
Towards Player-Driven

Procedural Content Generation

Noor Shaker

Center for Computer Games Research

IT University of Copenhagen

A Thesis Submitted for the Degree of

Doctor of Philosophy

December 2012

mailto:noor.shaker@gmail.com
file:itu.dk
http://www.itu.dk

Abstract

Generating immersive game content is one of the ultimate goals for a

game designer. This goal can be achieved if taken into account that

players’ perceptions of the same game differs according to a number

of factors including: players’ personality, playing styles, expertise and

cultural background. While one player might find the game engaging,

another may quit playing as a result of encountering a seemingly in-

soluble problem. One promising avenue towards optimizing the game-

play experience for individual game players — and thereby attempt

to close the affective loop in games — is to automatically tailor the

game content in real-time. To realize player-driven procedural content

generation one needs to specify the aspects of the game that have

a key influence on the gameplay experience, identify the relationship

between these aspects and player experience and define a mechanism

for tailoring the game content to each individual needs.

In this dissertation we attempt to address the following research ques-

tions towards the aim of generating personalized content for the player:

how can we measure player experience, how can we represent game

content, playing style and the in-game interaction, what features should

be used to capture player experience and how can they be extracted, how

can we model the unknown function between game content, player be-

havior and affect, how can we generate game content that is tailored

to particular player needs and style, how often game content should be

adapted, and how the adaptation mechanism can be tested?

We focus on 2D platform game genre as a testbed for our player-

driven procedural content generation framework and we investigate

several approaches for generating game content in that game. Crowd-

sourcing experiments are designed to collect gameplay data, subjec-

tive and objective indicators of experience from human players: three

datasets differing on the number of participants and types of features

are collected and analyzed. Computational models of player experi-

ence are built on game content, gameplay, and visual reaction features

capturing various aspects of the in-game interaction.

Given the high dimensionality of the feature space, a feature selection

method is implemented to select the subset of relevant features. Dif-

ferent forms of representation are considered for capturing frequencies,

temporal and spatial events. Quantitative measures of player experi-

ence are constructed on the crowd-sourced data collected.

As soon as models of player experience are built, a real-time adapta-

tion framework is designed which is guided by the models. The models

are used as heuristics in the search of personalized content. Two adap-

tation mechanisms have been tested in this thesis: the first is based

on exhaustive search and the second is based on genetic search. The

mechanisms are tested with artificial agents and humans players.

The key findings of the thesis demonstrate the ability of the player-

driven procedural content generation framework to recognize playing

behavior differences and to generate player-centered content that op-

timizes particular aspects of player experience.

Acknowledgements

I thank my supervisors Georgios Yannakakis and Julian Togelius for

their support, guidance, encouragement and valuable conversations,

without them none of this would be possible. I owe you both a big

thanks.

Thanks also to Miguel Nicolau and Michael O’Neill from University

College Dublin in Ireland for hosting me there and helping me under-

stand and employ grammatical evolution in my research. I also thank

Stylianos Asteriadis and Kostas Karpouzis for their contributions in

collecting and analyzing one of the datasets that constitute this thesis.

I am also very grateful to all of those players who participated in my

experiments and helped me collect the data I need to conduct my

research.

A big thanks goes to my mother, Amal Ballouk, for her encourage-

ment, patient and unwavering faith in me. For without her support

and prayers, I would not be where I am today.

Loads of thanks to my sisters, brother, and nephew for their cheerful

conversations, love and support. I also thank AbdAllah Nizam who

encouraged me to pursue a PhD, without his support and advice, my

research path would have been harder.

Last, but not least, I would like to thank my husband, Mohamed

Abou-Zleikha, for his constant love, support, encouragement, toler-

ance and faith in me. He has always known how to make my life

brighter.

To Amal, Mohamed, Nada, Nuha and Ousama; my family

Contents

Contents vi

List of Figures xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Formulation . 3

1.3 Questions and Objectives . 4

1.4 Challenges . 5

1.4.1 Player Experience Modeling 5

1.4.2 Online Content Generation 5

1.5 Our Approach . 6

1.5.1 Player Experience Modeling 6

1.5.2 Content Quality . 8

1.5.3 Content Representation 8

1.5.4 Content Generator . 9

1.6 Summary of Contributions . 9

1.7 List of Papers . 12

1.8 Outline of This Dissertation . 14

1.9 Summary . 15

2 Related Work 17

2.1 Theories of Emotion . 17

2.2 Computational Models of Emotion 19

2.2.1 Emotions in Games . 20

vi

CONTENTS

2.3 Affective Computing and the Affective Loop 21

2.4 Affect Recognition . 22

2.4.1 Affect Recognition in Games 23

2.4.1.1 Objective Measures of Affects 23

2.4.1.2 Subjective Measures of Affect 25

2.4.1.3 Fusing Modalities for Affect Recognition 27

2.5 Computational Aesthetics . 29

2.5.1 Theories of Computation Aesthetics 29

2.5.2 Patterns in Game Design 30

2.5.3 Categories of Computational Aesthetics 31

2.5.3.1 Aesthetics as Player Experience 31

2.5.3.2 Aesthetics as Player Emotion 31

2.5.3.3 Aesthetics as Style 32

2.6 Procedural Content Generation 32

2.7 Procedural Content Generation in Games 33

2.7.1 Motivation . 33

2.7.2 Examples in Commercial Games 34

2.7.3 PCG Middleware . 35

2.7.4 Types of PCG . 36

2.7.5 Search-based Procedural Content Generation 40

2.7.5.1 Content Representation and Quality 41

2.7.6 Experience-Driven Procedural Content Generation 42

2.7.6.1 Player Experience Modeling 44

2.7.6.2 Personalized Content Generation 46

2.7.6.3 Assessing the Quality of the Personalized Content 48

2.8 Summary . 49

3 Tools 51

3.1 General AI Techniques . 51

3.1.1 Evolutionary Computation 51

3.1.1.1 Genetic Algorithms 55

3.1.1.2 Genetic Programming 56

3.1.1.3 Grammatical Evolution 56

vii

CONTENTS

3.1.2 Artificial Neural Networks 58

3.1.2.1 Single-layer Perceptron 59

3.1.2.2 Multi-layer Perceptron 60

3.1.3 Evolving Artificial Neural Networks 61

3.1.4 Preference Learning . 61

3.1.5 Feature Selection . 62

3.1.6 Neuroevolutionary Preference Learning 63

3.2 Sequence Mining . 65

3.2.1 Definitions . 65

3.2.2 Apriori Algorithm . 66

3.2.3 Sequential Pattern Discovery: SPADE 67

3.2.4 Generalized Sequential Patterns 68

3.3 Summary . 70

4 The Testbed Game 71

4.1 Platform Games . 71

4.2 Super Mario Bros . 74

4.3 Infinite Mario Bros . 77

5 Content Generators 79

5.1 Level Representation . 80

5.2 Notch Level Generator . 81

5.3 Parameterized Level Generator 82

5.3.1 Content Features . 83

5.3.1.1 Basic Parameterized Generator 83

5.3.1.2 Advanced Parameterized Generator 84

5.4 Grammatical Evolutionary Generator 86

5.4.1 Design Grammar . 87

5.4.2 Conflict Resolution . 90

5.5 Summary . 92

6 Expressivity Analysis 94

6.1 Expressivity Analysis . 95

6.2 Experimental Setup . 95

viii

CONTENTS

6.3 Expressivity Measures . 97

6.3.1 Frequency Analysis . 97

6.3.2 Linearity . 99

6.3.3 Density . 100

6.3.4 Leniency . 102

6.3.5 Compression Distance . 103

6.3.6 Sequential Patterns . 104

6.3.7 Histogram comparison . 107

6.4 Summary . 112

7 Modeling Player Experience 115

7.1 Neuroevolutionary Preference Learning 116

7.2 Feature Extraction . 116

7.3 Feature Selection . 117

7.4 Model Optimization . 118

7.5 Summary . 119

8 Data Collection and Feature Extraction 121

8.1 Experimental Protocol . 122

8.2 Content Data . 123

8.3 Gameplay Data . 124

8.4 Player Experience . 125

8.5 Head Movement Features . 126

8.6 Datasets . 127

8.6.1 Dataset 1: Basic Parameterized Generator 127

8.6.1.1 Content Features 128

8.6.1.2 Gameplay Features 128

8.6.1.3 Player experience 130

8.6.2 Dataset 2: Advanced Parameterized Generator 130

8.6.2.1 Direct Features 132

8.6.2.2 Sequential Patterns 133

8.6.2.3 Mining Sequencial Features 139

8.6.3 Dataset 3: Behavioral and Visual Cues 143

ix

CONTENTS

8.6.3.1 Head Movement Features 145

8.7 Summary . 148

9 Player Experience Modeling: Experiments 150

9.1 Correlation Analysis . 150

9.1.1 Dataset 2: Advanced Parameterized Generator 151

9.2 Nonlinear Relationships . 155

9.2.1 Dataset 1: Basic Parameterized Generator 155

9.2.2 Dataset 2: Advanced Parametrized Generator 157

9.2.2.1 Engagement . 159

9.2.2.2 Frustration . 163

9.2.2.3 Challenge . 165

9.2.3 Dataset 3: Behavioral and Visual Cues 167

9.2.3.1 Player Experience Modeling through Gameplay

and Content Features 167

9.2.3.2 Player Experience Modeling through Mean Head

Movement Features 168

9.2.3.3 Player Experience Modeling through Visual Re-

action Features 171

9.2.4 Fusing Features for Modeling Player Experience 171

9.2.4.1 Modeling through Gameplay/Content and Mean

Head Movement Features 173

9.2.4.2 Modeling through Gameplay/Content and Visual

Reaction Features 174

9.2.5 Significance Analysis . 175

9.2.5.1 Adjusting the Models for Control 179

9.3 Comparison . 181

9.3.1 Scalability . 181

9.3.2 Modeling Accuracy . 183

9.4 Summary . 184

10 Game Adaptation 185

10.1 Feature Analysis and Adaptation Frequency 185

x

CONTENTS

10.1.1 Level Segmentation . 186

10.1.2 MLPs Performance on Partial Information 187

10.1.2.1 Analysis . 187

10.2 Adapting Game Content . 193

10.2.1 Exhaustive Search . 193

10.2.2 Evolving Personalized Content 194

10.3 Summary . 195

11 Evaluation 196

11.1 AI Agents . 196

11.2 Dataset 1: Basic Parameterized Generator 197

11.2.1 Experiment 1: Optimizing Player Experience for a Fixed

Playing Style . 198

11.2.1.1 Statistical Analysis 201

11.2.2 Experiment 2: Dynamic Adaptation to Changing Playing

Styles . 203

11.2.2.1 AI Agents . 203

11.2.2.2 Human Players 204

11.3 Dataset 3: Behavioral and Visual Cues 204

11.3.1 Optimizing Player Experience for a Fixed Playing Style . 205

11.4 Dataset 2: Advanced Parameterized Generator 208

11.4.1 AI Agents: Optimizing Player Experience for a Fixed Play-

ing Style . 209

11.4.2 Statistical Analysis . 213

11.4.3 Discussion . 216

11.5 Summary . 217

12 Conclusions 218

12.1 Contributions . 221

12.2 Limitations and Opportunities . 223

12.2.1 Tools . 223

12.2.2 Methodology . 225

12.2.3 Adaptation Framework . 226

xi

CONTENTS

12.3 Extensibility . 228

12.3.1 Player Experience Modeling 228

12.3.2 Adaptation Methodology 229

12.4 Summary . 229

Bibliography 231

xii

List of Figures

1.1 The main components of the player-driven procedural content gen-

eration framework (which instantiates the experience-driven PCG

framework of Yannakakis and Togelius [2011]) and the approach

we follow for each component. 7

2.1 The circumplex model of affect. 20

2.2 The Flow channel (Csikszentmihalyi [1991]). 21

2.3 The self-assessment manikin (SAM) protocol to assess affective di-

mensions valence (top panel) and arousal (bottom panel) (Bradley

and Lang [1994]). 26

2.4 An example of a multimodal emotion system (Nasoz et al. [2003]). 28

2.5 Snapshot from Pandora city in the Avatar film. 33

2.6 Snapshot from The Lord of The Rings film. 34

2.7 Snapshot from the Rogue video game (adopted from wikipedia.org). 35

2.8 Two example creatures created in The Spore game (adopted from

gamingprecision.com). 36

2.9 Snapshot from Diablo (adopted from wikipedia.org). 37

2.10 Snapshot from Minecraft (adopted from mojang.com). 37

2.11 Snapshot from Spelunky (adopted from tig.wikia.com). 38

2.12 Three example weapons created in the Galactic Arms Race game

for different players. 39

2.13 The main components of the experience-driven procedural content

generation (Yannakakis and Togelius [2011]). 43

2.14 The adaptive game system diagram (Charles and Black [2004]). . 47

xiii

LIST OF FIGURES

3.1 The general workflow of an Evolutionary Algorithm (Eiben and

Smith [2008]). 52

3.2 The general scheme of an Evolutionary Algorithm (Eiben and

Smith [2008]). 53

3.3 An example of n-point crossover (a) and a uniform crossover (b). . 55

3.4 An example of a mutation operator. 55

3.5 Illustrative grammar for generating mathematical expressions. . . 58

3.6 The artificial neuron. 59

4.1 Two examples of 2D platform games. Sub-figures (a) presents

a level in Space Panic, the first platform game (adopted from

wikipedia.org). Sub-figures (b) presents a level from the platform

game Donkey Kong (adopted from arcade-museum.com). 72

4.2 Two examples of 2D platform games. 73

4.3 Two example levels of the original Super Mario Bros game (adopted

from ian-albert.com). 76

4.4 Snapshot from Infinite Mario Bros, showing Mario standing on

horizontally placed blocks surrounded by different types of enemies. 77

5.1 The geometric representation of the different chunks used for con-

structing Infinite Mario Bros levels. 80

5.2 Example levels from Infinite Mario Bros generated by the original

Notch generator with different seeds and difficulty values. 82

5.3 Enemies placement using different probabilities: high probability

is given to placement around horizontal boxes, Pb (a), around gaps,

Pg (b), and to random placement, Pr (c). 85

5.4 An example level generated by the parametrized generator using

six content features. 86

5.5 The first version of the grammar employed to specify the design of

IMB levels. 88

5.6 An example level generated by the first version of the grammar.

The design illustrates a number of limitations in the grammar such

as the placement of enemies and the generation of boxes. 89

xiv

LIST OF FIGURES

5.7 The final version of the grammar employed to specify the design of

the level. The superscripts (2, 6 and 10) are shortcuts specifying

the number of repetition. 91

6.1 Two example levels generated by the GE-generator using the sec-

ond version of the grammar. 97

6.2 Average and standard deviation values of eight statistical features

that have been extracted from all generated levels across all gen-

erators. 99

6.3 Two example levels with different linearity values. 100

6.4 The average and standard deviation values for the expressivity

measures for all generators. 101

6.5 Three example levels with different density values. 102

6.6 Two example levels of different leniency values. 103

6.7 Snapshot from a level and the corresponding structure sequence

representation. 104

6.8 The histograms of the linearity, leniency and density measures for

the 1000 levels generated by Notch generator. 108

6.9 The histograms of the linearity, leniency and density measures for

the 1000 levels generated by the parameterized generator. 109

6.10 The histograms of the linearity, leniency and density measures for

the 1000 levels generated by the GE-generator. 110

6.11 The histograms of the linearity measure for the 3000 levels gen-

erated by Notch generator, the parameterized generator and the

GE- generator. 111

6.12 The histograms of the leniency measure for the 3000 levels gen-

erated by Notch generator, the parameterized generator and the

GE- generator. 111

6.13 The histograms of the density measure for the 3000 levels gener-

ated by Notch generator, the parameterized generator and the GE-

generator. 112

7.1 The three-phase player experience modeling approach followed. . . 118

xv

LIST OF FIGURES

8.1 Snapshot from a level and the corresponding platform structure

sequence representation, P (a), and enemies and items sequence

representation, I (b). 136

8.2 Graphical representation of the different actions that can be per-

formed by the player. 138

8.3 Typical instances of players from Denmark (a,b) and Greece (c,d). 144

8.4 Typical Head Expressivity of player reacting to certain game events.146

8.5 Visual reactions to game events. 148

9.1 Testing for statistical significance between the obtained perfor-

mance of the different sets of features examined for modeling player

experience. Solid arrows between two feature sets depict a signif-

icant difference on the average performance between them. Dash

arrows depict average performance differences of no statistical sig-

nificance. P-values are added next to significant differences. 177

10.1 Testing for statistical significance between the obtained perfor-

mance of the different segments examined for modeling player ex-

perience. Solid arrows between two feature sets depict a significant

difference on the average performance between them. Dash arrows

depict average performance differences of no statistical significance.

P-values are added next to significant differences. 192

11.1 Average and standard deviation values of several gameplay statis-

tical features that have been extracted from 100 different sessions

played by the two agents. 198

11.2 Optimized fun levels versus random levels for the two agents. . . . 200

11.3 Optimized fun levels while monitoring the changes in predicting

frustration and challenge for the two agents. 202

11.4 Optimized fun levels for the two AI agents 205

11.5 Optimized fun levels for four human players 205

xvi

LIST OF FIGURES

11.6 Example levels generated to maximize predicted engagement, frus-

tration and challenge for two human players with different visual

reaction features. Sub-figures (a), (c) and (e) are levels generated

to maximize engagement, frustration and challenge, respectively

for the first player. Sub-figures (b), (d) and (f) are example levels

generated to, respectively, maximize engagement, frustration and

challenge for the second player. 207

11.7 The fitness function for the optimized levels evolved for the A*

agent for each player experience state while monitoring the models’

prediction of the other states. 210

11.8 The fitness function for the optimized levels evolved for Sergio’s

for each player experience state while monitoring the models’ pre-

diction of the other states. 211

11.9 The best levels evolved to maximize predicted engagement, frustra-

tion and challenge for the two agents. Sub-figures (a), (c) and (e)

are levels evolved to maximize engagement, frustration and chal-

lenge, respectively, for the A* agent. Sub-figures (b), (d) and (f)

are best levels generated to, respectively, maximize engagement,

frustration and challenge for the Sergio’s agent. 214

11.10Average and standard deviation values of six statistical content

features extracted from 100 levels evolved to optimize predicted

engagement (E), frustration (F) and challenge (C) for the two

agents. Enemies placement Ep = 0 when Pg = 80%, Ep = 0.5

when Px = 80% and Ep = 1 when Pr = 80%. 216

xvii

1

Introduction

“Video games sit at the confluence of history, technology, and art in

such a way that’s found in no other medium, a place where influences

from every creative field meet, mix, and recombine.”

– Daniel D. Synder, the Atlantic

Differences between humans are undeniable. Providing an engaging human

computer interaction given this diversity requires adapting to a person’s tasks,

preferences, and abilities (Gajos et al. [2010]). Computer games provide a rich

and unique human-computer interaction medium for eliciting, capturing, synthe-

sizing and altering user experience. This thesis explores computational means for

generating personalized experiences for the player of a computer game.

The use of computer games in our life has significantly increased in the past

decade. According to the US Entertainment Software Association (ESA) [2012]

reports in 2012, nearly every device with a screen is used these days for play-

ing games. This has been combined with the demands and production of more

creative games leading the game production to be one of the most cutting-edge

technology sectors in the U.S. economy. The recent survey in 2012 showed that

49% of the American households own a dedicated game console, with an average

game player age of 30 and very similar percentages of male and female players

(53% and 47% respectively).

Generating immersive and engaging gaming experiences can be viewed as the

holy grail of modern game design and development. This goal cannot be achieved

1

1. INTRODUCTION

without acknowledging that players’ perception of the same game differs according

to a number of factors including players’ personality, playing styles, expertise and

cultural background.

In this dissertation we address the problem of generating game content that

is personalized according to a player’s needs. More specifically, we attempt to

give answers to the following questions: how to measure player experience, how

to identify the relationship between player experience and game content, and how

to generate player-centered content that is unique and personalized.

1.1 Motivation

Video games have been a flourishing industry for more than three decades now,

with revenues surpassing even those of the movie and music industries (DFC

[2012]; Global Movie Production [2012]; The Entertainment Software Association

[2012]). Due to their high popularity, highly constrained software requirements

but nevertheless immense computational demands, video games have tradition-

ally been introducing leading technologies and pioneering methods in the field of

human-computer interaction at large. Today’s technologies have reached a point

where new middleware can boost the gameplay experience, via the design of game

content which is driven by computational models of the player and her experience

(Yannakakis and Togelius [2011]; Yannakakis [2012]). To this aim, using context

and behavior -based parameters to elicit information regarding the player’s current

state (and, consequently, obtain hints about her/his needs regarding interaction)

is of primary importance for constructing personal behavioral and interaction-

based models. Such models can guide a game adaptation process to achieve

maximum engagement or possibly enable conditions of flow (Csikszentmihalyi

[1991]) and incorporation (Calleja [2011]) and, ultimately, realize the affective

loop (Höök [2008]; Sundström [2005]) in games.

The demand for automatically generated personalized content increases as

more information about the users and their interaction with digital media is

becoming available. Automatic content generation is likely to be of great im-

portance for computer game development in the future; both offline, for making

the game development process more efficient (design of content such as environ-

2

1.2. PROBLEM FORMULATION

ments and animations now consume a major part of the development budget for

most commercial games) and online, for enabling new types of games based on

player-adapted content.

While game development has been centered primarily on the graphical rep-

resentation of the game world and the non-player characters’ (NPC) behavior,

minor focus has been given towards identifying other aspects of game content

that elicit particular player experiences and contribute to an engaging experi-

ence. Moreover, most of these attempts are theory-driven relying on qualitative

approaches and they mostly tend to apply to games in general rather than to

specific aspects of games (e.g. see Koster [2004]; Malone [1981] among many).

As players tend to vary significantly in their preferences, it would be useful

to have an algorithm that could observe a human playing a game and accurately

judge what the human is experiencing as he/she is playing. Such a vital informa-

tion would allow us to adapt the game to the player, and also help us understand

how player affect is manifested via behavior.

1.2 Problem Formulation

Mainly motivated by the current lack of a quantitative entertainment formula-

tion of computer games, the need for a better understanding of the relationship

between game content and players’ affective/cognitive state and the increasing in-

terest in personalized and online (during play) automatic adaptation mechanisms,

the focus of the work carried out is on constructing an estimator of players’ ex-

perience derived from the in-game interaction. This serves as a fitness function

for game content generation (content is generated online) providing players new

game content based on how they individually have played previously.

In this thesis, we define a novel approach for automatic content generation by

linking it with player experience modeling. We explore platform games as a test-

bed (proof-of-concept) game for the player-driven Procedural Content Generation

(PCG) paradigm.

In this chapter we present the basic components of the framework proposed

and discuss the thesis’ key contributions within each basic component.

The need of automatic personalized content generation is not limited to games.

3

1. INTRODUCTION

The framework proposed is built for games; it can be generalized, however, to

other human-computer interaction (HCI) domains. Example systems include

recommender systems, web applications and interface design.

1.3 Questions and Objectives

Given the research motivations and goals discussed in the previous section, the

following fundamental objectives are synthesizing the aims of this dissertation:

1. To construct an accurate indicator of player experience based on the inter-

action between the player and the game.

2. To apply an online adaptation mechanism that adjusts game content to

accommodate to a specific player experience.

The research questions that the aforementioned research objectives generate

are as follows:

1. How can we recognize players’ affect while playing?

2. What are the features from the game content and players’ in-game behavior

that can help us predict players’ affect?

3. How to efficiently represent playing behavior and game content?

4. How to construct models of player experience that can predict players’

affective/cognitive state with high accuracy?

5. How can we adapt game content to enrich particular player experiences,

and how often the adaptation should be applied?

6. How can we test the adaptation mechanism?

4

1.4. CHALLENGES

1.4 Challenges

In light of our motivations and objectives, the main challenges we consider in this

dissertation are to provide accurate quantitative measures of player experience

and to develop efficient tools to automatically tailor content generation to opti-

mize the playing experience. On that basis, we investigate methods for player

experience modeling that are capable of capturing and predicting players’ affect

with high accuracies and we explore techniques for automatic content generation

that enable online adjustment of player experience based on the derived models.

1.4.1 Player Experience Modeling

Our hypothesis is that there is an unknown function between game content, player

behavior and affect that can be approximated using machine learning techniques.

Therefore, features capturing different aspects of the in-game interaction should

be extracted and the importance of these features for predicting players’ affect

should be investigated.

The accuracy of modeling player experience depends to a great degree on

the type and representation of features. The size of the feature set is also an

important factor and therefore feature selection techniques should be considered

for accurate modeling.

Finally, the modeling technique chosen affects both the performance and the

interpretation of the relationship between game content, player behavior and re-

ported affect. Therefore, models with powerful approximation capabilities should

be examined.

1.4.2 Online Content Generation

Quantitative models of player experience can be used to analyze game-player

interaction and the impact of game content on player behavior and experience.

More importantly, these models can be further utilized to close the affective loop

in games by sensing a player’s response to game content, predicting her experi-

ence state as estimated by the models and ultimately alter content generation

accordingly. As the models can be employed as a fitness function for assessing

5

1. INTRODUCTION

game content quality for a particular player, the space of content can be explored

and evaluated via these models.

The main issues to consider with personalized content generation are the

efficiency and robustness of the adaptation method used. Searching for proper

content for a player should be done rapid enough to allow for efficient online

adaptation. This might be a challenging task when the size of the search space

is rather large.

Having designed an efficient adaptation framework, the main questions re-

maining are when and how frequently adaptation should occur? The system

should be able not only to identify what changes should be made, but also when

these changes should be applied. This requires an analysis of the features that

contribute to a specific player experience and an investigation of the size of the

game session required to elicit a meaningful experience.

1.5 Our Approach

The general framework we propose to address the aforementioned objectives and

challenges is depicted in Figure 1.1. As can be seen from the figure, we iden-

tify four basic components for the player-driven procedural content generation

framework—which is inspired by the experience-driven PCG framework (Yan-

nakakis and Togelius [2011])— and we present different approaches to implement

each component. In the following, we briefly describe each component and refer

to the chapter(s) it is discussed.

1.5.1 Player Experience Modeling

Models of player experience are built based on information collected from the

interaction between the player and the game. Different types of features captur-

ing different aspects of player behaviors are considered; subjective self-reports of

player experience are collected by asking players to answer a set of pairwise (rank-

ing) questions presented after playing a pair of game sessions (post-experience

self-reports). The questionnaires ask the players to report their preferences of

the three affective/cognitive states: fun/engagement, frustration and challenge.

6

1.5. OUR APPROACH

Figure 1.1: The main components of the player-driven procedural content gen-
eration framework (which instantiates the experience-driven PCG framework of
Yannakakis and Togelius [2011]) and the approach we follow for each component.

For objective measures of player experience we analyze video recordings of game-

play sessions and extract information about head movement behavior in reaction

to game events. Players’ actions while playing the game are also registered and

used as gameplay features to develop the models.

The different sets of features collected are represented as frequencies describing

the number of occurrences of various events or the accumulated time spent doing

a certain activity (such as the number of killings of a certain type of enemies or the

total amount of time spent jumping), and/or as sequences capturing the spatial

and temporal order of events and allowing the discovery of temporal behavior

patterns.

Based on the features collected, a modeling approach is followed in an attempt

to approximate the unknown function between game content and player behavior.

The player experience models are developed on different types and representations

of features allowing a thorough analysis of the player-content relationship. The

framework proposed for developing the models of player experience is composed

of two main steps: (1) given the large size of the player behavior feature sets, a

7

1. INTRODUCTION

feature selection method is implemented to pick the minimal subset of features

that are relevant for modeling, (2) neuroevolutionary preference learning is then

adopted as a modeling approach, the network topology is optimized for best

prediction of each reported experience state.

The approach protocol followed to collect the data along with the types of fea-

tures collected and their extraction and representation methodology are presented

in detail in Chapter 8, while our modeling framework is presented in Chapter 7.

1.5.2 Content Quality

A data-driven approach is followed to assess the quality of content by utilizing

the player experience models constructed. The models are used to evaluate the

content according to its appeal to a particular player given the information about

her playing style. Game content features, as extracted from the game sessions,

are used in combination with player behavior to evaluate different variations of

content. Assessing content quality using the constructed player experience models

is discussed in Chapter 9.

1.5.3 Content Representation

The choice of content representation is vitally important since it defines the search

space that can be explored and it affects the efficiency of the content creation

method. In this dissertation we focus on two different types of content represen-

tations. According to the first type, content is represented as a vector of features

specifying some properties of a set of chosen content parameters that affect the

gameplay experience. A grammar-based representation of content is implemented

as a second content representation type. The grammar-based representation al-

lows for greater content variation and more innovative content creation since it

imposes fewer constraints on the search space.

The different types of representation proposed, the content generators built

based on these representations, and a set of expressivity analysis experiments

highlighting the expressive power of each generator are presented in Chapter 5.

8

1.6. SUMMARY OF CONTRIBUTIONS

1.5.4 Content Generator

Given a content representation, a content generator searches the space of con-

tent which is to be evaluated by a content quality measure based on the player

experience models. As mentioned earlier, the content is ranked according to the

experience it evokes for a specific player and the content generator searches the

resulting space for content that maximizes particular aspects of player experience.

Since in our approach two forms of representations are explored, we investigate

two techniques for exploring the search space generated by these representations.

The dimension of content space created by the parameterized generator is rela-

tively small and therefore exhaustive search is used as a search method providing

efficient and fast solutions suitable for online content creation. On the other

hand, the content space generated by grammar-based representation is rather

large and methods with global search ability are required for effective exploration

of such space. For this reason, a stochastic optimization technique by means of

evolutionary algorithm is implemented.

More details about these two methods implemented for content adaptation

are presented in Chapters 10 and 11.

1.6 Summary of Contributions

Although the work presented in this dissertation is mainly focused on games both

in terms of player experience modeling and content generation, we consider the

framework proposed and the approach followed to be relevant to other similar HCI

applications. The approach is generic and applicable to various research areas

such as user modeling, affect recognition, multimodal interaction and content

personalization. We consider the following to be the most important contributions

of this dissertation:

• Crowdsourcing Player Experience: There exist related studies prior to

the work presented in this dissertation on modeling player experience (Mar-

tinez et al. [2009]; Pedersen et al. [2010]; Yannakakis and Hallam [2007]). In

these studies, a similar protocol to the one we are following for data collec-

tion and model construction (using feature selection and neuroevolutionary

9

1. INTRODUCTION

preference learning) was adopted. However, in most of these studies, the

models are constructed based on data collected from a relatively small set

of subjects. Fifty-six children in Yannakakis and Hallam [2007], 36 subjects

in Martinez et al. [2009], and 120 subjects in Pedersen et al. [2010]. More-

over, less complex games were employed for data collection and modeling:

simple designed games on the Playware physical interactive game platform

were used in Yannakakis and Hallam [2007] and the 3D prey-predator game

Maze-ball was employed in Martinez et al. [2009].

The work presented in this dissertation takes this approach a step for-

ward by testing the modeling method applicability when dealing with larger

datasets and more sophisticated game context; the method is tested on three

datasets of up to 780 participants collected through three new experiments

that have been designed for Infinite Mario Bros. Building accurate data-

driven models from such big datasets proves the predictive power of the

method and its ability to capture large variety of playing styles.

The method we propose for modeling players’ interaction with the game

can be viewed as constructing quantitative measures of aesthetics in a 2D

platform game. However, the view we take on aesthetics of level design is

the player’s perspective based on the content generated and the gameplay

experience it provides.

• New methods for content generation: The work presented in this dis-

sertation is built on a preliminarily study which focuses on modeling player

experience in Infinite Mario Bros (Pedersen et al. [2010]). In that work,

generated content is represented as a vector of four content features. Our

first contribution here lies in introducing a more advanced content gener-

ator with six features capable of creating more variations of game content

along other interesting level design. The key innovation is in introducing

the use of grammatical evolution for content representation and generation.

To the best of the author’s knowledge, this is the first time grammatical

evolution is used for automatic creation of game content.

To assist the analysis of the content generated by the different generators

and demonstrate each generator’s weaknesses and strengths, we adopt an

10

1.6. SUMMARY OF CONTRIBUTIONS

expressivity analysis framework, inspired by the work of Smith et al. [2010].

We implement the same expressivity measures proposed by Smith et al.

[2010] and we identify three new ones. We further introduce a new method

for visualizing the expressive range of a generator that allows comparing it

with content spaces created by other generators.

• New types of features: The work presented in the literature mainly fo-

cuses on modeling the relationship between one type of features of player

behavior and subjective player affects (Martinez et al. [2009]; Pedersen et al.

[2010]; Yannakakis and Hallam [2007]). The features used are mostly game-

play features (Pedersen et al. [2010]) or objective measures of player expe-

rience calculated from physiological signals (Martinez et al. [2009]; Yan-

nakakis and Hallam [2007]). In this dissertation, we present, for the first

time, the combination of visual characteristics and gameplay features as

indicators of player reported experience. Key contributions can be found

in (1) the collection of a large corpus of visual and behavioral data of 58

subjects and the use of features extracted from this data to model player

experience, and (2) the fusion of visual and behavioral cues for predicting

player experience.

• New methods for feature representation and extraction: When con-

structing models of player experience, frequencies of game items and player

actions are usually employed for capturing the in-game interaction. This

representation method has been widely used and resulted in accurate es-

timators of player behavior. However, we believe that models with higher

prediction accuracies and more expressive power can be constructed by uti-

lizing other forms of content and behavior representation. For this purpose,

along with frequencies of items and events, we extract sequences of game

content and player behavior and implement sequence mining methods for

extracting patterns of players’ behavior. In this thesis, we analyze sequences

extracted from one modality (game content or player behavior) and bimodal

sequences capturing players’ behavior in reaction to specific game events.

• Synthesizing the different approaches for content personalization:

11

1. INTRODUCTION

Closing the affective loop in games has been the focus of many studies

recently (Pedersen et al. [2010]; Yannakakis and Togelius [2011]; Yannakakis

[2009a]; Yu and Trawick [2011]), but, to the best of our knowledge, there

is no complete implementation of a data-driven approach for a well-known

game. In particular, scientific contributions can be found in (1) the use of

the player experience models as measures of content quality and (2) the

implementation of methods that search the content space for eliciting a

particular experience for a specific playing style. Moreover, in order to

allow for efficient online adaptation, an analysis is performed to set the

frequency on which content should be adjusted. A novel combination of

several computational intelligence techniques was required to implement

and test the adaptation framework.

Our goals have been accomplished by integrating the different approaches

of automatic content creation, feature representation, extraction and selec-

tion, player experience modeling, and content space search. As an overall

contribution, this thesis presents a complete framework that integrates both

sophisticated player modeling technologies and efficient search-based pro-

cedural content generation algorithms (Togelius et al. [2010d]).

1.7 List of Papers

This thesis is based on experimental research that has already been published in

15 peer-reviewed scientific papers, including four journal articles and one book

chapter. This section lists the papers on which the thesis is based, along with the

chapter numbers these papers are discussed.

It is worth noting that this dissertation is based on only 9 out of the 15 papers

published in order to maintain the focus and the coherency of the key contribution

of the thesis. All papers are available for downloading from the author’s web site:

http://noorshaker.com. The papers are as follows:

1. Noor Shaker, Stylianos Asteriadis, Georgios Yannakakis and Kostas Kar-

pouzis. Fusing Visual and Behavioral Cues for Modeling User Experience

in Games, IEEE Transactions on System Man and Cybernetics, Special

12

1.7. LIST OF PAPERS

Issue on Modern Control for Computer Games, 2012. (under revision).

Extensively discussed in Chapters 8 and 9.

2. Noor Shaker, Georgios Yannakakis and Julian Togelius. Crowd-Sourcing

the Aesthetics of Platform Games, IEEE Transactions on Computational

Intelligence and AI in Games, 2012. (to appear). Extensively discussed in

Chapters 8 and 9.

3. Noor Shaker, Georgios Yannakakis, Julian Togelius, Miguel Nicolau and

Michael O’Neill. Evolving Personalized Content for Super Mario Bros Us-

ing Grammatical Evolution, in Proceedings of Artificial Intelligence and

Interactive Digital Entertainment (AIIDE 12), 2012. Extensively discussed

in Chapters 10 and 11.

4. Noor Shaker, Miguel Nicolau, Georgios Yannakakis and Julian Togelius and

Michael O’Neill. Evolving Levels for Super Mario Bros Using Grammatical

Evolution, in Proceedings of the 2012 IEEE Conference on Computational

Intelligence and Games (CIG 2012), 2012. Extensively discussed in Chap-

ters 5 and 6.

5. Noor Shaker, Georgios Yannakakis and Julian Togelius. Towards Player-

Driven Procedural Content Generation, in Proceedings of Computing Fron-

tier Conference, 2012. Extensively discussed in Chapter 7.

6. Noor Shaker, Georgios Yannakakis and Julian Togelius. Digging deeper

into platform game level design: session size and sequential features, in

Proceedings of EvoGames: Applications of Evolutionary Computation, Lec-

ture Notes on Computer Science, 2012. Nominated for best paper award.

Extensively discussed in Chapter 10.

7. Noor Shaker, Stylianos Asteriadis, Georgios Yannakakis and Kostas Kar-

pouzis. A Game-based Corpus for Analysing the Interplay between Game

Context and Player Experience, in Proceedings of the 2011 Affective Com-

puting and Intelligent Interaction Conference (ACII 2011), 2011. Exten-

sively discussed in Chapter 8.

13

1. INTRODUCTION

8. Noor Shaker, Georgios Yannakakis and Julian Togelius. Feature Analy-

sis for Modeling Game Content Quality, in Proceedings of the 2011 IEEE

Conference on Computational Intelligence and Games, 2011. Awarded best

student paper. Briefly discussed in Chapter 10.

9. Noor Shaker, Georgios Yannakakis and Julian Togelius. Towards Automatic

Personalized Content Generation for Platform Games, in Proceedings of

Artificial Intelligence and Interactive Digital Entertainment (AIIDE 10),

2010. Extensively discussed in Chapters 10 and 11.

1.8 Outline of This Dissertation

The dissertation is organized into chapters as follows:

Chapter 2 reviews the state-of-the-art of the different research fields related

to the work presented in this dissertation. An extensive review is presented for

different areas related to affect recognition and procedural content generation.

Chapter 3 presents a literature review of the tools used throughout the

dissertation.

Chapter 4 introduces the testbed game used for our experiences and analysis

along with its different variations.

Chapter 5 describes three versions of content generators for our testbed

game. More specifically, three approaches for generating game content based

on heuristics, parameterized features and grammatical representation have been

discussed.

Chapter 6 introduces a framework for analyzing the space of content cov-

ered by each generator along six expressive measures and presents a visualization

method for comparing the expressive ranges of different generators.

Chapter 7 describes the methodological approach followed in this thesis for

modeling player experience. In particular, this chapter includes: neuroevolution-

ary preference learning as a player experience modeling technique; feature extrac-

tion for collecting sets of features that cover variant aspects of game content and

player behavior; feature selection for reducing the size of the feature space and

model optimization for adjusting the model topology for best performance.

14

1.9. SUMMARY

Chapter 8 presents the crowd-sourcing experiments conducted to collect data

from human players. The different datasets gathered are introduced each with

the specific sets of content and player behavior features. Feature extraction tech-

niques are also described.

Chapter 9 demonstrates the experiments conducted to construct the player

experience models from the different datasets. The chapter presents a thorough

analysis of linear and non-linear relationships between game content, player be-

havioral parameters and reported player affects. The use of features from one

modality and bimodal features for modeling player experience are also discussed.

Chapter 10 illustrates the adaptation framework implemented for personal-

izing game content. The frequency of adaptation is analyzed and two data-driven

adaptation methods, based on exhaustive search and global search approaches,

are presented utilizing the player experience models constructed for evaluating

game content.

Chapter 11 investigates the efficiency of the player-driven procedural content

generation framework. The methodology is tested using AI agents and human

players having different playing styles.

Chapter 11 summarizes the thesis main achievements and contributions and

discusses the proposed methodology’s current limitations. Moreover, potential

solutions that might embrace these drawbacks are presented. In addition, future

research steps beyond the limits of this dissertation are discussed.

1.9 Summary

This chapter presents the motivations and objectives of this dissertation. The

main questions we are trying to answer in this thesis are presented and the main

challenges we consider in terms of player experience modeling and online content

generation are discussed. We illustrate the framework we propose for closing the

affective loop in games and we give a brief description of its components and

our implementation. We highlight our key contributions as categorized in five

main areas: crowdsourcing player experience, new methods for content generation,

new types of features, new methods for feature representation and extraction and

synthesizing the different approaches for content personalization. We present the

15

1. INTRODUCTION

published papers that constitute the work presented in this dissertation and we

give a summary of each chapter of the thesis.

16

2

Related Work

This chapter provides an extensive review of literature on research areas related

to the work presented in this thesis. More specifically, we start with an overview

of emotion theories and its suitability for computational domains. We review

studies on empirical measurements of emotion based on physiological signals,

self-reports and multimodal affect recognition interfaces and we present example

work from each field. We then present the work done on building computational

models of aesthetics with a special focus on the research conducted in computer

games. And we finally discuss the procedural content generation framework with

its well-known variations, namely: search-based and experience-driven procedural

content generation.

2.1 Theories of Emotion

Interest in how to understand, identify, capture, synthesize and influence human

emotion has led to research within many disciplines such as psychology, neu-

roscience, medicine and sociology. Recently, research on emotion has increased

significantly in the computer science field due to the technical advancement and

the increasing demands for more immersing and engaging experience.

Among the many domains that witness increasing interest in user emotion

such as e-commerce, e-learning, news reading, web 2.0 services, and human-

computer interfaces; computer games might be the most promising and interest-

17

2. RELATED WORK

ing area due to their rich environment, their capability of delivering immersion

experiences and their unique ability to elicit emotion.

Modeling human emotion has a long history. Some of the well-known work in

the field includes the component process model framework of emotion proposed by

the psychologist Scherer (Scherer [1984]). In his component-processing model of

emotion, Scherer suggested five essential components for an emotional experience;

psychological arousal, motor expression, behavior preparation, cognitive processes

and subjective feeling. An emotional experience is the result of the coordination

and the synchronization of all of these components for a short period of time

(Scherer [1984, 2002, 2005]). The psychological arousal includes the changes in

physical processes such as body temperature and heart rate. Motor expression

is the reflection of emotion in processes that people share with others such as

facial expressions and gesture. Subjective feeling is the individual experience of

an emotional state and the fact that a subject can verbally express her feeling.

Behavior preparation states the implications of emotion on the ongoing behavior.

Cognitive processes emphasize the effect of emotion on attention and memory

(Scherer [2002, 2005]).

Based on his framework, Scherer showed how the different psychological the-

ories of emotion vary quite strongly with respect to focus on specific components

and phases in the emotion process (Scherer [2002]).

There are numerous theories of emotion (Cannon [1927, 1931]; Ellsworth

[1994]; Pribram and Melges [1969]; Solomon [1980]). However, there is no gold-

standard method of how to measure emotion, and in an ideal world of science, one

would need to capture all different components of emotion such as the continuous

changes in the nervous system, facial and vocal expression, body movements and

the subjective experienced feeling state (Scherer [2005]). Theories of emotion,

however, remain complex and not easily applicable to computer science. After

all, they provide inspiration rather than implementable models (Davidson et al.

[2002]; Scherer [2005]; Sundström [2005]).

Despite the difficulties in capturing and measuring emotion, this research area

remains extremely interesting for researchers who have studied and developed

many methods that allows the incorporation of emotion within digital applica-

tions.

18

2.2. COMPUTATIONAL MODELS OF EMOTION

2.2 Computational Models of Emotion

Computational models of emotions are typically inspired by a general theoretical

framework of behavioral analysis and/or cognitive modeling (Yannakakis and

Togelius [2011]).

Appraisal theory, some times referred to as person-environment relationship

(Lazarus [1991]), is probably the most predominant theory of emotion. The

central key component in this theory is appraisal, and hence, most of the stud-

ies have focused on analyzing the relationship between appraisal variables and

elicited emotion (Ortony et al. [1990]; Scherer and Ellgring [2007]; Smith and

Scott [1997]).

There are many variations of the appraisal theory and many computational

models have been derived from it. In the following discussion we focus on the

ones that are well-known and widely used and we give more emphases on those

that have been used in game studies.

Ortony et al. [1990] and Elliott [1992] developed a computational model of

emotion synthesis, also known as OCC model, that has been adopted by many

computational systems (Bartneck [2002]; Conati [2002]; Dias and Paiva [2005];

Reilly [1996]). This model specifies 22 emotion labels that are mapped to ap-

praisal variables. Emotions were defined as positive or negative valence reactions

to situations consisting of events, objects and agents. The subject is pleased or

displeased with an event, approve or disapprove an action done by an agent and

like or dislike aspects of an object. The subject goals, preferences and desires

define the valence of her emotional reaction.

The dimensional description model of emotion was proposed as an alterna-

tive to the categorical models where latent dimensions are used to characterize

affective states (Greenwald et al. [1989]; Russell and Mehrabian [1977]; Watson

et al. [1988]). Activation, evaluation, control and other aspects are typically used

as dimensions. The evaluation dimension measures how a human feels, while

the activation dimension measures the likelihood of taking an action under a

given emotional state (Zeng et al. [2009]). A well-known example of dimensional

models is the circumplex model of affect by Russell [1980] where emotions were

represented as combinations of arousal and valence (Figure 2.1).

19

2. RELATED WORK

Figure 2.1: The circumplex model of affect.

The Belief-Desires-Intentions (BDI) model of emotion, inspired by the work

done by Bratman [1999] on human practical reasoning, is another widely used

model for emotional displays. This model is mostly used for modeling agent

behavior. BDI is a logical model that allows defining and reasoning about BDI

agents. Beliefs represent the information the agent has about the world which can

be incomplete or even incorrect (Rao et al. [1995]; Wooldridge [2000]). Desires

are the motivational states of the agent and they consist of all the goals the agent

would like to accomplish. Intentions are a subset of desires the agent has chosen

to commit to.

2.2.1 Emotions in Games

There are also other game-specific theories about player emotion. Such theories

include the work done by Malone [1981] on identifying what is “fun” in a game and

what are the factors for engaging gameplay. In his theory, Malone defines three

categories that he claims summarize the factors that make games fun: challenge,

fantasy, and curiosity. The theory of flow proposed by Csikszentmihalyi [1991]

is given a game-specific interpretation, namely game flow (Sweetser and Wyeth

[2005]), and has been used as a model for evaluating player enjoyment. According

to this theory, for a game to be engaging, a certain level of challenge should be

20

2.3. AFFECTIVE COMPUTING AND THE AFFECTIVE LOOP

Figure 2.2: The Flow channel (Csikszentmihalyi [1991]).

presented to the player that matches his skills. If the game is too challenging,

the player becomes frustrated and if it is too easy the player becomes bored.

Keeping the two in balance is the key to the flow experience. Figure 2.2 presents

the basic concept of the flow theory. Koster’s [2004] theory of fun is based on the

concept of learning. For Koster, a game is a learning process and for a game to

be fun, it should maintain a balance between the challenges presented and the

player’s learning rate. Lazzaro [2004] identified four keys for entertaining game-

play experience: hard fun, easy fun, altered states and socialization. Read and

MacFarlane [2000] proposed three dimensions of fun; endurability, engagement,

and expectations. Chen [2007] suggested that the game should keep players of

different skill in flow by adapting to various playing styles.

2.3 Affective Computing and the Affective Loop

In computer science, affective computing is the study and development of methods

that give the computers the ability to recognize and induce emotion and enable

them to interact with humans in human-like ways (Picard [1995]). This requires

successfully inferring users’ affective state, constructing accurate models of users’

affect and correctly expressing emotion.

Estimating affective and cognitive states in conditions of rich human-computer

interaction, such as in games, is a field of growing academic and commercial

21

2. RELATED WORK

interest. Closing the affective loop (Sundström [2005]) is one of the ultimate

aims of the research carried out in the field of affective computing (Leite et al.

[2010]; Picard [1995]). The aim of the affective loop idea, is to “couple the

affective channels of users closely to those of interactive applications, so that the

user’s emotions are influenced by those emotions expressed by or through the

application, and vice versa” (Fagerberg et al. [2003]).

Sensing and recognizing players’ emotion have received most attention, while

less emphasis is placed on emotion modeling (Hudlicka [2008]). In the following

sections we explore the techniques from AI and HCI for recognizing user affective

states with a special emphasis on their applicability within computer games.

2.4 Affect Recognition

The last three decades have witnessed increasing interest in automatic human

affect analysis (Zeng et al. [2009]). The analysis of the vocal emotion has a

long history starting with the work done by Williams and Stevens [1972]. The

early attempts to automatically analyze facial expressions were in 1978 by Suwa

et al. [1978]. Several authors conducted extensive surveys of work in the machine

analysis of affective expressions (Cowie et al. [2001]; Fasel and Luettin [2003];

Pantic and Rothkrantz [2003]; Sebe et al. [2005]; Tao and Tan [2005]; Zeng et al.

[2009]).

There is an abundance of studies presented in the bibliography dealing with

the problem of user state estimation during Human-Computer Interaction (HCI)

(Duric et al. [2002]; Kapoor et al. [2007]; Lisetti and Nasoz [2002]; Maat and Pan-

tic [2007]). Recent advances on computer vision techniques under uncontrolled

conditions have allowed the proposal of techniques incorporating notions such

as body and head movements (Asteriadis et al. [2009]), eye gaze (with eye gaze

usually necessitating specialized hardware, such as infra-red eye trackers (Jennett

et al. [2008])) and facial expressions (Ioannou et al. [2007]). Typical works are

those reported in Castellano et al. [2009] and Sanghvi et al. [2011], where the

authors utilize Bayesian networking on gaze, postural and contextual data for

detecting user engagement with a robot companion posing various expressions

(van Breemen et al. [2005]). These attempts, however, may be unsuitable for use

22

2.4. AFFECT RECOGNITION

in gaming context because the interpretation of measures used to infer emotion is

influenced by the situational context (Gilleade and Dix [2004]; Schachter [1964]).

2.4.1 Affect Recognition in Games

In the domain of games, affect induction is an essential part, since most games

can be tweaked in order to make the player experience more expressive and,

thus, produce multimodal data that can be analyzed and classified. Kaiser et al.

[1998] employed Scherer’s appraisal dimensions (Scherer [1984, 2002, 2005]) in an

attempt to analyze emotional episodes. Scheirer frustrates the user on purpose

in a general HCI framework in order to produce and record rich affective data

(Scheirer et al. [2001]) and Katsis et al. [2008] put this approach to use in the

context of car racing games, a popular game paradigm. Wang and Marsella [2006]

produced EVG (Emotion eVoking Game), a dungeon role-playing game used to

induce emotions related to discrete emotion labels (boredom, surprise, joy, anger

and disappointment).

Measuring affect using physiological signals usually requires specialized hard-

ware, which is often expensive and hard to calibrate. As a result, related ap-

proaches may be efficient in terms of recognizing player affect, but are extremely

problematical to deploy in mass scales and for commercial uses. Nevertheless,

physiological data offers a number of advantages over other modalities such as

its insusceptibility to social masking of emotions (Kim [2007]) and its reliability

making it still favorable in some research areas (Kim and André [2008]; Kim et al.

[2004]; Picard et al. [2001]).

2.4.1.1 Objective Measures of Affects

Affect estimation approaches based on processing acceleration data, typically

from mobile phones or accelerometer-equipped controllers (e.g. Nintendo’s Wii-

mote) or video sequences taken from low-end cameras (e.g. cameras mounted on

top of the users’ screen or Kinect sensors, typically sold for Microsoft’s Xbox 360

platforms, but available for desktop computers, as well) utilize hardware that

most gamers already possess and do not impose any additional requirements,

such as moving in confined spaces, since gamers carry controllers with them

23

2. RELATED WORK

and do not usually move away from their screen or TV while playing. Buttussi

et al. [2007] uses acceleration features to deduce motions and actions, besides

physiological, in the framework of a fitness game, while Istance et al. [2009] and

Nacke et al. [2010] utilize eye-gaze as a means of alternative game control. One of

the issues of such approaches is what Almeida et al. [2011] refers to as the ‘Midas

touch’ problem, where eye gaze vectors are constantly used to issue commands,

regardless of whether the user actually intends to do so or merely looks around at

the game interface or is producing irrelevant fixations and saccades. To overcome

this, several researchers focus on gamer attention and engagement, as a higher-

level cognitive concept, based on eye gaze: Seif El-Nasr and Yan [2006] utilizes a

commercial head-mounted eye tracker to identify points on a computer screen and

then objects in the game world that attract the user’s attention, while Isokoski

et al. [2009] and Smith and Graham [2006] use eye gaze to control virtual game

characters. However, these approaches lie in-between those described before,

since they do rely on visual features, but require dedicated eye-tracking hardware

to produce them. Kaiser et al. [1998] do rely on automatic visual estimation, but

concentrates on emotion labels, in order to produce an emotion-rich corpus, and

does not delve into game-related concepts such as flow and incorporation. Melzer

et al. [2010] investigated the relationship between body movement and affect while

playing the Nintendo Wii game Manhunt 2 (Rockstar London and Rockstar Leeds

and Rockstar Toronto [2007]) that encourage rapid aggressive gesture. Their

study showed that higher negative affect is observed when body movement is

incorporated while playing the game compared to when the game is played using

standard controller. In a similar study done by Isbister et al. [2011], the result

showed significant correlation between various movement and reported increase

of arousal.

The use of context itself is also a very important factor for predicting one’s

current state within the frame of gameplay. Within this view, mouse pressure

and accelerometers positioned on the player’s back are used in Van den Hoogen

et al. [2008]. The authors also employ information coming from chair sensors and

mappings are created to player’s self reports, as well as actual game difficulty

levels. A Gaussian process classification is employed by Kapoor et al. [2007]

for detecting moments of frustration in a person-independent scenario. Children

24

2.4. AFFECT RECOGNITION

were asked to deal with a problem-solving activity, and a multiple-sensor setup

was installed. Sykes [2003] conducted an experiment on 10 people, measuring

the amount of their finger pressure for creating mappings of arousal to difficulty

levels. Hoque et al. [2012] classified elicited expressions of frustration and delight

using facial feature tracker and prosodic speech features. Conati [2002] used

probabilistic models of users affect that integrates information on the subject

skin conductance, heart rate and eyebrow position to improve the effectiveness

of educational games through building emotionally intelligent assistant agent. In

the work done by McDuff et al. [2011, 2012], the authors analyzed crowd-sourced

facial responses data collected over the web and showed different relationships

between head gestures, facial expressions, demographics and self-reports in a

step towards building a framework for crowd-sourcing emotional responses.

Despite the advancement in psychological research to study theories of emo-

tion and the several attempts to define the mapping between causes and emotional

states, recognizing emotions from nonverbal behavior such as facial and vocal ex-

pression and physiological indicators remains a hard task in practice (Conati

[2002]). This is mainly because of the multimodal nature of emotion which make

sensing, recognizing and modeling emotion a hard problem (Hudlicka [2008]).

2.4.1.2 Subjective Measures of Affect

Self-report is currently a widely used measure of affect, where people are asked

to freely describe their experience or rate their feeling on a Likert scale. Despite

their simplicity in inferring user emotions, these methods have been successfully

implemented in a wide range of applications.

There are two main approaches for collecting emotional data through self-

reports. In the free response measurement of emotion, researchers usually prepare

a set of questionnaires and ask participants to explicitly express their emotional

state, as opposite to forced choice response measurement (Scherer [2005]). Two

methods were proposed to collect information about users’ affect using the forced

choice approach (Scherer [2005]); in the first method, the discrete emotions ap-

proach, a categorization of discrete emotional states with scales of nominal, or-

dinal, or interval characteristics is presented to participants. Users are usually

25

2. RELATED WORK

Figure 2.3: The self-assessment manikin (SAM) protocol to assess affective di-
mensions valence (top panel) and arousal (bottom panel) (Bradley and Lang
[1994]).

asked to (1) check terms that best describe the emotion experienced (nominal

scale), (2) indicate on a scale whether a respective emotion was experienced a

little, somewhat, or strongly (ordinal scale), or (3) use an analog scale to indicate

how much an emotion was experienced.

In the second approach, the dimensional approach, participants are usu-

ally asked to express their feeling in the valence-arousal space by answering

questions about valence (positive–negative), arousal (calm–excited), and tension

(tense–relaxed) (Scherer [2005]). The Self-Assessment Manikin (SAM), proposed

by Bradley and Lang [1994], is an example tool designed to assess participants

emotional experience along the valence-arousal dimension (Figure 2.3). There

are a number of drawbacks for each of these methods and there is no universal

agreement for which is better (Scherer [2005]; Yannakakis and Togelius [2011]).

A recent study conducted by Yannakakis and Hallam [2011b] showed that player

self-reports of preferences are consistent and that there are significant in higher

order of reporting effects when subjects report via a rating questionnaire com-

pared to the ones observed with preferences.

26

2.4. AFFECT RECOGNITION

2.4.1.3 Fusing Modalities for Affect Recognition

According to Tao and Tan [2005], multimodal systems of emotion promises a bet-

ter emotion detection rate that applications based on one modality. Figure 2.4

presents an example of a multimodal emotion detection system that integrates

different modalities. Tijs et al. [2008] use self-reported affect in the 2D space of

valence vs. arousal space and mainly physiology-based emotion-related features

to distinguish between a boring, frustrating and enjoying game mode while Rani

et al. [2005], and Mandryk and Atkins [2007] experiment with challenge during

gameplay. Mandryk et al. [2006] reported correlations between self-reported mea-

sures of boredom, challenge, frustration and fun and psychophysiological measures

of users playing a hockey computer game against a computer or a friend. The In-

Game Experience Questionnaire (iGEQ) (Ijsselsteijn et al. [2008]) has been used

together with psychophysiological measures, such as Heart Rate, EMG in several

studies (Drachen et al. [2010]; Nacke and Lindley [2010]) to investigate the corre-

lation between subjective and objective measures in a first-person shooter game.

Mcquiggan et al. [2008] created predictors of self-reports of affects based on sta-

tistical features extracted from psychological responses (e.g. heart rate and skin

conductance) in conjunction with players’ self-reports. The authors also used con-

text information such as the visited positions of the avatar and the cursor in a 3D

learning environment. Mart́ınez and Yannakakis [2010]; Yannakakis et al. [2010]

used statistical features about player behavior (such as distance to enemies) and

features derived from heart rate, skin conductance and blood volume pulse (av-

erage, standard deviation and first and second absolute differences) to construct

models of self-reported preferences in a 3D prey/predator game. While these

studies, among some others (Drachen et al. [2010]; Mandryk and Atkins [2007];

Mandryk et al. [2006]) used a combination of context-sensitive (gameplay behav-

ior) and context-free (psychological) features, none of them fused features from

different modalities on the time-series level by considering sequential patterns

across modalities. The only work done in this area is the recent study conducted

by Martinez and Yannakakis [2011] who extracted frequent event sequences across

different modalities of user input (physiological signals and gameplay data) using

frequent sequence mining techniques and showed that sequential patterns can be

27

2. RELATED WORK

Figure 2.4: An example of a multimodal emotion system (Nasoz et al. [2003]).

used to construct more accurate predictors of user affects than models built on

frequency features from one modality.

The comparative affect analysis framework for assessing user’s affective state,

first introduced by Yannakakis and Hallam [2006]; Yannakakis et al. [2006], has

been used in several other attempts to model player affects while interacting with

games. The framework proposes a methodology for modeling user affect by let-

ting participants play two variants of a video game and report their preferences

along a number of preselected dimensions of emotions. The authors have further

tested this framework in an interactive playground using a combination of self-

reported preferences and heart rate signals. Tognetti et al. [2010] implemented

this framework to estimate player enjoyment preference from physiological signals

and subjective self-reports in a car racing game. Martinez et al. [2009] studied

correlations between psychophysiological measures (i.e., heart rate, blood volume

28

2.5. COMPUTATIONAL AESTHETICS

pulse, and electrodermal activity) and self-reported values of fun, frustration, and

boredom in a simple predator-prey simulation game. The same framework has

also been used to model player experience from gameplay data and reported pref-

erences in the 2D platform game Super Mario Bros (Pedersen et al. [2009]). The

work presented in (Pedersen et al. [2009, 2010]; Tognetti et al. [2010]; Yannakakis

and Hallam [2009, 2006]) shown that accurate estimators of players’ affect can be

constructed from self-reports.

2.5 Computational Aesthetics

The field of computational aesthetics has recently received increasing interest.

When it comes to computer games, the aim of computational aesthetics is to

enrich and enhance playing experience (Browne et al. [2012]). To the best of

our knowledge, there is no clear definition of computational aesthetics in the

literature. As discussed in Section 1.6, in this dissertation, we view aesthetics in

games from players’ perspective based on how they play the game. We are trying

to devise a data-driven approach that can automatically extract game design

patterns from existing games.

2.5.1 Theories of Computation Aesthetics

Many analyses of computer games can be found in the literature, both in terms

of game mechanics and from a player perspective based on how the player can

interact with the game. A number of researchers have attacked this problem from

a top-down perspective, that is, by creating theories of the aesthetics of game

content and game play based on introspection or qualitative research methods.

For example, Malone [1981] proposed that computer games are “fun” when they

have the right amount of challenge and evoke curiosity and fantasy, and Magerko

et al. [2008] proposed an adaptation framework based on a predefined set of

learning styles (refer to Section 2.2 for a comprehensive list of the theory-driven

models of emotion).

Such theories are in general too high-level and vague about key concepts to

be implemented in algorithms, though some attempts have been made to create

29

2. RELATED WORK

computational models based on them (Togelius et al. [2006]; Yannakakis and

Hallam [2005]).

2.5.2 Patterns in Game Design

Other authors have tried to identify more specific and concrete elements of game

design and game content that contribute to player experience, so called “patterns

in game design”; Björk and Holopainen [2005] are in an ambitious ongoing effort

cataloguing hundreds of such patterns, whereas other authors discuss patterns in

content design for individual genres, such as first-person shooters. For example,

Hullett and Whitehead [2010] analyze some key patterns in first-person shooter

games, such as sniper positions and open arenas and discuss how they contribute

to player entertainment. In the work done by Moura et al. [2011] and Milam and

Seif El-Nasr [2010], a system that visualizes players’ behaviors to allow analysts

to easily identify patterns and design issues was presented. Jennings-Teats et al.

[2010] showed how player experience could be altered by presenting sequences of

level segments ranked by their difficulty and presented to the player according

to her behavior. Smith et al. [2008] analyzed platform game levels and proposed

a hierarchical ontology for such levels where cells contain rhythm groups which

in turn consist of components such as platforms, collectibles and switches. The

authors further hypothesize about how certain design choices might affect player

experience. It was assumed that short and uneven rhythm groups may result in

levels that are more challenging while longer rhythmic sections demand sustained

concentration. These principles were eventually incorporated into the Tanagra

level generator, which can create levels with rhythmic structure but does not in-

clude methods for judging the aesthetics of completed levels (Smith et al. [2010]).

If we find the previously mentioned theories accurate, we can then create

theory-driven models of game aesthetics. However, even if the theories are correct

and sufficiently extensive to allow prediction of player experience in a wide range

of situations, they would also need to be quantitative in order to be incorporated

within an algorithm, something most current theoretical efforts to understand

game aesthetics are not. They would also need to be grounded in measurable

quantities. For example, theories based on design patterns would need to be

30

2.5. COMPUTATIONAL AESTHETICS

accompanied by algorithmic ways of detecting and locating such patterns.

The alternative, complimentary approach is to create data-driven (bottom-up)

models of game aesthetics based on collecting data about games, game content

and player behavior.

2.5.3 Categories of Computational Aesthetics

According to Browne et al. [2012], the work done on computational aesthetics in

games can be categorized into three main areas: aesthetics as player experience,

aesthetics as player emotion and aesthetics as style.

2.5.3.1 Aesthetics as Player Experience

The work done in aesthetics as player experience category revolves around games

as an entertaining medium and, therefore, aims at increasing player engagement

by capturing and modeling the relationship between player behavior and game

context (Browne et al. [2012]). There have been a growing number of studies in

the past decade dedicated to this area of research. Gow et al. [2012] described

an unsupervised approach for modeling player style based on log data of playing

sessions. In the work done by Delalleau et al. [2012] a matchmaking strategy

for an online multiplayer game is presented based on data collected about player

behavior and preferences. The authors showed that fun, rather than balance, is

the important factor in matchmaking systems. An extensive review on player

experience modeling is given in Section 2.7.6.

2.5.3.2 Aesthetics as Player Emotion

Capturing and reflecting players’ emotional state is the main focus of the work

done on aesthetics as player emotion (Browne et al. [2012]). An example work

of studies in this category includes the research done by Plans and Morelli [2012]

who proposed an experience-driven procedural music generation framework. The

authors use a gameplay metric as an indicator of player emotional state that

is, in turn, used as a fitness function for adaptive music composition. Savva

et al. [2012] implemented a method for automatic recognition of players’ emotion

from their body movement and investigated whether this information can be

31

2. RELATED WORK

used as a measure of an aesthetic experience. Pedersen et al. [2010] present an

approach for modeling player experience from gameplay data, content features

and reported player states. Models for predicting reported player experience

across six dimensions of emotional states were constructed. The authors further

discussed how these models can be used to close the affective loop in games.

2.5.3.3 Aesthetics as Style

Computational aesthetics in the third category is viewed as “the visual presenta-

tion and elegance that can be computationally modeled” (Browne et al. [2012]).

The research in this area includes the work done by Liapis et al. [2012] who

proposed an approach for personalized generation of pleasing spaceship designs

based on user’s visual preferences. Similar studies were conducted by Hastings

et al. [2009] and Risi et al. [2012]. In the work done by Hastings et al. [2009],

the authors use an evolutionary algorithm to automatically evolve personalized

weapons for the galactic arms race game based on the content the player liked.

Risi et al. [2012] proposed a technique for evolving aesthetically pleasing flowers

images and shapes by allowing the user to explore the search space based on their

preferences. A step in a different direction was taken by Browne [2012] who ex-

plored how a set of game rules can be “elegant”. The author demonstrates how

such an intangible concept can be empirically measured and proposed metrics

that can be used to evaluate games.

2.6 Procedural Content Generation

Procedural Content Generation (PCG) is a term increasingly used in the pro-

duction of different types of media. PCG refers to the process of automatically

generating content using algorithmic techniques and it has seen a lot of success

recently with a wide use in movies and games. The city of Pandora from the

Avatar movie (Figure 2.5) featured extensive use of different PCG techniques to

generate textures, plants and ground cover. The Lord of the Rings film featured

the use of a computer program to automatically create character animation in

battles and another program for character rendering (Figure 2.6).

32

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

Figure 2.5: Snapshot from Pandora city in the Avatar film.

In the following sections, we focus on exploring the use of PCG techniques in

video games domain since this relates to the work presented in this dissertation.

2.7 Procedural Content Generation in Games

Video games rely on different aspects of content such as terrain, maps, levels,

rulesets, sounds, stories and mechanics. Manual content generation is expensive

(Takatsuki [2007]), time and storage consuming. A research direction that has

received increased attention recently is the automatic generation of game con-

tent. Procedural Content Generation has been used to generate game content

via algorithmic means with or without human designer interference.

2.7.1 Motivation

One of the early reasons for using PCG is to overcome memory limitations of

home computers that constrained the space available to store game content. Elite

(Braben and Bell) is one of the games that solved this problem by storing the

seed numbers used to procedurally generate eight galaxies each with 256 planets

33

2. RELATED WORK

Figure 2.6: Snapshot from The Lord of The Rings film.

each with unique properties. A classic example of the early use of PCG is the

early eighties’ game Rogue, a dungeon-crawling game in which levels are randomly

generated every time a new game starts (Figure 2.7). Automatic generation of

game content is not an easy task; Rogue-like Dwarf Fortress (Adams [2006]) type

of games can automatically generate compelling experiences, but they lack any

visual appeal. Generating interesting games that emerge the player requires effi-

cient handling of many aspects including the computational power, the aesthetics

consideration, creativity of the design and the playability of the generated content

(Hendrikx et al. [2011]; Kelly and McCabe [2007]; Smelik et al. [2009]).

2.7.2 Examples in Commercial Games

Procedural content generation has witnessed increasing attention in commercial

games. Diablo (Blizzard North [1997]) (Figure 2.9) is an action role-playing hack

and slash video game featuring procedural generation for creating the maps, the

type, number and placement of items and monsters. PCG is one of the central

mechanic used in Spore (Maxis [2008]) where the design the players create is an-

imated using procedural animation techniques (PCG Wiki). These personalized

creatures are then used to populate a procedurally generated galaxy. Figure 2.8

presents two example creatures created by different players. Civilization IV (Fi-

34

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

Figure 2.7: Snapshot from the Rogue video game (adopted from wikipedia.org).

raxis Games [2005]) is a turn based strategy game that allows unique gameplay

experience by generating random maps. Minecraft (Mojang [2011]) is one of the

recent popular indie games featuring extensive use of PCG techniques to generate

the whole world and it’s content (Figure 2.10). Spelunky (Yu and Hull [2009]) is

another notable 2D platform rogue-like indie game that utilizes PCG to automat-

ically generate variations of the game levels (Figure 2.11). Tiny Wings (Illiger

[2011]) is yet another example of a 2D game featuring procedural terrain and

texture generation system giving the game a different look with each replay.

2.7.3 PCG Middleware

Various PCG techniques such as SpeedTree and fractal generation have been used

recently by game designers to generate game entities such as terrain and game

characters. Euphoria (NaturalMotion [2007]) is a game animation engine that was

developed to automatically generate real-time animation allowing more action di-

versity. SpeedTree (Interactive Data [2011]) is a middleware used to procedurally

generate wide variety of trees. CityEngine (Mueller et al. [2011]) is a 3D mod-

eling software that uses procedural modeling techniques for creating cities and

buildings.

35

2. RELATED WORK

(a) (b)

Figure 2.8: Two example creatures created in The Spore game (adopted from
gamingprecision.com).

2.7.4 Types of PCG

There are a number of independent facets that define the type of a PCG technique:

• Online versus offline: PCG techniques can be used to generate content on-

line, as the player is playing the game, allowing the generation of endless

variations, making the game infinitely replayable and opening the possibil-

ity of generating player-adapted content, or offline during the development

of the game or before the start of a game session. The use of PCG for offline

content generation is particularly useful when generating complex content

such as environments and maps. Left 4 Dead (Valve Corporation [2008])

is a recently released first-person shooter game that provides dynamic ex-

perience for each player by analyzing player behavior on the fly and alter

the game state accordingly using PCG techniques (Booth [2009]). NERO

(Stanley et al. [2005]) is an example of the use of AI techniques to allow

the players to evolve real-time tactics for a squad of virtual soldiers. Forza

Motorsport (Microsoft Game Studios [2005]) is a car racing game where the

Non-Player Characters (NPCs) can be trained offline to imitate the player

driving style and can later be used to drive on behalf of the player.

• Necessary versus optional: PCG can be used to generate necessary game

36

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

Figure 2.9: Snapshot from Diablo (adopted from wikipedia.org).

Figure 2.10: Snapshot from Minecraft (adopted from mojang.com).

content that are required for the completion of a level, or it can be used

to generate auxiliary content that can be discarded or exchanged for other

content. An example of optional content is the generation of different types

of weapons in first-person shooter games or the auxiliary rewarding items

in Super Mario Bros (Nintendo Creative Department [1985]).

• Random seeds vs. Parameter vectors: The generation of content by PCG

can be controlled in different ways. The use of random seed is one way to

gain control over the generation space, and another way is to use a set of

parameters that control the content generation along a number of dimen-

sions. Random seeds were used when generating the world in Minecraft

(Mojang [2011]) which allow regenerating the same world if the same seed

is used (Minecraft Wiki). A vector of content features was used in Shaker

et al. [2010] to generate levels for Infinite Mario Bros (Persson) that satisfy

37

2. RELATED WORK

Figure 2.11: Snapshot from Spelunky (adopted from tig.wikia.com).

the feature specification.

• Generic versus adaptive: Generic content generation refer to the paradigm

of PCG where content is generated without taking player behavior into

account as opposite to adaptive, personalized or player-centered content

generation where player interaction with the game is analyzed and content

is created based on player’s previous behavior. Most of the attempts that

can be found in commercial games tackle PCG in a generic way, while

adaptive PCG has been receiving increasing attention in academia recently.

Yannakakis and Togelius [2011] provide an extensive review of player-driven

PCG). Left 4 Dead (Valve Corporation [2008]) is an example of the use of

adaptive PCG in a commercial game where an algorithm is used to adjust

the pacing of the game on the fly based on player’s emotional intensity. In

this case, adaptive PCG is used to adjust the difficulty of the game in order

to keep the player engaged (Booth [2009]). Adaptive content generation

can also be used with another motive such as generating more content of

those the player seems to like. This approach was followed in the Galactic

Arms Race (Hastings et al. [2009]) game where the weapons presented to

the player are evolved based on her previous weapon use and preferences.

Figure 2.12 presents examples of evolved weapons for different players.

• Stochastic versus deterministic: Deterministic PCG allows the regeneration

38

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

(a) (b) (c)

Figure 2.12: Three example weapons created in the Galactic Arms Race game
for different players.

of the same content given the same starting point and method parameters

as opposite to stochastic PCG where recreating the same content is usually

not possible.

• Constructive versus Generate-and-test: In constructive PCG, the content is

generated once and modifications are not permitted, e.g. rough-like games.

Generate-and-test PCG techniques, on the other hand, go through the loop

of generate-test for a number of times until a satisfactory solution is gen-

erated. Yavalath (Browne [2007]) is a two players board game generated

completely by a computer program using the generate-and-test paradigm

(Browne and Maire [2010b]).

• Algorithmic versus mixed authorship: Up until recently, PCG has allowed

limited input from game designers who usually tweak the algorithm pa-

rameters to control and guide content generation while the main purpose

of PCG remains the generation of infinite variations of playable content

(Adams [2006]; Blizzard North [1997]; Browne and Maire [2010b]; Yu and

Hull [2009]). A new interesting paradigm, however, has emerged recently

focusing on incorporating designer and/or player input through the design

process. In the mixed-initiative paradigm, a human (designer or player) co-

operate with the algorithm to generate the desired content. Tanagra (Smith

et al. [2010]) is an example of a system where the designer draws part of

a 2D level and a constraint satisfaction algorithm is used to generate the

missing parts while retaining playability. Another example is SketchaWorld

framework (Smelik et al. [2010]) which is an interactive procedural sketching

39

2. RELATED WORK

system for creating landscapes and cityscapes where designers can manually

edit and tune the generated results while the virtual world model is kept

consistent. Liapis et al. [2012] utilizes players’ choices as a fitness function

for evolving personalized spaceship designs.

In the following sections, we explore the state-of-the-art of PCG and we focus

on the methods and games developed in this research field. Emphasis is given on

the procedural generation of different game aspects such as maps, levels, rulesets,

stories and dialogs while less weight will be put on decorative assets such as

textures and sound effects since they are not directly linked to the work presented

in this dissertation. A special focus is given to two paradigms of PCG; Search-

based Procedural Content Generation and Experience-Driven Procedural Content

Generation since they provide the umbrella under which most of the work on

PCG, including this work, is developed.

2.7.5 Search-based Procedural Content Generation

Search-based procedural content generation (SBPCG) (Togelius et al. [2010d]) is

the field of PCG that uses global stochastic search algorithms and fitness functions

to measure the quality of the generated content. The SBPCG approach has been

used extensively for evolving different aspects of game content: levels for platform

games (Jennings-Teats et al. [2010]; Pedersen et al. [2010]; Shaker et al. [2010];

Sorenson et al. [2011]), tracks for car racing games (Cardamone et al. [2011b];

Loiacono et al. [2011]; Togelius et al. [2006]), the distributed evolution of weapons

in a space shooter game (Hastings et al. [2009]), maps for real-time strategy (RTS)

games (Togelius et al. [2010b]) and for first-person shooter games (Cardamone

et al. [2011a]) and rulesets for mini-games (Smith and Mateas [2010]). The gener-

ation of 2D mazes was explored by Ashlock et al. [2011, 2006]. In Johnson et al.

[2010] self-organization capabilities of cellular automata are used to generate, in

real time, cave-like maps. Spaceship designs were evolved in Roberts and Lucas

and Liapis et al. [2011]. Mahlmann et al. [2012] used a genetic algorithm to gen-

erate balanced rules for card games. Unit types for strategy games were evolved

in Mahlmann et al. [2011]. Giannatos et al. [2011] improved interactive story

by suggesting new events within the story world using evolutionary optimiza-

40

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

tion. Giannatos et al. [2012] investigated generating stories for suspense using

a combination of AI planning and evolutionary optimization methods. Martin

et al. [2010] investigated the use of interactive evolution to design 3D building

structures. Hom and Marks [2007] proposed automatically designed game rules

to evolve a balanced board game. Togelius and Schmidhuber [2008] evolved rule-

sets for simple Pacman-style games. Automatic game generation was explored by

Browne and Maire [2010a] using evolutionary techniques to automatically gen-

erate and evaluate playable board games. The generation of complete playable

games was explored by Cook et al. [2012] in a system called ANGELINA that

uses co-operative co-evolution to automatically evolve simple platform games.

Kerssemakers et al. [2012] investigated the use of SBPCG techniques to generate

content generators for a 2D platform game.

2.7.5.1 Content Representation and Quality

Content representation and quality measures are two vitally important issues that

should be considered when automatically generating game content. The form of

representation chosen plays an important role in the efficiency of the generation

algorithm and the space of content the method will be able to cover. The choice

of proper representation also depends on the type of problem one is trying to

solve. In (Shaker et al. [2010]), a vector of integers representation of the content

space is used; a vector of four content features was employed as a representative of

selected features for each level in Infinite Mario Bros (Persson) and an exhaustive

search method was implemented to search the content space. Models of players

experience were utilized as a measure of content quality. In a later study on

the same game (Shaker et al. [2012]), the structure of the levels for the same

game was described in a Design Grammar that was employed by Grammatical

Evolution (O’Neill and Ryan [2001]) which is used to evolve level design. The

fitness function used measures the appeal of the resulted design for specific player

preferences (Shaker et al.) (an extensive discussion and analysis of the work done

in these papers are presented throughout the thesis). A similar representation

was proposed in Sorenson et al. [2011], also on the same game, where levels

were described as a list of design elements placed in 2D maps, but in this study

41

2. RELATED WORK

standard genetic algorithms in combination with constraints satisfaction were

used to evolve and measure content quality.

In another study for evolving tracks for a car racing game, Cardamone et al.

[2011b] used a set of control points that the evolved track has to cover and

Bezier curves were employed to connect these points and ensure smoothness, a

method inspired by the work done on the same game domain by Togelius et al.

[2007]. The two studies, however, employed different fitness functions: while

interactive evolution is used by Cardamone et al. [2011b] by asking users to

score the generated tracks, a fitness function that aims at maximizing measured

entertainment for individual players was used by Togelius et al. [2007]. In another

study by Loiacono et al. [2011], the focus is given to evolve tracks with a large

degree of diversity.

Multi-objective evolution was used by Togelius et al. [2010b] to evolve maps

for StarCraft (Blizzard Entertainment and Mass Media [1998]). Two forms of

representation were exploited: an indirect representation was used for searching

(an array of different map elements) and a direct representation for quality test-

ing. Different fitness functions that measure a set of desired characteristics of

a good map were proposed to evaluate the maps generated. Four different map

representations, having different levels of directness, were implemented in Carda-

mone et al. [2011a] to generate maps for a first-person shooter game. A fitness

function that measures the average fighting time for each generated map, as an

indicator of an interesting design, was used.

2.7.6 Experience-Driven Procedural Content Generation

Yannakakis and Togelius [2011] proposed a framework for closing the affective

loop in games. The framework, called Experience-Driven Procedural Content

Generation (EDPCG), defines an approach in which game content is generated

according to player experience. EDPCG is synthesized by four main components

(Figure 2.13) that communicate to optimize player experience: (1) a Player Ex-

perience Modeling (PEM) component that defines the relationship between game

content and player experience (measured by cognitive or affective state responses,

gameplay behavior or both); (2) a Content Quality component which measures

42

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

Figure 2.13: The main components of the experience-driven procedural content
generation (Yannakakis and Togelius [2011]).

the quality of the generated content based on the PEM; (3) a Content Repre-

sentation component that defines an approach for representing game content in

a way that maximizes efficiency, robustness and performance; and finally, (4) a

Content Generator component which explores the content space, given the con-

tent representation, searching for the content that optimizes player experience as

reported by the PEM.

The main novelty of EDPCG over traditional search-based approaches (pre-

sented in Section 2.7.5) is that it utilizes player experience models for the assess-

ment of content quality.

Optimization of game aspects based on empirically derived models has so

far been focused on dynamic game balancing or Dynamic Difficulty Adjustment

(DDA) that uses an automatic algorithm for changing parameters, scenarios and

behaviors of NPCs. Different techniques for different game genres have been in-

vestigated. Research into dynamic scripting focuses on dynamic game balancing

(Lee and Jung [2006]; Spronck et al. [2004, 2006]) but is only suitable for games

that are scripted or imply storytelling. Lee’s and Jung’s [2006] work on dynamic

scripting for a shooter game utilizes a Gaussian Mixture Module that models the

players reaction pattern. Spronck et al. [2004, 2006] focused on dynamic scripting

using reinforcement learning to control the movement of the NPC. Andrade et al.

[2005a,b] also used reinforcement learning to modify NPC behaviors. Studies on

a modified version of the Pac-Man game (Yannakakis and Hallam [2005, 2004b])

focus on the NPC cooperative behavior using an online neuroevolution learn-

43

2. RELATED WORK

ing mechanism; the proposed methodology was further examined by applying it

to predator/prey game (Yannakakis and Hallam [2004a]). These attempts are

mainly focused on adjusting the game difficulty by adapting the NPCs behavior

assuming that challenge is the most important factor contributing to enjoyable

gaming experiences. They did not, however, change the game environment or

adjust the difficulty of the game level during play (except the work done by Yan-

nakakis and Hallam [2004a]), and no particular emphasis is given to the content

of the game and its impact to the player’s affective state.

The attention has been shifted in the last decade with more work being pub-

lished focusing on adapting other aspects of game content. Most of these at-

tempts, however, adopt a qualitative fitness function based on theories of player

experience (refer to Section 2.2 for an overview of the computational models of

emotion). Example studies include Mahlmann et al. [2011, 2012]; Sorenson and

Pasquier [2010]; Togelius and Schmidhuber [2008]; Togelius et al. [2006, 2010c],

most of which were previously discussed in Section 2.7.5.

Few attempts can be found on incorporating players’ emotions into the game

in a closed-loop manner where player’s emotion is actively manipulated to ensure

engagement (Hudlicka [2008]).

In the following sections we investigate the player experience modeling and the

content quality components of the EDPCG framework as content representation

and generation have already been reviewed under the SBPCG section (Section

2.7.5).

2.7.6.1 Player Experience Modeling

Constructing models of player experience is the first step towards realizing the

affective loop in games. Houlette [2003] was the first to explicitly define player

modeling as models of individual players derived from data collected from the

interaction between the player and the game. These models can then be used

by game AI to adapt itself. Later, in the work done by Smith et al. [2011], the

authors defined four independent facets for describing a player model: the scope

of application and who is being distinguished in the model, the purpose of the

model which define how the model is to be used, the domain of modeled details

44

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

and what it describes, and the source of a model’s derivation or motivation. In

this thesis, we take the view of player experience modeling described by Yan-

nakakis and Togelius [2011]. The authors of the “Experience-Driven Procedural

Content Generation” framework identified four classes of approaches for PEM in

games: subjective PEM that can be derived from explicit player reports; objective

PEM which relies on other modalities of player response such as physiological

signals; gameplay-based PEM in which player actions within a game environment

is considered for constructing the models. Different PEM approaches can be com-

bined to construct hybrid PEM. In Section 2.4.1, we surveyed the work done in

modeling players’ affect using subjective, objective and hybrid measures. In the

following, we explore the research attempts to construct gameplay-based models

of player experience.

2.7.6.1.1 gameplay-based PEM: Several attempts can be found in the lit-

erature on constructing models based on gameplay data collected from the in-

teraction between the player and the game. Studies by Yannakakis and Hallam

[2006] shown that artificial neural networks (ANN) and fuzzy neural networks

can be used to construct an estimator of player satisfaction based on metrics of

player experience better than a human-designed one. Further work in this direc-

tion (Pedersen et al. [2010]) showed that players’ reported experience states can

be estimated up to a good degree using neuroevolutionary models constructed

from the in-game interaction.

Constructing estimators of player experience based on gameplay data can be

classified into three main categories: model-based, model-free and hybrid between

the two (Yannakakis and Togelius [2011]).

• Model-based: Model-based approaches typically rely on theoretical frame-

work of behavior and/or cognitive analysis such as the computational mod-

els of emotion presented in Section 2.2. Some examples of the work done

using this approaches include the work of Togelius et al. [2006] and Hast-

ings et al. [2009] that have been previously discussed. Other work includes

the study done by Olesen et al. [2008] who adjust the challenge of a real-

time strategy game to meet player skills by collecting information about

player behavior and tactical strategies. In (van Lankveld et al. [2008]), the

45

2. RELATED WORK

progress of the player and the amount of damage she has sustained is em-

ployed as an indicator of skill in a turn based, side-scrolling arcade game

adopting the incongruity measure from psychological literature. Most of

the work presented previously on dynamic difficulty adjustment and game

balancing can be seen as model-based, gameplay-based PEM.

• Model-free: Model-free PEM, on the other hand, tries to predict player

actions and intentions or identifies patterns of player behavior. Machine

learning techniques are usually employed to achieve this goal. Some work

in this area include the study conducted by McGlinchey [2003] who used of-

fline learning through Self Organizing Map (SOM) neural network to learn

the characteristics of individual players while playing a game of Pong. Wong

et al. [2009] also used (SOMs) to cluster the playing style in a shooter game.

In (Drachen et al. [2009]) a SOM is also used to classify playing behavior

data in Tomb Raider: Underworld (Crystal Dynamics et al. [2008]). Neural

Gas and Bayesian imitation learning algorithms are used in Thurau et al.

[2004, 2005] to learn and imitate human players’ movement in the computer

game Quake II (id Software et al. [1997]). The study conducted by Mart́ınez

et al. [2010], showed that player types as identified by SOM can be used

to better model player experience in a 3D prey/predator game. Ortega

et al. [2012] investigated and compared several methods (including neu-

roevolution, dynamic scripting, rule-based evolutionary computation and

grammatically evolved behavior trees) to train models to imitate human

playing style in Super Mario Bros (Nintendo Creative Department [1985])

based on data collected about player actions. Weber and Mateas [2009]

crowd-sourced gameplay data from thousands of replays and employed data

mining and machine learning techniques for opponent modeling based on

the data collected in a real-time strategy game.

2.7.6.2 Personalized Content Generation

The player experience models constructed, adopting any of the approach pre-

sented previously, can then be used as an evaluation function for game content

that can be optimized to maximize player experience. According to the ED-

46

2.7. PROCEDURAL CONTENT GENERATION IN GAMES

Figure 2.14: The adaptive game system diagram (Charles and Black [2004]).

PCG framework (Yannakakis and Togelius [2011]), a set of requirements should

be fulfilled for a system to successfully realize the affective loop: “The game

should be tailored to individual players’ affective response patterns; the game

adaptation should be fast, yet not necessarily noticeable; and the affect-based

interaction should be rich in terms of game context, adjustable game elements

and player input”. A similar adaptation framework was proposed by Charles and

Black [2004] where the authors suggested a continuous measure of adaptation ef-

ficiency through the use of constructed models of player experience as presented

in Figure 2.14. The authors raise two important issues of game adaptation “we

need to know when to adapt the game to a player... we should monitor if our

adaptation has been effective or appropriate”. Similar requirements for adaptive

systems were also proposed by Gilleade and Dix [2004] “we need to consider the

motivation of the users: why they want to play, their experience and skills: how

able are they to play, and detection: how to identify when change is necessary.”

The literature on personalized and player-adaptive PCG is so far scarce. Few

attempts emerged recently focusing on adapting game content using computa-

47

2. RELATED WORK

tional models of player emotion built from the interaction between the player

and the game. Typical examples of such work include the studies conducted by

Hastings et al. [2009]; Pedersen et al. [2010]; Togelius et al. [2007]; Yannakakis

et al. [2010] and Liapis et al. [2012] presented previously. Other studies include

the work done by Avery et al. [2011] on evolving towers and creeps for a tower de-

fense game where a new path is generated to reflect different playing styles. The

authors adopted the same content personalization principle proposed by Hastings

et al. [2009] by generating towers through an interactive evolutionary process: the

towers the players choose to place are used to generate new personalized collection

of towers to choose from. Tijs et al. [2008] indicated that emotionally adaptive

games adjust their mechanics to optimize players’ gaming experience. In their

experiment, game speed is manipulated by analyzing the relationship between

game mechanics and players’ emotional state measured through self-reports and

physiological signals. Saari et al. [2009] introduced adaptation in the context of a

first person shooter (FPS) game, where player affect is measured via psychophys-

iological measures. Kazmi and Palmer [2010] proposed an adaptation mechanism

based on players action in a FPS game where different in-game mechanisms are

triggered in response to particular player actions.

The awareness of the importance of automatic personalized adaptation has

also recently increased in commercial games with games such as Pro Evolution

Soccer (Konami [2007]) featuring adaptive AI system, called Teamvision, that

learns and adapts the team tactics’ according to an individual’s style of play. In

Lego Star Wars II (Traveller’s Tales and Robosoft Technologies [2006]), adaptive

difficulty is added as an optional feature which affects the amount of LEGO studs

(the part LEGO bricks that connects them together) the player loses upon death

according to how well she plays.

2.7.6.3 Assessing the Quality of the Personalized Content

Once personalized game content is generated, an evaluation mechanism should be

implemented to assess content quality and to validate the efficiency of the adap-

tation approach. Direct, simulation-based and interactive-based functions can be

used for quality assessment (Yannakakis and Togelius [2011]). Direct evaluation

48

2.8. SUMMARY

functions map features extracted from the content generated to a content quality

value. This approach is the easiest to implement and the fastest to evaluate.

Simulation-based evaluation functions utilize AI agents that play through the

content generated and estimate its quality. Statistics are usually calculated about

the agents behavior and playing style and used to score game content. The

type of the evaluation task determines the area of proficiency of the AI agent;

if content is evaluated on the basis of playability, that is the existence of a path

from the start to the end in a maze or a level in a 2D platform game, then AI

agent should be designed that are excel in reaching the end of the game. On

the other hand, if content is optimized to maximize particular player experience,

then an AI agent that imitates human behavior is usually adopted. An example

study that implement human-like agent for assessing content quality is done by

Togelius et al. [2007] where neural network-based controllers are trained to drive

like human players in a car racing game and then used to evaluate the generated

tracks. Each track generated is given a fitness value according to playing behavior

statistics calculated while the AI controller is playing.

Interactive-based functions rank content based on the in-game interaction.

Hastings et al. [2009] implemented this approach by evaluating the quality of the

personalized weapons evolved implicitly based on how often and how long the

player chooses to use these weapons.

2.8 Summary

In this chapter the state-of-the-art of affect recognition while interacting with

a digital interface, computational aesthetics and procedural content generation

in computer games were presented. Subsequently, the current research on con-

structing computational models of emotions based on different emotional theories

applied in the two main domains: human-computer interaction and computer

games was discussed and its potential was revealed. In addition, the literature

review on procedural content generation with its two main overlapping subareas;

search-based and experience-driven procedural content generation is extensively

reviewed.

The work presented in this chapter provides the background on which the stud-

49

2. RELATED WORK

ies and experiments presented in this thesis are built. Players’ affective/cognitive

states are captured following the self-reporting scheme where players are asked

to report their emotional states in a forced choice response measurement follow-

ing the pairwise preferences protocol proposed by Yannakakis and Hallam [2006].

Visual cues features, in terms of head movements, as well as player gameplay

characteristics are employed to build hybrid computational models of player ex-

perience. Based on these models, the aesthetic considerations of level design are

analyzed. An online procedural content generation methods are implemented to

close the affective loop and realize the EDPCG framework. The approach fol-

lowed to search for appropriate content for a given player can be categorized as

online adaptive stochastic constructive approach. Simulation-based evaluation

function is utilized to assess content quality while content is represented using

parameterized and indirect grammar-based representations. Content generation

is achieved using search based and evolutionary based approaches.

50

3

Tools

This chapter presents the algorithms and techniques adopted to successfully tackle

the player experience modeling, content representation and generation, and game

adaptation problems. Each section presents techniques used to tackle a specific

subproblem.

3.1 General AI Techniques

The following sections present an introduction to a number of AI techniques used

in the later sections.

3.1.1 Evolutionary Computation

Evolutionary computation (EC) (Eiben and Smith [2008]) is a subfield of artificial

intelligence inspired by biological mechanisms of evolution. Problem solving in

evolutionary computation is achieved by exploring the space of potential solutions

and applying biologically inspired operations to improve these solutions. The fun-

damental metaphor of EC relates the power of evolution in nature to a particular

style of problem solving, that of trail-and-error (also known as generate-and-test)

(Eiben and Smith [2008]).

Evolutionary approaches have proven to be very efficient when exploring large

search spaces with many local optima and when handling problems with non-

exact, yet measurable, objective functions.

51

3. TOOLS

Figure 3.1: The general workflow of an Evolutionary Algorithm (Eiben and Smith
[2008]).

There are several approaches of evolutionary computation: evolutionary pro-

gramming (Fogel et al. [1966]), genetic algorithm (Holland [1975]), evolution

strategies (Rechenberg [1973]) and genetic programming (Koza [1990, 1994]; Koza

et al. [2005]). Of particular interest to the work presented in this dissertation are

genetic algorithms, genetic programming and grammatical evolution. The algo-

rithms involved in all of these fields are termed evolutionary algorithms and each

field is considered a subarea belonging to the corresponding algorithm variant

(Eiben and Smith [2008]).

Evolutionary Algorithms (EAs) work by evolving a randomly initialized pop-

ulation toward better solutions. Each individual in the population (called a chro-

mosome, a genotype or a genome) is evaluated and given a fitness value. Genetic

operators are then applied on a number of selected individual based on their fit-

ness. The resulted offsprings are then used as the next generation and the whole

process is repeated. The algorithm terminates when either a maximum number

of generations is reached or when the population reaches a satisfactory fitness

level. A diagram of an EA is presented in Figure 3.1 while a general scheme of

an EA is given in Figure 3.2.

There are two fundamental forces that form the basis of evolutionary systems

52

3.1. GENERAL AI TECHNIQUES

Figure 3.2: The general scheme of an Evolutionary Algorithm (Eiben and Smith
[2008]).

(Eiben and Smith [2008]):

• Variation operators (recombination and mutation) which facilitate creating

the necessary diversity and thereby assist novelty, while

• selection acts as a force improving quality.

The various dialects of EC follow the same scheme presented in Figure 3.2

and differ only in technical details such as the representation of a candidate

solution. While the candidates in genetic algorithms are represented by strings

over a finite alphabet, real-valued vectors, finite state machines and trees are

used in evolution strategies, evolutionary programming and genetic programming,

respectively (Eiben and Smith [2008]).

3.1.1.0.1 Components of Evolutionary Algorithms: A particular varia-

tion of EA can be defined by a specification given to a number of EA components

(Eiben and Smith [2008]). The most important components are:

• Representation: The first step in defining an EA is to identify the map-

ping between the problem and the problem solving space. In EAs, the term

phenotype is usually used to refer to the representation of a solution in the

53

3. TOOLS

original problem context. The encoding of an individual solution within EA

is called a genotype. Using this terminology, representation can be defined

as specifying the mapping from the phenotypes onto a set of genotypes.

• Fitness function: In EAs, the evaluation (fitness) defines what improve-

ment means and based on that it assigns a quality measure to genotypes.

• Population: The population is the pool of possible solutions. Defining a

population usually means specifying the number of individuals in it. This

number is mostly constant throughout the evolution process. During the

course of evolution, the population adapts and improves while individuals

remain static.

• Parent selection: Individuals in EAs are distinguished based on their

quality using parent selection. This mechanism allows better individuals

to become parents of the next generation and, thereby, ensures quality

improvement. Probabilistic selection is usually implemented for parent se-

lection with better individuals having a higher chance of becoming parents.

However, in order to escape local optimum and prevent greedy behavior,

a small selection chance is usually given to individuals with low quality.

There are several methods for parent selection. Some example techniques

include roulette wheel selection, Boltzmann selection, tournament selection

and rank selection.

• Variation operators: New individuals are created from old ones by means

of variation operators. A slight modification of an individual can be ob-

tained using a mutation operator. In Mutation, the new individual, also

known as an offspring, is the result of a stochastic operation on a par-

ent in which the values of one or more chosen genes are changed (see

Figure 3.4). On the other hand, crossover is a binary stochastic varia-

tion operator that merges information from two parents producing one or

two offsprings. Crossover is based on the principle that by mating two in-

dividuals with different but desirable features, offsprings which combines

both of these features can be produced. There are several variations of

the crossover operator such as one-point crossover, two-point crossover and

54

3.1. GENERAL AI TECHNIQUES

(a) (b)

Figure 3.3: An example of n-point crossover (a) and a uniform crossover (b).

Figure 3.4: An example of a mutation operator.

uniform crossover. Figure 3.3 presents an example of a n-point and uniform

crossover.

• Survivor selection: After creating the offsprings of the selected parents,

survivor selection, also known as replacement, is called to choose the indi-

viduals to be survived to the next generation based, mostly, on their fitness

value. This is usually applied by selecting the top segment of a ranked

population.

3.1.1.1 Genetic Algorithms

A Genetic Algorithm (GA) is an evolutionary approach that uses search heuristics

to generate solutions to solve optimization problems. GAs became very popular

through the work of Holland (Holland [1975]) who demonstrated the successful

application of GAs in an adaptive system.

A simple GA system is characterized by a binary representation, a fitness

proportionate selection, a mutation of low probability and a genetically inspired

recombination (Eiben and Smith [2008]). A GA typically implements a similar

55

3. TOOLS

scheme to the one presented in Figure 3.2.

3.1.1.2 Genetic Programming

Genetic Programming (GP) is a form of GA with two fundamental differences:

while a GA evolves fixed-length strings, a GP adopts a variable-length represen-

tation of individuals where each individual is considered a computer program.

Evolution in GP is applied directly to the solution unlike other GA methods

which use an indirect representation of the potential solution.

Individuals in GP are usually represented with a tree-based structure and the

same genetic operands used in GA are applied to breed high-quality solutions.

Mutation in GP is often not used at all while crossover is usually the only variation

operator (Eiben and Smith [2008]). Individuals’ evaluation is performed based

on their abilities to perform a given task.

GP has a wide range of applications, and recently, GP has demonstrated

its potential in developing solutions that are competitive to those generated by

humans (Bentley [1999, 2000]; Koza et al. [2003, 2005]; O’Neill and Brabazon

[2001]; O’Neill et al. [2010]; Takagi [2001])

3.1.1.3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm based on GP (O’Neill

and Ryan [2001]). The main difference between GE and GP is the genome repre-

sentation; while a tree-based structure is used in GP, GE relies on a linear genome

representation.

The population of the evolutionary algorithm is initialized randomly consist-

ing of variable-length integer vectors; the syntax of possible solution is specified

through a context-free grammar. GE uses the grammar to guide the construction

of the phenotype output from these strings. As in GA, the genotype-to-phenotype

mapping and the fitness calculation are repeated for every individual in the pop-

ulation. The genetic operators are then applied to the individuals with the best

fitness resulting in a new population. The evolution process continues and the

population evolves towards better solutions.

GE employs grammars written in Backus Naur Form (BNF). Each chromo-

56

3.1. GENERAL AI TECHNIQUES

some is made up of codons. Each codon in the string is used to select a production

rule from the BNF grammar. A complete program is generated by selecting pro-

duction rules from the grammar until all non-terminal rules are mapped. The

resulted string is evaluated according to a fitness function to give a score to the

genome.

Because of the use of a grammar, GE is capable of generating anything that

can be described as a set of rules such as mathematical formulas (Tsoulos and

Lagaris [2006]), programming code, game levels (Shaker et al. [2012]) and physical

and architectural design (Byrne et al. [2011]; O’Neill et al. [2009]).

GE has been used intensively for automatic design (Byrne et al. [2011]; Hem-

berg and O’Reilly [2004]; Hornby and Pollack [2001]; O’Neill and Brabazon [2008];

O’Neill et al. [2009]), a domain where it has been shown to have a number of

strengths over more traditional optimization methods.

3.1.1.3.1 Backus Naur Form Backus Naur Form (BNF) is set of production

rules used to express a grammar. A BNF grammar G = {N, T, P, S} consists

of terminals, T , non-terminals, N , production rules, P and a start symbol, S.

Non-terminals can be expanded into one or more terminals and non-terminals by

applying the production rules. An example BNF is given in Figure 3.5.

Each individual in GE consists of a variable number of integer strings that are

used in the genotype-to-phenotype mapping. These integer strings are typically

evolved with a GA and then used to choose production rules when a non-terminal

with more than one outcome is encountered. To better understand the genotype-

to-phenotype mapping, we will give a brief example.

Consider the grammar in Figure 3.5 and the individual genotype integer string

(4, 5, 8, 11). We begin the processing of an individual from the start symbol

< exp >. In this case there are three possible productions, to decide which

production to choose, we use the first value in the input genome and apply the

mapping function 4%3 = 1, where 3 is the number of possible productions, i.e.

the second production is chosen, and < exp > is replaced with (< exp ><

op >< exp >). The mapping continues by using the next integer with the

first unmapped symbol in the mapping string, the mapping string then becomes

(< var >< op >< exp >) through the formula 5%3 = 2. At this step, < var >

57

3. TOOLS

(1) <exp> ::= <exp> <op> <exp>

| (<exp> <op> <exp>)

| <var>

(2) <op> :: = + | - | * | /

(3) <var> ::= X

Figure 3.5: Illustrative grammar for generating mathematical expressions.

has only one possible outcome and there is no choice to be made, hence, X is

inserted without reading any number from the genome. The expression becomes

(X < op >< exp >). Continuing to read the codon values from the example,

individual’s genome < op > is mapped to + and < exp > is mapped to X

through the two formulas, 8%4 = 0 and 11%3 = 2, respectively. This results in

the expansion (X +X).

During the mapping process, it is possible for individuals to run out of genes,

in this case GE either declares the individual as invalid by assigning it with a

penalty fitness value or it wraps around and reuses the genes. To guarantee

a deterministic genotype-to-phenotype mapping, GE insures that whenever an

individual is mapped the same output is generated.

3.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical models inspired by the bi-

ological neural networks. ANNs constitute a well-known approximation method

and in most cases ANNs are considered adaptive systems in the sense that they

change their underlying structure according to the information flow through them.

Several papers can be found in the literature on neural networks and their ap-

plications. The reader may refer to (Haykin [1999]; Hertz et al. [1991]; Rumelhart

et al. [1985]) for a thorough description of ANNs. In the following discussion we

will limit our description to the particular classes of neural network that are used

throughout this thesis, namely Single-layer Perceptron (SLP) and Multi-layer

Perceptron (MLP).

In this dissertation, ANNs are mainly used as approximation methods to find

the unknown relationship between a set of input features and the outputs. The

use of ANNs for function approximation has been investigated intensively in the

58

3.1. GENERAL AI TECHNIQUES

literature. They have been proven to be able to approximate any function given

enough number of processing elements (Cybenko [1989]; Hornik et al. [1989];

Kolmogorov [1963]).

Figure 3.6: The artificial neuron.

3.1.2.1 Single-layer Perceptron

Single-layer perceptron (Rosenblatt [1958]) is the simplest kind of neural network

consisting of a single layer of output neurons. Such networks can be trained more

quickly and are easier to analyze than more complex MLP networks. However,

SLPs are only capable of learning linearly separable problems and hence they

have only been used as linear approximators. The structure of such networks can

be seen in Figure 3.6. The network consists of an input layer connected to a node

in the next layer, which is also the output layer. This node takes the weighted

sum of all its inputs and apply a transfer function of the from

yi = fT
i (wi;xi; θi) (3.1)

59

3. TOOLS

where θi is a classification threshold and

fT
i =

1 if wixi + θi > 0

0 otherwise
(3.2)

3.1.2.2 Multi-layer Perceptron

The MLP (Rumelhart et al. [1986]) is the most common type of neural network

used in applied research. It can be seen as a generalization of SLP with more com-

putational power and an ability to solve non-linearly separable problems. MLPs

consist of two or more layers of nodes (neurons) employing non-linear activation

functions. It has been proven that a neural network with such a structure is

capable of approximating any numerical function, as long as enough number of

hidden neurons is provided (Bishop [1995]).

The basic building blocks of MLPs are the neuron and the connection. Neu-

rons are structured in a graph in which each node is connected to other nodes

via directional connections. The ANN graph is usually structured in layers; the

first layer is where the input is placed and hence it is called the input layer, this

layer is followed by one or more hidden layers and finally an output layer. Each

node in the hidden layer employs a weighted sum function on all of its inputs.

A transfer (activation) function is then applied on the resulting summed value.

More formally, each node i employs a function fT
i of the form

yi = fT
i

n∑
j=1

(wijxj + θi) (3.3)

where yi is the ith neuron’s output; n is the number of inputs to the neuron i;

xj is the jth input to the neuron; wij is the connection weight between neuron i

and neuron j; and θi is the threshold of the neuron. The choice of the transfer

function highly affects the functionality of the neural network and is crucial for

its universal approximation capacity.

Learning in neural networks is achieved by adjusting the connection weights

of the ANN so that it performs certain tasks. Several approaches have been

followed to train MLPs; the three key approaches are via supervised learning,

60

3.1. GENERAL AI TECHNIQUES

unsupervised learning and reinforcement learning, each correspond to solving a

particular learning task.

3.1.3 Evolving Artificial Neural Networks

Evolutionary neural networks (Stanley and Miikkulainen [2002]; Yao [1993]) is

the research field that emerged from combining evolutionary algorithms with

neural networks. The name refers to the use of evolutionary algorithms to set

the weights for neural networks and it sometimes refers to evolving the network

topology. This method has been widely used to automatically generate efficient

ANNs. The practice of evolving neural networks is called neuroevolution. Because

neuroevolution relies on a fitness function to measure the performance of the

network, the method can be used to train networks to approximate a function in

a reinforcement learning manner.

For the experiments presented in this dissertation, we consider the simplest

form of neuroevolution, namely an MLP whose weights are evolved. Assuming

we are evolving MLPs with a number of c weight, the key steps of the method

are as follows:

1. A population of N individuals is initialized, each individual is a vector of c

real numbers which represent the connection weights of the ANN.

2. Each individual (ANN) is evaluated according to a fitness function that

assesses the performance of the ANN.

3. Parents are selected (via a selection strategy), offspring are generated via

genetic operators (any variant of mutation and crossover) and members of

the population are replaced (following any replacement strategy).

4. If the termination condition is not satisfied, go to step 2.

3.1.4 Preference Learning

Preference learning has received increasing attention in the machine learning lit-

erature in recent years (Fürnkranz and Hüllermeier [2010]). The ranking problem

61

3. TOOLS

has been categorized into three main types, namely label ranking, instance rank-

ing and object ranking (Fürnkranz and Hüllermeier [2010]). We focus on object

ranking in this dissertation. Within object ranking, the goal is to learn a ranking

function f(.) that produces a ranking of a given subset of objects given their

pairwise preferences. More formally, given a set of instances Z and a finite set of

pairwise preferences xi � xj; (xi, xj) ∈ Z x Z, find a ranking function f(.) that

returns the ranking of this set Z. Here, xi � xj means that the instance xi is

preferred to xj.

Various methods have been presented in the literature for the task of object

ranking. Methods based on large-margin classifiers (Bahamonde et al. [2004];

Fiechter and Rogers [2000]; Herbrich et al. [1998]), Gaussian processes (Chu and

Ghahramani [2005]; Gervasio et al. [2005]), and neuroevolution (Yannakakis et al.

[2009]) have been investigated to learn the ranking function.

Neuroevolutionary preference leaning is used in this dissertation due to its

powerful approximation capability and its efficiency in modeling player experi-

ence in similar problems to the one at hand (Martinez et al. [2009]; Pedersen

et al. [2009, 2010]; Yannakakis et al. [2009]). In this thesis we chose to focus

on implementing one technique since we are more interested in realizing a com-

plete implementation of the affective loop in games than exploring other possible

methods.

In the following sections, we describe the features selection method used to

extract relevant features from each object instance and the neuroevolutionary

preference learning methodology proposed to learn the ranking function.

3.1.5 Feature Selection

Feature selection is an important step within a machine learning process since

one would desire the model to be dependent on as few features as possible, both

to make the analysis easier and to make the result more generalizable and easier

to incorporate into future applications. Moreover, not all features are relevant for

predicting preferences, and applying feature selection improves learning quality

by eliminating inappropriate features. In this thesis, Sequential Forward Selec-

tion (SFS) (Whitney [1971]) is used to select the relevant subset of features for

62

3.1. GENERAL AI TECHNIQUES

predicting preferences (Yannakakis et al. [2008]).

SFS is a bottom-up search procedure where one feature is added at a time

to the current feature set. The feature to be added is selected from the subset

of the remaining features such that the new feature set generates the maximum

value of the performance function over all candidate features for addition. The

process is terminated when an added feature yields lower validation performance

compared to the one obtained without it.

As the description of SFS points out, the method is a variant of hill-climbing,

hence, it does not necessarily result in the optimal set of features since it does

not explore all possible combinations.

The method has been successfully applied to wide variety of feature selection

problems where it yields minimum feature subsets with high performance (Peder-

sen et al. [2009]; Yannakakis et al. [2009, 2008]). A comparative study have been

conducted to test the performance of the method against other feature selection

methods in a similar setup to the problem presented in this work (Pedersen et al.

[2009]). The comparison results showed that SFS outperforms the other methods

(such as n best individual feature selection, sequential floating forward selection

and perceptron feature selection) both in finding the minimum subset of rele-

vant features and in the classification accuracy. The benefits of SFS on picking

feature set with minimal effort (compared to e.g. exhaustive search or global

metaheuristic search) which yield highly performing preference models are the

key motivations for using SFS in this thesis.

3.1.6 Neuroevolutionary Preference Learning

Neuroevolutionary preference learning (Yannakakis et al. [2009]) is used to learn

the ranking function that approximates the relationship between selected features

and reported preferences. Since there are no prescribed target outputs for the

learning problem, standard backpropagation loss functions (e.g. mean squared

error) are inapplicable. Learning is achieved via artificial evolution in this thesis.

In neuroevolutionary preference learning, a genetic algorithm (GA) evolves

an artificial neural network (ANN) so that its output matches the pairwise pref-

erences in the data set. The input of the ANN is a set of features that have been

63

3. TOOLS

extracted from the data set. The GA implemented uses a fitness function that

measures the difference between the reported preferences and the relative magni-

tude of the model output. A sigmoid-based fitness function has been adopted as

its shape has been optimized for maximum model performance. The ANN topol-

ogy is fixed, and the GA chromosome is a vector of ANN connection weights.

The evolutionary procedure (Yannakakis et al. [2006]) used can be described

as follows: a population of N networks is initialized randomly. Initial real values

for their connection weights are picked randomly from a uniform distribution.

Then, at each generation:

Step 1 Each member (neural network) of the population gets two d-tuples (where

d is the number of input features) one for A and one for B, where A and

B are two instances associated with a pairwise preference, and returns two

output values, namely yj.A and yj.B for each pair j of the dataset. When

the yj.A, yj.B values are consistent with the actual reported preference of

subject j then we state that there is an ‘agreement’ between the output

and the reported preferences. In the opposite case, we state that there is a

‘disagreement’.

Step 2 Each member i of the population is evaluated via the fitness function fi

(which defines the loss/error function of the problem):

fi =
N∑
j=1

g(dj, pk) if agreement

g(dj, pl) if disagreement
(3.4)

where dj = yj,A − yj,B and g(dj, p) = 1/(1 + e−pdj) is the sigmoid function,

pk and pl are assigned empirically.

Step 3 A roulette-wheel selection scheme is used as the selection method.

Step 4 The Montana and Davis crossover (Montana and Davis [1989]) is applied

to the selected parents for generating two offspring. Gaussian mutation

occurs in each gene (connection weight) of each offspring’s genome.

The algorithm is terminated when the total number of generations is reached

or when the population reaches a satisfactory fitness level.

64

3.2. SEQUENCE MINING

3.2 Sequence Mining

Sequence data mining is a technique used to identify frequent subsequences of

patterns in a dataset of samples. Sequential pattern mining was first introduced

by Agrawal and Srikant [1995] and has since then been applied to a wide range

of applications including user modeling, e-commerce and business intelligence.

In the work presented in this dissertation, we are interested in finding fre-

quently occurring patterns within a dataset. One particular type of dataset is

of particular interest for this work. This type is what is usually called temporal

and time-series database, in which each temporal data item is associated with a

corresponding time attribute.

Several approaches can be found in the literature for mining sequential pat-

terns (Mannila and Toivonen [1996]; Oates et al. [1997]; Srikant and Agrawal

[1996]; Zaki [2001]). Two algorithms for frequent itemset mining have been

implemented to find frequent sequence patterns within a dataset of sequences,

namely Apriori and Generalized Sequential Patterns (GSP). The Apriori algo-

rithm (Agrawal and Srikant [1994]) is used to mine single-dimensional sequences

occurring in a relatively small dataset. Mining sequences across multiple time

series of data within a large dataset is achieved via the GSP algorithm (Srikant

and Agrawal [1996]). GSP allows us to mine variable-length sequences and intro-

duces a few more tunable parameters, making it well suited for mining sequences

of multiple dimensions.

In the following sections we provide a list of definitions relevant for frequent

subsequence mining and give a brief description of the two algorithms.

3.2.1 Definitions

A data-sequence is a sample of a sequential dataset where each sequence consists

of a number of events, each one associated with a time stamp. The events are

ordered by increasing time.

A sequence pattern, li, is a non-empty set of simultaneous events denoted by

< e0e1e2...en > where ei is an event. A data-sequence supports a sequence pattern

if and only if it contains all the events present in the pattern in the same order

but not necessarily consecutive.

65

3. TOOLS

A minimum support, minsup, is the minimum number of times a pattern li

has to occur in the data-sequences to be considered frequent. If the number of

occurrences of li in the data-sequences exceeds the minsup, we call li a frequent

pattern and in this case, the fraction of data-sequences that support li is refereed

to as support count, supcount.

3.2.2 Apriori Algorithm

Most of the algorithms for sequence mining are based on the Apriori property

proposed by Agrawal and Srikant [1994]. Apriori uses a bottom-up approach

to find frequent subsets of patterns by extending one item at a time employing

breadth-first search and hash tree structure to efficiently count candidate sets.

The main apriori property states that “All nonempty subsets of a frequent itemset

must also be frequent”.

Suppose we want to find frequent patterns of size k in a database, the Apriori

algorithm is decomposed into five main phases:

1. Find frequent items of size 1, L1.

2. Candidate generation, Ln+1: given a dataset of frequent items of size n,

generate the candidates of size n+ 1 by joining L with itself.

3. Use the apriori property to prune the infrequent items of Ln+1.

4. Scan the database and count the support for each candidate in Ln+1.

5. Remove those candidates from Ln+1 such that their minsup is smaller than

a user-defined threshold.

6. If n+ 1 < k, let n = n+ 1 and go to step 2.

The main disadvantage of the algorithms that depend on the apriori property

is the computation cost. The algorithm has to keep track of the support count

for each subsequence for testing the apriori property in each iteration. This leads

to a large search space. Without introducing methods for narrowing the search

space, the applicability of the algorithm on large databases becomes infeasible.

66

3.2. SEQUENCE MINING

Several variations of the apriori algorithms have been proposed with solutions

to reduce the computational cost (Garofalakis et al. [1999]; Han et al. [2000]; Lin

and Lee [2002]; Srikant and Agrawal [1996]; Zaki [2001]). In the following section,

we describe two of the well-known variations that are used throughout the work

presented in this dissertation.

3.2.3 Sequential Pattern Discovery: SPADE

Sequential PAttern Discovery using Equivalence classes (SPADE) is an algorithm

for frequent sequence mining (Zaki [2001]). The dataset in SPADE is repre-

sented using a vertical id-list < itemset − id, timestamp > format where each

sequence is associated with a list of items in which it occurs. Sequence mining

is then performed by growing a supsequence one item at a time using Apriori

candidate generation. Candidate generation is done in the main memory and

uses a lattice-theoretic approach to decompose the search space search while sim-

ple two join operations are typically used to generate candidate sequences (Zhao

and Bhowmick [2003]). Frequent sequences can be efficiently found using in-

tersections on id-lists. By utilizing id-lists, the method reduces the number of

databases scans, and therefore also reduces execution time.

The main steps in SPADE are the following:

1. Compute the frequencies of 1-sequences, L1 in an Apriori-like way.

2. Count the sequences of length 2, L2. This is done by counting the number

of sequences for each pair of items using a bidimensional matrix.

3. Construct a lattice from all the 2-item sequence found.

4. Search the lattice for generating the sequences of length n, Ln. This is done

by joining the n − 1 sequences using their id-lists. The size of the id-lists

is the number of sequences in which an item appears. If this number is

greater than minsup, the sequence is a frequent.

The id-list for each item is produced using breadth-first or depth-first search.

The algorithm terminates when no more frequent subsequences can be found.

SPADE usually makes only three database scans to extract the frequent patterns.

67

3. TOOLS

The main drawback of the lattice theory is that the lattice can grow very big

and cannot fit in the main memory when dealing with large datasets. SPADE

solves this problem by partition the lattice into disjoint subsets called “equiva-

lence classes” that can be loaded into the main memory and searched separately

(Mabroukeh and Ezeife [2010]). In this dissertation, we use a simplified version

of SPADE to find frequent patterns when the dataset size is relatively small and

therefore there is no need to implement the equivalence classes.

3.2.4 Generalized Sequential Patterns

The GSP algorithm (Srikant and Agrawal [1996]) solves the sequence mining

problem based on an apriori algorithm (Agrawal and Srikant [1994]) with a num-

ber of generalizations.

Using GSP, we can discover patterns with a predefined minimum support,

define time constraints within which adjacent events can be considered elements of

the same pattern, and specify a time window for events from different modalities

to be considered as synchronous events.

GSP generalizes the basic definition of frequent sequential pattern by intro-

ducing two relaxation schemes:

• Sliding window: This generalization allows the items of a pattern to be

contained in the union of the items belonging to different time-series. Ac-

cording to this relaxation, a sequence s =< sisj > — where si and sj can be

contained in different time-series — is allowed to be counted as a support

for a subsequence c as long as the time difference between si and sj is less

than the user specified window-size, maxwin.

• Time constraints: This relaxation specifies the time gap between consecu-

tive events from one or two different time-series. Given a user-defined gap,

maxgap, a data-sequence supports the pattern of two consecutive events

< sisi+1 > if and only if si and si+1 occur in the sequence of the specified

order and with a time difference lower than the specified maxgap.

Based on these generalizations, GSP main distinctions from other standard

apriori algorithms are in terms of candidate generation and frequent pattern

68

3.2. SEQUENCE MINING

generation. Similar to the basic apriori generation procedure, candidates of length

k are generated based on frequent subsequences of length k− 1. GSP follows the

same basic apriori principle; if a sequential pattern is frequent then its contiguous

subsequences are also frequent. Given a sequence s =< s1, s2, ..., sn >, and a

subsequence c, c is a contiguous subsequence of s if any of the following conditions

hold:

1. s is obtained from s by dropping an item from the first (s1) or last (sn)

element.

2. c is derived from s by dropping an item from an element si with two or

more items.

3. There exist a sequence q such that q is a contiguous subsequence of s and

c is a contiguous subsequence of q.

The algorithm generates the candidates by joining two sequence sets of length

k − 1 that have the same contiguous subsequences. Elements in the resulting

set that have a contiguous subsequence whose support count is less than a user-

defined threshold are eliminated.

The GSP algorithm is used in this dissertation for mining sequences since

it allows more generalized frequent patterns to be found by exploring different

maxgap. By using maxwin, we can discover simultaneous events from two different

modalities.

The maxwin defines the threshold under which events from two different

modalities can be considered as simultaneous events. The maxgap parameter

is used to set up the time gap between two events to be considered as belonging

to the same pattern. This parameter has a great impact on the number of fre-

quent patterns that can be extracted. Correctly tuning this parameter has a large

impact on the informativeness of the resulted patterns, especially when mining

multimodal sequences (Martinez and Yannakakis [2011]).

69

3. TOOLS

3.3 Summary

This chapter provides a high-level description of the literature on several AI

techniques. In some of the particular experiments these algorithms are used in

their naive form, whereas in other experiments slightly modified versions are used.

Those algorithms are described in detail in the relevant chapters, referring to the

descriptions given in this chapter.

More specifically, Grammatical Evolution is used in Chapter 5 for generating

game content for our testbed game. Genetic Algorithms are used for evolving

ANN weights in Chapter 7 for constructing accurate models of player experience

and preference learning is used as a training method. The inputs to the models

are different types of features, some extracted using sequence mining techniques

(see Chapter 8). Feature selection methods are employed to choose the minimum

subset of relevant features for modeling player experience (see Chapter 7).

70

4

The Testbed Game

4.1 Platform Games

Platform games (or platformers), originated in the early 1980s, are an extremely

popular genre of video games in which the player avatar has to jump on plat-

forms and overcome obstacles. Jumping in platform games constitutes an es-

sential gameplay mechanic, and it is sometimes coupled with other jump-related

mechanics such as swinging or bouncing. Platformers may also include other

forms of movement such as floating, walking, or running as well as other types

of mechanics such as shooting and transporting items. The ultimate aim of a

platform game is to reach the end of each level. Sometimes other auxiliary goals

are presented such as collecting as many items as possible or killing enemies.

The early examples of platformers exhibit a static view of a 2D play field due

to technical limitations. Space Panic (Universal [1980]) (Figure 4.1.(a)), which

inspired many other games, is cited as the first platform game featuring a single

screen with a static background where the player has to climb ladders, dig holes

and kill enemies.

Donkey Kong (Nintendo EAD et al. [1981]) (Figure 4.1.(b)) was the first

platform game offering the core mechanic of platformers; jumping. The game

was released by Nintendo in 1981, and introduced Mario for the first time, the

main character of the very popular game Mario Bros. The game was composed

of different levels of vertical challenge presented in one screen each.

71

4. THE TESTBED GAME

(a) (b)

Figure 4.1: Two examples of 2D platform games. Sub-figures (a) presents a
level in Space Panic, the first platform game (adopted from wikipedia.org). Sub-
figures (b) presents a level from the platform game Donkey Kong (adopted from
arcade-museum.com).

Platform games witnessed a wide spread and increasing popularity with the

production of games featuring scrolling levels that span several screens in 1982.

The same year witnessed an exponential increase in the platform game mar-

ket when games started being available for home consoles. Several games using

scrolling graphics have been developed starting from Jump Bug (Hoei Corpora-

tion [1981]), a platform shooter game, to Pitfall (Activision [1982]), the second

best-selling game made for the Atari 2600 after Pac-Man (Namco [1980]), and

Impossible Mission (Epyx [1984]) which was the inspiration for such games as

Prince of Persia (Brøderbund et al. [1989]).

In 1985, the development of new systems gave platform games a boost in

the market. Nintendo released its platform game Super Mario Bros (Nintendo

Creative Department [1985]) which sold over 40 million copies. With the contin-

uous advancement of console systems, new generations of platform games with

more advanced features and options were produced. Some very successful plat-

72

4.1. PLATFORM GAMES

(a) A level from the platform game Commander Keen (adopted from commander-keen.com).

(b) A level from the platform game Sonic & Knuckles (adopted from soniccenter.org).

Figure 4.2: Two examples of 2D platform games.

form games were released, including Commander Keen (id Software and David

A. Palmer Productions [1990]), Earthworm Jim (Shiny Entertainment and Play-

mates Interactive Entertainment [1994]), Sonic 3 & Knuckles (Sonic Team and

Sega Technical Institute [1994]), Super Mario World 2: Yoshi’s Island (Nintendo

EAD [1995]) and Rayman (Ubisoft et al. [1995]). Example levels from two games

are presented in Figure 4.2.

In 1994, a new sub-genre of platform game emerged with games featuring

levels in 2.5D. In these games, the environment is rendered in 3D but retained

2D gameplay. Few games for this era have been released such as Klonoa 2:

Lunatea’s Veil (Namco [2001]) and Viewtiful Joe (Clover Studio [2003]).

Platform games entered its golden age with the invention of 3D platformers

with new words in 3D and three dimensions gameplay. Alpha Waves (Infogrames

[1990]) is considered the earliest example of 3D platformers released in 1990.

Several successful games have been released including Jumping Flash! (Exact Co.

Ltd. [1995]), Bug! (Realtime Associates [1995]), Fade to Black (Delphine Software

Internationals [1995]), Super Mario 64 (Nintendo EAD [1996]), Rayman 2: The

73

4. THE TESTBED GAME

Great Escape (Ubisoft Montpellier et al. [1999]), Jak and Daxter: The Precursor

Legacy (Naughty Dog [2001]), Spyro the Dragon series (Insomniac Games [1998]),

Super Mario Galaxy (Nintendo EAD [2007]), Mirror’s Edge (EA Digital Illusions

CE [2008]) and Sonic Generations (Sonic Team and Dimps [2011]).

The work presented in this dissertation focuses on 2D platformer games do-

main, and in particular, Super Mario Bros. Platformers are well suited for the

research carried on in this dissertation due to their popularity, rich level design

and relatively simple game mechanics.

4.2 Super Mario Bros

Super Mario Bros (Nintendo Creative Department [1985]) is a 2D platform game

developed by Nintendo and released in 1985. The main character in the game is

Mario who is controlled by the player. The game also offers two-player coopera-

tive play by allowing another player to control Mario’s brother Luigi. The game

held the record of the best selling video game until 2003 by having sold more

than 40.23 million copies worldwide, and was the first in a series of many other

successful Nintendo’s games.

The game takes place in the Mushroom Kingdom, the objective is to survive

through a number of 2D levels (there were eight different worlds with four levels

each designed for the original Super Mario Bros) to save Princess Peach Toadstool

who has been captured by Bowser, the king of Koopas.

The game features the appearance of enemies, obstacles and rewarding items.

The gameplay in Super Mario Bros consists in moving Mario through the levels.

The game provides relatively simple game mechanics; Mario has only four move-

ment mechanics: walking, running, jumping, and ducking. The main goal of each

level is to reach the flag pole at the end of the level, which means traversing it from

left to right jumping over gaps (gaps are the pits in the game in which Mario may

falls and die) and avoiding enemies. Enemies include Goombas, Koopas, Bullet

Bills, Koopa Paratroopas and Piranha Plants, each with different strength, at-

tack and defeat methods. Goombas, which look like walking mushrooms, are the

physically weakest enemies and can be killed by stomping over them. Koopas,

which look like turtles, come next in strength after goombas, they cower in their

74

4.2. SUPER MARIO BROS

shell when jumped on, the shell can then be kicked by Mario to kill other ene-

mies. Koopa paratroopas are koopas with wings which they loose when they are

attacked in the air, they exhibit a variety of flying patterns depending on their

color; red koopas fly up and down or side to side in a set path while green ones

bounce in the player’s direction. Piranha plants are found in pipes, they attack

by biting Mario and they can be defeated by shooting them or kicking a shell at

them. Finally, bullet bills are shot out of bill blasters (cannons) and they can be

defeated by stomping on them. Table 4.1 presents the different types of elements

in SMB and their graphical representation.

Several rewarding items are scattered around the levels. Coins are placed

around the level for Mario to collect; Blocks are marked with a question mark,

and they reveal coins, Super Mushroom or Fire Flower when hit from below by

Mario; Brick Blocks on the other hand, may hide an item or they can be empty,

and they are breakable when hit by Mario from below if he is in Super Mario

mode. Super mushrooms make Mario grow to Super Mario while fire flowers

turn Mario into Fire Mario. While in super mode, Mario can survive one hit by

enemies as well as being able to smash bricks. The fire mode allows Mario to

shoot fireballs at enemies giving him the ability to attack remotely.

At the beginning of each game, Mario is given a certain number of lives and

he may gain additional lives by picking up special items or performing specific

actions. Mario loses a life when he is touched by an enemy in small mode, falls

down a gap or runs out of time.

The ultimate aim of each level is to reach the flag pole at the end of it. Aux-

iliary objectives include collecting as many as possible of the coins, clearing the

level as fast as possible, and killing as many enemies as possible. A comprehen-

sive list of the different types of items and enemies is presented in Table 4.1. The

graphical icons presented in the table are adopted from a public domain clone

of the game, named Infinite Mario Bros, which is described in the next section.

Two complete levels from the original Super Mario Bros game are presented in

Figure 4.3.

Only some of the main rules and gameplay mechanics of Super Mario Bros are

described above. In fact, no textual description can fully convey the full gameplay

of a particular game. The game is still very popular and playable more than two

75

4. THE TESTBED GAME

(a)

(b)

Figure 4.3: Two example levels of the original Super Mario Bros game (adopted
from ian-albert.com).

Table 4.1: Some elements that appear in Super Mario Bros and their graphical
representation.

Element Graphical Rep. Element Graphical Rep.

Mario Bullet bill

Super Mario Bill blaster

Fire Mario Piranha plant

Goomba Coin

Koopa Block

Koopatrols Brick
Super Mushroom Fire flower

decades after its release.

We chose Super Mario Bros game as the testbed for our research. Given our

aims, this game provides unique properties. Firstly, the game is a commercial-

standard platform game which adds to the generality and the scalability of our

approach; secondly, the game is very popular and well known having a large

audience of players which ease any online data collection experiments, thirdly;

the game laid the groundwork and closely resembled many other 2D platform

games and finally, an open source clone of the game is available.

76

4.3. INFINITE MARIO BROS

Figure 4.4: Snapshot from Infinite Mario Bros, showing Mario standing on hori-
zontally placed blocks surrounded by different types of enemies.

4.3 Infinite Mario Bros

Markus Persson has published a public domain clone of Nintendo’s classic plat-

form game Super Mario Bros. The clone, named Infinite Mario Bros. (IMB),

features the art assets and general game mechanics of Super Mario Bros. but

differs in level construction. Infinite Mario Bros is playable on the web, where

Java source code is also available1. While implementing most features of Super

Mario Bros, the standout feature of Infinite Mario Bros is the automatic genera-

tion of levels. Every time a new game is started, levels are randomly generated

by traversing a fixed width and adding features according to certain heuristics as

specified by placement parameters. Table 4.1 presents the main elements of IMB.

In the experiments conducted in this dissertation we employed modified ver-

sions of IMB. In two modified versions we concentrate on a number of selected

game level parameters that affect game experience, while in the third version,

we exploited the content space with minimum restriction imposed on the content

generator. Figure 4.4 presents a snapshot from a level generated by a modified

version of IMB, Mario appears standing on horizontally placed blocks surrounded

by koopas and goombas.

Infinite Mario Bros, along with its modifications, have been used relatively

extensively as a testbed for research and as a testing environment for various

AI techniques in e.g. reinforcement learning of proficient game-playing strategies

(Togelius et al. [2009]), imitation of human playing styles (J. Togelius and Shake

1http://www.mojang.com/notch/mario/

77

4. THE TESTBED GAME

[2011]; Ortega et al. [2012]), player experience modelling (Pedersen et al. [2010];

Shaker et al. [2010]), procedural content generation (Mawhorter and Mateas

[2010]; Shaker et al. [2010]; Sorenson et al. [2011]; Sorenson and Pasquier [2010]),

and as a testing environment for various AI techniques (Bojarski and Congdon

[2010]; Perez et al. [2011]). The game is also being used as a benchmark for the

Mario AI Championship1 (Karakovskiy and Togelius [2012]; Shaker et al. [2011])

and as a believability assessment tool (J. Togelius and Shake [2011]).

Infinite Mario Bros has been chosen because of the popularity of Super Mario

Bros, the high similarity between the two, the availability of an open source clone

of the game which makes development and data collection easier and because of

the 2D design and game mechanics it provides which are similar to other games

from the same genre.

The original Infinite Mario Bros source code has been heavily modified for the

purpose of conducting the experiments and analysis presented in this dissertation.

In Chapter 5, we describe the original IMB generator and the different modified

versions derived from it.

1http://www.marioai.org/

78

5

Content Generators

The design of game content is a creative activity that consumes a lot of resources

in terms of time and money. Consequently, there has been increasing interest

recently in automatic generation of game content with or without human designer

interaction. Using these computational techniques, it could be not only possible

to reduce development cost, but also to generate endless variations of content

that provides a unique experience with every replay. The content could even be

adapted to the preferences and skills of individual players.

In this chapter, we explore three different techniques for content generation

for our testbed game, Infinite Mario Bros. The content space generated by each

of these generators is analyzed and compared to the other generators’ expressive

space in Chapter 6. These generators are further used in the later chapters for the

purpose of player experience modeling (Chapter 7), data collection (Chapter 8),

and adapting game content (Chapter 10).

We first present the Notch Generator (Section 5.2) which is a heuristics-based

generator that comes originally with IMB. Section 5.3 discusses the Parametrized

Generator which is a heavily modified parametrized version of Notch generator,

and finally, in Section 5.4, the Grammatical Evolution Generator is described for

which grammatical evolution is employed to explore the content space generated

according to a design grammar that specifies the rules of content generation.

79

5. CONTENT GENERATORS

(a) Flat platform (b) Hills (c) Gap (d) Stairs (e) Bill blaster

(f) Piranha
plant

(g) Koopa (h) Goomba (i) Boxes (j) Coins

Figure 5.1: The geometric representation of the different chunks used for con-
structing Infinite Mario Bros levels.

5.1 Level Representation

The internal representation of the levels in Infinite Mario Bros is a two-dimensional

array of objects, such as brick blocks, coins and enemies. In “small” state, Mario

is one block wide and one block high.

The levels are generated by placing a number of chunks in the two-dimensional

level map. The list of chunks that has been considered in this work includes plat-

forms, gaps, stairs, piranha plants, bill blasters, boxes (blocks and brick blocks),

coins, goombas and koopas. Each of these chunks has a distinguishable geometry

and properties. Figure 5.1 presents the different chunks that collectively consti-

tute a level. We assume that the level initially contains a flat platform that spans

the whole x-axis. This assumption ensures that all chunks in the resulted design

will be connected and explains the need of defining gaps as one of the chunks.

Different approaches can be followed to place the chunks into the 2D map.

In the following sections we will describe the three different approaches utilized

for the work presented in this dissertation. The three content generators exhibit

a wide range of variation in the methodology followed for level constructions,

hence, a number of disparate experiments have been conducted to quantitatively

evaluate the content generated by each generator.

80

5.2. NOTCH LEVEL GENERATOR

5.2 Notch Level Generator

The Notch level generator is the one written by Markus Persson and comes origi-

nally with the game. It constructs levels by incrementally placing different chunks

according to certain heuristics. The level generation can be parameterized by

defining the level of difficulty which affects the number of generated platforms,

hills, gaps, bill blasters, piranha plants, enemies (koopas and goombas) and the

type of enemies. The generator constructs endless variation of levels by using a

different seed whenever a new game is started.

The level is constructed by traversing the level map from left to right and

adding chunks. While the level is constructed and whenever a new chunk is to be

placed, a random number is generated and compared with predefined heuristics

defined for each chunk according to the level of difficulty specified. As a result of

this comparison, the type of the chunk to be created is determined. The chunk’s

specific parameters, such as the width of a gap or the height of a platform, are

controlled by another set of random numbers initialized by the seed. Reward

items such as coins and blocks are added to each generated chunk according to

the level seed and difficulty. Figure 5.2 presents two levels constructed by the

Notch generator with varying seeds and difficulties. Levels 5.2.(a) and 5.2. (b)

are generated with different seeds and a difficulty = 0, while level 5.2. (c) is

constructed using a difficulty value that equals three. As can be seen, different

seeds result in levels with varying structure even when the same level of difficulty

is used. Levels with low difficulty are characterized by a low number of enemies

—most of them being goombas, the weakest form of enemies—, a relatively high

number of rewarding items, and no gaps. Levels constructed with high difficulty

values, on the other hand, exhibit the presence of more challenging elements

such as larger number of gaps of different width and more enemies with higher

strength. These levels also present a small amount of rewarding items making

them more challenging and harder to win.

81

5. CONTENT GENERATORS

(a) A level from IMB with a level difficulty = 0.

(b) Another level from IMB with a different seed and a level difficulty = 0.

(c) A level from IMB with a level difficulty = 3

Figure 5.2: Example levels from Infinite Mario Bros generated by the original
Notch generator with different seeds and difficulty values.

5.3 Parameterized Level Generator

The parameterized generator is a heavily modified version of the original Notch

level generator. The level generator of the game has been modified to generate

content according to a number of predefined content features.

Throughout this dissertation, the term Controllable features is frequently used

to refer to a set of chosen content features as these features are used to control

the generation of content and are varied to make sure several variants of the game

are played and compared for the purpose of player experience modeling.

Content features have been chosen in a way that permits meaningful explo-

ration of the search space and possibilities of finding interestingly new design

parameter configurations. The selection of particular controllable features was

done with the intent to cover the features that have the most impact on player

experience and which are common to most, if not all, platform games to elaborate

on the generality of the proposed methodology.

82

5.3. PARAMETERIZED LEVEL GENERATOR

For the work presented in this dissertation, we survey two versions of the

parameterized generator. In the first version, the generator is used to explore the

content space specified by four content features, while in the second version, a

larger set of six content features has been employed to control the content space.

5.3.1 Content Features

Two versions of the parameterized generator have been employed for the work

presented in this dissertation.

5.3.1.1 Basic Parameterized Generator

In the first version, the Notch generator has been modified to generate content

according to four content parameters:

• The number of gaps in the level, G.

• The average width of gaps, Ḡw.

• The gaps entropy which measures the number of gaps appearing in a number

of E equally-spaced segments of the level. The entropy of gap-placements

Ge is calculated and normalized into [0,1] via the equation:

Ge =

[
− 1

logE

E∑
i=1

gi
G
log
(gi
G

)]
(5.1)

where gi is the number of gaps placed in segment i. If the gaps are placed

in all E segments uniformly then gi = 1 for all E segments and Hg will be

1; if all gaps are placed in one level segment, then gi/G = 1 and Hg is zero.

• Direction switch Sw. This parameter defines the percentage of the level

played in the left direction. If this parameter is set to zero, this means no

direction switch and the player needs to traverse the level from left to right

in order to reach the end of the level, as in the original Super Mario Bros. If

Sw > 0 the level direction will be mirrored at certain switch points, forcing

the player to move in the opposite direction until reaching the end of the

level or the next switch.

83

5. CONTENT GENERATORS

These features were also presented in the Notch generator; however, they have

been control by heuristics. Our modifications include constraining their genera-

tion, and hence, imposing various changes in the level generation mechanism.

Level construction has been done by assigning low and high values for each of

these four content features and exploring all possible combinations of the resulting

states.

5.3.1.2 Advanced Parameterized Generator

Another version of the parameterized generated has been investigated for the

experiments conducted in this dissertation. In this version, six content features

have been explored permitting more control and variation in the level design.

The first two parameters are the same one used in the previous version of the

parameterized generator due to the important role they play in platform game

level design and because they have a great impact on player experience. The full

list of parameters includes:

• The number of gaps in the level, G;

• The average width of gaps, Ḡw.

• The number of enemies, E. This parameter controls the number of Goom-

bas and Koopas scattered around the level, affecting the level difficulty.

• Enemies placement, Ep. The way enemies are placed around the level is

determined by three probabilities which sum to one.

– Around horizontal boxes (blocks and/or bricks), Px: Enemies are

placed on or under a set of horizontal boxes (a number of blocks placed

horizontally without connection to the ground).

– Around gaps, Pg: Enemies are placed within a close distance to the

edge of a gap.

– Random placement, Pr: Enemies are placed on a flat space on the

ground.

84

5.3. PARAMETERIZED LEVEL GENERATOR

(a) (b) (c)

Figure 5.3: Enemies placement using different probabilities: high probability is
given to placement around horizontal boxes, Pb (a), around gaps, Pg (b), and to
random placement, Pr (c).

Figure 5.3 illustrates positioned enemies by giving different values for Pb,

Pg and Pr. Figure 5.3.(a) shows enemies placed by setting Pb to 80%.

Figure 5.3.(b) illustrates the result of setting Pg to 80%, and Figure 5.3.(c)

is the result of Pr = 80%.

In practice, this feature takes one of the three values 0, 1 or 2 specifying

which of these probabilities should be assigned the highest value. For ex-

ample, if Ep is 1, then the highest probability is given to Pg and a level is

generated with Pz = 10%, Pg = 80% and Pr = 10%.

• The number of powerups, Nw: This includes super mushrooms and fire

flowers that are placed hidden in boxes for Mario to collect and upgrade his

state from small to super or from super to fire.

• The number of boxes, B. We define one variable to specify the number of

the two different types of boxes that exist in Super Mario; blocks and bricks.

Blocks usually contain hidden elements such as coins or powerups. Bricks

may hide a coin, a powerup or simply be empty.

Two states (low and high) are set for each of the controllable parameters

above except for enemies placement which has been assigned three different states

allowing more control over the difficulty and diversity of the generated levels. An

example level generated by one possible combination of the controllable features

is presented in Fig. 5.4. Note that these two states are not the only possible

values that can be assigned for these features, and more variations of content can

be generated by increasing the number of states. However, for the work presented

85

5. CONTENT GENERATORS

Figure 5.4: An example level generated by the parametrized generator using six
content features.

in this dissertation, we are interested in generating the most distinct levels and

therefore only two states have been employed.

The generation of levels with specified values for all parameters is guaranteed

by the generator; while generating the levels, and whenever an item is to be

added, these parameters are checked and the item is placed accordingly.

5.4 Grammatical Evolutionary Generator

Grammatical evolution has been adopted to generate content for SMB because of

the advantages it provides in the design domain over more traditional optimiza-

tion methods (O’Neill et al. [2010]): it maintains a simple way of describing the

structure of the levels; it enables an open-ended structure where the design and

model size are not known a priori; it enables the design of aesthetically pleasing

levels by exploring a wide space of possibilities since the exploratory process in

not constrained or biased by imagination or known solutions; it allows an easy

incorporation of domain knowledge through its underlying grammatical repre-

sentation permitting level designers to maintain greater control of the output

and makes it possible to easily generalize to different types of games and finally,

GE, to the best of author’s knowledge, has not been exploited for game content

creation previously.

As mentioned in the description of GE in Section 3.1.1.3, GE specifies the

syntax of possible solutions through a context-free grammar. In the following

section, we present the design grammar used by GE to specify the structure of

IMB levels.

86

5.4. GRAMMATICAL EVOLUTIONARY GENERATOR

5.4.1 Design Grammar

The process in which levels are constructed is represented in the input grammar

that GE uses in the construction of a solution (in this case a level design). Sev-

eral methods for specifying the design grammar have been discussed during the

development process, however, the grammar specified by GE is of context-free

nature. This means that it is not possible to construct the levels by gradually

scanning the level maps without introducing repeated patterns. To accommodate

for this requirement, and to keep the grammar as simple as possible to ease the

designer’s interaction with the system; the solution proposed, inspired by the

work of (Morel et al. [2005]), is to add a chunk to the 2D level array regardless of

the positioning of the other chunks. With this solution, however, arise a number

of conflicts in level design that should be resolved. Section 5.4.2 discusses this

issue and the proposed solution in details.

A design grammar has been specified that takes into account the different

chunks that collectively constitute a level. The list of chunks that has been

considered includes: platforms, gaps, tubes, bill blasters, boxes, coins, and ene-

mies (refer to Figure 5.1). In order to allow more variations in the design, we

distinguish between two types of platforms; obstruct-platforms which block the

path and enforce the player to perform a jump action (Figure 5.1.(a)), and hills

that give the player the option to either pass through or jump over them (Fig-

ure 5.1.(b)). Platforms and hills of different types have been considered such as

a blank platform/hill, a platform/hill with a bill blaster, and a platform/hill with

a piranha plant.

The early version of the grammar that has been designed is presented in

Figure 5.5. A level is constructed by placing a number of chunks each assigned

with two or more properties, the x and y parameters specify the coordinates of the

chunk starting point position in the 2D level array and are limited to the ranges

[5,95] and [3,5], respectively. These ranges are limited by the dimension of the

level map. The first and last five blocks in the x dimension are reserved for the

starting platform and the ending gate, while the y values have been constrained

in a way that insures playability (the existence of a path from the start to the end

position) by placing all items in areas reachable by Mario by performing jumps.

87

5. CONTENT GENERATORS

<chunks> ::= <chunk> |<chunk> <chunks>

<chunk> ::= gap(<x>,<y>,<wg>)

| platform(<x>,<y>,<w>)

| hill(<x>,<y>,<w>)

| blaster_hill(<x>,<y>,<h>)

| tube_hill(<x>,<y>,<h>)

| coin(<x>,<y>,<wc>)

| blaster(<x>,<y>,<h>)

| tube(<x>,<y>,<h>)

| boxes(<x>,<y>,<wb>)

| enemy(<x>,<y>,<we>)

<x> ::= [5..95]

<y> ::= [3..5]

<wg> ::= [2..5]

<w> ::= [3..15]

<wc> ::= [2..6]

<wb> ::= [2..7]

<we> ::= [1..7]

<h> ::= [3..4]

Figure 5.5: The first version of the grammar employed to specify the design of
IMB levels.

The wg parameter specifies the width of gaps that insures the ability to reach the

other edge, w stands for the width of a platform or a hill, wb defines the number

of boxes, we determines the number of enemies, wc defines the number of coins,

and h indicates the height of a tube of the piranha plant or the height of a bill

blaster. This height is also constrained to the range [3,4] assuring the possibility

of jumping over tubes and bill blasters.

An example phenotype that results from the grammar in Figure 5.5 can be

hill(10, 4, 4)platform(74, 3, 4)tube(62, 4, 3). Because of the context-free nature of

the grammar, the chunks generated in the phenotype are not necessarily ordered

in x or y dimensions. Note that, as discussed in section 3.1.1.3, the genotype to

phenotype mapping is a deterministic process guided by the grammar specified.

This also includes the assignment of the parameters for each chunk since the

parameters are also specified as part of the grammar.

An example of a resulting level is depicted in Figure 5.6. Visualizing samples

of the outputs and thoroughly examining the design grammar reveal limitations

88

5.4. GRAMMATICAL EVOLUTIONARY GENERATOR

Figure 5.6: An example level generated by the first version of the grammar. The
design illustrates a number of limitations in the grammar such as the placement
of enemies and the generation of boxes.

in the design exposed by the grammar. The definition of gaps, piranha plants, and

bill blasters in the grammar only specifies the width of the gaps and the height

of the tubes and blasters. As a result of this definition, each one of these ele-

ments will be generated with equal-width platforms surrounding it (Figure 5.6).

According to game designers, the width of the platform before and after these

elements plays an important role in the gameplay experience and the level of

difficulty. For example, the width of platform before a gap affects the difficulty of

the game since speeding up is sometimes required to launch a wide jump to over-

come a wide gap. Therefore, this parameter has been split into two parameters

specifying the width of the platform before wbefore and after wafter each of these

chunks. Introducing these two parameters also accommodates for more control

and variation in the design.

The other limitations concern the generation of boxes and enemies. The

definition proposed in the grammar results in generation of groups of only bricks

or only blocks. In IMB boxes are usually presented as groups of bricks and blocks

collectively. For this to be allowed a refinement in the grammar has been made so

that whenever a box is to be placed, a decision has to be made regarding the type

of the generated box, the box can be either an empty brick, a brick containing

a coin, a block with a powerup or a block with a coin. In order to maintain

the grouping feature, boxes are generated in combination of a minimum of two

boxes and a maximum of six, as listed by the superscripts depicted in Figure 5.7.

The same argument holds for enemies and a similar solution has been adopted to

allow for different types of enemies (koopas and goombas) to be introduced.

The final limitation relates to the placement of enemies. In the first version of

the grammar, enemies are spawned in groups. To make sure enemies are always

89

5. CONTENT GENERATORS

placed on a platform, whenever an enemy is generated, an associated platform

is created on which the enemy is placed. This forces groups of enemies of the

same type to be always placed on a separate platform (Figure 5.6). To support

more variabilities, the grammar has been improved to allow enemies of different

types to be placed on any generated platform (around gaps, tubes, etc.). This

has been accomplished by (1) constructing the physical structure of the level, (2)

calculating the possible positions on which an enemy can be placed (this includes

all positions where a platform has been generated) and (3) placing each generated

enemy in one of the possible positions. The place on which the enemy is placed

is determined by generating a random number by the grammar and mapping

it on the list of possible positions after constructing the main structure of the

level. This place has been defined as a parameter in the grammar to maintain

the deterministic genotype to phenotype mapping.

The final version of the grammar that has been created to overcome all the

limitations discussed can be seen in Figure 5.7.

5.4.2 Conflict Resolution

There are a number of conflicts inherent within the design grammar. According

to the design approach, each chunk generated can be assigned any x and y values

from the ranges [5,95] and [3,5], respectively, depending on the genotype without

any restrictions. This means that it is very likely that there will be an over-

lap between the coordinates of the generated chunks. For example: hill(65, 4, 5)

hill(25, 4, 4) blaster hill(67, 4, 4, 4, 3) coin(22, 4, 6) platform(61, 4, 4) is a pheno-

type that has been generated by the grammar and contains a number of conflicts:

e.g., hill(65, 4, 5) and blaster hill(67, 4, 4, 4, 3) have been assigned the same y

value, and overlapping x values; another conflict occurs between hill(25, 4, 4) and

coin(22, 4, 6); as the two chunks also overlap on their x− axes.
To resolve these conflicts, a priority value has been manually defined and as-

signed to each of the chunks. Hills with bill blasters or piranha plants are given

the highest priority followed by blank hills, platforms with enemies (bill blasters

or piranha plants) come next then blank platforms and finally come coins and

blocks with the lowest priority. The chunks in the generated phenotype are then

90

5.4. GRAMMATICAL EVOLUTIONARY GENERATOR

<level> ::= <chunks> <enemy>

<chunks> ::= <chunk> |<chunk> <chunks>

<chunk> ::= gap(<x>,<y>, <wg>,<wbefore>,<wafter>)

| platform(<x>,<y>,<w>)

| hill(<x>,<y>,<w>)

| blaster_hill(<x>,<y>,<h>,<wbefore>,<wafter>)

| tube_hill(<x>,<y>,<h>,<wbefore>,<wafter>)

| coin(<x>,<y>,<wc>)

| blaster(<x>,<y>,<h>,<wbefore>,<wafter>)

| tube(<x>,<y>,<h>,<wbefore>,<wafter>)

| <boxes>

<boxes> ::= <box_type> (<x>,<y>)2 | ...

| <box_type> (<x>,<y>)6

<box_type> ::= blockcoin | blockpowerup

| brickcoin | brickempty

<enemy> ::= (koopa | goomba)(<pos>) 2 | ...

| (koopa | goomba)(<pos>) 10

<x> ::= [5..95]

<y> ::= [3..5]

<wg> ::= [2..5]

<wbefore> ::= [2..5]

<wafter> ::= [2..5]

<w> ::= [2..6]

<wc> ::= [2..6]

<h> ::= [3..4]

<pos> ::= [0..100000]

Figure 5.7: The final version of the grammar employed to specify the design of
the level. The superscripts (2, 6 and 10) are shortcuts specifying the number of
repetition.

91

5. CONTENT GENERATORS

arranged in descending order taking into account the chunk priority, coordinates

and type. The resulted ordered phenotype is then scanned from left to right.

While scanning, a conflict check is performed between the current chunk and

the rest of the chunks coming later in the ordered list. Whenever two chunks

overlap, the one with the higher priority value is maintained and the other is

removed. Nevertheless, to allow more diversity, some of the chunks are allowed

to overlap such as hills of different height (Figure 5.1. (b)), and coins or boxes

with hills (hills here refer to all types of hills; blaster-hills, tube-hills and flat

hills). Without this refinement, most levels would look rather flat and uninter-

esting. In the above example, priority ordering of the chunks gives the ordered

phenotype: blaster hill(67, 4, 4, 4, 3) hill(25, 4, 4) hill(65, 4, 5) platform(61, 4, 4)

coin(22, 4, 6). After eliminating the conflicting chunks, the resulting phenotype

becomes: blaster hill(67, 4, 4, 4, 3) hill(25, 4, 4) platform(61, 4, 4) coin(22, 4, 6).

Note that both blaster hill(67, 4, 4, 4, 3) and platform(61, 4, 4) have been main-

tained although they have overlapping coordinates. This is because the two

chunks are of different types that are allowed to overlap. The same argument

holds for hill(25, 4, 4) and coin(22, 4, 6).

5.5 Summary

This chapter explores different approaches for generating content for the 2D plat-

form game Infinite Mario Bros. The aim is to place the level building blocks,

called chunks, into a two-dimensional level map. Three content generators have

been investigated each with different parameters and generation methods. In the

first generator, called Notch Generator (Section 5.2), a level is constructed ac-

cording to a set of heuristics, these heuristics are parameterized by a random seed

and a desired level of difficulty. The presence of randomness allows this genera-

tor to generate endless variation of content with each reply. The Parameterized

Generator is a modified version of Notch generator. This generator constructs

levels by specifying the values of a set of parameters, called content features.

These features control the number and/or placement of certain content elements.

Parameterizing the content space allows us to analyze the impact of certain con-

tent features on player experience and generate content according to user-defined

92

5.5. SUMMARY

preferences.

The third generator is an evolutionary-based generator in which grammatical

evolution is utilized to evolve the design of the levels. The structure of the levels

has been defined in a grammar that GE uses to construct levels. This chapter

presented the process followed to implement the GE level generator.

Samples of each generator’s outputs are presented. However, the samples

don’t reflect the capability of each generator and the space of content the gen-

erator covers. Therefore, it is very important to evaluate the content generated

by each of these techniques and compare it against content generated by other

techniques. Because of the large amount of content that can be generated, it is

not humanly feasible to judge the results, and automatic evaluation becomes a

necessity. In the next chapter, a framework for comparing content generated by

different generators is presented. A number of expressivity measures are defined

to test the generator’s capabilities and the space of content the generator’s output

covers.

93

6

Expressivity Analysis

In most published papers on PCG, the focus is on the system design and imple-

mentation, and little if any emphasis is given to analyzing the space of possible

content the generators can produce. While samples of the systems’ output are

sometimes presented, few studies include meaningful statistical measures of the

systems’ performance.

Analyzing the expressive range —the space of content a generator can cover—

of a generator provides an important basis on which the generated content can be

evaluated. Furthermore, defining the expressive range of a generator and being

able to visualize the space of content the generator covers constitute an important

step if we are to compare content generated by different generators. Exploring

vast spaces of content can also support creativity in several ways, including finding

artifacts and allowing a designer to swiftly visualize the results of a design idea.

More importantly, visualizing the content space highlights the limitations in the

generator’s capabilities, reveals its strength and weakness and enables an in-depth

analysis of the design choices and parameters and its impact on the generator’s

expressivity.

In this chapter, we present a framework for expressivity analysis for 2D plat-

form games genre. We apply this framework to analyze the content space and

investigate the expressive ranges of the three content generate presented in the

previous chapter, namely, the Notch generator, the parameterized generator and

the grammatical evolution generator.

94

6.1. EXPRESSIVITY ANALYSIS

6.1 Expressivity Analysis

According to Smith [2012], a generator’s expressive range “describes the variety

and style of levels that the system can generate and how sensitive that variety is to

the input parameters for the generator”. Smith and Whitehead [2010] suggested

a framework for analyzing the expressive range of a level generator by defining a

set of description metrics, collecting a large number of representative samples of

the generator’s capabilities, visualizing the generative space, and finally analyzing

the impact of the generator’s parameters on the generator’s expressivity.

The work presented in this chapter adopts this framework for analyzing the

expressive range of the three generators presented in Chapter 5 and extends it

through defining more informative aesthetic measures of the generators’ expres-

sivity and applying these measures to analyze and compare the expressive ranges

of three level generators of the same game. This examination allows us to ex-

plore the widest possible range of output for each generator and highlights the

differences among them.

6.2 Experimental Setup

To analyze the design and the expressiveness of the generators, several statistics

have been extracted from 1000 levels generated by each different generator. All

generated levels have the same height and 100 blocks width each.

The experimental parameters used to generate the levels are as follows:

• Notch generator: to allow a fair comparison between the levels generated by

this generator and the other levels constructed by the other two generators,

unique random seeds have been used to construct the levels and the difficulty

of all generated levels is set to 2.

• The parameterized generator: the advanced parameterized generator is used

to generate content since it allows more variation in level design than the

basic version of the generator. Levels are generated by assigning low and

high values for each content feature and exploring all possible combinations.

The low and high values assigned for each content feature are the following:

95

6. EXPRESSIVITY ANALYSIS

the number of gapes G = 2 or G = 6, the gaps width Ḡw = 5 or Ḡw = 15 if

two gaps were generated, and Ḡw = 15 or Ḡw = 25 if six gaps were gener-

ated. This distinction has been made in order to allow for more variations

and to ensure the possibility of jumping over the gaps. Note that Ḡw/G

defines the maximum width of a gap. The number of enemies can be either

E = 3 or E = 7; if enemies placement Ep = 0, the highest probability is

given to the placement of enemies around gaps and in this case, Eg = 80%;

if Ep = 1, enemies are placed around blocks with the highest probability

and Ex = 80% and finally, if Ep = 2, then the highest probability is given to

the random placement of enemies and in this case Er = 80%. The number

of powerups Nw = 0 or Nw = 1 and the number of boxes B = 0 or B = 15.

The generator is allowed to freely explore the other aspects of game content

such as the number of bill blasters and piranha plants, the number of coins,

the differences in platform height, and the number of hills.

• The grammatical evolution generator: the existing GEVA software (O’Neill

et al. [2008]) has been used as a core to implement the needed functionali-

ties. Since this is the first time GE was applied for platform game design,

we wanted to test the applicability of GE to construct IMB levels, a rela-

tively simple fitness function have been implemented. The main objective

of the fitness function is to allow for exploring the design space by creating

levels with an acceptable number of chunks permitting for rich design and

variability. Thus, the fitness function used is a weighted sum of two nor-

malized measures; the first one, fp, is the difference between the number

of chunks placed in the level and a predefined threshold that specifies the

maximum number of chunks that can be placed. The second, fc, is the

number of different conflicting chunks found in the design. Apparently, the

two fitness functions partially conflict since optimizing fp by placing more

chunks implicitly increases the chance of creating conflicting chunks (fc).

Figure 6.1 presents two sample levels generated by the second version of the

grammar. The GE parameters used to generate these levels are as follows:

10 generations with a population size of 100 individuals, the ramped half-

and-half initialization method. The maximum derivation tree depth was

96

6.3. EXPRESSIVITY MEASURES

(a)

(b)

Figure 6.1: Two example levels generated by the GE-generator using the second
version of the grammar.

set at 100, tournament selection of size 2, int-flip mutation with probability

0.1, one-point crossover with probability 0.7, and 3 maximum wraps were al-

lowed. The levels generated illustrate the method ability to construct levels

with varying structure; while level 6.1.(a) shows a rich design with many

elements and a relatively high number of overlapping items, level 6.1.(b)

display a rather flat structure containing less variation. Apparently, these

two levels suit different playing styles since they exhibit different levels of

challenge.

6.3 Expressivity Measures

To analyze the expressive range of each generator and compare the generators

with each other, 1000 levels have been constructed by each generator using the

experimental setups presented in the previous section.

6.3.1 Frequency Analysis

The frequency analysis is the simplest mean of presenting a generator’s capa-

bilities and it is usually performed to draw a general picture of the generator’s

expressive range. In this study, the statistical analysis of frequencies eight key

statistical features has been performed. Figure 6.2 presents a comparison be-

tween the average values of these features that have been extracted from the

97

6. EXPRESSIVITY ANALYSIS

data of all levels across all generators. These features are the numbers of coins,

boxes, powerups, enemies and gaps, the average gap width, as well as the enemy

placement. All feature values are normalized to the range [0,1] using max-min

normalization. Note that for comparison purposes, the values are normalized

across the content generated by all generators.

As can be seen from Figure 6.2, the GE generator appears to generate higher

values for all aspects of game content except for the number and width of gaps.

This might be the result of defining a rather high threshold for the total number

of chunks that can be placed in the level when designing the fitness function. The

generator appears to be biased towards generating a low number of gaps, a large

number of enemies and boxes and placing enemies around boxes. The standard

deviations are roughly comparable, though the GE generator appears to have less

variation in enemy numbers and placement.

The Notch generator and the parameterized generator, on the other hand,

appear to generate around the same number of boxes, coins, powerups, and gaps.

The main differences between these two generators are in the number of enemies

created and the width of gaps. A larger number of enemies (including piranha-

tubes and bill blasters) and wider gaps have been generated in the parameterized

levels compared with the ones generated by the random generator.

Note that, in the case of the parameterized generator, the average values

obtained for most of the features extracted are predictable. This is because the

content space generated by this generator is somehow constrained by the content

features defined. Therefore, it is important to define more abstract expressivity

measures that compare the generators’ expressive range along other dimensions

than the ones controlled.

The frequency analysis draws a picture of the generators’ capabilities but a

more in-depth analysis is required, if we are to examine the space of possibili-

ties the generators’ output covers and the density of the levels generated along

different aspects of expressivity measures. For these reasons, we have defined

several more complex level design metrics and employed them to evaluate the

generated levels. In the following sections, we describe these measures and the

results of applying them to examine the qualities of the generators’ output. Two

of these measures are similar to the ones proposed in Smith and Whitehead [2010].

98

6.3. EXPRESSIVITY MEASURES

Gaps Gaps width Enemies Enemies placement Powerups Cannon&Flowers Coins Boxes
0

0.2

0.4

0.6

0.8

1

1.2

GE−generator
Parametrized generator
Notch generator

Figure 6.2: Average and standard deviation values of eight statistical features
that have been extracted from all generated levels across all generators.

The rest of the measures introduced have been designed so that they provide a

meaningful assessment for game designers in terms of level design and gameplay

experience.

Since the expressivity of some of the generators have been constrained along

some aspect of content generation (such as the parameterized generator), we tried

to define expressivity measures that allow us to compare the generators’ outputs

along dimensions orthogonal to the ones directly controlled by the parameters.

In order to allow a fair comparison, the scores assigned for each measure

have been normalized to [0,1] along the levels generated by all generators using

standard max-min normalization.

6.3.2 Linearity

Linearity measures how flat a level is. In IMB, linearity is affected by the existence

of different types of hills along the level, as well as the differences in the platform

height. A highly non-linear level is one with frequent changes in the platform

height or one containing hills scattered around. A level with such characteristics

requires the player to perform more jumps, gives him the possibility to reach

higher places and/or presents more than one possible path to reach the end of the

level. Two levels of very high and low linearity values are depicted in Figure 6.3.

We follow the approach proposed by Smith and Whitehead [2010] to measure

99

6. EXPRESSIVITY ANALYSIS

(a) Example level with high linearity value, linearity = 0.99

(b) Example level with low linearity value, linearity = 0

Figure 6.3: Two example levels with different linearity values.

linearity by calculating the deviations from the linear regression for each level.

This has been performed by traversing the level from left to right and accumulat-

ing the values of the absolute differences between the center-point of the highest

platform or hill and the corresponding point on a predefined line. The results are

then uniformly normalized to [0,1].

Figure 6.4 presents the average values of the linearity measure obtained from

ranking the levels generated by all generators. The results show that the levels

generated by the GE generator are, on average, less linear than the ones generated

by Notch generator, which are in turn less linear than the ones generated by the

parameterized generator.

6.3.3 Density

We defined a density measure that ranks the levels according to the summed

density of segments. In IMB, hills of different height can be stacked on top of

each other allowing Mario to reach higher places and introducing new patterns

in the level design. The density is calculated by assigning a density value to each

point along the width of the level according to the number of platform stacked

at that point. The density of a level is the normalization of the sum of these

values over the width of the level. Figure 6.5 presents three levels having extreme

density values. Note that since normalization has been performed based on the

100

6.3. EXPRESSIVITY MEASURES

Linearity Density Leniency NCD
0

0.2

0.4

0.6

0.8

1

GE−generator
Parametrized generator
Notch generator

Figure 6.4: The average and standard deviation values for the expressivity mea-
sures for all generators.

density values obtained from all the levels generated, Figure 6.5.(c) is assigned

a density value equals to 1 because it has the maximum density value of all the

levels generated although it might be possible to manually generate level with

higher density.

The density measure taken together with the linearity measure give an indica-

tion of the distribution of hills along the level. A level with a high density value

can either contain hills scattered along the level or they can be stacked in one or

more segments. Figure 6.5.(b) and Figure 6.5.(c) present two example levels with

high density, yet having a very different distribution of hills and hence providing

a very different aesthetics quality that the player experience. The linearity values

assigned for these two levels, however, are 0.4 and 0.9 for the former and latter

level, respectively, indicating a wide range of differences in the structure of the

levels. The level with hills compressed in a small segment is assigned with a

higher linearity value than the one with hills spread along the level since linearity

takes into account only the highest platform at each position.

As can be seen from Figure 6.4, the GE-generator constructs levels with higher

density than the parameterized and Notch generator. It’s also worth noting that

all generators construct levels with low average density (less than 0.5).

101

6. EXPRESSIVITY ANALYSIS

(a) Example level with low density value, density = 0

(b) Example level with high density value, density = 0.85

(c) Example level with high density value, density = 1

Figure 6.5: Three example levels with different density values.

6.3.4 Leniency

We adopt a leniency measure, similar to the one proposed by Smith and White-

head [2010], to account for how tolerant the level is in terms of how easy it is for

the player to complete the level. To calculate leniency, we assign a lenience value

for different chunks as follows:

• Gaps: -0.5

• Average gap width: -1

• Enemies (goombas and koopas): -1

• Bill blasters and piranha plants: -0.5

• Powerups (mushrooms and fire flowers): +1

Different types of enemies are given different lenience values according to their

characteristics, the distinction has been made between moving and static enemies.

102

6.3. EXPRESSIVITY MEASURES

(a) Example level with high leniency value, leniency = 1

(b) Example level with low leniency value, leniency = 0

Figure 6.6: Two example levels of different leniency values.

The leniency of a level is the weighted sum of the leniency of each of the chunks

presented in the level. The leniency values for all generated levels are normalized

to [0,1]. Two levels with different leniency values are presented in Figure 6.6.

Note that despite the fact that the level presented in Figure 6.6.(a) contains four

enemies (two koopas, one bill blaster and one piranha plant), this level has been

assigned a very high leniency value because 85% of the boxes presented in the

level hide powerups.

The average leniency values obtained for the generators are presented in Fig-

ure 6.4. Notch generator constructs the most lenient levels followed by the pa-

rameterized generator, while the levels generated by the GE-generator are the

least lenient.

6.3.5 Compression Distance

In order to measure the overall structural similarity between the outputs of each

generator, we converted all levels into sequences of numbers representing the ex-

istence of different types of content items as well as changes in the level geometry.

The following content events have been considered when converting the levels

into sequences:

• Increase/decrease in platform height

103

6. EXPRESSIVITY ANALYSIS

Figure 6.7: Snapshot from a level and the corresponding structure sequence rep-
resentation.

• The existence/non-existence of enemies and rewarding items (coins or boxes)

• The beginning/ending of a gap

All content events considered along with their graphical representation are

presented in Table 6.1. A sequence is generated by traversing the level from left

to right and recording a value corresponding to content at each block. Figure 6.7

presents part of a level and its corresponding sequence representation.

The diversity of the resulting levels sequences for each generator is measured

using the normalized compression distance (NCD) measure (Li et al. [2004]).

The results of applying this measure on each pair of the content sequences for

each generator showed a high dissimilarity between the sequences; NCD was found

to be higher than 0.6 in 93%, 91% and 89% of the cases for the levels generated by

the GE-generator, the parameterized generator and Notch generator, respectively

(Figure 6.4).

6.3.6 Sequential Patterns

The compression distance measure presented in the previous section provides a

high level insight on the structural similarity between the levels since it compares

them on the block level. More powerful and efficient sequence extraction and com-

parison methods are required if we are to dig deeper into the structural similarity

between the levels. Therefore, sequence mining methods have been employed to

extract meaningful sequence patterns about the structure of the levels.

104

6.3. EXPRESSIVITY MEASURES

Table 6.1: The content events considered when converting levels into sequences
and their graphical representation.

Graphical Representation Content Event

Flat platform

Increase in the platform height

Decrease in the platform height

The beginning of a gap

The end of a gap

An enemy

A coin, block, or brick block

An enemy with a rewarding item

The sequences obtained when converting each level into a sequence of numbers

in the previous section are used to extract design patterns that occur frequently in

the levels generated by each generator. The frequent sequence mining algorithm,

Generalized Sequential Patterns (GSP) (Srikant and Agrawal [1996]) presented

in Section 3.2.4, have been employed to find frequent sequence patterns within

the dataset of structural sequences. GSP allows us to define a time constraints

within which adjacent events can be considered elements of the same pattern. For

example, using GSP, we can extract patterns such as (, ,) which indicates

a decrease in the platform height followed by a gap although these events are

not directly adjacent. For the experiments presented in this study, we consider

frequent subsequences of length three that occur in at least 500 levels (half the

size of the full dataset). The maxgap value used is 5, allowing two items occurring

within five block difference to be considered as belonging to the same pattern.

Table 6.2 presents a subset of the frequent patterns extracted from the levels

generated by each generator with the highest and lowest number of occurrences.

Note that the lowest possible number of occurrences is the minsup value which is

set to 500 in this experiment. Note also that these patterns are not necessarily

directly connected since they are allowed to occur within a five block distance.

We perform inter and intra analysis to investigate structural similarities based

on the frequent patterns obtained from each generator. Different set of patterns

have been extracted from each generator’s outputs. The number of frequent

105

6. EXPRESSIVITY ANALYSIS

Table 6.2: The five most occurring and five least occurring sequence patterns of
length three in the levels generated by each generator. The numbers indicate the
number of occurrences of the patterns in all sequences of levels.

Notch generator Parameterized generator GE-generator

, , :1000 , . :1000 , , :1000

, , :1000 , , :1000 , , :1000

, , :1000 , , :1000 , , :1000

, , :1000 , , :1000 , , :1000

, , :1000 , , :1000 , , :1000

, , :518 , , :509 , , :501

, , :519 , , :510 , , :502

, , :522 , , :512 , , :503

, , :535 , , :517 , , :503

, , :538 , , :518 , , :515

patterns extracted reflects the diversity of the content generated, the largest

number of patterns have been extracted from the parameterized generator (89

frequent patterns) followed by the GE-generator with 87 frequent patterns while

the number of frequent patterns found in the Notch generator is 83.

To investigate for inter-similarity between the generators’ outputs, we calcu-

late the intersections between the set of patterns extracted from the levels gen-

erated by each generator. The results obtained showed that 60% of the patterns

extracted from the levels generated by the GE-generator and the Notch generator

overlap while an intersection of 50% have been found between the GE-generator’s

patterns and the parameterized generator’s patterns.

Surprisingly, the patterns extracted from levels generated by the parameter-

ized generator overlap in only 28% of the cases with the patterns extracted from

the levels generated by the Notch generator. This was unexpected since the

parameterized generator has been implemented by biasing the random genera-

tor and hence we anticipated that these two generators would sustain structural

similarity up to a good degree. To further investigate the similarity in more de-

tails, we counted the number of occurrences of the patterns extracted from each

generator in the levels generated by the other generators.

106

6.3. EXPRESSIVITY MEASURES

The results obtained showed that despite the low intersection percentages

between the frequent patterns extracted from the levels generated by the param-

eterized and Notch generator, these common patterns occur equally frequently in

the levels generated by both generators while the patterns that overlap with the

ones found in the levels generated by the GE-generator occur less often.

6.3.7 Histogram comparison

The expressive measures presented in the previous sections analyze the generators’

output along one dimension. It is interesting, however, to be able to visualize the

space of content a generator’s output covers and the intensity of levels generated

for each point in this space. Such an analysis gives a more detailed insight of

the generator’s capabilities and highlight the generator’s strength and weakness

which could potentially be used by a level designer to compare different generators

or to adjust the generator’s parameter to manipulate the output space according

to the designer’s preferences.

The expressive range of a generator can be analyzed by plotting the histogram

that illustrates the distribution of the generated levels along the expressivity

measures. The 1000 levels generated by each generator have been processed and

ranked by the linearity, leniency and density measures. Figure 6.10, 6.9 and 6.8

present the expressive ranges obtained for the GE-generator, the parameterized

generator and Notch generator, respectively.

Different distributions have been obtained for each measure across the gener-

ators. The GE-generator, as can be seen from Figure 6.10 and the parameterized

generators (Figure 6.9) appear to be slightly biased according to the linearity

measure; while the GE-generator constructs levels that are slightly non-linear,

the parameterized generator appears to be generating more linear levels. On the

other hand, both generators appear to be biased towards generating non-lenient

levels. It is interesting to note, however, that the Notch generator (Figure 6.8)

constructs levels with a distribution for the linearity that approximates the nor-

mal distribution around 0.5. This generator appears to be very biased towards

generating averagely lenient levels (more than 80% of the levels have a lenience

value between 0.3 and 0.5). Very small percentage of the levels generated by all

107

6. EXPRESSIVITY ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Linearity
Leniency
Density

Figure 6.8: The histograms of the linearity, leniency and density measures for the
1000 levels generated by Notch generator.

generators fall in the extreme ranges of the expressivity measures.

We anticipated the bias towards generating linear levels by the parameterized

generator since in IMB levels, the flat platform is the basic element when designing

the levels and the addition of hills and the changes in the height are supplementary

requirements in order to allow richer design diversity and gameplay experience.

Also, this generator has been designed to generate levels according to a predefined

set of features that resulted in highly condensed levels, leaving a few number of

segments where a hill can be generated.

In order to be able to compare the expressive ranges for the three genera-

tors among each other, histograms have been created illustrating the density of

levels for each expressivity measure along all generators as illustrated in Fig-

ures 6.11, 6.12 and 6.13.

Unsurprisingly, the parameterized and Notch generators appear to generate

similar levels according to linearity compared to the levels generated by the GE-

generator (Figure 6.11). This was anticipated since the parameterized generator

is a modified version of Notch generator. However, the shift in the center of

the distribution of the levels generated by the GE-generator along the linearity

dimension, compared to the ones obtained from the parameterized and Notch

generator, can be explained by the different methodology used by this generator

when constructing the levels.

All generators appear to have similar distributions for the levels along the

108

6.3. EXPRESSIVITY MEASURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Lineariy
Leniency
Density

Figure 6.9: The histograms of the linearity, leniency and density measures for the
1000 levels generated by the parameterized generator.

leniency dimension as can be seen from Figure 6.12. Most of the levels generated

by the three generators have a low to average lenient values while very few of them

are lenient. Notch generator, between the other two generators, appears to be the

most biased towards generating averagely lenient levels. This can be explained by

the design choice of the difficulty parameter that enforces all constructed levels

to have a difficulty value equals to 2. All levels constructed by the parameterized

generator, on the other hand, have been generated with either three or seven

enemies (as described in Section 6.2) resulting in a shift towards non-lenient

levels. At least two enemies (koopas and/or goombas) are placed in the levels

constructed by the GE-generator. The other types of enemies, such as bill blasters

and piranha plants, have the same probability of occurrence in the levels as any

other chunk. This explains the low leniency value assigned to most of the levels

generated by the GE-generator.

The level distribution along the density dimension (Figure 6.13) vary among

the three generators with all of them generating low to average density levels.

The shift in the density values obtained from the levels generated by the GE-

generator can be explained by a design choice which is implicitly imposed by

the design grammar; the range of possible height for each chunk generated has

been constrained in a way that the chunk will be reachable by Mario. The same

argument for generating linear levels by the parameterized and Notch generator

holds for explaining the shift towards generating levels of low density; the levels

109

6. EXPRESSIVITY ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Linearity
Leniency
Density

Figure 6.10: The histograms of the linearity, leniency and density measures for
the 1000 levels generated by the GE-generator.

have been constructed with a flat ground as the basic infrastructure in both

generators. The parameterized generator imposes more implicit constraints on

density by enforcing each constructed level to satisfy a set of design parameters

leaving little room for the other design elements than the one specified to be placed

(note that hills are not one of the parameters considered by the parameterized

generator and hence they occur less often than the other chunks).

The Notch generator appears to cover a narrower expressive range for all mea-

sures than the other generators. None of the generators was able to express a

uniform distribution of levels along the expressivity measures defined. Neverthe-

less, it is not clear whether this is desirable and necessitates covering a wider

range of player preferences.

The statistical analysis of these measures across all levels generated by each

generator (Table 6.3) showed strong positive correlations between linearity and

leniency for the levels generated by all generators, while strong negative correla-

tions have been obtained between linearity and density and leniency and density.

The positive correlation between linearity and leniency can be explained by

the interconnection between the content elements involved when measuring these

scores. The presence of gaps and enemies (bill blasters and piranha plants), which

mostly implies changes in the platform height, leads to generating levels with low

linear and lenient score. The negative correlation between linearity and density,

on the other hand, points out a bias in the generators towards generating levels

110

6.3. EXPRESSIVITY MEASURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Noch generator
Parametrized generator
GE generator

Figure 6.11: The histograms of the linearity measure for the 3000 levels generated
by Notch generator, the parameterized generator and the GE- generator.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Noch generator
Parametrized generator
GE generator

Figure 6.12: The histograms of the leniency measure for the 3000 levels generated
by Notch generator, the parameterized generator and the GE- generator.

111

6. EXPRESSIVITY ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

of

 le
ve

ls

Noch generator
Parametrized generator
GE generator

Figure 6.13: The histograms of the density measure for the 3000 levels generated
by Notch generator, the parameterized generator and the GE- generator.

with hills spread along them rather than stacked on top of each other.

Table 6.3: Testing for correlation between the obtained scores for each measure
across the three generators. The significant differences (p − value < 0.01) are
presented in bold. The sign of the correlation is presented in parentheses.

Notch generator
Leniency Density

Linearity 1.52 ∗ 10−29 (−)3.61 ∗ 10−20
Leniency (−)4.32 ∗ 10−51

Parameterized generator
Leniency Density

Linearity 19.85 ∗ 10−6 (−)2.99 ∗ 10−21
Leniency (−)4.88 ∗ 10−11

GE-generator
Leniency Density

Linearity 2.86 ∗ 10−51 (−)2.29 ∗ 10−155
Leniency (−)6.15 ∗ 10−23

6.4 Summary

Analyzing the expressive range of a content generator and being able to compare

different content generators is vitally important for understanding the generators’

capabilities, strength and weakness and for providing quantitative measures of the

112

6.4. SUMMARY

generators’ performance.

This chapter presents a framework for comparing content generated by differ-

ent generators with different generation methods for the same game. A number

of expressivity measures have been defined to test the generators’ capabilities and

the space of content the generators’ output covers. The expressive range of each

generator has been analyzed and quantitatively compared to the other generators

by plotting the histograms of 1000 levels generated by each generator across the

expressivity scales defined. The results obtained showed different characteristics

of each generator and a wide variety in the space of content each generator covers.

The expressivity analysis highlights limitations in the expressivity of each

generator. For example, the design grammar in the GE-generator is unable to

generate levels with high density due to the height constraint defined in the

grammar forcing the generated chunks to be placed within a predefined height

limit to ensure playability. One possible solution is to define a constraint-free

grammar and play-test the generated levels to check for the playability. This can

be done automatically by exploiting AI agents that pass through the levels and

check for possible path from the start to the end, and/or check whether all chunks

generated are reachable. Another solution is to adopt context-sensitive grammar

such as attribute grammars to control the parameter values of the solutions as

they are being generated during the mapping process (O’Neill et al. [2004]).

The measures presented in this chapter provide a mean to compare content

but covering a wider range along these measures doesn’t necessarily mean better

content quality. Designers’ knowledge or player experience models, that map

game content to players’ reported affect, can be used as content quality measures

to rank the content generated according to the gameplay experience it provides.

The generator’s parameters highly influence its expressive range. For exam-

ple, the fitness function and the design grammar used by the GE-generator can

bias the search towards different kinds of maps. Analyzing the effect of design

parameters on the generator’s expressive range constitutes a future direction.

The ultimate aim of the work presented in this chapter is to provide a tool

for players and game designers where they can explore the content space and

swiftly visualize the impact of design choices on the generator’s expressive range.

There is plenty of room for future improvements including investigating new

113

6. EXPRESSIVITY ANALYSIS

methods for visualizing the expressive range, and giving real time feedback on

the impact of changing design parameters on the content space. The framework

presented for analyzing the expressive range of a generator can potentially be used

by game designers or players to generate content with user defined expressivity

parameters. This could be done by biasing the content generated according to

these parameters.

114

7

Modeling Player Experience

An algorithm that could automatically judge how engaging or interesting a par-

ticular piece of game content is would be useful for several reasons. One strong

reason is that such a method would help us to automatically or semi-automatically

generate good content, another is that analysis of the algorithm could help us un-

derstand what players like in games. As players tend to vary significantly in their

preferences it would further be useful to have an algorithm that, given informa-

tion about a particular player, could predict the appeal of the game content for

that player. Finally, having an algorithm that could observe a human playing a

game and accurately judge what the human is experiencing as he/she is playing

the game would also be useful, as this could allow us to adapt the game to the

player, and also help us understand how human affect is expressed in behavior.

When constructing player experience models, one should identify relevant

features from game content and gameplay that affect player experience. A large

set of features has been extracted as presented in the previous chapter, and not

all of these features are necessarily relevant for modeling player experience.

In this chapter, we present the process followed to construct models of players’

experience. Neuroevolutionary preference learning is used for approximating the

unknown relationship between selected subset of relevant features and players’

reported affects. In other words, we use artificial evolution for shaping artificial

neural networks (ANNs) whose output matches the reported (pairwise) prefer-

ences of the players.

115

7. MODELING PLAYER EXPERIENCE

7.1 Neuroevolutionary Preference Learning

For the player experience modeling problem under investigation, neuroevolution-

ary preference learning, as presented in Section 3.1.6 has been used. The mecha-

nism attempts to approximate a function f(.) that predicts whether ga � gb holds,

where ga and gb represents particular instances of individual gameplay sessions,

given the following inputs:

• A set of gameplay features extracted from the interaction between the player

and the game, and a set of game content features.

• A set of n training instances Z = {gi|i = 1, ..., n} comprising vectors of

the measured values of those features for the different variants of the game

played by various players.

• A set of m pairwise preferences G = {ga � gb|a, b = 1, ...,m} in which

players reported which of the two game variants they preferred.

The following sections describe the feature selection method adopted to ex-

tract relevant features from each gameplay instances and the neuroevolutionary

preference learning methodology proposed to learn the ranking function.

7.2 Feature Extraction

While playing the games, several features can be recorded to further be used as

indicators of players’ affects, performance, playing characteristics and style. The

models of player experience can be defined by the set of features extracted from

the gameplay session. In this dissertation we focus of models constructed from

gameplay data (gameplay-based PEM), visual cues of players behavior (objective

PEM), player’s reported affects (subjective PEM) and hybrid PEM build from a

combination of these features. The features extracted in each of these categories

have been chosen in order to capture a wide range of variations of players behavior

and to allow the construction of accurate estimators of player experience. These

features as well as details about their extraction methodology are described in

details in Chapter 8.

116

7.3. FEATURE SELECTION

7.3 Feature Selection

Feature selection is a critical step for efficient knowledge discovery when handling

a large amount of data. The selection of the relevant subset of features not only

helps us reduce the dimension of the input space resulting in more accurate models

that are easier to analyze, but it also eliminates noisy features that are irrelevant

for the player experience modeling as well as improving the model’s generalization

capabilities.

Feature selection has been applied as a first step when modeling players’

experience. The input space constitutes of the different combinations of the set

of features explained in the previous chapter. The values of all features have been

normalized to the interval [0,1] using the max-min normalization function.

The selection of the relevant subset of features for predicting different reported

affective/cognitive states is achieved though Sequential Forward Selection (SFS)

(Yannakakis et al. [2009, 2008]).

Neuroevolutionary preference learning (Section 3.1.6) is used to measure the

performance of the subset of features selected by SFS. The method works in two

steps: (1) feature selection and (2) feature space expansion. In the first step we

train single-layer perceptrons (SLPs) as a mapping between selected features by

SFS and reported preferences.

Since the data is assumed to be a very noisy representation of the unknown

function between the input features and players’ reported preferences due to the

wide variety of playing styles and the high level of subjectivity of players’ reports,

we adopt more robust estimators of players’ preferences by using more complex

nonlinear functions such as MLP. Simple multilayer perceptrons are used to ex-

pand the subset of features selected using SLPs. The subset of features derived

from SFS using SLP is used as the input of small MLP models containing one

layer of two hidden neurons and SFS is used again to extract additional features

from the set of remaining features allowing features with more complicated non-

linear relationships to be selected. An overview of the process followed is depicted

in Figure 7.1.

The single neuron uses the sigmoid (logistic) activation function g(e, p) =

1/(1 + e−pdj) where dj is the difference between the ANN output values for a pair

117

7. MODELING PLAYER EXPERIENCE

Figure 7.1: The three-phase player experience modeling approach followed.

j and p = 30 if there is an agreement between the network output and player’s

preferences and p = 5 otherwise. Both the sigmoid shape and the selection of

the p values are assigned experimentally after investigating their effects on the

classification accuracy. Connection weights take values from -5 to 5 to match the

normalized input values.

The data is randomly divided into thirds where training and validation data

sets consisting of 2/3 and 1/3 of the data, respectively. The quality of a feature

subset is determined by the average classification accuracy of the model in three

independent runs using three-fold cross-validation method on the three indepen-

dent training and validation sets.

7.4 Model Optimization

As mentioned earlier, the underlying function between gameplay, content fea-

tures and reported players’ preferences is considered to be complex and robust

estimators are required if we are to accurately model the features-affect relation-

ship. The first critical step when constructing accurate estimators is to reduce

the dimension of the input space and eliminate noisy features. This step has

been achieved in the previous section by using SFS implemented through small

MLPs of one hidden layer of two neurons. Although these MLPs were able to cap-

ture the non-linear relationship between selected features and players’ preferences

with relatively low computational effort, this relationship might be more complex

and requires more powerful MLPs with more sophisticated structure. Therefore,

once all features that contribute to accurate simple MLP models are found we

118

7.5. SUMMARY

optimize the topology of models using neuroevolutionary preference learning. We

start with a simple MLP topology of one hidden layer of two neurons; we then

increase the number of neurons up to ten by adding two neurons at each step.

Further, we investigate MLPs with two hidden layers, with up to ten neurons in

the first and second layer. Again, the number of hidden neurons starts at two

and increases by adding two neurons at each step; this sums to 30 different MLPs

topologies which are tested for each input vector.

Just as in the feature selection, the performance of each MLP is obtained

through the average classification accuracy in three independent runs using 3-

fold cross validation. Parameter tuning tests have been conducted to set up the

parameters’ values for neuroevolutionary user preference learning that yield the

highest accuracy and minimize computational effort.

Unless otherwise mentioned, for the rest of this dissertation, neuroevolution-

ary preference learning uses a population of 100 individuals, and evolution runs

for 20 generations. A probabilistic rank-based selection scheme is used, with

higher ranked individuals having higher probability of being chosen as parents.

Finally, reproduction was performed via uniform crossover, followed by Gaussian

mutation of 1% probability. Several other setups have been examined and the

one followed provided the best tradeoff between the computational efforts and

the modeling accuracy.

7.5 Summary

In this chapter we introduced the framework for feature selection and player ex-

perience modeling that will be followed throughout this dissertation. We choose

to focus on neoroevolutionary preference learning as a modeling approach due to

its successful previous applications on similar problems where it has proved to

construct estimators of players’ experience that have been found to be more ac-

curate than estimators constructed using a number of other approaches including

large margin classifiers and Bayesian learning (Yannakakis et al. [2009]).

While applying other approaches for preference modeling and feature selection

and exploring other methods that enable evolving the networks topologies along

with their weights are very interesting research directions and might very well be

119

7. MODELING PLAYER EXPERIENCE

suited for solving the problems of player experience modeling, these approaches

are not the key focus of this dissertation. This being said, further investigation

and analysis of issues explored by this dissertation will with no doubt help in

the development of future accurate player experience modeling and adaptation

algorithms. The central attention of this work, however, is given to closing the

affective loop in games for which accurately assessing player experience is one

important aspect. Other aspects such as exploring features from different modal-

ities as indicators of players experience, investigating different approaches for

feature representation, defining the frequency of content adaptation, analyzing

the impact of content features on player experience, constructing and evaluating

an efficient adaptation framework are as essential for efficient adaptation and,

therefore, will be explored and given attention in this work.

120

8

Data Collection and Feature

Extraction

Several studies can be found in the literature on analyzing the relationship be-

tween game content and player experience. Most of these studies, however, have

tackled this problem from a top-down perspective relying on theoretical rather

than computational models of player experience. However, even if the theoreti-

cal models are empirically validated and sufficiently extensive to allow prediction

of player experience in a wide range of situations, they would also need to be

expressed quantitatively in order to be incorporated within an adaptation algo-

rithm. They would therefore need to be grounded in measurable quantities.

The alternative, complimentary approach is to create data-driven (bottom-up)

models based on collecting data about games, game content and player behavior,

and correlating this data with data annotated with player experience tags.

The very first step towards constructing computational models of player ex-

perience and accurately adapting game content according to specific player needs

is to collect data from players. We can then model the relationship between game

content and player experience. This can be done through crowd-sourcing data

from a wide range of players with different demographic backgrounds and variety

of playing style and expertise.

Another critical issue is the identification of relevant features from game con-

tent and gameplay that affect this experience. Several approaches can be followed

121

8. DATA COLLECTION AND FEATURE EXTRACTION

on how to represent the features, what features to extract, how to extract them

and how to relate them to specific affective/cognitive states. The selection of

these features, the method followed to represent them and the choice of their ex-

traction approach have a great impact on both the efficiency and the performance

of the modeling.

In this chapter, we propose a protocol to collect data from players for the pur-

pose of quantitatively analyzing and modeling player experience. The proposed

protocol is followed to collect four datasets of different numbers of participants

and variant types of features capturing different aspect of game content and play-

ing behavior thus allowing an in-depth analysis of the gameplay experience.

8.1 Experimental Protocol

A game survey study has been designed to collect subjective affective/cognitive

reports expressed as pairwise preferences of subjects playing different variants

(levels) of the test-bed game, Infinite Mario Bros, by following the experimental

protocol proposed by Yannakakis et al. [2009].

According to the protocol, each subject plays a set of two games. The games

played differ in the levels of one or more of the content features. A detailed

description of the procedure followed is as follows.

1. An introduction page presents the game to the player and contains infor-

mation about the procedure that will be followed. The player is being told

that during the session she will play two games and will be asked to answer

a few questions about her game experience.

2. Then, a demographics page is presented which is used to collect the demo-

graphics data.

3. The player is introduced to the keys that can be used to control Mario and

their functionalities.

4. After these introductory steps the player is set to play the first game (game

A). The player is given three chances to complete the game level (i.e. she

has three lives). If she fails in the first trial the game is reset to the starting

122

8.2. CONTENT DATA

point and the player is set to try again. The game ends either by winning

in one of the three trials “lives” or by failing in the third one.

5. After finishing game A, a second game (game B) is presented to the player

and the player is set to play. The player is given three chances (i.e. three

Mario lives) to complete the level and the same rules apply as in game A.

6. After completing a pair of two games A and B, the player is asked to

report the preferred game for different emotional dimensions through a 4-

alternative forced choice (4-AFC) questionnaire protocol.

7. The player then has the choice to either end the session or to continue. In

the latter case, a new pair of two games is presented and the procedure is

repeated starting from step 4.

Player experience models can be built on different types of data collected from

players which, in turn, define different approaches to player experience modeling

(Yannakakis and Togelius [2011]). In our study we rely on features extracted from

the game content and data expressed by players themselves about their playing

experience along with features of how they play the game (i.e. player behavioral

features) and we construct our models based on this data.

Different datasets have been constructed following the same protocol described

previously. The datasets differ in the generator employed to construct the levels

used in the experiment, the features collected about game content and gameplay

and the number of participants.

In the following sections we will describe the types of data have been collected

from hundreds of players playing Infinite Mario Bros. Note that not all of these

types have been recorded for all datasets; some of these types appear in some

datasets while not in others.

8.2 Content Data

Direct features of game content have been recorded for all the levels generated

in the experiments. As mentioned earlier, the direct content features are also

named Controllable as they are used to generate the levels in the parameterized

123

8. DATA COLLECTION AND FEATURE EXTRACTION

generators and are varied to make sure several variants of the game are played

and compared. These features are the same ones presented in Section 5.3 and

their values have been recorded from all the levels generated.

In addition to the direct (controllable) features, the full structure of the levels

has also been saved in some of the experiments permitting sequential content fea-

tures to be extracted. The topology of the levels is later converted into sequences

of numbers representing different types of game items and sequence mining tech-

niques are applied to extract useful patterns from the resulted sequences. More

information about sequence generation and pattern extraction is discussed in

Section 8.6.2.2.

8.3 Gameplay Data

The same two types of features considered for content data have also been inves-

tigated for gameplay data. Several features have been directly extracted from the

data recorded during gameplay in all experiments. These features represent fre-

quencies of performing actions or interactions with game elements and the choice

of these features is made in order to be able to represent the difference between

large varieties of Infinite Mario Bros playing styles. Example features include

how often the player jumped, ran, died, how much he spent moving left, and

how many enemies he killed for the different type of opponents. These features

cannot be directly controlled by the game as they depend on the player’s skill

and playing style.

In some experiments, different player actions and interactions with game items

and their corresponding time-stamps have been recorded. These events are cat-

egorized in different groups according to the type of the event and the type of

interaction with the game objects. The events recorded are the following:

• Winning: This event is generated when the player wins.

• Losing: This event is generated when the player loses. An extra attribute

is associated with this event to define the type of object that causes the

death. This attribute can take one of the following values: koopa, goomba,

piranha plant, bill blaster or gap.

124

8.4. PLAYER EXPERIENCE

• Interaction with game items: This event is generated when the player col-

lects items or interacts with intractable game objects. The event has an

attribute that defines the type of the object that can take one of the values:

coins or one of the different types of boxes (blocks or rocks).

• Interaction with enemies: This event is generated when the player kills an

enemy using one of the possible defeating methods. The event has two

attributes that define the type of the action performed to kill the enemy

(stomp, shoot fire balls or unleash a koopa shell) and the type of enemy

killed (koopa, goomba, piranha plant or bullet).

• Changing Mario mode: Mario can be in one of the following modes: small,

super or fire. Whenever Mario mode is changed, an event is generated with

the information about the type of the new mode.

• Changing Mario state: An event is generated whenever Mario changes his

state between: moving left/right, jumping, running and ducking.

Each of the above-mentioned events is associated with a time stamp specifying

the time within which the event occurred. For the last two events (changing Mario

mode and changing Mario state) two time stamps, instead of one for the other

events, are saved marking the start and the end time of the event.

Several methods can be applied to extract useful features from the above

mentioned events. Feature extraction and pattern mining methods have been

applied on the data and are detailed in Chapter 8.

8.4 Player Experience

We rely on self-reported annotations based on previous research in which very

accurate player experience models of self-report affective/cognitive states were

constructed (Pedersen et al. [2010]; Yannakakis and Hallam [2007]). However,

a number of limitations are embedded in the players self-reporting experience

modeling including noise due to learning and self-deception, disruption to game

play experience, sensitivity to memory limitations as well as their low evaluation

125

8. DATA COLLECTION AND FEATURE EXTRACTION

bandwidth, providing information on the whole experiments rather than continu-

ously throughout time (Yannakakis and Hallam [2011a]; Yannakakis and Togelius

[2011]).

In order to minimize these effects we rely on annotated player experience

data collected via a 4-alternative forced choice questionnaire presented after game

sessions. The questionnaire asks the player to report the preferred game for three

user states: engagement, challenge and frustration. The selection of these states

is based on their extensive use in other game survey studies (Baker et al. [2010];

Byrne [2005]; Chanel et al. [2008]; Gilleade and Dix [2004]; Pedersen et al. [2010])

and our intention to capture both affective and cognitive/behavioral components

of gameplay experience (Yannakakis and Togelius [2011]).

The questionnaire protocol is presented after each pair of games and gives the

players the following alternatives:

• game A [B] was/felt more E than game B [A] (cf. 2-alternative forced

choice);

• both games were/felt equally E or

• neither of the two games was/felt E.

where E is the player experience state under investigation.

8.5 Head Movement Features

Despite our attempts to minimize the self-reporting limitations, their affects are

still undeniable. We took a step further to overcome these limitations by con-

ducting an experiment to assess the estimation of players’ affect while keeping

the players engaged in the game and minimizing disruption. This has been done

by introducing head movement features; a set of head movement parameters ex-

tracted for creating behavioral correlations to game events by analyzing video

recording of players.

In our experiments, the above-mentioned protocol (see Section 8.1) has been

followed. The only difference in the protocol of this experiment is a page added

126

8.6. DATASETS

just after step 3 informing the player that her game sessions will be video recorded

and analyzed.

Subjects were seated in front of a computer monitor; the upper part of their

body was monitored by a camera. In most cases players were left alone in the

rooms they were playing in and, whenever this was not possible, everyone was

asked not to distract them.

With this head movement data we desire to examine the relationship between

a series of head movement features along with gameplay and content features and

player experience tags.

8.6 Datasets

Four different datasets have been constructed based on different experiments

conducted to collect data from players. The datasets differ in the number of

participants and the types of data collected. In the following sections, a detailed

description of each of these datasets is given along with the experimental protocol

followed when constructing each particular dataset.

8.6.1 Dataset 1: Basic Parameterized Generator

A similar protocol to the one described in Section 8.1 has been employed to

construct this dataset.

The basic version of the parameterized generator has been used to construct

the levels (Section 5.3.1.1). The game sessions presented to players have been

constructed using a level width of 320 Infinite Mario Bros units (blocks), the

same size usually employed when generating levels for the original Super Mario

Bros game. Two states, low and high are assigned to each of the content features

in order to ensure variability and investigate the effect of the design choices on

players’ experience.

While varying the values of the content features used to control the content

generation, the other content parameters such as coins, enemies, coin blocks,

powerups and empty blocks are fixed to 15, 3, 4, 2, and 8 respectively.

A Java applet has been designed and released on the Internet to collect data

127

8. DATA COLLECTION AND FEATURE EXTRACTION

from players. Since four content features with two states each have been used

to construct the levels, leading to 24 = 16 different variants of the game, and

— according to the protocol — the games are presented in pairs, the minimum

number of experiment participants required so that all combinations are presented

is determined by C16
2 = 120; i.e. the number of all combinations of 2 out of 16

game variants.

The data gathering resulted in a dataset of 654 game pairs played by 327

players, more than twice as many as the participants needed to play-compare all

the possible combinations of pairs, meaning that each pair is presented at least

twice in the resulted dataset.

Since this was our first experiment, the data collected was in its simplest

form. The following sections present the three types of features extracted from

each session.

8.6.1.1 Content Features

Direct features of game content have been saved for each level played. For this

experiment, the values of the four content features employed by the generator

while constructing the levels as presented in Section 5.3.1.1 have been recorded,

namely, the number of gaps, average width of gaps, and gaps entropy, as well

as a switching feature that defines the percentage of the level played in the left

direction.

8.6.1.2 Gameplay Features

Gameplay characteristics are also represented as direct features of how the user

plays the game. These features characterize each individual playing style and

their values are unique to each player. The choice of the direct gameplay features

is made in order to be able to capture the difference between a large variety

of Infinite Mario Bros playing styles. The features presented in Table 8.1 are

extracted from the gameplay data collected and are classified in five categories:

time, interaction with items, interaction with enemies, death and miscellaneous.

128

8.6. DATASETS

Table 8.1: Features extracted from data recorded during gameplay.

Category Feature Description

Time tcomp Completion time
tlastLife Playing duration of last life over total time spent

on the level
tduck Time spent ducking (%)
tjump Time spent jumping (%)
tleft Time spent moving left (%)
tright Time spent moving right (%)
trun Time spent running (%)
tsmall Time spent in Small Mario mode (%)
tsuper Time spent in Super Mario mode (%)

Interaction ncoin Free coins collected (over all coins existent)
with nblock Coin blocks pressed or coin bricks destroyed
items (over all blocks and bricks existent)

npowerups Powerups pressed (over all powerups existent)
nbox Sum of all boxes pressed or destroyed (over all

boxes existent)
Interaction kflower Times the player kills a bullet ball or a piranha plant

with (over all bill blasters and piranha enemies existent)
enemies kgoomba Times the player kills a goomba or a koopa (over

all goombas and koopas existent)
kstomp Opponents died from stomping (%)
kunleash Opponents died from unleashing a koopa shell (%)

Death dnum Total number of deaths
dcause Cause of the last death

Misc nmode Number of times the player shifted the mode
(Small, Super, and Fire)

njump Number of times the jump button was pressed
nmiscJump Difference between the total number of gaps

and the total number of jumps
nshoot Number of times the player shoots a fire ball
nduck Number of times the duck button was pressed
nstate Number of times the player changed the state between:

standing still, run, jump, moving left, and moving right

129

8. DATA COLLECTION AND FEATURE EXTRACTION

8.6.1.3 Player experience

After playing a set of two games in pair, players were asked to report the preferred

game for three emotional dimensions; fun, challenge and frustration, through the

4-AFC. Note that in this experiment players were asked to report the preferred

game for fun instead of engagement. Several studies reported in the literature

used the word “fun” to capture children’s notion of an entertaining experience

since the term seems to naturally fit the child’s environment (Read et al. [2002];

Yannakakis et al. [2008]). We decided to change the terminology from fun to

engagement for two main reasons: (1) mostly adults have participated in our

experiments, and (2) a recent study by Calleja [2011] showed that the notion

of fun is too vague, as the term “fun merely implies a clustering of positive

emotions surrounding an activity...The concept is as unhelpful to the designer as

it is to the analyst. It is more productive to focus on a notion of engagement”.

Engagement, as described by Calleja [2011] “engagement describes the player’s

interest in engaging with the game. This is the most basic form of involvement”,

seems to be the best alternative to fun, and therefore we use this term for the

rest of the experiments presented in this dissertation.

8.6.2 Dataset 2: Advanced Parameterized Generator

The previous dataset enabled us to conduct successful experiments and analysis

of the relationship between game content, player behavior and affective states

as well as being able to conduct a preliminary study of game adaptation and

generating personalized content as will be discussed in later chapters. It became

apparent, however, that the dataset had some limitations. The number of con-

trollable features (and the number of configurations of these features that were

tested) was too small to permit meaningful exploration of the search space and

possibilities of finding interestingly new design parameter configurations. Also,

one of the controllable features (direction switching) turned out to be relatively

uninteresting to explore in the context of the current game. The levels used in

the first data set took about a minute to play each, which we judged was overly

long given that we wanted our model to apply to the aesthetics of the moment, in

order to enable online adaptation. Finally, and most importantly, we wanted to

130

8.6. DATASETS

record more detailed information about both levels and gameplay in order to see

if we could find a way to predict player experience even better–to squeeze more

information out of the data, as it was. We therefore embarked on collecting a

new dataset, with more content features and more players.

A new experiment was therefore designed to construct a new dataset. The

advanced version of the parameterized generator has been adopted to generate

the levels for this experiment. Two states (low and high) are set for each of the

controllable parameters except for enemies placement which has been assigned

three different states allowing more control over the difficulty and diversity of the

generated levels as discussed in Section 5.3.1.2. The total number of pairwise

combinations of these states is 25 ∗ 3 = 96 combinations. This leads to a total of

C96
2 = 4560 different game pairs to be played and compared. The total number

of combinations, however, can be reduced to 40 by analyzing the dependencies

between these features and eliminating the combinations that contain dependent

variables. For example, the number of boxes, B, and enemies placement, Ep,

are dependent variables since when B = 0, enemies cannot be placed around

boxes and therefore the combination that differentiates from other combinations

along only these two dimensions can be eliminated. After reducing the number

of combinations to 40, the total number of pairs to be played in order for all

different combinations to be presented and compared becomes C40
2 = 780 pairs.

The 40 different variants of the content features have been used to construct

40 different levels. Other features of the levels have been given fixed values such

that the number of bill blasters and piranha plants is fixed to one, the type of

background = overground, the number of coins = 7, the number of coins hidden

in boxes = half the total number of boxes and the number of stairs around the

gaps = half the number of gaps. All generated levels have been checked before

starting the data collection in a way that assures their compatibilities with the

intent parameters assigned.

The game sessions presented to players have been constructed using a level

width of 100 Infinite Mario Bros units (blocks), which take roughly 30 seconds

to play, about one-third of the size usually employed when generating levels for

the game in the previous dataset. The selection of this length was due to a com-

promise between a window size that is big enough to allow sufficient interaction

131

8. DATA COLLECTION AND FEATURE EXTRACTION

between the player and the game to trigger the examined states and a window

which is small enough to set an acceptable frequency of an adaptation mechanism

applied in real-time aiming at closing the affective loop of the game.

A crowd-sourcing experiment has been conducted to collect the data. A Java

applet containing the game was created and placed on a web page, which was

then advertised over social networks, mailing lists and blogs. The applet is con-

nected to an online SQL database that is used to collect data about game content,

player’s behavior and reported experience. The database initially contains all pos-

sible pairs marked as “unplayed”. Whenever a game session starts, the software

connects to the database and asks for an unplayed pair to load. Once two levels

are chosen from the database, they are loaded and the player is ready to play.

The protocol presented in Section 8.1 has been followed. Whenever a pair of

two games is completed and its questionnaire is answered, the pair is marked as

“played”. The list of played pairs is reset if there are no more pairs available in

the database to play (all pairs were marked as “played”).

Since our main goal from designing this experiment is to record as many data

as possible about the game content and player behavior, complete games were

logged, including the levels and what actions the players took at which time,

enabling complete replays and permitting the extraction of direct and sequential

features.

A total number of 780 players participated in this crowd-sourcing experiment.

Participants’ age covers a range between 16 and 64 years (31.5% females) while

their location includes Denmark (46.11%), Greece (8.9%), Ireland (1.48%), USA

(3.34%), Holland (0.74%), Finland (1.36%), France (0.37%), Syria (0.25%), Swe-

den (0.37%), Korea (0.12%), Spain (0.25%) or unknown (36.71%).

Direct features as well as sequential patterns have been extracted from the

data recorded. In the following sections, we describe the feature extraction pro-

cess in details.

8.6.2.1 Direct Features

Direct features represent frequencies of content items or players’ behavior occur-

ring throughout the full game session. These features provide quantitative, com-

132

8.6. DATASETS

pressed information about the different types of interaction between the player

and the game and can be directly extracted from the gameplay sessions. The con-

tent features considered are the same six features imposed by the generators while

constructing the levels (Section 5.3.1.2), and the same direct gameplay features

recorded in the previous dataset, as presented in Table 8.1, were extracted.

8.6.2.2 Sequential Patterns

We investigate another form of indirectly representing game content and the

gameplay interaction by means of sequences which allows including features that

are based on ordering in space or time. The direct features, presented in the

previous section, provide a quantitative measure about different types of game

content and playing style. Alternatively, analyzing sequences of game content and

players’ behavior yields patterns that might be directly linked to player experi-

ence. For example, we would like to extract features that encapsulate whether

a player performed a particular action before or after encountering a specific

in-game situation.

Modeling players’ experience based on features extracted from sequential in-

formation provides a promising alternative for models constructed based on direct

feature extraction, and by fusing these two types of representations, we anticipate

constructing more accurate models of players’ experience than those constructed

on one of these form of data representation at a time.

In the following, we describe different criteria for extracting sequences from

game content, gameplay, and the interaction between the two. We present two

sequence mining approaches and further discuss different setups that can be used

for mining the extracted sequences.

Table 8.2 presents the different possible approaches that can be followed to

generate different types of sequences. The columns represent the different orders

and frequencies at which information is logged. The rows represent what type of

data is logged each time an event occurs. We will be distinguishing the following

orders/frequencies, while acknowledging that even more fine-grained distinctions

are possible:

• tsmall: time step. Information is logged at a constant rate (e.g. once per

133

8. DATA COLLECTION AND FEATURE EXTRACTION

Table 8.2: The different types of sequences that can be generated. Columns
present the type of event to be recorded, while rows present when to record the
event. The combinations marked with an X are the ones investigated in this
dissertation

ts Block Gameplay Event

Ah (Player Behavior) X X
C (Content) X X
M (both) X

second), regardless of what the player does. This yields a sequence with

a length proportional to the time step chosen and the time taken by the

player to complete the level.

• Block: Information is logged once per block in the level, independent of the

time taken by the player to traverse the level. This yields a sequence with

a length equal to the width of the level.

• Gameplay event: Information is logged each time the player changes the

command issued (pressing/releasing a button or changing direction) or

something else happens (e.g. Mario changes the mode or stomps on an

enemy).

The information logged can be game content (C), player (gameplay) behavior

(Ah) or both game content and player’s behavior (M).

We will focus the discussion on the five sequence types marked with an X

in Table 8.2. Although we only investigate a few sequence types of all those

available, our sample provides a variety of options that cover different aspects of

playing experience.

Once we know what to sample and when, the question remains how to turn

this information into sequences using a low-cardinal alphabet. Below, we discuss

how to do this for levels and for gameplay traces.

8.6.2.2.1 Sequential Content Features Sequences capturing different in-

formation about level geometry have been extracted by converting the content of

134

8.6. DATASETS

the levels into numbers representing different types of game items. Three differ-

ent representations of game content have been investigated. The full list of events

considered as well as their graphical representation is presented in Table 8.3.

• Platform structure, P : A sequence is generated by comparing the height of

each block across the level with the height of the previous block and record-

ing the following values: 0 if no difference found (); 1 if there is an increase

in the platform height (); 2 if there is a decrease in the platform height

(); and, 3 and 4 to mark the beginning () and the ending () of a gap,

respectively. Figure 8.1.(a) presents part of a level and the corresponding

platform structure sequence representation.

• Enemies placement, EP : A bit-string sequence that represents the initial

placement of enemies along the level has been generated for each level. A

boolean variable is used to represent the existence (0) or non-existence (1)

of enemies.

• Enemy and item placement, I: The term items refers to the coins and

the different types of boxes scattered around the level. The existence and

non-existence states for enemies and items have been combined together

resulting in four different possible values: 0, 1, 2 and 3 corresponding,

respectively, to non-existence of either enemies or items, the existence of

an enemy (), the existence of an item (), and the existence of an enemy

and an item (). Figure 8.1.(b) illustrates an example level segment where

the above-mentioned four states are presented.

• Content corresponding to gameplay events, Cg: We explored another method

in which game content at the specific player position is recorded whenever

the player performs an action or interacts with game items. In this case,

different content events are used: increase in platform height, ; decrease

in platform height, ; existence of an enemy, ; existence of a coin, block

or brick, ; existence of a coin, block or brick with an enemy, ; and the

beginning, , and the end , of a gap.

135

8. DATA COLLECTION AND FEATURE EXTRACTION

(a) (b)

Figure 8.1: Snapshot from a level and the corresponding platform structure se-
quence representation, P (a), and enemies and items sequence representation,
I (b).

Table 8.3: The different types of events considered when generating the sequences
and their graphical representation.

Category Graphical Representation Description

Platform Flat platform
Structure , Increase/decrease in the platform height

, The beginning/end of a gap
Enemies The existence of an enemy

and Items The existence of coin, block, or brick block

The existence of enemy with a rewarding item
Gameplay �,�,L Moving right, left or duck

⇑ Jumping
⇑�,⇑� Jumping right or left
R�,R� Running right or left
R�⇑,R�⇑ Running while jumping right or left

S Not pressing any key
Es Stomping on an enemy
U Unleashing a koopa shell
D Changing Mario mode

W ,L Winning or losing the game

8.6.2.2.2 Sequential Gameplay Features Sequences representing different

players’ behavior have been generated by recording key pressed/released events

(action event) or interaction with items events. The action event might represent

a simple action performed such as pressing an arrow key to move left or right; or

136

8.6. DATASETS

more complex player’s behaviors that can be achieved by pressing a combination

of keys at the same time (e.g. jumping over a big gap requires the player to press

the run and jump keys together for a number of time steps). The following list

describes the different events that have been considered.

• Pressing an arrow key to move right, left, or duck (�, �, L).

• Pressing the jump key, ⇑.

• Pressing the jump key in combination with right or left key (⇑�, ⇑�).

• Pressing the run key in combination with right or left key (R�, R�).

• Pressing the run and jump keys in combination with right or left key (R�⇑,

R�⇑).

• Not pressing any key, S.

• Winning the game, W .

• Losing the game, L.

• Killing an enemy by stomping, Es.

• Unleashing a koopa shell, U .

• Changing Mario mode, D.

Figure 8.2 presents the graphical interpretation for most of the actions that

can be performed and that are considered for the experiments presented in this

dissertation.

We consider two time window t values for generating sequences: 0.5 sec (A0.5)

and 0.25 sec (A0.25) meaning that an event will be registered every half or quarter

of a second, respectively. We also consider sequences generated whenever the

player switch the action, A. (Note that Infinite Mario is a fast-paced game in

which the player could in theory perform an action every 1/24 sec).

The purpose of recording these events is that players’ behavior and playing

style can be analyzed by looking at events generated by each player and how fre-

quent each of these events occurs. Generating a sequence combining these events

137

8. DATA COLLECTION AND FEATURE EXTRACTION

(a) Standing still (S) (b) Moving right (�) (c) Moving left (�) (d) Ducking (L)

(e) Jumping (⇑) (f) Jumping right (⇑�) (g) Running right (R�)

Figure 8.2: Graphical representation of the different actions that can be per-
formed by the player.

in a timely manner provides an in-depth insight about more complex behavior

patterns that might have an impact on players’ experience.

The resulted sequences of players’ behavior have a wide variety both in terms

of length and structure, which reflects the diversity of players’ playing style and

complicate any sequence mining algorithm that can be applied to extract useful

information. This diversity is reflected on the normalized compression distance

(NCD) measure (Li et al. [2004]) that has been applied to test for structural

similarity between the sequences. The results of applying this function on each

pair of the action sequences showed a high dissimilarity between the sequences

(NCD>0.6 in 71.32% of the cases).

8.6.2.2.3 Fused Sequential Features of both Game Content and Game-

play Data Game content and players’ behavior events have been fused together

to generate bimodal sequences (M). Events from the two modalities have been

extracted with their corresponding time stamp and then logged in temporal or-

der. The generated event contains information about the game content at the

specific position in the game where the gameplay event occurred (which is one of

the events mentioned in Section 8.6.2.2.1 or none if no content event from the list

happens to occur at this specific position) along with the type of the gameplay

event.

138

8.6. DATASETS

8.6.2.3 Mining Sequencial Features

Sequence mining techniques have been applied to extract useful information from

the different types of the sequences generated. Two algorithms for frequent item-

set mining have been implemented to find frequent sequence patterns within

the dataset of sequences: Apriori and GSP. The Apriori (Agrawal and Srikant

[1994]) algorithm has been used to mine single-dimensional sequences that repre-

sent game content independently of player behavior, namely, platform structure

(P), enemy placement (EP) and enemy and item placement (I). Mining se-

quences across multiple time series of data — content corresponding to gameplay

events (Cg), player behavior (A) and multimodal sequences (M) — have been

achieved via the Generalized Sequential Pattern (GSP) algorithm (Srikant and

Agrawal [1996]). An explanation of the two algorithms used and a detailed list

of sequence mining definitions are presented in Chapter 3.

In the following sections we give a brief description of the way these two

algorithms have been used and their experimental setups.

8.6.2.3.1 Apriori Game content for all levels used to collect data from play-

ers has been converted into numbers representing different types of content events

as described in Section 8.6.2.2.1. Different subsequence lengths and minimum

support thresholds values have been explored. Throughout this dissertation, a

minimum support threshold of half the size of the full dataset is usually employed

unless otherwise mentioned, meaning that each subsequence should occur at least

in half of the levels to be considered frequent. Table 8.4 presents the number of

frequent subsequences of length 3 that have been found in the 40 levels gener-

ated for dataset 2 for the three types of content sequences using a minsup = 20.

Table 8.5 presents a subset of the frequent subsequences of length three and the

number of occurrences of each of them for one example level.

8.6.2.3.2 GSP The GSP algorithm is used for mining sequences that rely on

players’ behavior (Cg, At, A) since it allows more generalized frequent patterns to

be found by exploring different maxgap, and it is also used of mining multimodal

sequences (M) as, by using maxwin, we can discover simultaneous events from

two different modalities (Martinez and Yannakakis [2011]).

139

8. DATA COLLECTION AND FEATURE EXTRACTION

Table 8.4: The number of frequent subsequences of length three extracted from
the levels used in dataset 2 using a minimum support of 20.

Sequence # frequent subsequences

P 35

EP 7

I 12

Table 8.5: A subset of the frequent subsequences of length three of D and the
corresponding occurrences of each of them in one example level.

Frequent subsequences #of occurrence

000, 0 0, 0 , 00, 00, 0, , , 80,0,1,2,2,2,3,0,0

Different minsup values have also been explored to obtain a reasonable trade-

off between considering patterns that are generalized over all players and more

specific patterns. For the experiments presented in this dissertation, and because

of the wide diversity of player’s behavior patterns, we use a minsup value that

enforces sequence patterns to occur in at least around 30% of the samples to be

considered frequent.

The parameter maxwin defines the threshold under which events from two

different modalities can be considered as simultaneous events or events from one

modality are considered to be happening in a very short interval in space or

time. Throughout this dissertation, maxwin is sec. The value for this parameter

has been chosen as a tradeoff between a small window size that does not consider

simultaneous events, and a window size that processes clearly asynchronous events

from two modalities as events happening in a very small interval. For instance, we

wanted a window size that allows the extraction of the pattern of jumping when

reaching a gap (⇑�,). These two events should be considered as simultaneous

events even though they might not have occurred in the same time-stamp. For

the rest of the dissertation we will use parentheses to group simultaneous events.

For instance, the two patterns (,) () and (, ,) identify gaps of different

width. The first pattern points out to a gap of big width due to the separation

140

8.6. DATASETS

between the beginning and end of the gap in two items of the pattern. On the

other hand, the grouping of the beginning and the end of the gap in one item in

the second pattern indicates a gap of small width.

The maxgap parameter is used to set up the time gap between two events

to be considered as belonging to the same pattern. This parameter has a great

impact to the number of frequent patterns that can be extracted. By assigning

a large value to this parameter, we allow more generalized patterns to be taken

into account and as a consequence, a large number of sequences will be counted

as supcount. For example, moving right is the most frequent action the player

usually performs, when assigning a large value to maxgap the chance of choosing

patterns that contain the moving right action as an event increases. The analysis

of investigating the frequent patterns containing the moving right action using

different maxgap values showed that twice as many sequences as the ones sup-

porting the pattern (�,�,�,�,�,�) will be found if we increase the maxgap

parameters from 1 second to 3 seconds.

Another drawback for using large maxgap values is that it allows considering

less informative patterns. Large maxgap values means skipping more specific

patterns and focusing on the more generalized ones as can be seen from the

previous example. The frequent patterns found consisting of six moving right

events contain very little information about player’s behavior since the number

of players who press the right button six times in a row is small, and the pattern

doesn’t provide any information about the events happening in between.

Thus, the type of patterns we would like to investigate and the frequency of

each event play very important roles when setting up the value for this parameter.

Table 8.6 presents the number of frequent subsequences of different length found

in 1560 multimodal sequences extracted from the data collected in dataset 2 using

different maxgap settings. Note that the number of extracted frequent patterns

increases as the maxgap value increases due to the fact that larger maxgap values

mean more generalized extracted patterns which as a result will be supported by

a larger number of sequences.

Furthermore, correctly tuning this parameter has a large impact on the inter-

pretation of the resulted patterns, especially when mining multimodal sequences.

For instance, if we use maxgap = 3sec, the pattern (⇑, ,�) can be supported

141

8. DATA COLLECTION AND FEATURE EXTRACTION

Table 8.6: Number of frequent sequential patterns found of different length for a
number of maxgap values and a minimum support of 500 from 1560 multimodal
sequences of game content and players’ behavior extracted from dataset 2.

maxgap

Sequence length 1 sec 2 sec 3 sec

1 18 18 18
3 939 1697 2157
4 1982 6768 10577
5 2957 18922 36186
6 462 44609 >103053
7 38 91416 NaN
8 0 NaN NaN

by any sequence in which the player jumps, moves right and encounters an en-

emy within a 3 seconds interval (note that within this interval, the player might

encounter more than one enemy or a gap between the jumping and moving right

events which makes this pattern somehow misleading).

The experiments conducted for tuning the value of this parameter showed

that a maxgap of 1 sec provides a good tradeoff between the number of patterns

extracted and their expressiveness value.

The choice of the length of patterns to be extracted also plays an important

role when mining sequential data. Too small length leads to patterns with very

little information and high number of occurrences, while very long patters usually

carry information about more specific behaviors that capture the playing style of

few players. A compromise has to be made when tuning the value of this param-

eter for efficient pattern extraction. An experiment has been conducted on the

data collected in dataset 2, Table 8.7 presents the different types of sequences and

the number of frequent subsequence found for the number of different sequence

generation methods presented in Table 8.2. As can be seen from the table, the

number of extracted subsequences is quite large for sequences containing infor-

mation about players’ behavior (A), and the search space for automatic feature

selection increases substantially when fusing content and gameplay events for

generating multimodal sequences (M); more than 2000 subsequences of length

six have been extracted from the players’ behavior and multimodal sequences.

142

8.6. DATASETS

In order to lower the dimensionality of the feature space and the computational

cost of searching for relevant features we chose to use only frequent sequences of

length three for the experiments presented in the following chapters.

Table 8.7: Number of frequent sequential patterns found in the sequences ex-
tracted from dataset 2 for different sequence length values across different types
of sequences (minsup is 500 and maxgap is 1 sec). The columns stand for: con-
tent corresponding to gameplay events (Cg), gameplay behavior (A), gameplay
behavior registered every 0.5 sec (A0.5) and every 0.25 sec (A0.25) and biltimodal
sequences of game content and player behavior (M).

Sequence length Cg A A0.5 A0.25 M

1 7 8 2 8 18
2 27 64 2 57 205
3 25 310 0 69 939
4 23 939 0 741 1982
5 29 2065 0 1810 2957
6 0 2636 0 2547 2806
7 0 1403 0 1400 1402
8 0 115 0 112 112
9 0 0 0 0 0

Note that the number of frequent subsequences of length three found for A

and M is still large (310 and 939, respectively). In an effort to further reduce

this space, we perform a patterns-pruning step in which patterns form M that do

not contain both content and gameplay events were eliminated. This constraint

substantially reduces the number of frequent patterns to 437.

8.6.3 Dataset 3: Behavioral and Visual Cues

The two datasets presented previously rely on subjective data collected from

players’ self reports. As discussed in Section 8.5 there are a number of limitations

embedded in this approach. Therefore, a new experiment has been conducted to

design the third dataset. The dataset introduces a large data corpus derived from

58 participants that play Infinite Mario Bros.

An extensive corpus of visual and behavioral data is used for the analysis of

the cognitive states and behavior of the player; behavioral and visual cues are

143

8. DATA COLLECTION AND FEATURE EXTRACTION

(a) (b)

(c) (d)

Figure 8.3: Typical instances of players from Denmark (a,b) and Greece (c,d).

fused and used in the later experiments for the prediction of player experience,

producing concepts related to the gaming paradigm by relating player states to

particular in-game events.

The protocol proposed in Section 8.1 has been used to assess the players’ af-

fective states during play. Fifty-eight subjects participated (28 male; player age

varied between 22 and 48 years). Participants were seated in front of a computer

screen for video recording. Experiments were carried out in Denmark and Greece.

Lighting conditions were typical of an office environment, and for capturing play-

ers’ visual behavior, a High Definition camera was used (Figure 8.3).

144

8.6. DATASETS

Each participant played from two to five pairs of games on average, resulting

to a total of 190 game pairs (more than 6 hours of recordings). The game sessions

presented to players have been constructed using the same level generator em-

ployed to construct the previous dataset (the advanced parameterized generator

with a level width of 100 blocks).

Features extracted from player gameplay behavior and game levels, as well

as player visual characteristics that have been utilized as potential indicators of

reported affect expressed as pairwise preferences between different game sessions.

Our ultimate goal is to be able to construct accurate estimators of player expe-

rience derived from game content and player behavior, and by fusing subjective

and objective measures of players’ affective states, we aim to better model player

experience.

Along with direct features of game content and gameplay (the same ones ex-

tracted in dataset 2), we examine a series of head movement features as described

in the next section.

8.6.3.1 Head Movement Features

A number of head movement features have been investigated to better estimate

players’ affect while interacting with the game. In particular, we track players’

head motion through head horizontal and vertical (yaw and pitch) rotational

movements.

8.6.3.1.1 Mean Head Movement Features We considered the first deriva-

tive of the norm of the head pose vector (Asteriadis et al. [2009]) and use the

average (Avg) of its absolute values throughout whole game sessions. A series

of further head movement features (Caridakis et al. [2010]) have also been con-

sidered in order to elicit emotional information of the player during each game

session. More specifically, we considered:

• Overall Activation (OA), which is the sum of speeds for each rotational

movement, separately.

• Temporal Expressivity (TE) parameter.

145

8. DATA COLLECTION AND FEATURE EXTRACTION

Figure 8.4: Typical Head Expressivity of player reacting to certain game events.

• Spatial Extent (SE) parameter.

• Energy Expressivity parameter (Power) of head movement(PO).

• Fluidity of head movement (FL).

The detailed list of extracted head movement features is presented in Table

8.8. The method proposed by Caridakis et al. [2010] has been used to extract

these features. In addition to the above features, the median values of horizontal,

Mhorizontal, and vertical, Mvertical rotations, as well as medians of head rotation

norms Mnorm are also considered.

8.6.3.1.2 Visual Reaction features As players’ expressivity appears to in-

crease during certain events as can be seen from Figure 8.4, we also considered

the above features for certain gameplay events as described below:

• When the player loses a life.

• When the player kills an enemy by stomping on it.

• When the player starts or ends a one of the following actions: jump, duck,

run, and move left or right.

146

8.6. DATASETS

Table 8.8: Head Movement Features: Mean head movement features extracted
throughout whole sessions and visual reaction features during gameplay events.
The gameplay events considered for extracting these features include: losing,
stomping, (start/end) jumping, ducking, running left, running right and interact-
ing with items.

Category Feature Description

Head Movement Features throughout whole sessions
Mean Avg Absolute first order derivative of Head Pose Vector
Head OA Overall Activation

Movement SE Spatial Extent
TE Temporal Expressivity parameter
PO Energy Expressivity parameter
FL Fluidity

Mhorizontal Median value for horizontal head rotation
Mvertical Median value for vertical head rotation

Head Movement Features during gameplay events
Visual Avga Absolute first order derivative of Head Pose Vector

Reaction when the gameplay event, a occur
Features OAa Overall Activation when the gameplay event, a occur

SEa Spatial Extent when the gameplay event, a occur
TEa Temporal Expressivity parameter when the gameplay

event, a occur
POa Energy Expressivity parameter when the gameplay

event, a occur
FLa Fluidity when the gameplay event, a occur
Ma Median value for head rotation norm when the

gameplay event, a occur

• When the player interacts with a game item.

These features are calculated for periods of 10 frames before and after the

corresponding events. Subsequently, their mean values were compared to the

corresponding average values (by calculating fractions) during normal gameplay

for each game session separately. A detailed list of the features used can be seen

in Table 8.8. Figure 8.5 presents two instances of visual reactions to game events.

147

8. DATA COLLECTION AND FEATURE EXTRACTION

(a) (b)

Figure 8.5: Visual reactions to game events.

8.7 Summary

Collecting datasets of game content and players’ behavior can help us better

understand the in-game interaction and provide a solid ground for constructing

quantitative measures of player experience that enable a data-driven analysis of

the interaction between the player and the game.

Based on the types of data collected, different analysis directions can be fol-

lowed and variant methods can be performed to squeeze useful information and

findings. For the work presented in this dissertation, the attention is given to

constructing accurate estimators of player experience and the use of these esti-

mators to personalize gameplay experience. To this end, four datasets have been

collected each with different setup, number of participants and variant types of

features capturing different aspects of game content and playing behavior. The

wealth of the data collected in these datasets enables an in-depth analysis of the

interaction between the player and the game by utilizing different types of fea-

tures that highlight important aspects of the in-game experience across multiple

modalities of player input.

Large sets of features have been extracted from each dataset emphasizing the

need of applying feature selection methods in an attempt to ease the analysis of

the relationship between the content of the game, the players’ playing style and

148

8.7. SUMMARY

the reported experience. Hence, the framework proposed for player experience

modeling employs a sequential forward feature selection method to extract sub-

sets of features that have predictive capabilities with respect to reported player

affects. Based on the selected feature subsets, models of player experience will

be constructed and used for a thorough analysis of the factors that contribute to

player experience in platform games.

149

9

Player Experience Modeling:

Experiments

The methodology proposed in the previous chapter (Chapter 7) for modeling

player experience has been followed to construct models based on the three

datasets presented in Chapter 8. This chapter provides a thorough analysis con-

ducted for testing simple and more complex relationships between the features

extracted and the three reported states of player experience. Different experi-

ments have been conducted on the different datasets. We further investigate the

generality of the proposed approach and the impact of the types of the features by

comparing some of the models constructed in terms of the models’ performance

and the features selected.

9.1 Correlation Analysis

The correlation analysis provides the simplest mean of investigating the linear

relationship between the features and the reported players’ preferences. Such

an analysis can help us easily interpret the impact of game content and players’

behavior on how players reported their experience and what they felt about the

game.

In the following sections, we analyze the linear relationship between the differ-

ent types of features selected in dataset 2 and reported preferences. The reason

150

9.1. CORRELATION ANALYSIS

for focusing the discussion on this dataset is because it is a generalization of

dataset 1 in terms of the content generator used and in terms of the features

collected. This dataset provides a rich set of features represented in direct and

sequential forms permitting in-depth analysis.

9.1.1 Dataset 2: Advanced Parameterized Generator

A large set of features has been extracted from the game content and gameplay

data collected in dataset 2. The data collected was rich enough allowing complete

replays and therefore permitting the extraction of sequential features as well as

direct features. The full description of the data and the different types of features

extracted are presented in Chapter 8.

We performed an analysis for exploring statistically significant correlations

(p− value < 1%) between player’s expressed preferences and the different types

of the direct and sequential features extracted from 780 game pairs. Correlation

coefficients are obtained by following the method proposed by Pedersen et al.

[2009]. According to this method, correlation coefficients are calculated through:

c(z) =

Np∑
i=0

{zi/Np} (9.1)

where Np is the total number of game pairs where players expressed a clear

preference (gameA > gameB or gameB > gameA) for one of the two games and

zi = 1, if the player preferred the game with the larger value of the examined

feature and zi = −1, if the player preferred the other game in the game pair i.

The top five significantly correlated features across all experience states in-

vestigated are presented in Table 9.1 (refer to Chapter 8 for more information

about the feature extraction methods followed and the full list of features ex-

tracted). The significance test results showed that nineteen direct features are

significantly correlated with engagement with some of them also strongly corre-

lated with frustration and challenge while 21 features are significantly correlated

with frustration, and 17 features with challenge.

The features that are strongly correlated with engagement and not with chal-

lenge are mostly related to the interaction between the player and boxes (mainly

151

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

powerups); These features point to the task of searching for powerups, in which

the player has to destroy blocks looking for powerups that as a result changes

Mario’s mode, as being particularly engaging.

The avatar death feature (signifying that Mario loses a life) is the most sig-

nificantly correlated with both frustration and challenge indicating a strong rela-

tionship between death and these two player experience states.

Regarding changes in platform height patterns, P , only the features presented

in Table 9.1 for engagement and frustration are significantly correlated with en-

gagement and frustration while 15 features are strongly correlated with challenge.

Seven and 15 out of the features that correlate best with frustration and chal-

lenge, respectively, relate to the presence of a gap while engagement is signifi-

cantly correlated with only four features that indicate a gap. It is interesting to

note that despite the relatively small patterns’ length (three) almost all features

presented for the three emotional states require two or three gameplay actions to

be performed.

Ten out of the 12 features from I (item and enemy placement) are signifi-

cantly correlated with engagement while only three and two features correlate

significantly with frustration and challenge, respectively. A first observation is

that it is obviously much easier to predict engagement from I than to predict

challenge and frustration due to many more features significantly correlated to

engagement, and the correlations are stronger. Most features that correlate with

engagement point to the placement of items and enemies. This is not the same for

frustration which demonstrates less significant effects and the majority of those

that do focus on the existence of an enemy; features that correlate with challenge

highlight the importance of the relative placement of items and enemies in the

challenged perceived.

Large subsets of features of players’ actions (A) are significantly correlated

with engagement, frustration and challenge (99, 72 and 74, respectively). All

features that are highly correlated to frustration are also correlated to challenge.

It is worth mentioning that the features that correlate the most with engagement

are also significantly correlated with frustration and challenge but at different sig-

nificance levels. It appears that the number of jumps the player performs plays an

important role in predicting engagement as it appears in all top-5 action patterns

152

9.1. CORRELATION ANALYSIS

T
ab

le
9.

1:
T

op
fi
ve

st
at

is
ti

ca
ll
y

si
gn

ifi
ca

n
t

co
rr

el
at

io
n

co
effi

ci
en

ts
b

et
w

ee
n

re
p

or
te

d
en

ga
ge

m
en

t,
fr

u
st

ra
ti

on
an

d
ch

al
le

n
ge

an
d

ex
tr

ac
te

d
se

q
u
en

ti
al

an
d

d
ir

ec
t

fe
at

u
re

s.
T

h
e

si
gn

b
ef

or
e

th
e

fe
at

u
re

s
in

d
ic

at
es

p
os

it
iv

e
(+

)
or

n
eg

-
at

iv
e

(−
)

co
rr

el
at

io
n
.

T
h
e

co
lu

m
n
s

st
an

d
fo

r:
p
la

tf
or

m
st

ru
ct

u
re

(P
),

en
em

y
an

d
it

em
p
la

ce
m

en
t

(I
),

ga
m

ep
la

y
b

eh
av

io
r

(A
),

ga
m

ep
la

y
b

eh
av

io
r

re
gi

st
er

ed
ev

er
y

0.
25

se
c

(A
0
.2
5
),

co
n
te

n
t

co
rr

es
p

on
d
in

g
to

ga
m

ep
la

y
ev

en
ts

(C
g
)

an
d

m
u
lt

im
o
d
al

se
q
u
en

ce
s

of
ga

m
e

co
n
te

n
t

an
d

p
la

ye
r

b
eh

av
io

r
(M

).

D
ir

ec
t

S
eq

u
en

ti
al

P
I

A
A

0
.2
5
se
c

C
g

M

E
n
ga

ge
m

en
t

+
t c
o
m
p

−
−

+
(S

)(
�

)(
⇑)

−
(�

)(
�

)(
S

)
+

(
,
,

)
+

(
)(
�

)(
⇑�

)
+
t l
a
st
L
if
e
−

+
−

(R
�
⇑
)(
�

)(
�

)
−

(�
)(
⇑�

)(
S

)
+

(
,

)(
)

+
(

)(
�

)(
)

+
n
p
o
w
er

u
p
s
−

+
00

0
−

(⇑
)(
S

)(
S

)
−

(�
,⇑

�
)(
⇑�

)
+

(
,

)(
)

+
(

)(
⇑�
,⇑

)
+
n
st
a
te

−
+

−
(R

�
)(
�

)(
R

�
)
−

(�
,⇑

�
)(
S

)
+

(
,
,

)
+

(
,⇑

�
)(

)
+
N

w
−

+
−

(�
)(
⇑)

(�
)

+
(�
,⇑

�
,S

)
+

(
,

)(
)

+
(
,⇑

�
)(

)

F
ru

st
ra

ti
on

+
d
ca

u
se

−
+

+
(S

)(
�

)(
⇑)

+
(�
,�

)(
S

)
−

(
,

)(
)

+
(

)(
�

)(
S

)
−
n
co
in

+
+

−
(R

�
⇑
)(
�

)(
�

)
−

(�
)(
⇑)

(S
)
−

(
,
,

)
+

(�
)(
�

)(
)

+
d
n
u
m

+
+

−
(⇑

)(
S

)(
S

)
−

(�
,S

)(
⇑�

)
−

(
)(

,
)

+
(

)(
)(
�

)
−
n
ju

m
p

+
+

−
(R

�
)(
�

)(
R

�
)

+
(�

)(
�

)(
S

)
+

(S
)(

)(
S

)
−
t l
a
st
L
if
e

+
−

(�
)(
⇑)

(�
)

+
(�

)(
⇑�

)(
S

)
+

(
)(
�

)(
)

C
h
al

le
n
ge

+
d
n
u
m

−
+

−
(S

)(
�

)(
⇑)

−
(�

)(
�

)(
⇑�

)
+

(
,
,

)
−

(S
)(
�

)(
)

+
d
ca

u
se

+
+

−
(R

�
⇑
)(
�

)(
�

)
+

(S
)(
⇑,
S

)
+

(
)(

,
)
−

(
,�
,R

�
)

−
k
f
lo
w
er

−
−

(⇑
)(
S

)(
S

)
−

(S
,S

)(
S

)
+

(
,

)(
)
−

(�
)(

)(
S

)
−
t r

ig
h
t

+
−

(R
�

)(
�

)(
R

�
)
−

(�
)(
�
,�

)
−

(�
)(

)(
�

)
−
n
st
a
te

+
−

(�
)(
⇑)

(�
)

−
(�
,⇑

�
)(
⇑�

)
−

(�
)(

)(
)

153

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

combined in most of the cases with moving right and pressing the speed button.

This can also explain the significant correlation found between engagement and

sequences of I that contains items which mostly require jumping to be collected

and enemies which require a jump to be killed or overcome.

While jumping and moving right are the most important actions for predicting

engagement, standing still, S (supposedly thinking about how to overcome the

next obstacle) is the most frequent action in the subset of features correlated with

frustration and challenge

Nine out of the 25 features of Cg are significantly correlated with engagement,

while only three features are strongly correlated with challenge and frustration.

It is worth noticing that all the features that correlate with challenge contain the

same items and differ only in the placement of parentheses (the same applies for

frustration). This indicates that the existence (or non-existence) of a sequence

of certain content items is more important for the experienced frustration and

challenge than its relative placement.

The three correlated Cg features with frustration linked to the existence of

gaps and the placement of parentheses within each pattern reflect the width of

a gap (a gap beginning and ending within the same item indicates a small gap

width since the parentheses enclose events happening within a very short time).

The fact that the significant patterns contain () in combination with a gap

points out to stairs surrounding the gap or changes in platform height within

a very close distance to the gap which add to the difficulty of jumping and as

a result, on the reported frustration. Somewhat surprisingly, patterns including

the presence of gaps are not correlated with challenge. This suggests a possible

nonlinear relationship.

Large subsets of multimodal features are strongly correlated with engagement,

frustration and challenge (232, 95 and 119, respectively). While most features

correlated with frustration are also strongly correlated with challenge, the most

significantly correlated features with engagement, are not strongly correlated with

either frustration or challenge. Patterns correlated with engagement draw a pic-

ture of most players enjoying running in a platform with changing height that

requires jumping. From the patterns correlated with frustration, it seems that

frustrated players spend more time standing still, less time running through the

154

9.2. NONLINEAR RELATIONSHIPS

level (this can also be seen in A and A0.25 patterns where the standing still and

moving right — without the speed button pressed — are the most dominant

actions).

Although many features of different forms has been analyzed and interesting

findings have been obtained, the correlations calculated and analyzed above pro-

vide basic analysis with linear relationships between the extracted features and

reported emotions. These relationships are most likely more complex than those

that can be captured by linear models. In the following sections we analyze the

nonlinear relationships found using players’ experience models.

9.2 Nonlinear Relationships

The analysis of the nonlinear relationships between the extracted features and

the investigated experience states has been obtained though modeling player ex-

perience via neuroevolutionary preference learning. The methodology proposed

in Chapter 7 for selecting the relevant features for predicting player experience

and for constructing the player experience models is followed. In the following

sections we present the models constructed for each dataset. We further analyze

the features selected and the models constructed.

9.2.1 Dataset 1: Basic Parameterized Generator

Dataset 1 contains 654 game pairs (1308 game sessions) played by 327 players. In

order to construct the player experience models using neuroevolutionary prefer-

ence learning, the collected data has been preprocessed to remove the pairs with

unclear preferences, i.e. those pairs where both games are equally preferred or

unpreferred. After this step, 458, 463, and 463 pairs remain for fun, challenge,

and frustration, respectively.

A large set of direct features was extracted during gameplay (Table 8.1).

Modeling player experience has been done in two steps: First, the relevant subset

of features have been extracted using sequential forward feature selection (SFS)

and, second, the topology of the model is optimized following the framework

presented in Chapter 7.

155

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

All features values are normalized to [0,1] using standard max-min normal-

ization. After normalization, all features are used as inputs to sequential forward

selection using SLPs (see Chapter 7 for more information about SFS and SLP)

and the feature subsets that resulted in the best prediction accuracies have been

chosen.

The set of features that yields the highest prediction accuracy differs for each

experience state investigated. The selected feature subset for fun consists of

four features: time needed to complete the level, tcomp, time spent in Super

mode, tsuper, time spent running, trun, and the number of opponents died from

unleashed shells, kunleash. For frustration, a larger set of seven features were

selected, consisting of: time needed to complete the level, tcomp, total number of

bill blasters in the level, BL, number of power blocks destroyed, npowerups, number

of times the player shifted mode, nmode, average width of gaps, Ḡw, number of

coin blocks destroyed, nblock, and number of jumps executed, njump. Challenge

can be predicted using a set of six features: number of collected coins, ncoin, time

needed to complete the level, tcomp, average width of gaps, Ḡw, number of times

the player shoots a fire ball, nshoot, total number of bill blasters in the level, BL,

and the cause of the last avatar death, dcause.

Since our ultimate aim is to automatically generate game content that is

tailored to players’ experience in real-time, we need to be able to predict emotions,

at least partly, from controllable features. For this purpose, after the subsets

of features have been selected, all remaining controllable features that are not

already included in the selected feature subsets are forced into the input of MLP

models and a model optimization step has been performed to select the MLP

topology that gives the highest prediction accuracy. The accuracies obtained are

presented in Table 9.2.

Using direct features only, it appears that frustration is the easier to predict

since the model constructed to predict reported frustration yields the highest

accuracy, although it has the largest subset of features and a two-layers network.

Challenge comes next in terms of prediction accuracy (74.66%) and the size of

the selected feature set with three features overlapping with the ones selected

for predicting reported frustration. The best network topology for predicting

reported challenge, however, consists of one layer only with three neurons. Fun

156

9.2. NONLINEAR RELATIONSHIPS

Table 9.2: The subset of direct features selected for predicting players’ reported
experience of fun, frustration and challenge and the corresponding best models’
topologies and performance. SLPs is the model performance on the selected
subset of features and MLPc is the performance after forcing the controllable
features as inputs to the models. The topologies are presented in the form:
number of inputs (including the content features)-number of neurons in the first
hidden layer-number of neurons in the second hidden layer.

Fun Frustration Challenge

SFSslp tcomp tcomp ncoin

tsuper BL tcomp

trun npowerups nshoot

kunleash nmode BL

nblock dcause

Ḡw Ḡw

njump

MLPtopology 8-10-0 10-4-2 9-3-0

SLPs 64% 84.66% 70%

MLPc 69.66% 89.33% 74.66%

is the hardest to predict from direct features with an average prediction accuracy

of 69.66% and the smallest set of selected features (only four features are selected

for predicting reported fun). The network selected for predicting reported fun is

of moderate size of one hidden layer of ten neurons.

9.2.2 Dataset 2: Advanced Parametrized Generator

A total of 780 game pairs constitute dataset 2. This dataset contains richer

information about game content and players’ behavior than those extracted in

dataset 1. Along with gameplay direct features used for dataset 1 in the previous

experiment, this dataset includes detailed information about level content as well

as each action the player performed. Due to its information richness, different

types of sequential patterns of content and behavior have been extracted. In

order to use sequential features as predictors of players’ experience, sequence

157

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

mining techniques have been used to extract frequent sequential patterns from

the dataset of all content and gameplay sequences as discussed in Chapter 8. The

number of occurrences of each frequent pattern in each game session is then used

as input for player experience modeling.

All direct features and the number of occurrences of all frequent sequential

patterns extracted are uniformly normalized to [0,1] using standard max-min nor-

malization. After normalization, these values are used as inputs for feature selec-

tion and ANN model optimization. The two-phase feature selection method, fol-

lowed by the model optimization step presented in Chapter 7, have been adopted

to construct player experience models. We investigate three types of features

as inputs to the experience models; direct features, a number of variations of se-

quential patterns and we further explore a fusion of direct and sequential features

as inputs. The fused features differ from multimodal sequential features in that

these features are not fused on the extraction level, such as in the method followed

for generating multimodal sequences, but rather on the selection level. The set of

features in the fused feature category includes direct features of game content and

gameplay, sequential content features corresponding to players’ actions, Cg and

sequential patterns of players’ behavior, A. The selection of these categories is

done in order to cover a wide variety of features that capture the variation in level

structure and the diversity in players’ behavior. Table 9.3 presents the different

types of features selected for reported engagement, frustration and challenge.

Note that to design a level generation mechanisms that is driven by the player

experience models we construct here, all remaining controllable features that are

not selected in the feature selection process should be forced into the input of the

MLPs. The MLP performance and topologies of the best MLPs (for both direct,

various types of sequential features as well as the fused features) before and after

forcing the content features in the inputs are presented in Table 9.4.

Using MLPs with the selected direct features and the remaining controllable

features, we were able to predict engagement, frustration and challenge with

relatively high accuracy (see Table 9.4). In the following sections, we analyze

the results obtained from feature selection and model optimization for the three

emotional states under investigation.

158

9.2. NONLINEAR RELATIONSHIPS

9.2.2.1 Engagement

Using different patterns of content and/or gameplay to construct player expe-

rience models resulted in models that vary in topology and performance. The

best-performing model for predicting engagement has been constructed using se-

lected patterns of players’ gameplay taken every 0.25 seconds and achieved a

performance that is significantly better than all other models (83.8%) followed

by the model constructed on fused sequential and direct features (72.53%) with no

significant difference from the model constructed on sequential features extracted

from items and enemies placement, I, and models of direct features. It is interest-

ing to note that this model (A0.25) outperforms other models after including the

direct controllable features in the inputs. Without including the controllable fea-

tures, the model constructed on fused features outperforms the ones constructed

on sequential features with no significant difference from the model constructed

on direct features and the ones constructed on patterns extracted from players’

gameplay, A.

The subset of direct features for predicting engagement (see Table 9.3) consists

of the total time spent playing the game, the time spent doing different activities

(running, jumping, in Super mode and in Small mode), the number of coins

collected, the number of blocks destroyed (which in part relates to the number

of collected coins since player smashes blocks to collect hidden coins and it also

relates to the time spent in Super/Small mode), the number of times the jump

button is pressed (which relates to the time spent jumping), the cause of death,

and the controllable feature that defines the number of goombas and koopas

scattered around the level.

Two of the directed features selected appear to be dominant in the selected

sequential features of players’ actions, A0.25, more specially, running right and

jumping. The two selected patterns (�,⇑�, S) and (�)(⇑, S) point out to the

existence of a content event that causes jumping and standing still behaviors. This

can be better explained by looking at the selected content patterns that relate to

gameplay events, Cg. By investigating the subset of selected features from these

two types together, simple jumping actions, ⇑, can be explained by changes in

platform height and placement of items; moving right followed by jumping and

159

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

standing still patterns ((�,⇑, S) and (�)(⇑�, S)) mostly relate to the behavior

of overcoming enemies (, ,); the more complex navigation patterns that

has been selected, such as (R�, R�, R�⇑) that defines the behavior of pressing a

combination of buttons at the same time within a very small window time, suggest

the existence of a gap that requires speeding up followed by jumping while the

moving right and the speed button are still pressed ((, ,)). Note that the

two patterns ((�,⇑, S) and (�)(⇑�, S)) can also be the result of overcoming a

gap, which in that case reflect a beginner player playing style. On the contrary

the pattern (R�, R�, R�⇑) captures a more advanced playing behavior. Since the

methodology proposed constructs average models in the sense that the models

are trained on a composite of subjective preferences of several subjects, patterns

that capture the playing style of beginner and expert players can be selected and

presented as inputs to the models.

The subset of fused features includes all direct features along with two other

sequential patterns one from content representing a wide gap with a decrease in

the platform height and the other from players’ action standing for the jumping

action followed by a standing which are actions that are mostly performed in

response to the existence of a gap or an enemy.

Overall, an engaging Super Mario level, according to this analyses, is the one

that provides enough space for running, changes in platform height, items to be

collected as well as it contains challenging elements presented in the placement

of enemies around collectable items, the existence of gaps and the placement of

not easily collectable items.

160

9.2. NONLINEAR RELATIONSHIPS
T

ab
le

9.
3:

T
h
e

fe
at

u
re

s
se

le
ct

ed
fr

om
th

e
se

t
of

d
ir

ec
t

an
d

se
q
u
en

ti
al

fe
at

u
re

s
fo

r
p
re

d
ic

ti
n
g

en
ga

ge
m

en
t,

fr
u
st

ra
ti

on
an

d
ch

al
le

n
ge

u
si

n
g

se
q
u
en

ti
al

fe
at

u
re

se
le

ct
io

n
w

it
h

S
L

P
an

d
si

m
p
le

M
L

P
m

o
d
el

s.

D
ir

ec
t

S
eq

u
en

ti
al

F
u
se

d
P

I
A

A
0
.2
5
se
c

C
g

M

E
n
ga

ge
m

en
t

S
F
S
sl
p

t c
o
m
p

00
0

(�
)(
�

)(
�

)
(�

)(
�

)(
�

)
(

)(
,

)
(�

)(
)(

)
t c
o
m
p

n
co
in

(R
�

)(
R

�
⇑
)(
R

�
)

(�
,⇑

�
,S

)
(

,
,

)
(R

�
)(
R

�
⇑
)(

)
n
co
in

d
ca

u
se

(⇑
�

)(
⇑)

(S
)

(R
�
,R

�
,R

�
⇑
)

(
,

,
)

(S
)(
�

)(
)

d
ca

u
se

t s
m
a
ll

(R
�
⇑
,
⇑�

)(
S

)
(�

)(
⇑,
S

)
(

,
,

)
(

,
,
⇑�

)
t s

m
a
ll

E
(�

)(
⇑�

)(
S

)
(S

)(
�

)(
S

)
(R

�
)(

)(
R

�
)

E
t j

u
m
p

(R
�

)(
S

)(
S

)
(�
,R

�
,R

�
⇑
)

(
)(
�

)(
⇑�

)
t j

u
m
p

n
bl
o
ck

(⇑
)(
⇑)

(�
)

(�
)(
S

)(
⇑)

(
)(
R

�
)(
R

�
⇑
)

n
bl
o
ck

(R
�

)(
R

�
,R

�
⇑
)

(
,
�

)(
R

�
)

S
F
S
m
lp

t s
u
p
er

(�
,⇑

)(
�

)
(

,
,

)
t s

u
p
er

t r
u
n

t r
u
n

n
ju

m
p

n
ju

m
p

(
,

,
)

(�
,⇑

�
,S

)

F
ru

st
ra

ti
on

S
F
S
sl
p

t r
ig
h
t

00
0

(S
)(
�

)(
S

)
(�

)(
�

)(
�

)
(

)(
,

)
(�

)(
)(

)
t r

ig
h
t

d
n
u
m

(R
�
⇑
)(
R

�
⇑
)(
R

�
)

(R
�
,R

�
⇑
)(
R

�
)

(
,
,

)
(

)(
�

)(
S

)
d
n
u
m

d
ca

u
se

(⇑
�

)(
S

)(
�

)
(S

)(
�
,S

)
(
,

)(
)

(�
)(
S

)(
)

d
ca

u
se

k
g
o
o
m
ba

(⇑
�

)(
�

)(
�

)
(S

)(
�

)(
�

)
(
,

)(
)

(
,R

�
)(
�

)
k
g
o
o
m
ba

t l
a
st
L
if
e

(�
)(
⇑�

)(
�

)
(
,
,

)
(

)(
R

�
)(
R

�
⇑
)

t l
a
st
L
if
e

Ḡ
w

(�
)(
S

)(
�

)
(
,

)(
)

(
)(
�

)(
�

)
Ḡ

w

(
)(

,
)

(R
�
,R

�
⇑
)(

)
S
F
S
m
lp

G
(�
,⇑

)(
�

)
(⇑
,S

)(
�

)
G

161

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS
T

ab
le

9.
3

–
C

on
ti

n
u
ed

D
ir

ec
t

S
eq

u
en

ti
al

F
u
se

d
P

I
A

A
0
.2
5
se
c

C
g

M

n
ju

m
p

(�
)(
S

)(
S

)
n
ju

m
p

(
,
,

)
(⇑

�
,�
,�

)
(⇑

�
,S
,�

)

C
h
al

le
n
ge

S
F
S
sl
p

t l
a
st
L
if
e

00
0

(�
)(
�

)(
S

)
(�
,�

)(
�

)
(

)(
,

)
(�

)(
)(

)
t l
a
st
L
if
e

n
ju

m
p

(�
)(
R

�
)(
R

�
)

(�
,R

�
)(
R

�
)

(
,

)(
)

(
,
,⇑

�
)

n
ju

m
p

d
n
u
m

(⇑
)(
�

)(
S

)
(R

�
)(
R

�
⇑
)(
R

�
)

(
,

)(
)

(
)(
⇑�

)(
S

)
d
n
u
m

n
co
in

(⇑
)(
⇑�

)(
S

)
(S

)(
�

)(
⇑�

)
(
,
,

)
(S

)(
�

)(
)

n
co
in

t r
ig
h
t

(�
)(
S

)(
S

)
(

)(
,

)
(
,

)(
R

�
)

t r
ig
h
t

Ḡ
w

(
,
,

)
(
,�
,

)
Ḡ

E
p

S
F
S
m
lp

t l
ef

t
(�

)(
�

)(
S

)
(
,

)(
)

E
p

k
st
o
m
p

t l
ef

t

k
st
o
m
p

(
,
,

)
(⇑

)(
�

)(
S

)
(
,
,

)

162

9.2. NONLINEAR RELATIONSHIPS

9.2.2.2 Frustration

The best models for predicting frustration were constructed using the subset of

direct features and the remaining controllable features and they significantly out-

perform all other models except for the one constructed on the fused features.

These two models outperform all other models also without enforcing the use of

controllable features. The models trained on patterns of players’ actions achieve

the highest performance among other sequential-based models (no significant dif-

ference, however).

From the features selected for predicting frustration (see Table 9.3), it appears

that for a game to be frustrating, it should contain at least a certain number of

gaps with certain width (both positively correlated). The number of kills of

goombas and koopas points out to the importance of the number of enemies

presented in the game. The selection of the features that relate to avatar death

(the number of deaths, the cause of death and the time spent playing in last

life) also reveals the importance of gaps and enemies since these two elements

constitute major causes of death.

Selected sequential features highlight specific patterns that have an impact

on reported frustration. As selected direct features already demonstrated, the

existence of enemies and gaps seem to be important for predicting frustration

since most of the sequential patterns of P , I and Cg contain these events. The

placement of stairs around gaps or the changes in platform height within a close

distance to a gap appear to have an influence on how frustrating the game per-

ceived even with moderate to small width gaps (e.g. the pattern (, ,)).

Another element that factors in the perceived frustration is the placement of sev-

eral game content events within a small time window as can be seen from the

example patterns: and (,)(). It can be observed from the most fre-

quent patterns of players’ actions and the correlation between them and reported

frustration that the frustrated player rapidly switches between simple actions of

moving right (without speeding up), standing still and performing simple jumps.

Although only three sequential patterns have been added to the set of direct

features, it appears that fusing sequential and direct features yields an increase

in the performance with the models constructed on these features outperforming

163

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

T
ab

le
9.

4:
M

L
P

to
p

ol
og

ie
s

an
d

co
rr

es
p

on
d
in

g
p

er
fo

rm
an

ce
on

d
ir

ec
t

an
d

se
q
u
en

ti
al

fe
at

u
re

s.
T

h
e

p
er

fo
rm

an
ce

of
M

L
P

m
o
d
el

s
b
u
il
t

on
th

e
su

b
se

t
of

se
le

ct
ed

fe
at

u
re

s,
M
L
P
s

is
co

m
p
ar

ed
ag

ai
n
st

th
e

m
o
d
el

s
b
u
il
t

on
se

le
ct

ed
an

d
fo

rc
ed

co
n
tr

ol
la

b
le

fe
at

u
re

s,
M
L
P
c
.

T
h
e

to
p

ol
og

ie
s

ar
e

p
re

se
n
te

d
in

th
e

fo
rm

:
n
u
m

b
er

of
in

p
u
ts

(i
n
cl

u
d
in

g
th

e
co

n
te

n
t

fe
at

u
re

s)
-n

u
m

b
er

of
n
eu

ro
n
s

in
th

e
fi
rs

t
h
id

d
en

la
ye

r-
n
u
m

b
er

of
n
eu

ro
n
s

in
th

e
se

co
n
d

h
id

d
en

la
ye

r.
T

h
e

m
o
d
el

s
w

it
h

th
e

h
ig

h
es

t
ac

cu
ra

ci
es

ar
e

p
re

se
n
te

d
in

b
ol

d
.

D
ir

ec
t

S
eq

u
en

ti
al

F
u
se

d
P

I
A

A
0
.2
5
se
c

C
g

M

E
n
ga

ge
m

en
t

M
L
P
to
p
o
lo
g
y

15
-6

-8
14

-8
-4

13
-2

-6
14

-2
-2

14
-1

0-
0

11
-2

-2
14

-2
-2

18
-2

-0
M
L
P
s

73
.5

0%
68

.8
4%

72
.1

9%
73

.1
9%

66
.8

5%
67

.1
6%

63
.8

1%
76

.3
8%

M
L
P
c

69
.8

0%
65

.8
0%

71
.0

2%
68

.0
0%

8
3
.8

0
%

68
.0

0%
66

.4
9%

72
.5

3%
M
L
P
a
v
g

67
.1

8%
64

.9
2%

69
.1

5%
67

.0
7%

82
.3

0%
63

.5
0%

65
.1

6%
69

.3
1%

F
ru

st
ra

ti
on

M
L
P
to
p
o
lo
g
y

12
-6

-0
12

-8
-2

10
-1

0-
10

13
-2

-0
12

-2
-0

13
-6

-0
14

-4
-0

17
-1

0-
4

M
L
P
s

83
.0

0%
77

.2
1%

66
.6

6%
68

.9
2%

68
.4

5%
66

.2
9%

72
.8

8%
86

.2
5%

M
L
P
c

8
0
.7

0
%

71
.9

3%
69

.3
0%

72
.5

0%
71

.3
7%

68
.3

6%
72

.3
2%

79
.8

4%
M
L
P
a
v
g

76
.5

0%
69

.3
8%

66
.7

4%
68

.2
5%

69
.0

8%
66

.2
1%

69
.1

5%
77

.5
9%

C
h
al

le
n
ge

M
L
P
to
p
o
lo
g
y

13
-2

-2
10

-4
-0

10
-2

-8
10

-8
-6

12
-4

-4
13

-8
-6

12
-6

-2
19

-6
-2

M
L
P
s

79
.1

0%
73

.0
4%

69
.2

2%
63

.8
4%

62
.8

3%
66

.5
0%

68
.8

8%
91

.0
7%

M
L
P
c

77
.5

0%
69

.6
0%

69
.0

5%
70

.6
2%

67
.6

2%
71

.2
9%

71
.4

5%
8
6
.2

8
%

M
L
P
a
v
g

74
.0

3%
68

.5
8%

64
.9

41
%

69
.1

9%
62

.8
3%

67
.5

0%
67

.5
0%

83
.6

4%

164

9.2. NONLINEAR RELATIONSHIPS

all other models.

In summary, the number of gaps and their average width play major roles in

perceived frustration. The more gaps and the wider they are, the more frustrating

the game is specially when the gaps are combined with changes in platform height.

The number of enemies has less direct influence on frustration. It is interesting

to note that frustration can be predicted up to a good degree just by the changes

in platform height; this can be the result of more player concentration required

when height changes rapidly leading to frequent changes of performed actions. It

appears that, in general, the placement of a sequence of items after each other

within a small distance leads to a more frustrating game as it most likely increases

the level of player confusion, cognitive load and level complexity.

9.2.2.3 Challenge

Challenge can be best predicted using a subset of fused features from direct

and sequential representation with significantly better performance than all other

models. The models constructed on the fused features also outperform the other

models when excluding the controllable features. The model constructed from

direct features also achieves a high accuracy that is significantly better than all

models constructed from sequential features. The best model constructed from

sequential features is based on multimodal patterns with a very close performance

to the models constructed on patterns from players’ actions, A, and the models

constructed on patterns of game content, Cg.

The direct features selected for predicting challenge (see Table 9.3) reveal the

importance of gaps and enemies since five of them relate to gaps width, placement

and killing of enemies and avatar death (all positively correlated). An interesting

and somehow expected feature is enemy placement (that describes the way ene-

mies are placed; around gaps, around boxes or at random (see Section 5.3.1.2)),

which is negatively correlated with challenge and adds to the difficulty of the

game, in particular, when enemies are placed around gaps making it more chal-

lenging to jump over and also when placed around blocks making item collection

more difficult.

Selected direct features can be better explained when analyzing the selected

165

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

sequential patterns. The presence of the standing still action in the same pattern

with moving right and/or jumping suggests an existence of a challenging situation

in which the player has to pause and spend sometime thinking before taking a

simple action (e.g. patterns like (⇑)(�)(S) or (�)(S)()). While challenge is

positively correlated with the pattern ()(,), a negative correlation has been

observed between challenge and the pattern (, ,). This can be explained by

the complex situation that arises in the first case and makes jumping over a gap

more challenging since the player does not have enough space to speedup before

jumping; instead she has to move carefully towards the edge and press a set of

combined keys in order to reach the other edge.

One should expect that the models constructed on multimodal data of con-

tent and gameplay (M) should achieve the best performance. Surprisingly, the

performances obtained from these models are as high or slightly lower than the

performance of the best sequential models constructed. A possible explanation

is that frequent patterns of length three are rather too small to capture patterns

across different data streams and longer pattern lengths should be considered.

(We would likely need more data in order to effectively use longer subsequences

for analysis). Another related problem is the wide diversity of players’ actions

when encountering the same in game situation that enlarges the size of the feature

space and complicates the mining of the resulted sequences.

On the other hand, very accurate models were constructed when fusing the

extracted direct and sequential features together. Using the subset of direct

features selected with four sequential features (three of which relate to patterns

of content) as inputs to the model yields a significant increase in the performance.

In conclusion, challenge appears to be affected more by the characteristics of

particular features rather than the frequency of their appearance in the level: the

width of gaps, the placement of stairs around them, the placement of enemies,

the frequent changes in platform height, and the placement of items within a

small distance to each other contribute to a more challenging game as they imply

a higher probably of game failure (Nicollet [2004]).

166

9.2. NONLINEAR RELATIONSHIPS

9.2.3 Dataset 3: Behavioral and Visual Cues

This dataset originally consisted of a total of 380 games (190 pairs). The dataset

has been cleaned and interaction instances for which visual data was corrupted

were removed. After this step, the dataset consists of 167 pairs of games. In

addition, a preprocessing step was applied to remove the game pairs for which

players reported unclear preferences (those that were equally preferred or equally

unpreferred). After this step 127, 121 and 144 game pairs remain for engagement,

frustration and challenge, respectively, and these pairs are used to train models

of player experience.

The following sections describe the experiments that have been conducted to

construct and compare different models of player experience derived from the

features extracted. We construct models based on gameplay and content features

only, models from mean head movement features only and models from visual

reaction features. We then investigate models constructed from fusing different

modalities of player input.

We start by analyzing the features selected and the models’ accuracies ob-

tained from each feature set, then we further investigate the differences on sig-

nificance between the models constructed on the different categories of features.

9.2.3.1 Player Experience Modeling through Gameplay and Content

Features

All features presented in Table 8.1 are set as inputs for feature selection and

model optimization. The subsets of features selected, the models’ accuracies and

the best MLP topologies obtained vary across the three emotional states under

investigation as can be seen in Table 9.5 and Table 9.6. By constructing models

based only on gameplay and content features, we are able to predict the three

experience states with average accuracies (across 20 trails) higher than 72% while

the best performances obtained exceed 89% for engagement and frustration. The

best accuracy obtained for predicting challenge is 80.6% that is significantly lower

than the ones obtained for predicting engagement and frustration (significance is

set to 1%).

It is worth observing that out of 30 different gameplay and content features,

167

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

a maximum of five features only have been considered to be important for pre-

dicting each state. However, different feature subsets have been picked for each

experience state with only one common feature between engagement and chal-

lenge, namely, the time spent jumping tjump. Three out of the six controllable

features appear in the subsets of selected features for predicting engagement and

challenge, namely, the number of enemies, E, the placement of enemies, Ep and

the number of powerups, Nw. Note that frustration can be predicted with the

smallest subset of features (only three features have been selected), nevertheless,

the prediction accuracy for this emotional state is significantly higher than the

ones obtained for predicting engagement and challenge.

Although high accuracies have been obtained for predicting the three emo-

tional states, challenge appears the hardest to model from gameplay features,

while frustration is the easiest.

9.2.3.2 Player Experience Modeling through Mean Head Movement

Features

In order to map visual behavior to players’ reported affect, the mean head move-

ment features presented in Table 8.8 were used as inputs to select the relevant

features for predicting players’ affect and optimizing the players’ experience mod-

els. The results presented in Table 9.5 show that the models constructed from

the head movement features, extracted throughout whole game sessions yield ac-

curacies that are as good as the ones obtained from gameplay features, or slightly

lower.

An analysis on the selected features shows that the median horizontal head

rotation (Mhorizontal) is an important feature for all three states, while Overall

Activation (OA) and (Mvertical) are only to be found as predictors of engagement

and frustration. Moreover, the energy expressivity parameter (PO) is a common

predictor of both engagement and challenge.

168

9.2. NONLINEAR RELATIONSHIPS
T

ab
le

9.
5:

F
ea

tu
re

s
se

le
ct

ed
fr

om
th

e
se

t
of

ga
m

ep
la

y,
m

ea
n

h
ea

d
m

ov
em

en
t,
M
H
M

(d
u
ri

n
g

w
h
ol

e
ga

m
es

)
an

d
v
is

u
al

re
ac

ti
on

fe
at

u
re

s,
V
R

(d
u
ri

n
g

ce
rt

ai
n

ev
en

ts
)

fo
r

p
re

d
ic

ti
n
g

en
ga

ge
m

en
t,

fr
u
st

ra
ti

on
an

d
ch

al
le

n
ge

.
C

on
te

n
t

fe
at

u
re

s
ap

p
ea

r
in

b
ol

d
.

O
n
e

M
o
d
al

it
y

B
im

o
d
al

it
y

G
am

ep
la

y
M

H
M

V
R

G
am

ep
la

y
&

M
H

M
G

am
ep

la
y

&
V

R

E
n
ga

ge
m

en
t

S
F
S

t j
u
m
p

O
A

O
A

en
d
R
u
n

t j
u
m
p

T
E

en
d
R
ig
h
t

k
st
o
m
p

A
v
g

F
L
en

d
R
u
n

k
st
o
m
p

t j
u
m
p

N
w

M
v
er

ti
ca

l
F
L
st
o
m
p

N
w

B

t r
u
n

M
h
o
r
iz
o
n
ta
l

P
O

st
a
r
tL

ef
t

M
h
o
r
iz
o
n
ta
l

P
O

st
o
m
p

E
p

S
E

P
O

m
o
v
e

t c
o
m
p

T
E

en
d
J
u
m
p

P
O

T
E

en
d
R
ig
h
t

n
bo
x

A
v
g e

n
d
J
u
m
p

M
v
er

ti
ca

l

F
L

F
ru

st
ra

ti
on

S
F
S

t l
a
st
L
if
e

M
h
o
r
iz
o
n
ta
l

O
A

lo
se

t l
a
st
L
if
e

F
L
it
em

n
bo
x

O
A

A
v
g s

to
m
p

T
E

F
L
st
o
m
p

t l
ef

t
T
E

S
E

en
d
R
u
n

n
m
is
cJ

u
m
p

t s
m
a
ll

F
L

P
O

st
a
r
tR

u
n

n
bo
x

F
L
lo
se

M
v
er

ti
ca

l
M

en
d
J
u
m
p

P
O

n
bo
x

P
O

it
em

d
n
u
m

O
A

169

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS
T

ab
le

9.
5

–
C

on
ti

n
u
ed

O
n
e

M
o
d
al

it
y

B
im

o
d
al

it
y

G
am

ep
la

y
M

H
M

V
R

G
am

ep
la

y
&

M
H

M
G

am
ep

la
y

&
V

R

C
h
al

le
n
ge

S
F
S

t j
u
m
p

M
h
o
r
iz
o
n
ta
l

F
L
lo
se

M
h
o
ti
z
o
n
ta
l

F
L
it
em

E
F
L

P
O

st
a
r
tR

u
n

t j
u
m
p

F
L
st
a
r
tR

u
n

k
u
n
le
a
sh

ed
P
O

F
L
st
a
r
tR

u
n

t r
u
n

M
st
a
r
tJ

u
m
p

d
n
u
m

A
v
g e

n
d
L
ef

t
t s

u
p
er

F
L
lo
se

k
u
n
le
a
sh

ed
S
E

en
d
L
ef

t

t s
m
a
ll

t l
ef

t

A
v
g s

ta
r
tJ

u
m
p

170

9.2. NONLINEAR RELATIONSHIPS

The significance test shows that the model constructed for predicting frus-

tration significantly outperforms the two other models for predicting engagement

and challenge. Note that this also applies for the models constructed from game-

play features which implies that single input modalities (behavioral or visual) are

better for predicting engagement and frustration than for predicting challenge.

9.2.3.3 Player Experience Modeling through Visual Reaction Fea-

tures

It was our assumption that visual reaction features during certain events (losing,

making critical moves, etc.) used as the only input channel for estimating player

states would yield more accurate results when compared to mean head movement

features (which refer to the overall visual behavior during whole game sessions)

or gameplay features. Player experience states seem to be mostly correlated with

events occurring at certain instances during the game, rather than whole game

durations-related visual features. Visual reaction features are fused on the feature

level before feeding the predictive models and feature fusion is expected to boost

the model’s predictive power.

Accuracy obtained for frustration yields higher values when using visual re-

action features: visual behavior during jumping, losing, running and interacting

with various items appear to be good predictors of frustration. More specifically,

it is typical that the Energy Expressivity parameter during interaction with items

(POitem) and starting to run (POstartRun), as well as the Overall Activation when

losing (OAlose) are related to the notion of frustration. In addition to frustra-

tion, very good accuracies have been obtained when using the visual reaction

features for predicting challenge with both frustration and challenge significantly

outperforming the accuracies obtained for predicting engagement.

9.2.4 Fusing Features for Modeling Player Experience

This subsection presents experiments with bimodal features as inputs to the pre-

dictive models. We first fuse the gameplay/content with the mean head movement

features and we then examine the impact of the fusion between gameplay/content

and the visual reaction features on the prediction accuracy of the models.

171

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

T
ab

le
9.

6:
M

L
P

to
p

ol
og

ie
s

an
d

co
rr

es
p

on
d
in

g
b

es
t

(M
L
P
m
a
x
)

an
d

av
er

ag
e

(M
L
P
a
v
g
)

p
er

fo
rm

an
ce

on
ga

m
ep

la
y,

m
ea

n
h
ea

d
m

ov
em

en
t

(M
H

M
)

an
d

v
is

u
al

re
ac

ti
on

(V
R

)
fe

at
u
re

s.
T

h
e

to
p

ol
og

ie
s

ar
e

p
re

se
n
te

d
in

th
e

fo
rm

:
n
u
m

b
er

of
in

p
u
ts

–n
u
m

b
er

of
n
eu

ro
n
s

in
th

e
fi
rs

t
h
id

d
en

la
ye

r–
n
u
m

b
er

of
n
eu

ro
n
s

in
th

e
se

co
n
d

h
id

d
en

la
ye

r.
B

es
t

p
er

fo
rm

an
ce

va
lu

es
ob

ta
in

ed
(t

h
at

d
o

n
ot

sh
ow

si
gn

ifi
ca

n
t

d
iff

er
en

ce
w

it
h

ea
ch

ot
h
er

)
fo

r
ea

ch
p
la

ye
r

ex
p

er
ie

n
ce

st
at

e
ap

p
ea

r
in

b
ol

d
.

O
n
e

M
o
d
al

it
y

B
im

o
d
al

it
y

G
am

ep
la

y
/C

on
te

n
t

M
H

M
V

R
G

am
ep

la
y

&
M

H
M

G
am

ep
la

y
&

V
R

E
n
ga

ge
m

en
t

M
L
P
to
p
o
lo
g
y

5-
6-

0
6-

4-
0

7-
4-

6
8-

4-
6

5-
2-

0
M
L
P
a
v
g

78
.6

9%
74
.2

3%
78

.0
6%

77
.7

8%
8
3
.9

7
%

M
L
P
m
a
x

89
.6

8%
78
.5

7%
86

.5
1%

89
.6

8%
9
1
.2

7
%

F
ru

st
ra

ti
on

M
L
P
to
p
o
lo
g
y

3-
8-

2
5-

4-
0

6-
8-

10
7-

4-
4

5-
8-

0
M
L
P
a
v
g

83
.5

%
83
.0

4%
8
6
.2

1
%

8
3
.7

1
%

8
5
.9

2
%

M
L
P
m
a
x

89
.1

7%
89
.1

7%
9
2
.5

0
%

9
2
.5

%
8
9
.1

7
%

C
h
al

le
n
ge

M
L
P
to
p
o
lo
g
y

4-
4-

2
3-

4-
8

4-
10

-8
6-

10
-1

0
7-

10
-1

0
M
L
P
a
v
g

72
.3

6%
75

%
8
4
.1

3
%

77
.3

6%
78
.4

0%
M
L
P
m
a
x

80
.5

6%
79
.1

7%
8
8
.8

8
%

85
.4

1%
86
.8

1%

172

9.2. NONLINEAR RELATIONSHIPS

9.2.4.1 Modeling through Gameplay/Content and Mean Head Move-

ment Features

Using head movement features throughout whole game sessions along with game-

play/content features yield accurate results for predicting engagement, frustration

and challenge.

Different gameplay and head movement features have been selected for pre-

dicting each reported state. Median horizontal and vertical head directionality,

together with fluidity in motion, along with gameplay/content features (number

of killed enemies by stomping, time spent jumping and completing the whole

game and powerups) resulted in a model for predicting engagement with up to

89.68% accuracy. Some of these features (such as the number of powerups, Nw,

the time spent jumping, tjump, the median horizontal and vertical head direction,

Mhorizontal and Mvertical) also appear in the subset of features selected when con-

structing models from each one of these two modalities on its own. This indicates

the importance of the features as predictors of player engagement.

The subset of features selected for predicting frustration includes: Tempo-

ral, Energy and Overall Activation expressivity parameters being utilized along

with tlastLife, nmiscJump, nbox and dnum. The Temporal (TA) and Overall Acti-

vation (OA) features also appear in the subset of features selected for predicting

frustration from only mean head movement features. Unsurprisingly, the time

spent playing during the last life (tlastlife) and the number of boxes pressed or

destroyed (nbox) are important predictors of frustration. These gameplay features

also appear in the model constructed on gameplay features only.

The features selected for predicting challenge are mainly time-related game-

play features which are fused with the mean head horizontal rotation (Mhorizontal).

The gameplay features selected that also appear in the subset of features selected

for predicting challenge with only gameplay as input include the time spent jump-

ing (tjump) and the number of opponents that were killed by unleashing a turtle

shell (kunleased). The new time-related gameplay features selected (trun, tsuper and

tsmall) result in an average performance increase of 5% (compared to the average

performance of the models built on gameplay features only) indicating the im-

portance of time spent running and time Mario being in large or small mode as

173

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

predictors of player challenge.

The t-test shows that the accuracies obtained from the model constructed for

predicting frustration are significantly higher than the ones for predicting engage-

ment and challenge (Note that this finding is similar to the ones observed when

testing for differences of significance in mean performance values between the

models constructed from gameplay features only and from mean head movement

features only).

9.2.4.2 Modeling through Gameplay/Content and Visual Reaction

Features

Combining gameplay/content features and visual reaction, results in the appear-

ance of features not used when using each one of the two modalities by themselves.

This may be attributed to the fact that there are correlations between features

used by gameplay/content and visual reaction features alone. As feature selection

seeks beyond linear correlated features, new selected feature subsets are expected

to be derived for maximizing performance accuracy.

For engagement, a smaller subset of combined features resulted into a higher

accuracy than using larger sets of features from each of the two input modalities

alone. Most of the features selected do not appear in the subset of features

selected for predicting engagement from each of these two modalities at a time.

The majority of the features selected are directly or indirectly linked to head

movement and gameplay events while jumping; tjump is an indication of the time

spent jumping, POstomp is the head movement energy while stomping on an enemy

which is an action that requires jumping, TEendJump is the temporal expressivity

parameter when landing, and B refers to the number of boxes which require a

jump to interact with. It therefore expectedly appears that the jump event is a

contributor for the prediction of engagement in platform games as the average

accuracy achieved for engagement (83.97%) via the bimodal fusion of gameplay

and visual reaction features is the best obtained across any other feature type as

model input.

The selected subset of features for predicting frustration also contains fewer

features than the ones selected individually for each modality. It is interesting

174

9.2. NONLINEAR RELATIONSHIPS

to note that there is no overlap between the features selected from the fused

features and the ones selected from the visual reaction features while there is only

one common feature (nbox) between the selected fused features and the features

selected from gameplay.

The feature subset selected for predicting challenge contains a larger number

of features when compared to the ones selected from each modality alone. By

looking at the features selected for the three modes — the models constructed

from gameplay features, the model constructed from visual reaction features,

and the model constructed from fusing these two modalities — it appears that

there are two overlaps between the visual reaction features selected (FLstartRun

and FLlose) and there is no gameplay feature in common. The resulting average

performance for challenge (78.4%) suggests that the new features selected do not

improve the predictive power of the model when compared to the corresponding

performance of the visual reaction features. The statistical analysis shows no

significant performance difference between the models constructed for predicting

engagement and frustration while these two models’ performances are significantly

higher than the performance of the model constructed for predicting challenge.

9.2.5 Significance Analysis

We perform a statistical analysis to test for significant differences in the accura-

cies obtained from the models constructed on all different categories of features.

Figure 10.1 presents the results obtained from testing for significant performance

differences between the models constructed on all categories of features across the

three emotional states (significant effect is obtained through p − value < 1%).

A significant difference on average performance is illustrated with a solid arrow,

while a dash arrow depicts average performance differences of no statistical signif-

icance. The p-values obtained from the statistically significant differences are also

presented. For example, the performance of the model constructed for predicting

engagement from the subset of gameplay features is significantly higher than the

one constructed from the selected head movement features; this relationship is

shown as a solid arrow from gameplay to head movement in Fig. 10.1.(a). On the

other hand, the model constructed on the fused features of gameplay and head

175

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

movement for predicting frustration yields a higher performance than the one

obtained from the model constructed from gameplay or head movement features

on their own (Fig. 10.1.(b)).

As can be seen from Fig. 10.1, mean head movement features do not yield high

performances compared to the other features when used on their own; all models

constructed from other feature sets yield higher or significantly higher perfor-

mances than the model constructed based on the mean head movement features

for engagement. These features, however, outperform (with no significant differ-

ence) the models constructed from gameplay features for predicting frustration

and challenge. Fusing the mean head movement features with gameplay features,

nevertheless, resulted in better accuracies than the ones obtained when only mean

head movement features are used to construct the player experience models for all

emotional states. The accuracies obtained are even better than the ones obtained

from gameplay features for predicting frustration and challenge.

Results obtained from models constructed on visual reaction features, on the

other hand, are better than the ones obtained from the models constructed on

mean head movement features or on gameplay features for predicting frustration

and challenge. These models also improve upon the models constructed on the

fused features of gameplay and mean head movement for all emotional states.

By fusing visual reaction features with gameplay features, we were able to

construct models with higher performance in predicting engagement than any

other models constructed from any other feature sets. This argument also holds

for frustration and challenge except for the model constructed from visual reaction

features which outperforms the model constructed from fusing these features with

gameplay features.

Fusing features from different modalities, in general, appears to result in more

accurate models for predicting players’ affect than the ones obtained when con-

structing models from features extracted from one modality. Fusing the features

(i.e. visual reaction features) empowers the models with implicit knowledge about

more than one channel of information that appears to have a positive impact on

the models’ performance.

We have anticipated that fusing gameplay and visual reaction features would

yield higher accuracies than when using any other feature set. But our assump-

176

9.2. NONLINEAR RELATIONSHIPS

(a) Engagement

(b) Frustration

(c) Challenge

Figure 9.1: Testing for statistical significance between the obtained performance
of the different sets of features examined for modeling player experience. Solid
arrows between two feature sets depict a significant difference on the average
performance between them. Dash arrows depict average performance differences
of no statistical significance. P-values are added next to significant differences.

177

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

tion does not hold for the state of challenge. Analyzing the features selected

and their correlations with players’ preferences would help us shed some light

on this effect. However, the models constructed for predicting challenge from

visual reaction features and from fusing these features with game play features

are multi-layered perceptron of two hidden layers which further implies that the

relationship between the features selected and the reported players’ preferences

is more complex than simple linear correlations.

In order to be able to analyze the non-linear function between an ANN’s input

and output vectors we investigated the impact of each of the selected features

(ANN input) on the prediction accuracy (ANN output) by altering the value

of each input exhaustively while keeping the values for all other features (ANN

inputs) constant. This process has been repeated for all selected features from

visual reaction and for the subset of selected features from gameplay and visual

reaction. Results indicate that for the challenge model constructed from visual

reaction features, the energy of head movement while starting to run (POstartRun)

has the largest impact on the prediction accuracy followed by the fluidity of

head movement also when starting to run (FLstartRun). These two features were

found to have a strong negative correlation with challenge. On the other hand,

POstartRun has not been selected for the model constructed from gameplay and

visual reaction features and the strength of the negative correlation for the head

movement fluidity feature (FLstartRun) has been found to be weaker when fusing

the two modalities. The strongest correlation observed is with the time spent

moving left (tleft), which, unsurprisingly, is positively correlated with reported

challenge.

We anticipate that the performance decrease obtained when fusing the features

is the result of the feature selection approach followed which fails to select the

optimal subset of features for prediction when the pool of features to select from

become large. For instance a total number of 114 features is reached when fusing

gameplay features with visual reaction features.

To further analyze the effect of the interaction between the features on the

models’ accuracies, we run a two-way ANOVA test. For this test, two factors have

been considered: 1) the existence (versus non-existence) of the gameplay features

for the prediction of affect, and 2) the existence of visual reaction features (versus

178

9.2. NONLINEAR RELATIONSHIPS

Table 9.7: P-values obtained from the two-way ANOVA test. The two factors
considered are existence (versus non-existence) of the gameplay features and the
existence of visual reaction features (versus head movement features). Significant
effects appear in bold.

Source (Factors) Engagement Frustration Challenge

(A) Gameplay (vs. no-gameplay) 0.00001 0.78 0.03
(B) Visual reaction (vs. head movement) 4.21 ∗ 10−6 0.0004 3.54 ∗ 10−9
(A*B) Interaction 0.13 0.512 1.05 ∗ 10−6

head movement features). Such an analysis would help us investigate whether the

use of visual, or alternatively head movement, features or the fusion of gameplay

with visual cues would yield significant changes in the models’ performance. The

results of a 2 × 2 ((gameplay and no-gameplay) x (visual reaction and head

movement)) between-groups two-way ANOVA are presented in Table 9.7.

Both independent variables seems to have an impact on engagement prediction

with p-values of 0.0001 and 4.21∗10−6, respectively. However, no significant effect

was identified when analyzing the interaction between the variables (p− value =

0.13). As for frustration, the results showed significant difference only for the

second factor (p − value = 0.0004) while no significant effects were observed

for the first factor (p − value = 0.78) or for the interaction between the factors

(p − value = 0.512). Finally, for challenge, significant effects were observed for

both factors (p− value = 0.03 and p− value = 3.54 ∗ 109) and for the interaction

between the factors (p−value = 1.05∗10−6). These results suggest that the type

of the visual cues has a significant impact on the prediction accuracies for the

three emotional states, while the inclusion of the gameplay features was found to

have a significant effect on predicting engagement and challenge. The interaction

between gameplay and visual cues features, on the other hand, was found to have

a significant effect only on the prediction of challenge.

9.2.5.1 Adjusting the Models for Control

Forcing all the remaining controllable features that have not been selected in

the feature selection step into the inputs of the constructed ANN models is one

possible approach to gain control over the generation process. This approach has

been followed when adjusting the models constructed in dataset 1 and dataset

179

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

Table 9.8: The best (MLPmax) and average (MLPavg) performance of the mod-
els constructed for predicting engagement, frustration and challenge from visual
reaction and gameplay features after forcing the controllable features.

Engagement Frustration Challenge

MLPavg 76.94% 79.33% 75.24%

MLPmax 80.95% 85.83% 82.64%

2. However, a performance decrease should be anticipated when adopting such

an approach since these features have not been selected in the feature selection

step and, hence, they are likely to be irrelevant for predicting the corresponding

experience state. For this reason, all remaining non-selected controllable features

have been considered by a feature selection procedure implemented to pick the

largest possible subset of controllable features that yields the minimum possible

decrease in the models’ performance. These subsets of selected features have

been set as additional inputs of the ANN models constructed from the selected

gameplay and visual reaction features.

Different subsets of controllable features have been selected for each player

experience state. In particular, the subset that allows maximum content control

and minimizes drop in engagement prediction accuracy constitutes of two content

features: the enemies placement, Ep, and the number of powerups, Nw. On the

same basis, four controllable features have been selected for the model constructed

for predicting frustration: the placement of enemies, Ep , the number and the

width of gaps, and the total number of boxes. The subset of the controllable

features that yields the best compromise between performance and level of control

for predicting challenge contains all controllable features except from the number

of powerups.

After forcing these features, the average accuracy obtained (presented in Ta-

ble 9.8) for predicting engagement becomes 76.94% with a maximum performance

of 80.95%. For frustration, the average accuracy is 79.33% and the best perfor-

mance is 85.83% while challenge can be predicted with up to 82.64% accuracy

with an average performance of 75.24%.

180

9.3. COMPARISON

9.3 Comparison

In this section, we investigate the generalization capability of the methodology

proposed by comparing and cross validating the models built on direct features

for dataset 1 and dataset 2. We further analyze the impact of the feature types

on the modeling accuracies by comparing the different models constructed from

the data collected in dataset 2 and dataset 3.

9.3.1 Scalability

Since the first and the third datasets construct models of player experience based

on direct features using the same methodology and the main difference is in the

size of the dataset and the length of the game sessions, it is worth comparing

the models’ accuracies and selected features for the three emotional states and

investigate how well the methodology proposed scales for a much larger dataset

and smaller game sessions in dataset 2 compared to dataset 1. For comparison

purposes, we here assume that players’ reported fun is consistent to the level

of reported engagement, even though this is not entirely accurate. However, we

ground this assumption on several studies reported in the literature where fun is

used as a synonymous to engagement and both refer to a notion of an entertaining

game experience (Read et al. [2002]; Yannakakis et al. [2008]).

The analysis based on comparing the results presented in Table 9.2 and Ta-

ble 9.3 showed that for engagement, three out of the four features selected in the

model built for dataset 1 have also been selected in the dataset 2 model along

with seven other features. Despite the expansion in the dataset size and the use

of smaller time sessions in dataset 2, the methodology proposed for constructing

player experience models of engagement appears to be consistent since the two

models are able to predict engagement with a relatively similar accuracy (69.80%

and 69.66% for datasets 1 and 2, respectively).

Three out of seven features selected for the frustration model are common

for predicting frustration. Comparing the models performance indicates that

frustration can be predicted with higher accuracy from the smaller dataset and

longer session time (the accuracies obtained are 89.33% for dataset 1 and 80.70%

for dataset 2). This can be in part explained by the difficulty in expressing a

181

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

clear emotional preference of frustration on different short game variants since

data collection in dataset 3 resulted in 169 pairs of unclear preferences compared

to 103 and 71 for engagement and challenge, respectively.

Only two features generalize for the two datasets for challenge, namely, the

number of collected coins, ncoin and the average gaps width, Ḡw. Some of the

other features are somehow related, more specifically, the time spent during last

life, tlastLife correlates with the time needed to complete the level, tcomp and the

number of death, dnum is a generalization of the number of times the player killed

because of a cannon bullet, df . Overall, despite the huge increase in the dataset

size, challenge is predicted with larger feature subsets and higher accuracy from

shorter game sessions (74.66% and 77.50% for datasets 1 and 2, respectively).

To check for the efficiency of the feature selection approach, the impact of the

selected subset of features on the prediction accuracy, the influence of the size of

the game session and the generality of the proposed methodology, we evaluated

the dataset 1 models on the data used to construct the dataset 2 models and vice

versa.

Since we are concerned with the generality and not adaptability at this stage,

we compare the models after excluding the controllable features to eliminate their

effect. Zero is assigned to the features that have been extracted for one dataset

while not for the other (like the number of time the player fires in the level,

nshoot).

The obtained accuracies for the three player experience states are presented

in Table 9.9. As can be seen from the table, the best performance is obtained

when the old model evaluates challenge on the new dataset (67.25%) despite that

these two models share only two features. Unsurprisingly, that cross-validation

performance on challenge is lower than the two corresponding models constructed

and evaluated on the same dataset. While reported frustration models are the

most accurate for the two datasets —and although four features are found in

common between these two models — none of them managed to generalize well

when evaluated on the unseen dataset.

The two models for predicting reported engagement achieved similar results

when evaluated on the unseen dataset. In summary, it appears that longer game

sessions are more relevant for predicting frustration while challenge can be pre-

182

9.3. COMPARISON

Table 9.9: The performance of the models of dataset 1 on the data collected in
dataset 2 (Pmodel1/data2) compared to the performance of the dataset 2 models on
the dataset 1 (Pmodel2/data1).

Engagement (Fun) Frustration Challenge

Pmodel1/data2 58.98% 40.68% 67.25%

Pmodel2/data1 57.33% 58.18% 45.36%

dicted better from short game sessions.

9.3.2 Modeling Accuracy

Rich information about players behavior has been collected in dataset 2 and

dataset 3. Therefore, in this section we compare the best models obtained from

these two datasets across the three emotional states. It’s worth noting, however,

the difference in the size of the datasets. The models constructed in dataset 2 are

based on behavioral data collected from 780 game pairs which is a large dataset

compared to the 190 game pairs collected in dataset 3.

For the following analysis, we compare the models constructed from the set

of selected features only without including the controllable features since we are

more interested in investigating the effect of the type of the features on the

modeling accuracy than on using the models for control.

For engagement, the models constructed on fusing direct and sequential fea-

tures give the best prediction accuracy (76.38%) while by fusing gameplay and

visual reaction features, we were able to predict engagement with accuracy up

to 91.27%. These models, built on visual reaction and gameplay features, signif-

icantly outperform any other models built for predicting engagement. It seems

that engagement is a notion related to the way a game is played, both in terms

of player’s actions and her visual information.

Frustration on the other hand can be best predicted from visual reaction

features only (92.50%) which is significantly better than all models trained on

gameplay or sequential features. Combining gameplay features with visual re-

action features or with head movement features, however, yields models of no

significant performance difference from the ones built with visual reaction fea-

183

9. PLAYER EXPERIENCE MODELING: EXPERIMENTS

tures only.

Visual reaction features are also the best predictors of reported challenge

(88.88%) with no significant difference from the modes build on a combination

of direct and sequential features (86.28%). It, therefore, appears that the player’

in-game behavior and her visual reaction in response to game events are equally

important for building accurate estimators of perceived challenge.

9.4 Summary

In this chapter we have presented an extensive set of experiments for building

models of player experience. Datasets of different sizes and a variety of features

have been considered to construct the models. Direct features, sequential patterns

of game content and players’ actions, head movement while playing the game and

visual reactions to game events are all employed to build accurate estimators of

player experience. Some of these input modalities are fused together allowing

which investigation of bimodal features.

Linear and non-linear relationships between the extracted features and the

reported emotional states have been examined. Highly accurate models of player

experience have been constructed and used for an in-depth analysis of the factors

that contribute to player experience in platform games. The thorough analysis

followed shows some generic aspects of level design aesthetics that relate to the

three reported emotional states: engagement, frustration and challenge.

The approach presented provides the underlying basis for game adaptation

techniques that could be employed to automatically generate game content that

optimizes particular aspects of player experience.

184

10

Game Adaptation

In this chapter we build on the player experience modeling experiments, presented

in the previous chapter, and we take the approach one step further. We start by

investigating the impact of the size of game session on the accuracy of predicting

players’ affects since this helps us set the frequency of adaptation. We then

aim at closing the affective loop in the game by altering content generation via

a feedback signal of the player’s affective state as predicted by the constructed

models.

We present two approaches for personalizing game content; an exhaustive-

based search approach and a more general method by means of evolutionary

search.

10.1 Feature Analysis and Adaptation Frequency

When discussing adaptation, it is very important to define the game features that

should be manipulated to alter a specific experience. The frequency of adaptation,

on the other hand, is another important issue that should be examined. This

includes defining the minimum length of time a player needs to play in order for

a particular emotion to be elicited. The size should be long enough to invoke

emotional manifestations, yet short enough to enable a meaningful adaptation.

In the following sections we describe a set of experiments conducted to better

understand the content-affect relationship. For this purpose, the game sessions

185

10. GAME ADAPTATION

have been divided into smaller size sessions and player experience models have

been constructed on features extracted from these mini-sessions.

10.1.1 Level Segmentation

The purpose of segmenting the level is to draw a picture of the importance of

the features with respect to player experience; different features correlated with

player experience for each state could be extracted from each segment of the

game pointing out to positions in the games where these features play a role in

triggering particular player states. By segmenting the levels we can also identify

the size of the level that generates the best prediction accuracy for the three

player experience states. That segment size can then potentially be used to set

the frequency of a real-time adaptation mechanism.

We start the process by calculating the models’ performance over the entire

game session. The level is then divided into two equal segments and the values

for all content and gameplay features for these two segments are recalculated. To

further investigate the effect of the size and choice of the segment that gives the

most useful information, we partition the levels into three equal segments and

the models are evaluated on individual segments assuming that the expressed

whole-game emotional preferences remain constant across those segments. No

performance improvement has been obtained by further division of the level, and

thus the focus of the remaining of this section is on levels divided for up to three

segments.

For the remaining of this dissertation we will use the term window to refer to

the whole game session, and the term segment to refer to parts of a window.

The data collected in dataset 2 is used for the experiments presented in the

following sections; six content features have been used to construct the levels in

this dataset and gameplay and content data has been represented via direct and

sequential feature representations. For the following experiments, we use direct

features of gameplay and content, sequential features of content corresponding to

gameplay events, Ca, and sequential gameplay features, A, as inputs.

Neuroevolutionary preference learning approach, presented in Chapter 7, was

used to build the models. We start the models’ constructing procedure by select-

186

10.1. FEATURE ANALYSIS AND ADAPTATION FREQUENCY

ing the relevant subset of features for predicting each reported player experience,

this is done by using SFS to generate the input vector of SLPs. Since the focus

of this experiment is on analyzing the impact of the session size on the predic-

tion accuracy rather than on improving the model’s performance, we use small

MLP models containing one hidden layer of two neurons as models of player ex-

perience. The quality of a feature subset and the performance of each MLP is

obtained through the average classification accuracy in three independent runs

using 3-fold cross validation across ten runs. Parameter tuning tests were to set

up the parameters’ values for neuroevolutionary preference learning that yield

the highest accuracy and minimize computational effort. A population of 100

individuals was used, and evolution ran for 20 generations. A probabilistic rank-

based selection scheme was used, with higher ranked individuals having higher

probability of being chosen as parents. Finally, reproduction was performed via

uniform crossover, followed by Gaussian mutation of 1% probability.

10.1.2 MLPs Performance on Partial Information

For each of the half and one-third size segments the statistical and sequential val-

ues for the content and gameplay features (as presented in Chapter 8) have been

calculated. All feature values are uniformly normalized to the range [0,1] using

the standard max-min normalization. Player experience models were constructed

based on the different subsets of features selected from direct and sequential fea-

tures for each segment across the three emotional states. Table 10.1 presents the

features selected, the topologies and performance of the best models constructed

for each segment. For comparison purposes, the table also presents the data

about models constructed on features from the full game session.

10.1.2.1 Analysis

As can be seen from Table 10.1, the networks found vary in the number of selected

features and performance. The most accurate model is the one for predicting

challenge (91.23%) with a large subset of 13 features selected from the full levels.

Engagement comes next with a best model accuracy of 86.43% obtained from

features extracted from the first segment out of two followed by frustration which

187

10. GAME ADAPTATION

can be predicted with an accuracy up to 85.88% from a subset of ten features

extracted from the full level.

Segmenting the sessions resulted in a performance increase for the models of

predicting engagement while a performance decrease has been observed for the

experience models of frustration and challenge. The models constructed based

on features selected from the first half of the session for predicting engagement

significantly (significant effect is determined by p < 0.01 over 10 runs) outperform

all other models constructed on full and other partial information. A significant

performance decrease was found for predicting frustration when constructing the

models based on features extracted from segments with one third of the full

size. Using features from the full sessions, we were able to predict challenge with

accuracy that is significantly higher than all other models constructed on partial

information. Figure 10.1 presents the significance relationship between all models

constructed for the three player states.

The results suggest that different sizes of game session are needed to elicit

different affective/cognitive states. While challenge can be predicted with high

accuracy from the full sessions, smaller session size somewhat count-intuitively

appears to give better results for predicting engagement. Frustration can be

predicted with high accuracy from full and half size sessions.

According to the results obtained, it appears that challenge requires more

time than frustration and engagement to be elicited. Challenge is considered a

behavioral aspect of gameplay experience that results from the interaction be-

tween the player and the game, as opposed to frustration and engagement that

capture part of the affective state of the player. The results indicate that those

two particular emotional states require less time to be evoked than the challenge

behavioral state.

188

10.1. FEATURE ANALYSIS AND ADAPTATION FREQUENCY
T

ab
le

10
.1

:
T

h
e

fe
at

u
re

s
se

le
ct

ed
fr

om
th

e
se

t
of

d
ir

ec
t

an
d

se
q
u
en

ti
al

fe
at

u
re

s
fo

r
p
re

d
ic

ti
n
g

en
ga

ge
m

en
t,

fr
u
st

ra
ti

on
an

d
ch

al
le

n
ge

u
si

n
g

se
q
u
en

ti
al

fe
at

u
re

se
le

ct
io

n
w

it
h

S
L

P
an

d
si

m
p
le

M
L

P
m

o
d
el

s
an

d
th

e
co

rr
es

p
on

d
in

g
b

es
t

(M
L
P
m
a
x
)

an
d

av
er

ag
e

(M
L
P
a
v
g
)

m
o
d
el

s’
p

er
fo

rm
an

ce
.

T
h
e

m
o
d
el

s
w

it
h

th
e

h
ig

h
es

t
ac

cu
ra

ci
es

ar
e

p
re

se
n
te

d
in

b
ol

d
.

F
u
ll

le
ve

l
1s

t
se

g/
2

2n
d

se
g/

2
1s

t s
eg

/3
2n

d
se

g/
3

3r
d

se
g/

3

E
n
ga

ge
m

en
t

S
el

ec
te

d
t c
o
m
p

n
st
a
te

B
n
m
is
cJ

u
m
p

t r
ig
h
t

B
fe

at
u
re

s
n
co
in

t s
u
p
er

d
ca

u
se

t l
ef

t
E

G
d
ca

u
se

d
ca

u
se

N
w

n
bo
x

n
m
is
cJ

u
m
p

t j
u
m
p

t s
m
a
ll

t r
ig
h
t

E
B

d
ca

u
se

d
ca

u
se

t j
u
m
p

E
n
bo
x

Ḡ
w

t d
u
ck

k
u
n
le
a
sh

E
S
⇑⇑

�
�
S
�

d
ca

u
se

G
n
bl
o
ck

�
�
�

�
R

�
S

E
p

t s
u
p
er

⇑⇑
�
⇑

�
⇑
S

n
co
in

t r
u
n

⇑�
�
�

�
R

�
S

n
ju

m
p

S
�

S
,
,

�
⇑�

S
M
L
P
m
a
x

76
.3

8%
8
6
.4

3
%

72
.0

3%
72
.1

9%
71
.6

9%
72
.8

6%
M
L
P
a
v
g

70
.9

5%
80
.8

0%
68
.8

8%
68
.7

4%
68
.6

8%
70
.2

5%

F
ru

st
ra

ti
on

S
el

ec
te

d
t r

ig
h
t

n
m
is
cJ

u
m
p

G
n
ju

m
p

G
E

p

fe
at

u
re

s
d
n
u
m

G
n
m
is
cJ

u
m
p

t s
m
a
ll

B
k
g
o
o
m
ba

d
ca

u
se

n
co
in

Ḡ
w

t l
ef

t
t s

m
a
ll

B
k
g
o
o
m
ba

E
d
ca

u
se

S
⇑�

S
G

t l
a
st
L
if
t

t l
ef

t
k
st
o
m
p

n
m
is
cJ

u
m
p

Ḡ
w

R
�
�
�

t l
ef

t

189

10. GAME ADAPTATION
T

ab
le

10
.1

–
C

on
ti

n
u
ed

F
u
ll

le
ve

l
1s

t
se

g/
2

2n
d

se
g/

2
1s

t s
eg

/3
2n

d
se

g/
3

3r
d

se
g/

3

G
R

�
R

�
⇑
�

t r
ig
h
t

n
ju

m
p

S
S
�

,
,

R
�
R

�
⇑
S

⇑�
�
�

⇑�
S
�

M
L
P
m
a
x

8
6
.2

5
%

81
.7

3%
79
.8

5%
78
.7

2%
78
.1

5%
73
.4

5%
M
L
P
a
v
g

81
.2

8%
77
.5

9%
77
.0

6%
75
.6

3%
72
.6

9%
69
.4

9%

C
h
al

le
n
ge

S
el

ec
te

d
t l
a
st
L
if
t

t r
ig
h
t

G
n
m
is
cJ

u
m
p

G
E

p

fe
at

u
re

s
n
ju

m
p

n
m
is
cJ

u
m
p

B
n
bo
x

E
k
st
o
m
p

d
n
u
m

n
st
a
te

d
ca

u
se

n
p
o
w
er

u
p

k
f
lo
w
er

B
n
co
in

G
n
m
is
cJ

u
m
p

t r
ig
h
t

n
ju

m
p

E
t r

ig
h
t

t s
m
a
ll

n
m
o
d
e

k
u
n
le
a
sh

k
u
n
le
a
sh

Ḡ
w

B
t l
ef

t
⇑
S
�

�
S
S

E
p

�
⇑
S

t s
u
p
er

t l
ef

t

k
st
o
m
p

,
,

,
,

⇑�
S

,
,

M
L
P
m
a
x

9
1
.0

7
%

75
.6

%
77
.1

9%
72
.4

1%
73
.5

2%
69
.3

8%
M
L
P
a
v
g

87
.6

2%
71
.3

6%
73
.6

8%
65
.8

0%
70
.2

7%
66
.0

0%

190

10.1. FEATURE ANALYSIS AND ADAPTATION FREQUENCY

The fact that the information gathered from the first half of the session re-

sulted in the best modeling accuracies for engagement and frustration indicates

that the features presented at the beginning of the game have the greatest impact

of players’ experience. However, this might also be the reason of players not being

able to complete the levels and thus reporting preferences based only on the part

they have experienced. This is also supported by noticing that less features of

players’ behavior have been selected from the second-third or last third of the

levels compared to the ones selected from half-size or one-third segments.

The results indicate that the models performance in general significantly de-

creases when segmenting the session into more than two segments. This suggests

that partitioning the data into more than two segments causes information loss.

Another possible explanation is that the session size should be longer than a par-

ticular length to elicit a specific player experience state, and it appears that one

third of the level size is too small to consider the reported player experience valid

while the gameplay experience and the reported affects can still be considered

valid for one half of the session size for engagement and frustration.

The results show that the ANN preference models built on data derived from

the game as a whole gives the best performance for predicting frustration and

challenge over all other models that have been constructed. Thus, the results

suggest that the minimum acceptable size of the segment for which the model is

able to predict player’s reported preferences with acceptable accuracy is the one

that has been chosen in the first place when designing the experiment.

The different subsets of features selected from each segment draw a picture

of the importance of the positioning of the features within the game and the

different impacts this has on the different emotional/cognitive states under in-

vestigation. Some content features have been selected from the full sessions and

also appear in the subset of features selected from the parts, such as the num-

ber of enemies (E) and the number of gaps (G) for predicting engagement and

frustration, respectively. This suggests the importance of these features for elicit-

ing a particular emotional state regardless of their specific positioning within the

game. Other features such as the number of powerups (Nw) appears to have an

impact on engagement when presented in the second half of the game. This can

be explained by the fact that powerups are more important to the players towards

191

10. GAME ADAPTATION

(a) Engagement

(b) Frustration

(c) Challenge

Figure 10.1: Testing for statistical significance between the obtained performance
of the different segments examined for modeling player experience. Solid arrows
between two feature sets depict a significant difference on the average perfor-
mance between them. Dash arrows depict average performance differences of no
statistical significance. P-values are added next to significant differences.

192

10.2. ADAPTING GAME CONTENT

the end of the game since this increases their chance of winning, the selection of

cause of death feature in all segments also supports this assumption. it is worth

noting that only one controllable feature has been selected for the best model for

predicting engagement and the rest of the features relate to the particular playing

style for each player. Most aspects of level design appear to have a large impact

on challenge since five content features (direct and sequential) have been selected

for the best model of predicting challenge.

The different subsets of features selected for predicting player experience states

suggest differing relative importance of design elements for different aspects of

player experience. This has the potential to partly decouple dissimilar aspects of

player adaptation.

10.2 Adapting Game Content

In the following sections we present our attempts to close the affective loop by

applying two approaches to personalize the gameplay experience. The player ex-

perience models previously constructed are utilized as measures of content quality

and their outputs are used as a feedback signal to alter content generation and

enable personalized content. The next chapter presents the testing and evaluation

framework designed to validate these methods.

10.2.1 Exhaustive Search

In the experiments presented in this section we describe the method followed for

tailoring content generation driven by the player experience models. We focus on

the models built on dataset 1 (Section 9.2.1) and dataset 3 (Section 9.2.3) as four

or six controllable features were used when constructing these models enabling

efficient full scan of the content feature space.

Our approach to online game adaptation is based on performing exhaustive

search in the space of controllable features to find the combination that, taken

together with observed gameplay features, maximizes the MLP output value.

The player experience models adjusted for control are utilized to tailor the

content of the game to individual players.

193

10. GAME ADAPTATION

The search space in these two datasets consists of a maximum of five features,

being the number of controllable features enforced into the input of the models.

For dataset 1, four features were used; number of gaps, average width of gaps, gap

placement and number of direction switches with value ranges of [4,10], [10,30],

[0,1] and [0,1], respectively. The search space is explored by starting from the

minimal possible values and at each step the values are increased by 1, 1, 0.1,

and 0.1 respectively, resulting to a total number of 14700 configurations. Up to

five content features were forced into the inputs of the MLPs when adjusting the

models for control in dataset 3. These features are: number of gaps, average width

of gaps, number of enemies, enemies placement and number of boxes with value

ranges of [2,6], [5,15], [3,7], [0,2], and [0,15], respectively. The same procedure for

exploring the space of content followed for dataset 1 is employed and an increase

value of 1 is set for all features resulting to 13200 different configurations.

Each configuration of controllable features is fed (together with the recently

observed gameplay features) into the MLP; the combination that maximizes the

network output is chosen to generate the next level. With such a small search

space (14700 and 13200 configurations for the first and third dataset, respectively)

we can find the optimal configuration almost instantly, allowing real time level

generation.

10.2.2 Evolving Personalized Content

The GE-based level generator is used to evolve player-adapted content by em-

ploying an adaptation mechanism as a fitness function to optimize the player

experience of the three emotional states under investigation.

A set of experiments has been conducted to test this approach using the player

experience models constructed based on the data collected in dataset 2. Player

experience models constructed with direct features and six forced content features

as inputs have been utilized as fitness functions. The fitness value assigned for

each individual (level) in the evolutionary process is the output of the MLP model

which is the predicted value of engagement, frustration or challenge. The MLPs

output is calculated by computing the values of the models’ inputs; this includes

the values of the content features which are directly calculated for each level

194

10.3. SUMMARY

design generated by GE and the values of the gameplay features estimated from

the player playing style while playing a previous level.

The search for the best content features that optimize a particular state is

guided by the model’s prediction of the player experience states, with a higher

fitness given to the individuals that are predicted to be more engaging, frustrating

or challenging for a particular player.

10.3 Summary

This chapter presented methodologies for analyzing the frequency of game adap-

tation and illustrated two methods for quantitatively personalizing game content.

The levels used for collecting the datasets and constructing the experience models

have been segmented into smaller chunks to investigate the best size of a game

session that yields the highest prediction accuracy. This size defines the frequency

of which game content should be adapted.

Two methods for online content personalization have been presented. In the

first approach, an exhaustive search method is utilized to search relatively small

content spaces for the best set of content features that matches the player playing

style. For larger search spaces, another stochastic global optimization technique

based on evolutionary algorithms is proposed and implemented.

In the next chapter, these two methods for closing the affective loop in games

are evaluated using AI agents and human players. A thorough analysis of the

adaptation methods’ behavior and efficiency is presented.

195

11

Evaluation

In this chapter, we test the two adaptation approaches presented in the previous

chapter. We generate player-adapted content by employing adaptation mecha-

nisms as fitness functions to evaluate the content generated and optimize the

player experience of three emotional states: engagement, frustration and chal-

lenge. The fitness functions used are models of player experience constructed

in our previous experiments from crowd-sourced gameplay data collected from

hundreds of players.

11.1 AI Agents

Two different AI controllers were used to test the adaptation mechanism. Both

controllers were submitted to the 2009 edition of the Gameplay track of the

Mario AI Competition 1; a competition about designing controllers that play

Infinite Mario Bros as well as possible, in the sense of completing as many levels

as possible.

The two agents are the following:

1. The agent that won the competition, submitted by Robin Baumgarten (To-

gelius et al. [2010a]). This agent is based on an A* search algorithm in state

space and simulates the future trajectory of both itself and enemy NPCs for

each considered action. It performs very well on the type of levels generated

1www.marioai.org

196

11.2. DATASET 1: BASIC PARAMETERIZED GENERATOR

by the level generator, as evidenced by it managing to finish all levels in

the competition.

2. The competition entry of Sergio Lopez. This agent is based on a relatively

simple heuristic function that decides when to jump and how high, and

otherwise walks left. While performing less well than Robin’s agent, it

could still complete most of the levels in the competition.

These two agents have been chosen because of their good performance as

evidenced by them managing to win a large number of levels and because they

exhibit a varying playing style. Figure 11.1 presents several statistical gameplay

features extracted from 100 levels played by each agent. The figure illustrates

the differences in playing styles between the two agents; while the A* agent tends

to spend most of the time running and jumping, Sergio’s agent appears to be

moving slower and performing jumps only when necessary which lead to more

time spent to finish the levels compared to the time needed by the A* agent.

These behavioral differences are directly reflected in metrics used by the player

experience model, allowing us to test the adaptation mechanism with automated

play-through of significantly different styles.

Using such controllers with varying playing styles, we are able to test the

adaptation mechanism ability to recognize different playing characteristics and

evolve levels accordingly.

In the following sections we present the different experiments conducted to

test the ability of the adaptation mechanism to generate personalized content and

to recognize differences in playing styles.

11.2 Dataset 1: Basic Parameterized Generator

The first set of experiments is conducted based on the player experience models

constructed for dataset 1. As discussed in the previous chapter (Section 10.2.1),

an exhaustive search method is used to select the combination of values for the

content features that maximize the model’s output for a specific state given a

particular set of gameplay features. In the following experiments, we focus on

197

11. EVALUATION

Figure 11.1: Average and standard deviation values of several gameplay statistical
features that have been extracted from 100 different sessions played by the two
agents.

generating adapted levels for maximizing reported fun. Further experiments on

optimizing reported frustration and challenge are conducted on datasets 2.

11.2.1 Experiment 1: Optimizing Player Experience for a

Fixed Playing Style

The experiment presented in this section is focused on generating optimized levels

for a particular player. The experiment is done in the following steps:

1. An initial level is generated with random parameters.

2. An AI agent plays the level while gameplay features are recorded.

3. Using the set of recorded gameplay features, the values for the controllable

features that optimizes the player experience are chosen.

4. A new adapted level is generated based on the optimized controllable fea-

tures.

198

11.2. DATASET 1: BASIC PARAMETERIZED GENERATOR

We assume that the playing style is maintained during consecutive game ses-

sions and thus a player’s characteristics in a previous level provide a reliable

estimator of his gameplay behavior in the next level. The adaptation mecha-

nism is capable of generating a new level that optimizes some aspect of predicted

player experience almost instantaneously given the playing style of the previous

level. To compensate for the effect of learning while playing a series of levels,

the adaptation is applied considering the recent playing style, which is the player

performance in a previous level. Thus, in order to effectively study the behavior

of the adaptation mechanism, it is important to monitor this behavior over time.

The two AI agents presented in Section 11.1 have each played a set of 50

levels with the first level generated randomly, followed by a set of adapted levels

that aim at maximizing player experience based on gameplay during the previous

level. The experiment is repeated 10 times for each agent starting from a different

random level each time.

For comparison purposes, 50 random levels were generated by assigning ran-

dom values for the controllable features instead of searching for the optimal set of

values. The results depicted in Figure 11.2 show the performance of the proposed

approach against the randomly generated levels. As can be seen from the figure,

the adaptation mechanism is able to generate levels with higher predicted fun

level than the baseline random levels. (In the discussion of this section, “fun”

always refers to predicted fun levels. We do not claim that the algorithms had

fun.)

The results indicate that the algorithm was able to generate levels for Sergio’s

agent that are 81.31% fun, on average, while the optimized fun levels for the A*

agent have a slightly lower fun value with an average of 68.71%. This difference is

mostly related to the agent’s playing style. The observation of each agent playing

characteristics showed that Sergio’s agent plays in a more human-like style; it

moves at an average speed so it is able to complete the levels approximately

at the same time as a human player would, and it jumps only when necessary.

Robin’s agent, on the other hand, is able to clear the levels fast, it keeps jumping

and it fires even when unnecessary.

In general, the method is able to construct levels with higher fun values for

the agent who plays in a human like manner. Since the model has been trained

199

11. EVALUATION

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

Levels

F
u

n

Random

Optimized

(a) A* agent

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

Levels

F
u

n

Random

Optimized

(b) Sergio’s agent

Figure 11.2: Optimized fun levels versus random levels for the two agents.

200

11.2. DATASET 1: BASIC PARAMETERIZED GENERATOR

on data collected from human players, we suspect that this is due to the nature

of the data our fun model was built on. Sergio’s agent playing style may be a

better match of patterns of behavior existent in human players.

11.2.1.1 Statistical Analysis

To check whether optimizing for one reported state affects the others, we gen-

erated levels to optimize the fun value while monitoring how the values change

for frustration and challenge. We performed an analysis for exploring statisti-

cally significant correlations between the models’ output for these three emotions.

The results of the statistical analysis are presented in Table 11.1. A statisti-

cally significant effect (p < 0.01) is observed between challenge and frustration

(p = 3.57 ∗ 10−20) for the A* agent. The negative correlation (−0.66) obtained

between these two emotions shows that for players like the A* agent challenging

levels are predicted to be less frustrating.

The statistical analysis for Sergio’s agent showed no significant correlation

between any of the emotions investigated. This shows the sensitivity of the model

to the type of player and his playing style. Another interesting observation is that

the levels optimized for fun induced high levels of challenge for both agents while

low level of frustration is observed.

It’s also worth noting the fluctuation frustration curve while optimizing re-

ported fun. Figure 11.3(a) shows many changes in the values obtained for pre-

dicted frustration with most of the levels having very low values (the average

value is 48.92%) and very few of them having relatively high values.

These observations have not been obtained for Sergio’s agent. Fun and chal-

lenge were found to be negatively correlated though the effect was not significant.

An interesting observation for this agent, however, is that although fun and frus-

tration were found to be negatively correlated, one can notice the few levels where

values of high level of frustration and high level of fun were obtained.

Investigating game content and player behavior at such points is of no doubt

useful since this will helps us better understand the interaction between the player

and the game and the impact of the design choice on player experience. The main

focus of this experiment, however, was on monitoring the method performance

201

11. EVALUATION

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Levels

P
e

rf
o
rm

a
n

c
e

Fun

Frustration

Challenge

(a) A* agent

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

Levels

P
e
r
fo

r
m

a
n

c
e

Fun

Frustration

Challenge

(b) Sergio’s agent

Figure 11.3: Optimized fun levels while monitoring the changes in predicting
frustration and challenge for the two agents.

202

11.2. DATASET 1: BASIC PARAMETERIZED GENERATOR

Table 11.1: Correlation coefficient values obtained between the predictions of
fun, frustration (F) and challenge (C) when optimizing fun while monitoring the
prediction of the other emotional states. Strong correlations (p − value < 0.01)
are presented in bold.

Frustration Challenge
A* agent

Fun 0.11 −0.17
Frustration −0.66

Sergio’s agent

Fun −0.13 −0.19
Frustration −0.23

and hence we did not register game content or player behavior. Therefore, for the

experiments conducted later, information about the game and in-game interaction

were saved enabling a more in-depth analysis.

11.2.2 Experiment 2: Dynamic Adaptation to Changing

Playing Styles

In the following experiments we test the model’s ability to generalize over different

types of players. This is done by evaluating the method with AI agents and human

players.

11.2.2.1 AI Agents

The two AI agents (Section 11.1) were set to play in turns while monitoring

how the fun value evolves. The experiment starts from a randomly generated

level. The agents play a set of 100 levels and every 20 levels the playing agent

is switched. The result in Figure 11.4 shows the changes in the prediction of fun

over 100 levels. The figure illustrates that the fun value ranges around 70% in

the first 20 levels where Robin’s agent is playing, and when we switch the agent

to Sergio’s agent in the following 20 levels, the average value increases to 80%

approximately, and it drops again to 70% when Robin’s agent is set back to play.

These results provide evidence for the model’s ability to adapt to the differences

in players’ behavior.

203

11. EVALUATION

It is interesting to observe the method behavior at the specific points where

the agent is switched: the points corresponding to levels 21, 41, 61 and 81 in

Figure 11.4. These levels are generated to maximize fun for one agent while

played by the other agent; i.e. the values of the content features have been

chosen to maximize the model’s output based on the gameplay data for agent

A, but they are played and evaluated based on the gameplay data for agent B.

Therefore, a performance drop has been obtained for all of these levels.

11.2.2.2 Human Players

For further investigation, we did the same experiment on human players play-

ing a smaller set of 12 levels. The outcome of this experiment is illustrated in

Figure 11.5, which shows the evolution of fun over 48 levels played consecutively

by four different human players. The results obtained showed that levels with

high fun values have been generated for all human players. The average values

obtained are 80.65%, 93.88%, 82.11%, and 85.49% for first, second, third and

fourth player respectively. As seen from Figure 11.5, the adaptation mechanism

is robust enough to adapt to a particular player and to generalize over different

types of players. Ten participants were asked to report their preferences between

the randomly generated level and the first adapted level following the 4-AFC

protocol. The results showed that six out of ten of the participants enjoyed an

adapted game more than a randomly generated one.

11.3 Dataset 3: Behavioral and Visual Cues

The richness of the data collected in this dataset makes it interesting to test

the behavior of the adaptation mechanism. Furthermore, we are not aware of

a previous data-driven approach for procedurally generating content driven by

computational models of fused modalities of player input.

204

11.3. DATASET 3: BEHAVIORAL AND VISUAL CUES

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

P
e
rf

o
rm

a
n

c
e

Levels

Fun

Robin’s Agent Robin’s AgentSergio’s Agent Robin’s AgentSergio’s Agent

Figure 11.4: Optimized fun levels for the two AI agents

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

20

40

60

80

100

Levels

P
e
rf

o
rm

a
n
c
e

Fun

Player 1 Player 2 Player 3 Player 4

Figure 11.5: Optimized fun levels for four human players

11.3.1 Optimizing Player Experience for a Fixed Playing

Style

To generate levels that are tailored to an individual player, we implemented

the exhaustive search method presented in Section 10.2.1. We use the player

experience models constructed on fused features of gameplay and visual reaction.

As a proof-of-concept experiment, we generate levels that maximize predicted

engagement, frustration and challenge for two human players having different vi-

sual reaction features. These two samples have been selected from the recorded

corpus and have not been used for constructing the experience models. The con-

205

11. EVALUATION

tent space is explored exhaustively. As presented in Section 10.2.1, the search

space consists of 13200 total configurations corresponding to the different varia-

tions of content features. This guarantees an efficient exploration of the search

space and an online adaptation of game content.

The combination of content features that maximizes the ANN output — given

the player behavior and visual reaction — is chosen to generate the game level.

Using this adaptation mechanism, we were able to generate a new level for each

player that optimizes some aspects of predicted player experience. Figure 11.6

presents the different levels adapted for the two human players chosen along the

three experience states.

The efficiency of the adaptation mechanism can be investigated by compar-

ing the generated levels along the dimensions of the content features optimized

to generate them for each state. For example, the number of enemies and the

number of powerups are the two content features used to tailor level generation

to maximize predicted engagement, hence, when comparing the two levels gener-

ated for the two human players, one should identify aspects of game content along

these two dimensions (refer to Section 9.2.5.1 for the content features selected for

each player experience state).

By investigating the generated levels following this approach, it appears that

different values have been assigned to the content features when optimizing pre-

dicted engagement; while the two players appear to enjoy levels with powerups,

the level appears to be more engaging for the first player when enemies are placed

around gaps while the second player enjoys a level with enemies scattered ran-

domly around the level.

On the other hand, levels generated to maximize predicted frustration can be

compared along four dimensions (the placement of enemies, the number and the

width of gaps, and the total number of boxes). A level can be more frustrating for

the first player when it contains more gaps with small width, a large number of

boxes, and enemies scattered randomly around. A level with fewer gaps having

small width and enemies around them is found to be more frustrating for the

second player.

A challenging level for the first player is the one containing small width gaps,

a small number of enemies scattered randomly around the level, and no boxes.

206

11.3. DATASET 3: BEHAVIORAL AND VISUAL CUES

(a) Generated level for maximum engagement (Subject no. 1)

(b) Generated level for maximum engagement (Subject no. 2)

(c) Generated level for maximum frustration (Subject no. 1)

(d) Generated level for maximum frustration (Subject no. 2)

(e) Generated level for maximum challenge (Subject no. 1)

(f) Generated level for maximum challenge (Subject no. 2)

Figure 11.6: Example levels generated to maximize predicted engagement, frus-
tration and challenge for two human players with different visual reaction features.
Sub-figures (a), (c) and (e) are levels generated to maximize engagement, frustra-
tion and challenge, respectively for the first player. Sub-figures (b), (d) and (f)
are example levels generated to, respectively, maximize engagement, frustration
and challenge for the second player.

207

11. EVALUATION

A level with slightly more challenging aspects has been generated for the second

player where a smaller number of gaps has been chosen but with wider width,

and enemies placed around collectable items.

Note that neither player behavioral data nor self-reported experience is avail-

able for the generated levels and, hence, there is no guarantee that the adap-

tation mechanism generates higher levels of engagement, challenge and frustra-

tion. However, the highly accurate ANN models built (above 80% accuracy) —

that drive the generation of levels — suggest that higher values are most likely

achieved for all emotional states. Moreover, the earlier experiments on dataset

1 (Section 11.2.1) — where the same exhaustive search approach was followed

to generate personalized levels based on simpler player models — demonstrated

that personalized levels are preferred by six out of ten human players.

11.4 Dataset 2: Advanced Parameterized Gen-

erator

The experiments conducted based on the data collected for dataset 1 showed

promising results in terms of predicting the emotional states with a relatively high

accuracy and adapting to player’s playing style and characteristics. However, only

four controllable features were used in that dataset, three of which are related

to gaps in the level. Moreover, no information about the content generated or

player behavior has been recorded in those experiments which limited our ability

of fully exploit the results obtained. Therefore, we run further experiments based

on the richer models constructed on dataset 3. We use these models to evaluate

the content generated by the GE-generator (Section 5.4) since the content space

explored by this generator has not been constrained along very few dimensions.

And we provide a thorough analysis based on fully recorded game sessions.

The methodology proposed in Section 10.2.2 has been employed to gener-

ate content that optimizes specific aspects of predicted player experience for a

particular player given the player playing style in a test level.

The player is set to play a level and his playing style is recorded and used by

GE to evaluate each individual design generated. Each individual is given fitness

208

11.4. DATASET 2: ADVANCED PARAMETERIZED GENERATOR

according to the recorded player behavior and the values of its content features.

The best individual found by GE is then visualized and set for the player to play.

11.4.1 AI Agents: Optimizing Player Experience for a

Fixed Playing Style

AI agents have been employed to test the online adaptation mechanism in a

similar manner to the one used in the experiments on dataset 1 (Section 11.2). AI

agents have been employed because we wanted to test the efficiency of adaptation

over time that requires the player to play-test a large number of levels.

A similar methodology to the one proposed in Section 11.2.1 to test the adap-

tation mechanism is followed; each AI agent is set to play a test level while its

behavior is recorded. The evolution process is then started and GE is initialized

with a random population of level designs, each individual is ranked according to

the predicted player experience it provides (as predicted by the player experience

models) given the player behavior in the test level and the content features ex-

tracted from the level design. The levels are then evolved and the best individual

found by GE is visualized and the AI agent is set to play it. The same procedure

is repeated for 100 rounds taking into account the player behavior in the previous

round to evaluate the level designs in the current round.

Figures 11.7 and 11.8 presents the fitness values obtained for the best individ-

ual in each round when optimizing the level design to maximize engagement, frus-

tration and challenge for the A* and Sergio’s agent, respectively, while monitoring

the models’ prediction of the other emotional states than the one optimized.

The results presented in Table 11.2 show that, using the adaptation mecha-

nism, we were able to construct levels for the two agents with high predictions

across the three emotional states. The adaptation mechanism appears to main-

tain the same level of predicted engagement for the two agents compared to the

values obtained for frustration and challenge as can be observed from the standard

deviations values presented in Table 11.2.

By examining the gameplay data recorded while optimizing the levels, we ob-

served that most of the low prediction values obtained when predicting challenge

are the cause of outliers in the time spent playing (very short or very long game-

209

11. EVALUATION

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Engagement
Frustration
Challenge

(a) Optimized predicted engagement for the A* agent.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Frustration
Engagement
Challenge

(b) Optimized predicted frustration for the A* agent.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Challenge
Engagement
Frustration

(c) Optimized predicted challenge for the A* agent.

Figure 11.7: The fitness function for the optimized levels evolved for the A* agent
for each player experience state while monitoring the models’ prediction of the
other states.

210

11.4. DATASET 2: ADVANCED PARAMETERIZED GENERATOR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Engagement
Frustration
Challenge

(a) Optimized predicted engagement for Sergio agent.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Frustration
Engagement
Challenge

(b) Optimized predicted frustration for Sergio agent.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Evolved levels

Fi
tn

es
s

(m
od

el
s’

 p
re

di
ct

io
n)

Challenge
Engagement
Frustration

(c) Optimized predicted challenge for Sergio agent.

Figure 11.8: The fitness function for the optimized levels evolved for Sergio’s for
each player experience state while monitoring the models’ prediction of the other
states.

211

11. EVALUATION

Table 11.2: Average fitness values obtained for the evolved levels across the three
emotional states for each agent along with the standard deviation values.

Engagement Frustration Challenge
A* agent

Avg 78.23%± 1.88 79.06%± 7.36 66.2%± 10.23
Sergio’s agent

Avg 74.01%± 2.56 80.59%± 10.58 61.25%± 8.75

play session). These outliers are the result of dying very early in the level or

being stuck in a dead end as a result of the agents incapacity to backtrack which

will eventually lead to losing the game by reaching the maximum session time

allowed.

The same argument holds for predicted frustration but with different effects;

while short gameplay sessions resulted in a high level of frustration, being stuck

in a dead end until the session time expires resulted in low prediction values of

frustration. However, the length of the gameplay session appears to have less

influence of the prediction of engagement.

Levels with varying content parameters have been evolved for each agent

across the three emotional states as can be seen from Figure 11.9 which presents

the best levels generated to optimize players’ experiences. The levels can be

analyzed according to the six content features optimized to maximize specific

experience. Levels with different structure have been observed when optimizing

engagement for the two agents; while a flat level with some coins have been

evolved for Sergio’s agent, the most engaging level for the A* agent contains gaps

and enemies with no coins. The best levels evolved for optimizing frustration,

on the other hand, exhibit more similar structure with both of them having the

same number of gaps while differing in the number and placement of enemies; a

small number of enemies scattered around gaps have been generated for the A*

agent, while more enemies randomly placed around the level have been evolved

for the most frustrating level for Sergio’s agent. A slightly more challenging level

with more gaps has been evolved for Sergio’s agent than the one generated for

the A* agent.

Figure 11.10 presents statistics for the six content features used to evaluate

212

11.4. DATASET 2: ADVANCED PARAMETERIZED GENERATOR

game content extracted from the 100 levels generated to optimize the prediction

of the three experience states for the two agents. All values are normalized to

the range [0,1] using the standard max-min normalization. As can be seen from

the figure, the most engaging levels evolved for optimizing engagement for the

two agents vary in the number and the width of gaps and the placement of

enemies; the levels evolved for the A* agent contain more and wider gaps with

enemies mostly placed around gaps and blocks compared to less and narrower

gaps with enemies scattered randomly around the levels observed for the levels

optimized for Sergio’s agent. The opposite observations can be derived from the

levels optimized for challenge. It hence appears that the approach was able to

recognize the differences in the playing styles and consequently evolve levels with

different characteristics to optimize particular player experience states. On the

other hand, similar average values for the content features have been observed

from the maximum frustrating levels for the two agents.

11.4.2 Statistical Analysis

We performed statistical tests to further investigate the results obtained, the

method’s ability to recognize and adapt to a particular playing style and the

relationship between the three player experience states.

The first test has been conducted to test the ability of the adaptation ap-

proach to recognize a particular playing style and adapt accordingly by testing

for significant differences in the prediction accuracies obtained from the best

levels evolved for each agent. The statistical test showed that the adaptation

mechanism evolved significantly more engaging and challenging levels for the A*

agent compared to the ones generated for Sergio’s agent while no significant dif-

ference has been observed for the levels evolved to maximize frustration for the

two agents (significance is determined by p < 0.01). It, hence, appears that it

is easier to generate engaging and challenging levels for a player with an expert

playing behavior than for a player with an average playing performance.

To analyze the dependences between the three reported states, the effects of

optimizing one state on the prediction of the other states and the relationship

between them, we performed a test to check for correlations between the observed

213

11. EVALUATION

(a) Evolved level for maximum engagement for the A* agent

(b) Evolved level for maximum engagement for Sergio’s agent

(c) Evolved level for maximum frustration for the A* agent

(d) Evolved level for maximum frustration for Sergio’s agent

(e) Evolved level for maximum challenge for A* agent

(f) Evolved level for maximum challenge for Sergio’s agent

Figure 11.9: The best levels evolved to maximize predicted engagement, frus-
tration and challenge for the two agents. Sub-figures (a), (c) and (e) are levels
evolved to maximize engagement, frustration and challenge, respectively, for the
A* agent. Sub-figures (b), (d) and (f) are best levels generated to, respectively,
maximize engagement, frustration and challenge for the Sergio’s agent.

214

11.4. DATASET 2: ADVANCED PARAMETERIZED GENERATOR

Table 11.3: Correlation coefficient values obtained between the predictions of
engagement (E), frustration (F) and challenge (C) when optimizing each of these
player experience states (columns) while monitoring the prediction of the other
emotional states (rows). Significant values (p− value < 0.01) appear in bold.

Optimized player states
A* agent Sergio’s agent

E F C E F C

E 0.62 −0.34 0.613 −0.4
F 0.23 0.31 −0.45 0.36
C 0.04 −0.78 0.12 −0.67

predictions of the non-optimized experience states in each experiment. For exam-

ple, in the experiment conducted to optimize engagement, the correlation between

the models’ prediction of frustration and challenge has been calculated. The cor-

relation effects obtained showed that optimizing one state resulted in negatively

correlated predictions of the other two experience states for the two agents.

To further investigate the intra-correlations between the three player states,

we calculated the correlations between the predictions of an optimized state and

the predictions of the other non-optimized experience states. The results pre-

sented in Table 11.3 show that for the two agents, evolving engaging levels re-

sulted in levels that are also challenging while generating challenging levels were

found to generate levels that are less engaging for the two agents.

On the other hand, different effects have been observed between the predic-

tions of engagement and frustration: while evolving engaging levels were also

found to generate frustrating levels —as evidenced by the predictions of these

two emotional states to be positively correlated for the A* agent—, these emo-

tional states were found to be highly and negatively correlated for Sergio’s agent.

Evolving frustrating levels, on the other hand, resulted in levels that are also

engaging for the two agents.

As for the relationship between predicted frustration and challenge, the cor-

relation analysis showed that when optimizing predicted frustration, less chal-

lenging levels are generated for the two agents. However, predicted challenge

and frustration were found to be highly and positively correlated when evolving

challenging levels for the two agents.

215

11. EVALUATION

Figure 11.10: Average and standard deviation values of six statistical content
features extracted from 100 levels evolved to optimize predicted engagement (E),
frustration (F) and challenge (C) for the two agents. Enemies placement Ep = 0
when Pg = 80%, Ep = 0.5 when Px = 80% and Ep = 1 when Pr = 80%.

This variety of relationships observed between the predictions of the three

player experience states across the agents reflects the method’s ability to recognize

different playing styles and evolve levels with different characteristics that adapt

to a specific style.

11.4.3 Discussion

The analysis conducted to test for the adaptation method’s validity and the

dependencies among the predictions of the experience states showed that it is

easier to optimize engagement and challenge for an expert player than for an

average performing player.

The results obtained revealed interesting relationships among the predictions

of the emotional states. Engaging levels were found to be challenging, in general,

while challenging levels are not necessarily engaging. The same observation has

been obtained between predicted frustration and challenge; the features that play

a role in generating challenging levels appear to also have a positive effect on

the perceived frustration, while the influence of the features positively affecting

perceived frustration has been observed to be negative on predicted challenge.

216

11.5. SUMMARY

The right amount of frustration should be present in a level for it to be engaging,

this also depends on the playing style; while engaging levels are also found to be

frustrating for some players, other players might enjoy less frustrating levels.

Note that these observation are valid in this specific setups where AI agents

are employed, and further analysis with human players is required if we are to

draw more general conclusions.

11.5 Summary

The chapter introduced an approach for evaluating the adaptation mechanisms

presented in the previous chapters. To this end, previously constructed player

experience models that map game content to reported player experience (engage-

ment, frustration and challenge) were utilized as fitness functions. Two AI agents

(and in some cases human players) with different playing styles were used to test

the adaptation approach. A set of experiments have been conducted on the three

datasets collected and a thorough analysis of the results is presented. The results

obtained illustrate the methods’ ability to recognize differences in playing styles

and generate content accordingly. The analysis performed revealed interesting

relationships between the three emotional states and showed promising potential

for the approach. However, most of the analysis is based on the behavior of two

AI agents and we believe that further investigations with more human players

would allow us to draw a clearer picture for the suitability of experience-driven

PCG in platform games.

217

12

Conclusions

In this dissertation we have presented a data-driven framework for closing the

affective loop in games based on three datasets comprised different number of

players and variety of features of game content and player behavior. By imple-

menting this framework, we aimed at addressing the two main research objectives

of this dissertation, more specifically: constructing accurate estimators of player

experience while interacting with a game and building a data-driven approach

to effectively close the affective loop in games. Infinite Mario Bros, a clone of

the well-known game Super Mario Bros, is employed as a testbed game for our

experiments.

Given our objectives, we devised three content generators for the game vary-

ing along different dimensions of content coverage. In two of the generators, an

integer vector representation of the content space is used to control content cre-

ation and generate variety of content. Grammatical formulation of the possible

content is utilized in the third generator and grammatical evolution is employed

to explore the content space. An expressivity analysis framework is proposed to

analyze the content space coved by each generator along six expressive dimensions

defined to highlight the dissimilarity among these generators, a histogram-based

visualization method is proposed to assess the expressive range of each generator.

These three generators are used to crowd-source three datasets from hundreds

of players. The focus in each dataset is given to a set of game content and player

behavior data allowing thorough analysis of different aspects that contribute to

player experience in games.

218

According to our assumption, there is an unknown function between game

content and player experience that can be approximated using machine learning

techniques. Based on this assumption, we construct models of player experience

based on different feature types: game content features extracted from the levels

played, gameplay features capturing the characteristics of playing style, visual

cues extracted from video recordings of gameplay sessions and players’ experience

states as reported via player answers to questionnaires.

Once the data has been collected, we introduced the player experience mod-

eling framework. The framework consists of three main steps: feature extraction

for identifying the pool of features that represents the in-game interaction, feature

selection for reducing the size of the feature space and consequently increasing

the modeling accuracy and ease the analysis, and model optimization for adjust-

ing the model topology for the best approximation of the constructed function.

Neuroevolutionary preference learning is used as a modeling mechanism while

sequential forward selection is employed to select the subsets of relevant features

for predicting reported affects.

In order to allow a rich representation of the in-game interaction, along with

the variety of types of the features collected, we introduced different methods

for feature extraction and representation. Direct features, calculated as frequen-

cies of items and events, as well as sequential patterns of content and behavior,

extracted using data mining methods, have been considered. Given the wealth

of the data collected, we also presented unimodal and bimodal features that al-

low capturing and analyzing the cause-effect relationships between the different

modalities considered.

Accurate models of player experience have been constructed based on the fea-

tures extracted from each dataset. In each set of modeling experiments, the focus

is given to analyzing the relationship between players’ reported affective states

and the specific features collected for each specific dataset. The results have

shown that player experience can be predicted with high accuracy from informa-

tion about the interaction with the game. Linear and non-linear relationships

have been analyzed revealing interesting correlations and accommodating for a

better understanding of the gameplay experience.

Based on the models constructed, an online adaptation approach is presented.

219

12. CONCLUSIONS

An experiment is conducted to investigate the best frequency that should be used

to adapt game content. This is done by segmenting the game sessions into smaller

parts while monitoring the changes in the models’ prediction accuracies. The

chosen size is one that is short enough to allow acceptable adaptation frequency,

yet long enough to allow reliable gameplay experience measurement and to elicit

player emotions. Online generation of game content is achieved by utilizing the

constructed player experience models as a measure of content quality. The content

space, as represented by a vector of up to six content features, is explored using

an exhaustive search approach that choses the combination of feature values that

optimized particular player experience by maximizing the models’ output.

The exhaustive search adaptation method is appropriate due to the relatively

small size of the search space explored by two of the content generators. As the

search space becomes larger in our third generator, exhaustive search becomes in-

feasible. Therefore, more sophisticated and effective online adaptation procedure

is designed to deal with larger search spaces. To this end, an evolutionary method

is constructed and player experience models are integrated in the evolutionary

process as fitness functions. This way, generating personalized content becomes

part of the content evolution process by ranking each design configuration gener-

ated according to its appeal to a particular player.

The two adaptation approaches are tested using two AI agents of different

gameplay characteristics. This permits evaluating the methods ability to rec-

ognize differences in playing style and generate levels accordingly. Moreover, it

allows analyzing the methods’ performance over time. The results demonstrated

the method’s effectiveness in capturing the dissimilarity between the two agents

and in generating personalized content. The adaptation framework is further

tested with human players where the observations showed that 60% of the players

preferred personalized levels over randomly generated levels when the exhaustive

search method is used for adaptation.

220

12.1. CONTRIBUTIONS

12.1 Contributions

This section summarized this dissertation’s main contributions to advance the

state-of-the-art of game AI and affective computing. We claim the results in this

dissertation to be useful, and to some extend applicable, to the fields of affect

recognition, human-computer interaction, game design and procedural content

generation. More specifically, this dissertation has contributed the following:

• We introduced, through the use of grammatical evolution, a new method for

creating game content for a 2D platform game. The method is able to gen-

erate infinite variation of playable content which showcases an interesting

and useful use of grammatical evolution in games.

• We introduced a framework for analyzing and comparing the expressive

ranges of different content generators. The expressivity measures presented

can be used to analyze other content generators than the ones presented

in this dissertation, and we believe the expressivity analysis framework is

relevant for evaluating generators of other 2D games. The framework can

also be a great assistive tool for game designers to visualize the implications

of their design choices and to analyze the strength and weakness of their

generators.

• We crowd-sourced three datasets from hundreds of players each with a dif-

ferent set of features. We plan to publish these datasets so that they will

be available for other researchers to conduct different experiment and show

different perspectives of which these datasets can be used in research. We

believe these datasets to be useful for testing different machine learning, AI

and data mining techniques as well as being valuable for researchers in the

field of affect recognition and human-computer interaction.

• We identified different feature sets for capturing a variety of aspects of player

interaction with a 2D platform game. More specifically, we collected fea-

tures about game content, players’ actions and visual reactions to gameplay

events as well as players’ reported preferences of different affective states.

Some of these features are game specific, such as the content features, while

221

12. CONCLUSIONS

others can be generalized to other games from the same genre such as the

player behavior features. Yet the third feature category, the visual cues fea-

ture, appear to be linked to generic game events such as killing an enemy,

winning or losing the game, and, therefore, they appear to be applicable to

most computer games.

• We introduced two feature representations for accommodating for the spa-

tial and temporal order of events or actions, and we implemented data min-

ing methods for extracting content and/or behavioral frequent patterns.

The methods followed for feature representation and extraction can be ap-

plied to any other similar problem where detailed data is available.

• We presented the successful use of features from one modality and bimodal

features for capturing player experience. Bimodal features are extracted

by fusing actions and content events on the sequences level and by relating

visual reactions to game events. Both of these types of features showed

promising results in terms of modeling player interaction with the game.

The experiments presented can be used as initial success points for a more

thorough analysis of these features as well as an inspiration for the use of

dissimilar types of features from other modalities.

• Based on datasets collected, we established accurate quantitative measures

of player experience. The framework proposed for model construction in

terms of feature extraction, selection and model optimization could be easily

scaled to other games from the same genre or other genres of games.

• The thorough experiments conducted revealed interesting observations about

the interaction between the player and the game and the relationship be-

tween game content, player behavior and reported affects. The framework

proposed can be viewed as a mean for quantifying aesthetics in 2D platform

games and in that sense, the results can be used by game designers to better

understand the possible experience their design would trigger when played.

The models constructed can ultimately be useful for designers to assess the

design process as they can inform the designer about the set of game level

222

12.2. LIMITATIONS AND OPPORTUNITIES

features (such as the number of enemies and gaps) that can maximize (or

indeed minimize) the modeled player state for a particular player.

• The player experience models constructed were utilized for measuring con-

tent quality, and hence, enabled the creation of personalized content. On-

line content creation is achieved through employing the models in the con-

tent creation loop establishing an efficient adaptation mechanism. Search-

ing the content space for optimal content is realized by implementing two

search methods: exhaustive search and an evolutionary algorithm. Com-

bining player experience modeling with parameter optimization for online

creation of personalized content proved to be an efficient method for fulfill-

ing the requirements of quantitatively closing the affective loop in games.

• The adaptation results demonstrated the methods’ success in recognizing

different playing styles and in generating content that maximizes aspects of

player experience. We consider the adaptation framework to be of interest

for industrial game development since it provides a complete and promising

framework for sensing player affects, modeling player experience and adapt-

ing game content, which is a direction that is receiving increasing attention

in game industry recently (Yannakakis [2012]).

12.2 Limitations and Opportunities

The limitations of the proposed methodology, as appeared throughout the exper-

iments and analysis of this dissertation, are summarized in this section. They are

categorized into limitations concerning the tools used and limitations considering

the methodology proposed. Suggestions and ideas for overcoming such drawbacks

are discussed and provide the ground for future investigations.

12.2.1 Tools

There are a number of limitations inherent in the player experience modeling

approach followed. The feature selection method provides an efficient mechanism

223

12. CONCLUSIONS

for selecting relevant features when the size of the search space is rather small.

This method, however, results in a suboptimal subset of features when searching

a large space. Moreover, when searching for the relevant subset of features, we

are mostly interested in the minimal independent feature set and this is not guar-

anteed by SFS. Automatic feature selection is an essential step when constructing

the experience models since selecting the correct subset of features may have a

great impact on the prediction accuracy obtained. Improving the global search

abilities of the feature selection process is one way to improve the prediction accu-

racy and the interpretation of the models. Algorithms relying on meta-heuristic

search such as genetic-based feature selection (Mart́ınez and Yannakakis [2010]),

or Monte Carlo Tree Search techniques such as Future UCT Selection (Gaudel

et al. [2010]), can allow the detection of more appropriate feature subsets. Other

techniques such as deep learning can be investigated to extract new types of

features (Bengio [2009]).

The other limitation concerns the use of neuroevolutionary preference learn-

ing as a modeling approach which suffers from the limited transparence power

of the experience models. By using neuroevolutionary preference learning, we

gain the advantage of universal approximation capacity for constructing accurate

non-linear models, but we loose the ability of easily analyzing the cause-effect re-

lationships between the features selected and the models’ prediction of each player

state. Thus, exploiting the use of more expressive model representations such as

decision trees, Bayesian networks or fuzzy neural networks for modeling player

experience constitutes a future direction. Moreover, ANNs have shown a great

potential and accurate modeling results in similar studies (Martinez et al. [2009];

Pedersen et al. [2009]; Yannakakis [2009b,c]). However, better results might be

obtained by other machine learning techniques such as support vector machines.

Our adaptation mechanism was limited to content parameters adjustment

via the use of search methods. Although interesting and promising results were

obtained in terms of generating personalized content, we believe there are a num-

ber of improvements that can be applied to increase the adaptation efficiency.

Altering the structure of the models is one promising direction. For instance,

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen

[2002]) can be used to evolve personalized network topologies which can be up-

224

12.2. LIMITATIONS AND OPPORTUNITIES

dated as players progress through the game. Another interesting approach is to

include game mechanics in the adaptation loop and consequently evolve person-

alized or player-centered mechanics building on the experience models presented

in this thesis and the work done by Cook [2012]; Cook and Colton [2011] on

inventing mechanics.

12.2.2 Methodology

The experiment conducted on utilizing grammatical evolution for creating con-

tent for the game showed that wide variety of infinite content can be generated.

The expressivity analysis, however, showed that the GE-generator is unable to

generate levels with high density due to the height constraint defined in the

grammar forcing the generated chunks to be placed within a predefined height

limit to ensure playability. One possible solution is to define a constraint-free

grammar and play-test the generated levels to check for the playability. This

can be done automatically by exploiting the use of AI agents that pass through

the levels and check for possible path from the start to the end, and/or check

whether all chunks generated are reachable. Another solution is to adopt context-

sensitive grammar such as attribute grammars to control the parameter values

of the solutions as they are being generated during the mapping process (O’Neill

et al. [2004]). Moreover, in this dissertation, we focused on parameterized and

grammar-based representation of game content. Exploring other forms, such as

direct representation, constitutes another interesting direction.

In the expressivity analysis framework, we introduced a number of dissimi-

lar measures of content variability. None of these measures, however, rank the

content from the player’s perspective or based on the experience it provides.

A future direction includes defining more in-depth expressivity measures along

which content quality can be analyzed and compared. Designers’ knowledge or

the player experience models constructed in this dissertation can be utilized as

content quality measures to rank the content generated according to the elicited

gameplay experience.

In the experiments presented in this thesis, we focused on specific set of

content and behavioral features. Other parameters such as personality traits

225

12. CONCLUSIONS

(Spronck et al. [2012]; van Lankveld et al. [2011]), experience with games, gender,

ethnicity, smaller facial gestures (e.g. small lip movements and other personalized

features), as well as other people’s presence (and its affect on gameplay and/or

visual reactions) might also be important predictors of player experience. Fu-

ture research could take into account a series of such additional factors in order

to maximize control over player states, increase context influence and encourage

personalization in game playing.

The models constructed in this dissertation are purely data-driven. It would

be interesting to validate the methodology proposed and its findings with de-

signers’ knowledge and expertise of what makes a level engaging, frustrating or

challenging, and validate the extent to which the observed findings add to our

knowledge about the creative process of game design.

For the feature extraction experiments presented in this dissertation, we used

only sequences of length three. Patterns of this length could be rather too small

to draw general conclusions. Frequent sequences of longer length have been in-

vestigated; although these sequences are more expressive, a performance drop has

been observed. Longer sequences tend to capture more specific patterns across

multiple modalities of player input in which we expect larger data variation due

to variant playing styles. A solution might be to cluster the resulting sequences

and construct models for each cluster, or consider sequences of different length

as inputs to ANN models. A step towards clustering players’ behavior based

on sequence patterns of actions has already been taken and preliminary results

indicate the promise of the approach. One could also investigate the use of other

sequence prediction techniques such as Hidden Markov Model to classify the re-

sulted sequences and to extract sequential patterns.

12.2.3 Adaptation Framework

The personalized Super Mario Bros levels generated show that the experience-

driven procedural content generation framework (Yannakakis and Togelius [2011])

can be realized and the affective loop can be closed in games. The adaptation

framework followed provides a nouvelle approach for control and adaptation in

computer games. The adaptation methodology proposed, however, needs to be

226

12.2. LIMITATIONS AND OPPORTUNITIES

further validated with more human players in actual gameplay sessions. The

results presented based on studies on a small group of human players showcase

that the adaptation framework is effective in generating levels which are preferred

by the majority of players but further investigation is required for more accurate

and generalizable results.

The adaptation framework and the analysis presented focus on optimizing

specific predicted player experience states for a particular playing style. Future

directions include testing the method’s ability to optimize more than one aspect

of player experience. Multi-objective optimization techniques can be used to

optimize, for example, engagement and challenge while minimizing frustration.

This will help us explore new dimensions of player experience and ultimately

generate content that maximizes some dimensions while minimizing others to

optimize player experience.

AI agents have been employed to test the adaptation methodology. Although

the two agents have been chosen so that they exhibit varying playing characteris-

tics, the main drawback of this approach lies in their lack of yielding human-like

behavior. The obvious better alternative is to use AI agents that are trained to

imitate human playing style (J. Togelius and Shake [2011]; Ortega et al. [2012]).

This allows more accurate examination of the adaptation performance. AI agents

that adapt their behavior and learn over time can ultimately be used to simulate

the human learning process.

Promising results have been obtained for the experiments conducted utilizing

the GE-generator for creating content. The approach showed an ability to capture

specific playing style and generate adapted content accordingly. However, the

analysis showed that there is an important limitation imposed in the approach

followed that concerns the use of player experience models constructed based

on levels generated by a content generator with a different expressivity range

(see Chapter 6). While the basic parameterized generator produces content by

varying the values of six content features with all other dimensions being fixed,

the GE-based generator explores the content space without such limitations. It

is, therefore, important to conduct further experiments to investigate the effect

of the content features on players’ judgment since we anticipate that new factors

of level design will play a role in human experience.

227

12. CONCLUSIONS

While the experiments conducted focused on defining the frequency of adap-

tation and how to adapt game content, there is still one important aspect of

content adaptation that has not been explored, more specifically, whether or not

we should apply adaptation. While personalizing game content can be appreci-

ated by some players, there are others who dislike adaptation and prefer static

content which they can replay and master. The adaptation mechanism should be

able to recognizing player’s preferences and if adaption should be applied. The

framework presented in this dissertation provides a partial solution to this prob-

lem by continuously sensing player behavior and adjust the content accordingly.

However, we will need to empirically evaluate whether the approach is indeed

capable of capturing such preferences.

The adaptation framework is implemented for research purposes but playable

demonstrations have been published online where players can play the game and

choose a particular experience to optimize (Shaker [2011]). A new personalized

level is then generated based on her playing style. Constructing a complete com-

mercial standard demonstrator of the framework constitutes an important future

direction sine this will highlight and emphasize the potential of the methodology.

12.3 Extensibility

Accurate estimators of player experience and a robust adaptation framework

were designed, implemented and analyzed in this dissertation. In this section, we

discuss the potential of the methodology in other games from the platform genre

or other genres of games.

12.3.1 Player Experience Modeling

As mentioned earlier in Chapter 4, Super Mario Bros defines, more or less, the

platform game genre. We argue that the approach presented has a great potential

to be applied successfully to other 2D platform games since most of the gameplay

features defined can be easily generalized to capture playing styles in a variety

of other games. Moreover, the generality of the selected game content patterns

228

12.4. SUMMARY

allows the use of them to design and analyze other levels with similar character-

istics, yet different graphical representations. Also, the applicability of the visual

reaction features —which proven to be efficient predictors of player’s affect— ap-

pears to be a trivial process since the extraction of these features depends on key

performance events of the context (such as indicators of losing and winning).

We also believe that our approach can generalize well to other game genres, at

least first- or third-person action games, since the features we define have straight-

forward analogies in those games. Not only do many such games have platform

elements, but also in a typical FPS like Halo (343 Industries [2012]) concepts such

as average movement speed, speed of progress, number of shots fired, entropy of

object placement, and number and concentration of enemies/items/obstacles are

clearly defined and can be assumed to have impact on player experience.

The proposed approach and the analysis presented can also be used as an

assistive tool in a mixed-initiative level design process (Smith et al. [2010]). A

level can be crafted by a human designer and models constructed from game

content and reported player experience can be used to encourage the designer

to include or modify features or patterns based on the experience the designer

wishes to provide.

12.3.2 Adaptation Methodology

The adaptation methodology presented can be generalized to any other game once

player experience has been empirically measured. Exhaustive search approach

can be applied within small dimensional search spaces whereas a similar meta-

heuristic global search method can be implemented to deal with larger spaces.

12.4 Summary

This dissertation has presented a number of methods for automatically generating

personalized game content for a 2D platform game. Moreover, it introduced an

efficient method for quantitatively modeling player experience through the use of

various feature types crowd-sourced from different players of such games. These

229

12. CONCLUSIONS

models are further used to assess content quality in an online adaptation frame-

work that is designed so as to close the affective loop in games. The methodology

proposed showed promising results and demonstrated a potential for extensibility

to other games.

230

Bibliography

343 Industries, 2012. Halo, Microsoft Studios. 229

Activision, 1982. Pitfall!, Activision. 72

T. Adams, 2006. Dwarf Fortress, Bay 12 Games. 34, 39

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th international conference on Very Large Data Bases,

VLDB, volume 1215, pages 487–499, 1994. 65, 66, 68, 139

R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the

Eleventh International Conference on Data Engineering, pages 3–14. IEEE,

1995. 65

S. Almeida, A. Veloso, L. Roque, and O. Mealha. The eyes and games: A survey

of visual attention and eye tracking input in video games. In SBGames: X

Brazilian Symposium on Computer Games and Digital Entertainment - Arts &

Design Track, , Salvador, Brazil, 2011. 24

G. Andrade, G. Ramalho, H. Santana, and V. Corruble. Automatic computer

game balancing: a reinforcement learning approach. In Proceedings of the fourth

international joint conference on Autonomous agents and multiagent systems,

pages 1111–1112. ACM, 2005a. 43

Gustavo Andrade, Geber Ramalho, Hugo Santana, and Vincent Corruble.

Challenge-sensitive action selection: an application to game balancing. In

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, pages 194–200, Washington, DC, USA, 2005b. 43

231

BIBLIOGRAPHY

D. Ashlock, C. Lee, and C. McGuinness. Search-based procedural generation of

maze-like levels. IEEE Transactions on Computational Intelligence and AI in

Games, 3(3):260–273, 2011. 40

D.A. Ashlock, T.W. Manikas, and K. Ashenayi. Evolving a diverse collection of

robot path planning problems. In IEEE Congress on Evolutionary Computa-

tion. CEC, pages 1837–1844. IEEE, 2006. 40

S. Asteriadis, P. Tzouveli, K. Karpouzis, and S. Kollias. Estimation of behavioral

user state based on eye gaze and head pose - application in an e-learning

environment. Multimedia Tools and Applications, Springer, 41(3):469 – 493,

2009. 22, 145

P. Avery, J. Togelius, E. Alistar, and R.P. van Leeuwen. Computational intelli-

gence and tower defence games. In IEEE Congress on Evolutionary Computa-

tion (CEC), pages 1084–1091. IEEE, 2011. 48

A. Bahamonde, G.F. Bayón, J. Dı́ez, J.R. Quevedo, O. Luaces, J.J. Del Coz,

J. Alonso, and F. Goyache. Feature subset selection for learning preferences:

a case study. In Proceedings of the twenty-first international conference on

Machine learning, page 7. ACM, 2004. 62

Ryan S. J. d. Baker, Sidney K. D’Mello, Ma.Mercedes T. Rodrigo, and Arthur C.

Graesser. Better to be frustrated than bored: The incidence, persistence, and

impact of learners’ cognitive-affective states during interactions with three dif-

ferent computer-based learning environments. Intonation Journal on Human-

Computer Studies, 68(4):223–241, 2010. 126

C. Bartneck. Integrating the occ model of emotions in embodied characters. In

Workshop on Virtual Conversational Characters. Citeseer, 2002. 19

Y. Bengio. Learning deep architectures for ai. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009. 224

P. Bentley. Evolutionary design by computers, volume 1. Morgan Kaufmann,

1999. 56

232

BIBLIOGRAPHY

P.J. Bentley. Exploring component-based representations-the secret of creativity

by evolution. In Fourth International Conference on Adaptive Computing in

Design and Manufacture (ACDM 2000), page 161, 2000. 56

C.M. Bishop. Neural networks for pattern recognition. 1995. 60

S. Björk and J. Holopainen. Patterns in game design. Cengage Learning, 2005.

30

Blizzard Entertainment and Mass Media, 1998. StarCraft, Blizzard Entertain-

ment and Nintendo. 42

Blizzard North, 1997. Diablo, Blizzard Entertainment, Ubisoft and Electronic

Arts. 34, 39

S. Bojarski and C. Congdon. Realm: A rule-based evolutionary computation

agent that learns to play mario. In IEEE Symposium Computational Intelli-

gence and Games (CIG), pages 83–90, 2010. 78

M. Booth. The ai systems of left 4 dead. In Keynote, Fifth Artificial Intelligence

and Interactive Digital Entertainment Conference (AIIDE09), 2009. 36, 38

D. Braben and I. Bell. 33

M.M. Bradley and P.J. Lang. Measuring emotion: the self-assessment manikin

and the semantic differential. Journal of behavior therapy and experimental

psychiatry, 25(1):49–59, 1994. xiii, 26

M.E. Bratman. Intention, plans, and practical reason. Cambridge University

Press, 1999. 20

Brøderbund, Red Orb, Ubisoft, Pipeworks, and Gameloft, 1989. Prince of Persia,

Brøderbund, TLC, Mattel, Ubisoft and SCEJ. 72

C. Browne. Yavalath, 2007. URL http://www.cameronius.com/games/

yavalath/. 39

C. Browne. Elegance in game design. IEEE Transactions on Computational

Intelligence and AI in Games, 2012. 32

233

http://www.cameronius.com/games/yavalath/
http://www.cameronius.com/games/yavalath/

BIBLIOGRAPHY

C. Browne and F. Maire. Feature Analysis for Modeling Game Content Quality.

In IEEE Conference on Computational Intelligence and AI in Games (CIG),

pages 1–16, 2010a. 41

C. Browne and F. Maire. Evolutionary game design. IEEE Transactions on

Computational Intelligence and AI in Games,, 2(1):1–16, 2010b. 39

C. Browne, GN Yannakakis, and S. Colton. Guest editorial: Special issue on

computational aesthetics in games. IEEE Transactions on Computational In-

telligence and AI in Games, 4(3):149–151, 2012. 29, 31, 32

Fabio Buttussi, Luca Chittaro, Roberto Ranon, and Alessandro Verona. Adap-

tation of graphics and gameplay in fitness games by exploiting motion and

physiological sensors. In Smart Graphics, 7th International Symposium, SG

2007, Kyoto, Japan, June 25-27, Proceedings, Lecture Notes in Computer Sci-

ence, pages 85–96. Springer, 2007. 24

E. Byrne. Game level design. Delmar Thomson Learning, 2005. 126

J. Byrne, M. Fenton, E. Hemberg, J. McDermott, M. O’Neill, E. Shotton, and

C. Nally. Combining structural analysis and multi-objective criteria for evolu-

tionary architectural design. Applications of Evolutionary Computation, pages

204–213, 2011. 57

G. Calleja. In-Game: From immersion to incorporation. MIT Press, 2011. 2, 130

W.B. Cannon. The james-lange theory of emotions: A critical examination and

an alternative theory. The American Journal of Psychology, 39(1/4):106–124,

1927. 18

W.B. Cannon. Again the james-lange and the thalamic theories of emotion.

Psychological Review, 38(4):281, 1931. 18

L. Cardamone, G. Yannakakis, J. Togelius, and P. Lanzi. Evolving interesting

maps for a first person shooter. Applications of Evolutionary Computation,

pages 63–72, 2011a. 40, 42

234

BIBLIOGRAPHY

Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive evolution

for the procedural generation of tracks in a high-end racing game. In Proceed-

ings of the 13th annual conference on Genetic and evolutionary computation,

pages 395–402. ACM, 2011b. 40, 42

G. Caridakis, S. Asteriadis, and K. Karpouzis. User modeling via gesture and

head pose expressivity features. pages 19–24. 5th International Workshop

on Semantic Media Adaptation and Personalization, (SMAP 2010), Limassol,

Cyprus, 2010. 145, 146

G. Castellano, A. Pereira, I. Leite, A. Paiva, and P. W. McOwan. Detecting user

engagement with a robot companion using task and social interaction-based

features. In Proceedings of the 2009 international conference on Multimodal

interfaces, pages 119–126, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-772-1. doi: http://doi.acm.org/10.1145/1647314.1647336. 22

Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry Pun. Bore-

dom, engagement and anxiety as indicators for adaptation to difficulty in

games. In Proceedings of the 12th international conference on Entertainment

and media in the ubiquitous era, pages 13–17, New York, NY, USA, 2008. ACM.

126

D. Charles and M. Black. Dynamic player modeling: A framework for player-

centered digital games. In Proceedings of the International Conference on Com-

puter Games: Artificial Intelligence, Design and Education, pages 29–35, 2004.

xiii, 47

J. Chen. Flow in games (and everything else). Communications of the ACM, 50

(4):31–34, 2007. 21

W. Chu and Z. Ghahramani. Preference learning with gaussian processes. In

Proceedings of the 22nd international conference on Machine learning, pages

137–144. ACM, 2005. 62

Clover Studio, 2003. Viewtiful Joe, Capcom. 73

235

BIBLIOGRAPHY

C. Conati. Probabilistic assessment of user’s emotions in educational games.

Applied Artificial Intelligence, 16(7-8):555–575, 2002. 19, 25

M. Cook. Introducing mechanic miner, 2012. URL http://www.

gamesbyangelina.org/?p=227. 225

M. Cook and S. Colton. Multi-faceted evolution of simple arcade games. In Com-

putational Intelligence and Games (CIG), 2011 IEEE Conference on, pages

289–296. IEEE, 2011. 225

M. Cook, S. Colton, and J. Gow. Initial results from co-operative co-evolution

for automated platformer design. Applications of Evolutionary Computation,

pages 194–203, 2012. 41

R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz,

and J.G. Taylor. Emotion recognition in human-computer interaction. Signal

Processing Magazine, IEEE, 18(1):32–80, 2001. 22

Crystal Dynamics, Nixxes Software, Buzz Monkey Software, Santa Cruz Games,

and EA Mobile, 2008. Tomb Raider: Underworld, Eidos Interactive, Feral

Interactive. 46

Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper

Perennial, March 1991. xiii, 2, 20, 21

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989. 59

R.J. Davidson, K.R. Scherer, and H.H. Goldsmith. Handbook of affective sciences.

Oxford University Press, USA, 2002. 18

O. Delalleau, E. Contal, E. Thibodeau-Laufer, R. Chandias, Y. Bengio, and

F. Zhang. Beyond skill rating: Advanced matchmaking in ghost recon online.

IEEE Transactions on Computational Intelligence and AI in Games, 2012. 31

Delphine Software Internationals, 1995. Fade to Black, Electronic Arts. 73

236

http://www.gamesbyangelina.org/?p=227
http://www.gamesbyangelina.org/?p=227

BIBLIOGRAPHY

DFC. Worldwide Market Forecasts for the Video Game and Interactive Enter-

tainment Industry, 2012. URL http://www.dfcint.com/. 2

J. Dias and A. Paiva. Feeling and reasoning: A computational model for emo-

tional characters. Progress in artificial intelligence, pages 127–140, 2005. 19

A. Drachen, A. Canossa, and G.N. Yannakakis. Player modeling using self-

organization in tomb raider: underworld. In IEEE Symposium on Compu-

tational Intelligence and Games, pages 1–8. IEEE, 2009. 46

A. Drachen, L.E. Nacke, G. Yannakakis, and A.L. Pedersen. Correlation be-

tween heart rate, electrodermal activity and player experience in first-person

shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on

Video Games, pages 49–54. ACM, 2010. 27

Z. Duric, W.D. Gray, R. Heishman, F. Li, A. Rosenfeld, M.J. Schoelles,

C. Schunn, and H. Wechsler. Integrating perceptual and cognitive modeling

for adaptive and intelligent human-computer interaction. Proceedings of the

IEEE, 90(7):1272–1289, 2002. 22

EA Digital Illusions CE, 2008. Mirror’s Edge, Electronic Arts. 74

A.E. Eiben and J.E. Smith. Introduction to evolutionary computing. springer,

2008. xiv, 51, 52, 53, 55, 56

Clark Davidson Elliott. The affective reasoner: a process model of emotions in a

multi-agent system. PhD thesis, Evanston, IL, USA, 1992. 19

P.C. Ellsworth. William james and emotion: is a century of fame worth a century

of misunderstanding? Psychological Review, 101(2):222, 1994. 18

Epyx, 1984. Impossible Mission, Epyx. 72

Exact Co. Ltd., 1995. Jumping Flash! , Sony Computer Entertainment. 73

P. Fagerberg, A. St̊ahl, and K. Höök. Designing Gestures for Affective Input: An

Analysis of Shape, Effort and Valance. In Proceedings of the 2nd International

Conference on Mobile Ubiquitous and Multimedia (MUM 2003), 2003. 22

237

http://www.dfcint.com/

BIBLIOGRAPHY

B. Fasel and J. Luettin. Automatic facial expression analysis: a survey. Pattern

Recognition, 36(1):259–275, 2003. 22

C.N. Fiechter and S. Rogers. Learning subjective functions with large margins.

In Stanford University, pages 287–294. Morgan Kaufmann Publishers, 2000. 62

Firaxis Games, 2005. Civilization IV, 2K Games & Aspyr. 34

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simu-

lated Evolution. John Wiley, New York, USA, 1966. 52

J. Fürnkranz and E. Hüllermeier. Preference learning. Springer-Verlag New York

Inc, 2010. 61, 62

K.Z. Gajos, D.S. Weld, and J.O. Wobbrock. Automatically generating personal-

ized user interfaces with supple. Artificial intelligence, 174(12):910–950, 2010.

1

M. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with

regular expression constraints. In Proceedings of the international conference

on very large data bases, pages 223–234, 1999. 67

R. Gaudel, M. Sebag, et al. Feature selection as a one-player game. In Interna-

tional Conference on Machine Learning, pages 359–366, 2010. 224

M.T. Gervasio, M.D. Moffitt, M.E. Pollack, J.M. Taylor, and T.E. Uribe. Ac-

tive preference learning for personalized calendar scheduling assistance. In

Proceedings of the 10th international conference on Intelligent user interfaces,

volume 5, pages 90–97. Citeseer, 2005. 62

S. Giannatos, M.J. Nelson, Y.G. Cheong, and G.N. Yannakakis. Suggesting new

plot elements for an interactive story. In Workshops at the Seventh Artificial

Intelligence and Interactive Digital Entertainment Conference, 2011. 40

S. Giannatos, Y.G. Cheong, M.J. Nelson, and G.N. Yannakakis. Generating

narrative action schemas for suspense. In Eighth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2012. 41

238

BIBLIOGRAPHY

K.M. Gilleade and A. Dix. Using frustration in the design of adaptive videogames.

In Proceedings of the 2004 ACM SIGCHI International Conference on Advances

in computer entertainment technology, pages 228–232. ACM, 2004. 23, 47, 126

Global Movie Production. Global Movie Production & Distribution: Market

Research Report, 2012. URL http://www.ibisworld.com/. 2

J. Gow, R. Baumgarten, P. Cairns, S. Colton, and P. Miller. Unsupervised mod-

elling of player style with lda. IEEE Transactions on Computational Intelli-

gence and AI in Games, 2012. 31

M.K. Greenwald, E.W. Cook, and P.J. Lang. Affective judgment and psychophys-

iological response: Dimensional covariation in the evaluation of pictorial stim-

uli. Journal of psychophysiology, 1989. 19

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu. Freespan:

frequent pattern-projected sequential pattern mining. In Proceedings of the

sixth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 355–359. ACM, 2000. 67

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. Evolving content

in the galactic arms race video game. In Proceedings of the 5th international

conference on Computational Intelligence and Games, CIG’09, pages 241–248,

Piscataway, NJ, USA, 2009. IEEE Press. 32, 38, 40, 45, 48, 49

S. Haykin. Neural Network Theory: a Comprehensive Foundation. Prentice-Hall,

1999. 58

M. Hemberg and U.M. O’Reilly. Extending grammatical evolution to evolve

digital surfaces with genr8. In Proceedings of the 7th European Conference on

Genetic Programming , EuroGP, pages 299–308. Springer-Verlag, 2004. 57

M. Hendrikx, S. MEIJER, J. VAN DER VELDEN, and A. IOSUP. Procedural

content generation for games: a survey. ACM Transactions on Multimedia

Computing, Communications and Applications, 2011. 34

239

http://www.ibisworld.com/

BIBLIOGRAPHY

R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer. Learning pref-

erence relations for information retrieval. In ICML-98 Workshop: text catego-

rization and machine learning, pages 80–84, 1998. 62

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the theory of neural com-

putation, volume 1. Addison-Wesley, Reading, MA, 1991. 58

Hoei Corporation, 1981. Jump Bug, Rock-Ola. 72

John H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, MI,, 1975. 52, 55

V. Hom and J. Marks. Automatic design of balanced board games. In Pro-

ceedings of the 3rd Artificial Intelligence and Interactive Digital Entertainment

Conference, pages 25–30, 2007. 41

Kristina Höök. Affective loop experiences - what are they? In Lecture Notes in

Computer Science, volume 5033, pages 1–12. Springer, 2008. 2

M. Hoque, D. McDuff, and R. Picard. Exploring temporal patterns in classifying

frustrated and delighted smiles. 2012. 25

G.S. Hornby and J.B. Pollack. The advantages of generative grammatical encod-

ings for physical design. In Proceedings of the 2001 Congress on Evolutionary

Computation, volume 1, pages 600–607. IEEE, 2001. 57

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are

universal approximators. Neural networks, 2(5):359–366, 1989. 59

Ryan Houlette. Player Modeling for Adaptive Games. In Steve Rabin, editor, AI

Game Programming Wisdom 2. Charles River Media, 2003. 44

Eva Hudlicka. Affective computing for game design. In GAMEON-NA’08: Pro-

ceedings of the 4th Intl. North American Conference on Intelligent Games and

Simulation, pages 5–12, Montreal, Canada, 2008. 22, 25, 44

Kenneth Hullett and Jim Whitehead. Design patterns in fps levels. In FDG ’10:

Proceedings of the Fifth International Conference on the Foundations of Digital

Games, pages 78–85. ACM, 2010. 30

240

BIBLIOGRAPHY

id Software and David A. Palmer Productions, 1990. Commander Keen , Apogee

Software and Softdisk and Activision. 73

id Software, Logicware, Raster Productions, Hammerhead, and Hyperion Enter-

tainment, 1997. Quake II, Activision. 46

W. A. Ijsselsteijn, Y. A. W. de Kort, and K. Poels. The Game Experience

Questionnaire:Development of a self-report measure to assess the psychological

impact of digital games. FUGA technical report, Deliverable 3.3, Technical

University Eindhoven., 2008. 27

A. Illiger, 2011. Tiny Wings, Andreas Illiger. 35

Infogrames, 1990. Alpha Waves, Infogrames and Data East. 73

Insomniac Games, 1998. Spyro the Dragon, Sony Computer Entertainment. 74

Interactive Data, 2011. SpeedTree. 35

S. Ioannou, G. Caridakis, K. Karpouzis, and S. Kollias. Robust Feature Detection

for Facial Expression Recognition. EURASIP Journal on Image and Video

Processing, (2), 2007. 22

K. Isbister, U. Schwekendiek, and J. Frye. Wriggle: An exploration of emotional

and social effects of movement. In Proceedings of the 2011 annual conference

extended abstracts on Human factors in computing systems, pages 1885–1890.

ACM, 2011. 24

Poika Isokoski, Markus Joos, Oleg Spakov, and Benôıt Martin. Gaze controlled

games. Universal Access in the Information Society, 8(4):323–337, 2009. 24

Howell O. Istance, Aulikki Hyrskykari, Stephen Vickers, and Thiago Chaves. For

your eyes only: Controlling 3d online games by eye-gaze. In Proceedings of the

12th IFIP TC 13 International Conference on Human-Computer Interaction:

Part I, pages 314–327, 2009. 24

S. Karakovskiy J. Togelius, G. N. Yannakakis and N. Shake. Believablility in

computer games. Springer-Verlag. to appear, 2011. 77, 78, 227

241

BIBLIOGRAPHY

Charlene Jennett, Anna L. Cox, Paul Cairns, Samira Dhoparee, Andrew Epps,

Tim Tijs, and Alison Walton. Measuring and defining the experience of immer-

sion in games. International Journal of Human-Computer Studies, 66:641–661,

2008. ISSN 1071-5819. 22

M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin. Polymorph: dynamic diffi-

culty adjustment through level generation. In Proceedings of the 2010 Workshop

on Procedural Content Generation in Games, page 11. ACM, 2010. 30, 40

L. Johnson, G.N. Yannakakis, and J. Togelius. Cellular automata for real-time

generation of infinite cave levels. In Proceedings of the 2010 Workshop on

Procedural Content Generation in Games, page 10. ACM, 2010. 40

S. Kaiser, T. Wehrle, and S. Schmidt. Emotional episodes, facial expressions,

and reported feelings in human-computer interactions. In Proceedings of the

Xth Conference of the International Society for Research on Emotions, pages

82–86. Würzburg: ISRE Publications, 1998. 23, 24

A. Kapoor, W. Burleson, and R.W. Picard. Automatic prediction of frustration.

International Journal of Human-Computer Studies, 65(8):724–736, 2007. 22,

24

S. Karakovskiy and J. Togelius. The mario ai benchmark and competitions.

IEEE Transactions on Computational Intelligence and AI in Games, 4(1):55–

67, 2012. 78

C. D. Katsis, N. Katertsidis, George Ganiatsas, and Dimitrios I. Fotiadis. Toward

emotion recognition in car-racing drivers: A biosignal processing approach.

IEEE Transactions on Systems, Man, and Cybernetics, Part A, 38(3):502–512,

2008. 23

S. Kazmi and IJ Palmer. Action recognition for support of adaptive gameplay: A

case study of a first person shooter. International Journal of Computer Games

Technology, page 1, 2010. 48

242

BIBLIOGRAPHY

G. Kelly and H. McCabe. Citygen: An interactive system for procedural city

generation. In Fifth International Conference on Game Design and Technology,

pages 8–16, 2007. 34

M. Kerssemakers, J. Tuxen, J. Togelius, and G.N. Yannakakis. A procedural

procedural level generator generator. IEEE Conference on Computational In-

telligence and AI in Games, pages 335–341, 2012. 41

J. Kim. Bimodal emotion recognition using speech and physiological changes.

Robust Speech Recognition and Understanding, pages 265–280, 2007. 23

J. Kim and E. André. Emotion recognition based on physiological changes in mu-

sic listening. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(12):2067–2083, 2008. 23

K.H. Kim, SW Bang, and SR Kim. Emotion recognition system using short-

term monitoring of physiological signals. Medical and biological engineering

and computing, 42(3):419–427, 2004. 23

A.N. Kolmogorov. On the Representation of Continuous Functions of Several

Variables in the Form of Super Positions of Continuous Functions of One Vari-

able and Additive Functions. SLA Translations Center, 1963. 59

Konami, 2007. Pro Evolution Soccer 2008, Konami. 48

R. Koster. A theory of fun for game design. Paraglyph press, 2004. 3, 21

J.R. Koza. Genetic programming: A paradigm for genetically breeding populations

of computer programs to solve problems. Stanford University, Department of

Computer Science, 1990. 52

J.R. Koza. Genetic programming as a means for programming computers by

natural selection. Statistics and Computing, 4(2):87–112, 1994. 52

J.R. Koza, M.A. Keane, and M.J. Streeter. Evolving inventions. Scientific Amer-

ican, 288(2):40–7, 2003. 56

243

BIBLIOGRAPHY

J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.

Genetic programming IV: Routine human-competitive machine intelligence.

Springer-Verlag New York Inc, 2005. 52, 56

R. Lazarus. Emotion and Adaptation. Oxford University Press, 1991. 19

Nicole Lazzaro. Why We Play Games: Four Keys to More Emotion Without

Story. In Game Developers Conference, March 2004. 21

Sangkyung Lee and Keechul Jung. Dynamic Game Level Design Using Gaussian

Mixture Model. In PRICAI 2006: Trends in Artificial Intelligence, volume

4099 of Lecture Notes in Computer Science, pages 955–959. Springer Berlin /

Heidelberg, 2006. 43

Iolanda Leite, André Pereira, Samuel Mascarenhas, Ginevra Castellano, Carlos

Martinho, Rui Prada, and Ana Paiva. Closing the loop: from affect recognition

to empathic interaction. In Proceedings of the 3rd international workshop on

Affective interaction in natural environments, AFFINE ’10, pages 43–48, New

York, NY, USA, 2010. ACM. 22

M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitányi. The similarity metric. IEEE

Transactions on Information Theory, 50(12):3250–3264, 2004. 104, 138

A. Liapis, G.N. Yannakakis, and J. Togelius. Optimizing visual properties of

game content through neuroevolution. In Artificial Intelligence for Interactive

Digital Entertainment Conference, 2011. 40

A. Liapis, G. Yannakakis, and J. Togelius. Adapting models of visual aesthet-

ics for personalized content creation. IEEE Transactions on Computational

Intelligence and AI in Games, 2012. 32, 40, 48

M.Y. Lin and S.Y. Lee. Fast discovery of sequential patterns by memory indexing.

Data Warehousing and Knowledge Discovery, pages 227–237, 2002. 67

C.L. Lisetti and F. Nasoz. Maui: a multimodal affective user interface. In Proceed-

ings of the tenth ACM international conference on Multimedia, pages 161–170.

ACM, 2002. 22

244

BIBLIOGRAPHY

D. Loiacono, L. Cardamone, and P.L. Lanzi. Automatic track generation for

high-end racing games using evolutionary computation. IEEE Conference on

Computational Intelligence and AI in Games, 3(3):245–259, 2011. 40, 42

L. Maat and M. Pantic. Gaze-x: Adaptive, affective, multimodal interface for

single-user office scenarios. Artifical Intelligence for Human Computing, pages

251–271, 2007. 22

N.R. Mabroukeh and C.I. Ezeife. A taxonomy of sequential pattern mining algo-

rithms. ACM Computing Surveys (CSUR), 43(1):3, 2010. 68

B. Magerko, C. Heeter, J. Fitzgerald, and B. Medler. Intelligent adaptation of

digital game-based learning. In Proceedings of the 2008 Conference on Future

Play: Research, Play, Share, pages 200–203. ACM, 2008. 29

T. Mahlmann, J. Togelius, and G. Yannakakis. Towards procedural strategy game

generation: Evolving complementary unit types. Applications of Evolutionary

Computation, pages 93–102, 2011. 40, 44

T. Mahlmann, J. Togelius, and G.N. Yannakakis. Evolving card sets towards

balancing dominion. In 2012 IEEE Congress on Evolutionary Computation

(CEC), pages 1–8. IEEE, 2012. 40, 44

Thomas Malone. What makes computer games fun? New York, NY, USA, 1981.

ACM. 3, 20, 29

Regan L. Mandryk and M. Stella Atkins. A fuzzy physiological approach for

continuously modeling emotion during interaction with play technologies. In-

ternational Journal of Human-Computer Studies, 65(4):329–347, April 2007.

ISSN 1071-5819. 27

R.L. Mandryk, K.M. Inkpen, and T.W. Calvert. Using psychophysiological tech-

niques to measure user experience with entertainment technologies. Behaviour

& Information Technology, 25(2):141–158, 2006. 27

H. Mannila and H. Toivonen. Discovering generalized episodes using minimal

occurrences. In Proceedings of the 2nd International Conference on Knowledge

Discovery in Databases and Data Mining, pages 146–151, 1996. 65

245

BIBLIOGRAPHY

A. Martin, A. Lim, S. Colton, and C. Browne. Evolving 3d buildings for the

prototype video game subversion. Applications of Evolutionary Computation,

pages 111–120, 2010. 41

H.P. Mart́ınez and G.N. Yannakakis. Genetic search feature selection for affective

modeling: a case study on reported preferences. In Proceedings of the 3rd

international workshop on Affective interaction in natural environments, pages

15–20. ACM, 2010. 27, 224

H.P. Martinez and G.N. Yannakakis. Mining multimodal sequential patterns: A

case study on affect detection. In Proceedings of the 13th International Confer-

ence in Multimodal Interaction, ICMI 2011, Alicante. ACM Press, November

2011. 27, 69, 139

H.P. Martinez, A. Jhala, and G.N. Yannakakis. Analyzing the impact of camera

viewpoint on player psychophysiology. In International Conference on Affective

Computing and Intelligent Interaction and Workshops, pages 1–6. IEEE, 2009.

9, 10, 11, 28, 62, 224

H.P. Mart́ınez, K. Hullett, and G.N. Yannakakis. Extending neuro-evolutionary

preference learning through player modeling. In Computational Intelligence

and Games (CIG), 2010 IEEE Symposium on, pages 313–320. IEEE, 2010. 46

Peter A. Mawhorter and Michael Mateas. Procedural level generation using

occupancy-regulated extension. In Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG), pages 351–358, 2010. 78

Maxis, 2008. Spore, Electronic Arts. 34

D. McDuff, R. el Kaliouby, and R. Picard. Crowdsourced data collection of facial

responses. In Proceedings of the 13th international conference on multimodal

interfaces, pages 11–18. ACM, 2011. 25

D. McDuff, R. el Kaliouby, and R. Picard. Crowdsourcing facial responses to

online videos. In IEEE Transactions on Affective Computing, 2012. 25

246

BIBLIOGRAPHY

S. McGlinchey. Learning of ai players from game observation data. In Proceed-

ings of the 4th International Conference on Intelligent Games and Simulation

(GAME-ON 2003), pages 106–110, 2003. 46

S.W. Mcquiggan, B.W. Mott, and J.C. Lester. Modeling self-efficacy in intelligent

tutoring systems: An inductive approach. User Modeling and User-Adapted

Interaction, 18(1):81–123, 2008. 27

A. Melzer, I. Derks, J. Heydekorn, and G. Steffgen. Click or strike: realistic versus

standard game controls in violent video games and their effects on aggression.

Entertainment Computing-ICEC 2010, pages 171–182, 2010. 24

Microsoft Game Studios, 2005. Forza Motorsport, Microsoft. 36

D. Milam and M. Seif El-Nasr. Analysis of level design ’push & pull’ within 21

games. In Proceedings of the Fifth International Conference on the Foundations

of Digital Games, pages 139–146. ACM, 2010. 30

Minecraft Wiki. Minecraft wiki. URL http://www.minecraftwiki.net/. 37

Mojang, 2011. Minecraft, Mojang and Microsoft Studios. 35, 37

D.J. Montana and L. Davis. Training feedforward neural networks using genetic

algorithms. In Proceedings of the eleventh international joint conference on

artificial Intelligence, volume 1, pages 762–767. San Mateo, CA, 1989. 64

Philippe Morel, Hatem Hamda, and Marc Schoenauer. Computational chair de-

sign using genetic algorithms. Concept, 71(3):95–99, 2005. 87

D. Moura, M. Seif El-Nasr, and C.D. Shaw. Visualizing and understanding play-

ers’ behavior in video games: discovering patterns and supporting aggregation

and comparison. In Proceedings of the 2011 ACM SIGGRAPH Symposium on

Video Games, page 2. ACM, 2011. 30

P. Mueller, S. Haegler, A. Ulmer, S. Schubiger, M. Specht, S Mller, and B. Weber,

2011. CityEngine, Esri R&D Center Zurich. 35

247

http://www.minecraftwiki.net/

BIBLIOGRAPHY

L.E. Nacke and C.A. Lindley. Affective ludology, flow and immersion in

a first-person shooter: Measurement of player experience. arXiv preprint

arXiv:1004.0248, 2010. 27

Lennart Nacke, Sophie Stellmach, Dennis Sasse, Jörg Niesenhaus, and Raimund

Dachselt. Laif: A logging and interaction framework for gaze-based interfaces in

virtual entertainment environments. In Electronic Proceedings of the Interactive

Cultures Conference 2010, pages 19–28. Oldenburg Publishing, 9 2010. 24

Namco, 1980. Pac-Man, Namco and Midway. 72

Namco, 2001. Klonoa 2: Lunatea’s Veil , Namco and SCEE. 73

F. Nasoz, C.L. Lisetti, K. Alvarez, and N. Finkelstein. Emotion recognition

from physiological signals for user modeling of affect. In Proceedings of the

3rd Workshop on Affective and Attitude User Modelling (Pittsburgh, PA, USA,

2003. xiii, 28

NaturalMotion, 2007. Euphoria, NaturalMotion. 35

Naughty Dog, 2001. Jak and Daxter: The Precursor Legacy, Sony Computer

Entertainment. 74

V. Nicollet. Difficulty in dexterity-based platform games. [Online]. Available:

http://www.gamedev.net/reference/design/features/platformdiff, March 2004.

166

Nintendo Creative Department, 1985. Super Mario Bros, Nintendo. 37, 46, 72,

74

Nintendo EAD, 1995. Super Mario World 2: Yoshi’s Island , Nintendo. 73

Nintendo EAD, 1996. Super Mario 64, Nintendo. 73

Nintendo EAD, 2007. Super Mario Galaxy, Nintendo. 74

Nintendo EAD, Rare, Namco, Paon, and Retro Studios. Donkey kong, 1981.

Nintendo. 71

248

BIBLIOGRAPHY

Tim Oates, Matthew D. Schmill, David Jensen, and Paul R. Cohen. A family of

algorithms for finding temporal structure in data. In In 6th Intl. Workshop on

AI and Statistics, pages 371–378, 1997. 65

J.K. Olesen, G.N. Yannakakis, and J. Hallam. Real-time challenge balance in

an rts game using rtneat. In Computational Intelligence and Games, CIG’08.,

pages 87–94. IEEE, 2008. 45

M. O’Neill and A. Brabazon. Recent patents on genetic programming. Economics,

32(1):251–166, 2001. 56

M. O’Neill and A. Brabazon. Evolving a logo design using lindenmayer systems,

postscript & grammatical evolution. In IEEE Congress on Evolutionary Com-

putation, pages 3788–3794. IEEE, 2008. 57

M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolu-

tionary Computation, 5(4):349–358, 2001. 41, 56

M. O’Neill, R. Cleary, and N. Nikolov. Solving knapsack problems with at-

tribute grammars. In Proceedings of the Third Grammatical Evolution Work-

shop (GEWS04). Citeseer, 2004. 113, 225

M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, and A. Brabazon.

Geva: grammatical evolution in java. ACM SIGEVOlution, 3(2):17–22, 2008.

96

M. O’Neill, J.M. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shotton,

C. McNally, and M. Hemberg. Shape grammars and grammatical evolution for

evolutionary design. In Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, pages 1035–1042. ACM, 2009. 57

M. O’Neill, J. McDermott, J.M. Swafford, J. Byrne, E. Hemberg, A. Brabazon,

E. Shotton, C. McNally, and M. Hemberg. Evolutionary design using grammat-

ical evolution and shape grammars: Designing a shelter. International Journal

of Design Engineering, 3(1):4–24, 2010. 56, 86

J. Ortega, N. Shaker, J. Togelius, and G.N. Yannakakis. Imitating human playing

styles in super mario bros. Entertainment Computing, 2012. 46, 78, 227

249

BIBLIOGRAPHY

A. Ortony, G.L. Clore, and A. Collins. The cognitive structure of emotions.

Cambridge university press, 1990. 19

M. Pantic and L.J.M. Rothkrantz. Toward an affect-sensitive multimodal human-

computer interaction. Proceedings of the IEEE, 91(9):1370–1390, 2003. 22

PCG Wiki. Procedural content generation wiki. URL http://pcg.wikidot.

com/. 34

Chris Pedersen, Julian Togelius, and Georgios N. Yannakakis. Modeling player

experience in super mario bros. In CIG’09: Proceedings of the 5th international

conference on Computational Intelligence and Games, pages 132–139, 2009. 29,

62, 63, 151, 224

Chris Pedersen, Julian Togelius, and Georgios N. Yannakakis. Modeling player

experience for content creation. IEEE Transactions on Computational Intelli-

gence and AI in Games, 2(1):54–67, 2010. 9, 10, 11, 12, 29, 32, 40, 45, 48, 62,

78, 125, 126

Diego Perez, Miguel Nicolau, Michael O’Neill, and Anthony Brabazon. Evolving

behaviour trees for the mario ai competition using grammatical evolution. In

Applications of Evolutionary Computation, volume 6624 of Lecture Notes in

Computer Science, pages 123–132. Springer Berlin / Heidelberg, 2011. 78

M. Persson. Infinite mario bros. URL http://www.mojang.com/notch/mario/.

37, 41

R.W. Picard. Affective computing. Perceptual Computing Section, Media Labo-

ratory, Massachusetts Institute of Technology, 1995. 21, 22

R.W. Picard, E. Vyzas, and J. Healey. Toward machine emotional intelligence:

Analysis of affective physiological state. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 23(10):1175–1191, 2001. 23

D. Plans and D. Morelli. Experience-driven procedural music generation for

games. IEEE Transactions on Computational Intelligence and AI in Games,

2012. 31

250

http://pcg.wikidot.com/
http://pcg.wikidot.com/
http://www.mojang.com/notch/mario/

BIBLIOGRAPHY

K.H. Pribram and F.T. Melges. Psychophysiological basis of emotion. Handbook

of clinical neurology, 3:316–341, 1969. 18

P. Rani, N. Sarkar, and C. Liu. Maintaining optimal challenge in computer games

through real-time physiological feedback. In Proceedings of the 1st International

Conference on Augmented Cognition, Las Vegas, NV, 2005. 27

A.S. Rao, M.P. Georgeff, et al. Bdi agents: From theory to practice. In Proceed-

ings of the first international conference on multi-agent systems (ICMAS-95),

pages 312–319. San Francisco, 1995. 20

JC Read and SJ MacFarlane. Measuring fun. Computers and Fun, 3, 2000. 21

JC Read, SJ MacFarlane, and C. Casey. Endurability, engagement and expecta-

tions: Measuring children’s fun. In Interaction Design and Children, volume 2,

pages 1–23. Shaker Publishing Eindhoven, 2002. 130, 181

Realtime Associates, 1995. Bug!, Sega. 73

I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 1973. 52

W.S. Reilly. Believable social and emotional agents. Technical report, DTIC

Document, 1996. 19

S. Risi, J. Lehman, D.B. DAmbrosio, R. Hall, and K.O. Stanley. Combining

search-based procedural content generation and social gaming in the petalz

video game. In Proceedings of the AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AIIDE). AAAI Press, 2012. 32

S.A. Roberts and S.M. Lucas. Evolving spaceship designs for optimal control and

the emergence of interesting behaviour. 40

Rockstar London and Rockstar Leeds and Rockstar Toronto, 2007. Manhunt,

Rockstar Games. 24

F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958. 59

251

BIBLIOGRAPHY

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed pro-

cessing: explorations in the microstructure of cognition, vol. 1. MIT Press,

Cambridge, MA, USA, 1986. 60

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representa-

tions by error propagation. Technical report, 1985. 58

J.A. Russell. A circumplex model of affect. Journal of personality and social

psychology, 39(6):1161, 1980. 19

J.A. Russell and A. Mehrabian. Evidence for a three-factor theory of emotions.

Journal of research in Personality, 11(3):273–294, 1977. 19

T. Saari, M. Turpeinen, K. Kuikkaniemi, I. Kosunen, and N. Ravaja. Emotion-

ally adapted games–an example of a first person shooter. Human-Computer

Interaction. Interacting in Various Application Domains, pages 406–415, 2009.

48

Jyotirmay Sanghvi, Ginevra Castellano, Iolanda Leite, André Pereira, Peter W.

McOwan, and Ana Paiva. Automatic analysis of affective postures and body

motion to detect engagement with a game companion. In Proceedings of the 6th

international conference on Human-robot interaction, HRI ’11, pages 305–312,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0561-7. 22

N. Savva, A. Scarinzi, and N. Berthouze. Continuous recognition of player’s

affective body expression as dynamic quality of aesthetic experience. IEEE

Transactions on Computational Intelligence and AI in Games, 2012. 31

S. Schachter. The interaction of cognitive and physiological determinants of emo-

tional state. Advances in experimental social psychology, 1:49–80, 1964. 23

Jocelyn Scheirer, Raul Fernandez, Jonathan Klein, and Rosalind W. Picard. Frus-

trating the user on purpose: a step toward building an affective computer.

Interacting with Computers, 14(2):93–118, 2001. 23

K. R. Scherer. On the nature and function of emotion: A component process

approach. In K. R. Scherer and P. Ekman, editors, Approaches to emotion,

pages 293–317, Hillsdale, 1984. NJ: Erlbaum, NJ: Erlbaum. 18, 23

252

BIBLIOGRAPHY

K. R. Scherer. Emotion, the psychological structure of emotions. In N. J. Smelser

and P. B. Baltes, editors, International encyclopedia of the social & behavioral

sciences, pages 4472–4477, Oxford, 2002. Harvard Libraries, Harvard Libraries.

18, 23

K.R. Scherer. What are emotions? and how can they be measured? Social

science information, 44(4):695–729, 2005. 18, 23, 25, 26

K.R. Scherer and H. Ellgring. Are facial expressions of emotion produced by

categorical affect programs or dynamically driven by appraisal? Emotion, 7

(1):113, 2007. 19

N. Sebe, I. Cohen, and T.S. Huang. Multimodal emotion recognition. Handbook

of Pattern Recognition and Computer Vision, 4:387–419, 2005. 22

Magy Seif El-Nasr and Su Yan. Visual attention in 3d video games. In Advances

in Computer Entertainment Technology, page 22, 2006. 24

N. Shaker. Infinite mario bros demos, 2011. URL http://noorshaker.com/

Demos.html. 228

N. Shaker, G.N. Yannakakis, J. Togelius, M. Nicolau, and M. ONeill. Evolving

personalized content for super mario bros using grammatical evolution. In

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment (AIIDE). AAAI Press. 41

N. Shaker, M. Nicolau, G. Yannakakis, J. Togelius, and M. ONeill. Evolving

levels for super mario bros using grammatical evolution. IEEE Conference on

Computational Intelligence and Games (CIG), pages 304–311, 2012. 41, 57

Noor Shaker, Julian Togelius, and Georgios N. Yannakakis. Towards automatic

personalized content generation for platform games. In Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment (AIIDE). AAAI Press, 2010. 37, 40, 41, 78

Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Ben Weber, Tomoyuki

Shimizu, Tomonori Hashiyama, Nathan Sorenson, Philippe Pasquier, Peter

253

http://noorshaker.com/Demos.html
http://noorshaker.com/Demos.html

BIBLIOGRAPHY

Mawhorter, Glen Takahashi, Gillian Smith, and Robin Baumgarten. The 2010

Mario AI championship: Level generation track. IEEE Transactions on Com-

putational Intelligence and Games, 3:332–347, 2011. 78

Shiny Entertainment and Playmates Interactive Entertainment, 1994. Earthworm

Jim , Sega of America and Virgin Interactive and Takara. 73

R. Smelik, T. Tutenel, K.J. de Kraker, and R. Bidarra. Integrating procedural

generation and manual editing of virtual worlds. In Proceedings of the 2010

Workshop on Procedural Content Generation in Games, page 2. ACM, 2010.

39

R.M. Smelik, K.J. De Kraker, T. Tutenel, R. Bidarra, and S.A. Groenewegen. A

survey of procedural methods for terrain modelling. In Proceedings of the CASA

Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS).

Citeseer, 2009. 34

A. M. Smith and Michael Mateas. Variations Forever: Flexibly Generating Rule-

sets from a Sculptable Design Space of Mini-Games. IEEE Transactions on

Computational Intelligence and AI in Games, 2010. 40

A.M. Smith, C. Lewis, K. Hullett, G. Smith, and A. Sullivan. An inclusive

taxonomy of player modeling. University of California, Santa Cruz, Tech.

Rep. UCSC-SOE-11-13, 2011. 44

C. Smith and H. Scott. A componential approach to the meaning of facial ex-

pressions. The psychology of facial expression, 229, 1997. 19

G. Smith and J. Whitehead. Analyzing the expressive range of a level generator.

In Proceedings of the 2010 Workshop on Procedural Content Generation in

Games, page 4. ACM, 2010. 95, 98, 99, 102

G. Smith, J. Whitehead, and M. Mateas. Tanagra: A mixed-initiative level design

tool. In Proceedings of the Fifth International Conference on the Foundations

of Digital Games, pages 209–216. ACM, 2010. 11, 30, 39, 229

254

BIBLIOGRAPHY

Gillian Smith, Mee Cha, and Jim Whitehead. A framework for analysis of 2d

platformer levels. In Sandbox ’08: Proceedings of the 2008 ACM SIGGRAPH

symposium on Video games, pages 75–80, New York, NY, USA, 2008. ACM.

30

G.M. Smith. Expressive Design Tools: Procedural Content Generation for Game

Designers. PhD thesis, University of California, 2012. 95

J. David Smith and T. C. Nicholas Graham. Use of eye movements for video game

control. In Proceedings of the 2006 ACM SIGCHI international conference

on Advances in computer entertainment technology, ACE ’06, New York, NY,

USA, 2006. ACM. 24

R.L. Solomon. The opponent-process theory of acquired motivation: the costs of

pleasure and the benefits of pain. American Psychologist, 35(8):691, 1980. 18

Sonic Team and Dimps, 2011. Sonic Generations, Sega. 74

Sonic Team and Sega Technical Institute, 1994. Sonic 3 & Knuckles , Sega. 73

N. Sorenson, P. Pasquier, and S. DiPaola. A generic approach to challenge mod-

eling for the procedural creation of video game levels. IEEE Transactions on

Computational Intelligence and AI in Games, 3(3):229–244, 2011. 40, 41, 78

Nathan Sorenson and Philippe Pasquier. Towards a generic framework for auto-

mated video game level creation. In Proceedings of the European Conference

on Applications of Evolutionary Computation (EvoApplications), volume 6024,

pages 130–139. Springer LNCS, 2010. 44, 78

P. Spronck, Sprinkhuizen I. Kuyper, and E. Postma. Difficulty scaling of game

AI. In Proceedings of the 5th International Conference on Intelligent Games

and Simulation (GAME-ON 2004), pages 33–37, 2004. 43

P. Spronck, I. Balemans, and G. van Lankveld. Player profiling with fallout 3. In

Eighth Artificial Intelligence and Interactive Digital Entertainment Conference,

2012. 226

255

BIBLIOGRAPHY

Pieter Spronck, Marc Ponsen, and Eric Postma. Adaptive game ai with dynamic

scripting. In Machine Learning, pages 217–248. Kluwer, 2006. 43

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. Advances in Database Technology, pages 1–17,

1996. 65, 67, 68, 105, 139

K.O. Stanley and R. Miikkulainen. Efficient evolution of neural network topolo-

gies. In Proceedings of the 2002 Congress on Evolutionary Computation,

CEC’02., volume 2, pages 1757–1762. IEEE, 2002. 61, 224

K.O. Stanley, B.D. Bryant, and R. Miikkulainen. Real-time neuroevolution in

the nero video game. IEEE Transactions on Evolutionary Computation, 9(6):

653–668, 2005. 36

P. Sundström. Exploring the affective loop. PhD thesis, Stockholm University,

2005. 2, 18, 22

M. Suwa, N. Sugie, and K. Fujimora. A preliminary note on pattern recognition of

human emotional expression. Proceedings of the International Joint Conference

on Pattern Recognition, pages 408–410, 1978. 22

P. Sweetser and P. Wyeth. Gameflow: a model for evaluating player enjoyment

in games. Computers in Entertainment (CIE), 3(3):3–3, 2005. 20

Jonathan Sykes. Affective gaming: measuring emotion through the gamepad. In

CHI 2003: New Horizons, pages 732–733. ACM Press, 2003. 25

H. Takagi. Interactive evolutionary computation: Fusion of the capabilities of ec

optimization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296,

2001. 56

Y. Takatsuki. Cost headache for game developers, 2007.

news.bbc.co.uk/2/hi/business/7151961.stm. 33

J. Tao and T. Tan. Affective computing: A review. Affective Computing and

Intelligent Interaction, pages 981–995, 2005. 22, 27

256

BIBLIOGRAPHY

The Entertainment Software Association, 2012. URL http://www.theesa.com/.

1, 2

C. Thurau, C. Bauckhage, and G. Sagerer. Learning human-like movement be-

havior for computer games. In Proceedings of International Conference on the

Simulation of Adaptive Behavior, pages 315–323, 2004. 46

C. Thurau, T. Paczian, and C. Bauckhage. Is bayesian imitation learning the

route to believable gamebots. Proc. GAME-ON North America, pages 3–9,

2005. 46

Tim J. W. Tijs, Dirk Brokken, and Wijnand IJsselsteijn. Creating an emotionally

adaptive game. In Entertainment Computing, pages 122–133, 2008. 27, 48

J. Togelius and J. Schmidhuber. An experiment in automatic game design. In

IEEE Symposium On Computational Intelligence and Games. CIG’08, pages

111–118. IEEE, 2008. 41, 44

J. Togelius, R. D. Nardi, and S. M. Lucas. Making racing fun through player mod-

eling and track evolution. In Proceedings of the SAB’06 Workshop on Adap-

tive Approaches for Optimizing Player Satisfaction in Computer and Physical

Games, 2006. 30, 40, 44, 45

J. Togelius, R. De Nardi, and S.M. Lucas. Towards automatic personalised con-

tent creation for racing games. In IEEE Symposium on Computational In-

telligence and Games, 2007. CIG 2007, pages 252–259. IEEE, 2007. 42, 48,

49

J. Togelius, S. Karakovskiy, and R. Baumgarten. The 2009 mario ai competition.

In IEEE Congress on Evolutionary Computation (CEC), pages 1–8. IEEE,

2010a. 196

J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G.N. Yan-

nakakis. Multiobjective exploration of the starcraft map space. In Proceed-

ings of the IEEE Conference on Computational Intelligence and Games (CIG),

pages 265–272. Citeseer, 2010b. 40, 42

257

http://www.theesa.com/

BIBLIOGRAPHY

J. Togelius, M. Preuss, and G.N. Yannakakis. Towards multiobjective procedural

map generation. In Proceedings of the 2010 Workshop on Procedural Content

Generation in Games, page 3. ACM, 2010c. 44

Julian Togelius, Sergey Karakovskiy, Jan Koutńık, and Jürgen Schmidhuber. Su-

per mario evolution. In Proceedings of the 5th international conference on

Computational Intelligence and Games, CIG’09, pages 156–161, Piscataway,

NJ, USA, 2009. IEEE Press. 77

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron

Browne. Search-based procedural content generation. In Proceedings of EvoAp-

plications, volume 6024. Springer LNCS, 2010d. 12, 40

S. Tognetti, M. Garbarino, A. Bonarini, and M. Matteucci. Modeling enjoyment

preference from physiological responses in a car racing game. In IEEE Sympo-

sium on Computational Intelligence and Games (CIG), pages 321–328. IEEE,

2010. 28, 29

Traveller’s Tales and Robosoft Technologies , 2006. Lego Star Wars II: The

Original Trilogy, LucasArts, TT Games, Feral Interactive. 48

IG Tsoulos and IE Lagaris. Solving differential equations with genetic program-

ming. Genetic Programming and Evolvable Machines, 7(1):33–54, 2006. 57

Ubisoft, Ubisoft Montpellier, and Digital Eclipse, 1995. Rayman , Ubisoft. 73

Ubisoft Montpellier, Ubisoft, DC Studios, and Gameloft, 1999. Rayman 2: The

Great Escape, Ubisoft and Gameloft. 74

Universal, 1980. Space Panic, Universal. 71

Valve Corporation, 2008. Left 4 Dead, Valve Corporation. 36, 38

Albert J. N. van Breemen, Xue Yan, and Bernt Meerbeek. icat: an animated

user-interface robot with personality. In Proceedings of the fourth international

joint conference on Autonomous agents and multiagent systems, pages 143–144,

2005. 22

258

BIBLIOGRAPHY

WM Van den Hoogen, WA IJsselsteijn, and YAW de Kort. Exploring behavioral

expressions of player experience in digital games. In Proceedings of the Work-

shop on Facial and Bodily Expression for Control and Adaptation of Games

ECAG, pages 11–19, 2008. 24

G. van Lankveld, P. Spronck, and M. Rauterberg. Difficulty scaling through

incongruity. In Proceedings of the Fourth Artificial Intelligence and Interactive

Digital Entertainment Conference, Stanford, California, USA, 2008. 45

G. van Lankveld, P. Spronck, J. van den Herik, and A. Arntz. Games as person-

ality profiling tools. In IEEE Conference on Computational Intelligence and

Games (CIG), pages 197–202. IEEE, 2011. 226

Ning Wang and Stacy Marsella. Introducing evg: An emotion evoking game. In

Intelligent Virtual Agents, volume 4133 of Lecture Notes in Computer Science,

pages 282–291, 2006. 23

D. Watson, L.A. Clark, and A. Tellegen. Development and validation of brief

measures of positive and negative affect: the panas scales. Journal of person-

ality and social psychology, 54(6):1063, 1988. 19

B.G. Weber and M. Mateas. A data mining approach to strategy prediction.

In IEEE Symposium on Computational Intelligence and Games, 2009., pages

140–147. IEEE, 2009. 46

A.W. Whitney. A direct method of nonparametric measurement selection. IEEE

Transactions on Computers, 100(9):1100–1103, 1971. 62

C.E. Williams and K.N. Stevens. Emotions and speech: Some acoustical cor-

relates. The Journal of the Acoustical Society of America, 52(4B):1238–1250,

1972. 22

C. Wong, J. Kim, E. Han, and K. Jung. Human-centered modeling for style-

based adaptive games. Journal of Zhejiang University-Science A, 10(4):530–

534, 2009. 46

M. Wooldridge. Reasoning about rational agents. MIT press, 2000. 20

259

BIBLIOGRAPHY

G. Yannakakis and J. Hallam. Entertainment modeling in physical play through

physiology beyond heart-rate. Affective Computing and Intelligent Interaction,

pages 254–265, 2007. 9, 10, 11, 125

G. Yannakakis and J. Hallam. Ranking vs. preference: a comparative study of

self-reporting. Affective Computing and Intelligent Interaction, pages 437–446,

2011a. 126

G. N. Yannakakis and J. Hallam. Real-time Game Adaptation for Optimizing

Player Satisfaction. IEEE Transactions on Computational Intelligence and AI

in Games, 1(2):121–133, June 2009. 29

G. N. Yannakakis and J. Togelius. Experience-Driven Procedural Content Gen-

eration. IEEE Transactions on Affective Computing, 2011. xiii, 2, 6, 7, 12, 19,

26, 38, 42, 43, 45, 47, 48, 123, 126, 226

Georgios Yannakakis and John Hallam. A generic approach for generating in-

teresting interactive pac-man opponents. In In Proceedings of the IEEE Sym-

posium on Computational Intelligence and Games, pages 94–101, 2005. 30,

43

Georgios Yannakakis and John Hallam. Towards Capturing and Enhancing En-

tertainment in Computer Games. In Advances in Artificial Intelligence, volume

3955 of Lecture Notes in Computer Science, pages 432–442. Springer Berlin /

Heidelberg, 2006. 28, 29, 45, 50

Georgios N. Yannakakis and John Hallam. Interactive opponents generate in-

teresting games. In Proceedings of the International Conference on Computer

Games: Artificial Intelligence, Design and Education, pages 240–247, 2004a.

44

Georgios N. Yannakakis and John Hallam. Evolving opponents for interesting in-

teractive computer games. pages 499–508. Proceedings of the 8th International

Conference on Simulation of Adaptive Behavior (SAB-04). The MIT Press,

2004b. 43

260

BIBLIOGRAPHY

Georgios N. Yannakakis, Manolis Maragoudakis, and John Hallam. Preference

learning for cognitive modeling: a case study on entertainment preferences.

IEEE Transactions on Systems, Man, and Cybernetics. Part A, 39:1165–1175,

November 2009. ISSN 1083-4427. 62, 63, 117, 119, 122

G.N. Yannakakis. Game adaptivity impact on affective physical interaction. In 3rd

International Conference on Affective Computing and Intelligent Interaction

and Workshops, pages 1–6. IEEE, 2009a. 12

G.N. Yannakakis. Learning from preferences and selected multimodal features

of players. In Proceedings of the 2009 international conference on Multimodal

interfaces, pages 115–118. ACM, 2009b. 224

G.N. Yannakakis. Preference learning for affective modeling. In International

Conference on Affective Computing and Intelligent Interaction and Workshops,

pages 1–6. IEEE, 2009c. 224

G.N. Yannakakis. Game ai revisited. In Proceedings of the 9th conference on

Computing Frontiers, pages 285–292. ACM, 2012. 2, 223

G.N. Yannakakis and J. Hallam. Erratum: Ranking vs. preference: a comparative

study of self-reporting. In Proceedings of the 4th international conference on

Affective computing and intelligent interaction-Volume Part I, pages 619–619.

Springer-Verlag, 2011b. 26

G.N. Yannakakis, H.H. Lund, and J. Hallam. Modeling children’s entertainment

in the playware playground. In IEEE Symposium on Computational Intelligence

and Games, pages 134–141. IEEE, 2006. 28, 64

G.N. Yannakakis, J. Hallam, and H.H. Lund. Entertainment capture through

heart rate activity in physical interactive playgrounds. User Modeling and

User-Adapted Interaction, 18(1):207–243, 2008. 63, 117, 130, 181

G.N. Yannakakis, H.P. Mart́ınez, and A. Jhala. Towards affective camera control

in games. User Modeling and User-Adapted Interaction, 20(4):313–340, 2010.

27, 48

261

BIBLIOGRAPHY

X. Yao. Evolutionary artificial neural networks. International Journal of Neural

Systems, 4(03):203–222, 1993. 61

D. Yu and A. Hull, 2009. Spelunky, Independent. 35, 39

H. Yu and T. Trawick. Personalized procedural content generation to minimize

frustration and boredom based on ranking algorithm. In Seventh Artificial

Intelligence and Interactive Digital Entertainment Conference, 2011. 12

Mohammed J.. Zaki. Spade: An efficient algorithm for mining frequent sequences.

Machine Learning, 42(1):31–60, 2001. 65, 67

Z. Zeng, M. Pantic, G.I. Roisman, and T.S. Huang. A survey of affect recognition

methods: Audio, visual, and spontaneous expressions. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(1):39–58, 2009. 19, 22

Q. Zhao and S.S. Bhowmick. Sequential pattern mining: A survey. ITechnical

Report CAIS Nayang Technological University Singapore, pages 1–26, 2003. 67

262

	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Problem Formulation
	1.3 Questions and Objectives
	1.4 Challenges
	1.4.1 Player Experience Modeling
	1.4.2 Online Content Generation

	1.5 Our Approach
	1.5.1 Player Experience Modeling
	1.5.2 Content Quality
	1.5.3 Content Representation
	1.5.4 Content Generator

	1.6 Summary of Contributions
	1.7 List of Papers
	1.8 Outline of This Dissertation
	1.9 Summary

	2 Related Work
	2.1 Theories of Emotion
	2.2 Computational Models of Emotion
	2.2.1 Emotions in Games

	2.3 Affective Computing and the Affective Loop
	2.4 Affect Recognition
	2.4.1 Affect Recognition in Games
	2.4.1.1 Objective Measures of Affects
	2.4.1.2 Subjective Measures of Affect
	2.4.1.3 Fusing Modalities for Affect Recognition

	2.5 Computational Aesthetics
	2.5.1 Theories of Computation Aesthetics
	2.5.2 Patterns in Game Design
	2.5.3 Categories of Computational Aesthetics
	2.5.3.1 Aesthetics as Player Experience
	2.5.3.2 Aesthetics as Player Emotion
	2.5.3.3 Aesthetics as Style

	2.6 Procedural Content Generation
	2.7 Procedural Content Generation in Games
	2.7.1 Motivation
	2.7.2 Examples in Commercial Games
	2.7.3 PCG Middleware
	2.7.4 Types of PCG
	2.7.5 Search-based Procedural Content Generation
	2.7.5.1 Content Representation and Quality

	2.7.6 Experience-Driven Procedural Content Generation
	2.7.6.1 Player Experience Modeling
	2.7.6.2 Personalized Content Generation
	2.7.6.3 Assessing the Quality of the Personalized Content

	2.8 Summary

	3 Tools
	3.1 General AI Techniques
	3.1.1 Evolutionary Computation
	3.1.1.1 Genetic Algorithms
	3.1.1.2 Genetic Programming
	3.1.1.3 Grammatical Evolution

	3.1.2 Artificial Neural Networks
	3.1.2.1 Single-layer Perceptron
	3.1.2.2 Multi-layer Perceptron

	3.1.3 Evolving Artificial Neural Networks
	3.1.4 Preference Learning
	3.1.5 Feature Selection
	3.1.6 Neuroevolutionary Preference Learning

	3.2 Sequence Mining
	3.2.1 Definitions
	3.2.2 Apriori Algorithm
	3.2.3 Sequential Pattern Discovery: SPADE
	3.2.4 Generalized Sequential Patterns

	3.3 Summary

	4 The Testbed Game
	4.1 Platform Games
	4.2 Super Mario Bros
	4.3 Infinite Mario Bros

	5 Content Generators
	5.1 Level Representation
	5.2 Notch Level Generator
	5.3 Parameterized Level Generator
	5.3.1 Content Features
	5.3.1.1 Basic Parameterized Generator
	5.3.1.2 Advanced Parameterized Generator

	5.4 Grammatical Evolutionary Generator
	5.4.1 Design Grammar
	5.4.2 Conflict Resolution

	5.5 Summary

	6 Expressivity Analysis
	6.1 Expressivity Analysis
	6.2 Experimental Setup
	6.3 Expressivity Measures
	6.3.1 Frequency Analysis
	6.3.2 Linearity
	6.3.3 Density
	6.3.4 Leniency
	6.3.5 Compression Distance
	6.3.6 Sequential Patterns
	6.3.7 Histogram comparison

	6.4 Summary

	7 Modeling Player Experience
	7.1 Neuroevolutionary Preference Learning
	7.2 Feature Extraction
	7.3 Feature Selection
	7.4 Model Optimization
	7.5 Summary

	8 Data Collection and Feature Extraction
	8.1 Experimental Protocol
	8.2 Content Data
	8.3 Gameplay Data
	8.4 Player Experience
	8.5 Head Movement Features
	8.6 Datasets
	8.6.1 Dataset 1: Basic Parameterized Generator
	8.6.1.1 Content Features
	8.6.1.2 Gameplay Features
	8.6.1.3 Player experience

	8.6.2 Dataset 2: Advanced Parameterized Generator
	8.6.2.1 Direct Features
	8.6.2.2 Sequential Patterns
	8.6.2.3 Mining Sequencial Features

	8.6.3 Dataset 3: Behavioral and Visual Cues
	8.6.3.1 Head Movement Features

	8.7 Summary

	9 Player Experience Modeling: Experiments
	9.1 Correlation Analysis
	9.1.1 Dataset 2: Advanced Parameterized Generator

	9.2 Nonlinear Relationships
	9.2.1 Dataset 1: Basic Parameterized Generator
	9.2.2 Dataset 2: Advanced Parametrized Generator
	9.2.2.1 Engagement
	9.2.2.2 Frustration
	9.2.2.3 Challenge

	9.2.3 Dataset 3: Behavioral and Visual Cues
	9.2.3.1 Player Experience Modeling through Gameplay and Content Features
	9.2.3.2 Player Experience Modeling through Mean Head Movement Features
	9.2.3.3 Player Experience Modeling through Visual Reaction Features

	9.2.4 Fusing Features for Modeling Player Experience
	9.2.4.1 Modeling through Gameplay/Content and Mean Head Movement Features
	9.2.4.2 Modeling through Gameplay/Content and Visual Reaction Features

	9.2.5 Significance Analysis
	9.2.5.1 Adjusting the Models for Control

	9.3 Comparison
	9.3.1 Scalability
	9.3.2 Modeling Accuracy

	9.4 Summary

	10 Game Adaptation
	10.1 Feature Analysis and Adaptation Frequency
	10.1.1 Level Segmentation
	10.1.2 MLPs Performance on Partial Information
	10.1.2.1 Analysis

	10.2 Adapting Game Content
	10.2.1 Exhaustive Search
	10.2.2 Evolving Personalized Content

	10.3 Summary

	11 Evaluation
	11.1 AI Agents
	11.2 Dataset 1: Basic Parameterized Generator
	11.2.1 Experiment 1: Optimizing Player Experience for a Fixed Playing Style
	11.2.1.1 Statistical Analysis

	11.2.2 Experiment 2: Dynamic Adaptation to Changing Playing Styles
	11.2.2.1 AI Agents
	11.2.2.2 Human Players

	11.3 Dataset 3: Behavioral and Visual Cues
	11.3.1 Optimizing Player Experience for a Fixed Playing Style

	11.4 Dataset 2: Advanced Parameterized Generator
	11.4.1 AI Agents: Optimizing Player Experience for a Fixed Playing Style
	11.4.2 Statistical Analysis
	11.4.3 Discussion

	11.5 Summary

	12 Conclusions
	12.1 Contributions
	12.2 Limitations and Opportunities
	12.2.1 Tools
	12.2.2 Methodology
	12.2.3 Adaptation Framework

	12.3 Extensibility
	12.3.1 Player Experience Modeling
	12.3.2 Adaptation Methodology

	12.4 Summary

	Bibliography

