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Abstract

Monitoring has recently taken center stage in the discussion of anthropogenic
climate change. Indeed, ecological monitoring is a means of providing the data
sets necessary to model the slow moving characteristics of the relation between
climate and ecosystems. In this context, phenology is key as it is one of the
most responsive and easily observable impact of climate on nature. Techno-
logical advances such as remote sensing satellites have allowed for phenological
measurements on a global scale that elucidate universal behavior of large ecosys-
tems. However, it is still a challenge to relate these measurements that cover
extended areas to organism level data characterized by its fine granularity. The
scaling up of ground based measurements has been embraced as a way to com-
plement remote sensing data. But the unprecedented growth of data that results
needs to be addressed.

With this in mind we present three prototypes that focus on scaling up
ground based measurements by producing data in the form of image series.
Our prototypes take care of the explosion of data by providing computer aided
methodologies that streamline the analysis of data. Our first prototype is a
python (www.python.org) library called EcoIS that is capable of producing
aligned image series from high resolution images taken from the field. The
second prototype is an R (www.r-project.org) toolkit designed to automate the
analysis of vast quantities of data in the form of image series by means of
Naive Bayesian statistical models. Finally we desribe EcoAN, which is a Mat-
lab (www.mathworks.com) graphical user interface used to create metadata of
image series in the form of labeled annotations.

Our three prototypes are all open source and are part of a pipeline that
begins in the field and ends with the consolidation of ground based data into
a representation that can be easily understood and is conducive to the design,
implementation and evaluation of environmental policy. In this dissertation
we present EcoIS as a producer of data that adds to the scale up effort by
producing spatiotemporal ecological data in the form of image series. In the
same way we introduce EcoIP and EcoAN by presenting them as applications
that transform data in the form of image series into ecological indicators fit to
describe ecosystems on the ground.
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Chapter 1

Introduction

1.1 Context

1.1.1 Monitoring

Ecosystems are changing rapidly and dramatically along with observed varia-
tions in climate (Post et al., 2009). This is visible in most regions with early
spring onset dates, lengthening of growing seasons (Badeck et al., 2004) to-
gether with changes in range boundary shifts and phenology (Parmesan and
Yohe, 2003). This is specially visible in arctic regions (Post et al., 2009) where
effects of climate fluctuations are larger than in other latitudes (Stendel et al.,
2008). Changes like earlier snow melt (Post et al., 2009) will affect arctic ver-
tebrates in different and sometimes unpredictable ways (Gilg et al., 2012) like
increase in population numbers (Tyler et al., 2008).

Quantifying the effects of climate on a given ecosystem is a complex task.
It requires extended data from multiple places (Meltofte et al., 2008b). These
quantifications are laborious because there exists a long term lag between cause
and effect in ecological responses (Magnuson, 1990). This is likely the reason
why some have described our understanding of the climate ecosystems relation
as inferior (Meltofte et al., 2008b).

Monitoring is important and relevant because it leads to an improved un-
derstanding and management of complex ecological systems (Lindenmayer and
Likens, 2009). Monitoring programs have the ability to provide information
that can be used for the implementation and evaluation of environmental policy
(Lovett et al., 2007). Indeed, our ability to understand and predict the effects
of climate change on ecosystems depends on coordinated long-term monitoring
programs (Schmidt et al., 2012b) that establish the difference between effects
inherent to ecosystems and those caused by environmental perturbations like
climate change (Meltofte et al., 2008b). It is with long term monitoring efforts
that we are able to measure anthropogenic climate change and ascertain its
effects on the ecosystem (Rosenzweig et al., 2008).

Ecological monitoring dates as far back as 1736 with the Marsham phe-
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nological records (Sparks and Carey, 1995) which was an effort spanning for
many decades focused mainly on plant behavior description. In contrast, and
to address the need for larger and denser datasets, we are beginning to see a
tendency towards the use of computer aided methodologies as the field moves
forward (Arzberger, 2004). More specifically, there are all sorts of efforts di-
rected towards the use of digital photography (Graham et al., 2010; Richardson
et al., 2007; Nagai et al., 2011; Ide and Oguma, 2010) to gather and analyze
data of phenological phenomena.

1.1.2 Phenology

Plant phenology is the study of plant life cycle events and how these are in-
fluenced by seasonal and interannual variations in climate (Betancourt et al.,
2007). It is one of the most responsive and easily observable traits in nature that
are impacted by changing climate (Badeck et al., 2004). Phenological studies
have been used in the past to asses human intervention like for fertilizer appli-
cation, in forest provenance studies and to predicting crop productivity as well
crop sustainability (Badeck et al., 2004). It relates strongly to primary pro-
ductivity and is sensitive to microclimatic variations, thus its study is vital to
understanding species responses, ecosystem functions, and the effects of climate
(Wright et al., 1999).

The interest in plant phenology and global climate change has increased sig-
nificantly in recent years, especially with estimates of the advancing initiation
of spring activity by both ground-based (Walther et al., 2002; Root et al., 2003)
and satellite observations (Slayback et al., 2003; Stöckli and Vidale, 2004). This
tendency has lead to the creation of national phenological initiatives like the
United States National Phenology Network (Betancourt et al., 2007; Schwartz
et al., 2012, USA-NPN,www.usanpn.org) devoted to observing continental-scale
trends in plant systems. As well as international initiatives like the European
Phenological Network (Vliet et al., 2003) which tackled the challenge of measur-
ing continental phenology by promoting international collaboration (Vliet et al.,
2003).

Methods to measure and analyze phenology are of great interest as they
provide the data that feed further studies. Images as a measuring data unit
are gaining traction because they capture both spatial and spectral information
in one shot. They have been used to measure different ecological indicators
(Richardson et al., 2007; Sonnentag et al., 2012; Ide and Oguma, 2010) and are
becoming a plausible alternative for fast and reliable ground measurements. In-
deed image ecological data is becoming a feasible choice in phenological contexts
given the ubiquitousness of digital photography and low cost of photographic
systems; it is posed to make phenological monitoring easier and more cost ef-
fective.
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1.1.3 Image Series

Digital photography and technology in general have had a great influence on
how ecological and agricultural monitoring is done (Arzberger, 2004). Sensors
have helped to characterize lake behavior during typhoons (Jones et al., 2008;
Arzberger, 2004), they are part of platforms capable of telemetry from the sea
bed that elucidate anthropogenic effects on underwater ecosystems (Barr, 2003;
Arzberger, 2004) and are crucial for precision agriculture applications where
they are posed to provide a steady stream of data to feed crop management
policies (Payne et al., 2013; Wallen and Philpotts, 1971; Granitto et al., 2000;
Camargo and Smith, 2009).

Digital photography is a part of the ample technological spectrum avail-
able for ecological and agricultural monitoring (Sonnentag et al., 2012; Graham
et al., 2009). It is widely used in the form of image series (Richardson et al.,
2007; Graham et al., 2006; Crimmins and Crimmins, 2008) that add a tem-
poral dimension to the before mentioned spatial and spectral one which is an
advantage over individual images. They have the potential to improve spatial
and temporal resolution of phenological data measurements while reducing the
labor required to gather data (Ide and Oguma, 2010).

Image series are sequence of images taken from the same view point at a
predefined frequency for a period of time and are visualized by chronologically
stacking individual images into series. Sampling frequencies range from seconds
(Graham et al., 2006) to days (Granados et al., 2013) and deployments vary
from short periods of less than a year (Richardson et al., 2007; Sonnentag et al.,
2012) to more extended ones that span multiple years (Ide and Oguma, 2010;
Granados et al., 2013). By configuring these types of systems to match a specific
phenomena it is possible to capture changes that occur at very slow speeds, like
the blossoming of a flower or leaf out in summer. By taking data acquired of an
extended time period and replaying it at a faster pace, it is possible to visualize
slow changes in short amounts of time. Besides visualization, image series can
be related to phenological indicators like bud burst and spring greenup (Bauer
and Cipra, 1973; Richardson et al., 2007; Ide and Oguma, 2010; Crimmins and
Crimmins, 2008) through the information contained in pixels. These reflect not
only spatial characteristics but also contain spectral information of the light
being reflected off the elements in the image.

One way of classifying the camera systems responsible for creating image
series is to separate them into three groups: satellite, areal and ground based
(Mulla, 2013). Image series created from satellite photography are very use-
ful because they give a general overview of the behavior of a large piece of
land (Bauer and Cipra, 1973; Mulla, 2013). Aircraft images also give a wider
overview, but suffer less from atmospheric interference and can be used to char-
acterize large crops (Duhaime et al., 1997). Ground based platforms refer to
hand held or tractor mounted cameras (Mulla, 2013) and are the ones that
contain more detail due to their closeness to subjects. These types of systems
reflect the trade off inherent in images taken from far with very little detail but
cover vast tracts of land and images taken from the ground which offer a lot
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more detail but cannot easily give a general overview of a site.

1.2 Problem

Satellite measurements have been very useful in the past for the broad analysis
of great extents of land (Mulla, 2013). The advent of precision hardware has
managed to narrow down the resolution of remote images to sub-meters accu-
racy (Mulla, 2013) and are able to measure variables such as crop yield and
biomass, crop nutrient and water stress, weed and insect infestation as well as
soil properties (Mulla, 2013). Work is currently being done to increase resolu-
tion and time frequency of remote satellite sensing in order to produce more
reliable measurements (Mulla, 2013).

While remote sensing has been used successfully to extract information for
various applications (Mulla, 2013; Moran et al., 1997), it needs to deal with a
series of problems associated with acquiring images from orbit like calibration
of raw digital numbers to true reflectance values. Other issues include correct-
ing for atmospheric interference, correcting off-nadir views and rectifying pixel
positions by using GPS-based ground values. Not to mention that there are
situations where the visible spectrum process fails completely as with cloudy
skies (Mulla, 2013). Of special interest is the problem related to satellite images
not being able to measure detail in phenological data contexts.

The best way to observe large-scale phenological changes is by linking re-
mote sensing (e.g. satellite imagery) with ground-based measurements (Badeck
et al., 2004). On the one hand remote sensing is captured over wide areas but
at low spatial resolution providing data in the form of image pixels that repre-
sent average reflectance values of pieces of land. On the other hand it is often
too coarse to detect species and community level responses which makes it ill
suited to decompose pixels into the individual components that make up the
average reflectance value (Badeck et al., 2004). For example, remote NDVI1

measurements done of homogeneous environments can accurately identify peri-
ods of growth and senescence but the same measurements done on heterogeneous
environments might mistake the variation of one species (e.g. understory veg-
etation) for the response of the target (e.g. deciduous forests) species (Badeck
et al., 2004).

Though the ground-based collection of phenological data provides informa-
tion at the organism level, it is not scalable nor does it give a general overview of
the mixture of species (Badeck et al., 2004) contained in heterogeneous environ-
ments. The use of new technology is being investigated to scale up (Allen et al.,
2007) and standardize ground-based measurements by using a subset of species
(Betancourt et al., 2007; Schwartz et al., 2012), and modeling local climatic
conditions (Jolly et al., 2005). This indeed is the current challenge regarding
ground and remote measurements: to exploit their great potential by scaling
up the fist one while increasing resolution of the second (Badeck et al., 2004).

1See Ellebjerg et al. (2008) for information on NDVI
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This challenge frames the problems that we address in this thesis, and that we
describe in the rest of this Section.

1.2.1 Alignment in Image Series

Alignment is a spatial property of image series and is present when all the im-
ages of a series have or seem to come from the same view point. When aligned,
inanimate objects stay in the same image coordinates throughout all the se-
ries which facilitates their identification and analysis. This attribute does not
necessarily need to exists in order to analyze consecutive unaligned images of
the same place. In some cases, where there is considerable human involvement,
”true” image alignment can be replaced by image associations based on pat-
terns and additional metadata like GPS coordinates (Blumenthal et al., 2007).
However, when image series are analyzed automatically, it is crucial that there
be some sort of alignment.

Correcting for nonalignment, camera specific inaccuracies and atmospheric
responses is common with satellite data (Mulla, 2013; Moran et al., 1997) where
problems like off-nadir2 viewing is common (Moran et al., 1997). Alignment is
also relevant in systems that acquire images closer to the ground where image
view point standardization is achieved by fixing the camera to a specific place
with the help of a structure that is permanent or needs to be carried around
(Ratliff and Westfall, 1972; Booth et al., 2004; Bennett et al., 2000). Other
approaches implement a more automated solution were a camera is left on a
fixed platform (Brown et al., 2012; Luscier et al., 2006) and produces aligned
images by default as it is left static for the duration of the deployment. However,
cameras do not need to be completely static: rotational (Granados et al., 2013)
as well as translational (Graham et al., 2009) movement can be handled by
software in order to produce completely aligned images.

Despite general use, image series alignment is still a relevant research topic
for cases where it is not possible to use fixed camera platforms in the field.
Their inherently invasive nature prevents deployments in protected areas where
anthropogenic influence is purposefully kept to a minimum (Meltofte et al.,
2008c). In these cases more subtle solutions need to replace camera platforms
that require constant maintenance and affect ecosystem surroundings. Here, we
might be able to use old techniques that require small mobile platform (Ratliff
and Westfall, 1972) or explore new methodologies that further reduce required
platform hardware.

Policy is not the only problem that prevents deployment of camera hous-
ings needed for image alignment. As research moves away from well known
infrastructure (electricity grids and communication networks) camera platforms
become difficult or otherwise prohibitively expensive to maintain. Deploying
a simple static tower camera in a remote area might be feasible with reduced
capabilities such as low resolution and lossy compression algorithms (Hinkler
et al., 2002), but doing the same with energy hungry platforms such as systems

2Nadir is a vertical vector pointing in the direction of the force of gravity
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capable of rotational and translational movement that output large amounts
of data becomes unmanageable or otherwise infeasible. This is another reason
to explore other solutions to getting aligned images without an overwhelming
camera infrastructure.

Finally, as we move towards the eventual replacement of human observers
by unmanned autonomous vehicles (Grémillet, 2012) capable of terrestrial and
areal mobility that also serve as camera platforms (Grémillet, 2012; Lucieer
et al., 2012), we need to consider ways of analyzing the stream of unaligned
images that they produce. It is clear that these free ranging unmanned platforms
will successfully use digital photography, if we are able to normalize images and
transform them into aligned series that can be mined for temporal and spatial
patterns. With this in mind, automatic alignment of images should be one of
the main concerns going forward.

1.2.2 Unmanageable Data

There is a general increase in amount of data (Hey and Trefethen, 2003; Emmott,
2006) that is exacerbated by novel data acquisition technologies like robotics
(Grémillet, 2012) and sensors (Arzberger, 2004). It affects how data is ana-
lyzed as processing is delegated to automated mining procedures or special-
ized database constructs (Emmott, 2006). It also impacts storage as increasing
amounts of metadata need to be created in parallel and everything has to be
made compatible with presentation tools like digital libraries (Hey and Tre-
fethen, 2003). There are also concerns regarding preservation and curation of
large amounts of data for extended periods of time (Hey and Trefethen, 2003).

The increase is especially critical in image based ecology as it requires large
amounts of storage for an increasing number of images that can no longer be
processed manually (Granados et al., 2013). This concern is especially relevant
for projects with requirements of up to one gigabyte per image (Brown et al.,
2012) which, depending on the frequency of sampling, can quickly get out of
hand. Capturing images once or twice per day can be hand-processed (Graham
et al., 2010; Blumenthal et al., 2007), but for more complex systems were there
is rotational and translational movement (Graham et al., 2009; Granados et al.,
2013; Brown et al., 2012) and frequency is in the order of several images per day
there needs to be a fundamental change in the way raw image data is handled
to produce ecological knowledge.

With the increase of data, there needs to be an equal and parallel move
towards analysis automation to keep up. Tools must take advantage of spatial
information in order to characterize elements with variables like size and position
(Hinkler et al., 2002); use spectral information contained in pixels for analysis
based on light reflections (Bauer and Cipra, 1973; Richardson et al., 2007); and
employ time variations contained in series of images to make temporal analysis
(Parrott et al., 2008). These three types of data could be used individually
and in conjunction to create spatiotemporal analysis that sample morphological
traits while following elements through time.

Unfortunately extracting valuable information from images is not trivial.
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Research has explored the use of automatic image processing to extract ecologi-
cal information from images with various degrees of success. Projects have tried
to use the spectral responses recorded by camera sensors and correlate them
to ecological indicators like leaf area index (Ryu et al., 2012) or gross primary
production (Saitoh et al., 2012) with one of the main concerns being how to
control the fluctuation of the digital values from lighting changes (Richardson
et al., 2007). Others have concentrated in trying to detect specific states of pro-
duce through color analysis (Payne et al., 2013) with one of the main concerns
being lack of color consistency in the produce. In general, research has shown
that there is great promise for computer aided image analysis of ecological data
with few counter examples (Ksiksi and El-Keblawy, 2013). Trying to address
the increasing amount of image data through computer aided approaches will
continue to be an active research topic within ecology and precision agriculture.

1.2.3 Annotation Lacking

Annotations refer to added metadata in the form of a comments or a label (Hey
and Trefethen, 2003) and is part of an active discussion in the field regarding
ecological data management (Metzger et al., 2011; Leinfelder et al., 2010). It is
important as it pertains to making sense of heterogeneous data sources for the
advancement of scientific knowledge (Leinfelder et al., 2010) and is relevant in
automated, semi-automated and manual curating processes that cleanse large
amounts of data (Hey and Trefethen, 2003; Metzger et al., 2011). Data an-
notation is a fundamental property of long term monitoring efforts because it
provides a way to validate and keep collected data (Hey and Trefethen, 2003;
Karasti and Baker, 2008) as well as facilitate its dissemination (Karasti and
Baker, 2008) and understanding (Madin et al., 2007).

Annotations can be applied to any type of data where it usually represents
semantic metadata attached to a measured point (Pennington et al., 2007).
They are especially relevant with image series because they can be overlain on
top of an image and related to relevant labels to enhance presented information
as well as to make the image searchable by automatic means (Torres and Qiu,
2013). Specifically, annotations allow the creation of time stamped metadata
that can express categories or relate an image position to an informative note
(Brown et al., 2012). And, as data moves towards multidimensional represen-
tations (image, image series and video), annotations become of great relevance
as tools that facilitate data management (Karasti and Baker, 2008) and as in-
struments that help mine existing data for new information that could answers
new questions.

Automatic annotating applications are of great interest as they aid ecologists
in the current challenge of sifting through a growing mountain of data (Torres
and Qiu, 2013). Yet manual and semi-automatic processes are still relevant:
for the creation of representation models (Sorokin et al., 2008), certain levels of
data curation (Hey and Trefethen, 2003) and for detailed classification that is
not yet automatic (Brown et al., 2012). Indeed applications designed for man-
ual annotation of image data range from the very general (National Institutes
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of Health, 2008) that take any type of image and have an assortment of prede-
fined functionalities focused on creating image metadata. To the very specific
(Roshier et al., 1996) that are used for certain types of images and are context
specific.

Applications designed for manual annotation of images series focus on eluci-
dating spatial and temporal aspects (Brown et al., 2012) while at the same time
giving importance to the way images are collected (Brown et al., 2012; Roshier
et al., 1996). These applications are concerned with how the information is dis-
played to trained technicians and their features are designed to streamline the
process of creating image metadata. With this in mind there are still elements
that might be improved; more specifically, toolkits still need to explore diverse
ways of creating annotations in search of features that will increase accuracy
and allow metadata to be created in a timely manner.

1.2.4 Looking Ahead

The disparity between remote sensing and ground based data, the alignment
issues from images taken from different view points, the overwhelming amount
of ecological data being produced and the importance of annotations for data
analysis is our motivation for putting forth this dissertation. We use computer
aided processes to analyze and collect ecological data hopping to streamline
repetitive tasks that might lead to reduction of effort and an increase in data
accuracy. We used close-range photography because, in our opinion, it generates
rich data sets that can be dissected in various ways and lead to spatial, spectral
and temporal aspects that are suitable for describing ecological phenomena.

In this research we address unaligned image series not only because of their
relevance to current issues like satellite imagery, but also because the will be-
come relevant as new technologies are used to collect ecological data. We also
see the importance of the relationship between the increasing amount of avail-
able data and the processes used to analyze it. We understand the importance
of close-range ecological indicators in answering new scientific questions as well
as implementing public policy. We view monitoring as a process that can gen-
erate historical image data which is critical to answering questions related to
phenomena that exist in a prolonged time line. Each of our contributions is
focused at optimizing the output of ground-based measurements in order to
more easily relate them to remote sensing data which will ultimately increase
our understanding of local as well as global ecosystems.

1.3 Approach

Our interest is on how established ecological procedures are affected by com-
puter aided methodologies of phenological data analysis and collection. Our
general approach consists in building software prototypes around the manipula-
tion of data in the form of image series with the objective of producing relevant
phenological estimators using automatic and semi-automatic procedures. To
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evaluate our prototypes we deploy them in two monitoring programs located
in different ecosystems and asses their behavior. Given that our efforts are lo-
cated between research in ecology and computer science we rely on collaboration
with research groups that harbor experts in the fields of biology, ecology and
computer science.

Our first prototype (EcoIS) addresses the acquisition of ground based images
and how they can be collected with a minimum amount of hardware. It is
concerned with normalizing images into a common view point as well as with
the effects it has on established ground based procedures. In our approach
we go as far as to propose and evaluate changes in known work-flows in order
to characterize their effectiveness. Understanding the difficulty of changing
customary procedures and knowing the adversity related with automatically
handling images we also describe possible downsides related to the use of our
prototype.

Our second prototype (EcoIP) will address the automatic and semi-automatic
analysis of image series expanding on the need for these types of applications
and their scope within phenological data acquisition. We touch on image spe-
cific complications that affect our approach such as light variability and other
sources of noise to elucidate how they impact the accuracy of ecological estima-
tor calculations. Our approach includes the analysis of different species in order
to show its versatility and is compared to other methodologies to describe its
relevant value.

Seeing that there are still some limitations on what can be fully automated,
we explore the use of computer aided methods that collect and analyze phenolog-
ical data. Our third prototype (EcoAN) explores human computer interaction
when identifying individual species in an image series and delves into the effects
of using such a prototype within established procedures. We see EcoAN as a
instrumental tool for supporting fully automated processes as well as providing
the means to do data curation and annotations that are not yet automatic.

Pushed by a conviction that images are the best possible dataset represen-
tation for phenology, we look at using them in the form of image series which
contain temporal, spatial and spectral dimensions fit for sampling phenological
phenomena. Given that we are replacing established work-flow patterns, we feel
the need to compare our prototypes and their related changes with established
practices in order to asses their integrity and quantify the impact that they
have in the field. We are equally concerned in how the resulting measurements
compare with those from established practices and seek to generate analogous
results.

We are in between two fields (computer science and ecology) that have their
own idiosyncrasies, and approach research from different perspectives. With
this in mind we understand the need to create a team with diverse research
backgrounds that understands ecological variables as well as computational con-
straints. This collaboration between fields has been crucial to create, deploy
and evaluate our prototypes and continues to be a source of important discus-
sion regarding the convergence of ecology and computer science. Our approach
depends fully on multiple feedback processes simultaneously originating from
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opposite but complementing fields that come together in order to push ecology
technology forward.

We have collaborated with a part of the Department of Bioscience at the
Aarhus University in Denmark in order to understand the specific needs of Arctic
ecology exploration. With them we traveled to Zackenberg (www.zackenberg.dk)
a high Arctic monitoring station and had a first hand experience of what shapes
a monitoring program. This collaboration was key in the design of our pro-
totypes and, more specifically, gave us important insight on the special re-
quirements that our system needed to consider in order to be successful. It
was through interviews and shared experiences with researchers and technicians
that these requirements were embodied into the prototypes. Collaboration was
further strengthened where technicians from the institute have actively partici-
pated by testing new data acquisition methodologies related to our prototypes
and given us invaluable feedback.

We further sought opportunities with research projects that emphasized on
the application of computer science to ecological processes. This is how we met
with the Center for Embedded Networked Sensing (CENS) in the University of
California Los Angeles (UCLA) where their research was focused on the applica-
tion of computers as terrestrial ecology observation systems. The collaboration
was productive with a publication and release of our first prototype (EcoIP)
which we used to analyze data collected by CENS throughout various years in
the James Reserve located in the San Jacinto Mountains of southern Califor-
nia. The insight created by discussion regarding design and methodology set
the foundation for our EcoIP prototype and knowledge generated within that
collaboration permeated our research done in the Arctic.

1.4 Contribution

Our main contribution is divided between the three toolkits that we developed:
EcoIS, EcoIP and EcoAN. They relate to the issues described in section 1.2 in
different ways and have at their core the use of image series as a data unit.
In this chapter we explore the specific contributions from each toolkit and how
they relate to current problematics of ecological data. We present these toolkits
in order to create a community of applications that come together to form a
pipeline that culminates in the creation of ecological indicators. At the end of
the section we describe how the three toolkits address the link between ground
and remote based phenological measurements.

1.4.1 EcoIS

EcoIS is a versatile open-source python (www.python.org) library that has the
ability of aligning images of plots containing special ground markers. Trans-
formed images will all seem to have the same view point and can make up
image series. We characterize EcoIS by listing its key features, discussing its
limitations and behavior in a deployment conducted in a monitoring station in
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the high arctic. In this way our contribution not only includes the toolkit itself,
but a description of the lessons learned and what to expect when using it in a
deployment.

We redefine the relationship that exists between cameras and infrastructure
needed to produce aligned images. Where traditional methods used cameras
hardwired into housings designed to force same view images, we allow the camera
to move freely effectively dissociating it from housing constructs. As we avoid
the infrastructure holding the camera in place, we give way to new possibilities
of acquiring data through images. Our approach, which is tested with hand
held cameras, can be extended to other more automatic scenarios where the
technician is completely taken out of the picture and replaced by an autonomous
agent like an Unmanned Areal Vehicle (UAV).

We minimize the infrastructure needed to create image series from field im-
ages. Though we could have created a system where the technicians carry a
tripod-like structure around the field in order to give the images the same view
point, we choose to create one that does away with known camera platforms
(Booth et al., 2004) and replaces them with an approach that depends on small
artificial markers placed in the field. These markers which are deployed and
collected only once, serve as reference points to create same view point images.

1.4.2 EcoIP

EcoIP is an open-source toolkit that leverages current computer vision and
machine learning techniques to automate the creation of phenological indicators.
The toolkit creates a statistical model that it then uses on image series to detect
elements of interest. Human interaction is needed to create the model and to
adjust the automatically generated results. The toolkit is built using the R
statistical environment (R Core Team, 2013) and provides a command line user
interface as well as a library.

We minimize human involvement in image data analysis by providing a li-
brary that reduces image series into manageable data representations (e.g. sig-
moid function) and allows easy and fast assessments of multiple species in vast
tracts of land covered by digital photography systems. We tackle questions re-
lated to specific dates of flowering and senescence in different species and with
different camera systems by extracting temporal as well as spatial information
from vast collections of image series and presenting it in ways that are easy to
handle manually. We believe that EcoIP stream lines processing and makes it
easier for scientists to process more data in the same or less amount of time.

We calculated ecological estimators based on automatic analysis done of
species in image series. These estimators were validated by visually inspecting
image series for ground truth measurements and then comparing them to the
automatically generated ones. In the cases where there was considerable devia-
tion between the two, we gave possible causes and described how to deal with
unwanted outcomes. One of the things to point out is that the estimators were
calculated without the need to directly handle the images series, which made
this particular process quick and painless.
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We relate our approach to current developments in image processing for
ecology and agriculture by describing their commonalities and differences. Ad-
ditionally we comment on the difficulties present in our image processing algo-
rithms and how these difficulties affect the level of automation, the accuracy
of the analysis and what we can do to mitigate them. Indeed the application
of computer vision to ecological and agricultural data acquisition is growing
as analysis methods become more robust and we expect to see more of these
solutions as the field moves forward.

1.4.3 EcoAN

EcoAN is an open-source toolkit that uses a Graphical User Interface (GUI)
to aid the creation of annotations on image series. It was developed using
Matlab (MathWorks, 2009) and allows the visualization and manipulation of
labeled annotations on top of image series. Spatial and temporal aspects can be
extracted from the annotation representations and serve as starting points for
further calculations. As part of an assortment of applications EcoAN is related
to EcoIS and EcoIP by requiring aligned image series and providing the means
to create statistical models.

By leveraging latent spatial, spectral and temporal information contained
in image series together with annotation features provided by EcoAN, we are
able to formulate new questions and answer them with historical data. Though
this property was implied by the nature of the interaction between image series
and EcoAN, we were able to exemplify it by creating measurements in image
annotations that answered new questions. Our contribution in this respect also
included an accuracy analysis that compared how well EcoAN behaves against
other methodologies.

We contribute an effort characterization that gives insight on how new tech-
nologies, such as our prototypes, might impact the way of doing ecological mon-
itoring. More specifically we measure the time it takes to create a particular
phenological estimators with established processes and compare it with work-
flows that use our prototypes. We also measure cost and describe how savings
are achieved while using EcoAN in an Arctic field deployment with considera-
tions that go from salary to station fees. In detailing these monitoring times
and costs we increase the understanding of how these two relate and extend it to
the effects of using digital photography in ecological monitoring environments.
This characterization is valuable when creating new monitoring policies and we
expect our findings to further push the adoption of digital photography as an
alternative for phenological monitoring.

We use EcoAN’s annotations to create ecological indicators able to describe
ecosystems. We show how to create these indicators in real deployments and
compares their accuracy with indicators created with established work-flows.
We explore places where errors might creep into EcoAN generated estimators
and give solutions involving review processes. Finally, we suggest a procedure
centered in EcoAN that can be used to curate ecological data based on image
series; we give a short description and measure its impact on data collected in
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the high arctic.

1.4.4 Satellite measurements limitations

There is special interest in scaling up ground level measurements to acquire
detailed information that can then be linked to remote sensing data in order to
get a better knowledge of individual species. Our three prototypes contribute by
implementing different approaches to either increase the production of data or
support its timely analysis. They do so by applying software implementations
to known phenological monitoring efforts.

We contribute to the ground based scale up by providing additional means
of creating images of phenological phenomena in situations where the usual
methods are not enough. EcoIS and its related work-flows promote the cre-
ation image series taken of plots and facilitate the collection process in order
to increase data output. We contribute to the analysis of the growing amount
of data produced from ground based measurements by implementing a toolkit
(EcoIP) that automates the analysis of vast amounts of images. With EcoIP
the focus is taken away from individual images and placed in functions that
describe phenological phenomena. We further contribute to the analysis of vast
amounts of images by implementing an application that aides in the identifi-
cation of individual species within image series. EcoAN is meant to be used
when current computer vision approaches cannot handle specific data analysis
tasks. It aids in the description of ground based image data and also servers as
support for our other prototypes indirectly relating to the scaling up of ground
based data.

1.5 Document Outline

Three papers conform this dissertation: EcoIS, EcoIP and EcoAN. Each touches
on a part of the underlying problematic related to scaling up ecological ground
based measurements in order to link them to remote sensing data. Each stands
alone and is included in this document as it was sent for peer reviewed publi-
cation3. In order to tie them together in a logical thread of thought we have
added a preamble and a concluding remarks section to each one that places
them in context. The preamble will relate each major section with the general
problematic as well as with the other publications. The concluding remarks, on
the other hand, will explain how the different conclusions and contributions fit
within the general context and relate to the other sections.

The rest of this document is organized as follows:

1. EcoIS: In this chapter we delve into the importance of image series as a
data unit for ecological data acquisition. We see how it relates to scaling
ground based measurements and look at alternative ways of generating
image series through computer aided processes. We analyze the behavior

3EcoAN will be sent shortly after this dissertation is delivered
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of a prototype that generates aligned series from unaligned images in an
arctic monitoring context.

2. EcoIP: In this chapter we see the relevance that automatic and semi-
automatic analysis of image data has on the increasing amount of ecolog-
ical output. We further describe how we can use automation to address
raising amounts of data in order to scale ground based measurements. We
introduce our second prototype that is designed to analyze large amounts
of image series and translate them into ecological indicators.

3. EcoAN: In this chapter we see the importance of data annotations to
answer new questions from historical image series and we see how this
relates to the scaling of ground based measurements. Here, we introduce
our third prototype and describe its behavior with data collected from
a monitoring station in the high arctic. We additionally make a cost
benefit analysis and show the relevance of the common assumption that
semi-automatic processes reduce effort.

4. Conclusions & Future Work: We finalize our dissertation by giving
general conclusions where we list the contributions of each of our proto-
types and relate them to each other and to the underlying theme of scaling
up ground based measurements. The future work will point towards where
the field is headed and how we want to advance in our research.
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Chapter 2

Related Work

2.1 Image Based Plot Phenology

The practice of acquiring plot phenological data by using photographic equip-
ment dates back to 1924 when a tripod specifically designed for ecology was
presented to the British Ecological Society (Cooper, 1924). It questioned the
relation between measurements and individual judgments made by technicians,
and how it could be addressed by keeping a photographic record that allowed
a more objective assessment. The paper pointed to difficulties inherent in field
measurements and how photography could reduce time spent collecting data as
well as shift much of the field work out of the field.

The author in Cooper (1924) identified the need for pictures to be taken
from above while using a stable and reliable stand so as to get correct relative
measurements from the image. The height of vegetation, it’s uniformity, shad-
ows on the plot and the levelness of the ground were listed as limitations to the
newly presented system (Cooper, 1924). In other words the system was optimal
for plants with uniform and relatively short height set upon a plot that was
relatively level. These limitations are as relevant today as they were in 1924.

There have been lots of camera systems since Cooper (1924) that have been
designed for various situations. There has been special interest in stereophoto-
graphic techniques because of the slightly different view points of the same plot
(Pierce and Eddleman, 1973; Wells, 1970; Ratliff and Westfall, 1972). Distance
from the plot in order to cover more ground has also been a concern where re-
search has been conducted towards structures that hoist the camera to a height
of 7m while still being able to be carried easily (Owens et al., 1985).

Marking plots to give a sense of scale has also been an important subject
of discussion; in Pierce and Eddleman (1969) the authors discuss a setup that
includes a frame on the ground to facilitate spatial analysis. In fact most of
the projects related to plot photography have some sort of artificial marker that
serves as physical reference (Pierce and Eddleman, 1973; Ratliff and Westfall,
1972; Wells, 1970). One can see the importance of having a reference in the
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pictures even in Cooper’s original paper (Cooper, 1924) where the plot image
is fitted with relevant information like plot ID and date.

These projects addressed stable and repeatable images, easy data acquisition
and an increase in objectivity but were not able to predict how data collected as
images could quickly become unmanageable. No automatic analysis of images
was attempted because images were not digital and there was little or no access
to computational artifacts. However, as digital photography became wide spread
and computers were readily available, computer aided image analysis techniques
began to be explored as an alternative to handle collected images.

Work followed that brought together the advantages of camera stands with
the qualities of computer aided image analysis. In Roshier et al. (1996) they
implemented a plot measuring platform mounted on a car operated by two
technicians. It did not need a stable camera stand as it depended on permanent
markers to use as reference and was able to track individuals throughout a season
by using computer aided techniques. All classification and metadata addition
was done by the technicians and the system aided the them in automatically
identifying previous element’s location.

Camera stands are relevant as they are still needed (Luscier et al., 2006;
Laliberte et al., 2007) with recent work centered in reducing its size, adding
supplementary structures to adjust for shadows on sunny days (Booth et al.,
2004) or redesigning in order to reduce effects on the flora (Luscier et al., 2006).
However, focus has mostly shifted towards describing image processing tech-
niques (Laliberte et al., 2007) and continues to progress into situations where
camera stands are designed to hold cameras in the field for longer periods of
time (Graham et al., 2006).

2.2 Image Based Landscape Phenology

An alternative to close ground-based images is landscape photography which
involves placing cameras where they encompass more than just a couple of
square meters. Cameras placed above 30m focused parallel to the ground with
a ”birds eye view” allow for the inclusion of more elements. But with them
come new challenges that include large perspective distortions where sizes of
elements in the foreground and the background are different, and size to pixel
ratios where pixels cover different areas depending on distance from the camera.
This contrasts with images taken of small plots (e.g. 1 m x 1 m) from a nadir
perspective that have a constant scale and constant size to pixel ratio.

The camera can be placed on a natural occurring landmass (e.g. a moun-
tain) in order to gain a vantage point from where to sample phenomena. A
camera was located 500m above sea level in Hinkler et al. (2002) and directed
towards a valley in order to detect snow cover. The researchers addressed the
issue of perspective differences by applying an in-house differential rectification
algorithm. They also created an automated mechanism that produced a time
lapse of the valley by taking daily images. The mechanism was solar powered
and kept the images in a memory card.
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Countless projects have man made towers to house a camera and take pic-
tures of various types of landscapes. In Richardson et al. (2007) the authors
used a 26.5m tower and placed a camera with a field of view of 20◦ bellow the
horizon. They were able to capture images of a deciduous forest to try to mon-
itor the trajectory of spring green-up. In this case they did not have to cope
with issues related to perspective differences as they did not care for spatial
data. They used part of gathered images in the form of rectangular Regions
Of Interest (ROI) where they focused on spectral rather than spatial responses.
Other projects use specialized lenses to be able to increase their field of view to
increase the amount of information while still using ROIs to point to interesting
phenomena (Nagai et al., 2011).

The Region Of Interest approach is well known and is used in lots of projects
(Richardson et al., 2007; Nagai et al., 2011; Sonnentag et al., 2012; Zhao et al.,
2012) because it avoids the need to analyze the totality of collected images. It
implies the intervention of technicians which decide exactly where to put the
ROI. It is interesting to note that one of the recurring themes is illumination
variability and techniques devised to reduce it: a color square is placed in the
line of sight of the image in order to aid posterior automatic color and lighting
adjustments (Sonnentag et al., 2012; Richardson et al., 2009). Towers are used
when there are no available infrastructure elements but in the case where images
are being acquired close to man made environments (e.g. close to towns or
cities), the cameras can be placed on readily available infrastructure (Ide and
Oguma, 2010).

While images of plots are easily sampled by individual field visits, this is not
the case for tower based digital image systems where there is little reasoning
behind repeatedly climbing a 30m tower or a 500m mountain to take an image.
A better approach involves autonomous systems taking images at a predefined
frequency based on certain environmental characteristics. This approach is used
by all tower projects with varying levels of sophistication where some have simple
repeat photography setups (Richardson et al., 2007; Ide and Oguma, 2010) while
others have complex systems with various degrees of movement that enrich the
collected data (Brown et al., 2012; Graham et al., 2009; Granados et al., 2013)

Indeed, camera stands are moving away from being static to structures that
implement rotational and translational movement. Pan-tilt-zoom cameras have
been used to extend sampling range by including three degrees of freedom: pan,
tilt and zoom (Granados et al., 2013; Morisette et al., 2009). This allows the
camera to include more information and creates the possibility to actively search
for interesting elements in the range of view. Pan, tilt and zoom Rotation and
translational movement bring new challenges to the phenological data acquisi-
tion process: it is now necessary to stitch images Kopf et al. (2007), align them
(Song et al., 2006) and cope with various types of movement (Graham et al.,
2009).

Indeed these innovative systems are meant to increase potential view points
of cameras in order to get better samples. For now the movement has been
constraint to a few dimensions: two dimensional (Graham et al., 2009) or three
degrees of freedom on pan-tilt-zoom cameras (Granados et al., 2013; Kopf et al.,

25



2007). Research continues in this respect and is set to include projects that give
full rotational and translational movement through the use of Unmanned Areal
Vehicles (UAV) able to give very detail account of a particular section of land
(Grémillet, 2012; Lucieer et al., 2012). UAVs can not only capture vast traces
of land, but can also get close to species while reducing the effect it has on them
(Grémillet, 2012).

2.3 Automatic Collection and Analysis

As computers became cheaper and more available, research moved towards au-
tomating image analysis. In Wallen and Philpotts (1971) an IBM drum scanner
was used to digitize areal images taken of bean crops to calculate diseased per-
centages. In Gerten and Wiese (1987) video of wheat fields was analyzed in
search of diseased patches. While in Adamsen et al. (1999) the senescence of a
wheat field was estimated with areal photographs of the field. These efforts seek
to increase the speed and effectiveness of data processing by covering extensive
tracts of land from the air and digitizing it into computer memory

Research began to use gray scale images to automate segmentation of in-
teresting elements within images (Gerten and Wiese, 1987; Eyal and Brown,
1975). As color cameras became more available, three color dimensions (red,
green, blue) were used for image segmentation. Agriculture related research
headed the move towards color segmentation of close-range plot photography
with studies like Woebbecke et al. (1995) which tried to detect specific weed
species by thresholding a color image in order to improve a pesticide spreading
mechanism.

Color has been used to automatically measure greenness levels during spring,
summer and fall seasons (Richardson et al., 2009), and is used to follow gen-
eral changes of forest canopy (Richardson et al., 2007; Zhao et al., 2012; Gra-
ham et al., 2010). Image data has been correlated with measurements of gross
primary productivity (Richardson et al., 2009), green-up and senescence (Ide
and Oguma, 2010; Zhao et al., 2012; Graham et al., 2010) and CO2 exchange
(Richardson et al., 2007, 2009). Color indexes and color spaces have been identi-
fied as useful to generate automated phenological data (Richardson et al., 2007;
Sonnentag et al., 2012). Additionally, lighting, hardware problems and weather
conditions are identified as detrimental to the correctness of the generated data
(Sonnentag et al., 2012; Richardson et al., 2007; Ide and Oguma, 2010). Finally
there have been projects that have worked with publicly available cameras con-
taining images of natural areas in order to extract phenological data (Graham
et al., 2010).

There has been work that relates color to Leaf Area Index (LAI) (Nagai
et al., 2011) through normalized image values where cameras frame the canopy
from the bottom (Montes et al., 2007; Macfarlane et al., 2007). It is important
to consider leaf position with respect to the camera and how non leaf elements
interact in the processing of raw data (Montes et al., 2007). Additionally interest
in the relation between Plant Area Index (PAI) and LAI has also used camera
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systems pointing towards the zenith (Ryu et al., 2012). Finally, tower mounted
cameras have also been used to calculated LAI (Nagai et al., 2011).

Indeed automatic analysis of image data is widespread with the use of spe-
cialized platforms that target specific visual traits like diseased kernels (Serranti
et al., 2013), detect the presence of microorganisms (Wu et al., 2012; Kumar
and Mittal, 2008), calculate total crop yields (Payne et al., 2013; Zheng and Lu,
2012) or classify individual species in plots (Chen et al., 2010). While automatic
analysis of the images gathered by plot digital photography has been successful
(Laliberte et al., 2007; Adamsen et al., 1999, 2000), it still remains to be seen
how well it specifies ecological data (Ksiksi and El-Keblawy, 2013). The ex-
ploration of the different aspects of ecological automation in data analysis and
gathering should continue to be one of the main focuses in the field.
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Chapter 3

EcoIS

Preamble

We begin by mentioning the importance of monitoring and phenology, and how
these relate to technology and image series. The methodology described here is
meant to target very real needs in monitoring and we show how we address them
by applying our methodology to a plot-based plant flower phenology monitoring
deployment in the high Arctic.

The main objective of EcoIS is to produce image series that can be used by
other tools to generate ecological estimators. The raw data that it produces
can be annotated by EcoAN (or applications like EcoAN) to further continue
the analysis in the data pipe line; it can also be used by EcoIP (or other au-
tomated tools) to generate intermediate or final results. Indeed, in order for
EcoIS to produce data that is usable, it needs to create data that is spatially
and temporally consistent. Annotations on aligned image series produced by
EcoIS maintain their spatial characteristics (position in the image) throughout
the image series and give a very unique structure to ecological data that can
be taken advantage by automatic tools like EcoIP or Parrott’s (Parrott et al.,
2008) spatiotemporal metrics. It further relates to

EcoIS creates image series from pictures of plots in the field and in doing so
adds to the methodologies that are incrementing the amount of ecological data.
It plays an active part in increasing images of ecosystems and formating them
in such a way that they can be analyzed to produce very detailed models. In-
deed, the high resolution image series from EcoIS help to bring together remote
sensing and ground based measurement by helping to generate detailed image
representations of what has already been photographed remotely.

Our EcoIS paper was submitted to Ecological Informatics1 -an International
Journal on ecoinformatics and computational ecology- on July first 2013 and
accepted for publication on the 25th of September of the same year. The defen-
dant is first author and is responsible for developing the toolkit and testing its

1www.journals.elsevier.com/ecological-informatics
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performance. Images used in the toolkit evaluation were provided by technicians
of the Department of Bioscience at Aarhus university who collected data from
a monitoring station in the hight Arctic. The defendant was responsible for the
initial drafts, integrating and gathering co-author feedback as well addressing
the entire review process.
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Abstract

Image series are increasingly being used to output ecological indicators because
they provide the ability to reanalyze data that has already been collected and
they improve temporal as well as spatial resolution. We address both the in-
creased utilization and the need to diversify the way they are produced by
introducing an open source Python (www.python.org) library called EcoIS that
creates image series from unaligned pictures of specially equipped plots. We
use EcoIS to sample flowering phenology plots in a high arctic environment and
create image series that later generate phenophase counts and automatically
estimate phenological dates of interest. Our results exhibit one day difference
between EcoIS estimations of local indicators and the ones calculated with the
established field-based process. We show that EcoIS’ error is similar to the one
of image series generated with fixed camera setups. We see that EcoIS processes
an image in 3.8 seconds and show how it is equipped to handle data intensive
scenarios. We additionally identify in-camera automatic image formatting and
image acquiring oversight as contributing factors for increasing the overall error.
Our main conclusion is that EcoIS creates usable image series that maintain the
spatiotemporal qualities of the original images and can successfully be utilized
to generate ecological indicators. EcoIS is relevant as a replacement for tradi-
tional image series infrastructure where the cost of deploying EcoIS is smaller
or less intrusive to the ecosystem.

Keywords : Image Series; Ecological Monitoring; Phenology; Arctic; Com-
puter Vision; Photo-plot

3.1 Introduction

Arctic ecosystems are changing rapidly and dramatically along with observed
changes in climate (Gilg et al., 2012; Post et al., 2009). Quantifying the inter-
action between climate and ecosystems is complex and requires extended con-
current data collection from multiple compartments of an ecosystem (Meltofte
et al., 2008b). Our ability to understand and predict the effects of climate
change on ecosystems depends on coordinated long-term monitoring programs
(Schmidt et al., 2012b) that establish the difference between effects inherent
to ecosystems and those caused by environmental perturbations like climate
change (Meltofte et al., 2008b), as well as provide context for interpreting ex-
periments conducive to designing, implementing and evaluating environmental
policy (Lovett et al., 2007).
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Technology has long aided long-term monitoring by providing solutions like
tape recorders that facilitate documentation, personal desktop assistants (PDA)
that automate data transmission and loggers that collect data for long periods
of time (Michener et al., 2011). Recent developments in digital photography
have broadened this scope by facilitating projects that range from phenological
event detection (Richardson et al., 2007) to demographics (Bolger et al., 2012).

Image series (ISeries) are of special interest because they provide the ability
to reanalyze data that has already been collected and can improve spatial and
temporal resolution of long-term monitoring variables while at the same time
reduce labor (Ide and Oguma, 2010). Plant phenology which is an observable
trait impacted by climatic variations (Badeck et al., 2004; Høye et al., 2007)
vital for understanding species responses, ecosystem function and the effects of
climate (Wright et al., 1999) has been detailed by ISeries (Graham et al., 2009;
Richardson et al., 2007) and has been related to measurements such as carbon
dioxide uptake (Mizunuma et al., 2013) and gross primary production (Saitoh
et al., 2012).

In general, ISeries are generated from cameras placed in housing platforms
designed to provide stability, power and protection. Housing platforms have
been used to fix cameras close to the ground in order to measure leaf area index
(Ryu et al., 2012), have enclosed cameras that generated simple field estimations
of photosyntheses (Graham et al., 2006) and have positioned cameras near and
above forest canopies (Sonnentag et al., 2012; Zhao et al., 2012). They provide
translational (Graham et al., 2009) as well as rotational (Granados et al., 2013)
movement increasing the amount of possible arrangements. A housing platform
is what aligns all images by providing the same view point.

Sphere

BA

Samples

ID

Figure 3.1: Closeup of markers in the field. A) Sphere marker painted with
water proof paint. B) Chessboard marker is printed on paper, placed on an
aluminum base and laminated to make it waterproof. This is a marker for plot
35 containing red spheres. Samples section used to model squares containing
encoding colors. Sphere section holds sphere color. ID section has encoding
squares detected by models from Samples section.

But what if a housing platform cannot be deployed? As we move monitoring
efforts away from well known infrastructure (electricity grids and communica-
tion networks) into remote areas where powering and maintaining equipment
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is expensive and resource intensive, we encounter situations where the cost of
a camera housing platform is prohibitively expensive. Moreover, the inher-
ent invasive nature of housing platforms might prevent their deployment in
research stations where invasive structures are prohibited inside denominated
undisturbed areas (Meltofte et al., 2008c). It is in these situations where we
need an alternative way to create ISeries.

In these cases we replace the invasive housing platform with a more versa-
tile approach that uses autonomous mobile entities, like humans or unmanned
autonomous vehicles (UAV) as vessels that transport and actuate a camera. Be-
cause of their mobile nature, they would generate unaligned images which would
not be suitable for generating ISeries. Projects have addressed this by manually
aligning the images (Liang et al., 2012), but this becomes unmanageable as the
amount of images increase.

Inspired by the need to generate ISeries from unaligned images we have cre-
ated EcoIS (Granados, 2010b), a Python (http://www.python.org) library that
automates the alignment process and suggests an alternative way of gathering
data based on ISeries. We give a detailed description of its inner workings
and outline how it was used in an existing long-term phenological monitoring
program located in a high arctic research station. We characterize changes in
the arctic monitoring work-flows by describing their established processes and
comparing them to new ones brought on by the use of EcoIS. We see how eco-
logical indicators (from established work-flows) can be created and demonstrate
how to generate other spatiotemporal measurements that can only proceed from
ISeries. Finally, we see how errors intrinsic to camera systems and image trans-
formations affect ISeries and the indicators that they generate.

3.2 Materials and Methods

3.2.1 EcoIS

EcoIS (Granados, 2010b) is an open source Python library that creates ISeries
from images taken of regions of interest delineated by special markers. It aligns
images giving them a unique virtual view point which is similar to creating
orthophotos (Duhaime et al., 1997). It creates ISeries which are the foundation
for spatiotemporal analysis used in ecological indicator calculations.

3.2.1.1 Photo-Plot Layout

Photo-plot layout (Figure 3.2.B) is square and enclosed by three spherical (Fig-
ure 3.1.A) and one chessboard (Figure 3.1.B) marker. Spheres mark three of
the plot corners (center of chessboards mark the fourth) while Chessboards con-
tain information used for plot identification (Samples and ID sections, Figure
3.1.B) as well as sphere detection (Sphere section, Figure 3.1.B). All markers
are fastened to the ground for the duration of deployments.

The Samples section contains squares depicting six possible colors that ap-
pear in the ID section (Figure 3.1.B) two of which were not used in our im-
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Plot ID

Figure 3.2: Established and Photo-plot work-flows. A) Established work-flow.
Counting and digitizing of phenophases manually done in the field at a pre-
defined frequency. Plot layout is rectangular of varying size marked by stakes
driven into the ground at each corner. Next to each plot there is a sign containing
plot ID. B) Photo-plot work-flow. Digital images are taken from several view
points at a predefined frequency. ISeries are automatically created by EcoIS
from field images which in turn are used for phenophase counts, EcoIP estima-
tors and Parrott’s metrics. Plot layout is rectangular enclosed by three spherical
and one chessboard marker which are all driven into the ground. Chessboard
marker contains plot ID.

plementation but were left in the chessboard for future use. Each square from
the ID section encodes two bits and contains part of the plot ID representation
(Figure 3.3). The amount of squares in the ID section depends on the number of
plots being identified (greater number → more ID squares). For example, figure
3.1.B shows three squares in the ID section which encode to 35 (see Figure 3.3
for encoding calculation) and have the potential to identify 64 plots.

3.2.1.2 Serialization Algorithm

EcoIS begins searching for a chessboard (Figure 3.3) by using OpenCV’s find-
ChessboardCorners function (Bradski and Daebler, 2008a) which operates in
five steps (Rufli et al., 2008): 1) Images are converted to grayscale. 2) They are
then segmented by applying adaptive thresholding which binarizes the images
(Bradski and Daebler, 2008b). 3) The binary image is then eroded (Bernd Jähne
and Horst Haußecker, 2000a) with a 3 x 3 rectangular kernel which is gradually
increased when quadrangles (squares) are difficult to detect. 4) Closed contours
(Bradski and Daebler, 2008c) are then calculated which the algorithm uses to
fit into quadrangles. 5) Finally, every successfully fitted quadrangle is linked to
adjacent ones (Rufli et al., 2008). If a chessboard is not found after these steps,
the image is discarded and EcoIS continues with the next image.

After the chessboard is found, the plot number contained in the ID section
(Figure 3.3) is calculated. First, the HSV color space (Smith, 1978) is segmented
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1(20)+1(21)+0(22)+0(23)+0(24)+1(25)=35
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Figure 3.3: Serialization algorithm. First step: find a chessboard in each image.
Second step: Calculate ID from ID section. Each color encodes two bits: green
encodes 11, red 00 and magenta 01. They each represent a power of 2 and sum
to 32. Third step: With color sample from Sphere section, find sphere centers.
Fourth step: Transform image so all centers are placed in the image corners.

into six consecutive compartments based on mean hue values of the Samples
squares (Figure 3.4.A). We then use this segmentation to count the hue values
of the ID squares and choose the color based on the segment where the count
is greater (Figure 3.4.B). Sampling of colors prior to detecting is done for every
image in order to adjust for pixel value variability in the ID section caused by
lighting differences and automatic camera adjustments.

To find the sphere centers (Figure 3.3) we first sample the Sphere square
(Figure 3.1) and calculate mean (c̄) and standard deviation (σc) for color com-
ponents in CIE L*a*b (CIE (Commission Internationale de l’Eclairage), 1986)
color space. We then create a range containing the sphere color (c̄±σc) and use
it to binarize the image. We continue by applying consecutive open and close
operations (Bernd Jähne and Horst Haußecker, 2000a) with a circle shaped ker-
nel of varying size that reduces noise and makes the spheres more prominent.
Finally, we use OpenCV’s HoughCircles function which uses Hough circle trans-
form (Bradski and Daebler, 2008d) to approximate the circle centers. If EcoIS
does not find exactly three spheres, the image is discarded.

The final step in our algorithm consists in moving all the pixels in the image
in such a way that the corners of the plots (spheres and chessboard) are in
the image corners (Figure 3.3). This involves multiplying all coordinates by
a transformation matrix and then performing pixel value interpolation on the
result. The matrix is calculated by solving X ′

i = M · Xi; i = 0, 1, 2, 3 where
M is the transformation matrix, Xi is the ith plot coordinate and X ′

i is the
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Figure 3.4: Chessboard color detection. A) For each of the Samples squares we
calculated min value (lower case), mean (midrange cue) and max value (upper
case) effectively segmenting the Hue dimension of the HSV color space (Smith,
1978). The ”Mage” abbreviation means magenta. B) Each ID square is binned
into ranges and the one with greater value is selected. The first is detected as
magenta and the second as blue.

ith destination coordinate. For our particular case the plot coordinates are the
image coordinates where the spheres and chessboard are located; the destination
coordinates are the re-projected image corners (coordinates for a 5000 x 5000
pixel image are {(5000,0); (5000,5000); (0,5000); (0,0)}). Once the matrix is
calculated we use OpenCV’s warpPerspective function (Bradski and Daebler,
2008d) to actually move the pixels and perform the interpolation.

These four steps (Figure 3.3) take the view point of the original image and
re-project it into a virtual one which is shared by all re-projections of the plot
(Figure 3.5). The new image is scaled to a resolution of 5000 x 5000 pixels and
indexed into a directory using its plot ID. Additional sanity checks are executed
to avoid images where corner detection errors occurred.

3.2.1.3 Photo-Plot Work-Flow

Plots are created by arranging three spherical markers and a chessboard in
a square containing elements of interest (Figure 3.2.B). Spheres are painted
with the same color as the Sphere section (Figure 3.1.B) which should contrast
with the elements in the plots to avoid interference. Images are taken of only
four markers, if a fifth (sphere or chessboard) is visible in the frame, it might
interfere with correct detection and could contribute to inaccuracies. Moreover,
plots should occupy as much of the frame as possible in order to maximize the
amount of pixel information available for markers and for elements of interest.

Plots are photo sampled (photographed) at a predetermined frequency tak-
ing care of acquiring several photographs from different view points per photo
sample in order to increase the possibility of at least one image getting serial-
ized (Figure 3.2.B). When we have finished collecting images, EcoIS is executed
in order to create an ISeries for each plot which can subsequently be used to
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167 169 177 184 190

Original

Re-projected

Figure 3.5: Plot image originals and their transformations. The first row con-
tains original images taken for each DOY of plot four. The second are the
transformed images using EcoIS algorithm (Figure 3.3). Notice that there are
no shadows on the markers in the original images. DOY 167 and 169 contain
Dryas buds (too small to see), DOY 177 shows the plot flowering and DOY 184
and 190 show the senescent stage of this species.

explore the behavior of the elements of interest. This work-flow is denominated
photo-plot work-flow (Figure 3.2.B).

EcoIS requires an image based storage system which has its own challenges,
yet having the data in an ISeries representation creates new potential in terms
of data usability. ISeries not only provide the possibility for re-measuring plots
(for corroboration), it also allows scientists to ask and answer new questions
given sufficient image quality. We demonstrate this in an arctic deployment by
using ISeries to create three types of ecological indicators (Figure 3.2.B).

3.2.2 Field Deployment at Zackenberg

We deployed in 2012 at Zackenberg station in northeast Greenland (74◦30′N, 20◦30′W ),
a high arctic research station run by the Department of Bioscience at Aarhus
University in Denmark. There, we focused on the established plant flowering
phenology work-flow which has kept track of phenological phases of interest
(phenophases) by doing seasonal counts (Figure 3.2.A). The process is mostly
done in the field where technicians count individuals in a plot and then digitize
the information into a PDA (Figure 3.2.A), they do this once every week for
the duration of the season. This process is carried out for 28 permanent mon-
itoring plots located in the valley lowland and produces files containing yearly
plot phenophase counts (Figure 3.2.A).

3.2.2.1 Photo-Plot Layout

We implemented the EcoIS photo-plot layout (section 3.2.1.1) with spheres of
40 mm in diameter (Figure 3.1.A) and chessboards that measured 110 x 90 mm
(Figure 3.1.B) We used water resistant paint on the spheres and laminated the
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Table 3.1: Cameras in Zackenberg. Characteristics of cameras used in our
Zackenberg deployment. Resolution is given in pixels, focal length is given in
millimeters and is normalized to 35mm equivalence, exposure is given in seconds
and ”Imgs” gives the number of images taken with each camera. Formats refers
to how the images were formated in camera; only the Sony camera kept each
image in raw and JPEG (ITU, 1992) format.

Sony Nex-3 Nikon D700 Nikon D300
Lens Sony E 18 −

55mm f/3.5− 5.6
AF-S Nikkor 14 −
24mm f/2.8G ED

AF-S Nikkor 14 −
24mm f/2.8G ED

Resolution 4608 x 3072 4288 x 2844 4352 x 2868
Aperture f/9.0− 22.0 f/10.0− 11.0 f/8.0− 11.0
ISO 200 200− 500 200− 640
Exposure 1/320− 1/8 1/500− 1/125 1/500− 1/160
Focal Length 27 24 25− 27
Imgs 108 56 101
Flash No No No
Formats JPEG/Raw Raw Raw

chessboard marker with transparent plastic (Figure 3.1.B) to prevent weather
damage. We used a seven by six chessboard that allowed us to track 64 plots
(we deployed nine) and placed it on top of an aluminum plate to prevent it
from deforming. Stakes were screwed on all markers and driven into the ground
to hold them in place. Plots had dimensions of 80 x 80 cm and were cap-
tured from an approximate height of 125 cm with an average focal length of
26.0 mm (35 mm equiv).

3.2.2.2 Photo-plot Work-flow

We applied EcoIS’ photo-plot work-flow (Figure 3.2.B) by visiting (weekly) nine
plots containing Mountain Avens (Dryas octopetala / integrifolia; hereafter re-
ferred to as Dryas) from Day Of Year (DOY) 167 to 219 which generated a
total of 60 photo samples with an average of four images per sample. Here it is
important to distinguish between photo samples and individual images: the first
is a series of consecutive images taken of a plot from different view points on one
specific date, the second is just one picture. Notice that there are redundant
images per photo sample to compensate for EcoIS’ raw error.

A total of 265 images were taken with three cameras (Table 3.1) which
produced raw files that were formated into Joint Photographic Experts Group
(JPEG; ITU, 1992) with a Raw Image Processing Application (RIPA) called
Rawtherapee (www.rawtherapee.com). The Sony camera generated raw and
JPEGs versions which allowed us to add 108 Sony generated JPEGs bringing
the total to 3752. Plots were visited between ten in the morning and seven in
the afternoon. Images were taken by avoiding shadows on markers, avoiding

2216 Sony images: 108 formated by Rawtherapee and 108 formated by the camera
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positions where chessboards reflected the sun and including only four markers.
EcoIS automatically created all the ISeries on a Lenovo W500 (Model W500,

Lenovo, Morrisville, North Carolina) laptop with eight gigabytes of memory and
an Intel Core Duo (2.66GHz) processor. After analyzing all the JPEGs, EcoIS
had effectively put all images into their respective ISeries and put all discarded
images into an error directory. The photo-plot work-flow ended by counting the
phenophases of interest on the created ISeries in an office back in Denmark.

3.2.2.3 Calculating Error

We calculated two types of error related to discarded images: raw error and
ISeries error. The first refers to the total number of discarded images which
points to how often EcoIS fails but does not reflect the proportion of missing
photo samples. The second refers the total amount of missing photo samples
and increases when EcoIS fails to serialize all the images of a photo sample.
The ISeries error expresses missing data that cannot be reclaimed by the photo
sample redundancy and gives us an idea of the impact of taking multiple images.
Additionally we looked at image quality by measuring the virtual movement
related to OpenCV’s warpPerspective function (Bradski and Daebler, 2008d) by
following specific elements throughout an ISeries and calculating their euclidean
distance from image to image.

We calculated missing and movement values from ISeries created with a pan-
tilt-zoom (PTZ) camera (Model VB-C50iR, Canon U.S.A., Lake Success, New
York) placed 30m above ground and compared them to the ones from EcoIS
ISeries. Given that the camera configurations were different we normalized the
focal length, distance to objects and crop factor using a simple pinhole camera
model (Bradski and Daebler, 2008a) in order to compare the EcoIS images
with the PTZ ones (model not shown). For the movement comparisons we
only considered inanimate objects that did not grow such as rocks, markers or
pebbles. Finally we characterized the impact of using camera formatted JPEGs
in the photo-plot work-flow by comparing the success rate of images formatted
using a RIPA with images formatted using the Sony camera. We report the
number of rejected images in both of these cases.

3.2.2.4 Using Image Series

Parrott’s three dimensional metrics (Parrott et al., 2008) are based on a stack of
successive spatial images sampled at uniform intervals called space-time cubes.
The smallest constitutional units are voxels which are regular pixels with an
added temporal dimension that, when put together, make up three dimensional
blobs (Figure 1b in Parrott et al., 2008). The two ways of making blobs are: with
26-voxel (Moore’s system) and with 6-voxel (Von Neumann’s system) neighbor-
hoods. These constructs are used to characterize three-dimensional data sets by
calculating metrics designed to represent a property. Among the ones described
in Parrott et al. (2008) there is shape complexity defined as the ratio of blob
volume to bounding box volume which ranges from zero (complex shapes) to one
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Table 3.2: Missing samples. EcoIS refer to Zackenberg ISeries. PTZ refer to
ISeries gathered in the James Reserve by a pan-tilt-zoom camera. ID is the plot
ID for EcoIS and the position ID for PTZ. Sample is the number of intended
samples. Missing is the number of samples that went missing. The last row
is the error calculated as the number of discarded images proportional to the
number of intended ones.

EcoIS PTZ
ID Sample Missing ID Sample Missing
4 8 0 0 365 88
35 8 0 6 365 82
59 4 0 1 365 35
0 8 1 2 365 25
16 4 1 3 365 44
20 4 1 4 365 34
24 8 1 5 365 76
47 8 2 7 365 89
63 8 2 8 365 82

Error: 13.33% Error: 16.86%

(simple rectangular shapes). There is also contagion measuring the dispersion
of blob types and ranges from zero (random mix of voxel types) to one (contigu-
ous landscape with little change). Finally, there is spatiotemporal complexity
which measures how one type of blob occupies the cube and also ranges from
zero (uniform blob shapes) to one (complex and random shapes).

To demonstrate EcoIS’ usability we applied Parrott’s metrics to see how well
they describe the resulting ISeries. We created an intermediate representation
of our ISeries data (space-time cube) by stacking binary versions of individual
images into a three dimensional cube(we used Moore’s system). We then took
this space-time cube and used it to run Parrott’s code which ultimately gave us
values for each of the metrics.

EcoIP (Granados et al., 2013) is a toolkit used for characterizing phenophases
of different species which bear distinct colors, like the tones of leaves in the fall.
It involves creating a statistical model with a set of training images and applying
it to an ISeries to produce a representative signal which is then analyzed by a
semiautomatic process that ends with the estimation of beginning and ending
dates. It is based on a Naive Bayesian model of color values applied to ISeries
images that produces temporal estimators by finding the inflection points of
fitted sigmoid signals. Among its outstanding features is the ability to use a
variety of color transformations to adjust the accuracy of the estimations.

To further demonstrate the quality of the generated ISeries, we estimated
flowering periods with EcoIP (Granados et al., 2013). Of all the deployed photo-
plots we chose plot four because it had a high sample number and a missing
value of zero (Table 3.2). We trained a model with the characteristic yellow of
the flowering Dryas and used that to generate the representative signal. The
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semiautomatic procedure described in Granados et al. (2013) then estimated
beginning and ending dates of flowering periods.

Finally, to demonstrate that no functionality was lost with the photo-plot
work-flow (Figure 3.2.B), we generated season counts by identifying phenophases
of interest (buds, flowers and senescent) in ISeries with an annotation tool
(Granados, 2010c). These phenophase counts (new work-flow, Figure 3.2.B)
were validated by two trained field ecologists and were compared with field
counts by looking at the actual counts (Table 3.3) as well as 50% flowering and
senescence onset estimators (Table 3.4; Høye et al., 2007, 2013; Iler et al., 2013).

Table 3.3: Dryas flowering phenology Counts. Values are from plot four. DOY
is Day Of Year. F are the field counts. I are counts done on ISeries minus field
counts where a plus (+) is for larger ISeries ,a minus (−) is for smaller and (0)
when there is no change. Buds are flowers that are not yet open, Flowers are
open Dryas giving access to their reproductive organs and Senescence is when
all the petals turn brown or are missing (Schmidt et al., 2012a). Total is the
sum of all the elements and AF is the average absolute difference between the
F and I that varied.

DOY
Buds Flowers Senescence Total

F I F I F I F I
167 75 +24 0 0 0 0 75 +24
169 93 +31 2 -2 0 0 95 +29
177 3 +22 108 -12 1 -1 112 +22
184 0 0 22 +14 91 +5 113 +19
190 0 0 1 0 70 +57 71 +57
197 0 0 0 0 105 +10 105 +10
204 0 0 0 0 101 +14 101 +14
211 0 0 0 0 105 -7 105 -7
AF 25.6 7 15.6 22.75

Table 3.4: 50% phenophase onset counts. Timing of phenological events in
Dryas using field counts and images series counts, respectively. Values represent
DOY. Field numbers come from counts done in the field. ISeries numbers come
from counts done on the ISeries. Flowering Onset is the DOY when 50% of
the plot flowered. Senescence Onset is the DOY when 50% of the plot became
senescent. Duration is (Senescence Onset)− (Flowering Onset).

Field ISeries
Flowering Onset 173 174
Senescence Onset 181 182

Duration 8 8
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3.3 Results

3.3.1 General

EcoIS spent a total of 962 minutes analyzing a subset of 248 images. On average,
it spent 3.8 minutes per image which meant that we had to leave it overnight to
process all the 373 images. It spent more time on error images as the algorithm
was designed to try different detection configurations before discarding an image.
Given the approximate view point height of 125 cm, we calculated an average
distance to the markers of 150 cm which produced images containing spheres
of 100 pixels in diameter and chessboard markers with dimensions of 170 x 200
pixels.

3.3.2 EcoIS Error

Raw error was the number of discarded images (180) proportional to the total
number of images (373) and was calculated to be 48.25% (Table 3.5). The
error for the Sony images formatted by the Sony camera was 67.59% (Table
3.5). Image taken with the Sony camera formatted by the raw image processing
application (RIPA) had error of 42.59% while the ones taken with the Nikon
cameras had an error of 38.85% (Table 3.5). The error of the images formatted
only with the RIPA was 40.37% (Table 3.5).

Of the 60 photo samples that should have produced 60 images for the ISeries,
EcoIS produced 52 (eight missing) which represented an ISeries error of 13.33%
(Table 3.2). The other 86.66% were correctly identified, re-projected and placed
in a directory as an ISeries image. Virtual movement for the EcoIS generated
ISeries was, on average, 1.85% of the image size which represented a distance
of 130.85 pixels. PTZ objects, on the other hand, moved an average distance of
0.31% of the image size.

3.3.3 Image Series

We calculated number of blobs, shape complexity, contagion and spatiotemporal
complexity (Table 3.6) with Parrott’s metrics (Parrott et al., 2008). We also
applied EcoIP’s semiautomatic process to the data of plot four which resulted
in estimations of the beginning and ending dates of the Dryas flowering period
(Figure 3.6). We further used the field and ISeries counts to calculate and
compare 50% flowering and 50% senescence onsets where the duration of the
Dryas flowering period was the same (8 days) with both count types (Table
3.4). Finally, we compared field counts and ISeries counts from plot four and
calculated the average differences in numbers to be 25.6, 7 and 15.6 for the bud,
flowers and senescence counts respectively which averaged to 22.75 for the whole
plot (Table 3.3).
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Table 3.5: Raw error. Img is total number of images, Discarded is the amount
of discarded images and Err is Discarded/Img. The row labeled Sony by Sony
contains the JPEG files that were taken and formatted by the Sony camera. The
Sony by RIPA and Nikon by RIPA are image taken by the Sony and Nikon cam-
eras and formatted by the raw image processing application (RIPA) Rawther-
apee (www.rawtherapee.com). The fourth row contains all RIPA formatted
JPEGs and the last row consolidates the first three rows to display the total
number of analyzed JPEGs.

Img Discarded Err
Sony by Sony 108 73 67.59%
Sony by RIPA 108 46 42.59%
Nikon by RIPA 157 61 38.85%
Sony & Nikon by RIPA 256 107 40.37%
Total Raw Error 373 180 48.25%

3.4 Discussion

3.4.1 Applicability of Image Series

3.4.1.1 Phenophase Counts

There was a tendency to undercount buds in the field (Table 3.3) due to the
difficulty of seeing them at an early stage (buds are small). On the other hand,
detection was facilitated on ISeries because technicians could identify the posi-
tion and state of a bud by referring to images in the past and in the future. In
other words, technicians had information in images from different dates which
hinted at the location of very small elements; if one image in an ISeries contained
an element in one location, the other images probably had the same element in
the same location.

The average difference between the field and ISeries counts dropped from
25.6 for the buds to 7 for the flowers. This was because the white flowers were
easier to detect on a dark green background in both the field and the ISeries
scenarios. This difference went back up to 15.6 for the senescent counts which
were more difficult to spot in the field as the Dryas turned brown and blended
with the background.

Despite the differences in the counts for all Dryas phenophases, 50% flow-
ering onset and 50% senescence onset for both the field and the ISeries counts
coincided well with a difference of just one day (Table 3.4) and the duration of
the flowering period (from flowering onset to senescence onset) was identical in
both cases (Table 3.4). This gives credibility to results generated with EcoIS
ISeries and suggests that the ecological indicators are contained in the ISeries
themselves.
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Figure 3.6: Phenophase estimations. Sigmoid fit (solid line) to the original
signal (dotted line) calculated by EcoIP (Granados et al., 2013) of plot four
containing Dryas. Training was done with images from other plots of the 2012
season. Circles are estimated from the inflection points of the sigmoid and
represent beginning and ending days of year (DOY). Squares show 50% onset
flowering and senescence calculated from field counts. Diamonds show 50%
onset flowering and senescence calculated from ISeries counts.

3.4.1.2 Parrott’s Algorithm

Parrott’s algorithm (Parrott et al., 2008) generated metrics that accurately de-
scribed the spatiotemporal form of the Zackenberg plots. The shape complexity
mean value (Table 3.6) was greater than 0.6 and points to simple blob complex-
ities where the blob shape tends to fill its bounding box. This agrees with ele-
ments in the Zackenberg plots moving little throughout their three stages (bud,
flower and senescent) effectively creating a cylinder in the space-time cube. A
contagion value of over 0.6 was expected as values that tend to one are consid-
ered to originate from continuous blobs which should be formed when we stack
our images one on top of the other. Though we would expect a value closer
to one due to the cylindrical nature of the Dryas elements in the space-time
cube, the result tended towards 0.5 due to the virtual movement caused by the
warpPerspective function (Bradski and Daebler, 2008d) which separates blobs
that should otherwise be together. This inadvertent separation also caused the
number of blobs (261) to be greater than the maximum amount of elements
present in the plot (134, Table 3.3); these two values should be closer as each
three dimensional blob is supposed to represents a Dryas element in the plot.
Finally we have the spatiotemporal value of 0.28 which agrees with the uniform
shape characteristic seen in the Dryas plots. In other words, instead of having
complex patters in the space-time cube we see long rectangle shapes which are
the longest in the time axis.

3.4.1.3 EcoIP

EcoIS was able to provide EcoIP (Granados et al., 2013) with ISeries that pro-
duced an estimation of the beginning and ending flowering dates for plot four
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(Figure 3.6). This shows that EcoIS generated ISeries maintain pixel positional
coherency and pixel color values even after going through OpenCV’s warpPer-
spective transform (Bradski and Daebler, 2008d). The estimated onset date fell
between the day where most of the Dryas were still buds (DOY 169) and the
day where most of them had bloomed (DOY 177) which was the same date
for the field and the ISeries counts (Table 3.3). The estimated ending date fell
between the day were most of the Dryas were flowering (DOY 177) and the date
where they were almost no flowers because they were mostly senescent (DOY
190) which again was equal for the field and ISeries counts (Table 3.3). Finally
there was at most four days of difference between the 50% onset field and ISeries
values and the ones calculated by EcoIP (Figure 3.6) which supports the notion
of EcoIS producing usable ISeries that contain spatiotemporal information fit
for estimations.

3.4.2 Accuracy

3.4.2.1 Serialization Error

On average, close to half (48.25%) of the JPEGs analyzed by EcoIS were dis-
carded because of lack of information (Table 3.5) and that value only dropped
to 40.37% when we ignored the Sony created files which had a negative effect on
the process (Table 3.5). If the same proportion of dates were missing from an
ISeries, it would have been useless; which is the reason we had multiple images
per photo sample. Though we managed to go from the raw error of 48.25%
(Table 3.5) to the ISeries error of 13.33% (Table 3.2), we also increased the
amount of images being analyzed which, in turn, increased the amount of anal-
ysis time. This suggests that the raw error is important because its reduction
directly translates into the reduction of the execution time and is relevant for
the user experience of EcoIS.

An ISeries error of 13.33% (Table 3.2) meant that 86.66% of the dates were
correctly serialized which was enough to characterize the season using EcoIP
(Figure 3.6), Parrott’s three-dimensional metrics (Table 3.6) and the 50% onset
values (Table 3.4). This error (13.33%) was lower than the PTZ deployment
error (Table 3.2) of 16.86% and though they did not have the same cause, they
could be compared as they both represented missing images. This comparison
was relevant because it showed that an ISeries is still useful despite a 13.33% IS-
eries error and showed that EcoIS generated ISeries could be used for ecological
analysis in the same way as ISeries generated with PTZ cameras in Granados
et al. (2013).

We experienced additional serialization error related to automatic camera
formatting of variables like white balance, saturation and contrast (Table 3.5).
We could clearly visualize the effect that the Sony camera had on the error by
comparing the first two rows of Table 3.5 where both represent JPEGs generated
from the same raw files yet have very different behavior. This points towards the
use of raw formats for automating phenology as the better choice over camera
generated JPEGs which have great variability because of diversity in manufac-
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Table 3.6: Parrott’s three dimensional metrics (Parrott et al., 2008). All values
except Number of Blobs range from 0 to 1. Number of Blobs is the amount of
blobs in the space-time cube. Shape Complexity ranges from 0 (complex ratio)
to 1 (simple ratio). Contagion ranges from 0 (random blobs) to 1 (continuous
blobs). Spatiotemporal Complexity (STC) ranges from 0 (uniform shapes) to 1
(complex shapes).

Value
Number Of Blobs 261
Shape Complexity Mean 0.664
Contagion 0.656
STC 0.282

turers, formatting variables and user customizations. The use of Rawtherapee
(www.rawtherapee.com) allowed the standardization of raw image formatting
variables reducing the error in EcoIS but also restricted the type of cameras
that we could use to those that could produce raw files.

Finally, EcoIS’ ability to analyze images depends on the lighting on the
chessboard being similar to the one on the spheres and although we tried to
avoid it, 24 images were excluded due to the photographer casting shadow on
at least one marker. None of these were correctly serialized and represented
13.33% of the total error. This implies that we can potentially reduce the error
by 13.33% if we are more careful when acquiring the images.

3.4.2.2 Virtual Movement

As expected from the outset, the amount of movement in ISeries generated with
the PTZ camera was less than the ones generated by EcoIS. Though it has three
degrees of freedom, the PTZ camera was able to return to a predefined position
which resulted in a virtual movement of 0.31%. EcoIS, on the other hand,
was less accurate (Figure 3.7) with a virtual movement value (1.85%) that was
six times larger. This greater variability (Figure 3.7) did not overly affect the
phenophase counts as individual elements could still be identified based on their
locations in prior and posterior images. Moreover an average difference of 130
pixels (1.85%) is not significant when compared to the resolution of the original
images (Table 3.1) or the generated re-projections (5000 x 5000 pixels).

The analysis done with EcoIP (Granados et al., 2013) was also mostly un-
affected by virtual movement (130 pixels) as its temporal estimations are based
on complete images instead of regions of interest. In contrast, Parrott’s (Par-
rott et al., 2008) numbers were affected where estimators like contagion were
expected to be closer to one but ended up being 0.656 (Table 3.6) due to blob
separation caused by virtual movement. This was addressed by using Moore’s
neighborhood (Parrott et al., 2008) which reduced the chance of blobs getting
separated due increased number of adjacent voxels.
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Figure 3.7: Virtual movement. A) Squares represent the position of the same
flower throughout an EcoIS generated ISeries. B) It is the movement in A
calculated with the movement values of the PTZ cameras. Both plots are a
subset of a complete image and the axis are given proportional to the total size
of the original image. This figure shows the difference in type of movement
between EcoIS and PTZ cameras.

3.4.3 Deploying EcoIS

3.4.3.1 In The Field

We looked at the workload already in place (Figure 3.2.A) and revised it in
order to increase automation while at the same time reduced the number of
steps at the field (Figure 3.2.B). We replaced the two steps needed to service
a plot (counting and digitizing, Figure 3.2.A) with just one (imaging, Figure
3.2.B) and in the same way replaced the hardware needed for the old work-flow
(PDA and mechanical counters) with one camera. And though this reduction
is relevant, it still remains to be seen if EcoIS’ overhead is optimal (in terms of
time and cost).

3.4.3.2 Time Of Analysis

Our experiments show that the algorithm spent 3.8 minutes (on average) ana-
lyzing images taken in eight weeks from nine plots (one photo sample per week
per plot). But how would EcoIS behave with more data? How long would
it take EcoIS to serialize a hypothetical year-round deployment that measured
once every day on nine plots? Having four pictures per photo sample of nine
plots we would have 36 pictures taken per day. This would give us a total of
13140 images per year which would need 49932 minutes to be serialized (34.67
days). We can reduce this hypothetical month if we segment the totality of
the images and analyze each in a separate process. If we had 16 processors, we
would reduce the 34.67 days to just 2.16 and as machines get faster this time
will be reduced even more. Additionally these are not man-hours and is time
where researchers can do other tasks.
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3.4.3.3 EcoIS Scope

Dryas are a few centimeters across when fully bloomed and flower stems usually
grow to a height of five to seven centimeters. This is a pattern that repeats
itself across the species at Zackenberg and is a very convenient characteristic
for EcoIS because virtual movement is minimized for elements that are close
to the ground. If we measured taller species (e.g. shrubs in the low Arctic)
the virtual movement caused by OpenCV’s warpPerspective function (Bradski
and Daebler, 2008d) would be too much to follow the plant through the ISeries.
Depending on the height it could even block the markers, rendering serialization
impossible. Our approach fits comfortably with species found at Zackenberg as
well as cases were the studied elements have manageable height as in Graham
et al. (2006).

3.5 Conclusions

We have introduced EcoIS, a toolkit that creates image series by re-projecting
and identifying images taken of specially marked plots. We have successfully
fit EcoIS into an established work-flow in a high arctic monitoring station and
reduced the amount of steps that were needed to sample field plots. We have
shown that the phenophase count differences between our photo-plot work-flow
and the established Zackenberg procedure do not affect the 50% onset event in-
terpolation values (flowering onset and senescence onset) used as an ecological
indicator. We have demonstrated that in addition to procuring phenological
counts, ISeries produced by EcoIS can be used to calculate spatiotemporal met-
rics (Parrott et al., 2008) and estimate beginning and ending phenophase dates
(Granados et al., 2013).

We found that the number of EcoIS discarded images is similar to more tra-
ditional PTZ camera setups and documented how camera formatted images can
increase this number. We showed that despite the presence of missing images,
temporal and spatial information was maintained in ISeries. We demonstrated
that the virtual movement of ISeries created with EcoIS, which was greater than
the ones created with PTZ setups, does not impede analysis based on visual in-
spection nor analysis based on automatic processes. Finally we show how EcoIS
can be used in a data intensive scenario by spreading the load among several
processors to adjust for the extended time of execution.
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Concluding Remarks

We described EcoIS deployed in an arctic monitoring context and showed how
it modified established processes in order to output relative phenological indica-
tors. We outline changes to both plot layout and procedure that exemplify the
use of aligned image series for ecological data acquisition. With our photo-plot
work-flow we demonstrate the possibility of reducing overall effort in the field
by allocating most of the labor out of it while still being able to successfully
create phenological indicators.

We show the richness of image series created by EcoIS by using them to
create spatiotemporal metrics, descriptive sigmoid signals and 50% ecological
indicators where annotations played an instrumental roll in creating the statis-
tical model needed for automatic calculation and where the basis for phenophase
counts. The ecological estimators produced with EcoIS image series contribute
to the detailed characterization of ecosystems that can be linked to remote
sensing measurements to advance in our understanding of natural phenomena.
Indeed the generation of high resolution aligned image series is an important
contribution from EcoIS towards the linkage between remote sensing and ground
based measurements.

EcoIS has an interesting effect on the growing volume of ecological data as
it both produces large quantities while at the same time provides a way to au-
tomatically align data in preparation for further use. As a data producer it is
concerned with generating the richest possible representation and it does this
through high resolution images series that have spatial, spectral and temporal
dimensions facilitating ecosystem characterizations. As it produces high quan-
tities of data, it expects other tools to use computer aided methodologies for
further analysis.
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Chapter 4

EcoIP

Preamble

EcoIP is directly related to ecological monitoring through phenology as it is
a tool that automates phenological measurements of data collected through
multiple years. EcoIP can work with image series generated from multiple places
and we exemplify it by using images gathered with a pan-tilt-zoom camera.
EcoIP is equally capable of using images generated by EcoIS and we show this
in our EcoIS paper where we generated signals of collected data from plants in
the high Arctic. In this way EcoIP is the consumer of the data produced by
EcoIS.

In our EcoIP paper we describe a process that is able to automate most of the
calculations leading to phenological estimations of multiple years and of multiple
species. In this way, EcoIP, addresses the automatic analysis of the growing
volume of data and allows information to be extracted from image series. EcoIP
has the ability of taking a vast amount of images gathered at ground level and
translating them into ecological estimators that answer questions about specific
species in a vast tracts of land; it is in this way that it contributes to the scaling
up of ground measurements that will eventually close the gap between remote
sensing and ground based data.

EcoIP, like EcoAN, produces ecological indicators by taking advantage of
the spectral, spatial and temporal information encoded in image series. They
are both consumers of image series and producers of ecological information
and though EcoIP does not have the capacity to annotate, it shares the goal of
trying to make sense of an increasing volume of data. They (EcoIP and EcoAN)
also have in common the capacity of taking historical image series taken in the
past and answering new questions by taking advantage of the richness of data
contained in images.

The EcoIP paper was submitted to Ecological Informatics1 -an International
Journal on ecoinformatics and computational ecology- on December 11th 2012

1www.journals.elsevier.com/ecological-informatics
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and accepted for publication on the 15th of March 2013. As with EcoIS, the
defendant is first author and is responsible for developing the toolkit and testing
its performance. The data used in the evaluation of EcoIP was provided by the
Center for Embedded Networked Sensing of the University of California (Los
Angeles) which collected images from a natural reserve in southern California.
The defendant was responsible for most of the initial drafts, integrating and
gathering co-author feedback as well addressing the entire review process.
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Abstract

Because of the increased number of cameras employed in environmental sens-
ing and the tremendous image output they produce, we have created a flexible,
open-source software solution called EcoIP to help automatically determine dif-
ferent phenophases for different species from digital image sequences. Onset
and ending dates are calculated through an iterative process: (1) training im-
ages are chosen and areas of interest identified, (2) separation of foreground
and background is accomplished based on a naive Bayesian method, (3) a signal
is created based on the separation model and (4) it is then fit to a sigmoid
that contains the dates of interest. Results using different phenological events
of different species indicate that estimated dates fall within a few days of the
observed dates for most cases. Our experiments indicate that color separability
and scene illumination are contributing factors to this error. EcoIP is imple-
mented as an open platform that encourages anyone to execute, copy, distribute,
study, change, and/or improve the application.

Keywords : Phenology; Digital Photography; Camera; Onset Ending Date;
Color Transformation; Bayesian Analysis

4.1 Introduction

Plant phenology is one of the most responsive and easily observable traits in
nature that are impacted by changing climate (Badeck et al., 2004). Indeed,
plant phenology relates strongly to primary productivity and is sensitive to mi-
croclimatic variations, thus its study is vital to understanding species responses,
ecosystem function, and the effects of climate Wright et al. (1999). The inter-
est in plant phenology and global climate change has increased significantly in
recent years, especially with estimates of the advancing initiation of spring ac-
tivity by both ground-based (Walther et al., 2002; Root et al., 2003) and satellite
observations (Slayback et al., 2003; Stöckli and Vidale, 2004). The new U.S.
National Phenology Network (Betancourt et al., 2007; Schwartz et al., 2012,
USA-NPN, www.usanpn.org) is devoted to observing continental-scale trends
in plant systems and growth dynamics.

Ideally, the best way to observe large-scale changes in phenological pat-
terns with climate change is with remote sensing applications that are linked to
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ground-based measurements. Indeed, the manual collection of phenological data
provides important information at the organism level while satellite imagery is
captured over wide areas but at low spatial resolution, often too coarse to detect
species and community level responses (Badeck et al., 2004). The use of new
technology is being investigated to scale up (Allen et al., 2007) and standard-
ize ground-based measurements by using a subset of species (Betancourt et al.,
2007; Schwartz et al., 2012, USA-NPN, www.usanpn.org), and by modeling lo-
cal climatic conditions (Jolly et al., 2005). Though methods are still lacking,
the use of visible light digital cameras holds promise (Richardson et al., 2007).

Color in digital photography, computer vision and plant physiology have
been used in studies that range from the extraction of individual concealed
leaves in an image (Neto et al., 2006) to assessing the forest under story (Liang
et al., 2012). Simple image processing techniques are making standard the use of
digital cameras for phenological event detection (Graham et al., 2009; Morisette
et al., 2009; Richardson et al., 2007).

Agriculture is at the forefront of the use of image processing (Slaughter
et al., 2008). Automation through digital photography was seen as early as
1995 in a weed detection application (Woebbecke et al., 1995). The automatic
identification and control of unwanted species also occurs in precision agriculture
(Swain et al., 2011; Granitto et al., 2000) with concurrent work on the relation
between leaf color and nutrient deficiencies (Wiwart et al., 2009) and automatic
identification of the visual symptoms of plant disease (Camargo and Smith,
2009).

Many ad-hoc methods have been developed for using color to examine tar-
geted aspects of plant health and phenology (e.g., (e.g Camargo and Smith,
2009; Ide and Oguma, 2010). Color is attractive because calculating values in
an image is straightforward and many open-source software packages have func-
tions that facilitate this analysis, such as the Python Imaging Library (Secret
Labs AB; Linkping, Sweden; www.pythonware.com), and the R environment (R
Core Team, 2013). However, using images captured in natural environments has
some disadvantages such as color shifts caused by illumination changes which
disrupt color-based analysis (Richardson et al., 2007), and displacements in Re-
gions of Interest (ROI) caused by plant growth or movement by wind which
requires repeated manual segmentation (Ide and Oguma, 2010). Solutions to
these problems include the projection into other color indexes like gcc Sonnen-
tag et al. (2012) and transformations to other color spaces like CIE L*a*b* CIE
(Commission Internationale de l’Eclairage) (1986), which have been used to in-
crease stability when dealing with illumination issues Sonnentag et al. (2012)
and have been shown to greatly contribute toward an optimal segmentation
process (Panneton and Brouillard, 2009). There are also many ways to auto-
mate image segmentation (Cheng et al., 2001; Litwin et al., 2001) that address
plant displacement. However, no single color transformation or segmentation
method may be able to capture all the phenological events of a single species
(e.g., green-up, flowering, senescence), much less that of multiple species that
may be captured within one or several images.

The recent expansion of imaging hardware, such as portable and Internet-
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connected visible light digital cameras, coupled with methods such as repeat
photography and digital image processing, provide the means for detecting a
wide range of scales of plant phenology, from mosses (Graham et al., 2006) to
forests Richardson et al. (2007). Indeed, visible-light digital cameras are becom-
ing common-place in research for quantitatively describing vegetation (Crim-
mins and Crimmins, 2008).

A few fixed digital cameras capturing plant images once or twice a day cre-
ates a data stream that can be readily hand-processed with excellent results
Graham et al. (2010). The proliferation of fixed-perspective Internet-connected
cameras that are placed in either ecological areas or human-dominated systems
is creating a situation where the data stream is approaching a limit after which
it is no longer manually controllable. A new generation of inexpensive robotic
pan-tilt-zoom (PTZ) cameras can now be employed to maintain high-resolution
panoramic displays of natural environments (Song et al., 2006), creating a data
stream that is orders of magnitude greater than a fixed view camera. For exam-
ple, a downward-facing camera on a tower that can pan 350◦, tilt 90◦, and has
a 10− x zoom, may have a 10◦ view angle and thus can collect many hundred
unique-location images from a single vantage point. Thus, many more species
and phenological events may be captured with a PTZ camera at the cost of
much larger and potentially unwieldy image data sets being created.

Inspired by the need of investigators working in plant phenology in their
efforts to use ground-based images for scaling up to regional phenomena cou-
pled with the increased number of cameras used in environmental sensing and
the tremendous image output of PTZ cameras, we have created a flexible,
open-source software solution called EcoIP to use images to determine multiple
phenophases for different species. It has been created specifically to address the
lack of an open-source automated system for plant phenology and its objectives
directly relate to ongoing research on segmentation and color transformations
in this field. The paper is organized in the following way: Section two provides
details on the process we followed and how we used the naive Bayesian model
in EcoIP. In section three we describe our results and in section four we outline
their relevance within the current state of the art. There is a short description
of the future work in section five and we finish with conclusions.

4.2 Materials and Methods

4.2.1 Processing Images With EcoIP

The input for the Ecological Image Processing (EcoIP) software toolkit (Grana-
dos, 2010a) is a series of images taken of the same location, with the same
camera and at the same time of day. Through an iterative process (Figure 4.1)
EcoIP creates a representation of the image series which is then used to estimate
onset and ending dates of phenophases.
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Figure 4.1: EcoIP data processing work-flow begins with creating the ITS. Mod-
els and signals are created with input from image series. Model creation is
iterative. Data used for model creation is ignored in signal generation.

4.2.1.1 Image Training Set Generation

The creation of Image Training Sets (ITS) is the first step in the iterative pro-
cess to find an optimal model that describes a phenophase. We generate it by
selecting a subset of images that contain different types scenarios of one year
in an image series (winter, summer, sunny, cloudy, rainy, foggy...). We then
manually identify a subgroup of pixels from individual images within the ITS as
representative of a phenophase with the aid of an annotation tool (Annotation
tool for Matlab Granados, 2010c) that allows for the selection of pixels by en-
closing them with annotated polygons or annotations. Pixels that represent the
phenophase of interest are labeled as foreground (FG; e.g., leaves and flowers)
and pixels that represent everything else are labeled as background (BG; e.g.,
sky, soil, and surrounding plants). Care is taken when creating the training set
to include enough images to capture a representative sample of the changing
phenology (e.g., beginning, middle, and end of the phenophase of interest) and
though filtering noisy (foggy and rainy) images is common, we include them in
the training set.

4.2.1.2 Choosing the Color Transformation

We determine frequency distributions of BG and FG pixels for each color trans-
formation (calculated from original RGB coordinates) supported by EcoIP.
These are used to manually select the appropriate transformation (Table 4.1)
which is rated based on its ability to maximally separate BG and FG pixels
for each phenology and species of interest (Figure 4.2). After choosing a color
transformation we adjust model variables such as Bayesian class prior proba-
bilities, smooth filter characteristics, number of bins for frequency analysis and
model accuracy calculation characteristics. These adjustments directly affect
the accuracy of the resulting model.
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Figure 4.2: Examples of EcoIP’s histogram comparison between background
(open symbol) and foreground (closed circle) of two color transformations. The
color transformation values are binned to 100 values and the response represents
the proportion of pixels per bin, normalized by the total number of pixels in
the image. (A) Displays the second (*a) channel in the CIE L*a*b* color space
and is an example of good separability between FG and BG. (B) Displays the
excess green color index and is an example of a bad separability.

4.2.1.3 Naive Bayesian Model generation

The creation of a Naive Bayesian Model (NBM) is done automatically by EcoIP
and results in an R (R Core Team, 2013) data file. By default an S-fold cross-
validation (Bishop, 2007, p. 33) is used to calculate the false positives (incor-
rectly classified FG pixels) and the false negatives (incorrect BG pixels) of the
training data and is used to rate and compare models. Their values are indicated
relative to the total number of pixels examined and can be used to predict how
the model will behave with new data for the same phenophase. Re-annotating
or modifying the images in the ITS, selecting a different color transformation,
and further adjustments to EcoIP variables is part of the iterative process (Fig-
ure 4.1) to determine an optimal NBM that is chosen among the results of the
manual iterations and that minimizes the false positives and false negatives for
specific phenophase.

4.2.1.4 Phenology Signal generation

Each NBM is then applied to a series of new images to classify each pixel as
either FG or BG resulting in a new series of binary (black and white) images.
Counts of binary pixels are used to create proportion values for each image by
dividing the number of identified FG pixels by the total image pixels. Blob
count values, which require a morphological transformation (Bernd Jähne and
Horst Haußecker, 2000b, p. 483) of the original binary image, are also created
by counting the number of contiguous areas of white (FG) pixels in the resulting
binary image. The signal is then a sequence of these values related to an image
and a date. It is important to note that data used to create the models are set
aside (Figure 4.1) when calculating the values (Bishop, 2007, p. 32) to avoid a
preexisting bias towards the data used for model creation.
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Table 4.1: Summary for model values. Sample size is the range of years used
for each phenophase. We display the color transformation that resulted in the
best model for each phenophase. The Average error (in days) is the average
absolute value of the difference between estimated dates and observed dates for
each phenophase.
Phenophase Sample Size Transformation Average

Error
Summer ’Oak Canopy’ 2009− 2010 CIE L*a*b* 2.00
Autumn ’Oak Canopy’ 2009− 2010 CIE L*a*b* 1.25
Summer ’Oak Close-up’ 2007− 2010 Excess Green 1.39
Autumn ’Oak Close-up’ 2007− 2011 CIE L*u*v* 3.64
Bracken Fern 2008− 2011 Excess Green 2.79
Wallflower 2007− 2011 YCbCr 2.84
Average Total 2.78

Our data contained species captured by several signals. In these cases it was
of interest to consider the phenological behavior of a set of signals effectively
increasing the scale given by just one image frame. We created a consolidated
signal by averaging the values of a date of individual signals. The resulting
signal, like the individual signals, is a sequence of values.

4.2.1.5 Estimating Phenology Dates

Phenological dates are estimated by a semiautomatic process of fitting the data
with a sigmoid function (Eq. 4.1) and then identifying the inflection points
in these functionks (Ide and Oguma, 2010; Richardson et al., 2007). The first
inflection point in the phenological signal (onset date) is located where the
second derivative changes sign in the first sigmoid (positive Eq. 4.1) and the
second point (end date) is where the second derivative changes sign in the second
sigmoid (negative Eq. 4.1). This places the inflection point midway between
the maximum and minimum of the sigmoid. The ’a’ and ’b’ values in Eq. 4.1
define the vertical range, ’c’ controls horizontal translation of inflection points,
’d’ controls steepness and ’x’ is time.

f(X) = a± b

1 + e(c−d∗X)
(4.1)

For the consolidated signals we implemented two approaches for estimating
the phenological dates: the first is the process that was just described applied
to a consolidated signal. The second estimates the onset date and ending date
of a phenophase with the minimum onset date and maximum ending date of
the component signals.
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4.2.2 Applying EcoIP

4.2.2.1 Gathering Images

We used two PTZ networked video cameras (Model VB-C50iR, Canon U.S.A.,
Lake Success, New York) placed on 30m fiberglass towers in the University of
California James Reserve located in the San Jacinto Mountains of southern Cal-
ifornia (33◦48′30”N, 116◦46′40”W ) at 1658m elevation in a mixed conifer and
hardwood forest. The cameras were installed at different times starting in 2005.
The reserve acts as a testbed for technology developed by the Center for Embed-
ded Networked Sensing (CENS), an NSF funded Science and Technology Center
located at the University of California, Los Angeles (http://research.cens.ucla.edu).

Acquired images were sent to a repository at CENS where each one contained
meta-data describing the time of day, the PTZ coordinate, and location of the
camera inside the reserve. The files which had a resolution of 480x640 pixels
were kept in Joint Photographic Experts Group (ITU, 1992) format with a
minimum amount of compression. In general we collected images ranging from
2006 to 2012. From the repository we created multiple series of images (PTZ-
series) for pan-tilt-zoom coordinates which make up our raw input and contain
species of interest. As in other digital repeat photography projects (Ide and
Oguma, 2010; Sonnentag et al., 2012) there were missing data due to adverse
weather conditions, failures in hardware and software, and changing on-site data
collection policies. Table 4.1 summarizes the ranges of each PTZ-series for each
selected species and phenology.

4.2.2.2 Selected Species and Phenologies

To demonstrate the flexibility of analysis we selected three species that pre-
sented noticeable (in the visual spectrum) phenological changes, had a minimum
of photography issues and continued for more than one year: oak (Quercus sp.),
bracken ferns (Pteridium aqualinum), and wallflowers (Erysimum capitatum)
(Figure 4.3). The perennial oak and bracken fern were different because we
could predict where the leaves would emerge for the oak whereas for the under-
ground rhizome of the bracken fern, such predictions were difficult and so a more
zoomed out approach was necessary. For the annual wallflower, the uncertainty
of location was taken to an even greater extreme requiring a larger canvassing
of the area with images.

Phenophases for the three species included the green-up and senescence for
the oak, the green-up and senescence for the bracken ferns, and the blooming
period for the wallflowers (mid-summer). We collected two types of PTZ-series
for the oak: a full canopy view (’oak canopy’) and a close-up of the canopy (’oak
close-up’) where individual leaves could be isolated; we estimated summer and
autumn colors in each.

The ’oak canopy’ images (Figure 4.3.A) had an oak tree in the foreground
and a view of the surroundings that included pines, other oaks, some bushes,
remote mountains, and the sky in the background. The ’oak close-up’ images
(Figure 4.3.B) were zoomed such that oak leaves filled all of the image in summer
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Figure 4.3: Representative images captured from three PTZ cameras at the
James Reserve. (A) Yellow meadow wallflowers (Erysimum capitatum). (B)
Close-up of deciduous oak (Quercus sp.). (C) Bracken ferns (Pteridium aqual-
inum). (D) Canopy of deciduous oak (Quercus sp.).

while fallen leaves, debris, and snow were visible through the leafless canopy in
winter. For both the ’oak canopy’ and ’oak close-up’ we trained a summer and
autumn model, where the summer one used green leaves for their input and the
autumn one used red (’oak canopy’) and yellow (’oak close-up’) leaves for theirs.
We used different autumn colors for ’oak canopy’ and ’oak close-up’ because
of different microclimates experienced between the two types of photographed
individuals. This is further exacerbated by the camera’s automatic adjustments
controlled by drastically different lighting environments where everything in the
’oak canopy’ image is modified by the excessive brightness of the sky as opposed
to a more homogeneous frame for the ’oak close-up’.

The bracken ferns (Figure 4.3.C) were located in a meadow where they
shared space with the wallflowers (Figure 4.3.D). Leaf litter from nearby trees
(fallen branches, pine needles, and autumn leaves) constituted the background.
We identified the green color of the ferns and the yellow of the wallflowers as the
specific colors related to the growth phenology of the ferns and the flowering time
for the wallflowers. For the wallflowers signals were generated from the resulting
blob counts whereas for the rest of the species used the initial proportions where
used.

From 2006 to 2012 over 700000 images were collected of which 79000 con-
tained images of chosen phenologies. We further sifted the set into one series of
’oak canopy’, four series of ’oak close-up’, eight series of ferns and ten series of
wallflowers. The ’oak canopy’ was trained with a subset of the series while the
’oak close-up’, fern and wallflower were trained with one, one and four of their
respective series. Given the proximity of the locations of the images of the fern
and the wallflowers, we created consolidated PTZ-series for each.
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4.2.3 Estimated vs. Observed Data

To generate our observed dates for the wallflowers we marked an onset date
when we identified the first visible flower and an ending date when the last
flower disappeared. For the ferns we marked an onset date when we saw the
first green fern frond emerge from the soil and an ending date when we visually
assessed that 90% of the green fronds had turned dark yellow or light brown.

For the summer ’oak canopy’ we marked an onset date at the first signs of
new leaves and an ending date when 90% of the canopy had lost its green and
turned red. For the autumn ’oak canopy’ we marked an onset date when 90%
of the canopy had changed to red and an ending date when most of the leaves
of the canopy had fallen. For the summer ’oak close-up’ we marked an onset
date when most of the emerging leaves turned green and an ending date when
90% of the leaves had turned yellow. For the autumn ’oak close-up’ we marked
an onset date when 90% of the leaves had lost their dark green color and turned
either light green or yellow and an ending date when 90% of the leaves had
fallen from the tree.

Table 4.2: Cross validation error. Percentage of false negatives (pixels that were
misclassified as BG) and false positives (pixels that were misclassified as FG)
calculated for each species phenophase. False Negatives were calculated using
an s-fold method (Bishop, 2007). Wallflower values are prior to blob analysis
calculations.
Phenophase False Negatives False Positives
Summer ’Oak Canopy’ 8.91 4.51
Autumn ’Oak Canopy’ 25.32 0.31
Summer ’Oak Close-up’ 2.11 1.38
Autumn ’Oak Close-up’ 17.61 0.025
Bracken Fern 5.13 1.20
Wallflower 63.86 5.50

After determining the observed dates we calculated model accuracy by com-
paring them with the estimated dates calculated by the algorithm. For the
consolidated case (ferns and wallflowers) we first calculated observed consoli-
dated dates by considering an onset date as the minimum of all observed onset
dates (per phenophase) and, in a similar way, considering an ending date as the
maximum of all observed ending dates (per phenophase). We then compared
the observed dates with the two approaches (section 4.2.1.5) used to calculate
the estimated dates.
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4.3 Results

4.3.1 Size of ITS

To train the ’oak canopy’ models we used the totality of one of the two years
(Table 4.1) in the image series (294 images). Since images did not change on
a daily basis we reduced this number to 124 (roughly ten images per month)
for ’oak close-up’ in the hope of producing models with similar error values.
By creating a model with a smaller error (summer ’oak close-up’) than the one
created with the larger ITS (summer ’oak canopy’), We show that we can get
workable models with a reduced image sets (Table 4.1).

4.3.2 Selected Color Transformations

We selected the color transformation based on the model error values (Table 4.2)
and on EcoIP’s histogram comparison (Figure 4.2). As in other projects (Ide
and Oguma, 2010; Panneton and Brouillard, 2009; Richardson et al., 2007) the
excess green color index and the CIEL*a*b* (CIE (Commission Internationale
de l’Eclairage), 1986) color space optimized vegetation color analysis. These
two color transforms were selected for all the green phenophases in our study
(Table 4.1). Only in autumn ’oak close-up’ and wallflower did we use different
color transformations (Table 4.1).
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Figure 4.4: Distribution of error values (in days) for each phenophase. Mean
value is marked and displayed for each phenophase. Though outliers are not
included in the figure, we include them in the mean value calculation.
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4.3.3 Model Error

The cross validation error (Table 4.2), used to compare models, provides hints at
the behavior of the model with real data. We used the false negatives and false
positives as accuracy measures based on the assumption that the distribution of
the training and real data are the same, since the camera, the time of day and
the location were the same for training and real data. Although the wallflower
model appeared to have a poor cross validation error (Table 4.2), applying
the blob count method suppressed the greater-than and smaller-than blobs to
contribute to a well behaved average error of 2.84 (Table 4.1). The remainder
of our experiments fell within 90% accuracy (Table 4.2) except for the autumn
’oak close-up’ (25.32% false negatives) and autumn ’oak canopy’ (17.61% false
negatives) of which the autumn ’oak canopy’, despite the 17.61%, led to a good
average error of 1.25 (Table 4.1).

Figure 4.5: Sigmoid fit (solid line) to the phenological signal (dotted line) of an
autumn ’oak close-up’. Shaded areas represent missing data. Training was done
with images from 2009. Circles are estimated dates and diamonds are observed
dates for both the onset and ending of autumn in the ’oak close-up’ image
series. 2008 and 2011 not included due to missing data. Fit is particularly noisy
in 2010 where there is a large difference between the estimated and observed
ending date.

4.3.4 Dates of Phenophases

The average error for the combined experiments was 2.78 (Table 4.1), indicating
that, on average, the estimated onset and ending dates fell within a range of
±2.78 d of the observed dates. The best results occurred for the autumn ’oak
canopy’ that had an error of 1.25 days and the worst value was for the autumn
’oak close-up’ with 3.64 error value. This relatively poor performance is a result
of an error of 24 days in the 2010 end of Autumn date (Figure 4.5) due to a
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noisy peak that is near and similar in size to the main signal. In Figure 4.4 we
compare the error distribution of all the studied phenophases.

4.3.5 Consolidated PTZ-series

The comparison of the consolidated observed dates with the ones estimated by
the first approach (section 4.2.1.5) resulted in an average error of 3.87 days
and 3.5 days for the wallflowers and ferns respectively (Table 4.3). When we
compared the consolidated observed dates with the ones estimated by the second
approach (section 4.2.1.5), we saw an average error of 2.9 days and 2.75 days for
the wallflowers and ferns respectively (Table 4.3). These values coincide with
the ones in Table 4.1 and represent the accuracy of our method for multiple
PTZ-series of the same species.

4.4 Discussion

4.4.1 Phenology and the EcoIP Toolkit

With the advent of new technology it is becoming easier to generate great
amounts of digital image data. Pan-Tilt-Zoom cameras increasing resolution
coupled with portable field data collection devices and large databases are cre-
ating situations where the amount of digital image data collected can exceed the
capacity for prompt analysis. The method described in this paper, together with
the EcoIP toolkit, contribute to the automation of phenological data analysis
based on digital images by completely controlling the signal creation. The use
of a naive Bayesian model to generate a probabilistic representation of a color
transformation to determine the dates for phenophases allows rapid and robust
model creation that directly translate into semi-automatic date estimations.

Table 4.3: Average of the absolute value of the difference between the con-
solidated estimated dates and the observed dates. The consolidated sigmoid
error is estimated from the consolidated signal inflection points (first approach,
section 4.2.1.5). The individual sigmoid error is estimated from minimum and
maximum estimates (second approach, section 4.2.1.5).
Type Consolidated

Sigmoid Error
Individual Sig-
moid Error

Fern Consolidate 3.50 2.75
Wallflower Consolidate 3.87 2.90

EcoIP is implemented as an open platform that encourages anyone to exe-
cute, copy, distribute, study, change, and/or improve the application (Granados,
2010a). The code is made available for download and examples are provided for
every function to aid the user. EcoIP is designed as an R (R Core Team, 2013)
package and it can easily be installed in any platform where R is available. Help
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within EcoIP is provided with sample data and executable examples. Two data
sets are included: One of an Oak and another of wallflowers.

EcoIP has a lot of room for improvement. One of its major weaknesses is
that it focuses exclusively on color. It ignores other, potentially useful, aspects
of the image like the temporal information (contained in the image series) that
could be used to make decisions based on preceding and posterior images. The
texture and shape of the FG and BG could be added as an additional dimension
to the NBM. EcoIP is also constrained by the statistical model it uses. For the
moment it only works with a naive Bayesian approach but there could be an
increase in accuracy if we could experiment with approaches like support vector
machines, FFT analysis, wavelet transform or neural networks.

4.4.2 Color Transformations

In our experiments, there was no optimal color transformation that allowed
separation of phenological events among species or even within species. For
example, for the summer ’oak canopy’ we used a version of the excess green
color index (Richardson et al., 2007; Woebbecke et al., 1995) to detect green
leaves, but in autumn we used CIEL*a*b* (CIE (Commission Internationale de
l’Eclairage), 1986) to detect the color change from green to red leaves. Indeed,
color transformations influence image segmentation and posterior classification,
and should be incorporated as yet another variable when doing these analysis
as opposed to fixing it on one value.

EcoIP has not only tackled image series that are characteristically green
(summer ’oak canopy’, summer ’oak close-up’ and ferns), it has also extended
previous ecological work (Ide and Oguma, 2010; Richardson et al., 2007; Sonnen-
tag et al., 2012) by estimating onset and ending dates of non-green phenophases
(autumn ’oak canopy’, autumn ’oak close-up and wallflowers). Our results show
that there are other color transformations (YCbCr, CIE L*u*v*) that are better
equipped for segmenting these non-green phenophases and therefore a broader
set of transformations should be considered when doing analysis of phenophases
like the blooming period of flowers (wallflowers) and the autumn period in oaks
(autumn ’oak close-up’ or autumn ’oak canopy’).

The choice of color transformation to analyze the phenophases of the ’oak
canopy’ and ’oak close-up’ were different in order to maximize the signal and
detect the timing of events with the greatest resolution. However, the ability
to compare the two data streams analyzed with different methods may thus be
compromised. The flexibility of EcoIP allows analysis with any choice of color
transformation and so it is left up to the investigators using EcoIP to use the
system as a tool for data exploration.

4.4.3 Noise

While the color signals contain the underlying structure of the phenophases,
they also contain noise (Figure 4.6) which represent a high concentration of
false positives and negatives. Noise in images is produced by natural changes
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Figure 4.6: Bracken fern raw signal. 2008 is ignored due to noisy values.

in illumination, undesired automatic camera adjustments, and hardware failure.
The choice of a color transformation that minimizes the effect of illumination
(e.g., L*a*b, where luminance is separate from the color channels) can reduce
naturally-occurring noise while color transformations with less separation of
FG and BG (Figure 4.2) resulted in a nearly random signal (data not shown).
Mitigation of camera-created noise requires full control of the camera settings
(aperture, exposure time, and white balance), which may not be possible in
many situations where cameras are controlled by third parties (e.g., land owners
or reserve managers). We also experienced hardware and software malfunctions:
In Figure 4.6, before the beginning of the 2007 season, there are uncommonly
large signal responses caused by erroneous exposure times, erroneous aperture
values or bad focus resulting in completely black or blurry images. Given the
amount of ignored data due to lack of camera resilience and camera control, we
argue that more emphasis should be placed on these two aspects to mitigate
these types of errors.

An additional problem with images in natural areas is the impossibility to
separate regions of interest based on color alone. For example, Figure 4.7 has
two peaks per season, which is caused by direct sunlight striking fallen leaves
in the meadow that reflect a color that is nearly identical to the yellow of the
wallflower. We reduced this effect by manually identifying and ignoring the
erroneous signals. Something similar occurred with the colors in summer ’oak
close-up’ where autumn yellow and summer green were being classified as FG
pushing the estimated ending summer date approximately one month after the
observed one. Figure 4.8 is used to compare the position of each element in the
excess green color index. We see a large separation between greens of summer
and the browns of bark and fallen leaves. But unfortunately, autumn yellow
and summer green are in close proximity, which led to the misclassification. We
see the same behavior in the summer ’oak canopy’ where the green of the oak
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is classified as FG together with the greens of the distant pines. This however
did not incur in any date miscalculation because the pine colors were constant
throughout the summer.
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Figure 4.7: Consolidated sigmoid fit of the wallflower signal from six indepen-
dent PTZ image series. Circles on sigmoid are estimated dates and diamonds
are observed dates for both the beginning and ending of the blooming period of
the wallflower image series. Here we show a specific type of noise where there
are two peaks per season instead of one.

4.4.4 Consolidating Signals

The process of adding different local elements into a global response is a way to
visualize the behavior of individuals with respect to their containing ecosystem.
Our consolidated signal was aimed at giving global onset and ending dates for
ferns and wallflowers. Results showed that the way the consolidation was done
had an effect on the accuracy. While we expected the first approach (section
4.2.1.5) to suppress erroneous responses (given the added data), we found that
it increased the final error (Table 4.3). The averaging of noisy signals, together
with the recalculation of inflection points resulted in a final error that surpassed
the consolidation done with the second approach (section 4.2.1.5). We therefore
preferred it to determine the onset and ending dates of ferns and wallflowers.
We see that we need to consider additional noise and error factors of procedures
used to consolidate local measurements.

4.5 Future Work

An increase in the accuracy of phenological date estimates can occur on sev-
eral fronts. Computer vision features such as texture (Bernd Jähne, 2005, p.
435), shape (Bernd Jähne, 2005, p. 515), and even motion (Bernd Jähne, 2005,
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Figure 4.8: Distribution of color values in the excess green color index for sum-
mer ’oak close-up’.

p. 397) can mitigate or even completely remove some sources of noise in im-
age series used for phenology. Motion and an understanding of the temporal
characteristics of the phenomenon of interest is of particular interest given the
characteristics of time series data. Motion features can separate ROIs (a moving
branch compared to an immobile soil surface) and short-term situations, like the
sun reflecting off a patch of fallen leaves, can be removed by incorporating tem-
poral filtering (a flower persists in one location through many images whereas a
sun fleck may move within a day or within a season). One exciting possibility,
after the automatic detection of colors within an image have been established
with EcoIP, is to create a more independent ROI detector. In this way, images
from PTZ cameras may be captured at a high frequency and in locations not
pre-programed and then subsequently analyzed for ROIs. If nothing is found,
then the image is discarded, reducing the transmission load from remote ecolog-
ical reserves and reducing image storage needs. If an ROI is detected, then the
image may be sent to a human operator for evaluation and feedback refinement
of the NBM.

4.6 Conclusions

We have introduced EcoIP, a toolkit that calculates onset and ending dates of
phenologies of interest based on pan-tilt-zoom image series. In our experiments
the toolkit estimated with an overall error of 2.78 days from the observed date
and was able to analyze phenophases with characteristic colors different than
green. We consolidated individual image series to describe ecosystems that
could not be captured in one scene. We found that color separability and scene
illumination are contributing factors to the overall error. And we were able to
effectively use initial false negative and false positive values to pinpoint usable
models.
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Concluding Remarks

We have described EcoIP as a toolkit that fits into ecological monitoring by
providing the means to automatically analyze phenological data in the form of
image series. In this chapter we took images taken from a tower camera that
produced aligned images by default, but we could have used image series pro-
duced by EcoIS just as easily. EcoIP takes advantage of spectral and temporal
dimensions contained in image series and assumes spatial alignment to produce
its estimations.

Annotations are a constitutional part of how EcoIP outputs its estimations;
they allow the creation of the statistical model needed to automate image series
analysis leading to ecological estimations. In this respect EcoIP depends on
applications like EcoAN to provide image series annotations that reveal what
parts of the image are of interest and what parts are not. In the same way
EcoIP depends on applications like EcoIS or processes that produce aligned
image series.

EcoIP directly addresses the increase of data by providing a way to make
deductions from vast quantities of information with minimum human interven-
tion. By creating summaries in the form of signals or ecological indicators,
EcoIP exemplifies a way to make use of massive amounts of data. It describes
a methodology that can easily scale up to handle images gathered with EcoIS,
tower cameras or even unmanned areal vehicles and gradually provide enough
information to close the gap between ground based and remote measurements.

EcoIP is not only designed to handle big quantities of data but is also able to
elucidate behavioral patterns from different species throughout the year. This
ability is of great importance to the effort of scaling ground based measurements
as it describes individual behavior of collocated species and can further associate
what is seen in remote sensing methodologies with ground based ones. EcoIP
also describes a method that consolidates signals of different locations from the
same species effectively allowing scientists to cover vast tracts of land with high
resolution imagery and analyze them with minimum interaction.
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Chapter 5

EcoAN

Preamble

Monitoring is again the starting point for our discussion as we relate EcoAN to
extracting information from image series of a monitoring deployment in the high
Arctic where we center our attention in plot based flowering phenology. EcoAN
emphasizes the importance of creating metadata for collected measurements and
it does so by implementing and evaluating annotations on image series. EcoAN
is concerned with the creation of metadata that can lead to the curation and
generation of content from ecological data in the form of image series.

EcoAN, as EcoIP, is able to use image series to produce ecological indicators
that answer relevant questions about ecosystems. In our paper we exemplify
its use by using image series produced by EcoIS; but as with EcoIP, it can
use image series produced from various sources as long as they are aligned. It
differentiates itself from EcoIP in the sense that it is not a fully automatic image
series analysis tool but rather an annotation interface that depends and takes
advantage of interaction with knowledgeable technicians. It is also capable of
generating very accurate measurements that lead to estimators that are not yet
possible with techniques used in EcoIP.

EcoAN contributes to the scale up of ground based measurements as an
instrumental part in the training of statistical models like the ones used in
EcoIP. Indeed annotation is an important part of supervised machine learning
and EcoAN is part of the first steps to create a fully automatic statistical model.
Data curation and the evaluation of automatic processes is also important when
analyzing any type of data and EcoAN facilitates these processes for image series
originating from ecological monitoring efforts. Finally, EcoAN contributes to
the ground based knowledge by adding content in the form of annotations to
existing image series data.

Our paper has not yet been submitted, but we plan to so right after we
hand in this dissertation. We hope to submit to one of the following venues:
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Ecological Informatics1, Methods in Ecology And Evolution2 or the new ACM
International Workshop on Multimedia Analysis for Ecological Data3. As with
the previous papers, the defendant is first author and is responsible for devel-
oping the toolkit and testing its performance. Images used in the toolkit evalu-
ation were provided by technicians of the Department of Bioscience at Aarhus
university who collected data from a monitoring station in the hight Arctic.

1www.journals.elsevier.com/ecological-informatics
2www.methodsinecologyandevolution.org
3maed2013.dieei.unict.it/
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Abstract

In light of the growing attention on ground based ecological measurements and
inspired by the need to address a generalized increase in data with methodologies
like metadata generation, data annotation, data curation and data management
in general; we introduce EcoAN an image series annotation toolkit specifically
designed to assess phenological measurement. In evaluating our toolkit we look
at how we can generate answers to new questions with old image series datasets
with the help of image annotations created with EcoAN. We investigate how
different ways of annotating an image series relate to content generating tasks
and describe a trade off between accuracy and speed in using different types
of annotations. We evaluate the correctness of our toolkit by comparing mea-
surements generated with established processes to those generated with EcoAN
and see that the latter have sufficient quality to serve as ecological indicators
and can potentially describe ecosystems. We further evaluate our toolkit by
comparing the cost of producing plot phenophase counts using an established
procedure with a modified one based on EcoAN. We conclude that EcoAN is
capable of producing annotations as an intrinsic part of ecological data analysis.
We see that it answers new questions and produces ecological indicators such
as phenophase counts and 50% onset estimators. We detect small costs savings
related to EcoAN and see how it can be used to produce curated ecological
image series.

Keywords : Annotation; Image; Label; Phenology; Arctic: Work-Flow;

5.1 Introduction

Measuring climate and ecosystems interactions requires concurrent data collec-
tion from multiple subsections of the ecosystem for extended periods of time
(Meltofte et al., 2008a). It is a complex and difficult task but one that is
posed to differentiate between phenomenas that occur naturally and those that
are caused by climate change (Meltofte et al., 2008b). Monitoring of ecological
trends has had impact by allowing scientists to make discoveries that have given
direction to research and influencing local and international policy (Lovett et al.,
2007). Its importance stems from producing high quality data, generating con-
texts for interpreting experiments and providing information that leads to the
design, implementation and evaluation of environmental policy (Lovett et al.,
2007).
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Yet, in practice, monitoring is sometimes riddled with flaws that make it in-
efficient or, in some cases, lead to failure. In general, issues come when monitor-
ing efforts are based on political and funding opportunities rather than carefully
crafted scientific questions (Lindenmayer and Likens, 2009). Poor planning and
lack of focus lead to overlooking basic criteria, like the inclusion of a statistician
in the planning phase, that inevitably affect results (Lindenmayer and Likens,
2009). Equally as important is the difficulty in deciding what to monitor; with
limited budgets, it is not possible to gather all possible available variables (Lin-
denmayer and Likens, 2009).
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BUD
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Figure 5.1: GUI Described. Canvas is where the image and annotation are
drawn. File List is where the series files are shown and selected. Ghost is a
checkbox used to activate ghost annotations. Zoom & Grab buttons used to
toggle in and out of zoom and grab modes. Label List a list of phenophases.
Type is where we select the type of annotation. Rulers displays the pixel offsets
of what is currently on the Canvas.

Specifically, the general proliferation of scientific data (Hey and Trefethen,
2003; Emmott, 2006) exacerbated by novel data acquisition technologies like
robotics (Grémillet, 2012) and sensors (Arzberger, 2004) is an important chal-
lenge in long-term monitoring. It affects management as things like standards,
annotations and data mining strategies become a requirement (Hey and Tre-
fethen, 2003). Automation of data processing and specialized database con-
structs (Emmott, 2006) replace old storage practices as increasing amounts of
metadata need to be created in parallel and everything has to be made compat-
ible with tools like digital libraries (Hey and Trefethen, 2003).

Repeat digital photography is posed to be a contributor in closing the gap
that currently exists between remote sensing (satellites) and close range mea-
surements. Yet, it multiplies challenges as it requires large amounts of storage
for an increasing number of images that can no longer be processed manually
(Granados et al., 2013). There has been research related to digital photography
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that have used cameras mounted on towers (Richardson et al., 2007; Grana-
dos et al., 2013; Ide and Oguma, 2010), pan-tilt-zoom systems that sweep large
amounts of land from a vantage point (Kopf et al., 2007) and cameras installed
on the ground pointed skywards that measure Leaf Area Index (Ryu et al., 2012;
Montes et al., 2007; Macfarlane et al., 2007); all generating up to a gigabyte per
image (Brown et al., 2012).

Creating metadata is part of a group of methodologies that is posed to ad-
dress the increase in scientific data where the main focus is information creation
and knowledge management (Hey and Trefethen, 2003). Metadata should go
hand in hand with ontologies and standards (Hey and Trefethen, 2003; Madin
et al., 2007; Leinfelder et al., 2010) while providing the building blocks for data
mining techniques, provenance creation and content generation; all focused to-
wards making sense of overflowing data. For data in the form of images we
consider metadata as manual and automatic annotations on an image. We see
image annotations as part of a process where most are created automatically
allowing for timely analysis of vast quantities of data. And a reduced number
related to data curation (Hey and Trefethen, 2003), model training (Sorokin
et al., 2008) and tasks that cannot yet be automated are done manually (Hey
and Trefethen, 2003). We consider that annotations are an intrinsic part of
making sense of the vast amounts of data generated by long-term monitoring
efforts.

Figure 5.2: Annotation types. Rectangle are created by clicking (and hold-
ing) and releasing when the rectangle is complete. Polygons are generated by
consecutively creating polygon corners. Freehand annotations are created by
clicking (and holding) while delineating the element. Single click annotations
are created by clicking once.

By taking advantage of images and their annotations there is potential to
formulate and answer new questions which depend on features that were pre-
viously unused. Specifically, we are concerned about how tomorrow’s questions
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can be answered with today’s monitoring (Lovett et al., 2007). It is difficult
to know exactly what questions are going to be relevant in the far future; cen-
turies ago we could not have known about the importance and impact that
atmospheric CO2 would have on environmental and social policy. However, by
including predictions of what may come in the future together with a good un-
derstanding of what is being monitored it is possible to produce durable records
(Lovett et al., 2007). Image annotations play an important role in rediscovering
data as it can point to new attributes by rediscovering old (previously ignored)
image features.

A B C

BUD

FLOWER

SENESCENCE

FLOWER
FLOWER

Figure 5.3: Dryas phenophases. A) Picture taken at the beginning of the sea-
son containing several buds; the red annotation points to one bud; the blue
annotation is a ghosted annotation from the middle image. B) Picture taken
at the middle of the season containing flowers; we have annotated one flower
to exemplify. C) Picture taken at the end of the season containing senescent
flowers; red annotation marks a senescent individual while the blue annotation
is ghosted from the image in the middle.

Additionally, clever use of images might minimize the more expensive parts
of deployments and drive the overall cost (and effort) down. Certainly there is
a great cost involved with providing data for monitoring endeavors (Crimmins
and Crimmins, 2008; Lovett et al., 2007) and as we move away from known in-
frastructure (energy grids and communication networks) into more remote and
inhospitable areas, the cost increases accordingly. Consequently, it is fitting to
optimize processes to reduce overall effort (in time and cost) in deployments;
especially considering that, in some cases, expenses double for technicians car-
rying out the monitoring measurements (ZERO-Zackenberg, 2013). We find
that this as well as answering new questions are additional gains made possible
by the use of image annotations. Yet these possibilities don’t occur automati-
cally when images are used; there needs to be an intermediate layer designed to
harbor the qualities of images and channel them into useful applications.

With this in mind we introduce EcoAN, a Matlab (MathWorks, 2009) open
source tool kit designed to visualize and annotate data collected as images.
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We describe its features in detail and outline how it might fit into established
monitoring efforts while at the same time depicting its connection with ad-
dressing increase of data, answering tomorrow’s research questions and overall
monitoring cost. Predecessors to EcoAN include Time System (Brown and Zim-
mermann, 2006) a commercial application that has a variety of features able to
handle annotations of image series and ImageJ (National Institutes of Health,
2008) an open source Java application develop to create metadata for images.
EcoAN differentiates itself from existing approaches by being an open source
experimental platform where the effects of different annotation strategies can
be tested on image series of natural subjects.

5.2 Materials and Methods

5.2.1 EcoAN

EcoAN (Granados, 2010c) is a Graphical User Interface (GUI) that is able to
manipulate special cues called annotations lain on top of images that identify
elements of interest. It is optimized to handle sequences of images representing
temporal change (image series) by extending annotations through image series.
EcoAN manages various types of annotation each of which is a trade off between
accuracy and effort. It keeps track of who creates and modifies components
and keeps everything in text files that contain annotation coordinates, labels,
modification dates and other relevant data.

V1

V2

Figure 5.4: Diameter calculation. We calculate the diameter for each vertex of
the annotation. Here we show diameter calculation for V1 and V2. The diameter
which is greater of all the vertices is the one chosen as flower size.

EcoAN displays images in the canvas (Figure 5.1) which also contains the
annotations and their labels. It shows the current pixel ranges on two rulers
placed on the sidelines (Figure 5.1). The file list contains all files from an image
series and is managed by the two buttons located on the bottom of the pane
(”Add Files” and ”Clear Files”, Figure 5.1). Several types of polygons used to
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make an annotation can be selected in the pane named Annotation Type (Figure
5.1). Labels for annotations are selected from the Label List (Figure 5.1) located
bellow the Zoom and Grab buttons which are used to control the navigation
through the canvas. Finally there is the Ghost checkbox which activates ghost
annotations (section 5.2.1.3).

EcoAN is developed in Matlab (MathWorks, 2009) which was a natural
choice because of the ease with which it handles image matrices. Indeed, by us-
ing images as multidimensional matrices of pixels we get already implemented
features like pan and zoom that are heavily used. EcoAN is capable of dealing
with large image matrices than contain great detail which requires quick image
transformation (zooming and panning) when searching for elements within im-
ages. EcoAN is also capable of handling a variety of image formats (JPEG, PNG
and TIFF) effectively fitting different deployment situations. This is especially
useful when considering that different work-flows might create different image
formats. However, it is not particularly suited for implementing GUI appli-
cations which lengthened the initial development and is only available through
license acquisition which in most cases involves fees. Despite these circumstances
we managed to develop EcoAN as an open source GUI.

Figure 5.5: Work-flows. Depicts activity both in the field and out. A) Es-
tablished work-flow where mechanical counters are used to count phenophases
which are then digitized with a Personal Digital Assistant (PDA). It occurs all
in the field and the phenophase counts are published afterwards. B) EcoAN
work-flow where image series are created with images taken in the field and
produce phenophase counts through image annotation. Most of it occurs out of
the field.
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5.2.1.1 Image Annotations

Annotations are the basic building block in EcoAN and are made up of two
elements: polygons that enclose elements of interest and their labels. A text file
is linked to every image and holds a record for every annotation in the form of
polygon coordinates, label name, date of creation and other relative data that
effectively mirror the image series. In our case each annotation represents indi-
vidual plant phenology phases (phenophases) that are identified in images and
tracked throughout image series. Ideally, it is possible to follow the appearance,
development and demise of each individual phenophase.

There are four types of annotations: rectangle, polygon4, freehand and single
click which can be selected in the Type panel (Figure 5.1). Rectangles are
created by clicking (and holding) the initial position, dragging the cursor and
releasing it when the rectangle has enclosed the element of interest(Figure 5.2).
Polygons are generated by consecutively creating polygon corners (Figure 5.2).
Freehand annotations are created by clicking (and holding) while delineating
the element of interest which requires a steady hand (Figure 5.2). Finally,
single click annotations are created by clicking once in the middle of elements
of interest in order to generate a small square (Figure 5.2).

Figure 5.6: Mechanical counters. Example of the mechanical counters used in
Zackenberg. Each one represents a phenophase.

Each annotation is related to labels which are selected in the drop down
Label List (Figure 5.1). Labels are meant to describe state of elements of interest
at a certain point in time (e.g. Bud, Flower or Senescence; Figure 5.3) and
appear in red on the canvas so they can be clearly distinguished from the rest
of the image. Anticipating that it would become time consuming to constantly
switch from Label List to Canvas (Figure 5.1), we allow the first five numbers
to control which labels are selected. In this way pressing ”4” selects the fourth
label.

4Polygon refers to a type of annotation and to the fact that all annotations are polygonal
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5.2.1.2 Zoom & Grab

To take advantage of high resolution images for searching elements of interest,
EcoAN implements two key functionalities: ”zoom” and ”grab” (Figure 5.1).
The ”zoom” mode is toggled by pressing on the ”z” key or when the ”zoom”
button is pushed. The mouse scroll wheel is used to zoom in and out of the
image where the mouse pointer serves as a reference for the zoom center. The
”grab” mode is toggled by pressing the ”t” or the ”p” keys or by pushing the
”grab” button. This feature is useful to move around ”zoomed in” images and
works by pressing (and holding) the pointer in order for the image to follow the
movements of the mouse. It is not possible to be in ”zoom” and ”grab” mode
at the same time and the key presses (”z”, ”t” and ”p”) were implemented to
avoid having to go back and forth between then canvas and the Zoom & Grab
pane (Figure 5.1).

Table 5.1: Cameras in Zackenberg. Characteristics of cameras used in our
Zackenberg deployment. Resolution is given in pixels, focal length is given in
millimeters and is normalized to 35mm equivalence, exposure is given in seconds
and ”Imgs” gives the number of images taken with each camera. Formats refers
to how the images were formated in camera.

Sony Nex-3 Nikon D700 Nikon D300
Lens Sony E 18 −

55mm f/3.5− 5.6
AF-S Nikkor 14 −
24mm f/2.8G ED

AF-S Nikkor 14 −
24mm f/2.8G ED

Resolution 4608 x 3072 4288 x 2844 4352 x 2868
Aperture f/7.1− 22.0 f/10.0− 11.0 f/8.0− 11.0
ISO 200 200− 500 200− 640
Exposure 1/320− 1/8 1/500− 1/125 1/500− 1/160
Focal Length 27− 28 24 25− 27
Imgs 162 56 101
Flash No No No
Formats Raw Raw Raw

5.2.1.3 Ghost Annotations

The ghost feature is located next to the zoom and grab buttons (Figure 5.1) and
is activated on an image that already contains annotations. After activation all
annotations of the current image are ”ghosted” and the next image placed on
the canvas will contain them drawn in blue instead of red (Figure 5.1 and 5.3).
These ghost markers aid in finding small, almost hidden (not occluded) elements
with the position of a previous or following images, and allows referencing other
images without actually having to go back and fourth through the image series.
They also serve as a reminder of the presence of elements and might contribute
to preventing situations where annotations are missed.
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5.2.2 Zackenberg Deployment

We deployed at Zackenberg station in northeast Greenland (74◦30′N, 20◦30′W ),
a high arctic research station run by the Department of Bioscience at Aarhus
University in Denmark where we ran our experiments in the summer season
(June and July) of 2012 and 2013 on plots containing Mountain Avens (Dryas
octopetala / integrifolia; hereafter referred to as Dryas). We gathered data
related to the three main Dryas phenophases (bud, flower and senescence) on
a total of nine plots (six in 2012 and three in 2013). Plots were sampled ev-
ery week in 2012 and three times in 2013, on every visit we created manual
phenophase counts and took several pictures from different view points which
were used to create image series that later led to phenophase counts. Days for
2013 were chosen carefully to coincide with season initialization, peak and end
where manual counts were filmed and flower sizes were measured during season
peak.
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Figure 5.7: 50% Onset. The process to calculate the 50% onset values. Propor-
tion are values from equation 5.5 or 5.6. Di is a sampling day. The 50% onset
is chosen where the proportion surpases 0.5.

5.2.3 Measuring Size

The size of the Dryas flower is interesting as it reflects the potential to attract
pollinators and may impact plant fitness (Johnson et al., 1995). We used a
vernier caliper to measure the diametrical size at the height of the 2013 season
when most individuals were fully bloomed. Diametrical size in this case refers to
the largest diameter of a fully bloomed individual. A total of 32 measurements
were performed which covered two of the three plots from 2013; all of the flowers
in the first were considered while only one quadrant of the second was included.

After looking at the diametrical size in the field, we turned to the image
series. We first identified which of the image flowers corresponded to field mea-
surements and proceeded to annotate them with EcoAN. We used the polygon
annotation (Figure 5.2) type which allowed us to accurately portray the size of
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the flowers without spending too much time in the process. To calculate the size
of each annotation we found all possible diagonals and chose the largest (Figure
5.4). This was done automatically by analyzing the annotation files.

Our measurements in the image series resulted in sizes expressed in pixels
which had to be adjusted to millimeters in order to be compared to the caliper
sizes. For this purpose we assumed a linear relation between the two where
multiplying each pixel size with a constant C would result in a caliper size
(in millimeters). We used five of the 32 measurements to find C by using
equation 5.1 where SCj is the jth caliper size, SPj is the jth pixel size, C is the
transformation constant and we sum through the first five elements. We select
the constant value that minimizes the sum of the absolute difference between
the caliper value and the adjusted (with C) pixel value (Equation 5.1).

Table 5.2: Values in table are in number of corrections. Added refers to new
annotation being added. Label refers to annotation labels being changed. Re-
moved refers to annotations being removed. R1 is the first review and R2 is
the second. We evaluated the changes on three plots from 2013. Total is the
sum of the corrections for all the considered plots. Removed is a special case in
that it does not actually remove annotations but rather changes their labels to
”removed”.

Added Label Removed
R1 R2 R1 R2 R1 R2

Plot0 0 0 2 0 2 1
Plot4 3 0 5 0 14 0
Plot63 3 1 8 0 2 0
Total 6 1 15 0 18 1

min

(

Σ5
j=1

√

[SCj − (SPj ∗ C)]2
)

(5.1)

After calculating C, we used it to estimate the size of the rest (27 flowers) of
pixel measurements that were not used in the calculation. The estimation was
a straightforward multiplication of pixel values with the constant which created
estimated millimeter values. These were then compared with the caliper values
by using the average absolute difference between the two (Se). We used equation
5.2 where SCj is the jth caliper value, EMj is the jth estimated value and we
use all the size values except the five that were used to calculate C.

Se =
Σ

(N−5)
j=1

√

(SCj − EMj)2

N − 5
(5.2)

To further add to our analysis we defined the range for Se by calculating
the error of the mean (σ

θ̂
; Wackerly et al., 2008) with equation 5.3 where σ

is the standard deviation of the average absolute difference and N is the total
number (32) of measured sizes. The final range extends 1.96 standard deviations
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from the calculated error (Se ± [1.96 ∗ σ
θ̂
]) and signifies that the real absolute

difference between caliper and estimated measures has a 5% change of falling
outside this range.

σ
θ̂
=

σ√
N − 5

(5.3)

5.2.4 Plot Counts

Plot counts refer to the enumeration of phenophases within a plot of land which,
for us, meant measuring Dryas buds, flowers, senescence and eaten. Buds are
flowers that are not yet open, flowers are open Dryas giving access to their
reproductive organs, senescence is when all the petals turn brown or are missing
(Schmidt et al., 2012a) and eaten is when it has been eaten by a herbivore. We
compare two work-flows for creating plot counts: established and EcoAN5. The
first refers to processes currently used in Zackenberg to procure plot counts
(Figure 5.5.A) while the second is the procedure that produces plot counts with
image series and our annotation toolkit EcoAN (Figure 5.5.B).

Table 5.3: Man hour costs. All values are costs of a man hour in Danish krones
(kr). Field are field only costs. Non-Filed are out of field costs. Salary repre-
sents what a technician earns per hour. Ticket is the travel cost to Zackenberg
spread out on a hypothetical three month deployment. Station Fee is what is
payed per hour to the station administration. Field Allowance is the hourly al-
lowance given to technicians traveling to Zackenberg. Total represents a sum of
all hourly costs. For these calculations we assume a monthly salary of 37800 kr,
a monthly field allowance of 22000 kr, a daily station fee of 1100 kr and a plane
ticket of 25000 kr. We further assume that there the month has a total of 26
working days and each day is 7.4 hours long. One time prices (like the ticket)
where spread out on a hypothetical deployment of three months.

Field Non-Field
Salary 196.47 196.47
Ticket 43.31 -
Station Fee 148.65 -
Field Allowance 114.35 -
Total 502.77 196.47

5.2.4.1 Established Work-Flow

The established work-flow has both field and non-field procedures (Figure 5.5)
where the first is repeated for every plot on each day of sampling and the
second only involves publishing the data. It depends on a technician doing
the actual counting and begins with the setting of mechanical counters (Figure
5.6 & 5.5.A) which are used to keep count of individual phenophases (each

5EcoAN is the toolkit and also refers to a work-flow
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representing a variable: Bud, Flower, Senescent or Eaten). Counters are set to
zero, technicians kneel beside a plot and click the respective counter every time
they spot a specific phenophase (Figure 5.5.A). This is done until the totality
of the plot is covered at which point the individual phenophase numbers can be
digitized from the counters.

Table 5.4: Annotation types times. Values are in seconds. Freehand, Polygon,
Rectangle and SingleClick refers to the freehand, polygon, rectangle and single
click annotation types described in section 5.2.1.1.
Polygon Type Time (seconds)
Freehand 267
Polygon 207
Rectangle 108
SingleClick 57

In Zackenberg it is standard to carry a Personal Digital Assistant (PDA)
designed for extreme applications which, in this case, is used to digitize the plot
counts (Figure 5.5.A). Each counter value is typed into the PDA which keeps
everything internally and also synchronizes to a centralized server located in
Zackenberg station. The digitizing and synchronizing mark the end of the field
cycle (Figure 5.5.A) after which the counts are taken back to Aarhus university
facilities located in Roskilde (Denmark). The data at this point is verified for
consistency and then published as a database containing phenophase counts
(Figure 5.5.A).

5.2.4.2 EcoAN Work-Flow

The EcoAN work-flow also has both field an non-field procedures (Figure 5.5.B)
where the first is repeated for every plot on each day of sampling and the second
involves data analysis and publication. Activity in the field for EcoAN work-flow
is reduced to one step involving the acquisition of several pictures from different
view points (Figure 5.5.B) which concludes when all images are transported to
the Aarhus University facilities in Roskilde (Denmark). All pictures were taken
from a standing position close to the plot, three cameras were used (Table 5.1)
and a total of 319 pictures were taken (265 in 2012 and 54 in 2013). All the
images were taken in raw format and then transformed into Joint Photographics
Experts Group (ITU, 1992) by a raw image processing application (RIPA) called
Rawtherapee (www.rawtherapee.com).

With the collected pictures we generated image series with EcoIS (Granados,
2010b) which we then annotated with EcoAN (Figure 5.5.B). We used both
rectangular and one click types (Figure 5.2) and began annotating image series
at the point where most flowers had bloomed (Figure 5.3.B) which allowed us to
detect elements with ease as the white and yellow colors of the bloomed flowers
stood out from the background. We then used the ghost feature (section 5.2.1.3)
to project annotations into previous (for buds; Figure 5.3.A) and following (for
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senescence; Figure 5.3.C) images which helped to pinpoint the whereabouts of
phenophases in other images.

The annotation step (Figure 5.5.B) is done for all the image series and the
resulting annotation files are used to automatically generate phenophase counts.
A script took all the metadata generated in the annotation phase and translated
it to a format that was similar to the one produced by the established work-flow.
After the creation of the EcoAN counts, the two work-flows (Figure 5.5) could
be compared in terms of plot counts.
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Figure 5.8: Constant (C) value. This is a plot of equation 5.1 were we have
varied the constant C value from 0 to 0.5 and found that the minimum value
in that range is when C = 0.0909. Error represents the sum of the absolute
difference between caliper and EcoAN flower sizes.

5.2.4.3 Comparison

The comparison was done by calculating the average absolute difference be-
tween counts produced with the established work-flow and EcoAN. Equation
5.4 calculates this difference where k is the phenophases of interest (k={BUDS,
FLOWERS, SENESCENCE}), Nk is the number of dates where phenophase
k was not zero for both types of counts (established and EcoAN), Ej,k is the
count done with the established work-flow count for the jth date of phenophase
k and Aj,k is the count done with EcoAN for the jth date of phenophase k.

Cek =
ΣNk

j=1

√

(Ej,k −Aj,k)2

Nk

(5.4)

Besides working with actual counts, we calculated 50% estimations for each
plot and used them to make comparisons between the two work-flows. Equations
5.5 and 5.6 were used for this purpose where the subscript (p, d) refers to plot
p and date d, FO(p,d) is the flower onset relation (for date d of plot p), SO(p,d)

is the senescence onset relation, B(p,d) is the number of buds, F(p,d) is the
number of flowers and S(p,d) is the number of senescence. We calculate onset
relations for every date and select the one in which the relation crosses the 50%
threshold (50% dates; Figure 5.7). We calculated 50% dates for counts done
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with the established and EcoAN work-flow on all plots in the 2012 and 2013
deployments.
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Figure 5.9: Distribution of Dryas size comparison. Caliper are the sizes mea-
sured in the field with a caliper. EcoAN are the sizes measured out of the field
with EcoAN. In both cases we calculate the mean value.

FO(p,d) =
F(p,d)

B(p,d) + F(p,d)
; (5.5)

SO(p,d) =
S(p,d)

F(p,d) + S(p,d)
(5.6)

We compared the 50% values by calculating the average absolute differ-
ence between the values from the established work-flow and ones from EcoAN.
Equation 5.7 shows the calculation where He is the difference (error), Np is
the number of deployed plots, Ej is the 50% value calculated with counts done
with the established work-flow from plot j, Aj is the 50% value calculated with
EcoAN counts from plot j. He represents how the 50% estimator calculated
with the established work-flow differs from the one calculated with EcoAN.

He =
Σ

Np

j=1

√

(Ej −Aj)2

Np

(5.7)

5.2.4.4 Incremental Accuracy

In order to see how the count accuracy evolved over a series of reviews, we took
the original counts from the three 2013 plots (Table 5.2) and applied consecutive
review sessions. Reviews amended annotations with three types of corrections:
added, label and removed (Table 5.2). The first refers to phenophases that
were added after the review, the second refers to mislabeled phenophases that
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were relabeled and the third refers to phenophases that were removed. The
removed action was special in the sense that the annotation was not actually
removed but re-annotated with a label describing a state of deletion; this was
done in order to show future reviewers that whatever was contained under the
”removed” annotation should not be seen as a phenophase of interest. A second
review was conducted on the results of the first with the same conditions and
using the same correction types.

Table 5.5: Each value is the average of the absolute difference between counts
done with the established work-flow and counts done EcoAN. Note that there
is a difference for each plot. Values in parenthesis are the standard deviation
of the absolute different values. Bud are the values related to the Dryas bud
phenophase. Flower are the values related to the Dryas flower phenophase.
Senescent are the values related to the Dryas senescence phenophase. 2012 are
value from plots deployed in 2012. 2013 are values from plots deployed in 2013.
Total represents both the sum of values for all phenophases in a specific year
and the sum of values for all years of a specific phenophase.

Bud Flower Senescent Total
2012 19.06(10.64) 07.43(09.74) 11.41(14.52) 12.17(12.93)
2013 3.83(2.40) 2.33(1.86) 4.67(1.15) 3.40(2.10)
Total 15.25(11.41) 06.29(08.85) 10.83(14.00) 10.64(12.23)

5.2.5 Effort

In order to answer the question of how much effort EcoAN saves, we timed each
of the work-flows (established and EcoAN) both for field and non-field situations
(Figure 5.5). Given the elevated costs related to activities in the field, we focus
on the differences in field times between the established and EcoAN work-flows,
and explore how the reallocation (with EcoAN) of most components out of the
field affected the overall (field + non-field) times and costs. For this we only
used data from 2013 and ignored situations that were common between work-
flows like time spent walking to plots, travel periods to and from Zackenberg
and phenophase count publication.

The established work-flow was timed only in the field as it has no other
components6 (Figure 5.5.A). We filmed technicians while conducting the three
activities depicted in figure 5.5.A which was enough to calculate cycle times.
Times for individual steps in the field were not calculated as they were too
short and did not add any value to the analysis. Since time of completion was
so short, calculation were done in man-seconds which is the amount of seconds
it takes a person to do a task.

For the EcoAN work-flow (Figure 5.5.B) we calculated field and non-field
times. We subtracted the time stamp of the first picture taken of a plot (on
a specific date) from the time stamp of the last picture of that batch. Having

6phenophase counts (Figure 5.5) is ignored as it is equal for both work-flows
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addressed the field, we proceeded to measure non-field times by looking at how
long it took technicians to annotate images with EcoAN. For this purpose we
used a regular chronometer that started when the process began and stopped
when technicians were satisfied with the annotations. We used the single click
annotations as we were concerned with acquiring a phenophase count in a min-
imum amount of time.

Costs are related to time spent in each work-flow and the different (in cost)
between expenses in the field and out of it. Costs for people wanting to go to
Zackenberg include tickets, station fees, field allowance and regular salary while
the price for non-field only includes salary (Table 5.3). We took this difference
and analyzed its impact on overall effort by calculating the cost of producing
phenophase counts with the established work-flow and comparing it with the
cost related to producing the same phenophase counts with the EcoAN work-
flow. The values on table 5.3 assume that there are 7.4 working hours in a day,
26 days in a working month and the duration of a trip to Zackenberg is three
months.
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Figure 5.10: Phenophase count error. Values are differences between counts
done with the established work-flow and those done with the EcoAN work-flow.
BUDS are the bud counts. FLOWERS are the flower counts. SENESCENCE
are the senescence counts. 2012 are counts created with data from our 2012
deployment. 2013 are counts created with data from our 2013 deployment.
Positive numbers occur when counts from the established work-flow are greater.
Negative numbers occur when counts from the EcoAN work-flow are greater.
A) Values for both the 2012 and 2013 deployments separated by phenophase.
B) Bud values separated by deployment year. C) Flower values separated by
deployments year. D) Senescence values separated by deployment year.

Given that our deployment in 2013 was small (3 days of sampling 3 plots)
we explored more involved (hypothetical) deployments by extending sampling
frequency. The first hypothetical deployment considers sampling 28 plots once
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a week for a period of four months. The second hypothetical situation samples
28 plots once a day for four months. Finally, we consider an atypical case were
we sample 28 plots once a day for 365 days of the year,

5.3 Results

5.3.1 EcoAN

The fastest annotation types are the rectangle and single click (Table 5.4) which
give the technician the ability of creating an annotation with at most three
clicks. Rectangle annotations require three clicks to the canvas and still maintain
certain sense of proportion and size. However, they are not very precise as four
corners do not describe complex shapes very well (Figure 5.2). The single click
is by far the fastest of the four types of annotations (Table 5.4) but it is also
the most inaccurate. It annotates position and relates it to a label, but does
not describe morphology.

Table 5.6: 50% estimator error. Each value is the average of the absolute
difference between estimations done with the established work-flow and EcoAN.
Flower are all values related to the 50% flowering onset estimations. Senescent
are all values related to 50% senescence onset estimations. 2012 refers to values
calculated for the 2012 season. 2013 refers to values calculated for the 2013
season. Total refers both to the sum of the errors for both flower and senescent
onset estimations and the sum of errors for both seasons (2012 and 2013).

Flower Senescent Total
2012 1.50 0.17 0.83
2013 0.33 0.67 0.50
Total 1.11 0.33 0.72

5.3.2 Measuring Size

The minimization in equation 5.1 is described graphically in figure 5.8 where we
varied the value of C from 0 to 0.5 and found that the minimum value in this
range was when C = 0.0909. The range ([0, 0.5]) came from making estimations
by observing the relation of pixels and millimeters for one element. We com-
pared caliper sizes with the ones estimated with EcoAN and found that their
means were 16.72 and 16.02 respectively (Figure 5.9). To describe the difference
between the values we calculated the mean of the difference (Equation 5.2) and
its standard error (Equation 5.3); we found that their values were 1.14 mm and
0.18 respectively which puts the mean of the differences in the range described
by 1.14 mm ± 0.35. Finally, and to further describe the relation between the
caliper and estimated size measurements we calculated the correlation coefficient
to be 0.87.
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5.3.3 Plot Counts

We created counts using both work-flows and calculated the mean of the absolute
difference between the two to be (in number of elements) 12.17 and 3.40 for
deployments in 2012 and 2013 respectively (Table 5.5). The phenophase with
the most errors during the two years was the ”buds” with 15.25 and the one
with the least errors was the ”flowers” with 6.29. Finally the total difference
between the established and EcoAN work-flows for all the phenophases in the
two years of deployment was 10.64 elements of difference (Table 5.5).

Table 5.7: Times and Costs of our 2013 deployment. Est is the values of the
estimated work-flow, EcoAN is the values for the EcoAN work-flow, Saved is
the saved time or cost. All values under Seconds Per Plot represent the average
time it took to sample a plot, values in parenthesis represent average times per
element. F is field. NF is non-field. T is total. All cost values are in Danish
krones. Values are related to phenophase counts only.

Seconds Per Plot Cost 2013 (Kr)
Est EcoAN Saved Est EcoAN Saved

F 108.78(4.22) 40.33(1.69) 68.44(2.53) 136.73 50.70 86.03
NF 0.00(0.00) 104.78(3.37) - 0 51.46 -
T 108.78(4.22) 145.11(5.06) -36.33(-0.84) 136.73 102.16 34.57

We used box plots to further characterize the count difference (Figure 5.10).
We see that EcoAN counted more buds (Figure 5.10.A) with measurements in
2012 being a major contributor for the over counting (Figure 5.10.B). The over
counts and under counts for flowers and for senescence phenophases are more
evenly distributed around zero with a few minor outliers (Figure 5.10.A, 5.10.C
and 5.10.D). We further see a larger variability in all the phenophases for the
2012 season compared to 2013 (Figure 5.10.B, 5.10.C and 5.10.D).

Related to the counts are the 50% onset estimations (Equation 5.5 and 5.6)
originating from both work-flows which we plugged into equation 5.7 in order
to find the average absolute difference. For the 50% flowering estimation we see
that the difference between the two work-flows averaged to 1.11 days and the
one for senescent estimations averaged to 0.33 days (Table 5.6). The difference
for the totality of counts was calculated to be 0.72 days and most of the average
differences were under one day (Table 5.6).

Finally, the review process for counts done on the three plots of the 2013
deployment resulted in a decrease in number of amendments. In the first review
we say six new labels, 15 changes of label and 18 removals (Table 5.2). All those
values were lowered on the second review where we got one added label, one
removed label and no label changes.

5.3.4 Effort

When calculating the time spent in the field for both the established and EcoAN
work-flows we saw that the first was 68.44 seconds faster per plot (2.53 per
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Figure 5.11: Distribution of times for work-flows. EST refers to the estab-
lished work-flow. EAN refers to the EcoAN work-flow. A) Field only times for
the established and EcoAN work-flows. B) Field plus Non-Field times for the
established and EcoAN work-flows. Time is in seconds.

element) than the second (Table 5.7). Once we added the non-field time, EcoAN
was 36.33 seconds slower (0.84 per element) than the established work-flow
(Table 5.7). If we only consider field times there is a noticeable difference
between both work-flows where EcoAN is clearly faster (Figure 5.11). But once
we include non-field times in the calculation we see an opposite result where
EcoAN spends more time (on average) than the estimated work-flow (Figure
5.11).

We calculated the total cost7 of creating phenophase counts to be 136.73 kr
and 102.16 kr for the established and EcoAN work-flow respectively (Table
5.7). The money saved if we had deployed only using the EcoAN work-flow
was 34.57 kr (Table 5.7). For our three hypothetical situations we calculated
savings of 1720.65 kr, 12904.93 kr and 39252.50 kr (Table 5.8).

5.4 Discussion

5.4.1 Measuring Size

We explored methods to estimate the diametrical size of fully bloomed Dryas
flowers in image series and show its accuracy by comparing our estimations with
field measurements. We calculated the average absolute difference between our
estimations and the field measurements to be 1.14 mm which points to a close
approximation fit to be used to estimate diameters from other seasons. Scale in
this case is of paramount importance: we were able to calculate our estimations

7Currency in Danish crowns
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Table 5.8: Cost analysis. Values are in Danish kroner. E are costs related to the
established work-flow. A are costs related to the EcoAN work-flow. S represent
costs savings.Field refers to field specific costs. Non-Field refers to work-flow
costs out of the field. Field + Non-Field is the sum of the Field and Non-Field
values. Case refers to one of three hypothetical situations: the first (Case 1 )
is a deployment of 28 plots sampled once a week for four months; the second
(Case 2 ) is a deployment of 28 plots sampled once a day for four months; the
third and last (Case 3 ) is a deployment of 28 plots sample every day for one
year.

Case E A S

Field
1 6805.919 2523.543 4282.376
2 51044.39 18926.57 32117.82
3 155260 57568.33 97691.7

Non-Field
1 0 2523.543 4282.376
2 0 18926.57 32117.82
3 0 57568.33 97691.7

Field + Non-Field
1 6805.919 5085.262 1720.657
2 51044.39 38139.46 12904.93
3 155260 116007.5 39252.5

assuming that all the images containing flowers were taken from the same point
of view, which in our case was managed by EcoIS (Granados, 2010b). This
means that, for the cases were this assumption does not hold, a rescaling of the
images must be done prior to estimation.

Our error value (1.14 mm ± 0.35) represents how close EcoAN size mea-
surements are from the ones done with the caliper but it does not include the
variability inherent in field measurements done by technicians (Sykes et al.,
1983; Bennett et al., 2000). With this in mind the 1.14 mm error value should
be understood as the difference between two approximations to the ground
truth which, in this case, is elusive. This does not mean that the two size
measurements are useless, indeed the error value points to EcoAN and caliper
size measurements potentially being used to calculate estimators about species
population fitness which is one of the objectives of measuring flower size.

In our deployment we identified several points where there was a possibility
of introducing errors in the measurements with both the caliper and EcoAN
methodologies. The difficulty of accurately acquiring the maximum diagonal of a
flower (which is malleable) by using a caliper is challenging especially when done
in the field and might introduce unwanted variability to the results. For EcoAN’s
case we identified occlusion as a contributor to error: when a flower was covered
by another element, it was difficult to exactly annotate its size. Furthermore
there were lens distortions where pixels in the periphery of the image did not
represent the same size as in the center which might have contributed in a lesser
extent to the overall EcoAN error.

The polygon annotation type (Figure 5.2) played an important role in the
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size measurements where it was able to accurately describe morphological traits
while reducing time interacting with EcoAN. Additionally, the zoom feature
(section 5.2.1.2) was crucial to get close to the flowers and annotate them ac-
curately. Finally, having the annotations as lists of vertices facilitated the au-
tomation of size calculation by exploring different diagonal possibilities (Figure
5.4).

By measuring the size of Dryas flowers we have demonstrated that EcoAN
is able to answer new questions that were not previously conceived. We see how
EcoAN uses manual data annotation to achieve a task that is still challenging
to fully automate and, in the process, uses data annotation to generate new
content. We believe that with this we make the case for both image series
and manual annotation as tools that help make use of an increasing mount of
ecological data. Additionally we have shown how to increase the longevity of
data as image series by describing a process that has the potential to extract
new info from old data sets.

5.4.2 Polygon Types

The trade off between speed and accuracy inherent in the four types of annota-
tions (Figure 5.2) is important for annotating images in ecological contexts as it
gives a flexibility to the process. The polygon and freehand types (Figure 5.2)
give an increasing degree of accuracy to the annotation with the freehand being
the most accurate of the two. Though these two types are the most accurate of
the four, they are also the most time consuming to create (Table 5.4) because
they require more attention and precision from the technician. Accuracy was
of great importance while annotating images that led to the size estimations
where we used the polygon annotation because of its accuracy and speed.

On the other hand the rectangle and single click annotations (Figure 5.2) are
the least accurate but are the fastest (Table 5.4) which made them very useful
for phenophase counting. Only by using the single click annotation type (Figure
5.2) were we able to compete with the process in Zackenberg which is efficient
to begin with. Single click annotations allowed us to focus on a temporal change
only while ignoring spatial and spectral dimensions that were not relevant for
the plot count comparisons.

5.4.3 Ghost Annotations

Ghost annotation (Figure 5.3) were crucial in locating hard to find phenophases
within image series. It was very useful when searching for buds in the initial
images of the series as they are small (Figure 5.3) and generally camouflaged or
occluded by larger leaves. In our case we used this feature by ghost annotating
from an image containing phenophases with high contrast (e.g. flowers; Figure
5.3.B) into images containing the more challenging ones (e.g buds; Figure 5.3.A).
Having the ghost annotations in place, it was just a matter of finding the blue
ghosts and making a detailed search around them.
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We can see that ghost annotations are not always over their respective
phenophase (Figure 5.3) and this is due to differences between consecutive im-
ages which came from EcoIS (Granados, 2010b) transformations. Its effects were
felt when using ghost annotations to find phenophases where instead of locat-
ing the phenophase inside the ghost annotation, we had to search the vicinity.
For other deployments using fixed cameras or a serialization process other than
EcoIS, the movement will be different.

The senescent state of Dryas is not as challenging as the buds because flowers
wither with a distinct dark yellow color. It is however very challenging to find
the flowers that have been grazed by herbivores as there is no mark of their
existence other than a small green stem that is very similar in color to the green
leaf background. It is in these cases where the ghost annotations were used
again and in the same way as with the buds. They were crucial to accurately
pinpoint the whereabouts of the eaten Dryas flowers.

5.4.4 Plot Counts

To compare counts between work-flows we show their differences in figure 5.10
where positive values mean more counts for the established work-flow and neg-
ative values mean more EcoAN. We see a general tendency to over count buds
in the EcoAN work-flow (Figure 5.10.A). We attribute this to the difficulty in
spotting small buds out in the field where they might have been missed by tech-
nicians. Contrasted with EcoAN which facilitated the search for small elements
by providing additional positional information in the form of ghost annotations.

The difference between 2012 and 2013 is exceedingly noticeable for the bud
phenophase where 2012 season saw EcoAN over counts of up to 30 individuals
(Figure 5.10.B). This difference might be explained by the greater number of
plots together with a greater density per plot (data not shown) for the 2012
deployments. More plots mean increased fatigue related to walking distances
that have to be covered within one day and greater densities mean increased
possibility of missing phenophases. In contrast the counts done with EcoAN
can be spread out and do not have to occur the same day, image acquisition
requires less effort than doing the counts in the field (Table 5.7) and the chance
of missing a phenophase is reduced by using ghost annotations.

For the flower count comparison we see that the error was spread out evenly
between over counts and under counts and the median was located close to zero
(Figure 5.10.A). This is not surprising as the flowers are easier to detect than the
buds given their outstanding color which contrasts with that of the background.
There are still errors due to technicians double counting (with the established
work-flow) or missing elements (both work-flows). Finally, for the senescence
phenophase there was a slight increase in variability compared to the flower
(Figure 5.10.A) that is explained by erroneously counting senescent individuals
from past seasons or erroneously ignoring individuals thinking it from a past
season.

We see that even though there were average error values of up to 19.06 (Table
5.5) we saw little effect transfered to the 50% estimator calculations. Of all the
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prediction errors, only in 2012 did we see an average absolute difference that
exceeded one day (Table 5.6). The rest of the error values stayed bellow one
and contributed to estimations that, on average, did not differ more than 0.72
days from the original estimations done with the established work-flow. This
shows the robustness of the 50% estimation calculations and the possibility of
using EcoAN for creating these types of phenological indicators.

Table 5.9: Time analysis. Values are in hours and calculations were based on
information contained in table 5.7. E are times related to the established work-
flow. A are times related to the EcoAN work-flow. S represent time savings,
negative values occur when time for EcoAN is greater than the one for the
established work-flow. Field refers to field specific times. Non-Field refers to
work-flow times out of the field. Field + Non-Field is the sum of the Field
and Non-Field values. Case refer to one of three hypothetical situations: the
first (Case 1 ) is a deployment of 28 plots sampled once a week for four months;
the second (Case 2 ) is a deployment of 28 plots sampled once a day for four
months; the third and last (Case 3 ) is a deployment of 28 plots sample every
day for one year.

Case E A S

Field
1 13.53679 5.019259 8.517531
2 101.5259 37.64444 63.88148
3 308.808 114.5019 194.3062

Non-Field
1 0 13.03901 -13.03901
2 0 97.79259 -97.79259
3 0 297.4525 -297.4525

Field + Non-Field
1 13.53679 18.05827 -4.521481
2 101.5259 135.437 -33.91111
3 308.808 411.9543 -103.1463

5.4.5 Work-Flow Times

Our results show that the total time saved in the field for 2013 was 616 seconds
(10.27 minutes); we calculated the mean time saved per plot to be 68.44 (Table
5.7) which we then used to create hypothetical deployments that described the
saving potential of EcoAN. The first case is inspired by Zackenberg where we see
a savings of 8.52 hours in the field (Table 5.9). In this case, just judging by time
savings, it would not be worth changing to EcoAN work-flow as the difference
can be covered by leaving a technician one more day in the field (hardly an
effort).

At this point we wanted to see the savings related to deployments with
increased sampling frequency: for the second case (Table 5.9) we calculated a
saving of 63.89 hours (approximately 9 days assuming a day of 7.4 hours) which
is approximately 7% of a four month deployment and is compelling as a lot can
be done in one week. The last case (Table 5.9) is an extreme one and it resulted
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in a time saving of 194.32 hours (26 days) representing approximately 7% of
the hypothetical time of deployment (one year). One month is very persuasive
if we are trying to push for EcoAN implementation. In general there will be
substantial time savings with EcoAN in the field with deployments that sample
with high frequency.

Timing for individual elements is also relevant: doing annotations with image
series is not very different from using the mechanical counters in the field. The
two procedures are very fast with the speed being 3.37 seconds per element
with EcoAN and 4.22 seconds for the ones done with the established procedure
(Table 5.7). With these times, even if we have hundreds of elements in plots the
differences will be of minutes per plot. Which again emphasizes our observation
that EcoAN would save considerable amount of time int the field with high
frequency or large amount of plots.

But what happens when we add the non-field times? There is no time
saved when we consider the whole process: counts with EcoAN exceeds the
established work-flow by 36.33 seconds (Table 5.7) when we consider non-field
times. Therefore, no matter how much time we save in the field, it is lost
when EcoAN goes through the non-field part of the process (Figure 5.5.B). If
we were deploying with the current Zackenberg setup (Case 1; Table 5.9), we
would spend four and a half hours more on our EcoAN work-flow than the
established one and while this is additional time (half a day of work),. It is
a small overhead, especially considering the benefits put forward by EcoAN,
image series and annotations in general.

5.4.6 Work-Flow Costs

Cost is linked to time through the price of a man hour which is considerably
higher in the field (Table 5.3). The cost differences between field and non-field
stem from additional expenses related to plan tickets, station fees and additional
allowances (Table 5.3). Cost and time are linked as costs can be expressed
in terms money spent on one man hour. There is a great difference between
field and non-field costs which stems from additional expenses incurred when
someone is sent to the field (plane ticket, station fee and field allowance; table
5.3). In Zackenberg’s case, the cost of an hour in the field more than doubles
the non-field (Table 5.3) which introduces an additional dimension to the effort
comparison between the established and the EcoAN work-flow.

Even though the EcoAN work-flow still takes more time than the estab-
lished work-flow (Table 5.7), we should be able to save money by reducing field
times (given their cost; Table 5.3). For our 2013 deployment we calculated a
total savings of 86.03 kr in the field which was reduced to 34.57 kr when we
included non-field activity (Table 5.7). 86.03 kr is not very significant because
our test deployment was small, but it increased when we calculate the savings
for deployments at a larger scale. In Zackenberg’s case (case 1 in Table 5.8) the
savings were of 1720.65 kr which is approximately what would be payed as a
fee for being in Zackenberg one day but does not really stand out in monitor-
ing budgets considerations of the magnitude of Zackenberg. Only in extreme
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cases (case 3 in Table 5.8) do we get savings in the tens of thousands of crowns
(39252.50 kr).

With EcoAN we save time in the field, but it is not consequential. When
we consider non-field, we lose time with EcoAN, but it is not consequential.
With EcoAN we save money, but again, it is not consequential. In other words
time or cost in using EcoAN should not be reasons to prefer or reject it since
they are not consequential when compared to the costs and efforts undertaken
in a monitoring effort of the size of Zackenberg. In the worst case scenario
(infrequent sampling) EcoAN saves an inconsequential amount of money while
adding great potential with the possibility of answering new questions and an
alternative to address plot sampling variability.

5.4.7 Incremental Accuracy

As expected from the outset we experienced variability in our review processes.
There is great discrepancy in the first review where we see 39 total amendments
(Table 5.2). But once most of the errors are addressed, the total drops to just
two for the second review. By using EcoAN annotations as a conversation tool
between consecutive ”visits”, technicians were able to make a more accurate as-
sessment of what they were seeing. Consider this as a process where annotations
are curated with consecutive review processes that add amendments to previous
work. Here there is no possibility of missing and individual that was previously
seen as they are all annotated; even the removed elements are annotations.

Curation is easier in an image series than on a phenophase count where
the only information provided is the number of a phenophase at a particular
date. This is how image series are relevant with in curation processes, they
are the richest type of data set to represent phenology which provides spatial,
spectral and temporal dimensions simultaneously. This review procedure can
be used when curating data and is also useful in a long term monitoring effort
when accuracy is important: a process could be designed where EcoAN is used
to create phenophase counts with a one step review. This would increase the
number of people looking at the results and give would give them a higher level
of trustworthiness.

5.5 Conclusions

We have introduced EcoAN, a toolkit designed to annotate image series by
overlaying them with labeled polygons. We have presented our toolkit in the
light of an increasing amount of ecological image data brought on by the push
to scale up ground based measurements. We have related our toolkit with the
importance of annotations and the generation of provenance and content from
data. We have shown how EcoAN is able to produce accurate measurements of
flower size from image data effectively answering questions that were previously
ignored with data collected in current and past deployments.
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EcoAN was instrumental in creating image series annotations that led to
accurate 50% onset estimations and size measurements that had an average
error of 1.14 mm which shows how new content can be produced with data
annotations. We showed how EcoAN can increase the longevity of image data by
using acquired sets to extract new information with image annotations. We have
described different EcoAN features and how they relate to the image annotation
process. Specifically we identified ghost annotations as crucial in detecting
hidden elements that were either too small or camouflaged in their surroundings.
Additionally we identified the need to have different types of annotations that
fit different situations and describe how a trade off between speed and accuracy
can affect various tasks.

We have made a parallel between using EcoAN and an established work-flow
to produce phenophase counts, and compared them in terms of time and overall
cost. We see that EcoAN is not the fastest of the two but does save money in the
long run which increases as sampling frequencies raise. Our argument for EcoAN
is that it brings considerable added value in the form of data processing, content
generation, data curation and general data analysis while having moderate cost
savings.

Finally, we suggest a EcoAN and data annotations as tools in a curation
process based on image series reviews. We found that the amount of corrections
of phenophase counts was reduced with progressive reviews and saw that this
reduction depended on having explicit image metadata in the form of labeled
annotations. We see how this process can be likened to data curation where a
dataset increases in accuracy with increasing curation cycles.
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Concluding Remarks

We see how EcoAN was used to produce annotations that identified phenological
phases within image series. It used polygonal structures and labels overlain on
top of images to described elements of interest of ecological data generated
from a monitoring effort in the high Arctic. It manages various annotation
types that fit different situations and can be used to generate content as well
as a support tool for curation purposes. Indeed, the concept of generating
image series metadata through labeled annotations is at the center of EcoAN’s
implementation.

EcoAN not only used the spatial dimension in images but also took ad-
vantage of temporal changes inherent in image series. The process of ghost
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annotating is only possible with image series and lacks meaning if applied to
only one image. Furthermore, EcoAN assumes aligned image series and in this
sense can work with data provided by EcoIS or any other process that produces
series with the same point of view (like a tower camera).

In relation with the growing volume of data, EcoAN is instrumental in cre-
ating statistical models -like the one used in EcoIP- that automate data analysis
of large datasets. It can also be used to tackle operations on image series that
are difficult to automate like accurate (within a millimeter) flower size estima-
tions and in the process contribute to diagnose an every increasing data corpus.
As ecological data begins to grow, it is important to create datasets of refer-
ence that are properly administer and curated; EcoAN addresses this need by
providing a curation procedure that might be used for these purposes.

In creating phenophase counts, accurate size and 50% estimations, EcoAN is
adding to the diversity of ways to produce ecological data that inevitably lead
to greater amounts of ground based measurements. By indirectly increasing
ground based data, EcoAN contributes to scaling it up and strengthening the
link with remote sensing measurements. Finally, with annotations comes the
ability to differentiate species within the same image series which allows detailed
characterizations of ground based data that can more easily be correlated its
remote sensing counterpart.
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Chapter 6

Conclusions

We presented three toolkits as sections of an overall data pipeline that culmi-
nates in the creation of ecological indicators. We see EcoIS as a producer of
data in that it successfully creates image series from unaligned image. Both
EcoIP and EcoAN are intermediate points where each further modifies image
series into an intermediate (e.g. annotations for model training) of final (e.g.
ecological estimators) state. A recurring theme throughout our dissertation is
the use of image series as our main data unit which we have found to be the
richest representation for phenological phenomena. We have also associated our
work with the link between ground and remote based measurements by linking
the three toolkits to the scaling up of ecological ground measurements.

6.1 EcoIS

With EcoIS we have successfully created aligned image series starting from
images of plots taken from different view points. We have not limited our
presentation of EcoIS to just software, but also included a description of the
complications of including EcoIS as a constitutional element within an Arctic
monitoring deployment. We see how our implementation of EcoIS was able to
reduce the number of steps needed in the field effectively making the collection
of data easier for the technicians. This directly relates to our conclusions from
EcoAN where we looked at the bigger picture and measured effort in the field
as well as out.

The image alignment implemented in EcoIS depends on special markers that
can be easily detected by computer vision methodologies. We found that not all
images taken from the field were able to be aligned by EcoIS and compensated
for this by taking an average of four pictures per plot. We identified illumination,
human error and camera specific behavior as main contributors to the discarded
images. We specifically see how transformations done in camera from raw image
formats to standard ones affect the effectiveness of EcoIS.

We successfully demonstrated the capacity of EcoIS to produce datasets in
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the form of aligned image series for multiple destinations by describing three sce-
narios that depended on spatially aligned images for their calculations. Though
we do see intra-image movement in the resulting image series (virtual move-
ment), we describe how this movement does not hinder any of the three sit-
uations in which we tested EcoIS. By listing three different ecological results
in the form of metrics, estimations and phenological phase counts, we have
demonstrated the capacity of EcoIS to produce usable image series.

With EcoIS and its related work-flow we have reduced the amount of infras-
tructure needed to produce aligned image series from measurements done in the
field. We move away from configurations that put cameras in fixed positions and
allow them to mover freely effectively dissociating it from housing constructs.
This is especially relevant as we look towards using UAVs that acquire images
from a continuously moving point.

6.2 EcoIP

With EcoIP we have successfully put together known computer vision and ma-
chine learning methodologies into a toolkit designed to automate the analysis
of vast amounts of ecological data in the form of image series. It uses statistics
based on Naive Bayesian concepts to model the occurrence of different pheno-
logical phases in image series. We effectively use color to segment phenophases
of interest within images and create sigmoid signals that describe their behavior.

We created a process that is mostly automatic where minimum human in-
teraction is required at the beginning to train the statistical model by using
annotations from EcoAN. A command line interface is provided that gives ac-
cess to various EcoIP features like color transformation comparisons, use of
morphological operators and automatic calculation of inflection points.

We successfully summarize the behavior of phenological phases throughout
various season in one sigmoid signal that encodes beginning and ending dates in
its inflections points. EcoIP is able to locate the moment when different phases
start and end, and it is able to do this for multiple species. Sigmoid signals can
be analyzed automatically or my be viewed to further study their implications.
We verified that EcoIP estimations of beginning and ending phenophase dates
were consistent with visual observations of images series. EcoIP stream lines
processing and makes it easier for scientists to process more data in the form of
image series in an optimal amount of time.

We implemented a signal consolidation methodology for images taken of the
same general region as a way to put together information from vast tracts of
land in order to scale up ground based measurements. Additionally we identified
variability in lighting as well as failures in software and hardware as contributors
to errors in our signal. Finally, we corroborate that there is no single color
transformation that optimizes the segmentation of phenological phases in image
series and provide a way to test and select the color space that best fits a
particular situation.
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6.3 EcoAN

We have successfully described a systems (EcoAN) that creates metadata for
image series by overlaying them with annotations and labels. We have presented
our systems in the form of a Graphical User Interface (GUI) that is meant to
interact with know lad eagle technicians to further produce content. We have
differentiated our system by describing key features like ghosting as well as
annotation types and demonstrated their effects on the overall process.

We have characterized the changes needed for EcoAN to be used within
a monitoring effort in the high Arctic by comparing the established processes
with a work-flow created specifically to fit EcoAN. We measured time and cost
for both and see that EcoAN is conducive to time savings in the field and cost
savings in the overall process. With this we give insight on how new applications
like EcoAN might impact established data acquisition processes.

With EcoAN we were able to accurately estimate flower sizes in image se-
ries by using a small number of ground truth measurements. In this way we
effectively demonstrate how EcoAN is able to contribute to the answer of new
questions like the size of bloomed flowers that were previously ignored. We fur-
ther described how the type of annotation was an important factor in reaching
accurate size estimates.

In order to show that there was no loss of functionality when implementing
the EcoAN work-flow, we compared 50% estimations calculated using the estab-
lished process with the ones from EcoAN and found that the difference between
the two did not exceed a day. We also detected differences in the phenophase
counts that led us to believe that EcoAN is more suited than the established
methodology at finding small camouflaged elements in plots. Finally, we explore
the use of EcoAN as a curation tool that takes annotation of image series and
increases their accuracy through consecutive reviews.

6.4 Scaling Up Ground Measurements

We see how our three prototypes add to the necessary scale up of ground based
data by concentrating in different points of the data pipeline. EcoIS is a pro-
ducer of data and contributes to the scale up by creating high resolution aligned
image series that help to characterize vast tracts of land. EcoIP is a consumer
of data and helps the scale up by allowing scientists to summarize big volumes
of data in the form of aligned image series into representation that consolidated
important changes. EcoAN is a consumer of data and is directly related to the
scaling of ground based measurements through the generation of content and
facilitation of data curation. It is also indirectly related by being part of the
training phase of automated tools like EcoIP.
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Chapter 7

Future Work

As we move towards fully automatic ecological data acquisition we see that one
of the most interesting developments in the field is the use of Unmanned Areal
Vehicles (UAV) as camera platforms. Its potential stems from its capacity to
automate virtually all translation in the field which is a time consuming task,
especially in remote areas. We envision a camera being carried into the field
by a UAV and visiting scattered plots containing interesting species without
any human intervention. Optimally, the only time there would be interaction is
for maintenance and in case of malfunction. We see great potential in this ap-
proach as it has the capability of increasing ecological data output by increasing
sampling frequency. We also understand that there are still great challenges if
we are to use UAVs for ecological data acquisition such as limited range and
dependability in difficult weather.

Accuracy is always a concern and it should be a top priority as the field
moves forward. Increasing the accuracy of our EcoIS transformation algorithm
to reduce virtual movement and adjust for camera system distortions will make
resulting image series easier to work with. The ISeries error is also of concern
as reducing it will diminish the amount of images needed per plot which will
reduce the amount of data needed to create the final image series. We are also
concerned with increasing accuracy of the estimations done with EcoIP; we feel
that by doing so, we increase the incentive for scientists within the community
to use our methodologies. With EcoIP it is important to root out false positives
caused by colors similar to the elements of interest.

With EcoIP we are especially interested in continuing our research towards
new ways of automatically identifying elements of interest withing an image.
Specifically, we look towards computer vision methodologies that are currently
being used in the field like detection based on texture, shape and movement.
In general we would like to take advantage of the whole range of characteristics
(spectral, spatial and temporal) offered by image series to advance in automatic
segmentation of images that lead to better classification.

In EcoIP we explore way of consolidating separate signals calculated from
different image series into one ecological estimator. We believe that this practice
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requires more attention due to its importance in helping to scale up ground
based measurement of large zones. Specifically, we would like to continue our
research into ways of taking images captured by different cameras with varying
characteristics in terms of response to light and normalizing then into a common
image representation. This would aid consolidation and the scale up effort in
general because it increases the sources of data.

The use of markers for automatic alignment in EcoIS is also something that
we want to avoid as we move closer to ecological data acquisition automation. It
is of great interest to remove all infrastructure from the field in order to reduce
logistical matters and to minimize anthropogenic effects. This does not come
without a challenge as trustworthy points of references are hard to come by in
natural environments prone to constant change. We should bring together a
series of points of reference like GPS coordinates and near by inanimate objects
in order to return to predefined places of study with accuracy

The interaction with technicians through EcoAN is important to capture
expert knowledge and save it for posterity. With this in mind we would like to
explore ways of making phenophase annotation easier within EcoAN. Specifi-
cally, we would see how image recognition techniques might help in detecting
hard to find elements (e.g. Dryas buds) and how these can be incorporated into
the EcoAN work-flow. Additionally, we would also explore new interactions pos-
sibilities by advancing in annotating methodologies like ghosting or annotation
types.
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