
Domain-Specific Modelling
Languages in Bigraphs

Gian Perrone

IT University of Copenhagen

Copenhagen, Denmark

December 6, 2012





Abstract

Modelling is a ubiquitous activity in human endeavours, and the construc-
tion of informatic models of many kinds is the key to understanding and
managing the complexity of an increasingly computational world. We ad-
vocate the use of domain-specific modelling languages, instantiated within
a “tower” of models, in order to improve the utility of the models we build,
and to ease the process of model construction by moving the languages we
use to express such models closer to their respective domains.

This thesis is concerned with the study of bigraphical reactive systems
as a host for domain-specific modelling languages. We present a number
of novel technical developments, including a new complete meta-calculus
presentation of bigraphical reactive systems, an abstract machine that in-
stantiates to an abstract machine for any instance calculi, and a mechanism
for defining declaratively sorting predicates that always give rise to well-
behaved sortings. We explore bigraphical refinement relations that permit
formalisation of the relationship between different languages instantiated
as bigraphical reactive systems. We detail a prototype verification tool for
instance calculi, and provide a tractable heuristic for deciding reaction rule
causation. Finally, we provide a mechanism for the modular construction of
domain-specific modelling languages as bigraphical reactive systems, explor-
ing the relationship between vertical refinement and language specialisation
in this setting.

The thesis is composed of several publications, augmented with new
introductory and background material.
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Chapter 1

Introduction

We shall therefore assume that
explanation is the principal
relationship—with many
manifestations—that cements
the tower of models that we call
informatics.

Robin Milner (1934–2010)

Since before the invention of the digital computer there has been an in-
terest in things that are computational in their nature — systems, processes,
and artifacts that may be understood, described, and analysed in terms of
fixed rules. The term computer science has become loaded with connota-
tion, so we prefer the term informatics which encompasses the analysis,
description, and application of systems that are somehow computational
in nature. Robin Milner [84] observed that what is often called “compu-
tation” is really calculation, and therefore he used the term informatics
in this context to mean something wider — encompassing the interaction,
communication, and behaviour of systems.

There has always existed within the study of informatics a tension be-
tween the desire to understand complexity — the remit of the scientist —
and the need to build, being the preserve of the engineers. However, central
to both activities is the need to represent precisely artifacts and processes
from the world around us, which is the process of modelling . When at-
tempting to understand inherent complexity, we construct models as more
comprehensible simplifications of parts of the real world. The act of con-
struction begins with some idealised, abstract notion (if only in the mind

1



1. Introduction

of the creator) which evolves through implementation to become something
tangible.

This thesis is concerned with modelling in two respects; in providing im-
proved modelling capabilities, and in studying the foundations upon which
such modelling capabilities rest. In aid of the latter aim, this thesis includes
contributions that are purely theoretical in their nature — it advances the
state of the art not in the actual practice of modelling, but rather in our
attempts to better understand the models that we create. In advancing the
former aim, this thesis includes practical aspects that advance the state of
the art in terms of the systems that we can hope to usefully model, and the
quality and utility of these models.

Modelling as an activity is pervasive within all human endeavours. Dis-
ciplines such as physics, economics, chemistry, and biology largely consist
of attempts to construct models that predict physical phenomena, be they
as systems of equations, statistical analyses, diagrams, or simple human
intuitions. In every case, attempts to abstract away from the concrete to
more general principles that might be understood more completely are fun-
damentally modelling activities.

Of course, within this thesis we are primarily concerned with informatic
models — i.e., models that attempt to capture knowledge of the form and
function of information, and the way that information may interact and
change over time. Confined further within this subset are those models
that are strictly computational in their nature — i.e., those that proceed by
fixed sets of rules. This space includes facets that are well-studied and well-
understood; it encompasses much of modern mathematics and formal logic,
for example. Less-understood, but commonly-practised is the construction
of software, which is in many respects a kind of modelling activity. However,
as the practice and nature of computing has changed, progression of the
tools by which we might hope to understand or describe these systems has
seldom accompanied this technological progress.

As we proceed, we will discuss (and see examples of) many different
types of models of systems that may involve or enable the construction of
software or computational artifacts. However, modelling is a much more
general activity, and while software is an important application of efforts to
improve the state of the art in modelling, there is a myriad of other systems
that have benefited, or will benefit, from a modelling approach.

2



1.1. Explanation

1.1 Explanation

The sense in which one model may relate to some other entity — be it an-
other model, a physical object, or a concept — seems to be by explanation,
i.e., if A is a model of B, then it is because A in some sense explains B.
Robin Milner, as a pioneer of much of this school of thought (and one of its
most prolific proponents) is quoted directly:

[We] say that a model comprises A family of entities ; and What
these entities mean – Robin Milner, “A Tower of Informatic
Models” [84]

and with respect to the relationships between these entities:

The phrase ‘model of. . . ’ needs discussion. The ‘of’ relation-
ship, between a model and the reality it explains, is central to
the whole of science; the same relationship holds in any engi-
neering discipline between a model and the reality it explains.
Just as we say that Newton’s laws explain the movement of
bodies with mass, so we can say in informatics that a model
consisting of programs and their meaning explains the reality of
computers and what their screens display. – Robin Milner, “A
Tower of Informatic Models” [84]

1.2 Space and Motion

In attempting to analyse and better understand systems, we can look to
the practice of computing to guide our explorations. The nature and sub-
stance of computing as an activity is changing dramatically, spurred by the
development of the personal computer, ubiquitous internet access, mobile
internet-connected devices, and the integration of computational elements
in every facet of daily life. Our very conception of what constitutes “com-
puting” is changing — informatic endeavours are so pervasive that they can
hardly be considered a separate activity anymore, as ingrained as they are
in entertainment, communication, business, education, and production.

One of the most startling changes that these innovations in the practice
of computing has given rise to is the increasing importance of space and
motion. The title of Milner’s book The Space and Motion of Communi-
cating Agents [83] gives a sense of the primacy of these concepts in the
emerging future directions of the study of informatics. Where computation
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and calculation were once inseparably linked, computation may now take
place across many different computing systems, in many contexts, and en-
gage in countless interactions with both human and computational agents.
Advances in systems biology have recognised the value of a computational
view of mechanisms inside cells [67], and have started a process whereby in-
formatic models can enrich the natural sciences, as was Milner’s aspiration
[84].

While informatic models carry a connotation of computation, we can
equally apply these processes to understanding, describing, and monitoring
processes that only involve human actors. For example, business process
modelling is now well-established [101] as an activity in many different
industries. The value of systematic descriptions of human interactions in
discovering where challenges or risks exist within an organisation has been
amply demonstrated through years of practice [101].

The primary attraction of considering the space and motion of agents is
that it involves (like all modelling tasks) constructing useful abstractions.
Through the choices we make when building these abstractions — par-
ticularly by what we include and what we exclude — we gain a different
perspective on a system, which might make it amenable to different (au-
tomatic or human) analysis. Space and motion are common to almost all
systems, and so considering these as primary is the start of an approach to
modelling that aspires to generality across problem domains.

1.3 Domain-Specificity

There exist many ways of constructing informatic models, both as theo-
retical constructions, or with robust tool support in an applied setting. A
common feature of modelling languages or approaches is an attempt to be
general. However, models are rarely general in this respect; they capture
a set of assumptions and factors with respect to some problem domain.
A domain might encompass an entire industry (e.g., aerospace or health-
care), or might only include a single model (e.g., a model of a particular
software system). There exists something of a disconnect between the as-
sumptions inherent in defining a model, and the general-purpose nature of
many modelling languages. This mismatch has given rise to the idea of
domain-specific modelling languages (DSMLs), where a language for mod-
elling is constructed with a particular modelling task or problem domain in
mind.
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Why introduce domain-specificity in modelling? Given the existence of
many general-purpose languages both for programming and for modelling,
one might be tempted to employ these for all tasks. The semantics (and
to a lesser degree, the syntax) of such general-purpose languages do not
necessarily lend themselves to concise, accurate descriptions of the proper-
ties of interest in all domains. The reasoning is simple: A domain-specific
approach leads to better models that capture the properties of interest,
without encoding extraneous detail.

The construction of domain-specific modelling languages can be an ar-
duous task. Even when considering a language based upon another, there is
a particular attention to detail required in defining syntax and semantics of
languages. Similarly, what can we do with these languages? Tool support
for editing such models, analysis, and even communicating an understand-
ing of the model to other humans requires vast effort that is rarely justified
in all but the largest projects.

One means to reduce the effort required to construct and employ a
domain-specific modelling language is the use of a meta-modelling environ-
ment1. One of the most credible efforts to construct a general-purpose meta-
modelling environment that could function as a host for domain-specific
modelling languages is bigraphs [83]. By constructing a domain-specific
modelling language within a meta-modelling environment, one gains the
benefit of reusability. Results shown to be true of a suitable meta-model
are immediately true of all modelling languages instantiated within it. Sim-
ilarly, tools that can operate on meta-models may be instantiated as tools
for instance modelling languages. Finally, in terms of comprehensibility,
the benefit of a meta-model is that it eases communication. The semantics
of a domain-specific modelling language encoded as (for example) bigraphs
are in some sense “on show” — they are tangible artifacts that may be ex-
changed, inspected, and discussed. Anyone familiar with bigraphs in general
can hope to understand a particular instance modelling language or model
constructed within a language simply by his or her a priori knowledge of
the meta-model. Bigraphs are a promising candidate in all these respects,
and will be the focus of much of this thesis. We give a full introduction to
the development and technical aspects of bigraphs in Chapter 2.

1The term “meta-model” is often used in some communities to mean something akin
to a syntactic schema or grammar. This is not sense in which we mean “meta-model”,
which following Milner [84] we consider to be a model that in some sense “explains” the
(behavioural) meaning of another model
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1.4 A Tower of Models

The importance of relating models stems from a desire to really use these
models in practice, either for implementation, or in order to make predic-
tions about some underlying system. If the “model of” relationship means
“explains” or “approximates” or “describes”, then the exact nature of this
relationship will determine for what this model may be used. Similarly, it
often makes sense to relate not just models to entities of the real world, but
also to relate one model to another (where these models might be described
in different domain-specific modelling languages, for example). This gives
rise to the notion of a “tower of models”, as proposed by Milner [84]. The
metaphor extends to encompass the approximate dimensions of the tower —
many layers of models, each explaining the one immediately below it gives
a tower that is tall and thin, whereas having many parallel models of the
same system gives a tower that is short and broad. Moving from the base
of the tower upwards somehow captures increasing degrees of abstraction,
while moving down from the top of the tower gives additional (concrete)
detail. What lies at the extrema? At the bottom of the tower might be an
executable implementation of some system, or simply the real-world entity
that is of interest. At the very top might be a completely abstract (par-
tial) specification of some key behaviours. At every layer in between is any
number of informatic models.

The vision of many different models explaining the same system is not a
new one — the practice of stepwise refinement has been common in software
engineering for many years [104], in which an abstract specification is refined
through many steps towards an eventual implementation.

We can even consider more pedestrian software development activities
in the context of a tower of models. The use of UML (Unified Modelling
Language) [96] is common in many software development methodologies,
and the construction of many parallel views of the same underlying sys-
tem using different modelling mechanisms is common. This does not quite
satisfy our definition, as the explanatory power of these models extends
only to syntax, ignoring most considerations of semantics. Where semantic
interpretations do exist, there is a lack of a meaningful meta-model that
explains the semantics of lower-level semantic models, and therefore our
tower is distinctly lop-sided.

So to properly realise the vision of a tower of models, we require ex-
planatory power for both the syntax and semantics of models. We will argue
that bigraphical reactive systems are therefore an appropriate host for tow-
ers of models, and that the individual models are best described in terms
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of domain-specific modelling languages (specified in terms of bigraphical
reactive systems). One technical contribution provided within this thesis
(in Chapter 4) is a mechanism for the construction of vertical refinement
mappings between bigraphical reactive systems — i.e., formal mappings
that relate different domain-specific modelling languages to one another.
In Chapter 5, we provide a more tractable means of analysing models con-
structed in this manner. Finally, in Chapter 6 we provide a means by which
to systematically construct such languages. Of these contributions we will
say more later; for now it is sufficient to say that the unifying theme of this
thesis is enabling the construction of towers of (domain-specific) modelling
languages as bigraphical reactive systems.

1.5 Ubiquitous Computing

Of much interest in recent years is the promise of ubiquitous computing
[103]. Ubiquitous (or pervasive) computing has the stated intent of sub-
suming the traditional desktop computing model by integrating computing
into the fabric of everyday life. Such systems are meant to be so tightly
integrated and seamless as to “disappear” into the background. Such var-
ied and diverse computing environments offer new challenges to those who
might hope to describe, analyse, and understand such systems. Ubiquitous
computing seems well-suited to a domain-specific modelling approach, in
that any given (possibly ad hoc) configuration of computing elements con-
stitutes a different domain, and applications written over this structure need
to be able to describe both computation as well as high-level reconfiguration
of the system [103].

The approaches that we propose in this thesis have already been applied
to problems from the ubiquitous computing domain, under the guise of
context-aware systems [97]. Birkedal et al. [20] explored the possibility of
encoding context-aware computing in terms of bigraphical reactive systems,
with some success. However, they discovered certain limitations at that
time, some of which we hope to address in the present work.

1.6 Problem Formulation

This thesis is primarily concerned with the investigation of domain-specific
modelling approaches within bigraphical reactive systems, and attempts to
answer the question: “How can we move modelling approaches closer to
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their respective domains?”, with the side-condition that we are restricting
our attention mostly to the techniques available within bigraphical reac-
tive systems. Why restrict ourselves in such a manner? The answer is
found mostly in the previous work on bigraphical reactive systems, in which
they have demonstrated excellent promise in acting as a host for domain-
specific modelling languages, as well as generalising a number of other ap-
proaches. Given the entire design space of approaches to the instantiation
of domain-specific modelling languages, bigraphical reactive systems are al-
most uniquely promising in this regard. We review bigraphical reactive
systems and enumerate much of the previous work in this area in Chapter
2.

1.7 The State of the Art

Having restricted ourselves primarily to bigraphical reactive systems, it
remains interesting and useful to review other current approaches to the
same problem, which we attempt here. We include here only high-level
approaches — related work for each discrete strand of work is included
within the respective chapters that follow. We distinguish between two
broad classes of mechanisms for describing DSMLs — those that take a
primarily syntax-directed approach, in that the main intention is to describe
the syntactic structure of models, and those that are additionally concerned
with describing the semantics of DSMLs, such that the meaning of a given
model may be fully understood with respect to the language. The former
is more common, whereas the latter approach is really our primary focus.

1.7.1 Syntax-Directed Approaches

There exist a large number of approaches to the construction of meta-models
that describe the syntactic structure of well-formed models. These may take
the form of grammars for textual languages, graph grammars for graph-
based models, or schemas for structured formats such as XML. The actual
interpretation of these models is generally left implicit, or is outside the
scope of the meta-model. For example, an entity-relationship model [29]
describes the static structure of a database, in terms of the tables, columns,
and data-formats that may be present in a well-formed instance of that
model. The meta-model for entity-relationship models (i.e., the model that
describes the structure of well-formed entity-relationship models) does not
attempt to describe the connection between a given model and its eventual
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Figure 1.1: An example Entity-Relationship Diagram

behaviour, or indeed its interpretation with respect to the structure it is
modelling. This interpretation is left informal and implicit, or in some cases
is given as a secondary artifact that provides mappings from models to other
formal objects (e.g., relational algebra terms).

Entity Relationship Diagrams

An entity-relationship diagram (e.g., Fig. 1.1) defines a model in terms of a
(static) set of relations between entities. The interpretation of these models
is external to the meta-model, in that there is no sense in which the model
captures how a model evolves over time, nor the dynamic behaviour that
manifests. While these kinds of meta-models do define a family of models,
the formal interpretation of these models with respect to some underlying
semantics (or indeed the relationship of one model to another) is considered
an external, secondary concern.

Ontology languages

Ontology languages define a set of relationships over a set of objects of
interest, and are therefore closely related to entity-relationship diagrams.
The sense in which an ontology language is a “domain-specific” language
is because the modeller defines a set of primitives and relationships, and
these may be combined within individual models in order to describe a
particular ontology. Ontology languages tend to be used to describe static
models, and in this sense differ substantially from the kinds of domain-
specific modelling languages that we propound. However, recent interest
within ontology languages has focused on modular construction [31], and
in this respect they are more similar to the bigraphical reactive systems
DSMLs that we propose in Chapter 6, in that modular construction of
DSMLs is one of the stated aims of that work.

9



1. Introduction

XML Schema

XML schemas define a family of well-formed XML documents in terms
of their structure. XML documents do not, however, capture anything
about the dynamic semantics of documents — in the sense of capturing
how they may evolve over time in response to the environment. XML
documents lack any kind of dynamic semantics — the schema defines the
syntax of well-formed documents, but the actual interpretation of these
documents is left entirely unspecified, to be determined by the tools that
will accept these documents as input. Hildebrandt et al. [56] proposed a
connection between Reactive XML and bigraphical reactive systems, having
observed that an XML document equipped with a set of reaction rules
that selectively rewrite portions of documents correspond closely with a
bigraphical reactive system. Consequently, an XML schema defines only
well-formed documents, while additional structures (e.g., reaction rules)
are required in order to imbue a given document with actual behaviour
that we may reason about or use for analysis.

1.7.2 Semantics-Directed Approaches

In contrast to the various approaches to meta-modelling and domain-specific
languages that focus solely upon describing the syntactic structure of well-
formed models, there have been more recent attempts to give domain-
specific modelling languages in a manner that also permits one to describe
the semantics of the language. These approaches are considerably less com-
mon, largely owing to the additional complexity that it invokes. It is much
easier to provide well-understood mechanisms for describing syntax (e.g.,
grammars or schemas), while leaving the interpretation of these syntactic
constructs implicit, or merely defined by the tools that manipulate them.
Our bigraphical approach to domain-specific modelling languages includes
a uniform mechanism for describing both the syntax and the semantics of
a modelling language, which constitutes an advance beyond that which is
currently available.

Embeddings in General-Purpose Languages

One common mechanism for providing a domain-specific modelling lan-
guage is to embed it within a general-purpose programming language. Lan-
guages such as Lisp, Scala, ML, and Haskell have all been used as domain-
specific modelling language hosts. The means of defining such a language is
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to design a set of combinators that build up data-structures that represent
the model as a value within the language, relying upon the syntactic con-
ventions of the language to permit models to be expressed. These models
may be imbued with a semantics by providing functions that operate upon
them, written in the same host language. The fact that this approach moves
syntactic definitions and semantic interpretations closer to one another can
only be seen as a positive step.

The challenge with such embeddings is that the semantics of the host
language itself are not necessarily formal, written, or well-understood. If
one wishes to investigate the formal interpretation of a given model, one
cannot necessarily do so directly, as it will often require a deeper under-
standing of the host language than is available. Similarly, the mismatch
between modelling languages (that attempt to describe or explain), versus
programming languages (that specify computations) can lead to awkward-
ness, and an inability to directly express that which might otherwise be
desirable. Anyone attempting systematic study of such embedded mod-
elling languages is working with respect to the fixed semantics of some host
language, and attempting to reconcile the semantics of a modelling language
with these is not always straightforward (or indeed, always possible).

Such language embeddings also lack the compositional properties that
we seek. The kinds of host languages that are employed rarely provide any
easy mechanism for the modular construction of domain-specific languages,
and the ad hoc construction methods that one might employ to facilitate
modular construction are unlikely to be amenable to formal analysis at a
semantic level.

Xtext

Xtext [41] is a language construction toolkit, designed to speed the im-
plementation of parsers, analyses, and editors for various programming
languages and modelling languages. It is integrated into the Eclipse eco-
system, and semantics are implemented by giving mappings to Java seman-
tics. As a result, the Xtext approach is really a specialisation of other ap-
proaches to embedding modelling languages into general-purpose languages,
although the particular implementation details are made more elegant by
the framework. Similarly, because it relies on traditional specification tech-
niques for grammars (which are not always amenable to composition), and
the lack of any formal meta-theory that would permit us to relate different
languages, Xtext falls short of the requirements for a tower of models.
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Modular Meta-Theory

A recent approach to reuse in the programming languages community has
been attempts to build programming language meta-theory is reusable and
modular. Such approaches have generally focused upon the construction of
reusable meta-theory within theorem provers, such that formalisations of
languages such as MiniML may be achieved in a compositional manner [37].
The somewhat orthogonal goals of programming languages and modelling
languages become significant here, in that we hold that the direct accessi-
bility of the semantics of a modelling language are important. The kinds of
reasoning that one might wish to perform concerning the semantics of a pro-
gramming language are markedly different to those that one would like to
perform upon modelling language semantics, particularly when considering
specialisation to a domain.

The semantics of general-purpose programming languages tend to be
more complex, but also more restricted — they are, after all, a model of
computation in some general sense. A modelling language (particularly one
specialised to a given domain) need not be a general model of computation,
and therefore the semantics of the language are likely to be simpler, but
also possibly less well-defined. It remains to be seen whether the techniques
developed in [37] would transfer to a domain-specific modelling language
setting, and whether the kinds of sophisticated meta-theory that would
enable are necessary for such languages, nor whether these techniques would
permit domain-experts to actually construct modelling languages, given
the requirement that one can manually verify that the encoded semantics
correspond to the intended semantics appropriate for that domain.

We argue that the ability to easily define and inspect the semantics of
arbitrary modelling languages depends more directly upon the ability to
construct domain objects and define their semantics by rewriting, and a
sophisticated external meta-theory defined in a theorem proving environ-
ment such as Coq [18] seems well outside the reach of many domain experts
(who are not necessarily experts in programming languages). Consequently,
the techniques from programming language meta-theory do not appear di-
rectly reusable in a domain-specific modelling language setting, given the
somewhat orthogonal goals.
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1.8 Contributions

The contributions of this thesis may be grouped into a number of discrete
areas that together advance the state of the art in the construction of bi-
graphical domain-specific modelling languages. We briefly summarise these
areas:

• Defining Languages: In Chapter 3 and Chapter 6 we see new
mechanisms for defining bigraphical languages in ways that promote
reuse, and which make bigraphical reactive systems more generally
accessible. In particular the presentation found in Chapter 3 obviates
the need for domain-experts and those familiar with process calculi
to work directly with the unfamiliar categorical structure of bigraphs,
and provides a straightforward logic for defining sorting predicates
that is guaranteed to give rise to well-behaved sortings. The modular
construction mechanisms proposed in Chapter 6 enable a standardised
means of communicating the definition of a bigraphical language, and
to reuse components that may be specialised to a given domain.

• Tool support: In Chapter 3 and Chapter 5 we see advances in
the ability to execute and use bigraphical domain-specific modelling
languages. The introduction of a bigraphical abstract machine and a
fairness condition for bigraphical reactive systems provides opportu-
nities to bridge the gap between theory and applicability, while the
result that reaction in sorted and unsorted categories considerably
improves our ability to implement sortings within bigraphical tools.
The prototype tool described in Chapter 5 represents a concrete con-
tribution to the applicability of bigraphical reactive systems, as does
the tractable heuristic for computing reaction rule interference.

• Relating Languages: The introduction of vertical refinement
mechanisms for bigraphs, as well as sufficient conditions to make it
easier to construct such refinements in Chapter 4, and the further de-
velopment of this work in Chapter 6 helps to make real the vision of
a tower of models. This work has already permitted others to begin
relating different BRS models to one another, and therefore represents
a contribution to the state of the art.

We will say more of the contributions of this thesis in Chapter 7, as well
as detailing some of the further research questions which it has raised.
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1.9 Structure of the Thesis

This thesis is composed of three chapters of new material, and four papers
that have been published previously (or submitted for publication) else-
where. As a result, there exist several strands of work within this thesis;
however, they are all unified under the goal of enabling the construction of
domain-specific modelling languages in bigraphs. Each of the chapters that
consist of a stand-alone publication (Chapters 3, 4, 5, and 6) include new in-
troductory material that attempts to give context and relevant background
to the work, and relate it to the stated goals of this thesis.

The remainder of the thesis is structured as follows:

• Chapter 2 gives a general introduction to process calculi in general,
and bigraphs specifically. This is designed to be a comprehensible
introduction for a general computer science audience, and introduces
key concepts from the bigraphs theory, as well as introducing much
of the notation that will be used throughout the remaining technical
sections of the thesis.

• Chapter 3 introduces a complete meta-calculus presentation of bi-
graphs, and gives a sorting logic that is guaranteed to give rise to de-
constructable predicates of the form required to ensure that the sorted
category has RPOs, following the work of Debois [35]. This chapter
also introduces a bigraphical abstract machine (BAM) that charac-
terises the semantics of bigraph reaction in a way that is amenable to
further analysis, including a fairness condition for bigraphical reactive
systems.

• Chapter 4 develops ideas around vertical refinement relations that
permit mappings to be constructed between different domain-specific
modelling languages. The vertical refinement mechanism we propose
is related to that given by Reeves and Streader [94, 95], and is a first
contribution to making real the promise of a “tower of models”. This
chapter is derived from a paper published in the 2011 International
Refinement workshop (REFINE’11).

• Chapter 5 introduces a bigraph tool (called BigMC ) that represents a
concrete step towards making bigraphical reactive systems usable as
a host for domain-specific modelling languages. This chapter is drawn
primarily from a paper published in the ACM Symposium on Applied
Computing 2012. A central contribution is a tractable heuristic for
computing interference or causation between reaction rules.
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• Chapter 6 introduces a mechanism for the modular construction of
bigraphical reactive systems, further developing the concepts intro-
duced in Chapters 3 and 4. This represents a systematic means by
which one can consider composition of domain-specific modelling lan-
guages described as bigraphical reactive systems.

• Chapter 7 offers a summary of the contributions of the thesis, and
identifies promising future research directions within this area.
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Chapter 2

Bigraphs

This thesis is primarily concerned with the theory and application of bi-
graphs, and as it is composed of individual publications, each chapter
presents bigraphical reactive systems in a manner appropriate to the re-
sult being communicated in that particular work. This chapter should be
considered the canonical introduction to bigraphical reactive systems for
the purposes of this work, in that it subsumes the much shorter introduc-
tions given in the individual chapters. I will assume no knowledge, as it
is my sincere hope that this chapter may stand alone as a comprehensible
introduction to bigraphs. In introducing the technical aspects of bigraphs,
it seems only appropriate to describe the historical developments that led
to their development. For the expert reader, this material will be familiar;
however, my intent in presenting a detailed history of the origins of bigraphs
is in part to answer the oft-asked question: “why use bigraphs?”, which is a
reasonable question given the perceived complexity of the theory. I hope to
communicate that bigraphs are an elegant solution for a problem to which
many solutions have been posited (and found to be wanting). The sources
of information for the historical and technical aspects of this chapter are
numerous, and in-text citations will be given where appropriate. However,
the authoritative definition of bigraphs should be considered Robin Milner’s
papers and technical reports published with various collaborators, and his
2009 book The Space and Motion of Communicating Agents [83]. Any con-
tributions that are my own will be clearly identified; however, most of this
content is simply a distillation of the excellent resources I have been able
to draw upon in the course of learning about bigraphs.
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2.1 History

Systematic attempts to describe the behaviour of systems that are “compu-
tational” in their nature pre-date the invention of the digital computer by
several decades. The development of models of computation mark the birth
of computer science as a discipline distinct from mathematics, through the
pioneering work of Gödel, Church, Turing, and others working on symbolic
logics and the foundations of mathematics in the 1930s. Systems that at-
tempt to describe computation (and most modern programming languages)
stem from this tradition. However, the real benefit of calculi — i.e., formal
systems that have fixed rules — was in their use as abstractions of other
systems. The process of building abstractions that permit greater under-
standing has been the cornerstone of computer science since its inception.

The development of models of computation during these formative years
focused primarily on sequential computation, where computation is de-
scribed in terms of sequences of steps that are performed one after an-
other. A particularly pervasive model of computation is automata, a class
of abstract machines of which the finite state machine is perhaps the most
ubiquitous. Around the time Turing was developing the Turing machine,
Petri proposed Petri nets as a means of describing chemical reactions. Petri
nets were later given an algebraic treatment in Petri’s PhD thesis [93]. A
Petri net is a model of concurrent computation, in that different steps can
potentially be performed at the same time. The connection to chemical
reactions is obvious — in the real world, many different chemical reactions
could be taking place at once, rather than each reaction occurring sequen-
tially. This is a key assumption underlying the development of bigraphs
(and many of the other formalisms we will see in this chapter) — concur-
rency is a good model of real systems. Concurrency theory languished for
some time, with renewed interest beginning in the 1970s with the develop-
ment of the Actor model [3] in which the primary components of a system
are actors that send and receive messages.

The use of interrupts on digital computers to give the appearance of
multiple programs executing at once, along with the rise of time-sharing
systems that could serve multiple users at once, meant that the practice
of concurrency was evolving alongside the theoretical developments in the
area. Concurrent programming idioms such as semaphores [38], locks, mu-
texes, and later processes and threads, gave rise to a host of complex con-
current systems, the behaviour of which was not always well-understood.
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2.1.1 Process Calculi

A shift came with the work of Robin Milner between 1973 and 1980 in the
development of the Calculus of Communicating Systems (CCS) [74]. As
the name suggests, CCS is concerned with the communication behaviour
of systems. By abstracting away actual computation, and instead focusing
on the communication that takes place, we get a very different view of a
system. There is a classical example used — the vending machine and the
robot. If we describe a vending machine in terms of the inputs and outputs
it can perform (e.g., it can accept input in terms of a coin being inserted and
drink-selection buttons being pressed, and supplies output by dispensing a
drink), then we have abstracted away from the circuits and software that
make the vending machine function and have instead arrived at a more
abstract concept of the functionality that the vending machine supplies.

The shift that focusing on communication behaviour induces is signifi-
cant, yet subtle. A sequential program or machine that accepts input at the
start of execution will effectively run until completion (or it might fail in the
process) without further intervention from any external party. A concurrent
process of the sort that we describe in CCS (such as our vending machine)
will only engage in behaviour if there is some other party willing to engage
in the corresponding communication behaviour. The vending machine on
its own will never produce any output — it must instead be placed into some
environment or context that supplies that corresponding behaviour. There
needs to be a user to insert a coin and press a drink-selection button, and
perhaps to receive the drink that is dispensed. Without an environment,
the vending machine is stymied.

CCS provides a concrete syntax with which to describe concurrent pro-
cesses, as well as the act of placing a given process into an environment:

P ::= 0 | x.P | x̄.P | P + P ′ | P |P ′

where 0 is the nil (or “inaction”) process that has no behaviour, x.P accepts
an input on a channel named x, and then proceeds a P , x̄.P supplies output
on the channel named x, P + P ′ is the choice operator that behaves either
as P or as P ′, and P |P ′ is the parallel composition of two processes, such
that they are permitted to run together and synchronise where inputs and
outputs on channels agree. CCS offers a number of other constructs, but
these are omitted for simplicity.

Using this syntax we can describe our vending machine model:

VM
def
= coin.(button1.drink1.V M + button2.drink2.V M)
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Figure 2.1: A labelled transition system for the CCS vending machine model
VM

The process VM accepts input on a channel named coin (which we use to
model the insertion of a coin into the machine), and then either accepts
input on the channel button1, after which it will output on the channel
drink1 and then behaves like VM again from the start, or it accepts input
on channel button2, after which it outputs drink2 and then returns to the
start.

The concept of channels is central to these kinds of process calculi. A
channel is uniquely identified by its name, and provides instantaneous, guar-
anteed communication between the end-points of that channel. Extensions
of CCS permit modelling channels with delayed or lossy transmission, but
the basic abstraction proves sufficient for modelling many scenarios. It is
also worth noting that the process communication is synchronous , such that
the sender and receiver must agree on the next action. If a process wishes
to send on channel x before there is another process willing to receive on
channel x, then that process is blocked from further progress until such a
time as there is a receiver willing to engage in the corresponding action.

We can visualise this process using a labelled transition system (or LTS),
as in Fig. 2.1. In a labelled transition system, the transitions are labelled
with actions , which in this case are the CCS input or output actions. The
labelled transition system diagram is a useful aid for understanding the
behaviour of these kinds of systems, but it is also a demonstration of the
importance of good visual representations, to which we will return later.

We have defined our vending machine, but what of its environment? We
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can design a robot that will interact with the vending machine:

Robot
def
= coin.button2.drink2

The Robot process will offer a coin and offer to press button2, and then
accept drink2 as input. We can place the Robot in the same environment
with the VM process using parallel composition:

VM |Robot

The semantic interpretation of a CCS process may be expressed as a kind
of term rewriting in which we reduce a process by some fixed set of rules
for rewriting the syntax of the terms. In the case of CCS, this is one of the
rules:

x.P | x̄.Q→ P |Q

This means that wherever we have two processes in parallel where the first
action of one is to perform input on some channel x, and the other is
offering output on that same x, that communication may be performed (and
discarded), and we proceed with whatever work each process has remaining
to do — i.e., P and Q respectively, in this case. This notion of giving
the semantics of some formal system in terms of rewriting will become
significant as we begin to explore bigraphs in the rest of this chapter.

2.1.2 Behavioural Theories

Underlying CCS (and the many other process calculi developed around the
same time — e.g., Communicating Sequential Processes (CSP) [60] and the
Algebra of Communicating Processes (ACP) [16]) is a robust behavioural
theory that permits us to use the models we construct within the formalism
to make predictions or guarantees about the behaviour of the system. In
CCS, the labelled transition system is used to give meaning to the pro-
cesses we construct (this is often referred to as a labelled transition system
semantics). From the LTS, we can derive notions of equivalence between
processes. One of the best-known equivalences is bisimulation, which is a bi-
nary relation on transition systems. One system is said to simulate another
if for each action that one system can perform in a given state, the other
system can take the same step. Two systems are bisimilar if each system
can simulate the other. This gives rise to a notion of observational equiva-
lence, such that no observer could tell the two systems apart by observing
their behaviour. Another powerful equivalence is process refinement , which
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was primarily developed in the context of CSP [25]. Refinement insists that
one (more concrete) system exhibits a subset of the behaviour of another
(more abstract) system. This gives rise to the process of stepwise refine-
ment, in which an abstract specification is refined through multiple steps
towards a more concrete implementation.

The desire to analyse process models has given rise to a host of tools and
techniques for making concrete guarantees about the behaviour of processes.
This has permitted their use as specifications for software systems, network
and security protocols, and processes. The concurrent semantics present in
hardware description languages like VHDL [87] and Verilog [100] have been
construed within the setting of process calculi [13, 72]. Similarly, areas such
as business process management and automation have made extensive use
of process calculi in order to reason about processes. There has been an
extensive proliferation of process calculi derived from CCS, CSP, and ACP,
all tailored to specific domains.

2.1.3 π-calculus and Mobility

While CCS provided a strong foundation from which to consider the sys-
tematic study of communicating and concurrent systems, it has an inherent
limitation. A given process is essentially static — its definition is fixed, and
it communicates over a fixed set of channels. This is sufficient for modelling
many kinds of systems, but it is not a good representation of other kinds
of systems that have since become common. The primary mismatch stems
from the fact that it is often useful and desirable to have a dynamic set of
channels and permit processes to evolve (in terms of the network topology
and the processes themselves moving) as they behave. This hints at a no-
tion of location — where the “location” of a process is effectively given by
the set of channels to which it has access. This also gives rise to a natural
notion of mobility , such that the set of channels to which a channel has
access (and therefore its location) should be able to change as the process
behaves within an environment. This provides considerably more flexibility
and expressivity in the models that we can describe. It was the desire to
include mobility that motivated Milner, Parrow & Walker to propose the
π-calculus [85], which is a calculus of mobile processes.

The main development results from the fact that π-calculus promotes
channels to first-class values, such that names (of channels) can be com-
municated over channels. This allows the topology of the process to evolve
and change as it evolves. π-calculus also includes replication, such that a
process may dynamically spawn copies of some other process. The syntax
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of a simplified variant of π-calculus is given as:

P
def
= 0 | x(y).P | x̄〈y〉.P | P |P ′ | !P |(νx)P

where 0 is once again the nil process with no behaviour, x(y).P accepts
input of a value y on the channel x and then proceeds as P , x̄〈y〉.P outputs
the value y on the channel x and then proceeds as P , P | P ′ is parallel
composition, !P creates a new copy of the process P , and (νx)P creates a
new local name (channel) x that is visible only within the process P and
then proceeds as P .

We can demonstrate the additional flexibility of the π-calculus with a
small example:

(νa)(b̄〈a〉.a(x).0) | b(c).c̄〈c〉.0

This process create a new (local) channel called a, and then outputs it on a
global channel b. The second part of this process accepts input on channel
b, and calls the communicated value c. It then uses this channel c which it
just received to send the name c (i.e., it has a local reference c to the channel
a). The first process then accepts input on a, and calls the communicated
value in x.

There are many variants of π-calculus, including the Fusion calculus [89],
asynchronous π-calculus [24], and many others. There are also a number of
different types of bisimulation for π-calculus, each of which gives a different
notion of equivalence and suited to different tasks. The π-calculus is the
basis for much of the work on session types [45] (and multi-party session
types [63]) in which the participating components of some kind of transac-
tion (e.g., a travel agency system querying various airline systems to find the
best-priced ticket) are assigned types that are effectively π-calculus terms,
that are used to describe and analyse local system behaviours in terms of
global behaviours, and vice-versa. Real-world systems such as those con-
structed in terms of services can benefit from the theoretical foundations
of various tools for describing system behaviours in terms of calculi derived
from the π-calculus (e.g., [86]).

2.1.4 Chemical Abstract Machine

The Chemical Abstract Machine (cham) was proposed by Berry & Boudol
[17] based upon earlier work on using a chemical solution metaphor to de-
scribe concurrent systems that exhibit interact and communicate. Cham
described the state of a system in terms of a solution of floating molecules
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that could be reconfigured by reaction rules. Cham also permitted the for-
mation of membranes that denoted some limited area in which reactions
could occur, providing the first hints of notions of spaces in a concurrency
setting. Augmented with various rules for stirring, heating, cooling, and
cleaning the solutions (which correspond to various operations on terms),
cham is able to represent the semantics of CCS, as well as several other cal-
culi. The work on cham is significant for being the first of a new generation
of concurrency formalisms that looked to provide appropriate metaphors
for describing complex interactions, integrating notions such as reaction
and locations.

2.1.5 Action Calculi

Action calculi represented another attempt to further generalise and unify
models of interaction. Many of the ideas present in bigraphs were originally
developed in the setting of action calculi, including the construction of terms
from atoms, the visual syntax (action graphs) [76], rewriting semantics [99],
and the original work on deriving bisimulation congruences [70]. Action
calculi should be seen as a direct precursor to the development of bigraphs,
in that bigraphs represent the extension and evolution of action calculi
to encompass more general ideas, and the further development to allow
solutions to the challenges presented by ubiquitous computing.

2.1.6 Mobile Ambients

Cardelli & Gordon proposed mobile ambients [28] in 1998 as a means of
capturing mobility in concurrent systems, particularly with the emergence
of the commercial internet, and optimism surrounding the possibilities for
mobile agents and large-scale distributed computing in this setting. Ambi-
ents are bounded regions that can serve to capture various natural notions
of containment — e.g., the contents of a room, individual files within a
folder, a family tree, and so on. The dynamics of ambients are introduced
through a small set of operations, expressed in the manner of a process
calculus:

P
def
= 0 | n[P ] | in x.P | out x.P | open x.P | P |P ′

where n[P ] is an ambient named n with contents P , in x.P moves the
ambient to move into the sibling ambient x and then proceed as P , out x.P
moves the ambient outside x and then proceeds as P , open x.P removes an
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(a) Normal tree diagram (b) Nested tree diagram

Figure 2.2: Place graphs rendered as both a normal tree diagram and using
nesting to represent the parent-child relationships

ambient x, placing its contents as siblings, and P |P ′ places two ambients
side-by-side.

Mobile ambients are able to recover various other calculi — including
the π-calculus — by simulating name-passing using operations on ambi-
ents. Having seen mobile ambients and the Chemical abstract machine, we
are beginning to converge on the common elements that have led to the
development of bigraphs.

2.2 Anatomy of a Bigraph

We have seen that through the historical development of process calculi,
various common themes have emerged. It is worth noticing a few common
elements that appear in all of the calculi we have seen thus far. They all
include names , which might be used to identify channels or other elements
(as in mobile ambients, for example). All of the calculi presented also in-
clude some kind of regular syntactic structure, and some of the calculi use
this to create a notion of locality, like the membranes of cham, or ambi-
ents. Bigraphs are a distillation of this commonality. A bigraph represents
orthogonal notions of locality and connectivity through the use of two sep-
arate graph structures. We will introduce these separately, and then show
how they are combined to form a bigraph.
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2.2.1 The Place Graph

The place graph consists of a forest of trees , each of which has a root . The
place graph is used to represent notions of locality or containment. Trees
are usually drawn as in Fig. 2.2a, with the root at the top, and the leaf
nodes at the bottom. Within bigraphs, the convention is to draw the trees
of the place graph as nested nodes instead, as in Fig. 2.2b, where the
place graph roots are distinguished from nodes by dashed outlines. Both
of these figures represent the same graph; however, whereas parent-child
relationships in the normal tree representation are given as (directed) edges
between nodes, we use containment of one node within another to mean
that the inner nodes are children of the outer (containing) node.

The roots of the place graph are sometimes referred to as regions — we
will only refer to them as such. Regions are ordered with respect to one
another, and are indexed 0 . . . n; however, the sibling nodes within the trees
are unordered with respect to one another.

To nodes of the place graph we assign controls — these are identifiers
for nodes drawn from a set that is called a signature, usually denoted as Σ.
The signature for the place graph given in Fig. 2.2 is Σ = {a, b, c, d}.

The final type of object that may appear in place graph is a hole (some-
times referred to as a site), which are depicted in Fig. 2.3 as shaded boxes.
Holes are indexed sequentially from 0, . . . ,m, and no index may appear
more than once. The meaning of a hole will become clearer as we begin
to discuss composition of bigraphs. For the moment, the name “hole” is
appropriately descriptive — in the sense that it is a place holder into which
another place graph may be inserted.

The size and shape of the nodes we draw in the graphical presentation of
place graphs is not significant. Sometimes nodes with different controls are
drawn using particular shapes, but this is simply an aid to the reader, and
has no particular significance. Also, because sibling nodes are unordered
with respect to one another, their placement within a parent is not signifi-
cant. Regions are ordered, and by convention are drawn horizontally from
left to right (using dashed outlines to distinguish them from place graph
nodes).

We introduce some terminology by which to refer to certain properties
of a place graph. The number of regions is referred to as the outer width of
the place graph, and the number of holes as its inner width. A place graph
with outer width 1 is called prime, whereas a place graph with outer width
2 or greater is called wide.

The containment of a place graph can be used in many different ways
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Figure 2.3: A place graph with inner width 3 and outer width 2

Figure 2.4: A prime place graph representing the abstract syntax of 2∗(2+1)

— one could use controls like Building, Floor, Room, and Person to describe
the state of a multi-story building with many rooms, some of which contain
people. The connection to the process calculi we have seen thus far might
appear less obvious, but place graphs as presented here are well-suited to
capturing a number of properties. The concept of an abstract syntax tree
is familiar in programming languages, and indeed all of the calculi we have
presented thus far are representable as abstract syntax trees. Given that a
place graph consists of trees, we can encode an abstract syntax tree directly.
Supposing we chose to use the controls 1, 2, +, and ∗, we could represent a
term like 2 ∗ (2 + 1) using the place graph given in Fig. 2.4. We will return
to this connection later.

We arrive at a precise mathematical definition. Where m is the inner
width and n is the outer width, a place graph is a 3-tuple:
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Definition 1 (Place Graph).

(V, prnt, ctrl) : m→ n

where:

• V is a set of nodes

• prnt : m]V → V ]n is the parent map that records the parent of any
place graph hole or node. We will use the notation m]V throughout
to mean {0, . . . ,m} ∪ V , where the two sets are assumed (or known)
to be disjoint.

• ctrl : V → Σ assigns controls (from the signature Σ) to the nodes of
the place graph.

• The notation m → n allows us to record the interfaces of the place
graph, where m is referred to as the inner interface of the place graph
and n is the outer interface.

We have two notions of composition for place graphs, which we will
define in terms of our definition of a place graph.

Composition

The first form of place graph composition is usually given as A ◦ B, where
A and B are place graphs. The intuition behind the kind of composition is
that we take each of the regions of B, and place them into the holes of A,
such that region 0 of B is inserted into hole 0 of A, region 1 of B is inserted
into hole 1 of A, and so on. For this to work, the inner interface of A and
the outer interface of B must agree — i.e., the inner width of A must be
the same as the outer width of B, such that there are enough regions of B
to fill all the holes of A. We demonstrate this kind of composition in Fig.
2.5. We can now define place graph composition formally:

Definition 2 (Place Graph Composition). For A = (VA, prntA, ctrlA) :
m→ n and B = (VB, prntB, ctrlB) : l→ m,

A ◦B def
= (VA ] VB, prnt, ctrlA ] ctrlB) : l→ n

where for some place (hole or node) p ∈ l ] VA ] VB, the parent map is
defined:

prnt(p) =


prntB(p) if p ∈ l ] VB and prntB(p) ∈ VB
prntA(j) if p ∈ k ] VB and prntB(p) = j ∈ m
prntA(p) if p ∈ VA
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(a) A : 2→ 1 (b) B : 0→ 2

(c) A ◦B : 0→ 1

Figure 2.5: Place graph composition of A ◦B

The requirement for the more complex definition of prnt involves the
need to update the parent map such that the immediate children of regions
of B become children of the parents of the holes they are inserted into, and
the regions and holes are removed altogether.

Tensor Product

While the insertion of one place graph into another might be considered the
“normal” notion of composition, there is another useful way of combining
place graphs that is the tensor product , which is denoted as A ⊗ B. The
tensor product is the juxtaposition of regions, as demonstrated in Fig. 2.6
— it effectively just involves placing the regions side-by-side — however,
we arrive at a formal definition for tensor product on place graphs:

Definition 3 (Place Graph Tensor Product). For disjoint place graphs
A = (VA, prntA, ctrlA) : j → m and B = (VB, prntB, ctrlB) : l→ n,

A⊗B def
= (VA ] VB, ctrlA ] ctrlB, prntA ] prnt′B) : (j + l)→ (m+ n)
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Figure 2.6: Demonstrating the tensor product A⊗B

where prnt′B(j + i) = m+ j wherever prntB(i) = j.

2.2.2 The Link Graph

What, then, of link graphs? We’ve seen that the place graph is capable of
representing notions like containment and locality — now we see how the
link graph is used to capture relationships and connectivity.

The link graph is a hypergraph, which means that each edge connects
zero or more objects. The links are undirected, such that connecting A to B
also connects B to A in a symmetrical manner. We also have a set of nodes,
which are uniquely identified — we will use v0, . . . , vn to refer to them in
this presentation. Each node has some number of ports . Ports serve as the
connection points between the nodes and the links of the link graph.

In the same way that we had inner and outer interfaces for place graphs
(respectively the number of holes and the number of regions in the place
graph), we have inner and outer interfaces for link graphs, too. However,
the link graph faces will be sets of names , which we call the inner and outer
names, respectively. These will be the connection points at which one link
graph may be joined to another by link graph composition.

Fig. 2.7 demonstrates a link graph over a set of nodes V = {v0, v1, v2, v3}.
By convention, the inner interface {x, y} of the link graph is drawn point-
ing downwards, and the outer interface {a, b} is drawn facing upwards. The
elements of the link graph are the ports (indicated by small circles on the
boundaries of nodes), the edges (which are often not shown, but which
we have drawn as small rectangles for clarity), the outer and inner names
(drawn at the top and bottom of the diagram, respectively), and the links
that are the lines connecting all of these elements together. Ports are in-
dexed, and ordered with respect to one another, such that by convention
we usually draw them left-to-right around a node boundary, such that the
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Figure 2.7: A link graph with interfaces {x, y} → {a, b}

0th port is the left-most one. Where this may be ambiguous owing to the
node shape, we can write small indices next to the ports for clarity. Finally,
it is worth noting that nodes in the link graph do not have any parent-child
relationships — that is a property of the place graph — so the placement
of nodes in the link graph is not significant.

We now give a formal definition of a link graph which captures all of
these elements. We first extend the definition of a control to be both a
name and an arity, which is a finite ordinal representing the number of
ports of a node assigned that control. We use the notation a : 2 to mean
a control a with arity 2. We also define the function ar(−) that gives the
arity of a given control (though we will occasionally abuse this notation
by applying it to nodes, the meaning of which is to return the arity of the
control assigned to that node).

Definition 4 (Link Graph).

(V,E, ctrl, link) : X → Y

where V is a set of nodes, E is a set of edges, ctrl : V → Σ is a control map,
link : P ]X → E ] Y is the link map, X is the set of inner names, and Y
is the set of outer names. P is defined to be the set of ports, which is of
the form P = {(v, i) : v ∈ V ∧ i ∈ ar(ctrl(v))}, i.e., a port is represented as
pair consisting of a node (from V ) and an index.

The link map is a function, such that each element of the domain may
only appear once (i.e., map to one thing). A given inner name may only
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connect to an edge or to an outer name. A port may connect to an edge or
an outer name. Neither edges nor ports may not be connected directly to
one another, and edges may not connect to outer names. This may seem
restrictive, but this definition is sufficiently expressive for most applications,
and it has the important property of preserving the compositionality of link
graphs. We can return to Fig. 2.7, and give its definition as a link graph:

({v0, v1, v2, v3}, {e0, e1}, link) : {x, y} → {a, b}

where link
def
=

x→ a,

(v0, 0)→ b,

(v0, 1)→ e0,

(v1, 0)→ e0,

(v1, 1)→ e1,

(v2, 0)→ b,

(v3, 0)→ e1,

y → e1

Link Graph Composition

As with the place graph, we can define the composition of link graphs. We
follow Milner’s definition [83]:

Definition 5 (Link Graph Composition). For two link graphs

A = (VA, EA, ctrlA, linkA) : XA → YA

and
B = (VB, EB, ctrlB, linkB) : XB → YB

the composition is defined:

B ◦ A def
= (VA ] VB, EA ] EB, ctrlA ] ctrlB, link′) : XA → YB

where link′ is defined for some p ∈ XA]PA]PB, where PA and PB are the
ports of A and B, respectively:

link(p)
def
=


linkA(p) if p ∈ XA ] PA and linkA(p) ∈ EA
linkB(y) if p ∈ XA ] PA and linkA(p) = y ∈ YA
linkB(p) if p ∈ PB
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Link Graph Tensor Product

As with the tensor product for place graphs, we can define the juxtaposition
of disjoint link graphs as follows:

Definition 6 (Link Graph Tensor Product). For disjoint link graphs A =
(VA, EA, ctrlA, linkA) : XA → YA and B = (VB, EB, ctrlB, linkB) : XB →
YB,

A⊗B def
= (VA]VB, EA]EB, ctrlA]ctrlB, linkA]linkB) : XA]XB → YA]YB

2.3 Bigraphs

Having defined the link graph and the place graph independently, we can
combine them to arrive at a definition of a bigraph.

Definition 7 (Bigraph).

(V,E, ctrl, prnt, link) : 〈m,X〉 → 〈n, Y 〉

where V is a set of nodes, E is a set of edges, ctrl : V → Σ is a control
map, prnt : m ] V → V ] n is a parent map, link : P ]X → Y ] E, and

P
def
= {(v, i) : v ∈ V ∧ i ∈ ar(ctrl(v))}. The inner interface of the bigraph

is 〈m,X〉 where m is the inner width of the place graph and X is the set
of inner names, while the outer interface of the bigraph is 〈n, Y 〉, where n
is the outer width of the place graph and Y is the set of outer names.

These definitions are almost identical to those given separately in the
place and link graphs.

The graphical syntax for a bigraph follows from that introduced sepa-
rately for the place and link graphs as well. We allow the links of the link
graph to cross node and region boundaries. To avoid confusion we do not
draw edges as we did in the link graph example; edges are only part of
the link graph, and it is therefore somewhat deceptive to include them in
a presentation that would make them appear to be part of the place graph
structure.

We see a completed bigraph in Fig. 2.8 — hopefully it is possible to dis-
tinguish the place and link graph elements, and verify that the composition
of these as we have described it yields a coherent bigraph structure.
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Figure 2.8: An example bigraph with interfaces 〈1, ∅〉 → 〈2, {a}〉

Figure 2.9: A bigraph B : 〈2, {z}〉 → 〈2, {x, y}〉
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Figure 2.10: A bigraph A : 〈0, ∅〉 → 〈2, {z}〉

Figure 2.11: Bigraph composition B ◦ A : 〈0, ∅〉 → 〈2, {x, y}〉

2.3.1 Bigraph Composition

The composition of two bigraphs is precisely defined in terms of the separate
link and place graph compositions as already presented, with the same
requirement that the inner and outer interfaces agree. We see an example
of bigraph composition in Fig. 2.11, in which the bigraph A (Fig. 2.10)
is inserted in to the context B (Fig. 2.9). We now proceed to a formal
definition:

Definition 8 (Bigraph Composition). For bigraphsA = (PA, LA) : 〈mA, XA〉 →
〈nA, YA〉 and B = (PB, LB) : 〈mB, XB〉 → 〈nB, YB〉:

B ◦ A def
= (PB ◦ PA, LB ◦ LA) : 〈mA, XA〉 → 〈nB, YB〉

We introduce some terminology here — where A and B are bigraphs,
when composing B ◦ A, we may refer to B as a context for A. An inner
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interface 〈0, ∅〉 (i.e., the inner interface of a bigraph with no holes and no
inner names) is sometimes referred to as ε. A bigraph that has interfaces
of the shape ε→ 〈n, Y 〉 is called ground , and is also sometimes referred to
as a process or agent .

2.4 Matching and Reaction

We’ve now seen bigraphs in terms of their static structure; they could be
mistaken for some slightly-exotic graph data structure. However, this is not
the real power of bigraphs — the fact that the static structure is directly
useful for representing various situations and systems in the real world is
only a sign that the underlying representation is sufficiently general. The
real power of bigraphs becomes apparent when we start to consider dynam-
ics — i.e., how a given system evolves over time. In bigraphs terms we
express dynamics as reaction, with sets of reaction rules that give possible
ways in which a system might be reconfigured.

A reaction rule may be thought of as having the form R → R′, where
R is known as the redex and R′ as the reactum. The intuitive definition
of reaction is fairly straightforward: if we can find an instance of the redex
somewhere in a bigraph B, then we may replace that redex with the reactum
to obtain some new bigraph B′.

Taken together, a bigraph signature and a set of reaction rules is called a
bigraphical reactive system (or BRS ). A bigraphical reactive system should
be thought of as a kind of language definition — the signature describes
the syntax, and the reaction describe the semantics. We will make precise
the nature of bigraphical reactive systems in Section 2.6.

We introduce some notation here: We use the notation B → B′ to mean
that for some bigraph B, there is a reaction possible that, when applied,
would result in B′. Occasionally arrows will be labelled with the specific
reaction rule that can be applied; however, this is non-standard. We also
use B →∗ B′ to mean B′ is reachable from B by the application of zero or
more reactions in sequence, and B →+ B′ to mean a sequence of one or
more reactions. The negation is used too — B 6→ B′ means that there is
no single step of reaction leading to B′ from B.

We have given an intuitive definition for bigraph reaction, but we wish
to define the semantics of bigraph reaction precisely. The presence of an
instance of a given redex inside a particular bigraph is determined by the
process of matching . Formally, a match for a redex R within a bigraph G
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Figure 2.12: The decomposition of a bigraph G into a match for R, with
context C and parameters D

is any solution to the equation:

G = C ◦ (R⊗ idI) ◦D where C is active

Where C is a context, R is the redex, and D is a vector of parameters.
The notion of (de-) composition used here is the normal bigraphical one.
This characterisation of matching basically states that in order to find an
instance of R in G, we just need to be able to “pull apart” G into some
context that contains the match, and instance of the redex we are looking
for, and some parameters that are found within the holes of the redex.
The term ⊗ idI for some interface I ensures that parameters are treated
correctly, though we will often omit this from the definition of matching
where it may be assumed. We illustrate this decomposition process in Fig.
2.12.

However, we so far ignored the side-condition “where C is active”. The
notion of activity is added as a mechanism by which to control exactly
where reaction may occur — specifically, that reaction may only occur
within active contexts. What makes a context active? To controls we add a
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Figure 2.13: Where b is active, and a, c, and d are passive, the shaded
regions indicate inactive locations where reaction cannot occur.

notion of activity, by labelling some controls active and others passive. To
determine whether a given context is active, we must examine all the place-
graph ancestors of a given hole, which must all be active. If every ancestor
of a hole in the place graph is active, then that bigraph constitutes an active
context. Regions are active by definition, so reaction may always take place
at the top-level. We demonstrate activity in Fig. 2.13 by shading the place
graph (this is just for illustrative purposes, and is not a part of the standard
visual presentation of bigraphs) — where a and b are active and c is passive,
only those unshaded place graph nodes could be potential locations for a
reaction to occur. Reaction cannot occur within the shaded regions. These
areas can participate in reactions by being part of a match that is rooted
within an active context (or as parameters), but they may not be the root
of a match. However, it is always possible that some reaction rule may
lift these portions of the bigraph into an active context (the top-level, for
example), so the fact that a given part of a bigraph cannot be the location
of a reaction at one moment in time does not entail that it should remain
so forever.

So it is possible to think of a match as finding an embedding of one
bigraph expressing a pattern (the redex) into another (the agent). Following
Højsgaard [61], we use the notation R ↪→ G to mean that we can find an
embedding of R into G. The negation (R 6↪→ G) is also used.
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Figure 2.14: Matched parameters for a redex R : 〈3, ∅〉 → 〈1, ∅〉

Figure 2.15: Instantiation of parameters for a reactum R′ : 〈4, ∅〉 → 〈1, ∅〉

Matching (and embedding) can therefore be thought of as a precondition
of reaction, as having successfully identified a match, we can use the de-
composition to substitute the redex for the reactum, yielding a new agent.
This leads us to a definition of reaction based upon matching:

Definition 9 (Reaction). For any reaction rule R→ R′, and agent G:

G = C ◦ (R⊗ idI) ◦D → C ◦ (R′ ⊗ idI) ◦D = G′ where C is active

Which is to say that having found a context C and vector of parameters
D to place around the redex, we can replace the redex R with the reactum
R′, placing the parameters back into the reactum by composition in order
to fill the holes, and placing the resulting reactum into the same (unaltered)
context.
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2.4.1 Parameter Instantiation

We have obscured an important detail here — namely, what of reactums
that discard the contents of holes, or which create copies of holes? Bi-
graphical composition is not well-defined for such reactums, and therefore
a reactum with four holes (duplicating one of them) cannot be a context
for a vector of matched parameters such as d0 ⊗ d1 ⊗ d2 through composi-
tion, as their inner and outer interfaces disagree. We remedy this with an
instantiation map. The instantiation map is a transformation on a bigraph
(the parameters) that ensures that the width of the parameters, and the
order, is appropriate for the reactum. Given the redex in Fig. 2.14 and
reactum in Fig. 2.15, we can see that there are three holes in the redex,
and four in the reactum, as hole 1 is cloned in the reactum. Consequently,
the instantiation map from holes of the reactum to holes of the redex for
this rule is given as:

η
def
= {0→ 0, 1→ 1, 2→ 1, 3→ 2}

If we consider the parameters of the redex D = d0⊗d1⊗d2 : 〈0, ∅〉 → 〈3, ∅〉,
then the application of the instantiation map yields d0 ⊗ d1 ⊗ d1 ⊗ d2 :
〈0, ∅〉 → 〈4, ∅〉, which is of the appropriate shape to be inserted into the
reactum. Consequently, we slightly alter the definition of reaction, and of
reaction rules. A reaction rule is a 3-tuple (R,R′, η), but we continue to
write R→ R′ where the instantiation map is unambiguous (i.e., where it is
just the identity map from holes of the redex to holes of the reactum). For
the definition of reaction, we give:

Definition 10 (Reaction with instantiation). For any reaction ruleR→ R′,
and agent G:

G = C ◦ (R⊗ idI) ◦D → C ◦ (R′ ⊗ idI) ◦ η(D) = G′

2.4.2 Terminology

It is important to notice that reaction rules are themselves bigraphs —
namely, the redex and reactum are both bigraphs. If the redex and reactum
are ground (i.e., they have no holes or inner names), then we refer to the
rule as a ground reaction rule. If the redex and reactum contain holes or
inner names, we call it a parametric reaction rule. A rule with a prime
redex and reactum is called a prime reaction rule, while a rule with a wide
redex and reactum is called a wide reaction rule.
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2.4.3 Structural Constraints

For a reaction rule to be considered well-formed, it must obey a number of
properties. Most of these properties follow immediately from the definition
of reaction, but we restate them here directly to avoid confusion. When
considering reaction only in the setting of ground agents, reaction rules
that are well-formed obey the following properties:

• The redex and the reactum must have the same outer interface — i.e.,
the same outer width and set of outer names.

• The reactum cannot contain holes that are not also in the redex.

• The reactum cannot contain inner names that are not also in the
redex.

2.4.4 Wide Matching

The existence of wide reaction rules introduces several interesting consider-
ations. What, exactly, is the difference between the matching of the prime
redex in Fig. 2.16 and the wide redex in Fig. 2.17? The difference lies in the
insistence on finding both a and b as siblings (i.e., within the same parent
node or region) in the first case, and simply finding an a-node and a b node
separately anywhere in the bigraph (provided they are non-overlapping).
We exemplify the difference in Fig. 2.18 and Fig. 2.19, with the wide
and prime matches indicated. Wide rules of this kind can be used to con-
struct rules that match patterns like “two people anywhere in the building,
each connected to some name x”, whereas a prime redex would express a
property like “two people in the same room, each connected to some name
x”.

2.5 A Bigraph Term Representation

We have thus far seen two ways of representing a bigraph: as a 5-tuple
with interfaces, or using a graphical notation. The 5-tuple description of
a bigraph in terms of its constituent nodes, edges, control map, parent
map, and link map, is precise, but not particularly human-friendly. The
graphical notation is also precise, but it is not particularly compact, nor
is it particularly machine-friendly (although there exists a graphical editor
based upon Eclipse called Big Red [42] for the construction of bigraphical
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Figure 2.16: A prime redex

Figure 2.17: A wide redex

Figure 2.18: There is only one match for the prime redex given in Fig. 2.16
(shaded)
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Figure 2.19: In addition to the match found for the prime redex, the wide
redex given in Fig. 2.17 has an additional match in which the matched
regions are not siblings (shaded)

reactive systems). Consequently, we present a third way to describe a bi-
graph — a textual term representation in the style of the process calculi
we have already seen. This term representation is not complete (i.e., there
are bigraphs that are not expressible in this calculus), though a complete
such term representation is given in Chapter 6. The intention here is to
give the general flavour of bigraph term languages, several of which exist in
the wild, though they are all largely similar.

We first present a grammar for our term language, and then explain the
mapping from these constructs to the graphical notation:

Definition 11 (A Bigraph term language).

P
def
= 0 | nil | c〈x̄〉.P | P |P ′ | i | P ||P ′

where x̄ is a (possibly-empty) ordered list of names.

This definition requires some explanation: 0 is referred to as the null
bigraph, which is used as the terminator for the composition of regions. nil
is the nil process, which represents an empty bigraph. c〈x̄〉.P is prefixing,
which is to say that there exists some node with control c, ports x0 . . . xn ∈
x̄, and children P . P |P ′ is juxtaposition of sibling bigraphs under the same
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Figure 2.20: The bigraph a.(b〈s〉 | c) || b〈s〉 | a

parent, such that P and P ′ are siblings. The notation i is a hole, indexed
by i. Finally, P ||P ′ introduces regions, which should be interpreted as
being indexed 0 . . . n from left to right.

For example, the process

a〈〉.(b〈s〉.nil | c〈〉.nil) || b〈s〉.nil | a〈〉.nil || 0

is illustrated in the graphical notation in Fig. 2.20. Where a name set is
empty or where nil and null processes are unambiguous, we omit them, so
the same process could be rewritten:

a.(b〈s〉 | c) || b〈s〉 | a

Which is equivalent. It becomes clear that this representation is a very
compact means of expressing bigraphs. The main part missing from this
term language is a means of expressing edges and inner names — such a
mechanism (and formal translation to the graphical structure) is given in
Chapter 3. It is worth noting that this term language is very similar to the
input language for the BigMC bigraphical model checker tool, described in
Chapter 5.

2.5.1 BRS Contexts

We have seen that through composition, one bigraph may be considered a
context for another. The implications of this are several.
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We recall that in Section 2.1.1, when discussing our vending machine
example, we made reference to an environment with which that vending
machine must interact in order to make progress (or indeed, to do anything
at all). There must be some environment willing to supply coins, push
buttons, and accept drinks from the machine. Based on the semantics of
CCS we described, we can derive a minimal context for the vending machine,
which is effectively some environment willing to provide the corresponding
actions at each step:

CtxVM
def
= coin.(button1.drink1.CtxVM + button2.drink2.CtxVM)

When composed with our vending machine, this context permits the vend-
ing machine to perform all of its actions infinitely.

So what is a context for a bigraphical reactive system? For some bigraph
B, a context turns out to be any bigraphical context C into which we could
place B that would enable reaction (by analogy to the CCS example, this
qualifies as “doing something”). For example, if we had the rule:

R = a. 0 | c. 1 → b. 0 | c. 1

and an agent:
B = a.b

then it is obvious that the rule R is not presently enabled with respect to
B (i.e., the redex of R does not match in B). We could place B into a
context C such as:

C = 0 | c.d

Which would give
C ◦B = a.b | c.d

for which R is enabled. We have therefore found a context C that enables
reaction in B. This context, however, is not minimal , in the sense that
there is a “smaller” context that would also enable reaction (in this case,
0 | c.nil). For a full discussion of the role of minimal contexts in enabling
reaction, see [83].

2.6 Categorical Foundations

The formulation of bigraphs we have given thus far is independent of the el-
egant mathematical foundations upon which Milner’s original presentation
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of bigraphs rests. We will therefore return now to the categorical founda-
tions — i.e., the formulation of bigraphs in terms of category theory. This
will also permit us to draw several distinctions which would otherwise be
awkward to express, but which become considerably simpler in this setting.
We do not aim to describe category theory here, though we will briefly re-
visit the fundamentals. Interested readers should refer to a standard text
on category theory such as that of Awodey [8], upon which much of this
introductory material is based.

Category theory makes distinctions between two types of mathematical
constructions: objects and arrows (or morphisms in some presentations),
which are the constituents of a category .

Definition 12 (Category). Following [8], we define a category as consisting
of:

• Objects A,B,C, . . .

• Arrows f, g, h, . . .

• An arrow has a domain and a codomain, for which we write f : A→ B
to mean A is the domain and B is the codomain of the arrow f .

• Composition is defined for arrows where the domain and codomain
agree, such that for arrows f : A → B and g : B → C, we have
g ◦ f : A→ C

• Objects have identity arrows, such that for any object A, there is an
arrow 1A : A→ A that is its identity.

• Composition is associative, such that for f : A→ B, g : B → C, and
h : C → D, it is always the case that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• Identity arrows are the unit of composition, such that for f : A→ B:
f ◦ 1A = f = 1B ◦ f .

2.6.1 Bigraphical Categories

The notation used for arrows such as f : A → B is reminiscent of that
used in bigraphs, and this is no accident. In our bigraphical categories, the
objects are interfaces, and the bigraphs themselves are the arrows. The
definition of bigraph composition that we have already seen gives us com-
position of arrows that is associative, and it is easy to contrive bigraphs
that are identity arrows for any given interface.
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We introduce a distinction here between abstract and concrete bigraphs.
The bigraphs we have seen thus far are all concrete bigraphs. The main
difference subsists in whether nodes and edges are identified in some sense,
i.e., whether we can distinguish two bigraphs that are structurally identical,
but for which the node and edge sets are distinct. These identifying elements
of a bigraph are called its support . We define this precisely:

Definition 13 (Support). The support |B| of any particular (concrete)
bigraph B = (V,E, ctrl, prnt, link) : 〈m,X〉 → 〈n, Y 〉 is:

|B| def
= V ] E

Having support for bigraphs gives rise to a natural notion of support
translation and support equivalence. We avoid making these precise here,
as full details are available in [83]. Rather, we simply give the intuition
behind the concepts. A support translation is a pair of bijections on nodes
and edges between two bigraphs, which gives rise to support equivalence
where such a translation exists. Support equivalence for two bigraphs F and
G is written F l G, and is approximately the condition that two bigraphs
are structurally the same up to the specific choice of the nodes and edges
that constitute their support. The control, parent, and link maps are the
same, but the specific node and edge identities are different. If they were
precisely the same, then F = G would be appropriate.

We also draw a distinction here with lean bigraphs, which are those
without any idle edges. An edge is idle if there are no inner names or ports
mapped to it. Two bigraphs F and G are lean-support equivalent (for which
we write F m G) when they are support equivalent if their idle edges are
not considered.

The distinction between abstract and concrete bigraphs becomes signif-
icant when we come to consider the kinds of bigraphical categories we can
construct, but it is important to note that moving between each setting is
simple. To move from a concrete bigraph to an abstract one, we simply
discard its support (i.e., we forget all of its node and edge identifiers). To
move from an abstract bigraph to a concrete one, we just need to provide its
support by adding distinguishing identifiers for nodes and edges. This exer-
cise (and indeed the distinction between concrete and abstract bigraphs) is
mostly a mathematical one, i.e., it is not possible to distinguish a concrete
bigraph from an abstract one by simply looking at its graphical representa-
tion, and therefore this distinction is primarily of importance for those who
wish to study the foundations of bigraphs, rather than those who simply
wish to employ them within a particular modelling task.
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Bigraph categories divide generally into two varieties, the details of
which we will give only in summary: for concrete bigraphs, we work mostly
in s-categories , while for abstract bigraphs we work mostly in symmetric
partial monoidal (spm) categories. The primary difference between each
of these, and between these and “regular” categories, is the handling of
partiality with respect to composition and tensor product. Specifically, an
s-category has support and permits composition of arrows to be undefined
even where the domain and codomain of those arrows agree. This is primar-
ily to permit composition and tensor product only for those bigraphs that
agree upon inner and outer interfaces, and which have disjoint support —
otherwise composition could violate the structural conditions (e.g., poten-
tially create cycles in the place graph, or malformed links in the link graph).
An spm-category has a partial tensor product I⊗J , with the condition that
if I ⊗ J is defined, then so is J ⊗ I (hence symmetric). Milner [83] pro-
vides a much more rigorous treatment of these categorical structures, and
as always should be considered the primary source for such information.

We introduce notation for our bigraphical categories: When discussing
an s-category of (concrete) bigraphs over a signature Σ, we write`BG(Σ)
to mean the (infinite) category consisting of all possible bigraphs over that
signature as arrows, and all possible interfaces (of width 0 . . .∞ and with
name sets drawn from the powerset of some infinite set of possible names)
as objects. For spm-categories of (abstract) bigraphs, we use the notation
BG(Σ).

2.6.2 Functors

A functor F : A → B is a categorical construct that maps objects and
arrows of one category to objects and arrows of another, in a way that
respects identities (i.e., F1A = 1F (A)), reflects domains and codomains of
arrows (i.e., F (f : A → B) = F (f) : F (A) → F (B)), and is compositional
(i.e., F (g ◦ f) = F (g) ◦F (f)) [8]. Functors are standard in category theory,
and therefore they become a useful tool with which to express relationships
between different bigraphical categories. We will see an example of this in
Chapter 4, but we also recall Milner’s definition of the lean-support quotient
functor:

J·K :`BG(Σ)→ BG(Σ)

That maps a category of concrete bigraphs to a category of abstract bi-
graphs (by “forgetting” the support and ignoring idle edges). Similarly,
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these categories may be equipped with a width functor width : BG(Σ) →
NAT , where NAT is the category of natural numbers.

2.6.3 Bigraphical Reactive System Categories

Having arrived at a notation for expressing an entire category of bigraphs
that share a common signature, we can also introduce notation for such a
category augmented with a set of reaction rules (i.e., a bigraphical reactive
system). For this we use the notation BG(Σ,R), where Σ is a signature and
R is a set of reaction rules. We use the same convention for distinguishing
s-categories from spm-categories.

2.7 Sortings

We have seen that a signature Σ gives rise to a bigraphical reactive system
BG(Σ,R) that contains all possible bigraphs that may be constructed over
that signature. Assuming we wished to encode arbitrary terms of the λ-
calculus [12] within bigraphs, we could choose an appropriate signature.
We give a grammar for an untyped λ-calculus as follows:

E ::= λx.E | EE ′ | x

where x may range over some infinite set of names. Terms of the form λx.E
are called λ-abstractions, and so we will use the control Abs to represent
them. EE ′ is the application of E to E ′, so we will represent expressions
of this form with the control App. Finally, variables may appear anywhere
in expressions, so we will use the control Var to represent these. We could
give a signature for our BRS as follows:

Σλ
def
= {Abs : 1,App : 0,Var : 1, L : 0,R : 0}

Which would allow us to represent a term such as λx.λy.xy as:

Abs〈x〉.Abs〈y〉.App.(L.Var〈x〉 |R.Var〈y〉)

The use of L and R allows us to distinguish the left and right operands
to application despite the unordered nature of place graph siblings (other
strategies for this exist, but we have chosen a particularly simple one). This
is clearly an agent of our bigraphical reactive system, as it uses only controls
drawn from the signature we have chosen. However, what of this agent?

Var〈z〉 |Abs〈y〉.App.(L.App.R.Var〈x〉 | L.Abs〈x〉)
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This is clearly still an agent of our BRS, as it uses only appropriate con-
trols drawn from the signature, but it is obviously not what we want. This
bigraph has no corresponding well-formed λ-calculus term, and it does not
conform to the grammar we specified for λ-calculus terms. It also refer-
ences variables outside the scope of their binders, so both the place graph
(representing the abstract syntax of terms) and the link graph (representing
name binding) are malformed with respect to the system we are trying to
model.

This problem is frequently encountered, and it effectively results from
signatures being insufficiently expressive to exclude particular “bad” bi-
graphs from our bigraphical reactive system. This is where sorting is used.
A word on terminology: terms such as “type”, “kind”, and “sort” are
commonly used in certain contexts to identify a hierarchy of distinguished
classes and meta-classes. The use of “sorting” in this context (while de-
ceptively similar in purpose) comes not from meta-meta-types, but rather
from many-sorted algebras, in a slightly-unfortunate instance of namespace
collision between related fields.

A sorting is a mechanism for limiting the bigraphs of a bigraphical reac-
tive system to only those “good” bigraphs that are well-formed with respect
to some external set of constraints. Several forms of sortings exist, but we
will briefly introduce the predicate sortings of Debois [35] here.

A predicate sorting — as the name suggests — introduces a predicate
φ on bigraphs that distinguishes good bigraphs from bad ones. Such a
predicate then gives rise to a functor mapping bigraphs of a sorted category
to those of an unsorted category. The functor expresses the sorting (and in
some sense is the sorting), as it partitions our BRS into those agents which
have an image in the functor (i.e., for some functor F : A → B for which
F (a) = b, b is said to be the F -image of a) and those that do not.

Sorting predicates are commonly added to either the notation for the
BRS category, in the style BG(Σ,R, φ), or to the signature in the manner
BG(Θ,R) where Θ = (Σ, φ).

What form would a sorting for our λ-calculus example take? In Chapter
3 we provide a mechanism for describing bigraphical sortings precisely, and
in a manner that is guaranteed to preserve desirable properties of the sorted
category (e.g., the presence of RPOs is not always guaranteed). For now,
we can give informally the flavour of a sorting for λ-calculus:

• Var nodes always have zero children.

• Abs nodes have exactly one child that is either App, Var, or Abs.
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• App nodes always have two children, L and R.

• L and R nodes must only have parent App.

• If some Var is linked to some Abs, then that Abs is a place graph
ancestor of the Var.

The first four rules are structural constraints to ensure that terms are well-
formed, while the last constraint is a scope condition that ensures that
uses of bound names appear only within the scope of their binders. These
conditions would admit our first (well-formed) λ-calculus example, and suc-
cessfully reject the latter. Similar scope conditions exist for other calculi,
including the π-calculus (which we give in Chapter 3). These kinds of
scope conditions are closely related to both binding bigraphs [32] and local
bigraphs [82], both of which were proposed by Milner (and developed fur-
ther by others) as a means of controlling structural conditions associated
with name binding and scope in general. Debois [35] provides an excellent
summary of variations of bigraphs, and of those which may be recovered
using sortings.

2.8 Representing Languages

One fascinating aspect of bigraphical reactive systems as an approach to the
construction of models is that we end up defining not just one model, but
an entire family of models. By defining a bigraph signature (and possibly
a sorting), we define the syntax of our models, in terms of defining the con-
structors that may appear, and where they may appear with respect to one
another. When we give a set of reaction rules, we are defining the dynamic
semantics for a modelling language, the terms of which are determined by
the signature and the sorting. We end up defining a modelling language
that is specialised to a particular domain, usually without expending espe-
cially more effort than would have been required to define just one model.
This allows many different models that share syntax and semantics to be
constructed within a unified domain-specific modelling language.

The other benefit of this approach is that tool support for bigraphs
permits instantiation of these tools for any given language defined in terms
of bigraphical reactive systems. Any editor that can manipulate bigraphs
immediately becomes an editor for the specific domain-specific modelling
language that we have defined, and so it is with analysis or verification tools,
simulators, or visualisation tools. This represents a considerable saving of
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labour compared to the approaches that would require these tools to be
built for every instance language individually.

2.9 Computation

The representation of computation within bigraphs is a recurring theme.
While modelling languages and process calculi commonly abstract away
computation, the varied goals of bigraphs mean that it is sometimes de-
sirable to include actual computation within models. The first suggestions
of such a mechanism were provided by Milner in his work on growth [83],
which considered systems that behave in an “unfolding” manner. This work
was continued by Debois [36] in his work Computation in the Informatic
Jungle, and we briefly summarise this work here.

When considering computation within models, we are really talking
about embedding one language within another — in this case, embedding
a language concerned with computation within one that is appropriate to
our modelling task. The primary challenge inherent in such an approach
is that constructs of one language may require multiple steps in order to
end in a consistent state. For example, Debois uses the example of a door
that is age-controlled. We annotate users with their age, represented in
unary form (e.g., using S to mean successor and Z to mean zero, the num-
ber 3 would be S.S.S.Z). We can encode within our system consisting of
doors and age-annotated users a sub-language that allows us to compute
conditions over unary numbers — e.g., we can insist that the user’s age be
greater than 18. Given two unary numbers A and B encoded as bigraphs,
computing A < B is relatively simple. We use the controls Left and Right
to record which operand is which, and give the rules as follows:

Left.S. 0 |Right.S. 1 → Left. 0 |Right. 1

Left.Z |Right.S. 0 → True

Left. 0 |Right.Z→ False

These three rules, taken together, permit us to compute A < B for
arbitrary A and B. For example, to compute 3 < 4:

Left.S.S.S.Z |Right.S.S.S.S.Z

Left.S.S.Z |Right.S.S.S.Z

Left.S.Z |Right.S.S.Z
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Left.Z |Right.S.Z

True

We can see that 3 < 4 evaluates to the control True after five steps of reac-
tion, which is fine in this case. In Chapter 6 we will begin to consider how
computation can be integrated into a domain-specific modelling language.

2.10 Tools and Techniques

Tool support for bigraph models is still in its early days, but more and more
tools are becoming available and usable. A recent summary of tools is given
by Højsgaard [61]; instead, we focus on two recent tools.

2.10.1 Big Red

Big Red [42] is a graphical editor for bigraphs, based upon Eclipse. It per-
mits editing of signatures (including custom shapes for different controls),
agents, and reaction rules. It also interfaces with the BigMC tool (see Chap-
ter 5), to permit execution of bigraphical reactive systems, and checking of
properties of these.

2.10.2 BigMC

BigMC [92] is a prototype tool for bigraphs that supports checking of prop-
erties expressed as matching. It can be used to execute bigraphical reactive
systems, and inspect reachable states within such systems. BigMC is de-
scribed in detail in Chapter 5.

2.11 Common Idioms for Modelling

We devote this section to capturing a number of common patterns that may
prove useful when attempting to construct models or modelling languages
within bigraphical reactive systems. Where possible, the first known in-
stance of this pattern in the literature is given — in other instances, the
technique may be novel to this thesis.
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2.11.1 Sequences and Lists

Sequential representations of data are ubiquitous in programs, and therefore
we provide two approaches to the structuring of such data within bigraphs,
and two corresponding ways writing reaction rules over them.

Nested Lists

We can encode lists in a manner analogous to cons cells [11], which are
pervasive in functional programming languages. We use the nested link
structure to encode the list structure, and introduce a passive control Cons,
of arity 0. Therefore a list consisting of Apple, Orange, and Banana would
be encoded as follows:

Cons.(Apple |Cons.(Orange |Cons.(Banana |Cons)))

This representation uses the place graph in the manner of a binary tree,
using the control assigned to the children to distinguish the tail of the list
from the data represented in that position. We could write two reaction
rules that together will function as a flatten operation, taking the list and
promoting all of its elements to the top-level, destroying the list in the
process:

Cons.( 0 |Cons. 1 )→ 0 |Cons. 1

Cons→ nil

This allows a destructive traversal of the list, and manipulation of the list
elements at each step.

Linked Lists

Linked lists are a common data structure in many programming idioms, and
we can use the link graph structure to encode them in a straightforward
manner. We introduce a passive control List with arity 2. One port will
be an identifying link to the predecessor, and the other port will be the
successor link. We also introduce a passive Null control of arity 1 to indicate
the end of a list. We can therefore encode a linked list as follows:

List〈x0, x1〉.Apple | List〈x1, x2〉.Orange | List〈x2, x3〉.Banana |Null〈x3〉

This style of list allows a simple in-place traversal using the link graph once
again — we use a passive control Pointer of arity 1 to point to the current
place in the list:

Pointer〈x0〉 |
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List〈x0, x1〉.Apple | List〈x1, x2〉.Orange | List〈x2, x3〉.Banana |Null〈x3〉

We can then write the same flatten function in a non-destructive manner:

Pointer〈h〉 | List〈h, t〉. 0 → 0 |Pointer〈t〉 | List〈h, t〉

2.11.2 Corecursion

It can be desirable to include corecursive (i.e., dual to recursive, where each
successive step moves further from the base case) structures within bigraph-
ical reactive systems. A concrete example would be a process calculus term
such as the following:

MACHINE := x?.y!.MACHINE

which is the process that inputs on channel x, outputs on channel y, and
then behaves once again like MACHINE. The way to encode such a process
is to use a special token, and to encode the corecursion into the reaction
rules. Assuming a signature consisting of the passive controls send, recv,
and MACHINE, we construct a reaction rule as follows:

MACHINE→ recv〈x〉.send〈y〉.MACHINE

and then we construct the initial system as simply:

MACHINE

This corresponds to a simplified version of the condition on unfolding seeds,
as introduced by Debois [36].
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Chapter 3

BMC & BAM: A
Declaratively-Sorted
Bigraphical Meta-Calculus &
Abstract Machine

Context

This chapter is derived from the forthcoming IT University of
Copenhagen technical report BMC & BAM: A Declaratively-
Sorted Bigraphical Meta-Calculus & Abstract Machine by Thomas
Hildebrandt and Gian Perrone, 2012. A version of this work is
also (as of writing) under review for ESOP 2013, the results
of which will be known prior to the eventual publication of this
thesis.
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Abstract

We present a declaratively-sorted bigraphical meta-calculus (BMC) and a
general bigraphical abstract machine (BAM) which can be instantiated to
any instance calculus of BMC and both fair and stochastic evaluation strate-
gies. The BMC meta-calculus thereby enables the familiar presentation
and manipulation of a broad class of sorted bigraphical reactive systems as
simple process calculus terms which can be executed and simulated using
BAM, without the need for any knowledge of category theory. The declar-
ative sorting mechanism is given by a new XPath-like bigraph logic, and
guarantees the existence of a corresponding closure-sorted, pure bigraphical
reactive system as defined by Debois et al., for which a labelled bisimula-
tion congruence can be derived. The logic allows for intuitive declaration
of the sorting and binding constraints for all the process models previously
described as closure-sorted bigraphical reactive systems, and in particular
for the pi-calculus. Finally, we prove that any so-called maximal execution
strategy for BAM gives rise to a fair execution strategy.

3.1 Introduction

Through the historical development of process calculi and formalisms for
describing the behaviour of communicating systems, the proliferation of
similar-but-incompatible languages and calculi gave rise to a need for uni-
fying mechanisms. Several efforts in this direction have emerged, includ-
ing action calculi [75], Fusion systems [43], Kell calculus [98], and Psi-
calculi [14]. In any unifying formalism, we believe a design goal needs to be
the minimisation of the number of primitive constructs required, in order
to limit the complexity of the formalism.

Bigraphs have been successful as a meta-model in capturing the syntax
and semantics of many different formalisms (e.g., λ-calculus [82], CCS [81],
the mobile ambient calculus [64], several variants of the π-calculus [64, 26,
39], Fusion Calculus [50], and Petri Nets [71]), and in being used directly as a
modelling formalism in diverse domains such as business processes [56, 105],
context-aware computing [20], and systems biology [68, 33]. However, the
promise of bigraphs as a unifying framework for the study, design, and
analysis of process languages has yet to be realised fully.

We claim that one major barrier to the adoption and use of bigraphs
has been the focus on presenting bigraphical reactive systems (BRSs) as
categorical, graph-rewriting systems, rather than as process languages. We
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aim to demonstrate within this paper that declaratively-sorted bigraphical
reactive systems [80] lend themselves to the design of a small, simple meta-
calculus that is sufficiently powerful and general to uniformly represent a
wide variety of nominal calculi, and eliminates the need to understand the
graph representation and underlying category theory before being able to
use BRSs to build and analyse process languages.

Concurrent with the development and proliferation of nominal calculi
for describing interaction, the pragmatic benefits of executing systems de-
scribed in this manner have become increasingly clear. Formulations of
the semantics of many different calculi as abstract machines have appeared
(e.g., the Pict abstract machine [19] and the Fusion machine [44]). Conse-
quently, we propose a meta-abstract machine that may be instantiated as
a graph-based abstract machine for any bigraphical reactive system (and
therefore for any instance calculus). The ability to uniformly derive such
abstract machines from declarative language specifications is a significant
improvement in providing unifying mechanisms for these kinds of calculi.

In summary, we present three major contributions within this paper:
A meta-process calculus for nominal calculi that characterises a large class
of closure-sorted bigraphical reactive systems, a sorting logic that always
gives rise to well-behaved sorting predicates, and a bigraphical abstract ma-
chine over bigraphical reactive systems that may be described in terms of
the meta-calculus, and can be instantiated as a fair abstract machine for
any instance calculus. Together, these three elements advance the theory
and applicability of bigraphs, and advance the stated goals of the bigraph-
ical reactive systems formalism by permitting further systematic study of
nominal calculi in this setting.

3.2 A Bigraphical Meta-Calculus: BMC

As described in the introduction, we will in this paper present Milner’s
pure bigraphical reactive systems sorted by the general closure sortings
introduced by Debois et al. [35] as instances of a meta-process calculus
BMC (bigraphical meta-calculus). To describe processes, BMC includes
only the core operations of nominal concurrent process calculi: parallel
composition, control prefixing, name restriction, and renaming. We will
use variations of the mobile ambient calculus [28] and the π-calculus [85] as
running examples.
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Example 1. We give the terms

recv〈x, y〉.send〈y, z〉 |(νa)(send〈x, a〉.recv〈a, b〉)

and
amb〈x〉.in〈y〉.nil | amb〈y〉.nil

as examples of terms from a BMC instantiation of a version of the π-calculus
and an instantiation of the ambient calculus (respectively), both given be-
low. Note that there are no built-in name binders in the core calculus. The
scope of the names y and b in the example term will be restricted by the
sorting logic defined in Sec. 3.2.2.

We will now in Sec. 3.2.1-3.2.4 describe how an instance of the meta-
calculus is defined by giving a (bigraph) signature (defining the allowed
control prefixes), a sorting (e.g. defining the grammar and scope rules),
and a set of reaction rules (defining the operational semantics). We then
show in Sec. 3.3 that for any specific instance of the meta-calculus, the
syntax trees for multi-hole contexts in the calculus will then correspond to
so-called closure sorted, pure bigraphs for the same signature. Moreover,
the operational semantics of the calculus will correspond to the semantics
of the bigraphical reactive system.

3.2.1 Pure Signatures and BMC Process Terms

An instance of a bigraphical reactive system, and thus our meta-calculus, is
defined by giving a pure bigraph signature [77] defining the set of controls
that can appear as prefixes, the number of name parameters for each type
of control (the arity), and whether a control is active or passive. Active and
passive controls respectively allow and disallow reactions (rewriting) under
a prefix with that control.

Definition 14 (Pure bigraph signature). A pure bigraph signature is a
tuple (Σ, ar,Σa), where Σ is a set of controls, ar : Σ → ω is a function
assigning a finite ordinal (the arity) to each control, and Σa ⊆ Σ is the
subset of active controls. In order to compactly represent signatures, for a
signature where Σ = {c1, . . . , cn}, with Σa ⊆ Σ and ar(ci) = ari, we will
write:

({c1 : ar1, . . . , cn : arn},Σa)

We will often refer to a signature (Σ, ar,Σa) by simply the set of controls
Σ.
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Example 2. The signature ΣAmbio

def
= ({in : 1, out : 1, amb : 1}, {amb})

describes a simple variant of the ambient calculus also considered in [83] and
employed in our example term above. It features only in and out commands
given as controls with a single name, and the ambient amb control which
also has a single name and is active. The signature ΣPisr = ({send : 2, recv :
2}, ∅) describes a very simple version of the π-calculus [85], Pisr, which
includes only input and output controls, and which has no active controls.

We now define the core process terms of the meta-calculus relative to a
signature. We assume a global set of names N ranged over by a, b, c, x, y, z.

Definition 15 (Meta-calculus process terms). For a signature Σ, the pro-
cesses terms p are defined by the grammar

p ::= nil Nil process
c〈x̄〉.p Prefix
p | p Parallel process
(νx)p Restriction

for c ∈ Σ, x̄ ∈ N∗ and |x̄| = ar(c).

However, as already indicated in the first example above, the core gram-
mar above only restricts the possible controls used as prefixes. It does not
allow any grammatical constraints on the nesting of controls, nor any dis-
tinction between binding and non-binding names within prefixes. The usual
approach would be to define grammatical constraints using a BNF gram-
mar that imposes further constraints on the above grammar, and introduce
distinctions between the names for controls as in Fusion, Psi, and binding
bigraphs. However, an alternative solution has been proposed for bigraph-
ical reactive systems in the form of sortings that identify the subset of
well-sorted terms. Below we introduce a new logic permitting sortings to
be expressed declaratively.

3.2.2 Declarative Sortings

We consider sortings in terms of predicate sortings [35], in which some
deconstructable (i.e., closed under sub-terms) predicate is used to determine
whether a given term is in included in a given instance calculus.

A new contribution of the present paper is a logic for the construction
of predicates over terms of our meta-process calculus, that is shown (in
Sec. 3.3.2) to be guaranteed to give rise to appropriate deconstructable
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predicates. This logic is sufficiently expressive to recover all the sortings
proposed in the literature that were identified by Debois as being replaceable
with closure sortings [35]. Most significantly, we can recover a definition of
local bigraphs [82], which allows one to restrict terms to only those well-
formed π-calculus terms that obey the normal scope restriction conditions.
The specific scope condition for Pi is:

φπ
def
= recv(u) ∧ u 6= v ∧ (u@2 = v@1 ∨ u@2 = v@2) =⇒ u // v

Intuitively, the predicate states that for any recv control u, if the second
parameter (u@2) is linked to the first (v@1) or second parameter (v@2) of
a distinct control v then that control must be nested within the u control
(u // v).

The following definition defines the syntax of the logic formally.

Definition 16 (Sorting Logic). A formula φ is defined relative to a bigraph
signature Σ, and is of the form:

F
def
= U+ =⇒ U− | F ∨ F | F ∧ F

U
def
= v = u | v 6= u | v / u | v // u | v /ru | v //r u | c(u) | ¬c(u)

U+ def
= v@i = u@j | U+ ∧ U+ | U+ ∨ U+ | local(v@i) | U

U−
def
= v@i 6= u@j | U− ∧ U− | U− ∨ U− | ¬local(v@i) | U

where c ∈ Σ, i, j ∈ N, and u, v ∈ Var, an infinite set of meta-variables.

Note the separation of the logic into positive (U+) and negative (U−)
terms — this is key to preserving the decomposability property of predi-
cates that we establish in Section 3.3.2. Positive terms only appear under
implication, which by simplification (i.e., A =⇒ B ≡ ¬A∨B) means that
formulae consist only of negative terms. It is also possible to write terms
without implication, using true =⇒ U− (obtaining true by x = x).

We have chosen to use syntax inspired by XPath [15], as the properties of
terms we wish to capture are in some respects similar. We will give a formal
interpretation of these logical connectives in Section 3.3.1, but for now we
will give the intuition behind the operators. The variables like u and v
range over all the prefixes of a term, which when combined with the various
operators permit us to express structural conditions. To check whether a
particular prefix v has a control c, we use the syntax c(v). The formula
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v / u is true iff the prefix assigned to u occurs directly under the prefix
assigned to v. The v // u operator is similar, but it insists instead that
u appear anywhere under the prefix assigned to v, i.e. at arbitrary depth.
Given that prefixes are assigned to meta-variables, we can also consider
statements about the names that appear in these prefixes — v@i = u@j
allows us to check whether the ith name of the prefix assigned to v is
shared with the jth name of u. The connectives v /r u and v //r u are the
negation of v / u and v // u, respectively. The final non-standard logical
constructs are local(v@i) and ¬local(v@i), which insist (respectively) that
the ith name of the prefix assigned to v be or not be bound to a name
restriction. For example, local(v@1) applied to (νx)(send〈x, y〉), will be
true, while local(v@2) for the same term would be false.

We can now extend signatures with a sorting given declaratively by a
formula of the sorting logic.

Definition 17 (Sorted BRS Signature). A sorted BRS signature is defined
as

Θ
def
= (Σ, φ)

where Σ is a pure bigraph signature, and φ is a sorting predicate. We use
BMC(Θ) to mean the set of all BMC processes of a sorted signature Θ.

3.2.3 BMC Contexts and Composition

To describe reaction rules (and characterise bigraphs) we extend our terms
to contexts. Technically, the terms of our meta-calculus are divided in two
kinds: Prime processes and wide processes. A prime process (processes of
the sort we have seen already) can be inserted into a single-hole context.
A wide process is essentially a list of prime processes, referred to as regions
(separated by the wide parallel operator ‖), which may be inserted as the
contents of a multi-hole context. We extend the syntax to multi-hole process
contexts by adding to p the construct i , a hole with index i, and the
construct y/x, a link from the name x to y, where x is referred to as an
inner name. Intuitively, a prime process p can be placed within a hole i of
a context and the link y/x in the context will rename any occurrence of x in
p to the name y.

Definition 18 (BMC contexts). For a signature Σ define the (wide and
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prime) Σ-contexts r by extending the grammar of process terms as follows

r ::= null Null process
r ‖ r Wide parallel
p Prime
(νx)r Restriction
y/x Linking

p ::= . . . | i Prime contexts

for x, y ∈ N and i ∈ ω. A (wide or prime) context is well-formed if 1)
any two holes in the term have different indices, 2) the set of all indices of
holes is an ordinal {0, 1, . . .m−1} for some m ∈ ω (referred to as the inner
width) and 3) for any two links y/x and y′/x′ appearing in the context we
have that the inner names are distinct, i.e. x 6= x′. We refer to the set of
all inner names appearing in links of a context as the inner name set of the
context.

Definition 19 (Free names). We define the free names of a (wide/prime)
context inductively

fn(r)
def
=



fn(r′) \ {z} if r = (νz)r′

fn(r′) ∪ fn(r′′) if r = r′ ‖ r′′ or r = r′ | r′′

x̄ ∪ fn(p) if r = c〈x̄〉.p
{y} if r = y/x

∅ otherwise

Example 3. The process term p = amb〈x〉.in〈y〉 of Ambio can be inserted
in the context r = 0 | amb〈z〉 ‖ z/y, resulting in the process

r ◦ p = amb〈x〉.in〈z〉.nil | amb〈z〉.nil ‖ z/y .

As usual, process and context terms are equipped with a structural con-
gruence ≡. For the BMC calculus, the structural congruence makes prime
parallel composition associative and commutative, wide parallel composi-
tion associative, and the nil process nil and null process null respectively
the identity for prime and wide parallel composition. Moreover, it allows
scope extension and alpha conversion of local names.

The formulation of the structural congruence is prepared for the defini-
tion of a normal form for process contexts given below, in which all restric-
tions are extended to the encompass the entire term. The normal form can

64



3.2. A Bigraphical Meta-Calculus: BMC

be obtained by applying only α-conversion and relation→≡ in the direction
of the arrow. It depends crucially on the last axiom, allowing restrictions of
names to be lifted outside control prefixes, which is not usually allowed in
the π-calculus (but is needed in the ambient calculus e.g., to allow scopes
of local names to be extended outside ambients). A consequence of this
axiom, as we will see below, is that treatment of replication (and in general
duplication) of processes with local names needs special care.

Definition 20. Structural congruence ≡ is the least congruence on expres-
sions equating expressions up to α-conversion such that

(p0 | p1) | p2 ≡ p0 |(p1 | p2) (r0 ‖ r1) ‖ r2 ≡ r0 ‖ (r1 ‖ r2) p | p′ ≡ p′ | p

and including the following relation (where x 6∈ fn(r′) ∪ fn(p′) ∪ z̄):

r ‖ null→≡ r (νx)r ‖ r′→≡(νx)(r ‖ r′) (νx)p | p′→≡(νx)(p | p′)

p′ |(νx)p→≡(νx)(p′ | p) r′ ‖ (νx)r→≡(νx)(r′ ‖ r) y/z ‖ r→≡ r ‖ y/z

null ‖ r→≡ r p |nil→≡ p nil | p→≡ p c〈z̄〉.(νx)p→≡(νx)c〈z̄〉.p

Notation: Associativity allows us to leave out parentheses for prime and
wide parallel composition, so we introduce two notationally convenient
forms for representing processes. For a prime process p0 | . . . | pn, we write

Πi∈n pi. For a wide process r0 ‖ · · · ‖ rn, we write ΠΠi∈n ri. Owing to
the commutativity of |, we consider prime parallel processes unordered,
as is usual in process calculi. We rely on the identities Πi∈0 pi = nil and
ΠΠi∈0 ri = null. As is usual, we will often leave out trailing nil processes,
writing cx̄ for cx̄.nil. We will also write ȳ/z̄ for ΠΠi∈n yi/zi.

Definition 21 (Normal form). For a signature Σ we define the (wide and
prime) Σ-context expressions r in normal form by the grammar

wide concrete normal form contexts
r ::= (νx̄)(ΠΠi∈n pi ‖ ȳ/z̄)

prime concrete normal form contexts
p ::= Πi∈n c〈x̄〉.pi |Πj∈m ij

for c ∈ Σ, x̄ ∈ N∗, |x̄| = ar(c) and ij ∈ ω. We refer to n, the number of top
level prime processes in r above, as the width of wide context r. We write
r : m→ n for a wide context with m holes and width n.
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Proposition 1 (Normal form representation). Every wide context r is
structurally congruent to a wide context r = (νx̄)(ΠΠi∈n pi ‖ ȳ/z̄) on nor-
mal form, which is unique up to alpha-conversion and reordering of the
names in x̄, reordering of the linkings in ȳ/z̄ and reordering of prime parallel
compositions.

A wide context r′ : m → n′ can be inserted into a wide context r :
n′ → n, forming the composite context r ◦ r′ : m → n. Intuitively, the
composition apply all linkings in r as substitutions/renamings on the free
names of r′, place the top level prime processes of r′ in the corresponding
holes of r, extending the scope of the local names of r′ to embrace the
entire process (possibly alpha-converting the local names of r′), and finally
promote the (renamed) linkings of r′ to be linkings of r ◦ r′ as well as the
linkings of r that does not have the same inner name as any linking in r′.
This intuition is made formal in following definition.

Definition 22 (Composition of normal form contexts). For two contexts
r′ : m→ n′ and r : n′ → n we define r ◦ r′ : m→ n as

r ◦ r′ = (νx̄x̄′)(r′′[p′0{z̄ 7→ ȳ}, . . . , p′n−1{z̄ 7→ ȳ}] ‖ ȳ′{z̄ 7→ȳ}/z̄′ ‖ ȳ\{yi|zi∈z̄′}/z̄\z̄′) ,

if r = (νx̄)(r′′ ‖ ȳ/z̄), r′ = (νx̄′)(ΠΠi∈n′ p
′
i ‖ ȳ′/z̄′), r′′ = ΠΠi∈n pi and x̄′ ∩

(fn(r′′) ∪ x̄ ∪ z̄) = ∅.

In Section 3.3 below, we show that a context r : m→ n with normal form
(νx̄)(ΠΠi∈n pi ‖ ȳ/z̄) precisely corresponds to an abstract bigraph brs(r) :
〈m, z̄〉 → 〈n, fn(r)〉 and the composition r ◦ r′ : m→ n defined above corre-
sponds to the bigraph composition (brs(r) ‖ Idfn(r′)\x̄) ◦(brs(r′) ‖ Idz̄\z̄′) :
〈m, z̄ ∪ z̄′〉 → 〈n, fn(r) ∪ (fn(r′)\x̄)〉. Bigraph connoisseurs will note that
the composition of terms is more liberal than the composition of bigraphs,
since bigraphs are explicitly typed with outer and inner names, while terms
are only typed by their width and number of holes.

3.2.4 BMC Reaction rules

The dynamics of a meta-calculus instance (and in bigraphical reactive sys-
tems) is defined by giving a set of reaction rules which defines how to rewrite
portions of the process.

Definition 23 (Reaction Rule). A reaction rule is expressed as a triple

(rL : m→ n, rR : m′ → n, η : (N ×N )× (N × r))
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where rL is a BMC context to be matched (called the redex ), rR is a BMC
context with which the matched redex will be replaced (called the reac-
tum), and η is the instantiation map that maps occurrences of holes and
names in the reactum to the matched parameters in the redex. Where the
instantiation map is unambiguous (e.g., where it is just the identity map),
we may omit it and simply write rules as rL → rR, or (rL → rR, η) to aid
readability where η is significant.

We express reaction on a process r leading to the process r′ as a decom-
position

r = rC ◦ rL ◦D → rC ◦ rR ◦ η(D) = r′

where rC is an active context and D = ΠΠi∈n di is a wide parallel composition
of prime processes with no name restrictions (i.e. an ordered list of matched
parameters). Notice that the definition of η must ensure that the inner
with of the reactum agrees with the instantiation of the parameters, such
that for D : 0 → m (where m is the inner width of the redex), we have
η(D) : 0→ m′, where m′ is the inner width of the reactum.

Example 4. The reaction rules for Ambio are given by

amb〈x〉.(in〈y〉. 0 | 1 ) | amb〈y〉. 2 → amb〈y〉.(amb〈x〉.( 0 | 1 ) | 2 )

amb〈y〉.(amb〈x〉.(out〈y〉. 0 | 1 ) | 2 )→ amb〈x〉.( 0 | 1 ) | amb〈y〉. 2

The single reaction rule for Pisr is given by

send〈x, y〉. 0 | recv〈x, z〉. 1 → 0 | 1 ‖ y/z

To illustrate the use of the instantiation map and duplication of sub-
processes during reactions, we consider extending Pisr with replication re-
stricted to input actions (as in the variant of the π-calculus considered
in [19]).

The most straightforward approach is to extend the signature to

ΣPi
def
= ({send : 2, recv : 2, rep : 0}, ∅)

and add the following reaction rule to cover the semantics of replication:

send〈x, y〉. 0 | rep.recv〈x, z〉. 1 → 0 | 1 | rep.recv〈x, z〉. 2 ‖ y/z′, η)

where η = ({0→ 0, 1→ 1, 2→ 1}, (null, z′/z,null)).
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The application of an instantiation map (η̄p, η̄l) to a set of parameters
D is as follows:

ΠΠ
i∈|D|

( i ‖ η̄li) ◦ η̄pi(Di)

The instantiation map η for the second rule is significant because of the
mismatch between the number of holes in the redex and the reactum, as
well as the need to rename parameters in the replicated sub-term to avoid
accidental name capture. Consequently, the instantiation map consists of
a map from holes of the reactum to holes of the redex, and an n-tuple of
renamings to be applied to the parameters, where n is both the inner width
of the reactum, and the outer width of the instantiated parameters.

The fact that replication is only allowed for input guarded processes can
be expressed by a sorting constraint:

φrep
def
= (rep(x) ∧ x / y) =⇒ recv(y)

The above BMC instance does however suffer from the a problem, in
that local names can float out of the replication. This can however be solved
by introducing a new control for local name definition within replication and
adding rules for creating fresh names after a replica has been created.

3.3 From BMC to BRS (and back again)

In this section we show that BMC terms correspond to closure sorted, pure
bigraphs in a precise sense. First we recall the definition of a pure bigraph.

Definition 24 (Pure bigraphs). A bigraph is a 5-tuple:

(V,E, ctrl, prnt, link) : 〈m, x̄〉 → 〈n, ȳ〉

where ctrl : V → K, prnt : m ] V → V ] n, link : x̄ ] P → E ] ȳ, and

P
def
= {(v, i) : i ∈ ar(ctrl(v))} is the set of ports. The parent map prnt must

be acyclic, i.e., if prnti(v) = v for any v ∈ V , then i = 0 (where prnti is i
applications of prnt).

In this definition, ctrl is the control map that associates nodes with
controls drawn from a signature. The parent map prnt defines the nested
tree structure of the place graph, while the link map link associates the
indexed ports of nodes and the inner names with (hyper-)edges (given by
the set E) and outer names.
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We now define the bigraph corresponding to a normal form term. In-
tuitively, the set of vertices will be paths of integers indicating the path
to a control. We first define locr that returns for a non-empty path ρ the
corresponding process term at that path:

• locr(kρ) = locpk(ρ) if r = (νz̄)(ΠΠi∈|r| pi ‖ ȳ/x̄)

• locp(kρ) = locpk(ρ) if p = Πi∈|p| ci〈x̄i〉.pi |Πj∈m ij

• locp(k) = pk if p = Πi∈|p| pi |Πj∈m ij

Given a r = (νz̄)(ΠΠi∈n pi ‖ ȳ/x̄) we define the control map ctrlr as a
partial map from N+ as follows.

ctrlr(ρ) =

{
c where locr(ρ) = c〈x̄〉.p,
undefined otherwise

The parent map prnt is on vertices the 1-step prefix order and on hole
indices k ∈ m the parent map is defined by identifying the unique hole
either under a root or using the loc map:

• prntr(ρi) = ρ for ρ ∈ N+ and i ∈ N .

• prntr(k) = i, if pi = Πi∈n′ ci〈x̄i〉.p′i |Πj∈m i j and ∃j ∈ m.ij = k

• prntr(k) = ρ, if locr(ρ) = c〈x̄〉.p and p = Πi∈n′ ci〈x̄i〉.p′i |Πj∈m ij and
∃j ∈ m.ij = k

Finally we define the link map for r = (νx̄)(ΠΠi∈n pi ‖ ȳ/z̄) as follows

• linkr(ρj, i) = xi if locr(ρj) = c〈x̄〉.p′ and x̄ = x1 . . . xar(cj)

• linkr(zj) = yj if r = ΠΠi∈n pi ‖ ΠΠj∈|z̄| yj/zj

We can now define the bigraph corresponding to a BMC context as
follows.

Definition 25 (Bigraph for BMC normal form term). For a normal form
context r = (νz̄)(ΠΠi∈n pi) ‖ ȳ/x̄ : m→ n the corresponding concrete bigraph
is the 5-tuple:

brs(r) = (dom(ctrlr), z̄, ctrlr, prntr, linkr) : 〈m, x̄〉 → 〈n, fn(r)〉
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3. BMC & BAM

Conversely, we can construct a BMC term from a pure bigraph as fol-
lows.

Definition 26 (BMC term corresponding to bigraph). For a well-formed
concrete bigraph B = (V,E, ctrl, prnt, link) : 〈m, x̄〉 → 〈n, ȳ〉, we define a
translation bmc(B) to a well-formed meta-calculus term:

bmc(B)
def
= (νE)( ΠΠ

i∈n
term(i) ‖ ΠΠ

i∈|x̄|
link(xi)/xi) : m→ n

where
term(i)

def
= Π

j∈prnt−1(i)
cj(ns(j)).term(j) |hl(i)

with cj = ctrl(j) and ns(v)
def
= link((v, 0)) . . . link((v, ar(ctrl(v)), and hl(v)

def
=

Πi∈m i where prnt(i) = v.

Finally, we can show that mapping a BMC term to bigraphs and back
yields the same term up to structural congruence.

Proposition 2. For a normal form context r = (νz̄)(ΠΠi∈n pi) ‖ ȳ/x̄ : m→ n
it holds that bmc(brs(r)) ≡ r.

Note that it the converse is not true, since mapping a bigraph to terms
may throw away information about names in the interfaces.

3.3.1 Declarative Sortings

We can now give a formal interpretation of formulae in the sorting logic.

Definition 27 (Sorting logic interpretation). We give a formal interpreta-
tion of formulae in terms of some bigraph (V,E, ctrl, prnt, link) : 〈m,X〉 →
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〈n, Y 〉 relative to an assignment of variables to nodes e : Var→ V :

JU+ =⇒ U−Ke
def
= JU+Ke =⇒ JU−Ke

JF ∧ F ′Ke
def
= JF Ke ∧ JF ′Ke

JF ∨ F ′Ke
def
= JF Ke ∨ JF ′Ke

Jv = uKe
def
= e(v) = e(u)

Jv 6= uKe
def
= e(v) 6= e(u)

Jv / uKe
def
= prnt(e(u)) = e(v)

Jv // uKe
def
= prnt+(e(u)) = e(v)

Jv /ruKe
def
= prnt(e(u)) 6= e(v)

Jv //r uKe
def
= prnt+(e(u)) 6= e(v)

Jv@i 6= u@jKe
def
= link(e(v), i) 6= link(e(u), j)

Jc(v)Ke
def
= ctrl(e(v)) = c

J¬c(v)Ke
def
= ctrl(e(v)) 6= c

J¬local(v@i)Ke
def
= ¬∃z ∈ E : link(e(v), i) = z

JU ∧ U ′Ke
def
= JUKe ∧ JU ′Ke

JU ∨ U ′Ke
def
= JUKe ∨ JU ′Ke

A bigraph (V,E, ctrl, prnt, link) : 〈m,X〉 → 〈n, Y 〉 is determined to be
well-sorted with respect to a formula F by universal quantification over all
possible assignments of meta-variables to nodes: ∀e : Var→ V. JF Ke

3.3.2 Sorting Predicate Decomposability

We wish to characterise in a precise way the effect of sorting on the under-
lying categorical structure of bigraphs. For this we depend heavily upon
the results in Debois’ PhD thesis [35], and readers hoping for a detailed
exposition of sorting in bigraphs should consult that work. We recall here
the specific definitions that permit us to apply so-called closure sortings in
this setting.

Definition 28 ([35] Decomposable and Deconstructable Predicates). A
predicate φ is decomposable iff φ(f ◦ g) implies φ(f) and φ(g). A predicate
φ that is decomposable and which reflects identities is called deconstructable.
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Definition 29 (φ-respecting bigraphical reactive system). Following [35],
we say that any BRS R is φ-respecting iff every rule (L,R, η) ∈ R has both
φ(L) and φ(R).

Definition 30 ([35] Sortings). A sorting of some category C is a functor
F : X → C that is faithful and surjective on objects. X is then the sorted
category. We may abuse notation and elide the functor altogether, referring
to the sorting as X → C alone.

Notation: We write C(·, c) to mean the class of morphisms of a category
C that has codomain c, and C(c, ·) for the set of morphisms of C that
has domain c. We have chosen here to follow the non-standard notation of
[35], although some readers may recognise these same constructions by the
notation Ob(C ↓ c).

Definition 31 ([35]). For some category C, predicate φ, object c of C, and
sets F ⊆ C(·, c) and G ⊆ C(c, ·):

G ⊥φ,C,c F
def
= ∀f ∈ F, g ∈ G.φ(g ◦ f)

We elide the subscripts on G ⊥ F where the intended category, predi-
cate, and subscript are clear.

Definition 32 ([35] Closure Sorting). Let C be a BRS category and φ be
a deconstructable predicate on C. We define the closure sorting Cφ → C.
The category Cφ has objects (F,G)c where F ⊆ C(·, c), G ⊆ C(c, ·), G ⊥ F ,
and 1c ∈ F ∩ G. We also define F and G to be maximal in the sense that
there does not exist any additional h 6∈ F ∪ G that could be added to
either of these sets without violating G ⊥ F . The morphisms of Cφ are
k : (F,G)c → (H, J)d where k : c→ d is a morphism of C and both

f ∈ F =⇒ k ◦ f ∈ H and j ∈ J =⇒ j ◦ k ∈ G

These definitions are almost verbatim from [35]. We observe for a given
morphism k : (F,G)c → (H, J)d, J can be thought of as the set of acceptable
contexts for k, while F is the set of bigraphs for which k may be a context.

We recover three desirable properties of closure sortings; however, we
merely assert these properties, as full characterisations and proofs are avail-
able in the work of both Debois [35] and Jensen [66]. Debois [35] establishes
that for a category C with RPOs, and a deconstructable predicate φ, the
sorted category Cφ has RPOs, and Cp → C transfers RPOs and has seman-
tic correspondence. Informally, semantic correspondence is the property
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that for any reaction of the reactive system of the sorted category, we can
find a corresponding reaction in the unsorted category. We use this theorem
directly to establish our ability to approximate the computation of sorting
in a pragmatic manner, which makes implementation of the sorting logic
and modular construction language a practical reality. Namely, we wish to
show an equivalence between reaction in the sorted and unsorted categories,
which will allow us to attempt reaction in the unsorted setting, and then
check that the result still satisfies the predicate.

Theorem 1. We consider the two transition relations,
l−→C and

l−→C , which
indicate reaction in the sorted and unsorted categories, respectively. For a
sorting Cφ → C approximating a predicate φ, there is an equivalence:

f
g−→C h ≡ f ′

g′−→C h
′

where φ(h′),C(f) = f ′,C(g) = g′, and C(h) = h′

Proof. Immediate from the semantic correspondence theorem [35].

Theorem 2. Any well-formed formula φ = ∀e : Var→ V.ψ in our sorting
logic is a deconstructable predicate that is decomposable such that φ(P ◦Q)
implies φ(P ) and φ(Q).

Proof. For the identity bigraph 1, there are no nodes over which to quantify,
and so our predicate is satisfied immediately (and identities are respected).
For some bigraph R = (V,E, ctrl, prnt, link) : 〈m,X〉 → 〈n, Y 〉 for which
φ(R), we consider the decomposition R = P ◦ Q, and label the node-sets
V = VP ] VQ. What then could cause ¬φ(P ) or ¬φ(Q)? Recalling that
terms of our logic simplify to the fragment of the logic containing only
negative terms (i.e., U and U− from Def. 16), we proceed by cases over the
constructs of our sorting logic.

Case (ψ = v / u,ψ = v // u). For contradiction, assume ¬φ(P ). We get
∃u, v ∈ VP : ¬ψ, but we already know VP ⊆ V and ∀u, v ∈ V : ψ, and so
we are done.

Case (ψ = v /ru,ψ = v //r u). Decomposition cannot introduce new parent
relations, so a node will not become a child or descendent of another if it
was not already so prior to decomposition.

Case (ψ = v@m 6= u@n). Decomposition cannot introduce further aliasing
between names, only (potentially) differentiate them. Therefore given that
ψ is already true for every u and v in V , these ports cannot reference a
shared name in the decomposition that was not already present in linkR.

73



3. BMC & BAM

Case (ψ = ¬local(v@i)). Decomposition cannot add a new edge or new
link, and linkP ⊆ linkR.

Case (ψ = c(x),¬c(x)). Immediate, as ctrlP ⊆ ctrl, and control assign-
ments are not altered by decomposition.

Case (ψ = F ∧ F ′, F ∨ F ′). By induction on the structure of sub-terms.

Having exhausted all cases, we have shown that any well-formed formula
is deconstructable.

3.4 Bigraphical Abstract Machine

In this section, we define the Bigraphical Abstract Machine (BAM), a gen-
eral, graph-based abstract machine for bigraphical reactive systems, which
can be instantiated for any instance BRS. By leveraging the mapping from
terms to bigraphs given in Section 3.3, BAM can be applied to the bigraph-
ical meta-calculus, and thus provides a graph-based abstract machine for
any instance calculus. Moreover, the machine supports a general choice
of reaction strategy, which can be instantiated to provide a fair abstract
machine for any calculus, and which also extends to provide a stochastic
abstract machine if reaction rules are extended with rates. To simplify the
exposition we restrict attention to reaction rules in which no two holes are
siblings.

BAM is based on a characterisation of matches of reaction rule redexes
as particular graph embeddings.

Definition 33 (Redex Embedding). For a ground bigraph P : (0, ∅) →
(n′, X) in BRS with active controls Σa and a reaction rule R = (rL, rR :
〈m,Y 〉 → 〈n, Z〉, η), define a redex embedding R ↪→(ep,el) P to be given by
two maps, the place embedding ep : n∪VrL → n′∪VP , P (i.e., from the roots
and nodes of the bigraph corresponding to the redex context rL to the roots
and nodes of the bigraph P ), and the link embedding el : Z∪ErL → X∪EP
(i.e., from names and edges of the redex to those in the process), satisfying
the following constraints

1. ep is injective and el is injective on edges and maps edges to edges

2. v ∈ ep(m) and v′ = prnt∗(v) ∈ VP implies ctrlP (v′) ∈ Σa

3. v ∈ VrL implies prnt(ep(v)) = ep(prnt(v)), ctrl(v) = ctrl(ep(v)), and
link(ep(v)@i) = el(link(v@i))
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4. |children(ep(v))| > |children(v)| implies ∃i ∈ m.prntrL(i) = v

5. x ∈ ErL implies el(x) ∈ scope(ep(m))

where ep(m) = {ep(i) | i ∈ m}, i.e., the image of the roots of the match,
and scope(U) for a set U of nodes and roots of P is the set of edges
that are only linked to nodes that are elements in or descendants of an
element in U . For a subset of nodes V ′ ⊆ VP of the place graph let
V ′ ↓= {v ∈ VP | ∃k.prntk(v) ∈ V ′}. We define the redex parameters
as D(ep,el) = ΠΠi∈m bmc(di) and di = (V ′, ∅, ctrlP |V ′ , prntP |V ′ ∪ {(v, {1}) |
prnt(v) = ep(i)}, link′) for V ′ = {ep(i)} ↓ \ep(VrL) and link′((v, i) =
linkP ((v, i)) if linkP ((v, i)) ∈ X ∪ (E \ el(ErL)) and link′((v, i) = e ∈ ErL
if el(e) = linkP ((v, i))

We define Emb(Θ,R) to be the set of all such embeddings for a sorted
signature Θ and a set of reaction rules R.

Proposition 3 (Redex Embedding and BRS Matching correspondence).
For a ground bigraph P : (0, ∅)→ (n′, X) and a reaction rule R = (rL, rR :
〈m,Y 〉 → 〈n, Z〉, η), there is a match P ≡ brs(C ◦ rL ◦ D) if and only
if there is a redex embedding R ↪→(ep,el) P such that D = D(ep,el), and
C = (V ′, EP \ el(ErL), ctrlP |V ′ , prntP |V ′ ∪ {(i, ep(i)) | i ∈ n}, link′) for V ′ =
VP \ ep(VrL)↓ and link′(v, i) = linkP (v, i) if v ∈ V ′ and i ∈ ar(vtrlP (v)).

Example 5 (Redex Embedding for Pisr). Given a ground bigraph

B = brs((νa)(send〈a, b〉 | recv〈a, c〉 | recv〈a, d〉))

belonging to Pisr, and a redex rL = send〈x, y〉. 0 | recv〈x, z〉. 1 , we can
exemplify one redex embedding. The redex bigraph brs(rL) : 〈2, ∅〉 →
〈1, {x, y, z}〉 is given by:

• VrL = {u0, u1}

• ErL = ∅

• ctrlrL = {u0 → send, u1 → recv}

• prntrL = { 0 → u0, 1 → u1, u0 → 0, u1 → 0}

• linkrL = {((u0, 1), x), ((u0, 2), y), ((u1, 1), x), ((u1, 2), z)}

The bigraph P : 〈0, ∅〉 → 〈1, {b, c, d}〉 is given by:

• VP = {v0, v1, v2}
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• EP = {a}

• ctrlP = {v0 → send, v1 → recv, v2 → recv}

• prntP = {v0 → 0, v1 → 0, v2 → 0}

• linkP = {((v0, 1), a), ((v0, 2), b), ((v1, 1), a), ((v1, 2), c), ((v2, 1), a), ((v2, 2), d)}

One redex embedding is rL ↪→(ep,el) P , where ep = {0 → 0, u0 → v0, u1 →
v2} and el = {x→ a, y → b, z → d}.

Definition 34 (Redex Embedding Reaction). For a ground bigraph P :
(0, ∅) → (n′, X) and a redex embedding R ↪→(ep,el) P for a reaction rule
R = (rL, rR : 〈m,Y 〉 → 〈n, Z〉, η), define the redex embedding reaction
P →(ep,el) P

′ where

• VP ′ = VP \ ep(VrL)↓ ∪VR′

• EP ′ = EP \ el(ErL) ∪ ER′

• ctrlP ′ = ctrlP |VP ′ ∪ ctrlR′

• prntP ′ = prntP |VP ′ ∪ prntR′ \n∪{(v, ep(i)) | i ∈ n and prntR′(v) = i}

• linkP ′(v, i) = linkP (v, i) if v ∈ VP \ ep(VrL) ↓ and linkP ′(v, i) =
linkR′(v, i) if v ∈ VR′

where R′ ≡ brs(rR ◦ η(D(ep,el))) and the nodes of the place graph in R′ is
chosen to be fresh with respect to P , i.e., VR′ ∩ VP = ∅

From Prop. 3, Def. 34 and the definition of bigraph composition in [77]
we can now prove correspondence between redex embedding reactions and
BRS reactions.

Theorem 3 (Soundness and Completeness). For a ground bigraph P :
〈0, ∅〉 → 〈n′, X〉 and a reaction rule R = (rL, rR : 〈m,Y 〉 → 〈n, Z〉, η)
then P ≡ brs(C ◦ rL ◦ D) if and only if there exists a redex embedding
R ↪→(ep,el) P such that P →(ep,el) C ◦ rR ◦ η(D).

We define well-sorted redex reactions just as for standard bigraph reac-
tions in Sec. 3.2.4.
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Definition 35 (Well-sorted Redex Embedding Reaction and Redex Em-
beddings). For a redex embedding reaction P →(ep,el) P

′ and a sorting
predicate φ, we define a well-sorted redex embedding reaction to be that
for which φ(P ) implies φ(P ′). We say that an embedding R ↪→(ep,el) P is
well-sorted if the redex embedding reaction P →(ep,el) P

′ is well-sorted. Let
E(P ) = {e | rL ↪→e P ∧ P →e P

′ ∧ φ(P ) =⇒ φ(P ′)} be the set of all
well-sorted embeddings.

The redex embedding reactions preserve node identities for all nodes
that are not included in the redex (or its parameters) and introduces fresh
node identities for the reactum (and parameters). This allows us to define
strong and weak fairness for infinite execution sequences in the standard
way (and in particular consistent with Bidinger & Compagnoni [19]).

Definition 36 (Fairness). For a ground bigraph P0, we say that an infinite
well-sorted reaction sequence P0 →e1 P1 →e2 P2 . . . is strongly fair if for any
strictly increasing sequence (ui)i∈ω we have

⋂
i∈ω E(Pui) = ∅. It is weakly

fair if for any k ∈ ω we have
⋂
i≥k E(Pi) = ∅.

As a consequence of the definition of reaction rules, weak and strong fair-
ness always coincide in our setting (as is also the case for the Pict abstract
machine in [19]), so we will simply refer to strongly/weakly fair sequences
as fair.

In order to identify fair strategies for our abstract machine, we define
the standard notion of concurrent redex embeddings as the embeddings for
which the redexes instantiated with parameters do not overlap.

Definition 37 (Concurrent Redex Embeddings). For a ground bigraph P ,
any two redex embeddings R ↪→(ep,el) P and R′ ↪→(e′p,e

′
l)
P are defined to be

concurrent iff Cod(ep)↓ ∩Cod(e′p)↓= ∅ We write (ep, el) || (e′p, e
′
l) to mean

these embeddings are concurrent.

We note that two concurrent redex embedding reactions are concurrently
enabled and can be performed in any order leading to the same end process.

Lemma 1 (Application of Concurrent Embeddings is Commutative). For
any two redex embeddings R ↪→e P and R′ ↪→e′ P , having e || e′, then
P →e P

′ →e′ P
′′ and P →e′ Q

′ →e Q
′′ implies P ′′ ≡ Q′′.

We now define a strategy as a function that for any ground process in
a BRS returns a subset of concurrently enabled redex embeddings.
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Definition 38 (Strategy). Define a strategy to be a mapping S : BMC(Θ)→
P(Emb(Θ,R)), such that S(P ) ⊆ E(P ), for all e 6= e′ ∈ S(P ) we have
e || e′, and E(P ) 6= ∅ =⇒ S(P ) 6= ∅.
We say that a strategy is maximal if for any e ∈ E(P )\S(P ) and e′ ∈ S(P )
we have e 6|| e′.

Definition 39 (BAM). For a sorted BRS signature Θ = (Σ, φ) with reac-
tion rulesR, we define the operation of BAM(Θ,R,S, p)→ BAM(Θ,R,S, p′)
where S is the strategy and p a ground process, and p′ is the result of ap-
plying all the matches in S(p) to p (in any order).

Proposition 4. Any maximal strategy gives rise to only fair execution
sequences.

3.4.1 Stochastic Simulation with BAM

We note that since the machine at each step computes the set of all possible
reactions, it is a relatively simple matter to support stochastic simulation,
by augmenting reaction rules with rates, that determine the frequency of
a given rule firing. We now sketch a stochastic version of BAM, relying
on the embeddings-based approach of Højsgaard & Krivine [62] for scalable
simulations. Our goal is not necessarily to provide an efficient or scalable
mechanism for stochastic simulation using bigraphs (which has been well-
studied in [62]); rather, we aim to demonstrate that as a piece of theoretical
machinery, BAM may act in a unifying capacity for the further study of
different execution models for bigraphs.

We reiterate here several of the definitions from [62], expressed in the
setting of BAM. The details of the exact simulation procedure (Gillespie’s
algorithm), and the connection to the stochastic bigraphs of Krivine et al.
[68] are also given in that work.

Definition 40 (Stochastic Reaction Rules). To each reaction rule R, we
assign a rate constant %R, such that the frequency of reaction will be propor-
tional to this rate constant, divided by the number of concurrently-enabled
instances of that rule.

Definition 41 (Reaction Rule Activity). For a given reaction rule R and
a rate %R, we can compute the activity αR for that reaction rule, based on
the number of embeddings of that redex present in a given process p:

αR(p)
def
= |ER(p)| × %R

where ER gives the set of concurrently-enabled embeddings of R into p.
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Definition 42 (System Activity). The total activity of a system is given
as α with respect to a process p and a set of reaction rules R:

αR(p)
def
=

∑
R∈R

αR(p)

For a given reaction rule R ∈ R, the probability of it being selected is
given by:

αR(p)

αR(p)

Then for a given match m ∈ ER(p), the probability is given by:

1

|ER(p)|

These two values, taken together, are used to compute a Monte Carlo step
for a given time increment. Such an execution strategy would therefore
conform to the definition of stochastic execution for bigraphs in terms of
embeddings given by Højsgaard & Krivine [62].

3.5 Related Work

In one of his earliest works on bigraphs [77], Milner proposed a term lan-
guage for bigraphs with normal forms. We have made minor deviations
from Milner’s syntax, but these changes have no effect on the expressivity
of the language, while making the representation of terms in calculi such as
the π-calculus more compact and familiar.

Milner’s encoding of the π-calculus [83] relied upon the introduction
of binding bigraphs [78] as a variant of bigraphs, in order to accurately
represent the scope conditions for names in the π-calculus. Introducing
additional constructs into the theory has disadvantages — especially as
further variations upon bigraphs emerge — and so we aim to avoid this in
our approach. By using declarative specifications of predicate sortings, we
can recover (for example) the π-calculus scope condition within the usual
bigraphs setting, without needing to introduce new constructs that extend
the formalism.

Our approach to bigraphical sortings relies heavily upon the closure
sorting proposed by Birkedal et al. [21] and developed further in Debois’
PhD thesis [35]. This current work is a continuation of the work on closure
sortings, in the hope that we can advance the state of the art in this area
sufficiently to make practical tool support a realistic possibility.
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Conforti et al. [30] proposed BiLog, a spatial logic for expressing prop-
erties over arbitrary bigraphs. BiLog is very general, and it is not the
case that any well-formed formula in BiLog will necessarily result in a de-
constructable predicate (and therefore a well-behaved sorting implementing
this predicate). We have taken a different approach in defining a minimal
logic for describing predicates for sortings that will always result in a de-
constructable predicate, and which is at least sufficient to implement those
sortings from the literature identified by Debois as being replaceable with
closure sortings [35].

Bacci and Grohmann [9] characterised the decidability of Debois’ closure
sortings, and proposed match sortings as a tractable subset. The sorting
logic we have presented and match sortings both permit recovery of local
bigraphs [82], and excluding sortings that specify interfaces, our sorting
logic can be used to specify the same kind of properties (i.e., forbidding the
presence of a particular match anywhere within a term).

For the design of the bigraphical abstract machine (BAM), we have
departed from previous efforts to describe abstract machines for families of
nominal calculi (including the Fusion machine [44] and the Pict abstract
machine [19]) by defining a general graph-based abstract machine that can
be specialised to any instance calculus.

The characterisation of matching as embeddings of redexes into pro-
cesses in BAM is similar to that given by Højsgaard [61] to enable scalable
simulation of bigraphical languages. The similarities provide some promise
that the simulation implementation based upon embeddings in that work
could be related as an instance of BAM.

3.6 Conclusion and Future Work

We have given a core bigraphical meta-calculus (BMC) along with a new
XPath-like bigraph logic employed to declare sortings when defining in-
stances of BMC. We have demonstrated that the logic intuitively captures
both grammatical constraints, e.g., limiting replication in the π-calculus to
only input guarded processes (as in [19]), as well as the scope condition
for the binding input parameter in the π-calculus. By describing the scope
condition as part of the sorting, BMC can be defined as a very simple core
process calculus, which we have shown corresponds in a precise way to Mil-
ner’s pure bigraphs. Moreover, we proved that any property described in
the logic is decomposable (as defined by Debois et al.). This means that the
meta-calculus corresponds to a closure-sorted bigraphical reactive system,
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for which it was demonstrated in [35] that a labelled transition bisimulation
congruence can be derived, using the general theory of RPOs for bigraphical
reactive systems.

We have also shown that it is not necessary to make the name and
sorting constraints explicit in interfaces. It is possible to work with the
un-typed process calculus terms, and to simply restrict reactions to those
that preserve the sorting constraint. We then provided a general bigraphi-
cal abstract machine (BAM), which can be instantiated with any instance
calculus of BMC. We prove that any maximal evaluation strategy for BAM
gives rise to a fair execution strategy.

The BMC meta-calculus thereby enables the familiar presentation and
manipulation of a broad class of sorted bigraphical reactive systems as
simple process calculus terms which can be executed and simulated us-
ing BAM. In particular, our work provides a new fair abstract machine for
the π-calculus and mobile ambient calculus, which can be used without re-
quiring any knowledge of the categorical foundations of bigraphical reactive
systems. The results therefore significantly advances both the theory and
applicability of bigraphs.

We consider it interesting future work to attempt to fully recover stochas-
tic bigraphs within the context of BAM, and to explore the representation
of a number of other nominal calculi previously described as bigraphical
reactive systems in this setting, so as to demonstrate more fully the general
applicability of this approach for the study and analysis of nominal calculi.
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Chapter 4

Bigraphical Refinement

Context

This chapter is derived from the paper Bigraphical Refinement
by Gian Perrone, Søren Debois, and Thomas Hildebrandt which
was accepted for publication in the Proceedings of the 2011 In-
ternational Workshop on Refinement (Refine’11), EPTCS 55,
2011, pp. 20-36.

The version that appears in this thesis has been reformatted, and fea-
tures an extension from the original in that it permits refinements to be
constructed up to the stuttering closure of a set of traces. This is a more
liberal notion of refinement than that proposed in the Refine’11 workshop,
though it represents only a small change from the definition of refinement
given in that work. The definition of stuttering is included as an addendum
to the original version of the paper in Section 4.7, so as to avoid confusion
between the version appearing in this thesis and the published version of
the paper.

Refinement is a central concept within formal software development
practice, and vertical refinement is a special form of refinement that re-
lates entire different languages. This seems a useful and central concept in
advancing the vision of a “tower of models”, in that we require some formal
means of specifying the relationships between the different languages that
constitute the pieces of a given tower. While bisimulation is well-defined
for bigraphs, refinement had not been explored previously. Vertical refine-
ment has certain pragmatic benefits — it’s a much weaker property (e.g.,
it does not require symmetry in the relation), and therefore it seems easier
to construct relations of this type.
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4. Bigraphical Refinement

As an overall contribution to the theory and applicability of bigraphi-
cal reactive systems, the notion of bigraphical refinement appears to have
enabled the further use of bigraphs already, and seems likely to continue
to do so. The notion of refinement proposed in the Refine’11 workshop pa-
per has been employed to relate different bigraphical formalisations of Petri
nets to one another [102], and to relate different models of indoor environ-
ments [54]. As such, it appears that the sufficient condition on abstraction
functors introduced in this work is a useful contribution, as these very con-
ditions have been used in the cited works to establish that a safe refinement
exists—giving credence to the claim made in the workshop paper that this
is a considerably easier property to establish than the more general “weak
preservation of reaction” condition.
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Abstract

We propose a mechanism for the vertical refinement of bigraphical reactive
systems, based upon a mechanism for limiting observations and utilising
the underlying categorical structure of bigraphs. We present a motivating
example to demonstrate that the proposed notion of refinement is sensible
with respect to the theory of bigraphical reactive systems; and we propose
a sufficient condition for guaranteeing the existence of a safety-preserving
vertical refinement. We postulate the existence of a complimentary notion
of horizontal refinement for bigraphical agents, and finally we discuss the
connection of this work to the general refinement of Reeves and Streader.

4.1 Introduction

Refinement is the process of gradually developing a specification towards a
suitable implementation, through a series of steps in which more concrete
entities are shown to be as acceptable as the more abstract entities preceding
it in the chain of refinement steps, based upon what may be observed of
these entities. The utility of this method has been demonstrated through
many years of application in academic and industrial settings. In this paper
we attempt to bring these well-studied benefits to a new class of systems
— namely, bigraphical reactive systems. We focus primarily on vertical
refinement [23], where the aim is to relate models constructed with respect
to different semantics.

A bigraphical reactive system [83, 81] (BRS) is a model construction
paradigm proposed by Milner and colleagues that aims to enable modelling
of interactive systems within a cohesive theoretical framework. While the
primary long-term focus of bigraphs is on models of ubiquitous and context-
aware systems [20], they have demonstrated value in other areas such as bi-
ological applications [68, 33, 34] and business processes [56, 105]. Bigraph-
ical reactive systems also capture the syntactic and semantic structure of
many formalisms associated with process modelling, providing a unifying
meta-calculus within which to relate many of these well-developed theo-
ries. Already encodings into various bigraphical reactive systems have been
demonstrated for amongst others the λ-calculus [82], CCS [81], the Mobile
Ambients calculus [64], several variants of the π-calculus [64, 26, 39], Fusion
Calculus [50] and Petri Nets [71].

Bigraphical reactive systems consist of two graphs (hence the name
bigraph) modelling the orthogonal notions of locality and connectivity which
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4. Bigraphical Refinement

together capture the static structure of a system, and a set of reaction rules
that may selectively rewrite portions of the bigraph in order to capture
the dynamic behaviour of that system. We will introduce bigraphs and
bigraphical reactive systems (assuming no prior knowledge) in Section 4.2.

The usual notion of “observation” in a BRS is derived from the above
notion of dynamic behaviour: a BRS gives rise to an LTS, the labels of which
are simply the least context enabling reaction. The present effort towards
refinement takes this connection between static structure and dynamic be-
haviour to heart, and attempts to short-circuit the LTS in favour of a more
directly structural mechanism of refinement. This makes sense uniquely for
bigraphs exactly because of the close correspondence between structure and
dynamics. The primary contribution of this paper is to introduce such a
mechanism as a small step towards bringing the well-established benefits
of refinement to models constructed within the bigraph formalism. Addi-
tionally, we give a sufficient condition for an abstraction functor (Section
4.4) to give rise to a safe refinement, and show that this notion of refine-
ment corresponds with (and indeed, in part is an instance of) the general
refinement of Reeves and Streader [94, 95].

4.1.1 Structure of the paper

The remainder of this paper is structured as follows: We review bigraphs
(assuming no prior knowledge) in Section 4.2. In Section 4.3 we introduce
a running example that will be used to illustrate all of the concepts pre-
sented. In Section 4.4 we present our definition of vertical refinement for
bigraphical reactive systems and show that the proposed refinement pre-
serves safety properties with respect to the abstraction functor upon which
it is parametrised. Additionally, we present a sufficient condition for an
abstraction functor to give rise to a safe refinement. Finally, in Section
4.5 we discuss a candidate horizontal refinement mechanism for bigraphical
agents, derived from the general refinement of Reeves and Streader [94, 95],
and discuss the connection of this work to general refinement.

4.2 Bigraphical Reactive Systems

Bigraphical reactive systems is a graphical formalism emphasising the or-
thogonal notions of locality and connectivity. A BRS is a category of bi-
graphs and a set of reaction rules that may be applied to rewrite these
bigraphs. We provide here a short, informal introduction to the anatomy
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4.2. Bigraphical Reactive Systems

(a) Place Graph (b) Link Graph

Figure 4.1: The constituent place (Fig. 4.1a) and link (Fig. 4.1b) graphs
that form a particular bigraph.

Figure 4.2: The bigraph resulting from the combination of the place and link
graphs in Fig. 4.1a and Fig. 4.1b. This bigraph is an agent of the BRSnotify
example BRS with signature Σ = {Z,U,F,N} that we will introduce in
Section 4.3.

of a BRS without assuming any prior knowledge. For a complete treatment
of bigraphs and BRSs, readers are referred to [83, 81].

4.2.1 Static Structure

The most basic construction within the static fragment of bigraphical re-
active systems is the node. This follows from normal definition of a node
within graph theory. To nodes we assign controls, which are drawn from a
signature Σ, the set of controls. We sometimes use a convenient shorthand
such that we may refer to a node as being an “X node”, by which we really
mean a node that has been assigned the control X. Nodes may be nested
to arbitrary depth to form a tree that is known as the place graph (Fig.
4.1a). We represent this nesting by containment, as shown in Fig. 4.2.
We distinguish between controls of two kinds: active and passive ones; we
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shall see later how active controls admit dynamic behaviour beneath them
whereas passive controls do not. Every tree of nodes is contained by a re-
gion (the dotted border in Fig. 4.2). Bigraphs permit multiple regions (a
place forest).

To controls (and therefore nodes) we assign a fixed arity, which defines
the number of ports that a given node possesses. A port is a connection
point on a node; it must always be connected to other such connection points
by the link graph. The link graph (Fig. 4.1b) is an undirected hypergraph
over the ports of the nodes of the place graph. A single (hyper) edge may
connect arbitrarily many ports on different nodes.

Within the place graph, in addition to regions and nodes, there may also
exist holes (known as sites in some bigraphs literature), which are expressed
visually as shaded grey nodes (as in Fig. 4.3a). A hole is a location into
which a region of another bigraph may be inserted by composition. It may
be helpful to think of bigraphs with holes as “contexts” and those without
as “processes” or “terms”.

Present also within Fig. 4.3 are names that represent (named) points at
which links of the link graph may be fused to form a single (hyper) edge. In
the intuition of contexts and terms, names of bigraphs roughly correspond
to unstructured names, as in the π-calculus. By convention, outer names
are drawn upwards, and inner names are drawn downwards. Outer names
are analogous in the link graph to regions in the place graph, while inner
names are analogous to holes. Through composition of link graphs, sets of
inner and outer names that agree are matched and joined.

Definition 43 (Interface). An interface is a pair 〈j,X〉 where 0 ≤ j, in-
dicating the number of holes or regions, and X is a set of (inner or outer)
names.

Definition 44 (Bigraph). A bigraph is a 5-tuple:

(V,E, ctrl, prnt, link) : 〈k,X〉 → 〈m,Y 〉

Here V is the set of nodes, E is the set of hyperedges, ctrl is the control map
that assigns controls (and therefore arities) to nodes, prnt is the parent map
that defines the tree structure in the place graph and link is a link map
that defines the link structure. The inner interface 〈k,X〉 indicates that
the bigraph has k holes, and a set of inner names X. The outer interface
〈m,Y 〉 indicates that the bigraph has m regions and a set of outer names
Y .
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4.2. Bigraphical Reactive Systems

(a) A : 〈2, {x, y}〉 →
〈1, ∅〉

(b) B : 〈0, ∅〉 → 〈2, {x, y}〉 (c) A ◦ B : 〈0, ∅〉 →
〈1, ∅〉

Figure 4.3: The composition of two bigraphs A and B with their respective
interfaces

Definition 45 (Composition). Bigraphs are composed separately in the
place and the link graphs. The interfaces of the bigraphs must be compat-
ible in order for composition to be defined, i.e., the sets of names and the
number of regions/holes must be the same. Fig. 4.3 illustrates the compo-
sition A ◦B of bigraphs A and B. In the place graph, we insert contents of
the left-most region of B into hole 0 of A, and the contents of the right-most
region of B into hole 1 of A. Regions are numbered left-to-right: we insert
the contents of region 0 into hole 0 etc. In the link graph, links are spliced
together where there is name agreement between the inner and outer names
of the bigraphs being composed. We may refer to A in this case as being a
context into which B is inserted.

Definition 46 (Tensor Product). There exists an additional way in which
to combine bigraphs, namely the tensor product A⊗B, where A and B are
bigraphs. Where A and B do not share any inner or outer names, this just
involves juxtaposing their place graphs, taking the union of their names,
and increasing the indices of holes in B to make them unique with respect
to A. This definition obscures some technical details. It is recommended
that readers interested in following the proofs in Section 4.4.1 refer to [83]
for a precise definition.

4.2.2 Notation

We introduce a rudimentary term language for representing bigraphs that
should be familiar to most readers accustomed to the notation for process
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4. Bigraphical Refinement

(a)
κ(n1, . . . , nar(κ)).p

(b) a. 0 (c) a.nil | b.nil

Figure 4.4: Example bigraph terms with their associated graphical repre-
sentation

algebras. The present language is not complete, i.e., it cannot express
every bigraph, but it can express the ones we will use in examples. It is a
subset of a complete such language [79]. We will use this term language in
conjunction with the graphical representation used in Fig. 4.2.

Definition 47 (Bigraph Term Language).

p ::= κ(n1, . . . , nar(κ)).p | p | p | i | nil

Where κ ∈ Σ.

The term language requires some explanation — κ(n1, . . . , nar(κ)).p is
prefixing (Fig. 4.4a), indicating a node assigned the control κ. The arity of
κ is given by ar(κ). The sequence n1, . . . , nar(κ) are the ports of the node.
Finally, the suffix p is the term that is nested inside this node. p | p is
juxtaposition of terms (Fig. 4.4c), placing them as siblings within the place
graph. i is a hole (Fig. 4.4b), indexed by some integer 0 ≤ i. Finally, nil is
the nil terminator which is simply the empty bigraph.

4.2.3 Dynamics

Having introduced the basic structure of bigraphs, the static portion of a
BRS, we now introduce the reactive portion of a BRS that imbues a system
with dynamic behaviour. This relies on reaction rules that define rewriting
that may be applied to a bigraph. A reaction rule (R,R′, η) consists of
a redex R, a reactum R′ and an instantiation map η, where the redex is
a bigraph to be matched and the reactum is the bigraph with which the
matched portion of the bigraph should be replaced. The instantiation map
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4.2. Bigraphical Reactive Systems

indicates how parameters matched by holes in the redex should manifest in
the reactum after matching. Where the instantiation map is unambiguous
(e.g., it is the identity map), we may just write R→ R′.

Definition 48 (Reaction). Matching of a particular reaction rule (R,R′, η)
against a particular bigraph G and rewriting it into some other bigraph G′

proceeds by decomposition of the bigraph into a context C, a match R
(the redex), and a set of parameters d (for portions of the bigraph that are
matched by holes in the redex). This decomposition is then reassembled
with the reactum R′ replacing the matched portion of G, with select parts
of d substituted into the holes of R′, forming the resulting bigraph G′.

G = C ◦R.d→ C ◦R′.η(d) = G′

We require further that the context C be active, that is, that every control
above holes of C are active (see CCS example below).

We have suppressed details of the handling of names here by using the
notation “R.d”; we have also suppressed details in the phrase “with select
parts of d” and not explained the use of the map η. We refer the reader to
[83] or [81] for details. The present paper can be read without understand-
ing these details, as reaction in our examples always take the form of the
following special case:

a = C ◦R ◦ d→ C ◦R′ ◦ d .

Definition 49 (Bigraphical Reactive System). We use the notationBG(Σ,R)
to denote a bigraphical reactive system with a signature Σ (the set of con-
stituent controls), and a set of reaction rules R. More formally, BG(Σ,R)
is an spm category [83] in which the objects are interfaces and the arrows
are bigraphs (which we refer to as agents of BG(Σ,R)), equipped with a
set of reaction rules R.

As an example, we introduce a very simple calculus in the style of the
Calculus of Communicating Systems (CCS) [74], where we first give an
encoding of the terms as bigraphs, and then define a reaction rule that
imbues these terms with dynamic behaviour. Interested readers are referred
to [83] for a real encoding of CCS.

Our calculus defines sequencing (t.P ), parallel composition (t | t), and
sending and receiving on a named channel (“x!” and “y?”, respectively,
where x and y are channel names). The encoding of these constructs into
the bigraphical term language in Definition 47 is straightforward — these
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Figure 4.5: The process send(a).recv(b).nil | recv(a).send(b).recv(a).nil

Figure 4.6: The RCCS reaction rule

primitives are already defined in terms of the bigraphical term language,
except for “send” and “receive” which we straightforwardly encode as nodes
with controls send and recv, each with arity 1. Fig. 4.5 gives a graphical
representation of the process send(a).recv(b).nil | recv(a).send(b).recv(a).nil.
According to our encoding, sequencing is represented by prefixing, parallel
composition by juxtaposition, actions (such as send and recv) by passive
controls, and channels by outer names. This is by no means the only en-
coding possible, but this technique is one of the most straightforward.

Having developed the encoding of our calculus within bigraphs, we can
give a reaction rule RCCS that will (through repeated rewriting) reduce the
term as far as possible based upon agreement between parallel processes as
to which action should be taken next:

RCCS
def
= recv(x). 0 | send(x). 1 → 0 | 1

This rule is presented graphically in Fig. 4.6. It essentially “peels off”
the outer layers of the terms where a send and a recv action are linked to
the same channel name, rewriting the entire bigraph to the juxtaposition
of whatever was nested inside those send and recv controls (i.e. the parts of
the bigraph matched by the holes in the redex). As an example, the CCS
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reaction a!.b? | a?.c!→ b? | c! becomes the bigraphical reaction

send(a).recv(b).nil | recv(a).send(c).nil→ recv(b).nil | send(c).nil

4.3 Example

Aside from their role as a meta-calculus for the study of process modelling
formalisms, bigraphical reactive systems are intended to provide a basis
upon which to construct models of the kinds of context-aware and ubiq-
uitous systems that are becoming increasingly popular. Consequently, we
introduce an example based on modelling a context-aware social network
notification system, such that a user is notified whenever a friend is in the
same physical location.

We will give this example without using the link-graph part of bigraphs
to keep it simple. We emphasise that the example generalises to a more
interesting one in which connectivity counts — where notification is depen-
dent not only on physical co-location but also on whether or not users and
friends are virtually connected through their laptops and phones.

We will subsequently extend this to a system in which not all friends,
but rather only particular designated “special friends”, trigger notifications,
and show that (and in what sense) the latter system is a refinement of the
former.

The example system captures the dynamics of some physical environ-
ment (consisting of discrete zones within which we can detect the presence of
a user by some mechanism that is outside the scope of this model) in which
a user’s friends move from zone to zone. When one of the user’s friends is
present in the same zone as the user, a notification is given, modelled by
adding a “notification” node to the zone.

4.3.1 The abstract system: BRSnotify

We first define controls Z (Zone), U (User), F (Friend), N (Notification) and
S (Special friend marker). Every control has arity 0 and every control is
active; altogether we have a signature

ΣN = Z,U,F,N

The bigraphs of our systems are thus arbitrary trees over these controls.
We shall of course be interested only in those where Z are inner nodes and
the remaining controls are leaves.
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With these particular bigraphs in mind, we give reaction rules recon-
figuring a bigraph by allowing nodes with control F — friends — to move
between nested zones as follows. These rules are illustrated graphically in
Fig. 4.7.

M1 = Z.(F | 0 ) |Z. 1 → Z. 0 |Z.(F | 1 )

M2 = Z.(Z.(F | 0 ) | 1 ) → Z.(Z. 0 |F | 1 )

M3 = Z.(Z. 0 |F | 1 ) → Z.(Z.(F | 0 ) | 1 )

Reaction rules are here given on the form “R → R′” rather than the more
precise (R,R′, η); recall from the above introduction to bigraphs that we
use the former form whenever η is inconsequential (in this case, it is the
identity map).

(a) M1

(b) M2

(c) M3

Figure 4.7: Reaction rules M1, M2 and M3 that allow friend nodes to move
between zones.

We extend the movement rules M with an additional rule R1 for notifi-
cations to be issued when a U (user) and F (friend) node exist within the
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Figure 4.8: Reaction rule R1

same zone. This reaction rule is illustrated in Fig. 4.8.

ΣN = ΣM ∪ {U,N}
R1 = Z.(U |F | 0 ) → Z.(U |F |N | 0 )

Let BRSnotify be the bigraphical reactive system formed by the addition
of the reaction rule R1 to the set of movement rules M :

BRSnotify = BG(ΣN ,M ∪ {R1})

4.3.2 The concrete system: BRSselective

We now create a second bigraphical reactive system, this one refining (both
intuitively and in a sense to be made precise) the system BRSnotify just
introduced. In this new system, instead of simply notifying whenever any
friend is present in the same zone as the user, we wish only to issue a
notification in the presence of a particular designated friend, distinguished
by the presence of an S (special friend marker) inside the friend node in
question. Consequently, we define the set of controls ΣS for BRSselective
to include (in addition to the controls of ΣN) the S control. The modified
reaction rule R2 is presented graphically in Fig. 4.9.

ΣS = ΣN ∪ {S}
R2 = Z.(U |F.S | 0 )→ Z.(U |F.S |N | 0 )

BRSselective = BG(ΣS,M ∪ {R2})

At an intuitive level, this BRS refines the one of the previous sub-section.
In the following section, we shall define exactly in what sense this is the
case.
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Figure 4.9: Reaction rule R2

4.4 Vertical BRS Refinement

We recall the distinction here between horizontal and vertical refinement.
Vertical refinement is concerned with moving between differing levels of ab-
straction, or indeed completely independent modelling languages, whereas
horizontal refinement instead aims to relate models specified at the same
fundamental level of abstraction, and within the same modelling setting.
When we refer to the refinement of a BRS, we mean a vertical refinement,
indeed, this is the only meaningful interpretation, as a BRS is the category
consisting of (infinitely) many actual agents of the same general shape. We
will later return (briefly) to what it would mean for an agent to be refined,
that is, to a horizontal refinement between two agents of the same BRS
(each of which would be bigraphs, representing — for example — two CCS
processes).

To summarise the distinction between horizontal and vertical refinement
in the setting of BRSs: In the former case, we are talking about what we
can observe of all such agents, whereas in the latter we are referring to what
we can observe of the behaviour of a single agent. In the present section,
we consider vertical refinement; we comment on horizontal refinement in
the subsequent section.

4.4.1 Safe refinements

First, what observations can you make of bigraphical agents? While the
notion of a trace is familiar within refinement literature, within bigraphical
reactive systems it is unclear exactly what might correspond to an action
within the usual definition of a trace. Consequently, we formulate a trace
of a BRS such that each element of the trace is a bigraphical agent (i.e., a
bigraph of that BRS). Therefore the notion of trace is not one of a system
exhibiting behaviour in the form of some observable actions, rather, it is
the entire state of the model as it changes over time such that every element
of the trace is a bigraph, related to the next element of the trace by the
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application of some reaction rule. While this may seem very crude at first
glance, it is important to remember that the dynamic behaviour of a bigraph
is derived from reaction rules and the structure in a perhaps more direct
manner than in many other calculi. As such, it makes sense to consider the
abstract specification to comprise, by itself, an entire observation — cf. the
structure of agents of BRSnotify above.

If an observation is a complete agent of the abstract specification, what
then is an observation of an agent of the concrete system? We leave that to
the system constructor, merely insisting that the observations one makes
of concrete implementation agents must somehow be a function of their
structure. Thus, observations of concrete agents are given by a structure-
preserving map from concrete agents to abstract ones. In the parlance of
category theory, this is called a “functor”, a functor that we shall in this
instance call an abstraction functor.

Definition 50 (Trace, observation). For a given BRS A, a trace is a (pos-
sibly infinite) sequence of bigraphs (agents) 〈a1, a2, . . .〉, such that for each
ai and ai+1 in the sequence there is a reaction ai → ai+1. If s = 〈s1, . . . , sn〉
and t = 〈t1, . . .〉 are traces and sn → t1, we may form the composite trace
s; t = 〈s1, . . . , sn, t1, . . .〉. In this case we say that t is an extension of s. We
write Tr(A) for the set of all traces of a given BRS A. If F : A → A′ is a
functor and 〈a1, a2, . . .〉 ∈ Tr(A) is a trace of A, we apply F pointwise to
obtain a sequence F (t) = 〈F (a1), F (a2), . . .〉.

We note two important properties:

1. Tr(x) is by definition prefix-closed; that is, for any trace t ∈ Tr(x),
every prefix t′ of t is also in Tr(x).

2. Even though F : A → A′ takes sequences of A to sequences of A′, it
does not necessarily take traces of A to traces of A′.

Of course, not just any functor will do: to have a refinement, the dy-
namic behaviour of the concrete implementation must be allowed by the
dynamic behaviour the abstract specification allows on its agents, the ob-
servations. Altogether, our notion of refinement follows from the usual trace
equality, however, because a BRS tends to permit too much observation,
our bigraphical notion of refinement requires as a side condition that there
exist an abstraction functor F : C → A such that for any trace 〈c0, c1, . . .〉,
F gives rise to a trace 〈F (c0), F (c1), . . .〉. We present vertical refinement as
the conjunction of two constituent definitions, separating the preservation
of orthogonal safety and liveness properties through refinement.
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Definition 51 (Safe Vertical Refinement).

A
safe

v F C
def
= F (Tr(C)) ⊆ Tr(A)

This definition satisfies the “reduction of non-determinism” role of re-
finement, in that it is always valid to simply pick one alternative and im-
plement it in C when presented with non-deterministic choice in A.

Lemma 2. Safe Vertical Refinement is transitive and reflexive for the iden-
tity functor.

Proof. Reflexivity is trivial. Suppose A
safe

v F C and C
safe

v G D. Then
FG(Tr(D)) ⊆ F (Tr(C)) ⊆ Tr(A).

We proceed to illustrate safe refinement using the two BRSs above,
then give a sufficient condition for an abstraction functor to yield a safe
refinement.

Recall our claim that BRSselective, which issues notifications upon co-
location with “special friends” is a refinement of BRSnotify, which does so
upon co-location with any friend. The latter employs an additional control
S. This indicates that our abstraction functor must (at the very least)
ensure that all nodes of control S must be hidden, renamed or removed so
as to ensure that the codomain of F is BRSnotify (i.e. that F can transform
any agent of BRSselective into a valid agent of BRSnotify).

By this reasoning, we arrive at an abstraction functor “pattern” that
is likely applicable to many other BRSs. We call this the hiding functor.
Its essential function is to simply hide, for a given signature Σ, all nodes
that have been assigned controls from some particular set of controls H.
This includes joining any children of nodes that will be hidden to parents
that will remain visible after the application of the hiding functor. For
our example, the hiding set H = {S} (i.e. the designated “special” friend
control).

Definition 52 (Hiding Functor). We define an abstraction functor FΣ,H :
BG(Σ) → BG(Σ \H) for hiding, parametrised by Σ, the signature of the
“implementation” BRS, and H, a set of controls to be hidden. On objects,

this functor is the identity. On arrows, its action is FΣ,H((V,E, prnt, ctrl, link))
def
=

(V ′, E, ctrl′, prnt′, link), where

– V ′ = {v ∈ V |ctrl(v) /∈ H}

– ctrl′ = ctrl � V ′, and
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– prnt′(l)
def
=

{
prnt(l) where ctrl(prnt(l)) /∈ H
prnt′(prnt(l)) otherwise

This “hiding functor” is an abstraction functor for our example system.
Recalling the definition of a bigraphical agent (and therefore of an arrow in
the category BRSnotify or BRSselective) given in Definition 44, the purpose
of this hiding functor is to exclude any nodes that have a control that is in
the set of hidden controls H, exclude these controls from the control map
ctrl, and recursively recreate the parent map prnt such that any children of
a node with a control in H is attached to its most immediate place-graph
ancestor that is not marked with a control in H. We call the abstraction
functor for our example notification system Afriend, which is defined as the
hiding functor above, instantiated with H = {S}.

While the hiding functor has the flavour of a forgetful functor — it
dispenses with structure — it cannot reasonably be called so as it is not
faithful. Many distinct configurations (e.g. special-friend controls) will map
to the same bigraph. This is a technical distinction only; we use “hiding”
in no special sense, except as a name for abstraction functors of this general
shape.

It is easy to prove that with Afriend as abstraction functor, BRSselective
is indeed a safe refinement of BRSnotify. However, instead of proving so
directly, we shall instead provide a general theorem about abstraction func-
tors: When they preserve reaction, and in particular, when they preserve
just reaction rules, they give rise to safe refinement.

Theorem 4. Let F : C → A be an abstraction functor. If F preserves

reaction, that is, if c→ c′ implies F (c)→ F (c′), then A
safe

v F C.

Proof. Immediate from Definition 51 of safe refinement.

From this theorem it becomes apparent that an abstraction functor may
be any functor at all that obeys this property.

The terminology deceives, here: The guarantee that the concrete sys-
tem has no more behaviour than the abstract one is in fact upheld by the
abstraction functor preserving behaviour.

Of course, proving that a functor preserves reaction need not at all be
easy. Fortunately, we can exploit the connection between static structure
and dynamic behaviour of bigraphs: a functor which preserves the reaction
rules, structurally, will also preserve (dynamic) reaction, and will thus be a
safe refinement.
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Theorem 5 (Safe Abstraction Functors). Let A = BG(Σ,R) and C =
BG(Σ′,R′) be BRSs. A functor F : C → A yields a safe vertical refinement

A
safe

v F C if it satisfies the following conditions.

1. It preserves and respects tensor.

2. It preserves active contexts.

3. It preserves reaction rules: For any reaction rule (R,R′, η) ∈ R′ (a)
the F -image (F (R), F (R′), η) is a rule inR; and (b) for any parameter
d of that rule, η(F (d)) = F (η(d)).

Proof. Suppose c1, . . . , cn is a trace of C. It is sufficient to prove that for
each i < n, there is a reaction F (ci) → F (ci+1). We know that ci → ci+1,
so there is some reaction rule (R,R′, η) ∈ R′, context E of C, and some set
of names Z s.t.

ci = E ◦ (R⊗ 1Z) ◦ d → E ◦ (R′ ⊗ 1Z) ◦ η(d) = c′i

Where η(d) is the instantiation of parameters (see [83] for details). But
then, because (F (R), F (R′), η) is a rule of R, we compute and find ai =
F (ci) = F (E◦(R⊗1Z)◦d) = F (E)◦(F (R)⊗1F (Z))◦F (d)→ F (E)◦(F (R′)⊗
1F (Z))◦η(F (d)) = F (E)◦(F (R′)⊗1F (Z))◦F (η(d)) = F (E◦(R′⊗1Z)◦η(d)) =
F (c′i) = a′i

We remark that the three conditions of this Theorem appear to be good
candidates for a definition of a morphism of parametric reactive systems,
as suggested in [36].

It is straightforward to verify that for our example BRSs, BRSselective
and BRSnotify, the hiding functor does in fact satisfy the three conditions
of this Theorem. Thus we have the following corollary:

Corollary 1. BRSselective is a sound refinement of BRSnotify with respect
to the abstraction functor Afriend, that is,

BRSnotify
safe

v Afriend BRSselective

The
safe

v relation captures safety properties of the system being refined
(i.e. it does not permit a refined model any undesirable extra behaviour,
provided that the abstraction functor does not hide any “undesirable” be-
haviour). However, it does not guarantee that the system does anything at
all (i.e. an empty trace is a safe refinement of any system). To guarantee
that some additional liveness properties are preserved by refinement, it is
necessary to extend our definition.
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4.4.2 Live refinements

In order to guarantee that a given concrete system actually exhibits any
of the desirable behaviour of the abstract system that it refines, we must
define a notion of liveness. Whereas in a process algebraic setting it might
be possible to rely on the presence of a particular output (or all possible
outputs) to define “desired” observable behaviour, within a bigraphical set-
ting the lack of any primitive notions of “input” or “output” (it is up to
the system designer to define what these concepts mean with respect to
a particular model) means that it is necessary to explicitly choose such
“desirable” behaviours.

In the absence of an intrinsic notion of desirable behaviour, we further
parametrise our notion of liveness, already parametric in terms of the ab-
straction functor F , on the admissible traces. This parametrisation on the
notion of admissibility is akin to those used in [57, 53].

Definition 53 (Live Vertical Refinement). Let F : C → A be an abstrac-
tion functor, let C ⊆ Tr(C) be the admissible traces for C, and let similarly
A ⊆ Tr(A), the admissible traces of A. We then say that (C,C) is a live
refinement of (A,A) iff for every trace s of Tr(C), whenever F (s) has an
extension t′ to an admissible trace F (s); t′ ∈ A, then there exists an exten-
sion s′ of s to an admissible trace s; s′ ∈ A with F (s′) = F (t′). In this case
we write:

(A,A)
live

v F (C,C) .

If we wish to take the admissible traces A of the abstract system A as
canonical, we can define C as those traces whose F -images are admissible.
The reflection of extensions to admissible traces is reminiscent of the use of
open maps in [57, 58].

Lemma 3. Live Vertical Refinement is transitive.

Proof. Suppose (A,A)
live

v F (C,C) and (C,C)
live

vG (D,D), and suppose
FG(t);u′ ∈ A. Then u′ has a pre-image s′ with G(t); s′ ∈ C; but then s′

has a pre-image t′ with t; t′ ∈ D.

Let us provide a suitable set of admissible traces for our running ex-
ample, BRSnotify. For this BRS, the obvious notion of admissibility (think
“successful”) is when notification has occurred. So we define the set of
admissible traces as simply those finite traces in which the user has been
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notified, that is, in which the final agent contains the notification control
next to the user and his friend:

Snotified
def
= {〈a1, . . . , an〉 ∈ Tr(BRSnotify) | ∃C. an = C ◦ (U |F |N)}

For BRSselective, we transfer the notion of admissibility:

Sselective
def
= {t ∈ Tr(BRSnotify) | F (t) ∈ Snotified}

The selective system BRSselective under these notions of admissibility is in
fact not a live refinement of the original one BRSnotify. One might think
so: After all, one can extend a trace to admissibility simply by moving
the special friend next to the user. Unfortunately, there need not be a
special friend, and even if there were, the abstract system might extend to
admissibility by moving a (non-special) friend next to the user. We will
now show this in detail, thus proving of the following proposition:

Proposition 5. (BRSnotify,Snotify) 6
live

vAfriend (BRSselective,Sselective).

Proof. Consider an agent Z.(U |F) of BRSselective. Applying Afriend we find
simply Afriend(Z.(U |F)) = Z.(U |F), which succeeds after just one reaction

Z.(U |F)→ Z.(U |F |N)

by reaction rule R1. Now, if we actually had a live refinement, we should
be able to match this reaction in BRSselective. A simple inspection of the
rules however prove that this is not possible.

This is, however, not a show-stopper, rather it is a welcome demon-
stration of the utility of such a vertical refinement mechanism. We could
remedy this situation by introducing into BRSselective an additional reaction
rule that spontaneously adds the designated friend marker S to any friend
F. However, this seems to contradict the intuition of the model, so in this
instance it is perhaps better to leave BRSselective unmodified and accept
that there are (known) conditions under which this BRS cannot progress
to a successful state.

Having defined our two separate (live and safe) refinement relations, we
can complete the definition of safe and live vertical refinement:

Definition 54 (Safe and Live Vertical Refinement).

(A,A) vF (C,C)
def
= A

safe

v F C ∧ (A,A)
live

v F (C,C)
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4.5 Discussion & related work

Having introduced our notion of vertical BRS refinement and shown the con-
ditions under which it is safe and live with respect to the chosen abstraction
functor, we now discuss potential approaches to horizontal refinement and
related work. As it happens, both topics take us to the general refinement
of Reeves and Streader [94, 95].

General horizontal refinement recognises three components to refine-
ment: entities E, i.e., the specifications and implementations being refined;
contexts Ξ, which are the environment within which the entities interact;
and a user, which defines the possible observations O(−) that can be made
of an entity within a particular context. Refinement is then the relation

A vΞ,O C
def
= ∀x ∈ Ξ.O([C]x) ⊆ O([A]x) ,

where Ξ is the set of contexts, O is a map assigning observations to entities
in contexts, and [−]x inserts an entity into context x.

Interestingly, our proposed notion of bigraphical vertical refinement falls
under the umbrella of general horizontal refinement. Entities would be
BRSs (like BRSnotify and BRSselective); contexts Ξ would be just the trivial
context, which leaves the entity unchanged. Finally, the observation map
O is in our case simply Tr(−), the map that takes a BRS to the traces
observable of it. We do not think this is a coincidence. It seems intuitive
that horizontal refinement of an entire class of agents would correspond to
vertical refinement.

What about general vertical refinement, then? The definition of vertical
refinement within the general refinement framework [95] relies upon a notion
of layers, representing a level of abstraction in terms of (EL,ΞL, OL), where
EL is a set of entities, ΞL is a set of contexts and OL is an observation
function. Vertical refinement is then defined in terms of a Galois-connection
that interprets high-level entities as low-level ones and vice versa.

The analogy of this notion with our use of an abstraction functor F :
C → A should be apparent: If we could find that functor F to be one of
an adjoint pair, we would be in an analogous situation. Unfortunately, it
remains unclear if such an adjunction would retain the intuition behind the
Galois-connection of general vertical refinement: morphisms (i.e., bigraphs)
do not measure approximation; they represent the agents under investiga-
tion. In particular, the hiding functors used for the example in the present
paper do not appear to be part of adjoint pairs.

Leaving vertical refinement behind, what is then a good notion of hori-
zontal refinement for bigraphs? Returning to general horizontal refinement,
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bigraphs actually do come with a notion of entity, context, and observation,
namely agents (roughly, bigraphs with no holes/inner names), bigraph con-
texts (bigraphs with holes/inner names), and an LTS (given a BRS). We
have in the present paper by-passed the LTS as the notion of observation,
following the bigraphical connection by structure and dynamics to its ex-
treme conclusion, using the structure of the abstract specification as the
observations.

For horizontal refinement, this approach appears not sensible: We would
after all be relating agents of the same BRS. Important examples (like CCS-
process refinement) cannot be expressed within this particular approach,
which should guide the development of other horizontal refinement strate-
gies for bigraphical agents. One obvious choice seems now to be the LTS
intrinsic to BRSs. We have yet to pursue this option; we caution that while
BRS LTSs have been successful in recovering semantics of various process
algebras and other models of concurrency, it has been less successful in
providing useful semantics for pervasive systems, one of our key interests.

However, even leaving the question of suitable observations open, we
would likely find a notion inside general horizontal refinement by taking

a vO c
def
= ∀x ∈ Ξ.O(x ◦ c) ⊆ O(x ◦ a) ,

where a and c are agents of some BRS B; Ξ is the set of contexts of that
BRS, and O is some notion of the semantics of agents of B, perhaps traces
of the LTS of B, or perhaps some other notion. Indeed, early indications
are that this approach would be promising in recovering (for example) CCS
process refinement, contingent upon an appropriate notion of observation.

4.5.1 Related Work

Restricting the set of controls admissible under a certain control, or requir-
ing a control to be present is well-studied in bigraphs (e.g., [22, 83, 81, 88]).
However, that study has invariably focused on ensuring that the bigraphical
LTS theory is retained under such additional constraints, and are thus only
superficially related to the present paper.

Goldsmith & Creese [48] explore an approach to refinement within bi-
graphs (and particularly within Spygraphs, a specialisation of bigraphs).
They observe the ease with which one may derive an LTS for a BRS that is
labelled exclusively by the trivial context id (equivalent to a τ action in a
process algebraic setting). These kinds of contextual labels are not helpful
for analysis, as they capture no behaviour. Similarly, the LTS semantics of
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bigraphs share the same intentionality inherent in the graphical presenta-
tion. While Goldsmith & Creese suggest (to good effect in a CSP setting)
that it may be appropriate to perform hiding at a process-level before con-
sidering a transition into bigraphs, this would seem inappropriate for many
modelling situations (e.g., those which have no convenient term or process
representation). While the transformation on bigraphical reactive systems
proposed by that work may give rise to a refinement that is appropriate
for some situations, we aim instead in this present work to work directly
within the structure of bigraphs so as to ensure generality. As bigraphs
attempt to be both a modelling formalism and a general meta-calculus for
existing process calculi, it seems appropriate that the notion of refinement
we introduce should be similarly general, in the hope that we may recover
calculus-specific notions of refinement within this general setting.

4.6 Conclusion

We have presented a vertical refinement mechanism for bigraphical reac-
tive systems that adds refinement to the toolbox of model builders work-
ing within a bigraphical setting. The addition of a sufficient condition for
safe abstraction functors, and the accompanying observation that it is the
preservation of behaviour with respect to reaction that guarantees that a
refinement exhibits no undesirable behaviour, provides a firm foundation
from which to explore the limits and utility of this kind of vertical refine-
ment.

We have pointed out a clear connection to the existing work on general-
ising refinement across many modelling formalisms, and therefore it seems
appropriate (given the application of BRSs as a meta-calculus) that our
notion of vertical refinement is also in some sense general. We leave for fu-
ture work the exploration of further mechanisms for horizontal refinement
within a bigraphical setting, noting that such a notion would very likely fall
within the model of general refinement, and thus likely generalise well to
other modelling formalisms encoded within bigraphical reactive systems.

4.7 Addendum: Stuttering

We consider an extension to a more liberal notion of refinement by including
stuttering steps, in the style of Abadi & Lamport [1]. This relaxes the
requirement that the concrete system behave like the abstract system in
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lock-step, but rather permits the concrete system to take finitely many
stuttering steps before reaching a state agreeing with the abstract system,
provided that each of the intermediate steps are mapped to “no operations”
by the abstraction functor.

Definition 55 (Stuttering Equivalence and Stuttering Closure). Following
Abadi & Lamport [1], we consider consecutive repeated actions in a se-
quence to be “stuttering”, and we define for any sequence s the stutter-free
form ]s, which is s with all maximal finite stuttering subsequences removed
(i.e., consecutive repeated elements removed). We also define s ' s′ to
mean ]s = ]s′ where s and s′ are sequences that are equivalent up to stut-
tering. If S is a set of sequences, we write S? for the stuttering closure of
S, defined as the least set containing S and satisfying:

S? = {s | ∃s′ ∈ S.s ' s′}

While we permit infinite traces, in constructing our abstraction functors,
we should be careful to only permit finitely many (consecutive) stuttering
steps, though they may occur infinitely often. The distinction is subtle
but important, such that ]s may remove infinitely many stuttering subse-
quences, but should not be used to remove subsequences of infinite length.
A process that stutters infinitely before reaching an acceptable state defeats
the intuition of what a safe refinement should be, and we should therefore
be wary of processes that exhibit this kind of stuttering behaviour.

We can now revise our definition of safe vertical refinement, by giving
a new definition that permits stuttering steps. Note that the version of
refinement given in Definition 51 that does not permit stuttering is triv-
ially subsumed by this definition, as Tr(C) ⊆ Tr(C)?. We preserve both
definitions, referring to the stuttering variant as stuttering-safe vertical re-
finement, as it may not be desirable in all instances to permit stuttering.

Definition 56 (Stuttering-Safe Vertical Refinement).

A
safe

v F C
def
= F (Tr(C)) ⊆ Tr(A)?

Notice that the concrete system C may safely refine A by not termi-
nating. For example, suppose A,C have the same underlying category of
bigraphs but different reaction semantics, such that Tr(A) = {ε, 〈a〉, 〈a, b〉}
whereas Tr(C) = {ε, 〈a〉, 〈a, a〉, . . .}. Then the identity functor 1 on the

shared underlying category is a stuttering-safe refinement, i.e., A
safe

v 1 C.
This notion of refinement is, of course, transitive.
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Lemma 4. Safe Vertical Refinement is 1) transitive and 2) reflexive for the
identity functor.

Proof. Reflexivity follows from S ⊆ S?. For transitivity, suppose A
safe

v F C

and C
safe

v G D. Then, because F,G lifts to sequences pointwise, FG(Tr(D)) ⊆
F (Tr(C)?). Now consider a sequence s′ of Tr(C)?. By definition, s′ arises
by inserting finitely many stuttering steps into some trace s ∈ Tr(C). But
then F (s) ∈ Tr(A)?, so also F (s′) ∈ Tr(A)?. Hence F (Tr(C)?) ⊆ Tr(A)?

and we are done.

We can now show that an equivalent theorem about safe abstraction
functors can be proved for stuttering-safe vertical refinement too.

Theorem 6. Let F : C → A be an abstraction functor. If F weakly
preserves reaction, that is, if c→ c′ implies F (c)→ F (c′) or F (c) = F (c′),

then A
safe

v F C.

Proof. We must prove that in this case F (Tr(C)) ⊆ Tr(A)?. So consider
some trace s ∈ Tr(C); we proceed by induction on s. The base cases of
empty or singleton traces are trivial, so suppose s = s′; 〈x, y〉. By induction,
F (s′; 〈x〉) ∈ Tr(A)?. Because s′; 〈x, y〉 is a trace, x → y in C. But then
either F (x) → F (y) or F (x) = F (y); in both cases also F (s′; 〈x, y〉) ∈
Tr(A)?.

We similarly revise our definitions for live refinement, such that stutter-
ing steps may be included in live refinements too:

Definition 57 (Stuttering-Live Vertical Refinement). Let F : C → A be
an abstraction functor, let C ⊆ Tr(C) be the admissible traces for C, and
let similarly A ⊆ Tr(A), the admissible traces of A. We then say that
(C,C) is a stuttering-live refinement of (A,A) with respect to a functor
F : C → A iff for every trace s of Tr(C), whenever F (s) = t has an
extension t′ to an admissible trace t; t′ ∈ A?, then there exists an extension
s′ of s with s; s′ ∈ C? and F (s′) = t′. In this case we write:

(A,A)
live

v F (C,C) .

Lemma 5. Live Vertical Refinement is 1) transitive and 2) reflexive with
respect to the identity functor.
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Proof. Reflexivity is trivial. For transitivity, suppose (A,A)
live

v F (C,C)

and (C,C)
live

vG (D,D), and suppose (FG(t))u′ ∈ A?. Then u′ has a pre-
image s′ with G(t); s′ ∈ C?. But then s′ has a pre-image t′ with t; t′ ∈
D?.

4.7.1 Summary

The value of stuttering in vertical refinement is that it permits markedly
different systems to be related by vertical refinement relations. Particularly
when we begin to consider calculational BRSs [36], such that we may wish
to include calculation (requiring many steps) in the concrete system. For
this reason and others, stuttering seems a significant step in improving the
flexibility of vertical refinement, and therefore contributes further to the
vision of a tower of models related by vertical refinement relations.
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Chapter 5

A Verification Environment for
Bigraphs

Context

This chapter is derived from the paper A Model Checker for
Bigraphs by Gian Perrone, Søren Debois, and Thomas Hilde-
brandt which was accepted for publication in the proceedings of
the ACM Symposium on Applied Computing (Software Verifica-
tion and Tools Track) 2012.

The version that appears in this work has been reformatted, and
augmented with some new content, including the initial perfor-
mance data, and a more precise characterisation of the reacha-
bility checking algorithm that makes use of the causation anal-
ysis, both of which were suggested by the anonymous reviewers.
This version is presently under review for inclusion in the In-
novations in Systems and Software Engineering (ISSE) journal,
the results of which should be known prior to the eventual pub-
lication of this thesis.

Embarking upon bigraphs research for the first time, I was struck by the
lack of an easy means to execute bigraphs. The BPLTool [46] was no longer
maintained, and suffered from being of the first generation of bigraph tools
— It did not make it easy to take a bigraph model and really use it. BigMC
was an attempt to remedy this. Growing out of an (abortive) attempt to
construct a refinement checker for the methods described in Chapter 4,
the implementation took place during summer of 2011, and we quickly
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discovered that there was an opportunity to compute an interference (or
causation) relation between bigraph reaction rules. Since the publication
of this paper, Espen Højsgaard’s PhD thesis [61] was published, which gave
a more theoretically precise characterisation of the ways in which reaction
rules can interact. However, the method presented in this chapter remains
(to date) the only method for computing reaction rule interference that has
been implemented, and which is known to be tractable and efficient. For
this reason, it seems possible that it may be implementable to good effect
in other bigraph tools. In reading this chapter, the causation computation
should be considered one of the primary contributions, as it does (in my
view) represent a concrete step towards making the execution of bigraphs
more efficient, and therefore making the formalism itself more generally
applicable.

Also, since the publication of this work, BigMC has seen some use by
others wishing to experiment with bigraphs. This use has seen the tool
improve in quality and performance considerably, and has seen it integrated
with the Big Red [42] graphical editor for bigraphs, developed at the IT
University of Copenhagen.
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Abstract

We present the BigMC tool for bigraphical reactive systems that may be
instantiated as a verification tool for any formalism or domain-specific mod-
elling language encoded as a bigraphical reactive system. We introduce the
syntax and use of BigMC, and exemplify its use with two small examples:
a textbook “philosophers” example, and an example motivated by a ubiq-
uitous computing application. We give a tractable heuristic with which to
approximate interference between reaction rules, and prove this analysis to
be safe. We provide a mechanism for state reachability checking of bigraph-
ical reactive systems, based upon properties expressed in terms of matching,
and describe a checking algorithm that makes use of the causation heuristic.

5.1 Introduction

BigMC began as a tool for performing reachability analysis on bigraphical
[83, 81] models of systems and models constructed within languages encoded
in bigraphs; however, it has grown to provide a general way of executing
bigraphs according to a variety of strategies. The default strategy is a
breadth-first exploration of the state space to permit checking of properties,
but the tool has matured to permit user-defined state space exploration
strategies. We provide an overview of the motivation for the development
of BigMC as well as detailing the implementation of the tool. We assume no
prior knowledge of bigraphs, and a brief introduction to bigraphs as well as
references to introductory material are given in the sections that follow. It is
important to note that bigraphs serve as a meta-calculus in which to embed
existing formalisms (e.g., several variants of π-calculus [64, 26, 39], the λ-
calculus [82], the Mobile Ambient calculus [64], Petri Nets [71] and CCS
[81]) as well as encoding your own domain-specific modelling language. As
a result, a verification tool for bigraphs effectively permits the instantiation
of a verification tool for any such formalism that can be encoded within
bigraphs, and also gives rise to a specification language that can express
safety properties over these models.

The primary contributions of this work are as follows:

• A verification tool for models, languages and correctness properties
described as bigraphs that may be instantiated as a reachability checker
or simulator for many different domain-specific and general purpose
languages encoded as bigraphs.
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• A tractable, safe approximation of interference analysis over reaction
rules, which represents an advancement of the state of the art in
bigraph theory.

• A novel mechanism for reachability analysis on bigraphical reactive
systems (BRSs) based upon the expression of correctness properties
as matching.

• We build on the preliminary description of the analysis method [92],
by detailing an algorithm that uses the interference analysis, providing
the potential to check safety properties of some systems with infinitely
many states.

5.1.1 Motivation

Bigraphs were proposed by Milner and colleagues as a modelling formalism
and meta-calculus [83]. One of the primary challenges that bigraphs were
designed to address was the proliferation of so-called ubiquitous computing
applications that has been repeatedly predicted. The challenge is that we
must aim to understand the complexity of these systems thoroughly before
they “disappear” into the computing fabric of every day life [5]. If bigraphs
are a means to understand the complexity of these emerging systems, then
a verification environment for bigraphs that permits reachability analysis
and verification of properties is surely a good first step towards mastering
this complexity.

5.1.2 Reachability Analysis

BigMC implements explicit-state checking of properties expressed as match-
ing. From a description of a model, it finds all possible future configurations
of this model and checks the specification against them. This limits its util-
ity for checking any model with infinite behaviour. Infinite behaviour in this
context could mean having finitely many reaction rules that by every appli-
cation lead to a previously-unexplored state (i.e., an infinite-state model),
or by having cycles (i.e., where some finite set of states may be visited in-
finitely often). BigMC can check properties of models of the latter kind
reliably, and in some cases those of the former (described in Section 5.5).
Both the properties being checked and the models themselves are specific
instantiations of bigraphical reactive systems.

One of primary benefits of the tool is the ability to provide a counter-
example in the event that the specification is shown not to hold. In our case,
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this means showing the system configuration that violates the specification,
and the path through the transition system by which this configuration was
reached.

5.1.3 Simulating Bigraphs

BigMC has many uses, including as a teaching tool for bigraphs, and as a
straightforward means to execute a bigraphical reactive system. Using it
in this mode simply requires not specifying any properties to check, and
enabling the so-called local checking mode, for which the transition sys-
tem is not stored. This can be further leveraged to enable a random walk
through the states of a model, by disabling the exhaustive search of the
state space and instead choosing one of several possible successor states.
We have enabled experimental support for extensions to BigMC that would
permit other means of choosing the order in which to export states dur-
ing BRS execution to be implemented, including stochastic bigraphs [68],
for example. At present, choosing between alternative execution strategies
requires direct modification of a specific part of the source code, though
we hope to remedy this and provide runtime options for various execution
strategies in the future.

5.1.4 Related Work

There exist several tools for operating on various kinds of bigraphs already;
however, all but one of these (BigraphER) do not enable any kind of reach-
ability analysis.

BPLTool [46] was one of the first implementations of bigraph matching,
with an emphasis on the correctness of the implementation. While it imple-
mented matching, there was no notion of checking or analysis of properties
of systems [46].

DBtk [10] is a tool for manipulating directed bigraphs [49], which are a
variant of bigraphs with a directed link structure. It implements match-
ing for directed bigraphs, and enables the generation of relative pushouts
(RPOs) which are the constructions that permit the bisimulation congru-
ence result within the theory of bigraphs [83]. It does not extend to checking
properties of bigraphical models, however.

BigraphER [27] is a tool that has appeared recently, supporting bigraphs
with sharing, which is an extension of bigraphs in which the place graph is
permitted to be a DAG, rather than a tree as in pure bigraphs. BigraphER
supports checking of BiLog formulae, although the limited platform support
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Figure 5.1: Place graph prefixing example. Containment of one node inside
another indicates that the inner node is a child of the outer node in the
place graph tree structure.

at present has prevented us from performing a direct comparison of the
functionality that it provides.

The Stochastic Bigraphical Abstract Machine (SBAM) [61] is a proto-
type tool for the scalable simulation of stochastic bigraphs [68], specifically
tailored towards systems biology applications. Owing to the emphasis on
scalable simulation, only ground reaction rules (i.e., non-parametric rules)
are considered, and SBAM is therefore not suitable for reachability analysis
over the full generality of bigraphical reactive systems. It would be interest-
ing future work to consider ways in which the BigMC tool that we present
could integrate with SBAM to enable scalable simulation of the subset of
BigMC models which correspond to those for which SBAM is well-suited.

5.1.5 Structure

The rest of this work is structured as follows: In Section 5.2 we give a
brief introduction to bigraphs and introduce the term language with which
they are expressed in the BigMC tool. Section 5.3 introduces two example
problems to which the tool has been applied. Section 5.4 gives the naive
reachability analysis algorithm implemented by the tool. Section 5.5 de-
scribes a static analysis on reaction rules to limit the state space that must
be explored, and gives a proof of correctness before extending the reach-
ability checking algorithm to make use of the analysis. Finally, Section
5.7 provides a brief summary, and introduces possible directions for future
work.
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Figure 5.2: Place graph sibling juxtaposition example. Nodes contained by
the same parent are siblings in the place graph tree structure.

Figure 5.3: Link graph example, showing that links (the heavy lines) can
cross node boundaries to link ports to names.

5.2 Bigraphs

BigMC implements pure bigraphs, excluding shared local names [83]. We
present here a brief introduction to bigraphs, eliding some details that are
not directly relevant to the verification task at hand. For a detailed intro-
duction to bigraphs and bigraphical reactive systems, the reader is referred
to [83]. Bigraphs have been found to be very general as a meta-calculus
in which to define diverse calculi and models of concurrent systems. Con-
sequently, a verification environment for bigraphs allows one to specify a
language (encoded as a bigraphical reactive system) and then check prop-
erties (encoded as a set of bigraph) of models constructed with respect to
this language. This distinction is one of the motivating factors for using
bigraphs, in that they retain general expressiveness while still being com-
prehensible as a direct modelling formalism.
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5.2.1 Static Structure

A bigraph consist of two graphs; a place forest that captures notions of lo-
cality or containment, and a link hyper-graph that models connectivity or
associations. The place graph consists of a set of nodes, each of which is as-
signed a control drawn from the signature of the bigraph. A control is some
distinguishing name and an arity that determines the number of connecting
ports that are available at that node to be associated with links in the link
graph. A control is also marked either active or passive, which determines
whether reaction may take place within a given context. Bigraphs have a
formal visual presentation as well as graph and term representations. We
will primarily present the term representation here, as this is the basis for
the input language for BigMC.

We write nodes using their control names, which may be any valid iden-
tifier. Terms are nested by prefixing, such that for some control name a
and some term T , a.T is a place graph node with control a containing the
term T . For example, Building.Room.Comp (Fig. 5.1) is a Building node
containing a Room node, which in turn contains a Comp node. Sibling nodes
are juxtaposed (as in Fig. 5.2) using the parallel operator, e.g.:

Building.(Room.Comp | Room.Comp)

is a Building node containing two Room nodes, each of which contains a
Comp node. Prefixing binds tighter than juxtaposition. We described the
place graph as being a forest of trees. The roots of these trees (referred to as
a regions) are ordered with respect to one another, while their children are
unordered. New regions are introduced using the double parallel operator
||, which unlike | is not commutative, e.g., A.B || C | D.E has two regions
that may not be reordered, but C | D.E and D.E | C are equivalent. Bigraphs
with more than one region are called wide, while non-wide terms are called
prime.

Link graphs are presented here as a set of outer names that are globally
visible. A node with the control a with an arity of 3 can link to names x,
y and z with the syntax a[x, y, z]. Because the link graph is a hypergraph,
multiple different ports may connect to a single name. Two nodes linked
to a common name has the effect of linking those two ports together. We
demonstrate this by imbuing the Comp nodes from our previous examples
with a single port that allows them to be connected together by some com-
mon name — perhaps indicating connectivity to some network, for example.
Links can cross node boundaries (as in Fig. 5.3), as they are completely
independent of the place graph:
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Building.

(Room.Comp[Network] | Room.Comp[Network])

5.2.2 Dynamics

Dynamic behaviour is introduced using reaction rules that can be expressed
in the form R→ R′, where R is a redex to be found inside some active con-
text, and R′ is a reactum with which the matched portion of the bigraph
should be replaced. Reaction rules may contain holes (also known as sites
in some literature) which are place graph elements which can match pa-
rameters. Place graph holes are represented with the notation $n, where
n ≥ 0. An active context is one for which the controls of all the place graph
ancestors of the holes are marked active.

We can describe reaction as the decomposition of some bigraph G into a
context C, a redex R and some parameters d, rewriting it to some G′ thus:

G ≡ C ◦ (R⊗ 1X) ◦ d _ C ◦ (R′ ⊗ 1X) ◦ η(d) ≡ G′

Where η is some instantiation of the parameters, and R′ is the reactum
of the matched rule. The notation R⊗ 1X is used to handle outer names of
the parameters (see [83] for details). Composition C ◦ a can be thought of
as the insertion of some agent a into the context C, which contains one or
more holes. Continuing our building example, if we wished to match some
redex matching any two sibling rooms Room.$1 | Room.$2 within our model,
then one appropriate decomposition of the model might be:

C = Building.$0

R = Room.$0 | Room.$1

d = Comp[Network] || Comp[Network]

Such that composing all these parts together (inserting R into hole 0 in C,
and inserting the regions of d into the holes of R, in left-to-right order) will
permit us to recover our original model exactly (modulo handling of names
and commutativity of |, which we obscure in this example).

5.2.3 Term Language

The full grammar for BigMC bigraph terms is given as:

M ::= E; M | E;
E ::= %passive k : n
E ::= %active k : n
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E ::= %rule N T -> T
E ::= %property N P
E ::= T -> T | T
T ::= K.T | T | T | T || T | $n | K | nil

K ::= k[L] | k
L ::= N , L | N
N ::= [a-zA-Z][a-zA-Z0-9]* | -

Where k is drawn from the set of controls (described by the same regular
expression as N without the − character) and n ranges over the natural
numbers. The keyword nil indicates the empty bigraph, and is used to
terminate nesting of prefixes, though we will omit it where it is unambiguous
(e.g., a.b.c.nil can be written a.b.c). The tool will reject rules with only
nil on the left-hand side (as it cannot meaningfully execute them).

Controls must be pre-defined by the declaration of the bigraph signature
with the %active and %passive commands, which define the arity of a
given control as well as whether it is active or passive. Our term language
is not complete (it lacks inner names and edges), but we believe that the
algorithms employed will extend to a complete term representation. The
inclusion of the “−” character in the syntactic category defining what may
appear in links is a convenience. It acts as a sort of wild-card for links,
the effect of which is to generate some anonymous name that may not be
referenced elsewhere. This could just as well be avoided, by simply forcing
the user to invent new names for every occurrence.

5.2.4 Properties

Properties are expressed as combinations of two built-in predicates: matches
and terminal. The former describes some redex that we must find (or insist
that we not find) in every possible agent of a given system as it behaves.
For example, we can write a property: %property no a !matches(a.$0);
which states that we must never find a match for the redex a.$0, otherwise
a violation will be reported. The terminal() predicate is true iff there are
no possible further states reachable by a step of reaction from the current
one. There also exists the boolean operators and, or and not to combine
predicates. The full grammar for defining properties is given by:

P ::= matches(T) | terminal()

P ::= P && P | P || P | !P
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5.3 Examples

5.3.1 Dining Philosophers

We introduce a simple formulation of the dining philosophers problem [60].
We encode a table with five philosophers, and in the rules implement a
particular strategy (known to be vulnerable to deadlocks), in which a given
philosopher may pick up the fork to the left and then the fork to the right
so as to have two forks with which to eat. The forks are then placed back
on the table in the same order — left first, then right. Place graph nesting
is used to represent holding forks, and the link graph is used to capture the
adjacency of forks and philosophers.

# Fork, with a fork id

%passive F : 1;

# Philosopher (left fork, right fork)

%passive P : 2;

%rule pickup_left

P[lf,rf] || F[lf] -> P[lf,rf].F[lf] || nil;

%rule pickup_right

P[lf,rf].F[lf] || F[rf] ->

P[lf,rf].(F[lf] | F[rf]) || nil;

%rule drop_left

P[lf,rf].(F[lf] | F[rf]) ->

F[lf] | P[lf,rf].F[rf];

%rule drop_right

P[lf,rf].F[rf] -> P[lf,rf] | F[rf];

# The philosopher’s table

F[F1] | P[F1,F2] |

F[F2] | P[F2,F3] |

F[F3] | P[F3,F4] |

F[F4] | P[F4,F5] |

F[F5] | P[F5,F1];

%property deadlock_free !terminal();

Using BigMC we find the expected violation — the situation where every
philosopher has picked up the fork to the left, and none can proceed any
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further. We encode the deadlock freedom property as the lack of any ter-
minal node in the transition system, i.e., the property that the system is
never in a state where it cannot proceed (by a step of reaction) to some
other state. The terminal (and therefore deadlock) state is:

P[F1, F2].F[F1] | P[F2, F3].F[F2] | P[F3, F4].F[F3] |

P[F4, F5].F[F4] | P[F5, F1].F[F5]

What we have defined here is a simple domain-specific modelling lan-
guage for describing dining philosophers. The signature of controls is generic,
as are the reaction rules that give the semantics of the language. Only the
specific table would need to change if we wanted to model other situations
with different numbers of philosophers, for example. In Section 5.6 we use
this example with different numbers of philosophers to measure the perfor-
mance of the BigMC tool.

5.3.2 Example: Built environment

Our application involves secure rooms that contain computers, which may
contain secret tokens. We have Alice and Bob, each of whom carries a
mobile phone which can connect to computers, or which can transfer secure
tokens between one another. Alice can legitimately gain access to the
secure rooms. However, when carrying a phone, she is capable of connecting
to the computer system, taking the secure token, and then communicating
it to Bob, who should not have access to the token. The safety property we
check is therefore that Bob can never possess a secure token.

%active Building : 0;

%active SRoom : 0;

%active Alice : 0;

%active Bob : 0;

%active Comp : 1;

%passive Phone : 1;

%passive Tok : 0;

%rule call Phone[-].Tok || Phone[-].$0 ->

Phone[PhoneLink].Tok || Phone[PhoneLink].$0;

%rule transf_tok

Alice.Phone[x].Tok || Bob.Phone[x].$0 ->

Alice.Phone[-] || Bob.Phone[-].(Tok | $0);
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%rule comp_connect

SRoom.(Comp[x].Tok | Alice.Phone[y]) ->

SRoom.(Comp[x].Tok | Alice.Phone[x]);

%rule transfer_comp Comp[x].Tok || Phone[x] ->

Comp[x] || Phone[-].Tok;

%rule enter_room Alice.$0 | SRoom.$1 | $2 ->

SRoom.($1 | Alice.$0) | $2;

%rule leave_room SRoom.(Alice.$0 | $1) | $2 ->

SRoom.$1 | Alice.$0 | $2;

# The building model

Building.(

SRoom.Comp[C1].Tok |

SRoom.Comp[C2].Tok |

Alice.Phone[-]

) | Bob.Phone[-];

%property secure

!matches(Bob.Phone[x].(Tok | $0));

This system permits Bob to obtain a token from Alice once she downloads
it onto her phone, and then communicates it to Bob. If we instead replace
the rules enter room and leave room with:

%rule s_enter_room

Alice.Phone[x].$0 | SRoom.$1 | $2 ->

SRoom.($1 | Alice) | $2;

%rule s_leave_room SRoom.(Alice | $1) | $2 ->

SRoom.$1 | Alice.Phone[-] | $2;

Alice’s phone is removed from her custody while entering the secure room,
and returned to her upon exiting the room. With this substitution, we can
exhaustively check the model and ensure that Bob cannot possibly obtain
a secure token under any circumstances.

5.3.3 Example: CCS

We give one final example that represents one of the stated short-term
goals of the bigraphs formalism: the analysis and representation of process
calculi [83]. We give a simple encoding of the finite fragment of the Calculus
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of Communicating Systems (CCS) [74], and demonstrate that a straight-
forward encoding permits us to usefully represent CCS terms in such a way
that they may be executed directly.

For our chosen fragment of CCS, terms are given over the signature
P ::= 0 | c.P | c.P | P |P ′, where 0 is the null process, c.P is the process
that accepts input on the channel c and then proceeds as P , c.P outputs
on channel c and then proceeds as P , and P |P is the parallel composition
of two processes.

We give a translation to BigMC terms as follows, which is a simplified
form of the encoding given by Milner in [83]:

J0K def
= nil

Jc.P K def
= recv[c].JP K

Jc.P K def
= send[c].JP K

JP |P ′K def
= JP K | JP ′K

For a given CCS term such as x.y.0 |x.0 | y.0, we end up with the BigMC
agent:

send[x].send[y] | recv[x] | recv[y]

Where both send and recv are passive and of arity 1. We can give the
reaction rule that enables CCS synchronisations to take place:

%rule ccs send[c].$0 | recv[c].$1 -> $0 | $1;

For which BigMC reports the discovery of the sequence of states:

send[x].send[y] | recv[x] | recv[y]

send[y] | recv[y]

nil

5.4 Reachability Checking

The task of reachability analysis over a bigraphical reactive system equates
to finding some sequence of reactions a _∗ a′ such that ¬P (a′) for some
property P . If no such sequence of reactions exists, then the model does
not violate the property. In practice, we need to handle the state explosion.
We propose to do this (in part) by avoiding the consideration of some
sequences of reactions that can never lead to violation of P , as well as
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reducing the number of matches we need to recompute where the match
can never succeed. We present this analysis in Section 5.5.

The checking procedure operates upon a work queue. The initial user-
supplied model is added to the work queue as the only element. We con-
struct a “reaction graph” G = (V,E). Owing to the well-defined meaning
of “transition system” within bigraphs, we resist using that term, though
the concept is similar; specifically, the reaction graph in this instance is la-
belled with reaction rules, while a bigraphical LTS is labelled with minimal
contexts [83].

Algorithm 1

1. Remove the first element w of the work queue Q.

2. For each reaction rule, find all matches m1...mn in w.

3. Apply each match m1...mn to w to form the new set of bigraphs B.

4. For each b ∈ B, check whether b is already in the reaction graph G.

• if b ∈ G, add an edge from w to b labelled with the match that
was applied to obtain b from w.

• if b /∈ G, insert b into G and add an edge from w to b. Add b to
the tail of the work queue Q.

5. Check each property p ∈ P against w.

• If p(w) is true, continue.

• If p(w) is false, report a violation. A counter-example trace from
the starting state to the violating state is generated by traversing
the inverse of G from w back to the root. Cycles are resolved
by considered incoming edges to be sorted based on the order in
which they were discovered, and always taking the smallest (i.e.,
the first discovered) edge.

6. Repeat the procedure for the next item in the work queue, terminating
successfully if the work queue is empty.

There is no guarantee that this algorithm will terminate — indeed, some
models exhibit infinite behaviour. Instead, we introduce a user-configured
maximum step count, which limits the number of iterations performed
within this algorithm to at most some fixed constant. This can be used
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to partially explore a model, or merely to bound the computation for some
finite subset of an otherwise infinite-state model. We will revise this al-
gorithm in the next section, after introducing a static analysis on reaction
rules. However, this version of the algorithm is the one implemented in the
main branch of BigMC, and it is the performance of this algorithm that we
characterise in Section 5.6.

5.5 Static Analysis of Rules

We present a static analysis for reaction rules that permits us to avoid
checking some agents entirely, and possibly check some infinitely large state
spaces by excluding statically some matches that can always be shown to be
free of safety property violations. Because bigraphs are a meta-calculus, and
BigMC therefore instantiates to a reachability checker for many different
languages, we limit our analysis to the more general problem of pruning
entire branches of the transition to avoid checking them altogether, rather
than relying on any a priori knowledge of the semantics of a particular
calculus to avoid (for example) checking of equivalent interleavings.

We define causation on reaction rules, saying R causes S if the applica-
tion of some reaction rule R to an agent a could cause the redex of some
reaction rule S to be matched in some a′, where a′ is the result of applying
R to a. Deciding this exactly for all agents need not be easy, however. In-
stead, we present a conservative approximation of this causation predicate
that is guaranteed to preserve non-causation, which we give as a binary
relation R ; S.

It is sufficient to examine place graph paths in order to safely approxi-
mate causation. A rule R will only cause another rule S if the reactum of
the former overlaps the redex of the latter in some way. The contents of
these terms are known; however, they will be nested inside unknown con-
texts, and may have unknown parameters. Therefore we can only consider
these redexes and reactums in isolation, and we cannot rely on the con-
tents of contexts or parameters. We can consider the cases in which these
overlaps can occur in terms of intersections of paths.

Definition 58 (Paths, Prefixes, Suffixes and Subsequences). For any well-
formed term t, P (t) is the set of complete paths in the place graph of t from
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the roots terminated by either nil or a hole.

Pref(t)
def
= {p : pq ∈ P (t)}

Suff(t)
def
= {qr : pqr ∈ P (t) ∧ r ∈ {〈nil〉, 〈$n〉}}

Subs(t)
def
= {q : pqr ∈ P (t)}

Definition 59 (Orthogonality of terms). Determining that two parametric
terms R and R′ do not overlap by inspection of their place-graph paths is
defined as:

R ⊥′ R′ def
=¬∃p.nil ∈ P (R) : p.nil ∈ Suff(R′)∧
¬∃p ∈ Pref(R) : p$n ∈ Suff(R′)∧
¬∃p$n ∈ P (R) : p ∈ Subs(R′)∧
¬∃p$n ∈ P (R) : p$n ∈ Suff(R′)

R ⊥ R′ iff R ⊥′ R′ ∧R′ ⊥′ R

Definition 60 (Causation). For any two reaction rules R = R → R′ and
S = S → S ′, R ; S iff R′ 6⊥ S, where R′ and S are prime and non-trivial
(not empty or consisting only of holes).

This definition guarantees non-causation, as any way in which a redex
and reactum may overlap has been considered in terms of the existence
of overlapping place graph paths. For example, a rule R = a.b → a.b.c
could potentially cause another rule S = b.c → d.e, as there exists a path
〈b, c〉 of the redex S that is a suffix of the path 〈a, b, c〉 of the reactum R′.
This is sufficient to demonstrate that under some circumstances, R ; S,
as R′ 6⊥ S. Notice, however, that S ′ ⊥ R, and therefore S 6; R.

Definition 61 (Occurrence [83]). We define R ↪→ R′ iff ∃C,D.R′ = C ◦R◦
D, where R is a redex, R′ is a reactum, C is a context and D is a (possibly
wide) parameter.

Lemma 6. R ; S =⇒ R causes S

Proof. AssumeR 6; S for some reaction rulesR and S for which ∃a, a′, b.a _R

a′ _S b, and which for no c it is a 6_S c. We can decompose a′ thus:
a′ = C ◦ R′ ◦ d = D ◦ S ◦ e by the rules of bigraph matching. We then
consider the ways that R′ ◦ d and S ◦ e could be related by ↪→:
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Case. R′ ◦ d 6↪→ S ◦ e and S ◦ e 6↪→ R′ ◦ d, we can show the matches to be
disjoint. If there is some top-most node of R′ ◦ d, then we can extend this
path upward towards the root such that we intersect with some top-most
node of S ◦ e, or vice versa. If there is no such path, then because they
are both prime, the matches are disjoint and S must have already been
applicable to the agent a prior to the application of R. Therefore R did not
cause S.

Case. Where R′ ◦d ↪→ S ◦e, we know that P (R′ ◦d) ⊆ Suff(S ◦e). Because
a 6_S c, S 6↪→ d, and therefore we can proceed by considering only the
possible intersections of paths in P (R′) and P (S):

1. R′ is nested inside S such that there are no holes to consider, therefore
∃p.nil ∈ P (R′) : p.nil ∈ Suff(S).

2. R′ is nested entirely inside S ◦ e, and therefore ∃p ∈ Pref(R′) : p$n ∈
Suff(S).

3. R′ ◦ d is nested entirely inside S, and therefore ∃p$n ∈ P (R′) : p ∈
Subs(S).

4. R′ ◦ d is nested entirely inside S ◦ e, and therefore ∃p$n ∈ P (R′) :
p$n ∈ Suff(S).

These four cases are exhaustive, as there are no additional ways in which
R′ ◦ d could be embedded within S ◦ e. These rules precisely negate our
definition of orthogonality, and any one of these conditions is sufficient to
demonstrate that R′ 6⊥ S. However, by the definition of R 6; S, we know
that R′ ⊥ S and we therefore have a contradiction.

Case. Where S◦e ↪→ R′◦d, because R′ ⊥ S is symmetric, we can discharge
this case by the same reasoning as the previous case where R′ is substituted
for S and vice versa.

Case. Where R′ ◦ d ↪→ S ◦ e and S ◦ e ↪→ R′, R′ ◦ d = S ◦ e, and therefore
either of the previous two cases may be applied to discharge this case.

Having discharged these four cases, we can conclude that there is no
such agent a for which we could have R 6; S where R causes S, therefore
R ; S =⇒ R causes S.

Theorem 7. For every agent a and any property M that is prime, non-
empty and non-trivial, we show by induction on the length of the reaction
sequence that if M 6↪→ a and ∀R ∈ R.¬(R ;∗ M), then ∀a _∗ a′.M 6↪→ a′,
where ;∗ is the transitive closure of the ; relation.
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Proof. Assume some sequence am _ . . . _ an−1 for which M 6↪→ am ∧ · · · ∧
M 6↪→ an−1. We extend this sequence with some reaction an−1 _R an. We
aim to show that M 6↪→ an:

For n = 0, this is trivial. For n > 0, assume that M ↪→ an. From
Lemma 1 we know that where R 6; M , we can only find a reaction sequence
an−1 _R an _M→M b iff there was already a possible reaction an−1 _M→M
b present for an−1, and therefore iff M ↪→ an−1 (such that we could find a
decomposition an−1 = C ◦M ◦ d to enable this reaction).

Having M 6↪→ a0 and M ↪→ an iff M ↪→ an−1, by induction on the length
of the reaction sequence we can conclude that ∀a _∗ a′.M 6↪→ a′.

We can potentially use our causation graph for two optimisations. When
considering matching, for some agent a where reaction rules R1 and R2 ap-
ply, to the resulting agents a1 and a2 we need only match rules (potentially)
caused byR1 orR2. Similarly, where we have some property ¬M and a (pos-
sibly infinite) sequence of reaction a _∗

R∈R a′, where ¬∃R ∈ R.R ;∗ M ,
we need not check this sequence of reaction any further, as it can never lead
to a violation of the property ¬M . The latter is the optimisation that per-
mits checking of some models with infinitely many configurations, provided
we can exclude all such infinite branches.

The reachability analysis algorithm that uses this causation analysis is
given as follows for an agent b, a work queue W = 〈b〉, single property
p, a set of reaction rules R, and a reaction graph G = (V,E), where E ⊆
V ×V ×P(R), which initially contains only the node b, and an edge (b, b,R).

Algorithm 2

1. Take w where W = w;W ′

2. Check the property p against w.

• If p(w) is true, continue.

• If p(w) is false, report a violation and stop.

3. For the incident edges of w in G, compute the set of “live” reaction
rules L by:

L def
= {R | (v0, w,R) ∈ E ∧R ∈ R}

4. If ¬∃R ∈ L.R ;∗ ¬p, return to 1 with W = W ′.

5. For each R ∈ L, compute a set of matches for R in w.

127



5. A Verification Environment for Bigraphs

6. For each match m, apply R to w to obtain w′, updating the following:

• To G, add the node w′.

• To G, add the edge (w,w′,L ∪ {S ∈ R | R ; S}).
• Update the work queue, so that W = W ′;w′

7. Repeat the procedure from Step 1 for the next item in the work queue,
terminating successfully if the work queue is empty.

This version of the checking algorithm is implemented in an experimen-
tal branch of BigMC; however, the implementation is not sufficiently robust
at present to enable a direct performance comparison. We expect that this
algorithm could be implemented in several of the existing bigraph tools,
including BigraphER [27] and SBAM [61].

As an example of the kinds of system for which the static analysis is be
effective, consider active controls a, b, and c:

rule ra a.$0 -> a.a.$0;

rule rb b -> c;

%property notc !matches(c);

Given an initial system a | b, despite a exhibiting infinite behaviour, we
can avoid non-termination by inferring that rule ra can never cause matches(c)
by the analysis given above.

5.6 Performance

We present a preliminary characterisation of the performance of the BigMC
tool in Fig. 5.4 and Fig. 5.5. The trials were performed using BigMC
version 20120207 on a Macbook Air at 1.86GHz with 2GB of RAM. The
plotted data were collected across 3 repeated trials for each condition to
obviate the effects of transient system load. Each condition was a model
of n philosophers, for n ∈ 3..10 executed with the deadlock-free property,
with the reaction rules being held constant across all trials.

Fig. 5.4 gives an account of the time performance of BigMC across the
number of states that were explored in the course of the checking procedure.
Checking terminates when a violation is found, and therefore the figures re-
flect the measured user-space time (using the MacOS X time system utility)
from initialisation until the violation was found, reported, and BigMC ter-
minated. We can see that the time to find the violation is superlinear in

128



5.6. Performance

Figure 5.4: Performance of BigMC v20120207 on n-philosophers, for 3..10,
where the y-axis is the time before the first counter-example was reported,
and the x-axis is the number of states that were explored before finding the
counter-example

Figure 5.5: Peak memory usage in Megabytes of BigMC v20120207 on n-
philosophers, for 3..10, where the y-axis is the peak measured memory usage
first counter-example was reported, and the x-axis is the number of states
that were explored before finding the counter-example
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the number of states, although not dramatically so. Collecting timing in-
formation beyond approximately this number of states became impractical,
as the effect of physical memory exhaustion became insurmountable (which
in practical terms corresponded to non-termination).

Fig. 5.5 demonstrates the peak memory usage of BigMC while execut-
ing the same checking operations. Measurements of peak memory usage
were made on separate trials from time performance to avoid measurement
effects. Data were collected using the Mac OS X system ps -orss command
with an inter-sample period of 100ms. The peak memory usage appears to
scale in a sublinear manner under the measured conditions. This is due to
the peak memory requirement being when the largest number of elements
are being actively computed in the work queue. For a given application,
while the size of individual states increases for larger numbers of philoso-
phers, the number of new states that must be stored at each step does not
increase linearly, hence the sublinear scaling of memory usage on this par-
ticular application. It is unclear as to whether this would be replicable for
all applications.

5.7 Conclusion

We have presented a tool for execution and reachability analysis of bigraphs
that instantiates to a verification environment for any given domain-specific
modelling language encoded as bigraphs. The tool is GPL licensed, and is
available from http://bigraph.org/bigmc. While the examples presented
in this work are small owing to the early stage of this work, we believe it
demonstrates the promise of such an approach, particularly in extending
the reach of a domain-specific modelling languages to problem domains
that require tool support for systematic analysis. The static analysis of
reaction rules that we have presented greatly improves the tractability of
checking of these kinds of models, and provides a good basis from which
to explore further optimisations.We intend to investigate better heuristics
for rule causation analysis, as well as attempting to apply techniques from
model checking (such as excluding equivalent concurrent interleavings from
consideration by partial-order methods [47]) to this new domain. Finally,
we hope to consider the effect of using our causation analysis in other tools.
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Chapter 6

Scaffolding the Tower:
Modular Construction of
Bigraphical Reactive Systems

Abstract

It has been more than 10 years since Milner introduced the bigraphical re-
active systems meta-model with the aim of capturing the space and motion
of ubiquitous computing systems within a ‘tower of models’. In the follow-
ing years, subsequent research has continually evolved and expanded the
theory. With this work, we aim to reify the vision of a tower of models by
providing an exposition of several significant developments within bigraphs,
as well as presenting a number of novel unifying contributions towards en-
abling the modular construction of modelling languages related by vertical
refinement. We show that modular construction is a natural fit for vertical
refinement between bigraphical reactive systems.

6.1 Introduction

The development of bigraphical reactive systems (BRSs) by Milner and col-
leagues [83] has long held the promise of enabling a unified approach to
the instantiation of rigorous domain-specific modelling languages (DSMLs),
i.e., formal languages supporting rigorous analysis, for which the modelling
constructs are specialised to some domain, instantiated within a “tower” of
(informatic) models [84]. Indeed, the general technique of deriving a bisim-
ulation congruence for any BRS [65] and the ability of bigraphs to easily
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describe the syntax and semantics of diverse modelling languages for con-
current and mobile systems, as well as the fundamental physical structures
of space and connectivity, makes them a promising candidate as a generic
host for DSMLs and their analysis, for both computational and physical
systems, and their combination as cyber-physical systems [69].

In claiming to enable modular construction of DSMLs, we really mean
the act of specialising and combining general patterns to some particular
domain. The fact that we can make certain guarantees about the preserva-
tion of properties through this specialisation and combination is of benefit,
and as a result is a departure from existing approaches to the construction
of DSMLs.

Bigraphs have been successful as a meta-model in capturing the syntax
and semantics of many different formalisms (e.g., λ-calculus [82], CCS [81],
the Mobile Ambients calculus [64], several variants of the π-calculus [64, 26,
39], Fusion Calculus [50], and Petri Nets [71]), and in being used directly
as a modelling formalism in diverse domains such as business processes
[56, 105], context-aware computing [20], and systems biology [68, 33, 34].
However, the promise of bigraphs as a unifying framework for the ad hoc
instantiation of DSMLs has not materialised. The main contribution of
this work is to present a mechanism and language for combining smaller
bigraphical reactive systems to form larger ones, This language provides
modularity properties in the construction of DSMLs, and promotes reuse
of language components, which represents a significant step towards the
instantiation of domain-specific modelling languages within a bigraphical
meta-model.

We consider the modular construction of domain-specific languages in
terms of the BMC meta-calculus that we proposed previously [59], as we
believe this considerably simplifies the presentation of the modular con-
struction process. We believe that these modular construction operations
on DSMLs have correlates in a categorical setting, which may lead to fur-
ther insights and more powerful analytical techniques, but of this we will
say more in Sec. 6.8.

A refinement is a particular kind of behaviour-preserving map that per-
mits one to model systems at different levels of abstraction, or to capture im-
plementation details in lower-level models. Vertical refinement relations are
those that relate entire languages to one another, and as a result are appro-
priate for capturing the kinds of relationships between the domain-specific
modelling languages we will construct. We use previous work on bigraph-
ical refinement [91] to assist the construction of “well-behaved” modular
language designs.
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6.1.1 Contributions

In defining the core of a bigraphical term language in his 2001 technical
report on bigraphs [77], Milner speculated (page 46): “The rest of such a
language should allow a user to specify a signature and a set of reaction
rules. It may also take advantage of some [extensions to bigraphs], in par-
ticular the ability to provide names with scope”. The main contribution of
the present work is to propose such a language that will allow us to specify
domain-specific modelling languages as bigraphical reactive systems in a
principled manner. Similarly, we begin to show that with an appropriate
notion of vertical refinement, it becomes practical to begin to build tow-
ers of models that permit many formally-related domain-specific languages
to exist within a common framework, such that models on higher levels
describe or explain those on lower levels.

6.1.2 Structure

The rest of this work is structured as follows: In Section 6.2, we recall
the essential definitions of the Bigraphical Meta-Calculus (BMC) that we
proposed previously [59]. In Section 6.3, we introduce a language for the
modular construction of bigraphical reactive systems, motivated by several
small examples of modules and their composition. In Section 6.5, we show
that the same mechanisms introduced in Section 6.3 for describing modular
composition are also an appropriate for describing vertical refinement rela-
tions between different languages described as bigraphical reactive systems,
permitting a formal relationship between languages to be described. Fi-
nally, in Section 6.8 we offer a summary of the present work, and a number
of directions for future work.

6.2 Recalling BMC

We have previously presented BMC (Bigraphical Meta-Calculus) as a meta-
process language that is complete with respect to bigraphical reactive sys-
tems. We briefly recall BMC here, though full details are available elsewhere
[59]. BMC corresponds exactly to bigraphical reactive systems, but provides
a convenient and familiar process calculus-style representation of bigraphs,
which obviates mostly the need to manipulate the underlying categorical
structure of bigraphs.
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Definition 62 (BMC Signature). A pure bigraph signature is a tuple (Σ, ar,Σa),
where Σ is a set of controls, ar : Σ→ ω is a function assigning a finite ordi-
nal (the arity) to each control, and Σa ⊆ Σ is the subset of active controls.
We will often refer to a signature (Σ, ar,Σa) by simply the set of con-
trols Σ. In order to compactly represent signatures, for a signature where
Σ = {c1, . . . , cn}, with Σa ⊆ Σ and ar(ci) = ari, we will write:

({c1 : ar1, . . . , cn : arn},Σa)

As a notational convenience, we will sometimes use the notation ca : n to
indicate an active control c with arity n.

Definition 63 (BMC Terms). The set of ground (process) BMC terms for
a given instance calculus are given by the following grammar, with respect
to a signature Σ:

p ::= nil Nil process
c〈x̄〉.p Prefix
p | p Parallel process
(νx)p Restriction

for c ∈ Σ, x̄ ∈ N∗ and |x̄| = ar(c).

Contexts for processes are those terms into which other processes may
be inserted. These are also used to describe parametric reaction rules.

Definition 64 (BMC Contexts). For a signature Σ we define the (wide and
prime) Σ-contexts r by extending the grammar of process terms as follows

r ::= null Null process
r ‖ r Wide parallel
p Prime
(νx)r Restriction
y/x Linking

p ::= . . . | i Prime contexts

for x, y ∈ N and i ∈ ω.

Selective rewriting of portions of a term (which corresponds to a bi-
graph) is described by a set of reaction rules.
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Definition 65 (BMC Reaction Rules). A reaction rule is expressed as a
triple

(rL : m→ n, rR : m′ → n, η : (N× N)× (N× r))

where rL is a BMC context to be matched (called the redex ), rR is a BMC
context with which the matched redex will be replaced (called the reac-
tum), and η is the instantiation map that maps occurrences of holes and
names in the reactum to the matched parameters in the redex. Where the
instantiation map is unambiguous (e.g., where it is just the identity map),
we may omit it and simply write rules as rL → rR, or (rL → rR, η) to aid
readability where η is significant.

In order to exclude certain terms of a given signature Σ, we can con-
struct sorting predicates that act as structural conditions on terms. A full
account of this logic (and its interpretation) is given in [59]. However, it is
sufficient to say for now that it may be used to specify which terms should
be excluded.

Definition 66 (Bigraph Sorting Logic).

F
def
= U+ =⇒ U− | F ∨ F | F ∧ F

U
def
= v = u | v 6= u | v / u | v // u | v /ru | v //r u | c(u) | ¬c(u)

U+ def
= v@i = u@j | U+ ∧ U+ | U+ ∨ U+ | local(v@i) | U

U−
def
= v@i 6= u@j | U− ∧ U− | U− ∨ U− | ¬local(v@i) | U

where c ∈ Σ, i, j ∈ N, and u, v ∈ Var, an infinite set of meta-variables.

Briefly, formulae in this logic are implicitly universally quantified over
all possible assignments of nodes to meta-variables. The nodes in this case
are a bigraphical concept, but correspond to the prefixes (e.g., c〈x̄〉.p). The
formula u / v specifies that some prefix v appears directly underneath a
prefix u, while u // v specifies that v may appear anywhere underneath
the prefix u at arbitrary depth. The connectives u /r v and u //r v are the
negative forms of the same connectives, respectively. The predicate c(u) is
true iff the control assigned to the prefix u is c. The predicate v@i = u@j
specifies that the name in the ith position of the prefix assigned to v is the
same as the name in the jth position of the name assigned to u. Finally,
local(v@i) specifies that the ith name of v exists under a name restriction
such as (νz). The logic specifies that positive statements appear only on
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the left hand side of implication, such that the formula simplify to contain
only negative terms (e.g., ¬c(u)). A formal interpretation of the terms of
the logic is given in [59]. Having defined the logic for sorting predicates, we
can now define sorted signatures.

Definition 67 (Sorted Signature). A sorted bigraph signature Aφ consists
of a signature A and a sorting predicate φ, such that:

Aφ
def
= (A, φ)

Definition 68 (Language Terms). As a notational convenience, we write
BMC(Aφ) for the set of all well-sorted terms of a given sorted signature
Aφ.

6.3 A Language from Atoms

We consider the construction of a domain-specific modelling language in
terms of atoms — i.e., the simplest (irreducible) building blocks of a BMC
instance calculus (and therefore of a bigraphical reactive system). There ex-
ist three basic types of atoms: singleton signatures, reactions, and sortings.
We use these atoms to construct general “patterns” for language features
that may be combined and specialised in a principled manner, such that we
reduce the effort involved in constructing (and reasoning about) instance
calculi.

A domain-specific language module is defined as a pair, consisting of a
(sorted or unsorted) signature, and a set of signature-dependent reaction
rules. The former component gives the static structure of terms, while the
latter imbues them with dynamics. The fact that the rules are signature-
dependent is significant, and will be explained fully in Section 6.3.2.

We can envision a library of predefined language components that distill
common functionality and general patterns in a way that permits reuse. We
will initially present the constructs of our modular construction mechanism,
and then exemplify it by building generic, reusable language components
that may be specialised for a particular domain.

We first introduce the syntax of our language for modular construction
of instance calculi, and will devote the next several sections to explaining
the meaning of these constructs:
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Definition 69 (Modular Construction Terms).

L
def
=c : N Passive Singleton Signature

ca Active

φΣ Sorting Predicate

L #∨ L Composition with predicate disjunction

L #∧ L Composition with predicate conjunction

L \ L Restriction

L+ J R KΣ Reaction addition

L− J R KΣ Reaction subtraction

L[c := d] Control substitution

L[c ::= d〈N∗〉] Substitution with remapping

Where R denotes reaction rules as defined in BMC, c, d ∈ K, which is an
infinite set of controls, Σ ⊂ K, and φ ranges over sorting predicates specified
in the bigraph sorting logic of BMC.

Instance calculi are defined in terms of pairs, consisting of a signature
and a set of signature-dependent reaction rules. We will define the con-
structs given above in terms of their interpretation as language pairs of this
shape, and then eventually (in Section 6.4) define the mapping from these
language pairs to bigraphical reactive systems.

Definition 70 (BMC Language). A language over the sorted signature Aφ

with a set of signature-dependent reaction rules R is defined by:

LAφ,RM

Readers familiar with bigraphical reactive systems will note the similar-
ity of this definition to the normal definition of bigraphical reactive systems
given by Milner [83], with the main difference subsisting in the inclusion of
a larger set of reaction rules in R, including rules that may never become
part of an eventual BRS. We formalise the mapping to bigraphical reactive
systems in Section 6.4.

6.3.1 Singleton Signatures

As BMC terms (and bigraphical reactive systems) are defined with respect
to a signature, we provide mechanisms for constructing signatures.
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Definition 71 (Singleton Signature). A singleton signature is of the form:

c : arc

where c ∈ K, arc ∈ N.

Definition 72 (Singleton Signature Interpretation). A (passive) singleton
signature c : arc is promoted to a language by the following mappings:

c : arc
def
= L({c : arc}, ∅), ∅M

Introducing a control as a single signature and marking that control
as active are performed separately, such that a control may be marked
as active prior to even being introduced into a signature! This may seem
counter-intuitive, but it turns out to provide the appropriate commutativity
property for signature composition.

Definition 73 (Activity Interpretation). For a given control c, we mark it
active using the notation ca, which is interpreted as:

ca
def
= L(∅, {c}), ∅M

Notice that we revert to the normal BMC notion of a signature once
we promote singleton signatures to languages — the ability to have single
controls be treated as signatures is merely a notational convenience. Sorting
predicates, on the other hand, are always defined with respect to a particular
signature, and so must be treated more carefully.

Definition 74 (Sorting Predicate Interpretation). A sorting predicate φ
that depends on some signature Σ is promoted to a language by mapping
to the pair:

JφΣK def
= LΣφ, ∅M

where Σ is the smallest such signature containing all of the controls used
in φ.

Before we can introduce a notion of language composition, we require
one auxiliary definition that captures the property that two signatures agree
in some sense. We call this property signature consistency.

Definition 75 (Signature Consistency). For two signatures A = (Σ,Σa)
and B = (Σ′,Σ′a), we say A and B are consistent iff:

∀c ∈ Σ ∩ Σ′ : arA(c) = arB(c) ∧ c ∈ Σa ⇐⇒ c ∈ Σ′a

where arA : Σ→ N gives the arity of controls in A, and arB : Σ′ → N gives
the arity of controls in B.
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Signature consistency is effectively the condition that two signatures
agree upon the arity and activity of controls that appear in both signatures—
we will say more of this when we come to substitution of controls in Section
6.3.4. Having defined consistency, we can define the trivial composition of
two unsorted signatures.

Definition 76 (Signature Composition). For two signatures A = (Σ,Σa)
and B = (Σ′,Σ′a):

A ∪B def
= (Σ ∪ Σ′,Σa ∪ Σ′a) where A and B consistent

Proposition 6. Where the signatures are consistent, signature composition
is commutative and associative.

We now extend signature composition to sorted signatures by introduc-
ing two different notions of composition. The need for two different notions
is motivated by the different ways of combining two sorting predicates, in
that we can either take the conjunction or the disjunction of the two sorting
predicates.

Definition 77 (Sorted Signature composition). For two sorted signatures
Aφ = (Σ, φ) and Bψ = (Σ′, ψ):

Aφ #∨ Bψ def
= (Σ ∪ Σ′, φ ∨ ψ)

Aφ #∧ Bψ def
= (Σ ∪ Σ′, φ ∧ ψ)

where Σ and Σ′ are consistent. Unsorted signatures are assumed to be
sorted by the trivial “true” predicate > (which admits all terms of the
language) so that the same compositions may be applied to both sorted
and unsorted signatures.

Definition 78 (Language Composition). For two languages LAφ,R1M and
LBψ,R2M, we define two notions of composition:

LAφ,R1M #∨ LBψ,R2M
def
= LAφ #∨ Bψ,R1 ∪R2M

LAφ,R1M #∧ LBψ,R2M
def
= LAφ #∧ Bψ,R1 ∪R2M

We note here that we do not explicitly forbid the composition of lan-
guages that will result in a language without any terms—though such a
language is unlikely to be particularly useful. Such a composition would
result where the conjunction of sorting predicates excluded all non-empty
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terms from being well-sorted, yielding a language equivalent to L∅, ∅M. Pre-
venting such compositions would unnecessarily complicate the definition of
composition, as well as requiring a decision procedure on sorting predicates,
so it has been omitted.

Having defined our two notions of language composition, we can use
the same mechanisms to build signatures from singleton signatures (e.g.,
c : 1 #∧ d : 2 = L{c : 1, d : 2}, ∅M), and apply sorting predicates to unsorted
signatures. Note for example that a sorting predicate φΣ, interpreted as
LΣφ, ∅M can be composed with some non-empty signature A for which Σ ⊆ A,
to obtain LA> #∧ Σφ, ∅ ∪ ∅M, which simplifies to LAφ, ∅M.

6.3.2 Reaction

We have thus far considered only the terms of languages constructed from
(sorted) signatures. We now turn our attention to the semantics of lan-
guages constructed in this manner, by considering the inclusion of reaction
rules. In contrast with the normal bigraphical reactive systems method
(in which a bigraphical category is equipped with a set of reaction rules),
through modular construction of languages, reaction rules constructed with
respect to a set of controls may be added to a system constructed around
a signature that lacks those controls, or one in which the arity and activity
of controls is not consistent with respect to the controls included in the
reaction rules. Consequently, we permit any reaction rule to be added to
any system, but these remain signature-dependent, and in a manner we will
make precise in Section 6.4, do not become fully-fledged reaction rules until
the signature of the language that contains them is sufficient.

Definition 79 (Signature-Dependent Reaction Rule). A signature-dependent
reaction rule consists of a reaction rule R = (R,R′, η) that depends upon
the presence of at least the signature Σ, and is given as:

RΣ

with the condition that R,R′ ∈ BMC(Σ), and ∀Σ′.R,R′ ∈ BMC(Σ′) =⇒
Σ ⊆ Σ′.

Definition 80 (Reaction Rule Equality). We define two reaction rules RΣ

and R′Σ′ to be equal iff R = R′ and Σ and Σ′ are consistent.

A signature-dependent reaction rule RΣ may be promoted to a language
by LΣ, {R}M. This ability to promote reaction rules to languages is not
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sufficient, however. It may in some instances be desirable to add a rule
to a language and have it remain “unapplied”, and therefore we provide
a mechanism for the composition of languages with signature-dependent
reaction rules.

Definition 81 (Reaction addition). For a language L = LAφ,RM and a
reaction rule RΣ, reaction addition is defined:

L+ RΣ
def
= LAφ,R∪ {RΣ}M

Definition 82 (Reaction subtraction). For a language L = LAφ,RM and a
reaction rule RΣ, reaction subtraction is defined:

L− RΣ
def
= LAφ,R \ {RΣ}M

6.3.3 Restriction

It is often desirable to take a particular definition and specialise it by re-
stricting the language in some way, such that unused or unwanted constructs
in a language may be removed. We first define restriction on signatures,
and then extend the definition to languages.

Definition 83 (Signature Restriction). For two signatures A = (Σ,Σa) and
B = (Σ′,Σ′a), we define signature restriction:

A \B def
= (Σ \ Σ′,Σa \ Σ′a)

where A and B are consistent.

Extending the definition of signature restriction on unsorted signatures
to sorted signatures is not entirely intuitive, as the restriction of one sorting
predicate by another is not straightforward.

Definition 84 (Sorted Signature Restriction). For two sorted signatures
Aφ = (Σ,Σa) and Bψ = (Σ′,Σ′a), restriction is defined:

Aφ \Bψ def
= (Σ \ Σ′,Σa \ Σ′a)

φ

where A and B are consistent.
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What happens to the sorting of Bψ in this case? It is ignored, in the
sense that the controls of B are no longer in A, and therefore the sorting is
no longer well-defined with respect to A \ B. It may in some instances be
desirable to “restrict” a sorting in the sense that the result will be Aφ∨¬ψ,
which is valid, but not always possible, as negation on arbitrary sorting
predicates is not always defined.

Definition 85 (Language restriction). For two languages L1 = LAφ,R1M
and L2 = LBψ,R2M, restriction is defined:

L1 \ L2
def
= LAφ \Bψ,R1 \ R2M

where A and B are consistent.

6.3.4 Substitution

We now introduce a mechanism for performing substitutions on signatures,
sortings, languages, and terms, such that a language may be specialised by
choosing particular controls to substitute prior to composition, controlling
under what circumstances controls are merged or kept disjoint through
composition.

Definition 86 (Control Substitution). For a given signature A = (Σ,Σa),
substitution of the control d for the control c is defined:

A[c := d] = (Σ[d/c],Σa[d/c])

where d 6∈ Σ

Definition 87 (Control Substitution on Sortings). For a sorting predicate
φ, we define φ[c := d] by induction on the structure of terms:

φ[c := d]
def
=



d(v) if φ = c(v)

¬d(v) if φ = ¬c(v)

u[c := d] ∧ u′[c := d] if φ = u ∧ u′

u[c := d] ∨ u′[c := d] if φ = u ∨ u′

u[c := d] =⇒ u′[c := d] if φ = u =⇒ u′

φ otherwise

where d does not appear in φ.
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We can now lift substitution to sorted signatures, then to terms, and
eventually to languages:

Definition 88 (Substitution on Sorted Signatures). For a given sorted
signature Aφ = (A, φ), substitution of the control d for the control c is
defined:

Aφ[c := d]
def
= (A[c := d], φ[c := d])

Proposition 7 (Consistency Preservation). Substitution preserves signa-
ture consistency.

Definition 89 (Substitution on Terms). On a BMC normal-form term r,
substitution of the control d for the control c is defined:

r[c := d]
def
=



d〈x̄〉.(p[c := d]) if r = c〈x̄〉.p
c′〈x̄〉.(p[c := d]) if r = c′〈x̄〉.p where c 6= c′

(νz)(r′[c := d]) if r = (νz)r′

r′[c := d] ‖ r′′[c := d] if r = r′ ‖ r′′

p[c := d] | p′[c := d] if r = p | p′

r otherwise

where d does not appear in r.

Definition 90 (Substitution on Reaction Rules). On a reaction rule RΣ =
(R,R′, η)Σ, substitution of the control d for the control c is defined:

RΣ[c := d]
def
= (R[c := d], R′[c := d], η)Σ[c:=d]

where d 6∈ Σ. We permit application of substitution to a set of reaction
rules {R1Σ1

, . . . ,RnΣn} by {(R1[c := d])Σ1[c:=d], . . . , (Rn[c := d])Σn[c:=d]}.

Definition 91 (Substitution on languages). For a language L = LAφ,RM,
substitution of the control d for the control c is defined:

L[c := d]
def
= LAφ[c := d],R[c := d]M

where d does not appear in A, φ, or R.
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Example

The operations we have seen thus far on languages are sufficient to begin
to build languages by specialising generic patterns to a given domain. For
example, the values true and false occur frequently in many settings:

Mtf
def
= true : 0 #∧ false : 0

Similarly, the idea of being able to dereference some name to obtain a
value stored elsewhere is a common pattern. We could define a language
component Mvar that captures this idea, by providing both constructors for
building terms in this language, as well as providing the reaction rule (i.e.,
the semantics) of such terms:

Mvar
def
= var : 1 #∧ value : 1 +

J var〈x〉 ‖ value〈x〉. 0 → 0 ‖ value〈x〉. 0 KΣ

It is often desirable to abstract away the exact mechanism by which some
choice occurs within a model, and simply model a choice between many
alternatives as non-deterministic choice instead. We can capture this as a
general pattern that implements this behaviour too:

Mchoice
def
= choice : 0 + J choice. 0 | 1 → 0 KΣ

The behaviour of these components need not be quite so simple. If-then-
else expressions (i.e., an expression like if c then x else y that reduces
to either x or y depending on whether the condition c is true or false)
occur frequently in general-purpose programming languages, as well as in
specialised modelling languages. We need not replicate this functionality
for every single instance calculus! It is possible to build this as a component
that is readily reusable:

Mif
def
= if : 0 #∧ ifa : 0 #∧ then : 0 #∧ Mtf +

J if.(true | then. 0 | 1 )→ 0 KΣ +

J if.(false | else. 0 | 1 )→ 0 KΣ

Example 6. How do we begin to specialise this module to a given domain?
If we were to take a simple hypothetical “rule language” for describing who
should be notified in case of an emergency, such that we wish to encode
some simple business rules for determining notification and responsibility,
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we could use the modules we have already defined to construct a language:

Mpeople
def
= Alice : 0 #∧ Bob : 0 #∧ Carol : 0

Lnotify
def
= is : 1 #∧ or : 0 #∧ notify : 0 #∧ orNotify : 0 #∧ Mpeople #∧

Mtf #∧

Mvar[var := is] #∧

Mchoice[choice := or] #∧

Mif [then := notify][else := orNotify]

Now we can construct terms such as:

value〈dayShift〉.true |
if.(is〈dayShift〉 |

notify.(or.Alice | or.Bob) |

orNotify.Carol)

This example specifies a scheduling rule that determines who to notify,
depending on whether the dayShift value is true or not. If it is true, then
either Alice or Bob will be notified, otherwise Carol will be notified. While
this is a simple example, it shows how quickly we can specialise generic
constructs to a particular domain’s vocabulary and purposes. This is not
merely syntactic sugar — indeed, the choice of modules that are composed
is a genuine composition of semantics.

The fact that this is a domain-specific modelling language means that it
is acceptable to bake constraints (e.g., business rules) into the syntax and
semantics of the language itself. We could imagine that our hypothetical
shift supervisor system insists that only a single person ever be responsible
for supervision during the night shift. At present we could construct a term
such as:

value〈dayShift〉.false |
if.(is〈dayShift〉 |

notify.Alice |

orNotify.(or.Carol | or.Bob))

If we wished to forbid this situation, we could add a sorting:

x / y ∧ or(y) =⇒ notify(x)

This insists that or controls appear only underneath a notify prefix, which
captures our stated constraint on the structure of terms.
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6.3.5 Syntax

A word on syntax: The terms that we can construct in BMC are not neces-
sarily well-suited to every domain in terms of aesthetics or choice of symbols;
however, it is perfectly possible to compile other “surface” syntax to BMC
terms. This is a simpler task than writing an actual interpreter or compiler
for an arbitrary language, as the source and target semantics are precisely
the same—one is merely performing a kind of direct syntactic translation in
the style of a macro system. We speculate in Section 6.8 that such “surface
syntax” could be construed in the setting of Banana algebra [6], or a simi-
lar syntactic framework that permits modular extension of grammars, such
that the semantic transformations could be mirrored by syntactic transfor-
mations.

6.3.6 Calculational sub-languages

We now consider the class of calculational bigraphical reactive systems, as
proposed by Debois [36]. Calculational BRSs are distinguished by the fact
that their behaviour is defined in terms of unfolding, as opposed to the
conventional liberal reaction of a bigraphical reactive system. Calculational
BRSs have desirable properties: they are Turing-complete, unfolding is con-
fluent, and they can be shown to only enable liberal reaction, but never dis-
able it. In this sense, a calculational language may be embedded into a host
language in such a way that the composite system is “well-behaved”. Our
intention here is not to give a full account of calculational bigraphical reac-
tive systems; rather, we intend merely to demonstrate a clear relationship
exists, as the inclusion of calculation within instance calculi in a principled
manner is a requirement on any well-designed meta-calculus.

Definition 92 (Unfolding Seeds and Rules). A parametric unfolding seed
as defined by Debois [36] is a a control c, equipped with a set of patterns
∆c, each of which is a discrete bigraph r : 〈m, ∅〉 → 〈n,X〉 that does not
contain any seeds. An unfolding reaction rule is one of the form:

(c〈x̄〉.p, U, η)

where p ∈ ∆c.

Definition 93 (Unfolding BRS). A BRS BG(Σ,R) is unfolding if every
rule R ∈ R is unfolding.

Proposition 8 (Composition Preserves Unfolding). For two languages L1

and L2 that correspond to unfolding BRSs, L1 #∨ L2 is an unfolding BRS.

146



6.3. A Language from Atoms

The syntactic conditions on reaction rules required for a language to be
calculation (i.e., to be one that contains a sub-language obeying the con-
straints of calculational languages) are preserved by our notion of modular
language construction and composition. A full implementation of calcula-
tional BRSs would require additional treatment of activity, which we omit
here. Full details and proofs are given by Debois [36].

Example 7. We could imagine building a simple language for evaluating
boolean expressions:

Lbool
def
=Mtf #∧ and : 0 #∧ anda #∧ or : 0 #∧ ora #∧ not : 0 #∧ nota

+ J not.true→ false KΣ

+ J not.false→ true KΣ

+ J and.(true | true)→ true KΣ

+ J and.(false | 0 )→ true KΣ

+ J or.(false | false)→ false KΣ

+ J or.(true | 0 )→ true KΣ

What if we wanted to extend this to include propositional variables? It
turns out we already have a mechanism for this! The Mvar module we
constructed in Sec. 6.3.4 can already replace named variables with their
definitions. Consequently, it’s as simple as composing the languages:

Lboolv
def
= Lbool #∨ Mvar

Which allows us to write terms such as:

and.(Var〈x〉 | not.Var〈y〉)

When composed with a suitable bigraph containing assignments of vari-
ables to values, this will evaluate terms to boolean values. However, our
composition admits too many terms. For example:

Value〈x〉.Value〈y〉 ‖ not.Var〈x〉

This would potentially allow us to leak Value-typed controls into our logical
terms, which could cause our otherwise well-behaved system to get stuck!
We could add an appropriate sorting to ensure that only true and false
controls appear under Value prefixes:

Value(x) ∧ x / y =⇒ true(y) ∨ false(y)
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6.4 Translation to Bigraphs

The correspondence between BMC and bigraphical reactive systems has
already been demonstrated [59]. We now demonstrate how the languages
defined in our modular construction mechanism correspond to bigraphical
reactive systems. In short, Milner’s bigraph categories are immediately
usable — we merely need to “filter out” the reaction rules and sortings that
are not applicable because they depend upon the presence of controls that
are not present in the current signature, or because (in the case of reaction
rules) they are not well-sorted.

Definition 94 (Translation to BRS). For a language L = LAφ,RM, we give
a translation to a concrete bigraph (pre)category:

`BG((A, φ),R′)

where R′ = {(R,R′, η) | (R,R′, η)Σ ∈ R ∧ Σ ⊆ A ∧ φ(R) ∧ φ(R′)}.

We note that it is possible to perform the inverse translation, too, by
populating a language pair from a BRS.

Definition 95 (Translation from BRS). For a BRS `BG((A, φ),R), we
can give a translation to a language pair:

LAφ,R′M

where R′ = {RA | R ∈ R}.

6.5 Refinement by Construction

Given that we have provided a number of constructs by which one may
compose, transform, and specialise languages, it seems natural to ask how
we might ensure that we are building the right language. The languages we
construct from modules need not be simple, and the manifest behaviour of
semantic composition may not be desirable in every case. To answer this,
we propose the use of bigraphical vertical refinement [91], which permits the
use of one language as a kind of specification for another, in the sense that
we can guarantee that the latter has no more behaviour than the former
when a vertical refinement exists between the two.

Vertical refinements are characterised by abstraction functors that map
the bigraphs (and traces) of some more-concrete language to the bigraphs
(and traces) of a more-abstract language. The traces of a bigraphical reac-
tive system are defined in terms of sequences of reaction.
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Definition 96 (Trace, observation [91]). For a given BRS A, a trace is
a (possibly infinite) sequence of bigraphs (agents) 〈a1, a2, . . .〉, such that
for each ai and ai+1 in the sequence there is a reaction ai → ai+1. If
s = 〈s1, . . . , sn〉 and t = 〈t1, . . .〉 are traces and sn → t1, we may form the
composite trace s; t = 〈s1, . . . , sn, t1, . . .〉. In this case we say that t is an
extension of s. We write Tr(A) for the set of all traces of a given BRS A. If
F : A → A′ is a functor and 〈a1, a2, . . .〉 ∈ Tr(A) is a trace of A, we apply
F pointwise to obtain a trace F (t) = 〈F (a1), F (a2), . . .〉.

We can then define a safe vertical refinement as the dual of some ab-
straction functor F : C → A, where A and C are BRSs, such that the
following condition holds:

A
safe

v F C
def
= F (Tr(C)) ⊆ Tr(A)?

where Tr(A)? is the stuttering closure of Tr(A).
The first theorem in [91] demonstrates three conditions that ensure that

a given abstraction functor F : C → A gives rise to a safe refinement on
two BRSs A = BG(Σ,R) and C = BG(Σ′,R′):

1. It preserves and respects tensor.

2. It preserves active contexts.

3. It preserves reaction rules: For any reaction rule (R,R′, η) ∈ R′ (a)
the F -image (F (R), F (R′), η) is a rule inR; and (b) for any parameter
d of that rule, η(F (d)) = F (η(d)).

It turns out that these conditions are remarkably easy to satisfy when the
abstraction functor F is described in terms of the transformations on lan-
guages we have described in the previous sections. This provides a straight-
forward means by which to describe such abstraction functors, and (under
certain conditions) to derive them automatically. This makes it consider-
ably easier to describe abstraction functors (and therefore vertical refine-
ments) in a communicable and reusable manner, and also makes it easier to
verify that we are indeed constructing the language we intended, by using
higher-level languages as specifications for the lower-level domain-specific
languages that we construct.

Indeed, it turns out that for any transformation or sequence of trans-
formations, if the inverse operation may be described as an abstraction
functor, then a safe vertical refinement exists. For example, consider the
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substitution operation L[c := d]. We can construe this operation as a func-
tor F : L → L[c := d], such that the functor is the one that alters the
control map of bigraphs. The inverse functor F−1 : L[c := d] → L is pre-
cisely an abstraction functor, such that F−1 ◦ F = Id, which equates to
the identity L[c := d][d := c] = L. The kinds of operations for which these
implied functors are really functorial are limited only by the side-conditions
for the operations — for example, the requirement that d not occur in L
in the examples above. The composition of functors gives us the ability to
construct arbitrary abstraction functors for these operations, with the side
conditions ensuring that we are constructing sensible functors (e.g., the dif-
ference between L[c := d][e := f] and L[c := d][e := d] is that the condition
that d not appear in L is not satisfied in the latter case).

Definition 97 (Inverses for Transformations). We can define the set of
inverses for various operations:

L #∨ L′ ⇒ L \ L′

L #∧ L′ ⇒ L \ L′

L+ JR KΣ ⇒ L− JR KΣ

L[c := d]⇒ L[d := c]

ca ⇒ L \ ca

We define those operations appearing on the right hand side of the ar-
rows to be the safe transformations, in the sense that they give rise to safe
refinement functors, and those on the left hand side to be the unsafe trans-
formations. The latter may give rise to safe refinements, but they need not
do so automatically.

We proceed to show that these safe transformations are really those that
give rise to safe refinements by construction.

Theorem 8 (Refinement by construction). For any safe transformation

T : L→M and for any language L, we have L
safe

v T−1 T (L).

Proof.

Case (T (L) = L \ L′). Every (active) reaction rule in T (L) is a rule of
L, and every agent of T (L) is an agent of L, so any reaction of T (L) is a
reaction of L.

150



6.5. Refinement by Construction

Case (T (L) = L−JRKΣ). Every reaction rule of T (L) is a reaction rule of L,
and every agent of T (L) is an agent of L, so the second vertical refinement
theorem applies immediately.

Case (T (L) = L[d := c]). Since c does not occur in L, and c and d must
have the same activity and arity (by signature agreement), reaction rules
are preserved structurally and active contexts are preserved.

Case (T (L) = L \ ca). Seeing as some c is passive in T (L) and active in L,
T (L) will lack any reactions under c prefixes, such that there are strictly
fewer reactions, and those that remain are reactions of L.

This theorem coincides with the intuition that refinement effectively
restricts the behaviours of the concrete system to a subset of the behaviours
of the abstract system, and therefore those operations that in some sense
restrict behaviour (and which therefore have inverses that add behaviour)
are the “safe” ones. To this we add a corollary:

Corollary 2 (Composition preserves transformation safety). For any safe
transformations F and G, FG is also safe.

Proof. Immediate from the transitivity of safe vertical refinement.

6.5.1 Relaxing Consistency

We have so far considered mostly the kinds of operations that have obvious
inverses, and which therefore make it very easy to construct vertical refine-
ment relations, in the sense that the available transformations are trivially
structure-preserving. These kinds of operations, while general and useful,
are insufficient for describing certain transformations that we might like to
be able to express. The most important operation of this kind is substitu-
tion in which we may relax the condition that the languages have consistent
signatures, such that we can modify the arity or activity of a given control.

Definition 98 (Substitution without consistency). For a given signature
A = (Σ,Σa), substitution of the control d of arity ard and activity αd for
the control c of arity arc and activity αc is defined:

A[c ::= d〈p̄〉] def
= ((Σ \ {c : arc}) ∪ {d : ard},Σ′a)

where p̄ ∈ {1 . . . arc}∗, |p̄| = ard, and Σ′a = (Σa\{c})∪{d} if αd, or (Σa\{c})
otherwise.
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We note that p̄ induces a mapping from ports of d controls to ports of
c controls. Consequently, we define this form of substitution on terms as in
Def. 89, but replacing the case for prefixes with:

d〈p̄(x̄)〉.(q[c ::= d〈p̄〉]) if r = c〈x̄〉.q

This result may similarly be extended to reaction rules and languages, but
notably not to sorting predicates—there does not appear to be any sensible
“default” behaviour that one could offer in terms of transforming sorting
predicates in the presence of such substitution, and therefore we leave sort-
ing predicates unmodified in the presence of this substitution, and instead
offer a proposition.

Proposition 9. For a sorting predicate φ, and a sorted signature Aφ where
d does not appear in A or in φ, BMC(Aφ[c ::= d〈p̄〉]) ⊆ BMC(A[c ::=
d〈p̄〉]).

This is approximately the condition that, at worst, the substitution of
one control for another will degenerate to the unsorted case, for instances
where the sorting includes a specific requirement like c(x) =⇒ . . . , such
that the complete absence of any c controls effectively reduces the sorting
to false =⇒ . . . (which admits all terms of BMC(A)). Naturally, it would
be just as easy to contrive a sorting and a substitution that would cause
the sorting to become equivalent to false (i.e., a language with no terms).

This form of substitution is clearly just a more general instance of
the consistency-preserving substitution introduced previously (i.e., they are
equivalent where p̄ is the identity map, and arc = ard). However, this sub-
stitution may arbitrarily cause sortings to no longer hold, and very few
guarantees may be made about its behaviour in the general case. Knowing
this, why include it? It turns out to be valuable for relating common cal-
culi, such as making clear the link between CCS and the π-calculus. Safe
vertical refinement relations may still exist when this form of substitution
is used—they just need not always be easy to find.

To this end, we offer a conjecture, consisting of one sufficient condition
by which to establish the existence of a safe refinement in the presence of
an arbitrary sorting predicate.

Conjecture 1 (Safety without consistency). Given two signatures A and
C, where A is equipped with a sorting predicate φ, for some abstraction
functor F : BG(C) → BG(A), what is the most permissive sorting ψ for
C that we could construe that could still give rise to a safe refinement? It
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turns out to be precisely that which causes Cψ to be a weak pullback along
F in the following commuting diagram:

BG(Xγ)

Cγ

""

F

))
h

&&
BG(Cψ)

Cψ
��

F
// BG(Aφ)

Cφ
��

BG(C) F // BG(A)

We note that for some arbitrary sorting γ, h is trivial to deduce where
X ⊆ C and γ =⇒ ψ. Such a weak pullback need not exist, and a safe
refinement may still be found, but establishing this condition in order to
establish whether the proposed sorting predicate is the right one may in
some instances be easier.

6.6 Modular Construction of Actor

Languages

The Actor Model [3, 55] is a popular model of concurrent computation that
has been integrated into programming languages such as Scala [52], Erlang
[7], and Haskell [40]. Actors contain local state, and communicate with
other named actors to which they hold a reference by means of messages.
Message ordering is not guaranteed (though this can be implemented), and
terminated actors simply discard messages they receive.

Actors provide an interesting example system because they are used to
build so-called open systems, in the sense that the full topology of the system
is not necessarily known at design time. A compositional model-building
approach seems appropriate, given that individual actors may have dis-
parate semantics, and many different kinds of values can be passed around
as messages. Also, given the tendency for other systems with their own se-
mantics to integrate actors as a concurrency model makes them of interest
as a demonstration of our modular construction mechanism. Composition
of actor systems has previously been studied by Agha et al. [2, 4].

We define the semantics of actors independently of the internal logic of
the actors themselves—the “actor language” used to determine the internal
state of an actor and which messages that actor will send (and to whom)—
will be added later by composition.
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Definition 99 (Actor System).

Act
def
=Actor : 1 #∧ Actora #∧

ActorRef : 1 #∧

Message : 0 #∧

Drain : 0 +

JActor〈x〉.(ActorRef〈y〉.(Message. 0 | 1 ) | 2 ) ‖ Actor〈y〉. 3 →
Actor〈x〉.(ActorRef〈y〉. 1 | 2 ) ‖ Actor〈y〉.(Message. 0 | 3 )KΣ +

JActor〈x〉.(Drain | 0 )→ Actor〈x〉.DrainKΣ #∧

x / y ∧ x / z ∧ y 6= z ∧ ActorRef(y) ∧ ActorRef(z) =⇒ y@1 6= z@1

The control Actor is used to identify actors — it is marked active because
reaction should be able to take place at any time within an actor. An
ActorRef is a reference to an actor that another actor may hold (or pass
around as a message). It also acts as a mailbox for the remote actor, such
that a Message, when placed into an ActorRef at the top-level of an Actor
will be transmitted to that actor. Messages arrive at the top-level of an
actor, at which point it is up to the particular actor to deal with them. The
final control is Drain, which marks an actor as being inactive or failed, such
that any messages sent to it may be discarded immediately without further
action. The sorting we add ensures that an actor never has two ActorRefs
for the same remote actor — this ensures that there is only one mailbox
per local/remote actor pair.

We now consider extending the actor system with semantics for individ-
ual actors, as well as a set of values to send within messages. We construct
as an example system an equipment rental service, such that one actor
is configured as the “rental depot”, and any number of other actors may
borrow and return items at will:
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Depot
def
= Item : 0 #∧

Request : 1 #∧

Return : 0 #∧

Depot : 0 +

JActor〈x〉.(Depot |Message.Return. 0 | 1 )→
Actor〈x〉.(Depot | 0 | 1 )KΣ +

JActor〈x〉.(Depot |Message.Request〈y〉 | Item |ActorRef〈y〉. 0 | 1 )→
Actor〈x〉.(Depot |ActorRef〈y〉.( 0 |Message.Item) | 1 )KΣ #∧

Act

It is now possible to define a trivial client actor that borrows and returns
items continuously.

Client
def
= Item : 0 #∧

Request : 1 #∧

Return : 0 #∧

Client : 0 +

JActor〈x〉.(Client | Item |ActorRef〈y〉. 0 )→
Actor〈x〉.(Client |ActorRef〈y〉.(Message.Return.Item | 0 ))KΣ +

JActor〈x〉.(Client |Message. 0 | 1 )→
Actor〈x〉(Client | 0 | 1 )KΣ +

JActor〈x〉.(Client |ActorRef〈y〉)→
Actor〈x〉.(Client |ActorRef〈y〉.Message.Request〈x〉)KΣ #∧

Act

The composition Depot #∧ Client gives us a system appropriate for
constructing models of arbitrarily many depots and clients. What if we
wished to add another type of client? For example, we could construct
another language by adding a Thief that never returns items:

Thief
def
= Depot #∧ Client #∧ (Client[Client := Thief : 0] \ Return : 0)

We note that the latter system is trivially a safe vertical refinement of
the former (the abstraction functor maps Thief controls to Client controls),
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though it is unlikely to be a live refinement in the presence of any sensible
choice of admissible traces. The ability to compose new clients (with dif-
ferent semantics) gives the general flavour of how one might consider these
kinds of open systems problems using our notions of composition. It would
not require a particularly more complex model of actors to capture the se-
mantics of real-world actor systems such as Akka [51], which would provide
avenues for integrating both abstract and concrete models of actor systems
within a single “tower” of models.

While we have chosen a particularly simple internal language for the
actors in this case (e.g., Request and Return commands), a more realis-
tic scenario would likely embed some kind of computational sub-language
per-actor, culminating in a system with markedly different semantics for
different actors.

6.7 Related Work

Birkedal et al. [20] noted that there are two ways in which to consider
the composition of parametric reaction rules: merge the rules first and then
ground them, or ground the rules and merge the resulting (possibly-infinite)
sets of ground rules. They observe that in general the result of the former is
a superset of the latter, and therefore choose the former approach. We follow
their example and choose to first merge rules and then ground them when
considering parametric reaction rules. Similarly, the plato-graphical models
of that work provides one of the first examples of principled composition of
languages, although in that instance there was no intention to consider all
general possible compositions, rather it was specialised for the particular use
case. The composition in that work can be considered one of the inspirations
of the present work.

The Banana algebra of Andersen & Brabrand [6] is a kind of syntactic-
equivalent to the kinds of semantic composition and extension we have
presented. That work provides mechanism for the modular construction
and transformation of descriptions of the syntax of languages, but does
not extend to considering the semantics of such languages, and is therefore
somewhat orthogonal (though complimentary) to the work we have pre-
sented. The two approaches employ many of the same kinds of operations,
owing to the similar goals of the task. There may be an interesting avenue
for future work in attempting to relate these approaches more closely, such
that the “surface” syntax of languages and the semantics could be described
in a unified manner.
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In his work on closure sortings, Debois [35] briefly considered compo-
sition of sortings. He noted in that context that because sortings are ex-
pressed as functors F : Cφ → C, and functors are by their nature compos-
able, there is a relatively natural notion of composition suggested by this.
We consider this interesting future work to consider the role of composition
of sorting functors in deriving other ways to combine sortings.

Pereira et al. [90] proposed BiAgents, which is an extension of bigraphs
that includes certain kinds of agent-based systems as first-class entities
within bigraphs. We considered this work as an example of the kinds of
systems that should be recoverable within our modular construction mech-
anism, such that even relatively complex bigraphical extensions may be rep-
resented in pure bigraphs (with declarative sortings), rather than requiring
extensions to the underlying theory, with all the consequences that such
extensions entail (e.g., loss of generality, lack of transferability of results).
We have yet to recover BiAgents fully within pure bigraphs, although we
believe it to be possible (as a calculational sub-BRS).

6.8 Conclusion

We have presented a number of operations on atoms that permit the defini-
tion and specialisation of bigraphical reactive systems in a modular fashion.
In addition to this, we have demonstrated how existing work on vertical re-
finement of bigraphical reactive systems transfers to this setting, and how
the same mechanisms can be used to construct abstraction functors. Specif-
ically, we show that there is a subset of “safe” transformations that always
give rise to a safe vertical refinement. We also proposed a sufficient con-
dition for safe vertical refinements in the presence of arbitrary sortings.
Finally, we have exemplified this modular construction approach on a sim-
plified actor model, demonstrating that this approach may be used to extend
the reach of bigraphical systems to modelling “open systems” in a natural
way.

It remains unclear what limitations exist in the modular construction
approach we have proposed. It is sufficient to say that it appears promis-
ing, although only further experimentation will determine whether this is
immediately usable for a wide range of applications, or whether further ex-
tension will be required to encompass other modelling domains. We believe
that construing the modular construction mechanisms presented thus far
in terms of the forthcoming novel categorical presentation of bigraphs by
Miculan & Peressotti [73] could yield further insights into the full promise
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of this approach. We consider that giving a formal semantics for our modu-
lar construction calculus in that setting will permit more of the categorical
tools available in that setting to be used to reason about language equiv-
alence and potentially give rise to stronger conditions for “well-behaved”
modular composition.

6.8.1 Future Work

We believe there are several important aspects to consider as future exten-
sions of this work. Fully characterising the connection to Debois’ work on
calculational BRSs [36] should permit sensible ways of including “normal”
computation within DSMLs constructed in this way.

We consider the potential role of activity in limiting the general applica-
bility of the modular DSML construction approach. Activity as defined in
bigraphical reactive systems is somewhat inflexible. While it is appropriate
for the encoding of process calculi and many other languages, we can imag-
ine situations in which a finer-grained notion of what constitutes an active
context in which reaction may take place could be valuable. One such exam-
ple might be the encoding of biological systems, where finer-grained notion
of activity can permit constraints of the system to be captured more directly,
and in a modular fashion more fitting to the general DSML instantiation
approach. We propose that our existing sorting logic could be adapted
to this purpose, such that a language is defined as a (sorted) signature,
a set of reaction rules, and a predicate for each reaction rule on contexts
that determines whether it is “active” or not (i.e., whether it represents a
valid execution context for that rule). The investigation of whether this
represents a viable generalisation of bigraphical reactive systems represents
interesting future work.
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Chapter 7

Conclusion

We have now presented the primary technical contributions of this thesis.
In this chapter we summarise the results and contributions of the thesis,
and discuss future directions for research into the instantiation of domain-
specific modelling languages as bigraphical instance calculi.

7.1 Summary

Chapter 1 introduced the general challenge of constructing towers of models,
and laid out a domain-specific modelling language approach as a means of
realising this vision. We reviewed a number of other approaches to meta-
modelling and the construction of domain-specific modelling languages, and
outlined the contributions of this thesis.

Chapter 2 we saw a general introduction to the history and motivation
behind bigraphical reactive systems, including the genesis from models that
abstract away all but the communication behaviour of systems to obtain a
view of a system that is amenable to analysis. We saw the formal underpin-
nings of bigraphical reactive systems, including the categorical structures,
and a brief summary of some of the formal results in this area. The out-
comes from the Bigraphical Programming Languages (BPL) project were
discussed, and a number of general patterns for modelling within bigraphs
were introduced.

Chapter 3 introduced the BMC meta-calculus that is a compact and in-
tuitive meta-process calculus presentation of bigraphical reactive systems.
We argued that this approach obviates the requirement that those wishing
to use bigraphs to construct domain-specific modelling languages under-
stand the formal mathematical underpinnings. We introduced a simple
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logic for the construction of sorting predicates in the style of Debois [35].
This logic is a considerable improvement over previous methods for defin-
ing sorting predicates (which were usually ad hoc), in that it is guaran-
teed that any well-formed formula is decomposable, and will therefore give
rise to a closure-sorted category that still has RPOs, and to which the
semantic correspondence and transfer theorems may be applied. Chapter
3 also introduced the bigraphical abstract machine, which gives a graph-
rewriting abstract machine execution semantics to bigraphical reactive sys-
tems, parametrised on an execution strategy. We gave a definition of fair-
ness for bigraphical reactive systems, and showed that any “maximal” ex-
ecution strategy is fair.

Chapter 4 introduced bigraphical vertical refinement, motivated by a
small example reminiscent of a context- or location-based application. A
notion of what constitutes an observation within a bigraph was introduced,
in the form of prefix-closed traces, and then separate definitions of safe and
live vertical refinement were given. A key contribution was the inclusion of
two sufficient conditions for abstraction functors to give rise to safe vertical
refinements; namely, the observation that structurally preserving reaction
rules is sufficient to guarantee the presence of a safe vertical refinement.
The chapter concluded by exploring the connection to the work of Reeves
and Streader [94, 95], and positing the existence of a complimentary notion
of horizontal refinement.

Chapter 5 introduced a prototype bigraph tool for performing a num-
ber of verification and validation tasks upon bigraphical reactive systems,
such that it can be instantiated as a model checker or reachability checker
for a particular instance calculus, or simply used to execute and simulate
models in a given language. We provided a tractable heuristic for deter-
mining when two reaction rules might interfere with one another, which
permitted the tool to automatically exclude certain infinite-length traces
from consideration—such a heuristic (and those based upon the work of
Højsgaard [61]) will be useful in terms of the implementation of the next
generation of bigraphical verification, simulation, and analysis tools.

Chapter 6 provided a language for the modular construction and defini-
tion of domain-specific modelling languages in bigraphs, in attempting to
reify the vision of a tower of models. The constructs of the language permit
independent language components to be defined, and then combined and
specialised to a particular domain. The language also provides the ability
to build bigraphical reactive systems in a way that may be easily written
down in an unambiguous and declarative manner, which will provide an
easier path to enabling reuse of domain-specific modelling language compo-
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nents. Chapter 6 also proposed a means by which the same language could
be used to specify abstraction functors for vertical refinements, providing a
better unifying mechanism for languages within a tower. Finally, we spec-
ulated about the relationship to the work of Miculan & Peressotti [73], and
suggested that this is fertile ground for future exploration.

7.2 Contributions

Because this thesis is composed of several different publications, we now
summarise the contributions of the thesis to the theory and applicability
of bigraphical reactive systems, and to the instantiation of a tower of mod-
els as domain-specific modelling languages encoded as bigraphical instance
calculi.

• A novel meta-calculus presentation of bigraphical reactive systems,
with a convenient normal form representation.

• A sorting logic that is guaranteed to give rise to well-behaved sorting
predicates.

• That checking that for a reaction r → r′, r′ is well-sorted is equiva-
lent to constructing the interfaces of a closure-sorted category, which
improves the implementability of sorted bigraphical reactive systems.

• A bigraphical abstract machine that instantiates to a fair abstract for
any instance calculus.

• A definition of fairness for bigraphical reactive systems, given in terms
of this abstract machine.

• A novel definition of vertical refinement for bigraphical reactive sys-
tems, providing the capability to formally relate different modelling
languages constructed as bigraphical instance calculi.

• A sufficient condition for ensuring that abstraction functors give rise
to safe refinements.

• A notion of “observation” appropriate to bigraphical reactive system
refinement.

• A new tool for the execution of bigraphical reactive system models.
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• A property language based upon matching that permits the expression
of properties in the language of the underlying system.

• A novel tractable heuristic method for conservatively approximating
reaction rule causation, which permits several optimisations in both
execution and checking of system properties.

• An initial performance characterisation of the tool.

• A modular construction language for the definition and specialisa-
tion of domain-specific modelling languages as bigraphical reactive
systems.

• A means of defining abstraction functors in terms of this modular
construction language.

• The inclusion of sorting predicates within the vertical refinement mech-
anism, including a sufficient condition to make it easier to establish
whether a sorting predicate gives rise to a safe refinement.

• A proposal for the generalisation of activity within bigraphical reac-
tive systems.

• A novel presentation of an Actor model language as a BMC instance
calculus.

7.3 Discussion

Having nearly reached the end of this thesis, we ask the question: Are
we closer to the goal of enabling the construction of towers of bigraphical
domain-specific modelling languages? We claim that we are. A number of
presentational, theoretical, and pragmatic hurdles have been overcome, all
of which we would argue were necessary in order to move closer to the stated
goal. Returning to the original three areas we presented in the introduction,
what has been achieved?

7.3.1 Defining Languages

The BMC meta-calculus we presented in Chapter 3 seems a demonstrably
nicer presentation of bigraphical reactive systems for certain audiences. The
learning curve associated with bigraphs has always been regarded as steep,
and existing presentations have mostly walked a fine line between being
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“too categorical” for audiences unfamiliar with the nuances of category
theory, and insufficiently categorical for those who advocate that approach.
Where the forthcoming work of Miculan & Peressotti [73] would appear to
address the latter audience, we claim that the BMC presentation can more
effectively persuade the former audience of the value and utility of bigraphs.

The bigraphical sorting logic similarly represents a considerable im-
provement upon existing ways of presenting sortings. Given that closure
sortings (and predicate sortings) appear to be an effective mechanism for
capturing most of the kinds of sortings that are of interest, we can hope
to limit the proliferation of incompatible means of describing sortings. The
requirement that sorting predicates be deconstructable is relatively arduous
to establish for an arbitrary predicate, as we discovered in attempting to
formulate a useful set of primitives. This work shall hopefully need not
be duplicated for a very wide class of sortings that can be described in
terms of the logic we presented, as the result that any well-formed formula
is a deconstructable predicate makes predicate sortings more immediately
accessible to a wider audience.

The modular construction mechanism presented in Chapter 6 similarly
represents a more uniform way to define and present languages. In partic-
ular, if tool support for this mechanism follows, we could hope to see some
degree of standardisation in the presentation of bigraphical languages. This
has the effect of making descriptions of relatively complex domain-specific
or general-purpose language features reusable and communicable, in that
the construction of language components from smaller components lends
itself to building for reuse, as well as concise descriptions of domain-specific
languages by the specialisation of well-understood generic components. We
need not replicate encodings of language features in subtly-incompatible
ways, when we can instead just reuse those features that are of interest,
specialising them for our needs, and maintaining compatibility with the
original.

7.3.2 Tool support

BigMC is arguably one of the most immediately-usable bigraph tools avail-
able at present. As an open-source tool it has seen use by various individu-
als hoping to apply bigraphs in some way. While other tools are emerging
(which is a positive trend!), at the time of writing all alternatives suffer from
being either unavailable or incomplete. BigMC will surely be surpassed by
a subsequent generation of bigraph tools, but the experience and techniques
that resulted from its development and use will hopefully work to inform
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this next generation. In particular, providing a tractable heuristic that
permits optimisation will hopefully permit the development of further opti-
misations in bigraph tools. Similarly, being integrated directly with BigRed
[42] has permitted BigRed to be more immediately useful for executing bi-
graphical reactive systems, and we look forward to continued development
of bigraph tools.

The observation in Chapter 3 that reaction in the unsorted and sorted
categories are equivalent (without needing to construct the sorted cate-
gory), while effectively a corollary to the results of Debois [35], represents
a significant improvement in our ability to implement predicate sortings in
practice. We are aware of current efforts to leverage the bigraphical sorting
logic and this result to implement support for sortings both in BigMC and
in BigRed. The immediate decomposability of well-formed formulae in the
sorting logic in particular makes it considerably easier to ensure that only
“well-behaved” sortings are accepted by tools.

Finally, the BAM abstract machine presented in Chapter 3 represents
a serious effort in relating theory and implementation, in the sense that it
provides a means by which to reason about execution strategies for bigraph-
ical reactive systems. Being able to relate a tool implementation to BAM
and therefore decide whether a particular execution strategy implemented
by that tool is fair or not seems a step in the right direction, although we
believe there is more to be learnt about the exact strengths and weaknesses
of the BAM approach.

7.3.3 Relating Languages

We have presented two mechanisms for relating languages in this thesis:
vertical refinement, and modular construction. In the sense that building
one language from another by some fixed set of combinators relates them,
the latter form provides a concrete means of “scaffolding the tower”, so that
language-designers can hopefully begin to formalise the intuitions behind
different “levels” of a given tower. The fact that this happens to coin-
cide with the construction of abstraction functors for vertical refinement is
particularly convenient.

Vertical refinement is already being used “in the wild”, in that other
researchers have been able to take the definition as published and apply it
to their particular modelling task to relate different BRSs. It seems to be
early days, and a complimentary notion of horizontal refinement remains
elusive, but vertical refinement relations of this approximate shape seem to
be the best next concrete step towards enabling a tower of models of the
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sort envisioned by Robin Milner. We are excited by the prospect that the
forthcoming work of Miculan & Peressotti [73] could potentially be used to
advance this work on vertical refinement.

7.4 Future Work

Having seen that we have made some progress towards the goal of enabling
bigraphical reactive systems as a host for domain-specific modelling lan-
guages related by vertical refinement, there remains much to do to make
this a practical reality. We devote the remainder of this section to outlining
some promising research directions.

It remains a challenge to learn the limitations of BMC, BAM, the bi-
graphical sorting logic, and the modular construction mechanisms presented
in this thesis. The best way to establish this would be to continue to recover
existing calculi in this setting to ensure that it remains sensible at scale.
This work will hopefully include the consideration of other variations upon
bigraphs, including a full recovery of stochastic bigraphs [68].

While vertical refinement appears to be immediately useful, horizontal
refinement needs to be well-motivated by particular use-cases, either by
attempting to recover other well-known variants of horizontal refinement
(e.g., various CSP notions of refinement) in a bigraphical setting, or by
using interestingly-motivated case studies to choose an appropriate defini-
tion of horizontal refinement. The further we have investigated horizontal
refinement in a bigraphical setting, the less sensible a single fixed notion of
horizontal refinement has appeared. We believe that further investigation
of appropriate parametrised notions of “observation” in the style of Reeves
& Streader [94, 95] are an appropriate starting point for the continuation
of this work.

The investigation of further optimisations and enhancements for bigraph
tools in general seems an important goal, as good tool support for the kinds
of DSML construction activities we advocate would appear to be essential
for real adoption. Pursuing further optimisations of the sort described both
in Chapter 5, as well as those previously presented by Højsgaard [61] would
seem a promising avenue for the continuation of this work.

An immediately promising possibility is attempting to construe the mod-
ular construction mechanisms proposed in Chapter 6 in the categorical “Bi-
graphs reloaded” setting of Miculan & Peressotti [73]. This is likely to yield
further insights into the theoretical limits of this approach, provide stronger
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connections to vertical refinement, and better characterise the sufficient and
necessary conditions for well-formed compositions.

Finally, attempting to reconcile the work on calculational bigraphs [36]
with a generalised notion of activity would seem to be valuable. There may
be promise in the approach of using a variant of the bigraphical sorting
logic to define predicates on contexts, such that language designers and
modellers can have finer-grained control over the conditions under which a
reaction may occur. Such an approach would need to relax the requirement
that all well-formed formulae be deconstructable (this condition would seem
less important for this task), and would need to augment the logic with
constructs for reasoning about holes and regions, at least.

In all, bigraphical reactive systems still appear one of the most credible
approaches to managing the complexity of modelling tasks for an increas-
ingly computational world, and we hope that this work continues in earnest.
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Glossary

hypergraph a graph structure in which every edge is connected to zero or
more other graph objects.

inner width a finite ordinal indicating the number of holes (or sites) in
the place graph, which for a bigraph B : 〈m,X〉 → 〈n, Y 〉 is indicated
by m.

outer width a finite ordinal indicating the number of regions (or roots) of
the place graph, which for a bigraph B : 〈m,X〉 → 〈n, Y 〉 is indicated
by n.

prime a bigraph or place graph with exactly one top-level region (i.e., with
outer width 1).

wide a bigraph or place graph with two or more top-level regions, i.e., with
outer width ≥ 2.
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λ-calculus, 49
π-calculus, 22

abstract syntax tree, 27
abstraction, 18
action, 20
activity, 37
agent, 36
arrow, 46

behaviour, 21
BigMC, 14
bigraph, 5, 25, 33

abstract, 47
binding, 51
concrete, 47
ground, 36
lean, 47
local, 51

bigraphical reactive system, 36
bisimilar, see bisimulation
bisimulation, 21
BRS, see bigraphical reactive sys-

tem
business process, 22
business process modelling, 4

category, 46
category theory, 46
CCS, 19
channel, 20, 22, 25

first-class, 22
communication, 19
composition

bigraph, 35
link graph, 30, 32
place graph, 28

computation, 2, 52
concurrent, 18
sequential, 18

connectivity, 25
context

bigraph, 35, 44
CCS, 19
minimal, 45

context-aware systems, 7
control, 26, 31
CSP, 22

domain-specific modelling languages,
4

dynamics, 36

environment, 19
equivalence, 21

observational, 21

growth, 52

hole, 26
hypergraph, 30

idle edge, 47
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informatics, 1
instantiation map, 40
interface, 28, 46

inner, 28
outer, 28

lean-support equivalence, 47
link graph, 30, 31
link map, 31
local name, 23
locality, 26
location, 22
LTS, see transition system

matching, 36
meta-modelling, 5
mobility, 22
modelling, 1
morphism, see arrow
motion, 3

name, 25
names, 30

inner, 30
outer, 30

node, 26

object, 46

parallel composition, 19, 23
place graph, 26, 27
port, 30
predicate sorting, 50
prime

place graph, 26
problem domain, 4
process, 18, 36

mobile, 22
process calculi, 19

reaction, 24, 36
reaction rule

ground, 40
parametric, 40
prime, 40
wide, 40

reactum, 36
redex, 36
refinement, 21

stepwise, 6
vertical, 7

region, 24, 26
replication, 22
root, 26, see region

s-category, 48
scope condition, 51
semantics

labelled transition system, 21
signature, 26, 36
site, see hole
sorting, 50
space, 3
specification, 22
spm-category, 48
support, 47
support equivalence, 47
support translation, 47
synchronous, 20
syntax

graphical, 33

tensor product, 29
term representation, 43
term rewriting, 21
transition system

labelled, 20, 21
tree, 26

ubiquitous computing, 7, 24

wide
place graph, 26
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width
inner, 26
outer, 26

width functor, 49
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