100 as well as for 50 hill climbs of length 20 on
cluster size 100 with a t < 10−4, indicating a high level of significance. All and All∗ also
have a t < 10−4 on 10 hill climbs of length 10 for cluster size 100, but once the number
of evaluations begins to rise in the 50 and 200 hill climb settings, we are no longer able
to reject the null hypothesis, except for All on 50 hill climbs of length 20 with a cluster
size of 100.

216

Appendix C. ISAC for Black-Box Optimization

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(a) BSS vs. F2

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(b) 50/20; BSS vs. All

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(c) 200/400; BSS vs. LSF

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(d) BSS vs. F(1,2)

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(e) 50/20; BSS vs. LSF

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

(f) 200/400; BSS vs. All∗

Figure C.2: Comparison of scores against BSS on cluster sizes 50 (a–c) and 100 (d–f).

C.5 Conclusion and Future Work

We introduced a set of features based on accepted and well-studied properties and mea-
sures of fitness landscapes to categorize BBO problems for use in algorithm portfolios,
like ISAC, that can greatly improve the ability of practitioners to solve BBO problems.
We confirmed the robustness of our features through an analysis of the variability of the
features across our dataset. Finally, we experimentally validated our features within the
ISAC framework, showing that ISAC is able to exploit problem structure learned during
feature computation to choose the fastest solver for an unseen instance. The success of
the features we introduced clearly indicates that selecting algorithms from a portfolio
based on the landscape structure is possible. For future work, features analyzing land-
scape structure could be incorporated into problems, providing an alternative view of
problem structure. Furthermore, problem independent features could be investigated
for problems with less difficult objectives where tens or even hundreds of thousands of
objective evaluations are feasible. Additionally, we plan to use these features to an-
alyze what types of landscapes fit best to which solvers, which could influence solver
development, allowing solvers to more specifically target problems they solve well.

217

