
Probabilistic Models and Process

Calculi for Mobile Ad Hoc Networks

Lei Song

Programming, Logic, and Semantics

IT University of Copenhagen

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

2012 03

logo.eps

Abstract

Due to the wide use of communicating mobile devices, mobile ad hoc net-

works (MANETs) have gained in popularity in recent years. In order that the

devices communicate properly, many protocols have been proposed work-

ing at different levels. Devices in an MANET are not stationary but may

keep moving, thus the network topology may undergo constant changes.

Moreover the devices in an MANET are loosely connected not depending on

pre-installed infrastructure or central control components, they exchange

messages via wireless connections which are less reliable compared to wired

connections. Therefore the protocols for MANETs are usually more com-

plicated and error-prone. In this thesis we discuss different models and

their underlying theories which will facilitate the verification of protocols

for MANETs.

Process calculi have been used successfully as a formal method to verify and

analyze functional behaviors of concurrent systems e.g. free of deadlock,

and they also have been extended with probability to verify quantitative

properties e.g. “the sent message will arrive at the destination in 5 seconds

with probability no less than 0.99”. In this thesis we extend the frame-

work to deal with special issues in MANETs e.g. mobility and unreliable

connections. Specially speaking,

1. We first propose a discrete probabilistic process calculus with which

we can model in an MANET that the wireless connection is not reli-

able, and the network topology may undergo changes. We equip each

wireless connection with a probability, and moreover we allow these

probabilities to be changed according to some mobility rule to model

the changes of the network topology. The semantics gives rise to Prob-

abilistic Automata (1) (PA), thus allowing us to use PCTL (2) or PCTL∗

(3) to express properties of protocols. We also propose several variants

of bisimulations and simulations letting us abstract some details of pro-

tocols as well as the mobility of the network topology. The theory is

then applied to a protocol for distribution of IP addresses (Zeroconf

(4)).

2. Secondly we extend the discrete probabilistic process calculus in sev-

eral directions: i) Generalize the notions of mobility rules which allow

to change part of a network topology depending on an exponentially

distributed random delay and a network topology constraint. ii) Intro-

duce stochastic time behavior for processes running at network nodes.

iii) A novel abstraction is proposed where several broadcasts may be

simulated by one. The semantics is a combination of discrete and con-

tinuous probability, nondeterminism, and concurrency, thus giving rise

to an Markov Automaton (5) (MA). Several variants of bisimulations

and simulations are also defined some of which are defined over dis-

tributions. We show how to use the theory by applying it to a leader

election protocol.

3. Various behavioral equivalences and their logical characterizations have

been proposed to combat the infamous states space explosion problem

of PAs, but unfortunately it is well known that the behavioral equiv-

alences are strictly stronger than the logical equivalences induced by

PCTL or PCTL
∗. We address this problem in this thesis by intro-

ducing a sequence of strong bisimulations, which will converge to the

PCTL or PCTL
∗ equivalence eventually. This work is then extended

to weak bisimulations and simulations. Since CTMDPs can be seen

as continuous-time extension of PAs, we also extend the work to the

continuous setting in a natural way.

4. Recently, MAs have been proposed as a compositional behavior model

supporting both probabilistic transitions and exponentially distributed

random delays. Moreover two variants of weak bisimulation are also

defined in (5) and (6). In this thesis, we introduce both early and

late semantics for MAs based on which we define the early and late

weak bisimulation respectively. We also show that the early weak

bisimulation coincides with the previous variants while the late weak

bisimulation is strictly coarser than them, thus the late weak bisimu-

lation enables us to reduce the state spaces of MAs even further. This

work is also extended to simulations. For future work we will discuss

logic characterization for both early and late weak (bi)simulations.

Acknowledgements

I would first thank my supervisor Jens Chr. Godskesen for his endless

support of this work. He is always reading my drafts carefully, gives valuable

suggestions and inspiring comments for improvement. He gives me lots of

freedom to do the research, and it is very pleasant to work with him. This

thesis would be impossible without his helps.

Lijun Zhang deserves a special thanks for this work. He is a great col-

laborator, and it is always inspiring and fruitful to discuss with him. His

enthusiasm in research and the ability to solve problems is quite impressive.

Many thanks go to Flemming Nielson, and Bo Friis Nielsen, it was a great

experience to work with them. Their attitudes and the way of doing research

will influent me in the future.

I am also very grateful to Yuxi Fu and Yuxin Deng, my Master’s thesis

supervisor and instructor, for having introduced me to the field of process

algebra and probabilistic model checking.

Thanks to Scott A. Smolka for hosting my staying abroad at Stony Brook

University. The time spent there was very enjoyable.

Both MT-Lab and PLS group have creative and pleasant working atmo-

sphere, which is a great stimulus for the research. Many thanks to my col-

leagues for interesting discussions, in particular, to Fabrizio Biondi, Louis-

Marie Traonouez, and Andrzej Wa֒sowski.

The research presented in this thesis has been supported by MT-LAB, a

VKR Center of Excellence for the Modeling of Information Technology.

Last, but not least, a special thank to my parents, Mingjian Song and

Xuhong Cao, and to my fiancee Li Xu, this thesis is dedicated to them.

Declaration

I herewith declare that I have produced this thesis without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This thesis has not previously been presented in

identical or similar form to any other examination board.

The thesis work was conducted from 01/04/2009 to 31/03/2012 under the

supervision of Jens Chr. Godskesen at IT University of Copenhagen, Den-

mark.

Copenhagen,

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Mobile Ad Hoc Networks . 1

1.2 Process Calculi and Probability . 3

1.3 (Bi)Simulation and Logical Characterization 5

1.4 Contributions and Overview of the Thesis 7

1.5 My Publications . 10

2 Discrete Model 13

2.1 Motivation . 13

2.2 The Calculus . 16

2.3 Labeled Transition System . 22

2.4 Weak (Probabilistic) Bisimulation . 30

2.4.1 Weak Bisimulation . 30

2.4.2 Weak Probabilistic Bisimulation 46

2.5 Weak (Probabilistic) Simulation . 51

2.5.1 Weak Simulation . 52

2.5.2 Weak Probabilistic Simulation 56

2.6 Bisimulations and Simulations between PMFs 57

2.6.1 Weak Bisimulations between PMFs 58

2.6.2 Weak Simulation between PMFs 64

2.7 The Zeroconf Protocol . 68

2.8 Related Work . 71

iii

CONTENTS

3 Continuous Model 75

3.1 Motivation . 75

3.2 The Calculus . 78

3.3 Labeled Transition System . 81

3.4 Weak Bisimulations . 84

3.4.1 Weak Bisimulation on States . 84

3.4.2 Weak Bisimulation on Distributions 94

3.5 Weak Simulations . 101

3.5.1 Weak Simulation on States . 101

3.5.2 Weak Simulation on Distributions 104

3.6 Removal of Memory . 107

3.7 A Leader Election Protocol . 109

3.8 Related Work . 113

4 Probabilistic Automata 115

4.1 Motivation . 115

4.2 Preliminaries . 117

4.2.1 Probabilistic Automaton . 118

4.2.2 PCTL
∗ and its Sublogics . 121

4.2.3 Strong Probabilistic Bisimulation 123

4.3 A Novel Strong Bisimulation . 125

4.3.1 Strong 1-depth Bisimulation . 125

4.3.2 Strong Branching Bisimulation 127

4.3.3 Strong Bisimulation . 132

4.3.4 Taxonomy for Strong Bisimulations 135

4.4 Weak Bisimulations . 135

4.4.1 Branching Probabilistic Bisimulation by Segala 137

4.4.2 A Novel Weak Branching Bisimulation 138

4.4.3 Weak Bisimulation . 140

4.4.4 Taxonomy for Weak Bisimulations 143

4.5 Simulations . 143

4.5.1 Strong i-depth Branching Simulation 145

4.5.2 Strong i-depth Simulation . 149

iv

CONTENTS

4.5.3 Weak Simulations . 151

4.5.4 Simulation Kernel and Summary of Simulation 155

4.6 Countable States . 155

4.7 The Coarsest Congruent (Bi)Simulations 161

4.8 Related Work . 163

5 Continuous-time MDP 167

5.1 Motivation . 167

5.2 Preliminaries . 169

5.2.1 Continuous-time Markov Decision Process. 169

5.2.2 Path and Measurable Scheduler 170

5.2.3 Continuous Stochastic Logic . 172

5.3 Parallel Composition for CTMDPs . 173

5.4 Bisimulations for CTMDPs . 175

5.4.1 Strong Bisimulation . 175

5.4.2 Weak Bisimulation . 177

5.4.3 Determining 2-step Recurrent CTMDPs 184

5.5 Characterization of CSL in General CTMDPs 185

5.5.1 Strong i-depth Bisimulation . 185

5.5.2 Weak i-depth Bisimulation . 191

5.6 Simulations . 192

5.6.1 Strong and Weak Simulations . 192

5.6.2 Strong and Weak i-depth Simulations 197

5.7 Relation to Probabilistic Automata and Markov Chains 200

5.7.1 Relation to Bisimulation of Probabilistic Automata 201

5.7.2 Relation to (Weak) Bisimulation for CTMCs 202

5.7.3 Relation to (Weak) Simulations for CTMCs 204

5.8 Summary . 207

5.9 Related Work . 208

6 Markov Automata 209

6.1 Motivation . 209

6.2 Markov Automata . 212

6.2.1 Preliminaries . 212

v

CONTENTS

6.2.2 Early Semantics of Markov Automata 214

6.2.3 Late Semantics of Markov Automata 215

6.3 Weak Bisimulations . 219

6.3.1 Early and Late Weak Bisimulations 219

6.3.2 Properties of Early and Late Weak Bisimulations 222

6.3.3 Compositionality . 225

6.4 Weak Simulations . 228

6.4.1 Early and Late Weak Simulations 229

6.4.2 Properties of Early and Late Weak Simulations 229

6.5 Comparing •≈, ≈•, ≈ehz and ≈dh . 232

6.5.1 Weak Bisimulation à la Eisentraut, Hermanns and Zhang 232

6.5.2 Weak Bisimulation à la Deng and Hennesy 234

6.5.3 ≈ehz and ≈dh are Equivalent . 235

6.5.4 Summary . 237

6.6 Related Work . 238

6.6.1 Compositionality for Time-Divergent MA 238

6.6.2 Late Weak Bisimulation is Reduction Barbed Congruence 239

7 Conclusion and Future Work 241

7.1 Conclusion . 241

7.2 Future Work . 242

References 245

vi

List of Figures

1.1 Different probabilistic models. 5

2.1 Connectivity example. 14

2.2 An example of mobility. 14

2.3 An example of a PMF. 20

2.4 A mobility transition. 26

2.5 Two weakly bisimilar states in fully probabilistic processes. 33

2.6 Two equivalent mobility. 38

2.7 Network derivation . 45

2.8 An example of mobility. 47

2.9 A simpler mobility. 58

2.10 A simpler PMF weak probabilistic bisimilar with Fig. 2.3. 64

2.11 A home network. 68

2.12 A more abstract PMF. 72

3.1 Illustration of weak bisimulation on distributions. 100

4.1 Counterexample of strong probabilistic bisimulation. 117

4.2 Parallel composition of s0 and t0. 121

4.3 ∼b
i is not compositional when i > 1 . 127

4.4 Relationship of different equivalences in strong scenario. 136

4.5 Relationship of different equivalences in weak scenario. 143

4.6 s0 6≺PCTLlive
r0. 149

4.7 Relationship of different preorders in strong scenario. 156

4.8 Relationship of different preorders in weak scenario. 157

4.9 Alternating automata. 165

vii

LIST OF FIGURES

4.10 ≺′
i 6= ≺

PCTL
−
1
. 166

5.1 Parallel composition of s0 and t0. 174

5.2 Counter example of strong probabilistic bisimulation. 183

5.3 ≺CTMC is too coarse (transition of t is omitted). 205

5.4 Relationship of various bisimulation and simulation relations 207

5.5 A counterexample for the completeness of wCTMC. 208

6.1 Examples of Markov automata. 211

6.2 Illustration of early and late semantics. 218

6.3 Two distributions which should not be weakly bisimilar. 220

6.4 Example of late weakly bisimilar states. 221

6.5 Summary. 237

viii

List of Tables

2.1 Structural congruence of processes (discrete). 17

2.2 Structural congruence of networks (discrete). 18

2.3 Definition of function l . 18

2.4 Labeled transition system of processes (discrete). 24

2.5 Labeled transition system of networks (discrete). 28

2.6 The Zeroconf protocol. 69

3.1 Structural congruence of processes and networks (continuous). 79

3.2 Labeled transition system of processes (continuous). 82

3.3 Labeled transition system of networks (continuous). 85

ix

LIST OF TABLES

x

Chapter 1

Introduction

In this chapter we first introduce the mobile ad hoc networks and their characteristics,

then we briefly present the classic process calculi and their applications in protocol

verification, and we also show how the theory of process calculi can be extended with

quantitative information to deal with randomized behaviors. Bisimulation and its log-

ical characterization is discussed in Section 1.3 together with simulation and its logical

characterization. We summarize our achievements of this thesis in Section 1.4 as well

as the organization of the following chapters.

1.1 Mobile Ad Hoc Networks

Mobile ad hoc networks (MANETs) are composed by a lot of mobile devices which

can communicate with each other via wireless connections. The mobile devices in

an MANET are self organizing without the need of any pre-installed infrastructure or

central control components, thus an MANET is supposed to be more fault tolerant

compared to wired local area networks (Ethernet), since devices may crash or even

leave the network. Due to the wide use of communicating mobile devices, MANETs

have gained in popularity in recent years, and the application area is broad, spanning

from ambient intelligence, wireless local area networks, sensor networks, and cellular

networks for mobile telephony.

Due to the lack of pre-installed infrastructure and central control components, the

protocols of MANETs are usually more complicated and error-prone than those for Eth-

ernets, which makes the rigorous verification of these protocols difficult and necessary.

1

1. INTRODUCTION

Compared to Ethernets, MANETs have the following characteristics:

1. Local broadcast.

The key communication primitive in an MANET is message broadcast but, dif-

ferent from Ethernets, broadcast in wireless networks is local, hence only devices

within the communication range of the emitting device can receive a message,

while all the other devices out of the transmission range cannot.

2. Mobility.

The devices in an MANET are not stationary but keep moving, moreover they

may also crash, therefore the connectivity topology undergos constant changes.

3. Unreliable connection.

A wireless connection is not as reliable as a wired connection i.e. we cannot

guarantee that a broadcast message will reach all the devices even if they are

in the transmission range of the emitting device. Since the messages exchanged

through wireless connections may get lost during transmission.

4. Unidirectional.

The wireless connection is usually unidirectional instead of bidirectional, since

the devices in an MANET may have different transmission ranges. If a device A

can deliver messages to a device B, we cannot say that B is also able to deliver

messages to A, because B may have a smaller transmission range than A.

5. Separated Connectivity.

Connectivity should not be part of a protocol i.e. when designing a protocol we

cannot make any assumption on the network connectivity, the protocol should

work properly for any possible situation. But the specification of a protocol may

refer to certain conditions about the connectivity. For instance, we may specify

properties like “the messages broadcasted from a device A will eventually reach a

device B as long as B is connected to A either directly or via some intermediate

devices”.

2

1.2 Process Calculi and Probability

1.2 Process Calculi and Probability

Process calculi have been a popular framework and much used in the specification and

verification of parallel and distributed software systems. During the last three decades

several variants of process calculi have been proposed, the most important of which are

CCS (Calculus of Communicating systems (7, 8)), CSP (Communication Sequential

Processes (9)), and ACP (Algebra of Communicating Processes (10, 11, 12)). As the

extension of CCS, the π-calculus is developed in (13, 14, 15) by Milner, Parrow and

Walker which allows channel names to be transferred via channel names, it is able to

model concurrent systems where the interconnection between processes may change

during the computation. All these process calculi have very simple syntax and few

operators by which we can describe both specification and implementation of concurrent

systems. To describe the behaviors of processes, each process calculus is equipped with

an operational semantics, usually in the form of a labeled transition system introduced

in (16). One advantage of process calculi is that they have an algebraic basis enabling

us to model and analyze concurrent systems in a formal and rigorous way.

Process calculi have been applied successfully to verify functional properties of con-

current systems, for example we may check whether a system is free of deadlock or

not, and whether a certain message will reach all the devices eventually or not. But

in many systems we are also interested in the quantitative properties of them, not just

their functional properties, for instance we want to know what is the maximal prob-

ability of a system reaching deadlock states, and what is the minimal probability of

a certain message reaching all the devices in 5 seconds. In order to do so, a variety

of extensions of classical process calculi have been proposed (17, 18, 19, 20, 21, 22),

whose semantics gives rise to different models. Depending on i) whether the time is

discrete or continuous, and ii) whether nondeterministic choices are allowed or not, we

can divide probabilistic models into several categories as follows:

1. Discrete-time Markov Chain (DTMC) or fully probabilistic systems.

The DTMC is a probabilistic extension of the labeled transition system where all

the transitions are associated with probabilities. As indicated by its name, the

time is discretized as steps in DTMCs. The model has been studied in (19, 23, 24).

Fig. 1.1 (a) is an example of DTMC such that s can evolve into s1, s2, and s3

with probability 0.5, 0.2, and 0.3 respectively. Note that we omit the labels of

3

1. INTRODUCTION

the transitions and all the transitions of si(1 ≤ i ≤ 5) in Fig. 1.1. For models

with transition labels, refer to (25) for a good overview.

2. Probabilistic Automata (PA) or Markov Decision Processes (MDP).

Probabilistic automata can be seen as extensions of DTMCs with nondeterministic

choices, and have been studied in (1, 26, 27). In a PA, each state may have several

nondeterministic choices, after choosing a transition it will reach certain states

with specified probabilities. Fig. 1.1 (b) gives an example of PA where s has

two nondeterministic choices, either choosing the left transition or the right one.

Suppose s chooses the right transition, then it will evolve into s4 and s5 with

probability 0.6 and 0.4 respectively.

3. Continuous-time Markov Chain (CTMC).

Similar with DTMC, the CTMC is an extension of the labeled transition system

where each transition is associated with an exponentially distributed random

variable. Such transitions are called Markovian transitions, and the variable

associated with each transition is called the rate of it specifying the duration

of the Markovian transition. CTMC has been widely used as the underlying

model to analyze performance-oriented systems, such examples include TIPP (28),

PEPA (29), EMPA (30), stochastic π-calculus (31), IMC (32), StoKlaim (33), and

Stochastic Ambient Calculus (34). Fig. 1.1 (c) shows an example of CTMC where

s has three Markovian transitions with rates 5, 2, and 3 respectively.

4. Continuous-time Markov Decision Processes (CTMDP).

The CTMDP can be seen either as an extension of CTMC with nondeterministic

choices, or as a continuous-time variant of MDP where all probabilities are re-

placed by exponentially distributed random variables. In a CTMDP, each state

will first choose a transition nondeterministically from all available transitions,

then it will delay for some time and evolve into certain states with specified

probabilities. This model has been studied in (35, 36, 37), and applied in many

fields such as stochastic scheduling (38, 39) and dynamic power management

(40). Fig. 1.1 (d) gives an example of CTMDP where s has two nondeterministic

choices: either s chooses the left transition first and then evolve into s1, s2, and

s3 with rates 5, 2, and 3 respectively, or it chooses the right transition first and

evolve into s4 and s5 with rates 6 and 4 respectively.

4

1.3 (Bi)Simulation and Logical Characterization

s1

s

s2 s3

5 2 3

s1

s

s2 s3

0.5 0.2 0.3

s

s1 s2 s3 s4 s5

s

s1 s2 s3 s4 s5

(a) DTMC (b) PA/MDP

(c) CTMC (d) CTMDP

0.5 0.2 0.3 0.6 0.4

5 2 3 6 4

Figure 1.1: Different probabilistic models.

Besides the models mentioned above, a new stochastic model, called Markov automata

(MA), has been proposed by Eisentraut, Hermanns, and Zhang in (5) recently. MA can

be considered as a combination of PA and IMC, we will discuss MAs in Chapter 6. The

probabilistic models can be further divided into alternating models and non-alternating

models, we defer the detail discussion to Chapter 4.

1.3 (Bi)Simulation and Logical Characterization

As mentioned before both implementation and specification of a concurrent system

can be described using process calculi. Usually the specification Spec of a concurrent

system is more abstract than the implementation without considering many details,

while the implementation Impl is more complicated describing the system at a lower

5

1. INTRODUCTION

level. In order to establish the relation between the specification and implementation, a

number of behavioral equivalences, called bisimulation equivalences, have been proposed

(7, 8, 41). Refer to (42, 43) for a good overview of variants behavioral equivalences.

There are two main kinds of bisimulation equivalences: strong bisimulation and weak

bisimulation. Intuitively, two systems are strongly bisimilar iff they can mimic the

behavior of each other stepwise, while in weak bisimulation this condition is relaxed

such that two systems are weakly bisimilar iff they can mimic the “observable” behavior

of each other stepwise. With these notions we can check whether Impl is a correct

implementation of the given Spec.

Bisimulation equivalence is very important for verification purpose, especially to

deal with the infamous state space explosion problem. Usually the properties of a sys-

tem can be expressed by a kind of logic e.g. the Computation Tree Logic (CTL) or

Extended Computation Tree Logic (CTL∗) (44). Two bisimilar systems are guaranteed

to satisfy the same properties, thus can be grouped together. In other words, bisimu-

lation can be characterized using the logic equivalence, see e.g. (45). Therefore if Spec

and Impl are bisimilar, then whenever Spec satisfies some property, we can be sure that

Impl also satisfies the same property and vice versa. Since Spec is more abstract than

Impl , it contains less states and is preferable for verification purpose.

Usually a complicated system is built upon several smaller components via parallel

operator, thus one desirable property of bisimulation equivalences is congruence w.r.t.

the parallel operator, it enables us to split a complicated system into several compo-

nents, and then analyze these components one by one. Suppose that we have a system

specification Spec which contains two components: Spec1 and Spec2. There is also an

implementation Impl built upon Impl1 and Impl2, which are implementations of Spec1

and Spec2 respectively. We want to know whether Impl is a correct implementation

of Spec or not, i.e. whether Spec and Impl are bisimilar. Instead of checking Spec

and Impl directly, we can split the problem into two smaller ones and verify whether

Impl i and Speci are bisimilar (i = 1, 2). If the answer is yes, and the bisimulation is a

congruence, then we can guarantee that Spec and Impl are also bisimilar.

For two systems Spec and Impl to be bisimilar, Spec need to mimic the behavior of

Impl stepwise and vice versa. If we relax this condition and only require one direction

mimicking, we will obtain the concept of simulation, that is, Spec simulates Impl iff

Spec can perform whatever behavior Impl can perform, but the reverse is not required

6

1.4 Contributions and Overview of the Thesis

to hold, therefore simulations are preorders instead of equivalences. Depending on

whether we consider all the behaviors or just the observable behaviors, we will obtain

strong simulation and weak simulation respectively as in the bisimulation scenario. The

simulation can also be characterized by some proper fragment of logic, for instance in

(46) ∀CTL∗, the safe fragment of CTL∗, is used to characterize strong simulation. In

other words, if Spec simulates Impl , then for any formula ϕ of ∀CTL∗, Spec satisfies ϕ

implies that Impl satisfies ϕ.

Since bisimulations and simulations have been used successfully for verifying con-

current systems, there have been lots of efforts to extend them and their logical char-

acterizations to probabilistic systems during the last two decades, for both discrete

models (1, 2, 24, 25, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57) and continuous mod-

els (29, 32, 54, 58, 59, 60, 61). The extension is not trivial for probabilistic systems,

especially when both nondeterministic choices and probabilistic choices occur simul-

taneously, for instance in PAs and CTMDPs. For PAs, bisimulations and simulations

are characterized by variants of Hennessy-Milner logic in (62) and (57) respectively,

but as pointed out in (1) the bisimulations cannot be characterized by a probabilistic

extension of CTL i.e. PCTL (2, 3). For CTMDPs, the first logical characterization re-

sult is presented in (37). Unfortunately the strong bisimulation is only sound, but not

complete w.r.t. continuous-time stochastic logic (CSL) equivalence where CSL is a con-

tinuous extension of CTL, in other words, two strongly bisimilar systems are guaranteed

to satisfy the same CSL formulas, but two systems satisfying the same CSL formulas

are not necessarily strongly bisimilar. We will address these problems in Chapter 4 and

Chapter 5.

1.4 Contributions and Overview of the Thesis

In this dissertation we aim at developing probabilistic broadcast calculi for modeling

and analyzing protocols for MANETs and establishing the necessary probabilistic se-

mantic models for doing so. We summarize our contributions in each chapter and give

an overview of the thesis as follows:

• In Chapter 2 we present a probabilistic broadcast calculus for MANETs whose

connections are unreliable. In the calculus broadcasted messages can be lost

7

1. INTRODUCTION

with a certain probability, and due to mobility the connection probabilities be-

tween two nodes may change. If a node at a location broadcasts a message, the

network will evolve into a network distribution depending on whether nodes at

other locations receive the message or not. Mobility of nodes is not arbitrary but

guarded by a probabilistic mobility function. We define two notions of bisimulation

equivalence, they are called weak bisimulation and weak probabilistic bisimulation

respectively. In both cases, it is possible to have equivalent networks which have

different connectivity information. Then we examine bisimulation relations be-

tween different probabilistic mobility functions, which enables us to abstract the

mobility functions as well. We also extend these work to simulations. In this

calculus the time is discrete and each model may have nondeterministic choices

of probabilistic transitions, thus corresponds to a PA according to the semantics.

Finally we apply our calculus on a small example called the Zeroconf protocol.

• Based on the calculus presented in Chapter 2, we introduce a continuous time

stochastic broadcast calculus for MANETs in Chapter 3. The mobility of nodes

in a network is modeled by a stochastic mobility function which allows to change

part of a network topology depending on an exponentially distributed delay and

a network topology constraint. We allow continuous time stochastic behavior of

processes running at network nodes, e.g. in order to be able to model randomized

protocols. The introduction of group broadcast and an operator to help avoid

flooding enable us to define a novel broadcast abstraction. By the introduction

of the continuous time stochastic behavior it turns out that the semantics of

our calculus is a combination of discrete and continuous time probability, non-

determinism, and concurrency and thus gives rise to an MA. We also define two

notions of weak bisimulation congruences one of which is over networks while

the other one is over network distributions. Finally, we apply our theory on an

example of a leader election protocol.

• Since each model in Chapter 2 is a PA, in Chapter 4 we will address the prob-

lem of verifying PAs. Specifically, we will discuss the logical characterizations of

bisimulations and simulations w.r.t. PCTL
∗ and its sublogics, which is the most

often used logic for expressing properties of PAs. Even though various behavioral

equivalences have been proposed before, as a powerful tool for abstraction and

8

1.4 Contributions and Overview of the Thesis

compositional minimization for PAs, unfortunately these behavioral equivalences

are well-known to be strictly stronger than the logical equivalences induced by

PCTL or PCTL∗. In Chapter 4 we will introduce novel notions of strong bisimu-

lation relations, which characterizes PCTL and PCTL
∗ exactly. We then extend

to weak bisimulations characterizing PCTL and PCTL
∗ without next operator,

respectively. Further, we also extend the framework to simulations. Thus, we

will bridge the gap between logical and behavioral equivalences (preorders) in the

setting of PAs.

• In Chapter 5 we extend the work in Chapter 4 to continuous-time PAs i.e.

CTMDPs. We study the branching time equivalences and preorders for CTMDPs,

and the logical characterization problem of these relations w.r.t. CSL. For strong

bisimulation, it is known that bisimulation is strictly finer than CSL equivalence.

In Chapter 5, we first propose the notion of weak bisimulations for CTMDPs

and show that for a subclass of CTMDPs, weak bisimulation is both sound and

complete w.r.t. the equivalence induced by the sublogic of CSL without next

operator. We then propose a sequence of i-depth bisimulation relations charac-

terizing a sequence of sublogics with bounded until similar as in Chapter 4. The

i-depth bisimulation equivalences converge to the CSL equivalence for arbitrary

CTMDPs. Further, we extend the framework to simulations and their character-

izations as well. Another notable contribution in Chapter 5 is the notion of a

parallel composition operator for CTMDPs, moreover, we show that both strong

and weak bisimulations are congruence relations with respect to it.

• Since the semantics introduced in Chapter 3 gives rise to MAs, in Chapter 6 we

will talk about related problems for MAs. MA and its weak bisimulation was

first proposed by Eisentraut, Hermanns and Zhang in (5), and later on Deng

and Hennesy proposed another notion of weak bisimulation in (6), enjoying the

nice property of being a reduction barbed congruence, i.e., it is compositional,

barb-preserving and reduction-closed. In Chapter 6 we propose two different

semantics for MAs called early semantics and late semantics respectively, and

then we introduce early and late weak bisimulation based on the semantics. We

show that the early weak bisimulation coincides with the weak bisimulations in

9

1. INTRODUCTION

(5) and (6), and the late weak bisimulation is strictly coarser than them, thus

using late weak bisimulation we can reduce the state space even further.

• We conclude the thesis in Chapter 7.

1.5 My Publications

During my PhD I have written the following 8 articles together with my supervisor

Jens Chr. Godskesen and some other people from MT-Lab:

1. Lei Song and Jens Chr. Godskesen. Probabilistic Mobility Models for Mobile

and Wireless Networks. IFIP TCS 2010: 86-100.

2. Lei Song and Jens Chr. Godskesen. Broadcast Abstraction in a Stochastic Cal-

culus for Mobile Networks. Submitted for publication.

3. Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Bisimulations Meet PCTL

Equivalences for Probabilistic Automata. CONCUR 2011: 108-123.

4. Lei Song, Lijun Zhang, and Jens Chr. Godskesen. The Branching Time Spectrum

for Continuous-Time MDPs. Submitted for publication.

5. Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Late Weak Bisimulation for

Markov Automata. Submitted for publication.

6. Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Bisimulations Meet PCTL

Equivalences for Probabilistic Automata. Submitted to CONCUR 2011 special

issue of LMCS.

7. Lei Song, Flemming Nielson, and Bo Friis Nielsen. A Stochastic Broadcast Pi-

Calculus. QAPL 2011: 74-88.

8. Lei Song and Jens Chr. Godskesen. A Probabilistic Calculus for Mobile and Ad

Hoc Networks (Abstract). NWPT 2009.

where Article 8 is an abstract version of Article 1, and Article 6 is a journal version

of Article 3. Chapter 2 to 6 of this dissertation are based on Article 1-5 respectively.

Article 7 does not appear explicitly in this dissertation, but it can be seen as an initial

10

1.5 My Publications

attempt to investigate the stochastic broadcast calculus, which later on leads us to

develop the theory in Article 2.

11

1. INTRODUCTION

12

Chapter 2

Discrete Model

In this chapter we introduce a discrete mobility model for wireless networks where

one location may be connected to another with a certain probability. Moreover these

probabilities are not fixed but can be changed dynamically to reflect the fact that the

connection topology of a wireless network may change due to node’s movement, node’s

crash and so on. We first motivate the work in Section 2.1. The syntax and semantics

of the calculus is introduced in Section 2.2 and 2.3 respectively. In Section 2.4 we

introduce weak (probabilistic) bisimulations, while weak (probabilistic) simulations are

discussed in Section 2.5. The notions of bisimulations and simulations are extended to

probabilistic mobility functions in Section 2.6. We show the application of our theory

by applying it on the Zeroconf protocol in Section 2.7. This chapter is concluded with

related work in Section 2.8.

2.1 Motivation

Mobility and local wireless broadcast has been studied in e.g. the calculi: CBS♯ (63),

the ω-calculus (64), CMN (65), RBPT (66), and CMAN (67, 68). All these calculi only

deal with node connectivity in two modes: either two nodes are connected or discon-

nected. It is often assumed that when a node at location l is within the transmission

range of another node at location k, then the node at l can receive messages broad-

casted from k with probability 1, otherwise with probability 0. Here we refine this

assumption and equip a connection with a probability, since in an unreliable medium

we cannot guarantee that the broadcasted messages will always be received even within

13

2. DISCRETE MODEL

kl

m n

Figure 2.1: Connectivity example.

0.7

0.6 0.90.4 0.8

0.7

0.6

0.2

0.3

Figure 2.2: An example of mobility.

the transmission range. For example, in Fig. 2.1 the dashed circle denotes the trans-

mission range of k, every node at a location within the circle, such as l and m, may

receive the messages broadcasted from k, but the node at location n outside the circle

cannot. Intuitively, although both l and m are in the transmission range of the node at

location k, it is more reasonable to let the nodes receive messages from k with different

probabilities since m is further away from k than l. In our calculus, the connectivity

of this network can be denoted as {{(0.9, l), (0.5,m), (0, n)} 7−→ k} if nodes at l,m, n

can receive messages from k with probability 0.9, 0.5, and 0 respectively.

In order to model mobility we let connection probabilities between the nodes at

locations change, and the changes are also probabilistic. For instance, the node at

14

2.1 Motivation

location m in Fig. 2.1 may move closer to location k with a certain probability in which

case the node at m will be able to receive messages from k with a higher probability.

In practice, when verifying properties of a mobile network it will be reasonable to

assume that mobility within a network is not arbitrary but respects certain rules or

distributions. Therefore we introduce a probabilistic mobility function (PMF) which

defines the mobility rules of all possible connections within a network. A PMF returns

the probability for a connection evolving from one value into another. For example, if

in a PMF the connection probability from l to k is given by Fig. 2.2, then we know that

it can change from 0.9 to 0.6 with probability 0.2 or stay at 0.9 with probability 0.8,

that is:

{{(0.9, l), (0.5,m), (0, n)} 7−→ k} −→

{
0.2 : {{(0.6, l), (0.5,m), (0, n)} 7−→ k}

0.8 : {{(0.9, l), (0.5,m), (0, n)} 7−→ k}
(2.1)

Hence we equip mobility with probabilities, and after each mobility action the network

will evolve into a distribution with the probabilities specified by the given PMF. We

expect that usually a PMF can be obtained based on measurement of case studies.

Our network calculus consists of concurrent processes (nodes) communicating in-

ternally over channels at (logical) locations and broadcasting messages to processes at

neighboring locations over probabilistic connections that may change probabilistically

over time as outlined above. The semantics is a combination of probability, concur-

rency, and non-determinism. Formally the labeled transition system semantics gives

rise to a probabilistic automata as outlined in (1).

We also define two (weak) bisimulations along the lines of (56) and (1) respectively,

as a novelty the bisimulations are parameterized by a PMF. The first weak bisimulation

makes sure that two bisimilar networks have the same probability for every property

(specified by pCTL∗ in (56) for instance) while the second bisimulation, called weak

probabilistic bisimulation, only guarantees that they have the same maximum and

minimum probabilities for each property. This work is also extended to simulations

and (bi)simulations between PMFs.

Another important contribution is the introduction of unknown probabilities. Since

we are dealing with open systems where contexts may contain new nodes and infor-

mation about connection probabilities, we cannot in a network specification expect to

know the probability of all possible connections. We integrate unknown probabilities in

15

2. DISCRETE MODEL

our theory in order to deal with these cases. Intuitively a connection with an unknown

probability means that the probability for the connection can be any value allowed by

the given PMF.

2.2 The Calculus

We presuppose a countable set N of names, ranged over by x, y, z and a countable set

L of location names, ranged over by k, l,m, and n. In addition, we also suppose a finite

set of probabilities ℘ including 0 and 1 ranged over by ρ, ρ′, ρ1 We define a location

connectivity set, ranged over by L,K . . ., as an element of

{{(ρ, l) | l ∈ L} | ρ ∈ ℘}

where L ⊂ L is finite. We use

l(L) = {l | (ρ, l) ∈ L}

to denote all the locations in L. The convex combination of location connectivity sets
∑

i∈I wiLi is defined by

{(ρ, l) |
∑

i∈I,(ρi,l)∈Li

wiρi = ρ}

where l(Li) = l(Lj) for any i, j ∈ I.

The syntax of processes P, ranged over by p, q, r . . ., is defined by the following

grammar:

p, q ::= 0 | Act · p | [x = y]p, q | νxp | p ‖ q | A

Act ::= 〈x〉 | y〈x〉 | (x) | y(x)

where action 〈x〉 represents broadcasting a message x, while the reception of a broad-

casted message is denoted by (x); y〈x〉 denotes sending a message x via the channel y

and y(x) represents receiving a message x on channel y. Process 0 is the deadlocked

process; Act · p is the process that can perform action Act and then behave as p;

[x = y]p, q behaves as p if names x and y match and as q otherwise; νxp means that

name x is bounded in the process p; in composition p ‖ q, the processes p and q can

proceed in parallel and can also interact via shared names; we assume that there is a

countable set of constants which are used to denote processes. By giving an equation

such that A
def
= p we say that constant A ∈ A will behave as p, where A is a set of

16

2.2 The Calculus

Table 2.1: Structural congruence of processes (discrete).

p ‖ 0 ≡ p p ‖ q ≡ q ‖ p (p ‖ q) ‖ r ≡ p ‖ (q ‖ r)

νxνyp ≡ νyνxp νxp ‖ q ≡ νx(p ‖ q), x /∈ fn(q)

process constants, and A is required to be guarded in p. As usual we often leave out a

trailing 0. Structural congruence of processes, ≡, is the least equivalence relation and

congruence closed by the rules in Table 2.1 and α-conversion.

The set of networks N is defined by the grammar:

E,F ::= 0 | ⌊p⌋l | {L 7−→ l} | νxE | E ‖ F

Here ⌊p⌋l is a process p at location l; νxE and E ‖ F are restriction and parallel com-

position respectively which have the standard meaning; {L 7−→ l} denotes connection

information, i.e. if (ρ, k) ∈ L, the node at location k are connected to l and can receive

messages from nodes at l with probability ρ. We use E,F,G . . . to range over N .

Let C ⊆ N denote the set of networks which only contain connectivity information,

called connectivity networks and ranged over by C,C1, . . ., it is defined by the following

syntax:

C ::= {L 7−→ l} | C ‖ C.

Moreover let B ⊆ N denote the set of networks which does not contain connectivity

information i.e. B is defined by the following syntax and ranged over by B,B1, . . .:

B ::= 0 | ⌊p⌋l | νxB | B ‖ B.

A network distribution is a function

µ : N → [0, 1]

satisfying

|µ| =
∑

E∈N

µ(E) ≤ 1.

Let ND denote the set of distributions over N , ranged over by µ, µ1 The support

of µ,

Supp(µ) = {E | µ(E) > 0}

17

2. DISCRETE MODEL

Table 2.2: Structural congruence of networks (discrete).

E ‖ 0 ≡ E νxνyE ≡ νyνxE {∅ 7−→ l} ≡ 0

⌊νxp⌋l ≡ νx⌊p⌋l E ‖ F ≡ F ‖ E ⌊p⌋l ≡ ⌊q⌋l, p ≡ q

(E ‖ F) ‖ G ≡ E ‖ (F ‖ G) νxE ‖ F ≡ νx(E ‖ F), x /∈ fn(F)

{L1 7−→ k} ‖ {L2 7−→ k} ≡ {L1 ∪ L2 7−→ k}, l(L1) ∩ l(L2) = ∅

Table 2.3: Definition of function l

loc(0) = ∅ loc(⌊p⌋l) = {l} loc({L 7−→ l}) = ∅

loc(νxE) = loc(E) loc(E ‖ F) = loc(E) ∪ loc(F)

is the set of networks in µ with positive probability. Sometimes we also write {(ρi :

Ei) | µ(Ei) = ρi} to denote µ. If µ(E) = 1, then µ is the Dirac distribution δE . Given

a real number x such that a · |µ| ≤ 1, a · µ is the distribution such that (a · µ)(E) =

a · µ(E) for each E ∈ Supp(µ). Moreover µ = µ1 + µ2 whenever for each E ∈ Supp(µ),

µ(E) = µ1(E) + µ2(E). Parallel composition of network distributions µ ‖ µ′ is defined

as a distribution such that

(µ ‖ µ′)(E ‖ F) = µ(E) · µ′(F)

for any E ‖ F . Given an equivalence relation R on networks, µ R µ′ iff µ(S) = µ′(S)

for each S ∈ N /R where µ(S) =
∑

E∈S µ(E).

A substitution {y/x} can be applied to a node, network, or network distribution.

When applied to a network distribution, it means applying this substitution to each

network within the distribution. The set of free names and bound names in E, denoted

by fn(E) and bn(E) respectively, are defined as expected. Structural congruence of

networks, ≡, is the least equivalence relation and congruence closed by the rules in

Table 2.2 and α-conversion. ≡ is extended to network distributions as expected. Let

loc(E) denote the set of locations located in a network which is defined inductively by

Table 2.3. Differently, l(E) is used to denote all the location names appearing in E

including those in connectivity information, its definition is the same as loc(E) except

that l({L 7−→ l}) = l(L) ∪ {l}.

In the following, we use Pro(k 7−→ l) as an abbreviation of the probability with

which the node at location k can receive messages from l. As mentioned, we assume

18

2.2 The Calculus

that mobility is not arbitrary but respects certain rules. These rules are given by a

function

M : L× L× ℘× ℘ → R≤1

called a probabilistic mobility function (PMF)1, the probability for Pro(k 7−→ l) chang-

ing from ρ to ρ′ is given by M(k, l, ρ, ρ′). We assume there is a given M throughout

this chapter.

Let Gk 7−→l be the underlying directed graph for Pro(k 7−→ l), where vertices are

possible values of Pro(k 7−→ l) and where there is an edge from state ρ to ρ′ iff

M(k, l, ρ, ρ′) ∈ (0, 1], and we ignore nodes with 0 in-degree and 0 out-degree. For

example, if Gk 7−→l is defined by Fig. 2.3, then we know that if the current value of

Pro(k 7−→ l) is 0.5, it could change to 0.6 with probability 0.3 or to 0.7 with proba-

bility 0.2. Without causing any confusion, sometimes we also use Gk 7−→l to denote the

set of nodes in the graph Gk 7−→l, this set is called the support of Pro(k 7−→ l). A PMF

M is valid if for all Gk 7−→l, Gk 7−→l 6= ∅ and for each ρ ∈ Gk 7−→l,

∑

ρ′∈Gk 7−→l

M(k, l, ρ, ρ′) = 1.

This is not a restriction to the expressions of PMFs, since if

∑

ρ′∈Gk 7−→l∧ρ′ 6=ρ

M(k, l, ρ, ρ′) < 1,

then the probability of Pro(k 7−→ l) will not change with probability

1−
∑

ρ′∈Gk 7−→l∧ρ′ 6=ρ

M(k, l, ρ, ρ′)

intuitively, therefore we can always add extra rule such that

M(k, l, ρ, ρ) = 1−
∑

ρ′∈Gk 7−→l∧ρ′ 6=ρ

M(k, l, ρ, ρ′)

which makes the M valid.

Since the location set L is infinite, it is not reasonable to let users define the mobility

rules of all the connections. Instead we allow users to only define the mobility rules

of connections which they are interested in. We call those finitely many rules defined

1R≤1 is the set of real numbers in [0,1]

19

2. DISCRETE MODEL

0.5

0.6 0.9

0.8

0.7

0.5

0.7 0.8

0.3

0.2

0.3

0.3

0.6

0.2

0.4

0.7

Figure 2.3: An example of a PMF.

by users explicit mobility rules, and those connections for which no rules are defined

we let have implicit mobility. For all the connections with implicit mobility, we say

that they can connect or disconnect with probability 1. Formally, if the mobility rule

of Pro(k 7−→ l) is implicit, we assume that

Gk 7−→l = {0, 1} and M(k, l, 1, 0) = M(k, l, 0, 1) = 1

by default. In the following, we only consider valid PMFs and let

Gl = {k ∈ L | mobility rule of Pro(k 7−→ l) is explicit}

which is finite for each l.

We use E(k, l) to denote the connection probability from k to l in the network E.

When the requested probability is known in E, E(k, l) returns this value, otherwise it

returns θk 7−→l denoting an unknown probability, i.e.

E(k, l) =

{
ρ ∃E′.(E ≡ {{(ρ, k)} 7−→ l} ‖ E′)

θk 7−→l otherwise

We use Dl(E) to denote the set of connectivity information from some locations to l in

E, that is Dl(E) is the smallest set such that E(k, l) 6= θk 7−→l and (E(k, l), k) ∈ Dl(E)

for each k ∈ L.

We introduce the well-formed networks w.r.t. a given PMF as follows:

20

2.2 The Calculus

Definition 1 (Well-formed network). Given a PMF M, the set of well-formed networks

N is defined inductively by:

1. 0, ⌊p⌋l ∈ N ,

2. νxE ∈ N if E ∈ N ,

3. {L 7−→ l} ∈ N if for each (ρ, k) ∈ L, ρ ∈ Gk 7−→l,

4. E ‖ F ∈ N if E,F ∈ N with loc(E) ∩ loc(F) = ∅ and there does not exist

l, k ∈ L such that E(l, k) 6= θl 7−→k and F (l, k) 6= θl 7−→k.

Clauses 1 and 2 are trivial. Clause 3 says that we can only have connectivity

information which is allowed by the given M. Since the given PMF M defines not only

the mobility rules, but also all the possible probabilities of each connection, this allows

us to omit some impossible states. Clause 4 has two restrictions: i) loc(E)∩ loc(F) = ∅

guarantees that each location name is unique, we disallow networks like ⌊p⌋l ‖ ⌊q⌋l.

In this case we will write ⌊p ‖ q⌋l instead, since otherwise processes p and q may not

receive the coming messages at the same time even they are at the same location,

which is against our intuition. This will be explained in more details in Section 2.3. ii)

The other condition says that we cannot have duplicate connectivity information in a

network, which is used to guarantee that we will never have inconsistent connectivity

information for a connection. For instance networks like {{(ρ, k), (ρ′ , k)} 7−→ l} with

ρ 6= ρ′ are not well-formed. In the sequel we only consider the set of well-formed

networks.

We generalize network distributions to contain unknown probabilities. In the fol-

lowing let

̺1, ̺2 ::= ρ | θk 7−→l | (1− θk 7−→l) | ̺1 · ̺2

define the set of generalized probabilities which may contain unknown values. The

generalized network distribution, GND, is defined inductively as follows:

1. µ ∈ GND if µ ∈ ND;

2. µ ∈ GND if there exists ̺ and µ1, µ2 ∈ GND such that

µ = ̺ · µ1 + (1− ̺) · µ2.

21

2. DISCRETE MODEL

Without causing any confusion, we also use µ, µ′, µ1, · to range over GND. For a

generalized network distribution µ, we may substitute unknown probabilities in µ with

known probabilities. In order to do so, we introduce the operator • such that µ•Dl(E)

is a distribution equal to µ except that any unknown probability θk 7−→l in µ has been

replaced with the probability ρ if (ρ, k) ∈ Dl(E). Formally,

(µ •Dl(E))(F) = (µ(F)) •Dl(E)

for each F ∈ Supp(µ) where • is overloaded to deal with generalized probabilities such

that

1. ̺ •Dl(E) = ρ if ̺ = ρ;

2. θk 7−→l •Dl(E) = ρ and (1− θk 7−→l) •Dl(E) = 1− ρ if (ρ, k) ∈ Dl(E);

3. (̺1 · ̺2) •Dl(E) = (̺1 •Dl(E)) · (̺2 •Dl(E)).

To show how • works, we give an example as follows:

Example 1. Let

µ = {θk 7−→l : E1, (1 − θk 7−→l) : E2},

E = {{(0.9, k)} 7−→ l},

apparently Dl(E) = {(0.9, k)}. After applying • with parameter Dl(E) to µ, we will be

able to substitute the unknown probability θk 7−→l in µ as follows:

µ • {(0.9, k)} = {θk 7−→l • {(0.9, k)} : E1, (1 − θk 7−→l) • {(0.9, k)} : E2}

= {0.9 : E1, 0.1 : E2}.

2.3 Labeled Transition System

In this section we introduce the labeled transition system semantics for our calculus;

the semantics is parameterized by the given PMF M. The semantics of networks is

defined based on the semantics of processes. We begin with the semantics of processes.

Define a set of actions for processes, Ap, ranged over by αp, by:

αp ::= νx̃〈x〉 | (x) | νx̃y〈x〉 | y(x) | τ

where νx̃〈x〉 denotes that a process broadcasts a message x; (x) means that the process

receives a message; νx̃y〈x〉 and y(x) are used to denote point-to-point communication,

22

2.3 Labeled Transition System

that is, νx̃y〈x〉 means sending a message x on channel y while y(x) denotes receiving a

message on channel y. The x̃ can be either {x} or an empty set ∅, when x̃ = {x}, x is

bound, otherwise it is free. As usual τ is the internal action.

Table 2.4 gives the labeled transition system of processes. Note that we adopt

a late semantics, i.e. the bound name of an input becomes instantiated only when

inferring a communication. Rule (pPAR) says that in process p ‖ q, p can be executed

independently with q if the performed action is not broadcast and reception. Rule

(pBRD) means that q can receive broadcasted messages from p which is in parallel with

q. Rule (pPRE) is straightforward illustrating that Act · p can execute Act , and then

evolve into p. Rule (pLOS) means that any non deadlock process Act · p can perform

a reception action (x) as long as x ∈ fn(Act · p), but if Act is not a reception prefix i.e.

Act ·p is not intended to receive a broadcasted message, it will simply discard the coming

messages and stay unchanged. Similarly, in (pZERO) we allow the deadlock process 0 to

be able to receive messages but without any impact. The intuition to introduce (pLOS)

and (pZERO) is that broadcast actions in our calculus are non-blocking. Together with

other rules we can guarantee that a process can broadcast a message no matter if there

are recipients or not. This is different from the point-to-point communication where

an output and input must synchronize with each other. Rule (pCON) indicates that

the behavior of a process constant defined by A
def
= p is decided by the behavior of p.

Rule (pCOM) is the standard point-to-point communication where two processes can

communicate via the same channel. Rules (pIF) and (pELSE) are the conditional rules,

that is, [x = y]p, q will behave as p if x = y, otherwise it will behave as q. Intuitively,

Rule (pREC) means that two processes in parallel can receive broadcasted messages

simultaneously. Rule (pOPEN2) is the standard scope opening rule of the π-calculus

in (69), while (pOPEN1) is its counterpart in a broadcast scenario. Rule (pRES) says

that an action αp will not be affected by the restriction operator whenever its free

names are not bound. Rule (pSTR) illustrates the fact that two structural congruent

processes have the same behaviors, with rules defined in Table 2.1, we can deduce the

symmetric rules of (pPAR), (pBRD), and (pCOM).

Based on the semantics of processes, we define the semantics of networks. First we

define a set of actions A, ranged over by α, by:

α ::= νx̃〈x,K〉@l | (x,K)⊳ l | τ

23

2. DISCRETE MODEL

Table 2.4: Labeled transition system of processes (discrete).

p
αp
−→ p′ αp /∈ {(x), νx̃〈x〉}

p ‖ q
αp
−→ p′ ‖ q

(pPAR)

p
νỹ〈y〉
−−−→ p′ q

(x)
−−→ q′ ỹ ∩ {{x} ∪ fn(q)} = ∅

p ‖ q
νỹ〈y〉
−−−→ p′ ‖ q′{y/x}

(pBRD)

Act · p
Act
−−→ p

(pPRE)
x /∈ fn(Act · p) Act 6= (y)

Act · p
(x)
−−→ Act · p

(pLOS)

p
αp
−→ p′ A

def
= p

A
αp
−→ p′

(pCON)
p

νz̃y〈z〉
−−−−→ p′ q

y(x)
−−→ q′

p ‖ q
τ
−→ νz̃(p′ ‖ q′{z/x})

(pCOM)

p
αp
−→ p′

[x = x]p, q
αp
−→ p′

(pIF)
[x = y]p, q

αp
−→ q′ x 6= y

q
αp
−→ q′

(pELSE)

0
(x)
−−→ 0

(pZERO)
p

(x)
−−→ p′ q

(x)
−−→ q′

p ‖ q
(x)
−−→ p′ ‖ q′

(pREC)

p
〈x〉
−−→ p′

νxp
νx〈x〉
−−−→ p′

(pOPEN1)
p

αp
−→ p′ x /∈ fn(αp)

νxp
αp
−→ νxp′

(pRES)

p ≡ q
αp
−→ q′ ≡ p′

p
αp
−→ p′

(pSTR)
p

y〈x〉
−−→ p′ x 6= y

νxp
νxy〈x〉
−−−−→ p′

(pOPEN2)

The actions of networks include only broadcasts, receptions and internal actions. In

addition, connectivity information is attached to each broadcast and reception action.

νx̃〈x,K〉@l denotes that a node at location k receives a message broadcasted from l

with probability ρ if (ρ, k) ∈ K; (x,K)⊳ l means that the node at location k receives a

message from location l with probability ρ if (ρ, k) ∈ K.

Table 2.5 gives the labeled transition system of networks. Rules (nREC1), (nTAU),

and (nBRD) illustrate that the behavior of a node is determined by the behavior of

the process located inside the node. Specifically, Rule (nREC1) deals with receptions.

24

2.3 Labeled Transition System

Whenever p can perform a reception, ⌊p⌋l can receive broadcasted messages from any

location k. Since the value of Pro(l 7−→ k) is currently not known in ⌊p⌋l, thus after

receiving a message from k, it will evolve into a generalized distribution where θl 7−→k

is used as a placehold. Note that (nREC1) is the only rule where unknown probability

is introduced. Later we will show that these unknown probabilities can be resolved

completely. Rule (nTAU) is straightforward saying that if p can perform an internal

action τ , then ⌊p⌋l is also able to perform τ , and evolve accordingly. Rule (nBRD) is

the counterpart of Rule (nREC1) which deals with broadcasts. Since the process p is

located at l, when it broadcasts a message x to the outside of the network, it should

notify others where the message x is from. Also in network ⌊p⌋l, nothing is known

about the connectivity information, thus an empty set is attached which gives us the

network action νx̃〈x, ∅〉@l.

Rule (nREC2) has the same intuition as Rule (pREC) in Table 2.4, but needs more

explanation. First, two networks E and F in parallel can receive a broadcasted message

together, moreover E may contain connectivity information which is not unknown

in F and vice versa, hence when put them in parallel, they should learn additional

connectivity information from each other. At the moment when E performs a reception,

and evolve into µ1, it has no way to know the connectivity information in F , therefore

the resulting distribution µ1 may contain unknown probabilities which are known in

F , similarly for F . This justifies why we need to update µ1 with Dl(F) and µ2 with

Dl(E). It is worthwhile to note that the only unknown probability occurring in µ1

and µ2 are of the form θk 7−→l for some k, thus it is enough to consider Dl(F) and

Dl(E). As we said before, the connectivity information in E ‖ F is the union of the

connectivity information in E and F , thus in the resulting reception of E ‖ F , the

attached connectivity information is updated to L∪K. Note here that the well-formed

condition guarantees that l(L) ∩ l(K) = ∅, so we can simply merge L and K together

without causing inconsistency. To show how (nREC2) works, we give an example as

follows:

Example 2. Let E = ⌊(x) ·p⌋l and F = {{(0.5, l)} 7−→ k}, then according to (nREC1)

and (nPRO1), we have the following transitions:

p
(x)
−−→ p′

E
(x,∅)⊳k
−−−−−→ {θk 7−→l : ⌊p

′⌋l, (1 − θk 7−→l) : E} ≡ µ ,

25

2. DISCRETE MODEL

E

E1

E2

•
0.3

0.2

τ

0.5

Figure 2.4: A mobility transition.

F
(x,{(0.5,l)})⊳k
−−−−−−−−−→ F.

Combining these two transitions according to (nREC2), we have the following transition

of E ‖ F :

E ‖ F
(x,{(0.5,l)})⊳k
−−−−−−−−−→ {0.5 : ⌊p′⌋l ‖ F, 0.5 : E ‖ F}.

Obviously, although that the value of Pro(l 7−→ k) is unknown in E, it is known in

F , hence it is also known in E ‖ F . When putting E and F in parallel, the resulting

distribution µ will be updated by substituting θl 7−→k with probability 0.5.

Rule (nMOB) indicates that the connectivity information in a network can be

changed according to the PMF M parameterizing the semantics. This rule is novel

which makes our mobility model different from the previous mobility models, for in-

stance the mobility model adopted in (65, 67, 68). The usage of rule (nMOB) is shown

in the following example.

Example 3. Suppose we have a network E with E(l, k) = 0.8 and we also know from

the given PMF M that

M(l, k, 0.8, 0.9) = 0.3,

M(l, k, 0.8, 0.7) = 0.2,

M(l, k, 0.8, 0.8) = 0.5,

then we have the derivation in Fig. 2.4 with E1(l, k) = 0.9, E2(l, k) = 0.7.

Rule (nSYN) deals with synchronization and broadcast, in that a network can

broadcast a message to any neighbor network where each node may receive with a

certain probability. For the same reason as in (nREC2), the location connectivity set

26

2.3 Labeled Transition System

in the resulting action is the union of the two location connectivity sets in the syn-

chronizing actions. Rule (nOPEN) is similar as Rules (pOPEN1) and (pOPEN2) in

Table 2.4 dealing with name restriction. Rule (nPAR) means that two networks in

parallel can execute independently, in our calculus only the internal action τ need not

to be synchronized with others. Rule (nPRO1) explains how a connectivity network

adds its information of how nodes at destinations will receive messages with a certain

probability to the semantics. Since according to (nREC2) and (nSYN), these informa-

tion will be propagated until all the other networks in parallel get notified. On the

other hand, (nPRO2) shows that a network only containing connectivity information

of a certain location cannot offer connectivity information of other locations. In this

case it is still able to perform a reception but with empty connectivity information,

otherwise we may block the execution of a network, refer to the following example.

Example 4. Let

E = ⌊〈x〉 · p⌋l,

F = {{(0.5,m)} 7−→ n}

such that l 6= n. According to (nBRD), we have E
〈x,∅〉@l
−−−−→ ⌊p⌋l. If we do not have Rule

(nPRO2), F can only perform a reception emitting from n i.e.

F
(x,{(0.5,m)})⊳n
−−−−−−−−−−→ F,

thus (nSYN) cannot be applied, and the E ‖ F will not be able to perform a broadcast

from l which is for sure not what we expect. By introducing (nPRO2), we have F
(x,∅)⊳l
−−−−→

F , and then Rule (nSYN) can be applied.

As we mentioned before, we treat networks like ⌊(x) · p⌋l ‖ ⌊(x) · q⌋l as a non well-

formed network, since otherwise according to Table 2.2 and 2.4, the processes at l may

not receive messages simultaneously. Refer to the following example.

Example 5. Let

E = ⌊(x) · p⌋l ‖ ⌊(x) · q⌋l,

then according to (pPRE) and (nREC1), we have the following two transitions:

⌊(x) · p⌋l
(x,∅)⊳k
−−−−−→ {θl 7−→k : ⌊p⌋l, (1 − θl 7−→k) : ⌊(x) · p⌋l},

⌊(x) · q⌋l
(x,∅)⊳k
−−−−−→ {θl 7−→k : ⌊q⌋l, (1 − θl 7−→k) : ⌊(x) · q⌋l}.

27

2. DISCRETE MODEL

Table 2.5: Labeled transition system of networks (discrete).

p
(x)
−−→ p′

⌊p⌋l
(x,∅)⊳k
−−−−−→ {θl 7−→k : ⌊p′⌋l, 1− θl 7−→k : ⌊p⌋l}

(nREC1)

E
(x,L)⊳l
−−−−→ µ1 F

(x,K)⊳l
−−−−−→ µ2

E ‖ F
(x,L∪K)⊳l
−−−−−−→ (µ1 •Dl(F)) ‖ (µ2 •Dl(E))

(nREC2)

{{(ρ, l)} 7−→ k}
τ
−→ {M(l, k, ρ, ρ′) : {{(ρ′, l)} 7−→ k}}

(nMOB)

E
νỹ〈y,L〉@l
−−−−−−→ µ1 F

(x,K)⊳l
−−−−−→ µ2 ỹ ∩ ({x} ∪ fn(F)) = ∅

E ‖ F
νỹ〈y,L∪K〉@l
−−−−−−−−→ ((µ1 •Dl(F)) ‖ (µ2{y/x} •Dl(E)))

(nSYN)

p
τ
−→ p′

⌊p⌋l
τ
−→ ⌊p′⌋l

(nTAU)
E

〈x,L〉@l
−−−−→ µ

νxE
νx〈x,L〉@l
−−−−−−→ µ

(nOPEN)

E
τ
−→ µ

E ‖ F
τ
−→ µ ‖ F

(nPAR)
E

α
−→ µ x /∈ fn(α)

νxE
α
−→ νxµ

(nRES)

p
νx̃〈x〉
−−−→ p′

⌊p⌋l
νx̃〈x,∅〉@l
−−−−−−→ ⌊p′⌋l

(nBRD)
{K 7−→ k}

(x,K)⊳k
−−−−−→ {K 7−→ k}

(nPRO1)

E ≡ F
α
−→ µ2 ≡ µ1

E
α
−→ µ1

(nSTR)
l 6= k

{K 7−→ k}
(x,∅)⊳l
−−−−→ {K 7−→ k}

(nPRO2)

By applying (nREC2) E has a transition as follows:

E
(x,∅)⊳k
−−−−−→=





θl 7−→k · θl 7−→k : ⌊p⌋l ‖ ⌊q⌋l,

θl 7−→k · (1− θl 7−→k) : ⌊p⌋l ‖ ⌊(x) · q⌋l,

(1− θl 7−→k) · θl 7−→k : ⌊(x) · p⌋l ‖ ⌊q⌋l,

(1− θl 7−→k) · (1− θl 7−→k) : E

Obviously, in the networks ⌊p⌋l ‖ ⌊(x) · q⌋l and ⌊(x) · p⌋l ‖ ⌊q⌋l, the processes (x) · p and

(x) · q did not receive messages even that they are located at the same location l. This

28

2.3 Labeled Transition System

is against our intuition, and should be avoided.

The following is a more complicated example to illustrate how the rules in Table 2.4

and 2.5 can be used.

Example 6. Assume there is a network E = E1 ‖ E2 ‖ E3 where

E1 = ⌊〈y〉 · p⌋l,

E2 = ⌊(x) · 〈x〉⌋k ‖ {{(0.6, k)} 7−→ l},

E3 = ⌊(x).〈x〉⌋m ‖ {{(0.8,m)} 7−→ l}.

Intuitively, we have that after the node at location l has broadcasted the message y, E

will evolve into a distribution µ where the probability for both nodes at locations k and

m receiving y is 0.6 · 0.8 = 0.48, the probability of only the node at location k receiving

y is 0.6 · (1 − 0.8) = 0.12 and so on. We show how to obtain µ based on the labeled

transition system in Table 2.4 and 2.5.

(x).〈x〉
(x)
−−→ 〈x〉 (pPRE)

⌊(x).〈x〉⌋k
(x,∅)⊳l
−−−−→ {(θk 7−→l : ⌊〈x〉⌋k), (1− θk 7−→l : ⌊(x).〈x〉⌋k)}

(nREC1)

{{(0.6, k)} 7−→ l}
(x,{(0.6,k)})⊳l
−−−−−−−−−→ {{(0.6, k)} 7−→ l} (nPRO1)

E2
(x,{(0.6,k)})⊳l
−−−−−−−−−→ {(0.6 : ⌊〈x〉⌋k ‖ {{(0.6, k)} 7−→ l}), (0.4 : E2)}

(nREC2)

Similarly, for E3 we have the following transition.

(x).〈x〉
(x)
−−→ 〈x〉 (pPRE)

⌊(x).〈x〉⌋m
(x,∅)⊳l
−−−−→ {(θm7−→l : ⌊〈x〉⌋m), (1− θm7−→l : ⌊(x).〈x〉⌋m)}

(nREC1)

{{(0.8,m)} 7−→ l}
(x,{(0.8,m)})⊳l
−−−−−−−−−→ {{(0.8,m)} 7−→ l} (nPRO1)

E3
(x,{(0.8,m)})⊳l
−−−−−−−−−→ {(0.8 : ⌊〈x〉⌋m ‖ {{(0.8,m)} 7−→ l}), (0.2 : E3)}

(nREC2)

By combing transitions of E2 and E3, we get the following transition according to

(nREC2): E2 ‖ E3
(x,{(0.6,k),(0.8,m)})⊳l
−−−−−−−−−−−−−→





0.6 · 0.8 :⌊〈x〉⌋k ‖ ⌊〈x〉⌋m ‖ {{(0.6, k), (0.8,m)} 7−→ l}

0.6 · 0.2 :⌊〈x〉⌋k ‖ {{(0.6, k)} 7−→ l} ‖ E3

0.4 · 0.8 :E2 ‖ ⌊〈x〉⌋m ‖ {{(0.8,m)} 7−→ l}

0.4 · 0.2 :E2 ‖ E3





≡ µ

29

2. DISCRETE MODEL

Finally, we get the following transition of E.

〈y〉.p
〈y〉
−−→ p (pPRE)

E1
〈y,∅〉@l
−−−−→ ⌊p⌋l

(nBRD)

E2 ‖ E3
(x,{(0.6,k),(0.8,m)})⊳l
−−−−−−−−−−−−−→ µ (nREC2)

E
〈y,{(0.6,k),(0.8,m)}〉@l
−−−−−−−−−−−−−−→ ⌊p⌋l ‖ µ{y/x}

(nSYN)

2.4 Weak (Probabilistic) Bisimulation

Similarly as in Section 2.3 where we define the semantics of processes and networks

separately, in this section we will first define weak bisimulations for processes and then

later for networks.

2.4.1 Weak Bisimulation

Bellow follows the definition of weak bisimulation for processes where we let
τ

==⇒ denote

(
τ
−→)∗ representing an arbitrary number (including 0) of τ actions in sequence. We define

α
==⇒ =

τ
==⇒

α
−→

τ
==⇒

provided that α 6= τ .

Definition 2 (Weak Process Bisimulation). An equivalence relation R ⊆ P × P is a

weak process bisimulation if p R q implies that whenever p
αp
−→ p′ then:

1. if αp = (x) or y(x) then there exists q
αp
==⇒ q′ such that p′{z/x} R q′{z/x} for

each z ∈ N;

2. otherwise there exists q
αp
==⇒ q′ such that p′ R q′.

Two processes p and q are weakly bisimilar, written as p ≈ q, if there exists a weak

process bisimulation R such that p R q.

Definition 2 is a conservative extension of the weak bisimulation defined in (69).

Clause 1 says that whenever p can perform an input or reception, q should be able to

mimic it by performing the same action via a weak transition. Since in principle the

received message x can be any one in N, p and q are weakly bisimilar if they behave

the same no matter which message is received, thus the resulting processes p′ and q′

should be in R under each substitution. Clause 2 is similar except we do not need to

consider all the possible substitution since no bound name appears in this case.

As usual we first prove the following lemma in order to prove the congruence of ≈.

30

2.4 Weak (Probabilistic) Bisimulation

Lemma 1. 1. p
νx〈x〉
−−−→ p′ iff p ≡ νxq and q

〈x〉
−−→ p′;

2. p
νxy〈x〉
−−−−→ p′ iff p ≡ νxq and q

y〈x〉
−−→ p′ where y 6= x.

Proof. The only if direction follows by induction in the latest inference of p
αp
−→ p′

and the if direction is due to (pSTR), (pOPEN1), and (pOPEN2) of the transition

system.

The following theorem shows that the weak process bisimulation is a congruence.

Theorem 1. ≈ is a congruence.

Proof. To prove Theorem 1, it is sufficient to prove that p ≈ q implies:

• Act .p ≈ Act .q;

• [x = y]p, r ≈ [x = y]q, r;

• [x = y]r, p ≈ [x = y]r, q;

• νxp ≈ νxq;

• p ‖ r ≈ q ‖ r.

We take the last two cases as an example, and prove the following set

R = {(νx̃(p ‖ r), νx̃(q ‖ r)) | p ≈ q}

to be a weak bisimulation. Let

p0 ≡ νx̃(p ‖ r) and q0 ≡ νx̃(q ‖ r),

obviously (p0, q0) ∈ R. Suppose p0
αp
−→ p′0, we analyze by cases as follows:

• αp = 〈y〉, y /∈ x̃. By (pBRD) we have

– p
〈y〉
−−→ p′ and r

(x)
−−→ r′. Since p ≈ q, we have q

〈y〉
−−→ q′ and p′ ≈ q′. By (pBRD)

νx̃(q ‖ r)
〈y〉
−−→ νx̃(q′ ‖ r′{y/x})

and clearly

νx̃(p′ ‖ r′{y/x}) R νx̃(q′ ‖ r′{y/x});

31

2. DISCRETE MODEL

– p
(x)
−−→ p′ and r

〈y〉
−−→ r′. Since p ≈ q, we have q

(x)
−−→ q′ and

p′{z/x} ≈ q′{z/x}

for any z ∈ N. By (pBRD)

νx̃(q ‖ r)
〈y〉
−−→ νx̃(q′{y/x} ‖ r′)

and clearly

νx̃(p′{y/x} ‖ r′) R νx̃(q′{y/x} ‖ r′).

• αp = νy〈y〉, y ∈ x̃. Then p0 ≡ νyν(x̃ \ {y})(p′ ‖ r′), the following proof is similar

to the one above.

• αp = νy〈y〉, y /∈ x̃. By (pBRD) we have

– p
νy〈y〉
−−−→ p′ and r

(x)
−−→ r′. Since p ≈ q, we have q

νy〈y〉
−−−→ q′ and p′ ≈ q′. By

(pBRD) and (pRES)

νx̃(q ‖ r)
νy〈y〉
−−−→ νx̃(q′ ‖ r′{y/x})

where y /∈ (x̃ ∪ fn(r)), and clearly

νx̃(p′ ‖ r′{y/x}) R νx̃(q′ ‖ r′{y/x}).

– p
(x)
−−→ p′ and r

νy〈y〉
−−−→ r′. Since p ≈ q, we have q

(x)
−−→ q′ and

p′{z/x} ≈ q′{z/x}

for any z ∈ N. By (pBRD) and (pRES)

νx̃(q ‖ r)
νy〈y〉
−−−→ νx̃(q′{y/x} ‖ r′)

where y /∈ (x̃ ∪ fn(p) ∪ fn(q)), and clearly

νx̃(p′{y/x} ‖ r′) R νx̃(q′{y/x} ‖ r′).

• the other cases are similar and are omitted here.

32

2.4 Weak (Probabilistic) Bisimulation

s2 s3

s1

s

0.7 0.8

0.3

0.6
0.2

0.4

1

Figure 2.5: Two weakly bisimilar states in fully probabilistic processes.

Before we introduce the definitions of weak bisimulation of networks, we first give

some definitions from graph theory which will be used in the following. A subgraph

SG of Gl 7−→k is called strongly connected if for each pair (ρ, ρ′) of states in SG there

exists a path fragment ρ0ρ1 . . . ρi of nodes in SG and M(l, k, ρj , ρj+1) > 0 for 0 ≤

j < i with ρ = ρ0 and ρ′ = ρi. A strongly connected component (SCC) denotes a

strongly connected subgraph such that no proper superset of it is strongly connected.

A bottom SCC (BSCC) is a SCC from which no state outside this SCC is reachable.

If probabilities are in the same BSCC, like for instance the nodes 0.6, 0.8 and, 0.9 in

Fig. 2.3, they can for sure evolve into each other, or in probabilistic terms, they can

evolve into each other eventually with probability 1.

In our weak bisimulation equivalence, we as usual abstract from internal steps which

in our case also involve the probabilistic mobility steps changing connection probabili-

ties. In order to capture that a connection probability for sure (with probability 1) can

evolve into another, we introduce the relation →. Let → be the least relation closed

by parallel composition, restriction and structural congruence such that

{{(ρ, l)} 7−→ k} → {{(ρ′, l)} 7−→ k}

if ρ and ρ′ belong to a BSCC of Gl 7−→k. Intuitively, we abstract from immediate

mobility steps (probably infinitely many), and thus make the mobility rule simpler.

This is inspired by the weak bisimulation defined on fully probabilistic processes in

(24), we illustrate this by an example as follows:

Example 7. Consider the fours states s1, s2, s3, and s in Fig. 2.5, suppose we assume

that they satisfy the same properties, for instance they can satisfy the same set of

33

2. DISCRETE MODEL

atomic propositions. Then according to the weak bisimulation in (24), we can prove that

s1, s2, s3, and s are all weakly bisimilar. Recalling that s1, s2, s3, and s are equivalent,

now consider the mobility rule of some connection Pro(l 7−→ k) in Fig. 2.3 which

can be seen as a fully probabilistic process. If we consider the states 0.6, 0.8, and

0.9 satisfy the same property at which the node at l can receive messages from k with

probability 0.6, 0.8, or 0.9, then we can simplify the mobility rule by replacing states

0.6, 0.8, and 0.9 and their correspondent transitions with a single state with self loop

of probability 1. At the new state the property is held i.e. the node at l can receive

messages from k with probability 0.6, 0.8, or 0.9. This is exactly the same as allowing

{{(ρ, l)} 7−→ k} → {{(ρ′, l)} 7−→ k} for any ρ, ρ′ ∈ {0.6, 0.8, 0.9}.

Following (1) we define the weak transition
α

==⇒ as follows:

Definition 3 (Weak Transition). We use E
α

==⇒ µ to denote that a distribution µ is

reached through a sequence of steps some of which are internal. Formally
α

==⇒ is the

least relation such that, E
α

==⇒ µ iff either

1. α = τ and µ = δE, or

2. E
α
−→ µ, or

3. there exists a transition E
β
−→ µ′ such that

µ =
∑

E′∈Supp(µ′)

µ′(E′) · µE′

where E′ τ
==⇒ µE′ if β = α, otherwise E′ α

==⇒ µE′ and β = τ .

Clause 1 says that a weak τ transition can be an empty sequence, and the resulting

distribution is δE . Clause 2 indicates that the set of strong transitions is a subset

of the weak transitions, the distribution µ can be reached without going through any

intermediate networks. Clause 3 means that E can first evolve into µ′ via a transition

labeled with β, and then each network E′ in the support of µ′ will continue evolving

into µE′ via weak transition labeled with τ if β = α, otherwise via weak transition

labeled with α if β = τ .

According to Rule (nREC1) in Table 2.5, there might occur unknown probabili-

ties during the evolution of networks, since a network may not always contain enough

connectivity information to resolve them. Therefore before introducing the weak bisim-

ulation we need to resolve all the possible unknown probabilities. In order to do so, we

introduce the following definition:

34

2.4 Weak (Probabilistic) Bisimulation

Definition 4. Let ∝: N × C → N be defined inductively as follows:

1. E ∝ C = E if C = 0,

2. E ∝ C = (E ∝ C1) ∝ C2 if C = C1 ‖ C2,

3. E ∝ C = E if C = {{(ρ, k)} 7−→ l} and E(k, l) 6= θk 7−→l,

4. E ∝ C = E ‖ {{(ρ, k)} 7−→ l} if C = {{(ρ, k)} 7−→ l} and E(k, l) = θk 7−→l,

for any E and C where we write E ∝ C instead of ∝ (E,C).

Intuitively, E ∝ C denotes a network behaving like E but obtaining new infor-

mation from C. Clause 1 is trivial, since if the second parameter is 0, E can obtain

no connectivity information from it, thus will stay unchanged. Clause 2 means that

if we supply E with connectivity network C ‖ C ′, then it makes no difference if we

supply E with C first, and then C ′. Since according to the well-formed condition, the

connectivity information in C and C ′ is disjoint. If the given connectivity information

has already known in E, it will simply be ignored by E which is shown in Clause 3,

otherwise in Clause 4 the connectivity information will be adopted by E. The following

example illustrates how ∝ works.

Example 8. Let

E = ⌊p⌋l ‖ {{(0.6, l)} 7−→ k},

C = {{(0.8, l)} 7−→ k} ‖ {{(0.5,m)} 7−→ n}.

Since C contains connectivity information for both Pro(l 7−→ k) and Pro(m 7−→ n),

after applying ∝ with parameter C to E, E should be able to obtain the connectiv-

ity information of Pro(m 7−→ n) from C, and ignore the connectivity information of

Pro(l 7−→ k) since it has been known in E. We show how ∝ can do so step by step

according to Definition 4:

E ∝ C = (E ∝ {{(0.8, l)} 7−→ k}) ∝ {{(0.5,m)} 7−→ n} Clause 2

= E ∝ {{(0.5,m)} 7−→ n} Clause 3

= E ‖ {{(0.5,m)} 7−→ n} Clause 4

Let

CL = {C ∈ C | ∀k, l.(l, k ∈ L iff C(k, l) 6= θk 7−→l)}

35

2. DISCRETE MODEL

be the subset of C which comprises all the connectivity networks C such that for all

l, k ∈ L, C(k, l) 6= θk 7−→l. Here C is constrained since it contains no extra connectivity

information beyond that for pairs in L, this condition guarantees that CL is finite

whenever L is finite. Refer to the following example:

Example 9. Suppose that the mobility rule of Pro(l 7−→ k) is given by Fig. 2.2, and

Pro(k 7−→ l) is always equal to 1. Let L = {l, k}, then CL should be comprised of the

networks which only contain connectivity information of Pro(l 7−→ k) and Pro(k 7−→ l),

i.e.

CL =





{{(0.6, l)} 7−→ k} ‖ {{(1, k)} 7−→ l},

{{(0.7, l)} 7−→ k} ‖ {{(1, k)} 7−→ l},

{{(0.9, l)} 7−→ k} ‖ {{(1, k)} 7−→ l}





If we do not require that the networks in CL to be the smallest ones, then networks like

{{(0.6, l)} 7−→ k} ‖ {{(1, k), (ρ,m)} 7−→ l}

for some ρ and m will also be in CL, which makes CL infinite even that L is finite.

Let CE,F,k range over C(l(E)∪l(F)∪{k}). According to (nREC1) and (nREC2) in Ta-

ble 2.5, when E
(x,K)⊳k
−−−−−→ µ, there might be unknown probabilities in µ where all the un-

known probabilities are of the form of θl 7−→k with l ∈ loc(E). Note that loc(E) ⊆ l(E),

therefore we can make sure that no unknown probability will appear after E ∝ CE,F,k

performing receptions from k. Similarly, when E
〈x,L〉@m
−−−−−→ µ, the unknown probabilities

which might appear in µ are of the form θn 7−→m such that n ∈ loc(E). Additionally, it

must be the case that m ∈ loc(E) according to (nBRD) and (nSYN), thus no unknown

probability shows up after E ∝ CE,F,k performing broadcast actions. The same argu-

ments apply to F too, thus we can guarantee that all the unknown probabilities will

be eliminated after applying ∝ with parameter CE,F,k to E and F , provided that we

only consider reception actions from k.

Below follows the definition of weak bisimulation of networks.

Definition 5 (Weak Bisimulation). An equivalence relation R ⊆ N × N is a weak

bisimulation if E R F implies that for each k ∈ L and CE,F,k whenever E ∝ CE,F,k
α
−→

µ1 then:

1. if α = (x,L) ⊳ k, then there exists F ∝ CE,F,k
α

==⇒ µ2 such that for each y ∈ N,

µ1{y/x} R µ2{y/x};

36

2.4 Weak (Probabilistic) Bisimulation

2. if α = νx̃〈x,L〉@l, then there exists F ∝ CE,F,k
νx̃〈x,L〉@m
=======⇒ µ2 such that µ1 R µ2;

3. if α = τ , then there exists F ∝ CE,F,k
τ

==⇒ µ2 such that µ1 R µ2.

Two networks E and F are weakly bisimilar, written as E ≈M F , if E R F for some

weak bisimulation R.

Clause 1 requires that if nodes at locations l(L) in network E can receive a message

from location k with specific probabilities, then nodes at locations l(L) in F must be

able to receive the same message from the location k with the same probability. Since

k might be any location, and in particular one not appearing in either E or F , the

resulting distributions µ1 and µ2 may risk containing unknown probabilities. These

unknown probabilities can only be of the form θl 7−→k where l ∈ l(E) ∪ l(F) which

justifies that CE,F,k is enough to substitute all the unknown probabilities. Clause 2

means that if E can broadcast a message from the node at location l with receivers at

locations l(L), then F can also broadcast the same message from the node at location

m to l(L) with the same probabilities, m is not required to be the same as l i.e. we

abstract from the emitters of broadcast actions. Clause 3 deals with internal actions

and is standard except for the use of CE,F,k.

The following example illustrates how we can obtain connectivity information from

the given PMF.

Example 10. Suppose the mobility of Pro(k 7−→ l) is explicitly defined by Fig. 2.3,

then {{(0.7, k)} 7→ l} 6≈M 0 since by Definition 5,

{{(0.7, k)} 7→ l} ≈M 0 iff {{(0.7, k)} 7→ l} ≈M {{(ρ, k)} 7→ l}

for any ρ ∈ Gk 7→l = {0.5, 0.6, 0.7, 0.8, 0.9}, which obviously does not hold. But if the

mobility of Pro(k 7→ l) is implicitly defined, then we know {{(ρ, k)} 7→ l} ≈M 0 where

ρ is 0 or 1, since Pro(k 7→ l) will be either 1 or 0.

According to Clause 2 in Definition 5, two broadcast actions are not distinguishable

if the only difference is their emitters. Therefore if two locations have the same mobility,

and the processes located at them are weakly bisimilar, then the two nodes are also

weakly bisimilar.

Example 11. Suppose that M is a PMF where all the connections have implicit mo-

bility, then for all locations l and k, ⌊p⌋l ≈M ⌊q⌋k provided that p ≈ q, since l

37

2. DISCRETE MODEL

0.8 0.9

1

0.8 0.9 10.3

0.7

0.5

0.5

0.4

0.6

0.5

0.5

0.6

0.9

0.1

0.4

(a) (b)

Figure 2.6: Two equivalent mobility.

and k have the same mobility rules. Furthermore if there is a location m such that

the mobility of Pro(m 7−→ l) and Pro(m 7−→ k) is not implicitly defined, but is given

by Fig. 2.6 (a) and (b) respectively, then still we have ⌊p⌋l ≈M ⌊q⌋k provided that

p ≈ q. Since for any C1, C2 ∈ C such that C1(m, l) 6= θm7−→l and C2(m,k) 6= θm7−→k,

whenever C1(m, l) = ρ with ρ ∈ {0.8, 0.9, 1}, there exists C ′
2 such that C2 → C ′

2 and

C ′
2(m,k) = ρ, i.e. we can always make sure that the node at m can receive messages

from l and k with the same probability.

In general if the node at m can always receive messages from or broadcast messages

to l and k with the same probability, then l and k have the same mobility, thus the

following result holds:

p ≈ q implies ⌊p⌋l ≈M ⌊q⌋k.

Observe that in Definition 5, it is necessary to take the CE,F,k into account, oth-

erwise we would obtain a more restrict weak bisimulation. After applying ∝ with

parameter CE,F,k we can make sure that

E ∝ CE,F,k(m,n) = θm7→n iff F ∝ CE,F,k(m,n) = θm7→n,

i.e. if a connection probability is unknown in E ∝ CE,F,k, then it is also unknown in

F ∝ CE,F,k and vice versa. Refer to the following example.

Example 12. Consider two networks:

E = ⌊〈x〉⌋l ‖ {{(1, k)} 7→ l} and F = ⌊〈x〉⌋l

38

2.4 Weak (Probabilistic) Bisimulation

and assume all the mobility rules are implicitly defined. If we do not consider CE,F,k,

then we will conclude that E 6≈M F since E
〈x,{(1,k)}〉@l
−−−−−−−−→ which cannot be simulated by

F . But intuitively, this is wrong, since from both E and F all other locations can receive

the message x from l with probability 1 or 0. By taking CE,F,k into consideration, we

can easily check that E and F are weakly bisimilar.

The following lemma related to bound names is used to prove the congruence of

≈M.

Lemma 2. E
νx〈x,L〉@l
======⇒ µ iff E ≡ νxE′ and E′ 〈x,L〉@l

=====⇒ µ.

Proof. The only if direction follows by induction in the latest inference of E
α
−→ µ and

the if direction is due to (nSTR) and (nOPEN) of the transition system.

Let µ ∝ C = {(ρ : E ∝ C) | µ(E) = ρ}, the following lemma shows that we

can always associate extra connectivity information to networks while preserving the

bisimulation equivalence.

Lemma 3. E ∝ C ≈M F ∝ C for any C provided that E ≈M F .

Proof. We prove by structural induction on E and F . The base case is trivial. Let

E′ = E ∝ C and F ′ = F ∝ C. Now assume that

E′ ∝ CE′,F ′,l
(x,L)⊳l
−−−−→ µ′1

for some CE′,F ′,l, then we need to prove that there exists

F ′ ∝ CE′,F ′,l
(x,L)⊳l
====⇒ µ′2

such that

µ′1{y/x} ≈M µ′2{y/x}

for any y ∈ N. It is not hard to see that for each CE′,F ′,l, there exists CE,F,l and C
′

such that

E′ ∝ CE′,F ′,l ≡ E ∝ CE,F,l ∝ C ′

and

F ′ ∝ CE′,F ′,l ≡ F ∝ CE,F,l ∝ C ′.

Note that by definition of CE,F,l, E ∝ CE,F,l contains enough connectivity information

to resolve the unknown probability which may appear after performing (x,L) ⊳ l, as

result

E ∝ CE,F,l
(x,L′)⊳l
−−−−→ µ1

39

2. DISCRETE MODEL

such that L′ ⊆ L and µ1 ∝ C ′ ≡ µ′1. Since E ≈M F , then there exists F ∝

CE,F,l
(x,L′)⊳l
=====⇒ µ2 such that

µ1{y/x} ≈M µ2{y/x}

for any y ∈ N. As for any k,

(E ∝ CE,F,l)(k, l) = θk 7→l iff (F ∝ CE,F,l)(k, l) = θk 7→l,

so

(E ∝ CE,F,l ∝ C ′)(k, l) = θk 7→l iff (F ∝ CE,F,l ∝ C ′)(k, l) = θk 7→l

for any k, therefore there exists F ′ ∝ CE′,F ′,l
(x,L)⊳l
====⇒ µ′2 such that µ2 ∝ C ′ ≡ µ′2. By

induction

(µ1 ∝ C ′){y/x} ≈M (µ2 ∝ C ′){y/x},

that is, µ′1{y/x} ≈M µ′2{y/x} for any y ∈ N. Other cases are similar and omitted

here.

Let ≈M be the largest weak bisimulation, we show that:

Theorem 2. ≈M is a congruence.

Proof. Let

D(E) = ‖
l∈l(E)

{Dl(E) 7→ l}

as a network which only contains all the connection information of E.

It is sufficient to prove that

R = {(νx̃(E ‖ G), νx̃(F ‖ G)) | E ≈M F}

is a weak bisimulation. Let E0 ≡ νx̃(E ‖ G), F0 ≡ νx̃(F ‖ G) and suppose

E0 ∝ C
α
−→ µ0 (∗)

Obviously, E0 R F0. The proof is by analysis of the derivation of (∗). We write C as

the abbreviation of CE0,F0,l in the following.

1. α = (x,L) ⊳ l, x /∈ x̃.

40

2.4 Weak (Probabilistic) Bisimulation

• Suppose

E0 ∝ C
(x,L)⊳l
−−−−→ µ0 ≡ νx̃(µ1 ‖ µ3 ‖ D(E0 ∝ C)),

where µ1 and µ3 do not contain any connection information, hence we infer:

(E ‖ D(G)) ∝ C
(x,L)⊳l
−−−−→ µ1 ‖ D(E0 ∝ C),

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C).

Since E ≈M F , then

(E ∝ D(G)) ∝ C ≈M (F ∝ D(G)) ∝ C

by Lemma 3. Note here

E ∝ D(G) ≡ E ‖ D(G)

and

F ∝ D(G) ≡ F ‖ D(G)

because E0 is well-formed. Then we have

(E ‖ D(G)) ∝ C ≈M (F ‖ D(G)) ∝ C.

So

(F ‖ D(G)) ∝ C
(x,L)⊳l
====⇒ µ2 (2.2)

and µ1 ‖ D(E0 ∝ C){y/x} ≈M µ2{y/x} for all y ∈ N. Since

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C),

by (nREC2) we have

G′ (x,∅)⊳l
−−−−→ µ′3 (2.3)

where G ≡ G′ ‖ D(G) and µ3 ≡ µ′3 • L with L = Dl(E0 ∝ C). Also

F0 ∝ C ≡ νx̃(G′ ‖ ((F ‖ D(G)) ∝ C)),

so we can now combine transitions 2.2 and 2.3 using (nREC2) and (nRES),

and obtain the following transition:

F0 ∝ C = νx̃(F ‖ G) ∝ C
(x,L)⊳l
====⇒ νx̃(µ2 ‖ µ3)

and νx̃(µ1 ‖ µ3 ‖ D(E0 ∝ C)){y/x} R νx̃(µ2 ‖ µ3){y/x}.

41

2. DISCRETE MODEL

• The other cases are similar.

2. α = 〈y,L〉@l, y /∈ x̃.

• Suppose E0 ∝ C
〈y,L〉@l
−−−−→ µ0 ≡ νx̃(µ1{y/x} ‖ µ3 ‖ D(E0 ∝ C)) where

(E ‖ D(G)) ∝ C
(x,L)⊳l
−−−−→ µ1 ‖ D(E0 ∝ C),

(G ‖ D(E)) ∝ C
〈y,L〉@l
−−−−→ µ3 ‖ D(E0 ∝ C).

Since E ≈M F , we have (E ‖ D(G)) ∝ C ≈M (F ‖ D(G)) ∝ C and

(F ‖ D(G)) ∝ C
(x,L)⊳l
====⇒ µ2 (2.4)

such that µ1 ‖ D(E0 ∝ C){y/x} ≈M µ2{y/x} for all y ∈ N. Since

(G ‖ D(E)) ∝ C
〈y,L〉@l
−−−−→ µ3 ‖ D(E0 ∝ C),

by (nSYN) we have

G′ 〈y,∅〉@l
−−−−→ µ′3 (2.5)

where G ≡ G′ ‖ D(G) and µ3 ≡ µ′3 • L. Similarly, by knowing that

F0 ∝ C ≡ νx̃(G′ ‖ ((F ‖ D(G)) ∝ C)), we can combine transitions 2.4 and

2.5 using (nSYN), and get the following transition

F0 ∝ C
〈y,L〉@l
=====⇒ νx̃(µ2{y/x} ‖ µ3)

such that

νx̃(µ1{y/x} ‖ µ3 ‖ D(E0 ∝ C)) R νx̃(µ2{y/x} ‖ µ3)

for all y ∈ N.

• Suppose E0 ∝ C
〈y,L〉@l
−−−−→ µ0 ≡ νx̃(µ1{y/x} ‖ µ3 ‖ D(E0 ∝ C)) where

(E ‖ D(G)) ∝ C
〈y,L〉@l
−−−−→ µ1 ‖ D(E0 ∝ C),

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C).

Since E ≈M F , we have (E ‖ D(G)) ∝ C ≈M (F ‖ D(G)) ∝ C and

(F ‖ D(G)) ∝ C
〈y,L〉@m
=====⇒ µ2 (2.6)

42

2.4 Weak (Probabilistic) Bisimulation

such that µ1 ‖ D(E0 ∝ C) ≈M µ2. Since

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C),

by (nREC2) we have

G′ (x,∅)⊳l
−−−−→ µ′3 (2.7)

where G ≡ G′ ‖ D(G) and µ3 ≡ µ′3 • L. Since

F0 ∝ C ≡ νx̃(G′ ‖ ((F ‖ D(G)) ∝ C)),

so we can now combine transitions 2.6 and 2.7 using (nREC2) and (nRES),

and get the following transition:

F0 ∝ C
〈y,L〉@m
=====⇒ νx̃(µ2 ‖ µ3{y/x})

such that

νx̃(µ1 ‖ µ3{y/x} ‖ D(E0 ∝ C)) R νx̃(µ2 ‖ µ3{y/x}).

3. α = νỹ(〈y,L〉@l) and y ∈ ỹ.

• Suppose E0 ∝ C
νy(〈y,L〉@l)
−−−−−−−→ µ0 ≡ νx̃(µ1 ‖ µ3{y/x}) ‖ D(E0 ∝ C) where

(E ‖ D(G)) ∝ C
νy(〈y,L〉@l)
−−−−−−−→ µ1 ‖ D(E0 ∝ C),

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C)

and y /∈ x̃∪fn(G)(α-conversion rule may be used if necessary). By Lemma 2,

we know E0 ≡ (νx̃ ∪ {y})(E1 ‖ G) such that E ≡ (νy)E1,

(E1 ‖ D(G)) ∝ C
〈y,L〉@l
−−−−→ µ1 ‖ D(E0 ∝ C).

Since E ≈M F , we know

(F ‖ D(G)) ∝ C
νy(〈y,L〉@m)
========⇒ µ2,

so there exists F1 such that F ≡ (νy)F1 and

(F1 ‖ D(G)) ∝ C
〈y,L〉@m
=====⇒ µ′2

by Lemma 2, so F0 ≡ (νx̃∪ {y})(F1 ‖ G). The continuation of the proof is

on E1 and F1 and is omitted here.

43

2. DISCRETE MODEL

• The other cases are similar.

4. α = τ . This case is trivial, we omit the detail here.

The following theorem shows the relationship between ≈ and ≈M. Intuitively, if two

processes are weakly bisimilar, after putting them at the same location the resulting

networks are also weakly bisimilar.

Theorem 3. p ≈ q implies ⌊p⌋l ≈
M ⌊q⌋l for any M and l.

Proof. We only need to consider transitions where α = νx̃〈x, ∅〉@l, (x, ∅) ⊳ l, and τ

since neither ⌊p⌋l nor ⌊q⌋l contain connectivity information. Take α = νx̃〈x, ∅〉@l as an

example, the other cases can be proved in a similar way. Suppose that ⌊p⌋l
νx̃〈x,∅〉@l
−−−−−−→

⌊p′⌋l, then by (nBRD) in Table 2.5 we know p
νx̃〈x〉
−−−→ p′, since p ≈ q, then there exists

q
νx̃〈x〉
===⇒ q′ such that p′ ≈ q′, so by induction hypothesis ⌊q⌋l

νx̃〈x,∅〉@l
======⇒ ⌊q′⌋l and

⌊p′⌋l ≈ ⌊q′⌋l.

With Theorem 3, when there is a network E ≡ νx̃(⌊p⌋l ‖ E′), we can always

replace p with another process q provided that p ≈ q. Since according to Theorem 2,

the resulting network νx̃(⌊q⌋l ‖ E′) is weakly bisimilar with E. Furthermore, the

congruence of ≈M can be extended to process level in certain scenarios. For example,

suppose now

E ≡ νx̃(⌊p⌋l ‖ E
′) and F ≡ νx̃(⌊q⌋l ‖ F

′)

with E′ ≈M F ′ and p ≈ q, then

νx̃(⌊p ‖ r⌋l ‖ E
′) ≈M νx̃(⌊q ‖ r⌋l ‖ F

′)

for any r. Since E′ ≈M F ′ and ⌊p ‖ r⌋l ≈
M ⌊q ‖ r⌋l by Theorem 1 and 3, and we can

apply Theorem 2 twice as follows:

νx̃(⌊p ‖ r⌋l ‖ E
′) ≈M νx̃(⌊p ‖ r⌋l ‖ F

′) ≈M νx̃(⌊q ‖ r⌋l ‖ F
′).

Scenarios for other operators of processes can be deduced in a similar way.

Now we are going to give two examples of the weak bisimulation which show how

two networks with different connectivity information can be weakly bisimilar.

44

2.4 Weak (Probabilistic) Bisimulation

E ‖ F ‖ G1 E ‖ F ‖ G2 E ‖ F ‖ G3

⌊〈x〉⌋k ‖ G1 F ‖ G1 ⌊〈x〉⌋k ‖ G2 F ‖ G2 ⌊〈x〉⌋k ‖ G3 F ‖ G3

〈x, {(0.6, m)}〉@l 〈x, {(0.8, m)}〉@l 〈x, {(0.9, m)}〉@l

0.6 0.4 0.8 0.2 0.9 0.1

Figure 2.7: Network derivation

Example 13. Suppose there are two networks

E = ⌊〈x〉⌋l, F = ⌊(y).〈y〉⌋k

and three connectivity networks:

G1 = {{0.6, k} 7→ l}, G2 = {{0.8, k} 7→ l}, G3 = {{0.9, k} 7→ l}.

Let the mobility of Pro(k 7→ l) be given by M in Fig. 2.3, and let all the other connec-

tions be implicitly defined. Since ≈M is a congruence, to show that

E ‖ F ‖ G1 ≈M E ‖ F ‖ G2 ≈M E ‖ F ‖ G3,

it is enough to prove that

G1 ≈M G2 ≈M G3.

It is not hard to see that the following set R is a weak bisimulation.

R = {G1, G2, G3} × {G1, G2, G3}

Derivations for E ‖ F ‖ Gi (i = 1, 2, 3) are shown in Fig. 2.7 where we only show the

essential transitions. Observe that in each of the three networks the node at location k

can always receive the message from l with probability 0.6, 0.8, or 0.9.

Example 14. Given two networks such that

E = ⌊A⌋l ‖ ⌊〈x〉⌋k ‖ {{(0.8,m)} 7→ l} ‖ {{(0.6,m)} 7→ k}

45

2. DISCRETE MODEL

F = ⌊A⌋l ‖ {{(0.8,m)} 7→ l} ‖ {{(0.6,m)} 7→ k}

where A
def
= 〈x〉.A. The only difference between E and F is that E can broadcast

the message x from location k once while F can only broadcast the message x from

location l, so certainly E can simulate F under any PMF, but not the other way around.

Suppose we are given a PMF M such that the mobility rule of Pro(m 7→ l) is given by

Fig. 2.3 while the mobility rule of Pro(m 7→ k) is given by Fig. 2.2, and all the others

are implicitly defined. It turns out that E ≈M F . The only non-trivial transition

we should consider is when E broadcasts the message x from location k. Intuitively,

because in E the node at location m can receive message x from k with probability 0.6

or 0.9, this can be simulated by F since in F the node at location m can receive message

x from l with probability 0.6, 0.8, or, 0.9. Before we introduce the weak bisimulation

R, we give the following definitions:

Eρ1ρ2 = {{(ρ1,m)} 7→ l} ‖ {{(ρ2,m)} 7→ k}

S1 = {⌊A⌋l ‖ ⌊〈x〉⌋k ‖ Eρ1ρ2 | ρ1 ∈ {0.6, 0.8, 0.9}, ρ2 ∈ {0.6, 0.9}}

S2 = {⌊A⌋l ‖ Eρ1ρ2 | ρ1 ∈ {0.6, 0.8, 0.9}, ρ2 ∈ {0.6, 0.9}}

Then

R = (S1 ∪ S2)× (S1 ∪ S2).

2.4.2 Weak Probabilistic Bisimulation

In Section 2.4.1, two weakly bisimilar networks can broadcast messages to or receive

messages from locations with the same probabilities. But sometimes, we may only

be concerned about the extreme values, the maximum and minimum values of certain

properties. For example, we may want to make sure that in a network the probability

for a certain message being delivered to a node within 5 steps is at least 0.99 or the

probability for a certain error not being reported successfully is at most 0.05.

Example 15. Considering three simple networks:

E1 = ⌊(x).〈x〉⌋l ‖ {{(0.6, l)} 7→ k}

E2 = ⌊(x).〈x〉⌋l ‖ {{(0.9, l)} 7→ k}

E3 = ⌊(x).〈x〉⌋l ‖ {{(0.7, l)} 7→ k}

where the mobility of Pro(l 7→ k) is given by Fig. 2.2. It is not hard to infer that

E1 ≈M E2 but E2 6≈M E3 since in E1 and E2 the nodes at location l can receive

46

2.4 Weak (Probabilistic) Bisimulation

0.5

0.3 0.80.5 0.9

0.4

0.5

0.1

0.6

Figure 2.8: An example of mobility.

messages from k with probability 0.6 or 0.9 while in E3 the probability can be 0.6, 0.7,

or, 0.9. But, if we are only concerned with extreme probabilities of certain properties

such as the maximum (minimum) probability of the node at location l receiving messages

from k, then we would like that all these three networks are weakly bisimilar.

From the above example we know that ≈M is too strict in this case. We need

a coarser bisimulation which only captures the probability bounds and not the exact

probabilities, so we define
α

==⇒c to denote a combined step as in (1), that is, E
(x,L)⊳l
====⇒c µ

iff there exists

{E
(x,Li)⊳l
=====⇒ µi | l(L) = l(Li)}i∈I

such that
∑

i∈I wi · Li = L and
∑

i∈I wi · µi = µ, where
∑

i∈I wi = 1. Similarly,

E
νx̃〈x,L〉@l
======⇒c µ iff there exists

{E
νx̃〈x,Li〉@l
=======⇒ µi | l(L) = l(Li)}i∈I

such that
∑

i∈I wi ·Li = L and
∑

i∈I wi ·µi = µ, where
∑

i∈I wi = 1. Note here that the

probabilistic combination of different transitions does not affect the probability bounds

of each connection, in other words the probability bounds of transitions from a network

to others are not changed. Confer the following example.

Example 16. Suppose there are two networks as follows:

E ≡ ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.5,0.8,

F ≡ ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.3,0.9

47

2. DISCRETE MODEL

where

Gρ1,ρ2 ≡ {{(ρ1,m), (ρ2, n)} 7→ l}.

The mobility rules of Pro(m 7→ l) and Pro(n 7→ l) are given by Fig. 2.8 and Fig. 2.2

respectively. By the semantics we can infer that

E
(x,{(0.5,m),(0.8,n)})⊳l
−−−−−−−−−−−−−−→





0.5 · 0.8 : ⌊〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.5,0.8

0.5 · 0.2 : ⌊〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.5,0.8

0.5 · 0.8 : ⌊(x).〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.5,0.8

0.5 · 0.2 : ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.5,0.8

≡ µ

It is not hard to see that F cannot perform such a transition directly, but instead it has

the following four transitions:

F
(x,{(0.3,m),(0.9,n)})⊳l
==============⇒





0.3 · 0.9 : ⌊〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.3,0.9

0.3 · 0.1 : ⌊〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.3,0.9

0.7 · 0.9 : ⌊(x).〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.3,0.9

0.7 · 0.1 : ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.3,0.9

≡ µ′1

F
(x,{(0.3,m),(0.6,n)})⊳l
==============⇒





0.3 · 0.6 : ⌊〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.3,0.6

0.3 · 0.4 : ⌊〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.3,0.6

0.7 · 0.6 : ⌊(x).〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.3,0.6

0.7 · 0.4 : ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.3,0.6

≡ µ′2

F
(x,{(0.8,m),(0.9,n)})⊳l
==============⇒





0.8 · 0.9 : ⌊〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.8,0.9

0.8 · 0.1 : ⌊〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.8,0.9

0.2 · 0.9 : ⌊(x).〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.8,0.9

0.2 · 0.1 : ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.8,0.9

≡ µ′3

F
(x,{(0.8,m),(0.6,n)})⊳l
==============⇒





0.8 · 0.6 : ⌊〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.8,0.6

0.8 · 0.4 : ⌊〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.8,0.6

0.2 · 0.6 : ⌊(x).〈x〉⌋m ‖ ⌊〈x〉⌋n ‖ G0.8,0.6

0.2 · 0.4 : ⌊(x).〈x〉⌋m ‖ ⌊(x).〈x〉⌋n ‖ G0.8,0.6

≡ µ′4

48

2.4 Weak (Probabilistic) Bisimulation

Since 3
5 · 0.3 + 2

5 · 0.8 = 0.5 and 1
3 · 0.6 + 2

3 · 0.9 = 0.8, we can have a transition

F
(x,L)⊳l
====⇒c µ

′ where

L = {(0.5,m), (0.8, n)} =





3

5
·
2

3
· {(0.3,m), (0.9, n)}

+
3

5
·
1

3
· {(0.3,m), (0.6, n)}

+
2

5
·
2

3
· {(0.8,m), (0.9, n)}

+
2

5
·
1

3
· {(0.8,m), (0.6, n)}

and

µ′ =
3

5
·
2

3
· µ′1 +

3

5
·
1

3
· µ′2 +

2

5
·
2

3
· µ′3 +

2

5
·
1

3
· µ′4.

It is not hard to see that in µ and µ′ the probability of the networks where both nodes

at locations m and n have received the message from l is the same and it is similar for

the other cases.

In this example, even after the combined transition the probability bounds of each

transition are still not changed. For instance, the probability from F to the networks

where both nodes at locations m and n have received the message from l is always

between 0.3 · 0.6 and 0.8 · 0.9.

Below follows our definition of a weak bisimulation, weak probabilistic bisimulation,

that takes extreme probabilities into account.

Definition 6 (Weak Probabilistic Bisimulation). An equivalence relation R ⊆ N ×N

is a weak probabilistic bisimulation if E R F implies that for each k ∈ L and CE,F,k

whenever E ∝ CE,F,k
α
−→ µ then:

1. if α = (x,L) ⊳ k then there exists F ∝ CE,F,k
α

==⇒c µ
′ such that for each y ∈ N,

µ{y/x} R µ′{y/x};

2. if α = νx̃〈x,L〉@l then there exists F ∝ CE,F,k
νx̃〈x,L〉@m
=======⇒c µ

′ such that µ R µ′;

3. if α = τ then there exists F ∝ CE,F,k
τ

==⇒c µ
′ such that µ R µ′.

Two networks E and F are weakly probabilistic bisimilar, written as E ≈M
p F , if E R F

for some weak probabilistic bisimulation R.

The clauses here are very similar with those in Definition 5 except that the normal

weak transitions are replaced by combined weak transitions. Clause 1 requires that

if locations l(L) in network E can receive a message from location l with specific

49

2. DISCRETE MODEL

probabilities, then locations l(L) in F must be able to receive the same message from

the location l with the same probabilities via combined transition. Clause 2 means that

if E can broadcast a message from l with receivers at locations l(L), then F can also

broadcast the same message from some location m to l(L) with the same probabilities

via a combined transition. Clause 3 deals with internal actions. The CE,F,k plays the

same role as in Definition 5.

Let ≈M
p be the largest weak probabilistic bisimulation, we show that:

Theorem 4. ≈M
p is a congruence.

Proof. The proof is by structural induction as in Theorem 2, and is omitted here.

The following theorem shows that ≈M is strictly finer than ≈M
p .

Theorem 5. ≈M ⊂ ≈M
p .

Proof. The proof is straightforward from Definition 5 and 6, since the weak transition

is a special case of the weak probability transition.

The theorem for weak bisimulation in Section 2.4.1 is obviously still valid for weak

probabilistic bisimulation, that is,

Theorem 6. p ≈ q implies ⌊p⌋l ≈
M
p ⌊q⌋l for any M and l.

Proof. The proof is similar to the one for Theorem 3, and is omitted here.

The congruence of ≈M
p can be extended to process level in certain scenarios in the

same way as for ≈M.

Following Example 13, we compare the two definitions of weak bisimulation and

illustrate their differences.

Example 17. We take all the notations from Example 13 and define

G4 = {{0.7, k} 7→ l} and G5 = {{0.5, k} 7→ l}.

By Definition 5 we know Gi 6≈
M G4 since in Gi there is no way for the node at location k

receiving messages from l with probability 0.7 for i ∈ {1, 2, 3}. But since 0.7 ∈ [0.6, 0.9]

and all the probabilities of Pro(k 7→ l) reachable from 0.7 by mobility are always in

[0.6,0.9], we obtain that in G4 the node at location k can always receive messages from

l with probability in [0.6,0.9] and Gi ≈
M
p G4. If G4

(x,{(0.7,k)})⊳l
−−−−−−−−−→, Gi can always simulate

50

2.5 Weak (Probabilistic) Simulation

it by a combined transition, that is, Gi
(x,{(0.7,k)})⊳l
=========⇒c, since we have Gi

(x,{(0.6,k)})⊳l
=========⇒

and Gi
(x,{(0.9,k)})⊳l
=========⇒, note we omit the parameter CGi,G4,l which is not important here.

As a counterexample, we know Gi 6≈
M
p G5, since in G5 the node at location k can

receive messages from l with probability 0.5 which is not in [0.6,0.9] while in Gi the

probability of the node at location k receiving messages from l is always in [0.6,0.9].

2.5 Weak (Probabilistic) Simulation

In Section 2.4 we define weak (probabilistic) bisimulations which are equivalence rela-

tions among networks. Two networks E and F are bisimilar iff E can mimic stepwise

all the observable transitions of F and vice versa. In this section we relax the sym-

metric conditions of weak (probabilistic) bisimulations, and only requires one direction

mimicking, which introduces us the definitions of weak (probabilistic) simulation. Sim-

ulations are preorders on the networks, which has been used widely for verification

purpose (1, 8, 54, 70, 71). Intuitively, if F simulates E, then F can be seen as a correct

implementation of E. Since often E is more abstract and contains less details, it is

much easier to be analyzed. More importantly, certain properties satisfied by E are

guaranteed to be true for F too.

Before introducing weak (probabilistic) simulation, as usual we define the weight

function in the same way as in (48).

Definition 7 (Weight Function). Let R = N × N be a relation over N . A weight

function for µ and µ′ w.r.t. R is a function ∆ : N × N 7→ [0, 1] such that:

• ∆(E,F) > 0 implies that E R F ,

• µ(E) =
∑

F∈N
∆(E,F) for any E ∈ N ,

• µ′(F) =
∑

E∈N
∆(E,F) for any F ∈ N .

We write µ ⊑R µ′ iff there exists a weight function for µ and µ′ w.r.t. R.

When µ ⊑R µ′, it may happen that for a certain set of networks S ⊆ Supp(µ), there

exists a set of networks S′ ⊆ Supp(µ′) such that µ(S) = µ′(S′) where S × S′ ⊆ R, but

this does not mean that for each E ∈ S, there exists E′ ∈ S′ such that µ(E) = µ′(E′).

For instance if there are two distributions: µ and µ′ such that µ(E) = 1, and µ′(E1) =

µ′(E2) = 0.5. Apparently, it should hold that µ ⊑R µ′ provided E R E1 and E R E2,

51

2. DISCRETE MODEL

but neither µ(E) = µ′(E1) nor µ(E) = µ′(E2) holds. Essentially, ∆ corresponds in a

way to divide the support of distributions µ and µ′ such that µ and µ′ will coincide

with probability of sets of network. For the above example, we can let ∆(E,E1) = 0.5

and ∆(E,E2) = 0.5 i.e. dividing E into two parts one of which is for E1, and the other

part is for E2. Clause 1 says that ∆ can only associate two networks when they are

in R. Clause 2 guarantees that for each E ∈ Supp(µ) the total probability assigned to

E by ∆ i.e.
∑

F∈N
∆(E,F) should coincide with the probability of E in µ. Clause 3

is the counterpart of Clause 2, which guarantees that for each F ∈ Supp(µ′) the total

probability assigned to F by ∆ i.e.
∑

E∈N
∆(E,F) should be the same as µ′(F).

2.5.1 Weak Simulation

In this section we first introduce the weak simulation without considering the com-

bined transitions as before. The weak simulation can be seen as a one direction weak

bisimulation in Definition 5. We will also give a few examples to show what the weak

simulation can be used for, and also show that it is too fine in some cases which leads

us to the definition of weak probabilistic simulation.

Bellow follows the definition of weak simulation.

Definition 8 (Weak Simulation). A relation R ⊆ N × N is a weak simulation if

E R F implies that for each k ∈ L and CE,F,k whenever E ∝ CE,F,k
α
−→ µ then:

1. if α = (x,L) ⊳ k then there exists F ∝ CE,F,k
α

==⇒ µ′ such that for each y ∈ N,

µ{y/x} ⊑R µ′{y/x};

2. if α = νx̃〈x,L〉@l then there exists F ∝ CE,F,k
νx̃〈x,L〉@m
=======⇒ µ′ such that µ ⊑R µ′;

3. if α = τ then there exists F ∝ CE,F,k
τ

==⇒ µ′ such that µ ⊑R µ′.

The network E is weakly simulated by F , written as E wM F , if there exists a weak

simulation R such that E R F .

Lemma 4. E ∝ C wM F ∝ C for any C provided that E wM F .

Proof. Similar with the proof of Lemma 3 and is omitted here.

The following theorem shows that wM is a congruence and preorder.

Theorem 7. wM is a congruence and a preorder.

52

2.5 Weak (Probabilistic) Simulation

Proof. We first prove that wM is a preorder. The reflexivity is trivial, we only prove

the transitivity here i.e. E wM F and F wM G implies that E wM G. In order

to do so, we need another definition of weak simulation, called wM
1 . The definition of

wM
1 is almost the same as wM except that E ∝ CE,F,k

α
−→ µ is replaced by the weak

transition E ∝ CE,F,k
α

==⇒ µ.

It can be proved that wM = wM
1 . It is easy to see that E wM

1 F implies that

E wM F since E ∝ CE,F,k
α
−→ µ is a special case of E ∝ CE,F,k

α
==⇒ µ. We prove that

E wM F implies E wM
1 F , it is enough to show that

R = {(E,F) ∈ N × N | E wM F}

is a weak simulation under the new definition. For simplicity we will omit the parameter

CE,F,k in the sequel. Suppose that E R F and E
α

==⇒ µ. If α = (x,L) ⊳ k, we need

to prove that there exists F
α

==⇒ µ′ such that µ ⊑R µ′. We are going to prove by

induction on E
α

==⇒ µ. According to Definition 3, there are two cases to be considered:

1. E
τ
−→ µ1

α
==⇒ µ. Since E R F i.e. E wM F , there exists F

τ
==⇒ µ′1 such that

µ1 ⊑R µ′1. By induction there exists F
τ

==⇒
α

==⇒ µ′ such that µ ⊑R µ′.

2. E
α
−→ µ1

τ
==⇒ µ. Since E wM F , there exists F

τ
==⇒ µ′1 such that µ1 ⊑R µ′1.

The following proof is similar with Clause 1, and is omitted here.

The cases when α = τ or νx̃〈x,L〉@l are similar.

Since we have proved that wM = wM
1 , in order to show that wM is a preorder, it is

equivalent to prove that wM
1 is a preorder. Suppose that E wM

1 F and F wM
1 G, we

prove that E wM
1 G. According to the definition of wM

1 , there exists weak simulations

R1 and R2 such that E R1 F and F R2 G. Therefore whenever E
(x,L)⊳k
=====⇒ µ1, there

exists F
(x,L)⊳k
=====⇒ µ2 and G

(x,L)⊳k
=====⇒ µ3 such that µ1 ⊑R1 µ2 and µ2 ⊑R2 µ3. In other

words, there exists ∆1 and ∆2 satisfying the conditions in Definition 7. Let

R = R1 ◦ R2 = {(E′, G′) | ∃F ′.(E′ R1 F
′ ∧ F ′ R2 G

′)},

then we need to find a ∆ between µ1 and µ3 over R. Let

∆(E,G) =
∑

F∈N

∆1(E,F) ·
∆2(F,G)

µ2(F)
,

we show that ∆ defined in this way does satisfy the conditions in Definition 7. Condition

one is easy since ∆(E,G) > 0 implies that there exists F such that ∆1(E,F) > 0 and

53

2. DISCRETE MODEL

∆2(F,G) > 0, that is, E R1 F and F R2 G, thus E R G, and vice versa. Also

∑

G∈N

∆(E,G) =
∑

G∈N

∑

F∈N

∆1(E,F) ·
∆2(F,G)

µ2(F)

=
∑

F∈N

∆1(E,F) ·
1

µ2(F)
· (
∑

G∈N

∆2(F,G))

=
∑

F∈N

∆1(E,F) = µ1(E)

we prove that the second condition is satisfied too. The third condition is similar as

the second one, and is omitted here. Therefore µ1 ⊑R µ3, this completes the proof.

Finally we prove that wM is a congruence which is similar with the proof of Theo-

rem 2, it is enough to show that

R = {(νx̃(E ‖ G), νx̃(F ‖ G)) | E wM F}

is a weak simulation. Let

E0 = νx̃(E ‖ G),

F0 = νx̃(F ‖ G).

If E0
α
−→ µ, we need to distinguish among several cases. Again we simply write C as

the abbreviation of CE0,F0,l.

• Suppose

E0 ∝ C
(x,L)⊳l
−−−−→ µ0 ≡ νx̃(µ1 ‖ µ3 ‖ D(E0 ∝ C)),

where µ1 and µ3 do not contain any connection information, hence we infer:

(E ‖ D(G)) ∝ C
(x,L)⊳l
−−−−→ µ1 ‖ D(E0 ∝ C),

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C).

Since E wM F , then

(E ∝ D(G)) ∝ C wM (F ∝ D(G)) ∝ C

by Lemma 4. Note here

E ∝ D(G) ≡ E ‖ D(G)

F ∝ D(G) ≡ F ‖ D(G)

54

2.5 Weak (Probabilistic) Simulation

because E0 is well-formed. Then we have

(E ‖ D(G)) ∝ C wM (F ‖ D(G)) ∝ C, thus

(F ‖ D(G)) ∝ C
(x,L)⊳l
====⇒ µ2 (2.8)

and (µ1 ‖ D(E0 ∝ C)){y/x} wM µ2{y/x} for all y ∈ N. Since

(G ‖ D(E)) ∝ C
(x,L)⊳l
−−−−→ µ3 ‖ D(E0 ∝ C),

by (nREC2) we have

G′ (x,∅)⊳l
−−−−→ µ′3 (2.9)

where G ≡ G′ ‖ D(G) and µ3 ≡ µ′3 • L with L = Dl(E0 ∝ C). Also

F0 ∝ C ≡ νx̃(G′ ‖ ((F ‖ D(G)) ∝ C)),

so we can now combine transitions 2.8 and 2.9 using (nREC2) and (nRES), and

obtain the following transition:

F0 ∝ C = νx̃(F ‖ G) ∝ C
(x,L)⊳l
====⇒ νx̃(µ2 ‖ µ3) and

µ0 ≡ νx̃(µ1 ‖ µ3 ‖ D(E0 ∝ C)){y/x} ⊑R νx̃(µ2 ‖ µ3){y/x}.

• The other cases are similar.

To illustrate how weak simulation works, we give two examples. Since our weak

simulation is a conservative extension of the standard weak simulation, we are more

interested in the examples related to the mobility.

Example 18. Suppose we are given a PMF such that the mobility of Pro(m 7−→ l) and

Pro(n 7−→ l) is explicitly defined by Fig. 2.2 and 2.3 respectively, and all the others are

implicitly defined. Let

E ≡ ⌊〈x〉⌋m ‖ C,

F ≡ ⌊〈x〉⌋n ‖ C

where C = {{(0.6, l)} 7−→ m} ‖ {{(0.5, l)} 7−→ n}. Apparently, neither E ≈M F nor

E ≈M
p F holds, since in F the node at location l can receive the x with probability

0.5 which is impossible for E. But according to Definition 8, we have E wM F .

Intuitively, because in E the probability of the node at l receiving x is either 0.6 or 0.9,

and the probability can be also 0.6 or 0.9 in F even if it has more choices for instance

with probability 0.5.

55

2. DISCRETE MODEL

Example 19. Suppose we are given a PMF such that the mobility of Pro(m 7−→ l) is

explicitly defined by Fig. 2.2, while all the others are implicitly defined, therefore the

only possible values of Pro(n 7−→ l) are 0 and 1. Let

E ≡ ⌊〈x〉⌋m ‖ C,

F ≡ ⌊〈x〉⌋n ‖ C where

C = {{(0.6, l)} 7−→ m} ‖ {{(0, l)} 7−→ n}.

It turns out E 6wM F since in E the node at l can receive x with probability 0.6 while

it is not possible in F . But since in F the node at l can receive x with probability

either 0 or 1, it should be able to simulate E, which introduces us the weak probabilistic

simulation in the next section.

2.5.2 Weak Probabilistic Simulation

According to Example 19, wM seems to be too fine in some cases. In this section we

will introduce the weak probabilistic simulation making use of the combined transition

as in Definition 6. Bellow follows the definition of weak probabilistic simulation.

Definition 9 (Weak Probabilistic Simulation). A relation R ⊆ N × N is a weak

probabilistic simulation if E R F implies that for each k ∈ L and CE,F,k whenever

E ∝ CE,F,k
α
−→ µ then:

1. if α = (x,L) ⊳ k then there exists F ∝ CE,F,k
α

==⇒c µ
′ such that for each y ∈ N,

µ{y/x} ⊑R µ′{y/x};

2. if α = νx̃〈x,L〉@l then there exists F ∝ CE,F,k
νx̃〈x,L〉@m
=======⇒c µ

′ such that µ ⊑R µ′;

3. if α = τ then there exists F ∝ CE,F,k
τ

==⇒c µ
′ such that µ ⊑R µ′.

The network E is weakly probabilistic simulated by F , written as E wM
p F , if there

exists a weak probabilistic simulation R such that E R F .

We can also show that wM
p is a congruence and preorder.

Theorem 8. wM
p is a congruence and preorder.

Proof. Similar with the proof of Theorem 7 and is omitted here.

Obviously, wM is strictly finer than wM
p .

56

2.6 Bisimulations and Simulations between PMFs

Theorem 9. wM ⊂ wM
p .

Proof. It is straightforward from Definition 8 and 9.

In Example 19 we show that E 6wM F , but according to Definition 9, E wM
p F .

Example 20. Consider the networks E and F in Example 19. As we said before in E

the node at l can receive x with probability 0.6, i.e.

E
〈x,{(0.6,l)}〉@m
−−−−−−−−−→ δ(⌊0⌋m‖C),

since there does not exist F
〈x,{(0.6,l)}〉@n
=========⇒, thus E 6wM F . But we have

F
〈x,{(0,l)}〉@n
========⇒ δ(⌊0⌋n‖C),

F
〈x,{(1,l)}〉@n
========⇒ δ(⌊0⌋n‖C),

therefore there exists

F
〈x,{(0.6,l)}〉@n
=========⇒c δ(⌊0⌋m‖C)

such that

δ(⌊0⌋m‖C) ⊑wM
p

δ(⌊0⌋n‖C),

as a result E wM
p F .

2.6 Bisimulations and Simulations between PMFs

In Section 2.4 and 2.5 we discussed the weak bisimulations and simulations between

networks, in this section we show how we can define these relations between mobility

models. Intuitively, this allows us to abstract from not only the behaviors of a network,

but also the mobility of the given PMF. Being able to do so is important for protocols

for MANETs, since usually these protocols are designed irrespectively of the mobility

of networks, in order to verify these protocols sufficiently we need to consider all the

possible mobility which is not possible in practice. If we are given a PMF M1 and

E1 where M1 denotes the mobility of the network and E1 denotes the behavior of the

verified protocol, both M1 and E1 may contain too many details, and make the state

space huge. Using weak bisimulations or simulations introduced in Section 2.4 and

2.5, it is safe to consider a simpler network E2 provided that E1 and E2 are weakly

(probabilistic) (bi)similar. On the other hand, if we can also abstract from M1, and

57

2. DISCRETE MODEL

0.5 0.9

1

1

Figure 2.9: A simpler mobility.

give a simpler PMF M2 such that M1 and M2 are equivalent in some sense, then we

only need to verify E2 under M2. Since E2 and M2 are simpler, and contain less details,

the state space can be further reduced. Refer to the following example.

Example 21. Suppose we are given two PMFs: M1 and M2 which coincide with each

other except for the mobility of Pro(k 7−→ l). If the mobility of Pro(k 7−→ l) is given

by Fig. 2.3 in M1, while the mobility of Pro(k 7−→ l) is given by Fig. 2.9 in M2, it

is easy to see that M2 is simpler than M1. Moreover in the following we will define

certain relations between M1 and M2 enabling us to use M2 instead of M1 in certain

situations.

2.6.1 Weak Bisimulations between PMFs

In the sequel suppose we are given two PMFs: M1 and M2, moreover let Ni denote

the set of well-formed networks under Mi where i = 1, 2, and similarly for Ci which

denotes the connectivity networks. The set of connectivity networks is dependent on

the given PMF, and may be different under different PMFs i.e. we cannot guarantee that

C1 = C2. Therefore when we want to check whether E and F are weak (probabilistic)

bisimilar or not where E ∈ N1 and F ∈ N2, Definition 5 and 6 will not work, since the

parameter CE,F,k may not always be in C1 ∩ C2. Refer to the following example.

Example 22. Suppose that M1 and M2 are the same except that the mobility of

Pro(l 7−→ k) is given by Fig. 2.3 and 2.9 in M1 and M2 respectively. Let E = ⌊p⌋l

and F = ⌊q⌋l, we want to check whether E and F , executed under the guidance of M1

and M2 respectively, are weakly bisimilar or not. Following Definition 5, we need to

check if E ∝ CE,F,m and F ∝ CE,F,m satisfy the conditions of Definition 5 for any m

and CE,F,m ∈ CE,F,m. Let m = k, we can select a CE,F,k such that CE,F,k(l, k) = 0.8,

apparently E ∝ CE,F,k is a well-formed network w.r.t. M1, but F ∝ CE,F,k is not

well-formed w.r.t. M2 because of 0.8 /∈ Gl 7−→k in M2. Therefore it makes no sense to

talk about the execution F ∝ CE,F,k under the guidance of M2.

58

2.6 Bisimulations and Simulations between PMFs

According to Example 22, we cannot apply Definition 5 and 6 directly when two

different PMFs are involved, since different PMFs may correspond to different set of

connectivity networks. We fix this problem by modifying Definition 5 and 6 as follows

where we do not need to select the same parameter CE,F,k for both E and F , but allow

them to choose different parameters.

Definition 10 (Weak Bisimulation). An equivalence relation R ⊆ (N1∪N2)×(N1∪N2)

is a weak bisimulation if E R F implies that for each k ∈ L and CE,F,k ∈ Ci, there

exists C ′
E,F,k ∈ Cj whenever E ∝ CE,F,k

α
−→ µ,

1. if α = (x,L) ⊳ k, there exists F ∝ C ′
E,F,k

α
==⇒ µ′ such that for each y ∈ N,

µ{y/x} R µ′{y/x};

2. if α = νx̃〈x,L〉@l, there exists F ∝ C ′
E,F,k

νx̃〈x,L〉@m
=======⇒ µ′ such that µ R µ′;

3. if α = τ then there exists F ∝ C ′
E,F,k

τ
==⇒ µ′ such that µ R µ′.

where E ∈ Ni and F ∈ Nj with i, j ∈ {1, 2}.

Two networks E and F are weakly bisimilar, written as E ≈ F , if there exists a

weak bisimulation R such that E R F .

Similarly, we can redefine the weak probabilistic bisimulation of networks when two

PMFs are considered as follows.

Definition 11 (Weak Probabilistic Bisimulation). An equivalence relation R ⊆ (N1 ∪

N2) × (N1 ∪ N2) is a weak probabilistic bisimulation if E R F implies that for each

k ∈ L and CE,F,k ∈ Ci, there exists C ′
E,F,k ∈ Cj whenever E ∝ CE,F,k

α
−→ µ,

1. if α = (x,L) ⊳ k, there exists F ∝ C ′
E,F,k

α
==⇒c µ

′ such that for each y ∈ N,

µ{y/x} R µ′{y/x};

2. if α = νx̃〈x,L〉@l, there exists F ∝ C ′
E,F,k

νx̃〈x,L〉@m
=======⇒c µ

′ such that µ R µ′;

3. if α = τ then there exists F ∝ C ′
E,F,k

τ
==⇒c µ

′ such that µ R µ′.

where E ∈ Ni and F ∈ Nj with i, j ∈ {1, 2}.

Two networks E and F are weakly probabilistic bisimilar, written as E ≈p F , if

there exists a weak probabilistic bisimulation R such that E R F .

When M1 = M2 = M i.e. N1 = N2 = N , it holds that ≈M = ≈ and

≈M
p = ≈p, thus we can say that Definition 10 and 11 are conservative extensions of

Definition 5 and 6 respectively.

59

2. DISCRETE MODEL

Now we are ready to discuss the weak (probabilistic) bisimulation between PMFs.

Intuitively, M1 and M2 are weak (probabilistic) bisimilar iff for each C1 ∈ C1 and

l, k ∈ L, if the node at k can receive messages from l with probability ρ in C1, then

there exists C2 where the node at k can also receive messages from l with the same

probability as in C2 (probably after several mobility steps). In other words, for each

C1 ∈ C1 there exists C2 ∈ C2 such that C1 and C2 are weak (probabilistic) bisimilar.

Below follows the definition of weak (probabilistic) bisimulation between PMFs.

Definition 12. Let M1 and M2 be weak (probabilistic) bisimilar, written as M1 ≈ M2

(M1 ≈p M2), iff for each C1 ∈ C1, there exists C2 ∈ C2 such that C1 ≈ C2

(C1 ≈p C2), and vice versa.

When restricted to connectivity networks, Condition 2 in Definition 5 and 6 can

be omitted, since connectivity networks cannot perform broadcast actions. Therefore

if C1 ≈ C2 (C1 ≈p C2), then whenever C1
(x,L)⊳l
−−−−→ µ, there exists µ′ such that

C2
(x,L)⊳l
=====⇒ µ′ and µ ≈ µ′ (C2

(x,L)⊳l
=====⇒c µ

′ and µ ≈p µ′). Note that (ρ, k) ∈ L implies

the node at k can receive messages from l with probability ρ, thus C1 ≈ C2 implies

that whenever the node at k can receive messages from l with probability ρ, it is also

the case for C2 probably after several (combined) mobility steps.

The following lemma shows the congruence property of ≈ and ≈p where we only

concentrate on the connectivity networks. The congruence property is slightly different

from the standard one like in Theorem 2 which we will discuss later, it enables us to

consider the mobility of each connection individually.

Lemma 5. Let C1, C
′
1 ∈ C1 and C2, C

′
2 ∈ C2, then

1. C1 ‖ C
′
1 ≈ C2 ‖ C

′
2 provided that C1 ≈ C2 and C ′

1 ≈ C ′
2.

2. C1 ‖ C
′
1 ≈p C2 ‖ C

′
2 provided that C1 ≈p C2 and C ′

1 ≈p C ′
2.

Proof. We only prove the first clause since the other one is similar. It is enough to

prove that

R = {(C1 ‖ C ′
1, C2 ‖ C

′
2) | C1 ≈ C2 ∧ C

′
1 ≈ C ′

2}

is a weak bisimulation according to Definition 10. Since we only consider connectivity

networks in C , no unknown probability can occur, thus we can omit the parameters

CE,F,k and C ′
E,F,k in Definition 10 here. Suppose that C1 ‖ C ′

1
α
−→ µ, we prove by

structural induction and there are only three cases we need to consider:

60

2.6 Bisimulations and Simulations between PMFs

1. α = (x,L)⊳l. Then according to (nREC2) in Table 2.5, there exists C1
(x,M)⊳l
−−−−−→ µ1

and C ′
1

(x,N)⊳l
−−−−→ µ′1 such that M ∪ N = L, and µ1 ‖ µ′1 = µ. Since C1 ≈ C2 and

C ′
1 ≈ C ′

2, there exists C2
(x,M)⊳l
=====⇒ µ2 and C ′

2

(x,N)⊳l
=====⇒ µ′2 such that µ1 ≈ µ′1 and

µ2 ≈ µ′2, thus C2 ‖ C
′
2

(x,L)⊳l
=====⇒ µ′ = (µ2 ‖ µ

′
2), by induction µ R µ′.

2. α = τ and there exists C1
τ
−→ µ1 such that µ = µ1 ‖ δC′

1
. Since C1 ≈ C2, there

exists C2
τ

==⇒ µ2 such that µ1 ≈ µ2, thus C2 ‖ C ′
2

τ
==⇒ µ′ = (µ2 ‖ δC′

2
). By

induction µ R µ′.

3. α = τ and there exists C ′
1

τ
−→ µ′1 such that µ = δC1 ‖ µ′1. This case is similar with

Clause 2, and is omitted here.

When restricted to networks in C1 ∩ C2, Lemma 5 coincides with the standard

congruence property i.e. C1 ‖ C ≈ C2 ‖ C provided that C1 ≈ C2. Since apparently

C ≈ C, it is easy to see that Lemma 5 implies the standard congruence property. On

the other hand, if C1 ≈ C2 and C ′
1 ≈ C ′

2 where C1, C2, C
′
1, C

′
2 ∈ C1 ∩ C2, we can

imply C1 ‖ C ′
1 ≈ C2 ‖ C ′

2 using the standard congruence in two steps together with

the transitivity of ≈ as follows: C1 ‖ C ′
1 ≈ C2 ‖ C ′

1 and C2 ‖ C ′
1 ≈ C2 ‖ C ′

2. It

is similar for ≈p. Note that in general Lemma 5 cannot be changed to the standard

congruence definition, since we cannot always guarantee that C ∈ C1 and C ∈ C2 for

arbitrary C, thus networks C1 ‖ C and C2 ‖ C may not be well-formed w.r.t. M1 and

M2 respectively.

According to Definition 12 we need to consider every C1 ∈ C1 and C2 ∈ C2 in

order to check whether M1 and M2 are weak (probabilistic) bisimilar or not. This

is not possible in practice since C1 and C2 are essentially infinite. Due to Lemma 5,

it is enough to check each connection individually i.e. networks in C1 ∪ C2 of form

{{(ρ, k)} 7−→ l} for some k, l. Furthermore we only check those connections whose

mobility is explicitly defined, since all the others with implicit mobility are guaranteed

to be equivalent. We have the following lemma.

Lemma 6. M1 ≈ M2 (M1 ≈p M2) iff for each C1 = {{(ρ1, k)} 7−→ l} ∈ C1 such

that the mobility of Pro(k 7−→ l) is explicitly defined, there exists C2 = {{(ρ2, k)} 7−→

l} ∈ C2 such that C1 ≈ C2 (C1 ≈p C2), and vice versa.

Proof. The proof is straightforward from Definition 12 and Lemma 5.

61

2. DISCRETE MODEL

Definition 5 and 6 enable us to abstract the given network. By introducing Def-

inition 12 we can also abstract the given PMF to reduce the state space furthermore

without changing the properties we are interested in. We can do so due to the follow-

ing theorem which states that for any two weak (probabilistic) bisimilar connectivity

networks, the resulting networks after putting them in parallel with the same behavior

network are still weak (probabilistic) bisimilar. This is the key step in order to abstract

the given PMF which we will show in detail later on.

Theorem 10. Let B ∈ B, C1 ∈ C1, and C2 ∈ C2, then

1. B ‖ C1 ≈ B ‖ C2 provided that C1 ≈ C2,

2. B ‖ C1 ≈p B ‖ C2 provided that C1 ≈p C2.

Proof. We only prove the first clause since the other one is similar. It is enough to

prove that

R = {(B ‖ C1, B ‖ C2) | B ∈ B ∧ C1 ≈ C2}

is a weak bisimulation. We first prove that for each C ′
1 ∈ C1 there exists C ′

2 ∈ C2

such that C1 ∝ C ′
1 ≈ C2 ∝ C ′

2 provided that C1 ≈ C2. It is easy to see that

C1 ∝ C ′
1 ≡ C1 ‖ C ′′

1 and C2 ∝ C ′
2 ≡ C2 ‖ C ′′

2 where C ′′
1 only contains connectivity

information in C ′
1 which does not occur in C1, and similar for C ′′

2 . Due to Lemma 6,

the following proof is trivial.

Let E ≡ B ‖ C1 and F ≡ B ‖ C2, apparently E R F . Since for each CE,F,k ∈ C1,

there exists C ′
E,F,k ∈ C2 such that C1 ∝ CE,F,k ≈ C2 ∝ C ′

E,F,k, thus in the following

we are safe to assume that both C1 and C2 contain enough connectivity information,

and the parameters CE,F,k and C ′
E,F,k can be simply omitted. Suppose E

α
−→ µ, there

are several cases we need to consider:

1. α = (x,L)⊳k. According to (nREC2) in Table 2.5, there exists B
(x,∅)⊳k
−−−−−→ µ1 and

C1
(x,L)⊳k
−−−−−→ µ2 such that µ1 ‖ µ2 ≡ µ. Since C1 ≈ C2, there exists C2

(x,L)⊳k
=====⇒ µ′2

such that µ2 ≈ µ′2, thus there exists F
(x,L)⊳k
=====⇒ µ′ = (µ1 ‖ µ′2). By induction

µ{y/x} R µ′{y/x}.

2. α = 〈x,L〉@k. According to (nSYN) in Table 2.5, there exists B
〈x,∅〉@k
−−−−−→ µ1 and

C1
(x,L)⊳k
−−−−−→ µ2 such that µ1 ‖ µ2 ≡ µ. Since C1 ≈ C2, there exists C2

(x,L)⊳k
=====⇒ µ′2

such that µ2 ≈ µ′2, thus there exists F
〈x,L〉@k
=====⇒ µ′ = (µ1 ‖ µ′2). By induction

µ R µ′.

62

2.6 Bisimulations and Simulations between PMFs

3. α = τ . This case is similar and omitted here.

Now we show how we can abstract from both behaviors and mobility in two steps.

Suppose we are given a network E and a PMF M1, there exists B1 and C1 such that

E ≡ B1 ‖ C1 where B1 denotes the behavior of the network while C1 denotes the

connectivity information in E. First if we find a simpler B2 such that

B1 ‖ C1 ≈M1 B2 ‖ C1

according to Definition 5, then in the following we need only focus on B2 ‖ C1 which

is simpler than B1 ‖ C1, note that

B1 ‖ C1 ≈M1 B2 ‖ C1 implies that B1 ‖ C1 ≈ B2 ‖ C1.

As the second step, we can abstract M1 too. Suppose there exists a simpler M2 such

that M1 ≈ M2 according to Definition 12, then for each C1 ∈ C1 there exists C2 ∈ C2

such that C1 ≈ C2. By Theorem 10 we can replace C1 in E by C2, and guarantee

that

E ≡ B1 ‖ C1 ≈ B2 ‖ C1 ≈ B2 ‖ C2.

For now on we can analyze B2 ‖ C2 under the M2, which shall be much simpler than

analyzing E under the M1. Similarly, we can also do so for ≈p. To illustrate how it

works, we give a simple example as follows:

Example 23. Suppose that there are two PMFs: M1 and M2 such that they are the

same except for the connection from l to k i.e. Pro(l 7−→ k). The mobility of Pro(l 7−→

k) is given by Fig. 2.3 in M1, while the mobility of Pro(l 7−→ k) is given by Fig. 2.10

in M2. It is easy to check that M1 ≈p M2, since for any connectivity network

{{(ρ1, l)} 7−→ k} in C1 where ρ1 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, there exists {{(ρ2, l)} 7−→ k}

in C2 where ρ2 ∈ {0.5, 0.6, 0.7, 0.9} such that

{{(ρ1, l)} 7−→ k} ≈p {{(ρ2, l)} 7−→ k}.

Furthermore there is a network

E = ⌊(x) ‖ p⌋l ‖ {{(0.8, l)} 7−→ k}

63

2. DISCRETE MODEL

0.5

0.6 0.9

0.7
0.5

0.6

1

0.4

0.5

1

Figure 2.10: A simpler PMF weak probabilistic bisimilar with Fig. 2.3.

in N1. First it is easy to see that (x) ‖ p ≈ p for any p, thus

⌊(x) ‖ p⌋l ≈M1
p ⌊p⌋l.

By Theorem 4,

⌊(x) ‖ p⌋l ‖ {{(0.8, l)} 7−→ k} ≈M1
p ⌊p⌋l ‖ {{(0.8, l)} 7−→ k}.

Since M2 is simpler than M1, it is more preferable for analysis purpose. But according

to Definition 1 E is not well-formed w.r.t. M2, thus we cannot apply M2 directly to E.

Note that there exists {{(0.9, l)} 7−→ k} ∈ C2 such that

{{(0.8, l)} 7−→ k} ≈p {{(0.9, l)} 7−→ k},

according to Theorem 10 we have

⌊p⌋l ‖ {{(0.8, l)} 7−→ k} ≈p ⌊p⌋l ‖ {{(0.9, l)} 7−→ k}

where ⌊p⌋l ‖ {{(0.9, l)} 7−→ k} is a well-formed network w.r.t. M2. As a result E and

M1 can be replaced by ⌊p⌋l ‖ {{(0.9, l)} 7−→ k} and M2 respectively.

2.6.2 Weak Simulation between PMFs

In this section we extend the work in Section 2.6.1 to simulations. All the definitions

and properties are straightforward, but for completeness we write down them here.

64

2.6 Bisimulations and Simulations between PMFs

Definition 13 (Weak Simulation). A relation R ⊆ (N1 ∪ N2) × (N1 ∪ N2) is a weak

simulation if E R F implies that for each k ∈ L and CE,F,k ∈ C1, there exists C ′
E,F,k ∈

C2 such that whenever E ∝ CE,F,k
α
−→ µ,

1. if α = (x,L) ⊳ k, there exists F ∝ C ′
E,F,k

α
==⇒ µ′ such that for each y ∈ N,

µ{y/x} ⊑R µ′{y/x};

2. if α = νx̃〈x,L〉@l, there exists F ∝ C ′
E,F,k

νx̃〈x,L〉@m
=======⇒ µ′ such that µ ⊑R µ′;

3. if α = τ then there exists F ∝ C ′
E,F,k

τ
==⇒ µ′ such that µ ⊑R µ′.

Let F weakly simulate E, written as E w F , if there exists a weak simulation R

such that E R F .

Definition 14 (Weak Probabilistic Simulation). A relation R ⊆ (N1∪N2)×(N1∪N2)

is a weak probabilistic simulation if E R F implies that for each k ∈ L and CE,F,k ∈ C1,

there exists C ′
E,F,k ∈ C2 such that whenever E ∝ CE,F,k

α
−→ µ,

1. if α = (x,L) ⊳ k, there exists F ∝ C ′
E,F,k

α
==⇒c µ

′ such that for each y ∈ N,

µ{y/x} ⊑R µ′{y/x};

2. if α = νx̃〈x,L〉@l, there exists F ∝ C ′
E,F,k

νx̃〈x,L〉@m
=======⇒c µ

′ such that µ ⊑R µ′;

3. if α = τ then there exists F ∝ C ′
E,F,k

τ
==⇒c µ

′ such that µ ⊑R µ′.

Let F weakly probabilistic simulate E, written as E wp F , if there exists a weak

probabilistic simulation R such that E R F .

As before we can prove that w and wp are preorders.

Theorem 11. w and wp are preorders.

Proof. Similar with the proof of Theorem 7 and 8.

Intuitively, M2 can simulate M1 iff for each C1 ∈ C1 there exists C2 ∈ C2 such that

C2 can simulate C1, formally

Definition 15. Let M2 weak (probabilistic) simulate M1, written as M2 w M1

(M2 wp M1), iff for each C1 ∈ C1 there exists C2 ∈ C2 such that C1 w C2

(C1 wp C2).

The w and wp have similar properties as ≈ and ≈p. We first show their congruence

related to networks in C .

65

2. DISCRETE MODEL

Lemma 7. Let C1, C
′
1 ∈ C1 and C2, C

′
2 ∈ C2, then

1. C1 ‖ C
′
1 w C2 ‖ C

′
2 provided that C1 w C2 and C ′

1 w C ′
2.

2. C1 ‖ C
′
1 wp C2 ‖ C

′
2 provided that C1 wp C2 and C ′

1 wp C ′
2.

Proof. We only prove the first clause since the other one is similar. It is enough to

show that

R = {(C1 ‖ C ′
1, C2 ‖ C

′
2) | C1 w C2 ∧ C

′
1 w C ′

2}

is a weak simulation. For the same reason as in Lemma 7, we can omit the parameters

CE,F,k and C ′
E,F,k in Definition 13. Suppose that C1 ‖ C

′
1

α
−→ µ, we prove by structural

induction and there are only three cases we need to consider:

1. α = (x,L)⊳l. Then according to (nREC2) in Table 2.5, there exists C1
(x,M)⊳l
−−−−−→ µ1

and C ′
1

(x,N)⊳l
−−−−→ µ′1 such that M ∪ N = L, and µ1 ‖ µ′1 = µ. Since C1 w C2 and

C ′
1 w C ′

2, there exists C2
(x,M)⊳l
=====⇒ µ2 and C ′

2

(x,N)⊳l
=====⇒ µ′2 such that µ1 w µ′1 and

µ2 w µ′2, thus C2 ‖ C
′
2

(x,L)⊳l
=====⇒ µ′ = (µ2 ‖ µ

′
2), by induction µ ⊑R µ′.

2. α = τ . Then according to (nPAR) in Table 2.5, there exists C1
τ
−→ µ1 such that

µ = µ1 ‖ δC′
1
. Since C1 w C2, there exists C2

τ
==⇒ µ2 such that µ1 w µ2, thus

C2 ‖ C
′
2

τ
==⇒ µ′ = (µ2 ‖ δC′

2
). By induction µ ⊑R µ′.

3. α = τ . There exists C ′
1

τ
−→ µ′1 such that µ = δC1 ‖ µ′1. This case is similar with

Clause 2, and is omitted here.

With Lemma 7 it is enough to check each connection individually in order to deter-

mine whether two PMFs are weakly similar. Since we only have finitely many connec-

tions whose mobility is explicitly defined, thus we have the analogue lemma as follows:

Lemma 8. M1 w M2 (M1 wp M2) iff for each C1 = {{(ρ1, k)} 7−→ l} ∈ C1 such

that the mobility of Pro(k 7−→ l) is explicitly defined, there exists C2 = {{(ρ2, k)} 7−→

l} ∈ C2 such that C1 w C2 (C1 wp C2).

Proof. The proof is straightforward from Definition 15 and Lemma 7.

Finally, we have the following theorem.

Theorem 12. Let B ∈ B, C1 ∈ C1, and C2 ∈ C2, then

1. B ‖ C1 w B ‖ C2 provided that C1 w C2,

66

2.6 Bisimulations and Simulations between PMFs

2. B ‖ C1 wp B ‖ C2 provided that C1 wp C2.

Proof. We only prove the first clause since the other one is similar. It is enough to

prove that

R = {(B ‖ C1, B ‖ C2) | B ∈ B ∧C1 w C2}

is a weak simulation. The proof is similar with the proof of Theorem 10. We first prove

that for each C ′
1 ∈ C1 there exists C ′

2 ∈ C2 such that C1 ∝ C ′
1 w C2 ∝ C ′

2 provided

that C1 w C2. It is easy to see that C1 ∝ C ′
1 ≡ C1 ‖ C ′′

1 and C2 ∝ C ′
2 ≡ C2 ‖ C ′′

2

where C ′′
1 only contains connectivity information in C ′

1 which does not occur in C1, and

similar for C ′′
2 . Due to Lemma 8, the following proof is trivial.

Let E ≡ B ‖ C1 and F ≡ B ‖ C2, apparently E R F . Since for each CE,F,k ∈ C1,

there exists C ′
E,F,k ∈ C2 such that C1 ∝ CE,F,k w C2 ∝ C ′

E,F,k, thus in the following

we are safe to assume that both C1 and C2 contain enough connectivity information,

and the parameters CE,F,k and C ′
E,F,k can be simply omitted. Suppose E

α
−→ µ, there

are several cases we need to consider:

1. α = (x,L)⊳k. According to (nREC2) in Table 2.5, there exists B
(x,∅)⊳k
−−−−−→ µ1 and

C1
(x,L)⊳k
−−−−−→ µ2 such that µ1 ‖ µ2 ≡ µ. Since C1 w C2, there exists C2

(x,L)⊳k
=====⇒ µ′2

such that µ2 w µ′2, thus there exists F
(x,L)⊳k
=====⇒ µ′ = (µ1 ‖ µ′2). By induction

µ{y/x} R µ′{y/x}.

2. α = 〈x,L〉@k. According to (nSYN) in Table 2.5, there exists B
〈x,∅〉@k
−−−−−→ µ1 and

C1
(x,L)⊳k
−−−−−→ µ2 such that µ1 ‖ µ2 ≡ µ. Since C1 w C2, there exists C2

(x,L)⊳k
=====⇒ µ′2

such that µ2 w µ′2, thus there exists F
〈x,L〉@k
=====⇒ µ′ = (µ1 ‖ µ′2). By induction

µ R µ′.

3. α = τ . This case is similar and omitted here.

As mentioned before, for any E there exists B1 and C1 such that E ≡ B1 ‖ C1 where

B1 only describes the behavior and C1 contains all the known connectivity information.

If there exists a simpler B2 such that B1 ‖ C1 w B2 ‖ C1, then we can use B2 ‖ C1

instead for analysis purpose. Secondly, if there exists M2 such that M1 w M2,

according to Definition 15, for each C1 there exists C2 ∈ C2 such that C1 w C2. By

Theorem 12, we have B2 ‖ C1 w B2 ‖ C2. Since w is a preorder, thus E ≡ B1 ‖

C1 w B2 ‖ C2. By doing so it is enough to analyze B2 ‖ C2 under M2. As an

67

2. DISCRETE MODEL

PDA

PC 1

PC 2

Laptop

0.9

1

0.8

Figure 2.11: A home network.

extreme case the most abstract PMF where every connection has implicit mobility can

be used to simulate any arbitrary PMF, thus in some cases we can use this PMF instead

depending on what properties we are interested in, which would reduce the state space

a lot.

2.7 The Zeroconf Protocol

The Zeroconf protocol is designed for self-configuring home local networks. For ex-

ample, Fig. 2.11 gives a typical home local network which contains four nodes: PC 1,

PC 2, Laptop , and PDA. The arrows indicate that PC 1, PC 2, and Laptop can receive

messages from PDA with probability 0.9, 1, and 0.8 respectively. Here we assume that

all other connections have probability 1.

In order to ensure correct mutual communication, each node must have a unique IP

address, so when a new node joins a network it must be assigned an unused IP address.

The Zeroconf protocol solves this in the following way:

1. The new node selects randomly an IP address out of all available IP addresses;

2. It broadcasts a message to other nodes to probe if the selected IP address is in

use or not;

3. If the new node receives a message indicating the IP address is already taken,

then it returns to step 1 and restarts the process;

68

2.7 The Zeroconf Protocol

Table 2.6: The Zeroconf protocol.

oldnode ip = (x).([x = ip]〈err 〉.oldnode ip , oldnode ip)

newnodepi = 〈p〉.waitawk p
i

newnodep0 = 〈suc〉

waitawk p
i = (x).(([x = err]newnode ,waitawk p

i) + newnodepi−1)

newnode = νy(y(p).〈p〉.waitawk p
pn ‖

∏
ip∈IP y〈ip〉)

4. Due to unreliable connections, messages can be lost with a certain probability. To

increase the reliability of the protocol, the new node is required to send several

probes for the same IP address;

5. If no error message has been received after these probes, the selected IP address

will be used by the new node.

Note that after running the protocol it is indeed possible for a new node to use an IP

address that is already used by another node. This is called address collision and is

highly undesirable.

In the following, we model and analyze the Zeroconf protocol, the model of the

protocol is given in Table 2.6. 1 We use oldnode ip to denote an existing network node,

i.e. a process with IP address ip running at a location; oldnode ip repeatedly receives

messages and compares these messages with its own IP address ip. If a message is

identical to ip, it will broadcast an error message, err , informing the new node that

the selected IP address is being used already. newnodepi denotes a process which will

probe i times before assuming that the selected IP address p is not used by other

nodes. It will evolve into process waitawk p
i after broadcasting a probe. newnodep0 is

a special process which denotes that the protocol succeeded in finding an unused IP

address p (although this might not be true with a certain probability). The process

waitawk p
i waits for the responses from other nodes. If it receives an err message because

the selected IP address is not valid, it will restart the whole process, otherwise it will

recurse and become waitawk p
i again. The summation here is used to denote timeout

from waiting for responses and then start a new round of probing. newnode starts the

protocol by selecting an IP address from IP randomly, here IP is the finite set of all

1Summation is defined by: p+ q = νx(x〈y〉 ‖ x(y) · p ‖ x(y) · q).

69

2. DISCRETE MODEL

available addresses and
∏

means parallel composition of processes. In the above, we

use pn to denote the maximum number of probes for the same IP address.

The behavior of the network in Fig. 2.11 can be represented as follows:

E = ⌊newnode⌋k ‖ ⌊oldnode ip1
⌋l ‖ ⌊oldnode ip2

⌋m ‖ ⌊oldnode ip3
⌋n

We assume Laptop, PC1, and PC2 are existing nodes which are located at l, m, and

n respectively, and PDA at k is a node that wants to join the network; here ip1, ip2,

and ip3 are used to denote IP addresses in IP already in use. Concerning mobility

we assume a PMF M such that the mobility rule of Pro(k 7→ l) is given by Fig. 2.2

and the mobility rules of Pro(k 7→ m) and Pro(k 7→ n) are given by Fig. 2.3, and the

nodes at locations l, m, n can always receive messages from the node at location k

with probability 1. In addition, the mobility of all the other connections is implicitly

defined.

With the logic which we will introduce in Chapter 4, we can denote the obvious

property that “if an unused IP address is selected by the new node then the probability

of this IP address being allocated to the new node is equal to 1”. We may also specify

the property: “if an used IP address is selected by the new node then the probability

of address collision is less than q”. Assuming the maximum number of probes pn to be

3, it turns out that q here cannot be smaller than 0.064 for E satisfying this property.

Intuitively, if the new node selects an used IP address such as ip1, then among all cases

to consider there exists a worst case under which oldnode ip1
may fail to receive the

probe from the new node for three times with probability (1 − 0.6)3 = 0.064. In the

above we assume that E(k, l) = E(k,m) = E(k, n) = 0.9.

In order to illustrate analysis through the use of weak bisimulation we may define

F ≡ ⌊newnode⌋k ‖ ⌊oldnode ip1
⌋l ‖ ⌊oldnode ip3

⌋m ‖ ⌊oldnode ip2
⌋n

i.e. compared to E in the network F the two old nodes PC1 and PC2 have swapped

their locations m and n. Further let

E′ ≡ {{(k, 0.8)} 7→ l} ‖ {{(k, 0.6)} 7→ m} ‖ {{(k, 0.9)} 7→ n}

and let

F ′ ≡ {{(k, 0.6)} 7→ l} ‖ {{(k, 0.9)} 7→ m} ‖ {{(k, 0.8)} 7→ n}

70

2.8 Related Work

then we infer

E ‖ E′ ≈M F ‖ F ′

Intuitively, by the given M nodes at locations m and n can always receive messages

from other locations with the same probability, in addition they can also broadcast

messages to other locations with the same probabilities. If the new node selecting an

used IP address such as ip2 broadcasts a probe, then the node at location m in E can

receive it with probability 1 and then broadcast an err message. The node at location

n in F can simulate this by performing the same actions in addition with some mobility

transitions. In both E and F , the newnode can receive the err message with the same

probability. A similar argument holds for other transitions.

Suppose that

F ′′ ≡ {{(k, 0.7)} 7→ l} ‖ {{(k, 0.9)} 7→ m} ‖ {{(k, 0.7)} 7→ n}

then we know that E ‖ E′ 6≈M F ‖ F ′′ because if newnode selects an used IP address

such as ip2, it will receive the err message from location n with probability 0.7 in

F ‖ F ′′ which can not be simulated by E ‖ E′, but E ‖ E′ ≈M
p F ‖ F ′′ since E ‖ E′ has

a combined transition where newnode can receive err message from location m with

probability 0.7. The theory introduced in Section 2.5 can be applied to perform one

direction abstraction in a similar way, and we omit the detail here.

Now we will show how the theory in Section 2.6 can be used to abstract the given

PMF. Suppose that we have a PMF M′ which is the same as M except that the mobility

rule of Pro(k 7→ l) is given by Fig. 2.12 (a) and the mobility rules of Pro(k 7→ m) and

Pro(k 7→ n) are given by Fig. 2.12 (b). Then it is easy to check that M ≈p M′. Since

M′ is simpler than M, thus instead of analyzing E with M being the mobility function,

we can analyze E under M′ which has less states but preserves certain properties. The

simulations between PMFs can be applied in a similar way, and are omitted here.

2.8 Related Work

We end this chapter with some related work. In (63) Nanz and Hankin introduced the

calculus CBS♯ for mobile ad hoc networks (MANETs) which is used as a framework for

security analysis of protocols for MANETs. In CBS♯ the process connectivity is sepa-

rated from process actions, and is represented by connectivity graphs whose vertices are

71

2. DISCRETE MODEL

0.6

0.9

0.5

0.6

0.9

0.5

0.5

11

11

(a) (b)

Figure 2.12: A more abstract PMF.

all the locations. Differently, the connections are bidirectional instead of unidirectional.

An edge between two locations indicates that they are connected, otherwise they are

disconnected. Merro (65) proposed a value-passing process calculus, called CMN, for

MANETs. In CMN each node is located at a physical location with a transmission radius

denoting its transmission radius. Moreover CMN distinguishes between mobile nodes

and stationary nodes. Since the locations in CMN are physical, the connectivity graph

is determined by the physical positions of all the locations. A location l is connected

to another location k iff l is in the transmission range of k. CMAN was proposed by

Godskesen (67) where the connectivity graph is an explicit part of the network syntax

and each mobility step corresponds to a computational step, similar as in our calculus.

Singh, Ramakrishnan, and Smolka (64) proposed the ω-calculus which is a conserva-

tive extension of π-calculus. One of the most important features of ω-calculus is that it

separates a node’s communication and computational behavior from the description of

the physical transmission range. The maximal clique in the connectivity graph is called

group in ω-calculus. Each location is associated with a set of groups which the location

belongs to. Two locations are connected if they have common groups. The change of

the interface of each location will also change the underlying connectivity graph. As

in (63), ω-calculus deals with bidirectional connectivity. In (66) a restricted broadcast

process theory (RBPT) for MANETs was proposed by Ghassemi et al., where connec-

72

2.8 Related Work

tivity and mobility are modeled implicitly in the semantics instead of in the syntax.

By eliminating connectivity information from the syntax, a more compact state space

is often obtained. Furthermore, an equational theory for RBPT was proposed in (72)

as well as an extended algebra to axiomatize restricted broadcast.

In this chapter we assume that each connection is independent, this might be an

unrealistic assumption in practice, since the movement of a node may affect the con-

nectivity probabilities of several connections. In the next chapter we will show how

we can extend this calculus in order to deal with dependent mobility. Also we enrich

the calculus with other features like continuous time behaviors and mobility, group

broadcast and so on.

73

2. DISCRETE MODEL

74

Chapter 3

Continuous Model

In this chapter we extend the work in Chapter 2 to the continuous scenario. We

motivate the work in Section 3.1. The syntax and semantics of the calculus is introduced

in Section 3.2 and 3.3 respectively. In Section 3.4 we introduce two notions of weak

bisimulations, one of which is defined on networks, while the other one is defined on

network distributions. We extend this work to simulations in Section 3.5. In Section 3.6

we show how to remove the limitation that a message can only be received by each node

for at most once. We apply our theory to a leader election protocol in Section 3.7. This

chapter is concluded with some related work in Section 3.8.

3.1 Motivation

In Chapter 2 we introduced a calculus for MANETs where one of the key features is

letting a communication link between two nodes not just be in one of the two states

‘connected’ or ‘disconnected’, but also we allowed a decoration of connection links with

a probability. The meaning being that messages broadcasted along a connection deco-

rated with a probability ρ will be received by that probability. Intuitively this reflects

that connection links in wireless networks may not always be reliable. We also enforced

restricted mobility by means of a probabilistic mobility function saying that a given

node with a certain probability may move and thereby change the probability of the

connection to another node. The models we obtain are discrete and each network in our

calculus in Chapter 2 gives rise to a probabilistic automata (1). A major contribution

in this chapter is a generalization of the notion of a mobility function. In Chapter 2

75

3. CONTINUOUS MODEL

a mobility function returns the change (the new probability) of just a single connec-

tion between two nodes, in this chapter we let a mobility function be able to change

a number of connections at the same time, i.e. we recognize that mobility of a single

node may not just influence the connection to a single neighbor, instead a mobility

step may change a larger part of the network topology. Moreover, the new kind of mo-

bility functions introduced in this chapter makes use of network topology constraints.

For instance we may specify that the probability for the node l being connected to

m must be the same as k being connected to m, i.e. Pro(l 7−→ m) = Pro(k 7−→ m).

Intuitively this may represent that k and l are always within the same distance from

m. Another example could be to require that the likelihood one of k and l receiv-

ing a broadcasted message from m is sufficiently high, we may for instance specify

Pro(l 7−→ m) + Pro(k 7−→ m) ≥ 0.9, intuitively meaning that m is always sufficiently

close to at least one of k and l. We demonstrate the usefulness of topology constraints

in Section 3.7.

Another novel contribution of this chapter is the introduction of stochastically timed

behavior for MANETs, our contribution follows the tradition of having rates for expo-

nential probability distributions, known from say continuous time Markov processes,

as part of our calculus. A major motivation for this contribution is that we would like

to more realistically being able to model mobility of nodes as time dependent stochas-

tic phenomenon, this is obtained by letting a stochastic mobility function return no

longer a discrete probability as in Chapter 2 but a rate for an exponential probability

distribution. Formally we will write M(C,C ′,
) = λ where C is the current (partial)

network configuration, C ′ is the new configuration reached by a mobility step,
 is the

network topology constraint the transition from C to C ′ depends on, and the transition

occurs with a delay exponentially distributed by λ. Intuitively the rate signifies how

fast the network topology will change, i.e. the higher rate the more likely it is that the

topology will change fast. Another reason for introducing continuous time stochastic

behavior is that many protocols for MANETs make use of time dependent randomized

back-off techniques. In order to be able to model such protocols we introduce, in the

style of Interactive Markov Chains (32), a prefix construct λ for processes such that

we may write e.g. p = q + λ.p meaning that p may behave as q or it may after some

delay exponentially distributed by λ back off and iterate its behavior. This back-off

76

3.1 Motivation

style encoding is utilized in our model of a leader election protocol for MANETs de-

fined in Section 3.7. By the introduction of the continuous time stochastic behavior it

turns out that the semantics of our calculus is a combination of discrete and continuous

time probability, non-determinism, and concurrency and thus gives rise to a Markov

Automaton (MA) (5).

A third contribution is that we allow for two novel operators as part of our calculus.

To the best of our knowledge these two operators have not before been considered in

calculi for mobile and wireless systems. In many broadcast protocols it is quite common

for a node to broadcast messages just to a limited number of nodes and hence not to

all nodes in the network; to accommodate this feature we introduce a group broadcast

prefix in our calculus denoted by 〈x⊲L〉 where x is the message to be broadcasted and

L is the set of intended receivers of x. The other new operator is a kind of a low level

protocol that is often used in many wireless broadcast protocols, it is meant to deal with

the problem of flooding. Flooding occurs when the same message is broadcasted over

and over again in the execution of a protocol, but where it is sufficient to have received

and dealt with the message just once. Flooding may e.g. occur in a protocol if a node is

naively supposed to forward all requests for being part of a protocol, a node receiving

similar requests for participating in the same execution of the protocol from multiple

neighbors will then forward each of these requests to its neighbors although forwarding

just one of these identical requests would ideally be sufficient. The operator is defined

by introducing a memory M for each node, formally we write ⌊p⌋Ml for a node with

the processes p running a location l and with memory M . Intuitively the semantics is

that whenever the node receives a broadcasted message x it is first checked whether

x belongs to M , if it does x is discarded and p will remain unchanged, otherwise x is

added to M and p is updated accordingly. We also show how to remove the flooding

avoidance operator in Section 3.6.

In a nutshell we present a continuous time stochastic broadcast calculus for wireless

networks with a stochastic mobility function depending on topology constraints where

group broadcast and flooding avoidance are integrated operators.

77

3. CONTINUOUS MODEL

3.2 The Calculus

We take all notations from Chapter 2, moreover we may write l directly for singleton

set {l}. Define the syntax of topology constraints C, ranged over by
, as follows:
 ::= Pro(k 7−→ l) = ρ |
 ∧
 |
 ∨

where
 evaluates to true and false in an obvious way. The above syntax is simple

but expressive. For example we can define constraints such as Pro(k 7−→ l) ≥ 0.8 and

Pro(l 7−→ m) + Pro(l 7−→ n) = 1 as follows where ⊲⊳ ∈ {<,>,≤,≥}:

• Pro(k 7−→ l) ⊲⊳ ρ ≡ (∨
ρ′∈℘∧ρ′⊲⊳ρ

Pro(k 7−→ l) = ρ′);

• Pro(l 7−→ m) + Pro(l 7−→ n) ⊲⊳ ρ ≡

(∨
ρ1,ρ2∈℘∧ρ1+ρ2⊲⊳ρ

(Pro(l 7−→ m) = ρ1 ∧ Pro(l 7−→ n) = ρ2)).

Other operators can be defined in a similar way. In the sequel instead of writing

the whole expressions, we will use these shorthand.

Let P denote the set of the processes which is ranged over by p, q, r . . ., and defined

by the following grammar:

p, q ::= 0 | Act · p | p+ q | [x = y]p, q | νxp | A

Act ::= λ | 〈x⊲ L∗〉 | (x),

where p+ q denotes nondeterministic choices between p and q, and Act ·p means that p

is prefixed by Act and will behave as p after Act being preformed. Specially, λ ·p means

that p is guarded by a delay which is exponentially distributed with rate λ ∈ R+.1 Let

〈x⊲L∗〉 and (x) denote (group) broadcast and reception respectively where L∗ is either

L or L. We usually write 〈x⊲L〉 as 〈x〉 for simplicity in the following. If L∗ = L, then

〈x⊲L〉 denotes a group broadcast with L as its destination locations which can deliver

the message x only to nodes at locations in L. All the other operators are the same as

in Chapter 2.

The set of networks N is defined by:

E,F ::= 0 | ⌊p⌋Ml | {L 7−→ l} | νxE | E ‖ F

1R+ is the set of all the positive rational numbers.

78

3.2 The Calculus

Table 3.1: Structural congruence of processes and networks (continuous).

νxE ‖ F ≡ νx(E ‖ F), x /∈ fn(F)

(p+ q) + r ≡ p+ (q + r) (E ‖ F) ‖ G ≡ E ‖ (F ‖ G)

{L1 7−→ k} ‖ {L2 7−→ k} ≡ {L1 ∪ L2 7−→ k}, l(L1) ∩ l(L2) = ∅

p+ 0 ≡ p p+ q ≡ q + p νxνyp ≡ νyνxp

E ‖ 0 ≡ E νxνyE ≡ νyνxE {∅ 7−→ l} ≡ 0

⌊νxp⌋l ≡ νx⌊p⌋l E ‖ F ≡ F ‖ E ⌊p⌋l ≡ ⌊q⌋l, p ≡ q

which is almost the same as in Chapter 2 except for the extra parameter M . The

parameter M is a finite memory which is used to keep track of all the messages having

been received, and is often omitted if it is not important for the discussion.

The set of free and bound names in E, denoted by fn(E) and bn(E) respectively,

are defined as before except that fn(⌊p⌋Ml) = fn(p) ∪ M . Structural congruence of

processes and networks, ≡, is the least equivalence relation and congruence closed by

α-conversion and the rules in Table 3.1, which can be extended to distributions as

usual.

We adopt the same notation here, and let a stochastic mobility function (SMF)

M : C × C ×C→ R+

be a partial function where M(C,C ′,
) returns the mobility rate from C to C ′ given
 evaluates to true. Different from Chapter 2 and (73) where the SMF is defined on

a single connection, here we define a SMF on connectivity networks which can be seen

as a collection of different connections. The reason to do so is that we can model

dependent mobility as described in the introduction. We assume M(C,C, true) = 0 if

the connectivity network C is stable. For simplicity we let M(C,C ′,
) = ⊥ denote that

the mobility rule from C to C ′ under condition
 is undefined.

79

3. CONTINUOUS MODEL

A SMF is valid if for each C,C ′ such that M(C,C ′,
) 6= ⊥ for some
, then
C(k, l) = θk 7−→l iff C

′(k, l) = θk 7−→l

for all k and l. Intuitively, the condition guarantees that when a mobility step from

C to C ′ happens, it only changes the probability of connectivities in C, and we can

neither obtain information about connectivities not in C, nor lose connectivities in C.

For instance let C = {{(0.5,m), (0.9, n)} 7−→ l} and C ′ = {{(0.8,m)} 7−→ l}, a mobility

rule from C to C ′ is not valid since the connectivity information of ρn 7−→l is lost in C
′,

similarly a mobility rule from C ′ to C is not valid either. In the following we will only

consider valid SMFs, and we assume that there is a given M throughout this chapter.

Since we have infinitely many connectivity networks, it is not reasonable to always

define mobility rules for all of them. Instead we allow M to be defined for just finitely

many pairs C and C ′ and topology constraints
. We call those rules explicit mobility

rules. A connection k 7−→ l has an explicit mobility rule if there exists M(C,C ′,
) 6= ⊥

with C(k, l) 6= θk 7−→l. For any connection k 7−→ l with no explicit mobility rule we

assume it has the implicit mobility rule

M({{(0, k)} 7−→ l}, {{(0, k)} 7−→ l}, true) = 0,

that is k is not and will never be connected to l. The default implicit mobility can be

changed without affecting our theory.

The structural congruence closed set of well-formed networks N under a given SMF

M is inductively defined as follows:

1. 0 ∈ N, and ⌊p⌋Ml ∈ N,

2. νxE ∈ N if E ∈ N,

3. E ‖ F ∈ N if E,F ∈ N with loc(E)∩ loc(F) = ∅ and there does not exist l, k ∈ L

such that E(k, l) 6= θk 7−→l and F (k, l) 6= θk 7−→l,

4. C ∈ N if there exists C ′ and
 such that M(C,C ′,
) 6= ⊥.

Clause 1 and 2 is trivial. Clause 3 means that locations are unique and that connectiv-

ity information for a single connection can only appear once, while Clause 4 requires

that the mobility of each connectivity network must be defined by the given M. A

80

3.3 Labeled Transition System

distribution µ is well-formed iff Supp(µ) ⊆ N, and for any E,F ∈ Supp(µ), we have

loc(E) = loc(F).

Given a topology constraint
, define operator E[
] to evaluate
 under a network

E by:

• E[
1 ⊲⊳
2] = E[
1] ⊲⊳ E[
2] with ⊲⊳∈ {∧,∨},

• E[Pro(k 7−→ l) = ρ] =

{
true E(k, l) = ρ

false otherwise
,

and boolean operators are evaluated as usual.

3.3 Labeled Transition System

We use Ap to denote the actions of processes which are ranged over by αp, βp, . . ., and

defined as follows:

αp ::= νx̃〈x⊲ L∗〉 | (x) | λ,

where νx̃〈x⊲L∗〉 denotes broadcasting the message x to nodes at locations in L∗, and

(x) means that the process can receive a (group) broadcasted message. λ denotes a

Markovian action with specified rate. The semantics of processes is given in Table 3.2

where all the rules are standard, and = (−→ ∪ ։) with ։ denoting Markovian

transitions.

We use A to denote the actions of networks ranged over by α, β, . . . and defined as

follows:

α ::= νx̃〈x⊲ L∗,L〉@l | (x@L∗,L)⊳ l | λ |
 : λ | τ.

Different from processes, for the actions of networks connectivity information is at-

tached to each broadcast and reception. νx̃〈x ⊲ L∗,L〉@l denotes that the node at

location l can broadcast the message x to the node at location k ∈ L∗ with probability

ρ if (ρ, k) ∈ L. Accordingly (x@L∗,L) ⊳ l means that the node at location k ∈ L∗

can receive the messages from location l with probability ρ if (ρ, k) ∈ L.
 : λ is a

novel action named condition guarded Markovian action. This action is used to model

topology constrained mobility where mobility is triggered only when certain conditions

are satisfied. τ and λ are standard.

The semantics of network is given in Table 3.3 with being the union of։ and −→

(deliberately overloading symbols for process transitions). When putting a process in a

81

3. CONTINUOUS MODEL

Table 3.2: Labeled transition system of processes (continuous).

λ · p
λ
։ p

(MAR)

〈x⊲ L∗〉 · p
〈x⊲L∗〉
−−−−→ p

(PRE)

p
αp
 p′

p+ q
αp
 p′

(SUM)
(x) · p

(y)
−−→ p{y/x}

(INP)

p
αp
 p′ x = y

[x = y]p, q
αp
 p′

(IF)
q

αp
 q′ x 6= y

[x = y]p, q
αp
 q′

(ELSE)

q ≡ p
αp
 p′ ≡ q′

q
αp
 q′

(STR)
p

αp
 p′ A

def
= p

A
αp
 p′

(CON)

p
αp
 p′ x /∈ fn(αp)

νxp
αp
 νxp′

(RES)
p

〈x⊲L∗〉
−−−−→ p′ y /∈ fn(νxp)

νxp
νy〈y⊲L∗〉
−−−−−−→ p′{y/x}

(bOPEN)

location, it will become a node. The behavior of a node is determined by the process in

it, but the actions of each node will be enriched with connectivity information as well as

the source and destination if they are broadcast and reception, otherwise they will stay

unchanged. Note in (nBRD) and (nREC1) there is no connectivity information, so the

correspondent connectivity sets in the labels are empty, and furthermore in (nREC1)

the node at location l is able to receive a message from location k with unknown

probability denoted by θl 7−→k, this is the only rule where unknown probability is added.

Two parallel networks E and F can communicate by broadcast which is shown

by (nSYN), the resulting transition will obtain connectivity information from both

participants, so the resulting information is the union of the connectivity information

from each side, L ∪ K. Also E and F may obtain new connectivity information from

each other and update the unknown probabilities that might appear in distributions µ

and µ′ via the operator •. Similarly for (nREC2) two networks in parallel can receive

messages concurrently, and obtain connectivity information from each other. In (nSYN)

K is the union of the set of locations in F , loc(F), and the set of locations in K which

are not connected to l,

Z(K) = {l | (0, l) ∈ K}.

82

3.3 Labeled Transition System

We remove K from the resulting action where

L \K = {(ρ, k) ∈ L | k /∈ K}.

It makes sense to remove Z(K) since nodes at locations Z(K) will for sure not receive

messages from l, thus it is safe to remove them from the destination set of the broadcast.

Also we remove locations loc(F) since all the nodes at locations loc(F) in F have

already received the broadcasted message. Rules (nBRD), (nREC1), (nREC2), and

(nSYN) deal with group broadcast when L∗ = L. Different from broadcast where the

broadcasted messages can be received by any node in any location, group broadcast has

specified destinations, nodes at locations which are not in the set of the destinations will

simply ignore the messages and stay unchanged, this is taken care of by rule (nIGN). As

explained in the introduction we introduce a low level protocol taking care of flooding

assuming that a message can only be received by a node at most once. The parameter

M at a node is used to keep track of the messages already been received, so only if the

coming message is not already in M , it will be dealt with, otherwise it will be simply

ignored as explained in rules (nREC1) and (nIGN). On the other hand, if process p at

location l cannot perform a reception, it will simply ignore all the coming messages,

and stay unchanged as illustrated by (nIGN).

If an action is not broadcast or reception networks can execute in parallel, but still

one participant may obtain new connectivity information from the other, this gives

the rule (nPAR). Network {K 7−→ l} only contains connectivity information about l,

it can reveal its connectivity information by performing a (group) reception which is

shown by (nCONN); it can also, in order to synchronize on broadcast from locations

not being l, perform a (group) reception whose source location is different from l with

empty connectivity information as illustrated by the rule (nLOS). A broadcast with

empty destination has no impact to the outside of the emitting network, therefore it

should be seen as an internal action τ which is shown by (nLOC). Rule (nMOB) allows

a connectivity network to evolve into another according to the mobility rule defined by

the given M carrying out a condition guarded Markovian action
 : λ. By (nTRU) if

is evaluated to true, then
 : λ will become a Markovian transition λ. Note in (nREC1)

and (nIGN), we require that l 6= k which means that a process at location l cannot

receive messages broadcasted from the same location. The rules (nOPEN), (nRES),

(nMAR), and (nSTR) are standard.

83

3. CONTINUOUS MODEL

In our calculus we allow continuous delay, probabilistic choice, and non-deterministic

choice, as result each network corresponds to a Markov Automata (5) which is the in-

tegration of probabilistic automata (1) with interactive Markov chains (32).

3.4 Weak Bisimulations

3.4.1 Weak Bisimulation on States

In this section we provide a weak bisimulation congruence for our calculus. As usual we

do not consider systems (networks) where infinitely many internal actions happen with

positive probability since this corresponds to an unrealistic situation where infinitely

many actions can happen in finite time i.e. we assume networks to be free of divergence

with probability 1, see e.g. (1). For instance network E
def
= ⌊A⌋l ‖ ⌊λ · 0⌋k with

A
def
= 〈x〉·A is not free of divergence, since E can perform broadcast from l for infinitely

many times, thus blocks the Markovian transition at l for ever. Also we say that a

network E is stable, written E ↓, if

E
τ
X−→ and E

〈x⊲L∗,L〉@l
X−→

Note that broadcasts are considered to be immediate and take no time, since they are

non-blocking and will be triggered immediately. Accordingly, a network distribution µ

is stable, written µ↓, iff E ↓ for each E ∈ Supp(µ).

In order to evaluate the exit rate of a network we, similar with (32), define the

function

γ : N × 2N 7→ R+

which returns the exit rate from a given network to a set of networks via weak transi-

tions. The formal definition is as follows where {||} denotes multiset:

γ(E,S) =
∑

{|λ · µ(S) | E
λ
։ µ|}.

Due to race condition (29, 32) among Markov transitions they will compete in order

to be executed first, this gives us the following natural transitions. Let E
λ
−→ µ if E ↓

where

λ = γ(E,N) and µ(F) =
γ(E,F)

λ

for all F in the support of µ. Refer to the following example for an illustration of race

condition.

84

3.4 Weak Bisimulations

Table 3.3: Labeled transition system of networks (continuous).

l 6= k

{K 7−→ k}
(x@L∗,∅)⊳l
−−−−−−−→ {K 7−→ k}

(nLOS)

{K 7−→ l}
(x@L∗,K)⊳l
−−−−−−−→ {K 7−→ l}

(nCONN)

E
(x@L∗,L)⊳l
−−−−−−−→ µ F

(x@L∗,K)⊳l
−−−−−−−→ µ′

E ‖ F
(x@L∗,L∪K)⊳l
−−−−−−−−−→ (µ •D(F)) ‖ (µ′ •D(E))

(nREC2)

p
(x)
−−→ p′ (l ∈ L∗ ∧ x /∈M ∧ k 6= l)

⌊p⌋Ml
(x@L∗,∅)⊳k
−−−−−−−→ {(θl 7−→k : ⌊p′⌋

M∪{x}
l), (1− θl 7−→k : ⌊p⌋Ml)}

(nREC1)

E
νỹ〈y⊲L∗,L〉@l
−−−−−−−−−→ µ F

(y@L∗,K)⊳l
−−−−−−−→ µ′ ỹ ∩ fn(F) = ∅ K = loc(F) ∪ Z(K)

E ‖ F
νỹ〈y⊲(L∗\K),(L∪K)\K〉@l
−−−−−−−−−−−−−−−−−→ (µ •D(F)) ‖ (µ′ •D(E))

(nSYN)

E

:λ
−−→ µ E[
] = true

E
λ
։ µ

(nTRU)
E

〈x⊲L∗,L〉@l
−−−−−−−→ µ y /∈ fn(νxE)

νxE
νy〈y⊲L∗,L〉@l
−−−−−−−−−→ µ{y/x}

(nOPEN)

p
λ
։ p′

⌊p⌋l
λ
։ ⌊p′⌋l

(nMAR)
p

νx̃〈x⊲L∗〉
−−−−−−→ p′

⌊p⌋Ml
νx̃〈x⊲(L∗\l),∅〉@l
−−−−−−−−−−−→ ⌊p′⌋Ml

(nBRD)

F ≡ E
α
 µ ≡ µ′

F
α
 µ′

(nSTR)
E

α
−→ µ α ∈ {τ,
 : λ}

E ‖ F
α
−→ (µ •D(F)) ‖ F

(nPAR)

E
α
 µ x /∈ fn(α)

νxE
α
 νxµ

(nRES)
M(C,C ′,
) = λ

C

:λ
−−→ C ′

(nMOB)

E
νỹ〈x⊲∅,L〉@l
−−−−−−−−→ µ

E
τ
−→ µ

(nLOC)
k 6= l ∧ (l /∈ L∗ ∨ x ∈M ∨ p

(x)
X−→)

⌊p⌋Ml
(x@L∗,∅)⊳k
−−−−−−−→ ⌊p⌋Ml

(nIGN)

Example 24. Let

E = ⌊λ1 · p+ λ2 · q⌋l,

85

3. CONTINUOUS MODEL

It is easy to see that E has two Markovian transitions according to Table 3.2 and 3.3:

E
λ1
։ ⌊p⌋l and E

λ2
։ ⌊q⌋l.

The exit rate of E is equal to λ = λ1+λ2, and moreover the two Markovian transitions

will compete with each other to be executed first. According to the race condition, the

first transition will be executed with probability λ1
λ , while the second one will be executed

with probability λ2
λ , i.e.

E
λ
−→ {

λ1
λ

: ⌊p⌋l,
λ2
λ

: ⌊q⌋l}.

As always in a weakly bisimilar setting we abstract from internal actions. We use

E
α

==⇒ µ to denote that a distribution µ is reached through a sequence of steps which

are internal except one being equal to α. Formally
α

==⇒ is the least relation such that,

E
α

==⇒ µ iff either

1. α = τ and µ = δE , or

2. E
α
−→ µ, or

3. there exists a transition E
β
−→ µ′ such that

µ =
∑

E′∈Supp(µ′)

µ′(E′) · µE′ ,

where E′ τ
==⇒ µE′ if β = α, otherwise E′ α

==⇒ µE′ and β = τ .

As in (1) we also define the combined transition
α

==⇒c such that: E
α

==⇒c µ iff there

exists

{E
α

==⇒ µi}1≤i≤n and {wi}1≤i≤n

such that
∑

1≤i≤n

wi = 1 and
∑

1≤i≤n

wi · µi = µ.

Another abstraction is that we disregard the emitter of a broadcast message and

allow to equate νx̃〈x ⊲ L∗,L〉@l and νx̃〈x ⊲ L∗,L〉@k indicating that in a wireless

broadcast setting the sender of a message is not important, that is only the message

(and the probability by which it is received), since the receiver of a message may not

precisely know whom is the actual physical emitter of the message. We will also allow

86

3.4 Weak Bisimulations

that a broadcast can be simulated by several broadcasts. In order to do so we define

the combination of two broadcast actions such that

νx̃〈x⊲ L1,L1〉@l1 ⊗ νx̃〈x⊲ L2,L2〉@l2 = νx̃〈x⊲ L,L〉@l

where L = L1 ∪ L2, l is any location name, and L = M1 ∪M2 with

M1 = {(ρ, k) ∈ L1 | k ∈ L1 \ L2} ∪ {(ρ, k) ∈ L2 | k ∈ L2 \ L1},

M2 = {(1 − (1− ρ1) · (1− ρ2), k) | k ∈ L1 ∩ L2 ∧ (ρ1, k) ∈ L1 ∧ (ρ2, k) ∈ L2}.

Intuitively, the resulting combination of two actions has the same effects as the original

two. There are three cases to consider. If a location k is only in L1, then the probability

for location k receiving the broadcasted message x will not be changed by νx̃〈x ⊲

L2,L2〉@l2, similarly for locations only in L2. For a location k appearing in both L1

and L2, the probability for k not receiving x is equal to (1− ρ1) · (1− ρ2) if (ρ1, k) ∈ L1

and (ρ2, k) ∈ L2, as a result the probability for a node at location k receiving x is equal

to 1− (1− ρ1) · (1− ρ2). Obviously, ⊗ is associative and commutative. The following

example shows how the operator ⊗ works.

Example 25. Suppose that

α1 = 〈x⊲ {m,n}, {(0.7,m), (0.4, n)}〉@k,

α2 = 〈x⊲ {n, l}, {(0.6, n), (0.8, l)}〉@k,

then α1 ⊗ α2 = α where

α = 〈x⊲ {m,n, l}, {(0.7,m), (0.76, n), (0.8, l)}〉@k.

Since the node at m can only receive x from k with probability 0.7 in α1, thus it can

also receive x from k with the same probability in α, similarly for l. On the other hand

since the node at n can receive x from k in both α1 and α2 with probabilities 0.4 and

0.6 respectively, therefore the probability from it receiving x from k in α is equal to

1− (1− 0.4) · (1− 0.6) = 0.76.

We extend the broadcast transitions in the following way:

E
〈x⊲L∗,L〉@l
=======⇒ µ iff E

α1==⇒
α2==⇒ . . .

αn==⇒ µ

with 〈x⊲ L∗,L〉@l = (⊗
1≤i≤n

αi).

87

3. CONTINUOUS MODEL

As in Chapter 2 we make use of the following finite sets of connectivity networks in

the definition of our bisimulation:

CL = {C ∈ C | ∀l, k ∈ L.C(k, l) 6= θk 7−→l}.

Intuitively, CL contains all the connectivity networks such that the probability of

Pro(k 7−→ l) is known for all l, k ∈ L. Below follows the definition of weak bisim-

ulation of networks where we use CE,F,k to range over C(l(E)∪l(F)∪{k}), and we let αk

range over all actions including λ except broadcast receptions from locations l where

l 6= k.

Definition 16 (Weak Bisimulation). An equivalence relation R ⊆ N × N is a weak

bisimulation iff E R F implies that for each k and CE,F,k, whenever

E ∝ CE,F,k
αk−→ µ,

there exists

F ∝ CE,F,k
αk==⇒c µ

′

such that µ R µ′.

Let E and F be weakly bisimilar, written as E ≈ F , if there exists a weak bisim-

ulation R such that E R F .

The cases when αk is τ or λ are standard. When αk = (x@L,L)⊳ k, any received

message must be matched by receiving the same message with the same probabilities

from the same sender. Observe that the source of the message cannot appear in loc(E)

due to the semantics in Table 3.3, as a consequence one may prove that E ≈ F implies

loc(E) = loc(F).

Example 26. Given a M such that l and k can always connect to all locations except

m with the same probability, and all locations can always connect to l and k with the

same probability. Then

⌊(x) · 〈x〉⌋l ‖ ⌊0⌋k ‖ ⌊0⌋m ≈ ⌊(x) · 〈x〉⌋k ‖ ⌊0⌋l ‖ ⌊0⌋m

but since l and k can receive messages from the node at location m with different

probabilities

⌊(x) · 〈x〉⌋l ‖ ⌊0⌋k 6≈ ⌊(x) · 〈x〉⌋k ‖ ⌊0⌋l

88

3.4 Weak Bisimulations

When a network is not stable, then all the Markovian transitions are blocking, and

cannot affect the behaviors of the network. This is the so called maximal progress

assumption which is a quite common in time (discrete and continuous) process calculi

(32, 74, 75).

Example 27. Consider two networks:

E = ⌊〈x⊲ L〉 · p+ λ · q⌋l,

F = ⌊〈x⊲ L〉 · p⌋l,

since E is not stable due to E
〈x⊲L,∅〉@l
−−−−−−→, therefore the Markovian transition E

λ
−→ can

be omitted, obviously E ≈ F .

When αk = νx̃〈x ⊲ L∗,L〉@l any broadcasted message x must be matched by a

broadcast action containing the same x, and x must be received at the same locations

with the same probability, but the emitter need not be the same.

Example 28. Given a M where l is disconnected from k forever, that is, location l can

only receive messages from location k with probability 0. Then

⌊〈x⊲ l〉⌋k ≈ ⌊0⌋k

If Pro(l 7−→ k) is not always 0 then ⌊〈x ⊲ l〉⌋k 6≈ ⌊0⌋k, but if the node at l cannot

receive then e.g.

⌊〈x⊲ l〉⌋k ‖ ⌊0⌋l ≈ ⌊0⌋k ‖ ⌊0⌋l.

Additionally when αk = νx̃〈x ⊲ L∗,L〉@l, we also allow that a broadcast can be

simulated by a series of broadcasts whose combination is equivalent to the original

broadcast. This relies on the assumption that each message can only be received by a

node at most once.

Example 29. Given a M such that location l can receive messages from location k

with probability either 1 or 0. Then

⌊〈x⊲ l〉 · 〈x⊲ l〉⌋k ‖ ⌊p⌋Ml ≈ ⌊〈x⊲ l〉⌋k ‖ ⌊p⌋Ml

for any p. The reason is that after the process at location k receives the message x, it

will remember it, and if it receives the same message for the second time, it will simply

ignore it and stay unchanged.

89

3. CONTINUOUS MODEL

In all cases in Definition 16 we use CE,F,k to eliminate all the possible unknown

probabilities during the evolution of both E and F . Observe that unknown probabilities

can only appear in derivatives on networks in case of broadcast and reception actions.

The reason to include k is because k might be any location not appearing in either E or

F , thus when E or F performs a reception from k, an unknown probability θl 7−→k with

l ∈ l(E)∪ l(F) may arise. Such an unknown probability may be eliminated by applying

any CE,F,k. When performing broadcasts the only possible unknown probability in a

derivative from E and F is of the form θm7−→n with m,n ∈ l(E)∪ l(F), thus it can also

be removed by applying any CE,F,k.

Example 30. Given a M such that Pro(m 7−→ n) is stable and always equal to 0.5

and two networks: E = {{(0.5,m)} 7−→ n} and F = 0. Without applying a CE,F,k, we

will conclude that E 6≈ F since

E
(x@L∗,{(0.5,m)})⊳n
−−−−−−−−−−−−−→ δE

which cannot be simulated by F . This is against our intuition since we know that

Pro(m 7−→ n) is always equal to 0.5, thus F should be able to exploit this fact from the

given M. By applying any CE,F,k it is easy to check that E ≈ F .

By applying CE,F,k, we can make sure that

(E ∝ CE,F,k)(m,n) = θm7−→n iff (F ∝ CE,F,k)(m,n) = θm7−→n

for any m,n ∈ L i.e. the probability of each connection is known in E ∝ CE,F,k iff

it is also known in F ∝ CE,F,k even that their values may not coincide. Therefore we

do not need to consider action
 : λ in Definition 16, since we can make sure that all

the actions like
 : λ will be resolved to λ if
 is true, otherwise
 is false and
 : λ is

blocked.

Below we introduce several lemmas which will be useful for proving the congruence

of ≈.

Lemma 9. E
νx〈x⊲L∗,L〉@l
=========⇒ µ iff E ≡ νxE′ and E′ 〈x⊲L∗,L〉@l

=======⇒ µ.

Proof. The only if direction follows by induction in the latest inference of E
α
−→ µ and

the if direction is due to (nSTR), and (nOPEN) in Table 3.3.

90

3.4 Weak Bisimulations

Let us extend the operator ⊗ to receptions as follow:

(x@L1,L1)⊳ l1 ⊗ (x@L2,L2)⊳ l2 = (x@L,L)⊳ l

where L = L1 ∪ L2, l is any location name, and L = M1 ∪M2 with

M1 = {(ρ, k) ∈ L1 | k ∈ L1 \ L2} ∪ {(ρ, k) ∈ L2 | k ∈ L2 \ L1}

M2 = {(1− (1− ρ1) · (1− ρ2), k) | k ∈ L1 ∩ L2 ∧ (ρ1, k) ∈ L1 ∧ (ρ2, k) ∈ L2}

The following lemma says that we can separate a single reception into several re-

ceptions as long as their combination is the same as the original reception.

Lemma 10. If E
(x@L,L)⊳l
−−−−−−→ µ, then

E
(x@L1,L1)⊳l1
−−−−−−−−→

(x@L2,L2)⊳l2
−−−−−−−−→ . . .

(x@Ln,Ln)⊳ln
−−−−−−−−−→ µ

whenever

⊗1≤i≤n((x@Li,Li)⊳ li) = (x@L,L)⊳ l.

Proof. Suppose that there exists k and E′ such that

E ≡ νx̃(⌊p⌋k ‖ E′)

where k ∈ L. We prove by induction on the number n of such k. The case when n = 0

is trivial since µ = δE . Assume that n > 0. Then it is not hard to see that

µ ≡ νx̃({ρ : ⌊p′⌋k, 1− ρ : ⌊p⌋k} ‖ µ′)

where (ρ, k) ∈ L, p
(x)
−−→ p′ and E′ (x@L,L)⊳l

−−−−−−→ µ′. By induction

E′ (x@L1,L1)⊳l1
−−−−−−−−→

(x@L2,L2)⊳l2
−−−−−−−−→ . . .

(x@Ln,Ln)⊳ln
−−−−−−−−−→ µ′

whenever

⊗1≤i≤n((x@Li,Li)⊳ li) = (x@L,L)⊳ l.

Also note that the probability ρ is only determined by the probability of k receiving

the message x, thus

⌊p⌋k ‖ D(E)
(x@L1,L1)⊳l1
−−−−−−−−→

(x@L2,L2)⊳l2
−−−−−−−−→ . . .

(x@Ln,Ln)⊳ln
−−−−−−−−−→

{ρ : ⌊p′⌋k ‖ D(E), 1 − ρ : ⌊p⌋k ‖ D(E)}.

As a result,

E
(x@L1,L1)⊳l1
−−−−−−−−→

(x@L2,L2)⊳l2
−−−−−−−−→ . . .

(x@Ln,Ln)⊳ln
−−−−−−−−−→ µ

which completes the proof.

91

3. CONTINUOUS MODEL

Let µ ∝ C = {(µ(E) : E ∝ C)}, the following lemma shows that we can attach

any extra connectivity information to networks while preserving the weak bisimulation

relation.

Lemma 11. E ‖ C ≈ F ‖ C for any C provided that E ≈ F

Proof. It is enough to prove that

R = {(E ‖ C,F ‖ C) | E ≈ F}

is a weak bisimulation. Let E′ = E ‖ C and F ′ = F ‖ C. Assume that

E′ ∝ CE′,F ′,l
(x@L,L)⊳l
−−−−−−→ µ′1

for some CE′,F ′,l, then we need to prove that there exists

F ′ ∝ CE′,F ′,l
(x@L,L)⊳l
=======⇒c µ

′
2

such that µ′1 R µ′2. It is not hard to see that for each CE′,F ′,l, there exists CE,F,l and

C ′ such that

E′ ∝ CE′,F ′,l ≡ (E ∝ CE,F,l) ‖ C
′ and

F ′ ∝ CE′,F ′,l ≡ (F ∝ CE,F,l) ‖ C
′.

It is trivial to show that

E ∝ CE,F,l ≈ F ∝ CE,F,l

since E ≈ F . If

E′ ∝ CE′,F ′,l
〈x⊲L,L〉@l
−−−−−−→ µ′1,

then by (nLOS), (nCONN), and (nREC2) there exists

E ∝ CE,F,l
〈x⊲K,M〉@l
−−−−−−−→ µ1

and C ′ (x@K,N)⊳l
−−−−−−−→ C ′ such that µ1 ‖ C

′ = µ′1 (µ1 contains no unknown probability since

E ∝ CE,F,l has enough connectivity information to resolve all the possible unknown

probability.), L = K \ Z(N), and L = (M ∪ N) \ Z(N). Since

E ∝ CE,F,l ≈ F ∝ CE,F,l,

there exists

F ∝ CE,F,l
〈x⊲K,M〉@l
=======⇒c µ2

such that µ1 ≈ µ2, thus there exists

F ′ ∝ CE′,F ′,l
(x@L,L)⊳l
=======⇒c µ

′
2 ≡ µ2 ‖ C

′.

According to the definition of R, we have µ′1 R µ′2, this completes the proof.

92

3.4 Weak Bisimulations

The following theorem shows that the weak bisimulation is a congruence.

Theorem 13. ≈ is a congruence.

Proof. Due to Lemma 11 it is enough to prove that

R = {(νx̃(E ‖ G), νx̃(F ‖ G)) | E ≈ F}

is a weak bisimulation whereG does not contain connectivity information i.e. D(G) = ∅.

Let

E0 = νx̃(E ‖ G) and F0 = νx̃(F ‖ G),

we need to prove that for each k and CE0,F0,k, if

E0 ∝ CE0,F0,k
αk−→ µ0,

there exists

F0 ∝ CE0,F0,k
αk==⇒c µ

′
0

such that µ0 R µ′0. Since G contains no connectivity information,

E0 ∝ CE0,F0,k ≡ νx̃((E ∝ CE0,F0,k) ‖ G) ≡ νx̃(((E ∝ CE,F,k) ‖ C) ‖ G)

for some CE,F,k and C, similarly for F0. We consider the following cases.

1. αk = 〈x⊲ L,L〉@l.

Suppose that

(E ∝ CE,F,k) ‖ C
〈x⊲K,K〉@l
−−−−−−−→ µ and G

(x@K,∅)⊳l
−−−−−−→ G

such that L = K \ loc(G), L = K \ loc(G), and

µ0 = νx̃(µ ‖ (G ∝ D({L 7−→ l}))).

Since

(E ∝ CE,F,k) ‖ C ≈ (F ∝ CE,F,k) ‖ C

by Lemma 11, there exists

(F ∝ CE,F,k) ‖ C
〈x⊲K,K〉@l
=======⇒c µ

′

such that µ ≈ µ′. By Lemma 10 we know that one reception can be divided into

several receptions and vice versa as long as their accumulated results are same,

so there exists

F0
αk==⇒c µ

′
0 ≡ νx̃(µ′ ‖ (G ∝ D({L 7−→ l}))),

thus µ0 R µ′0.

93

3. CONTINUOUS MODEL

2. αk = (x@L,L)⊳ k.

Suppose that

(E ∝ CE,F,k) ‖ C
(x@L,L)⊳k
−−−−−−−→ µ and G

(x@L,∅)⊳k
−−−−−−−→ G

such that

µ0 = νx̃(µ ‖ (G ∝ D({L 7−→ l}))).

Since

(E ∝ CE,F,k) ‖ C ≈ (F ∝ CE,F,k) ‖ C

by Lemma 11, there exists

(F ∝ CE,F,k) ‖ C
〈x⊲L,L〉@k
=======⇒c µ

′

such that µ ≈ µ′. By (nREC2), there exists

F0
〈x⊲L,L〉@k
=======⇒c µ

′
0 ≡ νx̃(µ′ ‖ (G ∝ D({L 7−→ l}))),

thus µ0 R µ′0.

3. The other cases are similar.

The definition of our bisimulation depends on a given SMF M, the more restricted

the M the more bisimilar networks we can obtain. For instance, if we consider the

extreme case where all the nodes are disconnected from each other all the time, that

is, they cannot influence each other’s behaviors, we then have ⌊p⌋l ≈ ⌊q⌋l for any p, q.

3.4.2 Weak Bisimulation on Distributions

Even though the weak bisimulation defined in Definition 16 may be considered natural

and equate many networks that should obviously be considered similar, the bisimulation

may also be considered to be too strict as illustrated by the following example:

Example 31. Given a M such that k 7−→ l is either equal to 0.5 or 0.75 and k 7−→ m

is always equal to 0 for m 6= l. Then intuitively

E = ⌊〈y ⊲ k〉 · 〈y ⊲ k〉⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.5, k)} 7−→ l},

F = ⌊〈y ⊲ k〉⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.75, k)} 7−→ l}

94

3.4 Weak Bisimulations

are bisimilar, since in both E and F the message y can be received by p at location k

with probability 0.75 eventually, even though in E we need two broadcasts in order to

do so while in F only one broadcast is enough. But by Definition 16 E 6≈ F since

E
τ
−→





0.5 : ⌊〈y ⊲ k〉⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.5, k)} 7−→ l} = E1,

0.5 : ⌊〈y ⊲ k〉⌋l ‖ ⌊p{y/x}⌋
{y}
k ‖ {{(0.5, k)} 7−→ l} = E2

where E1 cannot be simulated by F or its derivatives. Essentially, E1 corresponds to a

distribution where x will be received or lost by the process at location k with probability

0.5.

In order to accommodate the problem illustrated by Example 31 and inspired by

(5) we define a bisimulation over distributions instead of over single networks.

Let µ
α
−→ µ′ iff for each Ei ∈ Supp(µ),

Ei
α
−→ µi and µ

′ =
∑

Ei∈Supp(µ).Ei
α−→µi

µ(Ei) · µi.

The weak (combined) transitions of distributions can be defined similarly. Moreover,

define µ
α
−→ρ µ

′ with ρ ∈ (0, 1] iff there exists µ = µ1+µ2 such that |µ1| = ρ and either

α = τ and µ′ = 1
ρ · µ1, or

1
ρ · µ1

α
−→ µ′, similarly µ

α
==⇒ρ µ

′ iff there exists µ = µ1 + µ2

such that |µ1| = ρ and 1
ρ · µ1

α
==⇒c µ

′. Let µ ∝ C be a distribution such that

(µ ∝ C)(E) = µ(E ∝ C)

for each E ∈ Supp(µ). Below follows the definition of the weak bisimulation over

network distributions where Cµ1,µ2,k ranges over C(l(µ1)∪l(µ2)∪{k}).

Definition 17 (Weak Bisimulation on Distributions). An equivalence relation R ⊆

ND × ND is a weak bisimulation iff µ1 R µ2 implies that for each k and Cµ1,µ2,k,

whenever

(µ1 ∝ Cµ1,µ2,k)
αk−→ρ µ

′
1,

there exists

(µ2 ∝ Cµ1,µ2,k)
αk==⇒ρ µ

′
2

such that µ′1 R µ′2.

Let µ1 and µ2 be weakly bisimilar, written as µ1 ≈d µ2 if there exists a weak

bisimulation R such that µ1 R µ2. Let E and F be weakly bisimilar, written as E ≈d F ,

iff δE ≈d δF .

95

3. CONTINUOUS MODEL

Definition 17 can be seen as a conservative extension of Definition 16 dealing with

relations over distributions. The only difference is that we replace the normal transition
αk−→ with

αk−→ρ, since for a distribution we are only interested in the support which can

perform an αk at the same time. By using
αk−→ρ we only require that a fragment of the

distribution is able to perform αk simultaneously. If µ1 can perform an action αk with

probability ρ, then µ2 must be able to perform a weak transition with the same label

and probability in order to simulate it, and their resulting distributions should still be

related.

The following lemma shows a similar result for ≈d as Lemma 11.

Lemma 12. µ ‖ δC ≈d µ′ ‖ δC for any C provided that µ ≈d µ′.

Proof. It is enough to prove that

R = {(µ ‖ δC , µ
′ ‖ δC) | µ ≈d µ′}

is a weak bisimulation according to Definition 17. Let

µ0 = µ ‖ δC and µ′0 = µ′ ‖ δC ,

and suppose that

µ0 ∝ Cµ0,µ′
0,k

αk−→ρ µ1

for some k and Cµ0,µ′
0,k

, we need to prove that there exists

µ′0 ∝ Cµ0,µ′
0,k

αk==⇒ρ µ
′
1

such that µ1 R µ′1. It is not hard to see that there exists C ′ and Cµ,µ′,k such that

µ0 ∝ Cµ0,µ′
0,k

≡ (µ ∝ Cµ,µ′,k) ‖ C
′.

Obviously

(µ ∝ Cµ,µ′,k) ≈d (µ′ ∝ Cµ,µ′,k)

since µ ≈d µ′. If αk = 〈x⊲ L,L〉@l, then there exists

(µ ∝ Cµ,µ′,k)
〈x⊲K,M〉@l
−−−−−−−→ρ µ2 and C ′ (x@K,N)⊳l

−−−−−−−→ C ′

such that L = K \ Z(N), L = (M ∪N) \ Z(N), and µ2 ≡ µ1 ‖ δC′ by (nSYN). Since

(µ ∝ Cµ,µ′,k) ≈d (µ′ ∝ Cµ,µ′,k)

96

3.4 Weak Bisimulations

there exists

(µ′ ∝ Cµ,µ′,k)
〈x⊲K,M〉@l
=======⇒ρ µ

′
2

such that µ2 ≈d µ′2, so

µ′0 ∝ Cµ0,µ′
0,k

αk==⇒ρ µ
′
1 ≡ µ′2 ‖ δC′ ,

thus µ1 R µ′1. The other cases are similar.

Let µ − E be the distribution such that (µ − E)(E) = 0, and (µ − E)(F) = µ(F)

with E 6= F . The following lemma shows that whenever µ ≈d µ′, there is a way to

split µ′ such that each part corresponds to each support of µ and vice versa.

Lemma 13. If µ ≈d µ′ where Supp(µ) = {Ei}1≤i≤n, then there exists µ′
τ

==⇒
∑

1≤i≤n µ
′
i such that δEi

≈d (1
|µ′

i|
· µ′i) and vice versa.

Proof. We prove by induction on n i.e. the size of Supp(µ). The case when n = 1 is

trivial. Suppose that n > 1, if µ(En) = ρ > 0, then µ
τ
−→ρ δEn . By Definition 17 there

exists µ′
τ

==⇒ρ µ
′
1 such that δEn ≈d µ′1 i.e. there exists µ′

τ
==⇒ µ′1 + µ′2 such that

|µ′1| = ρ. We need to prove that

1

1− ρ
· (µ − En) ≈d

1

1− ρ
· µ′2.

By contradiction suppose that

1

1− ρ
· (µ − En) 6≈d

1

1− ρ
· µ′2,

then there must exist
1

1− ρ
· (µ − En)

τ
−→ρ′ δEi

which cannot be simulated by 1
1−ρ · µ′2, thus

µ
τ
−→(ρ+ρ′)

ρ

ρ+ ρ′
· δEn +

ρ′

ρ+ ρ′
· δEi

which cannot be simulated by µ′, this contradicts with the assumption that µ ≈d µ′,

therefore
1

1− ρ
· (µ − En) ≈d

1

1− ρ
· µ′2.

By induction there exists
1

1− ρ
· µ′2

τ
==⇒

∑

1≤i≤n−1

µ′i

such that δEi
≈d µ′i, which completes the proof.

97

3. CONTINUOUS MODEL

As for ≈ also ≈d turns out to be a congruence.

Theorem 14. ≈d is a congruence.

Proof. It is enough to prove that

R = {(µ1 ‖ µ3, µ2 ‖ µ3) | µ1 ≈d µ2}

is a weak bisimulation. Let µ13 = µ1 ‖ µ3 and µ23 = µ2 ‖ µ3. Suppose that

µ13 ∝ Cµ13,µ23,k
αk−→ρ µ

′
13

for some k and Cµ13,µ23,k, we need to prove that there exists

µ23 ∝ Cµ13,µ23,k
αk==⇒ρ µ

′
23

such that µ′13 R µ′23. Since µ3 contains no connectivity information,

µ13 ∝ Cµ13,µ23,k = (µ1 ∝ Cµ13,µ23,k) ‖ µ3 ≡ ((µ1 ∝ Cµ1,µ2,k) ‖ C) ‖ µ3

for some Cµ1,µ2,k and C, similarly for µ23. First we assume that µ1 = δE i.e. |Supp(µ)| =

1, and there are several cases.

1. αk = 〈x⊲ L,L〉@l.

Suppose that

(µ1 ∝ Cµ1,µ2,k) ‖ C
〈x⊲K,K〉@l
−−−−−−−→ µ′1 and µ3

(x@K,∅)⊳l
−−−−−−→ρ µ

′
3

such that L = K \ loc(µ3), L = K \ loc(µ3), and

µ′13 = µ′1 ‖ (µ′3 ∝ D({L 7−→ l})).

Since

(µ2 ∝ Cµ1,µ2,k) ‖ C ≈d (µ2 ∝ Cµ1,µ2,k) ‖ C

by Lemma 12, there exists

(µ2 ∝ Cµ1,µ2,k) ‖ C
〈x⊲K,K〉@l
=======⇒ρ µ

′
2

such that µ′1 ≈ µ′2. By Lemma 10 we know that one reception can be divided

into several receptions and vice versa as long as their accumulated results are

same, so there exists

µ23
αk==⇒ρ µ

′
23 ≡ µ′2 ‖ (µ′3 ∝ D({L 7−→ l})),

thus µ′13 R µ′23.

98

3.4 Weak Bisimulations

2. αk = (x@L,L)⊳ k.

Suppose that

(µ1 ∝ Cµ1,µ2,k) ‖ C
(x@L,L)⊳k
−−−−−−−→ µ′1 and µ3

(x@L,∅)⊳k
−−−−−−−→ρ µ

′
3

such that

µ′13 = µ′1 ‖ (µ′3 ∝ D({L 7−→ l})).

Since

(µ1 ∝ Cµ1,µ3,k) ‖ C ≈d (µ2 ∝ Cµ1,µ2,k) ‖ C

by Lemma 12, there exists

(µ2 ∝ Cµ1,µ2,k) ‖ C
〈x⊲L,L〉@k
=======⇒ρ µ

′
2

such that µ′1 ≈d µ′2. By (nREC2), there exists

µ23
〈x⊲L,L〉@k
=======⇒ρ µ

′
23 ≡ µ′2 ‖ (µ′3 ∝ D({L 7−→ l})),

thus µ′13 R µ′23 by induction.

3. The other cases are similar.

For now we have proved that if |Supp(µ1)| = 1, and µ1 ≈d µ2, then

µ1 ‖ µ3 ≈d µ2 ‖ µ3

for any µ3. If |Supp(µ1)| > 1, then by Lemma 13 whenever Supp(µ1) = {Ei}1≤i≤n,

there exists µ2
τ

==⇒
∑

1≤i≤n µ2i such that

δEi
≈d

1

|µ2i|
· µ2i

for each 1 ≤ i ≤ n. As proved before

δEi
‖ µ3 ≈d µ2i ‖ µ3

for each i, thus µ13 ≈d µ23.

Example 32. Considering E and F in Example 31 where we showed E 6≈ F , according

to the new bisimulation over distributions we now can show that E ≈d F . The behavior

of E and F are illustrated by Fig. 3.1 where E1 and E2 are as in Example 31,

E3 =⌊0⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.5, k)} 7−→ l},

E4 =⌊0⌋l ‖ ⌊p{y/x}⌋
{y}
k ‖ {{(0.5, k)} 7−→ l},

F3 =⌊0⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.75, k)} 7−→ l},

F4 =⌊0⌋l ‖ ⌊p{y/x}⌋
{y}
k ‖ {{(0.75, k)} 7−→ l}.

99

3. CONTINUOUS MODEL

E3 E4

E1

E

E2

E4 F3 F4

F

τ

0.5 0.5

τ τ

0.5 0.5 1

τ

0.25 0.75

Figure 3.1: Illustration of weak bisimulation on distributions.

For instance it is not hard to see that

δE
τ
−→1 µ = {0.5 : E1, 0.5 : E2},

hence we show that

δF
τ

==⇒1 µ
′ = {0.25 : F3, 0.75 : F4}

such that µ ≈d µ′. By the definition of −→ρ, µ
τ
−→0.5 δE1, we will show how µ′ can

simulate this transition. Since

µ′ = {0.25 : F3, 0.75 : F4},

we can split µ′ into µ′1 and µ′2 such that µ′ = µ′1 + µ′2 where

µ′1 = {0.25 : F3, 0.25 : F4},

µ′2 = {0.5 : F4},

therefore there exists µ′
τ

==⇒0.5 (
1
0.5 · µ′1), and obviously

δE1 ≈d (
1

0.5
· µ′1).

Thus even though E1 cannot be simulated by any of F , F3, and F4, it can be simulated

by the distribution (1
0.5 · µ′1) and vice versa. The other cases are similar, therefore we

can conclude that E ≈d F .

100

3.5 Weak Simulations

Obviously ≈d is strictly coarser than ≈, thus we have the following theorem:

Theorem 15. ≈ ⊂ ≈d .

Proof. It is straightforward from Definition 16 and 17.

3.5 Weak Simulations

3.5.1 Weak Simulation on States

We first introduce the weak simulation on networks which can be seen as an one direc-

tion weak bisimulation defined in Definition 16.

Below follows the definition of weak simulation.

Definition 18 (Weak Simulation). A relation R ⊆ N × N is a weak bisimulation iff

E R F implies that for each k and CE,F,k, whenever

E ∝ CE,F,k
αk−→ µ,

there exists

F ∝ CE,F,k
αk==⇒c µ

′

such that µ ⊑R µ′.

Let E and F be weakly bisimilar, written as E wM F , if there exists a weak

simulation R such that E R F .

Lemma 14. E ‖ C wM F ‖ C for any C provided that E wM F .

Proof. Similar with the proof of Lemma 11 and is omitted here.

Theorem 16. wM is a congruence and preorder.

Proof. We first prove that wM is a preorder. The reflexivity is trivial, we only prove

the transitivity here i.e. E wM F and F wM G implies that E wM G. In order

to do so, we need another definition of weak simulation, called wM
1 . The definition of

wM
1 is almost the same as wM except that E ∝ CE,F,k

αk−→ µ is replaced by the weak

transition E ∝ CE,F,k
αk==⇒c µ.

It can be proved that wM = wM
1 . It is easy to see that E wM

1 F implies that

E wM F since E ∝ CE,F,k
αk−→ µ is a special case of E ∝ CE,F,k

αk==⇒c µ. We prove

that E wM F implies E wM
1 F , it is enough to show that

R = {(E,F) ∈ N × N | E wM F}

101

3. CONTINUOUS MODEL

is a weak simulation under the new definition. For simplicity we will omit the parameter

CE,F,k in the sequel. Suppose that E R F and E
αk==⇒c µ. If αk = (x,L) ⊳ k, we need

to prove that there exists F
αk==⇒c µ

′ such that µ ⊑R µ′. We are going to prove by

induction on E
αk==⇒ µ. First assume that E

αk==⇒ µ, there are two cases to be considered:

1. E
τ
−→ µ1

αk==⇒ µ. Since E R F i.e. E wM F , there exists F
τ

==⇒c µ
′
1 such that

µ1 ⊑R µ′1. By induction there exists

F
τ

==⇒c
αk==⇒ µ′

such that µ ⊑R µ′.

2. E
αk−→ µ1

τ
==⇒ µ. Since E wM F , there exists F

τ
==⇒ µ′1 such that µ1 ⊑R µ′1.

The following proof is similar with Clause 1, and is omitted here.

If αk = νx̃〈x,L〉@l, there are also two cases:

1. E
τ
−→ µ1

αk==⇒ µ. This case is similar with the first clause when αk = (x,L)⊳ k.

2. E
νx̃〈x,L1〉@l1
−−−−−−−→ µ1

νx̃〈x,L2〉@l2
========⇒ µ such that

(νx̃〈x,L1〉@l1)⊗ (νx̃〈x,L2〉@l2) = αk.

Since E wM F , there exists

F
νx̃〈x,L1〉@l1
========⇒c µ

′
1

such that µ1 ⊑R µ′1. As a result there exists

F
νx̃〈x,L1〉@l1
========⇒c

νx̃〈x,L2〉@l2
========⇒c µ

′

such that µ ⊑R µ′.

When E
αk==⇒c µ, we know there exists {E

αk==⇒c µi}1≤i≤n and {wi}1≤i≤n such that
∑

1≤i≤nwi = 1 and
∑

1≤i≤nwi · µi = µ. Since we have proved that for each E
αk==⇒ µi,

there exists F
αk==⇒c µ

′
i such that µi ⊑R µ′i, thus there exists F

αk==⇒c µ
′ such that

µ ⊑R µ′.

Since we have proved that wM = wM
1 , in order to show that wM is a preorder, it is

equivalent to prove that wM
1 is a preorder. Suppose that E wM

1 F and F wM
1 G, we

prove that E wM
1 G. According to the definition of wM

1 , there exists weak simulations

R1 and R2 such that E R1 F and F R2 G. Therefore whenever E
(x,L)⊳k
=====⇒c µ1, there

102

3.5 Weak Simulations

exists F
(x,L)⊳k
=====⇒c µ2 and G

(x,L)⊳k
=====⇒c µ3 such that µ1 ⊑R1

µ2 and µ2 ⊑R2
µ3. In

other words, there exists ∆1 and ∆2 satisfying the conditions in Definition 7. Let

R = R1 ◦ R2 = {(E′, G′) | ∃F ′.(E′ R1 F
′ ∧ F ′ R2 G

′)},

then we need to find a ∆ between µ1 and µ3 over R. Let

∆(E,G) =
∑

F∈N

∆1(E,F) ·
∆2(F,G)

µ2(F)
,

we show that ∆ defined in this way does satisfy the conditions in Definition 7. Condition

one is easy since ∆(E,G) > 0 implies that there exists F such that ∆1(E,F) > 0 and

∆2(F,G) > 0, that is, E R1 F and F R2 G, thus E R G, and vice versa. Also

∑

G∈N

∆(E,G) =
∑

G∈N

∑

F∈N

∆1(E,F) ·
∆2(F,G)

µ2(F)

=
∑

F∈N

∆1(E,F) ·
1

µ2(F)
· (
∑

G∈N

∆2(F,G))

=
∑

F∈N

∆1(E,F)

=µ1(E)

we prove that the second condition is satisfied too. The third condition is similar as

the second one, and is omitted here. Therefore µ1 ⊑R µ3, this completes the proof.

Finally we prove that wM is a congruence, it is enough to show that

R = {(νx̃(E ‖ G), νx̃(F ‖ G)) | E wM F}

is a weak simulation. The following proof is similar with Theorem 13, and is omitted

here.

Since weak simulation is one direction weak bisimulation, and is strictly coarser than

weak bisimulation, therefore there exists networks which are not weakly bisimilar with

each other, but one network is able to simulation the other one, refer to the following

example.

Example 33. Consider the networks E and F in Example 31 where we have shown

that E 6≈ F , but it holds that F wM E. The only non-trivial case is when

F
τ
−→




0.75 : ⌊0⌋l ‖ ⌊p{y/x}⌋

{y}
k ‖ {{(0.75, k)} 7−→ l},

0.25 : ⌊0⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.75, k)} 7−→ l}



 ≡ µ,

103

3. CONTINUOUS MODEL

this can be simulated by the following weak transition of E:

E
τ
−→





0.5 : ⌊〈y ⊲ k〉⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.5, k)} 7−→ l},

0.5 : ⌊〈y ⊲ k〉⌋l ‖ ⌊p{y/x}⌋
{y}
k ‖ {{(0.5, k)} 7−→ l}





τ
−→ µ′

where

µ′ =




0.75 : ⌊0⌋l ‖ ⌊p{y/x}⌋

{y}
k ‖ {{(0.5, k)} 7−→ l}

0.25 : ⌊0⌋l ‖ ⌊(x) · p⌋∅k ‖ {{(0.5, k)} 7−→ l}

it is easy to see that µ ⊑R µ′, therefore F wM E. Note that this result still holds even

that the node at k can receive messages from other locations with positive probability

i.e. k 7−→ m is not always equal to 0 for m 6= l.

3.5.2 Weak Simulation on Distributions

In this section we give the definition of weak simulation on distributions. Based on

Definition 17, the weak simulation can be given in a straightforward way as follows:

Definition 19 (Weak Simulation on Distributions). A relation R ⊆ ND × ND is a

weak simulation iff µ1 R µ2 implies that for each k and Cµ1,µ2,k, whenever

(µ1 ∝ Cµ1,µ2,k)
αk−→ρ µ

′
1,

there exists

(µ2 ∝ Cµ1,µ2,k)
αk==⇒ρ µ

′
2

such that µ′1 R µ′2.

Let µ1 be weakly simulated by µ2, written as µ1 wd µ2, if there exists a weak

simulation R such that µ1 R µ2. Let E be weakly simulated by F , written as E wd F ,

iff δE wd δF .

Lemma 15. µ ‖ δC ≈d µ′ ‖ δC for any C provided that µ ≈d µ′.

Proof. Similar to the proof of Lemma 12, and is omitted here.

Lemma 16. If µ wd µ′ where Supp(µ) = {Ei}1≤i≤n, then there exists

µ′
τ

==⇒
∑

1≤i≤n

µ′i

such that

δEi
wd (

1

|µ′i|
· µ′i)

and vice versa.

104

3.5 Weak Simulations

Proof. Similar to the proof of Lemma 13, and is omitted here.

Similar with wM, we can also show that wd is a congruent preorder.

Theorem 17. wd is a congruence and preorder.

Proof. We first prove that wd is a preorder. The reflexivity is trivial, and we only prove

the transitivity here i.e. E wd F and F wd G implies that E wd G. Similar as

Theorem 16, we define another weak simulation, denoted as w′
d , which is almost the

same as wd except that (µ1 ∝ Cµ1,µ2,k)
αk−→ρ µ

′
1 is replaced by (µ1 ∝ Cµ1,µ2,k)

αk==⇒ρ µ
′
1

in Definition 19.

It can be proved that wd = w′
d . The proof of w′

d ⊆ wd is easy since (µ1 ∝

Cµ1,µ2,k)
αk−→ρ µ

′
1 is a special case of (µ1 ∝ Cµ1,µ2,k)

αk==⇒ρ µ
′
1. In order to prove that

wd ⊆ w′
d , it is enough to show that

R = {(µ1, µ2) ∈ ND×ND | µ1 wd µ2}

is a weak simulation under the new definition. Again we will omit the parameter

Cµ1,µ2,k for simplicity. Suppose that µ1 R µ2 and µ1
αk==⇒ρ µ

′
1, we need prove that there

exists µ2
αk==⇒ρ µ

′
2 such that µ′1 ⊑R µ′2. The proof is by induction on µ1

αk==⇒ρ µ
′
1.

1. αk = (x,L)⊳ k. Then µ1
αk==⇒ρ µ

′
1 iff there exists

µ1
τ
−→ρ1 µ11

αk==⇒1 µ
′
11

and

µ1
αk−→ρ2 µ12

τ
==⇒1 µ

′
12

where ρ1 + ρ2 = ρ and

µ′1 = (
ρ1
ρ

· µ′11 +
ρ2
ρ

· µ′12).

Since µ1 wd µ′1, by Lemma 16 there exists µ2
τ

==⇒ρ1 µ21 and µ2
αk==⇒ρ2 µ22 such

that µ11 wd µ21 and µ12 wd µ22. The following proof is straightforward by

induction.

2. αk = νx̃〈x,L〉@l. Then µ1
αk==⇒ρ µ

′
1 iff there exists

{µ1
νx̃〈x,Mi〉@l
−−−−−−−→ρi µ1i

νx̃〈x,Ni〉@l
=======⇒1 µ

′
1i}1≤i<n

and

µ1
τ
−→ρn µ1n

αk==⇒1 µ
′
1n

105

3. CONTINUOUS MODEL

such that

(νx̃〈x,Mi〉@l)⊗ (νx̃〈x,Ni〉@l) = αk

for each 1 ≤ i < n,

∑

1≤i≤n

ρi = ρ and
∑

1≤i≤n

(
ρi
ρ

· µ′1i) = µ′1.

The following proof is similar with Clause 1,and is omitted here.

3. αk = τ . This case is similar with Clause 1, and is omitted here.

Since we have proved that wd = w′
d , it is enough to show that w′

d is a preorder.

The proof is similar with Theorem 16. The congruence of wd can also be proved in

a similar way as Theorem 14 based on Lemma 15 and 16. These proofs are omitted

here.

We give an example of weak simulation over distributions as follows:

Example 34. Suppose that we have two networks:

E = ⌊2 · p+ 2 · (x) · q + 3 · q{y/x}⌋l ‖ ⌊0⌋k,

F = ⌊2 · p+ 5 · (x) · q⌋l ‖ ⌊〈y ⊲ l〉⌋k.

Assume that in the given SMF M, the node at l can receive messages from k with

probability 0.6. Let C = {{(0.6, k)} 7−→ l}, then we have

E ‖ C wd F ‖ C.

Intuitively, in E the node at k has received the message y, while in F the message y

has not been received by l. Since (F ‖ C)(k, l) = 0.6, the node at k can also receive

y and evolve into ⌊q{y/x}⌋k with probability 5
7 · 0.6 = 3

7 , which is the same as in E,

similarly for other cases.

As in the bisimulation setting, wd is strictly coarser than wM.

Theorem 18. wM ⊂ wd .

Proof. It is easy to see that E wM F implies E wd F given Definition 18 and

19. To show that E wd F does not always imply E wM F , it is enough to give a

counterexample. Note that Example 31 also works here, for the same reason E 6wM F ,

but we can show E wd F .

106

3.6 Removal of Memory

3.6 Removal of Memory

As we said in Section 3.1 even though we require that each message can only be received

by each node for at most once in our semantics, this can be removed easily by omitting

the parameter M associated with each node, and changing the semantics accordingly.

As a result we also need to modify the definition of weak bisimulation. In this section

we will show how to do so.

In order to remove the restriction, the only thing we need to do on the syntax level

is to remove the parameter M , and leave others unchanged. On the semantics level we

need to change several rules in Table 3.2 and 3.3. Most of the rules in Table 3.2 have

nothing to do with the memory, thus can be kept without any change except (gIGN)

and (gBRD) where we need to check if the coming message should be ignored or not.

If l /∈ L ∨ y ∈M i.e. the broadcasted message is not intend to be received by the node

at location l or the node at location l has received the same message before, so in both

case the broadcasted message should be ignored, similarly for Rule (gBRD). Since we

do not have memory M , we can simply remove the condition y ∈ M in (gIGN) and

y /∈M in (gBRD), that is, the new rules will be as follows:

p
νỹ〈y⊲L〉
−−−−−→ p′ l /∈ L

p ‖ q
νỹ〈y⊲L〉
−−−−−→ p′ ‖ q

(gIGN)

p
νỹ〈y⊲L〉
−−−−−→ p′ q

(y)
−−→ q′ ỹ ∩ fn(q) = ∅ l ∈ L

p ‖ q
νỹ〈y⊲L〉
−−−−−→ p′ ‖ q′

(gBRD)

Four rules in Table 3.3 depend on the parameter M i.e. (nBRD1), (nBRD2),

(nREC1), and (nIGN), thus they should be changed correspondingly. For (nREC1) and

(nIGN) we can simply remove the conditions related to M in their premises as we did

for (gBRD) and (gIGN). We should be more careful when dealing with rules (nBRD1)

and (nBRD2). For sure we do not need to consider the update of the parameter M ,

and in addition the premises l ∈ L∗ in (nBRD1) and l /∈ L∗ in (nBRD2) are needed in

order to determine whether the broadcasted message have been received or not, thus

we can update the parameter M correctly. But since we do not need to update M

anymore, therefore the premises l ∈ L∗ and l /∈ L∗ are also redundant now, so they can

be removed. After doing this (nBRD1) and (nBRD2) will be identical.

107

3. CONTINUOUS MODEL

l /∈ L

⌊p⌋l
(x@L,∅)⊳k
−−−−−−−→ ⌊p⌋l

(nIGN)

p
νx̃〈x⊲L∗〉
−−−−−−→ p′

⌊p⌋l
νx̃〈x⊲L∗,∅〉@l
−−−−−−−−−→ ⌊p′⌋l

(nBRD)

p
(x)
−−→ p′ l ∈ L∗

⌊p⌋l
(x@L∗,∅)⊳k
−−−−−−−→ {(θl 7−→k : ⌊p′⌋l), (1 − θl 7−→k : ⌊p⌋l)}

(nREC1)

In Definition 16 we allow that a single broadcast can be simulated by a series of

broadcasts which can be combined together by operator ⊗. The definition of ⊗ depends

on the assumption that each message can only be received by each node for at most

once. Without this assumption we cannot define ⊗ as before, refer to the following

example.

Example 35. Given a network

E = ⌊(x) · (y) · p⌋l ‖ C.

Suppose that E(l, k) = 3
4 , then if there is a message z broadcasted from the node at

location k, E can receive z and evolve into ⌊(y) · p{z/x}⌋l ‖ C with probability 3
4 . With

the assumption ”reception for at most once”, this broadcast can be simulated by several

broadcasts. For instance two broadcasts of z in a row from the node at location m can

deliver z to E with probability 3
4 if E(l, k) = 1

2 . But without this assumption we cannot

do so, since ⌊(y) · p{z/x}⌋l ‖ C will not ignore the coming z as before, but will receive

it and evolve into ⌊p{z/x}{z/y}⌋l ‖ C with positive possibility, this cannot happen if z

is only be broadcasted once.

Based on these observation we should also change our definition of weak bisimula-

tion. We first define a new operator ⊕ which plays a similar role as ⊗ in Definition 16

such that

νx̃〈x⊲ L1,L1〉@l1 ⊕ νx̃〈x⊲ L2,L2〉@l2 = νx̃〈x⊲ L,L〉@l

where L1 ∩ L2 = ∅, L = L1 ∪ L2, and L = L1 ∪ L2, again l is not important and can

be any location name. In order to apply ⊕, L1 and L2 should not contain common

elements, the intuition to do so is clear from Example 35. Accordingly, we should

extend the broadcast transitions in the following way:

E
〈x⊲L∗,L〉@l
=======⇒ µ iff E

α1==⇒
α2==⇒ . . .

αn==⇒ µ

108

3.7 A Leader Election Protocol

where

〈x⊲ L∗,L〉@l = (⊕
1≤i≤n

αi).

The definition of weak bisimulation under the new framework , called ≈\M , is the

same as Definition 16, we repeat it for completeness as follows:

Definition 20 (Weak Bisimulation). An equivalence relation R ⊆ N × N is a weak

bisimulation without M iff E R F implies that for each k and CE,F,k, whenever

E ∝ CE,F,k
αk−→ µ,

there exists

F ∝ CE,F,k
αk==⇒c µ

′

such that µ R µ′.

Let E and F be weakly bisimilar without M , written as E ≈\M F , if there exists

a weak bisimulation R such that E R F .

In the same way we can also define weak bisimulation on distributions as well as

the weak simulations. We omit the details here.

3.7 A Leader Election Protocol

We illustrate the application of our calculus by modeling an adaption of the leader elec-

tion protocol in (76). Before giving the model we first explain how this protocol works.

It is assumed that each node has a unique ID i. A node may regularly initiate an elec-

tion of a new leader; it will start the process of building a spanning tree by broadcasting

a message Election to its neighbors and then wait for acknowledgement messages, Ack ,

from its children in the tree. An Ack message will contain the information about the

node with the highest ID the child has found. When a node j receives an Election from

another node i, it will set i as its parent and then propagate Election to its neighbors

and then wait for the acknowledgements Ack from its children. In a state waiting for

Ack messages a node keeps track of the highest ID received before it times out after a

certain time limit. When timing out a node (not being the root of the spanning tree)

reports the highest ID found to its parent via an Ack message and enters a state where

it waits to be informed about the new leader found. When the initiator of the run

of the protocol times out waiting for Ack messages it broadcasts the new leader, i.e.

109

3. CONTINUOUS MODEL

Process 1 The model of the leader election protocol

Node(i, l,m, p) = λinit · 〈E i⊲ I〉 · Init(i, l,m, p)

+
∑

x 6=i(E x) · 〈E i⊲ I〉 · waitAck (i, l,m, x)

Init(i, l,m, p) =
∑

x 6=i(A x) · ([x > m]Init(i, l, x, p), Init (i, l,m, p))

+ λexp · 〈L m⊲ I〉 ·Node(i,m,m, p)

waitAck(i, l,m, p) =
∑

x 6=i(A x) · ([x > m]waitAck(i, l, x, p),waitAck (i, l,m, p))

+ λexp · 〈A m⊲ p〉 · waitLeader (i, l,m, p)

waitLeader (i, l,m, p) =
∑

x 6=i(L x) · Node(i, x,m, p)

+ λpar · 〈L m⊲ I〉 ·Node(i,m,m, p)

the node with the highest ID found, to its neighbors via the message Leader . Notice

that due to node mobility a child may disconnect from its parent before it sends the

acknowledgement, the time out in this case prevents the parent getting stuck waiting

for the acknowledgement forever. Similarly for a node waiting for announcements of

a new leader, it will either receive the announcement in time, or it will time out and

announce the node with highest ID it has found so far as the new leader.

The state of a node is represented by Node(i, l,m, p) where i is the ID, l is the ID

of its leader, m is the maximum ID known in a protocol run, and p is the ID of its

parent. To model this protocol we define three types of messages (names) where I is a

finite set of all the possible ID numbers: {E i | i ∈ I} is the set of Election messages,

{A m | m ∈ I} is the set of Ack messages, and {L l | l ∈ I} is the set of Leader

messages which announces the elected leader. In (76) the messages in a given election

are all assigned a unique index used to distinguish the protocol run from other runs.

For simplicity we omit these details in the model of the protocol in this thesis.

To make the model more compact we extend the match operator in the following

way: [x > m]p, q denotes that the process will evolve into p if x > m, otherwise

it will evolve into q, this operator can be defined using the standard operators in

a straightforward way. The operator
∑

x 6=i(E x) means that the input only accepts

Election messages not from i, and ignores all the other messages, the operator can

easily be encoded by a sequence of conditional operators prefixed by (x). We introduce

similar operators for accepting just one type of protocol messages. The model of the

protocol is given in Model 1 where λinit and λexp denote the rate of initializing a new

run of the protocol and the rate of timeout from waiting for the acknowledgements from

110

3.7 A Leader Election Protocol

children respectively. If a node is not involved in any election, it will be at state Node.

The node with ID i can initialize an election by broadcasting the message E i to its

neighbors, and evolve into Init . When the neighbor nodes receive the message E i, they

will join the election and evolve into waitAck after forwarding the Election message to

their neighbors. While at Init or waitAck , a node will wait for the acknowledgements

from its neighbors. In order not to get stuck and wait for the acknowledgements forever,

we let each node stop waiting with rate λexp . When the node at Init stops waiting for

the acknowledgements, it will announce m, the maximal ID found so far, as the new

leader. Differently, when timing out nodes at waitAck will send an acknowledgement

together with the parameterm to their parents, and then evolve into waitLeader waiting

for the announcement of the new leader. It may happen that a node will timeout when

waiting for the announcement from its parent while at waitLeader , in this case it will

simply announce m as its leader and terminate the election. Each node at waitLeader

will timeout with a certain delay by rate λpar .

Next we will show how to define mobility rules for our example. For simplicity we

assume that there are four locations in the network: l, k,m, and n where all the nodes

are stationary except the node at l. Suppose that nodes at location k and l are always

disconnected, thus the move of node at l will not affect the value of ρk 7−→l and ρl 7−→k.

There are two possible positions Pos1 and Pos2 for the node at location l such that when

in Pos1 it will be closer to the node at location m i.e. ρm7−→l > ρn 7−→l while in Pos2 we

have ρm7−→l < ρn 7−→l. When the node at location l is at Pos1, it will move to Pos2 with

rate 2, while in Pos2 it will move to Pos1 with rate 5. Moveover no matter how the node

at location l moves, we can guarantee that ρm7−→l + ρn 7−→l = 1 as long as ρm7−→n = 1

and ρn 7−→m = 1. Since ρm7−→l and ρn 7−→l are dependent, their mobility rules should be

defined together in our SMF. Suppose that ρm7−→l = 0.8 and ρn 7−→l = 0.2 when the

node at location l moves to Pos1, and ρm7−→l = 0.3 and ρn 7−→l = 0.7 when it is at Pos2.

By letting M(C1, C2,
) = 2 and M(C2, C1,
) = 5 we complete the definition of the

mobility rules with C1 = {{(0.8,m), (0.2, n)} 7−→ l}, C2 = {{(0.3,m), (0.7, n)} 7−→ l},

and
 = (ρm7−→n = 1 ∧ ρn 7−→m = 1). Note that more complicated rules can be defined,

for instance when the condition
 does not hold i.e. m and n are not close enough, we

can let the ρm7−→l and ρn 7−→l evolve into other values such that ρm7−→l+ρn 7−→l 6= 1. For

simplicity we will omit the details.

111

3. CONTINUOUS MODEL

Process 2 An simplified model of the leader election protocol

Node ′(i) = λinit · 〈E i⊲ I〉 · Init ′(i) + (E x) · 〈E i⊲ I〉 · waitAck ′(i)

Init ′(i) = λexp · 〈L i⊲ I〉 ·Node ′(i)

waitAck ′(i) = λexp · waitLeader
′(i)

waitLeader ′(i) = (L x) · Node ′(i) + λpar · 〈L i⊲ I〉 ·Node ′(i)

It is not hard to see that in this example we use group broadcast often between

nodes internally in the network, as a result we can abstract from the concrete execution

of the model. Suppose we only care whether each node in a network has a leader or

not, then the model can be simplified as Model 2 where the node which initializes the

election always chooses itself as the new leader.

In Model 2, the acknowledgement messages 〈A i⊲ I〉 can be abstracted totally, and

we can establish that:

‖
1≤i≤I

⌊Node ′(i)⌋i ≈ ‖
1≤i≤I

⌊Node(i, l,m, p)⌋i (∗)

Intuitively, (*) holds because all the group broadcasts will become internal and those

group broadcasts dealing with acknowledgements used to find the node with the high-

est ID will be abstracted. Since we do not care about the specific ID of the leader,

the broadcast actions 〈A m ⊲ p〉 can be seen as internal. Essentially the node which

initializes the election simply commutes between two states depending on whether it

has a valid leader or not, while the nodes participating in an election simply commutes

between three states depending on whether they have a valid leader, are part of an

election waiting for acknowledgements from children, or are part of an election waiting

for the announcement of the leader.

Since ≈d is strictly coarser than ≈ by Theorem 15, therefore by applying ≈d we

expect to equate even more networks. Refer to the following example.

Example 36. Let us consider a simple case where l is only connected to m,n such that

M(C1, C1, true) = 0 and M(C2, C2, true) = 0 where

C1 = {{(
1

2
, l)} 7−→ m} ‖ {{(

1

2
, l)} 7−→ n},

C2 = {{(
3

4
, l)} 7−→ m} ‖ {{(0, l)} 7−→ n}.

112

3.8 Related Work

Assume that the processes at location m and n have received the new leader and are

about to announce it to the neighbors, while the process at location l is waiting for the

announcement of the new leader, then we can show that E ≈d F but E 6≈ F where

E = ⌊〈L l ⊲ I〉 · Node(m)⌋m ‖ ⌊〈L l ⊲ I〉 ·Node(n)⌋n ‖ ⌊Node(l)⌋l ‖ C1,

F = ⌊〈L l ⊲ I〉 · Node(m)⌋m ‖ ⌊〈L l ⊲ I〉 · Node(n)⌋n ‖ ⌊Node(l)⌋l ‖ C2.

and for simplicity we omit the parameters of each node except the ID.

3.8 Related Work

The most relevant work is the stochastic version of RBPT in (77) by Ghassemi et al.,

where the semantics deals with the stochastic behavior arising from data-line layer,

physical layer, and mobility. We list its differences from our work as follows:

1. The mobility model of (77) is global and determined by three parameters: TMac , Prcv ,

and PUP , where TMac is the response time of MAC (Multi Access Control) proto-

col, Prcv is the probability of a node receiving the messages successfully, and PUP

is the probability of one node being connected to another. These parameters are

global i.e. they describe the mobility of every node. While in our work we can

define mobility for arbitrary connections.

2. In (77), each action is associated with a rate which denotes the duration of the

action. This approach can also be found in (29). But in our calculus the rate is

not paired with actions, therefore the rate is used to denote the delay rather than

duration of the actions. In other words, we follow the approach adopted in (32).

3. Each model in (66) gives rise to a Continuous Time Markov Chain (CTMC) by

using Markovian network bisimilarity to collapse equivalent states, while this is

not the case in our setting. Specially, each model in our calculus corresponds to

a MA instead of CTMC.

Merro and Sibilio proposed a timed process calculus (TCWS) for wireless networks

which may suffer from the problem of communication collisions. Differently, in TCWS

the time is discrete instead of continuous, and moreover it is assumed that the net-

work topology is static without considering mobility, thus TCWS is mainly applied to

stationary networks.

113

3. CONTINUOUS MODEL

114

Chapter 4

Probabilistic Automata

In this chapter we will discuss the characterizations of bisimulations and simulations

w.r.t. PCTL
∗ and its sublogics on probabilistic automata. Since PCTL

∗ is a state-

labeled logic i.e. it only refers to the labels of states not the labels of transitions, thus

in this chapter and Chapter 5, we will consider state-labeled systems. As indicated in

(4), the theories in Chapter 4 and 5 can be easily transformed to the action-labeled

systems.

In Section 4.2 we first introduce some notations, and then we recall the definition

of probabilistic automata and bisimulation relations by Segala (78). We also recall

the logic PCTL
∗ and its sublogics. Section 4.3 introduces the novel strong and strong

branching bisimulations, and proves that they agree with PCTL
∗ and PCTL equiva-

lences, respectively. Section 4.4 extends them to weak (branching) bisimulations, and

Section 4.5 extends the framework to simulations. We discuss the coarsest congruent

bisimulations and simulations in Section 4.7, and the extension to countable states in

Section 4.6. We conclude this chapter in Section 4.8 by discussing some related work.

4.1 Motivation

Probabilistic automata (PA) (1) have been successfully applied in formal verification

of concurrent and stochastic systems. Efficient model checking algorithms have been

studied, where properties are mostly expressed in the logic PCTL, introduced in (2) for

Markov chains, and later extended in (3) for Markov decision processes, where PCTL

is also extended to PCTL
∗.

115

4. PROBABILISTIC AUTOMATA

To combat the infamous state space problem in model checking, various behavioral

equivalences, including strong and weak bisimulations, are proposed for PAs. Indeed,

they turn out to be a powerful tool for abstraction for PAs, since bisimilar states im-

plies that they satisfy exactly the same PCTL formulae. Thus, bisimilar states can

be grouped together, allowing one to construct smaller quotient automata before an-

alyzing the model. Moreover, the nice compositional theory for PAs is exploited for

compositional minimization (79), namely minimizing the automata before composing

the components together.

For Markov chains, i.e., PAs without nondeterministic choices, the logical equiv-

alence implies also bisimilarity, as shown in (54). Unfortunately, it does not hold in

general, namely PCTL equivalence is strictly coarser than bisimulation – and their ex-

tension probabilistic bisimulation – for PAs. Even there is such a gap between behavior

and logical equivalences, bisimulation based minimization is extensively studied in the

literatures to leverage the state space explosion, for instance see (80, 81, 82).

The main reason for the gap can be illustrated by the following example. Consider

the PAs in Fig. 4.1 assuming that s1, s2, s3 are three absorbing states with different

state properties. It is easy to see that s and r are PCTL equivalent: the additional

middle transition out of r does not change the extreme probabilities, the interval of

probabilities in which the three observing states can be reached is not changed. Existing

bisimulations differentiate s and r, mainly because the middle transition out of r cannot

be matched by any transition (or combined transition) of s. Bisimulation requires that

the complete distribution of a transition must be matched, which is in this case too

strong, as it differentiates states satisfying the same PCTL formulae.

In this chapter we will bridge this gap. We introduce novel notions of behavioral

equivalences which characterize (both soundly and completely) PCTL, PCTL∗ and their

sublogics. Summarizing, our contributions in this chapter are:

• A new bisimulation characterizing PCTL
∗ soundly and completely. The bisimu-

lation arises from a converging sequence of equivalence relations, each of which

characterizes bounded PCTL
∗.

• Branching bisimulations which correspond to PCTL and bounded PCTL equiva-

lences.

116

4.2 Preliminaries

s

s1

s2
s3

s1

s2
s3

r

s1

s2

s3

s1 s2
s3

s1

s2

s3

0.3

0.3
0.4

0.5

0.4
0.1

0.3

0.3

0.4

0.4 0.3 0.3

0.5

0.4

0.1

Figure 4.1: Counterexample of strong probabilistic bisimulation.

• We then extend our definitions to weak bisimulations, which characterize sublogics

of PCTL and PCTL
∗ with only unbounded path formulae.

• Further, we extend the framework to simulations as well as their characterizations.

4.2 Preliminaries

For a finite set S, a distribution is a function µ : S → [0, 1] satisfying |µ| :=
∑

s∈S µ(s) ≤ 1. We denote by Dist(S) the set of distributions over S. We shall

use s, r, t, . . . and µ, ν . . . to range over S and Dist(S), respectively. The support of µ

is defined by Supp(µ) = {s ∈ S | µ(s) > 0}. For an equivalence relation R over S, we

write µ R ν if it holds that µ(C) = ν(C) for all equivalence classes C ∈ S/R. A distri-

bution µ is called Dirac if |Supp(µ) |= 1, and we let δs denote the Dirac distribution

117

4. PROBABILISTIC AUTOMATA

with δs(s) = 1. Given two distributions µ1 and µ2 such that |µ1| + |µ2| ≤ 1, then

µ1 + µ2 is a distribution such that (µ1 + µ2)(s) = µ1(s) + µ2(s) for each s ∈ S. Let

µ−C be a distribution such that (µ−C)(s) = µ(s) if s /∈ C, otherwise (µ−C)(s) = 0,

where C ⊆ S, we also write µ − {s} directly as µ− s. Moreover a · µ with a · |µ| ≤ 1

is a distribution such that (a · µ)(s) = a · µ(s) for each s ∈ S.

Let R be a relation over S, define R↑(C) = {r | s R r ∧ s ∈ C} and R↓(C) =

{r | r R s ∧ s ∈ C}. We say C is R upward closed iff C = R↑(C), and similarly C

is R downward closed iff C = R↓(C). We use R↓(s) as the shorthand of R↓({s}), and

R↓ = {R↓(C) | C ⊆ S} denotes the set of all R downward closed sets.

4.2.1 Probabilistic Automaton

We recall the notion of a probabilistic automaton introduced by Segala (78). We omit

the set of actions, since they do not appear in the logic PCTL we shall consider later.

Note that the bisimulation we shall introduce later can be extended to PA with actions

directly.

Definition 21 (Probabilistic Automata). A probabilistic automaton is a tuple P =

(S,→, IS ,AP , L) where

• S is a finite set of states;

• → ⊆ S ×Dist(S) is a transition relation;

• IS ⊆ S is a set of initial states;

• AP is a set of atomic propositions;

• L : S → 2AP is a labeling function.

As usual we only consider image-finite PAs, i.e. {µ | (s, µ) ∈→} is finite for each

s ∈ S. A transition (s, µ) ∈→ is denoted by s −→ µ. Moreover, we write µ −→ µ′ iff for

each s ∈ supp(µ) there exists s −→ µs such that

µ′(r) =
∑

s∈supp(µ)

µ(s) · µs(r).

A path is a finite or infinite sequence ω = s0s1s2 . . . of states. For each i ≥ 0 there

exists a distribution µ such that si −→ µ and µ(si+1) > 0. We use lstate(ω) and l(ω) to

denote the last state of ω and the length of ω respectively if ω is finite. The sets Paths

118

4.2 Preliminaries

is the set of all paths, and Paths(s0) are those starting from s0. Similarly, Paths∗ is

the set of finite paths, and Paths∗(s0) are those starting from s0. Also we use ω[i] to

denote the (i + 1)-th state for i ≥ 0, ω|i to denote the fragment of ω ending at ω[i],

and ω|i to denote the fragment of ω starting from ω[i].

When nondeterministic choices are involved, there does not exist a unique measure

for the paths. As in (1, 83, 84) we introduce the definition of a scheduler to resolve

nondeterminism. Intuitively, a scheduler decides how to choose the next transition

based on the history execution of a PA by associating a distribution over all the available

transitions at each step. Formally, a scheduler is a function

π : Paths∗ → Dist(→)

such that π(ω)(s, µ) > 0 implies s = lstate(ω). A scheduler π is deterministic if it

returns only Dirac distributions, that is, the next step is chosen deterministically. We

use

Paths(s0, π) = {ω ∈ Paths(s0) | ∀i ≥ 0.∃µ.π(ω|i)(ω[i], µ) > 0 ∧ µ(ω[i+ 1]) > 0}

to denote the set of paths starting from s0 respecting π. Similarly, Paths∗(s0, π) only

contains finite paths.

The cone of a finite path ω, denoted by Cω, is the set of paths having ω as their

prefix, i.e.,

Cω = {ω′ | ω ≤ ω′}

where ω′ ≤ ω iff ω′ is a prefix of ω. Fixing a starting state s0 and a scheduler π, the

measure Probπ,s0 of a cone Cω, where ω = s0s1 . . . sk, is defined inductively as follows:

Probπ,s0(Cω) equals 1 if k = 0, and for k > 0,

Probπ,s0(Cω) = Probπ,s0(Cω|k−1) ·




∑

(sk−1,µ′)∈→

π(ω|k−1)(sk−1, µ
′) · µ′(sk)




Let B be the smallest algebra that contains all the cones and is closed under com-

plement and countable unions 1, then Probπ,s0 can be extended to a unique measure

on B.

1By standard measure theory this algebra is a π-algebra and all its elements are the measurable

sets of paths.

119

4. PROBABILISTIC AUTOMATA

Given a preorder R over S, (R↓)i is the set of R downward closed paths of length i

composed of R downward closed sets, and is equal to the Cartesian product of R↓ with

itself i times. Let

(R↓)∗ = ∪
i≥1

(R↓)i

be the set of R downward closed paths of arbitrary length. Define l(Ω) = n for Ω ∈

(R↓)n. Let

Ω = C0C1 . . . Cn ∈ (R↓)∗

be the R downward closed cone CΩ is defined as CΩ = {Cω | ω ∈ Ω}, where ω ∈ Ω iff

ω[i] ∈ Ci for 0 ≤ i ≤ n.

For distributions µ1 and µ2, we define µ1 × µ2 by

(µ1 × µ2)((s1, s2)) = µ1(s1)× µ2(s2).

Following (4) we also define the interleaving of PAs:

Definition 22 (Parallel Composition). Let Pi = (Si,→i, IS i,AP i, Li) be two PAs with

i = 1, 2. The parallel composition P1 ‖ P2 is defined by:

P1 ‖ P2 = (S1 × S2,→, IS 1 × IS 2,AP1 × AP2, L)

where

L((s1, s2)) = L1(s1)× L2(s2)

and (s1, s2) −→ µ iff either

• s1 −→ µ1 and µ = µ1 × δs2 , or

• s2 −→ µ2 and µ = δs1 × µ2.

The following example illustrates the application of the operator ‖.

Example 37. Suppose there are two states s0 and t0 as depicted in Fig. 4.2 (a) and

(b) respectively, and their composition s0 ‖ t0 is given in Fig. 4.2 (c) where either s0

or t0 will perform first.

120

4.2 Preliminaries

s1 s2 s3 t1 t2

s0 t0

s0 ‖ t0

s1 ‖ t0 s2 ‖ t0 s3 ‖ t0 s0 ‖ t1 s0 ‖ t2

(a) (b)

(c)

1 1
2

1
2

1
3

2
3

1 1
2

1
2

1
3

2
3

Figure 4.2: Parallel composition of s0 and t0.

4.2.2 PCTL
∗ and its Sublogics

We introduce the syntax of PCTL (2) and PCTL
∗ (3) which are probabilistic extensions

of CTL and CTL
∗ respectively. PCTL

∗ over the set AP of atomic propositions are

formed according to the following grammar:

ϕ ::= a | ϕ1 ∧ ϕ2 | ¬ϕ | P⊲⊳q(ψ)

ψ ::= ϕ | ψ1 ∧ ψ2 | ¬ψ | Xψ | ψ1 Uψ2

where a ∈ AP , ⊲⊳ ∈ {<,>,≤,≥}, q ∈ [0, 1]. We refer to ϕ and ψ as (PCTL∗) state and

path formulae, respectively.

121

4. PROBABILISTIC AUTOMATA

The satisfaction relation s |= ϕ for state formulae is defined as follows:

s |= a iff a ∈ L(s)

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 ∧ s |= ϕ2

s |= ¬ϕ iff s 6|= ϕ

s |= P⊲⊳q(ψ) iff ∀π.Probπ,s({ω ∈ Paths(s) | ω |= ψ}) ⊲⊳ q

The satisfaction relation ω |= ψ for path formulae is defined exactly the same as for

LTL formulae i.e.

ω |= ϕ iff ω[0] |= ϕ

ω |= ψ1 ∧ ψ2 iff ω |= ψ1 ∧ ω |= ψ2

ω |= ¬ψ iff ω 6|= ψ

ω |= Xψ iff ω|1 |= ψ

ω |= ψ1 Uψ2 iff ∃j ≥ 0.(ω|j |= ψ2 ∧ ∀0 ≤ k < j.(ω|k |= ψ1))

Sublogics. The depth of path formula ψ of PCTL∗ free of U operator, denoted by

Depth(ψ), is defined by the maximum number of embedded X operators appearing in

ψ, that is,

• Depth(ϕ) = 0,

• Depth(ψ1 ∧ ψ2) = max{Depth(ψ1),Depth(ψ2)},

• Depth(¬ψ) = Depth(ψ) and

• Depth(Xψ) = 1 +Depth(ψ).

Then, we let PCTL
∗− be the sublogic of PCTL∗ without the until (ψ1 Uψ2) operator.

Moreover, PCTL∗−i is a sublogic of PCTL∗− where for each ψ we have Depth(ψ) ≤ i.

The sublogic PCTL is obtained by restricting the path formulae to:

ψ ::= Xϕ | ϕ1 Uϕ2 | ϕ1 U
≤n ϕ2

Note the bounded until formula does not appear in PCTL
∗ as it can be encoded by

nested next operator. PCTL
− is defined in a similar way as for PCTL

∗−. Moreover

we let PCTL−i be the sublogic of PCTL− where only bounded until operator ϕ1 U
≤j ϕ2

with j ≤ i is allowed.

122

4.2 Preliminaries

Logical equivalence. For a logic L, we say that s and r are L-equivalent, denoted

by s ∼L r, if they satisfy the same set of formulae of L, that is

s |= ϕ iff r |= ϕ

for all formulae ϕ in L. The logic L can be PCTL
∗ or one of its sublogics.

4.2.3 Strong Probabilistic Bisimulation

In this section we introduce the definition of strong probabilistic bisimulation (1). Let

{s −→ µi}i∈I be a collection of transitions of P, and let {pi}i∈I be a collection of

probabilities with
∑

i∈I pi = 1. Then (s,
∑

i∈I piµi) is called a combined transition and

is denoted by
s
−→P µ where µ =

∑
i∈I piµi.

Definition 23 (Strong Probabilistic Bisimulation). An equivalence relation R ⊆ S×S

is a strong probabilistic bisimulation iff s R r implies that L(s) = L(r) and for each

s −→ µ, there exists a combined transition
r
−→P µ

′ such that µ R µ′.

We write s ∼P r whenever there is a strong probabilistic bisimulation R such that

s R r.

It was shown in (1) that ∼P is preserved by ‖, that is,

s ∼P r implies s ‖ t ∼P r ‖ t

for any t. Also strong probabilistic bisimulation is sound for PCTL which means that

if s ∼P r then for any state formula ϕ of PCTL, s |= ϕ iff r |= ϕ. But the other way

around is not true, i.e. strong probabilistic bisimulation is not complete for PCTL, as

illustrated by the following example.

Example 38. Consider again the two PAs in Fig. 4.1 and assume that L(s) = L(r)

and L(s1) 6= L(s2) 6= L(s3). In addition, s1, s2, and s3 only have one transition to

themselves with probability 1. The only difference between the left and right automata

is that the right automaton has an extra step. It is not hard to see that s ∼PCTL
∗ r.

By Definition 23 s ≁P r since the middle transition of r cannot be simulated by s

even with combined transition. So we conclude that strong probabilistic bisimulation is

not complete for PCTL
∗ as well as for PCTL.

It should be noted that PCTL∗ distinguishes more states in a PA than PCTL. Refer

to the following example.

123

4. PROBABILISTIC AUTOMATA

Example 39. Suppose s and r are given by Fig. 4.1 where each of s1, s2, and s3

is extended with a transition such that s1 −→ µ1 with µ1(s1) = 0.6 and µ1(s4) = 0.4,

s2 −→ µ2 with µ2(s4) = 1, and s3 −→ µ3 with µ3(s3) = 0.5 and µ3(s4) = 0.5. Here we

assume that every state satisfies different atomic propositions except that L(s) = L(r).

Then it is not hard to see s ∼PCTL r while s ≁PCTL
∗ r. Consider the PCTL

∗ formula

ϕ = P≤0.38(X(L(s1) ∨ L(s3)) ∧ XX(L(s1) ∨ L(s3))),

it holds

s |= ϕ but r 6|= ϕ.

Note that ϕ is not a well-formed PCTL formula. Indeed, states s and r are PCTL-

equivalent.

We have the following theorem:

Theorem 19. 1. ∼PCTL, ∼PCTL
∗, ∼

PCTL
− , ∼

PCTL
−
i
, ∼

PCTL
∗− , ∼

PCTL
∗−
i
, and ∼P are

equivalence relations for any i ≥ 1.

2. ∼P ⊆ ∼PCTL
∗ ⊆ ∼PCTL.

3. ∼
PCTL

∗− ⊆ ∼
PCTL

−.

4. ∼
PCTL

∗−
1

= ∼
PCTL

−
1
.

5. ∼
PCTL

∗−
i

⊆ ∼
PCTL

−
i
for any i > 1.

6. ∼PCTL ⊆ ∼
PCTL

− ⊆ ∼
PCTL

−
i+1

⊆ ∼
PCTL

−
i
for all i ≥ 0.

7. ∼PCTL
∗ ⊆ ∼

PCTL
∗− ⊆ ∼

PCTL
∗−
i+1

⊆ ∼
PCTL

∗−
i

for all i ≥ 0.

Proof. We take ∼PCTL as an example and the others can be proved in a similar way.

The reflexivity is trivial. If s ∼PCTL r, then we also have r ∼PCTL s since s and

r satisfy the same set of formulae, we prove the symmetry of ∼PCTL. Now we prove

the transitivity, that is, for any s, r, t if we have s ∼PCTL r and r ∼PCTL t, then

s ∼PCTL t. It is also easy, since s and r satisfy the same set of formulae, and r and

t satisfy the same set of formulae by s ∼PCTL r and r ∼PCTL t, as result s |= ϕ

implies t |= ϕ and vice versa for any ϕ, so s ∼PCTL t. We conclude that ∼PCTL is an

equivalence relation.

The proof of ∼P ⊆ ∼PCTL can be found in (1) while the proof of ∼P ⊆ ∼PCTL
∗ can

be proved in a similar way. ∼PCTL
∗ ⊆ ∼PCTL is trivial since PCTL is a subset of PCTL∗.

124

4.3 A Novel Strong Bisimulation

The proofs of Clause 3 and 5 are obvious since ∼
PCTL

− is a subset of ∼
PCTL

∗− while

∼
PCTL

−
i
is a subset of ∼

PCTL
∗−
i
.

We now prove that ∼
PCTL

∗−
1

= ∼
PCTL

−
1
. It is sufficient to prove that PCTL

−
1 and

PCTL
∗−
1 have the same expressiveness. ∼

PCTL
∗−
1

⊆ ∼
PCTL

−
1

is easy since PCTL
−
1 is a

subset of PCTL∗−1 . We now show how formulae of PCTL∗−1 can be encoded by formulae

of PCTL−1 . It is not hard to see that the syntax of path formulae of PCTL∗−1 can be

rewritten as:

ψ ::= ϕ | Xϕ | ¬ψ | ψ1 ∧ ψ2

where we replace Xψ with Xϕ since PCTL
∗−
1 only allows path formulae whose depth

is less or equal than 1. Since ¬Xϕ = X¬ϕ, the syntax can refined further by deleting

¬ψ, that is,

ψ ::= ϕ | Xϕ | ψ1 ∧ ψ2

Then the only left cases we need to consider are P⊲⊳q(ϕ), P⊲⊳q(Xϕ1 ∧ Xϕ2), and

P⊲⊳q(Xϕ1 ∧ ϕ2),

1. s |= P≥q(ϕ) iff s |= ϕ,

2. s |= P≥q(Xϕ1 ∧ Xϕ2) iff s |= P≥q(X(ϕ1 ∧ ϕ2)),

3. s |= P≥q(Xϕ1 ∧ ϕ2) iff s |= ϕ2 ∧ P≥q(Xϕ1).

Here we assume that 0 < q ≤ 1, other cases are similar and are omitted.

The proofs of Clauses 6 and 7 are straightforward.

4.3 A Novel Strong Bisimulation

In this section we introduce a novel notion of strong bisimulation and strong branching

bisimulation. We shall show that they agree with PCTL and PCTL
∗ equivalences,

respectively. As a preparation step we introduce the strong 1-depth bisimulation.

4.3.1 Strong 1-depth Bisimulation

Definition 24 (Strong 1-depth Bisimulation). A relation R ⊆ S×S is a strong 1-depth

bisimulation if s R r implies that L(s) = L(r) and for any R downward closed set C

1. for each s −→ µ, there exists r −→ µ′ such that µ′(C) ≥ µ(C),

2. for each r −→ µ, there exists s −→ µ′ such that µ′(C) ≥ µ(C).

125

4. PROBABILISTIC AUTOMATA

We write s ∼1 r whenever there is a strong 1-depth bisimulation R such that s R r.

The – though very simple – definition requires only one step matching of the dis-

tributions out of s and r. The essential difference to the standard definition is: the

quantification of the downward closed set comes before the quantification over tran-

sition. This is indeed the key of the new definition of bisimulations. The following

theorem shows that ∼1 agrees with ∼
PCTL

−
1
and ∼

PCTL
∗−
1

which is also an equivalence

relation:

Lemma 17. ∼
PCTL

−
1
= ∼1 = ∼

PCTL
∗−
1
.

Proof. According to Clause (4) of Theorem 19, it is enough to prove that

∼
PCTL

−
1
= ∼1 .

We defer the proof to Theorem 21.

Note that in Definition 24 we consider all the R downward closed sets since it is not

enough to only consider the R downward closed sets in {R↓(s) | s ∈ S}, refer to the

following counterexample.

Counterexample 1. Suppose that there are four absorbing states s1, s2, s3, and s4

which are assigned with different atomic propositions. Suppose we have two processes

s and r such that L(s) = L(r) and

s −→ µ1 s −→ µ2

r −→ ν1 r −→ ν2

where

µ1(s1) = 0.5 µ1(s2) = 0.5

µ2(s3) = 0.5 µ2(s4) = 0.5

ν1(s1) = 0.5 ν1(s3) = 0.5

ν2(s2) = 0.5 ν2(s4) = 0.5

If we only consider the R downward closed sets in {R↓(s) | s ∈ S} where

S = {s, r, s1, s2, s3, s4},

then we will conclude that s ∼1 r, but r |= ϕ while s 6|= ϕ where

ϕ = P≥0.5(X(L(s1) ∨ L(s2))).

126

4.3 A Novel Strong Bisimulation

r ‖ t

s1 ‖ t s2 ‖ t s3 ‖ t

s1 ‖ t1 s1 ‖ t2 s3 ‖ t1 s3 ‖ t2

0.4 0.3 0.3

0.4 0.6 0.4 0.6

Figure 4.3: ∼b

i
is not compositional when i > 1

It turns out that ∼1 is preserved by ‖, implying that ∼
PCTL

−
1

and ∼
PCTL

∗−
1

are

preserved by ‖ as well.

Theorem 20. s ∼1 r implies that s ‖ t ∼1 r ‖ t for any t.

Proof. We need to prove that for each ∼1 closed set C, if s ‖ t −→ µ such that µ(C) > 0,

there exists r ‖ t −→ µ′ such that µ′(C) ≥ µ(C) and vice versa. This can be prove by

structural induction on s ‖ t and r ‖ t. By the definition of ‖ operator, if s ‖ t −→ µ,

then either s −→ µs with µ = µs ‖ δt, or t −→ µt with µ = δs ‖ µt. We only consider the

case when µ = µs ‖ δt since the other one is similar. We have known that s ∼1 r, so for

each C ′ if s −→ µs with µs(C
′) > 0, then there exists r −→ µr such that µr(C

′) ≥ µs(C
′).

By induction, if s′ ∼1 r′ for s′, r′ ∈ C ′, then s′ ‖ t ∼1 r′ ‖ t. So for each C and

s ‖ t −→ µ with µ(C) > 0, there exists r ‖ t −→ µ′ such that µ′(C) ≥ µ(C).

Remark 1. We note that for Kripke structure (PA with only Dirac distributions) ∼1

agrees with the usual strong bisimulation by Milner (8).

4.3.2 Strong Branching Bisimulation

Now we extend the relation ∼1 to strong i-step bisimulations. Then, the intersection

of all of these relations gives us the new notion of strong branching bisimulation, which

we show to be the same as ∼PCTL. Recall Theorem 19 states that ∼PCTL is strictly

coarser than ∼PCTL
∗ , which we shall consider in the next section.

127

4. PROBABILISTIC AUTOMATA

Following the approach in (85) we define Probπ,s(C,C
′, n, ω) which denotes the

probability from s to states in C ′ via states in C possibly in at most n steps under

scheduler π, where ω is used to keep track of the path and only deterministic schedulers

are considered in the following. Formally, Probπ,s(C,C
′, n, ω) equals 1 if s ∈ C ′, and

else if n > 0 ∧ (s ∈ C \ C ′), then

Probπ,s(C,C
′, n, ω) =

∑

r∈supp(µ′)

µ′(r) · Probπ,r(C,C
′, n − 1, ωr) (4.1)

where π(ω)(s, µ′) = 1, otherwise Probπ,s(C,C
′, n, ω) equals to 0.

Strong i-depth branching bisimulation is a straightforward extension of strong 1-

depth bisimulation, where instead of considering only one immediate step, we consider

up to i steps. We let ∼b
1 = ∼1 in the following.

Definition 25 (Strong i-depth Branching Bisimulation). A relation R ⊆ S × S is a

strong i-depth branching bisimulation with i > 1 if s R r implies s ∼b
i−1 r and for any

R downward closed sets C,C ′,

1. for each scheduler π, there exists a scheduler π′ such that

Probπ′,r(C,C
′, i, r) ≥ Probπ,s(C,C

′, i, s),

2. for each scheduler π, there exists a scheduler π′ such that

Probπ′,s(C,C
′, i, s) ≥ Probπ,r(C,C

′, i, r).

We write s ∼b
i r whenever there is a strong i-depth branching bisimulation R such

that s R r. The strong branching bisimulation ∼b is defined as

∼b =
⋂

i≥1

∼b
i .

The following lemma shows that ∼b
i is an equivalence relation, and moreover, ∼b

i

decreases until a fixed point is reached.

Lemma 18. 1. ∼b and ∼b
i are equivalence relations for any i > 1.

2. ∼b
j ⊆ ∼b

i provided that 1 ≤ i ≤ j.

3. There exists i ≥ 1 such that ∼b
j = ∼b

k for any j, k ≥ i.

128

4.3 A Novel Strong Bisimulation

Proof. We only show the proof of transitivity of ∼b
i . Suppose that s ∼b

i t and t ∼b
i r,

we need to prove that s ∼b
i r. By Definition 25, we know there exists strong i-depth

branching bisimulations R1 and R2 such that s R1 t and t R2 r. Let

R = R1 ◦ R2 = {(s1, s3) | ∃s2.(s1 R1 s2 ∧ s2 R2 r)},

it is enough to show that R is a strong i-depth bisimulation. Note R1 ∪R2 ⊆ R, since

for each s1 R1 s2 we also have s2 R2 s2 due to reflexivity, thus s1 R s2, similarly we

can show that R2 ⊆ R. Therefore for any R downward closed sets C and C ′, they are

also R1 and R2 downward closed. Therefore for each π, there exists π′ such that

Probπ′,t(C,C
′, i) ≥ Probπ,s(C,C

′, i).

Since we also have t ∼b
i r, thus there exists π′′ such that

Probπ′′,r(C,C
′, i) ≥ Probπ′,t(C,C

′, i) ≥ Probπ,s(C,C
′, i).

This completes the proof of transitivity.

The proof of Clause (2) is straightforward from Definition 27, since s ∼b
j r implies

s ∼b
j−1 r when j > 1.

It is straightforward from the Definition 25 that ∼b
i is getting more discriminating

as i increases. In a PA only with finite states the maximum number of equivalence

classes is equal to the number of states, as a result we can guarantee that ∼b
n = ∼b

where n is the total number of states.

Let R be an equivalence over S. The set C ⊆ S is said to be R closed iff s ∈ C and

s R r implies r ∈ C. CR is used to denote the least R closed set which contains C.

Definition 26. Two paths ω1 = s0s1 . . . and ω2 = r0r1 . . . are strong i-depth branching

bisimilar, written as ω1 ∼b
i ω2, iff ω1[j] ∼b

i ω2[j] for all 0 ≤ j ≤ i.

We first define the ∼b
i closed paths i.e. the set Ω of paths is ∼b

i closed if for any

ω1 ∈ Ω and ω2 such that ω1 ∼
b
i ω2, it holds that ω2 ∈ Ω. Let

B∼b
i
= {Ω ⊆ B | Ω is ∼b

i closed}.

By standard measure theory B∼b
i
is measurable. The ∼i for paths can be defined

similarly and is omitted here.

Lemma 19. s ∼PCTL r iff s ∼b
n r for any n ≥ 1, that is,

∼PCTL=
⋂

n≥1

∼b
n .

129

4. PROBABILISTIC AUTOMATA

Proof. The proof is based on the fact that

ϕ1 Uϕ2 = ϕ1 U
≤∞ ϕ2.

It is not hard to show that ∼b
i characterizes PCTL

−
i . Moreover, we show that ∼b

agrees with PCTL equivalence.

Theorem 21. ∼
PCTL

−
i
= ∼b

i for any i ≥ 1, and moreover ∼PCTL = ∼b.

Proof. In the following, we will use

Sat(ϕ) = {s ∈ S | s |= ϕ}

to denote the set of states which satisfy ϕ. Similarly,

Sat(ψ) = {ω ∈ Paths(s0) | ω |= ψ}

is the set of paths which satisfy ψ.

Let

R = {(s, r) | s ∼
PCTL

−
i
r},

in order to prove that s ∼
PCTL

−
i
r implies s ∼b

i r for any s and r, we need to show

that for any R closed sets C,C ′ and scheduler π, there exists a scheduler π′ such that

Probπ′,r(C,C
′, i, r) ≥ Probπ,s(C,C

′, i, s)

and vice versa provided that s R r. Suppose there are n different equivalence classes

in a finite PA. Let ϕCi,Cj
be a state formula such that

Sat(ϕCi,Cj
) ⊇ Ci and Sat(ϕCi,Cj

) ∩ Cj = ∅,

here 1 ≤ i 6= j ≤ n and Ci, Cj ∈ S/R are two different equivalence classes. Formula

like ϕCi,Cj
always exists, otherwise there will not exist a formula which is fulfilled by

states in Ci, but not fulfilled by states in Cj , that is, states in Ci and Cj satisfy the

same set of formulae, this is against the assumption that Ci and Cj are two different

equivalence classes. Let

ϕCi
= ∧

1≤j 6=i≤n
ϕCi,Cj

,

it is not hard to see that Sat(ϕCi
) = Ci. For a R closed set C, it holds

ϕC =
∨

C′∈S/R∧C′⊆C

ϕC′ ,

130

4.3 A Novel Strong Bisimulation

then Sat(ϕC) = C. Now suppose Probπ,s(C,C
′, i, s) = q, then we know

s |= ¬P<qψ where ψ = ϕC U
≤j ϕC′ .

By assumption r |= ¬P<qψ, so there exists a scheduler π′ such that

Probπ′,r(C,C
′, i, r) ≥ q,

that is,

Probπ′,r(C,C
′, i, r) ≥ Probπ,s(C,C

′, i, s).

The other case is similar and is omitted here.

The proof of ∼b
i ⊆ ∼

PCTL
−
i
is by structural induction on the syntax of state formula

ϕ and path formula ψ of PCTL−i , that is, we need to prove the following two results

simultaneously.

1. s ∼b
i r implies that s |= ϕ iff r |= ϕ for any state formula ϕ.

2. ω1 ∼b
i ω2 implies that ω1 |= ψ iff ω2 |= ψ for any path formula ψ.

We only consider ϕ = P≤q(ψ) where ψ = ϕ1 U
≤i ϕ2, since other cases are similar.

According to the semantics

s |= ϕ iff ∀π.Probπ,s({ω | ω |= ψ}) ≤ q.

By induction Ω = {ω | ω |= ψ} is ∼b
i closed. We need to show that l(Ω) = i and there

exists two ∼b
i closed sets C,C ′ such that Ω = ∪

0≤k<i
CkC ′, this is straightforward by the

semantics of U≤i. We prove by contraction, and assume s |= ϕ and r 6|= ϕ. Then for

any π, we have Probπ,s(Ω) ≥ q. Since r 6|= ϕ, there exists π′ such that Probπ′,r(Ω) > q,

thus there does not exist π such that

Probπ,s(C,C
′, i, s) ≥ Probπ′,r(C,C

′, i, r),

which contradicts with assumption s ∼b
i r. Therefore r |= ϕ, and s ∼

PCTL
−
i
r.

The proof of ∼PCTL=∼b is straightforward by using Lemma 18 and Lemma 19.

Intuitively, since ∼b
i decreases as i increases, for any PA ∼b

i will eventually converge

to PCTL equivalence.

Recall ∼b
1 is compositional by Theorem 20, which unfortunately is not the case for

∼b
i with i > 1. This is illustrated by the following example:

131

4. PROBABILISTIC AUTOMATA

Counterexample 2. s ∼b
i r does not imply s ‖ t ∼b

i r ‖ t for any t generally if

i > 1.

We have shown in Example 38 that s ∼PCTL r. If we compose s and r with t where

t only has a transition to µ such that µ(t1) = 0.4 and µ(t2) = 0.6, then it turns out

that

s ‖ t ≁PCTL r ‖ t.

Since there exists ϕ = P≤0.34ψ with

ψ = ((L(s ‖ t) ∨ L(s1 ‖ t) ∨ (L(s3 ‖ t)))U
≤2(L(s1 ‖ t2) ∨ L(s3 ‖ t1)))

such that

s ‖ t |= ϕ but r ‖ t 6|= ϕ,

as there exists a scheduler π such that the probability of paths satisfying ψ in Probπ,r

equals 0.36. Fig. 4.3 shows the execution of r guided by the scheduler π, and we assume

all the states in Fig. 4.3 have different atomic propositions except that L(s ‖ t) = L(r ‖

t). It is similar for ∼PCTL
∗.

Note that ϕ is also a well-formed state formula of PCTL−2 , so ∼
PCTL

−
i
as well as ∼b

i

are not compositional if i ≥ 2.

4.3.3 Strong Bisimulation

In this section we introduce a new notion of strong bisimulation and show that it

characterizes ∼PCTL
∗ . Given a preorder R, a R downward closed cone CΩ and a measure

Prob, the value of Prob(CΩ) can be computed by summing up the values of all Prob(Cω)

with ω ∈ Ω. We let Ω̃ ⊆ (R↓)∗ be a set of R downward closed paths, then CΩ̃ is the

corresponding set of R downward closed cones, that is, CΩ̃ = ∪Ω∈Ω̃CΩ. Define

l(Ω̃) = Max{l(Ω) | Ω ∈ Ω̃}

as the maximum length of Ω in Ω̃. To compute Prob(CΩ̃), we cannot sum up the value

of each Prob(CΩ) such that Ω ∈ Ω̃ as before since we may have a path ω such that

ω ∈ Ω1 and ω ∈ Ω2 where Ω1,Ω2 ∈ Ω̃, so we have to remove these duplicate paths and

make sure each path is considered once and only once as follows where we abuse the

notation and write ω ∈ Ω̃ iff ∃Ω.(Ω ∈ Ω̃ ∧ ω ∈ Ω):

Prob(CΩ̃) =
∑

ω∈Ω̃∧6∃ω′∈Ω̃.ω′≤ω

Prob(Cω) (4.2)

132

4.3 A Novel Strong Bisimulation

Note Equation 4.2 can be extended to compute the probability of any set of cones in a

given measure.

The definition of strong i-depth bisimulation is as follows:

Definition 27 (Strong i-depth Bisimulation). A relation R ⊆ S×S is a strong i-depth

bisimulation if i > 1 and s R r implies that s ∼i−1 r and for any Ω̃ ⊆ (R↓)∗ with

l(Ω̃) = i

1. for each scheduler π, there exists π′ such that

Probπ′,r(CΩ̃
) ≥ Probπ,s(CΩ̃

),

2. for each scheduler π, there exists π′ such that

Probπ′,s(CΩ̃) ≥ Probπ,r(CΩ̃).

We write s ∼i r whenever there is a i-depth strong bisimulation R such that s R r.

The strong bisimulation ∼ is defined as

∼ =
⋂

i≥1

∼i .

Similar to ∼b
i , the relation ∼i forms a chain of equivalence relations where the

strictness of ∼i increases as i increases, and ∼i will converge finally in a PA.

Lemma 20. 1. ∼i is an equivalence relation for any i > 1.

2. ∼j ⊆ ∼i provided that 1 ≤ i ≤ j.

3. There exists i ≥ 1 such that ∼j = ∼k for any j, k ≥ i.

Proof. 1. The proof is similar as the proof of Clause 1 of Lemma 18.

2. The proof is straightforward from Definition 27.

3. Since there are only finitely many states, thus there are only finitely many equiv-

alence classes, such i always exists.

Let ∼= ∩
n≥1

∼n, we have a lemma as follows:

133

4. PROBABILISTIC AUTOMATA

Lemma 21. s ∼PCTL
∗ r iff s ∼n r for any n ≥ 1, that is,

∼PCTL
∗ =

⋂

n≥1

∼n .

Proof. The proof is based on the fact that ψ1 Uψ2 = ψ1 U
≤∞ ψ2.

Below we show that ∼i characterizes ∼
PCTL

∗−
i

for all i ≥ 1, and ∼ agrees with

PCTL
∗ equivalence:

Theorem 22. ∼
PCTL

∗−
i

= ∼i for any i ≥ 1, and moreover ∼PCTL
∗ = ∼.

Proof. Let

R = {(s, r) | s ∼
PCTL

∗−
i

r},

we need to show that R is strong i-depth bisimulation in order to prove that s ∼
PCTL

∗−
i

r

implies s ∼i r for any s and r. According to Definition 27, we need to show that for

any Ω̃ ⊆ (R↓)∗ with l(Ω̃) = i and scheduler π, there exists a scheduler π′ such that

Probπ′,r(CΩ̃
) ≥ Probπ,s(CΩ̃

)

and vice versa provided that s R r. Following the way in the proof of Theorem 21, we

can construct a formula ϕC such that Sat(ϕC) = C where C is a R closed set. Suppose

Ω = C0C1 . . . Cj with j ≤ i, then

ψΩ = ϕC0 ∧ X(ϕC1 ∧ . . . ∧ X(ϕCj−1 ∧ XϕCj
))

can be used to characterize Ω, that is, Sat(ψΩ) = CΩ. Let ψ = ∨
Ω∈Ω̃

ψΩ, then Sat(ψ) =

C
Ω̃
. As a result s |= ¬P<qψ where q = Probπ,s(CΩ̃

). By assumption r |= ¬P<qψ, so

there exists a scheduler π′ such that Probπ′,r(CΩ̃) ≥ q, that is,

Probπ′,r(CΩ̃) ≥ Probπ,s(CΩ̃).

The other case is similar and is omitted here.

The proof of ∼i ⊆ ∼
PCTL

∗−
i

is by structural induction on the syntax of state formula

ϕ and path formula ψ of PCTL∗−i , that is, we need to prove the following two results

simultaneously.

1. s ∼i r implies that s |= ϕ iff r |= ϕ for any state formula ϕ of PCTL∗−i .

2. ω1 ∼i ω2 implies that ω1 |= ψ iff ω2 |= ψ for any path formula ψ of PCTL∗−i .

134

4.4 Weak Bisimulations

We only consider ϕ = P≤q(ψ) where ψ = ψ1 U
≤i ψ2, since other cases are similar. By

induction Ω̃ = {ω | ω |= ψ} is ∼i closed, and also l(Ω̃) = i. We prove by contra-

diction, and assume that s |= ϕ and r 6|= ϕ. According to the semantics s |= ϕ iff

∀π.Probπ,s(Ω̃) ≤ q. If r 6|= ϕ, then there exists π′ such that Probπ′,r(Ω̃) > q, conse-

quently for such π′ of r there does not exist π of s such that

Probπ,s(Ω̃) ≥ Probπ′,r(Ω̃)

which contradicts with assumption that s ∼i r, therefore r |= ϕ and s ∼
PCTL

∗−
i

r.

The proof of ∼PCTL
∗ = ∼ is straightforward by using Lemma 20 and Lemma 21.

Recall by Lemma 20, there exists i > 0 such that ∼PCTL
∗=∼i.

For the same reason as strong i-depth branching bisimulation, ∼i is not preserved

by ‖ when i > 1.

Counterexample 3. s ∼i r does not imply s ‖ t ∼i r ‖ t for any t generally if

i > 1. This can be shown by using the same arguments as in Counterexample 2.

4.3.4 Taxonomy for Strong Bisimulations

Fig. 4.4 summaries the relationship among all these bisimulations and logical equiv-

alences. The arrow → denotes ⊆ and 9 denotes *. We also abbreviate ∼PCTL as

PCTL, and it is similar for other logical equivalences. Congruent relations w.r.t. the ‖

operator are shown in circles, and non-congruent relations are shown in boxes. Segala

has considered another strong bisimulation in (1), which can be defined by replacing

the
r
−→P µ

′ with r −→ µ′ and thus is strictly stronger than ∼P. It is also worth mention-

ing that all the bisimulations shown in Fig. 4.4 coincide with the strong bisimulation

defined in (54) in the DTMC setting which can be seen as a special case of PA (i.e.,

deterministic probabilistic automata).

4.4 Weak Bisimulations

As in (54) we use PCTL\X to denote the subset of PCTL without next operator Xϕ

and bounded until ϕ1 U
≤n ϕ2. Similarly, PCTL∗\X is used to denote the subset of PCTL∗

without next operator Xψ. In this section we shall introduce weak bisimulations and

study their relation to ∼PCTL\ X
and ∼PCTL

∗
\X
, respectively. Before this we should point

135

4. PROBABILISTIC AUTOMATA

PCTL

PCTL
−

PCTL
−
n

. . .

PCTL
−
2

PCTL
∗

PCTL
∗−

PCTL
∗−
n

. . .

PCTL
∗−
2

∼

∼n

. . .

∼2

∼b

∼b
n

. . .

∼b
2

∼P

PCTL
−
1∼b

1
∼1PCTL

∗−
1

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

Figure 4.4: Relationship of different equivalences in strong scenario.

out that ∼PCTL
∗
\X

implies ∼PCTL\ X
but the other direction does not hold. Refer to the

following example.

Example 40. Suppose s and r are given by Fig. 38 where each of s1 and s3 is attached

with one transition respectively, that is, s1 −→ µ1 such that

µ1(s4) = 0.4 and µ1(s5) = 0.6,

s3 −→ µ3 such that

µ3(s4) = 0.4 and µ3(s5) = 0.6.

In addition, s2, s4 and s5 only have a transition with probability 1 to themselves, and

all these states are assumed to have different atomic propositions. Then s ∼PCTL\X
r

136

4.4 Weak Bisimulations

but s ≁PCTL
∗
\X

r, since we have a path formula

ψ = ((L(s) ∨ L(s1))UL(s5)) ∨ ((L(s) ∨ L(s3))UL(s4))

such that

s |= P≤0.34ψ but r 6|= P≤0.34ψ,

since there exists a scheduler π where the probability of path formulae satisfying ψ in

Probπ,r is equal to

Probπ,r(ss1s5) + Probπ,r(ss3s4) = 0.36.

Note ψ is not a well-formed path formula of PCTL\X.

4.4.1 Branching Probabilistic Bisimulation by Segala

Before introducing our weak bisimulations, we give the classical definition of branching

probabilistic bisimulation proposed in (1). Given an equivalence relation R, s can evolve

into µ by a branching transition, written as s⇒R µ, iff

• µ = δs, or

• s −→ µ′ and

µ =
∑

r∈(supp(µ′)∩[s])∧r⇒Rµr

µ′(r) · µr +
∑

r∈supp(µ′)\[s]

µ′(r) · δr

where [s] denotes the equivalence class containing s. Stated differently, s ⇒R µ means

that s can evolve into µ only via states in [s]. Accordingly, branching combined tran-

sition s ⇒R
P
µ can be defined based on the branching transition, i.e. s ⇒R

P
µ iff there

exists a collection of branching transitions {s⇒R µi}i∈I , and a collection of probabili-

ties {pi}i∈I with
∑

i∈I pi = 1 such that µ =
∑

i∈I piµi.

We give the definition branching probabilistic bisimulation as follows:

Definition 28 (Branching Probabilistic Bisimulation). An equivalence relation R ⊆

S × S is a branching probabilistic bisimulation iff s R r implies that L(s) = L(r) and

for each s −→ µ, there exists r ⇒R
P
µ′ such that µ R µ′.

We write s ≃P r whenever there is a branching probabilistic bisimulation R such

that s R r.

The following properties concerning branching probabilistic bisimulation are taken

from (1):

137

4. PROBABILISTIC AUTOMATA

Lemma 22 ((1)). 1. ≃P ⊆ ∼PCTL
∗
\X

⊆ ∼PCTL\ X
.

2. ≃P is preserved by ‖.

4.4.2 A Novel Weak Branching Bisimulation

Similar to the definition of bounded reachability Probπ,s(C,C
′, n, ω), we define the

function Probπ,s(C,C
′, ω) which denotes the probability from s to states in C ′ possibly

via states in C. Again ω is used to keep track of the path which has been visited.

Formally,

• if s ∈ C ′, Probπ,s(C,C
′, ω) = 1;

• if s /∈ C, Probπ,s(C,C
′, ω) = 0;

• otherwise

Probπ,s(C,C
′, ω) =

∑

r∈supp(µ′)

µ′(r) · Probπ,r(C,C
′, ωr) (4.3)

where π(ω)(s, µ′) = 1.

The definition of weak branching bisimulation is as follows:

Definition 29 (Weak Branching Bisimulation). A relation R ⊆ S×S is a weak branch-

ing bisimulation if s R r implies that L(s) = L(r) and for any R downward closed sets

C,C ′

1. for each scheduler π, there exists π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s),

2. for each scheduler π, there exists π′ such that

Probπ′,s(C,C
′, s) ≥ Probπ,r(C,C

′, r).

We write s ≈b r whenever there is a weak branching bisimulation R such that

s R r.

The following theorem shows that ≈b is an equivalence relation. Also different from

the strong cases where we use a series of equivalence relations to either characterize or

approximate ∼PCTL and ∼PCTL
∗ , in the weak scenario we show that ≈b itself is enough

138

4.4 Weak Bisimulations

to characterize ∼PCTL\X
. Intuitively because in ∼PCTL\ X

only unbounded until operator

is allowed in path formula which means we abstract from the number of steps to reach

certain states.

Theorem 23. 1. ≈b is an equivalence relation.

2. ≈b = ∼PCTL\ X
.

Proof. 1. The proof is similar as the proof of Clause 1 of Lemma 18.

2. In order to prove that s ∼PCTL\X
r implies s ≈b r for any s and r, we need to

prove that

R = {(s, r) | s ∼PCTL\X
r}

is a weak branching bisimulation. Therefore we need to show that for any R

closed sets C,C ′ and any scheduler π of s, there exists a scheduler π′ of r such

that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s)

and vice versa provided that s R r. Following the way in the proof of Theorem 21,

we can construct a formula ϕC such that Sat(ϕC) = C where C is a R closed

set. Let ψ = ϕC UϕC′ , then it is not hard to see that s |= ¬P<qψ where q =

Probπ,s(C,C
′, s). By assumption r |= ¬P<qψ, so there exists a scheduler π′ such

that Probπ′,r(C,C
′, r) ≥ q, that is,

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s).

The other case is similar and is omitted here.

The proof of ≈b ⊆ ∼PCTL\X
is by structural induction on the syntax of state

formula ϕ and path formula ψ of PCTL\X, that is, we need to prove the following

two results simultaneously.

(a) s ≈b r implies that s |= ϕ iff r |= ϕ for any state formula ϕ.

(b) ω1 ≈b ω2 implies that ω1 |= ψ iff ω2 |= ψ for any path formula ψ.

We only consider ϕ = P≤q(ψ) with ψ = ϕ1 Uϕ2 since the other cases are similar.

By induction Sat(ϕ1) and Sat(ϕ2) are ≈b closed, moreover

Probπ,s({ω | ω |= ψ}) = Probπ,s(Sat(ϕ1),Sat(ϕ2), s)

139

4. PROBABILISTIC AUTOMATA

by Equation (4.3) for any π. We prove by contradiction, and assume that s |= ϕ

and r 6|= ϕ. According to the semantics,

s |= ϕ iff ∀π.Probπ,s(Sat(ϕ1),Sat(ϕ2), s) ≤ q.

If r 6|= ϕ, then there exists π′ of r such that

Probπ′,r(Sat(ϕ1),Sat(ϕ2), r) > q,

therefore for such π′, there does not exist π of s such that

Probπ,s(Sat(ϕ1),Sat(ϕ2), s) ≥ Probπ′,r(Sat(ϕ1),Sat(ϕ2), r)

which contradicts with the assumption s ≈b r. As a result, it must hold that

r |= ϕ, and s ∼PCTL\X
r.

As in the strong scenario, ≈b suffers from the same problem as ∼b
i and ∼i with

i > 1, that is, it is not preserved by ‖.

Counterexample 4. s ≈b r does not always imply s ‖ t ≈b r ‖ t for any t. This can

be shown in a similar way as Counterexample 2 since the result will still hold even if we

replace the bounded until formula with unbounded until formula in Counterexample 2.

4.4.3 Weak Bisimulation

In order to define weak bisimulation we consider stuttering paths. Let Ω be a finite R

downward closed path, then

CΩst =




CΩ l(Ω) = 1

⋃
∀0≤i<n.∀ki≥0

C(Ω[0])k0 ...(Ω[n−2])kn−2Ω[n−1] l(Ω) = n ≥ 2 (4.4)

is the set of R downward closed paths which contains all stuttering paths, where Ω[i]

denotes the (i+ 1)-th element in Ω such that 0 ≤ i < l(Ω). Accordingly,

C
Ω̃st

= ∪
Ω∈Ω̃

CΩst

contains all the stuttering paths of each Ω ∈ Ω̃. Given a measure Prob, Prob(Ω̃st) can

be computed by Equation (4.2).

Now we are ready to give the definition of weak bisimulation as follows:

140

4.4 Weak Bisimulations

Definition 30 (Weak Bisimulation). A relation R ⊆ S × S is a weak bisimulation if

s R r implies that L(s) = L(r) and for any Ω̃ ⊆ (R↓)∗

1. for each scheduler π, there exists π′ such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

),

2. for each scheduler π, there exists π′ such that

Probπ′,s(CΩ̃st
) ≥ Probπ,r(CΩ̃st

).

We write s ≈ r whenever there is a weak bisimulation R such that s R r.

The following theorem shows that ≈ is an equivalence relation. For the same reason

as in Theorem 23, ≈ is enough to characterize ∼PCTL
∗
\ X

which gives us the following

theorem.

Theorem 24. 1. ≈ is an equivalence relation.

2. ≈ = ∼PCTL
∗
\X
.

Proof. 1. The proof is similar with Clause 1 of Theorem 23 and is omitted here.

2. Let

R = {(s, r) | s ∼PCTL
∗
\ X

r},

in order to prove that s ∼PCTL
∗
\X

r implies s ≈ r for any s and r, it is enough

to show that R is a weak bisimulation. We need to show that for any Ω̃ ⊆ (R↓)∗

and scheduler π, there exists a scheduler π′ such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

)

and vice versa provided that s R r. Following the way in the proof of Theorem 21,

we can construct a formula ϕC such that Sat(ϕC) = C where C is a R closed set.

Let ψΩ = ϕC0 U . . .UϕCn where Ω = CC0...Cn , then

ψΩ̃ = ∨
Ω∈Ω̃

ψΩ.

It is easy to see that s |= ¬P<qψ where q = Probπ,s(CΩ̃st
) and ψ = ψΩ̃. By

assumption r |= ¬P<qψ, so there exists a scheduler π′ such that Probπ′,r(CΩ̃st
) ≥

q, that is,

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

).

141

4. PROBABILISTIC AUTOMATA

The other case is similar and is omitted here.

The proof of ≈ ⊆ ∼PCTL
∗
\X

is by structural induction on the syntax of state

formula ϕ and path formula ψ of PCTL∗\X, that is, we need to prove the following

two results simultaneously.

(a) s ≈ r implies that s |= ϕ iff r |= ϕ for any state formula ϕ.

(b) ω1 ≈ ω2 implies that ω1 |= ψ iff ω2 |= ψ for any path formula ψ.

To make the proof clearer, we rewrite the syntax of PCTL∗\X as follows which is

equivalent to the original definition.

ψ ::= ϕ | ψ1 ∨ ψ2 | ¬ψ | ψ1 Uψ2

We only consider ϕ = P≥q(ψ) here. We need to prove that for each π for each ψ,

there exists Ω̃ ⊆ (≈↓)∞ such that

Probπ,s(Ω̃) = Probπ,s(Sat(ψ)).

The proof is by structural induction on ψ as follows:

(a) ψ = ϕ′. By induction Sat(ϕ′) is ≈ closed. Let Ω̃ = {Sat(ϕ′)}, then

Probπ,s(Ω̃) = Probπ,s(Sat(ψ)).

(b) ψ = ψ1 ∨ ψ2. By induction there exists Ω̃′ and Ω̃′′ such that

Probπ,s(Sat(ψ1)) = Probπ,s(CΩ̃′
st
),

Probπ,s(Sat(ψ2)) = Probπ,s(CΩ̃′′
st
).

It is not hard to see that Ω̃ = Ω̃′ ∪ Ω̃′′ will be enough.

(c) ψ = ψ1 Uψ2. By induction there exists Ω̃′ and Ω̃′′ such that

Probπ,s(Sat(ψ1)) = Probπ,s(CΩ̃′
st
),

Probπ,s(Sat(ψ2)) = Probπ,s(CΩ̃′′
st
).

Let

Ω̃ = {Ω′Ω′′ | Ω′ ∈ Ω̃′ ∧ Ω′′ ∈ Ω̃′′},

then

Probπ,s(Ω̃) = Probπ,s(Sat(ψ)).

142

4.5 Simulations

≈b

PCTL\X

≈

PCTL
∗
\X

≃P

\ \

\

\

Figure 4.5: Relationship of different equivalences in weak scenario.

(d) ψ = ¬ψ′. s |= P≥q(ψ) iff s |= P<1−q(ψ
′), so ψ can be reduced to another

formula without ¬ operator.

The following proof is routine and is omitted here.

Not surprisingly ≈ is not preserved by ‖.

Counterexample 5. s ≈ r does not always imply s ‖ t ≈ r ‖ t for any t. This can

be shown by using the same arguments as in Counterexample 4.

4.4.4 Taxonomy for Weak Bisimulations

As in the strong cases we summarize the relation of the equivalences in the weak

scenario in Fig. 4.5 where all the denotations have the same meaning as Fig. 4.4.

Compared to Fig. 4.4, Fig. 4.5 is much simpler because the step-indexed bisimulations

are absent. As in strong cases, here we do not consider the standard definition of

branching bisimulation which is a strict subset of ≃P and can be defined by replacing

⇒R
P
with ⇒R in Definition 28. Again not surprisingly all the relations shown in Fig. 4.5

coincide with the weak bisimulation defined in (54) in the DTMC setting.

4.5 Simulations

In Section 4.3 and 4.4 we discuss bisimulations and their characterizations. Usually two

states s and r are bisimilar iff s can mimic stepwise all the transitions of r and vice versa.

143

4. PROBABILISTIC AUTOMATA

In this section we relax the conditions of bisimulations, and only requires one direction

mimicking, which introduces us the definitions of simulations. Simulations are preorders

on the states, which has been used widely for verification purpose (1, 8, 54, 70, 71).

Intuitively, if r simulates s, then r can be seen as a correct implementation of s. Since

s is more abstract and contains less details, it is much easier to be analyzed. We

also discuss the characterization of simulations w.r.t. the safe fragments of PCTL and

PCTL
∗. First let us introduce the safe fragment of PCTL∗, denoted by PCTL

∗
safe , which

is a fragment of PCTL∗ without negative operators except for the atomic propositions,

and is defined by the following syntax:

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | P≤q(ψ)

ψ ::= ϕ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Xψ | ψ1 Uψ2

where a ∈ AP and q ∈ [0, 1]. Accordingly the safe fragment of PCTL, denoted by

PCTLsafe , is a sub logic of PCTL∗safe where only the path formula is constrained to be

the following form:

ψ ::= Xϕ | ϕ1 Uϕ2 | ϕ1 U
≤n ϕ2.

We write s ≺PCTL
∗
safe

r iff r |= ϕ implies that s |= ϕ for any ϕ of PCTL∗safe , and

similarly for other sublogics.

We first recall the definition of weight function defined in Definition 7.

Definition 31 (Weight Function). Let R = S × S be a relation over S. A weight

function for µ and ν w.r.t. R is a function ∆ : S × S 7→ [0, 1] such that:

• ∆(s, r) > 0 implies that s R r,

• µ(s) =
∑

r∈S ∆(s, r) for any s ∈ S,

• ν(r) =
∑

s∈S ∆(s, r) for any r ∈ S.

We write µ ⊑R ν iff there exists a weight function for µ and ν w.r.t. R.

Below follows the definition of strong probabilistic simulation.

Definition 32 (Strong Probabilistic Simulation). A relation R ⊆ S × S is a strong

probabilistic simulation iff s R r implies that L(s) = L(r) and for each s −→ µ, there

exists a combined transition
r
−→P µ

′ such that µ ⊑R µ′.

We write s ≺P r whenever there is a strong probabilistic simulation R such that

s R r.

144

4.5 Simulations

It was shown in (1) that ⊑R is congruent, i.e. s ≺P r implies that s ‖ t ≺P r ‖ t

for any t. But not surprisingly, it turns out that the strong probability simulation is

too fine w.r.t ≺PCTLsafe
and ≺PCTL

∗
safe

which can be seen from Example 38. Similarly

we have the correspondent theorem of Theorem 19 in the simulation scenario where we

only consider the safe fragment of the logics, thus the subscription s is often omitted

for readability.

Theorem 25. 1. ≺PCTL, ≺PCTL
∗, ≺

PCTL
−, ≺

PCTL
−
i
, ≺

PCTL
∗−, ≺

PCTL
∗−
i
, and ≺P are

preorders for any i ≥ 1.

2. ≺P ⊆ ≺PCTL
∗ ⊆ ≺PCTL.

3. ≺
PCTL

∗− ⊆ ≺
PCTL

− .

4. ≺
PCTL

∗−
1

= ≺
PCTL

−
1
.

5. ≺
PCTL

∗−
i

⊆ ≺
PCTL

−
i
for any i > 1.

6. ≺PCTL ⊆ ≺
PCTL

− ⊆ ≺
PCTL

−
i+1

⊆ ≺
PCTL

−
i
for all i ≥ 0.

7. ≺PCTL
∗ ⊆ ≺

PCTL
∗− ⊆ ≺

PCTL
∗−
i+1

⊆ ≺
PCTL

∗−
i

for all i ≥ 0.

Proof. For Clause (1) we only prove that ≺PCTL is a preorder since the others are

similar. The reflexivity is trivial as s ≺PCTL s for any s. Suppose that s ≺PCTL t

and t ≺PCTL r, then we need to prove that s ≺PCTL r in order to the transitivity.

According to the definition of ≺PCTL, we need to prove that r |= ϕ implies s |= ϕ for

any ϕ. Suppose that r |= ϕ for some ϕ, then t |= ϕ because of t ≺PCTL r, moreover

since s ≺PCTL t, hence s |= ϕ which completes the proof.

The proof of Clause (2) can be found in (1). Since we have shown in Theorem 19

that PCTL−1 and PCTL
∗−
1 have the same expressiveness, thus the proof of Clause (4) is

straightforward. The proofs of all the other clauses are trivial.

4.5.1 Strong i-depth Branching Simulation

Following Section 4.3.2 we can define strong i-depth branching simulation which can

be characterized by ≺
PCTL

−
i
. Let s ≺b

0 r iff L(s) = L(r), then

Definition 33 (Strong i-depth Branching Simulation). A relation R ⊆ S × S is a

strong i-depth branching simulation with i ≥ 1 iff s R r implies that s ≺b
i−1 r and for

any R downward closed sets C,C ′, and any scheduler π, there exists π′ such that

Probπ′,r(C,C
′, i) ≥ Probπ,s(C,C

′, i).

145

4. PROBABILISTIC AUTOMATA

We write s ≺b
i r whenever there is a strong i-depth branching simulation R such

that s R r. The strong branching simulation ≺b is defined as

≺b =
⋂

i≥0

≺b
i .

Below we show the similar properties of strong i-depth branching simulations.

Lemma 23. 1. ≺b and ≺b
i are preorders for any i ≥ 0.

2. ≺b
j ⊆ ≺b

i provided that 0 ≤ i ≤ j.

3. There exists i ≥ 0 such that ≺b
j = ≺b

k for any j, k ≥ i.

Proof. 1. The reflexivity is trivial, we only prove the transitivity. Suppose that

s1 ≺b
i s2 and s2 ≺b

i s3, we need to prove that s1 ≺b
i s3. By Definition 33

there exists strong simulation R1 and R2 such that s1 R1 s2 and s2 R2 s3. Let

R = R1 ◦ R2 = {(s1, s3) | ∃s2.(s1 R1 s2 ∧ s2 R2 s3)},

it is enough to prove that R is strong i-depth branching simulation. Due to the

reflexivity, any R downward closed set C is also R1 and R2 downward closed.

Therefore for any R downward closed sets C,C ′ and any scheduler π, then there

exists π′ such that

Probπ′,s2(C,C
′, i) ≥ Probπ,s1(C,C

′, i)

according to Definition 33. Similarly, there exists π′′ such that

Probπ′′,s3(C,C
′, i) ≥ Probπ′,s2(C,C

′, i) ≥ Probπ,s1(C,C
′, i),

and R is indeed a strong i-depth branching simulation. This completes the proof.

2. It is straightforward from Definition 33.

3. Since there are only finite states, thus only finite equivalence classes, such i always

exists.

Our strong i-depth branching simulation coincides with ≺
PCTL

−
i
for each i, therefore

≺PCTL is equivalent to ≺b as shown by the following theorem.

Theorem 26. ≺
PCTL

−
i
= ≺b

i for any i ≥ 1, and moreover ≺PCTL = ≺b.

146

4.5 Simulations

Proof. We first prove that ≺
PCTL

−
i
implies ≺b

i . Let

R = {(s, r) | s ≺
PCTL

−
i
r},

it is enough to prove that R is a strong i-depth branching simulation. Suppose that

s R r, we need to prove that for any R downward closed sets C,C ′ and any scheduler

π of s, there exists π′ of r such that

Probπ′,r(C,C
′, i) ≥ Probπ,s(C,C

′, i).

Note that Sat(ϕ) is a R downward closed set for any ϕ. Since the states space is finite,

for each R downward closed set C, there exists ϕC such that Sat(ϕC) = C. Assume

that there exists R downward closed sets C,C ′ and π such that

Probπ′,r(C,C
′, i) < Probπ,s(C,C

′, i)

for all schedulers π′ of r. Then there exists q such that

r |= P≤q(ψ) but s 6|= P≤q(ψ)

where ψ = ϕC U
≤i ϕC′ , this contradicts with the assumption that s ≺

PCTL
−
i
r. There-

fore R is a strong i-depth branching bisimulation.

In order to prove that ≺b
i implies ≺

PCTL
−
i
, we need to prove that whenever s ≺b

i r

and r |= ϕ, we also have s |= ϕ. We prove by structural induction on ϕ, and only

consider the case when ϕ = P≤q(ϕ1 U
≤i ϕ2) since all the others are trivial. By induction

Sat(ϕ1) and Sat(ϕ2) are ≺b
i downward closed, therefore if

r |= P≤q(ϕ1 U
≤i ϕ2) but s 6|= P≤q(ϕ1 U

≤i ϕ2),

then there exists π of s such that there does not exist π′ such that

Probπ′,r(Sat(ϕ1),Sat(ϕ2), i) ≥ Probπ,s(Sat(ϕ1),Sat(ϕ2), i)

which contradicts with the assumption that s ≺b
i r.

In Counterexample 2 we have shown the ∼b
i is not compositional for i > 1, using

the same arguments we can show that ≺b
i is not compositional either for i > 1, thus

we have

Theorem 27. s ≺b
1 r implies that s ‖ t ≺b

1 r ‖ t for any t, while ≺b
i with i > 1 is

not compositional in general.

147

4. PROBABILISTIC AUTOMATA

Proof. Let

R = {(s ‖ t, r ‖ t) | s ≺b
1 r},

it is enough to show that R is a strong 1-depth simulation. Let C,C ′ be two R downward

closed sets, there are several cases we need to consider:

1. If s ‖ t /∈ C, then Probπ,s‖t(C,C
′, 1) = 0. Since C is R downward closed, r ‖ t /∈ C

by induction, thus there exists π′ such that

Probπ′,r‖t(C,C
′, 1) ≥ Probπ,s‖t(C,C

′, 1).

2. If s ‖ t ∈ C, and for each scheduler π, there exists s ‖ t −→ µ such that µ(C ′) =

Probπ,s‖t(C,C
′, 1). According to Definition 22, s ‖ t −→ µ iff either s −→ µs such

that µs ‖ δt = µ, or t −→ µt such that δs ‖ µt = µ. We only consider the first case,

since the other one is similar. Since µs ‖ δt = µ, there exists R downward closed

set C ′′ such that µs(C
′′) = µ(C ′). The following proof is then straightforward.

Note that Counterexample 2 also applies here, thus ≺b
i is not compositional when

i > 1.

Remark 2. The safe fragment of PCTL we adopt in this chapter is slightly different

from (54) where two new operators X̃ and Ũ are introduced, called weak next and until

respectively, and the P≤q(ψ) is replaced by P≥q(ψ). The semantics of X̃ and Ũ are

defined as follows where |ω| denotes the length of ω:

ω |= X̃ϕ iff (|ω| < 1 ∨ ω[i] |= ϕ)

ω |= ϕ1Ũϕ2 iff (ω |= ϕ1 Uϕ2 ∨ ∀i ≤ |ω| .ω[i] |= ϕ1)

Similarly we can also define the weak counterpart of bounded until Ũ
≤n

. Due to duality

between X, U≤n, U and their weak counterparts, these two variants of safe PCTL are

essentially equivalent, refer to (54) for detail discussion.

Let PCTLlive denote the liveness fragment of PCTL in (54) which is the same as

PCTLsafe except that P≤q(ψ) is replaced with P≥q(ψ). We say s ≺PCTLlive
r iff s |= ϕ

implies r |= ϕ for any state formula of PCTLlive. Even though it has been shown in

(54) that ≺PCTLsafe
and ≺PCTLlive

are equivalent for DTMC, the result is not true for

PA. Refer to the following example.

Example 41. Consider the two states s0 and r0 shown in Fig. 4.6, where we assume

that all the states have different labels except that L(s0) = L(r0). It is easy to check

that s0 ≺P r0, thus s0 ≺PCTLsafe
r0 according to Clause 2 of Theorem 25, but we

148

4.5 Simulations

s0

s1

r0

s1 s2

1 1 1

1 1 1

Figure 4.6: s0 6≺PCTLlive
r0.

have s0 6≺PCTLlive
r0. Let ϕ = P≥1(L(s0)UL(s1)) which is a valid state formula of

PCTLlive, it is obvious that s0 |= ϕ, but r0 6|= ϕ since the minimal probability of r0

reaching state s1 is equal to 0 i.e. by choosing the transition to s2.

4.5.2 Strong i-depth Simulation

In this section we introduce strong i-depth simulation which can be characterized by

≺
PCTL

∗−
i
. Below follows the definition of strong i-depth simulation where ≺0 = ≺b

0 .

Definition 34 (Strong i-depth Simulation). A relation R ⊆ S × S is a strong i-depth

simulation with i ≥ 1 iff s R r implies that s ≺i−1 r and for any Ω̃ ⊆ (R↓)∗ with

l(Ω̃) = i and any scheduler π, there exists π′ such that

Probπ′,r(CΩ̃
) ≥ Probπ,s(CΩ̃

).

We write s ≺i r whenever there is a i-depth strong simulation R such that s R r.

The strong simulation ≺ is defined as

≺ =
⋂

i≥0

≺i .

Below we show the similar properties of strong i-depth simulations.

Lemma 24. 1. ≺ and ≺i are preorders for any i ≥ 0.

2. ≺j ⊆ ≺i provided that 0 ≤ i ≤ j.

3. There exists i ≥ 0 such that ≺j = ≺k for any j, k ≥ i.

Proof. 1. This clause can be proved in a similar way as Clause (1) of Lemma 23.

2. According to Definition 34, as i is growing, ≺i is getting finer.

149

4. PROBABILISTIC AUTOMATA

3. The proof is based on the fact that the states are finitely many, with the similar

argument as in Clause (3) of Lemma 23.

Our strong i-depth simulation coincides with ≺
PCTL

∗−
i

for each i, therefore ≺PCTL
∗

is equivalent to ≺ as shown by the following theorem.

Theorem 28. ≺
PCTL

∗−
i

= ≺i for any i ≥ 1, and moreover ≺PCTL
∗ = ≺.

Proof. We first prove that s ≺
PCTL

∗−
i

r implies s ≺i r for any s and r. Let

R = {(s, r) | s ≺
PCTL

∗−
i

r},

we need to show that for any Ω̃ ⊆ (R↓)∗ with l(Ω̃) ≤ i and scheduler π, there exists a

scheduler π′ such that

Probπ′,r(CΩ̃) ≥ Probπ,s(CΩ̃)

whenever s R r. By induction, there exists a formula ϕC such that Sat(ϕC) = C where

C is R downward closed set. Suppose Ω = C0C1 . . . Cj with j ≤ i, then

ψΩ = ϕC0 ∧ X(ϕC1 ∧ . . . ∧ X(ϕCj−1 ∧ XϕCj
))

can be used to characterize Ω, that is, Sat(ψΩ) = CΩ. Let ψ = ∨
Ω∈Ω̃

ψΩ, then Sat(ψ) =

CΩ̃. We prove by contradiction. Suppose that there does not exist π′ such that

Probπ′,r(CΩ̃
) ≥ Probπ,s(CΩ̃

),

then there exists q such that r |= P≤qψ, but s 6|= P≤qψ which contradicts with the

assumption that s ≺
PCTL

∗−
i

r, so there exists a scheduler π′ such that

Probπ′,r(CΩ̃) ≥ q = Probπ,s(CΩ̃).

The other case is similar and is omitted here.

The proof of ≺i ⊆ ≺
PCTL

∗−
i

is by structural induction on the syntax of state formula

ϕ and path formula ψ of safe PCTL∗−i , that is, we need to prove the following two results

simultaneously.

1. r |= ϕ implies s |= ϕ for any state formula ϕ provided that s ≺i r.

2. ω2 |= ψ implies ω1 |= ψ for any path formula ψ provided that ω1 ≺i ω2.

150

4.5 Simulations

We only consider ϕ = P≤q(ψ) here. Suppose that r |= ϕ, i.e.

∀π.Probπ,r({ω | ω |= ψ}) ≤ q,

we need to show that s |= ϕ. We prove by contradiction, and assume that s 6|= ϕ, i.e.

there exists π such that

Probπ,s({ω | ω |= ψ}) > q.

By induction {ω | ω |= ψ} is ≺i downward closed, that is, there exists Ω̃ = {ω | ω |= ψ},

and moreover l(Ω̃) ≤ i since the depth of ψ is at most i. Since r |= ϕ, there does not

exists π′ such that

Probπ′,r(CΩ̃
) ≥ Probπ,s(CΩ̃

) = q,

which contradicts the assumption that s ≺i r, thus it holds that s |= ϕ.

Similarly, we can show that ≺i is not compositional either for i > 1, thus we have

Theorem 29. s ≺1 r implies that s ‖ t ≺1 r ‖ t for any t, while ≺i with i > 1 is

not compositional in general.

Proof. According to Theorem 26 and 28, and Clause (4) of Theorem 25, ≺b
1 = ≺1, thus

the result is straightforward according to Theorem 27.

4.5.3 Weak Simulations

Given the results for weak bisimulations from Section 4.4, the characterization of weak

simulations is straightforward. Let us first introduce the definition of branching prob-

abilistic simulation by Segala as follows:

Definition 35 (Branching Probabilistic Simulation). A relation R ⊆ S×S is a branch-

ing probabilistic simulation iff s R r implies that L(s) = L(r) and for each s −→ µ, there

exists r ⇒R
P
µ′ such that µ R µ′.

We write s �P r whenever there is a branching probabilistic simulation R such

that s R r.

From (1) we know that �P is compositional, but it is too fine for wPCTL\X
as well

as wPCTL
∗
\X
, therefore along the line of weak bisimulations, we come out similar results

for weak simulations. Below follows the definition of weak branching simulation.

151

4. PROBABILISTIC AUTOMATA

Definition 36 (Weak Branching Simulation). A relation R ⊆ S×S is a weak branching

simulation iff s R r implies that L(s) = L(r) and for any R downward closed sets C,C ′

and any scheduler π, there exists π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s).

We write s wb r whenever there is a weak branching simulation R such that s R r.

Due to Counterexample 4, wb is not compositional, but it coincides with wPCTL\ X

as shown by the following theorem.

Theorem 30. wb is a preorder, and wb = wPCTL\X
.

Proof. 1. The reflexibility of wb is trivial. We only prove the transitivity of wb.

Suppose that s wb r and r wb t, then for any wb downward closed sets C,C ′

and scheduler π, there exists π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s).

Since we also have r wb t, so there exists π′′ such that

Probπ′′,t(C,C
′, t) ≥ Probπ′,r(C,C

′, r) ≥ Probπ,s(C,C
′, s).

This proves the transitivity of wb.

2. In order to prove that s wPCTL\X
r implies s wb r for any s and r, it is enough

to show that

R = {(s, r) | s wPCTL\ X
r}

is a weak branching simulation i.e. we need to prove that for any R downward

closed sets C,C ′ and scheduler π, there exists a scheduler π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s)

provided that s R r. Let ϕC be a formula such that Sat(ϕC) = C where C is a

R downward closed set. We prove by contradiction. Suppose that there does not

exist π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s),

then there exists q such that r |= P≤qψ where ψ = ϕC UϕC′ , but s 6|= P≤qψ,

which contradicts with the assumption that s wPCTL\ X
r. Therefore there must

exist a scheduler π′ such that

Probπ′,r(C,C
′, r) ≥ Probπ,s(C,C

′, s).

152

4.5 Simulations

The other case is similar and is omitted here.

The proof of wb ⊆ wPCTL\X
is by structural induction on the syntax of state

formula ϕ and path formula ψ of safe PCTL\X, that is, we need to prove the

following two results simultaneously.

(a) r |= ϕ implies s |= ϕ for any state formula ϕ provided that s wb r.

(b) ω2 |= ψ implies that ω1 |= ψ for any path formula ψ provided that ω1 wb ω2.

We only consider ϕ = P≤q(ψ) where ψ = ϕ1 Uϕ2 since the other cases are similar.

Suppose that r |= ϕ, we need to prove that s |= ϕ. We prove by contradiction,

and assume that s 6|= ϕ, then there exists π such that

Probπ,s({ω | ω |= ψ}) > q.

By induction Sat(ϕ1) and Sat(ϕ2) are wb downward closed, thus

Probπ,s(Sat(ϕ1),Sat(ϕ2), s) = Probπ,s({ω | ω |= ψ}) > q.

Since r |= ϕ, there does not exist π′ such that

Probπ,r(Sat(ϕ1),Sat(ϕ2), r) ≥ Probπ,s(Sat(ϕ1),Sat(ϕ2), s)

which contradicts with the assumption that s wb r, thus s |= ϕ, and s wPCTL\X
r.

The weak simulation equivalent towPCTL
∗
\X

can also be obtained in a straightforward

way by adapting Definition 30.

Definition 37 (Weak Simulation). A relation R ⊆ S×S is a weak simulation iff s R r

implies that L(s) = L(r) and for any Ω̃ ⊆ (R↓)∗ and any scheduler π, there exists π′

such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

).

We write s w r whenever there is a weak simulation R such that s R r.

Again w is not compositional, but it coincides with wPCTL
∗
\ X
, therefore we have the

following theorem.

Theorem 31. w is a preorder, and w = wPCTL
∗
\ X
.

Proof. 1. The proof is similar as the proof of Clause 1 of Lemma 23.

153

4. PROBABILISTIC AUTOMATA

2. In order to prove that wPCTL
∗
\X

⊆ w, it is enough to show that

R = {(s, r) | s wPCTL
∗
\ X

r}

is a weak branching simulation i.e. we need to prove that for any Ω̃ ⊆ (R↓)∗ and

scheduler π, there exists a scheduler π′ such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

)

provided that s R r. By induction CΩ̃st
is R downward closed, thus there exists

ψ such that Sat(ψ) = C
Ω̃st

. We prove by contradiction. Suppose that there does

not exist π′ such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

),

then there exists q such that r |= P≤q(ψ), but apparently s 6|= P≤qψ, which

contradicts with the assumption that s wPCTL
∗
\X

r. Therefore there must exist

a scheduler π′ such that

Probπ′,r(CΩ̃st
) ≥ Probπ,s(CΩ̃st

).

The proof of w ⊆wPCTL
∗
\X

is by structural induction on the syntax of state formula

ϕ and path formula ψ of safe PCTL∗\X, that is, we need to prove the following two

results simultaneously.

(a) r |= ϕ implies s |= ϕ for any state formula ϕ provided that s w r.

(b) ω2 |= ψ implies that ω1 |= ψ for any path formula ψ provided that ω1 w ω2.

We only consider ϕ = P≤q(ψ) since the other cases are similar. Suppose that

r |= ϕ, we need to prove that s |= ϕ. We prove by contradiction, and assume that

s 6|= ϕ, then there exists π such that

Probπ,s({ω | ω |= ψ}) > q.

By induction {ω | ω |= ψ} is w downward closed, thus there exists Ω̃st such that

Ω̃st = {ω | ω |= ψ}. Since r |= ϕ, there does not exist π′ such that

Probπ,r(Ω̃st) ≥ Probπ,s(Ω̃st) = q

which contradicts with the assumption that s w r, thus s |= ϕ, and s wPCTL
∗
\ X

r.

154

4.6 Countable States

4.5.4 Simulation Kernel and Summary of Simulation

Let R−1 denote the reverse of R, then R∩R−1 is the simulation kernel. In this section

we will show the relation between the simulation kernels and their correspondent bisim-

ulations. Not surprisingly, the simulation kernels are coarser than the bisimulations as

shown in the following theorem.

Theorem 32. 1. ∼b
i ⊆ (≺b

i ∩(≺
b
i)

−1).

2. ∼i ⊆ (≺i ∩ ≺−1
i).

3. ≈b ⊆ (wb ∩(wb)−1).

4. ≈ ⊆ (w ∩ w−1).

Proof. We only prove the first clause here, since the others are quite similar. The proof

of ∼b
i ⊆ ≺b

i ∩(≺b
i)

−1 is trivial and omitted here. To show that ≺b
i ∩(≺b

i)
−1 is strictly

coarser than ∼b
i , it is enough to give a counterexample. Suppose we have three states

s1, s2, and s3 such that s1 ≺b
i s2 ≺b

i s3 but s3 6≺b
i s2 6≺b

i s1. Let s and r be two

states such that L(s) = L(r). In addition s has three transitions: s −→ δs1 , s −→ δs2 ,

s −→ δs3 , and r only has two transitions: s −→ δs1 , s −→ δs3 . Then it should be easy

to check that s ≺b
i r and r ≺b

i s, the only non-trivial case is when s −→ δs2 . Since

s2 ≺b
i s3, thus there exists r −→ δs3 such that δs2 ⊑≺b

i
δs3 . But obviously s 6∼b

i r,

since the transition s −→ δs2 cannot be simulated by any transition of r.

We summarize the preorders in strong and weak scenarios in Fig. 4.7 and 4.8 re-

spectively, note we omit the subscript s denoting safe fragment for the logic preorders

as before.

4.6 Countable States

For now we only consider finite PAs i.e. only contain finite states. In this section

we will show that these results also apply for PAs with countable states. Assume

S is a countable set of states S. We adopt the method used in (56) to deal with

strong branching bisimulation since all the other cases are similar. First we recall some

standard notations from topology theory. Given a metric space (S, d) where d is a

metric, a sequence {si | i ≥ 0} converges to s iff for any ǫ > 0, there exists n such that

155

4. PROBABILISTIC AUTOMATA

PCTL

PCTL
−

PCTL
−
n

. . .

PCTL
−
2

PCTL
∗

PCTL
∗−

PCTL
∗−
n

. . .

PCTL
∗−
2

≺

≺n

. . .

≺2

≺b

≺b
n

. . .

≺b
2

≺P

PCTL
−
1≺b

1
≺1PCTL

∗−
1

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

Figure 4.7: Relationship of different preorders in strong scenario.

d(sm, s) < ǫ for any m ≥ n. A metric space is compact if every infinite sequence has a

convergent subsequence.

Below follows the definition of metric over distributions from (56).

Definition 38 (Metric). Given two distributions µ, ν ∈ Dist(S), the metric d is defined

by

d(µ, ν) = SupC∈S |µ(C)− ν(C)| .

Since the metric is defined over distributions while in Definition 28 we did not

consider distributions explicitly, thus we need to adapt the definition of Probπ,s(C,C
′, n)

in the following way: s
n,C
==⇒ µ iff either

156

4.6 Countable States

wb

PCTL\X

w

PCTL
∗
\X

�P

\ \

\

\

Figure 4.8: Relationship of different preorders in weak scenario.

• µ = δs, or

• s −→ ν such that ∑

∀r∈Supp(ν).r
n−1,C

====⇒νr

ν(r) · νr = µ.

It is obvious that for each π,C,C ′, and n, there exists s
n,C
==⇒ µ such that µ(C ′) =

Probπ,s(C,C
′, n).

Now we can define the compactness of probabilistic automata as in (56) with a

slight difference.

Definition 39 (Compactness). Given a probabilistic automaton P, P is i-compact iff

{µ | s
i,C
==⇒ µ}

is compact under metric d for each s ∈ S and ∼b
i closed set C.

As mentioned in (56, 86), the convex closure does not change the compactness, thus

we can extend
n,C
==⇒ to allow combined transitions in a standard way without changing

anything, but for simplicity we omit this. A probabilistic automaton is compact iff it

is i-compact for any i ≥ 1.

We introduce the definition of capacity as follows.

Definition 40 (Capacity). Given a set of states S and a π-algebra B, a capacity on

B is a function Cap : B → (R+ ∪ {0}) such that1:

1R+ is the set of positive real numbers.

157

4. PROBABILISTIC AUTOMATA

1. Cap(∅) = 0,

2. whenever C1 ⊆ C2 with C1, C2 ∈ B, then Cap(C1) ≤ Cap(C2),

3. whenever there exists C1 ⊆ C2 ⊆ . . . such that ∪i≥1Ci = C, or C1 ⊇ C2 ⊇ . . .

such that ∩i≥1Ci = C, then

lim
i→∞

Cap(Ci) = Cap(C).

A capacity Cap is sub-additive iff

Cap(C1 ∪ C2) ≤ Cap(C1) + Cap(C2)

for any C1, C2 ∈ B.

Different from (56), the value of Probπ,s(C,C
′, n) depends on both C and C ′. Let

PreCapC
s,n(C

′) = SupπProbπ,s(C,C
′, n),

PostCapC′

s,n(C) = SupπProbπ,s(C,C
′, n)

i.e. given a C ′, PreCapC
s,n will return the maximum probability from s to C ′ in at most

n steps via only states in C, similar for PostCapC′

s,n. The following lemma shows that

both PreCapC
s,n and PostCapC′

s,n are sub-additive capacities.

Lemma 25. PreCapC
s,n and PostCapC′

s,n are sub-additive capacities on B where B is

the π-algebra only containing ∼b
i closed sets.

Proof. Refer to the proof of Lemma 5.2 in (56).

Now we can show that the following results are still valid as long as the given

probabilistic automaton is compact even when it contains infinitely countable states.

Theorem 33. Given a compact probabilistic automata,

1. ∼b
n = ∼

PCTL
−
n
,

2. there exists n ≥ 0 such that ∼b
n = ∼PCTL.

Proof. 1. The proof of ∼b
n ⊆ ∼

PCTL
−
n
is similar with the proof of Theorem 21, and

is omitted here. We prove that ∼
PCTL

−
n
⊆ ∼b

n in the sequel following the proof of

Theorem 6.10 in (56). Let

R = {(s, r) | s ∼
PCTL

−
n
r},

158

4.6 Countable States

we need to prove that R is a strong i-depth branching bisimulation. In order to

do so, we need to prove that for any (s, r) ∈ R,

PreCapC
s,n(C

′) = PreCapCr,n(C
′)

for each R closed sets C and C ′. Since both C and C ′ may be countable union

of equivalence classes while each equivalence class can only be characterized by

countable many formulas, therefore we have

C = ∪∞
i=1(∩

∞
j=1Ci,j) and C

′ = ∪∞
i=1(∩

∞
j=1C

′
i,j)

where ∩∞
j=1Ci,j corresponds the i-th equivalence class in C, and Ci,j corresponds

the set of states determining by the j-th formula satisfied by i-th equivalence

class, similar for ∩∞
j=1C

′
i,j and C ′

i,j. Similar as (56), let

Bk = ∩∞
j=1(∪

k
i=1Ci,j), A

l
k = ∩l

j=1(∪
k
i=1Ci,j),

B′
k = ∩∞

j=1(∪
k
i=1C

′
i,j), A

′l
k = ∩l

j=1(∪
k
i=1C

′
i,j).

It is easy to see that Bk and B′
k are increasing sequences of R closed sets such

that ∪∞
k=1Bk = C, and ∪∞

k=1B
′
k = C ′, while Al

k and A
′l
k are decreasing sequences

of R closed sets such that ∩∞
l=1A

l
k = Bk and ∩∞

l=1A
′l
k = B′

k. Both Al
k and A

′l
k

only contain conjunction and disjunction of finite formulas, thus can be described

by PCTL
−
i . The following proof is straightforward due to s ∼

PCTL
−
i

r and

Lemma 25.

2. Suppose that ∼PCTL ⊂ ∼b
n for any n ≥ 0 which means that there exists s and r

such that s ∼b
n r for any n ≥ 0, but s ≁PCTL r. As a result there exists C,C ′

and π such that

lim
i→∞

Probπ,s(C,C
′, i) > 0,

but there does not exist π′ such that

lim
i→∞

Probπ′,r(C,C
′, i) ≥ lim

i→∞
Probπ,s(C,C

′, i).

In other words,

lim
i→∞

Probπ′,r(C,C
′, i) < lim

i→∞
Probπ,s(C,C

′, i)

for any π′ which indicates that there exists n ≥ 0 such that

Probπ′,r(C,C
′, n) < Probπ,s(C,C

′, n)

for any π′, therefore s ≁
PCTL

−
i
r which contradicts with our assumption.

159

4. PROBABILISTIC AUTOMATA

In a similar way we can extend the results of this section to strong bisimulations

and weak bisimulations, we skip their proofs here. For the simulations, we need to do

more work, since there may be uncountable many downward closed sets. We prove

along the line of (57). The following lemma is similar as Lemma 5.1 in (57) with only

slight differences: i) we consider downward closed sets instead of upward closed sets,

ii) we do not require R to be a preorder, but these do not change the proof.

Lemma 26 (Lemma 5.1 (57)). Let R ⊆ S × S be a relation, and C ⊆ S be a R

downward closed set, then C is a union of equivalence classes of ≡R where ≡R is the

largest equivalence relation contained in R.

Given a R downward closed set C, we say C is finitely generated if there exists a

finite set of equivalence classes of {Ci ∈ S/ ≡R}i∈I such that C = ∪i∈ICi. Since the

set of the equivalence classes in S/ ≡R is countable, thus the set of finitely generated R

downward closed set is also countable (57). The following lemma shows an alternative

definition of ≺b
i in Definition 33 where we only focus on finitely generated downward

closed sets:

Lemma 27. A relation R ⊆ S×S is a strong i-depth branching simulation with i ≥ 1 iff

s R r implies that s ≺b
i−1 r and for any finitely generated R downward closed sets C,C ′,

and any scheduler σ, there exists σ′ such that Probσ′,r(C,C
′, i) ≥ Probσ,s(C,C

′, i).

We write s ≺b
i r whenever there is a strong i-depth branching simulation R such

that s R r.

Proof. The proof is similar as the proof of Lemma 5.2 in (57). Let (≺b
i)

′ denote the

new definition, we need to prove that s ≺b
i r iff s (≺b

i)
′ r. Since finitely generated

R downward closed sets are special cases of R downward closed sets, it is trivial to

see that s ≺b
i r implies s (≺b

i)
′ r. We prove that s (≺b

i)
′ r implies s ≺b

i r by

contradiction. Suppose that for any finitely generated R downward closed sets C,C ′

and σ, there exists σ′ such that Probσ′,r(C,C
′, i) ≥ Probσ,s(C,C

′, i), but there exists

R downward closed sets C,C ′ and σ such that Probσ′,r(C,C
′, i) < Probσ,s(C,C

′, i) for

any σ′. Let σ be a scheduler such that Probσ′,r(C,C
′, i) < Probσ,s(C,C

′, i) for any

σ′ and ǫ = Probσ,s(C,C
′, i) − Probσ′,r(C,C

′, i) > 0. According to Lemma 26, there

exists sets of equivalences classes: {Cj ∈ S/ ≡R}j∈J and {Ck ∈ S/ ≡R}k∈K such that

C = ∪j∈JCi and C ′ = ∪k∈KCk where J,K are (infinite) sets of indexes. Define two

sequences of finitely generated R downward closed sets:

{C≤j = ∪j′∈J∧j′≤j | j ∈ J},

160

4.7 The Coarsest Congruent (Bi)Simulations

{C≤k = ∪k′∈K∧k′≤k | k ∈ K}.

Obviously both Probσ,s(C,C≤k, i) and Probσ,s(C≤j, C
′, i) are monotone, non-decreasing

and converge to Probσ,s(C,C
′, i) for any C and C ′. Therefore there exists j ∈ J and

k ∈ K such that

Probσ,s(C≤j , C
′, i) > Probσ,s(C,C

′, i)−
ǫ

4
, and

Probσ,s(C≤j, C≤k, i) > Probσ,s(C≤j , C
′, i)−

ǫ

4
.

This implies

Probσ,s(C≤j , C≤k, i) > Probσ,s(C,C
′, i)−

ǫ

2

= Probσ′,r(C,C
′, i) +

ǫ

2
> Probσ′,r(C,C

′, i) ≥ Probσ,s(C≤j , C≤k, i),

which contradicts with the assumption.

By Lemma 27 it is enough to consider all the finitely generated ≺b
i downward closed

sets in Definition 39 which is countable. The extension of Theorem 26 to the countable

state space is then routine, and is omitted here. Moreover the definitions of other

variants of simulations in Section 4.5 can be adopted to only consider finitely generated

downward closed sets too, thus their logic characterizations can also be extended to

countable states.

4.7 The Coarsest Congruent (Bi)Simulations

Before we have shown that ∼P is congruent but cannot be characterized by ∼PCTL

completely since it is too fine. On the other hand, there exists ∼b
n which can be

characterized by ∼PCTL, but it is not congruent generally, this indicates that ∼PCTL

is essentially not congruent. Therefore a natural question one may ask is that what

is the largest subset of ∼PCTL which is congruent. The following theorem shows that

∼P is such coarsest congruent relation in ∼PCTL assuming that the given probabilistic

automaton is compact.

Theorem 34. ∼P is the coarsest congruent equivalence relation in ∼PCTL.

Proof. We prove by contradiction. Suppose that there exists ∼P ⊂ ≃ ⊂ ∼PCTL such

that ≃ is congruent. Since ∼P ⊂ ≃, there exists s and r such that s ≃ r but s ≁P r.

According to Definition 23 there exists s −→ µ such that there does not exist r −→P ν

161

4. PROBABILISTIC AUTOMATA

with µ ∼P ν. The idea is to show that there always exists t such that s ‖ t 6∼PCTL r ‖ t

in this case, then it is enough to give a formula ϕ such that r ‖ t |= ϕ, but s ‖ t 6|= ϕ.

Let Supp(µ) = {s1, s2, . . .} and µ(si) = ai
1 with i ≥ 1. Without losing of generality

we assume that there exists s −→ µ such that for any two (combined) transitions of r:

r −→P ν1 and r −→P ν2, there does not exist 0 ≤ w1, w2 ≤ 1 such that w1 + w2 = 1 and

µ ∼P (w1 · ν1 + w2 · ν2) (every combined transition of r can be seen as a combined

transition of two other combined transitions of r). Let ν1(si) = bi and ν2(si) = ci in the

following, then there must exist i 6= j ≥ 1 such that there does not exist 0 ≤ w1, w2 ≤ 1

such that w1 · bi + w2 · ci = ai and w1 · bj + w2 · cj = aj with w1 + w2 = 1, otherwise

we will have µ ∼P (w1 · ν1 + w2 · ν2) which contradicts with the assumption. There

are nine possible cases in total depending on the relation between ai, aj and bi, ci, bj , cj .

Most of the cases are trivial except when ai ∈ [bi, ci] and aj ∈ [cj , bj].
2 For instance if

ai > bi, ci, r will evolve into si with probability less than ai which is not the case for

s, thus s ≁PCTL r which contradicts with the assumption. Considering the following

inequations where ρ1 and ρ2 are two variables with values in [0, 1]:

ai · ρ1 + aj · ρ2 < bi · ρ1 + bj · ρ2, (4.5)

ai · ρ1 + aj · ρ2 < ci · ρ1 + cj · ρ2 (4.6)

which can be transformed into the following forms:

(ai − bi) · ρ1 < (bj − aj) · ρ2, (4.7)

(ai − ci) · ρ1 < (cj − aj) · ρ2. (4.8)

Note that (ai − bi), (ai − ci), (bj − aj), and (cj − aj) cannot be 0 at the same time,

so there always exists 0 ≤ ρ1, ρ2 ≤ 1 such that ai · ρ1 + aj · ρ2 is either greater or

smaller than both of bi · ρ1 + bj · ρ2 and ci · ρ1 + cj · ρ2. By simple calculation whenever

ρ1 ∈ (
bj−aj
ai−bi

· ρ2,
aj−cj
ci−ai

· ρ2) (it is not possible for
bj−aj
ai−bi

=
aj−cj
ci−ai

, otherwise there exists

0 ≤ w1, w2 ≤ 1 such that w1 ·bi+w2 ·ci = ai and w1 ·bj+w2 ·cj = aj with w1+w2 = 1),

then ai · ρ1 + aj · ρ2 is smaller than bi · ρ1 + bj · ρ2 and ci · ρ1 + cj · ρ2. Let t be a state

such that it can only evolve into t1 with probability ρ1 and t2 with probability ρ2 where

ρ1+ ρ2 = 1 and ρ1 ∈ (
bj−aj
ai−bi

·ρ2,
aj−cj
ci−ai

·ρ2), obviously such t always exists. Assume that

all the states have distinct labels except for s and r, moreover let

ψ = ((L(s 9 t) ∨ L(si 9 t) ∨ (L(sj 9 t)))U≤2(L(si 9 t1) ∨ L(sj 9 t2))),

1For simplicity we assume that si(i ≥ 1) belong to different equivalence classes.
2We assume here that ci ≥ bi and bj ≥ cj

162

4.8 Related Work

it is not hard to see that the minimum probability of the paths of s ‖ t satisfying ψ is

at most ai · ρ1 + aj · ρ2 i.e. when s ‖ t first performs the transition s −→ µ of s and then

performs the transition t −→ {ρ1 : t1, ρ2 : t2} of t. Let r −→P ν be the transition such

that when r ‖ t first performs it and then performs t −→ {ρ1 : t1, ρ2 : t2}, the probability

of the paths of r ‖ t satisfying ψ is minimal. Since ν(si) ·ρ1+ν(sj) ·ρ2 > ai ·ρ1+aj ·ρ2,

we have r ‖ t |= P≥qψ but s ‖ t 6|= P≥qψ where q = ν(si) · ρ1 + ν(sj) · ρ2. In other

words s ‖ t ≁PCTL r ‖ t, as a result s ‖ t 6≃ r ‖ t, so ≃ is not congruent. When all

the states do not have distinct labels, we can always construct formulas to distinguish

them, since the probabilistic automaton is compact and these states are in different

equivalence classes by assumption, the following proof is the same. This completes our

proof.

Theorem 34 can be extended to identify the coarsest congruent weak bisimulation

in ∼PCTL\X
, and the coarsest congruent strong and weak simulations in ≺PCTL and

wPCTL\X
respectively.

Theorem 35. 1. ≃P is the coarsest congruent equivalence relation in ∼PCTL\X
,

2. ≺P is the coarsest congruent preorder in ≺PCTL,

3. �P is the coarsest congruent preorder in wPCTL\ X
.

Proof. The proof is similar with the proof of Theorem 34 and we only sketch the proof

of Clause (2) here. In order to prove that ≺P is the coarsest congruent preorder in

≺PCTL, we need to show that for any � such that ≺P ⊂ � ⊂ ≺PCTL, it holds that � is

not congruent i.e. there exists s, r, and t such that s � r, but s ‖ t 6� r ‖ t. First

assume that � is a congruence, and we then prove by contradiction as in Theorem 34

and show that if s � r and s 6≺P r, there exists t such that s ‖ t 6≺PCTL r ‖ t,

thus s ‖ t 6� r ‖ t which contradicts with the assumption that � is a congruence.

Since s 6≺P r, then there exists s −→ µ such that there does not exist r −→P ν with

µ ⊑≺P
ν. With the same argument as in Theorem 34 and Lemma 27, there exists t

and ψ such that r ‖ t |= P≥qψ but s ‖ t 6|= P≥qψ i.e. s ‖ t 6≺PCTL r ‖ t, thus � is not

congruent.

4.8 Related Work

For Markov chains, i.e., deterministic probabilistic automata, the logic PCTL char-

acterizes bisimulations, and PCTL without X operator characterizes weak bisimula-

163

4. PROBABILISTIC AUTOMATA

tions (54, 87). As pointed out in (1), probabilistic bisimulation is sound, but not com-

plete for PCTL for PAs. In the literature, various extensions of the Hennessy-Milner

logic (88) are considered for characterizing bisimulations. Larsen and Skou (49) consid-

ered such an extension of Hennessy-Milner logic, which characterizes bisimulation for

alternating automaton (49), or labeled Markov processes (56) (PAs but with continuous

state space). For probabilistic automata, Jonsson et al. (89) considered a two-sorted

logic in the Hennessy-Milner style to characterize strong bisimulations. In (57), the

results are extended for characterizing also simulations.

Weak bisimulation was first defined in the context of PAs by Segala (1), and then

formulated for alternating models by Philippou et al. (53). The seemingly very related

work is by Desharnais et al. (56), where it is shown that PCTL∗ is sound and complete

w.r.t. weak bisimulation for alternating automata. The key difference is that the

model they have considered is not the same as probabilistic automata considered in

this chapter. Briefly, in alternating automata, states are either nondeterministic like

in transition systems, or stochastic like in discrete-time Markov chains. As discussed

in (90), a probabilistic automaton can be transformed to an alternating automaton by

replacing each transition s −→ µ by two consecutive transitions s −→ s′ and s′ −→ µ where

s′ is the new inserted state. Surprisingly, for alternating automata, Desharnais et al.

have shown that weak bisimulation – defined in the standard manner – characterizes

PCTL
∗ formulae. The following example illustrates why it works in that setting, but

fails for probabilistic automata.

Example 42. Refer to Fig. 4.1, we need to add three additional states sµ1 , sµ2 , and

sµ3 in order to transform s and r to alternating automata. The resulting automata

are shown in Fig. 4.9. Suppose that s1, s2, and s3 are three absorbing states with

different atomic propositions, so they are not (weak) bisimilar, as a result sµ1 , sµ2 and

sµ3 are not (weak) bisimilar either since they can evolve into s1, s2, and s3 with different

probabilities. Therefore s and r are not (weak) bisimilar. Let

ϕ = P≥0.4(XL(s1)) ∧ P≥0.3(XL(s2)) ∧ P≥0.3(XL(s3)),

it is not hard to see that sµ2 |= ϕ but sµ1 , sµ3 6|= ϕ, so s |= P≤0(Xϕ) while r 6|= P≤0(Xϕ).

When working in the setting of probabilistic automata, sµ1 , sµ2 , and sµ3 will not be

considered as states, so we cannot use the above arguments for alternating automata

anymore.

164

4.8 Related Work

s1 s2 s3 s1 s2 s3

s

sµ1 sµ3

s1 s2 s3 s1 s2 s3 s1 s2 s3

r

sµ1 sµ2 sµ3

0.3 0.3 0.4 0.5 0.4 0.1

0.3 0.3 0.4 0.4 0.3 0.3 0.5 0.4 0.1

Figure 4.9: Alternating automata.

In the definition of ∼1 and ≺1, we choose first the downward closed set C before

the successor distribution to be matched, which is the key for achieving our new notion

of bisimulations and simulations. This approach was also adopted in (91) to define

the priori ǫ-bisimulation and simulation. It turns out that when ǫ = 0, the priori

ǫ-bisimulation coincides with ∼1. The priori ǫ-bisimulation was shown to be sound

and complete w.r.t. an extension of Hennessy-Milner logic, similarly for the priori

ǫ-simulation. Finally, the priori ǫ-bisimulation was also used to define pseudo-metric

between PAs in (91, 92). The definition of priori 0-simulation in (91), denoted as ≺′
1,

165

4. PROBABILISTIC AUTOMATA

s0

s1 s1

s2

1 0.5

0.5

r0

s1

1

Figure 4.10: ≺′

i
6= ≺

PCTL
−

1

.

is however not equivalent to ≺1. In the definition of ≺′
1, the upward closed sets are

considered while in the definition of ≺1 we consider downward closed sets. If we adopt

the definition of ≺′
1 here, Theorem 26 will not be valid anymore. Refer to the following

example.

Example 43. Consider the two states s0 and r0 in Fig. 4.10 where all the states have

different labels except that L(s0) = L(r0), and the transitions of s1 and s2 are omitted.

Moreover we assume that s2 ≺′
1 s1, but s1 6≺′

1 s2. Let R = {(s0, r0), (s1, s1), (s2, s1)},

in order to show that R is a priori 0-simulation, we need to check that for each R

upward closed set C and s0 −→ µ, there exists r0 −→ ν such that µ(C) ≤ ν(C). The only

non-trivial cases are when C = {s1} or {s2, s1}, thus s0 ≺′
1 r0. But we will show

that s0 6≺
PCTL

−
1
r0. By contradiction, assume that ≺′

1 = ≺
PCTL

−
1
. Let ϕ = P≤0(Xϕs2)

where ϕs2 is a formula such that s2 |= ϕs2 but s1 6|= ϕs2 . Since s1 6≺′
1 s2, such formula

always exists by assumption. It is easy to see that r0 |= ϕ, but s0 6|= ϕ since the

maximal probability from s0 to s2 in one step is equal to 0.5, thus we get contradiction,

and ≺′
1 6= ≺

PCTL
−
1
.

166

Chapter 5

Continuous-time MDP

In Chapter 4 we show the characterizations of bisimulations and simulations w.r.t.

PCTL
∗ and its sublogics on probabilistic automata. In this chapter we will extend the

work to continuous case i.e. we will show the characterizations of bisimulations and

simulations w.r.t. CSL and its sublogics on continuous-time Markov decision processes

(CTMDP).

We first motivate the work in Section 5.1, and then in Section 5.2 we recall the def-

inition of CTMDPs and the logic CSL. In Section 5.3 we propose a parallel composition

operator for CTMDPs. Strong and weak bisimulation relations and the corresponding

logical characterization results are studied in Section 5.4. In Section 5.5, we present

the sequence of i-depth bisimulations. The work is extended to simulations in Sec-

tion 5.6. In Section 5.7, we discuss how the (bi)simulations on CTMDPs relate to those

in probabilistic automata and Markov chains. Section 5.8 summarizes the chapter. We

conclude this chapter by discussing some related work in Section 5.9.

5.1 Motivation

Recently, continuous-time Markov decision processes (CTMDP) have received extensive

attentions in the model checking community, see for example (37, 54, 93, 94, 95, 96, 97,

98). Analysis techniques for CTMDPs suffer especially from the infamous state space

explosion problem. Thus, as for other stochastic models, strong bisimulations have been

proposed for CTMDPs in (37), which were shown to be sound w.r.t. the continuous-time

stochastic logic (CSL). This result guarantees that one can first reduce the CTMDP

167

5. CONTINUOUS-TIME MDP

using bisimulations before analyzing the CTMDPs, as in the standard setting. On the

other hand, as indicated in the paper (37), strong bisimulation is not complete w.r.t.

CSL, i.e., logically equivalent states might not be bisimilar.

CTMDPs can be considered as extending the Markov decision processes (MDPs)

with exponentially sojourn time distributions, and this subsumes models such as la-

beled transition systems and Markov chains as well. While linear and branching time

equivalences and preorders are studied for these submodels (42, 43, 54, 99), this has not

been studied for CTMDPs. In this chapter we study the branching time equivalences

and preorders for CTMDP, and the logical characterization problem of these relations

w.r.t. CSL.

We start with a slightly coarser notion of strong bisimulations, and then propose

the notion of weak bisimulations for CTMDPs. We study the relationship between

weak bisimulations and the logical equivalence induced by CSL\X, the sub-logic of CSL

without the next operator. Our first contribution is to identify a subclass of CTMDPs

under which our weak bisimulation coincides with CSL\X equivalence. We discuss then

how this class of CTMDPs can be efficiently determined.

Recently, in (99), we have introduced a sequence of i-depth bisimulations, which

are shown to be converging to the logical equivalence w.r.t. probabilistic CTL (PCTL).

As a second part of this chapter, we propose strong and weak i-depth bisimulations

for CTMDPs, and provide logical characterization results for them. We show that, for

general CTMDPs with finitely many states, the strong and weak i-depth bisimulations

converge to equivalence relations which are exactly the CSL and CSL\X equivalences,

respectively.

Further, we extend the definitions to (weak) simulations, and study their relation-

ship to the logical preorders w.r.t. the (weak) safety CSL respectively. As CTMDPs

can be considered as combining MDPs and CTMCs, we will discuss the downward com-

patibility of the relations with those for MDPs and CTMCs.

As another notable contribution, we propose a novel – and very simple – parallel

composition operator for CTMDPs. We show that both strong and weak bisimulations

are congruence relations w.r.t. this new operator. As a direct consequence of this result,

(weak) bisimulation compositional minimization reduction technique can be applied for

analyzing the CTMDPs.

168

5.2 Preliminaries

Summarizing, in this chapter we introduce various (weak) simulation and bisimu-

lation relations, and develops for the first time a taxonomy of logical characterizations

of these relations on CTMDPs:

• We introduce a new notion of weak bisimulation for CTMDPs. We identify a

subclass of CTMDPs and show the sound and complete characterization for CSL\X.

• We present a sequence of i-depth (weak) bisimulations and the corresponding

logical characterization results.

• We extends the definitions and logical characterization results to (weak) simula-

tions and i-depth (weak) simulations.

• We introduce a novel parallel operator for CTMDPs, and study the congruence

property of strong and weak bisimulations and simulations with respect to it.

5.2 Preliminaries

We first recall the definition of continuous-time Markov decision process as follows.

5.2.1 Continuous-time Markov Decision Process.

Definition 41 (Continuous-time Markov Decision Process). A tuple C = (S,→,AP , L, s0)

is a continuous-time Markov decision process (CTMDP) where

• S is a finite but non-empty set of states;

• →⊆ S×R+×Dist(S) is a finite transition relation where R+ is the set of positive

real numbers;

• AP is a finite set of atomic propositions;

• L : S 7→ 2AP is labeling function;

• s0 ∈ S is the initial state.

Let

Suc(s) = {r | ∃(s
λ
−→ µ).µ(r) > 0}

169

5. CONTINUOUS-TIME MDP

denote the successor states of s, and Suc∗(s) the transitive closure. To avoid timelock,

we assume w.l.o.g. that Suc(s) 6= ∅ for each s ∈ S. A state s is said to be absorbing,

denoted as s⊥, iff

∀(s′ ∈ Suc∗(s)).L(s′) = L(s).

A continuous-time Markov chain (CTMC) is a CTMDP satisfying the condition that:

s
λ
−→ µ and s

λ′

−→ µ′ imply λ = λ′ and µ = µ′.

Below we recall the notion of uniformization for CTMDPs (95, 100). Essentially, by

uniformizing each state will have a unique exit rate while preserving certain properties.

Definition 42 (Uniformization). Given a CTMDP C = (S,→,AP , L, s0), the uni-

formized CTMDP is denoted as C̄ = (S̄,→′,AP , L̄, s̄0) where

• S̄ = {s̄ | s ∈ S};

• L̄(s̄) = L(s) for each s ∈ S;

• (s̄, E, µ̄) ∈→′ iff there exists (s, λ, µ) ∈→ and

µ̄ =
λ

E
· µ′ + (1−

λ

E
) · δs̄

where µ′(r̄) = µ(r) for each r ∈ Supp(µ) and

E = max{λ | (s, λ, µ) ∈→}

is the maximum rate in the original CTMDP.

A CTMDP C is uniformized iff for any (s1, λ1, µ1) ∈→ and (s2, λ2, µ2) ∈→, λ1 = λ2.

5.2.2 Path and Measurable Scheduler

Let C = (S,→,AP , L, s0) be a given CTMDP. Let

Pathsn+1(C) = S × (R+ × S)n

denote the set of paths with length n + 1 of C. The set of all the finite paths of C is

the union of all the Pathsn(C) with n > 0, that is,

Paths∗(C) = ∪n>0Paths
n(C).

In addition Paths∞(C) = S × (R+ × S)∞ contains all the infinite paths and

Paths (C) = Paths∗(C) ∪ Paths∞(C)

170

5.2 Preliminaries

is the set of all the paths of C. Intuitively, a path is comprised of alternation of state

and its sojourn time. To simplify the discussion we introduce some notations some of

which are from Chapter 4 and overloaded here. Given a path ω = s0, t0, s1, t1 · · · sn−1 ∈

Pathsn(C), |ω| = n is the length of ω, ω↓= sn−1 is the last state of ω, ω|
i = s0, t0, · · · , si

is the prefix of ω ending at the i-th state, and ω|i = si, ti, si+1, · · · is the suffix of ω

starting from the i-th state, and ωa(tn−1, sn) is the path obtained by extending ω with

tn−1, sn. Let ω[i] = si and time(ω, i) = ti denote the i-th state and the time spent in

the i-th state respectively where i < n, while ω@t is the state at time point t in ω, that

is, ω@t = ω[j] where j is the smallest index such that
∑j

i=0 ti > t. Moreover,

Steps(s) = {(rate , µ) | (s, rate , µ) ∈→}

is the set of all available choices in state s. Let {Ii ⊆ [0,∞)}0≤i<k denote a set of

intervals, then

C(s0, I0, · · · , Ik−1, sk)

is the cylinder set of paths ω ∈ Paths∞(C) such that ω[i] = si and time(ω, i) ∈ Ii.

Let FPaths∞(C) be the smallest σ algebra on Paths∞(C) containing all the cylinder sets.

Refer to (37) for more details.

Non-deterministic choices in CTMDPs are resolved by schedulers, which generates

a distribution over the available transitions based on the existing path. We consider

measurable timed history-dependent randomized schedulers (37, 101).

Definition 43 (Scheduler). A scheduler

π : Paths∗(C)× R+ ×Dist(S) 7→ [0, 1]

is measurable if π(ω, λ, µ) > 0 implies (λ, µ) ∈ Dist(Steps(ω↓)) and

π(·, tr) : Paths∗(C) 7→ [0, 1]

are measurable for all tr ∈ 2(R
+×Dist(S)).

Given a scheduler π a unique probability measure Prπ,s0 can be defined on the σ

algebra FPaths∞(C) by: Prπ,s0(C(s0)) = 1 and Prπ,s0(C(s0, I0, · · · , sn, In, sn+1)) equals:

∫

ω∈C(s0,I0,··· ,sn)

(
∑

(λ,µ)∈Steps(sn)

π(ω|n, λ, µ) · µ(sn+1) · (e
−λ·a − e−λ·b)

)
(dPrπ,s0(ω|

n))

where In = [a, b].

171

5. CONTINUOUS-TIME MDP

5.2.3 Continuous Stochastic Logic

Continuous stochastic logic (CSL) is introduced to reason about continuous-time Markov

chains (102), and to reason about CTMDP later on in (37). It contains both state1 and

path formulas whose syntax is defined by the following BNFs:

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | P⊲⊳p(ψ)

ψ ::= X
I ϕ | ϕU

I ϕ | ϕU
I
n ϕ

where a ∈ AP , p ∈ [0, 1], I ⊆ [0,∞) is a non-empty closed interval and ⊲⊳ ∈ {<,≤

,≥, >}. We also introduce a bounded until operator ϕU
I
n ϕ a restricted version of the

general until operator ϕU
I ϕ.

We use s |= ϕ to denote that s satisfies the state formula ϕ while ω |= ψ denotes

that ω satisfies the path formula ψ. Below we give the satisfaction relation for the state

and path formulas:

s |= a iff a ∈ L(s)

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 ∧ s |= ϕ2

s |= P⊲⊳p(ψ) iff ∀π.Prπ,s0({ω ∈ Paths∞ | ω |= ψ}) ⊲⊳ p

ω |= X
I ϕ iff ω[1] |= ϕ ∧ time(ω, 0) ∈ I

ω |= ϕ1 U
I ϕ2 iff ∃t ∈ I.(ω@t |= ϕ2 ∧ (∀t′ < t.ω@t′ |= ϕ1))

ω |= ϕ1 U
I
n ϕ2 iff ∃i ≤ n ∧ t ∈ I.(ω@t = ω[i]

∧ ω@t |= ϕ2 ∧ (∀t′ < t.ω@t′ |= ϕ1))

Logic Equivalences. We say s and r be CSL-equivalent, denoted by s ∼CSL r, if

they satisfy the same set of formulas of CSL, that is, s |= ϕ iff r |= ϕ for all state

formulas ϕ. Similarly for sub-logics of CSL. In the following, we let

• CSL
− denote the sub-logic of CSL without unbounded until operator,

• CSL\Un
denote the sub-logic without bounded until,

• CSL\X denote the sub-logic without next and bounded until, and

1The steady-state operator is omitted here for simplicity of presentation.

172

5.3 Parallel Composition for CTMDPs

• CSLi be the sub-logic such that all the bounded until operators are like ϕ1 U
I
j ϕ2

with j ≤ i.

The subscripts i.e. −,X,Un, and i can be applied to CSL at the same time (for instance

CSL
−
i).

5.3 Parallel Composition for CTMDPs

Compositional theory plays an extremely important role in verification, as composition

based minimization and verification are effective methods for solving the state space

problem. For all sub-models of CTMDPs, including CTMCs and probabilistic automata,

their compositional theories have been studied extensively in the literature (32, 78, 103,

104). Surprisingly, to the best of our knowledge, the parallel operator has not been

defined for CTMDPs. Indeed, thus far, CTMDPs are considered as non-compositional.

In this section, we define a novel parallel composition operator for CTMDPs – directly

inspired by the parallel composition for CTMCs (32). We will show that the strong and

weak bisimulations we introduce are compositional w.r.t. our parallel composition.

Definition 44 (Parallel Composition). Let Ci = (Si,→i,AP i, Li, si) with i = 1, 2 be

two CTMDPs, and µ1 ‖ µ2 be a distribution such that

(µ1 ‖ µ2)(s1 ‖ s2) = µ1(s1) · µ2(s2).

The parallel composition C1 ‖ C2 is defined by:

C1 ‖ C2 = (S1 ‖ S2,→,AP1 × AP2, L, s1 ‖ s2)

where

• S1 ‖ S2 = {s ‖ s′ | s ∈ S1 ∧ s
′ ∈ S2},

• L(s ‖ s′) = L(s)× L(s′), and

• (s ‖ s′, λ, µ) ∈→ whenever there exists (s, λ1, µ1) ∈→1 and (s′, λ2, µ2) ∈→2 such

that λ = λ1 + λ2 and

µ =
λ1
λ

· (µ1 ‖ δs′) +
λ2
λ

· (δs ‖ µ2).

173

5. CONTINUOUS-TIME MDP

s1 s2 s3 t1 t2

s0 t0

s0 ‖ t0

s1 ‖ t0 s0 ‖ t1 s0 ‖ t2 s2 ‖ t0 s3 ‖ t0 s0 ‖ t1 s0 ‖ t2

2 3

1 1
2

1
2

4

1
3

2
3

6 7

1
3

2
9

4
9

3
14

3
14

4
21

8
21

Figure 5.1: Parallel composition of s0 and t0.

In Definition 44 we have not considered labels of the transitions, but the composition

operator can be easily extended to deal with labels in a standard way. The following

example illustrates how the composition operator works.

Example 44. Given two processes s0 and t0 as in Fig. 5.1 (a) and (b) respectively,

where s0 has two non-deterministic transitions labeled with 2 and 3, and t0 only has

one transition with rate 4, then the parallel composition s0 ‖ t0 of s0 and t0 according

to Definition 44 is described as in Fig. 5.1 (c).

174

5.4 Bisimulations for CTMDPs

Discussion. The parallel composition is inspired by the parallel operator introduced

for CTMCs in (32). The extension is conservative, i.e., restricting to CTMCs, our

parallel composition agrees with that for CTMCs. The parallel operator have been

extended for both interactive Markov chains (IMCs) in (32) and Markov Automata

(MAs) (104). In both IMCs and MAs, for each state at most one transition is labeled

with Markovian rate s
λ
−→ µ, that is, no nondeterministic choices between Markovian

transitions are allowed. But nondeterministic choices between transitions labeled with

actions are allowed.

Transformation between IMCs, CTMDPs andMAs have been studied in (105), which

allows techniques developed for one model to be exploited in the others, see for example

(96, 98). However, similar to the discrete setting (90), such transformation does not

preserve bisimulation relations that shall be introduced in the next section.

5.4 Bisimulations for CTMDPs

5.4.1 Strong Bisimulation

In this section we recall the notion of strong bisimulation for CTMDPs, introduced in

(37), where s
λ
−→P µ iff there exists {s

λ
−→ µi}i∈I and {pi}i∈I such that pi ∈ (0, 1] for

each i ∈ I,
∑

i∈I pi = 1, and
∑

i∈I pi ·µi = µ. We assume that there is a given CTMDP

C = (S,→,AP , L, s0) throughout this chapter in the following.

Definition 45 (Strong Bisimulation). Let R ⊆ S × S be an equivalence relation. R is

a strong bisimulation if s R r implies that L(s) = L(r) and for each s
λ
−→ µ, there exists

r
λ
−→P µ

′ such that µ R µ′.

We write s ∼ r whenever there exists a strong bisimulation R such that s R r.

The above bisimulation relation is slightly coarser than the one considered in (37),

where r
λ
−→P µ

′ is replaced by strong transition r
λ
−→ µ′. The idea of combining tran-

sitions with the same exit rate is borrowed from (1). The theorem shows that strong

bisimulation is sound, but not complete for CSL equivalence:

Theorem 36 ((37)). ∼ ⊂ ∼CSL.

Note the proof in (37) can be directly adapted to our slightly more general strong

bisimulation. The inclusion is sound but not complete which is illustrated below:

175

5. CONTINUOUS-TIME MDP

Example 45. Suppose that we have two states s and r such that s can evolve into s1

either with rate 3 or 5 while r can evolve into s1 with rate 3, 4, or 5. Also we assume

that L(s) = L(r) and s1 is an absorbing state with L(s1) 6= L(s). It is easy to see that

s and r are CSL-equivalent, but they are not strongly bisimilar.

In Example 45 s ∼ r would hold if one allows combining transitions with different

exit rates, but unfortunately this does not work generally, refer to Example 46.

Example 46. Suppose that we let s
λ
−→P µ iff there exists {s

λi−→ µi}i∈I and {pi}i∈I

such that
∑

i∈I pi = 1,
∑

i∈I pi · λi = λ and
∑

i∈I pi · µi = µ. Given two states s and r

such that

s
3
−→ µ1, s

4
−→ µ2, s

5
−→ µ3

r
3
−→ µ1, r

5
−→ µ3

where

µ1(s1) = 0.3, µ1(s2) = 0.7

µ2(s1) = 0.4, µ2(s2) = 0.6

µ3(s1) = 0.5, µ3(s2) = 0.5

For simplicity again we assume that s1, s2, and s3 are absorbing states and all the

states have different atomic propositions except L(s) = L(r), then s and r should be

bisimilar. But there exists a formula ϕ such that r |= ϕ and s 6|= ϕ. For instance let

ψ = X
I s1 with I = [a,∞), then the maximum probability of the paths starting from s

satisfying ψ is

max{0.3 · e−3a, 0.4 · e−4a, 0.5 · e−5a}.

If e−a ∈ (34 ,
4
5), then maximum probability is 0.4 · e−4a which is obviously greater than

the maximum probability of the paths of r satisfying ψ.

Below we show that the bisimulation relation is a congruence w.r.t. the parallel

operator we introduced in Section 5.3:

Theorem 37. s ∼ r implies that s ‖ t ∼ r ‖ t for any t.

Proof. Let

R = {(s ‖ t, r ‖ t) | s ∼ r},

it is enough to show that R is a strong bisimulation. Suppose that (s ‖ t) R (r ‖ t),

and s ‖ t
λ
−→ µ. By Definition 44 there exists s

λ1−→ µ1 and t
λ2−→ ν such that λ = λ1+λ2

and

µ =
λ1
λ

· (µ1 ‖ δt) +
λ2
λ

· (δs ‖ ν).

176

5.4 Bisimulations for CTMDPs

Since s ∼ r, there exists r
λ1−→P µ

′
1 such that µ1 ∼ µ′1, thus

(µ1 ‖ δt) R (µ′1 ‖ δt) and (δs ‖ ν) R (δr ‖ ν).

As a result there exists

r ‖ t
λ
−→P µ

′ ≡
λ1
λ

· (µ′1 ‖ δt) +
λ2
λ

· (δr ‖ ν),

so µ R µ′ which completes the proof.

5.4.2 Weak Bisimulation

In this section we will introduce a novel notion of weak bisimulation for CTMDPs in the

sense that it only preserves CSL\X equivalence. Our definition of weak bisimulation is

directly motivated by the two examples in the previous section, together with the well-

known fact that uniformization does not alter reachabilities for CTMDPs (96, 98, 100).

Even though we have seen that strong bisimulation is sound but not complete w.r.t. CSL

equivalence, we can show that the two relations do agree on a subclass of uniformized

CTMDPs. As a result, the weak bisimulation is both sound and complete for the sub-

logic CSL\X for the same subclass of CTMDPs (not necessarily uniformed). The section

ends up with a discussion about why the results do not hold for general CTMDPs, and

motivates the study of a sequence of bisimulations in next section.

Below follows the definition of weak bisimulation.

Definition 46 (Weak bisimulation). We say that states s and r are weakly bisimilar,

denoted by s ≈ r, whenever s̄ ∼ r̄ in the uniformized CTMDP C̄.

Our weak bisimulation is a conservative extension of strong bisimulation. The

following lemma establishes a few properties:

Lemma 28. 1. ∼ ⊆ ≈,

2. for uniformized CTMDP, ∼ = ≈.

3. s ∼CSL\X
r in C iff s ∼CSL r in C̄.

Proof. To show that ∼ implies ≈, we observe that for each s
λ
−→ µ, we have

s̄
E
−→ (

E − λ

E
· δs +

λ

E
· µ),

177

5. CONTINUOUS-TIME MDP

similar for s
λ
−→P µ. The following proof is trivial.

The proof of Clause 2 is straightforward from Definition 46.

We first prove that if C is a CTMC, then s ∼CSL\X
r in C iff s ∼CSL r in C̄. Since

uniformization preserves the satisfiability of CSL\X, thus s̄ ∼CSL\X
r̄. Let

R = {(s̄, r̄) | s̄ ∼CSL\X
r̄},

we first prove that R is a strong bisimulation. Let λ denote the exit rate of s̄ and r̄,

and λs̄ denote the rate from s̄ to states in [s̄]R i.e. s̄
λ
−→ µ and λs̄ = λ · µ([s̄]R), where

[s̄]R = {s̄ | s̄ R r̄} is the equivalence class of R containing s̄. The case when λs̄ = λ is

trivial, we assume that λ > λs̄, then for each C ∈ S̄/R such that s̄ /∈ C, the probability

of the path of s̄ satisfying ϕs̄ U
[a,b] ϕC is equal to

λC
λ− λs̄

· (e−λC ·a − e−λC ·b)

where λC = λ · µ(C). Since s̄ ∼CSL\X
r̄, it must be the case such that r̄

λ
−→ ν with

µ(C) = ν(C) i.e. µ R ν, thus R is a strong bisimulation. According to (54), s̄ ∼CSL r̄.

We now generalize the result to CTMDP. If s ∼CSL\X
r, then s̄ ∼CSL\X

r̄. Since

in a uniformized CTMDP, every execution of C guided by a given scheduler can be seen

as a CTMC, thus s̄ ∼CSL r̄ based on the above result.

Now we shall show that, different from the strong bisimulation, ≈ coincides with

∼CSL\X
in a subclass of CTMDPs, which is defined in the following.

Definition 47 (2-step Recurrent). Let R be an equivalence relation on S. A state s is

said to be 2-step recurrent w.r.t. R iff s is not absorbing, and moreover |Suc(s)| > 2

and

∃(s
λ
−→ µ).(∃(s′ ∈ Supp(µ)).(∀(s′

λ′

−→ ν).ν(C) = 1))

where C = (∪t∈Supp(µ)[t]R)∪ [s]R. We say C is 2-step recurrent w.r.t. R, iff there exists

a state s ∈ S which is 2-step recurrent w.r.t. R.

The non 2-step recurrent states can be seen as an extension of the well-known

non-absorbing states, those that can evolve into other equivalence classes. Non 2-step

recurrent states extend non-absorbing states further by excluding those non-absorbing

states that can evolve into other equivalence classes only through their parent and the

parents’ equivalent states. Moreover, we say that s (or C) is 2-step recurrent iff it is

2-step recurrent w.r.t. ∼CSL\X
. Intuitively, the term 2-step recurrent requires that s

178

5.4 Bisimulations for CTMDPs

has more than 2 successors and there exists a transition s −→ µ such that some states in

Supp(µ) must only return back to states equivalent to s or states in Supp(µ) directly.

We show below ≈ coincides with CSL\X for CTMDPs without 2-step recurrent states.

Theorem 38. ≈ ⊆ ∼CSL\X
. If C is not 2-step recurrent, ≈ = ∼CSL\X

.

Proof. In the following the parameter E will be omitted in the transition, i.e. we simply

write s −→ µ for s
E
−→ µ.

First we show that ≈ ⊆ ∼CSL\X
. Let C be a CTMDP and assume s ≈ r. By the

definition of weak bisimulation, we have s ≈ r in C̄. By Theorem 36, s ∼CSL r in C̄.

Applying the third claus of Lemma 28, it holds that s ∼CSL\X
r in C.

Now we prove that ∼CSL\X
implies ≈ whenever C is not 2-step recurrent. By defi-

nition, it is the same to prove that ∼CSL implies ∼ in a uniformized CTMDP. In the

following we assume that the given CTMDP is uniformized and assume that the rate is

equal to 1 for simplicity without losing generality. Let

R = {(s, r) | s ∼CSL r}

which is obviously an equivalence relation, we are going to show that R is a strong

bisimulation. By contradiction we assume that R is not a strong bisimulation, then

there exists (s, r) ∈ R such that either i) L(s) 6= L(r), or ii) there exists a s −→ µ such

that there does not exist r −→P ν with µ R ν. In both cases, if we can find a formula ϕ

such that s |= ϕ but r 6|= ϕ or the other way around, then we can obtain a contradiction.

Case i) is easy and we only focus on ii) here. Suppose there exists a transition s −→ µ,

since C is not 2-step recurrent, there are three different cases to consider.

1. s⊥ i.e. s is an absorbing state. This case is trivial since all the derivations of s

will stay in the same equivalence class [s]R.

2. Suc(s) ≤ 2 i.e. there exists at most two equivalence 1classes C1, C2 ∈ S/R such

that µ(C1 ∪ C2) = 1, in the other words, µ(C1) = 1 − µ(C2). The reason to

consider this special case is that for each µ, if there exists µ1 and µ2 such that

µ1(C1) ≤ µ(C1) ≤ µ2(C1), then we can make sure that there exists w1, w2 such

that w1 + w2 = 1 and w1 · µ1(C1) + w2 · µ2(C1) = µ(C1), therefore

w1 · µ1(C2) + w2 · µ2(C2)

= w1 · (1− µ1(C1)) + w2 · (1− µ2(C1))

= w1 + w2 − (w1 · µ1(C1) + w2 · µ2(C1))

= 1− µ(C1) = µ(C2)

1The Sucs = 1 can be covered by taking C2 = ∅ in the proof.

179

5. CONTINUOUS-TIME MDP

thus (w1 · µ1 +w2 · µ2) = µ as we expect. This cannot be generalized to the case

where Suc(s) > 2.

Let ϕC be the master formula of an equivalence class C ∈ S/R such that Sat(ϕC) =

C. Since s ∼CSL r, and

s |= P≥1(X
[0,∞)(ϕC1 ∨ ϕC2))

obviously, thus

r |= P≥1(X
[0,∞)(ϕC1 ∨ ϕC2)),

that is, Suc(r) ⊆ C1 ∪ C2 which means r can only move to states in C1 ∪ C2

too. Secondly, we prove that there exists r −→ ν1 and r −→ ν2 such that ν1(C1) ≤

µ(C1) ≤ ν2(C1). Assume there does not exists r −→ ν2 such that ν2(C1) ≥ µ(C1),

in the other words, for all r −→ ν we have ν(C1) < µ(C1), so there exists q such

that

r |= P≤q(X
[0,∞) ϕC1) but 6|= P≤q(X

[0,∞) ϕC1)

which contradicts with the assumption that s ∼CSL r. Similarly, we can show

that there exists r −→ ν1 such that ν1(C1) ≤ µ(C1). Based on the discussion above,

we can guarantee that there always exists w1 and w2 such that w1 +w2 = 1 and

(w1 · ν1 + w2 · ν2) R µ.

3. We consider the – most involved – remaining case: Suc(s) > 2 and for all s′ ∈

Supp(µ), there exists t and s′ −→ µ′ such that µ′(t) > 0 where t is in a different

equivalence class from which s and the states in Supp(µ) belong to.

We prove by contraction. Assume that there does not exists r −→P ν such that

µ R ν. Note every combined transition of r can be seen as a combined transition

of two other combined transitions of r. We fix two arbitrarily fixed (combined)

transitions of r: r −→P ν1 and r −→P ν2, thus

∀0 ≤ w1, w2 ≤ 1.(w1 + w2 = 1 ∧ (µ,w1 · ν1 + w2 · ν2) /∈ R) (5.1)

Let Supp(µ) = {s1, s2, . . . , sn}. For simplicity we assume that s1, . . . , sn belong

to different equivalence classes. For 1 ≤ i ≤ n, define:

µ(si) = ai, ν1(si) = bi, and ν2(si) = ci .

Then there must exist 1 ≤ k 6= j ≤ n such that there does not exist 0 ≤ w1, w2 ≤ 1

with w1 + w2 = 1 such that

w1 · bk + w2 · ck = ak and w1 · bj + w2 · cj = aj ,

180

5.4 Bisimulations for CTMDPs

otherwise (µ, (w1ν1 + w2ν2)) ∈ R which contradicts Eq. 5.1. The idea now is

then to construct a formula ϕ which is satisfied by s but not r, depending on

the relation between ak, aj and bk, ck, bj , cj . There are nine possible cases in total

depending on whether ak ∈ [bk, ck] and/or aj ∈ [bj , cj]. Most of the cases are

trivial except when ak ∈ [bk, ck] and aj ∈ [cj , bj] with ck ≥ bk and bj ≥ cj .
1 The

formula for this case is given by:

ϕ = (r ∨ s ∨ sk)U
[a,b](sj ∨ s

′
k)

where s′k is the successor of sk not equivalent to s and the states in Supp(µ),

and the names of states are used as the abbreviations of the state formulas char-

acterizing the equivalence classes where they are located. Suppose there exists

sk −→ µk with µk(s
′
k) = ρ, and define:

ρ1 = ρ · (a · e−a + e−a − b · e−b − e−b)

ρ2 = e−a − e−b

then

• the probability of s satisfying ϕ by choosing transitions s −→ µ and sk −→ µk

is equal to

p(s, µ) := aj · ρ2 + ak · ρ1

• the probability of r satisfying ϕ by choosing the combined transition of

r −→ ν1 and r −→ ν1 and sk −→ µk is either

p(r, ν1) := bj · ρ2 + bk · ρ1

or

p(r, ν2) = cj · ρ2 + ck · ρ1.

Now it is sufficient to prove that we can find 0 ≤ a ≤ b such that p(s, µ) > p(r, ν1)

and p(s, µ) > p(r, ν2). We claim 2 that it is the case once we can guarantee

ρ1
ρ2

∈ (
bj − aj
ak − bk

,
aj − cj
ck − ak

),

which can be seen as follows:
1For instance if ak > bk, ck, s will evolve into sk with higher probability than r, so ϕ is easy to

give.
2By solving two equations:ak · ρ1 + aj · ρ2 > bk · ρ1 + bj · ρ2, and ak · ρ1 + aj · ρ2 > ck · ρ1 + cj · ρ2,

such ρ1 and ρ2 always exists due to that there does not exists w1, w2 such that w1 · bk + w2 · ck = ak

and w1 · bj + w2 · cj = aj .

181

5. CONTINUOUS-TIME MDP

• Let b = ∞, then ρ1
ρ2

= ρ · (a + 1) and it is easy to see that there exists a, b

such that ρ1
ρ2

∈ [ρ,∞).

• On the other hand let a = 0, then

ρ1 = ρ · (1− e−b − b · e−b)

and ρ2 = 1− e−b, so
ρ1
ρ2

= ρ · (1−
b · e−b

1− e−b
),

note here that b·e−b

1−e−b ∈ (0, 1) since b·e−b

1−e−b can be arbitrary close to 1 when

b is close to 0, and on the other hand, b·e−b

1−e−b is arbitrary close to 0 as b

increases. As a result ρ1
ρ2

∈ (0, ρ).

• it is not possible for
bj − aj
ak − bk

=
aj − cj
ck − ak

,

otherwise there exists 0 ≤ w1, w2 ≤ 1 such that

w1 · bk + w2 · ck = ak and w1 · bj + w2 · cj = aj

with w1 + w2 = 1.

Thus there always exists 0 ≤ a ≤ b such that s will satisfy ϕ with higher proba-

bility than r for some a, b, therefore s ≁CSL r, and we have a contradiction. All

the other cases are similar and omitted here.

In the proof we only need to use unbounded until, ∧ (to construct the master

formula of each equivalence class), and ∨. Thus, the following sub-logic is sufficient to

characterize weak bisimulation for CTMDPs which are not 2-step recurrent:

ϕ ::= a | ϕ ∧ ϕ | ϕ ∨ ϕ | P⊲⊳p(ψ)

ψ ::= ϕU
I ϕ

Below we show that, as for strong bisimulations, the weak bisimulation relation is

a congruence w.r.t. the parallel operator we introduced in Section 5.3. Moreover, for

CTMDPs which are not 2-step recurrent, ∼CSL\X
is a congruence as well.

Theorem 39. 1. s ≈ r implies that s ‖ t ≈ r ‖ t for any t.

182

5.4 Bisimulations for CTMDPs

s0

s1

s2
s3

s1

s2
s3

r0

r1

r2

r3

r1 r2
r3

r1

r2

r3

0.3

0.3
0.4

0.5

0.4
0.1

0.3

0.3

0.4

0.4 0.3 0.3

0.5

0.4

0.1

Figure 5.2: Counter example of strong probabilistic bisimulation.

2. if C is not 2-step recurrent, s ∼CSL\X
r implies that s ‖ t ∼CSL\X

r ‖ t for any

t.

Proof. We prove Clause 1 first. Since s ≈ r, by Definition 46 s̄ ∼ r̄. According to

Theorem 37 s̄ ‖ t̄ ∼ r̄ ‖ t̄ for any t. It is easy to check that s̄ ‖ t̄ = s ‖ t, as a result

s ‖ t ∼ r ‖ t which implies that s ‖ t ≈ r ‖ t for any t.

The proof of Clause 2 is straightforward based on Clause 1.

General CTMDPs. The following example explains the necessity to consider CTMDPs

without 2-step recurrent states in Theorem 38. It is shown that when 2-step recurrent

states are involved, ∼CSL\X
⊆ ≈ does not always hold.

Example 47. Suppose we are given two states s0 and r0 of a CTMDP depicted in

Fig. 5.2.

First assume si and ri are absorbing states for each 1 ≤ i ≤ 3. In this case, it is

easy to check that s0 and r0 are 2-step recurrent states where all the states have different

183

5. CONTINUOUS-TIME MDP

atomic propositions except L(si) = L(ri) for each 0 ≤ i ≤ 3. 1 Then there does not

exist a CSL formula which can distinguish them, as a result they are CSL equivalent.

On the other hand, s0 and r0 are not bisimilar, as for the middle transition of r0, s0

has no way to simulate it even with combined transition.

Now suppose that s2 and r2 are not absorbing, for instance they can evolve into s0

and r0 with probability 1 respectively, then still they are CSL equivalent. But interest-

ingly, if the non-absorbing states are s3 and r3 instead but with the same transitions,

then s0 ≁CSL r0. Considering the formula

ψ = (L(s0) ∨ L(s3))U
[0,∞) L(s1),

the maximum probability of the paths of s0 satisfying ψ is 5
9 while this probability in r0

is 4
7 >

5
9 , thus s0 |= P≤ 5

9
ψ but r0 6|= P≤ 5

9
ψ. Note that even we let s2 and s3 have such

transition, s0 and r0 are still 2-step recurrent by Definition 47.

The key idea behind the difference illustrated in Example 47 is that the bisimulation

relation only takes one step into consideration. This restriction might be the best one

can hope for the completeness results.

5.4.3 Determining 2-step Recurrent CTMDPs

In Theorem 38, the completeness holds only for CTMDPs which are not 2-step recurrent.

This section discusses a simple procedure for checking it. The following lemma holds

by applying the definition directly:

Lemma 29. Given two equivalence relations R and R′ over S such that R ⊆ R′, then

if C is 2-step recurrent w.r.t. R, then it is 2-step recurrent w.r.t. R′, or equivalently if

C is not 2-step recurrent w.r.t. R′, then it is not 2-step recurrent w.r.t. R.

Proof. Straightforward from Definition 47 and the fact the [s]R ⊆ [s]R′ provided that

R ⊆ R′.

Lemma 29 suggests a simple way to check whether a given CTMDP C is 2-step

recurrent w.r.t. ∼CSL\X
. We know that

∼ ⊂ ≈ ⊆ ∼CSL\X
⊆ R,

where

R = {(s, r) | L(s) = L(r)}.

1Assume that R = {(s, r) | L(s) = L(r)}, and same for the following examples.

184

5.5 Characterization of CSL in General CTMDPs

By Lemma 29, we can first check whether C is 2-step recurrent w.r.t. R, if it is not,

we know that C is not 2-step recurrent either w.r.t. ∼CSL\X
. Otherwise we continue to

check whether C is 2-step recurrent w.r.t. ∼ or ≈, if the answer is yes, then C is 2-step

recurrent too w.r.t. ∼CSL\X
. Both ∼ and ≈ can be computed in polynomial time, see

(106) for detail.

In the remaining cases, namely when C is 2-step recurrent w.r.t. ≈, but not w.r.t.

R, we cannot conclude anything, thus the relation ∼CSL\X
shall be computed first for

this purpose. The decision algorithm for ∼CSL\X
falls, however, out of the scope of this

dissertation.

5.5 Characterization of CSL in General CTMDPs

In (99) we have defined a sequence of strong bisimulations to characterize probabilistic

CTL (PCTL) as well as its sub-logics. Following that approach, in this section we show

that such strong bisimulations can be used to characterize CSL and its sub-logics as

well, for general CTMDPs.

5.5.1 Strong i-depth Bisimulation

For the interval I = [a, b], define I ⊖ x = [a− x, b− x] if a ≥ x, and I ⊖ x = [0, b− x] if

a < x ≤ b. First, we define the notation Probπ,s(C,C
′, n, I, ω), denoting the probability

of reaching C ′, from state s, via only states in C within time in the interval I ⊆ [0,∞)

and in at most n steps under scheduler π, where ω is used to keep track of the path.

Formally, p = Probπ,s(C,C
′, n, [a, b], ω) is defined as follows:

1. if (n = 0) ∧ (a = 0) ∧ (s ∈ C ′), p is equal to 1

2. else if (s ∈ C ∧ s /∈ C ′) ∧ (n > 0), p is equal to

∑

(λ,µ)∈Steps(ω↓)

π(ω, λ, µ) ·
(∫ b

0
λ · e−λx ·

∑

s′∈Supp(µ)

µ(s′)

· Probπ,s′(C,C
′, n− 1, [a, b] ⊖ x, ωa(x, s′))dx

)
,

185

5. CONTINUOUS-TIME MDP

3. else if (s ∈ C ∩C ′) ∧ (n > 0), p is equal to

∑

(λ,µ)∈Steps(ω↓)

π(ω, λ, µ) ·
(
e−λa +

∫ a

0
λ · e−λx ·

∑

s′∈Supp(µ)

µ(s′)

· Probπ,s′(C,C
′, n− 1, [a, b] ⊖ x, ωa(x, s′))dx

)
,

4. otherwise p is equal to 0.

The above definition has the same flavor as the definitions in (37, 102) – extended

with bounds on the discrete steps. The first clause is trivial. For the second clause,

s ∈ C∧s 6∈ C ′ and we have still steps n > 0. The term π(ω, λ, µ) denotes the probability

that the pair (λ, µ) is chosen by the scheduler π under consideration. Further, λ · e−λx

is the density of leaving s at time x. Once s is left, the successor s′ is taken with

probability µ(s′), from which we have n − 1 steps and [a, b] ⊖ x time left. The path is

then augmented with the pair (x, s′). For the third clause with (s ∈ C ∩C ′) ∧ (n > 0),

either we stay in state s more than a time units with probability
∫ ∞

a
λ · e−λxdx = e−λa,

otherwise we should continue, and the argument is the same as the previous case. For

all the other cases, it is obvious that the result equals 0. Below follows the definition

of strong i-depth bisimulation where s ∼0 r iff L(s) = L(r):

Definition 48 (Strong i-depth Bisimulation). A relation R ⊆ S×S is a strong i-depth

bisimulation with i > 0 if s R r implies s ∼i−1 r and for any R downward closed sets

C,C ′ and I,

1. for each scheduler π, there exists a scheduler π′ such that

Probπ′,r(C,C
′, i, I, r) ≤ Probπ,s(C,C

′, i, I, s),

2. for each scheduler π, there exists a scheduler π′ such that

Probπ′,s(C,C
′, i, I, s) ≤ Probπ,r(C,C

′, i, I, r).

We write s ∼i r whenever there is a strong i-depth bisimulation R such that s R r.

It is not hard to show that ∼i is an equivalence relation.

Lemma 30. ∼i is an equivalence relation for all i ≥ 0.

186

5.5 Characterization of CSL in General CTMDPs

Proof. The reflexivity and symmetry are easy to show, we only prove the transitivity

here. Suppose that s ∼i t and t ∼i r, we should prove that s ∼i r. By Definition 48

there exists two strong i-depth bisimulation R1 and R2 such that s R1 t and t R2 r.

Let

R = R1 ◦ R2 = {(s1, s3) | ∃s2.(s1 R1 s2 ∧ s2 R2 r)},

it is enough to show that R is a strong i-depth bisimulation. Note R1 ∪R2 ⊆ R, since

for each s1 R1 s2 we also have s2 R2 s2 due to reflexivity, thus s1 R s2, similarly we can

show that R2 ⊆ R. Therefore for any R downward closed sets C and C ′, they are also

R1 and R2 downward closed. As a result for each I and π, there exists π′ such that

Probπ′,t(C,C
′, i, I, t) ≤ Probπ,s(C,C

′, i, I, s)

since s ∼i t. Furthermore, since t ∼i r there exists π′′ such that

Probπ′′,r(C,C
′, i, I, r) ≤ Probπ′,t(C,C

′, i, I, t).

This completes the proof.

Similarly we can show that ∼i is both sound and complete for ∼
CSL

−
i
, and also

in an arbitrary CTMDP there exists a n such that ∼n = ∼CSL, therefore we have the

following theorem.

Theorem 40. 1. ∼i = ∼
CSL

−
i
.

2. There exists n such that ∼n = ∼
CSL

− = ∼CSL.

3. ∼i with i ≥ 1 is not in general a congruence (w.r.t. the operator ‖ in Defini-

tion 44).

Proof. Let

Sat(ϕ) = {s ∈ S | s |= ϕ}

denote the set of states satisfying ϕ, and

Sat(ψ) = {ω ∈ Paths∞ | ω |= ψ}

denote the set of paths satisfying ψ. We prove that ∼
CSL

−
i
⊆ ∼i first. Let

R = {(s, r) | s ∼
CSL

−
i
r},

it is enough to show that R is a strong i-depth bisimulation. It is a standard technique

to construct a state formula ϕC such that Sat(ϕC) = C where C is R downward closed.

187

5. CONTINUOUS-TIME MDP

Suppose that there exists π,C,C ′ and I such that there does not exist a scheduler π′

with

Probπ′,r(C,C
′, i, I, r) ≤ Probπ,s(C,C

′, i, I, s)

where C,C ′ are R downward closed sets, and I ⊆ [0,∞) is an interval. In other words

Probπ′,r(C,C
′, i, I, r) > Probπ,s(C,C

′, i, I, s)

for any π′. Let Prπ,s(ϕ1 U
I
i ϕ2) denote the probability of the paths of s satisfying

ϕ1 U
I
i ϕ2 guarded by the scheduler π, it is not hard to see that

Prπ,s(ϕC U
I
i ϕC′) = Probπ,s(C,C

′, i, I, s).

As a result there exists q such that

r |= P≥q(ϕC U
I
i ϕC′) but s 6|= P≥q(ϕC U

I
i ϕC′)

which contradicts with our assumption, therefore there does exist π′ such that

Probπ′,r(C,C
′, i, I, r) ≤ Probπ,s(C,C

′, i, I, s),

thus s R r.

In order to prove that ∼i ⊆ ∼
CSL

−
i
, we need to show that for all states s and r,

s |= ϕ implies r |= ϕ and vice versa whenever s ∼i r, where ϕ is any state formula of

CSL
−
i . We only consider formula P≤q(ψ) here since all the others are trivial. Suppose

ψ = X
I ϕ where I = [a, b]. We show that the next operator can be encoded by bounded

until. First consider the case when s /∈ Sat(ϕ), then Prπ,s(X
I ϕ) = Prπ,s(ϕs U

I
1 ϕ) for

any scheduler π. Suppose that s ∈ Sat(ϕ). Since

Prπ,s(X
I ϕ) =

∑

(λ,µ)∈Supp(π(s))

π(s)(λ, µ) · (e−λa − e−λb)− Prπ,s(X
I ¬ϕ),

so we can use the above result to encode Prπ,s(X
I ¬ϕ) as well. As a result we only

need to consider the case when ψ = ϕ1 U
I
i ϕ2. Suppose that s |= P≥q(ψ), that is,

∀π.Prπ,s(ϕ1 U
I
i ϕ2) ≥ q. Since

Prπ,s(ϕ1 U
I
i ϕ2) = Probπ,s(Sat(ϕ1),Sat(ϕ2), i, I, s)

for any scheduler π, then we have

∀π.Probπ,s(Sat(ϕ1),Sat(ϕ2), i, I, s) ≥ q.

188

5.5 Characterization of CSL in General CTMDPs

Again we prove by contradiction, assume that r 6|= P≥qψ, then there exists π′ such that

Probπ′,r(Sat(ϕ1),Sat(ϕ2), i, I, r) < q,

since s ∼i r, then there should exist π such that

Probπ,s(Sat(ϕ1),Sat(ϕ2), i, I, s) ≤ Probπ′,r(Sat(ϕ1),Sat (ϕ2), i, I, r) < q,

this contradicts with the fact that s |= P≥qψ, so r |= P≥qψ, this completes our proof.

The proof of Clause 2 is trivial since there are at most n equivalence classes where

n is the number of states in a CTMDP, thus ∼n = ∼
CSL

− = ∼CSL.

For the counterexample of the last clause please refer to Example 51.

The following example illustrates that ∼i is both sound and complete for ∼
CSL

−
i

even for general CTMDPs.

Example 48. Refer to s0 and r0 in Example 47. If sj and rj are absorbing states

with 1 ≤ j ≤ 3, then it can be proved that s0 ∼i r0, thus s0 ∼
CSL

−
i

r0 for any

i ≥ 0. Similarly for the case when s2 and r2 are not absorbing but can evolve into s0

and r0 with probability 1 respectively. Suppose now the non-absorbing states are s3 and

r3 with same transitions, then we show that there exists n such that s0 ≁n r0. Let

C = {s0, s3, r0, r3}, C
′ = {s1, r1}, and I = [0,∞), then it is easy to see that

Probπl,s0(C,C
′, 2n+ 1, I, s0) = 0.3 ·

n∑

i=0

0.4i

where πl always chooses the left transition when at s0. Similarly

Probπr,s0(C,C
′, 2n + 1, I, s0) = 0.5 ·

n∑

i=0

0.1i

where πr always chooses the right transition when at s0. Given a πm which always

chooses the middle transition of r0 when at r0, then

Probπm,r0(C,C
′, 2n + 1, I, r0) = 0.4 ·

n∑

i=0

0.3i.

Observe that

lim
n→∞

Probπm,r0(C,C
′, 2n+ 1, I, r0) =

4

7

which is greater than

lim
n→∞

Probπl,s0(C,C
′, 2n + 1, I, s0) =

1

2

189

5. CONTINUOUS-TIME MDP

and

lim
n→∞

Probπr,s0(C,C
′, 2n + 1, I, s0) =

5

9
,

thus there must exists n such that it holds

Probπm,r0(C,C
′, n, I, r0) > Probπl,s0(C,C

′, n, I, s0)

and

Probπm,r0(C,C
′, n, I, r0) > Probπr,s0(C,C

′, n, I, s0),

thus s0 ≁n r0.

Recall that CSL\Un
denotes the sub-logic of CSL without bounded until. The fol-

lowing lemma shows that the intersection of ∼ and ∼1 is sound and complete for this

sub-logic:

Lemma 31. If C is not 2-step recurrent, we have

1. ≈ ∩ ∼1 = ∼CSL\Un
,

2. ∼CSL\Un
is not in general a congruence.

Proof. By Theorem 38 ≈ = ∼CSL\X
in a CTMDP without 2-step recurrent states, and

moreover by Theorem 40 ∼1 = ∼
CSL

−
1
. Let CSL−0 denote the sub-logic of CSL without

(bounded and unbounded) until operator. We are going to show that CSL−0 = CSL
−
1 .

The proof of ∼
CSL

−
1

⊆ ∼
CSL

−
0

is trivial. We show that ∼
CSL

−
0

⊆ ∼
CSL

−
1
. The only

case we need to consider is ϕ = P≤q(ϕ1 U
I
1 ϕ2). We prove by structural induction on

ϕ. Suppose that s |= ϕ and s |= ϕ1 ∧ ¬ϕ2, if we choose transition s
λ
−→ µ, then the

probability of the paths of s satisfying ϕ1 U
I
1 ϕ2 is equal to

µ(Sat(ϕ2)) · (e
−λa − e−λb)

where I = [a, b], note the probability of the paths of s satisfying X
I ϕ2 is also equal to

µ(Sat(ϕ2)) · (e
−λa − e−λb),

in other words, if s |= ϕ1 ∧¬ϕ2, then s |= ϕ iff s |= P≤q(X
I ϕ2). Since s ∼

CSL
−
0
r, then

r |= P≤q(X
I ϕ2), by induction r |= ϕ1 ∧ ¬ϕ2, thus r |= ϕ. The other cases are similar

and omitted here. Therefore ≈ ∩ ∼1 is both sound and complete for ∼CSL\Un
.

Since ∼1 is not congruent, the first clause implies clause 2 directly.

The example below shows that Lemma 31 does not hold in CTMDPs with 2-step

recurrent states:

190

5.5 Characterization of CSL in General CTMDPs

Example 49. Again considering s0 and r0 in Example 47, if si and ri are absorbing

states for 1 ≤ i ≤ 3, then both s0 and r0 are 2-step recurrent states by Definition 47.

As we said before s0 ∼CSL r0, thus s0 ∼CSL\Un
r0, but s0 6≈ r0.

5.5.2 Weak i-depth Bisimulation

Following the idea of defining weak bisimulations in Section 5.4.2, in this section, we

introduce weak i-depth bisimulations.

Definition 49 (Weak i-depth Bisimulation). We say that states s and r are weak i-

depth bisimilar, denoted by s ≈i r, whenever s̄ ∼i r̄ in the uniformized CTMDP

C̄.

Due to that CSL\X satisfaction is preserved after uniformization, we have the fol-

lowing characterization results for CSL\X in arbitrary CTMDP.

Theorem 41. 1. There exists n such that ≈n = ∼CSL\X
.

2. ≈1 is congruent, and ≈i with i > 1 is not in general a congruence.

Proof. The proof of the first clause is based on Theorem 40. We first shows that s ≈ r

implies that s ∼CSL\X
r i.e. ≈ ⊆ ∼CSL\X

. Since s ≈ r, then s̄ ∼ r̄, thus s̄ ∼CSL\X
r̄ by

Theorem 40. Since uniformization does not change the satisfaction of CSL\X, therefore

s ∼CSL\X
r. To show that ∼CSL\X

⊆ ≈, we prove that s ∼CSL\X
r implies that s ≈ r.

It is easy to see that ∼CSL\X
= ∼CSL in a uniformized CTMDP, thus s ∼CSL\X

r implies

that s̄ ∼CSL r̄. By Theorem 40 s̄ ∼ r̄, therefore s ≈ r.

We prove that ≈1 is congruent. By Definition 49, s ≈1 r iff s̄ ∼1 r̄, so we only

need to show that ∼1 is congruent in uniformized CTMDPs. It is enough to show that

R = {(s ‖ t, r ‖ t) | s ∼1 r}

is a strong 1-step bisimulation. Note that in a uniformized CTMDP s ∼1 r iff for each

∼1-closed set and s −→ µ, there exists r −→ ν such that ν(C) ≤ µ(C) and vice versa.

Suppose that s ‖ t −→ µ, by Definition 44, there exists s −→ µs and t −→ µt such that

µ =
1

2
· (µs ‖ δt) +

1

2
· (δs ‖ µt),

the following proof is straightforward.

We have seen that ∼CSL\X
is a congruence in CTMDPs that are not 2-step recurrent.

Since ≈i with i > 1 are not congruent in general, it follows that ∼CSL\X
is also not

congruent in general.

191

5. CONTINUOUS-TIME MDP

5.6 Simulations

In this section we introduce (weak) simulations, and i-depth (weak) simulations. Fur-

ther, we extend the characterization results to these simulation relations.

5.6.1 Strong and Weak Simulations

We extend the strong (weak) bisimulations to strong (weak) simulations for CTMDPs,

respectively:

Definition 50 (Simulation). Let R ⊆ S × S, R is a strong simulation if s R r implies

that for each s −→ µ, there exists r −→P µ
′ such that µ ⊑R µ′.

We write s ≺ r whenever there exists a strong simulation R such that s R r.

We say that s is weak simulated by r, denoted by s w r, whenever s̄ ≺ r̄ in the

uniformized CTMDP C̄.

The relation ≺ is then a preorder. To characterize ≺, we use the safe fragment of

CSL (54), denoted as CSLs, which is defined by the following BNFs:

ϕ ::=a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | P≥p(ψ)

ψ ::=X
I ϕ | ϕU

I
n ϕ | ϕU

I ϕ

As usual, CSLs\X is obtained from CSLs by removing the next operator. Below we

present the logical characterization results for strong and weak simulations with respect

to CSLs and CSLs\X, and their relationship:

Theorem 42. 1. ≺ ⊆ ≺CSLs .

2. if C is uniformized and not 2-step recurrent, ≺CSLs = ≺.

3. w ⊆ ≺CSLs\X
.

4. if C is not 2-step recurrent, ≺CSLs\X
= w.

Proof. In order to show that ≺CSLs ⊆ ≺ when C is not 2-step recurrent, it is sufficient

to show that

R = {(s, r) | s ≺CSLs r}

is a strong simulation. Suppose that s R r and s −→P µ, we need to show that there

exists r −→P ν such that µ ⊑R ν. Similar with the proof of Theorem 38, if there does

not exist r −→P ν such that µ ⊑R ν, then a path formula ψ and π can be found such

192

5.6 Simulations

that Pr r,π′(ψ) > Prs,π(ψ) for all π
′. Therefore there exists q such that r |= P≥qψ but

s 6|= P≥qψ, which contradicts our assumption that s ≺CSLs r.

Now suppose that s ≺ r, we are going to show that s ≺CSLs r, that is, r |= ϕ

implies s |= ϕ for any ϕ of CSLs by structural induction on ϕ. First we show for each

π of s, two ≺ downward closed sets C,C ′, and I = [a, b], there exists π′ of r such that

Probπ′,r(C,C
′, I, r) ≤ Probπ,s(C,C

′, I, s).

Since C and C ′ are ≺ downward closed, there exists ϕC and ϕC′ such that Sat(ϕC) = C

and Sat(ϕC′) = C ′. There are several cases we need to consider.

1. s |= ϕC and s 6|= ϕC′ .

Then

Probπ,s(C,C
′, I, s) =

∑

(λ,µ′)∈Supp(π(s))

π(s)(λ, µ′)

·

∫ b

0
λ · e−λx ·

∑

t∈Supp(µ′)

µ′(t) · Probπ,t(C,C
′, I ⊖ x, sa(x, t))dx,

thus there exists s −→P µ such that

Probπ,s(C,C
′, I, s)

=

∫ b

0
λ · e−λx ·

∑

t∈Supp(µ)

µ(t) · Probπ,t(C,C
′, I ⊖ x, sa(x, t))dx.

By induction if s |= ϕC and s 6|= ϕC′ , then r 6|= ϕC′ and either r |= ϕC or r 6|= ϕC ,

the case when r 6|= ϕC is trivial, since Probπ′,r(C,C
′, I, r) = 0 for all π′. Suppose

that r |= ϕC and r 6|= ϕC , since s ≺ r, there exists r −→P ν such that µ ⊑≺ ν, in

other words, ν(C) ≤ µ(C) for each ≺ downward closed set C, hence there exists

π′ such that

∫ b

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

≤

∫ b

0
λ · e−λx ·

∑

t∈Supp(µ)

µ(t) · Probπ,t(C,C
′, I ⊖ x, sa(x, t))dx

by induction. By definition there exists {νi}1≤i≤n and {pi}1≤i≤n such that
∑

1≤i≤n pi = 1 and
∑

1≤i≤n pi · νi = ν. Let π′ choose transition (λ, νi) with

193

5. CONTINUOUS-TIME MDP

probability pi at state r, then it is not hard to see that

∫ b

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

=
∑

(λ,ν′)∈Supp(π′(r))

π′(r)(λ, ν ′)

·



∫ b

0
λ · e−λx ·

∑

t∈Supp(ν′)

ν ′(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx


 ,

thus there exists π′ such that Probπ′,r(C,C
′, I, r) ≤ Probπ,s(C,C

′, I, s).

2. s |= ϕC and s |= ϕC′ .
Then

Probπ,s(C,C′, I, s) = e−λa +
∑

(λ,µ′)∈Supp(π(s))

π(s)(λ, µ′)

·




∫ a

0
λ · e−λx ·

∑

t∈Supp(µ′)

µ′(t) · Probπ,t(C,C′, I ⊖ x, sa(x, t))dx



 ,

and there exists s −→P µ such that

Probπ,s(C,C
′, I, s) = e−λa

+

∫ a

0
λ · e−λx ·

∑

t∈Supp(µ)

µ(t) · Probπ,t(C,C
′, I ⊖ x, sa(x, t))dx.

By induction there are four cases: either

• r |= ϕC and r |= ϕC′ , or

• r 6|= ϕC and r |= ϕC′ , or

• r |= ϕC and r 6|= ϕC′ , or

• r 6|= ϕC and r 6|= ϕC′ .

The first case is similar with Clause 1, and is omitted here. If r 6|= ϕC and

r |= ϕC′ , then

Probπ,s(C,C
′, I, s) = Probπ′,r(C,C

′, I, r) = 1

if a = 0, otherwise Probπ′,r(C,C
′, I, r) = 0, thus such π′ always exists. When

194

5.6 Simulations

r |= ϕC and r 6|= ϕC′ , there exists r −→P ν such that

∫ b

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

=

∫ a

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

+

∫ b

a
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

≤

∫ b

a
λ · e−λxdx+

∫ a

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

≤

∫ ∞

a
λ · e−λxdx+

∫ a

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

=e−λa +

∫ a

0
λ · e−λx ·

∑

t∈Supp(ν)

ν(t) · Probπ′,t(C,C
′, I ⊖ x, ra(x, t))dx

≤e−λa +

∫ a

0
λ · e−λx ·

∑

t∈Supp(µ)

µ(t) · Probπ,t(C,C
′, I ⊖ x, sa(x, t))dx

Let π′ be a scheduler which chooses transition (λ, νi) with probability pi, then

Probπ′,r(C,C
′, I, r) ≤ Probπ,s(C,C

′, I, s).

The last case is trivial since Probπ,r(C,C
′, I, r) = 0 for all π.

3. The other cases are trivial.

In all cases we have proved that for each π, C, C ′, and I, there always exists π′

such that

Probπ′,r(C,C
′, I, r) ≤ Probπ,s(C,C

′, I, s).

Suppose that r |= P≥q(ϕ1 U
I ϕ2), that is,

Probπ′,r(Sat(ϕ1),Sat(ϕ2), I, r) ≥ q

for all π′. If s 6|= P≥q(ϕ1 U
I ϕ2) which means there exists π such that

Probπ,s(Sat(ϕ1),Sat(ϕ2), I, s) < q,

then there does not exist π′ such that

Probπ′,r(Sat(ϕ1),Sat(ϕ2), I, r) ≤ Probπ,s(Sat(ϕ1),Sat (ϕ2), I, s)

195

5. CONTINUOUS-TIME MDP

which contradicts the assumption that s ≺ r, hence s |= P≥q(ϕ1 U
I ϕ2).

Since uniformization does not change the satisfaction of CSL\X, thus the proof of

Clause 3) and 4) is straightforward according to Definition 50.

Example 47 can applies here as well showing that Theorem 42 does not hold in

general CTMDPs. Let R−1 denote the reverse of the relation R. The following theorem

shows the compositional properties and their relation to bisimulations:

Theorem 43. 1. s ≺ r implies that s ‖ t ≺ r ‖ t for any t.

2. s w r implies that s ‖ t w r ‖ t for any t.

3. If C is uniformized, ≺ = w, and ≺CSLs = ≺CSLs\X
.

4. If C is not 2-step recurrent, s ≺CSLs\X
r implies that s ‖ t ≺CSLs\X

r ‖ t for any

t.

5. ∼ ⊂ (≺ ∩ ≺−1).

6. ≈ ⊂ (w ∩ w −1).

Proof. 1. Let

R = {(s ‖ t, r ‖ t) | s ≺ r},

it is enough to show that R is a strong simulation. Suppose that (s ‖ t) R (r ‖ t),

and s ‖ t
λ
−→ µ. By Definition 44 there exists s

λ1−→ µ1 and t
λ2−→ ν such that

λ = λ1 + λ2,

µ =
λ1
λ

· (µ1 ‖ δt) +
λ2
λ

· (δs ‖ ν).

Since s ≺ r, there exists r
λ1−→P µ

′
1 such that µ1 ⊑R µ′1, thus

(µ1 ‖ δt) ⊑R (µ′1 ‖ δt) and (δs ‖ ν) ⊑R (δr ‖ ν)

by induction. As a result there exists

r ‖ t
λ
−→P µ

′ ≡
λ1
λ

· (µ′1 ‖ δt) +
λ2
λ

· (δr ‖ ν),

so µ ⊑R µ′ which completes the proof.

2. Suppose that s w r, then according to Definition 50, s̄ ≺ r̄. Due to Theorem 37,

we have s̄ ‖ t̄ ≺ r̄ ‖ t̄. As a result s ‖ t ≺ r ‖ t, therefore s ‖ t w r ‖ t.

196

5.6 Simulations

3. The proof is ≺ = w is directly from Definition 50. Since uniformization preserves

CSLs\X, thus CSLs = CSLs\X in a uniformized CTMDP.

4. The proof is straightforward based on Clause 2) and Theorem 42.

5. The proof of ∼ ⊆ (≺ ∩ ≺−1) is trivial and omitted here. To show that (≺ ∩ ≺−1)

is strictly coarser than ∼, it is enough to give a counterexample. Suppose we have

three states s1, s2, and s3 such that s1 ≺ s2 ≺ s3 but s3 6≺ s2 6≺ s1. Let s

and r be two states such that L(s) = L(r). In addition s has three transitions:

s
1
−→ δs1 , s

1
−→ δs2 , s

1
−→ δs3 , and r only has two transitions: s

1
−→ δs1 , s

1
−→ δs3 . Then

it should be easy to check that s ≺ r and r ≺ s, the only non-trivial case is

when s
1
−→ δs2 . Since s2 ≺ s3, thus there exists r

1
−→ δs3 such that δs2 ⊑≺ δs3 .

But obviously s 6∼ r, since the transition s
1
−→ δs2 cannot be simulated by any

transition of r.

6. The counterexample adopted in the proof of Clause 3) in Theorem 43 also applies

here, thus the proof is similar and omitted.

5.6.2 Strong and Weak i-depth Simulations

In this section we introduce the one side strong and weak i-depth bisimulations. Below

follows their definitions where s ≺0 r iff L(s) = L(r):

Definition 51 (i-depth Simulations). A relation R ⊆ S×S is a strong i-depth simula-

tion with i > 0 if s R r implies s ≺i−1 r and for any R downward closed sets C,C ′, I

and π, there exists a scheduler π′ such that

Probπ′,r(C,C
′, i, I, r) ≤ Probπ,s(C,C

′, i, I, s).

We write s ≺i r whenever there is a strong i-depth simulation R such that s R r.

We say that s is weak simulated by r, denoted by s wi r, whenever s̄ ≺i r̄ in the

uniformed CTMDP C̄.

The following theorem shows the properties of ≺i and wi, especially there exists n

such that ≺n and wn are enough to characterize CSLs and CSLs\X respectively.

Theorem 44. 1. ≺i is preorder, and ≺i = ≺
CSL

−
si
.

2. There exists n such that

≺n = ≺
CSL

−
s
= ≺CSLs

and wn = ≺CSLs\X
in any CTMDP.

197

5. CONTINUOUS-TIME MDP

3. ≺i with i ≥ 1 and wi with i > 1 are not congruences while w1 is a congruence.

Proof. We first show that ≺i is a preorder. The reflexivity is trivial and we only show

the proof of transitivity. Suppose that s ≺i t and t ≺i r, we need to prove that

s ≺i r. By Definition 51 there exists two strong i-depth simulation such that s R1 t

and t R2 r. Let

R = R1 ◦ R2 = {(s1, s3) | ∃s2.(s1 ≺i s2 ∧ s2 ≺i s3)},

it is enough to show that R is a strong i-depth simulation. Similar with the proof of

Lemma 30 it can be shown that R1 ∪ R2 ⊆ R, thus for each R downward closed set

C, it is also R1 and R2 downward closed. The following proof is straightforward, and

is omitted here.

To prove that ∼
CSL

−
si
⊆ ≺i, it is enough to show that

R = {(s, r) | s ∼
CSL

−
si
r}

is a strong i-depth simulation. By definition given a R downward closed set C, there

exists ϕC such that Sat(ϕC) = C. Suppose that s R r and for two R downward closed

sets C,C ′ and I ⊆ [0,∞), there exists π such that

Probπ′,r(C,C
′, i, I, r) > Probπ,s(C,C

′, i, I, s)

for any π′. Since

Prπ,s(ψ) = Probπ,s(C,C
′, i, I, s)

where ψ = ϕC U
I
i ϕC′ , thus there exists q such that r |= P≥qψ but s 6|= P≥qψ which

contradicts with the assumption that s ∼
CSL

−
si
r, so there must exist π′ such that

Probπ′,r(C,C
′, i, I, r) ≤ Probπ,s(C,C

′, i, I, s).

To show that ≺i ⊆ ∼
CSL

−
si
, we need to prove that if s ≺i r, then r |= ϕ implies

s |= ϕ for any ϕ of CSL−si. We only consider the case when ϕ = P≥q(ϕ1 U
I
i ϕ2) since all

the other operators are either similar or trivial. Suppose that r |= ϕ, in other words,

Prπ,s(ϕ) ≥ q for any scheduler π. Let

C = {s ∈ S | s |= ϕ1}

and

C ′ = {s ∈ S | s |= ϕ2},

198

5.6 Simulations

it is obvious that C and C ′ are ≺i downward closed by induction. Then

Probπ,r(C,C
′, i, I, r) ≥ q

for any scheduler π. Assume that s 6|= ϕ, that is, there exists π′ such that

Probπ′,s(C,C
′, i, I, s) < q.

By definition of ≺i, there should exist π such that

Probπ,r(C,C
′, i, I, r) ≤ Probπ′,s(C,C

′, i, I, s) < q

which contradicts with the fact that r |= ϕ, thus s |= ϕ.

Since in a finite system we only have finite equivalence classes, thus the same argu-

ment applied in Theorem 40 also works here.

Similar as the proof of Clause 3 of Theorem 40, Example 51 can be used as a

counterexample here too, thus ≺i with i ≥ 1 is not congruent in general.

Now we prove that there exists n such that wn = ≺CSL\X
. We first shows that

s wn r implies that s ≺CSL\X
r i.e. wn ⊆ ≺CSL\X

. Since s wn r, then s̄ ≺n r̄, thus

s̄ ≺CSL\X
r̄ as shown before. Since uniformization does not change the satisfaction of

CSL\X, therefore s ≺CSL\X
r. To show that ≺CSL\X

⊆ wn, we prove that s ≺CSL\X
r

implies that s wn r. It is easy to see that ≺CSL\X
= ≺CSL in a uniformized CTMDP,

thus s ≺CSL\X
r implies that s̄ ≺CSL r̄. Therefore s̄ ∼ r̄ i.e. s w r.

We prove that w1 is congruent. By Definition 51, s w1 r iff s̄ ≺1 r̄, so we only

need to show that ≺1 is congruent in uniformized CTMDPs. It is enough to show that

R = {(s ‖ t, r ‖ t) | s ≺1 r}

is a strong 1-step simulation. Note that in a uniformized CTMDP, we can change the

definition of strong 1-step simulation as follows: s R r implies that for any R download

closed set C and s −→ µ such that µ(C) > 0, there exists r −→ ν such that ν(C) ≤ µ(C).

Suppose that for a R download closed set C, and s ‖ t −→ µ with µ(C) > 0, there exists

s −→ µ1 and t −→ µ2 such that

1

2
· (µ1 ‖ δt) +

1

2
· (δs ‖ µ2) = µ,

thus there exists R downward closed sets C1 and C2 such that

1

2
· µ1(C1) +

1

2
· µ2(C2) = µ(C)

where

({s′ ‖ t | s′ ∈ C1} ∪ {r ‖ t′ | t′ | C2}) ⊆ C.

199

5. CONTINUOUS-TIME MDP

Since s ≺1 r, there exists r −→ ν1 such that ν1(C1) ≤ µ1(C1), by induction there exists

r −→ ν such that

1

2
· µ1(C1) +

1

2
· µ2(C2) ≤

1

2
· ν1(C1) +

1

2
· µ2(C2)

i.e. ν(C) ≤ µ(C). This completes our proof.

As a direct consequence, ≺CSLs\X
= wi is not congruent for i > 1. Below we prove

a few properties of i-depth simulations, along Theorem 43:

Theorem 45. 1. If C is uniformized, ≺i = wi.

2. ∼i ⊂ (≺i ∩ ≺−1
i).

3. ≈i ⊂ (wi ∩ w−1
i).

Proof. 1. According to Definition 51, ≺i = wi in a uniformized CTMDP.

2. The proof of ∼i ⊆ (≺i ∩ ≺−1
i) is trivial. Note that the counterexample used in

Clause 5) of Theorem 43 also applies here, thus ∼i ⊂ (≺i ∩ ≺−1
i).

3. Similar as Clause 2), the proof of ≈i ⊆ (wi ∩ w−1
i) is trivial, and moreover

the counterexample used in Clause 5) of Theorem 43 also applies here, thus

≈i ⊂ (wi ∩ w−1
i).

Extending Lemma 31 to simulations, we can also characterize CSLs\Un
i.e. the safe

CSL without bounded until.

Lemma 32. If C is not 2-step recurrent, we have

1. w ∩ ≺1 = ≺CSLs\Un
.

2. ≺CSLs\Un
is not a congruence.

Proof. First we can show that ≺
CSL

−
1

= ≺
CSL

−
0

. The proof is similar with the proof

of ∼
CSL

−
1
= ∼

CSL
−
0
in Lemma 31, and is omitted here. Therefore w ∩ ≺

CSL
−
1
coincides

with ∼CSL\Un
.

5.7 Relation to Probabilistic Automata and Markov Chains

In this section we discuss the relation of our bisimulations with those in the embedded

time-abstract models.

200

5.7 Relation to Probabilistic Automata and Markov Chains

5.7.1 Relation to Bisimulation of Probabilistic Automata

Let C be a CTMDP, the embedded probabilistic automata MC is obtained by removing

the rates on the transition relations. In Chapter 4, probabilistic bisimulation ∼P,

and strong i-depth branching bisimulations ∼b
i are defined in Definition 23 and 25

respectively. The following lemma is obvious from the definitions:

Lemma 33. 1. s ∼ r implies s ∼P r in MC.

2. If C is uniformized, then s ∼P r in MC implies s ∼ r.

3. s ∼i r implies s ∼b
i r in MC.

4. If C is uniformized, then s ∼b
i r in MC implies s ∼i r.

The other direction for the first clause does not hold generally. For PAs, we know

that ∼P is only sound but not complete for PCTL, so it is a surprise that the strong

probabilistic bisimulation in the continuous setting with minor variant is both sound

and complete for CSL in the uniformized CTMDPs without 2-step recurrent states

according to Definition 46 and Theorem 38. Refer to Example 50 for an intuitive

explanation.

Example 50. Considering two states s0 and r0 of a PA in Fig. 5.2. Suppose that si and

ri can evolve into t with probability 1 where 1 ≤ i ≤ 3 and t is absorbing. Also all the

states have different atomic propositions except L(si) = L(ri) for 0 ≤ i ≤ 3. It is easy

to check that s0 and r0 are PCTL-equivalent, but s0 ≁P r0 since the middle transition

of r0 has no way to be simulated by any (combined) transition of s0. Assume that s0

and r0 as two states of a CTMDP where each transition has rate 1, then obviously the

CTMDP is not 2-step recurrent by Definition 47. We can show that actually s0 and r0

are not CSL-equivalent. Let

ψ = (s0 ∨ s1)U
[a,b](s3 ∨ t)

where a state is used as a shorthand of the atomic propositions it satisfies. If s0 chooses

the transition on the left first, then the probability of the paths satisfying ψ is equal to

0.4 · (e−a − e−b) + 0.3 · (a · e−a + e−a − b · e−b − e−b).

The probability for other transitions can be obtained in a similar way by substituting

0.3 and 0.4 with corresponding probabilities. Since the interval [a, b] can be chosen

201

5. CONTINUOUS-TIME MDP

arbitrarily, so we can choose the intervals such that the probability of path satisfying

ψ when choosing the middle transition of r is larger than the other two cases. For

instance here we can choose interval [12 ,∞), then the maximum probability of paths of

r0 satisfying ψ is 0.9 · e−
1
2 while the corresponding maximum probability of s0 is only

0.85 · e−
1
2 , so essentially s0 and r0 are not CSL-equivalent.

Different from the discrete case where ∼b
1 is congruent, in the continuous case even

∼1 is not congruent, refer to the following example.

Example 51. Considering s and r in Example 45, s and r are CSL-equivalent, thus

s ∼1 r. Suppose we have t such that t can only evolve into t1 with rate 2. We can

show that actually

s ‖ t ≁1 r ‖ t

where all the states have different atomic propositions except L(s) = L(r). Let ψ =

sUI
1(s1 ‖ t) with I = [a,∞), then the probability of the paths of s ‖ t satisfying ψ

by choosing the left transition is equal to 3
5 · e−5a, similarly the probability is equal to

2
3 · e

−6a and 5
7 · e

−7a by choosing the middle and left transition respectively. By solving

the inequations:
2

3
· e−6a >

3

5
· e−5a and

2

3
· e−6a >

5

7
· e−7a,

we can see that if e−a ∈ (1514 ,
10
9), the probability by choosing the middle transition is

maximum which is greater than the correspondent probability of r, thus s ‖ t ≁1 r ‖ t,

and ∼1 is not congruent.

5.7.2 Relation to (Weak) Bisimulation for CTMCs

For CTMCs each state has a unique Markovian transition, which will be denoted by

s
λs−→ µs. The notion of weak bisimulation can be found in (54) for CTMCs, repeated

as follows:

Definition 52 (Weak Bisimulation CTMC). For CTMCs, an equivalence relation R is

a weak bisimulation iff for all s R r it holds (i) L(s) = L(r), and (ii) λs · µs(C) =

λr · µr(C) for all equivalence classes C 6= [s]R. States s, r are weakly bisimilar, denoted

by s ≈CTMC r, iff there exists a weak bisimulation R such that s R r.

Strong bisimilarity for CTMCs is defined if in addition λs ·µs(C) = λr ·µr(C) holds

for C = [s]R = [r]R as well. States s, r are strongly bisimilar, denoted by s ∼CTMC r,

iff there exists a strong bisimulation R such that s R r.

202

5.7 Relation to Probabilistic Automata and Markov Chains

Below we prove that, restricted to CTMCs, our strong and weak bisimulations agree

with the strong and weak bisimulations for CTMCs:

Lemma 34. For CTMCs, it holds that ∼ = ∼CTMC and ≈ = ≈CTMC.

Proof. The proof of ∼ = ∼CTMC is trivial, since in a CTMC there is only one transition

for each state, thus we can simply replace −→P with −→. The condition λs · µs(C) =

λr · µr(C) for each C coincides with the condition: i) λs = λr, and ii) µs R µr.

We first prove that ≈ implies ≈CTMC. Let

R = {(s, r) | s ≈ r}

is a weak bisimulation referring to Definition 52. Suppose that s
λs−→ µs, we need to

prove that r
λr−→ µr such that λs · µs(C) = λr · µr(C) for all C ∈ S/R with C 6= [s]R =

[r]R. According to Definition 46, s ≈ r if s̄ ∼ r̄. By Definition 42, if s
λs−→ µs, then

s̄
E
−→ µ such that

µ =
E − λs
E

· δs̄ +
λs
E

· µ̄s

where µ̄s is defined as expected. Therefore there exists r̄
E
−→ ν such that µ ∼ ν where

ν =
E − λr
E

· δr̄ +
λr
E

· µ̄r.

Obviously if there exists C ∈ S/R with C 6= [s]R = [r]R such that λs ·µs(C) 6= λr ·µr(C),

then µ(C̄) 6= ν(C̄) since

µ(C̄) =
λs
E

· µs(C) and ν(C̄) =
λr
E

· µr(C),

thus it is impossible for µ ∼ ν.

To show that ≈CTMC implies ≈, it is enough to show that

R = {(s, r) | s ≈CTMC r}

is a weak bisimulation according to Definition 46, that is, we need show that

R = {(s̄, r̄) | s ≈CTMC r}

is a strong bisimulation by Definition 45. Suppose that s̄
E
−→ µ, then there exists

s
λs−→ µs such that

µ =
E − λs
E

· δs̄ +
λs
E

· µ̄s.

203

5. CONTINUOUS-TIME MDP

Since s ≈CTMC r, there exists r
λr−→ µr such that λs · µs(C) = λr · µr(C) for all

equivalence class C 6= [s]≈CTMC
= [r]≈CTMC

. Therefore there exists r̄
E
−→ ν such that

ν =
E − λr
E

· δr̄ +
λr
E

· µ̄r

and µ(C̄) = ν(C̄) for all equivalence class C̄ 6= [s̄]R = [r̄]R, since µ(C̄) =
λs

E · µs(C) and

ν(C̄) = λr

E · µr(C) i.e. µ R ν.

The lemma above shows that ∼ and ≈ are conservative extensions of the strong

bisimulation and the weak bisimulation for CTMCs in (54), and so are their logical

characterization results except that they only work in a subset of CTMDPs.

5.7.3 Relation to (Weak) Simulations for CTMCs

The strong and weak simulations were introduced in (54), we recall the definition of

the strong simulation as follows.

Definition 53 (Strong Simulation CTMC). For CTMCs , a relation R is a strong

simulation iff for all s R r it holds (i) L(s) = L(r), (ii) µs ⊑R µr, and (iii) λs ≤ λr.

State s is strongly simulated by r, denoted by s ≺CTMC r, iff there exists a strong

simulation R such that s R r.

The following relation holds for simulations:

Lemma 35. For CTMCs, ≺ ⊂ ≺CTMC. If the CTMC is uniformized,

≺ = ≺CTMC = w .

Proof. According to Definition 50 and 53, the only difference between ≺ and ≺CTMC is

that s ≺ r requires that λs = λr while s ≺CTMC r only requires that λs ≤ λr, thus

≺ ⊆ ≺CTMC. In a uniformized CTMC, λs = λr for any s and r, thus ≺ = ≺CTMC = w.

The simulation relation ≺CTMC in (54) is strictly coarser than ours. In (54), it is

shown that ≺CTMC characterizes a sublogic of ≺CSLs , denoted by ≺
CSL

0
s
, in which all

intervals are of the form [0, b], i.e., the left endpoint is always 0. The following example

illustrates this difference:

204

5.7 Relation to Probabilistic Automata and Markov Chains

s

t

r

t

2 4

Figure 5.3: ≺CTMC is too coarse (transition of t is omitted).

Example 52. Considering the states s, r and t in Fig. 5.3 where L(s) = L(r) 6= L(t),

and t is an absorbing state. According to Definition 53, it is easy to check that

s ≺CTMC r but s 6≺CSLs r.

Let

ψ = (sU[a,b] t)

then the probability for the paths of s and r satisfying ψ is equal to

(e−2a − e−2b) and (e−4a − e−4b)

respectively, when a = 0 and b > 0,

(1− e−2b) < (1− e−4b),

while when a > 0 and b = ∞, e−2a > e−4a. In other words, there exists ϕ and ϕ′ such

that s |= ϕ, r 6|= ϕ and s 6|= ϕ′, r |= ϕ′. Essentially, neither s ≺CSLs r, nor r ≺CSLs s

holds.

The various strong simulation definitions in this chapter can be slightly adapted

such that they correspond to the safe sublogic as in (54). However, the same does

not hold for weak simulations. We recall the definition of weak simulation on CTMC

introduced in (54). Let Post(s) = Supp(µs) denote the successors of s. Bellow follows

the definition of weak simulation where i = 1, 2:

Definition 54 (Weak Simulation CTMC). Given a CTMC, let R ⊆ S × S be a weak

simulation iff for s1 R s2: L(s1) = L(s2) and there exists functions ηi : S → [0, 1] and

sets Ui, Vi ⊆ S where

Ui = {ui ∈ Post(si) | ηi(ui) > 0},

205

5. CONTINUOUS-TIME MDP

Vi = {vi ∈ Post(si) | ηi(vi) < 1}

such that:

1. v1 R s2 for all v1 ∈ V1, and s1 R v2 for all v2 ∈ V2.

2. There exists a function ∆ : S × S → [0, 1] such that:

(a) ∆(u1, u2) > 0 implies ui ∈ Ui and u1 R u2.

(b) If Ki > 0, then

K1 ·
∑

u2∈U2

∆(w, u2) = η1(w) · µs1(w)

and

K2 ·
∑

u1∈U1

∆(u1, w) = η2(w) · µs2(w)

for all states w ∈ S where Ki =
∑

ui∈Ui
ηi(ui) · µsi(ui).

(c)
∑

u1∈U1
η(u1) · λs1 · µs1(u1) ≤

∑
u2∈U2

η(u2) · λs2 · µs2(u2).

s1 is weakly simulated by s2, written as s1 wCTMC s2, iff there exists a weak simulation

R such that s1 R s2.

The relation wCTMC is shown to be sound w.r.t. the sublogic CSL0s\X (obtained from

CSL
0
s by removing the next operator). The completeness was conjectured, but remains

open. In the following example we show that, on the contrary, the completeness does

not hold.

Example 53. Consider states s0 and r0 in Example 53 and shown in Fig. 5.5. We

first show that s0 w
CSL

0
s\X

r0. It is easy to check that v1 w
CSL

0
s\X

s0, thus the

transition from s0 to v1 is invisible. For the transition from s0 to u1, r0 can perform

exactly the same transition, thus no formula ϕ of CSL
0
s\X exists such that s0 |= ϕ

but r0 6|= ϕ. Secondly, we show that s0 6wCTMC r0. Obviously v1 wCTMC r0, but

u1 6wCTMC r0, s0 6wCTMC r1, and s0 6wCTMC u1 because s0, r1, and u1 have

different labels. Thus the only possible partition is letting U1 = {u1}, V1 = {v1}, and

U2 = {r1, u1}, V2 = ∅ i.e. η1(v1) = 0, η1(u1) = 1, η2(r1) = η2(u1) = 1. According

to Definition 54 K1 = 0.5 and K2 = 1. Since u1 6wCTMC r1, thus ∆(u1, r1) = 0,

but then K2 · ∆(u1, r1) = 0 6= 0.5 = η2(r1) · µr0(r1) which contradicts the condition of

Definition 54, thus s0 6wCTMC r0.

206

5.8 Summary

CSL

∼

≺ ∩ ≺−1

≺

CSLs

CSL\X

≈

w ∩ w−1

w

CSLs\X

CSL

∼n

≺n ∩ ≺−1
n

≺n

CSLs

CSL\X

≈n

wn ∩ w−1
n

wn

CSLs\X

U, ↑

U, ↑

↑

↑

U U

U U

↑

U, ↑

U U

↑

U, ↑

U U

↑

U, ↑

U U
\

\

\

\

\

\

\

\

Figure 5.4: Relationship of various bisimulation and simulation relations

5.8 Summary

The spectrum of the branching time relations and the logic equivalences are summarized

in Fig. 5.4. The arrow → should be interpreted as “imply”. The labels U and ↑ denote

that the implication is only valid in a uniformized CTMDP, and a CTMDP without

2-step recurrent states respectively. We write L directly for ∼L for readability where L

is a sub-logic of CSL. The index n appearing on the right plane is chosen according to

Theorem 40 and 44. Thus ∼k = ∼n for all k ≥ n, and similar holds for other relations,

and for a smaller index, the relation will be coarser.

207

5. CONTINUOUS-TIME MDP

v1 u1

s0

r1 u1

r0

2 2 2 2

Figure 5.5: A counterexample for the completeness of wCTMC.

5.9 Related Work

Logical characterizations of bisimulation have been studied extensively for stochastic

models. For CTMCs the logic CSL characterizes bisimulations, while CSL without next-

state formulas characterizes weak bisimulations (54). Our results in this chapter is a

conservative extension for both strong and weak bisimulations. In (61), the results are

extended to CTMCs with continuous state spaces.

For CTMDPs, the first logical characterization result is presented in (37). It is

shown that strong bisimulation is sound, but not complete w.r.t. CSL equivalence. For

the non-completeness please refer to Example 45 of this chapter. In this chapter, we

introduced the weak bisimulation relation for CTMDPs. For a subclass of CTMDPs,

i.e. without 2-step recurrent states, we have shown that the weak bisimulation is also

complete for CSL\X-equivalence.

For probabilistic automata PA, Hennessy-Milner logic has been extended to char-

acterize bisimulations in (55, 57, 89). In (56), Desharnais et al. have shown that weak

bisimulation agrees with PCTL
∗ equivalence for PAs. The most related paper for PAs

is our previous paper in (99), in which we have introduced bisimulations and i-depth

bisimulations for characterizing logical equivalence induced by PCTL and sub-logics.

This leads to the study of the i-depth bisimulation relations for CTMDPs in this chap-

ter. For uniformized CTMDPs, we have shown that they agree with the equivalences

in the discrete setting.

208

Chapter 6

Markov Automata

In this Chapter we address related issues of another stochastic model called Markov

automata, which is the combination of PA and IMC. We first propose the late semantics

of MAs based on which we then define the late weak bisimulation. It is shown that

the late weak bisimulation is strictly coarser than the weak bisimulations defined in (5)

and (6).

In Section 6.2 we give the definition of MA as well as its early and late semantics.

The novel weak bisimulation is proposed with its compositionality being discussed

in Section 6.3. In Section 6.4, we extend the results to early and weak simulations.

Section 6.5 we investigate the relations between our weak bisimulations with the weak

bisimulations introduced in (5) and (6). In Section 6.6 we briefly discuss how time-

divergent MA are dealt with previously, and show that our late weak bisimulation is

also the coarsest reduction barbed congruence.

6.1 Motivation

Recently, Markov automata (MA) have been proposed in (5) as a compositional be-

havioral model supporting both probabilistic transitions and exponentially distributed

random delays. MA can be considered as a combination of probabilistic automata (PA)

(78) and interactive Markov chains (IMC) (32). A PA is obtained by disallowing ran-

dom delays, whereas an IMC is obtained by restricting to degenerative probabilistic

transitions.

209

6. MARKOV AUTOMATA

As the main result in (5), the authors have proposed the notion of weak bisimulation

relation, which is shown to be congruent w.r.t. parallel composition. Moreover, the

proposed weak bisimulation conservatively extends that for probabilistic automata (53,

78) and IMCs (32). However, as pointed out in the conclusion in (5),

“a good notion of equality is tightly linked to the practically relevant issue of

constructing a small (quotient) model that contains all relevant information

needed to analyze the system”.

Indeed, an example is given in the conclusion illustrating that an even weaker version

of weak bisimulation would be expected.

In this chapter we address this problem by proposing such a weaker bisimulation.

We start with discussing the example presented in the conclusion of (5). An extended

version is shown in Fig. 6.1, where:

• In part (a) we have a Markovian transition out of state s labeled with rate 2λ,

meaning that the sojourn time in state s is exponentially distributed with rate

2λ. Thus the probability of leaving it within time a is 1 − e−2λa. From s′ we

have a probabilistic transition labeled with τ , leading to t1 and t2 with equal

probability. Note the dashed arrows denote probabilistic transitions.

• Part (c) is similar to part (a), in the sense that first a probabilistic transition out

of r is enabled, followed with a Markovian transition with rate 2λ.

• Part (b) has only Markovian transitions. Starting with state t, the sojourn time

is exponentially distributed with rate 2λ. If the transition is taken, there is a

race between the transition to t1 and t2 respectively. The probability that the

transition to state t1 wins the race is thus
1
2 . As a result, the overall probability of

reaching state t1 within time a is (1−e−2λa) · 12 . Note that from t no probabilistic

transitions can be reached.

The weak bisimulation defined in (5), written as ≈ehz , identifies s and t: s ≈ehz t.

Intuitively s ≈ehz t because both s and t will leave their original states after an

exponential delay with rate 2λ, and after leaving s and t they will reach either t1 with

probability 0.5, or t2 with probability 0.5.

210

6.1 Motivation

t1

s

s′

t2 t1

t

t2

r1

t1

r

r2

t2

µ

ν

(a) (b) (c)

2λ

λ λ

2λ 2λ
1
2

1
2

1
2

1
2τ

τ

Figure 6.1: Examples of Markov automata.

However the weak bisimulation distinguishes t and r, i.e., t 6≈ehz r. Different from

s, r will make a probabilistic choice first, and then move to either t1 or t2 after an

exponential delay with rate 2λ. Thus the difference between s and r is just the order

of the probabilistic choice and the Markovian transition. If one does not consider the

intermediate states, but only the probability and time of reaching the states t1 and t2,

obviously, all of the three states s, t, r are behaving the same.

In this chapter, we propose early and late semantics for Markovian transitions

reflecting the example above. Under early semantics, Markovian transitions are con-

sidered as a sequence of sojourn time distributions followed with probabilistic choices.

The core contribution in this chapter is the notion of late weak bisimulation, which is

obtained by interpreting Markovian transitions as a sequence of probabilistic choices

followed by sojourn time distributions, as illustrated in the example. However, the late

semantics is much more involved to define for MA, especially if from state t also other

probabilistic transitions labeled with α would have been enabled. In that case, under the

late semantics this additional α-probabilistic transition should also have been enabled

after the probabilistic choices, even after potential internal transitions from t1 or t2.

We show that late weak bisimulation is strictly coarser than early weak bisimulation.

211

6. MARKOV AUTOMATA

Both early and late weak bisimulations are defined over the derived structure of

MA, namely through Markov labeled transition systems (MLTS), which is introduced

by Deng and Hennesy in (6). Moreover, they have proposed another notion of weak

bisimulation, denoted by ≈dh , for MA. The weak bisimulation ≈dh enjoys the nice

property of being a reduction barbed congruence (107), i.e., it is compositional, barb-

preserving (simple experiments are preserved) and reduction-closed (nondeterministic

choices are in some sense preserved). The relationship between ≈ehz and ≈dh is however

unclear. In this chapter we clarify these relationships. We show that the early weak

bisimulation induced under our early semantics gives rise to the weak bisimulation ≈ehz ,

as well as ≈dh . Thus, the proposed weak bisimulations ≈ehz and ≈dh agree with each

other, and are strictly finer than our late weak bisimulation for MA. Since our late

weak bisimulation is defined over the derived MLTS as well, applying a result in (6),

even being coarser, our late weak bisimulation is a reduction barbed congruence as well.

Summarizing, the contributions of this chapter are as follows:

• For MA, we propose early and late semantics for Markovian transitions. Based

on this notion, we propose early and late weak bisimulations. The latter is shown

to be strictly coarser.

• We prove that our early weak bisimulation agrees with both the weak bisimu-

lation proposed by Eisentraut, Hermanns and Zhang in (5), and with the weak

bisimulation proposed by Deng and Hennesy in (6).

• We propose early and late weak simulations along the same line, and clarify the

relation to weak simulations proposed in the literature.

6.2 Markov Automata

In this section we first introduce some notations and recall the definition of Markov

automata. Then we introduce two different semantics: early and late semantics for

Markov automata.

6.2.1 Preliminaries

Given a distribution µ, if µ(S) = 1, it is called a full distribution, otherwise it is a

sub distribution. Let ADist(S) denote the set of all (sub or full) distributions over S,

212

6.2 Markov Automata

ranged over by µ, ν, . . . too. To be clear, we will use Dist(S) to denote the set of all full

distributions. We often write {µ(s) : s | s ∈ Supp(µ)} alternatively for a distribution

µ. For instance, {0.4 : s1, 0.6 : s2} denotes a distribution µ such that µ(s1) = 0.4 and

µ(s2) = 0.6.

We first recall the definition of Markov automata introduced in (5). Then, we give

the early and late semantics of Markov automata in terms of Markov labeled transition

systems.

Definition 55 (Markov Automata). An MA M is a tuple (S,Actτ ,−→ ,։, s0), where

• S is a finite but non-empty set of states,

• Actτ = Act
.
∪ {τ} is a set of actions including internal action τ ,

• −→ ⊂ S × Actτ ×Dist(S) is a finite set of probabilistic transitions,

• ։⊂ S × R+ × S is a finite set of Markovian transitions, and

• s0 ∈ S is the initial state.

Again let α, β, γ, . . . range over the actions in Actτ , λ range over the rates in R+.

Moreover, let αr, βr, γr, . . . range over Actτ ∪R+. A state s ∈ S is stable, written as s↓,

if s
τ
X−→, similarly µ is stable, written as µ↓, iff s↓ for each s ∈ Supp(µ). As in (5, 32),

the maximal progress assumption is assumed, meaning that if state s is not stable, no

Markovian transitions can be executed.

Let

rate(s, s′) =
∑

{λ | s
λ
։ s′}

denote the rate from s to s′. Also the function rate is overloaded such that

rate(s) =
∑

s′∈S

rate(s, s′)

which denotes the exit rate of s. For a stable state s, the sojourn time at s is ex-

ponentially distributed with rate equal to rate(s), and the probability of one of the

Markovian transitions being taken within time [0, a] is equal to 1− e−rate(s)a.

MA extend the well-known probabilistic automata (PA) (78) and interactive Markov

chains (IMC) (32). Precisely, if the set of Markovian transitions is empty, i.e., ։ = ∅,

we obtain PA. On the other side, if distributions are all Dirac, i.e., −→ ⊂ S×Actτ ×δS

with δS = {δs | s ∈ S}, we obtain IMCs. Following (6), MA will be studied indirectly

through the Markov labeled transition system:

213

6. MARKOV AUTOMATA

Definition 56 (Markov Labeled Transition System). A Markov labeled transition sys-

tem (MLTS) L is a triple (S,Act τ ,−→) where S and Actτ are the same as in Defini-

tion 55, and

−→ ⊆ S × (Actτ ∪R+)×Dist(S)

is a finite set of transitions satisfying s
λ1−→ µ1 and s

λ2−→ µ2 implies that s
τ
X−→, λ1 = λ2,

and µ1 = µ2.

Different from the definition of MA, in Definition 56 we require that s
λ1−→ µ1 and

s
λ2−→ µ2 implies that s

τ
X−→, λ1 = λ2, and µ1 = µ2. This means that each state in

an MLTS can only have at most one Markovian transition, but after the Markovian

transition, it will evolve into a distribution instead of a single state as in MA. This is

not a restriction, but just expresses the race condition explicitly. In MLTS the maximal

progress assumption is also embedded in the definition, i.e. s
λ
−→ µ implies that s

τ
X−→.

As usual, a transition
αr−→ can be lifted to distributions, that is, µ

αr−→ µ′ iff for each

s ∈ Supp(µ) there exists s
αr−→ µs such that

∑
s∈Supp(µ) µ(s) · µs = µ′.

6.2.2 Early Semantics of Markov Automata

Definition 57 (Early Semantics). Let M = (S,Actτ ,−→,։, s0) be an MA. The early se-

mantics of M is defined as an MLTS, denoted by •M = (S,Actτ , •−→), where −→ ⊆ •−→

and

s
λ

•−→ µ, iff s↓ ∧λ = rate(s) ∧ ∀s′ ∈ Supp(µ).µ(s′) =
rate(s, s′)

rate(s)
.

In the equation above we require that s is stable as usual due to the maximal

progress assumption. As an example for the MA in Fig. 6.1(b), t
2λ
−→ {(12 : t1), (

1
2 : t2)}

according to the early semantics.

To define the late semantics for MA, we need the notion of weak transitions which

shall be introduced in this section. In order to abstract from the internal action of

L, we let s
αr==⇒ µ denote that a distribution µ is reached through a sequence of steps

which are internal except one of which is equal to αr. Formally, the weak transitions

for MLTSs are defined as follows:

Definition 58 (Weak Transitions for MLTS). The weak transition relation
αr==⇒ is the

least relation such that, s
αr==⇒ µ iff

1. αr = τ and µ = δs, or

214

6.2 Markov Automata

2. there exists a step s
βr
−→ µ′ such that µ =

∑
s′∈Supp(µ′) µ

′(s′) ·µs′, where s
′ τ
==⇒ µs′

if βr = αr, otherwise s
′ αr==⇒ µs′ and βr = τ .

Intuitively, through the weak transition, s reaches the distribution µ through an

history-dependent scheduler, very much the way it is introduced in (78). In more detail,

the first clause says that in case αr = τ , we can stop at s. Otherwise, from s the action

βr is chosen leading to the distribution µ′, such that:

• if βr = αr, then each state s′ in the support of µ′ reaches µs′ only through a

sequence of τ actions,

• if βr = τ , then each state s′ in the support of µ′ reaches µs′ through a weak

transition s′
αr==⇒ µs′

Stated differently, we unfold a tree with the root s, the successor states are determined

by the action chosen from the node. It is history dependent as each state s may occur

in different nodes in the tree, and each time a different transition may be chosen. We

say that the weak transition s
αr==⇒ µ is a deterministic weak transition if in addition

it satisfies the property that each state picks always the same transition whenever it is

visited. In the sequel we shall use s
αr==⇒D µ to denote deterministic weak transitions,

which will be used later in defining the late semantics. Note that only finitely many

deterministic weak transitions exist, see (80).

The weak transition defined in Definition 58 can be lifted to distributions in a

straightforward way as for strong transitions. Equivalently, weak transitions can be

formalized elegantly using trees as in (56), or using infinite sum (108). The advantage

of this definition will be clear in proving the equivalence results of all the existing weak

bisimulations.

6.2.3 Late Semantics of Markov Automata

When defining the early semantics of an MA in Definition 57, a stable state with

Markovian transition is equipped with a transition labeled with its exit rate λ, followed

by a distribution depending on the race condition. As discussed in the introduction, in

the late semantics, we switch the interpretation, namely the state first evolves into a

distribution according to the race condition, followed by a Markovian transition labeled

with λ.

215

6. MARKOV AUTOMATA

In the late semantics we introduce the set of states[S℄ := {[s, t℄ | s, t ∈ S ∧ s↓ ∧rate(s) > 0}.

The outgoing transitions from these new states are defined by: [s, t℄ be a state such that

i) [s, t℄ λ
−→ t where λ = rate(s), and ii) [s, t℄ α

−→ µ iff s
α
−→ µ. Intuitively, [s, t℄ is a new

state having exactly the same non-Markovian transitions as s, and can evolve into t via

a Markovian transition with rate equal to rate(s). Moreover, for a distribution µ over S,

we let [s, µ℄ denote the corresponding distribution over [S℄ satisfying [s, µ℄([s, t℄) = µ(t)

for all t ∈ S. The late semantics is defined as follows.

Definition 59 (Late Semantics). Let M = (S,Actτ ,−→,։, s0) be an MA. Moreover,

let the MLTS •M = (S,Actτ , •−→) be its early semantics. The late semantics of M,

denoted by M• = (S ∪ [S℄,Actτ ,−→•), is the smallest MLTS such that for each s ∈ S

1. s
α

•−→ µ implies that s
α

−→• µ,

2. s
λ

•−→
τ

•=⇒D µ implies that s
τ

−→• [s, µ℄ and for all [s, t℄ ∈ Supp([s, µ℄), [s, t℄ λ
−→•

δt and [s, t℄ α
−→• ν iff s

α
•−→ ν.

The idea of Definition 59 is to postpone the exponentially distributed sojourn time

distribution of s after the probability choices. The first case is trivial where all other

non-Markovian transitions from s will be then copied. If s
λ

•−→
τ

•=⇒D µ, then it can be

seen that µ is obtained by applying the race condition after the Markovian transition.

As a result in the late semantics we can let s choose the successors according to the

race condition first, and then perform other delayed actions. Therefore s
τ

−→• [s, µ℄
where for each [s, t℄ ∈ Supp([s, µ℄), there exists a t ∈ Supp(µ) such that all the delayed

non-Markovian transition of s is enabled at [s, t℄ i.e. [s, t℄ α
−→• ν iff s

α
•−→ ν, moreover[s, t℄ will leave for δt via Markovian transition with rate λ i.e. [s, t℄ λ

−→• δt. Essentially,

for each t ∈ Supp(µ) and s we introduce a new state [s, t℄ ∈ [S℄ such that all the

delayed non-Markovian transition of s and the delayed Markovian transition to t are

enabled at [s, t℄. The following two examples illustrate how the late semantics works.

Example 54. For the MA t in Fig. 6.1(b), by adopting the late semantics, we have

t
τ

−→• {
1

2
: [t, t1℄, 1

2
: [t, t2℄}

216

6.2 Markov Automata

in the resulting MLTS where the only possible transitions for [t, t1℄ and [t, t2℄ are[t, t1℄ 2λ
−→• δt1 and [t, t2℄ 2λ

−→• δt2 . Considering the MA in Fig. 6.1(a), since

s
2λ

•−→ δs′
τ

•=⇒D {(
1

2
: t1), (

1

2
: t2)},

according to Definition 59 we will also have

s
τ

−→• {
1

2
: [s, t1℄, 1

2
: [s, t2℄},

in the resulting late semantics MLTS. Thus, the three systems are equivalent w.r.t. the

late semantics. Note for states without Markovian transitions like r in Fig. 6.1 (c), we

do not need to introduce extra states for them.

Example 55. Suppose we have an MA shown in Fig. 6.2(b). It is not hard to see

that s0
3λ

•−→ µ such that µ = {1
3 : s3,

2
3 : s4} according to the early semantics which is

illustrated by the MLTS in Fig. 6.2(a). Instead if we adopt the late semantics, we can

move the probabilistic choice upward, and thus postpone the execution of other actions.

Specifically, we allow s0 to have a transition s0
τ

−→• [s0, µ℄ where[s0, µ℄ = {
1

3
: [s0, s3℄, 2

3
: [s0, s4℄},

moreover [s0, s3℄ and [s0, s4℄ are two new states where all the delayed actions including

the Markovian action are enabled i.e. α and 3λ in this cased. Formally, [s0, s3℄ α
−→• δs1

and [s0, s4℄ α
−→• δs1 because of s0

α
•−→ δs1 , moreover [s0, s3℄ 3λ

−→• δs3 and [s0, s4℄ 3λ
−→•

δs4 because of rate(s0) = 3λ. The correspondent MLTS of s0 according to the late

semantics is shown in Fig. 6.2(c).

A few remarks are in order:

1. We have used deterministic weak transitions
τ

•=⇒D to define the late semantics.

Using weak transitions would do the same job, but induces then late semantics

with infinitely many transitions. As the deterministic weak transition in Defi-

nition 59 involves only internal τ transitions, the algorithm in (80) can be used

directly for constructing the late semantics. The resulting late semantics can have

exponentially many transitions.

2. Notice that in Definition 59 we consider each deterministic weak τ transition

after the Markovian transition in the second clause. Indeed, it is not enough

217

6. MARKOV AUTOMATA

s1

s3

s0

s4 s1

s0

s3 s4

s1

s1[s0, s3℄ [s0, s4℄
s3

s0

s4 s1

µ̄

µ

(a) (b)

(c)

α 3λ

1
3

2
3

α λ 2λ

α

α
3λ

1
3

τ

2
3

3λ
α

Figure 6.2: Illustration of early and late semantics.

to only consider strong τ transitions. Intuitively, by using deterministic weak τ

transition we can postpone the execution of the exponentially distributed sojourn

time distribution after any probabilistic internal transitions, not just that with

one step. Refer to Example 59 in the next section for more details.

3. The size of [S℄ is in the worst case |S|2. By the definition of late semantics, we

only need to consider states [s, t℄ such that s ↓, and t is reachable from s via τ

218

6.3 Weak Bisimulations

transitions after the Markovian transition. Thus, in a real model the size of [S℄
is expected to be much smaller.

6.3 Weak Bisimulations

Before we introduce early and late weak bisimulations, we define some notations about

transitions for MLTS. For a given MLTS L = (S,Actτ ,−→), we define
αr−→ρ and

αr==⇒ρ as

following:

Definition 60. 1. µ
αr−→ρ µ

′ with ρ ∈ (0, 1] iff there exists a µ = µ1 + µ2 such that

ρ = |µ1| and either αr = τ and µ′ = 1
ρ · µ1, or

1
ρ · µ1

αr−→ µ′,

2. µ
αr==⇒ρ µ

′ with ρ ∈ (0, 1] iff there exists a µ = µ1 + µ2 such that ρ = |µ1| and
1
ρ · µ1

αr==⇒ µ′.

Intuitively, the index ρ is the part of the distribution of µ which makes the move

to µ′, which is scaled by 1
ρ such that µ′ is a full distribution. Note that the condition

“αr = τ and µ′ = 1
ρ ·µ1” in clause 1 of Definition 60 is necessary, refer to the Example 56

for a detail discussion. In the following let

Suc(µ) = {ν | ∃ρ > 0.(µ
αr−→ρ ν)}

denote the successors of ν, and Suc∗(µ) be the transitive closure, called the derivatives

of µ.

6.3.1 Early and Late Weak Bisimulations

Below follows the definition of our weak bisimulation for MLTSs.

Definition 61 (Weak Bisimulation). Let L = (S,Act τ ,−→) be an MLTS. A relation

R ⊆ Dist(S)×Dist(S) is a weak bisimulation over L iff µ R ν implies that

1. whenever µ
αr−→ρ µ

′, there exists a ν
αr==⇒ρ ν

′ such that µ′ R ν ′,

2. whenever ν
αr−→ρ ν

′, there exists a µ
αr==⇒ρ µ

′ such that µ′ R ν ′.

µ and ν are weakly bisimilar, written as µ ≈L ν, iff there exists a weak bisimulation

R such that µ R ν. Moreover s ≈L r iff δs ≈L δr.

219

6. MARKOV AUTOMATA

t1 t2 t3 t4

s1 s2

t1 t3 t2 t4

s3 s4

(a) (b)

µ ν

1
2

1
2

α1 α2 α3 α4

1
2

1
2

α1 α3 α2 α4

Figure 6.3: Two distributions which should not be weakly bisimilar.

Intuitively, if two distributions µ and ν are weakly bisimilar, then whenever µ is able

to make a transition labeled with αr with probability ρ, ν must be able to mimic the

transition with the same probability such that their resulting distributions should be

weakly bisimilar as well. As mentioned before, the condition “αr = τ and µ′ = 1
ρ · µ1”

in clause 1 of Definition 60 cannot be omitted, refer to the following counterexample.

Example 56. Suppose there are two distributions µ and ν given in Fig. 6.3 (a) and

(b) respectively where αi(1 ≤ i ≤ 4) are pairwise different, then if we omit the condition

“αr = τ and µ′ = 1
ρ ·µ1” in Definition 60, µ only has four strong transitions: µ

α1−→ 1
2
δt1 ,

µ
α2−→ 1

2
δt2 , µ

α3−→ 1
2
δt3 , and µ

α4−→ 1
2
δt4 , each of which can be simulated by ν and

vice versa. Therefore we will conclude that µ and ν are weakly bisimilar according to

Definition 61. This is against intuition since µ can evolve into s1 with probability 1
2

where only transitions labeled with α1 and α2 are possible, this cannot be simulated by

ν.

Definition 61 is defined upon MLTSs. For MA, below we shall introduce early and

late weak bisimulations based on the early and late semantics, respectively:

Definition 62 (Early and Late Weak Bisimulation). Let M = (S,Actτ ,−→,։, s0) be

an MA. Then, µ, ν ∈ Dist(S) are

1. early weakly bisimilar, written as µ •≈ ν, iff µ ≈
•M ν,

2. late weakly bisimilar, written as µ ≈• ν, iff µ ≈M•
ν.

220

6.3 Weak Bisimulations

s1

t3

s3

t0

t4

s4 s1

s1

s3

t′0

s2

s4 s1

ν

(a) (b)

α
3λ

τ

1
3

2
3

3λ
α

α
τ

λ 2λ α

Figure 6.4: Example of late weakly bisimilar states.

In the above definition, we skip the superscript M in •≈ and ≈•, as we assume

there is a given MA M = (S,Act τ ,−→,։, s0), if not mentioned explicitly, throughout

the remaining parts.

Example 57. Recall the example given in Fig. 6.1, we have shown that s •≈ t, but

s •6≈ r since δr can evolve into ν via a τ transition where ν cannot be simulated by

δs or any derivative of it. But by considering the late semantics, s will also have a

transition similar to r, that is, s
τ

−→• [s, µ℄ which is obviously able to simulate ν since

s
2λ

•−→
τ

•=⇒D µ, thus we have s ≈• r.

Example 58. Suppose we are given an MA where the states t0 and t′0 behave following

the way described in Fig. 6.4(a) and (b) respectively. Then it can be shown that t0 ≈• t′0.

For instance for s2 in Fig. 6.4(b), since

s2
3λ

•−→
τ

•=⇒D µ = {(
1

3
: s3), (

2

3
: s4)}

according to the early semantics, we have s2
τ

−→• [s2, µ℄ according to the late semantics.

It is easy to check that ν ≈• [s2, µ℄. The other cases can be checked in a similar way,

therefore by Definition 62 t0 ≈• t′0. Notice that t0 6≈
•M t′0 i.e. t0

•6≈ t′0, since ν cannot

be simulated by any derivative of t′0. By interpreting t′0 using early semantics, s2 can

221

6. MARKOV AUTOMATA

only evolve into {(13 : s3), (
2
3 : s4)} via Markovian transition with rate 3λ. Therefore

t0
•6≈ t′0.

In Definition 59 we consider each deterministic weak τ transition after the Marko-

vian transition, since it turns out that it is not enough to only consider strong τ

transition, refer to the following counterexample.

Example 59. Let us consider s and r in Fig. 6.1(a) and (c) again, if we only consider

strong τ transition in Definition 59 i.e. replacing s
λ

•−→
τ

•=⇒D µ in the second clause

by s
λ

•−→
τ

•−→ µ, then still s ≈• r. But this does not work in general, for instance if

we change s a little bit by adding another intermediate state s′′ such that s′
τ
−→ s′′ and

s′′
τ
−→ µ, then s

2λ
•−→

τ
•−→ δs′′ , thus we will have s

τ
−→• [s, δs′′℄ where [s, s′′℄ 2λ

−→• δs′′.

Since s is the only state with Markovian transition in Fig. 6.1 (a), hence all the other

states will have the same transitions in the late semantics MLTS. It is not hard to see

that s 6≈• r according to Definition 62, since neither δr1 nor δr2 can be simulated by

any derivative of s, this is against our intuition.

6.3.2 Properties of Early and Late Weak Bisimulations

In Definition 61 we have used strong transitions on the left side of Clauses 1 and 2.

As in the standard setting for transition systems, in the lemma below we show that

the weak bisimulation does not change if we replace the strong transitions by weak

transitions. This simple replacement is very useful for proving the transitivity, which

we shall see later.

Lemma 36. Let L = (S,Actτ ,−→) be an MLTS. A relation R ⊆ Dist(S) × Dist(S) is

a weak bisimulation iff µ R ν implies that

1. whenever µ
αr==⇒ρ µ

′, there exists a ν
αr==⇒ρ ν

′ such that µ′ R ν ′,

2. whenever ν
αr==⇒ρ ν

′, there exists a µ
αr==⇒ρ µ

′ such that µ′ R ν ′.

Proof. Let

R = {(µ, ν) | µ ≈L ν},

and suppose that µ R ν and µ
αr==⇒ρ µ

′, we are going to show that there exists a ν
αr==⇒ρ ν

′

such that µ′ R ν ′ by structural induction. According to the definition of
αr==⇒ρ, there

exists µ
αr−→ρ1 µ1

τ
==⇒ρ′1

µ′1 and µ
τ
−→ρ2 µ2

αr==⇒ρ′2
µ′2 such that

ρ1 · ρ
′
1 + ρ2 · ρ

′
2 = ρ and (

ρ1 · ρ
′
1

ρ
· µ′1 +

ρ2 · ρ
′
2

ρ
· µ′2) ≡ µ.

222

6.3 Weak Bisimulations

Since µ ≈L ν, there exists ν
αr==⇒ρ1 ν1 and ν

τ
==⇒ρ2 ν2 such that µ1 ≈L ν1 and

µ2 ≈L ν2. By induction there exists ν1
αr==⇒ρ′1

ν ′1 and ν2
τ

==⇒ρ′2
ν ′2 such that µ′1 ≈L ν ′1

and µ′2 ≈L ν ′2, so there exists a

ν
αr==⇒ρ ν

′ ≡ (
ρ1 · ρ

′
1

ρ
· ν ′1 +

ρ2 · ρ
′
2

ρ
· ν ′2)

such that µ′ ≈L ν ′ i.e. µ′ R ν ′.

The other direction is trivial since the strong transition is a special case of the weak

transition.

The following theorem shows that the weak bisimulation defined in Definition 61 is

an equivalence relation, and ≈• is strictly coarser than •≈.

Theorem 46. For any MLTS L, ≈L is an equivalence relation. For any MA, •≈, and

≈• are equivalence relations, moreover •≈ ⊂ ≈•.

Proof. We first prove that ≈L is an equivalence relation. The symmetry and reflexivity

is easy to prove and is omitted here. We only show how to prove the transitivity.

Suppose that µ1 ≈L µ2 and µ2 ≈L µ3, we need to prove that µ1 ≈L µ3. By

Definition 61, if µ1 ≈L µ2 and µ2 ≈L µ3, then there exists two weak bisimulations

R1 and R2 such that µ1 R1 µ2 and µ2 R2 µ3. Let

R = {(ν1, ν3) | ∃ν2.ν1 R1 ν2 ∧ ν2 R2 ν3}.

It is clear that µ1 R µ3, so once we can prove that R is a weak bisimulation, we can

say that µ1 ≈L µ3. Suppose that µ1
αr==⇒ρ µ

′
1, then there exists a µ2

αr==⇒ρ µ
′
2 such

that µ′1 R1 µ
′
2. Since we also have µ2 R2 µ3 where R2 is a weak bisimulation, so there

exists a µ3
αr==⇒ρ µ

′
3 such that µ′2 R2 µ

′
3. By definition of R, we have µ′1 R µ′3, so R is a

weak bisimulation.

Secondly, we prove that •≈ ⊂ ≈•. Suppose that •M = (S,Actτ , •−→) and M• =

(S′,Actτ ,−→•). First we show that µ •≈ ν implies µ ≈• ν. Let

R = {(µ, ν) | µ •≈ ν} ∪ R′

where R′ is the least relation satisfying:

• ([s, µ℄, [r, ν℄) ∈ R′ with δs
•≈ δr and µ •≈ ν,

• (µ, ν) ∈ R if there exists µ1 R ν1 and µ2 R ν2 such that µ = ρ · µ1 + (1 − ρ) · µ2

and ν = ρ · ν1 + (1− ρ) · ν2.

223

6. MARKOV AUTOMATA

Then according to Definition 62 it is enough to show that R is a weak bisimulation w.r.t.

M•. Let (µ, ν) ∈ R. We need to prove that whenever µ
αr

−→•ρ µ
′, there exists a ν

αr
=⇒•ρ ν

′

such that µ′ R ν ′. First assume that (µ, ν) 6∈ R′, implying that Supp(µ),Supp(ν) ⊆ S.

We then consider the following cases:

1. αr = α ∈ Act . If µ
α

−→•ρ µ
′, then according to Clause 1 µ

α
•−→ρ µ

′. Since µ •≈ ν,

then there exists a ν
α

•=⇒ρ ν ′ such that µ′ •≈ ν ′, therefore there also exists

ν
α

=⇒•ρ ν
′ such that µ′ R ν ′ since s

α
•−→ µ′′ implies that s

α
−→• µ′′ for each s.

2. αr = τ . We prove by induction n i.e. the size of Supp(µ). If n = 1 and µ = δs

for some s, then by Definition 59 whenever δs
τ

−→• µ′ for some µ′, we know that

either

• s
τ

•−→ µ′, or

• s
λ

•−→
τ

•=⇒D µ′′ such that µ′ = [s, µ′′℄.
For the first case, it is similar as Clause 1, and is omitted here. For the second

case, since δs
•≈ ν, there exists a ν

λ
•=⇒1 ν

′′ such that µ′′ •≈ ν ′′, that is,

ν
τ

•=⇒ ν1
λ

•−→
τ

•=⇒D ν ′′

where δs
•≈ ν1. According to Definition 59 ν

τ
==⇒ [ν1, ν ′′℄ where [ν1, ν ′′℄ = [r, ν ′′℄

for some r ∈ Supp(ν1), obviously [s, µ′′℄ R [ν1, ν ′′℄. As a result there exists a

ν
τ

=⇒• ν ′ = [ν1, ν ′′℄ such that µ′ R ν ′. When n > 1, for some s ∈ Supp(µ), there

exists a ν
τ

•=⇒ ν1 + ν2 such that µ(s) = |ν1| and δs
•≈ (1

|ν1|
· ν1). The following

proof is straightforward by induction.

3. αr = λ. This case is impossible, since according to Definition 59 only states in[S℄ can perform Markovian transitions.

For the case (µ, ν) ∈ R′ we prove that [s, µ℄ ≈• [r, ν℄ provided that δs
•≈ δr and

µ •≈ ν. Suppose that [s, µ℄ α
−→•ρ µ

′, then it must be the case that δs
α

•−→ µ′. Since

δs
•≈ δr, there exists a δr

α
•=⇒ ν ′ such that µ′ •≈ ν ′, so we have [r, ν℄ α

=⇒•ρ ν
′ such

that µ′ R ν ′. If [s, µ℄ λ
−→•ρ µ

′, then µ
τ

•−→ρ µ
′. Since µ •≈ ν, there exists a ν

τ
•=⇒ρ ν

′

such that µ′ •≈ ν ′, thus we have [r, ν℄ λ
=⇒•ρ ν

′ such that µ′ R ν ′. This completes the

proof.

For the counterexample of ≈• = •≈, refer to Example 57.

224

6.3 Weak Bisimulations

6.3.3 Compositionality

In this section we show that •≈ and ≈• are congruence relations for time-convergent

MA. First we recall the notion of time-convergent and time-divergent MA.

Definition 63 (Time-convergent). A state s is time-convergent iff there exists s
τ

==⇒ µ

such that µ ↓, otherwise it is time-divergent. Let M = (S,Actτ ,−→ ,։, s0), then M is

time-convergent iff for each s ∈ S, s is time-convergent, otherwise M is time-divergent.

The reason to distinguish time-divergent and time-convergent states is because of

the maximal progress assumption, that is, the internal action takes no time and can

exempt the execution of Markovian transitions, thus for a time-divergent state, it will

have infinite τ transitions with positive probability according to Definition 63, as a

consequence it will block the execution of Markovian transitions.

Now we recall the parallel composition defined in (5) as follows:

Definition 64 (Parallel Composition). Let M1 = (S1,Actτ ,−→ 1,։1, s
′
0) and M2 =

(S1,Actτ ,−→ 2,։2, s
′′
0) be two MA, then M1 ‖A M2 = (S,Act τ ,−→ ,։, s0) such that

• S = {s1 ‖A s2 | (s1, s2) ∈ S1 × S2},

• (s1 ‖A s2, α, µ1 ‖A µ2) ∈−→ iff either α ∈ A and si
α
−→ µi or α /∈ A, si

α
−→ µi, and

µ3−i = δs3−i
with i ∈ {1, 2},

• (s1 ‖A s2, λ, s
′
1 ‖A s′2) ∈։ iff either

– si = s′i, si
λi

։ s′i, and λ = λ1 + λ2, or

– si
λ
։ s′i and s

′
3−i = s3−i

with i ∈ {1, 2}.

• s0 = s′0 ‖A s′′0,

where µ1 ‖A µ2 is a distribution such that (µ1 ‖A µ2)(s1 ‖A s2) = µ1(s1) · µ2(s2).

The theorem below shows that both •≈ and ≈• are congruent w.r.t. ‖A for

time-convergent MA:

Theorem 47. For time-convergent MA, it holds that:

1. (µ ‖A µ1)
•≈ (ν ‖A µ1) for any µ1 provided that µ •≈ ν.

225

6. MARKOV AUTOMATA

2. (µ ‖A µ1) ≈• (ν ‖A µ1) for any µ1 provided that µ ≈• ν.

Proof. We only prove Clause 1 since the proof of Clause 2 is similar, and can be obtained

in a straightforward way by considering M• instead of •M. The proof strategy for this

result follows the standard way. Let M be the given MA and •M be the resulting MLTS

according to the early semantics in Definition 57. We first define the relation

R = {(µ ‖A µ1, ν ‖A µ1) | µ ≈
•M ν ∧ µ1 ∈ Dist(S)}

then, it is sufficient to show that R is a weak bisimulation. Let (µ0, ν0) ∈ R with

µ0 ≡ µ ‖A µ1 and ν0 ≡ ν ‖A µ1. Moreover, let µ0
αr==⇒ρ µ

′
0, We need to prove that there

exists a ν0
αr==⇒ρ ν

′
0 such that µ′0 R ν ′0.

Suppose that Supp(µ) = {si | i ∈ I}, Supp(ν) = {s′j | j ∈ J}, and Supp(µ1) = {tk |

k ∈ K} where I, J , and K are three finite index sets, then

Supp(µ0) = {si ‖A tk | i ∈ I ∧ k ∈ K},

Supp(ν0) = {s′j ‖A tk | j ∈ J ∧ k ∈ K}.

The analysis of the compositional distribution requires some attention, thus we discuss

first different cases needed for the weak transition µ0
αr==⇒ρ µ

′
0. Whenever µ0

αr==⇒ρ µ
′
0,

then we know there exists a set of states C ⊆ Supp(µ0) such that µ0(C) = ρ and

r
αr==⇒ µr for each r ∈ C where

µ′0 =
∑

r∈C

µ0(r)

ρ
· µr.

While the case αr ∈ A is more clear, the other case when αr /∈ A is a bit more involved.

Let r ≡ si ‖A tk for some i ∈ I and k ∈ K, so if r
αr==⇒ µr with αr /∈ A, then either

si
αr==⇒ µs and tk

τ
==⇒ µt, or si

τ
==⇒ µs and tk

αr==⇒ µt such that µs ‖A µt = µr. As

a result it is not simple if it is possible to prove only by structural induction, instead

we need to prove by induction on structure and on the size of Supp(µ) simultaneously.

There are several cases we need to consider.

1. αr /∈ A.

Suppose that µ is a Dirac distribution, that is, µ = δs for a s, then there exists a

µ1
τ

==⇒ µg1 + µs1 such that

µ0 = (δs ‖A µg1) + (δs ‖A µs1).

Moreover we also have

1

|µg1|
· (δs ‖A µg1)

αr==⇒ρ1 µs ‖A µg2

226

6.3 Weak Bisimulations

where δs
αr==⇒ µs and 1

|µg
1 |

· µg1
τ

==⇒ρ2 µ
g
2, and

1

|µs1|
· (δs ‖A µs1)

αr==⇒ρ2 (µ′s ‖A µs2)

where δs
τ

==⇒ µ′s and 1
|µs

1|
· µs1

αr==⇒ρ2 µ
s
2 such that ρ = ρ1 + ρ2 and ρ1

ρ · (µs ‖A

µg2) +
ρ2
ρ · (µ′s ‖A µs2) = µ′0. In other words we can divide µ0 into two parts:

δs ‖A µg1 and δs ‖A µs1 where in δs ‖A µ
g
1 the action αr is performed by δs while in

δs ‖A µs1 it is performed by µs1. Now we can use the structural induction. Since

µ ≈
•M ν, whenever µ

αr==⇒ µ′ i.e. µ
αr==⇒1 µ

′, there exists a ν
αr==⇒1 ν

′ such that

µ′ ≈
•M ν ′, so the following proof is straightforward by structural induction.

Suppose now that the support of µ contains more than one element, then there

exists a µ
τ

==⇒ µg + µs such that

µ0 = (µg ‖A µ1) + (µs ‖A µ1).

Since µ ≈
•M ν, then there exists a ν

τ
==⇒ νg + νs such that µg ≈

•M νg and

µs ≈
•M νs. Also for µ0

αr==⇒ρ µ
′
0, there must exist

1

|µg|
· (µg ‖A µ1)

αr==⇒ρ1 µ
g
0 and

1

|µs|
· (µs ‖A µ1)

αr==⇒ρ2 µ
s
0

such that ρ = ρ1 + ρ2 and

ρ1
ρ

· µg0 +
ρ2
ρ

· µs0 = µ′0.

Since µg and µs contain less elements in their support than µ, we can apply our

induction hypothesis on them, and the following proof is trivial and omitted.

2. αr ∈ A.

As in the first case we first suppose that µ is Dirac distribution such that µ = δs

for a s. Then there exists a µ1
τ

==⇒ µg1 + µs1 such that ρ = |µg1| and

µ0 = (δs ‖A µg1) + (δs ‖A µs1).

Moreover 1
|µg

1|
· (δs ‖A µg1)

αr==⇒ µ′0 where δs
αr==⇒ µ′s,

1
|µg

1|
· µg1

αr==⇒ µg2, and µ
′
0 =

µ′s ‖A µg2. Intuitively, we divide µ0 into two parts: δs ‖A µg1 and δs ‖A µs1 where

the synchronization only happens between s and Supp(µg1). Note that we can do

such division only because that µ is a Dirac distribution, otherwise we cannot

227

6. MARKOV AUTOMATA

always divide µ0 in this way, because each state in Supp(µ) is not necessary to

synchronize with the same set of states in Supp(µ1). Since µ ≈
•M ν, the following

proof is straightforward by structural induction.

The case when µ is not a Dirac distribution can be proved similarly as the first

case, and is omitted here.

3. αr = λ.

Again we first consider the case where µ = δs for a s. Then there exists a

µ1
τ

==⇒ µg1 + µs1 such that ρ = |µg1| and

µ0 = (δs ‖A µg1) + (δs ‖A µs1).

Moreover 1
|µg

1|
· (δs ‖A µg1)

λ
==⇒ µ′0 where either

(a) δs
λ1==⇒ µ′s,

1
|µg

1|
· µg1

λ2==⇒ µg2, and

µ′0 =
λ1
λ

· (µ′s ‖A (
1

|µg1|
· µg1)) +

λ2
λ

· (δs ‖ µ
g
2), or

(b) δs
λ

==⇒ µ′0,
1

|µg
1|

· µg1
λ′

6=⇒, and 1
|µg

1|
· µg1

τ
==⇒ µg2 such that µg2 ↓, or

(c) 1
|µg

1 |
· µg1

λ
==⇒ µ′0, δs

λ′

6=⇒, and δs
τ

==⇒ µ′s such that µ′s ↓.

The following proof is straightforward by structural induction. The case when

Supp(µ) is greater than 1 is similar with the first case and omitted here.

The above theorem does not hold for time-divergent MA. A detailed discussion is

given in Section 6.6.1.

6.4 Weak Simulations

In this section we introduce the weak simulations w.r.t. early and late semantics re-

spectively. We first give their definitions, and then show their properties.

228

6.4 Weak Simulations

6.4.1 Early and Late Weak Simulations

Given the definition of weak bisimulation in Definition 61, we can define weak simulation

in a straightforward way as follows:

Definition 65 (Weak Simulation). Let L = (S,Actτ ,−→) be an MLTS. A relation

R ⊆ Dist(S) × Dist(S) is a weak simulation over L iff µ R ν implies that whenever

µ
αr−→ρ µ

′, there exists a ν
αr==⇒ρ ν

′ such that µ′ R ν ′.

Let µ and ν be weakly similar, written as µ wL ν, iff there exists a weak simulation

R such that µ R ν. Moreover s wL r iff δs wL δr.

As in Section 6.3, we shall introduce two weak simulations based on early and late

semantics of MA respectively.

Definition 66 (Early and Late Weak Simulation). Two distributions µ, ν over S are

1. early weakly similar, written as µ •w ν, iff µ w
•M ν,

2. late weakly similar, written as µ w• ν, iff µ wM•
ν.

Bellow we give a simple example illustrating the early and late weak simulations.

Example 60. Let s, t, and r be the three MA in Fig. 6.1, moreover let s0 be the MA

same as s except that it has an extra transition: s0
α
−→ s′0. Then it is not hard to see

that t •w s0, t w• s0, and r w• s0, but r •w s0 does not hold. Since r can evolve into

ν which cannot be simulated by r under the early semantics.

If we omit the state s′ and its related transition in Fig. 6.1 (a), then s and r can be

seen as the resulting MLTSs by interpreting t according to the early and late semantics

respectively. As mentioned in Example 54, we have s ≈• r. Also note that s •w r, but

r •6w s with the same argument as r •6w s0. In other words, by interpreting t according

to the late semantics we actually preserve the weak simulation.

6.4.2 Properties of Early and Late Weak Simulations

In this section we will show several properties of the weak simulations. We first prove

that they are preorders. In order to do so, we introduce the following lemma similar to

Lemma 36 showing that the weak simulation does not change if we replace the strong

transitions by weak transitions.

Lemma 37. Let L = (S,Actτ ,−→) be an MLTS. A relation R ⊆ Dist(S) × Dist(S) is

a weak simulation iff µ R ν implies that whenever µ
αr==⇒ρ µ

′, there exists a ν
αr==⇒ρ ν

′

such that µ′ R ν ′.

229

6. MARKOV AUTOMATA

Proof. The proof is similar with the proof of Lemma 36. Let

R = {(µ, ν) | µ wL ν},

and suppose that µ R ν and µ
αr==⇒ρ µ

′, we are going to show that there exists a ν
αr==⇒ρ ν

′

such that µ′ ⊑R ν ′ by structural induction. According to the definition of
αr==⇒ρ, there

exists µ
αr−→ρ1 µ1

τ
==⇒ρ′1

µ′1 and µ
τ
−→ρ2 µ2

αr==⇒ρ′2
µ′2 such that ρ1 · ρ′1 + ρ2 · ρ′2 = ρ and

(
ρ1·ρ′1
ρ · µ′1 +

ρ2·ρ′2
ρ · µ′2) ≡ µ. Since µ wL ν, there exists ν

αr==⇒ρ1 ν1 and ν
τ

==⇒ρ2 ν2 such

that µ1 wL ν1 and µ2 wL ν2. By induction there exists ν1
αr==⇒ρ′1

ν ′1 and ν2
τ

==⇒ρ′2
ν ′2

such that µ′1 wL ν ′1 and µ′2 wL ν ′2, so there exists a

ν
αr==⇒ρ ν

′ ≡ (
ρ1 · ρ

′
1

ρ
· ν ′1 +

ρ2 · ρ
′
2

ρ
· ν ′2)

such that µ′ wL ν ′ i.e. µ′ R ν ′.

The other direction is trivial since the strong transition is a special case of the weak

transition.

The following lemma shows that the weak simulation for MLTSs defined in Def-

inition 65 is a preorder for any L, and as in Section 6.3 w• is strictly coarser than

•w.

Theorem 48. For any MLTS L, wL is a preorder. For any MA, •w, and w• are

preorders, moreover •w ⊂ w•.

Proof. We first show that wL is a preorder. The reflexivity is easy to prove and is

omitted here. We only show how to prove the transitivity. Suppose that µ1 wL µ2

and µ2 wL µ3, we need to prove that µ1 wL µ3. By Definition 65, if µ1 wL µ2 and

µ2 wL µ3, then there exists two weak simulations R1 and R2 such that µ1 R1 µ2 and

µ2 R2 µ3. Let

R = {(ν1, ν3) | ∃ν2.ν1 R1 ν2 ∧ ν2 R2 ν3}.

It is clear that µ1 R µ3, so once we can prove that R is a weak simulation, we can say

that µ1 wL µ3. Suppose that µ1
αr==⇒ρ µ

′
1, then there exists a µ2

αr==⇒ρ µ
′
2 such that

µ′1 R1 µ
′
2. Since we also have µ2 R2 µ3 where R2 is a weak simulation, so there exists

a µ3
αr==⇒ρ µ

′
3 such that µ′2 R2 µ

′
3. By definition of R, we have µ′1 R µ′3, so R is a weak

simulation. The proof of •w and w• being preorders is straightforward, since both •M

and M• are special MLTSs.

The proof of •w ⊂ w• is similar as Theorem 46 and is omitted here. Intuitively,

according to Definition 59 we can defer the execution of all the Markovian transitions,

230

6.4 Weak Simulations

thus the order of the Markovian transitions and internal transitions does not matter in

MLTS.

Bellows we show that both •w and w• are congruences w.r.t. the operator ‖A on

time-convergent MA.

Theorem 49. For time-convergent MA, it holds that:

1. (µ ‖A µ1)
•w (ν ‖A µ1) for any µ1 provided that µ •w ν.

2. (µ ‖A µ1) w• (ν ‖A µ1) for any µ1 provided that µ w• ν.

Proof. The proof is similar with the proof of Theorem 47, we only sketch the proof

here. First we assume that µ is a Dirac distribution i.e. its support only contains one

element, then we analysis by cases depending on i) whether µ and µ1 synchronize with

each other or not, ii) whether the transition is a Markovian transition or not. Then we

can extend the proof to the case where µ is not Dirac, the proof is by induction on the

number of elements in Supp(µ).

Let R−1 denote the reverse of R, then the weak simulation kernel wL ∩(wL)−1 is

strictly coarser than wL shown in the following lemma.

Lemma 38. For any MLTS L, ≈L ⊂ (wL ∩(wL)−1).

Proof. We omit the parameter L through the proof. The proof of ≈ ⊂ (w ∩ w−1)

is trivial and omitted here. To show that (w ∩ w−1) is strictly coarser than ≈, it is

enough to give a counterexample. Suppose we have three states s1, s2, and s3 such that

s1 w s2 w s3 but s3 6w s2 6w s1. Let s and r be two states such that L(s) = L(r).

In addition s has three transitions: s
1
−→ δs1 , s

1
−→ δs2 , s

1
−→ δs3 , and r only has two

transitions: s
1
−→ δs1 , s

1
−→ δs3 . Then it should be easy to check that s w r and r w s,

the only non-trivial case is when s
1
−→ δs2 . Since s2 w s3, thus there exists r

1
−→ δs3

such that δs2 ⊑w δs3 . But obviously s 6≈ r, since the transition s
1
−→ δs2 cannot be

simulated by any transition of r.

As a direct consequence of Lemma 38, it also holds that

•≈ ⊂ (•w ∩(•w)−1) and ≈• ⊂ (w• ∩ (w•)−1).

231

6. MARKOV AUTOMATA

6.5 Comparing •≈, ≈•, ≈ehz and ≈dh

In this section we compare our weak bisimulations with the weak bisimulation ≈ehz

in (5), and ≈dh in (6) defined upon an MLTS. We show that our early weak bisimulation

agrees with both ≈ehz and ≈dh , implying that ≈ehz = ≈dh . First, we shall recall the

definitions of ≈ehz and ≈dh in the following.

6.5.1 Weak Bisimulation à la Eisentraut, Hermanns and Zhang

In this section we recall the definition of weak bisimulation introduced in (5). For

simplicity we do not consider combined transitions here, since all the bisimulations

defined in this chapter can be changed accordingly by taking combined transitions into

account without affecting the theories. According to Lemma 2 in (5) we adopt the

following definition of ≈ehz which shall be easier for proving the relationship to our

weak bisimulations.

Definition 67 (EHZ-Weak Bisimulation). Let L = (S,Actτ ,−→) be an MLTS. A re-

lation R ⊆ ADist(S) × ADist(S) is an EHZ-weak bisimulation iff µ R ν implies that

|µ| = |ν| and

• whenever µ
τ

==⇒ µg + νs, there exists a ν
τ

==⇒ νg + νs such that

– µg R νg and µs R νs,

– if µg
αr==⇒ µ′, then there exists a νg

αr==⇒ ν ′ such that µ′ R ν ′.

• symmetrically for ν.

µ and ν are EHZ-weakly bisimilar, written as µ ≈L
ehz ν, iff there exists an EHZ-weak

bisimulation R such that µ R ν. Moreover s ≈L
ehz r iff δs ≈L

ehz δr.

Intuitively for µ and ν being EHZ-weakly bisimilar, their sizes must coincide. More-

over if µ can split into µg and νs i.e. µ
τ

==⇒ µg + µs, then µ should also be able to split

into two parts i.e. ν
τ

==⇒ νg + νs such that µg ≈L
ehz νg and µs ≈L

ehz νs. Also if µg can

evolve into µ′ via weak αr transition, in order to simulate it, νg is also able to evolve

into ν ′ via weak transition with the same label αr, and their resulting distributions µ′

and ν ′ are still EHZ-weakly bisimilar.

Even though ≈L
ehz is originally defined on any distributions in (5), we can easily

change it to deal only with full distributions due to normalization:

232

6.5 Comparing •≈, ≈•, ≈ehz and ≈dh

Lemma 39. Let µ and ν be two distributions. Then µ ≈L
ehz ν iff |µ| = |ν| and

(1
|µ| · µ) ≈L

ehz (1
|ν| · ν).

Proof. First we show that µ ≈L
ehz ν implies |µ| = |ν| and (1

|µ| · µ) ≈L
ehz (1

|ν| · ν).

The fact that |µ| = |ν| is trivial from Definition 67. Let

R = {((
1

|µ|
· µ), (

1

|ν|
· ν)) | µ ≈L

ehz ν},

we are going to prove that R is an EHZ-weak bisimulation. It is obvious that |(1
|µ| ·µ)| =

|(1
|ν| · ν)| , and Supp(µ) = Supp((1

|µ| · µ)). For each t ∈ Supp((1
|µ| · µ)), we also have

t ∈ Supp(µ). Since µ ≈L
ehz ν, there exists a ν

τ
==⇒ νg + νs such that

• (µ(t) · δt) ≈L
ehz νg and (µ − t) ≈L

ehz νs,

• (µ(t) · δt)
αr−→ µ′,

then there exists a νg
αr==⇒ ν ′ such that µ′ ≈L

ehz ν ′. Therefore there exists a

(
1

|ν|
· ν)

τ
==⇒ ((

1

|ν|
· νg)) + ((

1

|ν|
· νs))

such that

• (1
|µ| · µ(t) · δt) R (1

|ν| · νg) and (1
|µ| · µ− t) ≈L

ehz (1
|ν| · νs),

• (((1
|µ| · µ)(t)) · δt)

αr−→ (1
|µ| · µ′),

then there exists a (1
|ν| · νg)

αr==⇒ (1
|ν| · ν ′) such that

(
1

|µ|
· µ′) R (

1

|ν|
· ν ′),

so R is an EHZ-weak bisimulation.

The proof of the other direction is similar and omitted here.

According to the lemma above, we shall restrict the discussions to full distributions

while discussing the relationships between various weak bisimulation relations in the

following sections.

233

6. MARKOV AUTOMATA

6.5.2 Weak Bisimulation à la Deng and Hennesy

In (6) another definition of weak bisimulation is proposed but with the definition of

MLTSs being slightly different. By lifting their weak bisimulation to the MLTSs defined

in Definition 56, we obtain the following definition.

Definition 68 (DH-Weak Bisimulation). Let L = (S,Act τ ,−→) be an MLTS. A relation

R ⊆ Dist(S)×Dist(S) is a DH-weak bisimulation if µ R ν implies that

1. whenever µ
αr==⇒
∑

i∈I pi ·µi, there exists a ν
αr==⇒
∑

i∈I pi · νi such that µi R νi for

each i ∈ I,

2. whenever ν
αr==⇒
∑

i∈I pi · νi, there exists a µ
αr==⇒
∑

i∈I pi ·µi such that µi R νi for

each i ∈ I.

where I is a finite set of indexes and
∑

i∈I pi = 1. Let µ and ν be DH-weakly bisimilar,

written as µ ≈L
dh ν, iff there exists a DH-weak bisimulation R such that µ R ν.

Moreover s ≈L
dh r iff δs ≈L

dh δr.

Definition 67 and 68 are defined upon a given MLTS, similar as in Definition 62 we

can lift them to an MA in a straightforward way. In both (5) and (6), only the early

semantics is considered, thus we have the following definition.

Definition 69. Given an MA M = (S,Actτ ,−→,։, s0) and distributions µ and ν over

S, µ ≈ehz ν iff µ ≈
•M
ehz ν, similarly µ ≈dh ν iff µ ≈

•M
dh ν.

Example 61. Given an MA where s, t, and r are depicted as Fig. 6.1, by the early

semantics, t has a similar transition as s, and can evolve into distribution µ via a

Markovian transition labeled with 2λ, i.e. t
2λ

•−→ µ = {1
2 : s1,

1
2 : s2}. Let

R = {(δs, δt), (δ
′
s, µ)} ∪ ID

where ID is the identity relation, it is not hard to see that R is both an EHZ-weak

bisimulation and a DH-weak bisimulation by Definition 67 and 68, thus s ≈ehz t and

s ≈dh t. But for r there is no way for s and t to simulate it, for instance r1 can evolve

into t1 directly via a Markovian transition labeled with 2λ, while no state or distribution

in s and t can do so, thus neither t ≈ehz r nor t ≈dh r.

234

6.5 Comparing •≈, ≈•, ≈ehz and ≈dh

6.5.3 ≈ehz and ≈dh are Equivalent

In this section we show that •≈ agrees with both ≈ehz and ≈dh . To be clear it is

worthwhile to emphasize that the definition of ≈• is upon the late semantics of the

given MA, while all the others are defined upon the early semantics, therefore we first

consider the relations of •≈, ≈ehz and ≈dh . The following theorem shows that •≈

coincides with both ≈ehz and ≈dh :

Theorem 50. •≈ = ≈ehz = ≈dh .

Proof. We first prove that •≈ = ≈ehz , it is enough to show that ≈L = ≈L
ehz according

to Definition 62 and 69 for any MLTS L. First we prove ≈L
ehz ⊆ ≈L. Let

R = {(µ, ν) | µ ≈L
ehz ν},

then it is sufficient to show that R is a weak bisimulation according to Definition 61.

For each µ
αr==⇒ρ µ

′, we need to prove that there exists a ν
αr==⇒ρ ν

′ such that µ′ R ν ′. By

definition of ==⇒ρ, there exists a µ
τ

==⇒ µg+µs such that |µg| = ρ and (1
|µg | ·µg)

αr==⇒ µ′.

Since µ ≈L
ehz ν, then ν

τ
==⇒ νg + νs such that

(
1

|µg|
· µg) ≈L

ehz (
1

|νg|
· νg) and

(
1

|µs|
· µs) ≈L

ehz (
1

|νs|
· νs)

by Definition 67 and Lemma 39. In addition (1
|νg| · νg)

αr==⇒ ν ′ such that µ′ ≈L
ehz ν ′,

thus µ′ R ν ′. As a result there exists a ν
αr==⇒ρ ν

′ such that µ′ R ν ′, so R is indeed a

weak bisimulation.

For the other direction we prove ≈L ⊆ ≈L
ehz . Similarly we need to prove that

R = {(µ, ν) | µ ≈L ν}

is an EHZ-weak bisimulation. Suppose that µ R ν and µ
τ

==⇒ µg + µs, then we first

prove that there exists ν
τ

==⇒ νg + νs such that

1. (1
|µg| · µg) R (1

|νg| · νg) and (1
|µs| · µs) R (1

|νs| · νs),

2. whenever (1
|µg| ·µg)

αr==⇒ µ′g, there exists a (1
|νg| · νg)

αr==⇒ ν ′g such that µ′g R ν ′g.

If µ
τ

==⇒ µg + µs, then µ
τ

==⇒ρ (1
|µg| · µg) with ρ = |µg| . Since µ ≈L ν, then there

exists a weak transition ν
τ

==⇒ρ (1
|νg| · νg) such that (1

|µg| · µg) ≈L (1
|νg| · νg), thus

235

6. MARKOV AUTOMATA

(1
|µg | · µg) R (1

|µg | · νg), then the second clause is easy to verify. It only remains to

prove that (1
|µs| ·µs) R (1

|νs| ·νs). Suppose it holds that (1
|µs| ·µs) 6≈L (1

|νs| ·νs), there

must exist (1
|µs| · µs)

αr==⇒ρ µ
′s such that there does not exist (1

|νs| · νs)
αr==⇒ρ ν

′s with

µ′s ≈L ν ′s. By definition of
αr==⇒ρ, we have µ

αr==⇒ρ′ µ
′ where ρ′ = |µs| · ρ and µ′ = µ′s,

so there exists a ν
αr==⇒ρ′ ν

′ such that µ′ ≈L ν ′ but ν ′ 6= ν ′s. As a result it must holds

that (1
|νg| · νg)

αr==⇒ρ1 ν1 and (1
|νs| · νs)

αr==⇒ρ2 ν2 such that ρ1 · |ν
g| + ρ2 · |ν

s| = ρ′ and

(ρ1·|ν
g|

ρ′ · ν1 +
ρ2·|νs|

ρ′ · ν2) = ν ′. Since (1
|µg| · µg) ≈L (1

|νg| · νg), there exists a weak

transition (1
|µg| · µg)

αr==⇒ρ1 µ1 such that µ1 ≈L ν1, so we have

µ
αr==⇒(|µg| ·ρ1+|µs| ·ρ) (

|µg| · ρ1
|µg| · ρ1 + |µs| · ρ

· µ′g +
|µs| · ρ

|µg| · ρ1 + |µs| · ρ
· µ′s)

which cannot be simulated by ν, and this contradicts with the assumption that µ ≈L ν,

thus

(
1

|µs|
· µs) R (

1

|νs|
· νs).

By Lemma 39, R is an EHZ-weak bisimulation.

Secondly, we show that •≈ = ≈dh . As in the proof of •≈ = ≈ehz , it is enough to prove

that ≈L = ≈L
dh for any MLTS L. We first show that µ ≈L

dh ν implies that µ ≈L ν.

We need to prove that

R = {(µ, ν) | µ ≈L
dh ν}

is a weak bisimulation. Suppose that µ R ν and µ
αr==⇒ρ µ

′, there exists a ν
αr==⇒ρ ν

′

such that µ′ R ν ′. By definition of
αr==⇒ρ, there exists

µ
τ

==⇒ µg + µs = (|µg| ·
1

|µg|
· µg + |µs| ·

1

|µs|
· µs)

such that ρ = |µg| and 1
ρ · µg

αr==⇒ µ′. Since µ ≈L
dh ν, there exists a

ν
τ

==⇒ (|νg| ·
1

|νg|
· νg + |νs| ·

1

|νs|
· νs) = νg + νs

such that |µg| = |νg| , 1
|µg| · µg ≈L

dh
1

|νg| · νg and 1
|µs| · µs ≈L

dh
1

|νs| · νs, so there

exists a 1
|νg| · νg

αr==⇒ ν ′ such that µ′ ≈L
dh ν ′. Therefore there exists a ν

αr==⇒ρ ν
′ such

that µ′ R ν ′.

Secondly we show that µ ≈L ν implies that µ ≈L
dh ν by proving that

R = {(µ, ν) | µ ≈L ν}

is a DH-weak bisimulation. Suppose that µ R ν and µ
αr==⇒
∑

i∈I pi · µi, then we need

to show that there exists a ν
αr==⇒
∑

i∈I pi ·νi such that µi R νi for each i ∈ I. We prove

236

6.5 Comparing •≈, ≈•, ≈ehz and ≈dh

•w,wehz ,wdh
•w ∩(•w)−1•≈,≈ehz ,≈dh

w•w• ∩ (w•)−1≈•

\\\

\ \

\ \

Figure 6.5: Summary.

by induction on the size of I. The case when |I| = 1 is simple and we assume that

|I| > 1. Since µ
αr==⇒
∑

i∈I pi · µi, there exists a µ
τ

==⇒ µg + µs such that |µg| = p1 and

|µs| =
∑

i 6=1∧i∈I pi. In addition 1
p1

· µg
αr==⇒ µ1 and

1

1− p1
· µs

αr==⇒
1

1− p1
·
∑

i 6=1∧i∈I

pi · µi.

Therefore by the similar argument as in the proof of •≈ = ≈ehz , there exists a ν
τ

==⇒

νg + νs such that |µg| = |νg| , 1
|µg| · µg ≈L 1

|νg| · νg, and 1
|µs| · µs ≈L 1

|νs| · νs. By

induction there exists 1
p1

· νg
αr==⇒ ν1 and

1

1− p1
· νs

αr==⇒
1

1− p1
·
∑

i 6=1∧i∈I

pi · νi

such that µi ≈L νi for each i ∈ I, so there exists a ν
αr==⇒
∑

i∈I pi · νi such that µi R νi

for each i ∈ I. This completes the proof.

6.5.4 Summary

Let wehz and wdh denote EHZ-weak simulation (109) and DH-weak simulation, whose

definitions can be obtained by omitting Clause 2 in Definition 67 and 68 respectively.

With a similar proof as Theorem 50, we can show that •w = wehz = wdh . We summarize

all the relations in Fig. 6.5 where → denotes “implication” while 9 denotes that the

implication does not hold. Moreover •≈,≈ehz , and ≈dh are in the same node meaning

that they are equivalent, similarly for •w,wehz , and wdh .

237

6. MARKOV AUTOMATA

6.6 Related Work

Weak bisimulations have been studied for various stochastic models, for instance for

Markov chains (24, 54), interactive Markov chains (32), probabilistic automata (53, 78),

and alternating automata (56). MA arise as a combination of probabilistic automata

and interactive Markov chains. Two – seemingly – different weak bisimulation semantics

have been proposed in (5, 6) for MA. They have been shown to be equivalent in this

chapter, moreover, we have proposed a weaker version – the late weak bisimulation –

in this chapter. Another interesting related work is (98), where Rabe and Schewe have

shown that finite optimal control exists w.r.t. reachability probability for MA.

Below we discuss how the compositionality result for late weak bisimulation (early

as well) generalizes to time-divergent systems, and that it is a reduction barbed con-

gruence.

6.6.1 Compositionality for Time-Divergent MA

We have shown that •≈ agrees with both ≈ehz and ≈dh . The latter two relations have

been shown to be congruences w.r.t. parallel compositions, but only for time-convergent

MA. The reason why Theorem 47 does not apply for general MA can be understood

by the following example considered in chapter (6).

Example 62. Assume that we have two states s, r with s having no transition available

while r only has a self loop labeled with τ . It easy to check that s and r are weakly

bisimilar according to all the three weak bisimulation definitions. Now consider another

state t with only a self loop labeled with λ. After parallel composition with s and r,

(s ‖A t) and (r ‖A t) are no longer weakly bisimilar, as the λ loop has no effect for

state r ‖A t because of the maximal progress assumption.

This problem was elegantly solved in (32) by adding a third condition for defining

a divergence sensitive weak bisimulation, that is, two weakly bisimilar states either

both are divergent or none of them diverges. We could also modify our notion of weak

bisimulations along this line, then Theorem 47 could also be shown to be true for all

MA. In this case states s and t would not be weakly bisimilar anymore.

Recently, Deng and Hennesy (6) have proposed another nice solution to deal with

compositionality for time-divergent MA, by giving a new semantics for the parallel oper-

238

6.6 Related Work

ator1, using the notion of indefinite delays associated with transition. These transitions

are also referred to as passive transitions. For s ‖A t being able to perform a Markovian

transition
λ
−→, s needs be able to perform

λ
−→ and t needs to perform a passive tran-

sition, or vice versa. Thus the Markovian transition will be blocked by participating

component without Markovian or passive transitions. Under this new semantics, ≈dh is

shown to be congruent w.r.t. all MA. In our previous example we have then s ≈dh r,

and moreover s ‖A t ≈dh r ‖A t, as s ‖A t cannot perform Markovian transitions due to

the fact that s cannot perform any Markovian transition even with indefinite rate.

More importantly, in (6) Deng and Hennesy have shown that ≈dh enjoys the nice

properties of being barb-preserving, reduction-closed, and compositional i.e. ≈dh is the

largest reduction barbed congruence relation. In the following section, we shall argue

that our late weak bisimulation also enjoys these properties even though our relation

is strictly coarser than ≈dh .

6.6.2 Late Weak Bisimulation is Reduction Barbed Congruence

In (6) Deng and Hennesy have proved that ≈dh is the coarsest relation which is a reduc-

tion barbed congruence, i.e., it is barb-preserving, reduction-closed, and compositional

w.r.t. a process language (mCCS) with underlying semantics as a MLTS – with exten-

sion of passive transitions2. In Theorem 46 we have shown that ≈• is strictly coarser

than ≈dh , therefore it seems that ≈• should not be a reduction barbed congruence.

Interestingly, ≈• is indeed such a congruence. The reason that ≈• is coarser than ≈dh is

because that they are defined upon different semantics: ≈• is based on the late seman-

tics while ≈dh is upon the early semantics. Moreover, both semantics are in terms of

MLTSs. In the proof of Theorem 50 we have proved that ≈L coincides with ≈L
dh for any

MLTS L. Therefore if we define ≈dh upon the late semantics of a given MA M, it will be

equivalent to ≈• due to ≈M•

dh = ≈M•
. Since M• is an MLTS, thus as a direct consequence

of (6), ≈• is also the coarsest relation which is bard-preserving, reduction-closed, and

compositional w.r.t. mCCS.

1A slight difference is that in (6) ‖ is considered instead of ‖A .
2Our discussion here holds directly for the extension with passive transitions.

239

6. MARKOV AUTOMATA

240

Chapter 7

Conclusion and Future Work

We conclude this thesis in this section. First we summary our contributions in Sec-

tion 7.1, and then in Section 7.2 we point out some possible directions for future work.

7.1 Conclusion

In this thesis we mainly work on two things: i) probabilistic process calculi forMANETs,

and ii) (bi)simulations and their characterizations on different probabilistic models. We

first propose a discrete process calculus with which we can model unreliable wireless

connections, and moreover the network topology changes can also be modeled by a

probabilistic mobility function. We then define several variants of bisimulations and

simulations for both networks and PMFs. We then propose a continuous-time process

calculus for MANETs by extending the discrete process calculus in several ways. First

of all we allow a mobility step to change part of a network topology not just a single

connection. This is inspired by the fact that the movement of a node may affect a large

part of the network topology, not just a connection with one of its neighbors. Secondly,

we introduce stochastic time behavior for processes running at certain locations. Due

to the introduction of the group broadcast and flooding avoidance operators, we also

present a novel broadcast abstraction enabling that a broadcast action can be simulated

by several broadcast actions in a sequence.

The semantics of the two process calculi gives rise to two different widely used

probabilistic models i.e. probabilistic automata and Markov automata respectively,

therefore in this thesis we also investigate some related problems for these two models.

241

7. CONCLUSION AND FUTURE WORK

For PA we discuss a variant of (bi)simulations and their logic characterizations w.r.t.

PCTL
∗ and its sublogics. We propose a sequence of strong i-depth bisimulations which

can be characterized by a sequence of sublogics of PCTL∗. This sequence of bisim-

ulations will converge to PCTL
∗ equivalence finally, similarly for weak bisimulations

and simulations. Since CTMDP can be seen as a continuous-time counterpart of PA,

thus we can extend the work to CTMDP in a natural way. Differently, we show that

for a subclass of CTMDP i.e. 2-step recurrent CTMDP, the weak bisimulation can be

characterized by CSL equivalence without the next operator.

An MA is a compositional behavior model with both probabilistic transitions and

exponentially distributed random delays, and is a combination of PA and IMC. Pre-

viously, two different weak bisimulations, denoted as ≈ehz and ≈dh respectively, have

been proposed by different authors, and the relation between ≈ehz and ≈dh is unclear.

In this thesis, we propose two different semantics for MAs, early and late semantics

respectively. Based on the semantics, we can define two variants of weak bisimulation

for MAs: early and late weak bisimulation correspondingly. We also show that late

weak bisimulation is strictly coarser than early weak bisimulation, while the early weak

bisimulation coincides both ≈ehz and ≈dh , thus as a side contribution we prove that ≈ehz

and ≈dh are equivalent essentially. Early and late weak simulations are also defined.

7.2 Future Work

A number of directions for future work are possible. Since time is important for wireless

networks, one extension is to consider a timed version of our calculus like in (110), which

enables us to model behaviors like “each node will wait for at most 2 seconds before it

sends acknowledgement to the parent.”

Even though there always exists n such that ∼b
n can be characterized by PCTL

equivalence, it turns out that it is expensive to compute the ∼b
n, actually it has been

shown in (91) that it is NP-complete to compute the ∼b
1. But we also observe that

in practice the worst case when computing ∼b
n can hardly happen. As we mentioned

before the sequence of ∼b
i will converge to PCTL equivalence eventually. Suppose that

∼b
n = ∼PCTL, then each ∼b

i such that i < n can be seen as an approximation of ∼PCTL.

Similar as in (111, 112, 113, 114), we can build an abstract system of a given PA based

on ∼b
1 (or even coarser relations) initially in order to verify certain properties, and we

242

7.2 Future Work

keep refining the abstract system until a real counterexample of the verified property is

found, or the property is proved to be true. This technique will work for other variants

of (bi)simulations as well as for the continuous case.

As we have extended the work in Chapter 4 to countable state space, therefore

another future work will be the extension of the work in Chapter 5 to countable state

space. Since we have shown in Section 5.7.3 that the weak simulation for CTMC pro-

posed in (54) is only sound but not complete w.r.t. CSL
0
s\X (safe fragment of CSL

without next operator and all the time bounds are in the form of [0, t)), so a natural

question is that can we adopt the original definition of weak simulation in (54) such

that it is both sound and complete w.r.t. CSL0s\X.

Markov automata have been introduced as a compositional behavioral model sup-

porting both probabilistic transitions and exponentially distributed random delays. To

the best of our knowledge, no logic has been proposed which enables us to describe the

properties of MA, so another future work would be to consider a proper logic for MA

as well as its model checking algorithm. In Chapter 6 we proposed different variants of

weak (bi)simulations for MA, we could also study their logic characterizations.

243

7. CONCLUSION AND FUTURE WORK

244

References

[1] Roberto Segala and Nancy Lynch. Probabilistic sim-

ulations for probabilistic processes. Nordic J. of

Computing, 2:250–273, June 1995. ii, 4, 7, 15, 34, 47,

51, 75, 84, 86, 115, 119, 123, 124, 135, 137, 138, 144,

145, 151, 164, 175

[2] Hans Hansson and Bengt Jonsson. A logic for reason-

ing about time and reliability. Formal Aspects of

Computing, 6:512–535, 1994. 10.1007/BF01211866. ii,

7, 115, 121

[3] Andrea Bianco and Luca de Alfaro. Model checking

of probabilistic and nondeterministic systems. In

P. Thiagarajan, editor, Foundations of Software Technol-

ogy and Theoretical Computer Science, 1026 of Lecture

Notes in Computer Science, pages 499–513. Springer

Berlin / Heidelberg, 1995. 10.1007/3-540-60692-0 70.

iii, 7, 115, 121

[4] C. Baier and J.-P. Katoen. Principles of model checking.

MIT Press, 2008. iii, 115, 120

[5] Christian Eisentraut, Holger Hermanns, and Lijun

Zhang. On Probabilistic Automata in Continu-

ous Time. In Proceedings of the 2010 25th Annual

IEEE Symposium on Logic in Computer Science, LICS

’10, pages 342–351, Washington, DC, USA, 2010. IEEE

Computer Society. iii, 5, 9, 10, 77, 84, 95, 209, 210, 212,

213, 225, 232, 234, 238

[6] Yuxin Deng and Matthew Hennessy. On the semantics

of Markov automata. In Proceedings of the 38th in-

ternational conference on Automata, languages and pro-

gramming - Volume Part II, ICALP’11, pages 307–318,

Berlin, Heidelberg, 2011. Springer-Verlag. iii, 9, 10,

209, 212, 213, 232, 234, 238, 239

[7] R. Milner. A Calculus of Communicating Systems.

Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1982. 3, 6

[8] R. Milner. Communication and Concurrency. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1989. 3, 6,

51, 127, 144

[9] C. A. R. Hoare. Communicating sequential pro-

cesses. Commun. ACM, 21(8):666–677, August 1978.

3

[10] J.A. Bergstra and J.W. Klop. Process algebra for

synchronous communication. 1984. 3

[11] J.A. Bergstra and J.W. Klop. Algebra of communi-

cating processes with abstraction. Theoretical Com-

puter Science, 37(0):77 – 121, 1985. 3

[12] J. C. M. Baeten and W. P. Weijland. Process Algebra.

Cambridge University Press, 1990. 3

[13] Robin Milner, Joachim Parrow, and David Walker. A

calculus of mobile processes, I. Inf. Comput.,

100:1–40, September 1992. 3

[14] Robin Milner, Joachim Parrow, and David Walker. A

calculus of mobile processes, II. Inf. Comput.,

100:41–77, September 1992. 3

[15] Davide Sangiorgi and David Walker. π-Calculus: A The-

ory of Mobile Processes. Cambridge University Press,

New York, NY, USA, 2001. 3

[16] Gordon D. Plotkin. A structural approach to op-

erational semantics. J. Log. Algebr. Program., 60-

61:17–139, 2004. 3

[17] Alessandro Giacalone, Chi chang Jou, and Scott A.

Smolka. Algebraic Reasoning for Probabilistic

Concurrent Systems. In Proceedings IFIP TC2 Work-

ing Conference on Programming Concepts and Methods,

pages 443–458. North-Holland, 1990. 3

[18] Gavin Lowe. Probabilistic and prioritized mod-

els of timed CSP. In Selected papers of the meet-

ing on Mathematical foundations of programming seman-

tics, pages 315–352, Amsterdam, The Netherlands, The

Netherlands, 1995. Elsevier Science Publishers B. V. 3

[19] Manuel Núñez, David de Frutos-Escrig, and Luis Fer-

nando Llana D́ıaz. Acceptance Trees for Prob-

abilistic Processes. In Proceedings of the 6th In-

ternational Conference on Concurrency Theory, CON-

CUR ’95, pages 249–263, London, UK, 1995. Springer-

Verlag. 3

[20] D. Cazorla, F. Cuartero, V. Valero, and F. L. Pelayo.

A process algebra for probabilistic and nonde-

terministic processes. Inf. Process. Lett., 80:15–23,

October 2001. 3

[21] Diego Cazorla, Fernando Cuartero, Valent́ın Valero

Ruiz, Fernando L. Pelayo, and Juan José Pardo. Alge-

braic theory of probabilistic and nondeterminis-

tic processes. J. Log. Algebr. Program., 55(1C2):57 –

103, 2003. 3

[22] Suzana Andova and Jos C. M. Baeten. Abstraction in

Probabilistic Process Algebra. In Proceedings of the

7th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS 2001,

pages 204–219, London, UK, 2001. Springer-Verlag. 3

[23] Rance Cleaveland, Scott Smolka, and Amy Zwarico.

Testing preorders for probabilistic processes. In

W. Kuich, editor, Automata, Languages and Program-

ming, 623 of Lecture Notes in Computer Science,

pages 708–719. Springer Berlin / Heidelberg, 1992.

10.1007/3-540-55719-9 116. 3

[24] Christel Baier and Holger Hermanns. Weak Bisim-

ulation for Fully Probabilistic Processes. In Pro-

ceedings of the 9th International Conference on Computer

Aided Verification, CAV ’97, pages 119–130, London,

UK, 1997. Springer-Verlag. 3, 7, 33, 34, 238

245

http://dl.acm.org/citation.cfm?id=642068.642075
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dl.acm.org/citation.cfm?id=1373322
http://dx.doi.org/10.1109/LICS.2010.41
http://dl.acm.org/citation.cfm?id=2027223.2027254
http://dl.acm.org/citation.cfm?id=539036
http://dl.acm.org/citation.cfm?id=534666
http://doi.acm.org/10.1145/359576.359585
http://igitur-archive.library.uu.nl/ph/2006-1108-200202/UUindex.html
http://www.sciencedirect.com/science/article/pii/030439758590088X
http://dx.doi.org/10.1017/CBO9780511624193
http://dl.acm.org/citation.cfm?id=162037.162038
http://dl.acm.org/citation.cfm?id=162037.162039
http://dl.acm.org/citation.cfm?id=559050
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.3664
http://dl.acm.org/citation.cfm?id=202463.202368
http://dl.acm.org/citation.cfm?id=646730.703685
http://dl.acm.org/citation.cfm?id=513274.513276
http://www.sciencedirect.com/science/article/pii/S1567832602000401
http://dl.acm.org/citation.cfm?id=646485.694472
http://dx.doi.org/10.1007/3-540-55719-9_116
http://dl.acm.org/citation.cfm?id=647766.736021

REFERENCES

[25] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard

Steffen. Reactive, generative, and stratified mod-

els of probabilistic processes. Inf. Comput., 121:59–

80, August 1995. 4, 7

[26] Hans Hansson and Bengt Jonsson. A Framework for

Reasoning about Time and Reliability. In IEEE

Real-Time Systems Symposium, pages 102–111, 1989. 4

[27] Wang Yi and Kim Guldstrand Larsen. Testing Proba-

bilistic and Nondeterministic Processes. In Pro-

ceedings of the IFIP TC6/WG6.1 Twelth International

Symposium on Protocol Specification, Testing and Verifi-

cation XII, pages 47–61, Amsterdam, The Netherlands,

The Netherlands, 1992. North-Holland Publishing Co.

4

[28] Norbert Götz, Ulrich Herzog, and Michael Rettelbach.

Multiprocessor and Distributed System Design:

The Integration of Functional Specification and

Performance Analysis Using Stochastic Process

Algebras. In Performance Evaluation of Computer and

Communication Systems, Joint Tutorial Papers of Per-

formance ’93 and Sigmetrics ’93, pages 121–146, Lon-

don, UK, 1993. Springer-Verlag. 4

[29] Jane Hillston. A compositional approach to performance

modelling. Cambridge University Press, New York, NY,

USA, 1996. 4, 7, 84, 113

[30] Marco Bernardo and Roberto Gorrieri. A tutorial

on EMPA: a theory of concurrent processes

with nondeterminism, priorities, probabilities

and time. Theor. Comput. Sci., 202:1–54, July 1998.

4

[31] C. Priami. Stochastic π-calculus. The Computer Jour-

nal, 38(7):578, 1995. 4

[32] Holger Hermanns. Interactive Markov chains: and the

quest for quantified quality. Springer-Verlag, Berlin, Hei-

delberg, 2002. 4, 7, 76, 84, 89, 113, 173, 175, 209, 210,

213, 238

[33] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella,

Michele Loreti, and Mieke Massink. Model check-

ing mobile stochastic logic. Theor. Comput. Sci.,

382:42–70, August 2007. 4

[34] Maria G. Vigliotti and Peter G. Harrison. Stochas-

tic Ambient Calculus. Electronic Notes in Theoretical

Computer Science, 164(3):169 – 186, 2006. 4

[35] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte. Gen-

eralized Stochastic Petri Nets: A Definition at

the Net Level and its Implications. IEEE Trans.

Softw. Eng., 19:89–107, February 1993. 4

[36] Martin L. Puterman. Markov Decision Processes: Dis-

crete Stochastic Dynamic Programming. John Wiley &

Sons, Inc., New York, NY, USA, 1st edition, 1994. 4

[37] Martin R. Neuhäußer and Joost-Pieter Katoen. Bisim-

ulation and Logical Preservation for Continuous–

Time Markov Decision Processes. In Lúıs Caires

and Vasco Thudichum Vasconcelos, editors, CONCUR

’07, 4703 of Lecture Notes in Computer Science, pages

412–427. Springer, 2007. 4, 7, 167, 168, 171, 172, 175,

186, 208

[38] Eugene A. Feinberg. Continuous Time Discounted

Jump Markov Decision Processes: A Dis-

crete-Event Approach. Math. Oper. Res., 29:492–

524, August 2004. 4

[39] Yasmina Abdeddäım, Eugene Asarin, and Oded Maler. On

optimal scheduling under uncertainty. In Proceed-

ings of the 9th international conference on Tools and al-

gorithms for the construction and analysis of systems,

TACAS’03, pages 240–253, Berlin, Heidelberg, 2003.

Springer-Verlag. 4

[40] Qinru Qiu and Massoud Pedram. Dynamic power

management based on continuous-time Markov

decision processes. In Proceedings of the 36th annual

ACM/IEEE Design Automation Conference, DAC’99,

pages 555–561, New York, NY, USA, 1999. ACM. 4

[41] David Park. Concurrency and Automata on In-

finite Sequences. In Proceedings of the 5th GI-

Conference on Theoretical Computer Science, pages 167–

183, London, UK, 1981. Springer-Verlag. 6

[42] R.J. van Glabbeek. The Linear Time - Branching

Time Spectrum I. In J.A. Bergstra, A. Ponse, and

S.A. Smolka, editors, Handbook of Process Algebra, pages

3–99. Elsevier, 2001. 6, 168

[43] Rob J. van Glabbeek. The Linear Time - Branching

Time Spectrum II. In Proceedings of the 4th Inter-

national Conference on Concurrency Theory, CONCUR

’93, pages 66–81, London, UK, 1993. Springer-Verlag.

6, 168

[44] Edmund M. Clarke and E. Allen Emerson. Design

and Synthesis of Synchronization Skeletons Us-

ing Branching-Time Temporal Logic. In Logic of

Programs, Workshop, pages 52–71, London, UK, 1982.

Springer-Verlag. 6

[45] M. C. Browne, E. M. Clarke, and O. Grümberg. Charac-

terizing finite Kripke structures in propositional

temporal logic. Theor. Comput. Sci., 59:115–131, July

1988. 6

[46] Edmund M. Clarke, Orna Grumberg, and David E. Long.

Model checking and abstraction. ACM Trans. Pro-

gram. Lang. Syst., 16:1512–1542, September 1994. 7

[47] Chi-Chang Jou and Scott A. Smolka. Equivalences,

Congruences, and Complete Axiomatizations for

Probabilistic Processes. In Proceedings of the The-

ories of Concurrency: Unification and Extension, CON-

CUR ’90, pages 367–383, London, UK, 1990. Springer-

Verlag. 7

[48] Bengt Jonsson and Kim Guldstrand Larsen. Specifica-

tion and Refinement of Probabilistic Processes.

In LICS, pages 266–277, 1991. 7, 51

[49] Kim G. Larsen and Arne Skou. Bisimulation through

probabilistic testing. Inf. Comput., 94:1–28, Septem-

ber 1991. 7, 164

[50] Adnan Aziz, Vigyan Singhal, and Felice Balarin. It Usu-

ally Works: The Temporal Logic of Stochastic

Systems. In Proceedings of the 7th International Con-

ference on Computer Aided Verification, pages 155–165,

London, UK, 1995. Springer-Verlag. 7

246

http://dl.acm.org/citation.cfm?id=210643.210649
http://dx.doi.org/10.1109/REAL.1989.63561
http://dl.acm.org/citation.cfm?id=645835.670408
http://dl.acm.org/citation.cfm?id=647339.721059
http://dl.acm.org/citation.cfm?id=236373
http://dl.acm.org/citation.cfm?id=279591.279592
http://dx.doi.org/10.1093/comjnl/38.7.578
http://dl.acm.org/citation.cfm?id=1744274
http://dl.acm.org/citation.cfm?id=1280297.1280556
http://www.sciencedirect.com/science/article/pii/S157106610600497X
http://dx.doi.org/10.1109/32.214828
http://www.worldcat.org/isbn/9780471727828
http://dblp.uni-trier.de/db/conf/concur/concur2007.html#NeuhausserK07
http://dl.acm.org/citation.cfm?id=1024112.1024152
http://dl.acm.org/citation.cfm?id=1765871.1765894
http://doi.acm.org/10.1145/309847.309997
http://dl.acm.org/citation.cfm?id=647210.720030
http://dl.acm.org/citation.cfm?id=558149
http://dl.acm.org/citation.cfm?id=646728.703353
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=55079.55083
http://doi.acm.org/10.1145/186025.186051
http://dl.acm.org/citation.cfm?id=646725.702891
http://dx.doi.org/10.1109/LICS.1991.151651
http://dl.acm.org/citation.cfm?id=117588.117589
http://dl.acm.org/citation.cfm?id=647764.735697

REFERENCES

[51] Luca de Alfaro. Temporal Logics for the Specifica-

tion of Performance and Reliability. In Proceedings

of the 14th Annual Symposium on Theoretical Aspects of

Computer Science, STACS ’97, pages 165–176, London,

UK, 1997. Springer-Verlag. 7

[52] J. Desharnais, A. Edalat, and P. Panangaden. A Logi-

cal Characterization of Bisimulation for Labeled

Markov Processes. In Proceedings of the 13th Annual

IEEE Symposium on Logic in Computer Science, LICS

’98, pages 478–, Washington, DC, USA, 1998. IEEE

Computer Society. 7

[53] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak

Bisimulation for Probabilistic Systems. In Pro-

ceedings of the 11th International Conference on Concur-

rency Theory, CONCUR ’00, pages 334–349, London,

UK, 2000. Springer-Verlag. 7, 164, 210, 238

[54] Christel Baier, Joost-Pieter Katoen, Holger Hermanns,

and Verena Wolf. Comparative branching-time se-

mantics for Markov chains. Inf. Comput., 200:149–

214, August 2005. 7, 51, 116, 135, 143, 144, 148, 164,

167, 168, 178, 192, 202, 204, 205, 208, 238, 243

[55] Pedro R. D’Argenio, Nicolás Wolovick, Pedro Sánchez

Terraf, and Pablo Celayes. Nondeterministic La-

beled Markov Processes: Bisimulations and Log-

ical Characterization. In Proceedings of the 2009

Sixth International Conference on the Quantitative Eval-

uation of Systems, QEST ’09, pages 11–20, Washington,

DC, USA, 2009. IEEE Computer Society. 7, 208

[56] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and

Prakash Panangaden. Weak Bisimulation is Sound

and Complete for pCTL*. In Proceedings of the 13th

International Conference on Concurrency Theory, CON-

CUR ’02, pages 355–370, London, UK, 2002. Springer-

Verlag. 7, 15, 155, 156, 157, 158, 159, 164, 208, 215,

238

[57] Holger Hermanns, Augusto Parma, Roberto Segala,

Björn Wachter, and Lijun Zhang. Probabilistic Log-

ical Characterization. Inf. Comput., 209:154–172,

February 2011. 7, 160, 164, 208

[58] Marco Bernardo and Roberto Gorrieri. Extended

Markovian Process Algebra. In Proceedings of

the 7th International Conference on Concurrency The-

ory, CONCUR ’96, pages 315–330, London, UK, 1996.

Springer-Verlag. 7

[59] Christel Baier, Joost-Pieter Katoen, and Holger Her-

manns. Approximate Symbolic Model Checking of

Continuous-Time Markov Chains. In Proceedings of

the 10th International Conference on Concurrency The-

ory, CONCUR ’99, pages 146–161, London, UK, 1999.

Springer-Verlag. 7

[60] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and

Robert Brayton. Model-checking continuous-time

Markov chains. ACM Trans. Comput. Logic, 1:162–

170, July 2000. 7

[61] J. Desharnais and P. Panangaden. Continuous

Stochastic Logic characterizes Bisimulation of

Continuous-time Markov Processes. J. Log. Algebr.

Program., 56(1-2):99–115, 2003. 7, 208

[62] Augusto Parma and Roberto Segala. Logical charac-

terizations of bisimulations for discrete proba-

bilistic systems. In Proceedings of the 10th interna-

tional conference on Foundations of software science and

computational structures, FOSSACS’07, pages 287–301,

Berlin, Heidelberg, 2007. Springer-Verlag. 7

[63] Sebastian Nanz and Chris Hankin. A framework for

security analysis of mobile wireless networks.

Theor. Comput. Sci., 367:203–227, November 2006. 13,

71, 72

[64] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A

process calculus for mobile ad hoc networks. In

Proceedings of the 10th international conference on Co-

ordination models and languages, COORDINATION’08,

pages 296–314, Berlin, Heidelberg, 2008. Springer-

Verlag. 13, 72

[65] Massimo Merro. An Observational Theory for Mo-

bile Ad Hoc Networks. Electron. Notes Theor. Com-

put. Sci., 173:275–293, April 2007. 13, 26, 72

[66] Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar. Re-

stricted Broadcast Process Theory. In Proceedings

of the 2008 Sixth IEEE International Conference on Soft-

ware Engineering and Formal Methods, pages 345–354,

Washington, DC, USA, 2008. IEEE Computer Society.

13, 72, 113

[67] Jens Chr. Godskesen. A calculus for mobile ad

hoc networks. In Proceedings of the 9th international

conference on Coordination models and languages, CO-

ORDINATION’07, pages 132–150, Berlin, Heidelberg,

2007. Springer-Verlag. 13, 26, 72

[68] Jens Chr. Godskesen. A Calculus for Mobile Ad-hoc

Networks with Static Location Binding. Electron.

Notes Theor. Comput. Sci., 242:161–183, July 2009. 13,

26

[69] Davide Sangiorgi and DavidWalker. PI-Calculus: A The-

ory of Mobile Processes. Cambridge University Press,

New York, NY, USA, 2001. 23, 30

[70] Bengt Jonsson. Simulations Between Specifications

of Distributed Systems. In Proceedings of the 2nd

International Conference on Concurrency Theory, CON-

CUR ’91, pages 346–360, London, UK, 1991. Springer-

Verlag. 51, 144

[71] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.

Computing simulations on finite and infinite

graphs. In Proceedings of the 36th Annual Symposium

on Foundations of Computer Science, FOCS ’95, pages

453–462, Washington, DC, USA, 1995. IEEE Computer

Society. 51, 144

[72] Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar.

Equational Reasoning on Mobile Ad Hoc Net-

works. Fundam. Inf., 105:375–415, December 2010. 73

[73] Lei Song and Jens Chr. Godskesen. Probabilistic Mo-

bility Models for Mobile and Wireless Networks.

In Cristian Calude and Vladimiro Sassone, editors, The-

oretical Computer Science, 323 of IFIP Advances in

Information and Communication Technology, pages 86–

100. Springer Boston, 2010. 10.1007/978-3-642-15240-

5 7. 79

247

http://dl.acm.org/citation.cfm?id=646512.695347
http://dl.acm.org/citation.cfm?id=788020.788888
http://dl.acm.org/citation.cfm?id=646735.701630
http://dx.doi.org/10.1016/j.ic.2005.03.001
http://dx.doi.org/10.1109/QEST.2009.17
http://dl.acm.org/citation.cfm?id=646737.701802
http://dx.doi.org/10.1016/j.ic.2010.11.024
http://dl.acm.org/citation.cfm?id=646731.703705
http://dl.acm.org/citation.cfm?id=646734.701464
http://doi.acm.org/10.1145/343369.343402
http://dx.doi.org/10.1016/S1567-8326(02)00068-1
http://dl.acm.org/citation.cfm?id=1760037.1760060
http://dl.acm.org/citation.cfm?id=1226644.1226653
http://dl.acm.org/citation.cfm?id=1788954.1788973
http://dl.acm.org/citation.cfm?id=1230146.1230270
http://dl.acm.org/citation.cfm?id=1475696.1476202
http://dl.acm.org/citation.cfm?id=1764606.1764617
http://dl.acm.org/citation.cfm?id=1563047.1563122
http://dl.acm.org/citation.cfm?id=559050
http://dl.acm.org/citation.cfm?id=646726.703042
http://dl.acm.org/citation.cfm?id=795662.796255
http://dl.acm.org/citation.cfm?id=2010420.2010422
http://dx.doi.org/10.1007/978-3-642-15240-5_7

REFERENCES

[74] Xavier Nicollin and Joseph Sifakis. An Overview and

Synthesis on Timed Process Algebras. In Pro-

ceedings of the 3rd International Workshop on Computer

Aided Verification, CAV ’91, pages 376–398, London,

UK, 1992. Springer-Verlag. 89

[75] Wang Yi. CCS + Time = An Interleaving Model

for Real Time Systems. In Proceedings of the

18th International Colloquium on Automata, Languages

and Programming, pages 217–228, London, UK, 1991.

Springer-Verlag. 89

[76] Sudarshan Vasudevan, Jim Kurose, and Don Towsley.

Design and Analysis of a Leader Election Algo-

rithm for Mobile Ad Hoc Networks. In Proceedings

of the 12th IEEE International Conference on Network

Protocols, pages 350–360, Washington, DC, USA, 2004.

IEEE Computer Society. 109, 110

[77] Fatemeh Ghassemi, Mahmoud Talebi, Ali Movaghar, and

Wan Fokkink. Stochastic Restricted Broadcast

Process Theory. In EPEW, pages 72–86, 2011. 113

[78] Roberto Segala. Modeling and verification of randomized

distributed real-time systems. PhD thesis, Cambridge,

MA, USA, 1995. 115, 118, 173, 209, 210, 213, 215, 238

[79] Hichem Boudali, Pepijn Crouzen, and Marielle

Stoelinga. A Rigorous, Compositional, and

Extensible Framework for Dynamic Fault Tree

Analysis. IEEE Trans. Dependable Secur. Comput.,

7:128–143, April 2010. 116

[80] Stefano Cattani and Roberto Segala. Decision Algo-

rithms for Probabilistic Bisimulation. In Proceed-

ings of the 13th International Conference on Concurrency

Theory, CONCUR ’02, pages 371–385, London, UK,

2002. Springer-Verlag. 116, 215, 217

[81] Christel Baier, Bettina Engelen, and Mila Majster-

Cederbaum. Deciding bisimilarity and similarity

for probabilistic processes. J. Comput. Syst. Sci.,

60:187–231, February 2000. 116

[82] Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and

David N. Jansen. Bisimulation minimisation mostly

speeds up probabilistic model checking. In Pro-

ceedings of the 13th international conference on Tools and

algorithms for the construction and analysis of systems,

TACAS’07, pages 87–101, Berlin, Heidelberg, 2007.

Springer-Verlag. 116

[83] Moshe Y. Vardi. Automatic verification of proba-

bilistic concurrent finite state programs. In Pro-

ceedings of the 26th Annual Symposium on Foundations

of Computer Science, pages 327–338, Washington, DC,

USA, 1985. IEEE Computer Society. 119

[84] Hans A. Hansson. Time and Probability in Formal Design

of Distributed Systems. Elsevier Science Inc., New York,

NY, USA, 1994. 119

[85] Rob J. van Glabbeek and W. Peter Weijland. Branch-

ing time and abstraction in bisimulation seman-

tics. J. ACM, 43:555–600, May 1996. 128

[86] H.H. Schaefer, M.P.H. Wolff, and M. Wolff. Topological

vector spaces, 3. Springer Verlag, 1999. 157

[87] Hans Hansson and Bengt Jonsson. A Calculus for

Communicating Systems with Time and Proba-

bitilies. In IEEE Real-Time Systems Symposium, pages

278–287, 1990. 164

[88] Matthew Hennessy and Robin Milner. Algebraic laws

for nondeterminism and concurrency. J. ACM,

32:137–161, January 1985. 164

[89] B. Jonsson, K. Larsen, and W. Yi. Probabilistic ex-

tensions of process algebras. In Handbook of Process

Algebra, Elsevier, pages 685–710, 2001. 164, 208

[90] Roberto Segala and Andrea Turrini. Comparative

Analysis of Bisimulation Relations on Alternat-

ing and Non-Alternating Probabilistic Models. In

QEST, pages 44–53, 2005. 164, 175

[91] Mathieu Tracol, Josée Desharnais, and Abir Zhioua.

Computing Distances between Probabilistic Au-

tomata. In QAPL, pages 148–162, 2011. 165, 242

[92] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman,

and Marielle Stoelinga. Game Relations and Met-

rics. In Proceedings of the 22nd Annual IEEE Sym-

posium on Logic in Computer Science, pages 99–108,

Washington, DC, USA, 2007. IEEE Computer Society.

165

[93] John Fearnley, Markus Rabe, Sven Schewe, and Lijun

Zhang. Efficient Approximation of Optimal Con-

trol for Continuous-Time Markov Games. In

FSTTCS, pages 399–410, 2011. 167

[94] Tomás Brázdil, Vojtech Forejt, Jan Krcál, Jan

Kret́ınský, and Antońın Kucera. Continuous-Time

Stochastic Games with Time-Bounded Reacha-

bility. In FSTTCS, pages 61–72, 2009. 167

[95] Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-

Pieter Katoen. Delayed Nondeterminism in Con-

tinuous-Time Markov Decision Processes. In Pro-

ceedings of the 12th International Conference on Founda-

tions of Software Science and Computational Structures:

Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2009, FOSSACS

’09, pages 364–379, Berlin, Heidelberg, 2009. Springer-

Verlag. 167, 170

[96] Martin R. Neuhausser and Lijun Zhang. Time-Bounded

Reachability Probabilities in Continuous-Time

Markov Decision Processes. In Proceedings of the

2010 Seventh International Conference on the Quantita-

tive Evaluation of Systems, QEST ’10, pages 209–218,

Washington, DC, USA, 2010. IEEE Computer Society.

167, 175, 177

[97] Peter Buchholz, Ernst Moritz Hahn, Holger Hermanns,

and Lijun Zhang. Model checking algorithms for

CTMDPs. In Proceedings of the 23rd international con-

ference on Computer aided verification, CAV’11, pages

225–242, Berlin, Heidelberg, 2011. Springer-Verlag. 167

[98] Markus N. Rabe and Sven Schewe. Finite optimal con-

trol for time-bounded reachability in CTMDPs

and continuous-time Markov games. Acta Inf.,

48(5-6):291–315, 2011. 167, 175, 177, 238

248

http://dl.acm.org/citation.cfm?id=647760.735193
http://dl.acm.org/citation.cfm?id=646245.684528
http://dl.acm.org/citation.cfm?id=1025124.1025906
http://dx.doi.org/10.1007/978-3-642-24749-1_7
http://dl.acm.org/citation.cfm?id=239648
http://dx.doi.org/10.1109/TDSC.2009.45
http://dl.acm.org/citation.cfm?id=646737.701950
http://dl.acm.org/citation.cfm?id=337978.338011
http://dl.acm.org/citation.cfm?id=1763507.1763519
http://dl.acm.org/citation.cfm?id=1382438.1382865
http://dl.acm.org/citation.cfm?id=561335
http://doi.acm.org/10.1145/233551.233556
http://dx.doi.org/10.1109/REAL.1990.128759
http://doi.acm.org/10.1145/2455.2460
http://doi.ieeecomputersociety.org/10.1109/QEST.2005.9
http://dx.doi.org/10.4204/EPTCS.57.11
http://dl.acm.org/citation.cfm?id=1270399.1271693
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.399
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2307
http://dx.doi.org/10.1007/978-3-642-00596-1_26
http://dx.doi.org/10.1109/QEST.2010.47
http://dl.acm.org/citation.cfm?id=2032305.2032324
http://dblp.uni-trier.de/db/journals/acta/acta48.html#RabeS11

REFERENCES

[99] Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Bisim-

ulations meet PCTL equivalences for probabilis-

tic automata. In Proceedings of the 22nd international

conference on Concurrency theory, CONCUR’11, pages

108–123, Berlin, Heidelberg, 2011. Springer-Verlag.

168, 185, 208

[100] Peter Buchholz and Ingo Schulz. Numerical analy-

sis of continuous time Markov decision processes

over finite horizons. Comput. Oper. Res., 38:651–659,

March 2011. 170, 177

[101] Nicols Wolovick and Sven Johr. A Characteriza-

tion of Meaningful Schedulers for Continuous–

Time Markov Decision Processes. In Eugene Asarin

and Patricia Bouyer, editors, FORMATS ’06, 4202

of Lecture Notes in Computer Science, pages 352–367.

Springer, 2006. 171

[102] Christel Baier, Boudewijn Haverkort, Holger Hermanns,

and Joost-Pieter Katoen. Model-Checking Algo-

rithms for Continuous-Time Markov Chains.

IEEE Trans. Softw. Eng., 29:524–541, June 2003. 172,

186

[103] Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, Car-

roll Morgan, and Chenyi Zhang. Characterising Test-

ing Preorders for Finite Probabilistic Processes.

In Proceedings of the 22nd Annual IEEE Symposium on

Logic in Computer Science, pages 313–325, Washington,

DC, USA, 2007. IEEE Computer Society. 173

[104] Christian Eisentraut, Holger Hermanns, and Lijun

Zhang. On Probabilistic Automata in Continu-

ous Time. In Proceedings of the 2010 25th Annual

IEEE Symposium on Logic in Computer Science, LICS

’10, pages 342–351, Washington, DC, USA, 2010. IEEE

Computer Society. 173, 175

[105] Holger Hermanns and Sven Johr. Uniformity by Con-

struction in the Analysis of Nondeterministic

Stochastic Systems. In Proceedings of the 37th An-

nual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN ’07, pages 718–728, Wash-

ington, DC, USA, 2007. IEEE Computer Society. 175

[106] Lijun Zhang, Holger Hermanns, Friedrich Eisenbrand,

and David N. Jansen. Flow faster: efficient decision

algorithms for probabilistic simulations. In Pro-

ceedings of the 13th international conference on Tools and

algorithms for the construction and analysis of systems,

TACAS’07, pages 155–169, Berlin, Heidelberg, 2007.

Springer-Verlag. 185

[107] Kohei Honda and Mario Tokoro. On Asynchronous

Communication Semantics. In Proceedings of

the Workshop on Object-Based Concurrent Computing,

pages 21–51, London, UK, 1992. Springer-Verlag. 212

[108] Yuxin Deng, Rob Glabbeek, Matthew Hennessy, and Car-

roll Morgan. Testing Finitary Probabilistic Pro-

cesses. In Proceedings of the 20th International Con-

ference on Concurrency Theory, CONCUR 2009, pages

274–288, Berlin, Heidelberg, 2009. Springer-Verlag. 215

[109] Christian Eisentraut, Holger Hermanns, and Lijun

Zhang. Concurrency and composition in a

stochastic world. In Proceedings of the 21st interna-

tional conference on Concurrency theory, CONCUR’10,

pages 21–39, Berlin, Heidelberg, 2010. Springer-Verlag.

237

[110] Massimo Merro, Francesco Ballardin, and Eleonora

Sibilio. A timed calculus for wireless systems.

Theor. Comput. Sci., 412:6585–6611, November 2011.

242

[111] Holger Hermanns, Björn Wachter, and Lijun Zhang.

Probabilistic CEGAR. In Proceedings of the 20th in-

ternational conference on Computer Aided Verification,

CAV ’08, pages 162–175, Berlin, Heidelberg, 2008.

Springer-Verlag. 242

[112] Björn Wachter and Lijun Zhang. Best probabilistic

transformers. In Proceedings of the 11th international

conference on Verification, Model Checking, and Abstract

Interpretation, VMCAI’10, pages 362–379, Berlin, Hei-

delberg, 2010. Springer-Verlag. 242

[113] Mark Kattenbelt, Marta Kwiatkowska, Gethin Nor-

man, and David Parker. A game-based abstrac-

tion-refinement framework for Markov decision

processes. Form. Methods Syst. Des., 36(3):246–280,

September 2010. 242

[114] Rohit Chadha and Mahesh Viswanathan. A counterex-

ample-guided abstraction-refinement framework

for markov decision processes. ACM Trans. Com-

put. Logic, 12(1):1:1–1:49, November 2010. 242

249

http://dl.acm.org/citation.cfm?id=2040235.2040246
http://dx.doi.org/10.1016/j.cor.2010.08.011
http://dblp.uni-trier.de/db/conf/formats/formats2006.html#WolovickJ06
http://dl.acm.org/citation.cfm?id=1435631.859038
http://dl.acm.org/citation.cfm?id=1270399.1271713
http://dx.doi.org/10.1109/LICS.2010.41
http://dx.doi.org/10.1109/DSN.2007.96
http://dl.acm.org/citation.cfm?id=1763507.1763526
http://dl.acm.org/citation.cfm?id=646774.705726
http://dx.doi.org/10.1007/978-3-642-04081-8_19
http://dl.acm.org/citation.cfm?id=1887654.1887657
http://dx.doi.org/10.1016/j.tcs.2011.07.016
http://dx.doi.org/10.1007/978-3-540-70545-1_16
http://dx.doi.org/10.1007/978-3-642-11319-2_26
http://dx.doi.org/10.1007/s10703-010-0097-6
http://doi.acm.org/10.1145/1838552.1838553

	List of Figures
	List of Tables
	1 Introduction
	1.1 Mobile Ad Hoc Networks
	1.2 Process Calculi and Probability
	1.3 (Bi)Simulation and Logical Characterization
	1.4 Contributions and Overview of the Thesis
	1.5 My Publications

	2 Discrete Model
	2.1 Motivation
	2.2 The Calculus
	2.3 Labeled Transition System
	2.4 Weak (Probabilistic) Bisimulation
	2.4.1 Weak Bisimulation
	2.4.2 Weak Probabilistic Bisimulation

	2.5 Weak (Probabilistic) Simulation
	2.5.1 Weak Simulation
	2.5.2 Weak Probabilistic Simulation

	2.6 Bisimulations and Simulations between PMFs
	2.6.1 Weak Bisimulations between PMFs
	2.6.2 Weak Simulation between PMFs

	2.7 The Zeroconf Protocol
	2.8 Related Work

	3 Continuous Model
	3.1 Motivation
	3.2 The Calculus
	3.3 Labeled Transition System
	3.4 Weak Bisimulations
	3.4.1 Weak Bisimulation on States
	3.4.2 Weak Bisimulation on Distributions

	3.5 Weak Simulations
	3.5.1 Weak Simulation on States
	3.5.2 Weak Simulation on Distributions

	3.6 Removal of Memory
	3.7 A Leader Election Protocol
	3.8 Related Work

	4 Probabilistic Automata
	4.1 Motivation
	4.2 Preliminaries
	4.2.1 Probabilistic Automaton
	4.2.2 PCTL* and its Sublogics
	4.2.3 Strong Probabilistic Bisimulation

	4.3 A Novel Strong Bisimulation
	4.3.1 Strong 1-depth Bisimulation
	4.3.2 Strong Branching Bisimulation
	4.3.3 Strong Bisimulation
	4.3.4 Taxonomy for Strong Bisimulations

	4.4 Weak Bisimulations
	4.4.1 Branching Probabilistic Bisimulation by Segala
	4.4.2 A Novel Weak Branching Bisimulation
	4.4.3 Weak Bisimulation
	4.4.4 Taxonomy for Weak Bisimulations

	4.5 Simulations
	4.5.1 Strong i-depth Branching Simulation
	4.5.2 Strong i-depth Simulation
	4.5.3 Weak Simulations
	4.5.4 Simulation Kernel and Summary of Simulation

	4.6 Countable States
	4.7 The Coarsest Congruent (Bi)Simulations
	4.8 Related Work

	5 Continuous-time MDP
	5.1 Motivation
	5.2 Preliminaries
	5.2.1 Continuous-time Markov Decision Process.
	5.2.2 Path and Measurable Scheduler
	5.2.3 Continuous Stochastic Logic

	5.3 Parallel Composition for CTMDPs
	5.4 Bisimulations for CTMDPs
	5.4.1 Strong Bisimulation
	5.4.2 Weak Bisimulation
	5.4.3 Determining 2-step Recurrent CTMDPs

	5.5 Characterization of CSL in General CTMDPs
	5.5.1 Strong i-depth Bisimulation
	5.5.2 Weak i-depth Bisimulation

	5.6 Simulations
	5.6.1 Strong and Weak Simulations
	5.6.2 Strong and Weak i-depth Simulations

	5.7 Relation to Probabilistic Automata and Markov Chains
	5.7.1 Relation to Bisimulation of Probabilistic Automata
	5.7.2 Relation to (Weak) Bisimulation for CTMCs
	5.7.3 Relation to (Weak) Simulations for CTMCs

	5.8 Summary
	5.9 Related Work

	6 Markov Automata
	6.1 Motivation
	6.2 Markov Automata
	6.2.1 Preliminaries
	6.2.2 Early Semantics of Markov Automata
	6.2.3 Late Semantics of Markov Automata

	6.3 Weak Bisimulations
	6.3.1 Early and Late Weak Bisimulations
	6.3.2 Properties of Early and Late Weak Bisimulations
	6.3.3 Compositionality

	6.4 Weak Simulations
	6.4.1 Early and Late Weak Simulations
	6.4.2 Properties of Early and Late Weak Simulations

	6.5 Comparing , , ehz and dh
	6.5.1 Weak Bisimulation à la Eisentraut, Hermanns and Zhang
	6.5.2 Weak Bisimulation à la Deng and Hennesy
	6.5.3 ehz and dh are Equivalent
	6.5.4 Summary

	6.6 Related Work
	6.6.1 Compositionality for Time-Divergent MA
	6.6.2 Late Weak Bisimulation is Reduction Barbed Congruence

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

