
A Formal Model For Declarative Workflows
Dynamic Condition Response Graphs

Raghava Rao Mukkamala

A PhD DissertationPresented to the Faculty of the IT University of Copenhagenin Partial Fulfillment of the Requirements of the PhD Degree

Advisor : Thomas T. Hildebrandt - IT University of Copenhagen, Denmark
Examiners : Andrzej Wąsowski - IT University of Copenhagen, DenmarkRichard Hull - IBM T.J. Watson Research Center, NY, USAHagen Völzer - IBM Research - Zurich, Switzerland

IT University of Copenhagen February 2012

i

A Formal Model For Declarative Workflows
Dynamic Condition Response Graphs

Current business process technology is pretty good in supporting well-structuredbusiness processes and aim at achieving a fixed goal by carrying out an exact setof operations. In contrast, those exact operations needed to fulfill a business pro-cess/workflow may not be always possible to foresee in highly complex and dynamicenvironments like healthcare and case management sectors, where the processes ex-hibit a lot of uncertainty and unexpected behavior and thereby require high degreeof flexibility. Declarative models have been suggested by several research groups asa good approach to handle such ad-hoc nature by describing control flow implicitlyand there by offering greater flexibility to the end uses.The first contribution of this PhD thesis is to formalize the core primitives of adeclarative workflow management system employed by our industrial partner Result-maker and further develop it as a general formal model for specification and executionof declarative, event-based business processes, as a generalization of a concurrencymodel, the classic event structures. The model allows for an intuitive operationalsemantics and mapping of execution state by a notion of markings of the graphs andwe have proved that it is sufficiently expressive to model ω-regular languages forinfinite runs. The model has been extended with nested subgraphs to express hi-erarchy, multi-instance sub processes to model replicated behavior and support for
data.The second contribution of the thesis is to provide a formal technique for safedistribution of collaborative, cross-organizational workflows declaratively modeledin DCR graphs based on a notion of projections. The generality of the distributiontechnique allows for fine tuned projections based on few selected events/labels, atthe same time keeping the declarative nature of the projected graphs (which arealso DCR graphs). We have also provided semantics for distributed executions basedon synchronous communication among network of projected graphs and proved thatglobal and distributed executions are equivalent.Further, to support modeling of processes using DCR Graphs and to make theformal model available to a wider audience, we have developed prototype tools forspecification and a workflow engine for the execution of DCR Graphs. We have alsodeveloped tools interfacing SPIN model checker to formally verify safety and livenessproperties on the DCR Graphs. Case studies from healthcare and case managementdomains have been modeled in DCR Graphs to show that our formal model is suitablefor modeling the workflows from those dynamic sectors.This PhD project is funded by the Danish Strategic Research Council through theTrustworthy Pervasive Healthcare Services project (www.trustcare.eu).

Acknowledgments

It would not have been possible to finish this thesis without the help of various people.
First of all, I would like to thank my supervisor, Thomas Hildebrandt, for his constantsupport, guidance and encouragement throughout my PhD. Incidentally, Thomas wasalso my master’s thesis supervisor in 2005, wherein he introduced process algebraand Bigraphs to me . Then, I realized the amazing power of formal models for the firsttime in my long IT career. I came from an IT background to do a PhD in application offormal methods, therefore, in initial days, I was always not sure whether I would feelcomfortable in the formal methods. But he has been always supporting, encouragingme to learn new things, had time and enormous patience for discussions with me. Iwould be very grateful to him for all these years of working with him and also I amquite happy that I could work with him for some more time.
Further, I would like to thank my co-author and fellow PhD student Tijs Slaatsfor his support and his friendship. It has been always been a pleasure working withhim and looking forward for a productive forthcoming year working with him. Manythanks to all the members of the Programming, Logics, and Semantics group at ITUfor fruitful and very good friendly working environment. Especially, I would like tothank Hugo A. Lopez and Espen Højsgaard for sharing their thesis template, whichactually saved a lot of my time and made the thesis looking nice.
As part of my PhD, I visited the IBM T.J. Watson Research Center, New York, USAin 2011 for couple months. I would like to thank Dr. Rick Hull for proving me anopportunity to visit him and his group, which gave us a chance to study and relatetheir work with our formal model. I also visited Microsoft Research India in 2010 forthree months. I would like to thank Dr. Sriram Rajamani for being the perfect host,went far beyond his duties to offer me to share his cabin, and gave me a chance tovisit their Programming Languages and Tools group and experience their scintillatingwork culture there.
Finally, my hearty thanks to my father and mother, who always wished me to gofor higher studies. I also wish to thank my sons Siddu and Rishi for their supportand their patience for not complaining even a bit when I was missing from the homefor many weekends before thesis deadline. Lastly, but not the least, I would like tothank my wife Alivelu, without whose support it would have been possible to finishmy PhD. Many deep-felt thanks to her for her support and bearing with all my crazyplans of going for PhD.

Raghava Rao MukkamalaCopenhagen, February 29, 2012

Contents

Abstract i

Acknowledgments iii

Contents v

List of Tables ix

Listings xi

List of Figures xiii

1 Introduction 11.1 Brief Historical Perspective of Business Processes 21.2 Business Process Management and IT . 31.2.1 BPM Standardization Approaches 41.3 Why Formal Models? . 51.4 Motivation for Declarative Models . 61.5 Thesis Statement . 101.5.1 TrustCare Project . 101.5.2 Research Goal . 111.6 Thesis Outline . 131.6.1 List of Publications . 131.6.2 Chapters Outline . 15
2 Background 172.1 Resultmaker Online Consultant - A Declarative Workflow 172.1.1 Resultmaker Online Consultant - Formalization 182.1.2 Case Study: Healthcare Workflow 292.1.3 Preliminary conclusion to the case study 322.1.4 Conclusion . 382.2 DECLARE: A Constraint Based Approach For Flexible Workflows . . . 402.2.1 Process Modeling . 402.2.2 Process Execution . 412.2.3 Conclusion . 412.3 Event Structures . 432.3.1 Introduction . 432.3.2 Event Structures, Configurations 432.3.3 Conclusion . 472.4 Summary . 49

vi Contents

3 Dynamic Condition Response Graphs 513.1 Motivation . 513.1.1 DCR Graphs as generalized Event Structures 533.2 Related Work . 543.3 Dynamic Condition Response Graphs . 563.3.1 Condition Response Event Structures 563.3.2 DCR Graphs - Formal Semantics 603.3.3 Distributed Dynamic Condition Response Graphs 683.3.4 Infinite runs - From DCR Graphs to Büchi-automata 693.4 DCR Graphs - Graphical Notation . 733.5 Expressibility of DCR Graphs . 783.5.1 Büchi Automaton . 783.5.2 Encoding of Büchi Automaton into DCR Graphs - Example . . 813.5.3 Bisimulation between büchi and DCR Graph 833.5.4 Conclusion . 893.6 Summary . 89
4 Dynamic Condition Response Graphs - Extensions 914.1 Nested Dynamic Condition Response Graphs 914.1.1 Nested DCR Graphs by Healthcare Workflow Example 924.1.2 Nested DCR Graphs - Formal Semantics 944.1.3 Case Study: Case Management Example In Nested DCR Graphs. 994.2 Nested DCR Graphs with Sub Processes 1034.2.1 Formal definition of Nested DCR Graphs with sub processes . 1044.2.2 Flattening of Nested DCR Graph with sub processes 1074.2.3 Execution Sematics of DCR Graphs with Subprocesses 1094.3 DCR Graphs with Data . 1124.3.1 Nested DCR Graphs with Data . 1154.3.2 Healthcare Example in DCR Graphs with Data 1174.4 Summary . 118
5 Distribution of DCR Graphs 1195.1 Introduction . 1195.2 Related Work . 1215.3 DCR Graphs - Projection and Composition 1235.3.1 Projection . 1235.3.2 Composition . 1345.3.3 Safe Distributed Synchronous Execution of DCR Graphs 1365.3.4 Distribution of Case Management Example 1405.4 Distribution of Nested DCR Graphs . 1455.4.1 Projections . 1455.4.2 Distributed Execution in Nested DCR Graphs 1475.4.3 Distribution of Healthcare Workflow 148

Contents vii

5.5 Summary . 154
6 Formal Verification, Tools and Implementation 1576.1 Related Work . 1576.2 Safety and Liveness for DCR Graphs . 1596.2.1 Executions and Must Executions 1596.2.2 Safety Properties . 1616.2.3 Liveness Properties . 1636.3 Formal Verification using SPIN . 1656.3.1 Brief overview of SPIN and PROMELA lanaguage 1666.3.2 Encoding DCR Graphs into PROMELA 1706.3.3 Verification of Safety Properties 1736.3.4 Verification of Liveness Properties 1806.4 Formal Verification using ZING . 1836.5 Prototype Tools . 1846.5.1 DCRG Process Engine . 1856.5.2 Process Repository . 1876.5.3 Windows-based Graphical Editor 1876.5.4 Web Client . 1886.5.5 Model Checking Tool . 1886.5.6 Serialization Format for DCR Graphs 1896.6 Summary . 192
7 Conclusion and Future Work 1957.1 Conclusion . 1957.2 Contribution . 1967.3 Future Work . 1977.3.1 Extensions to Formal Model . 1977.3.2 Relating to the other formal models 201
Appendix A PROMELA Code for Verification of Properties 207A.1 PROMELA Code for Deadlock Free Property 207A.2 PROMELA Code for Strongly Deadlock Free Property 212A.3 PROMELA Code for Liveness Property . 217A.4 PROMELA Code for Strongly Liveness Property 223
Appendix B Zing Code for Give Medicine Example 229

Bibliography 235

List of Tables

2.1 Loan application Process Matrix . 222.2 The Process Matrix at Run Time. 24

Listings

3.1 Formal representation of healthcare example in DCR Graphs 774.1 Formal specification of Healthcare Workflow in Nested DCR Graphs. . 964.2 Flatten DCR Graph for Healthcare Workflow from listing 4.1. 984.3 Formal specification of prescribe medicine example in Nested DCR Graphswith subprocesses. 1064.4 Flattened DCR graph for prescribe medicine example 1084.5 Prescribe medicine example after execution of prescribe 1115.1 Formal specification of arrange meeting arrangement example 1415.2 Formal specification of projected DCR graphs for arrange meeting ex-ample . 1426.1 Overview of DCR Graph Xml . 1896.2 DCRG specification in Xml . 1906.3 DCRG Runtime in Xml . 192

List of Figures

1.1 The BPM lifecyle to compare Workflow Management and BPM [van derAalst et al. 2003] . 31.2 Give medicine example in Flow chart . 71.3 Declarative verses Imperative Approaches [van der Aalst & Pesic 2006a] 81.4 Give medicine example in DCR Graphs 91.5 TrustCare project research methodology 11
2.1 The Online Consultant Architecture. 192.2 Overview of the relation between research protocols/standard treat-ment plans, local practice guidelines (standard plans) and flow charts.General guidelines are use at the hospital, containing issues like thetreatment of diabetes. 312.3 Oncologic workflow in relation to chemotherapeutic treatment of pa-tient. 322.4 Enablers and obstacles for digitalized clinical process support. 342.5 Information marked with * could be transferred from or registered au-tomatically in another hospital information system (HIS) W= write, R= read, N = denied access. 362.6 Nondeterministic behavior in events structures 452.7 Concurrency in events structures . 452.8 Process in labeled events structures . 462.9 Give medicine example in events structures 47
3.1 From Event Structures to DCR Graphs overview 533.2 Prescribe and Sign Example . 543.3 Encoding of conflict from CRES as mutual exclusion in DCR Graphs. . 643.4 The Büchi-automaton for DCR Graph from Fig. 3.6 annotated withstate information . 703.5 The Büchi-automaton with stratified view 723.6 Give Medicine Example . 733.7 Transition system for DCR graph from fig 3.6 743.8 Give Medicine Example with Check . 753.9 Runtime for Give Medicine Example from 3.8 753.10 Runtime for Give Medicine Example with Don’t trust from 3.8 763.11 Extended Give Medicine Example with milestone relation 773.12 Büchi-automaton Example . 813.13 DCR Graphfor Büchi-automaton in figure 3.12 82
4.1 Oncology Workflow as a nested DCR Graph 924.2 Oncology Workflow as a nested DCR Graph with runtime state 95

xiv List of Figures

4.3 Top level requirements of case management as a DCR Graph 1004.4 Case Handling Process . 1024.5 Case Handling Process Runtime . 1044.6 Case Handling Process Runtime After Upload Document 1054.7 Case Handling Process Runtime After Accept Dates 1064.8 Prescribe medicine example with subprocesses 1074.9 Flattened prescribe medicine example . 1084.10 Prescribe medicine example with an instance of subprocess 1124.11 Prescribe medicine example in DCR Graphs with data. 117
5.1 Key problems studied in related work . 1215.2 Arrange meeting cross-organizational case management example . . . 1405.3 . 1415.4 Oncology Workflow as a nested DCR Graph 1495.5 Projection over doctor’s role (D) . 1515.6 Projection over nurse role (N and N1) . 1525.7 Projection over control pharmacist role (CP) 1535.8 Projection over pharmacy assistant role (PA) 153
6.1 A non-deadlock free DCR Graph . 1626.2 Deadlock free DCR Graph . 1626.3 Give Medicine example (deadlock free, live, but not strongly deadlockfree) . 1636.4 State space for Give Medicine example (deadlock free, live, but notstrongly deadlock free) . 1646.5 Give Medicine example (strongly live) . 1656.6 State space for Give Medicine example (strongly live) 1666.7 Data types and variables in PROMELA 1676.8 Arrays and Type definitions in PROMELA 1686.9 Control flow and proctype in PROMELA 1696.10 Verification of DCR Graphs with SPIN - Overview 1706.11 Variable declarations for DCR Graphs in PROMELA 1726.12 DCR Graph specification in PROMELA 1736.13 Give Medicine example . 1746.14 PROMELA code for main process . 1746.15 Computing enabled events in PROMELA code 1756.16 Non deterministic execution in verification of deadlock free property . 1766.17 Verification of deadlock free property in SPIN - Console output 1776.18 Non deterministic execution for strongly deadlock free property 1786.19 Verification of strongly deadlock free property in SPIN - Console output1796.20 Error trail for violation of strongly deadlock free property in SPIN . . 1806.21 Specification of global process for liveness properties 1816.22 Computation of accepting marking . 1826.23 SPIN never claim for [] <> accepting_state_visited 182

List of Figures xv

6.24 Protoype Architecture . 1846.25 Process Execution Service Contract . 1856.26 Notification Service Contract . 1856.27 Service Contract implemented by Process Repository 1866.28 The Graphical Editor for DCR Graphs . 1876.29 Execution of a DCR Graph in the Web Tool 1886.30 Code generation options for Model checkers 1886.31 Model Checking Tool for DCR Graphs . 189
7.1 Oncology treatment process with temporal constraints 1987.2 Requisition Order in GSM model [Hull et al. 2011b] 2027.3 A sample GSM model . 2047.4 DCR Graph for sample GSM model . 204

Chapter 1

Introduction

Organizations have always been working on improving their processes to optimizetheir productivity, on one hand to face the global competition and on the other handto bring new ideas and concepts to add more value to their products and services.In order to reduce expenses and to enhance their revenues, organizations constantlylook for better ways to improve their processes by automating some or whole ofrepeatable activities so that they can be performed at a faster rate with little or novariation. Process automation aims at streaming and standardizing the processes byreducing the human error and enhancing the operational efficiency, thereby derive abetter value for products and services of a business.A business process can be classified as a combination of a set of activities withinan organization, having a clear structure identifying their logical order and depen-dencies to achieve a desired goal [Sara & Aguilar-Saven 2004]. The main aim of aprocess model is to get a clear-cut and comprehensive understanding of a businessscenario or a goal. On the whole, the activities of a business process are performedin coordination in an organizational context with the help of technical environmentto realize a business goal [Weske 2007].With the help of modeling, often a very complicated business scenario can betranslated into a simplified model. We can reason about a simplified model much moreeasily than what we can reason about the very complex scenario itself. In other words,models help us to manage complexity and also to make decisions based on the well-understood and explicitly formulated essentials of the modeled situation [Kilov 2002].On the whole, good models helps us handle complicated problems in a clear andexplicit manner. In general business process models [Weske 2007] are the primaryartifacts for implementing the business processes and they contain a set activitymodels and execution constraints prescribing the logical order between them.According to Gartner [Hill et al. 2006], in a management perspective, BusinessProcess Management (BPM) is a management discipline that treats business pro-cesses as assets to be valued, designed, and exploited in their own right. It is astructured methodology to employ both management practices and software toolscontinuously to model, manage and optimize the activities and processes that in-teract with people and systems both within and across organizations. But a moreconcrete definition of BPM from the scientific community point of view [van der Aalst
et al. 2003, Weske 2007] is that, the BPM is a methodology to support business pro-cesses using methods, techniques and software to design, enact, control and analyzeoperational processes involving humans, organizations, applications, documents andother source of information. In the thesis, we will adhere to the later definition of the

2 Chapter 1. Introduction

BPM.Before looking further into the business process technology, let us delve downinto it’s historical perspective to get a better understanding of how process-centricthinking has evolved during the course of time to the state of art of current BPMmethodology.
1.1 Brief Historical Perspective of Business Processes

Even though the importance of business processes were first mentioned by a manage-ment theorist, Levitt [Levitt 1960] as early as in 1960, but it was not until the1980sthat the process orientation acquired real importance in the design of organiza-tions [Sara & Aguilar-Saven 2004]. However during the 1970s, there was a lot ofinterest in Office automation initiative with a motivation to enhance productivity ofoffice workers by automating the office procedures. It also received the attention ofComputer Science [Zisman 1977, BURNS 1977, Ellis 1979, Ellis & Nutt 1980] with akey research focus on design methodology, software tools, and system integrationtechniques. Even though there was great optimism about the success of office au-tomation, only quite few systems were successful. The systems developed in 1970swere quite rigid, embedded with complex specifications of the organizations officeprocedures which interfered with the work routines rather than expedite them andfurther more, the networking facilities and application technology were not suffi-ciently mature enough for the success of office automation [Ellis & Nutt 1996, van derAalst et al. 2003].In 1980s, Michel Porter introduced the concept of value chain, which is the firstgroundwork for the emphasis on the comprehensive understanding of a business pro-cesses that spread across the functional or departmental boundaries [Harmon 2007].In the end of 1980s, Rummler and Brache [Rummler & Brache 1990, Rummler &Brache 1995, Harmon 2007], provided a detailed methodology on how to analyze anorganization with a process-centric view and how to redesign and improve processes.They focused on organizations as systems and worked from top down to develop acomprehensive picture of how organizations were defined by processes. In the sameperiod, Six Sigma Movement is one of the important contributions from the qualitycontrol management perspectives. Even though Six Sigma Movement has evolved asbest practices from the quality control initiatives, but it failed to make a significantinfluence on process-centric initiatives due to its origins in quality control and aheavy emphasis on the statistical techniques [Harmon 2007].Apart from those mention above, the most important and notable initiative isBusiness Process Reengineering (BPR) movement which began in 1990s. The mainmotivators for BPR initiative are Champy [Hammer & Champy 1993], Davenport [Dav-enport 1993] and Hammer [Hammer 1990], who strongly argued that organizationsmust think in terms of comprehensive processes, in the similar lines of Porter’s valuechains and Rummler’s organization level. The methodology proposed under BPR isthat, the processes should be conceptualized as complete entities and then, Infor-

1.2. Business Process Management and IT 3

mation Technology (IT) should be used to integrate these comprehensive processes.Further BPR theorists had observed that IT applications could cut across departmen-tal boundaries to eliminate inefficiencies and yield huge gains in coordination [Har-mon 2007].In the 1990s, along with BPR movement, there was again a huge interest in theIT field to build systems to support business processes, which gave birth to new typeof software applications called business process management systems (BPMS) andwe will explore them in the next section.
1.2 Business Process Management and IT

In mid 1990s, most of the developments in business processes were driven by Informa-tion Technology. We can observe two broad categories in the software applicationsthat emerged in the initiative of business process management and redesign. The firstcategory of systems is Enterprise resource planning (ERP) systems. These systemsare based on modules such as inventory, accounting and human resources and theyare suitable for the standardized processes that are most common between the or-ganizations and they can be considered as integrated business process managementsystem [van der Aalst et al. 2003].The second category of applications are Workflow Management Systems thatprovide support for automating and execution of business processes. Workflow isa concept closely related to Office automation from 1970s and the business pro-cess reengineering that began in 1990s [Georgakopoulos et al. 1995, van der Aalst
et al. 2003, Russel & Ter Hofstede 2009] and according to Workflow ManagementCoalition [WfMC 1999], workflow is defined as "The automation of a business process,in whole or part, during which documents, information or tasks are passed from oneparticipant to another for action, according to a set of procedural rules".

Figure 1.1: The BPM lifecyle to compare Workflow Management and BPM [van derAalst et al. 2003]
The relationship between the workflow management systems and business pro-cess management systems can be explained in a better manner by using the figure 1.1,which shows four key phases of BPM life cycle [van der Aalst et al. 2003]. The first

4 Chapter 1. Introduction

phase is process design, where business processes are identified and are modeledusing various existing business process modeling techniques. In the configurationphase, the modeled processes will be implemented using software applications orusing off the shelf BPM products. The third phase is the enactment phase wherethe business processes are realized and the process instances are initiated to fulfillthe business goals. The last phase involves evaluation of process logs and otherinformation produced by the process instance during enactment phase to analyzeand improve the performance of a process. The focus of workflow management ismostly on implementing the lower half of BPM life cycle, from process design toprocess enactment, which does not generally include the diagnosis phase. On theother hand, business process management also focusses on the analysis, flexibilityand other process improvement techniques.One of the major paradigm shift during the evolution of applications in the ITis moving from data orientation to process orientation [van der Aalst et al. 2003,Aalst 2004]. During 1970s and 1980s the application development was dominated bydata driven approaches. In those times the focus of the applications was to storeand retrieve information and there by started adopting data modeling as a base forbuilding applications in IT. These applications often neglected the process centric ap-proach in modeling the business processes. However Business process reengineeringmovement evolved during 1990s strongly advocated for process centric approach andthereby more emphasis on process centric approach which can be observed in thelater IT applications that were build for supporting business processes.Another interesting paradigm for modeling business processes is the artifact-centric approach [Gerede et al. 2007, Gerede & Su 2007, Bhattacharya et al. 2007b,Cohn & Hull 2009], which strongly argues that data design should be elevated to thesame level as control flows for data rich workflows and business processes. Businessartifacts combine the data aspects and process aspects in a holistic manner and anartifact type contains both an information model and lifecycle model, where informa-tion model manages the data for business objects and lifecycle model describes thepossible ways the tasks on business objects can be invoked.
1.2.1 BPM Standardization Approaches

One of the key factors for failure of office automation in 1970s was the lack of unifiedstandards for design methodology and modeling systems. However considerable ef-forts have been made in the last two decades for standardization in workflows andbusiness process management. The Workflow Management Coalition [Workflow Man-agement Coalition 1993] was formed in 1993 by major product vendors from workflowand BPM, with a goal of achieving interoperability and other process related stan-dards among the product vendors. Now it has more than 300 member organizations,workflow users, interested groups from academia and one of its notable contributionis XML Process Definition Language (XPDL) [Workflow Management Coalition 2008],for exchange business process definitions between different workflow vendors.A more later standardization effort in BPM community were focussed at devel-

1.3. Why Formal Models? 5

oping standards for business process modeling and execution. The Web ServicesBusiness Process Execution Language (WS-BPEL) [OASIS WSBPEL Technical Com-mittee 2007] has evolved as a standard process oriented language for service compo-sition in the context of Service oriented architecture (SOA) and web services. Eventhough it has been widely adopted by different workflow product vendors, but lackof formal semantics for WS-BPEL has led to different implementations by differentvendors and there by exchange of BPEL processes form one tool to other becamedifficult. Furthermore, WS-BPEL does not have a graphical language which makesit difficult to use it for modeling of business processes.Further, Business Process Modeling Notation (BPMN) [Object Management GroupBPMN Technical Committee 2011] has been introduced as a modeling language forbusiness processes with graphical notation. The processes modeled in BPMN cannot be executed directly, but they can be translated to WS-BPEL for execution. Inthe recent years, it has been widely adopted as a modeling language for businessprocesses, since there is no formalization for BPMN accepted by standards com-mittee, different interpretations could be possible for some of its concepts [Hofstede
et al. 2010]. Even though the BPMN has become more mature and expressive inthe recent versions, but it still lacks clear semantics for some of its constructs, forexample ad-hoc sub processes.In addition to the above, there also exists standards for other approaches tomodel business processes such as activity diagrams of Unified Modeling Language(UML) [OMG 2007] and Event driven Process Chains (EPCs) [Scheer 1998]. UMLactivity diagrams are not meant to be executed directly and they don’t have anyformalization accepted by the OMG UML standing committee [Hofstede et al. 2010],even though formal semantics for UML activity diagrams were defined in [Eshuis 2002].
1.3 Why Formal Models?

Formal methods is a technique to model complex systems as mathematical entities.The use of formal methods is strongly advocated by many researchers [Bowen &Stavridou 1993, M.Clarke et al. 1999, van der Aalst et al. 2003] as a way of increasingconfidence in building practical and complex systems, as the usage of formal modelsleaves no scope for ambiguity.In general business processes involve many stakeholder right from the domainexperts to process modeler with varied technical backgrounds. Hence usage graph-ical languages to make the processes easily understood by different stakeholdersis a common practice in business process modeling. Furthermore, business processmodels can be quite complex in nature, and hence there should not be any scope formany interpretations of the same scenario. Lack of formal semantics for some of thebusiness process languages has resulted into different implementation by differentvendors. Therefore the usage of a formal language for specification of complex sce-narios will eliminate the scope for ambiguity and will guarantee that there will notbe any chance for alternative interpretations.

6 Chapter 1. Introduction

Usage of formal models for specification of business processes has another ad-vantage of using analysis techniques to analyze processes. Since business processescan be complex, it is always advantageous to detect errors at the design stage itself,instead of correcting them after deploying the processes. Moreover, formal modelscan be used to guarantee certain properties (such as deadlock freeness etc) on busi-ness processes, which can be used to analyze them. Now a days, model checkingand verification techniques have been developed to a large extent. Usage of formalmodels for business processes can make use of these model checking and verifica-tion techniques to reason about the properties on processes and to provide suitableguidance to the process modeler at the design time.
1.4 Motivation for Declarative Models

There were quite large number of workflow and business processes managementsystems developed in the past decade and they have been quite successful in provid-ing support to users for the enactment of their processes. However their applicabilityis still limited to specific sectors like insurance and banking. Current business pro-cess technology is pretty good in supporting well-structured business processes withwell-defined set of tasks, showing little or variations in their possible execution se-quences [Reichert & Dadam 1997, van der Aalst et al. 2003, van der Aalst et al. 2009].Traditional business process systems aim at computing a specific algorithm, carryingout an exact set of operations to achieve a fixed goal.In contrast, the exact operations needed to fulfill a business process/workflow maynot be always possible to foresee in highly complex and rapidly changing environ-ments [Strong & Miller 1995, Reichert & Dadam 1997]. such as healthcare and casemanagement domains. The processes in those domains exhibit a lot of uncertainty,unexpected and ad-hoc behavior. In case management and healthcare domains, theend users like case workers, doctors/nurses will have better knowledge than the pro-cess modelers regarding how to deal with un-expected behavior. In case of traditionalbusiness processes, any behavior that is not foreseen by the process modelers cannot be realized by the process instances at the time of enactment. In those domains,traditional business processes technology did not make considerable impact, as theyexhibit too rigid behavior, on contrary healthcare and case management domainsrequire high degree of flexibility.Declarative process models have been suggested by several research groups asa good approach to handle such ad-hoc nature by describing control flow implicitlyand there by offering greater flexibility to the end uses. A key difference betweendeclarative and imperative process languages is that the control flow for the firstkind is defined implicitly as a set of constraints or rules, and for the latter is defined
explicitly, e.g. as a flow diagram or a sequence of state changing commands. There isa long tradition for using declarative logic based languages to schedule transactionsin the database community, see e.g. [Fernandes et al. 1997]. Several researchers havenoted [Davulcu et al. 1998, Senkul et al. 2002, Singh et al. 1995, Bussler & Jablon-

1.4. Motivation for Declarative Models 7

ski 1994, van der Aalst et al. 2009, van der Aalst & Pesic 2006a, Pesic 2008] that itcould be an advantage to use a declarative approach to achieve more flexible processdescriptions in other areas, in particular for the specification of case managementworkflow and ad hoc business processes. The increased flexibility is obtained intwo ways: Firstly, since it is often complex to explicitly model all possible waysof fulfilling the requirements of a workflow, imperative descriptions easily lead toover-constrained control flows. In the declarative approach any execution fulfillingthe constraints of the workflow is allowed, thereby leaving maximal flexibility in theexecution. Secondly, adding a new constraint to an imperative process descriptionoften requires that the process code is completely rewritten, while the declarativeapproach just requires the extra constraint to be added. In other words, declarativemodels provide flexibility for the execution at run time and with respect to changesto the process.

(a) Flow chart 1 (b) Flow chart 2 (c) Flow chart 3
Figure 1.2: Give medicine example in Flow chart

As a simple motivating example, consider a hospital workflow extracted from areal-life study of paper-based oncology workflow at danish hospitals [Lyng et al. 2008,Mukkamala et al. 2008]. As a start, we assume two events, prescribe and sign,representing a doctor adding a prescription of medicine to the patient record andsigning it respectively. We assume the constraints stating that the doctor must signafter having added a prescription of medicine to the patient record and not to sign anempty record. A naive imperative process description may simply put the two actions

8 Chapter 1. Introduction

in sequence, prescribe;sign, which allows the doctor to first prescribe medicine andthen sign the record as shown in the figure 1.2-(a). In this way the possibilitiesof adding several prescriptions before or after signing and signing multiple timesare lost, even if they are perfectly legal according to the constraints. The mostgeneral imperative description should start with the prescribe event, followed byloops allowing either sign or prescribe events and only allow termination after asign event as shown in the figure 1.2-(b). If the execution continues forever, it mustbe enforced that every prescription is eventually followed by a sign event.With respect to the second type of flexibility, consider adding a new event give,representing a nurse giving the medicine to the patient, and the rule that a nursemust give medicine to the patient if it is prescribed by the doctor, but not before ithas been signed. For the most general imperative description we should add theability to execute the give event within the loop after the first sign event and notallow to terminate the flow if we have had a prescribe event without a subsequent
give event as shown in the flowchart 1.2-(c).The main point of this example is, that we in many cases may want to allowany execution that satisfy the given requirements, but not to constrain ourselvesto a specific way of fulfilling the requirements. In order to explain the differencesbetween imperative and declarative approaches, we will make use of the figure 1.3from [van der Aalst & Pesic 2006a, Pesic 2008], where the behavior exhibited by theprocedural and declarative modeling languages is compared.

Figure 1.3: Declarative verses Imperative Approaches [van der Aalst & Pesic 2006a]
Imperative languages start specifying models from inside out style i.e specifyingthe control flow explicitly to model the behavior that we want to have in the process.The imperative models focus on specifying how the requirements should be fulfilled,where as the declarative models focus on specifying what should be fulfilled [van der

1.4. Motivation for Declarative Models 9

Aalst & Pesic 2006a, van der Aalst et al. 2009], by offering all the possible behavior andusing constraints to eliminate the behavior we don’t want to happen in the processas shown in the figure 1.3. In the imperative models one may tend to over specifyprocess as the control flow has to be specified explicitly, where as declarative modelstend to under specify as the control flow is implicitly specified, there by leaving moreoptions to the end users.

(a) Model (b) Mapped to labeled transition system
Figure 1.4: Give medicine example in DCR Graphs

The above mentioned hospital workflow is modeled using declarative modelingapproaches as shown in the figure 1.4-(a), where we have used our formal modelDCR Graphs to model the workflow. The model contains the same three events
prescribe medicine (pm), sign (s) and give medicine (gm), moreover events can beexecuted any number of times in any order until unless they are constrained by therelations. The condition relation from prescribe medicine to sign specifies that pre-
scribe medicine must have been done at least once before executing sign. Similarlythe response relation between prescribe medicine and give medicine specify that the
give medicine should be executed at least once after executing prescribe medicine,but it does not stop from executing give medicine many times. The behavior offeredby the model can be seen in the figure 1.4-(b), where the execution semantics aremapped to labeled transition system. Since events can be executed any number oftimes in declarative models, there will not be any well defined explicit termination,but on the other hand they have a notion of acceptance i.e when they are allowed to

10 Chapter 1. Introduction

stop. The green color states in the figure 1.4-(b) represent accepting states, whereall the constraints are satisfied.One can easily observe that declarative models offer more choices to the endusers, by under-specification of the process. In case management and healthcaredomains, end users like case workers, doctors/nurses will have better knowledgeregarding how to deal with un-expected behavior than the process modelers. Hence,we strongly argue that by using minimal specification in declarative models, you canleave more flexibility to end users of the process.
1.5 Thesis Statement

Having discussed background and motivation of research problem, we will now dis-cuss the research goal of the thesis in this section. This PhD dissertation is part ofthe TrustCare project and therefore we will first describe the overall goals and keyhypothesis of TrustCare project, then we will proceed to define the research goal forthe thesis.
1.5.1 TrustCare Project

Trustworthy Pervasive Healthcare Services (TrustCare1) project is a strategic andinterdisciplinary research effort aimed at innovation of effective and trustworthy it-support for pervasive healthcare services in collaboration with the industrial partner,as well as innovation in research across areas in experimental and theoretical re-search in computer science [Hildebrandt 2008]. The key research partners in Trust-Care project are 1) I T University of Copenhagen 2) Department of Computer Science,Copenhagen University 3) Resultmaker A/S, a Danish IT provider for workflow man-agement systems, which has been quite successful in providing workflow solutions toDanish public sector for the last 12 years, using their patented declarative workflowmanagement system Online Consultant.The key hypothesis of the TrustCare project is that the patented workflow modelof the Resultmaker Online Consultant can be extended to provide both trustworthyand useful it-support for interacting and dynamically changing healthcare services,by formalizing and extending the underlying process model using techniques ob-tained from theoretical research in domain-specific languages, process models, andtype-theory, and integrating this work with experimental research in state-of-the artuser-interfaces for pervasive healthcare services rooted in the activity based comput-ing paradigm. The synergy between the development of the Online Consultant andthe research in experimental and theoretical computer science is described in thefigure 1.5.The developers at Resultmaker and the experimental research in user-interfacesfor pervasive healthcare centered on activity based computing will cross-fertilize each
1 The TrustCare (www.trustcare.eu) project is funded by Danish Strategic Research Council videgrant # 2106-07-001

(www.trustcare.eu)

1.5. Thesis Statement 11

Figure 1.5: TrustCare project research methodology
other by providing respectively domain knowledge on workflow management sys-tems and clinical guidelines to the research on activity based computing and domainknowledge on pervasive user- interfaces to the development of workflow management.Likewise, the two groups will provide domain knowledge and the motivation for newfeatures such as dynamic re-configuration and awareness of changes to the groupresearching in domain specific languages and formal models, which in return willprovide the foundations for trustworthy foundations of the On-line Consultant andactivity based computing paradigm supporting the proposed extensions. The threegroups will thus interact in cycles between the identification of challenges and theneed for new features in the product development and prototyping of user-interfacesto development of domain-specific languages and models providing a trustworthyfoundation and back to integration of the models and the features into the productand prototypes. Finally, the research in type theory and logical frameworks will befed by the research in domain-specific languages and models with domain-specificchallenges (motivated by the suggested product extensions) and return advancedgeneral solutions to the problem.
1.5.2 Research GoalSince this PhD project is part of TrustCare project and its research goal is guided bythe overall goals and research methodologies of the TrustCare project. As explainedin the key hypothesis of the TrustCare project, one of the key challenges in the Trust-Care project is to formalize the workflow model of Resultmaker Online Consultant,

12 Chapter 1. Introduction

as it has no formal semantics, but only has a commercial workflow managementimplementation.Aligned with the overall focus of the TrustCare project, we will now formulate thegoal of the thesis as follows,
The research goal is to show that it is possible to formalize core prim-itives of Resultmaker declarative workflow model and further develop itas a comprehensive formal model for specification and execution of work-flows based on declarative modeling. The formal model should allow safedistribution of workflows based on a model-driven approach and analysisbased on formal verification of processes using model checking.

In order to explain the concrete requirements of the research goal in a bettermanner, we will further split the research goal into three research questions asfollows.
1. What are the formal semantical models suitable for describing flexible workflow

processes for healthcare and other dynamic services?Our research goal as part of this question is to provide formal semantics tothe key primitives of the Resultmaker declarative workflow model and furtherdevelop it as a comprehensive formal model that is suitable for specification andexecution flexible workflows with a key focus on healthcare, case managementand other dynamic sectors. We will use the Resultmaker workflow model asa starting point for our goal of developing a comprehensive formal model ondeclarative modeling primitives, since their workflow method has been provento be flexible and successful in the Danish public sector.Furthermore, our focus is to provide formal semantics to their declarative work-flow, but we are not concerned with how these formal semantics could be im-plemented by their commercial workflow management system and how muchflexible will it be then compared to the other existing workflow managementsystems, for example based on user evaluations. However, we intend to developa prototype workflow management based on the formal model developed in thePhD thesis to prove that our formal model can be easily implemented by acommercial workflow management system to offer flexible workflows based ondeclarative modeling. Further, we will also model some use cases from health-care and case management domains to show the practicality and adequacy ofour formal model.
2. How should one describe interfaces, contracts and interactions for declarative

workflows to allow safe distribution?As part of this research question, we intent to study the distributed synthesis
problem: Given a global model and some formal description of how the modelshould be distributed, can we synthesize a set of local processes with respect

1.6. Thesis Outline 13

to this distribution which are consistent to the global model? Here our focusis to study about how to distribute a declarative workflow based on top-downmodel-driven approach, as a global specification into a set of communicatinglocal processes such that the local processes still keep their declarative nature.Furthermore, the goal of the distribution of the global specification should besafe, in the sense that the behavior exhibited by the local processes should beconsistent with the behavior exhibited by the global process.3. What are the suitable model checking and verification techniques for enhancing
trustworthiness in declarative workflows?A drawback of the declarative approach is that the implicit definition of thecontrol flow makes the processes less easily perceived by the users. For ex-ample if the users want to know what are the next possible events to execute,one has to solve the set constraints to compute the next possible events.We interpret the meaning of trustworthiness in the context of the declarativebusiness processes that the process will exhibit the behavior that the user hasmodeled. Hence in order to enhance the trustworthiness in the declarative pro-cesses, one could use formal verification techniques to analyse the processesand guarantee that certain properties will hold. As part of this research ques-tion, we would like to explore formal verification techniques that can be appliedto the declarative processes.The research goal of the thesis will be achieved by solving the above researchquestions. Furthermore, the ideas and concepts developed in the thesis are pre-sented periodically in the workshops of Interest Group for Processes and IT [Hilde-brandt 2010], which is a forum consisting of Danish IT vendors for workflow manage-ment systems, public organizations and researchers. The next section gives a briefoverview of the thesis and how these questions have been addressed.

1.6 Thesis Outline

We will now provide a brief outline and structure of the remainder of this thesis.First we will state the list of publications that are published as part of knowledgedissemination in the PhD project, then we will give a brief overview of the rest of thechapters by quoting which publications have been covered in the chapters.
1.6.1 List of PublicationsThe following papers have been peer reviewed and published at various conferenceor prestigious workshops associated with conferences.(1) Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Janus Boris Tøth. The Re-sultmaker Online Consultant: From Declarative Workflow Management in Prac-tice to LTL. In Proceedings of First International Workshop on Dynamic andDeclarative Business Processes (DDBP 2008).

14 Chapter 1. Introduction

(2) Karen Marie Lyng, Thomas T. Hildebrandt, and Raghava Rao Mukkamala. FromPaper Based Clinical Practice Guidelines to Declarative Workflow Management.In proceedings of 2nd Inter- national Workshop on Process-oriented informationsystems in healthcare (ProHealth 2008).
(3) Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic condi-tion response structures. In Proceedings of International Workshop on Program-ming Language Approaches to Concurrency and Communication-cEntric Software(PLACES 10), Paphos, Cyprus, March 2010.
(4) Raghava Rao Mukkamala and Thomas Hildebrandt. From Dynamic ConditionResponse Structures to Buchi Automata. In proceedings of 4th IEEE InternationalSymposium on Theoretical Aspects of Software Engineering (TASE 2010).
(5) Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative Event-BasedWorkflow as Distributed Dynamic Condition Response Graphs. In Kohei Hondaand Alan Mycroft, editors, PLACES, volume 69 of EPTCS, pages 59Ð73, 2010.
(6) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Nested DynamicCondition Response Graphs. In Proceedings of Fundamentals of Software Engi-neering (FSEN), April 2011.
(7) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Designing aCross-organizational Case Management System using Dynamic Condition Re-sponse Graphs. In Proceedings of IEEE International EDOC Conference, 2011.
(8) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Safe Distributionof Declarative Processes. In 9th International Conference on Software Engineer-ing and Formal Methods (SEFM) 2011, 2011.
(9) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Declarative Mod-elling and Safe Distribution of Healthcare Workflows. In International Symposiumon Foundations of Health Information Engineering and Systems, Johannesburg,South Africa, August 2011.

(10) Søren Debois, Thomas Hildebrandt, Raghava Rao Mukkamala, Francesco Zanitti.Towards a Programming Language for Declarative Event-based Context-sensitiveReactive Services. Nordic Workshop on Programming Theory. Västerås, Sweden.October, 2011.
(11) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Declarative Mod-elling and Safe Distribution of Healthcare Workflows. In LNCS Post proceedingsof International Symposium on Foundations of Health Information Engineeringand Systems, January, 2012.

1.6. Thesis Outline 15

1.6.2 Chapters OutlineIn this section we will give a brief outline of the chapters of the thesis and alsomention which papers listed above contribute to the chapters.
• Chapter 2: BackgroundThis chapter will introduce background and motivation for our formal modeldeveloped in the thesis. First it will introduce our first attempt to formalizeResultmaker’s declarative workflow model Process Matrix using Linear Tem-poral Logic [Pnueli 1977]. Then we will introduce the case study conducted inDanish hospitals regarding for lung cancer treatment, which will be used asone of the running example for the rest of the thesis. This part of the chap-ter covers the publications (1) and (2) mentioned above.Later we will give abrief introduction to another declarative process model Declare [van der Aalst

et al. 2010a, van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a], fromwhich our formal derives some motivation. Finally, we will introduce base for-malism behind our formal model, Event Structures [Winskel 1986] and explainkey primitives of labeled event structures.
• Chapter 3: Dynamic Condition Response GraphsWe will introduce our formal model Dynamic Condition Response Graphs(DCR Graphs)in this chapter. First, we will describe how we have generalized Event Struc-tures to define the semantics of DCR Graphs, then we will introduce the keyprimitives and operational semantics of DCR Graphs. The execution semanticsfor finite runs are mapped to labeled transition system and for infinite runs,where as the semantics for infinite runs have been mapped to Büchi automata.Graphical notation for modeling DCR Graphs along with the runtime notationwill also be introduced at the end of the chapter. This chapter covers the workpublished in papers (3), (4) and (5) from the list mentioned in the previoussection.
• Chapter 4: Dynamic Condition Response Graphs - ExtensionsSome important extensions to DCR Graphs developed in the thesis will beintroduced here. First we will extend DCR Graphs to allow for modeling ofnested sub-graphs, Nested Dynamic Condition Response Graphs. Further weextend the Nested Dynamic Condition Response Graphs with multi-instancesubprocesses to model the replicated behavior in declarative processes. Finallywe add a basic support for data for DCR Graphs, by considering data as globalstore of shared variables. This chapter covers the work published in the papers(6) and (7).
• Chapter 5: Distribution of DCR GraphsIn this chapter we will introduce a technique safe distribution of DCR Graphsas a set of communicating local graphs to represent local behavior. First we will

16 Chapter 1. Introduction

introduce and define the notion of projection and composition on DCR Graphs,then define the notion networks of DCR Graphs. We will also prove that thedistribution is safe in the sense that the behavior exhibited by the local graphsis consistent with the behavior exhibited by the global graph. Further we alsoextend the distribution technique to the nested DCR Graphs and distributethe healthcare example which was introduced in the previous chapters. Thischapter covers work published in the papers (8), (9) and (11).
• Chapter 6: Formal Verification, Tools and ImplementationIn this chapter, we introduce the notion of safety and liveness properties onDCR Graphs and further describe how to verify these properties using a modelchecking tool. As part of formal verification, we will describe how to encodeDCR Graphs into PROMELA [Spin 2007] code and verify safety and livenessproperties using SPIN [Spin 2008] model checking tool. We will also describebriefly our experience in using ZING [Microsoft-Research 2010] model checkerto verify safety properties on DCR Graphs. Finally, we will a brief descriptionof prototype tools for DCR Graphs implemented as part the thesis.
• Chapter 7: Conclusion and Future WorkThis chapter will conclude the results achieved in the thesis and also providesa detailed section explaining about the future work on DCR Graphs.

Chapter 2

Background

This chapter provides a brief introduction to the formalisms and industrial processmodels that served as motivation behind the development of our formal model Dy-namic Condition Response Graphs (DCR Graphs). First of all, section 2.1.1 describesabout the process model employed by our research industrial partner ResultmakerA/S, namely Resultmaker Online Consultant (ROC). Later in the section 2.2, we willdescribe very briefly about the Declare framework [van der Aalst et al. 2010a] andits declarative process languages (DecSerFlow [van der Aalst & Pesic 2006b], Con-Dec [van der Aalst & Pesic 2006a]). Finally, we will give a introduction to EventStructures [Winskel 1986] in the section 2.3 and explain why we have chosen EventStructures to base our formalism DCR Graphs.
2.1 Resultmaker Online Consultant - A Declarative Workflow

In this section, we describe the process model employed in the Resultmaker OnlineConsultant (ROC) workflow management system as an example of a declarative work-flow language used in practice. The ROC workflow management system has evolvedfrom Resultmaker’s industrial experiences obtained during the process of authoringsolutions for the Danish public sector, and has been used successfully since severalyears in Denmark and other European countries. It is based on a shared data ar-chitecture and electronic forms (updating the shared data) as the key basic activity.Hereto comes activities for connecting to external systems, invitation to participantsand digital signatures and other features. The process model employed in ROC iscalled Process Matrix, which is a patented1 declarative process model developed byResultmaker.The key primitives of Process Matrix will be introduced briefly in the later sectionsand then we will further describe the how these key primitives are formalized usingLinear Temporal Logic (LTL) [Pnueli 1977] in line with the approach proposed by vander Aalst and Pesic in DecSerFlow [van der Aalst & Pesic 2006b] and ConDec [van derAalst & Pesic 2006a]. This work is done as one of the very first steps of Trustwor-thy Pervasive Healthcare Services (TrustCare2) [Hildebrandt 2008] research project.TrustCare is a strategic and interdisciplinary research effort aimed at innovation ofeffective and trustworthy it-support for pervasive healthcare services by combiningresearch in formal process models, logic, domain specific languages, and pervasive
1US Patent # 6,895,5732This project is supported by the Danish Research Agency through grant #2106-07-0019.

18 Chapter 2. Background

user interfaces with the Resultmaker’s industrial experience on workflow manage-ments, with cross-fertilization of experimental and theoretical research in computerscience. As part of the project, the primary goal is to develop formal foundationsof trustworthy and declarative flexible workflows with a key focus on the healthcare sector. Further, the work on formalization of ROC [Mukkamala et al. 2008, Lyng
et al. 2008] has been published at workshops affiliated to BPM-2008 and EDOC-2008conferences and received good feedback.In the subsequent sections we will introduce the ROC workflow architecture andit’s key components, in particular the declarative primitives of the ROC process model,referred to as the Process Matrix and describe how we have formalized the keyprimitives [Mukkamala et al. 2008]. Later, we will describe a field study of Oncologyworkflow conducted in Danish hospitals [Lyng et al. 2008] and also demonstrate howthe oncology workflow can be modeled in ROC.
2.1.1 Resultmaker Online Consultant - Formalization

The key primitives of the ROC Process Matrix are sequential and logical predeces-sor relations between activities, and along with activity conditions and dependency
expressions for each activity. Sequential predecessor imposes precedence amongactivities. If an activity A is a sequential predecessor for the activity B, then it infor-mally means that activity A must be executed before B can be executed. Note thatby default, any activity can be executed any number of times. On the other hand,If A is declared as a logical predecessor of B, then it means that it is a sequentialpredecessor with the additional constraint saying that B must be re-executed eventu-ally after any re-execution of A. A prototypical example of logical predecessor couldbe to have a logical predecessor between activities A and B, when A is an activityrepresenting filling out a loan/grant application and B is an activity of evaluatingor signing it . Activity conditions and dependency expressions refer to values ofvariables in the shared data store and are dynamically evaluated after each step ofthe workflow. An activity condition determines if an activity is currently included inthe workflow instance (i.e. it is active) and a change in a dependency expressiondetermines that an activity must be re-executed. Activity conditions facilitate reuseof a single process description for different purposes with different variants: Onejust adds a new boolean variable to the shared data store and use it to toggle theinclusion or exclusion of activities. Dependency expressions allow for a descriptionof logical dependency similar to the logical predecessor constraint, but are based onchanges in data rather than re-executions of activities and thus allow declaring amore fine-grained dependency based on data values. In the example of filling out agrant application, for example, one may use a dependency expression to declare thatthe signature activity has to be re-executed if the data in the budget is changed, butnot if the name of the project is changed, even though both values are entered in thegrant application form.ROC is a user-centric workflow management system based on a shared datastore and so-called eForms as its principal activities. An eForm is a web based

2.1. Resultmaker Online Consultant - A Declarative Workflow 19

Figure 2.1: The Online Consultant Architecture.
questionnaire presented to the users of the system by the front end Form engine.The fields in the eForms are mapped to variables in the shared data store.Fig. 2.1 shows the overall architecture of ROC. The Run-time services constitutecomponents that execute a ROC process instance, while the Design-time servicesconstitute e.g. tools for process description and design of eForms. ROC has its owneForm designer tool, but also supports forms developed in Microsoft InfoPath.
2.1.1.1 Process Modeling Primitives

In this section, we describe the key process modeling primitives of ROC.
2.1.1.1.1 ActivitiesPrimarily, ROC has four pre-defined activity types.

1. eForm Activity: It is the principal activity of ROC and the data filled in by theusers in the eForms will be available to all activities of the workflow instancethrough the shared data store. eForms are appended to the activities and eachactivity can contain only one eForm. At run-time when an eForm activity isexecuted, the corresponding eForm will be displayed to the users for humaninteraction. If any of the variables on which an eForm activity A depends on,is changed by another activity, while the form is being displayed (and edited)by the user, the activity A will be skipped when the form is attempt to submitby the user and the user will be notified. In this way eForm activities areguaranteed to run atomically and in isolation.
2. Invitation Activity: This type of activity attaches a role to an external user(identified by an email address) and sends him an invitation link to the processinstance via email notification.

20 Chapter 2. Background

3. Signing Activity: In order to provide authentication for the data filled in bythe users, the ROC uses Signing Activity. The user data on eForms will bedigitally signed by using XML digital signatures syntax [D. Eastlake 2002] anduser’s digital certificates. A single signing activity supports signing of datafrom multiple eForms.
4. External Activity: Via a general script engine it is possible to connect to anyexternal system, e.g. for automated tasks.

In our effort to formalize key primitives of ROC, we have only considered eFormactivities.
2.1.1.1.2 Control Flow PrimitivesROC contains the following control flow primitives which controls the execution ofprocess instances.

1. Activity Condition: Every activity in ROC has an attached activity condition,which is a boolean expression that reference variables from the shared datastore. Activities are included in the workflow instance for execution only if theiractivity conditions evaluates to true, on the other hand they will be skippedfrom the list of activities stacked for execution.The boolean variables used in activity conditions are referred to as purposes.The reason for this terminology is that, activity conditions makes it easy toreuse a process description for a different purpose in a different variant: Onejust adds a new purpose variable and use it in activity conditions to togglethe inclusion of relevant and exclusion of irrelevant activities. Since activityconditions refer to data values from shared data store, they will be evaluatedafter execution of each activity, so the inclusion of an activity in the workflowcan be changed within in the lifetime of the workflow instance. As describedbelow, changing an activity from non-active to active may influence the stateof other activities that logically depend on the activity.
2. Sequential Predecessors: If an activity A is declared to be a sequential pre-decessor of activity B, then in any process instance A must be executed before

B can be executed. However, the sequential predecessor has only effect if thepredecessor activity A is included in the workflow instance as per its activitycondition. That is, if the activity condition for A is false at certain point of time,then activity B can be executed even if A is a sequential predecessor of B witha status of non-executed. At a later point of time, if the activity A becomes partof the workflow instance (because the activity condition for activity A changesfrom false to true) after B got executed, it will not not have any effect on theexecution status of activity B.
3. Logical Predecessors: If an activity A is declared to be a logical predecessorof activity B, then A is a sequential predecessor of B, but in addition, if activity

2.1. Resultmaker Online Consultant - A Declarative Workflow 21

A gets re-executed, reset, or becomes part of the workflow after activity B hasbeen executed and then if the activity B is active at that time, then activity Bis also reset, and thus must be re-executed at a later time (unless it stays in-active for the rest of the instance lifetime, i.e its activity condition continuouslyevaluates to false). Note that activity resets in this way can propagate througha chain of (currently active) logical predecessors. As also mentioned in theintroduction the Process Matrix model includes an additional advanced featurecalled dependency expressions.A dependency expression is a set of expressions attached to an activity. Likeactivity conditions, dependency expressions can also contain references to vari-ables in the shared store. However, where an activity condition evaluates toa boolean value, a dependency expression can evaluate to any value, and anychange in the value of a dependency expression associated to an activity willreset the activity status to non-executed.
2.1.1.1.3 Additional PrimitivesIn addition to activities and control flow constructs described above, the ROC alsohave transactions and resources as explained below. But we have not consideredtransactions in the work of ROC formalization.
a) Transactions: A ROC transaction groups a set of activities to be executed in trans-action mode. The ROC transactions differ from standard transactional semanticsin the way that they are neither long running nor be rolled back. Instead, asalso found in web-service orchestration languages such as WS-BPEL, they canhave a compensating logic to be executed in case a transaction has to be aborted.Transactions can be either signed or unsigned. Signed transactions involves sign-ing the data using digital certificates by single/multiple parties containing manyeForms.
b) Resources/Roles: ROC has a simple resource model that uses Roles to defineallowed behaviour of different users within the system. Each Role is assigned anaccess right for each activity of a workflow. The possible access rights are Read(R), Write (W) and Denied (D). The Read access is the default access right thatallows a user with the particular role to see the data of an activity. Write accessright allows the user to execute an activity and also to input and submit data forthat activity. A Denied access right has the effect of making the activity invisibleto the user. As for transactions, we will leave the formalization of Roles for futurework.Activities are executed by default at least once, but possibly many times in aprocess instance. The ROC runtime state records whether an activity has beenexecuted or not. If an activity has state executed, its state can be reset to not

executed under certain circumstances described above.

22 Chapter 2. Background

Activities Roles Prede- ActivityApp CW Mgr cessors Condition1 Application W R R
2 RegisterCustomerInfo W W W
3 Approval 1 D W R ∗1,24 Approval 2 D R W ∗1,2 ¬Rich

5 Payment R W R ∗3, ∗4 ¬Hurry ∧
Accept6 ExpressPayment R W R ∗3, ∗4 Hurry ∧
Accept7 Rejection R W R ∗3, ∗4 ¬Accept8 Archive D W R ∗5, ∗6, ∗7

Table 2.1: Loan application Process Matrix
2.1.1.2 The Process Matrix

There is yet no formal graphical notation for ROC workflow processes. However, thereis a guideline for how to identify and specify activities, roles/actors and constraints ina tabular format. This table is referred to as the Process Matrix, which is also usedas name for the process model. Practical experience has shown that the guidelineand the Process Matrix have been useful to extract process descriptions from domainexperts.Below we describe a small fictive example of a loan application process repre-sented by the Process Matrix shown in table. 2.1 . Each row of the matrix representsan activity of the process: Filling in the application (Application), Registering cus-tomer information(Register Customer Info), Approval of the application (Approval 1and 2), Payment, Express Payment, Rejection and Archive. The columns are sepa-rated in 3 parts: The first set of columns describes the access rights for the differentroles (Applicant (App), the Case Worker (CW) and Manager (Mgr) in the figure).The Roles columns indicate that the applicant can fill out applications, but the caseworker and manager can only read the content of the application. Everyone canregister customer information, but only the case worker can perform approval 1 andonly the manager can perform approval 2, and both approval steps are invisible tothe applicant. The remaining actions can only be performed by the case worker -they can be read by the manager and applicant, except for the archiving which isinvisible to the applicant.The next row describes the predecessor constraints, where we indicate by a
∗ that the predecessor is a logical predecessor. That is, activity Approval 1 hasactivity Register Customer Info as sequential predecessor and activity application as

2.1. Resultmaker Online Consultant - A Declarative Workflow 23

logical predecessor. Thus, the customer may at any time re-submit the basic info (e.g.address and phone number) without causing a re-execution of the approval activity.However, it the application is changed the approval must also be carried out again.(If only changes in the amount given in the Application activity should cause Approvalto be re-executed, one could make the application a sequential predecessor of theApproval activities, but add the amount of the loan as a dependency expression tothe Approval activities). Finally, the last row describes the activity condition. Forinstance, the condition Hurry ∧ Accept of activity Express Payment indicates thatthe boolean values Hurry and Accept in the shared data store must both be set totrue for this activity to be included in the flow. To fit the table within one column ofthe paper we have left out a column stating which eForm is attached to an activity,and which values in the shared data store are accessed and changed by the eForm:The Application form changes the variables Rich and Hurry, and the Approval formstoggle the Accept variable. Concretely, in the online example of the loan applicationprocess the purposes Rich and Hurry are set by radio buttons in the eForm attachedto the Application activity in step 1, and the purpose Accept is toggled in the eFormsattached to Approval 1 and Approval 2.The Activity Conditions in the last column depend on the purposes Rich, Hurryand Accept. A rich applicant only needs an approval from the case worker, while apoor applicant also needs an approval from the manager in the bank. If the purpose
Hurry is set to true, the application is treated as an express payment. The result isthat the Express payment activity (step 6) is included and not the Payment activity(step 5). Conversely, if the purpose Hurry is set to false, the the (normal) Paymentactivity in step 5 is included and not the express payment activity. Both paymentactivities require the purpose Accept to be true.
2.1.1.3 Process Execution

In table. 2.2, we show a possible state of the system during an instance of the workflowwhere a poor applicant applies for a non-express loan. The purpose Hurry is set tofalse thus the activity Express Payment is excluded. The activity condition for all otheractivities except activity Express Payment is set to true and they are included forexecution, i.e. the activity Approval 2 is included because the purpose Rich evaluatesfalse. The activities Application, Register Customer Info, Approval 2 have alreadybeen executed and their activity status is thus executed. The activity Approval 1is ready for execution, but it has not started executing. Note that the activitiesPayment and Rejection can not be started because of their predecessors, but onlyone of them will be executed in future as the value of purpose Accept makes the otheractivity to be excluded. The activity Archive will be executed eventually after all itspredecessors, as it does not have any purposes attached to it. As mentioned above,activity conditions will be re-evaluated after execution of each activity which makesthe dynamic inclusion or exclusion of activities possible at runtime.Note that the registration of customer information can be done either before orafter the application, and can be redone arbitrarily often without affecting any of the

24 Chapter 2. Background

Activities Activity ActivtyCondition Status1 Application true executed2 Register Customer Info true executed3 Approval 1 true can start4 Approval 2 true (¬Rich) executed5 Payment true can not start (wait for {3})6 Express Payment false(¬Hurry) inactive (¬Hurry)7 Rejection true can not start (wait for {3} ∧
¬Accept)8 Archive true can not start (wait for ({3} ∧
{4}) ∨ ({3} ∧ {7}))

Table 2.2: The Process Matrix at Run Time.
other steps.
2.1.1.4 Formalization using Linear Temporal Logic

In this section we provide formalizations of the key primitives of the Online Consultant(sec. 2.1.1.1) and process matrix described in (sec 2.1.1.2) in terms of Linear timeTemporal Logic (LTL) [Pnueli 1977, Sistla et al. 1983] formulas. First we briefly recallLTL and the approach in [van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a].
2.1.1.5 Executable LTL for Workflow

LTL is a temporal logic extending propositional logic to infinite sequences of states.This is done using the temporal modal operators OP (in the next state of the sequenceformula P holds), 2P (in the current and all of the following states of the sequenceformula P holds), 3P (in the current or at least one of the following states of thesequence formula P holds), and Q U P (in the current or at least one of the followingstates of the sequence formula P holds and formula Q holds in all states until thatstate is reached).LTL has been extensively used as property language [Dwyer et al. 1998] for au-tomatic verification of reactive systems, also referred to as model checking [M.Clarke
et al. 1999]. The basic principle of model checking is to use an automatic tool tocheck if a system, usually described by an automaton, satisfies a property specifiedin a property language, which is often a temporal logic. In this case one can say thatthe system is a model of the property.The key idea of the paradigm shift proposed in [van der Aalst & Pesic 2006b] isto turn this around and use the declarative, temporal logic language to provide thesystem (workflow) definition. The system is then defined as a formula that charac-terizes the valid completed sequences of activities, e.g. that in a completed instance

2.1. Resultmaker Online Consultant - A Declarative Workflow 25

execution a certain activity must always occur before some other activity.3 In ac-knowledgement to the fact that LTL formulas may be too difficult to understand forprocess designers, the authors in [van der Aalst & Pesic 2006b] propose to use so-called constraint template formulas, also referred to as policies or business rules.These templates are further equipped with a graphical notation.It is worth noting, that a similar paradigm shift was in fact also proposed byGabbay in [Gabbay 1987] where he suggests to use LTL formulas as execution lan-guage for interactive systems. Moreover, Gabbay showed that one could ease thedescription of systems by using LTL extended with past time modalities by provingthat any LTL formula with past time modalities can be rewritten to an equivalent(but in the worst case exponentially longer [Laroussinie et al. 2002]) LTL formula withonly future time modalities. We exploit the use of past time modalities below to givemore succinct formalizations of the activity resets in ROC.It is important to recall, that the difference between using a declarative languageas opposed to an imperative language is on the ease and flexibility of expressionand not on expressiveness: Any LTL formula can be automatically translated to anequivalent finite automaton over infinte sequences and vice versa [Sistla et al. 1983].The point made in [van der Aalst & Pesic 2006b, Gabbay 1987] is that one may usethis correspondence to let the workflow engine construct an automaton from thedeclarative LTL description that can be used for execution of the process.As described in the previous section the Process Matrix employed in ROC is infact an example of a declarative workflow language used in practice. Our aim is togive a translation from the Process Matrix model to LTL, which translates any ProcessMatrix process M into an LTL formula [[M]] such that the sequences of states for which[[M]] is true is exactly the sequences of states that constitute valid executions of theprocess M . Concretely, our formalization is defined as extensions to the LTL templateformulas given in [van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a]. As in[van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a] we assume a discrete timemodel where any step between two consecutive states in the sequence correspondsto the execution of one activity in the workflow, and we deal with the fact thatworkflow executions are finite and LTL is interpreted over infinite sequences byusing the standard stutter extension, assuming that the finite workflow executionsare terminated by an infinite sequence of steps with no change in the state. Thebasic propositional formulas we employ will be boolean formulas over propositionson the state space and the current activity. In particular, the proposition (act == A)is true in a state if the last executed activity is A.A basic example of an LTL template in the DecSerFlow language is the constrainttemplate existence(A : activity) formalized as 3(act == A) in LTL. It simply statesthat there exists a step in which activity A is carried out.An example of a so-called relation formula [van der Aalst & Pesic 2006b] is theconstraint precedence(A : activity, B : activity) which states that an activity B is
3Note that a partial execution sequence need not satisfy the formula, as long as it is possible tocomplete the sequence in a way that makes the formula satisfied.

26 Chapter 2. Background

preceded by an activity A, i.e. the activity B can not be executed before activity A hasbeen executed. This template formula uses the existence template as a sub formulaand is expressed in LTL as
existence(B) =⇒ (!(act == B) U (act == A))

where ! denote the the boolean negation. Reading the formula, it expresses that ifthere exists a state in the sequence in which B is carried out then there exists astate in the sequence in which A is carried out for which B is not carried out in anyof the preceding states. This is equivalent to the intended property that the activity
B can not be executed before activity A has been executed.Another example of a relation formula is the constraint response(A : activity, B :
activity) which expresses that whenever the activity A is executed then B must alsobe executed after it. This formula is expressed in LTL as

2((act == A) =⇒ existence(B))
From the response and precedence templates one may build composite relationtemplates, such as the template succession(A : activity, B : activity) expressed inLTL simply as a conjunction of the two templates:

response(A, B) ∧ precedence(A, B)
The formula expresses that every execution of activity A must be followed by anexecution of B and any execution of B must be preceded by an execution of A. Onemay have already noticed similarities with the primitives in the Process Matrix. Inthe following section we can see that the Process Matrix primitives can indeed beformalized similarly to the templates given above, but with some interesting variationsdue to the use of activity and dependency conditions. We do not consider the rolesnor dependency expressions.
2.1.1.6 From the Process Matrix to LTLTo define the translation from the Process Matrix model to LTL we describe howthe individual primitives can be expressed as templates in LTL. The formalizationof a Process Matrix workflow M will then be an LTL formula [[M]] which is a setof formulas in conjunction obtained by instantiating the templates according to theentries in the Process Matrix. Our aim is that [[M]] is true exactly for the sequencesof states that constitute valid executions of the process M . However, we leave forfuture work to evaluate the correctness of the formalization.In the following we assume a Process Matrix workflow M . We let A and B rangeover activities in M and write actcon(A) for the activity condition specified in theProcess Matrix M for an activity A.The first formula used for the formalization is then the LTL formula act_include(A :
activity) given by

2(O(act == A) =⇒ actcon(A))

2.1. Resultmaker Online Consultant - A Declarative Workflow 27

It expresses that an activity A can only be executed in the next step if it is includedin the present, i.e. its activity condition is true. The formula act_include(A) is thenincluded in the conjunction in [[M]] for every activity A in M .4To formalize the remaining ingredients we define a few templates used as subformulas. The first such template is act_including(A, B) = (act == A) ∧ actcon(B)which expresses that activity A is executed and at the same time the activity B isincluded in the process (because the acitivty condition for B is true).The second template is existence_act_including(A, B) = 3act_including(A, B)which extends the existence template for DecSerFlow to express that an activity Ais eventually executed and at the same time the activity B is included in the process.We now go on to formalize the control flow primitives of the Process Matrix.
2.1.1.6.1 Sequential PredecessorThe sequential predecessor constraint is similar to the precedence formula in DecSer-Flow described above, except for the use of the activity condition in the Process Ma-trix. We define the constraint template sequential_predecessor(A : activity, B :
activity) stating that A is a sequential predecessor of B by the LTL formula
existence_act_including(B, A) =⇒ (!act_including(B, A) U (act == A)). Let
A <M B denote that A is a sequential predecessor of B in M . We then include theformula sequential_predecessor(A, B) in the conjunction [[M]] for any pair A <M B.
2.1.1.6.2 Activity ResetTo formalize the logical predecessor constraint, we need to formalize the somewhatcomplex handling of activity resets in ROC. We want to define a template reset(A)which expresses that the activity A is being reset in the current state. Here we exploitthe past time modality Since written as Q S P and the past time modality YP. The
Since modality is the dual of the until modality and is true if in the current or at leastone of the preceeding states the formula P holds and formula Q holds in all states
since that state. The past time modality YP is true if P holds "Yesterday", i.e. inthe previous state. As described in [Gabbay 1987] we can translate the formalizationincluding past time modalities into a pure present and future time formula.Let A ∗

<M B denote that A is a logical predecessor of B in M . If there is a chainof logical predecessors A0 ∗
<M A1 ∗

<M
∗
<M Ak , for which actcon(Ai) is truefor i ∈ {0, . . . , k}, i.e. the activities Ai are all included in this state, and the firstactivity A0 is executed or changes from not-included in the previous state to includedin this state, then the activity Ak will be reset in the Process Matrix. To formalizethis, first define the template included(A : activity) = Y!actcon(A)∧actcon(A) anddefine chain(A0, A) = {[A0, A1, . . . , Ak] | A0 ∗

<M A1 ∗
<M

∗
<M Ak = A}, i.e theset of all chains of logical predecessors with A0 as first and A as the last activity.Then we define the template resetchain(A) = ∨B∈M,c∈chain(B,A)(∧A′∈c actcon(A′) ∧(included(B) ∨ (act == B)).

4We also include the formula ∧A∈M !(act == A) in the conjunction stating that no activities arecarried out before the initial state.

28 Chapter 2. Background

Finally, we define the template reset(A) =!(act == A) S resetchain(A), whichwe will use below.
2.1.1.6.3 Logical PredecessorLogical Predecessor is a strengthening of the Sequential Predecessor constraint.The template reset(A) allows us to formalize the template logical_predecessor(A :
activity, B : activity) in LTL as sequential_predecessor(A, B) ∧ 2

(
reset(A) =⇒

sequential_predecessor(A : activity, B : activity)) We then include the formula
logical_predecessor(A, B) in the conjunction [[M]] for any pair A ∗<M B.
2.1.1.6.4 Activity ExecutionThe final part of the formalization, is to express when an activity should be executed.We use the template executed(A : activity) =!reset(A) S (act == A), i.e. usingthe template reset(A) and the since modality to describe that an activity has statusexecuted if there exist a state in the past where it is executed and it has not beenreset since. The activity execution formula can then finally be formalized as

(32executed(A)) ∨ (32!actcon(A))
which is included in the conjunction [[M]] for every activity A in M . The formulaexpresses that either the activity A has status executed continuously in some futurestate, or it is excluded from the process. (Recall that we interpret LTL over infinitesequences and assume the execution sequences of ROC to be terminated by aninfinite sequence of states with no change)
2.1.1.7 Process MatrixBased on the defintions of primitives explained in the previous paragraphs, we nowdefine the Process Matrix Workflow M and its equivalent LTL formula [[M]]. TheProcess Matrix is 6-turple

M = (AM , <M⊆ AM × AM , ∗<M⊆ AM × AM , V , FM : AM → P(V))
where

1. AM is the set of activities
2. <M⊆ AM × AM is the sequential predecessor relation
3. ∗<M⊆ AM × AM is the logical predecessor relation
4. V is a finite set of variables
5. FM : AM → P(V) provides the set of variables the form may modify
The LTL formula for a Process Matrix M will then be

2.1. Resultmaker Online Consultant - A Declarative Workflow 29

[[M]] = ∧
A∈AM (act_include(A)) ∧ executed(A))

∧
∧
A,B∈AM , A<MB sequential_predecessor(A, B)

∧
∧
A,B∈AM , A

∗
<MB

logical_predecessor(A, B)
∧ (act == init) ∧ O2(act 6= init)
∧

∧
A∈AM , V−FM (AM), x∈Val(2(act == A) =⇒ (Y (v = x)⇔ (v = x)))

where
1. ∧A∈AM (act_include(A))∧executed(A)) represets set of included and executedactivities from workfow instance
2. ∧A,B∈AM , A<MB sequential_predecessor(A, B) contains set of sequential pre-decessor constriants
3. ∧

A,B∈AM , A
∗
<MB

logical_predecessor(A, B) contains set of logical predecessorsconstriants.
4. (act == init) represents the initial state of the workflow.
5. ∧A∈AM , V−form(AM), x∈Val(2(act == A) =⇒ (Y (v = x) ⇔ (v = x))) representsstate of all variables which are not part of the current activity and their stateremains the same during the execution of current activity.
This concludes our work on formalization of the Process Matrix. In the nextsection, we will describe a case study from healthcare sector which was conductedin Danish hospitals on the oncology treatment.

2.1.2 Case Study: Healthcare Workflow

It has been known for quite a while that there is a need for making clinical workingpractices safer, as too many errors happen causing suffering or even death of patients[Kohn et al. 2000]. Due to the complexity, the high mobility and ephemerality of thedaily clinical work [Bardram & Bossen 2005, Bødker & Christiansen 2004] saferworking practises will require better coordination, efficient collaboration and notleast fulfilment of up to date clinical practice guidelines (CPG) [Davis & Taylor-Vaisey 1997, Grol & Grimshaw 2003].One way of supporting this is by the use of of IT based clinical decision supportand better linkages in and among IT-systems [Bates et al. 2001]. Indeed, according to[Mulyar et al. 2007, Lenz & Reichert 2007] on of the best options for improvement inclinical work seems to be IT supported clinical processes based on CPGÕs. However,the use of IT based CPGÕs is challenging in several ways. Firstly, due to continuousdevelopment of new knowledge within the medical domain the mean survival timeof clinical guidelines is short, approximately 2 years [Shojania et al. 2007]. Sec-ondly, there is a need for guidelines to be flexible and adaptable to the individualpatient [Quaglini et al. 2001].Thirdly, no coherent theoretical framework of health

30 Chapter 2. Background

professional and organiza-tional behaviour and behaviour change has yet been es-tablished [Grimshaw et al. 2004]. Finally, it is a serious challenge that healthprofessionals currently tend not to follow clinical guidelines [Cabana et al. 1999].One of the reasons for this could be that clinical guidelines are not embedded in theclinical work processes and the technology available in the clinical setting today.Oncology clinics are an example of a clinical speciality for which it is known thatthere does exists a high number of CPGs that are followed to a certain degree bythe health professionals. For this reason we found it interesting to perform a se-ries of field studies in oncology clinics, to examine enablers and obstacles for use ofIT-supported clinical guidelines. The field studies are presented in Section 2 below.Based on the field studies and our examination, we then proceeded to investigatein Section 3 how the current paper based workflows could be supported using acommercial declarative workflow management system, which relates to the CIGDecapproach of Pesic and van der Aalst [van der Aalst & Pesic 2006b]. We believe thatthe resulting model rather naturally extends the paper based flowchart table used atthe hospitals, and in particular avoids the introduction of complex cyclic control flowgraphs and over specification as also pointed out in [van der Aalst & Pesic 2006b]
2.1.2.1 Field study - usage of CPGs in Danish oncology clinics

2.1.2.1.1 MethodObservations were made on three Danish oncology clinics by two observers. Fourdays of observation were made at each clinic. Besides observations, access to allclinical guidance material was granted. All the clinics were specialized within oncol-ogy; two of them were university clinics. The focus of the observation study was onthe use of CPGs as defined by Field and Lohr [Field & Lohr 1992]: Clinical practiceguidelines are systematically developed statements to assist practitioner decisionsabout appropriate health actions for specific clinical circumstance. We especiallylooked at the work of nurses, doctors and pharmacists in relation to chemotherapeu-tical treatment of patients.
2.1.2.1.2 Overall treatment processes and guidance documentsPatients are referred to the clinics with a diagnosis of cancer. By the first visit in theoutpatient clinic the patient is informed about pros and cons of chemotherapy by adoctor, and an overall patient plan for oncological treatment is outlined. In subsequentvisits chemotherapy is given, in between visits to the outpatient clinic monitoring ofside effects to chemotherapy are done by laboratory tests. The chemotherapeutictreatment is based on a number of different types of guidance documents and di-agrams depicted in Figure 2.2. The basis of the treatment is given in a standardtreatment protocol or a research protocol, which constitute the CPG. The protocolsare written in a narrative form with a description of the current knowledge of treat-ment of the disease in case as well as a thorough description of the drugs to beused. The size of a research protocol is app. 60-80 pages and a standard treatment

2.1. Resultmaker Online Consultant - A Declarative Workflow 31

protocol is app. 30-40 pages. Protocols are generally developed in cooperation be-tween several oncology departments, frequently with a pharmaceutical company asa main sponsor and actor. Research protocols are often multinational. Based on theprotocols local practice guidelines (also referred to as standard treatment plans) aremade as well as a treatment overview, in daily speech referred to as the noughts and
crosses diagram. The noughts and crosses diagram describes the whole pathwayincluding medical treatment as well as examinations during several months. Therewill often be deviations from the original plan due to side effects to treatment, othermedical problems or resource problems in the hospital.The flow of each chemother-apeutic treatment session is guided by the so-called patient flowchart, which alsorecords the state of the treatment session. Below we will describe the workflowresulting from the flowchart in more detail; this will be the focus of the remainingpart of the section.

Flow-
chart

Research or
Standard
Treatment
Protocol(CPG) -1 0 13 7 3 17 30

Activity

Activity

Activity

Activity

Activity

Activity

 O

 O

 O

 O

 O

 O

 O O O

 O

 O

 O

 O

Noughts
&
crosses

General

Guidelines
Local
Practice
Guideline

session

Dosage

session session session

D sign

P sign

N sign

Lab res.

N adm

Figure 2.2: Overview of the relation between research protocols/standard treatmentplans, local practice guidelines (standard plans) and flow charts. General guidelinesare use at the hospital, containing issues like the treatment of diabetes.
2.1.2.2 Current workflow for chemotherapy treatment sessions

Fig. 2.2 shows an overview of the workflow which is reiterated in every chemother-apeutic treatment session. In the flowchart the basic information about the patientis registered, including the latest lab results as well as height, weight of the patient.Based on these informations and the patient history of any major adverse effects,the doctor calculates the therapeutic doses of chemotherapy, documents it on theflowchart and signs it. The flowchart is transferred from the doctor to the controllingpharmacist (who can be situated near by in the clinic or far away in the pharmacy)where it functions as a prescription from the doctor. The controlling pharmacist con-trols the doctors dosage calculation and writes the information in a working slip thatis used for the pharmacy assistant who is doing the preparation of the drug(s) in

32 Chapter 2. Background

case. During preparation the quantity of all products as well as batch numbers areregistered in the working slip, finally the working slip is signed by the pharmacy as-sistant, and the product - usually a drip bottle or a pump with a content and patientinformation note stuck to it, is referred to the controlling pharmacist for check out.When the controlling pharmacist has checked that the produced drug mixture andpatient information note matches the flowchart and the working slip, the pharmacistput small green ticks on each item in the flowchart and finally signs it. Subsequentlythe flowchart and the product is referred to the treatment rooms, where the respon-sible nurse together with another authorized person (nurse or doctor) checks thatthe product and flowchart matches, both regarding content and patient information.The responsible nurse then signs the flowchart and the medicine is administered tothe patient. In parallel to this the nurse will administer adjuvant medicine like anti-emetics, cortisol and other drugs that are prescribed in the local practice guidelines.The nurse registers the medication in the Medicine Order and Administration (MOA)IT system that currently is being implemented in all the oncology departments.

+

pharmacist

assistent

Ward

Pharmacy

flowchart

flowchart

Work

sheed

Patient

+

Doctor

+

pharmacist

Work

sheed

flowchart
+

Pharmacist

+

Nurse

flowchart

Pt. A

drug X

+

Pt. A

drug X

+

Pt. A

drug X

+

Patient

+

Nurse/

doctor

Figure 2.3: Oncologic workflow in relation to chemotherapeutic treatment of patient.
2.1.3 Preliminary conclusion to the case study

Several characteristics of the work were elucidated in the case study:
• There are several professional actors involved in even rather simple workflowslike the ones we studied (they are all involved in more than one workflow atthe same time).
• The flow is guided by the flowchart, which is simply a table with a columnto which the Doctor and Chemist add information and/or a signature, therebycapturing the state of the session.

2.1. Resultmaker Online Consultant - A Declarative Workflow 33

• The workflow is distributed: the doctor and nurse, pharmacist, and pharmacyassistant are physically located in different places at the hospital and thecurrent paper used for controlling the workflow is physically transferred by aporter or nurse (or faxed) between the different actors.
• Only the actor currently possessing the flowchart knows its state. Much timewas used waiting for and controlling the status of the former process step, tobe able to plan own work.
• There are a number of check-points. If a check fails (e.g. the Chemist or Nursedoubts the validity of the current state, the previous actors are asked to verifythe state and possibly redo a calculation.
• Exceptional events like the medicine getting too old (e.g. if it is not transferredto the treatment rooms and approved within 24 hours) also led to recurrenceof activities.
• Only the state (information) and the actors are implicit in the flowchart. Theordering of events (i.e. transfer of the flow chart between actors), handling ofexceptions and recurrence/validation of calculations are implicit.
In our observations we found several potential enablers and obstacles to digital-ization of the process support, which have been collected in Fig. 2.4 below.We believe that IT based process support has a potential in relation to chemother-apeutic treatment of cancer patients. It is though important to be aware that such achange in the clinical work is not just a question of giving access to the right applica-tions. Access to the right equipment as well as integrations of it-systems is manda-tory. Also the organisational workflows have to be analysed and maybe changed.This demands managerial support. More work has to be done to understand the or-ganisational and social implications. To obtain knowledge about organisational andsocial implications it is important to establish carefully planned experiments withprocess support in clinical settings. In this case study, we concentrate on how theworkflow of a single chemotherapeutic treatment session may be supported by aworkflow management system, and in particular how the workflow can be describedas an executable process. A central issue is how to make the implicit ordering ofevents (and the additional verifications and possibly recurrences of events) explicit.One option is to use an imperative flow graph based notation such as Petri Net orBPMN. However, it would include arrows for capturing the control flow (includingcycles for the verification and recurrence of events), which would differ radically fromthe notation used in the current case study based setting. As suggested by van derAalst and Pesic in [van der Aalst & Pesic 2006b] one can avoid introducing the explicitcontrol flow as a complex flow graph by instead using a declarative notation suchas the CIGDec model. Following this idea, we will investigate below how to specifythe treatment session in a commercial declarative workflow management system, theResultmaker Online Consultant.

34 Chapter 2. Background

Enablers ObstaclesThe nurses do a lot of walking between treat-ment rooms and pharmaceutical preparationrooms to obtain status on the workflow. Anup to time status on preceeding process stepswould make it easier for the actors downstream to plan work.

Feeling of competence. "I havebeen here for a hundred years,so I know what to do, and I knowthe procedures" guidance are notsought for.Many patients had to follow more than oneCPG, due to co-morbidity or adverse effectsof treatment
Oral culture problems are prefer-ably discussed with peers, evenrather fact based ones.

Meeting legal demands: In the current situa-tion, the pharmacist is lacking a copy of theprescription, which is a legal demand.
No clinical managerial pressure.It is not expected than profession-als look things up in the exist-ing sources (Paper or IT-based).There is no control (no count onhits)It was clear from our observations that CPGsand standard treatment plans was morevividly used if they were embedded in thework processes. This could be in the formof documentation templates, automated orderforms or decision algorithms.
Rigid work flows that has beenfounded using low-tech informa-tion technology like paper

Many new-commers, as they are more activeusers of CPGs than those that had been inthe job for a longer period. So in departmentswith a high turn around of employees processsupport will be more sought for.

Lack of integration between pro-cess support and all the clini-cal information systems, amongwhich some are still not digi-talised.Experience among clinicians that guidelinesare hard to find especially IT based ones "Iget 35 hits in a search for resuscitation".
Lack of access to computers, withlow response time and single signon to (all) the clinical IT-systems

Figure 2.4: Enablers and obstacles for digitalized clinical process support.
2.1.3.1 Treatment Workflow in ROC

As explained in the previous section, the ROC uses so-called eForms as its princi-pal activities and allows one to declare the sequential constraints and dynamicallyincluded verification steps (and implied recurrences of activities) as found in the on-cology treatment workflow using so-called sequential and logical predecessor con-straints and a notion of activity conditions. There is yet no formal graphical notationfor the ROC processes, but there is a guideline for how to identify and specify activ-ities, roles/actors and constraints in a table of a specific form jointly with the users.This table is referred to as the Process Matrix (PM), which is also used as name for

2.1. Resultmaker Online Consultant - A Declarative Workflow 35

the process model.In Table 2.5 below shows an example of a PM (simplified to preserve space) forthe Oncology workflow presented in the previous section. Each row of the matrixrepresents an activity of the Oncology workflow. The columns are separated in 3parts: The first set of columns describes the access rights for the different roles:Doctor (D), Nurse-I (N1), Nurse-II (N2), Controlling Pharmacist (CP), Pharmacistassistant (PA). The next set of columns describes (sequential and logical) predecessorconstraints. The last set of columns describes activity conditions.
2.1.3.1.1 Activities and execution.The notion of an activity in ROC is like in any other workflow language, whichmeans an activity is atomic and corresponds to a logical unit of work. Activities areexecuted in parallel by default and they can be executed any number of times, unlessconstrained as described below. The state of the ROC records whether an activityhas been executed or not. If an activity has been executed, then that activity willhave status executed. Its state can be reset under certain circumstances explainedin Control Flow Primitives sub section. We say that the flow has state complete atany point where all activities (currently included in the flow) have state executed.As we have discussed in the previous section, ROC contains pre-defined activitytype, eForm Activity. The eForms are web questionnaires that have graphical userinterface elements displayable in a web browser. The fields on the eForms aremapped to variables in the shared data store and the data filled in by the users will beavailable to all activities of the workflow instance. The eForms are appended to ROCactivities in process definitions and at run-time when an eForm activity is executed,the corresponding eForm will be displayed to the user for human interaction. Allactivities in the example, except signing activities, are eForm activities.In order to provide authentication for the data filled in by the users, the ROCuses Signing Activity. The user data on eForms will be digitally signed by usingXML digital signatures syntax and users digital identity certificates. A single signingactivity supports signing of data from multiple eForms. In the example all the activitiesnamed Sign are signing activities.The ROC supports a simple resource model using Role-based access rights todefine permissions on the activities to different users of the system. The possibleaccess rights are Read (R), Write (W), Denied (N) and the default access right onactivities is Read access. The Read access right allows a user with the particularrole to see the data of an activity, where as Write access right allows the user toexecute an activity and also to input and submit data for that activity. A Deniedaccess right is the same as making an activity invisible to the user, i.e. the user doesnot see it as part of the flow. In the example we have used the denied access rightto shield the Pharmacist assistant from the rest of the workflow.Every activity in the ROC has a logical activity condition. An activity condition isa Boolean expression that can reference the variables from the shared data store. Ifan activity condition is evaluated to be true, the activity is included in the workflow,

36 Chapter 2. Background

Figure 2.5: Information marked with * could be transferred from or registered au-tomatically in another hospital information system (HIS) W= write, R = read, N =denied access.
otherwise the activity will be skipped. Activity Conditions in ROC workflow model

2.1. Resultmaker Online Consultant - A Declarative Workflow 37

are re-evaluated whenever necessary, so the inclusion of an activity can be changedduring the lifetime of the workflow instance. If the activity condition changes to falseduring the execution of an activity (e.g. when a user is filling in an eForm), the userwill be informed that the activity is no longer part of the flow and no data will bechanged. This guarantees atomicity of activities.In the example we use two Boolean variables TrustO and TrustP to control theinclusion of the verification actions 1.2.3 and 1.4.5 respectively. When the doctorsigns the ordination in activity 1.2.2 , TrustO is also set to false, thereby excludingthe verification from the flow. However, it may be set to true during activity 1.3.1,1.51 or 1.5.2. This will force the verification step to be executed and all activitieshaving it as logical predecessor to be reset (see below).Sequential predecessor constraints are marked in the Predecessor (Seq) columnin the example. For instance, Activity 1.2.2 (Sign) is a sequential predecessor ofactivity 1.2.3 (Verify), capturing that it does not make sense to verify an ordination ifit has not been signed. Also, every activity in the group 1.1 is sequential predecessorsof every activity in group 1.2 In the example, the verification action 1.2.3 may resetactivity 1.2.1 (if the doctor finds out during verification that he needs to recalculatethe ordination). This again causes activity 1.2.2 to be reset, since it has activity 1.2.1as a logical predecessor.
2.1.3.2 Discussion

It is well known that healthcare processes are complex [Drucker 1993] and althoughmuch time is used on coordination [Reddy et al. 2001] errors happens too frequently[Kohn et al. 2000]. The CPGs can support healthcare employees in the process offollowing best practice consistently [Grol & Grimshaw 2003, Sim et al. 2001], but itis also well known that impediments to access relevant guidelines is an obstacle foruse [Thorsen & Makela 1999, Feder et al. 1999]. Thus it seems obvious to embedCPGs in clinical IT-process support, although the success of such projects has notbeen convincing [Lenz & Reichert 2007, Ash et al. 2004].In our case study of a rather simple clinical work process we found that the pro-cess had an extension in both time and location and several actors was included.Although the process was frequently repeated there were also frequent alterationsand recurrences due to returns to previous steps in the workflow. These challengescould be supported in a natural way by the declarative primitives in the ROC work-flow management system. Also, the activity conditions allow smooth combinationof several sub-workflows. This would be a way of implementing the noughts and
crosses diagram, which indeed specify for each day which sub workflows are rel-evant. ROC supports the paradigm of embedded although visible CPGs in clinicalIT-systems. Though one have to be aware that IT based business support will laythe grounds for new work processes, so one should not just automate existing paperbased work processes [Berg & Toussaint 2003].

38 Chapter 2. Background

2.1.3.2.1 Professions, professionalism and process support.In the ROC independent roles can be defined for all actors. The rights to read, fill in,and proceed to next step and to change the flow can defined in relation to each roleand activity. This can make it possible for the actors to see the status of the processupstream, and thus make the planning of own work easier.Health professionals are a heterogeneous group, some with little and some withimmense experience within a field. Although experience may not totally protect aclinician from committing errors the risk is less and the source of annoyance fromdetailed guidance by the IT system will be huge. In the ROC focus is on the overallclinical managerial process, for the inexperienced there are links to CPGs outsidethe ROC.Nevertheless it will be a cultural challenge for clinicians to have a clinical processsystem directing the road ahead [Berg et al. 2000], as well as it will have impact onthe training and socialization of new comers to the field [Mimnagh & Murphy. 2004].The communication culture in the healthcare sector is profoundly oral [Coiera 2006].We observed several examples of clinicians discussing factual topics to which the re-ply only would be a few clicks away. The cultural element will always be a challengewhen implementing new technology, especially when it fundamentally changes thework processes [Orlikowski & Gash 1994].
2.1.4 ConclusionInitially, the work on formalization of ROC was done as part of PhD candidate’s 1styear Industrial PhD project on behalf of Resultmaker A/S as a pre-project to thecurrent doctoral thesis work, with a key focus to formalize the primitives of ROC andto develop it as a formal foundations for declarative flexible workflows and to use itas a testbed for research in TrustCare project. But the industrial PhD project wasstopped by Resultmaker later due to their financial troubles.Further, we had also explored using the ROC formalization work to further developit as a generic formal foundations for declarative flexible workflows, but we havechosen to develop a new formal model instead of using ROC formalization due to thefollowing reasons.

1. ROC is a data-centric declarative workflow management system with a lotof complex primitives such as dependency expressions, transactions. Further,some of the primitives such as dependency expressions are tightly integratedand built over data. But as part of TrustCare project, we had been lookingfor a more general formal model that is declarative with simple primitives, yetsufficiently expressive, which can be used for both specifications and executionof workflows and business processes, which may not be not necessarily data-centric.
2. The work on the formalization of ROC is based on using LTL as a languagefor specification of business processes and during our work we had realizedthat executing process models specified in temporal logics such as LTL is quite

2.1. Resultmaker Online Consultant - A Declarative Workflow 39

complex. Further, a master’s thesis in our group [Slaats 2009] has exploredthe challenges of using temporal logics for business process execution, wherein it has looked into various ways of generating an automaton from an LTLprocess specification that can be used for execution. It has explored the twomain approaches of generating an automaton from a LTL specification: creat-ing a generalized Büchi automaton [Gerth et al. 1996] and creating a Müllerautomaton [de Jong 1991] and further it has proposed it’s own algorithm basedon the rewriting of LTL formulae for the unsafe on-the-fly execution. Howeverit has noticed that for more flow-orientated process models, the LTL formulaeto describe them will grow very quickly in size and complexity and furtherthe automata generated for these complex LTL specifications is quite huge andtime consuming to generate and hence we came to a conclusion that it is notpractical to use LTL as modeling language for business processes.
However, we believe that the study of formalization of ROC is a starting point fora valuable cross-fertilization between development of workflow management systemsin practice and research in theoretical computer science and motivated us for devel-opment of our formal model DCR Graphs. The predecessor primitives of the ProcessMatrix are similar to the primitives considered by van der Aalst and Pesic in [van derAalst & Pesic 2006a, van der Aalst & Pesic 2006b] , and quite useful constructs inthe domain of business process modeling and hence carried over to our formal modelDCR Graphs. Further in our opinion, the use of activity conditions suggests inter-esting variants of the constraint templates and hence also partially motivated fordynamic inclusion and exclusion relations in our DCR Graphs.

40 Chapter 2. Background

2.2 DECLARE: A Constraint Based Approach For Flexible Workflows

In this section we briefly introduce another important motivation for our formal model:DECLARE [van der Aalst et al. 2010a, Pesic et al. 2007, van der Aalst et al. 2009]and its declarative process languages [van der Aalst & Pesic 2006a, van der Aalst& Pesic 2006b]. In this section, we very briefly introduce DECLARE framework andkey primitives of its declarative languages and further explain how it has served asmotivating factor for DCR Graphs.The DECLARE is a system for supporting declarative or loosely-structured pro-cess models. The DECLARE has been developed as a constraint-based frameworkthat uses declarative languages expressed in linear temporal logic [Pnueli 1977], forspecification and execution of business processes. Even though the DECLARE is aframework for declarative processes, it offers most of the features similar to tradi-tional workflow management systems such as process development tools, verificationsupport, simulation support for model execution, support for adaptive changes andsupport for mining of already executed processes [Pesic et al. 2007]. As opposed toimperative approaches to process modeling, the DECLARE uses declarative modelingparadigm and the difference between the declarative and imperative approaches havebeen discussed in sec 1.4 of the introduction chapter.
2.2.1 Process Modeling

The DECLARE uses constraints to specify relations between activities/tasks. Liketraditional modeling languages (for example BPMN), offering a predefined set ofrelations between tasks or activities such as sequence, choice, parallelism, and loop,the DECLARE allows for customized constraints templates for specification. TheDeclare framework supports two very similar declarative languages: ConDec [van derAalst & Pesic 2006a] and DecSerFlow [van der Aalst & Pesic 2006b]. ConDec is adeclarative language for specification of business processes and workflows, where asDecSerFlow is language tailored towards the specification of web services.In the DECLARE it is possible to define new constraint templates using lineartemporal logic (LTL). Basically new templates can be defined using basic LTL opera-tors: always (2), eventually (3), until (t), next (©). LTL constraints can be assignedwith name and graphical notation, so that users are not constrained to know LTL,on the other hand they can use graphical languages to model the processes, withoutknowing the underlying LTL formulae. The list of predefined constraints in LTL thatcan be used in DECLARE can be found in [van der Aalst & Pesic 2006b], however, herewe will briefly mention about two constraints: precedence and response constraints,which are also motivation for condition and response relations in our formal model.The semantics of those two constraints are given in 2.1.1.5. In fact, we have usedthe same graphical notation and semantics for the two relations in our formal modelDCR Graphs, which will be introduced in chapter 3.The DECLARE framework supports both mandatory and optional constraints. Thetool enforces the mandatory constraints so that an execution can not violate the

2.2. DECLARE: A Constraint Based Approach For Flexible Workflows 41

mandatory constraints, where as in case of optional constraints, users are allowedto violate them and in such a case the tool only warns about violation of an optionalconstraint.
2.2.2 Process Execution

The specification of a process in DECLARE is mapped onto a set of LTL formulae,primarily defining the constraints between the activities. From the specification inLTL, an automata is generated using standard techniques [Gerth et al. 1996] to gen-erate automata from an LTL formulae. Many algorithms have been developed in thelast decades about generating the an automata from LTL specification and DECLAREuses an algorithm that creates finite words automata [M.Clarke et al. 1999] fromLTL formulas of specification. Once the automata is generated, it is used to supportenactment and monitor state of each constraint.Adopting the runtime instances of process is an important feature of flexible work-flow management systems and the DECLARE supports changing the process modelsduring their execution. In DECLARE, it is possible to add, delete activities togetherwith relating constraints and also possible to change the data associated with ac-tivities and constraints can be added or deleted and can be made optional duringexecution of process instances [Pesic et al. 2007].When a model is adopted, it verifies the compliance of these changes and theusers will be notified if there are any conflicts with the already executed part of theinstance. After the adaptation of the running instances, the modified process modelis re-initialized and a new automata will be generated from the modified processinstances based on the new set of constraints and finally the already executed partof the instance is replayed on the new automata, to get the updated state.
2.2.3 Conclusion

The DECLARE and its declarative languages ConDec [van der Aalst & Pesic 2006a]and DecSerFlow [van der Aalst & Pesic 2006b] are one of the first few workflowformalisms that made significant impact on the research of finding new ways ofmodeling for achieving flexibility. Our approach is closely related to the work onConDec [van der Aalst & Pesic 2006a] and DecSerFlow [van der Aalst & Pesic 2006b].The crucial difference is that we allow nesting and a few core constraints making itpossible to describe the state of a process as a simple marking. ConDec does notaddress dynamic inclusion/exclusion of activities, but on the other hand allows one tospecify any relation expressible within Linear-time Temporal Logic (LTL). This offersmuch flexibility with respect to specifying execution constraints. In particular thecondition and response relations in our formal model are same as precedence andresponse constraints and hence we have used same graphical notation.However their approach suffers from problems related to efficiency in executingbusiness processes [van der Aalst et al. 2009]. The DECLARE engine has problems indealing with large workflow specifications because of the complexity of generating

42 Chapter 2. Background

automata from the LTL specification.In the recent years, there has been significant work in DECLARE framework onimproving the efficiency of translation from LTL to automata. Especially in the latestwork [Westergaard 2011], significant performance has been achieved by exploitingcharacteristics of LTL formulae originating from a DECLARE specification as they areconjunction of simpler formulae defined by the individual constraints. The approachused by Westergaard in [Westergaard 2011], is by computing automaton productfor the individual formulae instead of computing the automaton for the whole LTLspecification which is a conjunction of all the formulae. No doubt, the DCLARE hasalso served as a big motivation for using declarative modeling primitives for our formalmodel. However as mentioned in the summary 2.1.4 of last section, we have decidedto not to use LTL for specification of modeling language for business processes.

2.3. Event Structures 43

2.3 Event Structures

In this section, we briefly introduce the Event Structures [Nielsen et al. 1979, Winskel 1986,Winskel 2011, Winskel & Nielsen 1993, Winskel & Nielsen 1995], which serves as thebase theory behind our formal model DCR Graphs. First we give a brief introduc-tion to the theory behind event structures and later we introduce some of the basicdefinitions of event structure with an example and finally we provide concluding re-marks stating the reasons for choosing the event structures as the base theory forDCR Graphs.
2.3.1 IntroductionEvent Structures can be regarded as a minimal, declarative model for concurrentprocesses. In a more general setting, event structures can thought as a model ofcomputational processes and a process can be represented using event structures asa set of event occurrences with an explicit relation to express how events casuallydepend on others [Winskel 1986]. More precisely, in event structures what is impor-tant is the significance of events and how the occurrence of an event depend on theprevious occurrence of some other events. To model nondeterminism, event structureshave binary conflict relation between the events, expressing how occurrences of someevents will rule out the possibility of happening of others events.The primary motivation for event structures was to develop a theory of concur-rency that incorporates insights from both Petrinets [Petri 1980, Petri 1977] and Scottdomain of information [Scott 1970, Scott 1976, Scott 1982], by connecting the idea ofevents with partial orders of information [Nielsen et al. 1979]. The relations on eventsin the event structures bear a close relationship to the Petrinets, where as the con-figurations and states of an event structure represents the information about whatevents have occurred and hence determine a Scott domain of information. Due to thisdual nature, Event structures stand as intermediary between the theories of Petri netsand denotational semantics and by sharing the ideas from both formalisms, they serveas bridge between the two theories [Winskel 1986].
2.3.2 Event Structures, ConfigurationsIn this section, we will introduce some of the basic definitions of event structures,based on the formal definitions from [Winskel & Nielsen 1993].
Definition 2.3.1. A prime event structure is a 3-tuple ES = (E, ≤,#) where

(i) E is a (possibly infinite) set of events

(ii) ≤ ⊆ E× E is the causality relation between events which is a partial order

(iii) # ⊆ E×E is a binary conflict relation between events which is irreflexive and
symmetric

An events structure (ES) must satisfy the conditions that

44 Chapter 2. Background

1. causality relation satisfies principle of finite causes
∀e ↓= {e′ | e′ < e} is finite for any e ∈ E.

2. conflict relation satisfies the principle of conflict heredity
∀e, e′, e′′ ∈ E.e#e′ ≤ e′′ =⇒ e#e′′

The condition (1) states that the set of events which are causally depend on anevent is finite, where as the axiom on conflict relation (2) expresses that if two eventscausally depend on the events that are in conflict, then they too will be in conflictas well. We now define the causal independence (concurrency) of events in an eventstructure as follows,
Definition 2.3.2. For an event structure ES = (E, ≤,#) the causal independence
of events is expressed by a derived relation co ⊆ E × E, such that e co e′ iff
¬(e ≤ e′ ∨ e′ ≤ e ∨ e#e′).

Further, the behavior of an event structure can be described by stating whichsubsets of events can happen in a possible run of an system representing the eventstructure and these subsets of events are called configurations. Now we formallydefine a configuration of an event structure as follows.
Definition 2.3.3. For an event structure ES = (E, ≤,#), a configuration is a set of
events C ⊆ E satisfying the conditions

(i) conflict-free: ∀e, e′ ∈ C.¬(e#e′)
(ii) downwards-closed: ∀e ∈ C, e′ ∈ E.e′ ≤ e =⇒ e′ ∈ c

We further define configurations D (ES) as a set of all configuration C and denote
D 0(ES) for a set of finite configurations.

The conflict relation between the events implies that both events can not happenin the same configuration (i), in other words occurrence of one event will exclude theoccurrence of the other, where as (ii) condition says that if an event happened, thenall the events which are casually depend on it must have happened before.We can infer important relations associated with an event structure from its finiteconfigurations as follows,
Definition 2.3.4. For an event structure ES = (E, ≤,#) with a set of finite configu-
rations D 0(ES),

(i) e ≤ e′ ⇔ ∀C ∈ D 0(ES). e′ ∈ C =⇒ e ∈ C

(ii) e#e′ ⇔ ∀C ∈ D 0(ES). e ∈ C =⇒ e′ 6∈ C

(iii) e co e′ ⇔ ∃C, C′ ∈ D 0(ES). (e ∈ C) ∧ (e 6∈ C′) ∧ (e′ ∈ C′) ∧ (e′ 6∈ C) ∧ (C ∪ C′) ∈
D 0(ES)

2.3. Event Structures 45

Definition 2.3.5. For an event structure ES = (E, ≤,#), let C, C’ be the configurations,
then we can write that

C e−→ C′ ⇔ e 6∈ C ∧ C′ = C ∪ {e}In an event structure, events can only happen at most once (def 2.3.5) and fur-ther they can be perceived as atomic jumps from one configuration to another, liketransitions in asynchronous transition systems [Winskel & Nielsen 1993].
Example 2.3.1. Event structures can exhibit nondeterminism. For example consider
an event structure with two events e0 and e1 with a conflict relation between them
(e0#e1) as shown in the figure 2.6, in which {e0}, {e1} ∈ D 0(ES), but {e0, e1} 6∈
D 0(ES).

Figure 2.6: Nondeterministic behavior in events structures
Example 2.3.2. Event structures can exhibit parallelism or concurrency. For example
consider an event structure with two events e0 and e1 as shown in the figure 2.7, in
which we have configurations ∅, {e0}, {e1}, {e0, e1} ∈ D 0(ES).

Figure 2.7: Concurrency in events structures
Definition 2.3.6. Two events e0, e1 of an event structure are in concurrency relation
co, iff there exists configurations ∅, {e0}, {e1}, {e0, e1} ∈ D 0(ES) as shown in the
figuree 2.7 and we will write that as e0 co e1.

46 Chapter 2. Background

Often processes needs to perform action multiple times, but events in the eventstructures can happen only once. In order to model such processes, it would behelpful to add labels to event structures so that each occurrence of an action can bemodeled by different event. We do this by extending the definition of event structureswith set of labels and a leveling function to define labeled event structures as follows,
Definition 2.3.7. A labeled event structure is a tuple LES = (ES,Act, l) where

(i) ES = (E, ≤,#) is an even structre,

(ii) Act is the set of actions

(iii) l : E→ Act is the labeling function mapping events to actions

A run ρ of E is a (possibly infinite) sequence of labelled events (e0, l(e0)), (e1, l(e1)), . . .
such that for all i ≥ 0. ∪0≤j≤i {ej} is a configuration.

A run (e0, l(e0)), (e1, l(e1)), . . . is maximal if any enabled event eventually happen
or become in conflict, formally ∀e ∈ E, i ≥ 0.e ↓⊆ (ei ↓ ∪{ei}) =⇒ ∃j ≥ 0.(e#ej ∨
e = ej).Let us take a small example to illustrate how labeled event structures can usedto model a process that performs actions multiple times.
Example 2.3.3. Consider a process which exhibit a behavior (a;b; c;)+ (a | b), where
we can execute either actions a, b, c sequentially or actions a and b independently.

Figure 2.8: Process in labeled events structures
We can model the process in labeled event structures as,E = {e1, e2, e3, e4, e5} , Act = {a, b, c}, l = {(e1, a), (e2, b), (e3, c), (e4, a), (e5, b)},
≤= {(e1, e2), (e2, e3)}, # = {(e1, e4), (e1, e5)} and co = {(e4, e5)}.

2.3. Event Structures 47

The same process can be shown graphically in 2.8, where we have used arrows or
directed arcs to represent causality and hash mark (#) to represent conflict. The set
of all configurations will be
D 0(LES) = {∅, {(e1, a)}, {(e1, a), (e2, b)}, {(e1, a), (e2, b), (e3, c)},
{(e4, a)}, {(e5, b)}, {(e4, a), (e5, b)}}

We further model the give medicine healthcare example, which was introduced insec 1.4 from the case study 2.1.2, in labeled event structures in 2.3.4.
Example 2.3.4. In this example we consider that the set of events and actions is the
same and hence we omit display of action labels in the figure 2.9.

Figure 2.9: Give medicine example in events structures
E = Act = {prescribe medicine, sign, don’t trust, give medicine} ,
l = {(prescribe medicine, prescribe medicine), . . .},
≤ = {(prescribe medicine, sign), (sign, don’t trust), (sign, give medicine) },# = {(don’t trust, give medicine) } ,
D 0(LES) = {∅, {prescribe medicine}, {prescribe medicine, sign}, {prescribe medicine,
sign, don’t trust}, {prescribe medicine, sign, give medicine} }

2.3.3 ConclusionIn this section, we will explain the reasons why we have chosen event structure asbase theory behind our formal model DCR Graphs and also talk about short-comingsof event structures to use them for specifications and execution of declarative businessprocesses and workflows.Event structures are suitable for process modeling of declaratives workflows be-cause of the following reasons.
1) Event structures has a strong formal foundation, and it has been developed asa concurrency theory bridging the gap between traditional domain theory and

48 Chapter 2. Background

net based process languages such as Petrinets, by incorporating good insightsfrom both the theories. Further, event structures have been studied by manyresearchers and used to give semantics for nondeterministic dataflow [Saunders-Evans & Winskel 2007], higher order process languages, CCS and related lan-guages [Winskel 1982, Crafa et al. 2007] and a logical framework for reputationsystems [Krukow et al. 2008].
2) Event structures has causality relation to express partial order among events,which is a more declarative way of specifying the precedence among the events.It also has conflict relation to model nondeterministic behavior among the eventsin an indigenous way. Moreover events which are not related by causality andconflict are concurrent [prop 2.3.4], so the concurrency has been naturally builtinto the model. All these characteristics make the event structures as a naturaland more suitable choice to use them as formal model for declarative processes.
However, we have noticed that there are certain missing aspects in event structures, inorder to able to use them as an formal model for specification execution of workflows.
1) First of all, events in the event structures can only happen once and we feel that itis a limitation to express repeated, possibly infinite behavior. To be more precise,in the example 2.3.4 it should have be possible to execute give medicine many timesrepeatedly, may be after don’t trust followed by sign, but not possible because theevents can only be executed once. One may argues that the repeated behavior inevent structures could be modeled using labels as shown in the example 2.3.3, butthis approach on one hand makes the modeling part complicated and on the otherhand it will not be possible to model infinite behavior, for example if we don’tknow how many times an action should be repeated. So we feel that, lackingof repeated behavior of events, is an important limitation in order to use eventstructures for modeling of declarative processes.
2) Secondly, it must be possible to specify that only some of the partial (or infinite)computations are acceptable. But event structures has no notion of categorizingsome of the configurations/runs as accepting or desirable, which is an importantcharacteristic to model the declarative process models. Moreover, sometimes it isnecessary to specify that some of the events are mandatory in a process model,but event structures does not have any such constructs.
3) Finally, we need to be able to describe a distribution of events over the agents/persons/processors. But event structures does not have such notion.

In the next chapter [section 3.1.1], we will describe how we have addressed theselimitations by proposing generalizations to the event structures, to develop the formalmodel for declarative workflows.

2.4. Summary 49

2.4 Summary

In this chapter, we have introduced formalisms and process models that have servedas motivation for our formal model DCR Graphs. First we have described our previouswork on formalization of Resultmaker process model using linear temporal logics insec 2.1.1.4 and then we have introduced a healthcare case study in sec 2.1.2. We haveexplained the drawbacks of our previous approach using LTL for formalization of Re-sultmaker process model in 2.1.4 and then very briefly introduced DECLARE [van derAalst et al. 2010a, van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a] tool andits approach in using declarative modeling languages in 2.2.In the last section 2.3, we have introduced Event structures [Winskel 1986], whichis the base theory behind our formal model. We have also explained reasons forchoosing Event structures and at the same also pointed out the missing aspects ofevent structures in order to use them as a formal model for business processes inthe concluding section 2.3.3. In the next chapter 3, we will explain how we havegeneralized event structures to define our formal model and also introduce formalsemantics of DCR Graphs.

Chapter 3

Dynamic Condition Response
Graphs

In the previous chapter, we have examined the formal models which have served asmotivation for our formal model Dynamic Condition Response Graphs (DCR Graphs).This chapter will introduce the formal semantics of DCR Graphs. First we will give abrief motivation for DCR Graphs in sec 3.1 and then we will discuss about a sequenceof proposed generalizations to labelled event structures in sec 3.1.1. A brief discussionrelating our model to other formalisms will be presented in the section 3.2. We willintroduce condition response event structures as the first generalization in sec 3.3.1and then show how the response relation allows us to represent the notion of weakfairness. In sec. 3.3.2 we will introduce the model of DCR Graphs and by extendingthe model with role and principals we define distributed DCR Graphs in sec 3.3.3 andthe execution semantics to are mapped to a labelled transition system. Furthermore,we will further formalize the execution semantics of DCR Graphs for infinite runs byproviding a mapping to Büchi-automaton with τ-events in the sec 3.3.4. Then, wewill introduce graphical notation and give an healthcare example for DCR Graphs insec 3.4. Finally, as part of expressibility of DCR Graphs, we encode Büchi-automatoninto the DCR Graphs and show that the DCR Graphs are expressive enough to model
ω-languages. We will end the chapter by concluding remarks in sec 3.6.This chapter extends and summarizes the work presented in the two previousshort papers [Hildebrandt & Mukkamala 2011, Mukkamala & Hildebrandt 2010] and ajournal version [Hildebrandt & Mukkamala 2010]. The paper [Hildebrandt & Mukka-mala 2011] introduced condition response event structures and dynamic condition re-sponse structures and provided a mapping to finite state machines (ignoring infiniteruns), which are essentially DCR Graphs without markings. The paper [Mukkamala& Hildebrandt 2010] provided a mapping from dynamic condition response structuresto Büchi automata, but only capturing acceptance for the infinite runs. In [Hilde-brandt & Mukkamala 2010], the DCR Graphs graphs were introduced and this paperalso characterizes the acceptance of finite runs in the Büchi automata by introducingsilent (τ) transitions.
3.1 Motivation

There is a long tradition for using declarative logic based languages to scheduletransactions in the database community, see e.g. [Fernandes et al. 1997]. Severalresearchers have noted [Davulcu et al. 1998, Senkul et al. 2002, Singh et al. 1995,

52 Chapter 3. Dynamic Condition Response Graphs

Bussler & Jablonski 1994, van der Aalst et al. 2009] that it could be an advantageto use a declarative approach to achieve more flexible process descriptions in otherareas, in particular for the specification of case management workflow and ad hocbusiness processes. The increased flexibility is obtained in two ways: Firstly, sinceit is often complex to explicitly model all possible ways of fulfilling the requirementsof a workflow, imperative descriptions easily lead to over-constrained control flows.In the declarative approach any execution fulfilling the constraints of the workflowis allowed, thereby leaving maximal flexibility in the execution. Secondly, adding anew constraint to an imperative process description often requires that the processcode is completely rewritten, while the declarative approach just requires the extraconstraint to be added. In other words, declarative models provide flexibility for theexecution at run time and with respect to changes to the process.As a simple motivating example, we will again consider the hospital workflowfrom danish hospitals [Lyng et al. 2008, Mukkamala et al. 2008], which has also beenused in the previous chapters. As a start, we assume two events, prescribe and
sign, representing a doctor adding a medical prescription to the patient’s record andsigning it respectively. We assume the constraints stating that the doctor must signafter having added a prescription of medicine to the patient record and not to sign anempty record. A naive imperative process description may simply put the two actionsin sequence, prescribe;sign, which allows the doctor first to prescribe medicine andthen sign the record. In this way, the possibilities of adding several prescriptionsbefore or after signing and signing multiple times are lost, even if they are perfectlylegal according to the constraints. The most general imperative description shouldstart with the prescribe event, followed by a loop allowing either sign or prescribeevents and only allow termination after a sign event. If the execution continuesforever, it must be enforced that every prescription is eventually followed by a signevent.With respect to the second type of flexibility, consider adding a new event give,representing a nurse giving the medicine to the patient, and the rule that a nursemust give medicine to the patient if it is prescribed by the doctor, but not before ithas been signed. For the most general imperative description we should add theability to execute the give event within the loop after the first sign event and notallow to terminate the flow if we have had a prescribe event without a subsequent
give event. So, we have to change the code of the loop as well as the condition forexiting it.As discussed in 2.2, van der Aalst and Pesic [van der Aalst & Pesic 2006a,Pesic 2008] propose to use Linear-time Temporal Logic (LTL) as a declarative lan-guage for describing the constraints of the workflow. LTL allows for describing a richset of constraints on the execution flow. However, as stated in sec. 2.2.3, this approachsuffers from the fact that the subsequent tools for execution and analysis will referto the LTL expression (or further compilations to e.g. Büchi automata) and not thegraphical notation. Also, the full generality of LTL may lead to a poor execution time.This motivates researching the problem of finding an expressive declarative pro-cess language where both th0e constraints as well as the run time state can be easily

3.1. Motivation 53

visualized and understood by the end user and also allows an effective execution.We believe that the declarative process model language of dynamic condition re-
sponse graphs and its graphical representation proposed in this thesis is a promis-ing candidate. Primarily, the model is inspired by and a conservative generaliza-tion of the declarative process matrix model language [Lyng et al. 2008, Mukka-mala et al. 2008] used by our industrial partner and prime event structures [Nielsen
et al. 1979, Winskel 1986, Winskel & Nielsen 1993]. The model has also got inspiredby the DECLARE [van der Aalst et al. 2010a, Pesic et al. 2007, van der Aalst et al. 2009]and its declarative process languages [van der Aalst & Pesic 2006a, van der Aalst &Pesic 2006b] in respect of the constrained based approach.
3.1.1 DCR Graphs as generalized Event StructuresIn this section we will discuss about how distributed dynamic condition responsegraphs developed as a sequence of three generalizations of prime event structuresas shown in the figure 3.1.

Figure 3.1: From Event Structures to DCR Graphs overview
The first generalization, named condition response event structures, is obtainedby adding a set Re of initially required response events and by generalizing thecausality relation into a condition and a response relations between events. The

condition relation imposes precedence among the events, where as the response is akind of follow-up relation. The initially required response events can be regarded asgoals that must be fulfilled (or falsified) in order for an execution to be accepting. Thatis, for any event e ∈ Re, either e must eventually happen or it must become in conflictwith an event that has happened in the past. The response relation in some sensecorresponds to the response LTL pattern in [van der Aalst & Pesic 2006a, van derAalst & Pesic 2006b] as a dual relation to the usual condition relation: If an event bis a response to an event a then b must happen at some point after event a happens

54 Chapter 3. Dynamic Condition Response Graphs

or become in conflict. However, note that the response pattern does not allow forconflicts. Operationally, as we will see in the following section, one can think of theevent b as being added to the set Re of required responses when a happens.

Figure 3.2: Prescribe and Sign Example
Next we generalize condition response event structures by allowing each event tohappen many times and replacing the symmetric conflict relation by an asymmetricrelation which dynamically determines which events are included in or excluded fromthe structure. To allow the graphs to represent intermediate run time state (e.g. likethe marking of a Petri Net) we also add sets of included (In) and executed (Ex) eventsand refer to the triple of sets of pending responses, included and executed events asthe marking of the graph. This results in the model of Dynamic Condition Response

Graphs, short DCR Graphs.Finally, we reach the model of Distributed Dynamic Condition Response Graphsallowing for role based distribution by adding a set of principals and a set of rolesassigned to both principals and events, and define that an event can only be executedby a principal assigned one of the roles that were further assigned to the event.
3.2 Related Work

There exists many different approaches to formally specify and enact business pro-cesses and also It is not possible to provide a complete overview of related work,especially in the area of business processes and workflows. In this section we givea brief overview of some of the formal approaches and compare our work to them.On contrary to imperative modeling languages, the authors in [van der Aalst &Pesic 2006a, van der Aalst et al. 2009] have proposed ConDec, a declarative lan-guage for modeling and enacting the dynamic business processes based on LinearTemporal Logic (LTL). In [van der Aalst & Pesic 2006b], the authors have proposedDeclarative Service Flow language (DecSerFlow) to specify, enact and monitor ser-vice flows, which is a sister language for ConDec. Both the languages share thesame concepts and are supported in the Declare [van der Aalst et al. 2009] tool.They specifies what should be done, instead of specifying how it should be done,there by leaving more flexibility to users. The enactment in both the languages isdefined by translating the constraints specified in LTL, into a Buchi automaton andexecuting the workflow/service by executing the referring Buchi automaton. LTL be-ing a very expressive language, the Declare tool suffers from efficiency problems inexecuting models with large specification [van der Aalst et al. 2009]. Even though

3.2. Related Work 55

our approach is inspired from the ConDec, DecSerFlow models [van der Aalst &Pesic 2006a, van der Aalst & Pesic 2006b] in respect of using declarative modelinglanguages, but our model has fewer primitives than LTL, but more expressible thanLTL, as one can encode büchi automaton into DCR Graphs (as shown in Sec. 3.5) andthus makes it more expressible than LTL.In [Cicekli & Yildirim 2000, Cicekli & Cicekli 2006] the authors have proposed
Event Calculus [Kowalski 1992] as a logic-based methodology for specification andexecution of workflows. Event Calculus [Kowalski 1992] is a logic programmingformalism for representing events and their effects in the context of database applica-tions. In their approach, the authors have expressed the basic control flow primitivesof workflows as a set of logical formulas and used axioms of Event Calculus to spec-ify activity dependency execution rules and agent assignments rules. Their workflowmodel also supports enactment of concurrent workflow instances and iteration of ac-tivities, but does not support specification and verification of global and temporalconstraints on workflow activities. Also, their approach is limited to imperative/pro-cedural workflow modeling languages.On the side of imperative modeling languages, Petri nets has been the ma-jor formalism that has been studied and used extensively in the domain of work-flows and business processes [Van Der Aalst et al. 1997, Verbeek & Aalst 2000, Hee
et al. 2004, Aalst et al. 2011]. Concurrent Transaction Logic (CTR) used in [Davulcu
et al. 1998] as a language for specifying, analysis, scheduling and verification ofworkflows. In their framework, the authors have used CTR formulas for expressingthe local and global properties of workflows and reasoning about the workflows hasbeen done with the help of proof theory and semantics of logic. In [Senkul et al. 2002],the authors have used Concurrent Constraint Transaction Logic (CCTR) which is flavorof CTR integrated with Constraint Logic Programming for scheduling workflows. Likethe other logic programming systems, the authors in [Davulcu et al. 1998, Senkul
et al. 2002] have used the proof theory of CTR as run-time environment for enactmentof workflows. The CTR approach mainly aims at developing an algorithm for consis-tency checking and verification of properties of workflows, but again only limited toimperative modeling languages.In [van der Aalst et al. 2009], the authors provided a detailed overview of formalismsrelated to flexibility, ad-hoc and evolutionary changes. Authors in [Aalst 2001] ad-dressed the problem of the dynamic change bug by computing the change regionsof a process based on their structure, where as the dynamic change bug was firstintroduced by the autors in [Ellis et al. 1995]. Further, ADEPT Workflow ManagementSystem [Reichert & Dadam 1998, Rinderle et al. 2003, Rinderle et al. 2004, Reichert
et al. 2003] offers advanced modeling concepts and features, like temporal constraintmanagement, ad-hoc workflow changes and schema evolution and it has studied theproblem related to dynamic changes in the context of workflows, but their approachalso limited to imperative workflow modeling.Further, in [Vanderaalst et al. 2005] the authors have strongly advocated casehandling is a new paradigm for supporting flexible and knowledge intensive busi-ness processes and hence it should be avoided in restricting users in their actions.

56 Chapter 3. Dynamic Condition Response Graphs

In [Adams et al. 2006, Adams 2007] authors identified pockets of flexibility that canbe selected later in the process as some sort of late binding at run time, where asauthors in [Sadiq et al. 2001] proposed a similar approach where specification of thechange itself integrated in the process.Another major paradigm in business process modeling is the artifact-centric ap-proach, which strongly argues that data design should be elevated to the same levelas control flows for data rich workflows and business processes. In this area, severalresearchers [Nigam & Caswell 2003, Bhattacharya et al. 2007a, Liu et al. 2007] havebeen working with artifact-centric or data-centric workflows. As part of the artifact-centric models, a declarative approach has been taken in the recent years for spec-ifying the life cycles of business entities, using the Guard- Stage-Milestone (GSMmodel) life cycles model [Damaggio et al. 2011, Hull et al. 2011a, Hull et al. 2011b].The GSM model is a declarative process model for specification of interactions be-tween business entities and its operational semantics are based on rules similarto ECA(Event Condition Action)-like rules from Active database community. In com-parison, their main focus is on business artifacts which takes the data-centric viewof processes, where as our approach is on the business processes using declara-tive modeling approaches where the control flow is more explicit than data-centricprocesses.
3.3 Dynamic Condition Response Graphs

In this section, we will first introduce Condition Response Event Structures andthen introduce the formal semantics of DCR Graphs in Sec. 3.3.2. Later, we willextend DCR Graphs with roles and principles and define distributed DCR Graphs.Finally, for infinite runs we will define the execution semantics by mapping to Büchi-automaton in Sec. 3.3.4.
3.3.1 Condition Response Event StructuresAs an intermediate step towards dynamic condition response graphs, we generalizeprime event structures to allow for a notion of progress based on a response relation.This model is interesting in itself as an extensional event-based model with progress,abstracting away from the intentional representation of repeated behavior. In par-ticular we show that it allows for an elegant characterization of weakly fair runs ofevent structures.First let us recall the definition of a prime event structure and configurations fromthe last chapter 2.3.
Definition 3.3.1. A labeled prime event structure (ES) is a 5-tuple E = (E,Act, ≤,#, l)
where

(i) E is a (possibly infinite) set of events

(ii) Act is the set of actions

3.3. Dynamic Condition Response Graphs 57

(iii) ≤ ⊆ E× E is the causality relation between events which is a partial order

(iv) # ⊆ E×E is a binary conflict relation between events which is irreflexive and
symmetric

(v) l : E→ Act is the labeling function mapping events to actions

The causality and conflict relations must satisfy the conditions that

1. ∀e, e′, e′′ ∈ E.e#e′ ≤ e′′ =⇒ e#e′′
2. ∀e ↓= {e′ | e′ < e} is finite for any e ∈ E.

A configuration of E is a set C ⊆ E of events satisfying the conditions

1. conflict-free: ∀e, e′ ∈ C.¬e#e′
2. downwards-closed: ∀e ∈ C, e′ ∈ E.e′ ≤ e =⇒ e′ ∈ C

A run ρ of E is a (possibly infinite) sequence of labelled events (e0, l(e0)), (e1, l(e1)), . . .
such that for all i ≥ 0. ∪0≤j≤i {ej} is a configuration.

A run (e0, l(e0)), (e1, l(e1)), . . . is maximal if any enabled event eventually happen
or become in conflict, formally ∀e ∈ E, i ≥ 0.e ↓⊆ (ei ↓ ∪{ei}) =⇒ ∃j ≥ 0.(e#ej ∨
e = ej).

Action names a ∈ Act represent the actions the system might perform, an event
e ∈ E labelled with a represents occurrence of action a during the run of thesystem. The causality relation e ≤ e′ means that event e is a prerequisite for theevent e′ and the conflict relation e#e′ implies that events e and e′ both can nothappen in the same run, more precisely one excludes the occurrence of the other.The definition of maximal runs follows the definition of weak fairness for concurrencymodels in [Cheng 1995] and is equivalent to stating that the configuration defined bythe events in the run is maximal with respect to inclusion of configurations.We now generalize prime event structures to condition response event structures,by adding a dual response relation •→, such that {e′ | e •→ e′} is the set of eventsthat must happen (or be in conflict) after the event e has happened for a run tobe accepting. The resulting structures, named condition response event structures,in this way add the possibility to state progress conditions. The condition relation(→•) is same as the causality relation (≤) in labeled prime event structure imposingprecedence among the events. Further, we also introduce a subset of the events Reof initial responses, which are events that are initially required eventually to happen(or become in conflict). In this way the structures can represent the state after anevent has been executed. As we will see below, it also allows us to capture thenotion of maximal runs.
Definition 3.3.2. A labeled condition response event structure (CRES) over an al-
phabet Act is a tuple (E,Re,Act,→•, •→,#, l) where

58 Chapter 3. Dynamic Condition Response Graphs

(i) (E,Act,→•,#, l) is a labelled prime event structure, referred to as the underlying
event structure, where →• is a partial order relation imposing precedence among
the events, satisfying the downward-closed condition of configuration in the
underlying labeled event structure such that ∀e ∈ C, e′ ∈ E.e′ →• e =⇒ e′ ∈ C

(ii) •→ ⊆ E× E is the response relation between events, satisfying that →• ∪ •→is acyclic.

(iii) Re ⊆ E is the set of initial responses.

We define a configuration C and run ρ of a CRES to be a respectively a configura-tion and run of the underlying event structure. We define a run (e0, l(e0)), (e1, l(e1)), . . .to be accepting if ∀e ∈ E, i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej) and
∀e ∈ Re.∃j ≥ 0.(e#ej ∨ e = ej) . In words, any pending response event musteventually happen or be in conflict. sA prime event structure can trivially be regarded as a condition response eventstructure with empty response relation. This provides an embedding of prime eventstructures into condition response event structures which preserves configurationsand runs.
Proposition 3.3.1. The labelled prime event structure ES = (E,Act, ≤,#, l) has the
same runs as the condition response event structure CRES = (E, ∅,Act, ≤, ∅,#, l) for
which all runs are accepting.

Proof. The set of events (E), actions (Act), labeling function (l), conflict relation (#) aresame in both the CRES and ES and moreover the causality relation (≤) in ES is sameas the condition relation in CRES. Hence the given ES can be regarded as underlyinglabeled event structure for given CRES, therefore, according to definition 3.3.2 bothwill have same runs and configurations. Furthermore the set of initial responses (Re)and response relation (•→) are empty, hence all the runs in CRES are accepting.
We can also embed event structures into CRES by considering every conditionto be also a response and all events with no conditions to be initial responses.This characterizes the interpretation in [Cheng 1995] where only maximal runs areaccepting. In other words, the embedding captures the notion of weakly fair executionof event structures.

Proposition 3.3.2. The labelled prime event structure ES = (E,Act, ≤,#, l) has the
same runs and maximal runs as respectively the runs and the accepting runs of the
condition response event structure CRES = (E, {e | e ↓= ∅},Act, ≤,≤,#, l).
Proof. The CRES and ES have same elements in respect of E,Act, ≤,#, l and henceboth of them will have same runs according to definition 3.3.2. Further in orderto prove the proposition, we need to prove that any maximal run in ES is also anaccepting run in CRES.According to definition 3.3.1, a run (e0, l(e0)), (e1, l(e1)), . . . in ES is maximal if andonly if ∀e ∈ E, i ≥ 0.e ↓⊆ (ei ↓ ∪{ei}) =⇒ ∃j ≥ 0.(e#ej ∨ e = ej). According to

3.3. Dynamic Condition Response Graphs 59

definition 3.3.2, the same run is accepting in CRES if and only if the run satisfies thefollowing conditions.
1. ∀e ∈ E, i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej)In CRES, •→=≤ and hence ei •→ e =⇒ ei ≤ e. According to definition ofcausality, we can imply that ∀e ∈ E, i ≥ 0.e ↓⊆ (ei ↓ ∪{ei}).But the maximal run in ES implies that ∀e ∈ E, i ≥ 0.e ↓⊆ (ei ↓ ∪{ei}) =⇒
∃j ≥ 0.(e#ej ∨ e = ej).So we can conclude that ∀e ∈ E, i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨ (i <
j ∧ e = ej) satisfies in CRES.

2. ∀e ∈ Re.∃j ≥ 0.(e#ej ∨ e = ej)In CRES, Re = {e | e ↓= ∅}, hence all the events Re are enabled from thebeginning of the run. Since the run is maximal in ES, where all enabled eventswill eventually get executed, we can conclude that ∀e ∈ Re.∃j ≥ 0.(e#ej ∨e =
ej) will be satisfied in CRES.

Hence the proposition that any maximal run in ES is also an accepting run in CRESholds.
Now we go further and define formally the event executions in condition responseevent structures. In order define executions in a formal way, we first define when anevent is enabled in a condition response event structure in definition 3.3.3 and also theresult of executing an event in condition response event structure in definition 3.3.4.

Definition 3.3.3. For a labeled condition response event structure CRES = (E,Re,Act,→•
, •→,#, l) with a configuration C, we define that an event e is enabled at a configu-
ration C written as C ` e if and only if,

(i) e ↓ ∈ C

(ii) {e′ | e′#e} 6∈ C
Definition 3.3.4. For a labeled condition response event structure CRES = (E,Re,Act,→•
, •→,#, l) with a configuration C and with an enabled event C ` e, we define the
result of executing e is C′ = C ∪ e.

Having defined when events are enabled for execution and the effect of executingan event, now we finally define a finite execution in condition response event structureand when it is accepting formally as follows.
Definition 3.3.5. For a labeled condition response event structure CRES = (E,Re,Act,→•
, •→,#, l) with a configuration C, we define an execution to be a finite sequence of
tuples {(Ci, ei, ai, C′i)}i∈[k], each consisting of a configuration, an event, a label and
an another configuration such that

(i) C = C0

60 Chapter 3. Dynamic Condition Response Graphs

(ii) ∀i ∈ [k].ai = l(ei)
(iii) ∀i ∈ [k].Ci ` ei
(iv) ∀i ∈ [k].C′i = Ci ∪ ei
(v) ∀i ∈ [k − 1].C′i = Ci+1

We say that an execution is accepting if ∀e ∈ E, i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨(i < j ∧e = ej) and ∀e ∈ Re.∃j ≥ 0.(e#ej ∨e = ej). In words, any pending response
event must eventually happen or be in conflict.

3.3.2 DCR Graphs - Formal SemanticsWe now go on to generalize condition response event structures to dynamic con-dition response graphs (DCR Graphs). As opposed to event structures, a dynamiccondition response graph allows events to be executed multiple times and there areno constraints on the condition and response relations. This allows for finite rep-resentations of infinite behavior, but also for introducing deadlocks. Moreover, theconflict relation is generalized to two relations for dynamic exclusion and inclusionof events, which is more appropriate in a model where events can be re-executedand has shown useful in practice as a primitive for skipping events and constraints.Further, we also add a new relation milestone from our later work on the NestedDCR Graphs [Hildebrandt et al. 2011c, Hildebrandt et al. 2011b], which has been dis-covered during a case study involving modeling of a workflow from a case manage-ment domain, that has been conducted jointly with our industrial partner ExformaticsA/S. The milestone is also a blocking relation (similar to condition), but milestoneblocks events based on the events in the set of pending responses (Re).Being based on only five relations between events (condition, response, include,exclude and milestone) and with the role assignment, the distributed dynamic condi-tion response graphs can be simply visualized as a directed graph with a box for eachevent as nodes and five different kinds of arrows. In this section, first we formallydefine a dynamic condition response graph (def 3.3.6) and later by adding roles and
principals, we extend it to define distributed dynamic condition response graph inthe next section (sec 3.3.3).
Definition 3.3.6. A dynamic condition response graphis a tuple G = (E,M,Act,→•
, •→,→+,→%,→�, l) where

(i) E is the set of events, ranged over by e

(ii) M ∈ M(G) =def P(E) × P(E) × P(E) is the marking and M(G) is the set of all
markings.

(iii) Act is the set of actions

(iv) →• ⊆ E× E is the condition relation.

3.3. Dynamic Condition Response Graphs 61

(v) •→ ⊆ E× E is the response relation.

(vi) →+,→%⊆ E×E is the dynamic include relation and exclude relation, satisfying
that ∀e ∈ E.e →+ ∩e →%= ∅,

(vii) →� ⊆ E× E is the milestone relation.

(viii) l : E→ Act is a labelling function mapping every event to an action.The condition (iv) and response (v) relations in DCR Graphs are similar to thecorresponding relations in CRES, except that now they are not constrained in anyway. In particular, we may have cyclic relations.The marking (ii) M = (Ex,Re, In) ∈ M(G) consists of three sets of events, cap-turing respectively which events have previously been executed (Ex), which eventsare pending responses required to be executed or excluded (Re), and finally whichevents are currently included (In). The set of pending responses Re of DCR Graphsthus plays the same role as the set of initial responses in the CRES.The dynamic inclusion/exclusion (vi) relations →+ and →%, represented by the(partial map) ± : E × E ⇀ {+,%} , allow events to be included and excluded dy-namically in the graph. The intuition is that only the currently included events areconsidered in evaluating the constraints. This means that if an event a has event bas condition, but the event b is excluded from the graph then it is no longer requiredfor a to happen. Similarly, if event a has the event b as response and if the event
b is excluded then it is no longer required to happen for the flow to be acceptable.Formally, the relation e →+ e′ expresses that, whenever event e happens, it willinclude e′ in the graph. On the other hand, e →% e′ expresses that when e happensit will exclude e′ from the graph.The milestone relation (vii) is a blocking relation similar to condition, but it blocksbased on events in the pending response set. For example, if an event a has the event
b as a milestone (b →� a), then event a is not allowed to execute, if the event b is inthe set of pending responses (Re). Similar to condition relation, the milestones areblocking only if they are included in the graph.Now we go further and define the notion when an event is enabled formally indef 3.3.7. Before doing that, we will give the notation that will be employed in allour later definitions.
Notation 1. For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write →ξ and ξ→ for the set {a ∈ A | (∃a′ ∈
ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number k we write [k] for the set
{1, 2, . . . , k}.
Definition 3.3.7. For a dynamic condition response graph G = (E,M,Act,→•, •→
,→+,→%,→�, l) with marking M = {Ex,Re, In}, we define that an event e ∈ E is
enabled, written as M `G e if

i) e ∈ In

62 Chapter 3. Dynamic Condition Response Graphs

ii) (→•e ∩ In) ∈ Ex
iii) (→�e ∩ In) ∈ E \ ReFor an event e to be enabled, first of all, it must be included in the graph (i),further, all the included events which are conditions to the event e must be in the setof executed events (ii) and none of the included events that are milestones for it arein the set of pending responses (iii).We will now define formally the change to the marking when an enabled eventis executed in def 3.3.8. First the event is added to the set of executed events (Ex)and removed from the set of pending responses (Re). Then, all the events that are aresponse to the event are added to the set of pending responses. Note that if an eventis a response to itself, it will remain in the set of pending responses after execution.Similarly, the set of included (In) events is updated by including and excluding eventsthat have include and exclude relation from the executed event. Further an event e′can not be both included and excluded by the same event e, but an event mayinclude/exclude by itself. Also an event may trigger itself as a response and/or canhave itself as a condition or a milestone.
Definition 3.3.8. For a dynamic condition response graph G = (E,M,Act,→•, •→
,→+,→%,→�, l) with marking M = {Ex,Re, In} and with an enabled event M `G e,
the result of executing the event e will be a dynamic condition response graphG = (E,M′,Act,→•, •→,→+,→%,→�, l), where M′ = M ⊕G e = {Ex′,Re′, In′} such
that

i) Ex′ = Ex ∪ {e}
ii) Re′ = (Re \ {e})∪ e•→
iii) In′ = (In ∪ e→+)\ e→%Having defined when events are enabled for execution and the effect of executingan event, we define finite and infinite runs/executions in DCR Graphs and when theyare accepting. Intuitively, an execution is accepting if any required, included responsein any intermediate marking is eventually executed or excluded. We define a run andan accepting run in DCR Graphs as follows in definition 3.3.9.
Definition 3.3.9. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define an execution of G to be a (finite or infinite) sequence of
tuples {(Mi, ei, ai,M′i)}i∈[k] each consisting of a marking, an event, a label and another
marking (the result of executing the event) such that

i) M = M0
ii) ∀i ∈ [k].ai ∈ l(ei)
iii) ∀i ∈ [k].Mi `G ei
iv) ∀i ∈ [k].M′i = Mi ⊕G ei

3.3. Dynamic Condition Response Graphs 63

v) ∀i ∈ [k − 1].M′i = Mi+1.

Further, we say the execution (or a run) is accepting if ∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥
i.ej = e ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) and M′j = (Ex′j , In′j ,Re′j).

Finally we say that that a marking M′ is reachable in G (from the marking M) if
there exists a finite execution ending in M′ and let MM→∗ (G) denote the set of all
reachable markings from M.

From the semantics defined above, we can construct a labelled transition systemwith an accepting condition for finite runs as given in def 3.3.10.
Definition 3.3.10. For a dynamic condition response graph G = (E,M,Act,→•, •→
,→+,→%,→�, l) we define the corresponding labelled transition system TS(G) to be
the tuple (M(G),M, Lts(G),→)
where Lts(G) = E× Act is the set of labels of the transition system, M is the initial
marking, and →⊆M(G)×Lts(G)×M(G) is the transition relation defined by M (e,a)−−→M⊕G e if M `G e and a ∈ l(e).

We define a run a0, a1, . . . of the transition system to be a sequence of labels of
a sequence of transitions Mi

(ei,ai)−−−→ Mi+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that ∀i ≥ 0, e ∈ Ini ∩ Rei.∃j ≥ i.((e = ej ∨ e 6∈ Inj+1)). In words, a run
is accepting/completed if no required response event is continuously included and
pending without it happens or become excluded. Finally, we extend the transition
relation to a relation between graphs by (E,M,Act,→•, •→,→+,→%,→�, l) (e,a)−−→(E,M⊕G e,Act,→•, •→,→+,→%,→�, l) if M (e,a)−−→ M⊕G e.

If one only want to consider finite runs, which is common for workflows, theacceptance condition degenerates to requiring that no pending response is includedat the end of the run. This corresponds to defining all states where Re∩ In = ∅ to beaccepting states and define the accepting runs to be those ending in an acceptingstate. If infinite runs are also of interest (as e.g. for reactive systems and the LTLlogic) the acceptance condition can be captured by a mapping to a Büchi-automatonwith τ-events which we will define in Sec. 3.3.4.A condition response event structure(CRES) can be represented as a dynamiccondition response graph by making every event exclude itself and encode the conflictrelation by defining any two conflicting events to mutually exclude each other asshown in figure 3.3.
Proposition 3.3.3. The condition response event structure CRES = (E,Re,Act,→•
, •→,#, l) has the same executions and accepting executions as the dynamic con-
dition response graph G = (E,M,Act,→•, •→,→+,→%,→�, l) with marking M =
{Ex,Re, In} where

i) Ex = ∅, In = E

64 Chapter 3. Dynamic Condition Response Graphs

(a) # relation in CRES (b) Encoding of # in DCR Graphs
Figure 3.3: Encoding of conflict from CRES as mutual exclusion in DCR Graphs.

ii) e →% e′ if e = e′ or e#e′ and undefined otherwise.

iii) →� = ∅, →+= ∅
Proof. According to the definition 3.3.5, an execution in CRES is a finite sequence oftuples {(Ci, ei, ai, C′i)}i∈[k] such that C = C0, ∀i ∈ [k].ai = l(ei) ∧ Ci ` ei ∧ C′i = Ci ∪ eiand ∀i ∈ [k − 1].C′i = Ci+1.For a DCR Graph G, an execution is defined (definition 3.3.9) as a finite/infinitesequence of tuples {(Mi, ei, ai,M′i)}i∈[k] such that M = M0 and ∀i ∈ [k].ai ∈ l(ei) ∧Mi `G ei ∧M′i = Mi ⊕G ei and ∀i ∈ [k − 1].M′i = Mi+1.In order to prove the proposition, first we have to prove that any finite execution inCRES is also a valid finite execution in G and then we will prove that any acceptingexecution in CRES is also accepting in G.(I) CRES has same executions as G.Here we use proof by induction and show that the proposition is valid for basecase and then we will prove it for inductive step, assuming that if proposition isvalid for a finite length of execution for ∀i ∈ [l], then the proposition also validfor for ∀i ∈ [l+ 1].The set of events (E), actions (Act), labeling function (l),initial response set (Re),condition relation (→•), response relation (•→) are same in both CRES and G.

i) Base case (i = 0)In the base case where i = 0, the execution in CRES is {(C0, e0, l(e0), C′0)}and the tuple (C0, e0, a0, C′0) implies that C0 = ∅, e0 ↓ = ∅ and a0 = l(e0).We have to show that in G for the base case (i=0), execution for event e0 isvalid and possible, that means we have to show that {(M0, e0, a0,M′0)} is avalid execution in G.In M0, we have Ex0 = ∅,Re0 = Re, In0 = E and we can imply the followinga) e0 ∈ E =⇒ e0 ∈ In0b) (e0 ↓ = ∅) =⇒ (→•e0 = ∅) =⇒ (→•e0 ∩ In0) ⊆ Ex0c) (→� = ∅) =⇒ (→�e0 = ∅) ⊆ E \ Re0.Based on above implications, we can conclude that M0 `G e0 and also weknow a0 = l(e0) from the CRES.Therefore {(M0, e0, a0,M′0)} is a valid execution in G with M′0 = (Ex ∪
{e0},Re \ {e})∪ e•→, In \ ({e0} ∪ {e′ | e0 →% e′})).

3.3. Dynamic Condition Response Graphs 65

ii) Inductive step:Lets us assume that the proposition holds for a fixed length for ∀i ∈ [l] andwe have to show that the proposition also holds for ∀i ∈ [l+ 1].At the position i = l, we have the following executions.CRES: {(Ci, ei, ai, C′i)}i∈[l] and G: {(Mi, ei, ai,M′i)}i∈[l].Since the proposition holds until the position l, the executions in both CRESand G will have label sequences containing exactly the same events andlabels and therefore we can imply that the set of executed events in bothCRES and G are the same, which means Exl = Cl.Further, let us say that the tuple CRES at position i = l+1 is (Cl+1, el+1, al+1, C′l+1)and then we have to show that there exists a tuple:(Mi+1, ei+1, ai+1,M′i+1)in G at position i = l+ 1.From the tuple in CRES: (Cl+1, el+1, al+1, C′l+1), we can imply the following.C-a) al+1 = l(el+1),C-b) el+1 ↓∈ Cl+1,C-c) {e′ | e′#el+1} 6∈ Cl+1 ,C-d) el+1 6∈ Cl+1 as events in CRES can happen only once.The marking at position i = l+1 is Mi+1 = (Exl+1 = Exl∪{el},Rel+1, Inl+1).At the position i = l+ 1 in G, we can imply the following,G-a) We have (Cl+1 = Cl ∪ {el}) ∧ (Exl+1 = Exl ∪ {el}) ∧ (Exl = Cl) =⇒Exl+1 = Cl+1 and with the definition of →% in the proposition, we canimply that {e′ | e′#el+1} 6∈ Cl+1 ∧ el+1 6∈ Cl+1 =⇒ ({e′ | e′ →%
el+1} ∪ {el+1}) 6∈ Exl+1.Further In0 = E =⇒ el+1 ∈ In0 and with ({e′ | e′ →% el+1} ∪
{el+1}) 6∈ Exl+1, we can conclude that el+1 ∈ Inl+1, as the only wayto exclude an event in G is by executing itself or any events whichhave have an exclude relation to it, which has not happen till i = l+1.G-b) (el+1 ↓ ∈ Cl+1) =⇒ (→•el+1 = Exl) =⇒ (→•el+1 ∩ Inl+1) ⊆ Exl+1G-c) (→� = ∅) =⇒ (→�el = ∅) ⊆ E \ RelG-d) From CRES we also know that al+1 = l(el+1).From the definition 3.3.7 for enabled event in Gand based on the aboveimplications, we can conclude that Mi+1 `G el+1. Therefore, the tuple:(Mi+1, ei+1, ai+1,M′i+1) exists in G at i = l+1 position and there by we canconclude that the execution in CRES: {(Ci, ei, ai, C′i)}i∈[l+1] is same as G:

{(Mi, ei, ai,M′i)}i∈[l+1]. Hence we have showed that if the proposition holdsfor a fixed length i = l, then it holds for length i = l+ 1.
Since we have proved both base case and inductive step, we can conclude thatboth CRES has same executions as that of G.

(II) CRES has same accepting runs as GAccording to definition 3.3.5 a run in CRES is accepting if and only if,

66 Chapter 3. Dynamic Condition Response Graphs

C-a) ∀e ∈ Re.∃j ≥ 0.(e#ej ∨ e = ej)C-b) ∀e ∈ E, i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej))According to definition 3.3.9 a run in G is accepting if and only if, ∀i ∈ [k].(∀e ∈Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) and M′j =(Ex′j , In′j ,Re′j). Informally, an execution in G is accepting if any required, includedresponse in any intermediate marking is eventually executed or excluded.To prove the proposition for accepting runs, we again use proof by induction,where we show that the proposition is valid at base case (i = 0) is valid andthen as part of inductive step we assume that the proposition is valid for a se-quence of fixed length ∀i ∈ [l], then we prove that the proposition is also validfor a sequence of length ∀i ∈ [l+ 1].
i) Base case (i = 0)In the base case where i = 0, the execution in CRES is accepting, hencewe have the result: ∀e ∈ Re.∃j ≥ 0.(e#ej ∨ e = ej)In G at the M0, we have Ex0 = ∅,Re0 = Re, In0 = E and we can imply thefollowinga) In0 = E ∧ Re0 = Re =⇒ (Re0 ∩ In0) = Reb) ∀j ≥ 0.ej#e =⇒ ∀j ≥ 0.ej →% e =⇒ ∀j ≥ 0.e 6∈ In′jUsing above two results, we can show that
∀e ∈ Re.∃j ≥ 0.(e#ej ∨ e = ej) =⇒ ∀e ∈ In0 ∩ Re0.∃j ≥ 0.(e 6∈ In′j ∨ e =
ej), which concludes that the execution in G at i = 0 is also accepting.ii) Inductive step:Since the executions in G and CRES are accepting for a finite sequence
∀i ∈ [l], we have the following conditions satisfied.G: ∀i ∈ [l].(∀e ∈ Ini∩Rei.∃j ≥ i.ej = e∨e 6∈ In′j)), where Mi = (Exi, Ini,Rei)and M′j = (Ex′j , In′j ,Re′j).
CRES: ∀e ∈ E, l ≥ i ≥ 0.ei •→ e =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej))The same can be rewritten using the ∀i ∈ [l] notation and ei •→= {e |
ei •→ e} asCRES: ∀i ∈ [l].(∀e ∈ei •→ =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej)))
In order to prove that the proposition for inductive step, we have to showthat the execution in G is also accepting for sequence ∀i ∈ [l + 1], thatmeans, formally we have to prove thatG: ∀i ∈ [l + 1].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j)), where Mi =(Exi, Ini,Rei) and M′j = (Ex′j , In′j ,Re′j).
But we know that execution in G is accepting for ∀i ∈ [l], so we can rewritethe above statement as
∀i ∈ [l+ 1].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j))

3.3. Dynamic Condition Response Graphs 67

= ∀i ∈ [l].(∀e ∈ Ini∩Rei.∃j ≥ i.ej = e∨e 6∈ In′j))∧(∀e ∈ Inl+1∩Rel+1.∃j ≥
l+ 1.ej = e ∨ e 6∈ In′j))As we know that first part of statement is satisfied (as exe is accepting for
∀i ∈ [l]), in order to prove the proposition for the inductive step, we onlyneed to show that (∀e ∈ Inl+1 ∩ Rel+1.∃j ≥ l + 1.ej = e ∨ e 6∈ In′j)) issatisfied.

i) According to definition for exclude relation (→%) in G,
∀j ≥ 0.ej#e =⇒ ∀j ≥ 0.ej →% e.Further according to definition 3.3.8,
∀j ≥ 0.ej →% e =⇒ ∀j ≥ 0.e 6∈ In′j and hence
∀j ≥ 0.ej#e =⇒ ∀j ≥ 0.e 6∈ In′jii) Since (→+= ∅) =⇒ (e→+= ∅)(Inl+1 = (Inl∪ el+1→+)\ el+1→%) =⇒ ((Inl+1 = Inl\ el+1→%) andfurther we haveRel+1 = (Rel \ {el+1})∪ el+1 •→Since el+1 →% el+1, we can rewrite Inl+1 ∩ Rel+1 asInl+1 ∩ Rel+1 = ((Inl ∩ Rel)∪ el+1 •→)

\ el+1→%Informally the set Inl+1 ∩ Rel+1 will contain all the included responsesfrom Inl ∩Rel and the newly added response events (el+1 •→) and sub-tracted with the events excluded by el+1 that is (el+1→%).
Since always it is the case that(((Inl ∩Rel)∪ el+1 •→)\ el+1→%) ⊆ ((Inl ∩Rel)∪ el+1 •→), if we provethat the events in ((Inl ∩ Rel)∪ el+1 •→) are eventually executed orexcluded, then the proposition holds for ∀i ∈ [l+ 1].Hence if we prove that the condition (∀e ∈ ((Inl ∩ Rel)∪ el+1 •→).∃j ≥
l+1.ej = e∨e 6∈ In′j)) will be satisfied, then it will be implicitly satisfythe condition, (∀e ∈ Inl+1 ∩ Rel+1.∃j ≥ l+ 1.ej = e ∨ e 6∈ In′j)).iii) Since the execution in G is accepting for ∀i ∈ [l], we know that
∀i ∈ [l].(∀e ∈ Ini ∩ Rei.∃j ≥ i.(ej = e ∨ e 6∈ In′j)).So in order to prove that (∀e ∈ ((Inl ∩ Rel)∪ el+1 •→).∃j ≥ l + 1.ej =
e∨e 6∈ In′j)) will be satisfied, we need to show that ∀e ∈el+1 •→ .∃j ≥
l+ 1.(ej = e ∨ e 6∈ In′j).Since the we know that the execution in CRES is accepting for sequence
∀i ∈ [l+ 1], we also have the following condition satisfied.CRES: ∀i ∈ [l+ 1].(∀e ∈ei •→ =⇒ ∃j ≥ 0.(e#ej ∨ (i < j ∧ e = ej)))For i = l + 1 in the above statement, we can imply that the followingstatement is satisfied.
∀e ∈el+1 =⇒ ∃j ≥ 0.(ej#e ∨ (i < j ∧ e = ej)).
Using the result ∀j ≥ 0.ej#e =⇒ ∀j ≥ 0.e 6∈ In′j which is provedabove

68 Chapter 3. Dynamic Condition Response Graphs

∀e ∈el+1 =⇒ ∃j ≥ 0.(ej#e ∨ (i < j ∧ e = ej)) =⇒ ∀e ∈el+1 =⇒
∃j ≥ 0.(e 6∈ In′j ∨ (i < j ∧ e = ej))Further, ∀e ∈el+1 =⇒ ∃j ≥ 0.(e 6∈ In′j ∨ (i < j ∧ e = ej)) =⇒
∀e ∈el+1 =⇒ ∃j ≥ i.(e 6∈ In′j ∨ (e = ej)), which is the desired result toprove the proposition that execution in G is accepting for ∀i ∈ [l+ 1].Since we have proven the proposition for base case and for inductive step,we can conclude that CRES has same executions that are accepting as thoseof G.

3.3.3 Distributed Dynamic Condition Response GraphsWe now define distributed dynamic condition response graphs by adding roles andprincipals as follows.
Definition 3.3.11. A distributed dynamic condition response graph is a tuple DG =(G,Roles,P, as) where

1. G = (E,M,→•, •→,→�,→+,→%,Act, l) is a dynamic condition response graph,

2. Roles is a set of roles ranged over by r,

3. P is a set of principals (e.g. persons or processors) ranged over by p and

4. as ⊆ (P∪Act)×Roles is the role assignment relation to principals and actions.

For a distributed dynamic condition response graph, the role assignment (4)relation indicates the roles (access rights) assigned to principals and which rolesgives right to execute which actions. As an example, assume that Peter ∈ P and
Doctor ∈ Roles, then if Peter asDoctor and sign asDoctor then Peter as a doctorcan sign as a doctor.Now we go further and define when an event e is enabled in a distributed dynamiccondition response graph by extending the definition of enabled event (def 3.3.7) inDCR Graph. For an event to be enabled in distributed dynamic condition responsegraph, in addition to the condition that it must have enabled in its DCR Graph, thelabel for the event must have been assigned to a role and also a principal must beassigned to that role.
Definition 3.3.12. For a distributed dynamic condition response graph DG = (G,Roles,P, as)
with G = (E,M,→•, •→,→�,→+,→%,Act, l), we define that an event e is enabled
and write as M ` DG e, if M ` G e, p as r and a as r.The result of executing an enabled event in distributed dynamic condition re-sponse graph will have the same changes as that of executing an enabled eventin dynamic condition response graph, as event execution only involves changes tothe marking, which are not affected by the roles and principals of a distributedDCR Graph.

3.3. Dynamic Condition Response Graphs 69

Definition 3.3.13. For a distributed dynamic condition response graph DG = (G,Roles,P, as)
where G = (E,M,→•, •→,→�,→+,→%,Act, l), with M ` DG e, executing event e inDG will have the same effect as that of executing the event e in the underlying
DCR Graph G and in both cases the resulting marking will be the same.

Now we will define a run in distributed DCR Graph and when it is accepting inas follows,
Definition 3.3.14. For a distributed dynamic condition response graph DG = (G,Roles,P, as)
where G = (E,M,→•, •→,→�,→+,→%,Act, l) with marking M = (Ex,Re, In), we de-
fine a run (finite or infinite) to be a sequence of labels (e0, (p0, a0, r0))(e1, (p1, a1, r1)) . . .
of a sequence of transitions Mi

(ei,(pi,ai,ri))−−−−−−−→ Mi+1 for i ≥ 0 starting from initial mark-
ing such that Mi ` DG ei and Mi+1 = Mi ⊕DG ei. We further define that a run to
be accepting if its underlying DCR Graph G is accepting i.e.

(
∀i ≥ 0, e ∈ Rei.∃j ≥

i.((e = ej ∨ e 6∈ Inj+1))).Based on the semantics defined above, we can now define labelled transitionsystem semantics for distributed dynamic condition response graph.
Definition 3.3.15. For a distributed dynamic condition response graph DG = (G,Roles,P, as)
we define the corresponding labelled transition system TS(DG) to be the tuple

(M(G),M, Lts(G),→)
where Lts(G) = E× (P×Act×Roles) is the set of labels of the transition system, M is
the initial marking, and →⊆M(G)×Lts(G)×M(G) is the transition relation defined
by M (e,(p,a,r)−−−−−→ M⊕DGe if M `DG e and M (e,a)−−→ M⊕Ge. The transition system TS(DG)
will have same states as that of the underlying dynamic condition response graph G,
but with the transitions labels E× (P× Act× Roles) in stead of E× Act. We define
a run to be (finite or infinite) sequence of labels (e0, (p0, a0, r0)), (e1, (p1, a1, r1)) . . . of
a sequence of transitions Mi

(ei,(pi,ai,ri))−−−−−−−→ Mi+1 starting from the initial marking. We
define a run to be accepting if the underlying run of the DCR Graphs is accepting.

3.3.4 Infinite runs - From DCR Graphs to Büchi-automataIn this section, we show how to characterize the acceptance condition for DCR Graphsby a mapping to the standard model of Büchi-automata. Recal that a Büchi-automatonis a finite state automaton accepting only infinite runs, and only the runs that passthrough an accepting state infinitely often. Acceptance of finite runs can be rep-resented in the standard way by introducing a special silent event, e.g. a τ-event,which may be viewed as a delay. If an infinite accepting run contains infinitely manydelays it then represent an accepting run containing only a finite number of (real)events. We define a Büchi-automaton with τ-event as follows.
Definition 3.3.16. A Büchi-automaton with τ-event is a tuple (S, s, Evτ ,→⊆ S ×
Evτ × S, F) where S is the set of states, s ∈ S is the initial state, Evτ is the set

70 Chapter 3. Dynamic Condition Response Graphs

of events containing the special event τ, →⊆ S × Evτ ×S is the transition relation,
and F is the set of accepting states. A (finite or infinite) run is a sequence of labels
not containing the τ event that can be obtained by removing all τ events from a
sequence of labels of transitions starting from the initial state. The run is accepting
if the sequence of transitions passes through an accepting state infinitely often.The mapping from DCR Graphs to Büchi-automata is not entirely trivial, sincewe at any given time may have several pending responses and thus must make surethat all of them are eventually executed or excluded. To make sure we progress, weassume any fixed order of the finite set of events E of the given dynamic conditionresponse graph. For an event e ∈ E we write rank (e) for its rank in that order andfor a subset of events E′ ⊆ E we write min(E′) for the event in E′ with the minimalrank.

Figure 3.4: The Büchi-automaton for DCR Graph from Fig. 3.6 annotated with stateinformation
Definition 3.3.17. For a finite distributed dynamic condition response graph DG =(G,Roles,P, as) where DCR Graph G = (E,M,Act,=⇒, l) with a relation set =⇒ =
{→•, •→,±,→�}, E = {e1, . . . , en} and rank (ei) = i, we define the corresponding
Büchi-automaton with τ-event to be the tuple B(DG) = (S, s,→⊆ S × Evτ × S, F)
where

• S =M(G)× {1, . . . , n} × {0, 1} is the set of states,

3.3. Dynamic Condition Response Graphs 71

• Evτ = (E× (P× Act× Roles)) ∪ {τ} is the set of events,

• s = (M, 1, 1) if In ∩ Re = ∅, and s = (M, 1, 0) otherwise

• F =M(G)× {1, . . . , n} × {1} is the set of accepting states and

• →⊆ S × Evτ × S is the transition relation given by two cases, (A) and (B) as
follows

(A) (M′, i, j) τ−−−−→ (M′, i, j ′) where

(i) j ′ = 1 if In′ ∩ Re′ = ∅ otherwise j ′ = 0.

and

(B) (M′, i, j) (e, (p, a, r))
−−−−−−−−→ (M′′, i′, j ′) where

(i) M′ = (Ex′,Re′, In′) and M′′ = (Ex′ ∪ {e},Re′′, In′′)
(ii) M′ (e, (p, a, r))

−−−−−−−−−→ M′′ is a transition of TS(DG)
(iii) j ′ = 1 if

(a) In′′ ∩ Re′′ = ∅ or
(b) min(Mr) ∈ (In′ ∩ Re′\(In′′ ∩ Re′′)) ∪ {e} or
(c) Mr = ∅ and min(In′ ∩ Re′) ∈ (In′ ∩ Re′\(In′′ ∩ Re′′)) ∪ {e}
otherwise j ′ = 0.

(iv) i′ = rank (min(Mr)) if min(Mr) ∈ (In′ ∩ Re′\(In′′ ∩ Re′′)) ∪ {e} or else
(v) i′ = rank (min(In′ ∩ Re′)) if Mr = ∅ and min(In′ ∩ Re′) ∈ (In′ ∩ Re′\(In′′ ∩Re′′)) ∪ {e} or else
(vi) i′ = i otherwise.

for Mr = {e ∈ In′ ∩ Re′ | rank (e) > i}.
The index i is used to make sure that no event stays forever included and in thepending response set without being executed. Finally, the flag j indicates if the stateis accepting or not.Condition (Ai and Biii) defines when a state is accepting. Either there are no in-cluded pending responses in the resulting state (Ai) or the included pending responsewith the minimal rank above the index i was either excluded or executed (B(iii)b).Alternatively, if the set of included pending responses with rank above the index i isempty and the included pending response with the minimal rank is excluded or exe-cuted (B(iii)c), then also the resulting state will be accepting. Condition (Biv) recordsthe new rank if the resulting state is accepting according to condition (B(iii)b) andsimilarly when the state is accepting according to condition (B(iii)c), the condition(Bv) records the new rank.

72 Chapter 3. Dynamic Condition Response Graphs

Figure 3.5: The Büchi-automaton with stratified view

To give a simple example of the mapping, let us consider the dynamic conditionresponse graph in Fig. 3.6 and the corresponding Büchi-automaton in Fig. 3.4.
The key point to note is that the automaton enters an accepting state if there isno pending responses, or if the pending response which is the minimal ranked eventaccording to the index i is executed or excluded. State S7 and S11 illustrate the useof the rank: Both states have the two events s (having rank 1) and gm as pendingresponses. In state S7 only executing event s leads to an accepting state (S10). Theresult of executing event gm is to move to state S9 which is not accepting. Dually,in state S11 only executing event gm leads to an accepting state (S16). The resultof executing event s is to move to state S12 which is not accepting.
Fig. 3.5 shows a stratified view of the automaton, dividing the state sets accordingto the rank i in order to emphasize the role of the rank in guaranteeing progress.

3.4. DCR Graphs - Graphical Notation 73

3.4 DCR Graphs - Graphical Notation

After introducing the semantics for the DCR Graphs in the previous sections, weare now ready to introduce graphical notation for DCR Graphs with help of smallworkflow examples from healthcare domain. The examples are from a small oncol-ogy healthcare workflow previously identified during a field study at danish hospi-tals [Lyng et al. 2008].Let us first consider a small example shown in 3.6 modeled using DCR Graphs. Itcontains three events: prescribe medicine (the doctor calculates and writes the dosefor the medicine), sign (the doctor certifies the correctness of the calculations) and give
medicine (the nurse administers medicine to patient). The events are also labelledby the assigned roles (D for Doctor and N for Nurse).

Figure 3.6: Give Medicine Example
The events prescribe medicine and sign are related by both the condition relation(→•) and the response relation (•→). The condition relation means that the prescribe

medicine event must happen at least once before the sign event. The response relationenforces that, if the prescribe medicine event happen, subsequently at some point the
sign event must happen for the flow to be accepted. Similarly, the response relationbetween prescribe medicine and give medicine enforces that, if the prescribe medicineevent happen, subsequently at some point the give medicine event must happen for theflow to be accepted. Finally, the condition relation between sign and give medicineenforces that the signature event must have happened before the medicine can begiven. Note the nurse can give medicine many times, and that the doctor can atany point choose to prescribe new medicine and sign again. (This will not blockthe nurse from continue to give medicine. The interpretation is that the nurse mayhave to keep giving medicine according to the previous prescription). The transitionsystem for finite runs for the prescribe medicine example from fig 3.6 is shown in thefig. 3.7.

74 Chapter 3. Dynamic Condition Response Graphs

Figure 3.7: Transition system for DCR graph from fig 3.6
The dynamic inclusion and exclusion of events is illustrated by an extension to thescenario (also taken from the real case study): If the nurse distrusts the prescriptionby the doctor, it should be possible to indicate it, and this action should force eithera new prescription followed by a new signature or just a new signature. As long thenew signature has not been added, medicine must not be given to the patient.This scenario can be modeled as shown in Fig. 3.8, where one more action don’t

trust is added. Now, the nurse have a choice to indicate distrust of prescription andthereby avoid give medicine until the doctor re-execute sign action. Executing the
don’t trust action will exclude give medicine and makes the sign as pending response.So the only way to execute give medicine action is to re-execute sign action which willthen include give medicine. Here the doctor may choose to re-do prescribe medicinefollowed by sign actions (new prescription) or simply re-do sign.In Fig. 3.9 below we propose a graphical notation that illustrates the run-timeinformation during two different runs of the extended scenario in Fig. 3.8. We show theevents as boxes just as in the graphical notation for the dynamic condition responsegraph and use three different small icons (Ø, √, !) above the boxes to show if theevent is enabled (i.e. not blocked by any conditions), if it has been executed (i.e.

3.4. DCR Graphs - Graphical Notation 75

Figure 3.8: Give Medicine Example with Check
included in the set E in the marking), and if it is required as a response (i.e. includedin the set R in the marking). We indicate that an event is excluded (i.e. not includedin the set I in the marking) by making the box around the event dashed.

Figure 3.9: Runtime for Give Medicine Example from 3.8
Fig 3.9 shows the four states of a run in the workflow process in Fig. 3.8, starting

76 Chapter 3. Dynamic Condition Response Graphs

in the initial state where all events except prescribe medicine is blocked. The secondstate is the result of executing prescribe medicine, now showing that sign and give
medicine are required as responses and that sign is no longer blocked. The thirdstate is the result of executing the sign event, which enables give medicine and don’t
trust. Finally, the fourth state is the result of executing the give medicine event,excluding the don’t trust event.Similarly, Fig. 3.10 shows the six states of a run where the nurse executes don’t
trust in the third step, leading to a different fourth state where give medicine isexcluded (but still required as response if it gets included again) and sign is requiredas response. The fifth state shows the result of the doctor executing sign, whichre-includes give medicine, which is then executed, leading to the final state where allevents have been executed, and don’t trust is excluded.

Figure 3.10: Runtime for Give Medicine Example with Don’t trust from 3.8
In order to model milestone relation, we further extend the healthcare with twomore events receive tests, to receive test results that were previously ordered (withdoctor/nurse roles) and examine tests, to examine the receive test results (with doctorrole) as shown in the figure 3.11. The intuition is that, if the test results have beenreceived, then the doctor must examine those results before making a prescription.The situation is modeled with a response and condition relation between receive

tests and examine tests and with a milestone relation between examine tests and
prescribe medicine.

3.4. DCR Graphs - Graphical Notation 77

Figure 3.11: Extended Give Medicine Example with milestone relation
Receiving test results (may be in between the prescriptions) will create a pendingresponse on the examine tests event and the prescribe medicine event will be blockedbecause of the milestone relation between examine tests and prescribe medicine,until the doctor examine the results. One may argue that a condition and responserelation could have been be used instead of milestone relation in between examine

tests and prescribe medicine, but in that case the prescribe medicine will be blockedonly for the first time (due to condition relation) and on top of that, the doctor willbe compelled to do prescribe medicine (due to response relation) afterwards, whichmay not be necessary e.g. when the test results are good.Finally, we will show how the above healthcare example can be expressed in theformal definitions of distributed DCR Graphs (def 3.3.11) in the listing 3.1.
Listing 3.1: Formal representation of healthcare example in DCR Graphs

D i s t r i b u t e d DCR graph DG = (G,Roles,P, as) where
G = (E,M,Act,=⇒, l)
E = Act ={ r e c e i v e t e s t s , examine t e s t s , p r e s c r i b e medicine , s ign , g i v emedicine , don ’ t t r u s t }
M = (∅, ∅,E)
l = { (r e c e i v e t e s t s , r e c e i v e t e s t s) , (examine t e s t s , examine t e s t s) , . .. }

78 Chapter 3. Dynamic Condition Response Graphs

=⇒ = {→•, •→,±,→�} where
→• ={(r e c e i v e t e s t s , examine t e s t s) , (p r e s c r i b e medicine , s ign) , (s ign ,g i v e medic ine) , (s ign , don ’ t t r u s t) }
•→ ={(r e c e i v e t e s t s , examine t e s t s) , (p r e s c r i b e medicine , s ign) , (p r e s c r i b e medicine , g i v e medic ine) , (don ’ t t r u s t , s ign) }
→+ ={(sign , g i v e medic ine) , (s ign , don ’ t t r u s t) }
→% ={ (don ’ t t r u s t , g i v e medic ine) , (g i v e medicine , don ’ t t r u s t) }
→� ={(examine t e s t s , p r e s c r i b e medic ine) }
Roles ={D , N}
P ={ Peter , Rosy}
as ={ (Peter , D) , (Rosy , N) , (r e c e i v e t e s t s , N) , (r e c e i v e t e s t s , D) , (examine t e s t s , D) , (p r e s c r i b e medicine , D) , (s ign , D) , (g i v emedicine , N) , (don ’ t t r u s t , N) }.
3.5 Expressibility of DCR Graphs

In this section, we will discuss about expressiveness of DCR Graphs. Despite thesimplicity of the the model with five relations, the DCR Graphs model can expressall ω-regular languages. In order to show that, we will encode büchi automaton intoDCR Graphs and show that both büchi automaton and DCR Graphs will have sameruns and accepting runs.We will first revisit the definition of non-deterministic büchi automaton and pro-vide a method to encode it directly into DCR Graphs. Later we will show that büchiautomaton is bisimilar to the encoded DCR Graph by providing a suitable proof byusing bisimulation.
3.5.1 Büchi AutomatonIn this section we will revisit the definition of nondeterministic Büchi automaton andits language accepted by it.
Definition 3.5.1. A nondeterministic Büchi-automaton is a tuple B = (S, S0, Evτ ,→⊆
S × Evτ × S, F) where

1. S is the set of states ranged over by s,

2. S0 ⊆ S is the set of initial states,

3. Evτ is an alphabet (the set of names) ranged over by a,

3.5. Expressibility of DCR Graphs 79

4. →⊆ S × Evτ × S is the transition relation, and

5. F is the set of final or accepting states.

A run for an infinite word σ = a0, a1, a2, ... ∈ Evωτ is an infinite sequence of
states s0, s1, s2, ... such that s0 ∈ S0 and si

ai−→ si+1 for i ≥ 0. A run s0, s1, s2, ... is
accepting if si ∈ F for i ≥ 0 infinitely often.

Now we will define the labeled transition relation for büchi-automaton (B) asfollows,
Definition 3.5.2. For a büchi automaton B = (S, S0, Evτ ,→⊆ S × Evτ × S, F), we
define the corresponding the corresponding labelled transition system TS(B) to be a
tuple (P(S), S0,→B⊆ P(S)× Evτ × P(S), FN)
where S0 is the set of initial states in B, FN = {S ′ | S ′ ∈ P(S) ∧ S ′ ∩ F 6= ∅} is the
set of final states and the transition relation defined by →B= {(S ′, a, {s}) | ∃s′ ∈
S ′.(s′, a, s) ∈→}

Further we define a run of the transition system a0, a1, a2, ... ∈ Evωτ to be an
infinite sequence of labels of transitions Si

(ai)−−→B {si+1} starting from the initial state
S0 and a run is accepting if si ∈ FN infinitely often.

On can observe that the transitions in the labeled transition relation for büchiautomaton TS(B) are from set of states to a singleton state (Si (ai)−−→B {si+1}), insteadof just from one state to other (si (ai)−−→B si+1) like in any other labeled transitionsystem. The start state in non-deterministic büchi automaton is not just one state,but a set of states, and in order to cover the transitions of start state also, we havedefined the transitions in TS(B) to be from set of states to a singleton state.Now we will define the mapping from büchi automaton to DCR Graphs in thedefinition 3.5.3. First, every state and every transition of büchi automaton are mappedto individual events in the corresponding DCR Graph. The events corresponding tothe states in büchi automaton are neither enabled nor executable and they are usedto block/unblock the events corresponding to their transitions in büchi automaton.In order to map the accepting states of büchi automaton to corresponding mark-ings in DCR Graph, we add a special event NAS with a self condition and with ainitial pending response. The event NAS will always stay in the pending responseset of a marking, as it will never get executed, but by excluding/including the NASevent, the marking can be made accepting/non-accepting.Further, we have added all the transition events to the executed set (Ex) of initialmarking in the DCR Graph, as the transition events are the only events, which areexecutable. The basic intuition behind this, is to have a constant executed set (Ex)in a marking, so that we will get one-to-one correspondence between the states ofbüchi automaton to the markings of DCR Graph. Further we are also not interested inthe history of execution as it in no way influences the execution of transition events,

80 Chapter 3. Dynamic Condition Response Graphs

because all their condition events are only the state events, which will never getexecuted.Similarly, the response set is also constant, containing exactly one event NAS allthe time as the response relation (•→) in the DCR Graph is empty. The only changefrom marking to marking is in included set (In). We will add all the transition eventsto the included set of the initial marking. Further all the state events except thoseare part of start state are also added to included set. Finally the event NAS will beadded if none of the start states of büchi automaton are also final states.Response (•→) and milestone (→�) relations are empty in the encoding, where asthe condition relation (→•) contains all blocking condition relations. All state eventsand NAS event will contain a self condition relation where as all transition eventswill have their corresponding state event as a condition. Finally include (→+) andexclude (→%) relations contains mappings to include or exclude a state event or NASevent. If a transition (e.g (s, a, s’)) in büchi automaton leading to next state, then thecorresponding transition event (e(s,a,s’)) will exclude the state event for the leadingstate (to enables the transitions at the leading state) and also include the state eventfor the leaving state (to block all transitions at the leaving state). Similarly, the NASevent will be excluded if the leading state is one of the accepting states in büchiautomaton, on the other hand if the leading state is not one of the final states, thenit will include NAS.Finally, we will add all the transition labels (Evτ) to the actions set and thelabeling function will contain mapping between transition label (a) and event name(e(s, a, s’)). We will not add any labels either for a state event or the NAS event, asthey will not be executed at any time.The formal definition of encoding büchi automaton to a DCR Graph is given belowin def 3.5.3.
Definition 3.5.3. For a büchi automaton B = (S, S0, Evτ ,→⊆ S×Evτ×S, F), we de-
fine the corresponding DCR Graph to be G(B) = (E,M,→•, •→,→�,→+,→%,Act, l)
where

1. E = (Es ∪ Eτ)] {NAS} such that

• Es = {e(s) | s ∈ S} is the set of events for the states in büchi automaton,
• Eτ = {e(s, a, s′) | (s, a, s′) ∈→} is event set for transitions in büchi au-

tomaton,

2. M = MB(S0) where MB : P(S)→M(G(B)) and defined asMB(S ′) = (Ex,Re, In) such that

• Ex = Eτ , Re = {NAS}
• In = { (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS} if S ′ ∩ F = ∅Eτ ∪ Es \ {e(s) | s ∈ S ′} if S ′ ∩ F 6= ∅

3. •→= ∅ and →�= ∅

3.5. Expressibility of DCR Graphs 81

4. →•= {(NAS,NAS)} ∪ {(e(s), e(s)) | s ∈ S} ∪
{
(
e(s), e(s, a, s′)) | (s, a, s′) ∈→}

5. →+= {(e(s, a, s′), e(s′′)) | e(s, a, s′) ∈→ ∧ s′′ 6= s′} ∪
{
(
e(s, a, s′), NAS)) | (s, a, s′) ∈→ ∧ s′ 6∈ F}

6. →%= {(e(s, a, s′), e(s′)) | e(s, a, s′) ∈→ ∧ s 6= s′} ∪
{
(
e(s, a, s′), NAS)) | (s, a, s′) ∈→ ∧ s′ ∈ F}

7. Act = Evτ

8. l = {(e(s, a, s′), a)) | e(s, a, s′) ∈→}
3.5.2 Encoding of Büchi Automaton into DCR Graphs - Example

Figure 3.12: Büchi-automaton Example
In this section, we will explain the construction of DCR Graph from the büchiautomaton, by taking an example. Let’s take a small example of büchi automatonas shown in the figure 3.12. The automaton contains 4 states with one initial state(s1) and one final state (s4) marked with green color. The automaton shown in theexample is nondeterministic, as we can observe nondeterministic transitions at states

s1 and s4. The automaton will only accepting if in a run, the final state s4 is visitedinfinitely often.The encoded DCR Graph for the büchi automaton shown in figure 3.12 is shownin the figure 3.13. In the construction, first we will add events (let’s call state events)for all the states in the büchi automaton (B) and they are named after their respectivestates in the encoded DCR Graph (G(B)). For example, the state s1 in B, we will getan event e(s1) in the G(B). All state events will have self condition relation as shownin the figure 3.13, which make them never enabled and executable. The state events(e.g s1) for the states which are part of start state in B, will be excluded in the initialmarking.

82 Chapter 3. Dynamic Condition Response Graphs

Figure 3.13: DCR Graphfor Büchi-automaton in figure 3.12
Similarly, all the transitions in B will a get event in G(B) (let’s call them tran-sition events) and they are named after their respective transitions. For exam-ple if we have a transition (s1, b, s3) in B, then in the encoded DCR Graph, wewill get an event e((s1, b, s3)). In this way, for non-deterministic transitions in B,we will get deterministic events in G(B) with labels mapped exactly to the tran-sitions in B. For example, we have non-deterministic transition b at state s1 inB, which will be encoded with events e((s1, b, s3)), e((s1, b, s2)) with their labels asl(e((s1, b, s3))) = b, l(e((s1, b, s2))) = b respectively. Further all transition events willhave their respective state events as conditions. As explained before, the state eventscan not be executed and hence they act as blocker events, blocking the their transi-tion events and only when a state is excluded in a marking, then all their transitionevents will be enabled.Further, for all the transitions that lead to one of the final states in B, the corre-sponding transition events will exclude the NSA event, to make the resulting markingaccepting, on the other hand the transition events will include NSA event if they areleading to a state that is not part of final state. Similarly for the transitions leadingto an another state (e.g. b at s3) in B, their respective transition event (e(s3, b, s4))

3.5. Expressibility of DCR Graphs 83

will exclude the leading state event (s4) in order to enable the transition events at theleading state and include the leaving state event (s3) to make the transition eventsblocked at the leaving state.Finally, we have excluded some of the un-important relations (e.g. include relationfrom e(s1, b, s3) to NSA) in the figure 3.12 to make it more readable. Also, wehave used a shorthand notation for the condition relation from state events to theirtransition events by using a box around transition events and making the conditionrelation pointing to the box, meaning that the condition relation applies to all thetransition events inside the box.
3.5.3 Bisimulation between büchi and DCR Graph

First we will define the relation between büchi automaton B and its correspondingDCR Graph G(B) as follows,
Definition 3.5.4. For a labeled transition system for büchi automatonTS(B) = (P(S), S0,→B⊆ P(S)×Evτ×P(S), FN) where B = (S, S0, Evτ ,→⊆ S×Evτ×
S, F) and it’s the corresponding DCR Graph to be G(B) = (E,M,→•, •→,→�,→+
,→%,Act, l), we define the binary relation over TS(B) and TS(G) as R = {(S,M) |
S ∈ P(S) ∧M = MB(S)}.

The binary relation R contains pairs of state form TS(B) and its correspondingmarking from G(B), as defined by the function in the encoding.
Proposition 3.5.1. The labeled transition system TS(B) for a büchi automaton is
bisimilar to the labeled transition system TS(G) for corresponding DCR Graph.

Proof. For büchi automaton B = (S, S0, Evτ ,→⊆ S × Evτ × S, F), the labeled tran-sition system (def 3.5.2) is TS(B) = (P(S), S0,→N⊆ P(S)× Evτ × P(S), FN).
For DCR Graph G = (E,M0,Act,→•, •→,→+,→%,→�, l), the corresponding labeledtransition system (def 3.3.10) is TS(G) = (M(G),M, Lts(G),→) where Lts(G) = E×Actis the set of labels of the transition system, M0 is the initial marking, and →⊆
M(G)×Lts(G)×M(G) is the transition relation defined by M (e,a)−−→ M⊕G e if M `G eand a ∈ l(e).According to def 3.5.4, we have the binary relation R = {(S,M) | S ∈ P(S)∧M =MB(S)} over TS(B) and TS(G). In order to show that TS(B) ∼ TS(G), we have to showthat
• if S a−→ S′ in TS(B) then there exists in TS(G) a transition M a−→ M′
• if M a−→ M′ in TS(G) then there exists in TS(B) a transition S a−→ S′

We will prove the two directions individually as follows,

84 Chapter 3. Dynamic Condition Response Graphs

(A) If S a−→ S′ in TS(B) then there exists in TS(G) a transition M a−→ M′
According def 3.5.4, from the binary relation R, we have the corresponding mark-ing M in TS(G) for the state S from TS(B).
But the state S ∈ P(S) in TS(B) is a set of states in B and hence for S a−→ S′ inTS(B), there will be a set of transitions A = {a | (s, a, s′) ∈→ ∧s ∈ S} in B.
In order to prove the equivalence we have to show that ∀a ∈ A.∃M (e,a)−−→ M′in TS(G) for some event e and label a.
According to definition for encoding (def 3.5.3), for a transition s a−→ s′ in B,the corresponding event in G is e(s, a, s′).
According to def 3.3.10 for labeled transition system for DCR Graph, in orderto have a transition M a−→ M′ in TS(G), we need to show that M `G e(s, a, s′) andl(e(s, a, s′)) = a.
According to definition of labeling function in encoding (def 3.5.3), we already have
∀a ∈ A.l(e(s, a, s′)) = a, hence we only need to show ∀a ∈ A.M `G e(s, a, s′).
we can rewrite ∀a ∈ A.M `G e(s, a, s′) = ∀s ∈ S.M `G e(s, a, s′) as e(s, a, s′) isthe corresponding event for (s, a, s′) ∈→.
From the encoding definition (def 3.5.3), the marking for state (S) will be M =MB((S)) = (Ex,Re, In) such that
• Ex = Eτ , Re = {NAS}
• In = { (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS} if S ′ ∩ F = ∅Eτ ∪ Es \ {e(s) | s ∈ S ′} if S ′ ∩ F 6= ∅

From def 3.3.7, to show that ∀s ∈ S.M `G e(s, a, s′), we need to show that
∀s ∈ S.

(
e(s, a, s′) ∈ In)∧(→�e(s, a, s′)∩In ∈ E\Re)∧(→•e(s, a, s′)∩In ∈ Ex)holds.

(i) ∀s ∈ S.e(s, a, s′) ∈ InSince e(s, a, s′) ∈ Eτ ⊆ In0 where In0 is the included set of initial markingand →%e(s, a, s′) = ∅, all the events in Eτ are included in all markings.Hence we can conclude that ∀s ∈ S.e(s, a, s′) ∈ In holds.(ii) ∀s ∈ S. →�e(s, a, s′) ∩ In ∈ E \ Re(→� = ∅) =⇒ (→�e(s, a, s′) = ∅).Hence we can conclude that ∀s ∈ S. →�e(s, a, s′) ∩ In ∈ E \ Re holds.

3.5. Expressibility of DCR Graphs 85

(iii) ∀s ∈ S. →•e(s, a, s′) ∩ In ∈ ExFrom the definition of condition relation in the encoding (def 3.5.3),
→• e(s, a, s′) = e(s), i.e the only condition events for a transition event
e(s, a, s′) is its state event e(s).
From the marking (M) for the state S, we can observe that, the events
{e(s) | s ∈ S ′} not included in the included set (In). Hence(
{e(s) | s ∈ S ′} ∩ In = ∅) =⇒ ∀s ∈ S. →•e(s, a, s′) ∩ In = ∅.

Therefore we can conclude that ∀s ∈ S. →•e(s, a, s′) ∩ In ∈ Ex holds.
From (i), (ii) and (iii), we can conclude that ∀s ∈ S.(e(s, a, s′) ∈ In) ∧ (→�
e(s, a, s′) ∩ In ∈ E \ Re) ∧ (→•e(s, a, s′) ∩ In ∈ Ex) holds.
Therefore our proposition that If S a−→ S′ in TS(B) then there exists in TS(G)a transition M a−→ M′ is valid.

(B) if M a−→ M′ in TS(G) then there exists in TS(B) a transition S a−→ S′

According def 3.5.4, from the binary relation R, we have S in TS(B) from cor-responding marking M in TS(G).
At marking M in TS(G), the transition M a−→ M′ implies that there are set ofenabled transitions such that A = {a | M (e,a)−−→ ∧ l(e) = a} for some event e andlabel a.
In order to prove the equivalence we have to show that ∀a ∈ A.∃s a−→ s′ |
s ∈ S ∧ (s, a, s′) ∈→ in TS(G).
Let’s first compute set of all enabled transitions at marking M. According todef 3.3.10 for labeled transition system for DCR Graph, if we have a transitionM a−→ M′ in TS(G), it indicates that M `G e and l(e) = a for some event e andlabel a.
Further, from def 3.3.7, M `G e in G for some event e, indicates that (e ∈In) ∧ (→�e ∩ In ∈ E \ Re) ∧ (→•e ∩ In ∈ Ex).
According to definition of encoding (def 3.5.3), the marking M = MB((S)) =(Ex,Re, In) such that
• Ex = Eτ , Re = {NAS}
• In = { (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS} if S ′ ∩ F = ∅Eτ ∪ Es \ {e(s) | s ∈ S ′} if S ′ ∩ F 6= ∅

86 Chapter 3. Dynamic Condition Response Graphs

From the above marking, we will compute the set of enabled events Ee = {e |M `G e} and from Ee, we compute the enabled transition by taking label corre-sponding to those events from labeling function l.
First let us say that Ee = ∅ and we start filling the set Ee, as we go through theconditions for enabled event one by one as listed below.

(i) M `G e =⇒ e ∈ InFrom the marking M given above, the events currently included in the Inset are (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS}. So let’s say that
Ee = (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS}.(i) M `G e =⇒ (

→�e ∩ In ∈ E \ Re)Since →� = ∅, it does not affect the Ee, therefore it will still be
Ee = (Eτ ∪ Es \ {e(s) | s ∈ S ′}) ∪ {NAS}.(i) M `G e =⇒ (

→•e ∩ In ∈ Ex)For an enabled event, all its conditions must be in executed (Ex) set.
From the definition of condition relation in the encoding (def 3.5.3),
→•NAS = {NSA} ∧ NSA 6∈ Ex =⇒ NSA 6∈ Ee

Similarly ∀e(s) ∈ Es. →•e(s) = {e(s)} ∧ e(s) 6∈ Ex =⇒ e(s) 6∈ Ee.
After updating Ee for the above the two results, we have Ee = Eτ .
From the definition of condition relation in the encoding (def 3.5.3),
→•e(s, a, s′) = {e(s)}. The state events e(s) will never get executed as theyhave self condition (→•e(s) = {e(s)}), but the only way they can unblockthe transition events is by not included in the marking.
From the included set In and executed set Ex in marking M, the set oftransition events which are not enabled because their condition events arenot in executed set, but included in the marking, ∀e(s, a, s′) ∈ Eτ . →•
e(s, a, s′) ∩ In 6⊆ Ex = Eτ \ {e(s, a, s′) | s ∈ S}.In order to get the actual enabled events at marking M, we have to removeall these not enabled transition events from the Ee,
Ee = Eτ \ (Eτ \ {e(s, a, s′) | s ∈ S}).
Ee = {e(s, a, s′) | s ∈ S}.

Finally the set of enabled events at M is {e(s, a, s′) | s ∈ S} and we have labelsfor each of these events in the labeling function.
Hence at marking M, we have ∀s ∈ S.M `G e(s, a, s′) ∧ l(e(s, a, s′)) = a.

3.5. Expressibility of DCR Graphs 87

From the encoding definition (def 3.5.3), if we have a transition a in B suchthat {a | (s, a, s′) ∈→}, then we have a transition event e(s, a, s′) with its labell(e(s, a, s′)) = a in G(B).
Therefore ∀s ∈ S.(M `G e(s, a, s′) ∧ l(e(s, a, s′))) = a =⇒ ∃.{a | (s, a, s′) ∈→
∧ s ∈ S}.
Hence we can conclude that if M a−→ M′ in TS(G) then there exists in TS(B)a transition S a−→ S′ holds.

Finally, since we have proved the proposition in both directions, we can concludethat TS(G) and TS(B) are bisimilar, that means TS(G) ∼ TS(B).
Theorem 3.5.1. A büchi automaton B = (S, S0, Evτ ,→⊆ S ×Evτ ×S, F) and its cor-
responding DCR Graph G(B) = (E,M,→•, •→,→�,→+,→%,Act, l). will have same
runs and accepting runs.

Proof. In the proposition 3.5.1, we have proved that the labeled transition system(TS(B)) for büchi automaton B is bisimilar to labeled transition system (TS(G)) for itscorresponding DCR Graph G(B).
Since TS(G) ∼ TS(B), we have same transitions and choices at every correspondingstate in B and marking in G(B), therefore we can conclude that both B and G(B) willhave same runs.
Then, we have to prove that both B and G(B) will have same accepting runs.
To prove this, we have to show that accepting runs are same in both directions,and the proof is divided into 2 parts follows,
(A) If a run is accepting in B then it is also accepting in G(B).

From definition for büchi automaton (def 3.5.1), a run s0, s1, s2, ... is acceptingif si ∈ F for i ≥ 0 infinitely often.
In the above run for B, let’s us say that, si a−→ si+1 is the transition that isvisiting a state in F , that means si+1 ∈ F .
Since we have the same runs, for the si a−→ si+1 in B, we have a correspond-ing marking in G(B) such that Mi

(e(si,a,si+1),a)−−−−−−−−→ Mi+1.
From the definition of exclude relation in the encoding (def 3.5.3), we have
∀e(s, a, s′) ∈→ ∧ s′ ∈ F. e(s, a, s′)→% = {NAS}.

88 Chapter 3. Dynamic Condition Response Graphs

Hence we have e(si, a, si+1)→% = {NAS} as si+1 ∈ F .
When Mi

(e(si,a,si+1),a)−−−−−−−−→ Mi+1, it will exclude {NAS} from the marking Mi+1.
From the definition of the encoding (def 3.5.3), we have •→= ∅ and {NAS}is the only event with pending response.
Therefore in the marking Mi+1, the In ∩ Re = ∅, making the marking Mi+1 ac-cepting.
For any transition in B that is visiting the one of the final states, the correspond-ing marking in G(B) will be accepting as we have exclude relation ∀e(s, a, s′) ∈→
∧ s′ ∈ F. e(s, a, s′)→% = {NAS}.
Since the run in B is accepting, it will visit one of the final states infinitelyoften, thereby the marking in G(B) will be visiting the state where there are noincluded pending responses, in other words there is no pending response eventin G(B) that stays for ever without being executed or excluded. Therefore the runin G(B) is accepting.
Therefore we can conclude that If a run is accepting in B then it is also ac-cepting in G(B).

(B) If a run is accepting in G(B) then it is also accepting in B.According to def 3.3.9, a run is DCR Graph is accepting if ∀i ∈ [k].(∀e ∈ Ini ∩Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) and M′j = (Ex′j , In′j ,Re′j).
Informally a run in G(B) is accepting if there is no pending response that staysfor ever without being executed or excluded.
From the definition of the encoding (def 3.5.3), in G(B), we have •→= ∅ and
{NAS} is the only event with pending response.
Therefore an accepting run in G(B) is the one in which the event {NAS} iseither executed or excluded infinitely often.
Since {NAS} can not be executed at all due to it’s self condition (→•NAS =
{NAS}), the only way a run is accepting in G(B) is by excluding the event NASinfinitely often.
From the definition of exclude relation in the encoding (def 3.5.3), the set ofevents that can exclude the the event NAS is
→%NAS = {e(s, a, s′) | (s, a, s′) ∈→ ∧ s′ ∈ F}

3.6. Summary 89

The transition event e(s, a, s′) in G(B) exactly corresponds to a transition (s, a, s′)in B and further state s′ is visiting one of the final states in B.
Since run in G(B) is accepting, so the event NAS will be excluded infinitely oftenby executing one of the transition event in {e(s, a, s′) | (s, a, s′) ∈→ ∧ s′ ∈ F},which corresponds to visiting one of the final states infinitely often in B, whichsatisfies the condition for a run to be accepting in B.
Therefore, we can conclude that, If a run is accepting in G(B) then it is alsoaccepting in B.

Since we have the theorem in both directions, we can conclude that both B and G(B)will have same runs and accepting runs.
3.5.4 ConclusionThe nondeterministic Büchi-automaton is a kind of automaton that is suited for allaccepting ω-regular languages, as it has acceptor for infinite words. Moreover, theequivalence between nondeterministic Büchi-automaton and ω-regular languageswas proved by McNaughton in 1966 [McNaughton 1966] and therefore nondetermin-
istic Büchi-automaton is as expressive as ω-regular languages. Hence nondetermin-
istic Büchi-automaton is considered as alternative formalism to describe ω-regularlanguages.In this section, we have proved the equivalence between theDCR Graphs and
nondeterministic Büchi-automaton by providing a straight forward construction from
nondeterministic Büchi-automaton to a DCR Graph. Moreover, the construction is lin-ear in the sense that the DCR Graph contains number of events equal to total numberof transitions plus states and additionally one more event for toggling the accept-ing condition. Therefore, we conclude that the DCR Graphs is expressive enough todescribe ω-regular languages.
3.6 Summary

In this chapter, we have introduced DCR Graphs as a formal model for for a newdeclarative, event-based workflow process model inspired by the workflow languageemployed by our industrial partner [Mukkamala et al. 2008]. We have demonstratedthe use and flexibility of the model on a small example taken from a field study ondanish hospitals [Lyng et al. 2008] and proposed a graphical notation for presentingboth the process specification and their run-time state.The model was presented as a sequence of generalizations of the classical modelfor concurrency of prime event structures [Winskel 1986]. The first generalizationintroduced a notion of progress to event structures by replacing the usual causalorder by two dual relations, a condition relation→• expressing for each event which

90 Chapter 3. Dynamic Condition Response Graphs

events it has as preconditions and a response relation •→ expressing for each eventwhich events that must happen (or be ruled out) after it has happened. We furtherdemonstrated that the resulting model, named condition response event structurescan express the standard notion of weak concurrency fairness.The next generalization is to allow for finite representations of infinite behavioursby allowing multiple execution, and dynamic inclusion and exclusion of events, re-sulting in the model of dynamic condition response graphs. Finally, we extended themodel to allow distribution of events via roles and presented a graphical notationinspired by related work by van der Aalst et al. [van der Aalst & Pesic 2006a, van derAalst et al. 2009], but extended to include information about the run-time state (e.g.markings).We have shown that all generalizations conservatively contain the previous model.Moreover, we provide a mapping from dynamic condition response graphs to Büchi-automata characterising the acceptance condition for finite and infinite runs, by in-troducing a special silent event e.g. τ-event.One key advantage of the DCR Graphs compared to the related work exploredin [van der Aalst & Pesic 2006a, van der Aalst et al. 2009, Davulcu et al. 1998, Cicekli& Cicekli 2006] is that the latter logics are more complex to visualize and understandby people not trained in logic. Another advantage, illustrated in the given mappingto Büchi-automata and our graphical visualization of the run time state, is that theexecution of dynamic condition response graphs can be based on a relatively sim-ple information about the run-time state, which can also be visualized directly asannotations (marking) on the graph.Finally, we have proved the equivalence between DCR Graphs and nondetermin-
istic Büchi-automaton, there by proved that the DCR Graphs expressive enough todescribe ω-regular languages.In the next chapter, we will look into the extensions for DCR Graphs such asnested sub structures for modeling hierarchy, sub processes for modeling of multipleinstances and also extend DCR Graphs to support data as a shared global store ofvariables.

Chapter 4

Dynamic Condition Response
Graphs - Extensions

In the previous chapter (chapter 3), we have introduced the basic model and coreprimitives of DCR Graphs. In this chapter, we will describe the extensions to theDCR Graphs, which will make the formal model more applicable to various real worldscenarios and case studies. The first and foremost extension to the DCR Graphsis nested subgraphs which is a standard in most state-of-art modeling notations tomodel hierarchy. A case study from the Case Management domain will be introducedin section. 4.1.3 and we will demonstrate how we have applied nested DCR Graphsin practice within a project that our industrial partner Exformatics carried out for oneof their customers.Further, in the section 4.2, we will introduce an extension sub-processes to modelreplicated behavior in the DCR Graphs and then extend it to the nested DCR Graphs.Finally, we will introduce an important extension adding support for data to theDCR Graphs in the section 4.3.We employ the following notations in this chapter.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write→ξ and ξ→ for the set {a ∈ A | (∃a′ ∈
ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number k we write [k] for the set
{1, 2, . . . , k}.
4.1 Nested Dynamic Condition Response Graphs

In this section, we describe how to extend the model to allow for nested sub-graphs.Initially, the extension was guided by a second case study, in which we have appliedthe model of Nested Dynamic Condition Response Graphs (Nested DCR Graphs)in the design phase of the development of a distributed, inter-organizational casemanagement system.In the next section (sec 4.1.1), we will introduce the Nested DCR Graphs withthe help of oncology healthcare workflow, which was previously identified dur-ing a field study at danish hospitals [Lyng et al. 2008]. The formal semantics ofNested DCR Graphs will be given in the sec 4.1.2 and finally in sec 4.1.3, we willdescribe the case management case study which has motivated the extension ofNested DCR Graphs.

92 Chapter 4. Dynamic Condition Response Graphs - Extensions

4.1.1 Nested DCR Graphs by Healthcare Workflow ExampleIn Fig. 4.1, we show the graphical representation of the Nested DCR Graphs formal-izing a variant of the oncology workflow studied in [Lyng et al. 2008].As explained in the previous chapter, the boxes denote activities (also referredto as events in many places). Administer medicine is a nested activity having subactivities give medicine and trust. Give medicine is an atomic activity, i.e. it has nosub activities and on the other hand, Trust is again a nested activity having subactivities sign nurse 1 and sign nurse 2. The activity medicine preparation is a nestedactivity having seven sub activities dealing with the preparation of medicine, whereas manage prescription is a nested activity with two sub activities. An activity maybe either included or excluded, the latter activeties are drawn as a dashed box ase.g. the edit and cancel activities. Finally, treatment is a nested activity containingall other activities as sub activities.

Figure 4.1: Oncology Workflow as a nested DCR Graph
A run of the workflow consists of a (possibly infinite) sequence of executions ofatomic activities. (A nested activity is considered executed when all its sub activitiesare executed). An activity can be executed any number of times during a run, as longas the activity is included and the constraints for its execution are satisfied, in whichcase we say the activity is enabled.

4.1. Nested Dynamic Condition Response Graphs 93

As explained in the previous chapter (chapter 3), the constraints and dynamicexclusion and inclusion are expressed as five different core relations between activi-ties represented as arrows in the figure above: The condition relation, the response
relation, the milestone relation, the include relation, and the exclude relation.The condition relation is represented by an orange arrow with a bullet at thearrow head, e.g. the condition relation from the activity sign doctor to the activity
don’t trust prescription(N) means that sign doctor must have been executed at leastonce before the activity don’t trust prescription(N) can be executed.The response relation is represented by a blue arrow with a bullet at its source.E.g. the response relation from the activity prescribe medicine to the activity give
medicine means that the latter must be executed (at some point of time) after (anyexecution of) the activity prescribe medicine. We say that a workflow is in a completedstate if all such response constraints have been fulfilled (or the required response ac-tivity is excluded). However, note that a workflow may be continued from a completedstate and change to a non-completed state if an activity is executed that requiresanother activity as a response or includes an activity which has not been executedsince it was last required as a response.The third core relation used in the example is the milestone relation representedas a dark red arrow with a diamond at the arrow head. The milestone relationwas introduced in [Hildebrandt et al. 2011c] jointly with the ability to nest activities.A relation to and/or from a nested activity simply unfolds to relations between allsub activities. A milestone relation from a nested activity to another activity thenin particular means that the entire nested activity must be in a completed statebefore that activity can be executed. E.g. medicine preparation is a milestone for theactivity administer medicine, which means that none of the sub activities of administermedicine can be carried out if any one of the sub activities of medicine preparationis included and has not been executed since it was required as a response.Further, two activities can be related by any combination of these relations. Inthe graphical notation we have employed some shorthands, e.g. indicating the com-bination of a condition and a response relation by and arrow with a bullet in bothends.Finally, DCR Graphs allow two relations for dynamic exclusion and dynamicinclusion of activities represented as a green arrow with a plus at the arrow headand a red arrow with a minus at the arrow head respectively. The exclusion relationis used in the example between the cancel activity and the treatment activity. Sinceall other activities in the workflow are sub activities of the treatment activity, thenall activities are excluded if the cancel activity is executed. The inclusion relation isused between the prescribe medicine activity and the manage prescription activity, sowhen prescribe medicine is executed, the manage prescription will be included.The run-time state of a nested DCR Graph can be formally represented as a pair(Ex,Re, In) of sets of atomic activities (referred to as the marking of the graph). Theset Ex is the set of atomic activities that have been executed at least once duringthe run. The set Re is the set of atomic activities that, if included, are required to beexecuted at least one more time in the future as the result of a response constraint

94 Chapter 4. Dynamic Condition Response Graphs - Extensions

(i.e. they are pending responses). Finally, the set In denotes the currently includedactivities. The set Ex thus may be regarded as a set of completed activities, the setRe as the set of activities on the to-do list and the set In as the activities that arecurrently relevant for the workflow.Note that an activity may be completed once and still be on the to-do list, whichsimply means that it must be executed (completed) again. This makes it very simpleto model the situation where an activity needs to be (re)considered as a responseto the execution of an activity. In the oncology example this is e.g. the case for theresponse relation between the don’t trust prescription(N) activity (representing that anurse reports that he/she doesn’t trust the prescription) and the sign doctor activity.The effect is that the doctor is asked to reconsider her signature on the prescription.In doing that the doctor may or may not decide to change the prescription, i.e. execute
prescribe medicine again.We indicate the marking graphically by adding a check mark to every atomicactivity that has been executed (i.e. is included in the set Ex of the marking), anexclamation mark to every atomic activity which, if included, is required to be executedat least once more in the future (i.e. is included in the set Re), and making a boxdashed if the activity is not included (i.e. is not included in the set In of the marking).In Fig. 4.2 we have shown an example marking where prescribe medicine has beenexecuted. This has caused manage prescription and its sub activities edit and cancelto be included, and sign doctor and give medicine to be required as responses, i.e thetwo activities are included in the set Re of the marking (on the to-do list).As described in the previous chapter (sec 3.3.2), an activity can be executed if itis enabled. Sign doctor is enabled for execution in the example marking, since itsonly condition (prescribe medicine) has been executed and it has no milestones. Give
medicine on the other hand is not enabled since it has the (nested) activity trust ascondition, which means that all sub activities of trust (sign nurse 1 and sign nurse 2)must be executed before give medicine is enabled. Also, both give medicine and trustare sub activities of administer medicine which further has sign doctor as conditionand milestone, and medicine preparation as milestone. The condition relation from
sign doctor means that the prescription must be signed before the medicine can beadministered. The milestone relations means that the medicine can not be given aslong as sign doctor or any of the sub activities of medicine preparation is on the to-dolist (i.e. in the set Re of pending responses).With the informal introduction of Nested DCR Graphs using the healthcare work-flow, now we will provide a formal definition of Nested DCR Graphs in the nextsection.
4.1.2 Nested DCR Graphs - Formal Semantics

Let us recall the formal definitions of DCR Graphs (sec 3.3.6) and distributed DCR Graphs(sec 3.3.6)from the chapter 3. First we have defined DCR Graphs in definition 3.3.6 and thenthe model is extended by adding roles and principals to further define distributedDCR Graphs in definition 3.3.6. In the later versions of formalization of DCR Graphs,

4.1. Nested Dynamic Condition Response Graphs 95

Figure 4.2: Oncology Workflow as a nested DCR Graph with runtime state
we have further abstracted away from roles and principals and defined a more gen-eral version of DCR Graphs, where labels of events were sets of triples consisting ofan action, a role and a principal.Hence we first give a more general definition of a DCR Graph and then formallydefine nested dynamic condition response graph as follows.
Definition 4.1.1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple (E,M, →•, •→, →�, →+,→%, L,l), where

(i) E is the set of events (or activities),

(ii) M = (Ex,Re, In) ∈M(G) is the marking, for M(G) =def P(E)× P(E)× P(E),
(iii) →•⊆ E× E is the condition relation,

(iv) •→⊆ E× E is the response relation,

96 Chapter 4. Dynamic Condition Response Graphs - Extensions

(v) →�⊆ E× E is the milestone relation,

(vi) →+,→%⊆ E×E is the dynamic include relation and exclude relation, satisfying
that ∀e ∈ E.e →+ ∩e →%= ∅,

(vii) L is the set of labels,

(viii) l : E→ P(L) is a labeling function mapping events to sets of labels.

Note that, now each event is mapped to the set of labels (viii), which can consistof name of the event and a role which defines who can execute that event. In ourimplementation every event can be assigned any number of roles and every user ofthe system can have multiple roles. A user can then execute an event if she has atleast one role that is assigned to the event.
Definition 4.1.2. A Nested Dynamic Condition Response Graphs (Nested DCR Graph)G is a tuple (E,�,M,→•, •→,→�,→+,→%, L, l), where

(i) (E,M,→•, •→,→�,→+,→%, L, l) is a DCR Graph,

(ii) � : E ⇀ E is a partial function mapping an event to its super-event (if defined),

(iii) M ∈ P(atoms(E)) × P(atoms(E)) × P(atoms(E)), where atoms(E) = E\{e ∈ E |
∃e′ ∈ E.� (e′) = e} is the set of atomic events.

We write e�e′ if e′ = �k (e) for 0 < k and write e�e′ if e�e′ or e = e′, and e�e′
if e′ � e or e = e′. We require that the resulting relation, � ⊂ E × E, referred to as
the nesting relation, is a well founded partial order. We also require that the nesting
relation is consistent with respect to dynamic inclusion/exclusion in the following
sense: If e� e′ or e′ � e then e →+ ∩e′ →%= ∅.

We already introduced the graphical notation for Nested DCR Graphs by ex-ample in the previous section. The complete formal specification of the example isshown in the listing 4.1. Let us use abbreviations for the event names in the formalspecification of example: treatment (treat), manage prescription (man pres), medicinepreparation (med prep), administer medicine (adm med), trust (trust), edit (edit), cancel(canc), prescribe medicine (pres med), sign doctor (sn doc), give medicine (gm), don’ttrust prescription(N) (dt pres N), sign nurse 1 (sn N1), sign nurse 2 (sn N2), acceptprescription (acc pres), don’t trust prescription(CP) (dt pres CP), make preparation (mk
prep), sign PA (sn PA), sign CP (sn CP), don’t trust preparation(CP) (dt prep CP), don’ttrust preparation(N) (dt prep N).

Listing 4.1: Formal specification of Healthcare Workflow in Nested DCR Graphs.
A Nested DCR Graph G = (E,�,M,→•, •→,→�,±, L, l) where
E = {treat,man pres,med prep, adm med, trust, edit, canc, pres med, sn doc, dt pres N,

gm, sn N1, sn N2, acc pres, dt pres CP,mk prep, sn PA, sn CP, dt prep CP, dt prep N}

4.1. Nested Dynamic Condition Response Graphs 97

� = {(man pres, treat), (med prep, treat), (adm med, treat), (trust, treat),(pres med, treat), (sn doc, treat), (dt pres N, treat), (edit,man pres),(canc,man pres), (acc pres,med prep), (dt pres CP,med prep),(mk prep,med prep), (sn PA,med prep), (sn CP,med prep),(dt prep CP,med prep), (dt prep N,med prep), (gm, adm med),(trust, adm med), (sn N1, trust), (sn N2, trust)}
atoms(E) = {edit, canc, pres med, sn doc, dt pres N, gm, sn N1, sn N2, acc pres,

dt pres CP,mk prep, sn PA, sn CP, dt prep CP, dt prep N}

M = (∅, ∅,E \ {man pres, edit, canc})
→•= {(pres med, sn doc), (sn doc,med prep), (sn doc, adm med), (sn doc, dt pres N),(acc pres,mk prep), (mk prep, sn PA), (sn PA, sn CP), (sn PA, dt prep CP),(sn CP, dt prep N), (trust, gm)}
•→= {(edit, sn doc), (pres med, gm), (pres med, sn doc), (sn doc, acc pres),(dt pres N, sn doc), (dt pres CP, sn doc), (acc pres,mk prep), (mk prep, sn PA),(mk prep, sn CP), (dt prep CP, sn PA), (dt prep N, sn CP), (sn CP, trust)}
→�= {(sn doc,med prep), (sn doc, adm med), (acc pres,mk prep), (mk prep, sn PA),(sn PA, sn CP), (med prep, adm med)}
→+= {(pres med,man pres)}
→%= {(pres med, pres med), (canc, treat)}
L = {(edit,D), (canc,D), (pres med,D), (sn doc,D)}∪

{(dt pres N,N), (gm,N), (dt prep N,N), (sn N1,N1), (sn N2,N2)}∪
{(acc pres,CP), (dt pres CP,CP), (sn CP,CP), (dt prep CP,CP)}∪
{(mk prep,PA), (sn PA,PA)}

l = {(edit, (edit,D)), (canc, (canc,D)), (pres med, (pres med,D)), (sn doc, (sn doc,D))(dt pres N, (dt pres N,N)), (gm, (gm,N)), (dt prep N, (dt prep N,N)), (sn N1,(sn N1, (sn N1,N1)), (sn N2, (sn N2,N2)), (acc pres, (acc pres,CP)),(dt pres CP, (dt pres CP,CP)), (sn CP, (sn CP,CP)), (dt prep CP, (dt prep CP,CP)),(mk prep, (mk prep,PA)), (sn PA, (sn PA,PA))}
The events are all boxes, e.g. E = {treat,man pres,med prep, ...}, the nestingrelation captures the inclusion of boxes, e.g. �(e) = adm med, if e ∈ {gm, trust} and

�(e) = trust, if e ∈ {sn N1, sn N2} and so forth. The initial marking is the triple M =(∅, ∅,E\{man pres, edit, canc}), meaning no events have been executed, no events areinitially required as responses and all events except the events {man pres, edit, canc}are included. We take labels as pairs of action names and roles, i.e. the set of labelsL includes e.g. the pairs (edit,D), (canc,D), (gm,N), and (sn PA,PA). Super eventswith no role assigned such as med prep are assigned the empty set of labels.To define the execution semantics for Nested DCR Graphs, we first define how toflatten a nested graph to the simpler DCR Graph. Essentially, all relations to and/orfrom nested events are extended to sub events, and then only the atomic events arepreserved.

98 Chapter 4. Dynamic Condition Response Graphs - Extensions

Definition 4.1.3. For a Nested DCR Graph G = (E,�,M,→•, •→,→�,→+,→%, L, l)
define the underlying flat Dynamic Condition Response Graph as

G[= (atoms(E),M,→•[, •→[,→�[,→+[,→%[, L, l)
where rel[= �rel� for some relation rel ∈ {→•, •→,→�,→+,→%}.It is easy to see from the definition that the underlying DCR Graph has at mostas many events as the nested graph and that the size of the relations may increaseby an order of n2 where n is the number of atomic events.The listing 4.2 shows the flattened DCR Graph for the healthcare workflow ob-tained by flattening the Nested DCR Graph (listing 4.1) according to the defini-tion 4.1.3.

Listing 4.2: Flatten DCR Graph for Healthcare Workflow from listing 4.1.
The underlying flat DCR graph for nested graph G in the listing 4.1G[
f = (atoms(E),M,→•[, •→[,→�[,→+[,→%[, L, l) where

atoms(E),M, L, l are same as in listing 4.1
→•[=→• ∪{(sn doc, acc pres), (sn doc, dt pres CP), (sn doc,mk prep), (sn doc, sn PA),(sn doc, sn CP), (sn doc, dt prep CP), (sn doc, dt prep N), (sn doc, gm),(sn doc, sn N1), (sn doc, sn N2), (sn N1, gm), (sn N2, gm)}

\{(sn doc,med prep), (sn doc, adm med), (trust, gm)}
•→[= (•→ ∪{(sn CP, sn N1), (sn CP, sn N1)}) \ {(sn CP, trust)}
→�[= (→� ∪{{sn doc} × {acc pres, dt pres CP,mk prep, sn PA, sn CP, dt prep CP,

dt prep N}
}
∪
{
{sn doc} × {gm, sn N1, sn N2}

}
∪
{
{acc pres, dt pres CP,

mk prep, sn PA, sn CP, dt prep CP, dt prep N} × {gm, sn N1, sn N2}
})

\{(sn doc,med prep), (sn doc, adm med), (med prep, adm med)}
→+[= (→+ ∪{(pres med, edit), (pres med, canc)}) \ {(pres med,man pres)}
→%[= (→% ∪{{canc} × atoms(E)}) \ {(canc, treat)}

Before defining when an event is enabled in a Nested Dynamic Condition Re-sponse Graphs, let us recall the definition of an enabled event in a DCR Graph fromdefinition 3.3.7. It says that an event e of a DCR Graph is enabled when it is includedin current marking (e ∈ In), all the included events that are conditions for it are in theset of executed events (i.e. (In∩ →•e) ⊆ Ex) and none of the included events that aremilestones for it are in the set of pending response events (i.e. (In∩ →�e) ⊆ E\Re).Further, also recall the definition 3.3.8 from the previous chapter, which definesthe change of the marking in a DCR Graph when an enabled event is executed: Firstthe event is added to the set of executed events and removed from the set of pendingresponses. Then all events that are a response to the event are added to the setof pending responses. Note that if an event is a response to itself, it will remain inthe set of pending responses after execution. Similarly, the included events set will

4.1. Nested Dynamic Condition Response Graphs 99

updated by adding all the events that are included by the event and by removing allthe events that are excluded by the event.We now define the semantics for Nested DCR Graph by using the correspondingflat graph about when an event is enabled and the result of executing an event in aNested DCR Graph in the definition 4.1.4.
Definition 4.1.4. For a Nested Dynamic Condition Response Graphs G = (E,�,M,→•
, •→,→�,→+,→%, L, l), where M = (Ex,Re, In) we define that e ∈ atoms(E) is en-
abled, written M ` Ge, if M `G[e. Similarly, the result of executing M⊕G e same as
executing the event in flattened graph and it is defined as: M⊕G[e = (Ex,Re, In)⊕G[e.

As an example, in the intial marking M = (∅, ∅,E \ {man pres, edit, canc}) wehave that G ` pres med, i.e. the event prescribe medicine is enabled. After execut-ing pres med the new marking M′ = M ⊕G pres med = ({pres med}, {sn doc, gm},E\{pres med}). That is, pres med is added to the set of executed events, and sn docand gm are added to the set of pending responses, because pres med •→ sn docand pres med •→ gm. The event pres med is removed from the set of includedevents because pres med→% pres med. The events {man pres, edit, canc} are includedsince pres med→+ man pres, and the inclusion relation is "flattened" to include also
pres med→+ edit and pres med→+ canc.From the definition of enabling and execution above we can construct a labelledtransition semantics for a nested DCR Graphs, with acceptance conditions for finiteand infinite computations.
Definition 4.1.5. For a nested dynamic condition response graph G = (E,�,M,→•
, •→,→�,→+,→%, L, l) we define the corresponding labelled transition system TS(G)
to be the tuple (M(G),M, Lts(G),→)
where Lts(G) = atoms(E) × L is the set of labels of the transition system, M is the
initial marking, and →⊆M(G)×Lts(G)×M(G) is the transition relation defined byM (e,a)−−→ M⊕G[e if M `G[e and a ∈ l(e).

We define a run a0, a1, . . . of the transition system to be a sequence of labels of
a sequence of transitions Mi

(ei,ai)−−−→ Mi+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that ∀i ≥ 0, e ∈ Ini ∩ Rei.∃j ≥ i.((e = ej ∨ e 6∈ Inj+1)). In words, a run
is accepting/completed if no required response event is continuously included and
pending without it happens or become excluded.

4.1.3 Case Study: Case Management Example In Nested DCR GraphsIn this section we demonstrate how we have applied DCR Graphs in practice within aproject that our industrial partner Exformatics carried out for one of their customers.In the process, we have applied DCR Graphs in meetings with Exformatics and thecustomer to capture the requirements in a declarative way, accompanying the usual

100 Chapter 4. Dynamic Condition Response Graphs - Extensions

UML sequence diagrams and prototype mock-ups. Sequence diagrams typically onlydescribe examples of runs, and even if they are extended with loops and conditionalflows they do not capture the constraints explicitly.The customer of the system is Landsorganisationen i Danmark (LO), which is theoverarching organization for most of the trade unions in Denmark. Their counterpartis Dansk Arbejdsgiverforening (DA), which is an overarching organization for most ofthe Danish employers organizations.At the top level, the workflow to be supported is that a case worker at the tradeunion must be able to create a case, e.g. triggered by a complaint by a member of thetrade union against her employer. This must be followed up by a meeting arrangedby LO and subsequently held between case workers at the trade union, LO and DA.After being created, the case can at any time be managed, e.g. adding or retrievingdocuments, by case workers at any of the organizations.Fig. 4.3 shows the graphical representation of a simple DCR Graph capturingthese top level requirements of our case study.

Figure 4.3: Top level requirements of case management as a DCR Graph
Four top-level events were identified, shown as boxes in the graph labelled Create

case, Manage case, Arrange meeting and Hold meeting.For the top-level events we identified the following requirements:1. A case is created by a union case worker, and only once.
2. The case can be managed at the union, LO and DA after it has been created.
3. After a case is created, LO can and must arrange a meeting between the unioncase worker, the LO case worker and the DA case worker.
4. After a meeting is arranged it must be held (organized by LO).The requirements translate to the following DCR Graph role assignments (shownas "ears" on the event boxes) and relations shown as different types of arrows betweenthe events in Fig. 4.3:1. Create case has assigned role U and excludes itself.
2. Create case is a condition for Manage case, which has assigned role U, LO andDA.

4.1. Nested Dynamic Condition Response Graphs 101

3. Create case has Arrange meeting as response, which has assigned role LO.
4. Arrange meeting has Create case as a condition and Hold meeting as response,which has assigned role LO.For example, the U on Create case indicates that only a case worker at the tradeunion (U) can create a case, and the U, LO, DA on Manage case indicate that boththe trade union, LO and DA can manage the case.The arrow Create case→•Manage case denotes that Manage case has Create caseas a (pre) condition. This simply means that Create case must have happened before

Manage case can happen. Dually, Arrange meeting has Hold meeting as response,denoted by the arrow Arrange meeting•→Hold meeting This means that Hold meeting
must eventually happen after Arrange meeting happens. Finally, the arrow Create
case →%Create case denotes that the event Create case excludes itself.In the subsequent meetings, we came to the following additional requirements:1. (a) To create a case, the case worker should enter meta-data on the case,inform about when he/she is available for participating in a meeting andthen submit the case.(b) When a case is submitted it may get a local id at the union, but it shouldalso subsequently be assigned a case id in LO.(c) When a case is submitted, LO should eventually propose dates.

2. (a) Only after LO has assigned its case id it is possible to manage the caseand for LO to propose dates.(b) Manage case consists of three possible activities (in any order): editingcase meta data, upload documents and download documents. All activitiescan be performed by LO and DA. Upload and download documents canalso be performed by the Union.
3. (a) The meeting should be arranged in agreement between LO and DA: LOshould always propose dates first - and then DA should accept, but canalso propose new dates. If DA proposes new dates LO should accept, butcan also again propose new dates. This could in principle go on forever.(b) The union can always update information about when they are availableand edit the metadata of the case.
4. (a) No meeting can be held while LO and DA are negotiating on a meetingdate. Once a date has been agreed upon a meeting should eventually beheld.These requirements led to the extension of the model allowing nested events asformalized in the previous section (sec 4.1.2).The requirements could then be described by first adding the following additionalevents to the graph: A new super event Edit (E) which has the sub events: Metadata(E-M) and Dates available (E-D) and is itself a sub event to Create case (CC). The

102 Chapter 4. Dynamic Condition Response Graphs - Extensions

Create case (CC) event has two sub events: Cc (SC) and Assign case Id (ACI). The
Manage case (MC) event has two sub events: Edit metadata (EM) and Document (D),which in turn has two sub events: Upload (D-U) and Download (D-D). The Arrange
meeting (AM) event has four sub events: Propose dates-LO (PLO), Propose dates-DA(PDA), Accept LO (ALO) and Accept DA (ADA). The Hold meeting (HM) event remainsan atomic top-level event.Subsequently, the relations was adapted to the following (Nested) DCR Graphrelations, as shown in Fig 4.4:

Figure 4.4: Case Handling Process
1. Edit is a condition to Cc and is assigned role U.
2. Within the Create case superevent:

(a) Cc is a condition to Assign case Id and also requires it as a response.(b) Assign case Id is a condition for Manage case (and therefore also all it’ssub events).(c) Assign case Id is now the condition for Propose dates-LO and Cc requiresit as a response.
3. Within the Arrange meeting superevent:

4.2. Nested DCR Graphs with Sub Processes 103

(a) Arrange meeting still has Hold meeting as response, but is now also re-quired as a milestone for Hold meeting(b) Propose dates-LO is a condition for Propose dates-DA(c) Propose dates-LO includes Accept DA and requires it as a response(d) Propose dates-DA includes Accept LO and requires it as a response(e) Accept LO excludes itself and Accept DA(f) Accept DA excludes itself and Accept LO4. Within the Manage case superevent:(a) Edit metadata has roles LO and DA assigned to it.(b) Upload and Download have been grouped under a superevent Documentwith roles U, LO and DA assigned to it.(c) Upload is a condition for Download.In Fig. 4.5, 4.6, 4.7, we have illustrated how the execution state of the case-handlingprocess may be visualized using the runtime notation of the DCR Graphs.The graph in the figure. 4.5 shows the state after a run where the union startedby creating a case: they edited meta-data, indicated the dates they were availableand submitted. When LO received the case they assigned their own case ID to it.Some time later LO proposed possible dates for a meeting to DA. DA did not agreewith these dates and responded by proposing some of their own. In the graph both
Accept LO and Accept DA are included and have a pending response because bothLO and DA have proposed dates. Because of these pending responses Hold meetingis disabled. Because no files have been uploaded to the document yet, Download isalso disabled.The graph in the figure. 4.6 shows the runtime state after the union has uploadedan agenda for the meetings. Note that, since the union has uploaded a file to thecase, Download is now enabled. But at the same time, Accept LO and Accept DAstill remain the same as the previous graph, as the proposed dates have not beenaccepted yet by either LO or DA.Figure 4.7 shows the graph representing the state after LO has accepted one ofthe dates proposed by DA. Note that both Accept LO and Accept DA are excludeddue to the mutual exclude relation between them. Even though there is a pendingresponse on Accept DA, it is not considered relevant as it is excluded and Hold meetinghas become pending because of the response relation. Continuing by executing Hold
meeting as LO will cause the graph to reach an accepting state, as there will be noincluded pending responses.
4.2 Nested DCR Graphs with Sub Processes

In this section, we will introduce an important extension to Nested Dynamic Con-dition Response Graphs, by name subprocesses to model the replicated behavior inprocesses.

104 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.5: Case Handling Process Runtime
4.2.1 Formal definition of Nested DCR Graphs with sub processes

First we define a Nested Dynamic Condition Response Graphs with subprocess for-mally as follows.
Definition 4.2.1. A Nested Dynamic Condition Response Graphs with Subprocess is
a tuple G = (E,�,Sub,M,→•, •→,→�,→+,→%, L, l), where

(i) Sub : E → {0, 1} is a function defining subprocess events that can spawn
multiple instances. An event e is subprocess event if Sub(e) = 1.

(ii) (E,�,M,→•, •→,→�,→+,→%, L, l) is a nested DCR Graph with only one re-
striction that e •→ e′ =⇒ e ∈ Scope(e′) where

Scope(e′) = { {e′′ | ∃i ≥ 1.�1 (e′) = �i(e′′)} if Sub(�k (e′)) = 1 for k ≥ 1E otherwise

4.2. Nested DCR Graphs with Sub Processes 105

Figure 4.6: Case Handling Process Runtime After Upload Document
With the addition of subprocess events, we impose a restriction on responserelation in a DCR Graph, as an instance of a sub process event is created by executingan event which has a response relation to it. The item (ii) says that, response relationto an event whose ancestor/parent is a subprocess event (Sub(�k (e′)) = 1 for k ≥ 1),will only be allowed from the descendants of it’s parent i.e self/siblings or descendantsof them.In order to explain the semantics of subprocesses in a better way, we will usea revised version of prescribe medicine example shown in the figure 4.8. The ex-ample contains a prescribe event modeling prescription of medicine by the doctorand a nested subprocess event administer medicine, which contains sign(signinga prescription by doctor), remove (canceling a prescription by doctor), give (givingmedicine to patient by nurse) and don’t trust(prescription not trusted by the nurse).The basic idea is that the doctor can prescribe any number of prescriptions and eachprescription will be administered individually.Graphically in DCR Graphs, subprocesses will be represented by marking theevents with three parallel lines at the bottom (similar to the BPMN representationof multi-instance subprocess activities). Any event either an atomic event or nestingevent (an event nested events) can be marked as a sub process event, but only subprocess events that are required as responses can be instantiated to spawn newinstances, as defined formally in the def 4.2.4. As shown in the example whenever the

106 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.7: Case Handling Process Runtime After Accept Dates
doctor prescribes a medicine a new instance of sub process administer medicine willbe added to the process. The formal specification of the prescribe medicine examplein Nested DCR Graph with subprocesses is given in the listing 4.3.Listing 4.3: Formal specification of prescribe medicine example inNested DCR Graphs with subprocesses.
A Nested DCR Graph with subprocesses G = (E,�,Sub,M,→•, •→,→�,→+,→%, L, l) where
E = {prescribe, administer medicine, sign, remove, give, don’t trust}

� = {(sign, administer medicine), (remove, administer medicine),(give, administer medicine), (don’t trust, administer medicine)}
Sub = {(administer medicine, 1), (sign, 0), (remove, 0), (give, 0), (don’t trust, 0)}
M = (∅, {sign},E)
→•= {(sign, don’t trust)}
•→= {(prescribe, administer medicine), (don’t trust, sign)}
→�= {(sign, give)}

4.2. Nested DCR Graphs with Sub Processes 107

Figure 4.8: Prescribe medicine example with subprocesses
→+= {(sign, give), (don’t trust, remove)}
→%= {(sign, remove), (remove, administer medicine), (don’t trust, give),(give, administer medicine)}
L = {(prescribe,D), (sign,D), (remove,D), (give,N), (don’t trust,N)}
l = {(prescribe, (prescribe,D)), (sign, (sign,D)), (remove, ((remove,D)), (give, (give,N))(don’t trust, (don’t trust,N))}

4.2.2 Flattening of Nested DCR Graph with sub processesTo define the execution semantics for Nested Dynamic Condition Response Graphswith sub processes, we first define how to flatten a nested graph to the simplerDCR Graph with subprocesses. We define the level of nesting as level(e) = k if
�k (e) is defined and �k+1(e) is undefined.
Definition 4.2.2. For a Nested DCR Graph with sub processes G = (E,�,Sub,M,→•
, •→,→�,→+,→%, L, l), define the underlying flat DCR Graph as

G[= (atoms(E),SN ,M,→•[, •→[,→�[,→+[,→%[, L, l)
where

108 Chapter 4. Dynamic Condition Response Graphs - Extensions

1. SN : E→ N0 is a function mapping events to their subprocess nesting level as
such that SN (e) = ∑

0≤k≤level(k) Sub(�k (e))
2. →[= �→ � for some relation → ∈ {→•,→�, •→,→+,→%}
In the flatten graph, we introduced a function SN : E → N0 to keep track of thesubprocess nesting level, which will be 0 for non-subprocess events and for others,it will be a summation of all subprocess flags till its top level parent event. Further,all the relations from and to the nested events will be expanded to include theirdescendant atomic events in the flattened graph (2).

Figure 4.9: Flattened prescribe medicine example
The flattened DCR Graph is shown in the figure 4.9. On can see that all therelations are to the nested event are expanded to their children and also sub pro-cess nesting level is marked adjacent to the events. All the events whose subprocessnesting level greater than 0 are sub process events which can spawn new instances.Further listing 4.4 shows specification of flat underlying DCR Graph for the pre-scribe medicine Nested DCR Graph with sub processes given in the listing 4.3 thatis flattened according to the def 4.2.2.

Listing 4.4: Flattened DCR graph for prescribe medicine example
Nested graph from listing 4.3 G = (E,�,Sub,M,→•, •→,→�,→+,→%, L, l)

4.2. Nested DCR Graphs with Sub Processes 109

Underlying Flat DCR graph G[= (atoms(E),SN ,M,→•[, •→[,→�[,→+[,→%[, L, l)where
atoms(E) = E \ {administer medicine}

SN = {(prescribe, 0), (sign, 1), (remove, 1), (give, 1), (don’t trust, 1)}
M = (∅, {sign},E)
→•[=→•
•→[=•→ ∪{(prescribe, sign), (prescribe, remove), (prescribe, give),(prescribe, don’t trust)} \ {(prescribe, administer medicine)}
→�[=→�
→+[=→+
→%[=→% ∪{(remove, sign), (remove, remove), (remove, give), (remove, don’t trust),(give, sign), (give, remove), (give, give), (give, don’t trust)}

\ {(remove, administer medicine), (give, administer medicine)}

4.2.3 Execution Sematics of DCR Graphs with Subprocesses

In this section, we go further and formalize in Def. 4.2.3, that an event e of a (flat)DCR Graph (with sub processes) is enabled when it’s subprocess Index is 0, all itsincluded condition events are executed, and none of milestones events are pendingresponses.
Definition 4.2.3. For a (flat) DCR Graph with sub processes G = (E,SN ,M,→•, •→
,→�,→+,→%, L, l), and M = (Ex,Re, In) we define that an event e ∈ E is enabled,
written M `G e, if SN (e) = 0 ∧ e ∈ In ∧ (In∩ →•e ⊆ Ex) ∧ (In∩ →�e ⊆ E\Re).

Now we will define execution semantics of an enabled event and describe thechanges that will be made to a DCR Graph with sub processes.
Definition 4.2.4. For a DCR Graph with sub processes G = (E,SN ,M,→•, •→,→�
,→+,→%, L, l), where M = (Ex,Re, In) the result of executing e is G⊕ e = G′ whereG′ = (E′,S′N ,M′,→•′, •→′,→�′,→+′,→%′, L, l ′) is a DCR Graph with sub processes
such that

(i) E′ = E ∪ {fresh(e′) | e •→ e′ ∧ SN (e′) > 0}

110 Chapter 4. Dynamic Condition Response Graphs - Extensions

(ii) S′N (e1) = { SN (e′)− 1 if e1 = fresh(e′)SN (e1) if e1 ∈ E
(iii) l ′(e1) = { l(e′) if e1 = fresh(e′)

l(e1) if e1 ∈ E
(iv) e1 →′ e2 if

(a) e1 → e2
(b) or ei = fresh(e′i) for i ∈ {1, 2} ∧ e′1 → e′2
(c) or e1 = fresh(e′1) ∧ e′1 → e2

where →∈ {→•, •→,→�,→+,→%}
(d) or e2 = fresh(e′2) ∧ e1 → e′2

where →∈ {→•,→�}

(v) M′ = (Ex,Re, In)⊕ e =def
(Ex ∪ {e},Re′, In′) where

(a) Re′ = (Re \ {e}) ∪ {e′ | e′ ∈e•→ ∧SN (e′) = 0} ∪ {fresh(e′) ∈ E′ \ E | (e′ ∈Re)}
(b) In′ = (In∪ e→+) ∪ {fresh(e′) ∈ E′ \ E | (e′ ∈ In)}\ e→%

Def. 4.2.4 defines the changes to DCR Graph with sub processes when an enabledevent is executed. The sub process events are instantiated to spawn new instanceswhen they are responses to the executed event e.First a new instance will be created for each subprocess event which is responseto event e and update them to the events (E) set (i). Further, we use a temporaryset (fresh) (which is initially empty for each event execution), to keep track of newlycreated events, as relations to the subprocess events are copied to the newly createdinstances with some restrictions. The subprocess nesting index (SN) of newly createdevent will be one less than that of its subprocess event as stated in (ii). Finally, theset of labels (L) will remain the same, but the labelling function (l) will be updated byadding mapping of the new instances of subprocess events with the labels of parentsubprocess events as shown in (iii).The second step involves coping of relations from subprocess events to their newlycreated instances. All the relations in between the subprocess events that both areinstantiated as part of event execution e, will be copied to their instances (ivb).Similarly all the relations from a subprocess events pointing to atomic events arecopied from the new instances to the respective atomic events (ivc). But only conditionand milestone relations pointing from atomic events to subprocess events are copiedto the newly created instances of sub process events (ivd).Finally, the marking will be updated by adding the executed event to the Ex set.The included events set (In) will be updated by including/excluding all the eventsthat are included/excluded by the executing event e and all the new instances arealso added, if their parent subprocess event is included (vb). Updates to the pendingresponses set (Re) are liftle bit different, as subprocess events are instantiated by

4.2. Nested DCR Graphs with Sub Processes 111

a response relation. First of all, the executed event (e) will be taken out of theRe set and then all the atomic events which are responses to e are added. But inorder to propagate required as a response from subprocess events to their instances,only those new instances whose parent subprocess event carries a initial pendingresponse (SN (e′) > 0 ∧ e′ ∈e•→ ∧Re) will be added to Re set.Lets us use the prescribe medicine example again to explain the execution seman-tics of DCR Graph with subprocesses. The figure 4.10 shows the prescribe medicineexample after the execution of prescribe event. When the prescribe event gets exe-cuted, an instance of all the subprocess events which are responses for prescribe willbe created, added to set of events and respective relations are copied to the newlycreated instances as defined in the def 4.2.4. The formal specification of prescribemedicine example after the execution of prescribe event is given in the listing 4.5.
Listing 4.5: Prescribe medicine example after execution of prescribe

The result of executing event prescribe is G⊕ prescribe = G′ whereG = (E,SN ,M,→•, •→,→�,→+,→%, L, l) = G[from listing 4.4
G′ = (E′,S′N ,M′,→•′, •→′,→�′,→+′,→%′, L, l′)
Let’s say fresh(sign) = sign[1], fresh(remove) = remove[1], fresh(give) = give[1] andfresh(don’t trust) = don’t trust[1].
E′ = E ∪ {sign[1], remove[1], give[1], don’t trust[1]}
SN′ = SN ∪ {(sign[1], 0), (remove[1], 0), (give[1], 0), (don’t trust[1], 0)}
M′ = ({prescribe}, {sign, sign[1]},E′)
→•′=→• ∪ {(sign[1], don’t trust[1])}
•→ ′ =•→ ∪ {(don’t trust[1], sign[1])} (we copy only responses from subprocess events)
→� ′ =→� ∪ {(sign[1], give[1])}
→+ ′ =→+ ∪ {(sign[1], give[1]), (don’t trust[1], remove[1])}
→% ′ =→% ∪ {(sign[1], remove[1]), (remove[1], sign[1]), (remove[1], remove[1]),(remove[1], give[1]), (remove[1], don’t trust[1]), (don’t trust[1], give[1]),(give[1], sign[1]), (give[1], remove[1]), (give[1], give[1]), (give[1], don’t trust[1])}
l ′ = l ∪ {(prescribe[1], (prescribe,D)), (sign[1], (sign,D)), (remove,((remove,D)), (give[1], (give,N)), (don’t trust[1], (don’t trust,N))}
Definition 4.2.5. For a Nested DCR Graph with sub processes G = (E,�,Sub,M,→•
, •→,→�,→+,→%, L, l) with M = (Ex,Re, In) we define that e ∈ atoms(E) is enabled,
written M ` Ge, if the underlying flat DCR Graph with with sub processes M `G[e.
Similarly, the result of executing event e, written as M⊕ Ge is same as M⊕ G[e.

112 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.10: Prescribe medicine example with an instance of subprocess
4.3 DCR Graphs with Data

In this section we will introduce an another extension to the (Nested) DCR Graphs,data. Here we consider a global data store as a set of variables that are sharedamong the events of a DCR graph. The variables that can be read and/or assignedby an event are explicitly defined in the model. We propose a simple model wherewe allow integer as data types for the variables, as other primitive data types canbe easily encoded as integers.The motivation for the extension of data also originated from the PhD candidate’svisit to IBM Research, New York as part of stay abroad, to study the relation between

4.3. DCR Graphs with Data 113

DCR Graphs and IBM Research’s declarative process model Business Artifacts withGuard-Stage-Milestone (GSM Model) life cycles [Hull et al. 2011a].
Definition 4.3.1. We define integer expressions as,

iexp ::= Z | intvar | iexp intop iexp
where intop ∈ {+, −, ∗,%}
Definition 4.3.2. A boolean expression is defined as

bexp ::= > | ⊥ | iexp OP iexp
where OP ∈ {=, <,>}, > is true and ⊥ is false.

In this extension to DCR Graphs, we add basic support for data as a global ofshared integer variables and the variables are modified and read by the events.Further we also introduce notion of boolean expressions built over the values ofvariables confirming to syntax mention in the Def. 4.3.2. We also propose the notionof guards (similar to GSM model, but the semantics are not exactly same) mapped overthe set of boolean expressions which act as conditions on the events and relations.Formally we first define a DCR Graph extended with data as follows and in thenext section we will also extend Nested DCR Graphs with data .
Definition 4.3.3. A Dynamic Condition Response Graph with Data is a tuple G =(E,M,V,Bexp,→•, •→,→�,→+,→%, L, l, guard, ar, read, assign) where

(i) E is the set of events, ranged over by e,

(ii) M = (Ex,Re, In, σ) ∈ M(G) is the marking containing a set of executed events(Ex), a set of pending responses (Re), a set of currently included events (In)
and current valuation of variables (σ : V → Int). The markings set M(G) =def
P(E) × P(E) × P(E) × IntV is a set of all markings where IntV is the set of all
valuations of variables V.

(iii) V is the set of integer variables that represents a global data store and ranged
over by v

(iv) Bexp is a set of boolean expressions ranged over by bexp,

(v) →•⊆ E× E is the condition relation

(vi) →�⊆ E× E is the milestone relation

(vii) •→⊆ E× Bexp× E is a guarded response relation,

(viii) →+⊆ E× Bexp× E is a guarded include relation,

(ix) →%⊆ E× Bexp× E is a guarded exclude relation,

114 Chapter 4. Dynamic Condition Response Graphs - Extensions

(x) L is the set of labels
(xi) l : E→ P(L) is a labeling function mapping events to sets of labels.

(xii) guard : E→ Bexp is a function mapping events to boolean expressions.

(xiii) ar = E → N is the arity of events indicating the number of input variables for
an event.

(xiv) read : E→ Pf in(V) is a function specifying the variables that an event can read.

(xv) assign : E → (V ⇀f in iexp) is a function indicating which variables can an
event modify, such that assign(e) =< v1 = ex1, .., vn = exn > where ex1, .., exn
are integer expressions. Further the variables that are part of an expression
Var(exi) ⊆ read(e) ∪ {$j | 0 ≤ j ≤ ar(e)}.

An event labelled with an action represents an execution of a (human or auto-mated) task/activity/action in the workflow process and each event can be mappedto more than one label. The marking M (ii) defines the runtime state of DCR Graphand consists of a set capturing which events have previously been executed (Ex),which events are pending responses (Re), which events are currently included (In)and finally current valuation of variables (σ : V→ Int) in the global data store (V).Further, (iv) defines a set of well-formed boolean expressions formed according tosyntax defined in Def 4.3.2. Note that a boolean expression can refer to the values ofthe data variables (for example v1 > 5) and they are always evaluated in the contextof current marking.Further, the condition (v) and milestone (vi) relations are same as normal DCR Graph,but the response, include and exclude relations (vii - ix) are now guarded with booleanexpressions (which can refer to data variables) attached to them. In case of guardedrelations, the relations will have additional constraint saying that the boolean ex-pression must be true, in order for the relation take an effect. For example, if twoevents e, e′ are related by a guarded response relation (e• bexp−−→ e′), when the event
e get executed the event e′ will be added to set of responses (Re) only if the bexp istrue. Finally, guard is a function mapping events to boolean expressions as shownin (xii).Further, (xiii) defines arity of events which specifies the number of input variablesthat an event can have and for auto events the arity is 0, as auto events can not haveany input variables. Similarly read (xiv) is a function mapping events to finite setof variables that an event can read values of variables. Moreover assign (xv), is afunction mapping events to expressions for assigning values to variables and we alsospecify that variables of an expression should be either part of variables that an eventcan read or input, to make sure in any case an event can not assign a value to avariable, for which neither the event does have read mapping or part of it’s inputvariables.

4.3. DCR Graphs with Data 115

4.3.1 Nested DCR Graphs with DataNow, we will go further and give the formal definition of a Nested Dynamic ConditionResponse Graph with Data as follows,
Definition 4.3.4. A Nested Dynamic Condition Response Graph with Data is a tupleG = (E, Es, �, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign), where

(i) (E, Es, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign) is a
Dynamic Condition Response Graph with Data and

(ii) � : E ⇀ E is a partial function mapping an event to its super-event (if defined),
and

(iii) M ∈ P(atoms(E))×P(atoms(E))×P(atoms(E))×IntV, where atoms(E) = E\{e ∈E | ∃e′ ∈ E.� (e′) = e} is the set of atomic events.

(iv) Es ⊆ atoms(E)
We write e�e′ if e′ = �k (e) for 0 < k and write e�e′ if e�e′ or e = e′, and e�e′
if e′ � e or e = e′. We require that the resulting relation, � ⊂ E × E, referred to as
the nesting relation, is a well founded partial order. We also require that the nesting
relation is consistent with respect to dynamic inclusion/exclusion in the following
sense: If e� e′ or e′ � e then e →+ ∩e′ →%= ∅.

To define the execution semantics for a Nested Dynamic Condition ResponseGraph with Data, we first define how to flatten a nested graph to DCR Graph with Datain def 4.3.5. Essentially, all relations to and/or from nested events are extended tosub events, and then only the atomic events are preserved. Further, we define thelevel of nesting as level(e) = k if �k (e) is defined and �k+1(e) is undefined.
Definition 4.3.5. For a Nested Dynamic Condition Response Graph with Data G = (E,
�, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign), we define the
underlying flat DCR Graph with Data asG[= (atoms(E),M,V,Bexp,→•[, •→[,→�[,→+[,→%[, L, l, ar, guard[, read[, assign[)
where

(i) rel[= �rel� for some relation rel ∈ {→•, •→,→�,→+,→%}
(ii) guard[(e) = ∧0≤k≤level(e) guard(�k (e)
(iii) fun[= fun \ {(e, fun(e)) | ∃e′ ∈ E. � (e′) = e} ∪ {(ei, fun(ei)) | 0 < i ≤

k ∧�k (ei) = e} for fun ∈ {read, assign}.
In flattening a nested DCR Graph with data into a DCR Graph with data, allthe relations from the super events will be propagated to their decedent events asshown in (i), like in case of nested DCR Graphs (4.1.3). Similarly, boolean expressionsof super events are also propagated to their decedents and therefore a booleanexpression of a nested event (or atomic event) will be in conjunction of all such

116 Chapter 4. Dynamic Condition Response Graphs - Extensions

expressions inherited from its super event (ii). Furthermore, assign and read functionmappings for super events are expanded to their decedents as shown in (iii).We now define when an event e is enabled in DCR Graph with data in def 4.3.6.An event e is enabled if it is included in current marking (e ∈ In), all its conditionevents are executed (→• (e) ∈ Ex), all its milestone events are not in set of pendingresponses (→� (e) ∈ E\Re) and the boolean expression assigned to the event shouldbe true when evaluated in the context of current marking ([[guard(e)]]M).
Definition 4.3.6. For a Dynamic Condition Response Graph with Data G = (E, M, V,
Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign), and M = (Ex,Re, In, σ) we
define that an event e ∈ E is enabled, written M `G e, if

(i) e ∈ In
(ii) →• (e) ∈ Ex
(iii) →� (e) ∈ E \ Re
(iv) [[guard(e)]]M

We will now define the changes to marking when an enabled event is executed.
Definition 4.3.7. For a Dynamic Condition Response Graph with Data with dataG = (E, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign) with a
marking M = (Ex,Re, In, σ) and an enabled event M `G e , the result of executing e
is M ⊕G e = M′ where the updated marking M′ = (Ex′,Re′, In′, update(σ, assign(e)))
such that,

(i) Ex′ = Ex ∪ {e}
(ii) Re′ = Re \ {e} ∪ {e′ | e •→ (bexp, e′) ∧ [[bexp]]M}
(iii) In′ = (In ∪ {e′ | e →+ (bexp, e′) ∧ [[bexp]]M}) \ {e′ | e →% (bexp, e′) ∧ [[bexp]]M}
(iv) update(σ, assign(e)) : V→ Int is a function updating data store such that

σ ′(v) = { σ (v) if v 6∈ dom(assign(e))[[assign(e)(v)]]MDef. 4.3.7 above then defines the change of the marking when an enabled event isexecuted: First the event is added to the set of executed events (i). Further the set ofpending responses (Re) will be updated by removing the event e and adding all theevents which are responses for event e with guard (boolean expression) associatedwith response relation evaluated to true (ii). Similarly the set of included events isupdated by adding/removing events which are included/excluded by event e with theguard (boolean expression) associated with relation is evaluated to true (ii). Finally,the current valuation of variable (σ) will be updated with new data values assignedby the event e (iv).

4.3. DCR Graphs with Data 117

Definition 4.3.8. For a Nested Dynamic Condition Response Graph with Data G =(E, �, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign), whereM = (Ex,Re, In, σ) we define that e ∈ atoms(E) is enabled, written M `G e, if the
underlying flat DCR Graph with data M `G[e. Similarly, the result of executing
event e, written as M⊕G e is same as M⊕ G[e.

4.3.2 Healthcare Example in DCR Graphs with Data

In this section, we will use our running example prescribe medicine to explain thesemantics of DCR Graphs with data.

Figure 4.11: Prescribe medicine example in DCR Graphs with data.
Figure 4.11 shows prescribe medicine example modeled using DCR Graphs withdata, where we have the same four events prescribe medicine, sign, give medicineand don’t trust and they mean same as what we have discussed in the Sec. 3.4. Nowwe have variables from a shared data store and the variables that can be read byan event are marked under the events with a function read, which maps each eventto set of variables. For example the variable pres meant for storing the values ofprescription and we can notice that all the events in example have access to readthe variable pres, where as only prescribe medicine event can assign a value for the

pres variable, since the event has the mapping for the variable in the assign function.Further, the arity (ar) of prescribe medicine event is 1 (not shown in the figure), which

118 Chapter 4. Dynamic Condition Response Graphs - Extensions

indicates that the event has one input field, whose value will be assigned to variable
pres. The mapping between the input fields and variables are defined in the assignfunction (Def. 4.3.3-xv).Similarly, trustP (meaning trust prescription) is a variable that can assigned avalue by sign and don’t trust events. When the sign event gets executed, it assigns avalue 1 to the trustP variable. In this case, we have a predefined assignment meaningthat whenever sign event gets executed, it will always assign 1 to trustP. Furthermorethe sign event always uses predefined assignment, hence there will no input field,which means the arity of sign event is 0. As explained before, boolean expressions(Bexp) can be defined over the values of variables and one such expression is trustP
= 1, which is defined as guard for the event give medicine with a syntax @(trustP
= 1). The guards for events and relations are always evaluated in the context ofthe current marking, and the marking in DCR Graphs with data now includes thevaluation set of variables in addition to the standard three sets.Let’s consider an execution <prescribe medicine, sign, don’t trust > where thedoctor has prescribed a medicine (by assigning some value to pres) and executed the
sign event, (which automatically assigns a value 1 to trustP variable). Further whenthe nurse executes don’t trust event, the trustP will be assigned to value 0, makingthe guard @(trustP = 1) evaluates to false. In that context, the event give medicinewill not be enabled because of it’s guard @(trustP = 1) evaluates to false. Laterthe doctor may choose to assign a new value for pres and then execute sign or elsehe may simply choose to re-execute the sign event, making the value of trustP to 1,which will make the event give medicine enabled.One may observe in the Def. 4.3.3 that only response (•→), include (→+) andexclude (→%) are defined as guarded relations, but condition (→•) and milestone (→�)relations do not have any guards, as they are blocking relations. In this figure 4.11,we have not shown any guards on the relations, therefore all the guarded relationswill have a guard mapped to true (>). In case if there are guards on the relations,then the guards will be evaluated in the current marking before updating the markingfor the guarded relation and in case if the guard evaluated to false, then no updateswill be applied to the marking for that relation.
4.4 Summary

In this chapter, we have given a conservative extension of DCR Graphs to allow fornested sub-graphs motivated from guided by a case study carried out jointly with ourindustrial partner in the section 4.1. Later, in section 4.2 we have introduced anotherimportant extension multi instance sub processes to model replicated behavior inDCR Graphs. Finally, in the section 4.3, we have added support for data to theDCR Graphs based on the motivation from both the case management case studyand from the study of relating DCR Graphs with the IBM Research’s declarativeworkflow business artifacts with guard-stage-milestone life cycles model.

Chapter 5

Distribution of DCR Graphs

In the previous chapter (4), we have introduced several extensions of DCR Graphsand in this chapter we will introduce a technique to distribute DCR Graphs as aset of local components to model local behavior and to guarantee that the behaviorin local components is consistent with the global behavior. First we will introduceand define the notion of projection and composition on DCR Graphs in section 5.3,then we will introduce semantics of synchronous distributed execution in sec 5.3.3 bydefining the notion of networks of DCR Graphs.Further we will extend the distribution technique to the nested DCR Graphs in thesection 5.4 and also we exemplify the distribution technique of nested DCR Graphsusing healthcare workflow that was introduced in the case study 2.1.2. Finally, wewill also prove the theorems (thm 5.3.1 and thm 5.4.1) for distributed execution ofDCR Graphs and nested DCR Graphs saying that the behavior in global graph isbisimilar to the behavior in the network of projected graphs.
5.1 Introduction

In general the commercial workflow implementations are based on a centralizedworkflow manager controlling the execution of the entire, global workflow. However,workflows often span different units or departments within the organization, e.g. thepharmacy and the patient areas, or even cross boundaries of different organizations(e.g. different hospitals). In some situations it may be very relevant to execute thelocal parts of the workflow on a local (e.g. mobile) device without permanent accessto a network, e.g. during preparation of the medicine in the pharmacy. Also, differentorganizations may want to keep control of their own parts of the workflow and notdelegate the management to a central service. This motivates the ability to split theworkflow in separate components, each only referring to the activities relevant forthe local unit and being manageable independently of the other components.A model-driven software engineering approach to distributed information systemstypically include both global models describing the collective behavior of the systembeing developed and local models describing the behavior of the individual peers orcomponents.The global and local descriptions should be consistent. If the modeling languageshave formal semantics and the local model language support composition of individualprocesses, the consistency can be formally established, which we will refer to as the
consistency problem: Given a global model and a set of local models, is the behaviorof the composition of the local models consistent with the global model? In order

120 Chapter 5. Distribution of DCR Graphs

to support top-down model-driven engineering starting from the global model, oneshould address the more challenging distributed synthesis problem: Given a globalmodel and some formal description of how the model should be distributed, canwe synthesize a set of local processes with respect to this distribution which areconsistent to the the global model?
In past work, as discussed in related work (sec 5.2), the result of the distributedsynthesis have been a network of local processes described in an imperative processmodel, e.g. as a network of typed pi-calculus processes or a product automaton. Theglobal process description has either been given declaratively, e.g. in some temporallogic, or imperatively, e.g. as a choreography or more generally a transition system.
In this chapter, we address the distributed synthesis problem in a setting whereboth the global and the local processes are described declaratively as DCR Graphs.
To safely distribute a DCR Graph we first define (Def. 5.3.1, Sec. 5.3.1) a newgeneral notion of projection of DCR Graphs relative to a subset of labels and events.The key point is to identify the set of events that must be communicated from otherprocesses in the network in order for the state of the local process to stay consis-tent with the global specification (Prop. 5.3.1-5.3.3, Sec. 5.3.1). To also enable thereverse operation, building global graphs from local graphs, we then define the com-position of two DCR Graphs, essentially by gluing joint events. As a sanity checkwe prove (Prop. 5.3.4, Sec. 5.3.2) that if we have a collection of projections of a DCRGraph that cover the original graph (Def. 5.3.5, Sec. 5.3.2) then the composition yieldsback the same graph. We then finally proceed to the main technical result, definingnetworks of synchronously communicating DCR Graphs and stating (in Thm. 5.3.1,Sec. 5.3.3) the correspondence between a global process and a network of communi-cating DCR Graphs obtained from a covering projection (relying on Prop. 5.3.1-5.3.3).Throughout the paper we exemplify the distribution technique on a simple cross-organizational process identified within a case study (sec 4.1.3) carried out jointlywith Exformatics A/S using DCR Graphs for model-driven design and engineering ofan inter-organizational case management system.
Further in the Sec. 5.4, we extend the notion of projection on nested DCR Graphsand provide the semantics for distributed execution on nested DCR Graphs. Furtherwe then proceed to the main technical result on nested DCR Graphs, stating (inThm. 5.4.1) the correspondence between a global process and a network of communi-cating nested DCR Graphs obtained from a covering projection (relying on Prop. 5.4.1).
In this chapter, we will follow the following notation.

Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write→ξ and ξ→ for the set {a ∈ A | (∃a′ ∈
ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number k we write [k] for the set
{1, 2, . . . , k}.

5.2. Related Work 121

5.2 Related Work

There are many researchers [van der Aalst 1999a, Kindler et al. 2000, ter Hofstede
et al. 2003, van der Aalst et al. 2010b, Aalst & Weske 2001, van der Aalst 2003,Martens 2005] who have explicitly focussed on the problem of verifying the correctnessof inter-organizational workflows in the domain of petri nets. In [van der Aalst 1999a],message sequence charts are used to model the interaction between the participantworkflows that are modeled using petri nets and the overall workflow is checked forconsistency against an interaction structure specified in message sequence charts.In [Kindler et al. 2000] Kindler et. al. followed a similar but more formal and concreteapproach, where the interaction of different workflows is specified using a set ofscenarios given as sequence diagrams and using criteria of local soundness andcomposition theorem, guaranteed the global soundness of an inter-organizationalworkflow. The authors in [ter Hofstede et al. 2003] proposed Query Nets based onpredicate/transition petri nets to guarantee global termination, without the need forhaving the global specification. The work on workflow nets [Aalst & Weske 2001,van der Aalst 2003] use a P2P (Public-To-Private) approach to partition a sharedpublic view of an inter-organizational workflow over its participating entities andprojection inheritance is used to generate a private view that is a subclass to therelevant public view, to guarantee the deadlock and livelock freedom. Further a moreliberal and a weaker notion than projection inheritance, accordance has been usedin [van der Aalst et al. 2010b] to guarantee the weak termination in the multipartycontracts based on open nets.

Figure 5.1: Key problems studied in related work
Modeling global behavior as a set of conversations among participating serviceshas been studied by many researchers [Fu et al. 2004b, Yi & Kochut 2004a, Rinderle

et al. 2006, Wodtke & Weikum 1997, Bravetti & Zavattaro 2007, Bravetti & Zavat-taro 2009] in the area business processes. An approach based on guarded automata

122 Chapter 5. Distribution of DCR Graphs

studied in [Fu et al. 2004b], for the realizability analysis of conversation protocols,whereas the authors in [Yi & Kochut 2004a] used colored petri nets to capture thecomplex conversations. A framework for calculating and controlled propagation ofchanges to the process choreographies based on the modifications to partner’s pri-vate processes has been studied in [Rinderle et al. 2006]. Similarly, but using processcalculus to model service contracts, Bravetti-Zavattaro proposed conformance notionfor service composition in [Bravetti & Zavattaro 2007] and further enhanced theircorrectness criteria in [Bravetti & Zavattaro 2009] by the notion of strong servicecompliance.Researchers [Fdhila & Godart 2009, Nanda et al. 2004, Khalaf & Leymann 2006,Mitra et al. 2008] in the web services community have been working on web servicecomposition and decentralized process execution using BPEL [OASIS WSBPEL Tech-nical Committee 2007] and other related technologies to model the web services. Atechnique to partition a composite web service using program analysis was studiedin [Nanda et al. 2004] and on the similar approach, [Khalaf & Leymann 2006] ex-plored decomposition of a business process modeled in BPEL, primarily focussing onP2P interactions . Using a formal approach based on I/O automata representing theservices, the authors in [Mitra et al. 2008] have studied the problem of synthesizinga decentralized choreography strategy, that will have optimal overhead of servicecomposition in terms of costs associated with each interaction.The derivation of descriptions of local components from a global model has beenresearched for the imperative choreography language WS-CDL in the work on struc-tured communication-centred programming for web services by Carbone, Honda andYoshida [Carbone et al. 2007]. To put it briefly, the work formalizes the core of WS-CDLas the global process calculus and defines a formal theory of end-point projectionsprojecting the global process calculus to abstract descriptions of the behavior of eachof the local "end-points" given as pi-calculus processes typed with session types.A methodology for deriving process descriptions from a business contract formal-ized in a formal contract language was studied in [Milosevic et al. 2006], while [Sadiq
et al. 2006] proposes an approach to extract a distributed process model from collabo-rative business process. In[Fdhila et al. 2009, Fdhila & Godart 2009], the authors haveproposed a technique for the flexible decentralization of a process specification withnecessary synchronization between the processing entities using dependency tables,where as the authors in [Dong et al. 2000] presented a framework for optimizing thephysical distribution of workflow schemas based on the families of communicatingflow charts.In [Castellani et al. 1999, Heljanko & Stefanescu 2005, Mukund 2002] foundationalwork has been made on synthesizing distributed transition systems from global speci-fication for the models of synchronous product and asynchronous automata[Zielonka 1987].In [Mukund 2002] Mukund categorized structural and behavioral characterizations ofthe synthesis problem for synchronous and loosely cooperating communication sys-tems based on three different notions of equivalence: state space, language andbisimulation equivalence. Further Castellani et. al. [Castellani et al. 1999] character-ized when an an arbitrary transition system is isomorphic to its product transition

5.3. DCR Graphs - Projection and Composition 123

systems with a specified distribution of actions and they have shown that for finitestate specifications, a finite state distributed implementation can be synthesized.Complexity results for distributed synthesis problems for the three notions of equiv-alences were studied in [Heljanko & Stefanescu 2005].Many commercial and research workflow management systems also support dis-tributed workflow execution and some of them even support ad-hoc changes aswell. ADEPT [Reichert & Bauer 2007], Exotica [Mohan et al. 1995], ORBWork [Das
et al. 1996], Rainman [Paul et al. 1997] and Newcastle-Nortel [Shrivastava et al. 1998]are some of the distributed workflow management systems. A good overview and dis-cussion about distributed workflow management systems can be found in [Reichert
et al. 2009, Ranno & Shrivastava 1999].So far the formalisms discussed above are more or less confined to imperativemodeling languages such as Petri nets, workflow/open nets and automata based lan-guages. To the best of our knowledge, there exists very few works [Fahland 2007,Montali 2010] that have studied the synthesis problem in declarative modeling lan-guages and none where both the global and local processes are given declaratively.In [Fahland 2007], Fahland has studied synthesizing declarative workflows expressedin DecSerFlow [van der Aalst & Pesic 2006b] by translating to Petri nets. Only apredefined set of DecSerFlow constraints are used in the mapping to the Petri netspatterns, so this approach has a limitation with regards to the extensibility of theDecSerFlow language. On the other hand, in [Montali 2010] Montali has studiedthe composition of ConDec [van der Aalst & Pesic 2006a] models with respect toconformance with a given choreography, based on the compatibility of the local Con-Dec models. But his study was limited to only composition, whereas the problem ofsynthesizing local models from a global model has not been studied.
5.3 DCR Graphs - Projection and Composition

In this section we define projections and compositions of DCR Graphs. In Sec. 5.3.1below we define the notion of projection of a DCR Graphs, restricting the graph to asubset of the events and labels, and in Sec. 5.3.2 we define the technique for binarycomposition of two DCR Graphs, to get a global DCR Graph.
5.3.1 Projection

First we define how to project a DCR Graph G with respect to a projection parameter
δ = (δE, δL) where δE ⊆ E is a subset of the events of G and δL ⊆ L is a subset ofthe labels.Intuitivly, the projection G|δ contains only those events and relations that arerelevant for the execution of events in δE and the labeling is restricted to the set δL.This includes both the events in δE and any other event that can affect the marking,or ability to execute of an event in δE through one or more relations. The technicaldifficulty is to infer the events and relations not in δE, referred to as external events

124 Chapter 5. Distribution of DCR Graphs

below, that should be included in the projection because they influence the executionof the workflow restricted to the events in δE.
Definition 5.3.1. If G = (E,M,→•, •→,→�,→+,→%, L, l) then G|δ =(E|δ ,M|δ ,→•|δ , •→|δ ,→�|δ ,→+|δ ,→%|δ , δL, l|δ) is the projection of G with respect to
δ ⊆ E where:

(i) E|δ =→δE, for →= ⋃
c∈C

c, and C = {id, →•, •→, →�, →+, →%, •→→�, →+→•,
→%→•, →+→�, →%→�}

(ii) ł|δ (e) = {l(e) ∩ δL if e ∈ δE
∅ if e ∈ E|δ\δE

(iii) M|δ = (Ex|δ ,Re|δ , In|δ) where:

(a) Ex|δ = Ex ∩ E|δ
(b) Re|δ = Re ∩ (δE∪ →� δE)
(c) In|δ = In ∩ (δE∪ →• δE∪ →� δE)

(iv) →•|δ=→• ∩((→• δE)× δE)
(v) •→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE))
(vi) →�|δ=→� ∩((→� δE)× δE)
(vii) →+|δ=→+ ∩(((→+ δE)× δE) ∪ ((→+→• δE)× (→• δE) ∪ ((→+→� δE)× (→�

δE))
(viii) →%|δ=→% ∩(((→% δE)×δE)∪((→%→• δE)×(→• δE)∪((→%→� δE)×(→� δE))

(i) defines the set of events as the union of the set δE of events that we projectover, any event that has a direct relation towards an event in δE and events thatexclude or include an event which is either a condition or a milestone for an eventin δE. The additional events will be included in the projection without labels, as canbe seen from the definition of the labeling function in (ii). This means that the eventscan not be executed locally. However, when composed in a network containing otherprocesses that can execute these events, their execution will be communicated to theprocess. For this reason we refer to these events as the (additional) external eventsof the projection. As proven in Prop. 5.3.1-5.3.3 the communication of the executionof this set of external events in addition to the local events shared by others ensurethat the local state of the projection stay consistent with the global state.Further (iii) defines the projection of the marking: The executed events remain thesame, but are limited to the events in E|δ . The responses are restricted to events in
δE and events that have a milestone relation to an event in δE because these are the

5.3. DCR Graphs - Projection and Composition 125

only responses that will affect the local execution of the projected graph. Note thatthese events will by definition be events in E|δ but may be external events. In case ofset of included events, we take the actual included status of the events in projectionparameter along with the events that are conditions and milestones to the eventsin projection parameter, as the include status of those events will have an influenceon the execution of events in local graph. All other external events of the projectedgraph are not included in the projected marking regardless of their included statusin the marking of the global graph, because their include/exclude status will have noinfluence on the execution of events in local graph. Finally, (iv), (v), (vi), (vii) and (viii)state which relations should be included in the projection. For the events in δE allincoming relations should be included. Additionally inclusion and exclusion relationsto events that are either a condition or a milestone for an event in δE are includedas well.To define networks of communicating DCR Graphs and their semantics we usethe following extension of a DCR Graph allowing any event to be executed with aspecial input label (ε). These transitions will only be used for the communication ina network and thus not be visible as user events.
Definition 5.3.2. For an DCR Graph G = (E,�,M,→•, •→,→�,→+,→%, L, l) defineGε = (E,�,M,→•, •→,→�,→+,→%, L ∪ {ε}, l ε), where l ε = l(e) ∪ {ε} (assuming
that ε 6∈ L).

We are now ready to state the key correspondence between global execution ofevents and the local execution of events in a projection.
Proposition 5.3.1. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then,
for e ∈ δE and a ∈ δL it holds that M `G e ∧M⊕G e = M′ ∧M′|δ = M′′ if and only ifM|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.
Proof. In order to prove the proposition, we have to show that the proposition in bothdirections.

(G→P) for e ∈ δE and a ∈ δL. M `G e ∧ M ⊕G e = M′ ∧ M′|δ = M′′ =⇒ M|δ `G|δ
e ∧M|δ ⊕G|δ e = M′′.We will split the proof into 2 steps:
(A) M `G e =⇒ M|δ `G|δ eFrom def 3.3.7, we have M `G e =⇒ e ∈ In ∧ (In∩ →• e) ⊆ Ex and(In∩ →�e) ⊆ E\Re.

In order to prove that M|δ `G|δ e, we have to show that
e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ . We will proveeach part individually as follows,

126 Chapter 5. Distribution of DCR Graphs

(i) To prove: e ∈ In|δ
From def 5.3.1-iiic we have,In|δ = In ∩ (δE∪ →• δE∪ →� δE) therefore
e ∈ In ∧ e ∈ δE =⇒ e ∈ In|δ .

(ii) To prove: (In|δ∩ →•|δ e) ⊆ Ex|δ
∀e′ ∈ (In|δ∩ →•|δ e),(a) e′ ∈ In|δ =⇒ e′ ∈ In(b) form the def 5.3.1-iv, we have→•|δ=→• ∩((→• δE)×δE) therefore

e′ ∈→•|δ e =⇒ e′ ∈→•e.
Using above 2 statements and from M `G e
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ e′ ∈ (In∩ →•e) =⇒ e′ ∈ Ex,Further, from def 5.3.1-iiia we have Ex|δ = Ex ∩ E|δ therefore
e′ ∈ E|δ ∧ e′ ∈ Ex =⇒ e′ ∈ Ex|δHence we can conclude that (In|δ∩ →•|δ e) ⊆ Ex|δ

(iii) To prove: (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ
∀e′ ∈ (In|δ∩ →�|δ e)(a) e′ ∈ In|δ =⇒ e′ ∈ In(b) form the def 5.3.1-vi, we have→�|δ=→� ∩((→� δE)×δE) therefore

e′ ∈→�|δ e =⇒ e′ ∈→�e.
Using above 2 statements and from M `G e
e′ ∈ (In|δ∩ →�|δ e) =⇒ e′ ∈ (In∩ →�e) =⇒ e′ ∈ E\Re =⇒ e′ 6∈Re,
According to def 5.3.1 iiib, we have Re|δ = Re ∩ (δE∪ →� δE). and so
e′ 6∈ Re =⇒ e′ 6∈ Re|δ .Further, e′ ∈ E|δ ∧ e′ 6∈ Re|δ =⇒ e′ ∈ E|δ \ Re|δ .Hence we can conclude that (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ

From (G→P)-A-i, (G→P)-A-ii and (G→P)-A-iii, we have proved that e ∈In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ is valid.Therefore we can conclude that M `G e =⇒ M|δ `G|δ e.
(B) To prove: M⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′

We have M ⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′)

5.3. DCR Graphs - Projection and Composition 127

and from the def 3.3.8, we can inferEx′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and In′ = (In ∪ e→+)\ e→%.
In projected graph, we have M|δ = (Ex|δ ,Re|δ , In|δ), M′′ = (Ex′′|δ ,Re′′|δ , In′′|δ)and from above result we know that M|δ `G|δ e. Hence we can infer thatEx′′|δ = Ex|δ ∪ {e},Re′′|δ = (Re|δ \ {e})∪ e•→|δ , and In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ .
We have to prove that M′|δ = M′′. In order to prove this equivalence,we will show that Ex′|δ = Ex′′|δ , Re′|δ = Re′′|δ and In′|δ = In′′|δ individually asfollows,
(i) To prove: Ex′|δ = Ex′′|δ

Ex′|δ = (Ex ∪ {e}) ∩ E|δ from def 5.3.1-iiia= (Ex ∩ E|δ) ∪ ({e} ∩ E|δ) distributive law of sets= Ex|δ ∪ {e} according to def 5.3.1-iiia and e ∈ δE ⊆ E|δ .= Ex′′|δ .Hence we can conclude that Ex′|δ = Ex′′|δ
(ii) To prove: Re′|δ = Re′′|δ

According to def 5.3.1-v, the response relation in projected graph is
•→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE)).Informally it contains relations which can cause a response on anevent which is either included in the set of events in the project pa-rameter (δE) or in a set of events which are milestones to events inproject parameter (→� δE).
•→|δ= {(e′′, e′) | e′′ •→ e′ ∧ e′ ∈ (δE∪ →� δE)} and hence
e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
Re′|δ = ((Re \ {e})∪ e•→)

∩ (δE∪ →� δE) from def 5.3.1-iiib= ((Re\{e})∩ (δE∪ →� δE))∪(e•→ ∩(δE∪ →� δE)) distributive law= (Re ∩ (δE∪ →� δE) \ ({e} ∩ (δE∪ →� δE)) ∪ (e•→ ∩(δE∪ →� δE))set intersection distributes over set difference= (Re|δ \ {e}) ∪ (e•→ ∩(δE∪ →� δE))= (Re|δ \ {e}) ∪ {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}= (Re|δ \ {e})∪ e•→|δ= Re′′|δHence we can conclude that Re′|δ = Re′′|δ .
(iii) To prove: In′|δ = In′′|δ

128 Chapter 5. Distribution of DCR Graphs

(iii-a) According to def 5.3.1-vii, the include relation in projected graphis
→+|δ=→+ ∩(((→+ δE)×δE)∪((→+→• δE)×(→• δE)∪((→+→�
δE)× (→� δE))
→+|δ= {(e′′, e′) | e′′ →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ= {e′ | e →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE)

(iii-b) Similarly, according to def 5.3.1-viii, the exclude relation in pro-jected graph is
→%|δ=→% ∩(((→% δE)×δE)∪((→%→• δE)× (→• δE)∪((→%→�
δE)× (→� δE))
→%|δ= {(e′′, e′) | e′′ →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ= {e′ | e →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE)

From def 5.3.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)Hence we can compute the projection of global included set (In′) asfollowsIn′|δ = In′ ∩ (δE∪ →• δE∪ →� δE)But we know that In′ = (In ∪ e→+)\ e→%In′|δ = ((In ∪ e→+)\ e→%) ∩ (δE∪ →• δE∪ →� δE)
In′|δ = ((In ∪ e→+) ∩ (δE∪ →• δE∪ →� δE)) \ (e→% ∩(δE∪ →•
δE∪ →� δE)) set intersection distributes over set difference
In′|δ = ((In ∩ (δE∪ →• δE∪ →� δE)) ∪ (e→+ ∩(δE∪ →• δE∪ →�
δE)) \ (e→% ∩(δE∪ →• δE∪ →� δE)) distributive lawUsing results (iii-a) and (iii-b), we can rewrite the above statementasIn′|δ = ((In ∩ (δE∪ →• δE∪ →� δE)) ∪ e→+|δ)\ e→%|δBut we know that the marking in projected graph before executingevent e is In|δ = In ∩ (δE∪ →• δE∪ →� δE). Using this fact, we canrewrite the above statement as follows,
In′|δ = (In|δ∪ e→+|δ)\ e→%|δIn′|δ = In′′|δ
Hence we can conclude that In′|δ = In′′|δ .From (G→P)-B-i, (G→P)-B-ii and (G→P)-B-iii, we have proved that Ex′|δ =Ex′′|δ , Re′|δ = Re′′|δ and In′|δ = In′′|δ . and there by we can conclude that

5.3. DCR Graphs - Projection and Composition 129

M′|δ = M′′.
Since we have proved both parts: ((G→P)-A and (G→P)-B), the propositionM⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′ holds.

(P→G) for e ∈ δE and a ∈ δL. M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ =⇒ M `G e ∧M⊕G e =M′ ∧M′|δ = M′′Again, we will split the proof into 2 parts.
(A) M|δ `G|δ e =⇒ M `G eFrom def 3.3.7, we have M|δ `G|δ e =⇒ e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ

In order to prove that M `G e, we have to show that
e ∈ In ∧ (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re(i) To prove: e ∈ In

From def 5.3.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)
e ∈ In|δ ∧ (In|δ = In ∩ (δE∪ →• δE∪ →� δE)) =⇒ e ∈ In.

(ii) To prove: (In∩ →•e) ⊆ Ex
From def 5.3.1-iv, we have →•|δ=→• ∩((→• δE)× δE)
∀e′.e′ ∈→•|δ e =⇒ (e′, e) ∈→•|δ =⇒ (e′, e) ∈→• =⇒ e′ ∈→•eand therefore →•|δ e = →•e.
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→•|δ e) =⇒ (e′ ∈In) ∩ (e′ ∈→•e) =⇒ e′ ∈ (In∩ →•e), and hence(In|δ∩ →•|δ e) = (In∩ →•e).
(In|δ∩ →•|δ e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex|δ .according to def 5.3.1-iiia : Ex|δ = Ex ∩ E|δ .Hence (In∩ →•e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex(iii) To prove: (In∩ →�e) ⊆ E\Re
From def 5.3.1-vi, we have →�|δ=→� ∩((→� δE)× δE),
∀e′.e′ ∈→�|δ e =⇒ (e′, e) ∈→�|δ =⇒ (e′, e) ∈→� =⇒ e′ ∈→�eand therefore →�|δ e = →�e.
∀e′.e′ ∈ (In|δ∩ →�|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→�|δ e) =⇒ (e′ ∈In) ∩ (e′ ∈→�e) =⇒ e′ ∈ (In∩ →�e), and hence(In|δ∩ →�|δ e) = (In∩ →�e).
(In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →� e) ⊆ E|δ\Re|δ =⇒ ∀e′ ∈

130 Chapter 5. Distribution of DCR Graphs

(In∩ →�e).e′ 6∈ Re|δ .
according to def 5.3.1-iiib : Re|δ = Re ∩ (δE∪ →� δE),
∀e′ ∈ (In∩ →� e).e′ 6∈ Re|δ =⇒ e′ 6∈ (Re ∩ (δE∪ →� δE)). Fur-ther, as e′ →� e, we know that e′ ∈ (δE∪ →� δE). The only way
e′ 6∈ (Re ∩ (δE∪ →� δE)) becomes true is when e′ 6∈ Re.
Hence (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →�e) ⊆ E\Re.

Form (P→G)-A-(i), (P→G)-A-(ii) and (P→G)-A-(iii), we can conclude thatM|δ `G|δ e =⇒ M `G e .
(B) M|δ ⊕G|δ e = M′′ =⇒ M⊕G e = M′ ∧M′|δ = M′′We have M|δ ⊕G|δ e = M′′ in the local graph where M|δ = (Ex|δ ,Re|δ , In|δ),M′′ = (Ex′′|δ ,Re′′|δ , In′′|δ) and from the def 3.3.8, we can inferEx′′|δ = Ex|δ ∪ {e},Re′′|δ = (Re|δ \ {e})∪ e•→|δ , and In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ .

In main graph, we know M `G e where M = (Ex,Re, In) and hence wecan workout the new marking as M ⊕G e = M′ where M′ = (Ex′,Re′, In′)with Ex′ = Ex∪{e},Re′ = (Re\{e})∪ e•→, and In′ = (In ∪ e→+)\ e→%.
We have to prove that M′′ = M′|δ .(i) To prove: Ex′′|δ = Ex′|δ

Let us start with Ex′′|δEx′′|δ = Ex|δ ∪ {e}= (Ex ∩ E|δ) ∪ {e} from def 5.3.1-iiia= (Ex ∪ {e}) ∩ (E|δ ∪ {e})= Ex′ ∩ E|δ= Ex′|δHence we can conclude that Ex′′|δ = Ex′|δ .
(ii) To prove: Re′′|δ = Re′|δ

(a) According to def 5.3.1-v, the response relation in local graph is
•→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE)).
•→|δ= {(e′′, e′) | e′′ •→ e′ ∧ e′ ∈ (δE∪ →� δE)} and so
e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
e•→|δ= {e′ | e •→ e′} ∩ {e′ | e′ ∈ (δE∪ →� δE)}
e•→|δ=e•→ ∩(δE∪ →� δE)

5.3. DCR Graphs - Projection and Composition 131

Let us start with Re′′|δRe′′|δ = (Re|δ \ {e})∪ e•→|δ= ((Re ∩ (δE∪ →� δE)) \ {e})∪ e•→|δ from def 5.3.1-iiib= ((Re \ {e}) ∩ (δE∪ →� δE))∪ e•→|δ (set relative complements)= ((Re \ {e}) ∩ (δE∪ →� δE)) ∪ (e•→ ∩(δE∪ →� δE)) using (a)= ((Re \ {e})∪ e•→)
∩ (δE∪ →� δE)= Re′ ∩ (δE∪ →� δE)= Re′|δ according to def 5.3.1-iiib.Hence we can conclude that Re′′|δ = Re′|δ .

(iii) To prove: In′′|δ = In′|δ
(a) According to def 5.3.1-vii, the include relation in projected graphis
→+|δ=→+ ∩(((→+ δE)×δE)∪((→+→• δE)×(→• δE)∪((→+→�
δE)× (→� δE))
→+|δ= {(e′′, e′) | e′′ →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ= {e′ | e →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE).

(b) Similarly, according to def 5.3.1-viii, the exclude relation in pro-jected graph is
→%|δ=→% ∩(((→% δE)×δE)∪((→%→• δE)× (→• δE)∪((→%→�
δE)× (→� δE))
→%|δ= {(e′′, e′) | e′′ →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ= {e′ | e →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE).

Having sub results (a) and (b), let us starts with In′′|δ and show thatit will be equal to the projection over included set from global graph(In′|δ).In′′|δ = (In|δ∪ e→+|δ)\ e→%|δfrom def 5.3.1-iiic, we have In|δ = In ∩ (δE∪ →• δE∪ →� δE) hence,In′′|δ = ((In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ)\ e→%|δ .Again using the results (a) and (b), we can rewrite the above expres-sion as,In′′|δ = ((In ∩ (δE∪ →• δE∪ →� δE)) ∪ (e→+ ∩(δE∪ →• δE∪ →�
δE))) \ (e→% ∩(δE∪ →• δE∪ →� δE)).In′′|δ = ((In∪ e→+)∩(δE∪ →• δE∪ →� δE))\(e→% ∩(δE∪ →• δE∪ →�
δE)).In′′|δ = ((In∪ e→+)\ e→%) ∩ (δE∪ →• δE∪ →� δE).In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).

132 Chapter 5. Distribution of DCR Graphs

In′′|δ = In′|δ .Hence we can conclude that In′′|δ = In′|δ .From (P→G)-B-i, (P→G)-B-ii and (P→G)-B-iii, we have proved that Ex′′|δ =Ex′|δ , Re′′|δ = Re′|δ and In′′|δ = In′|δ and there by we can conclude thatM′′ = M′|δ .
Since we have proved both parts: ((P→G)-A and (P→G)-B), the propositionfor e ∈ δE and a ∈ δL. M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ =⇒ M `G e ∧M⊕G e =M′ ∧M′|δ = M′′ holds.

Finally, we have proved the proposition in both ways ((G→P) and (P→G)), thereforethe proposition: for e ∈ δE and a ∈ δL it holds that M `G e∧M⊕Ge = M′∧M′|δ = M′′if and only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ holds.
Proposition 5.3.2. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then, for
e 6∈ E|δ it holds that M `G e ∧M⊕G e = M′ implies M|δ = M′|δ .
Proof. According to projection definition 5.3.1, e 6∈ E|δ =⇒ e 6∈ G|δ , therefore therewill not be any change in the marking. Hence M|δ = M′|δ .
Proposition 5.3.3. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then for e ∈ E|δ
(and a 6∈ δL) it holds that M `G e ∧M⊕G e = M′ implies M|δ ⊕G|δ e = M′|δ .
Proof. The proof for this proposition is more or less similar to proof in the part (P→G)-(B) of proposition 5.3.1 with minor changes.
We have M ⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′) and fromthe def 3.3.8, we can inferEx′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and In′ = (In ∪ e→+)\ e→%.
In projected graph, we have marking projected from global graph, according to def 5.3.1as M|δ = (Ex|δ ,Re|δ , In|δ). The result of executing event e in projected graph will bea marking, let us say M′′|δ = M|δ ⊕G|δ e, then we have to prove that M′′|δ = M′|δ .
Let us say that M′′|δ = (Ex′′|δ ,Re′′|δ , In′′|δ), and since in the projected graph we haveM′′|δ = M|δ ⊕G|δ e, we can infer from the def 3.3.8, Ex′′|δ = Ex|δ ∪ {e},Re′′|δ =(Re|δ \ {e})∪ e•→|δ , and In′′|δ = (In|δ ∪ e→+|δ)\ e→%|δ .
In order to prove this equivalence of M′′|δ = M′|δ , we will show that Ex′′|δ = Ex′|δ ,Re′′|δ = Re′|δ and In′′|δ = In′|δ individually as follows,

5.3. DCR Graphs - Projection and Composition 133

(i) To prove: Ex′′|δ = Ex′|δ
Let us start with Ex′′|δEx′′|δ = Ex|δ ∪ {e}= (Ex ∩ E|δ) ∪ {e} from def 5.3.1-iiia= (Ex ∪ {e}) ∩ (E|δ ∪ {e})= Ex′ ∩ E|δ= Ex′|δHence we can conclude that Ex′′|δ = Ex′|δ .(ii) To prove: Re′′|δ = Re′|δ

(a) According to def 5.3.1-v, the response relation in local graph is
•→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE)).
•→|δ= {(e′′, e′) | e′′ •→ e′ ∧ e′ ∈ (δE∪ →� δE)} and so
e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
e•→|δ= {e′ | e •→ e′} ∩ {e′ | e′ ∈ (δE∪ →� δE)}
e•→|δ=e•→ ∩(δE∪ →� δE)

Let us start with Re′′|δRe′′|δ = (Re|δ \ {e})∪ e•→|δ= ((Re ∩ (δE∪ →� δE)) \ {e})∪ e•→|δ from def 5.3.1-iiib= ((Re \ {e}) ∩ (δE∪ →� δE))∪ e•→|δ (set relative complements)= ((Re \ {e}) ∩ (δE∪ →� δE)) ∪ (e•→ ∩(δE∪ →� δE)) using (a)= ((Re \ {e})∪ e•→)
∩ (δE∪ →� δE)= Re′ ∩ (δE∪ →� δE)= Re′|δ according to def 5.3.1-iiib.Hence we can conclude that Re′′|δ = Re′|δ .

(iii) To prove: In′′|δ = In′|δ
(a) According to def 5.3.1-vii, the include relation in projected graph is
→+|δ=→+ ∩

(((→+ δE) × δE) ∪ ((→+→• δE) × (→• δE) ∪ ((→+→�
δE)× (→� δE))
→+|δ= {(e′′, e′) | e′′ →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ= {e′ | e →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE).

(b) Similarly, according to def 5.3.1-viii, the exclude relation in projected graphis
→%|δ=→% ∩(((→% δE)×δE)∪((→%→• δE)× (→• δE)∪((→%→� δE)× (→�

134 Chapter 5. Distribution of DCR Graphs

δE))
→%|δ= {(e′′, e′) | e′′ →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ= {e′ | e →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE).

Having sub results (a) and (b), let us starts with In′′|δ and show that it will beequal to the projection over included set from global graph (In′|δ).In′′|δ = (In|δ∪ e→+|δ)\ e→%|δfrom def 5.3.1-iiic, we have In|δ = In ∩ (δE∪ →• δE∪ →� δE) hence,In′′|δ = ((In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ)\ e→%|δ .Again using the results (a) and (b), we can rewrite the above expression as,In′′|δ = ((In ∩ (δE∪ →• δE∪ →� δE)) ∪ (e→+ ∩(δE∪ →• δE∪ →� δE))) \ (e→%
∩(δE∪ →• δE∪ →� δE)).In′′|δ = ((In∪ e→+) ∩ (δE∪ →• δE∪ →� δE)) \ (e→% ∩(δE∪ →• δE∪ →� δE)).In′′|δ = ((In∪ e→+)\ e→%) ∩ (δE∪ →• δE∪ →� δE).In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).In′′|δ = In′|δ .Hence we can conclude that In′′|δ = In′|δ .From (i), (ii) and (iii), we have proved that Ex′′|δ = Ex′|δ , Re′′|δ = Re′|δ and In′′|δ = In′|δand there by we can conclude that M′′ = M′|δ .

Therefore the proposition: for e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge = M′implies M|δ ⊕G|δ e = M′|δ is proved.
5.3.2 CompositionNow we define the binary composition of two DCR Graphs. Intuitively, the composi-
tion of G1 and G2 glues together the events that are both in G1 and G2.
Definition 5.3.3. Formally, the composite G1 ⊕ G2 = (E,M,→•, •→,→�,→+,→%
, L, l), where Gi = (Ei,Mi,→•i, •→i,→�i,→+i,→%i, Li, li), Mi = (Exi,Rei, Ini) for i ∈
{1, 2} and:

(i) E = (E1 ∪ E2)
(ii) M = (Ex,Re, In), where:

(a) Ex = Ex1 ∪ Ex2
(b) In = In1 ∪ In2
(c) Re = Re1 ∪ Re2

(iii) →=→1 ∪ →2 for each →∈ {→•, •→,→�,→+,→%}
(iv) l(e) = l1(e) ∪ l2(e)

5.3. DCR Graphs - Projection and Composition 135

(v) L = L1 ∪ L2
(iib) states that events are included, if they’re either included in G1 or G2. (iic)states that the events with pending responses are those events that have a pendingresponse in G1 or G2.

Definition 5.3.4. The composition G1 ⊕ G2 is well-defined when:

(i) ∀(e ∈ E1 ∩ E2 | (e ∈ Ex1 ⇔ e ∈ Ex2)
(ii) ∀(e ∈ E1 ∩ E2 | (e ∈ In1 ⇔ e ∈ In2)
(iii) ∀(e ∈ E1 ∩ E2 | (e ∈ Re1 ⇔ e ∈ Re2)
(iv) ∀(e, e′ ∈ E1 ∩ E2 | ¬((e →+1 e′ ∧ e →%2 e′) ∨ (e →%1 e′ ∧ e →+2 e′)))

(i) ensures that those events that will be glued together have the same executionmarking. (ii) ensures that events that will be glued together and in both DCR Graphsbelong to either the set of internal events or the set of events that have a condi-tion/milestone relation towards an internal event, have the same inclusion marking.
(iii) ensures that events that will be glued together and in both DCR Graphs belong tothe set of internal events have the same pending response marking. (iv) ensures thatby composing the two DCR Graphs no event both includes and excludes the sameevent. If G1 ⊕ G2 is well-defined, then we also say that G1 and G2 are composablewith respect to each other.
Lemma 5.3.1. If (L, ·) is a commutative monoid, then the composition operator ⊕ is
commutative.

Proof. According to definition 5.3.3, most elements of the tuple defining the graphG = G1 ⊕ G2 are constructed from the union of the same elements in G1 and G2.For these elements the composition is commutative, because the union operator iscommutative. The exception is the labelling function, which is composed through themonoid operator ·. If the monoid is commutative then the composition is commutativefor the labelling function as well.
Lemma 5.3.2. The composition operator ⊕ is associative.

Proof. According to definition 5.3.3, most elements of the tuple defining the graphG = G1 ⊕ G2 are constructed from the union of the same elements in G1 and G2.For these elements the composition is associative, because the union operator isassociative. The exception is the labelling function, which is composed through themonoid operator ·. Because a monoid operator is always associative, the compositionis associative for the labelling function as well.
Definition 5.3.5. We call a vector ∆ = δ1 . . . δk of projection parameters covering for
some DCR Graph G = (E,M,→•, •→,→�,→+,→%, L, l) if:

136 Chapter 5. Distribution of DCR Graphs

1.
⋃
i∈[k] δEi = E and

2. (∀a ∈ L.∀e ∈ E.a ∈ l(e)⇒ (∃i ∈ [k].e ∈ δEi ∧ a ∈ δLi)
Proposition 5.3.4. If some vector ∆ = δ1 . . . δk of projection parameters is covering
for some DCR Graph G then:

⊕
i∈[k] G|δi = G

Proof. Since the vector of projection parameters is covering, every event and label iscovered in at least one of the projections. Moreover the definition of composition 5.3.3,is defined over union of individual components. Hence when all projections arecomposed, we will get the same graph and hence ⊕
i∈[k] G|δi = G.

5.3.3 Safe Distributed Synchronous Execution of DCR Graphs

In this section we define networks of synchronously communicating DCR Graphs andprove the main technical theorem of the paper stating that a network of synchronouslycommunicating DCR Graphs obtained by projecting a DCR Graph G with respect toa covering set of projection parameters has the same behavior as the original graphG. We now define networks of DCR Graphs and their distributed execution.
Definition 5.3.6. A network of DCR Graphs is a finite vector of DCR Graphs G some-
times written as Πi∈[n]Gi or G0G2 . . .Gn−1. Assuming Gi = (Ei,Mi,→•i, •→i,→�i
,→+i,→%i, Li, li), we define the set of events of the network by E (Πi∈[n]Gi) = ∪i∈[n]Ei
and the set of labels of the network by L(Πi∈[n]Gi) = ∪i∈[n]Li and we write the network
marking as M = Πi∈[n]Mi.

Finally, let M(G) denote the set of network markings of G.

We now define when an event is locally enabled in one of the components. andthe result of executing an event as the same as locally executing the event in allcomponents of the network sharing the event.
Definition 5.3.7. For a network of DCR Graphs G = Πi∈[n]Gi where Gi = (Ei,Mi,→•i
, •→i,→+i,→%i, Li, li), an event e ∈ E (Πi∈[n]Gi) is enabled at a location i in the
distributed marking M = Πi∈[n]Mi, written M `G,i e, if it is locally enabled in the ith
dynamic condition response graph, i.e. e ∈ Ei ∧ Mi `Gi e. The result of executing
an event e ∈ E (Πi∈[n]Gi) in a marking M ⊕Gi e = M = Πi∈[n]Mi is the new markingM′ = Πi∈[n]M′i where M′i = Mi ⊕G e if e ∈ Ei and M′i = Mi otherwise.

Finally, we define executions of networks as follows. An event can be executed ifit is locally enabled in a component where it has assigned at least one label.

5.3. DCR Graphs - Projection and Composition 137

Definition 5.3.8. For a network of DCR Graphs G = Πi∈[n]Gi where Gi = (Ei,Mi,→•i
, •→i,→�i,→+i,→%i, Li, li) and M = Πi∈[n]Mi, we define an execution of G to be
a (finite or infinite) sequence of tuples {(hi,Mi, ei, ai,M′i)}i∈[k] each consisting of aplace hi ∈ [n], a network marking, an event, a label and another network marking
(the result of executing the event) such that M = M0 and ∀i ∈ [k].ai ∈ lhi (ei) ∧Mi `G,hi ei ∧M′i = Mi ⊕G ei and ∀i ∈ [k − 1].M′i = Mi+1. We say the execution isaccepting if ∀i ∈ [k], h ∈ [n].(∀e ∈ Inh,i ∩ Reh,i.∃j ≥ i.ej = e ∨ e 6∈ In′h,j)), whereMi = Πh∈[n](Exh,i, Inh,i,Reh,i) and M′j = Πh∈[n](Ex′h,j , In′h,j ,Re′h,j).Now we will define the transition system for a network of DCR Graphs as follows,
Definition 5.3.9. For a network of DCR Graphs G = Πi∈[n]Gi where Gi = (Ei,Mi,→•i
, •→i,→�i,→+i,→%i, Li, li) and M = Πi∈[n]Mi, we define the corresponding labelled
transition system TS(G) to be the tuple

(M(G),M, Lts(G),→N)
where Lts(G) = E (Πi∈[n]Gi)× L(Πi∈[n]Gi) is the set of labels of the transition system,M is the initial marking, and →N⊆M(G)×Lts(G)×M(G) is the transition relation
defined by M (e,a)−−→N M⊕G,i e if M `G,i e and a ∈ li(e).

We define a run a0, a1, . . . of the transition system to be a sequence of labels of
a sequence of transitions Mi

(ei,ai)−−−→ Mi+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that if ∀i ∈ [k], h ∈ [n].(∀e ∈ Inh,i ∩ Reh,i.∃j ≥ i.ej = e ∨ e 6∈ In′h,j)),
where Mi = Πh∈[n](Exh,i, Inh,i,Reh,i) and M′j = Πh∈[n](Ex′h,j , In′h,j ,Re′h,j). In words, a
run is accepting/completed if no required response event is continuously included
and pending without it happens or become excluded.Now we define binary relation between a global DCR Graph and a network ofprojected DCR Graphs as follows in def 5.3.10.
Definition 5.3.10. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l) and for a covering vector of projection parameters ∆ = δ1 . . . δn, for a
network of projected graphs where G∆ = Πi∈[n]G|δ i with G|δ i = (E|δ i ,M|δ i ,→•|δ i , •→|δ i
,→�|δ i ,→+|δ i ,→%|δ i , δLi , l|δ i) and M∆ = Πi∈[n]M|δ i , we define the binary relation
between TS(G) and TS(G∆) as R = {(M,Πi∈[n]M|δ i) | M ∈M(M)}.
Theorem 5.3.1. For a Dynamic Condition Response Graph G and a covering vector of
projection parameters ∆ = δ1 . . . δn it holds that TS(G) is bisimilar to TS(G∆), whereG∆ = Πi∈[n]G|δ i . Moreover, a run is accepting in TS(G) if and only if the bisimilar run
is accepting in TS(G∆).
Proof. For DCR Graph G = (E,M,→•, •→,→�,→+,→%, L, l), the corresponding la-beled transition system (def 3.3.10) is TS(G) = (M(G),M0, Lts(G),→) where Lts(G) =E × L is the set of labels of the transition system, M0 is the initial marking, and
→⊆ M(G) × Lts(G) ×M(G) is the transition relation defined by M (e,a)−−→ M ⊕G e if

138 Chapter 5. Distribution of DCR Graphs

M `G e and a ∈ l(e).
For a network of projected graphs where G∆ = Πi∈[n]G|δ i with G|δ i = (E|δ i ,M|δ i ,→•|δ i
, •→|δ i ,→�|δ i ,→+|δ i ,→%|δ i , δLi , l|δ i) and M∆ = Πi∈[n]M|δ i , the corresponding labeltransition system according to def 5.3.9, TS(G∆) = (M(G∆),M0∆, Lts(G∆),→N) where
Lts(G∆) = E (Πi∈[n]G|δ i)×L(Πi∈[n]G|δ i) is the set of labels of the transition system, M0∆is the initial marking, and →N⊆M(G∆)×Lts(G∆)×M(G∆) is the transition relationdefined by M∆ (e,a)−−→N M∆ ⊕G,i e if M∆ `G∆,i e and a ∈ l|δ i (e).
Here we have to show that TS(G) ∼ TS(G∆). In order to show that both labeltransition systems are bisimilar, we have to prove the equivalence of binary relation
R.
According to def 5.3.10, we have the binary relation R = {(M,Πi∈[n]M|δ i) | M ∈
M(M)} between TS(G) and TS(G∆). In order to show that TS(G) ∼ TS(G∆), we haveto show the following
(A) if M e,a−−→ M′ in TS(G) then there exists in TS(G∆) a transition M∆ e,a−−→ M′∆ .

According to def 3.3.10 on execution of an event in DCR Graph, M (e,a)−−→ M ⊕G eif M `G e and a ∈ l(e).
According to proposition 5.3.1, for e ∈ δE and a ∈ δL it holds that M `G
e ∧M⊕G e = M′ ∧M′|δ = M′′ if and only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.
Hence for M `G e∧M⊕Ge = M′, we will have following changes in the distributedmarking,
• According to proposition 5.3.1 for interface events of projections,for all projections i ∈ [k] where e ∈ δEi and a ∈ δLi will have M|δ i `G|δi
e ∧M|δ i ⊕G|δi e = M′|δ i
• According to proposition 5.3.3 for external events of projections,for all projections i ∈ [k] where e ∈ E|δ i (and a 6∈ δLi) will have M|δ i⊕G|δie =M′|δ i .
• According to proposition 5.3.2 for projections where the event does not be-longs to,for all projections i ∈ [k] where e 6∈ E|δ i will have M|δ i = M′|δ i .Based on the above changes in the projections and δEi ⊆ E|δ i , the new markingdistributed network will be M′∆ = Πi∈[n]M′|δ i where M′|δ i = M|δ i ⊕G e if e ∈ E|δ iand M′|δ i = M|δ i otherwise.

The new marking in distributed network M′∆ = Πi∈[n]M′|δ i is same as execut-ing a local event in a projection according to def 5.3.7.

5.3. DCR Graphs - Projection and Composition 139

Hence we can conclude that if M e,a−−→ M′ in TS(G) then there exists in TS(G∆) atransition M∆ e,a−−→ M′∆ .(B) if M∆ e,a−−→ M′∆ in TS(G∆) then there exists in TS(G) a transition M e,a−−→ M′.
According to definition of labeled transition system for network of DCR Graphs(def 5.3.9), the M∆ (e,a)−−→N M∆ ⊕G,i e if M∆ `G,i e and a ∈ li(e).
Further according to execution of a event in distributed marking (def 5.3.7),M∆ `G,i e, if there is a locally enabled in the ith dynamic condition responsegraph, i.e. e ∈ δEi ∧M|δ i `G|δi e, a ∈ l|δ i (e) and result of executing the event inlocal component M′|δ i = M|δ i ⊕G|δi e.
According to proposition 5.3.1, if we have an event enabled with a label in aprojection, then we can have the same event enabled in the global graph i.e.
e ∈ δE and a ∈ δL. M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ =⇒ M `G e ∧M ⊕G e =M′ ∧M′|δ = M′′.
Hence e ∈ δEi ∧ a ∈ l|δ i (e) ∧ M|δ i `G|δi e ∧ M′|δ i = M|δ i ⊕G|δi e, =⇒ M `G
e ∧M⊕G e = M′, which is a condition for making a transition M (e,a)−−→ M′.
Therefore we can conclude that if M∆ e,a−−→ M′∆ in TS(G∆) then there exists in
TS(G) a transition M e,a−−→ M′.By proving the equivalence in both directions, we can conclude that TS(G) ∼TS(G∆).
We will now prove that a run is accepting in TS(G) if and only if the bisimilar runis accepting in TS(G∆).

Since TS(G) ∼ TS(G∆), both TS(G) and TS(G∆) will have same runs.
Let’s say that a run in TS(G∆) is accepting. According to def 5.3.9, a run in la-belled transition system for network of DCR Graphs is accepting if for the underlyingsequence of transitions it holds that if ∀i ∈ [k], h ∈ [n].(∀e ∈ Inh,i ∩Reh,i.∃j ≥ i.ej =
e∨e 6∈ In′h,j)), where Mi = Πh∈[n](Exh,i, Inh,i,Reh,i) and M′j = Πh∈[n](Ex′h,j , In′h,j ,Re′h,j).In words, a run is accepting/completed if no required response event is continuouslyincluded and pending without it happens or become excluded.
In the network of projected graphs, ∀i ∈ [k], h ∈ [n].(∀e ∈ In|δh,i ∩ Re|δh,i .∃j ≥
i.ej = e ∨ e 6∈ In′|δh,i)), where M∆i = Πh∈[n](Ex|δh,i , In|δh,i ,Re|δh,i) and

140 Chapter 5. Distribution of DCR Graphs

M′∆j = Πh∈[n](Ex′|δh,i , In′|δh,i ,Re′|δh,i).
According to proposition 5.3.1, if there is an enabled event in the local markingwith label, then we can find the same transition in global graph and moreover wealso have same runs in both TS(G) and TS(G∆).
Hence ∀i ∈ [k], h ∈ [n].(∀e ∈ In|δh,i ∩ Re|δh,i .∃j ≥ i.ej = e ∨ e 6∈ In′|δh,i)) =⇒
∀i ∈ [k], e ∈ Ini ∩ Rei.∃j ≥ i.((e = ej ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) andMj = (Exj , Inj ,Rej) in the global graph.
According to definition of LTS for def 3.3.10, a run a0, a1, . . . of the transition sys-tem to be a sequence of labels of a sequence of transitions Mi

(ei,ai)−−−→ Mi+1 startingfrom the initial marking and a run to be accepting (or completed) if for the under-lying sequence of transitions it holds that ∀i ≥ 0, e ∈ Rei.∃j ≥ i.((e = ej∨e 6∈ Inj+1)).
Hence we can conclude from ∀i ∈ [k], e ∈ Ini ∩ Rei.∃j ≥ i.((e = ej ∨ e 6∈ In′j)),where Mi = (Exi, Ini,Rei) and Mj = (Exj , Inj ,Rej) that the run is accepting in TS(G).
Therefore a run is accepting in TS(G) if and only if the bisimilar run is acceptingin TS(G∆).
5.3.4 Distribution of Case Management Example

Figure 5.2 below shows a modified version of case management example in DCRGraphs taken from the case study described in Sec 4.1.3, primarily focusing onmeeting management and abstracting from the other parts of the case study. Asexplained in the case study, the meeting management example involves three par-ticipants: Landsorganisationen i Danmark (LO) (overarching organization for most ofthe trade unions in Denmark), Dansk Arbejdsgiverforening (DA) (Danish employersorganizations) and employees trade union (U).

Figure 5.2: Arrange meeting cross-organizational case management example

5.3. DCR Graphs - Projection and Composition 141

The DCR Graph shown in the figure 5.2 has 7 events, drawn as boxes with "ears",and captures a process of creating a case, agreeing on meeting dates and holdingmeetings. The names of the events are written inside the box and the set of actionsfor each event, representing the roles that can execute the event, is written inside the"ear". That is, the event Create Case in the upper left has label U and represents thecreation of a case by a case manager at a union (role U). The rightmost event, Hold
meeting has two different labels, LO and DA, representing a meeting held by LO and
DA (the umbrella organization of employers) respectively. The formal specification ofglobal DCR Graph for arrange meeting example (shown in figure 5.2) is given in thelisting 5.1.

(a) Projection OverRole U (b) Projection Over Role DA

(c) Projection Over Role LO
Figure 5.3: Projecting of Arrange Meeting Example Over Roles

Listing 5.1: Formal specification of arrange meeting arrangement example
We will use the following abbreviations for the event names in the example.Create Case(Cc),Update Case(Uc),Propose dates-LO(PdLO),Propose dates-DA(PdDA),Accept-LO(ALO),Accept-DA(ADA),Hold meeting(Hm).

142 Chapter 5. Distribution of DCR Graphs

DCR Graph G = (E,M,→•, •→,→�,→+,→%, L, l) whereE = {Cc,Uc,PdLO,PdDA,ALO,ADA,Hm}M = (∅, ∅,E)
→•= {(Cc,Uc), (Cc,PdLO), (PdLO,PdDA), (PdLO,ADA), (PdDA,ALO),(ALO,Hm), (ADA,Hm)}
•→= {(Cc,PdLO), (PdLO,ADA), (PdDA,ALO), (PdLO,Hm)}
→�= ∅
→+= {(PdLO,PdDA), (PdDA,PdLO), (PdLO,ADA), (PdDA,ALO)}
→%= {(Cc,Cc), (PdLO,PdLO), (PdDA,PdDA), (PdLO,ALO),(ALO,PdLO), (PdDA,ADA), (ADA,PdDA)}
L = {(Cc,U), (Uc,U), (PdLO,LO), (PdDA,DA), (ALO,LO), (ADA,DA),(Hm,LO), (Hm,DA)}l = {(Cc, (Cc,U)), (Uc, (Uc,U)), (PdLO, (PdLO,LO)), (PdDA, (PdDA,DA)),(ALO, (ALO,LO)), (ADA, (ADA,DA)), (Hm, (Hm,LO)), (Hm, (Hm,DA))}Now we will project the global DCR graph for arrange meeting over participantroles (LO, DA, U) and events belongs to them. As shown in the figure, the pro-jected DCR Graph subgraphs contains both the events internal and interface eventsas defined ib the definition 5.3.1. The interface events or external events are markedwithout labels (boxes marked with double lines and no ears). Further all the re-lations between the events that are necessary for the projected graph (as definedin the definition 5.3.1-iv to 5.3.1-viii) will also be included. The formal specificationof the projected graphs for arrange meeting example worked out according to thedefinition 5.3.1 is given below in the listing 5.2.
Listing 5.2: Formal specification of projected DCR graphs for arrange meeting exampleGlobal DCR graph from the listing 5.1 G = (E,M,→•, •→,→�,→+,→%, L, l)
Projection over role Uprojection parameter δ = (δE, δL) where
δE = {Cc,Uc} and δL = {(Cc,U), (Uc,U)}
The projected DCR graph over events and labels belonging to UG|δ = (E|δ ,M|δ ,→•|δ , •→|δ ,→�|δ ,→+|δ ,→%|δ , δL, l|δ) whereE|δ = δE = {Cc,Uc}

M|δ = (Ex|δ ,Re|δ , In|δ) whereEx|δ = Ex ∩ E|δ = ∅Re|δ = Re ∩ (δE∪ →� δE) = ∅In|δ = In ∩ E|δ = E|δ
→•|δ= {(Cc,Uc)}
•→|δ= ∅
→�|δ= ∅
→+|δ= ∅
→%|δ= {(Cc,Cc)}
l|δ = {(Cc, (Cc,U)), (Uc, (Uc,U))}
Projection over role LOprojection parameter δ = (δE, δL) where

5.3. DCR Graphs - Projection and Composition 143

δE = {PdLO,ALO,Hm} and
δL = {(PdLO,LO), (ALO,LO), (Hm,LO)}
The projected DCR graph over events and labels belonging to LOG|δ = (E|δ ,M|δ ,→•|δ , •→|δ ,→�|δ ,→+|δ ,→%|δ , δL, l|δ) where
E|δ = {PdLO,ALO,Hm,Cc,PdDA,ADA}

M|δ = (Ex|δ ,Re|δ , In|δ) whereEx|δ = Ex ∩ E|δ = ∅Re|δ = Re ∩ (δE∪ →� δE) = ∅In|δ = In ∩ E|δ = E|δ
→•|δ= {(Cc,PdLO), (PdDA,ALO), (ALO,Hm), (ADA,Hm)}
•→|δ= {(Cc,PdLO), (PdDA,ALO), (PdLO,Hm)}
→�|δ= ∅
→+|δ= {(PdLO,PdDA), (PdDA,PdLO), (PdLO,ADA), (PdDA,ALO)}
→%|δ=→%
l|δ = {(PdLO, (PdLO,LO)), (ALO, (ALO,LO)), (Hm, (Hm,LO))}
Projection over role DAprojection parameter δ = (δE, δL) where
δE = {PdDA,ADA,Hm} and
δL = {(PdDA,DA), (ADA,DA), (Hm,DA)}
The projected DCR graph over events and labels belonging to DAG|δ = (E|δ ,M|δ ,→•|δ , •→|δ ,→�|δ ,→+|δ ,→%|δ , δL, l|δ) where
E|δ = {PdDA,ADA,Hm,PdLO,ALO}

M|δ = (Ex|δ ,Re|δ , In|δ) whereEx|δ = Ex ∩ E|δ = ∅Re|δ = Re ∩ (δE∪ →� δE) = ∅In|δ = In ∩ E|δ = E|δ
→•|δ= {(PdLO,PdDA), (PdLO,ADA), (ALO,Hm), (ADA,Hm)}
•→|δ= {(PdLO,ADA), (PdLO,Hm)}
→�|δ= ∅
→+|δ= {(PdLO,PdDA), (PdDA,PdLO), (PdLO,ADA), (PdDA,ALO)}
→%|δ= {(PdLO,PdLO), (PdDA,PdDA), (PdLO,ALO), (ALO,PdLO),(PdDA,ADA), (ADA,PdDA)}
l|δ = {(PdDA, (PdDA,DA)), (ADA, (ADA,DA)), (Hm, (Hm,DA))}

Further, we will use the arrange meeting example from figure 5.3 and show howevents are executed in distributed setting. We assume the arrange meeting exampleis projected to a network G1
u || G1

da || G1
lo of three DCR Graphs as shown in thefigure 5.3 and we use abbreviations for the event names as described in listing 5.1.

1. Using sync step, local input, and input we get the transition G1
u || G1

da ||

G1
lo

(Cc,U)−−−→ G2
u || G1

da || G2
lo capturing the local execution of the event Cc labelled

144 Chapter 5. Distribution of DCR Graphs

with U in G1
u which is communicated synchronously to G1

lo. This updates themarkings by adding the event Cc to the set of executed events in both G1
u and

G1
lo. But since Cc has an exclude relation to itself in both G1

u and G1
lo (seeFig. 5.2(a) and 5.2(c)), the event is also excluded from the set of included eventsin both markings. Finally, because of the response relation to the event PdLOin G1

lo (see Fig. 5.2(c)), the event PdLO is added to the set of required responsesin the resulting marking G2
lo.2. We can now execute the event PdLO in the DCR graph G2

lo concurrently withthe event Uc in DCR graph G2
u.As the event Uc is only local to G2

u we get by using local step the transition
G2
u || G1

da || G2
lo

(Uc,U)−−−−→ G3
u || G1

da || G2
lo that only updates the marking of G2

u.In addition to being local to G2
lo, the event PdLO is also external event in graph

G1
da, so as in the first step by using sync step local input, and input we getthe transition G3

u || G1
da || G2

lo
(PdLO,LO)−−−−−−→ G3

u || G2
da || G3

lo, where the event
PdLO has been added to the executed event set of both the marking of G1

daand G2
lo. Again, because of the self-exclusion relations, the event PdLO is alsoexcluded from the sets of included events in the two markings, and because ofthe response relations, the events ADA and Hold meeting are added to the setof pending responses in G1

da and the event Hold meeting is added to the set ofpending responses in G2
lo.3. In response to the dates proposed by LO, the DA may choose to propose newdates by executing the event PdDA in the graph graph G2

da.
G3
u || G2

da || G3
lo

(PdDA,DA)−−−−−−→ G3
u || G3

da || G4
lo This triggers the exclusion of theevents PdDA and ADA and the inclusion of the events PdLO and ALO in themarkings of both G2

da and G3
lo. It will also include the event ALO in the requiredresponse set in the resulting marking G4

lo.4. Now LO may choose to accept the new dates proposed by DA by executing theevent ALO in the graph graph G4
lo, giving the transition

G3
u || G3

da || G4
lo

(ALO,LO))−−−−−→ G3
u || G4

da || G5
lo. This records the event ALO asexecuted in markings of both G4

da and G5
lo and excludes PdLO in both markings(i.e. it is not possible to propose new dates after acceptance).

5. Since the event ALO is recorded as executed in markings of both G4
da and G5

loand the event ADA is excluded, the hold meeting event Hold meeting will beenabled in both graphs G5
lo and G4

da. The LO may choose to hold the meeting,giving the transition G3
u | �G4

da || G5
lo

(Hold meeting,LO)−−−−−−−−−−−→ G3
u || G5

da || G6
loNote that this event is also communicated to DA, added to the set of executedevents and removed from the set of pending responses. Since there are nopending responses in any of the local graphs the finite run is in an acceptingstate.

5.4. Distribution of Nested DCR Graphs 145

5.4 Distribution of Nested DCR Graphs

In this section, we define the notion of projection of a nested DCR Graphs, restrictingthe graph to a subset of the events, and also we define a technique for distributing anested DCR Graph as a set of local nested DCR Graphs obtained as projections andcommunicating by notifications of event executions.
5.4.1 ProjectionsA nested DCR Graph G is projected with respect to a projection parameter δ =(δE, δL), where δE ⊆ E is a subset of the events of G satisfying that �(δE) ⊆ δE, i.e.the subset is closed under the super event relation, and δL ⊆ L is a subset of thelabels. The intuition is that the graph is restricted to only those events and relationsthat are relevant for the execution of events in δE and the labeling is restricted to theset δL. The technical difficulty is to infer the events and relations not in δE, referredto as external events below, that should be included in the projection because theyinfluence the execution of the workflow restricted to the events in δE.The formal definition of projection for nested DCR Graphs is given in 5.4.1 below.It generalizes the definition of projection introduced in [Hildebrandt et al. 2011d] forDCR Graphs to support nesting and milestones.
Definition 5.4.1. If G = (E,�,M,→•, •→,→�,→+,→%, L, l) then G|δ = (E|δ ,�|δ ,M|δ ,→•|δ
, •→|δ ,→�|δ ,→+|δ ,→%|δ , δL, l|δ) is the projection of G with respect to δ ⊆ E where:

(i) E|δ =→δE, for →= ⋃
c∈C

c, and C = {id, →•[, •→[, →�[, →+[, →%[, •→[→�[,

→+[→•[, →%[→•[, →+[→�[, →%[→�[}

(ii) �|δ (e) = �(e), if e ∈ E|δ
(iii) ł|δ (e) = {l(e) ∩ δL if e ∈ δE

∅ if e ∈ E|δ\δE
(iv) M|δ = (Ex|δ ,Re|δ , In|δ) where:

(a) Ex|δ = Ex ∩ E|δ
(b) Re|δ = Re ∩ (δE ∪→�[δE)
(c) In|δ = In ∩ (δE ∪→•[δE ∪→�[δE)

(v) →•|δ=→• ∩((→•[δE)× δE)
(vi) •→|δ=•→ ∩((•→[→�[δE)× (→�[δE)) ∪ ((•→[δE)× δE))
(vii) →�|δ=→� ∩((→�[δE)× δE)
(viii) →+|δ=→+ ∩(((→+[δE) × δE) ∪ ((→+[→•[δE) × (→•[δE) ∪ ((→+[→�[δE) ×(→�[δE))

146 Chapter 5. Distribution of DCR Graphs

(ix) →%|δ=→% ∩(((→%[δE)×δE)∪((→%[→•[δE)×(→•[δE)∪((→%[→�[δE)×(→�[δE))
(i) defines the set of events in the projection as all events that has a relationpointing to an event in the set δE, where the relation is either the identity relation(i.e. it is an event in δE), one of the core relations (flattened) or the relations suchas •→[→�[which includes all events that triggers as a response some event thatis a milestone to an event in δE or the relations that include/exclude conditions andmilestones to an event in the set δE.Events in E|δ\δE are referred to as external events and will be included in theprojection without labels, as can be seen from the definition of the labeling functionin (iii). As we will formalize below, events without labels can not be executed by auser locally. However, when composed in a network containing other processes thatcan execute these events, their execution will be communicated to the process.
(iv) defines the projection of the marking: The executed set is simply restricted tothe events in E|δ . Further, the included event set is restricted to events in projectionparameter (δE) plus condition and milestone events to events in projection parameter.Finally the responses are restricted to events in δE and events that have a milestonerelation to an event in δE because these are the only responses that will affect thelocal execution of the projected graph. Note that these events will by definition beevents in E|δ but may be external events.Finally, (v) - (ix) state which relations should be included in the projection. Forthe events in δE all incoming relations should be included. Additionally responserelations to events that are a milestone for an event in δE are included as well.To define networks of communicating nested DCR Graphs and their semanticswe use the following extension of a nested DCR Graph adding a new label to everyevent.

Definition 5.4.2. For an DCR Graph G = (E,�,M,→•, •→,→�,→+,→%, L, l) defineGε = (E,�,M,→•, •→,→�,→+,→%, L ∪ {ε}, lε), where lε = l(e) ∪ {ε} (assuming
that ε 6∈ L).

We are now ready to state the key correspondence between global execution ofevents and the local execution of events in a projection.
Proposition 5.4.1. Let G = (E,�,M,→•, •→,→�,→+,→%, L, l) be a nested DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then

1. for e ∈ δE and a ∈ δL it holds that M `G e ∧M⊕G e = M′ ∧M′|δ = M′′ if and
only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′,

2. for e 6∈ E|δ it holds that M `G e ∧M⊕G e = M′ implies M|δ = M′|δ ,
3. for e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge = M′ implies M|δ⊕G|δ e =M′|δ .

5.4. Distribution of Nested DCR Graphs 147

Proof. According to definition when an event is enabled and the result of executingan event for nested DCR Graphs 4.1.4,an event in nested graph is enabled if it is enabled in the flattened graph. M ` G e,if M `G[e
Similarly, the result of executing M ⊕G e same as executing the event in flattenedgraph and it is defined as: M⊕G[e = (Ex,Re, In)⊕G[e.
Moreover the marking M of a nested DCR Graph is same as its flattened DCR Graph.
Hence the above 3 propositions for a nested DCR Graph can be proved based onthe similar lines as those propositions for a DCR Graph (propositions 5.3.1, 5.3.2 and5.3.3).
5.4.2 Distributed Execution in Nested DCR GraphsIntuitively, a vector of projection parameters is covering if every event is included inat least one projection parameter and every label that is assigned to an event occursat least once together with that event.
Definition 5.4.3. We call a vector ∆ = (δ1, . . . , δk) of projection parameters covering
for some DCR Graph G = (E,�,M,→•, •→,→�,→+,→%, L, l) if:

1.
⋃
i∈[k] δEi = E and

2. (∀a ∈ L.∀e ∈ E.a ∈ l(e)⇒ (∃i ∈ [k].e ∈ δEi ∧ a ∈ δLi)The marking of nested DCR Graph is same as marking of its flattened DCR Graph(def 4.1.4) and furthermore the network semantics of DCR Graphs are defined basedmarkings of networks. Therefore the network of nested DCR Graphs is same asthe network of DCR Graphs, and hence we use the same definitions on network ofDCR Graphs (def 5.3.6, 5.3.7, 5.3.8 and 5.3.9).We now give the main technical theorem stating that a network of nested DCR Graphsobtained by projecting a nested DCR Graph G with respect to a covering vector ofprojection parameters has the same behavior as the original graph G. Thm. 5.4.1 be-low now states the correspondence between a nested DCR Graph and the networkof nested DCR Graphs obtained from a covering projection.
Theorem 5.4.1. For a nested DCR Graph G and a covering vector of projection
parameters ∆ = (δ1, . . . , δn) it holds that TS(G) is bisimilar to TS(G∆), whereG∆ = Πi∈[n]G|δ i . Moreover, a run is accepting in TS(G) if and only if the bisimi-
lar run is accepting in TS(G∆).
Proof. The marking of nested DCR Graph is same as marking of its flattened DCR Graph(def 4.1.4). Furthermore the labeled transition system TS(G) for nested DCR Graph

148 Chapter 5. Distribution of DCR Graphs

(def 4.1.5) is defined in terms of markings, which is same for both nested DCR Graphand its flattened DCR Graph.
The labeled transition system (TS(G∆)) for network of projected nested DCR Graphsis same as network of projected DCR Graphs.
Therefore using proposition 5.4.1 and following the theorem 5.3.1 we can easily provethat TS(G) ∼ TS(G∆).
Similarly following the theorem 5.3.1, we can also prove that a run is acceptingin TS(G) if and only if the bisimilar run is accepting in TS(G∆) as the acceptingcondition for a run only depends on the markings of nested DCR Graph, which issame as its flattened DCR Graph.

The generality of the distribution technique given above allows for fine tunedprojections where we select only a few events for a specific role and actor, but inmost cases the parameter is likely to be chosen so that the projected graph showsthe full responsibilities of a specific role or actor. A set of nested DCR Graphscan be maintained and executed in a distributed fashion, meaning that there is aseparate implementation for every graph and that the execution of shared events iscommunicated between them. Through the distributed execution of projected graphs,nested DCR Graphs can be used as a (declarative) choreography model to the lineof work (on typed imperative process models) in [Carbone et al. 2007]: The originalgraph can be seen as the choreography, describing how the system as a whole shouldfunction, from which we project multiple end-points for individual roles or actors thatcan be implemented independently.
5.4.3 Distribution of Healthcare Workflow

In Fig. 5.4 below we show the graphical representation of the nested Dynamic Condi-tion Response Graph formalizing a variant of the oncology workflow studied in [Lyng
et al. 2008]. In this section we informally describe the formalism and the distributiontechnique formalized in the previous section using the example workflow.As explained before, the boxes denote activities (also referred to as events in thefollowing sections). Administer medicine is a nested activity having sub activities give
medicine and trust. Give medicine is an atomic activity, i.e. it has no sub activities.
Trust is again a nested activity having sub activities sign nurse 1 and sign nurse 2.Finaly, medicine preparation is a nested activity having seven sub activities dealingwith the preparation of medicine. An activity may be either included or excluded, thelatter are drawn as a dashed box as e.g. the edit and cancel activities.A run of the workflow consists of a (possibly infinite) sequence of executions ofatomic activities. (A nested activity is considered executed when all its sub activitiesare executed). An activity can be executed any number of times during a run, as long

5.4. Distribution of Nested DCR Graphs 149

Figure 5.4: Oncology Workflow as a nested DCR Graph
as the activity is included and the constraints for executing it are satisfied, in whichcase we say the activity is enabled.The constraints and dynamic exclusion and inclusion are expressed as five differ-ent core relations between activities represented as arrows in the figure above: The
condition relation, the response relation, the milestone relation, the include relation,and the exclude relation. The condition relation is represented by an orange arrowwith a bullet at the arrow head. E.g. the condition relation from the activity sign doc-
tor to the activity don’t trust prescription(N) means that sign doctor must have beenexecuted at least once before the activity don’t trust prescription(N) can be executed.The response relation is represented by a blue arrow with a bullet at its source.E.g. the response relation from the activity prescribe medicine to the activity give
medicine means that the latter must be executed (at some point) after (any executionof) the activity prescribe medicine. We say that a workflow is in a completed stateif all such response constraints have been fulfilled (or the required response activityis excluded). However, note that a workflow may be continued from a completed

150 Chapter 5. Distribution of DCR Graphs

state and change to a non-completed state if an activity is executed that requiresanother response or includes an activity which has not been executed since it waslast required as a response. Also note that the response constraint may cause someinfinite runs to never pass through a complete state if the executed activities keeptriggering new responses.The third core relation used in the example is the milestone relation representedas a dark red arrow with a diamond at the arrow head. The milestone relationwas introduced in [Hildebrandt et al. 2011c] jointly with the ability to nest activities.A relation to and/or from a nested activity simply unfolds to relations between allsub activities. A milestone relation from a nested activity to another activity thenin particular means that the entire nested activity must be in a completed statebefore that activity can be executed. E.g. medicine preparation is a milestone for theactivity administer medicine, which means that none of the sub activities of administermedicine can be carried out if any one of the sub activities of medicine preparationis included and has not been executed since it was required as a response.Two activities can be related by any combination of these relations. In the graph-ical notation we have employed some shorthands, e.g. indicating the combination ofa condition and a response relation by and arrow with a bullet in both ends.Finally, DCR Graphs allow two relations for dynamic exclusion and dynamicinclusion of activities represented as a green arrow with a plus at the arrow headand a red arrow with a minus at the arrow head respectively. The exclusion relationis used in the example between the cancel activity and the treatment activity. Sinceall other activities in the workflow are sub activities of the treatment activity thismeans that all activities are excluded if the cancel activity is executed. The inclusionrelation is used between the prescribe medicine activity and the manage prescriptionactivity.The run-time state of a nested DCR Graph can be formally represented as a pair(Ex,Re, In) of sets of atomic activities (referred to as the marking of the graph). Theset Ex is the set of atomic activities that have been executed at least once duringthe run. The set Re is the set of atomic activities that, if included, are required to beexecuted at least one more time in the future as the result of a response constraint(i.e. they are pending responses). Finally, the set In denotes the currently includedactivities.The set Ex thus may be regarded as a set of completed activities, the set Re asthe set of activities on the to-do list and the set In as the activities that are currentlyrelevant for the workflow.Note that an activity may be completed once and still be on the to-do list, whichsimply means that it must be executed (completed) again. This makes it very simpleto model the situation where an activity needs to be (re)considered as a responseto the execution of an activity. In the oncology example this is e.g. the case for theresponse relation between the don’t trust prescription(N) activity (representing thata nurse reports that he doesn’t trust the prescription) and the sign doctor activity.The effect is that the doctor is asked to reconsider her signature on the prescription.In doing that she may or may not decide to change the prescription, i.e. execute

5.4. Distribution of Nested DCR Graphs 151

prescribe medicine again.We indicate the marking graphically by adding a check mark to every atomicactivity that has been executed (i.e. is included in the set Ex of the marking), anexclamation mark to every atomic activity which, if included, is required to be executedat least once more in the future (i.e. is included in the set Re), and making a boxdashed if the activity is not included (i.e. is not included in the set In of the marking).In Fig. 5.4 we have shown an example marking where prescribe medicine has beenexecuted. This has caused manage prescription and its sub activities edit and cancelto be included, and sign doctor and give medicine to be required as responses, i.e thetwo activities are included in the set Re of the marking (on the to-do list).

Figure 5.5: Projection over doctor’s role (D)
As described above, an activity can be executed if it is enabled. Sign doctoris enabled for execution in the example marking, since its only condition (prescribe

medicine) has been executed and it has no milestones. Give medicine on the otherhand is not enabled since it has the (nested) activity trust as condition, which meansthat all sub activities of trust (sign nurse 1 and sign nurse 2) must be executed before
give medicine is enabled. Also, both give medicine and trust are sub activities of
administer medicine which further has sign doctor as condition and milestone, and
medicine preparation as milestone. The condition relation from sign doctor meansthat the prescription must be signed before the medicine can be administered. Themilestone relations means that the medicine can not be given as long as sign doctoror any of the sub activities of medicine preparation is on the to-do list (i.e. in the setRe of pending responses).Every activity should not be available to any user of the workflow system. Forthis reason the commercial implementation of the workflow management system pro-vided by Resultmaker employs a role based access control, assigning to every atomicactivity a finite set of roles and assigning to every role a set of access rights con-trolling if the activity is invisible or visible to users fulfilling the role. If an activityis visible it is specified wether the role are allowed to execute the activity or not.

152 Chapter 5. Distribution of DCR Graphs

Users are either statically (e.g. by login) or dynamically assigned to roles (e.g. byemail invitation).

Figure 5.6: Projection over nurse role (N and N1)
In the formalization presented in previous section, the assigned roles are given aspart of the name of the activity. In the graphical representation we have shown theroles within small "ears" on the boxes. In the example workflow we have the followingdifferent roles: Doctor (D), Controlling Pharmacist (CP), Pharmacist Assistant (PA)and Nurse (N). Hereto comes roles N1 and N2 which must dynamically be assignedto two different authorized persons (nurses or doctors). This is at present the onlyway to implement the constraint stating that two different authorized persons mustsign the product prepared by the pharmacists before the medicine is administeredto the patient. Future work will address less ad hoc ways to handle these kind ofconstraints between activities referring to the identify of users.The technique for distributing DCR Graphs introduced in [Hildebrandt et al. 2011d]and extended in the present paper is a first step towards supporting this kind of split-ting of workflow definitions. Given any division of activities on local units (assigningevery activity to at least one unit) it describes how to derive a set of graphs, one foreach unit, describing the local part of the workflow. Such a local process, referredto as a projection is again a DCR Graph. It includes the activities assigned to theunit but also the relevant external activities executed within other units for which anevent must be send to the local process when they are executed. An example of aprojection relative to the activities assigned the doctor role (D) is given in Fig. 5.5.The diagram shows that the projection also includes the two external activities (in-dicated as double line boxes) don’t trust prescription (N) and don’t trust prescription

5.4. Distribution of Nested DCR Graphs 153

Figure 5.7: Projection over control pharmacist role (CP)

Figure 5.8: Projection over pharmacy assistant role (PA)
(CP). These two activities, representing respectively a nurse and a controlling phar-macist reporting that the prescription is not trusted, are the only external activitiesthat may influence the workflow of the doctor by requiring sign doctor as a response.

154 Chapter 5. Distribution of DCR Graphs

Similarly, Fig. 5.6,5.7, and 5.8 shows projections corresponding to the nurse, control-ling pharmacist, and pharmacist assistant roles. However, if for instance the roles ofthe controlling pharmacist and the pharmacist assistant are always assigned to thesame persons one may instead choose to keep all these activities together in a unit.This can be obtained by simply projecting on all activities assigned either the CP orthe PA role.For instance, Fig. 5.5 shows the projection with respect to the projection parameter(δE, δL) where δE={manage prescription, edit, cancel, prescribe medicine, sign doctor}and δL={(edit, D), (cancel, D), (prescribe medicine, D), (sign doctor, D)}. The two events
don’t trust prescription (N) and don’t trust prescription (CP) shown with double lineborders are external events included in the projected graph even though they don’tappear in the projection parameter. It is interesting to note that the doctor only needsto be aware of these two activities carried out by other participants. In comparison,the projection over the roles for nurses (N and N1) contains all the events sincethey may influence (because of the milestone relations) the execution of the eventswith roles N and N1. In other words, the doctors can carry out workflows highlyindependent of the other activities while the nurses are dependent on any eventcarried out by the other roles.
5.5 Summary

In this chapter, we have given a general technique for distributing a declarative(global) process as a network of synchronously communicating (local) declarativeprocesses and proven the global and distributed execution to be equivalent usingthe DCR Graphs. Our method is based on top-down model-driven approach andaddressed the challenging distributed synthesis problem: Given a global model andsome formal description of how the model should be distributed, can we synthesizea set of local processes with respect to this distribution which are consistent to thethe global model?In order to safely distribute a DCR Graph, we have defined a general notion of
projection on the DCR Graphs relative to a subset of labels and events in the sec-tion 5.3. Here is the key challange is to identify the set of events that must becommunicated from other processes in the network in order for the state of the localprocess to stay consistent with the global specification. Further, in order to enablethe reverse operation, building global graphs from local graphs, we have definedthe composition of two DCR Graphs, essentially by gluing joint events. As a sanitycheck, we then proved that if we have a collection of projections of a DCR Graphthat is covering the original graph, then the composition yields back the same graphin Sec. 5.3.2. We then finally proved to the main technical result, defining networksof synchronously communicating DCR Graphs and stating (in Thm. 5.3.1, Sec. 5.3.3)the correspondence between a global process and a network of communicating DCRGraphs obtained from a covering projection. Further, we have exemplified the distri-bution technique on a simple cross-organizational process identified within a case

5.5. Summary 155

study (in Sec. 5.3.4) carried out jointly with our industrial partner Exformatics A/S us-ing DCR Graphs for model-driven design and engineering of an inter-organizationalcase management system.Moreover, we have extended the safe distribution technique to Nested DCR Graphsin Sec. 5.4 by distributing a nested DCR Graph as a set of local nested DCR Graphsobtained as projections and communicating by notifications of event executions. Fur-ther, we have also exemplified the distribution technique of Nested DCR Graphs on ahealthcare workflow identified during a previous field study at danish hospitals [Lyng
et al. 2008], which was introduced in Sec. 2.1.2.Finally, the generality of the distribution technique given in this chapter allowsfor fine tuned projections where we select only a few events for a specific role andactor, but in most cases the parameter is likely to be chosen so that the projectedgraph shows the full responsibilities of a specific role or actor. Our distributiontechnique is quite generic and the strength of distribution lies in the fact that theresulting local components are also DCR Graphs, which keep their declarative nature,therefore they can be further distributed.

Chapter 6

Formal Verification, Tools and
Implementation

In this chapter, we will describe about the prototype implementation and tools builtaround the theory of DCR Graphs to demonstrate the usage of our formal model inmodeling the business processes and workflows. In addition to this, we will alsodefine safety and liveness properties on the DCR Graphs formally, using the notionof runs and accepting runs defined on markings of the graph. Further, we will alsodescribe a method to encode DCR Graphs and use formal verification methods to ver-ify these properties using SPIN [Holzmann 1997, Holzmann 2004] modeling checkingtool.First, we will introduce the notion of safety and liveness on DCR Graphs anddefine corresponding properties in terms markings of a DCR Graph in Sec. 6.2. InSec. 6.3, first we will give a brief introduction to SPIN tool and its modeling languagePROMELA [Spin 2007], then we will describe a method to encode DCR Graphs intoPROMELA, to verify safety and liveness properties in SPIN. Further, we will brieflymention our experience with verification of safety properties on DCR Graphs usingZing [Andrews et al. 2004, Fournet et al. 2004] model checker developed by MicrosoftResearch. Finally, we will give a overview about tools and implementation that werebuilt around our formal model in the Sec 6.5.
6.1 Related Work

Verification of business processes based on a wide range formal specification models,has been studied in the last couple of decades. First of all, many researchers havestudied the problem of formalization and verification of business processes modeledusing UML activity diagrams. The authors in [Eshuis 2002, Eshuis & Wieringa 2004]have studied semantics of UML activity diagrams by mapping them to clocked tran-sition system (CTS) [Kesten et al. 1996] and explored formal verification of UML dia-grams based on their implementation of model checker and also using NuSMV [Cimatti
et al. 2000] symbolic model checker. Further the authors in [Guelfi et al. 2004, Guelfi& Mammar 2005] have given formal semantics for UML timed activity diagrams andtranslated them to PROMELA [Spin 2007] language to do the formal verification withthe help of SPIN [Holzmann 1997, Holzmann 2004, Spin 2008, Ben-Ari 2008] modelchecker. The work on UML Statechart Diagrams [Latella & Massink 2001, Latella
et al. 1999] studied the formal verification on behavioral subset of UML state chartsusing SPIN model checker, where as the PhD thesis [Porres 2001] on Modeling and

158 Chapter 6. Formal Verification, Tools and Implementation

Analyzing Software Behavior in UML, gave formal semantics to UML statecharts andprovided a method to verify them using vUML [Lilius & Paltor 1999] tool. Finally theauthors in [Knapp et al. 2002] used a different approach and provided verificationsupport for the timed state machines of a UML model, by compiling them into timedautomata to verify models using UPPAAL [Larsen et al. 1997] model checker.Petri nets [Reisig 1991, Brauer et al. 1987] is one of most widely used formal-ism for modeling business processes and also there exists a good number of toolsfor static and reachability analysis on Petri nets. Many researchers have formal-ized current workflow/business process specification standards such as BPMN [Ob-ject Management Group BPMN Technical Committee 2011], BPEL [OASIS WSBPELTechnical Committee 2007] into Petri nets to do formal verification on the businessprocesses, as there exists a good number of tools for static and reachability analysison Petri nets. The authors in [Dijkman et al. 2008] have provided formal semanticsfor BPMN in terms of Petri nets to do static analysis on them, where as authorsin [Dun et al. 2008, Hinz et al. 2005] provided an approach to model and verify busi-ness processes specified in BPEL by transforming them into ServiceNet, which is aspecial class of Petri nets. Further, authors in [Narayanan & McIlraith 2002] providedsemantics for web service composition in terms of first order logic, which are furtherencoded into Petri nets to do an automatic verification, on the other hand authorsin [Yi & Kochut 2004b] developed a design and verification framework for web servicescomposition based on colored Petri nets. Further, Woflan [van der Aalst 1999b, Ver-beek & van der Aalst 2000] is a Petri-net-based tool to analyze the correctness ofworkflows and business processes specified using Petri-net based formalisms.Further, automata and process algebras based formalisms have also been usedto model business processes. In [Fu et al. 2004a], author have explored analysis ofinteracting BPEL web services by transforming them into a guarded automata withunbounded queues and further converted them into PROMELA code to do verificationin SPIN model checker. In an another approach [Diaz et al. 2005, Dong et al. 2006],web service choreographies and orchestrations have been verified by converting theminto timed automata and using UPPAAL [Larsen et al. 1997] as the model checker.Many researchers [Karamanolis et al. 2000, Salaun et al. 2004, Ferrara 2004] usedprocess algebras as a formalism to model web services and business processes andverify them using various model checkers. In [Ferrara 2004], authors have presented aframework based on process algebras for design and verification of services two-waymapping between abstract specifications written using process algebra and web ser-vices written in BPEL4WS. Model checking of workflow schemas have been exploredin [Karamanolis et al. 2000], where the authors used Labelled transition systems formodeling business processes. In [Morimoto 2008], Shoichi Morimoto provided a verygood overview and survey of existing approaches for formal verification techniqueson business processes.All the above mentioned approaches have explored formal verification using im-peratives models and modeling languages, where as our work focuses on formalverification of business processes modeled using declarative modeling primitives.SPIN [Holzmann 1997, Holzmann 2004, Vardi & Wolper 1986, Spin 2008, Ben-

6.2. Safety and Liveness for DCR Graphs 159

Ari 2008] is a model checking and verification system that supports verification ofproperties against asynchronous process models and distributed systems. Manyresearchers [Havelund et al. 1998, Augusto et al. 2003, Guelfi et al. 2004, Guelfi &Mammar 2005, Janssen et al. 1998] have used SPIN tool for formal verification ofbusiness processes and services. Authors in [Havelund et al. 1998] have used SPINto formally verify a multi-threaded plan execution programming language for NASA’sartificial intelligence-based spacecraft control system that was part of the DEEPSPACE 1 mission to Mars. Further authors in [Janssen et al. 1998] have used SPINto verify business processes modeled in AMBER language as part of TestBed projectfor business process reengineering where as authors in [Augusto et al. 2003] haveused both SPIN and STep [Bjørner et al. 2000] tools to verify business processes.Another major paradigm in business process modeling is the artifact-centric ap-proach, which strongly argues that data design should be elevated to the same levelas control flows for data rich workflows and business processes. In this area, sev-eral researchers [Nigam & Caswell 2003, Bhattacharya et al. 2007a, Liu et al. 2007]have been working with artifact-centric or data-centric workflows and also effortshas been made to do formal analysis of artifact-centric process models [Gerede
et al. 2007, Gerede & Su 2007, Bhattacharya et al. 2007b, Deutsch et al. 2009]. Thestatic analysis and verification work in [Gerede et al. 2007, Gerede & Su 2007] fo-cussed on the procedural version of of the artifact-centric workflows, where as thelater work [Bhattacharya et al. 2007b, Deutsch et al. 2009] studied verification ondeclarative version of artifact-centric models. In comparison, the main focus of verifi-cation work on business artifacts is on data-centric view of processes, where as ourapproach is on verifying the declarative business processes where the control flowis more explicit than data-centric processes.
6.2 Safety and Liveness for DCR Graphs

In this section, we will initiate a study of reasoning about deadlock and livenessin DCR Graphs and formally define properties for them in terms of makings of aDCR Graph. The basic motivation behind defining safety and liveness properties isto use them in the formal verification on DCR Graphs to guarantee the deadlock andlivelock freeness as explained further in the section 6.3 and section 6.4.
6.2.1 Executions and Must ExecutionsFirst of all, let is recall the definitions of when an event is enabled (def 3.3.7), the resultof executing an event (def 3.3.8) and an execution (def 3.3.9) from the chapter 3 for easyreadbility, then we will extend these definitions to further define must executions.Below we formalize in definition. 6.2.1 that an event e of a DCR Graph is enabledwhen it is included in the current marking, all the included events that are conditionsfor it are in the set of executed event and all the included events that are milestoneevents for e are not in the set of responses.

160 Chapter 6. Formal Verification, Tools and Implementation

Definition 6.2.1. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l), and M = (Ex,Re, In) we define that an event e ∈ E is enabled, writtenM `G e, if e ∈ In ∧ (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re.

The definition 6.2.2 below then defines the change of the marking when an event
e is executed: Firstly, the event e is added to the set of executed events and removedfrom the set of pending responses. Secondly, all events that are a response to theevent e are added to the set of pending responses. Note that if an event is a responseto itself, it will remain in the set of pending responses after its execution. Finally,the included events set will be updated by adding/removing all the events that areincluded/excluded by e.
Definition 6.2.2. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l), where M = (Ex,Re, In), event M `G e, we define the result of executing
an event e as (Ex,Re, In)⊕G e =def

(Ex ∪ {e}, (Re \ {e})∪ e•→, (In∪ e→+)\ e→%).
Having defined when events are enabled for execution and the effect of executingan event we can define finite and infinite executions and when they are accepting. Inthe definition 6.2.3, we define that an execution in DCR Graphs is a (finite or infinite)sequence of markings and an execution is accepting if and only if, any required,included response in any intermediate marking is eventually executed or excluded.

Definition 6.2.3. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define an execution of G to be a (finite or infinite) sequence of
tuples {(Mi, ei, ai,M′i)}i∈[k] each consisting of a marking, an event, a label and another
marking (the result of executing the event) such that

i) M = M0
ii) ∀i ∈ [k].ai ∈ l(ei)
iii) ∀i ∈ [k].Mi `G ei
iv) ∀i ∈ [k].M′i = Mi ⊕G ei
v) ∀i ∈ [k − 1].M′i = Mi+1.

Further, we say the execution is accepting if ∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej =
e ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) and M′j = (Ex′j , In′j ,Re′j). Further we denote
the set of all executions and set of all accepting executions by exeM(G) and accM(G)
respectively.

Similarly, we define that a must execution is a (finite or infinite) sequence ofmarkings, where only the events that are required as responses are executed at eachmarking and we further say that a must execution is accepting if the included pendingresponses in any intermediate marking are eventually executed or excluded.

6.2. Safety and Liveness for DCR Graphs 161

Definition 6.2.4. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define a must execution of G to be a (finite or infinite) sequence
of tuples {(Mi, ei, ai,M′i)}i∈[k] each consisting of a marking, an event, a label and
another marking such that

i) M = M0
ii) ∀i ∈ [k].ai ∈ l(ei)
iii) ∀i ∈ [k].Mi `G ei ∧ ei ∈ Rei
iv) ∀i ∈ [k].M′i = Mi ⊕G ei
v) ∀i ∈ [k − 1].M′i = Mi+1.

Further, we say the must execution is accepting if ∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥
i.ej = e ∨ e 6∈ In′j)), where Mi = (Exi, Ini,Rei) and M′j = (Ex′j , In′j ,Re′j). Further we
denote the set of all must executions and set of all accepting must executions bymexeM(G) and maccM(G) respectively.Finally before defining properties on DCR Graphs, we define that a marking (M′)is reachable from another marking (M), if there exists an finite execution from M toM’, as follows.
Definition 6.2.5. For a Dynamic Condition Response Graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define that a marking M′ is reachable in G (from the marking M)
if there exists a finite execution ending in M′ and let MM→∗ (G) denote the set of all
reachable markings from M.

6.2.2 Safety PropertiesIn this section we introduce and exemplify variations of deadlock freedom as formalsafety properties for DCR Graphs. A DCR Graph is said to be deadlock free if andonly if for any reachable marking, there is either an enabled event or no includedrequired responses.
Definition 6.2.6. For a dynamic condition response graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define that G is deadlock free, if ∀M′ = (Ex′, In′,Re′) ∈MM→∗ .(∃e ∈E.M′ `G e ∨ (In′ ∩ Re′ = ∅)).The figure 6.1 shows a DCR Graph and its transitions from different markings,with sets of included pending responses marked under nodes. The graph shown infigure 6.1 is not deadlock free, as we can see at the state S3 there is no transition,which indicates that the marking at S3 does not have any enabled event, but at thesame time it has event a in the included pending responses set, which indicates adeadlock according to the definition 6.2.6.On the other hand, the DCR Graph shown in figure 6.2 is deadlock free, eventhough the state s3 is non accepting (due to the pending response a), but the markingat s3 always has an enabled event c.

162 Chapter 6. Formal Verification, Tools and Implementation

(a) non deadlock-free graph (b) state space
Figure 6.1: A non-deadlock free DCR Graph

(a) deadlock-free (b) state space
Figure 6.2: Deadlock free DCR Graph

In definition 6.2.7, we will define that a DCR Graph is strongly deadlock free ifand only if for any reachable marking there is either an enabled event which is alsoa required response or no included required responses.
Definition 6.2.7. For a dynamic condition response graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define that G is strongly deadlock free, if ∀M′ = (Ex′, In′,Re′) ∈
MM→∗ .(∃e ∈ Re′.M′ `G e ∨ (In′ ∩ Re′ = ∅)).One could wonder about why we have defined a stronger notion of deadlock free-dom, as it clearly puts more stronger constraint on execution traces. In DCR Graphs,even though an event is enabled at a particular marking, there is no guarantee thatthe event will be executed as the events are executed by the actors at their owndiscretion. The only way to specify that an event must be executed is by specifyingthe event as required response. For example, the graph in figure 6.2 is deadlock freeand at the state s3 the marking contains only one enabled event c, therefore if theuser chooses not to execute the event c (of course he is allowed to do that perfectlyas the event c is not required as response), then it will lead to deadlock. Hence a
deadlock free property in a DCR Graph only guarantees that the graph is structurallydeadlock free by specification, but it does not guarantee about the situations wherean user can create a deadlock by choosing not to execute an enabled event.

6.2. Safety and Liveness for DCR Graphs 163

Figure 6.3: Give Medicine example (deadlock free, live, but not strongly deadlockfree)
To understand the motivation behind the strongly deadlock free property moreclearly, let us consider give medicine (prescribe medicine healthcare workflow) ex-ample as shown in the figure 6.3. The example is a slightly modified version of theoriginal version (figure 3.8) and here we have added an self exclude relation on pre-

scribe medicine event and removed the response relation between prescribe medicineand sign, to illustrate the difference between deadlock free and strongly deadlockfree properties.The state space for the give medicine example, generated by one of our prototypetools (described in section 6.5) is shown in the figure 6.4. From the state space forgive medicine, one can see that the DCR Graph for give medicine example is deadlockfree, as we have enabled transitions at every state (alternatively we have enabledevents at every reachable marking), but one can observe that the example can easilyend up into deadlock, if the user chooses not to execute an enabled event. Morespecifically, at the state S1 the doctor is not compelled to sign the prescription as
sign is not a required response at s1, hence if the doctor chooses not to sign theprescription then the process will end up in deadlock. Therefore the give medicineexample shown in the figure 6.3 is not strongly deadlock free, but the strongly liveversion of give medicine example (which will be introduced in next section) shown infigure 6.5 is strongly deadlock free.
6.2.3 Liveness PropertiesA DCR Graph is said to be live if and only if, in every reachable marking, it is alwayspossible to eventually execute or exclude any of the pending responses and therebycontinue along an accepting run.
Definition 6.2.8. For a dynamic condition response graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define that the DCR Graph is live, if ∀M′ ∈MM→∗ .accM′ (G) 6= ∅.

The give medicine example shown in the figure 6.3 is live, as on can observe

164 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.4: State space for Give Medicine example (deadlock free, live, but notstrongly deadlock free)
in state space shown in the figure 6.4 that from every reachable marking (or state),there exists a finite execution ending with a marking where there are no includedpending responses, there by making the graph as live according to the definition. Inother words liveness property on DCR Graphs guarantees that it is possible to reachan accepting state from all reachable markings.Finally, we say that a DCR Graph is strongly live if and only if, from any reachablemarking there exists an accepting must execution and we define it formally as
Definition 6.2.9. For a dynamic condition response graph G = (E,M,→•, •→,→�
,→+,→%, L, l) we define that the DCR Graph is strongly live, if ∀M′ ∈MM→∗ .maccM′ (G) 6=
∅.

Again, to explain the motivation behind the strongly live property, let us refer

6.3. Formal Verification using SPIN 165

Figure 6.5: Give Medicine example (strongly live)
to the figure 6.3 (and 6.4), where the DCR Graph for give medicine example is live.Even though it is possible to proceed along the accepting run from every reachablemarking, but it is not guaranteed if the users choose to execute only the eventsthat are required as responses. For example at the state s1 in the figure 6.4, if thedoctor does not sign the prescription (as it is not required as response), then it is notpossible to proceed along accepting run.The figure 6.5 shows a strongly live version of give medicine example, where wehave added a response relation between prescribe medicine and sign and the corre-sponding state space is shown in the figure 6.6. We can observe that, in the revisedexample, from every reachable marking, there exits a must execution leading to anaccepting run just by executing the required as response events at every marking.In the next section, we will describe a method to verify these safety and livenessproperties on DCR Graphs with the help of model checking tools.

6.3 Formal Verification using SPIN

In this section, we will describe about verification of properties on DCR Graphs thatwere introduced in the previous section. In order to verify safety and Liveness prop-erties on DCR Graphs, we will use SPIN [Holzmann 1997, Holzmann 2004, Vardi &Wolper 1986, Spin 2008, Ben-Ari 2008] model checker which is a well known systemfor verification of asynchronous process models and distributed systems.First we will give a very concise introduction to SPIN and its modeling languagePROMELA in the next section, then we will describe how to encode DCR Graphsinto PROMELA in section 6.3.2 and finally we will show how to verify safety andliveness properties on DCR Graphs in section 6.3.3 and 6.3.4.

166 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.6: State space for Give Medicine example (strongly live)
6.3.1 Brief overview of SPIN and PROMELA lanaguage

In this section, we will give a short description of SPIN [Holzmann 1997, Holz-mann 2004, Vardi & Wolper 1986, Spin 2008, Ben-Ari 2008] and its modeling lan-guage PROMELA [Spin 2007] and for more details about SPIN tool and PROMELAlanguage reference, we encourage readers to refer to SPIN’s homepage [Spin 2008].SPIN is a model checking and verification system that supports verification of proper-ties against concurrent and distributed processes. The process models or the systemscan be encoded using a modeling meta language called PROMELA [Spin 2007], whichallows for dynamic creation of concurrent processes and communication between theconcurrent processes is handled by either using shared variables or message passingthrough buffered channels.In addition to, some of the language constructs available in PROMELA for specifi-

6.3. Formal Verification using SPIN 167

cation of correctness of the properties, the properties to be verified against the modelcan also be specified using Linear Temporal Logic (LTL) [Pnueli 1977]. The model andthe property can be supplied to SPIN model checker and then it determines whetherthe given model satisfies the property or not, by performing verification on the statespace of the model. In case if the model does not satisfy the property, then SPINgenerates an error trace by giving a counter example where the model fails to satisfythe property, which can be used to further debug the model. SPIN can be invoked indifferent modes, for example, given a model specified in PROMELA, SPIN can eitherperform random simulations of the execution of the model or it can generate a Cprogram that performs a an exhaustive verification of the state space for the givenmodel.PROMELA is a meta programming language (with syntax little bit similar to C)containing language constructs for specification of models. In addition to that, italso has certain constructs for specification of non-deterministic behavior and com-munication via shared variables and buffered channels for modeling distributed andconcurrent processes. In this section, we will only briefly describe the constructs thatare used in encoding of DCR Graphs into PROMELA.

Figure 6.7: Data types and variables in PROMELA
6.3.1.1 Data Types and Variables

The basic data types supported in PROMELA are bit or bool, byte, short, int. All thevariables are initialized to 0 and variable assignment is done by using = sign andequality of variables is done by == as, shown in the figure 6.7.
6.3.1.2 Arrays, Type definitions and Macros

The PROMELA language supports macros definition similar to C language andmacros can be used to define symbols for the program. For example, in the figure 6.8,at line number 4, we have defined a symbol count, whose value is 10. Declaringsymbols does not use memory as the preprocessor will replace them with actualvalues before generating the code for verifier, but they enhance the code readability.

168 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.8: Arrays and Type definitions in PROMELA
Regarding data structures, PROMELA supports only arrays and typedef con-structs. Arrays in PROMELA are built-in data structures and they are supported asa sequence of data values of same type, which can be accessed by providing the indexindicating the position of the element and array index starts at 0. One such arraydeclaration for bit (or bool) data type can be seen at line number 7 in the figure 6.8.Further, support for arrays in PROMELA language is limited to one directionalarrays and this a big limitation in order to model processes, but on the other handPROMELA supports typedef to construct compound types. We can declare multidimensional arrays using typedef as shown in the code of the figure 6.8, wheredeclaration of a multi dimensional array and assignment of values to its elements isgiven.

6.3.1.3 Control flow and other constructsPROMELA supports three different flow constructs if, do and goto, whose semanticsare little bit similar to the corresponding constructs in other programming languages,but the flow constructs in PROMELA offer non-deterministic choices in executingone of their flow branches. The sample syntax of if statement is shown in thefigure 6.9. The alternatives of an if statement starts with double colon (::) and anoptional boolean statement which acts as a guard and then followed by sequenceof statements, which will be executed if that alternative is chosen. PROMELA firstevaluates all guards for the alternatives and if more than one guard is true, then itchooses an alternative non-deterministically.For example in the figure 6.9, we can observe that both first alternative (no guard,so true) and second alternative (guard is true) are validated to true and PROMELAwill choose of the alternatives non-deterministically. If none of the alternatives arevalidated to true in a if block, then the else block will be executed. One maywonder what happens if we don’t specify an else block and the guards for none of

6.3. Formal Verification using SPIN 169

Figure 6.9: Control flow and proctype in PROMELA
the alternatives are validated to true, in such a case process will be get to halt untilone of the alternatives for if blocks is validated to true.PROMELA has a do construct for repetition, whose syntax is same as if constructbut with the keyword do, as shown in the figure 6.9. The semantics of do is similarto if, in respect of evaluating guards and executing one of the alternatives non-deterministically. After executing one of the alternatives, the control returns to thestarting of the do statement and the only way to exit a loop is by using a breakstatement.The state of a variable can only be modified or inspected by processes. The be-havior of a process in PROMELA is defined in a proctype declaration as shown in thefigure 6.9. The run operator can be used to create a new instance of process, whereas active keyword can be used to instantiate an initial set of processes. FurtherPROMELA has assert statement to specify simple safety properties. An assert state-ment is followed by an boolean expression and assertion violation will be reportedif expression is evaluated to false (or 0). In addition to assert, PROMELA also has
progress and accept labels prefixes to specify liveness properties.Even though PROMELA has other constructs for message passing and sharingvalues among concurrent processes, we will not describe them here and conclude ourdiscussion with the description of the above constructs, and refer our reader to the

170 Chapter 6. Formal Verification, Tools and Implementation

PROMELA language reference [Spin 2007] for further details. As we have coveredmost important constructs that will be used in the verification of properties on theDCR Graphs, now we proceed to the next section where we will explain encoding ofthe DCR Graphs into PROMELA language.
6.3.2 Encoding DCR Graphs into PROMELA

Figure 6.10: Verification of DCR Graphs with SPIN - Overview
In this section we describe encoding of the DCR Graphs into PROMELA languageand the challenges involved in the encoding. First, we will discuss the overall archi-tecture of verification of properties on the DCR Graphs using SPIN as shown in thefigure 6.10. We have developed a DCR verification tool which takes a DCR Graph asinput in the textual representation using a simple user interface, and the tool will au-tomatically generate the necessary PROMELA code required for verification of safelyand liveness properties on DCR Graphs. The SPIN model checker will generate afinite automaton from the PROMELA specification, which will be executed by theverifier for verification of correctness of the properties specified.In case of verification of liveness properties, we can optionally specify interestedproperties expressed in Linear temporal logic and the SPIN LTL compiler will gen-erate a finite automaton call never claim, which will be executed together with thefinite automaton generated for the PROMELA code. The automaton for never claimrepresents the behavior that is considered as illegal or undesirable with respect tothe property specified in LTL. When the verifier searches the state space for the au-tomaton for PROMELA code together with the never claim automaton, basically itwill look for counter examples where the specified property will be violated. In case

6.3. Formal Verification using SPIN 171

if it finds a counter example where the property will be violated, it report an errorand necessary trace will be generated for the counter example.The DCR Graphs have events, relations and markings in the form of sets andhence the basic data structure is lists with event names. Since PROMELA onlysupports integer data types, so we have chosen to encode event names in the formof numeric constants by assigning numeric values to event names starting with 0.In order to minimize the memory and state space in SPIN, we have used byte datatype for encoding the event names. The maximum value for a byte data type is only255, therefore it will limit the number of events in a DCR Graph to 255. Of coursethis will be a limitation for modeling lager DCR Graphs, but in such cases one couldeasily change it to short data type which has a maximum value of 32767. Further wehave chosen to use abbreviated event names (for example pm for prescribe medicine)as symbols for the byte constants in order to improve the readability of PROMELAcode. Of course this will not affect the memory as symbols will be replaced withtheir constant values before SPIN generates the code for verifier. The declaration ofsymbols for abbreviated event names is shown in the figure 6.11 from line 7 to 12.Further, PROMELA has only arrays as the basic data structures, so we have noother go except to use arrays to encode the information about events and relationsin the DCR Graphs. Encoding of event set is straight forward, as we can encodean event set as an array. But the arrays in PROMELA are of fixed size and theevent sets for state management in the DCR Graphs are dynamically changing in thenumber of events. Hence for this reason, we have decided to use an bit arrays offixed size equal to event count, keep tracking of the existence of an event in a set,by the bit value present at the position of array index equal to numeric value of theevent. The events sets required for state management in DCR Graphs are declaredas byte arrays as shown in figure 6.11 from line 14 to 18. For example, if we wantto indicate that event give medicine (with numeric value = 2) is included in the setof responses, then we assign the bit value at index = 2 of the responses array to 1.Encoding of relations is a bit complicated as PROMELA does has support forone dimensional array only. Hence we have used typedef construct to define two-dimensional array to encode the relations of DCR Graphs. For the encoding of rela-tions, we have followed the same approach as that of encoding event set into bytearray. The typedef definition for two dimensional array and declaration of arrays forthe relations in DCR Graphs is shown in the figure 6.11 from line 20-26. To encodea relation from one event to other, we have defined a two-dimensional byte array ofsize (number of events X number of events) in a matrix layout with row index indi-cating source event numeric value and the column index indicating destination eventnumeric value of a relation and finally a bit value of located at the cross section ofboth event indices indicate the existence of a relation. For example, an include rela-tion from sign to give medicine in figure 6.5 can be encoded in PROMELA as shownat line number 44 in figure 6.12. Finally, the specification for DCR Graph shown inthe figure 6.3 encoded into PROMELA as shown in the figure 6.12. As part of thespecification, we also write the initial marking, which involves specifying the eventsinitially included in the process, events which are required as initial responses and

172 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.11: Variable declarations for DCR Graphs in PROMELA
the set of executed events is always empty as shown from line number 59-65 in thefigure 6.12. Note that all data types in PROMELA are initialized to 0 by default,hence all the events which are not explicitly mentioned in the initial marking of thespecification are not included in those sets.Finally, PROMELA does not have procedures or functions to structure the code,but it has inline construct which can be used to group a sequence of statementswith a given name as shown in the figure 6.12 at line number 41. We will use inline

6.3. Formal Verification using SPIN 173

Figure 6.12: DCR Graph specification in PROMELA
construct to group the statements related to one logical function through out thePROMELA programs generated from the verification tool.
6.3.3 Verification of Safety Properties

In this section, we will describe how to verify the safety properties: deadlock free(Def. 6.2.6) and strongly deadlock free (Def. 6.2.7) using SPIN tool. For the verificationof safety properties, we will the use DCR Graph for the give medicine example (shownin figure 6.13), which was introduced in the section 6.2.2 on safety properties onDCR Graphs. The full PROMELA code for verification of a deadlock free property forthe give medicine example is given in the appendix A.1 and in this section, we willtake parts of code to explain the main key aspects.

174 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.13: Give Medicine example

Figure 6.14: PROMELA code for main process
6.3.3.1 Verification of deadlock free propertyThe overview of logic for verification of safety properties on DCR Graphs is shown inthe figure 6.14, where it shows the logic for the main process function (proctype dcrs),which will instantiated by the SPIN to generate the code for verifier. The proctype
dcrs contains one main do loop and calls to different inline code blocks.The first inline code block is model_specification(), which contains the specifica-tion of the DCR Graphs in PROMELA as described in the previous section. The nextstep is to compute the list of enabled events, which has to be computed repeatedlyafter execution of an event. The figure 6.12 shows the logic of computing enabled

6.3. Formal Verification using SPIN 175

Figure 6.15: Computing enabled events in PROMELA code
events for a given DCR Graph, where we loop through the list of events in the in-
cluded array and for each event in the included array, we will find out whether allits condition events included in the current marking are executed or not (line: 90-98in fig 6.15). Similarly, we also check whether all included milestone events are part

176 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.16: Non deterministic execution in verification of deadlock free property
of the responses array. Finally, the enabledset will be updated with status of eventsenabled. Before computing the enabled events, the inline block clear_enabled_eventswill be called to clear the bit values of the events enabled.The next and most important part is nondeterministic_execution() inline block,which contains the code for executing one of the enabled events from the enabled-
set as shown in the figure 6.16. First, we will calculate if there are any includedpending responses in the current marking and then based on the status bit of theevents in the enabledset, we will generate options to execute an event. In our formalverification, the execution of an event is nothing but assigning the numeric valueof the event selected for execution to a variable called random_event_executed. Asshown in the figure 6.16 from line 134-139, different alternatives for if block will begenerated assigning a particular event to random_event_executed variable with aguard based on the status of the bit value in the enabledset. During verification ofthe model, the SPIN will evaluate these guards and short list the alternatives for

6.3. Formal Verification using SPIN 177

which guards are evaluated to true and then it will execute one of the alternativesnon-deterministically. In case if none of the alternatives statements are enabled forexecution, which indicates a state where none of the events are available for execu-tion, then the SPIN will execute the statements following else option, where it leadsto 2 alternative statements.If there are any included pending response events in the process, then it will leadto a deadlock situation according to Def. 6.2.6 and the verification will be forced tostop and raise an error by executing the assert statement with value false. On theother hand, if there are no included pending responses, then the marking is acceptingand hence the program will jump to deadlock_free_label, which is defined at the endof the program and there by the program terminates. If there are enabled eventsin every marking, then the else block will never gets executed and the do loop willcontinue for ever without breaking out, but SPIN is intelligent enough to trace thecycles of the states and then it terminates after inspecting all the states for theautomaton.

Figure 6.17: Verification of deadlock free property in SPIN - Console output
The generated PROMELA code can be verified by using the spin.exe in the com-mand prompt and the output generated is shown in the figure 6.17. First, by usingthe SPIN command with -a will generate the verifier code from the PROMELA spec-ification and it will output a set of C files pan.*, which can be further compiled withC-compiler to produce an executable verifier. The executable verifier (pan) can becalled with -X option to output the results to the command prompt. If the verifierfinds any violations of correctness claims, it will report an error, otherwise the claims

178 Chapter 6. Formal Verification, Tools and Implementation

for the correctness are valid. In this case, our claim that the give medicine shown inthe figure 6.13 is deadlock free is valid as the verifier fails to find any errors.
6.3.3.2 Verification of strongly deadlock free property

Figure 6.18: Non deterministic execution for strongly deadlock free property
In this section, we will verify the strongly deadlock free property (def 6.2.7) on thesame give medicine example (shown in figure 6.13) used in verification of deadlockfree property. We have observed that the give medicine example is deadlock free, butit is not strongly deadlock free as per the discussion in sec 6.2.2. Therefore, we will

6.3. Formal Verification using SPIN 179

use the same deadlockfree give medicine example and verify whether it is stronglydeadlock free or not using the SPIN tool.
The full version of the PROMELA code generated by the DCR verification toolfor the strongly deadlock free property is appended in the appendix A.2, however wewill use important parts of the code to explain the key differences. The PROMELAcode for strongly deadlock free property is almost same as the code for deadlockfree property, except the code in inline nondeterministic_execution, which is shownin figure 6.18. One can observe that guards for alternatives (line 136-144) under the ifblock for non deterministic execution generated for strongly deadlock free property,now contains an additional condition saying that the enabled event must also be partof the required response set.

Figure 6.19: Verification of strongly deadlock free property in SPIN - Console output
The PROMELA code for strongly deadlock free property can be verified in theSPIN using the same commands described above for the deadlock free and we canobserve that now the claim for correctness of strongly deadlock free property failswith the console output shown in the figure 6.19. In case the SPIN finds a violationof the claim for correctness of a property, it will generate a error trail by givingthe state details where the claim has been violated. One can use -t option on theSPIN command to explore the trail and the output of the trail for violation of stronglydeadlock free property on give medicine example is shown in the figure 6.20.

180 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.20: Error trail for violation of strongly deadlock free property in SPIN
6.3.4 Verification of Liveness Properties

In this section, we will describe how to check liveness properties on DCR Graphsusing the SPIN tool. On contrary to the safety properties that are verified on finiteruns, liveness properties are verified on infinite runs and thereby difficult to verifythem. But fortunately the SPIN tools has good support for verification of livenessproperties by the specifying the correctness properties using Linear Temporal Logic(LTL). In the SPIN [Holzmann 1997], the correctness property specified in LTL willbe automatically converted into a büchi automaton using the technique specifiedin [Gerth et al. 1995]. In order to verify the correctness of the claim, the SPIN usesnegation of the specified LTL formulae to generate a never claim automaton. It triesto prove the correctness of claim by finding the intersection of the language of thesystem and the never claim is empty. On the other hand, if it finds an executionsequence that matches negated correctness claim, it reports it as error by providingthe counter example in the error trail.Another important challenge is modeling executions of DCR Graph that are ac-cepting. As per the definition 6.2.3, an execution is accepting if any required in-cluded response in any intermediate marking are eventually executed or excluded(∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j))). In other words, there shouldbe any included response event left without execution or excluded for a execution tobe accepting. In order to model this condition, we will use same formal technique ofmapping DCR Graphs to Büchi automata from the section 3.3.4, where the acceptingcondition for DCR Graphs is characterized by mapping to Büchi automaton (defini-tion 3.3.17). First we will describe the mapping informally and then show how it isencoded into PROMELA code for verification of liveness properties.In the definition 3.3.17, in order to make sure that no event stays for ever in theincluded pending response set, we use multiple copies of the state space by adding

6.3. Formal Verification using SPIN 181

Figure 6.21: Specification of global process for liveness properties
a state index to the marking (index i) . All the events in the event set are rankedaccording to some numerical order and after execution of every event, we will computea minimum responses set (Mr) containing the included response events whose rankis greater than the state index (Mr = {e ∈ In′ ∩ Re′ | rank (e) > i}). In case Mris empty, we will use the included pending responses set (In ∩ Re) in place of Mrset and in any case we compute the minimum element of the sets. In case the eventexecuted is same as the minimum element of the responses set (Mr or In ∩ Re), thenwe mark the state as an accepting state to indicate progress and jump to next copyof the state with state index i = i+ 1. In this way, we can make sure that no eventis left over in included pending responses set with out being executed or excluded.The global process specification in PROMELA for liveness properties is shownin the figure 6.21 and it contains inline code blocks to compute the minimum of Mrset or In ∩ Re set as explained above. The most important part of verification ofliveness properties is the inline block to check whether a marking is accepting ornot as shown in the figure 6.22. If the event executed is the minimum of Mr or setof included pending responses or if there are no included responses, then we markthe state as accepting by assigning the variable accepting_state_visited to 1 andmark these states with progress labels. In the other case where we don’t make any

182 Chapter 6. Formal Verification, Tools and Implementation

progress, we assign accepting_state_visited to 0 to indicate that the the state is nonaccepting.

Figure 6.22: Computation of accepting marking
Further, we verify the liveness properties by specifying the correctness claim byspecifying that [] <> accepting_state_visited in LTL and SPIN will generate never

claim for the negation of the property specified as shown in figure 6.23. Finally,

Figure 6.23: SPIN never claim for [] <> accepting_state_visited
we can save the never claim in a separate file and generate the verifier for themodel along with the file containing never claim, which can be further verified inSPIN as explained in the previous section to verify liveness properties. The fullPROMELA code generated by the DCR verification tool for liveness and stronglyliveness properties are appended in the appendix A.3 and A.4 respectively.

6.4. Formal Verification using ZING 183

6.4 Formal Verification using ZING

In this section, we briefly describe our efforts to do formal verification of DCR Graphsusing Zing [Andrews et al. 2004, Fournet et al. 2004] model checker developed byMicrosoft Research. Zing is a model checker for concurrent programs that manipulatethe heap, by using boundaries that exist in the program. It has a modeling languagefor expressing concurrent models and a modeling checker for verification programswritten in Zing language.I have come across Zing tool while visiting Microsoft Research India on my stayabroad and explored using Zing as a model checker for verification of properties onDCR Graphs. The basic motivation for exploring Zing tool as against SPIN modelchecker can be explained as follows.
1. The Zing language has rich set of constructs for modeling programs and pro-cesses. Like PROMELA and other the modeling languages, Zing has support forconcurrency, message passing communication either through shared memoryor buffered queues and also support for modeling non-deterministic behavior.In addition to these, it also supports functions, objects, exceptions, and dynamicmemory allocation as the built-in features in the modeling language. TheZing language supports Sets and other complex types, rich flow constructs forbranching and iteration, therefore modeling the DCR Graphs in Zing modelinglanguage is more or less straight forward.
2. The Zing Model checker has infrastructure for generating Zing models automat-ically from common programming languages like VB, C/C++, C#, and MSIL.Since our prototype tools are implemented in C#, we want to explore the pos-sibility of automatic verification of properties on the DCR Graphs by using theZing compiler inside the prototype tools.
We have modeled few examples of the DCR Graphs in Zing language and verifiedthem in Zing model checker. First of all, modeling the DCR Graphs in Zing languageis more or less straight forward as we have expected. We have also noticed thatthe number of model checker program states (not the DCR markings) are less whencompared to SPIN, due to the richness of Zing language.The main drawback of the Zing model checker is that it only supports verificationof safety properties on the models. It does not have support for identifying progressand acceptance cycles on infinite runs and hence liveness properties could not beverified on models. Lack of support for liveness by the Zing limits the usage ofthe tool for purpose of formal verification of properties on the DCR Graphs. Oncontrary, SPIN has very good support for verification of liveness properties using LTLthat gets translated into Büchi automaton, so we have chosen to use SPIN as themodel checker for formal verification of the DCR Graphs. However the give medicineexample modeled in Zing language for verification of deadlock property is enclosedin appendix B for more details.

184 Chapter 6. Formal Verification, Tools and Implementation

6.5 Prototype Tools

Figure 6.24: Protoype Architecture
To support modeling processes and workflows with the DCR Graphs, making themodels available to a wider audience and allow interested parties to experiment withour formal model, we have been developing prototype implementations of varioustools for the DCR Graphs. As of now, the tool implementation supports specificationand execution of business processes and workflows specified in the DCR Graphs.The recent extensions to the model such as sub-processes, data and distribution ofDCR Graphs are not yet supported in the tools, but we do have plans to supportthem in the implementation in the near future. The over architecture of the prototypetools is shown in the figure 6.24.Most of the tools in the prototype implementation are written in C# using Mi-crosoft .Net platform, but they have been implemented in service oriented architecturein a flexible manner so that the client applications developed on other platforms willbe able to communicate easily. A very brief description of the important componentsof the prototype implementation with their functionality is explained below.In the following tools, Windows-based Graphical Editor and Web Client are devel-oped by my colleague, but we are including here in the thesis, with a good intensionto provide the reader a overall picture of all the tools and the implementation that

6.5. Prototype Tools 185

were built around the DCR Graphs.

Figure 6.25: Process Execution Service Contract
6.5.1 DCRG Process Engine

Figure 6.26: Notification Service Contract
It is the core component of the prototype implementation which handles the func-tionality of executing process instances of the DCR Graphs, based on the requestsfrom various clients. The functionality of process engine has been developed as classlibrary, so that the engine can be hosted in any hosting environment such as a win-dows or web service. Further, the process engine exposes a service for handlingexecution requests for process instances through a contract shown in figure 6.25. On

186 Chapter 6. Formal Verification, Tools and Implementation

the other hand, the process engine does not have any implementation for security,so any client can call the services of process engine without providing any securityparameters. Even though it is a limitation, we don’t think that it is very crucial asthe main purpose of the prototype is to demonstrate the power of our formal model.
Further, the process engine also handles the functionality of subscription andnotification of execution of the process instances. Therefore any client which is inter-ested in notifications of execution of a particular process instance, it can subscribeto the subscription service and there by receives the notifications from the processengine. This functionality is quite necessary for the clients which implement thefunctionality of runtime verification on the execution of process instances. The pro-cess engine does not have any implementation for runtime verification of processinstances, but it provides support for runtime verification clients through the notifi-cation services. In order to have a scalable process engine, we think, it is a quiteimportant design choice, not to implement runtime verification functionality as partof the process engine, but to implement as a client functionality. Hence a prototypeclient implementing runtime verification functionality has been developed separately.The service contract of notification services is shown in the figure 6.26.

Figure 6.27: Service Contract implemented by Process Repository

6.5. Prototype Tools 187

6.5.2 Process Repository

The Process Repository handles the functionality of persisting and supplying theprocess definitions and instances of the DCR Graphs. It plays a role of persistenceor data access layer when the prototype compared to a standard workflow man-agement system or a business process management systems. The functionality ofprocess repository is exposed through Process Repository Service which implementsthe contract shown in figure 6.27. In the prototype implementation, we have devel-oped a simple process repository based on Xml files stored on a hard disk. Howeverit can be easily replaced by a process repository implemented using a database asstore for persisting the process definitions and instances.

Figure 6.28: The Graphical Editor for DCR Graphs

6.5.3 Windows-based Graphical Editor

As part of the prototype implementation, we have also developed a windows-basedgraphical editor for modeling declarative processes in DCR Graphs as shown in thefigure 6.28. The tool uses the graphical notation for DCR Graphs introduced in thesection 3.4.The graphical editor also has support for process simulation by executing a pro-cess instance through process engine, so that users can simulate their processes andtest them during the specification phase.

188 Chapter 6. Formal Verification, Tools and Implementation

6.5.4 Web Client

A platform independent web client has also been developed, which can be used forexecuting processes modeled in DCR Graphs as shown in figure 6.29. In future, wealso aim to support modeling of processes in DCR Graphs through this web interfaceas well.

Figure 6.29: Execution of a DCR Graph in the Web Tool
6.5.5 Model Checking Tool

Figure 6.30: Code generation options for Model checkers
In order to do formal verification on the processes modeled in the DCR Graphs,we have used SPIN and ZING model checking tools as explained in the Sec. 6.3 and

6.5. Prototype Tools 189

Sec. 6.4. In order to generate the code for the model checkers automatically, we havedeveloped a tool, which takes the input of a DCR Graph using a simple graphicaluser interface as shown in the figure 6.31 and generates the code for the PROMELAlanguage using the options shown in figure 6.30.

Figure 6.31: Model Checking Tool for DCR Graphs
6.5.6 Serialization Format for DCR GraphsListing 6.1 shows a brief overview of the XML format of the DCR Graphs that isbeing used in all prototype tools. A single XML format is used to contain informationabout both the specification and the runtime of a DCR Graph. The resources sectionof the specification contains information about roles, principals, events and actions,whereas the access controls section contains the mapping of principals and actionsto roles. The last part of the specification contains the binary relations between theevents. Note that the XML format supports nesting of events and the binary relationsin between them and that flattening of nested events and their relations will be doneat the beginning of executing a DCR Graph.The second part of the XML format for a DCR Graph holds the runtime informa-tion, which primarily contains the execution trace and information about the currentstate. The execution trace records the actual sequence of events executed and thecurrent state holds the information about the current marking which contains sets ofincluded, executed and pending response events. In addition to the marking, the cur-rent state also holds additional information such as index of state copy, state acceptedto support the acceptance condition for infinite computations that were characterizedby mapping to Büchi-automata in [Mukkamala & Hildebrandt 2010, Hildebrandt &Mukkamala 2010].

190 Chapter 6. Formal Verification, Tools and Implementation

Listing 6.1: Overview of DCR Graph Xml<?xml v e r s i o n = " 1 . 0 " encoding =" u t f −8"?><dcrg : p rocess xmlns : dcrg =" h t t p : / / i t u . dk / t r u s t c a r e / dcr /2011 / " >
<dcrg : s p e c i f i c a t i o n p ro ce s s I d = " " modelName="" ><dcrg : resources ><dcrg : ro l es > < / dcrg : r o l es ><dcrg : p r i n c i p a l s > < / dcrg : p r i n c i p a l s ><dcrg : events > < / dcrg : events><dcrg : ac t i ons > < / dcrg : ac t i ons ></dcrg : resources ><dcrg : accessCon t ro l s ><dcrg : r o l ePr i n c i pa lAs s i gnmen t s > < / dcrg :r o l ePr i n c i pa lAs s i gnmen t s ><dcrg : ac t ionRoleAss ignments > < / dcrg : ac t ionRoleAss ignments ></dcrg : accessCon t ro l s ><dcrg : c o n s t r a i n t S e t s ><dcrg : c o n s t r a i n t S e t type =" c o n d i t i o n " > . . . < / dcrg : c o n s t r a i n t S e t ><dcrg : c o n s t r a i n t S e t type =" response " > . . . < / dcrg : c o n s t r a i n t S e t ></dcrg : c o n s t r a i n t S e t s ></ dcrg : s p e c i f i c a t i o n >
<dcrg : runt ime p r o c e s s I n s t a n c e I d ="" ><dcrg : execu t ionTrace > </ dcrg : execu t ionTrace ><dcrg : c u r r e n t S t a t e s t a t e I d ="" ><dcrg : e ven t s I nc luded > < / dcrg : e ven t s I nc luded ><dcrg : eventsExecuted > < / dcrg : eventsExecuted><dcrg : eventsPendingResponses > < / dcrg : eventsPendingResponses><dcrg : s t a t eAccep t i ng > </ dcrg : s t a t eAccep t i ng ><dcrg : s t a t e I ndex > </ dcrg : s t a t e I ndex ><dcrg : eventsEnabled > < / dcrg : eventsEnabled></dcrg : cu r r en tS ta te ></ dcrg : runt ime>

</dcrg : process>The specification section of the XML document for the case handling process(figure 4.4) introduced in the case management case study (Sec. 4.1.3) is given inlisting 6.2.
Listing 6.2: DCRG specification in Xml<dcrg : s p e c i f i c a t i o n >

<dcrg : resources ><dcrg : ro l es ><dcrg : ro le >U</ dcrg : ro le ><dcrg : ro le >LO</ dcrg : ro le ><dcrg : ro le >DA</ dcrg : ro le ></dcrg : r o l es ><dcrg : p r i n c i p a l s ><dcrg : p r i n c i p a l >u</ dcrg : p r i n c i p a l ><dcrg : p r i n c i p a l >lo </ dcrg : p r i n c i p a l ><dcrg : p r i n c i p a l >da</ dcrg : p r i n c i p a l >

6.5. Prototype Tools 191

</ dcrg : p r i n c i p a l s ><dcrg : events><dcrg : even t e v e n t I d = " 0 " name=" Create case " a c t i o n I d =" Create case "><dcrg : even t e v e n t I d = " 1 " name=" Submit " a c t i o n I d =" Submit " /><dcrg : even t e v e n t I d = " 2 " name=" Ass ign case I d " a c t i o n I d =" Ass igncase I d " /><dcrg : even t e v e n t I d = " 3 " name=" Ed i t " a c t i o n I d =" Ed i t "><dcrg : even t e v e n t I d = " 4 " name=" Metadata " a c t i o n I d ="Metadata " /><dcrg : even t e v e n t I d = " 5 " name=" Dates a v a i l a b l e " a c t i o n I d ="Dates a v a i l a b l e " /></ dcrg : event></dcrg : event><dcrg : even t e v e n t I d = " 6 " name="Manage case " a c t i o n I d ="Manage case "><dcrg : even t e v e n t I d = " 7 " name=" Ed i t metadata " a c t i o n I d =" Ed i tmetadata " /><dcrg : even t e v e n t I d = " 8 " name="Document " a c t i o n I d ="Document "><dcrg : even t e v e n t I d = " 9 " name=" Upload " a c t i o n I d =" Upload "/><dcrg : even t e v e n t I d = " 10 " name="Download " a c t i o n I d ="Download " /></ dcrg : event></dcrg : event><dcrg : even t e v e n t I d = " 11 " name=" Arrange Meeting " a c t i o n I d =" Submit "><dcrg : even t e v e n t I d = " 12 " name=" Propose dates−LO " a c t i o n I d ="Propose dates−LO " /><dcrg : even t e v e n t I d = " 13 " name=" Accept LO " a c t i o n I d =" Accept LO " /><dcrg : even t e v e n t I d = " 14 " name=" Accept DA " a c t i o n I d =" Accept DA " /><dcrg : even t e v e n t I d = " 15 " name=" Propose dates−DA " a c t i o n I d ="Propose dates−DA " /></dcrg : event><dcrg : even t e v e n t I d = " 16 " name=" Hold meeting " a c t i o n I d =" Hold meeting "/></ dcrg : events><dcrg : ac t i ons ><dcrg : a c t i o n a c t i o n I d =" Create case " /><dcrg : a c t i o n a c t i o n I d =" Submit " /><dcrg : a c t i o n a c t i o n I d =" Ed i t " /><dcrg : a c t i o n a c t i o n I d =" Metadata " /><dcrg : a c t i o n a c t i o n I d =" Dates a v a i l a b l e " / ></ dcrg : ac t i ons ></ dcrg : resources ><dcrg : accessCon t ro l s ><dcrg : r o l ePr i n c i pa lAs s i gnmen t s ><dcrg : r o l e P r i n c i p a l A s s i gn m e n t ro le−name="U"><p r i n c i p a l >u</ p r i n c i p a l ></ dcrg : r o l ePr i n c i pa lAss i gnmen t ><dcrg : r o l e P r i n c i p a l A s s i gn m e n t ro le−name="LO"><p r i n c i p a l >lo </ p r i n c i p a l ></ dcrg : r o l ePr i n c i pa lAss i gnmen t ></dcrg : r o l ePr i n c i pa lAs s i gnmen t s ><dcrg : ac t ionRoleAss ignments ><dcrg : ac t ionRo leAss ignment a c t i o n I d =" Submit "><dcrg : ro le >U</ dcrg : ro le >

192 Chapter 6. Formal Verification, Tools and Implementation

</ dcrg : ac t ionRoleAss ignment ><dcrg : ac t ionRo leAss ignment a c t i o n I d ="Document "><dcrg : ro le >U</ dcrg : ro le ><dcrg : ro le >LO</ dcrg : ro le ><dcrg : ro le >DA</ dcrg : ro le ></ dcrg : ac t ionRoleAss ignment ></ dcrg : ac t ionRoleAss ignments ></dcrg : accessCon t ro l s ><dcrg : c o n s t r a i n t S e t s ><dcrg : c o n s t r a i n t S e t type =" c o n d i t i o n "><dcrg : c o n s t r a i n t source = " 1 " t a r g e t = " 2 " /><dcrg : c o n s t r a i n t source = " 3 " t a r g e t = " 1 " / ></ dcrg : c o n s t r a i n t S e t ><dcrg : c o n s t r a i n t S e t type =" response "><dcrg : c o n s t r a i n t source = " 1 " t a r g e t = " 2 " / ></ dcrg : c o n s t r a i n t S e t ></ dcrg : c o n s t r a i n t S e t s >
</dcrg : s p e c i f i c a t i o n >The listing 6.3 shows the runtime information for the case handling process fromthe figure 4.5.

Listing 6.3: DCRG Runtime in Xml<dcrg : runt ime p r o c e s s I n s t a n c e I d ="" ><dcrg : execu t ionTrace >4 ,5 , 4 , 1 , 2 , 12 , 15 </ dcrg : execu t ionTrace ><dcrg : c u r r e n t S t a t e s t a t e I d ="S6"><dcrg : e ven t s I nc luded >2 , 4 , 5 , 7 , 9 , 1 0 , 12 , 1 3 , 14 , 15 , 1 6 < / dcrg :e ven t s I nc luded ><dcrg : eventsExecuted >1 ,2 , 4 , 5 , 12 ,15 </ dcrg : eventsExecuted><dcrg : eventsPendingResponses >13 ,14 ,16 </ dcrg :eventsPendingResponses><dcrg : s t a t eAccep t i ng >0</dcrg : s t a t eAccep t i ng ><dcrg : s t a t e I ndex >0</dcrg : s t a t e I ndex ><dcrg : eventsEnabled >1 , 2 , 4 , 5 , 7 , 8 , 1 2 , 13 , 14 , 15 < / dcrg : eventsEnabled></dcrg : cu r r en tS ta te ></dcrg : runt ime>
6.6 Summary

In this chapter, we have introduced the notion of deadlock and livelock freenesson the DCR Graphs and formally defined safety and liveness properties in terms ofexecutions and markings of a DCR Graph in the section 6.2. Since DCR Graphs havea distinction between which events may or must (eventually) happen, we have definedstrong variants of safety and liveness representing the situation where only requiredevents are executed.We then proceeded to give brief introduction to SPIN tool and its languagePROMELA and then explained how to encode a DCR Graph process into PROMELA,to do the formal verification of safety and liveness properties using our running ex-ample presrcibe medicine in the section 6.3. Later, we briefly mentioned about our

6.6. Summary 193

experience in using ZING model checker for verification of safety properties on theDCR Graphs. Finally, we provided a brief overview of the prototype tools and imple-mentation built around the formal model of DCR Graphs.

Chapter 7

Conclusion and Future Work

In this chapter, we will first conclude the work developed in the thesis and thenprovide a list of claims for achieving the research goal (Sec 1.5.2) specified in theintroduction chapter. Later, in the second part, we will describe possible future workand extensions to the thesis.
7.1 Conclusion

In the thesis, we have developed the formal model DCR Graphs for specificationand execution of flexible workflows and business processes based on declarativemodeling primitives, taking motivation from declarative workflow language employedby our industrial partner Resultmaker A/S [Resultmaker 2008].In chapter 2, we have introduced the formalisms that have served as backgroundand motivation for our formal model. As part of that, we have described our firstattempt to formalize the key primitives of Resultmaker’s Online Consultant workflowusing Linear Temporal Logic [Pnueli 1977] and also described a case study and ourexperiences in modeling a healthcare workflow using Resultmaker workflow method.Furthermore, we have briefly described the motivation from the DECLARE [van derAalst et al. 2010a] framework and finally we have provided an introduction to EventStructures [Winskel 1986], which served as base theory behind our formal model.Furthermore, we have introduced our formal model DCR Graphs in chapter 3 alongwith execution semantics mapped to labelled transition system for finite runs and toBüchi automata for infinite runs. We have also introduced graphical language forDCR Graphs along with notation to represent runtime state as marking on the graphitself. Regarding expressibility of DCR Graphs, we have encoded Büchi automatonand proved that DCR Graphs is expressive enough to model all ω-regular languages.The extensions such as nested sub-graphs, multi-instance sub processes and an initialversion of data to DCR Graphs have been presented in chapter 4.We have defined the notion of projection and composition on DCR Graphs todistribute a global DCR Graph as a set of synchronously communicating local graphsin chapter 5. We have proved that the distribution is safe in the sense that thebehavior exhibited by the network of local graphs is bisimilar to that of global graph.The distribution technique have also been extended to nested DCR Graphs and wehave distributed the healthcare workflow using nested DCR Graphs with the notionof projection. Our distribution method is quite generic and the strength of distributionlies in the fact that the resulting local components are also DCR Graphs, which keeptheir declarative nature.

196 Chapter 7. Conclusion and Future Work

Finally, we have defined safety and liveness properties on DCR Graphs in chap-ter 6 and explained a method to encode DCR Graphs into PROMELA language andthen formally verify the properties using SPIN model checker. We have also brieflyintroduced the prototype tools build for DCR Graphs in the last chapter.
7.2 Contribution

In the introduction chapter, as part of the thesis statement 1.5, we have stated that theresearch goal of this thesis is to show that it is possible to formalize the key primitivesof Resultmaker declarative model and further develop it as a comprehensive formalmodel suitable for specification and execution of workflows. Furthermore, we havealso stated that the formal model should also allow safe distribution of a globalworkflow as a set of communicating local components, based on top-down model-driven approach. Finally, we mentioned in the research goal that, we intent to analyzedeclarative processes by adding support for formal verification with the help of modelchecking tools.The thesis has made several contributions, but we list the main contributions asfollows.
• We have shown that it is possible to formalize the key primitives of Resultmakerdeclarative workflow and further developed it as a comprehensive formal modelDCR Graphs, which is suitable for specification and execution of workflowsbased on declarative modeling primitives.
• With 5 core relations, our formal model DCR Graphs is simple but sufficientlyexpressive enough to model all ω-languages. We have proved that the DCR Graphsis bisimilar to Büchi automata in expressing infinite runs.
• Our formal model allows for an intuitive operational semantics and effectiveexecution expressed by a notion of markings of the graphs. Furthermore wehave also developed a graphical language along with runtime notation for theDCR Graphs and the runtime state of a DCR Graph can be simply visualizedas a marking on the graph itself. The graphical notation for the DCR Graphsis also quite useful in modeling workflows in DCR Graphs, especially for thepeople without formal background.
• We have provided a general technique for distributing a declarative global pro-cess as set of synchronously communicating local processes, by defining thenotion of projection and composition. The generality of our distribution tech-nique allows for fined tuned projections, where one can choose only few eventsfor a specific role or an actor and most importantly the projected local graphskeep their declarative nature as the resulting projections are also DCR Graphs,which can be further distributed.
• In case of distribution of DCR Graphs, we have proved the main theorem thatthe distribution is safe in the sense that the behavior exhibited by the local

7.3. Future Work 197

DCR Graphs is consistent with the behavior exhibited by the global DCR Graph.Furthermore the distribution technique has also been extended to nested DCR Graphs.
• We have applied formal verification techniques on declarative business pro-cesses specified in DCR Graphs and provided a method to verify propertieson DCR Graphs using SPIN model checker. Furthermore we have built a toolthat automatically generates verification code from workflows models specifiedin DCR Graphs and the verification code can be run in SPIN or ZING modelcheckers, to verify properties on DCR Graphs.
• We have modeled two case studies, one from healthcare and the other fromcase management domain in DCR Graphs, to show that our formal model isadequate for modeling the workflows from dynamic sectors where flexibility isof paramount importance.
• This thesis is one of the few ones that offers a formal model for business pro-cesses based on declarative modeling primitives. We have also build a proto-type workflow management engine and tools for DCR Graphs to show that theideas and concepts developed in the thesis can be easily implemented by acommercial workflow management system.
• The ideas and concepts developed in the thesis will provide a framework forsuitable extensions to the Resultmaker declarative workflow model, which couldbe implemented in the later versions of their product. Furthermore, another in-dustrial partner Exformatics [Exformatics 2009] has already implemented thecore primitives of DCR Graphs into their commercial Enterprise Content andCase Management system and they also do have plans to implement our distri-bution technique developed in the thesis into their commercial tools. It showsthat our formal model is both practicable and easily adoptable into commercialworkflow management systems.

7.3 Future Work

Besides the need of further extensions to the formal model, this dissertation leavesmany open challenges and issues for future research. We will briefly mention someof them in the following section. We will categorize the future work into 2 parts: thefirst part describes the future work related to extensions to the formal model and thesecond part describes about relating our work to the other formal models.
7.3.1 Extensions to Formal Model

In this section, we will discuss some of the extensions that we want to add to theformal model to make it more useful and applicable to many practical problems.

198 Chapter 7. Conclusion and Future Work

7.3.1.1 Time and ExceptionsTemporal constraints are most important to model processes from the real world. Aspart of the future work, we are planning to add time deadlines to the constraints,for example it will be possible to specify that a response constraint must happenwithin the specified time interval. Adding temporal constraints will naturally lead usto violations of such constraints. Hence we also need some type exception handlingin DCR Graphs coupled with some kind of compensation, that can be applied whenan exception happened. We will briefly explain here the motivation and the kind ofsupport for temporal constraints we want to add to the DCR Graphs.

Figure 7.1: Oncology treatment process with temporal constraints
Let us take a small example from Oncology workflow modeled in DCR Graphs asshown in the figure 7.1. In the above example, we have two rules, the first one sayingthat a drug prepared in the pharmacy must be administered in chemotherapy within 24 hours. The second rule says that, adjuvant therapy must have been performedone to three hours before chemotherapy.The first rule has been modeled with a response constraint with a time intervalof [0-24] between prepare drug and chemotherapy events as shown in the figure 7.1.The second rule is modeled with a condition and a milestone relation, both with atime interval of [1-3] between adjuvant therapy and chemotherapy. Further, we havealso added an exception handler (shown as tilde sign within a circle) on the responseconstraint, having an exclude relation to chemotherapy event and a response relationto prepare drug and adjuvant therapy events, as a compensation for the constraintviolation.Naturally the response constraint will be violated if the chemotherapy is notperformed within 24 hours after the drug is prepared. In such a case the exceptionhandler will be invoked, and it will exclude the chemotherapy event and create apending response on prepare drug and adjuvant therapy. Until unless the prepare

drug event is re-executed, the event chemotherapy will not be included in the graphand at the same time the pending responses on prepare drug and adjuvant therapywill make the graph non-accepting. When the prepare drug event is re-executed, the
chemotherapy will be included, but it will be blocked until unless adjuvant therapy is

7.3. Future Work 199

re-executed because of the milestone relation. Furthermore, the event chemotherapycan only be executed within 1 to 3 hours after executing adjuvant therapy, otherwisethe chemotherapy will be blocked, on the other hand if the chemotherapy is not donewithin 24 hours, the response constraint will be again violated.One could add support for temporal constraints to DCR Graphs in the similar linesas explained above. Further execution of an event is considered as instantaneous inDCR Graphs, but activities in real world have durations. So one could also consideradding duration to events in DCR Graphs along with the temporal constraints.
7.3.1.2 Programming Language for DCR Graphs with Parametrized Events with data

As part of the extensions to DCR Graphs, another PhD student from our group isworking on defining and implementing a new declarative and purely event-basedlanguage based on the DCR Graphs, tentatively named DECoReS, with a motivationof applying the DCR Graphs to Event-based Context-sensitive Reactive Services. Tosupport the formal semantics of DECoReS, we propose extending the DCR Graphswith parametrized events, automatic events, time and exception handling.To provide a brief intuition about the languages and extensions, we exemplifythe healthcare process as illustrated by the prescribe medicine healthcare processadapted from [Lyng et al. 2008, Hildebrandt et al. 2011a]. The process consists offive events: The prescription of medicine and signing of the prescription by a doctor(represented by the events prescribe and sign respectively), a nurse giving themedicine to the patient (represented by the event give, and the nurse indicatingthat he does not trust the prescription (represented by the event distrust) and thedoctor removing the prescription, represented by the event remove.
treatment process{

doctor may prescribe<$id, $med, $qty> {
response: administer<$id,$med,$qty>

}
administer<$id, $med, $qty> process
{

doctor must sign { exclude: remove }
nurse must give {

condition: Executed(sign) &
not Executed(remove) &
not Response(sign)

exclude: sign, give, distrust, remove
}
nurse may distrust {

response: sign
include: remove
exclude: give

}

200 Chapter 7. Conclusion and Future Work

doctor may remove {
exclude: sign,give,distrust,remove

}
}

}

To capture that every prescription event prescribe leads to the possible executionof a "fresh" set of events sign, give, distrust and remove, the event prescribe willinstantiate administer sub process to create a fresh or new set of all the fourevents. Observe that now the events are parameterized with data, which meansexecuting prescribe with a particular set of data values, will be create a freshinstance of subprocess events and pass the data values to the newly created instances.Adding parameterized data to events will also bring some changes to semantics ofthe relations, to enforce constraints between the events with matching data values.Implementation of programming language will also lead to some new extensions tothe DCR Graphs.
7.3.1.3 Distribution of DCR GraphsIn the chapter 5, We have given a general technique for distributing a declarative(global) process as a network of synchronously communicating (local) declarativeprocesses and proven that the global and distributed execution to be equivalent. Butdistributing a global process as a set of asynchronously communicating distributedprocesses will be a much harder problem to study. As part of future work one maystudy about distribution technique for the DCR Graphs based on asynchronous com-
munication among the distributed processes using buffered queues. This may benefitfrom researching the true concurrency semantics inherent in DCR Graphs and ex-tend the transition system semantics to include concurrency, e.g. like in [Mukund& Nielsen 1992, Hildebrandt & Sassone 1996]. Further We also planning to studybehavioral types describing the interfaces between communicating DCR Graphs, ex-tending the work on session types in [Carbone et al. 2007] to a declarative setting.Another PhD student has started working in this direction to apply theory of ses-sion types and adapted them from the current imperative models to the declarativeDCR Graphs model and thereby to provide a foundation for statically checked com-munication protocols for a distributed workflow.As of now, the distribution technique is applicable to basic DCR Graphs andnested DCR Graphs only. One may also extend the distribution technique to theDCR Graphs with present and forthcoming extensions such as sub processes, data,time and exceptions.
7.3.1.4 Dynamic Changes and Adaptive DCR GraphsThe approach for flexibility so far adopted in DCR Graphs can be categorized asflexibility by selection [Heinl et al. 1999] or design time flexibility [van der Aalst
et al. 2009]. In some application scenarios, the flexibility by selection or the design

7.3. Future Work 201

time flexibility may not be sufficient and the processes may have to deal with unexpected execution paths.Dynamic changes are not supported in the current formal model for DCR Graphs,as we have a static constraint set and events, but one could easily extend the for-malism to support the dynamic changes. The DCR Graphs allows for an intuitiveoperational semantics and effective execution expressed by a notion of markings ofthe graphs, which will be updated after execution of every event. Therefore if newconstraints are added at runtime and they will be evaluated in the next executionof an event. Of course, it will lead to certain challenges such as how to deal withconflicts and how to adapt the running instances etc. One may also add new eventsto the events set at runtime in lines similar to the semantics of sub-processes inDCR Graphs, where a fresh set of subprocess events will be generated and added toevents set when a sub-process is instantiated.
7.3.1.5 Formal verification

As of now, the work on formal verification for DCR Graphs is only limited to coremodel of DCR Graphs. This could be extended to all the present and forthcomingextensions of DCR Graphs, such as nested sub graphs, sub processes, data, timeand exceptions. Extending formal verification on DCR Graphs with extensions wouldbe quite challenging. For example adding data domains to the DCR Graphs willcause the state space exploded problem and verification will become quite complex.Probably one could explore the approach used by authors in [Deutsch et al. 2009]for verification of data-centric business processes. Further, for formal verification ofDCR Graphs with temporal constraints, one could consider using Uppaal [Uppaal-Group 2009] which is model checker for modeling, simulation and verification of real-time system, based on timed automata.The work on formal verification can be extended to the technique developed inchapter 5 to distribute a DCR Graph as set of local components based on the notionof projection. To verify the distributed DCR Graphs formally, one could consider usingSPIN [Holzmann 2004] model checker as it is a well known system for verificationof asynchronous process models and distributed systems, with suitable constructslike messages and buffered channels. Moreover, it could be interesting to do formalverification on real world examples taken from the case studies and compare differentapproaches for verification of declarative processes.
7.3.2 Relating to the other formal models

As part of furture work, one could relate DCR Graphs to various formal models whichfollow related approaches to model processes and workflows. In this section we willbriefly describe some of the models, which follow similar or related approach to ourformal model DCR Graphs.

202 Chapter 7. Conclusion and Future Work

7.3.2.1 Guard-Stage-Milestone Lifecycle model

As part of future work, we want to relate our formal model to IBM Research’s declar-ative process model Business Artifacts with Guard-Stage-Milestone life cycles [Dam-aggio et al. 2011, Hull et al. 2011a, Hull et al. 2011b]. Business artifacts combine thedata aspects and process aspects in a holistic manner and an artifact type containsboth an information model and lifecycle model, where information model managesthe data for business objects and lifecycle model describes the possible ways thetasks on business objects can be invoked.As part of the business artifacts, a declarative approach has been taken in therecent years for specifying the life cycles of business entities, using the Guard- Stage-
Milestone (GSM model) life cycles model. The GSM model is a declarative processmodel for specification of interactions between business entities and its operationalsemantics are based on rules similar to ECA(Event Condition Action)-like rules fromActive database community.Our formal model is quite related to the declarative primitives of GSM model andhence as part of PhD stay abroad, the PhD candidate visited IBM Research, NewYork , to study the relation between DCR Graphs and GSM model.In this section we will explain briefly our ideas about relating DCR Graphs toGSM model. First, we will explain key primitives of GSM model briefly and then wewill describe a method how one can encode some of the primitives of GSM modelinto the DCR Graphs.

Figure 7.2: Requisition Order in GSM model [Hull et al. 2011b]

7.3. Future Work 203

7.3.2.1.1 GSM PrimitivesThe full details of GSM model are explained in [Hull et al. 2011b] and we will brieflymention the key primitives of GSM model as follows.1. Information Model: Captures all business relevant data about entities.2. Milestones: Correspond to business-relevant operational objectives. They canbe achieved/invalidated by either triggering events or using conditions over thedata attributes or using both. Milestones are owned by Stages.3. Stages: Correspond to group of activities with hierarchy. The stages ownmilestones and by executing the activities inside stages (and child stages), themilestone owned by the stage can be achieved. A stage becomes inactive whenit’s milestone is achieved, and if there are any child stages within a stage whosemilestone is achieved, all it’s child stages also become inactive. Similarly, if astage is opened or become active, then all its milestones is invalidated.4. Guards: They control when a stage becomes active and each guard is as-sociated with a sentry. When a sentry become true, then the stage will beopened.5. Sentry: A sentry consists of triggering an event type or a data condition oreven both. Sentries are some kind of boolean expressions and they are usedas conditions for guards, milestones.Figure 7.2 shows key components of GSM model, where a process for RequisitionOrder is modeled. The information model contains both data attributes for busi-ness relevant data and status attributes for data of process elements. The roundedrectangles are the stages and the guards are marked as diamonds on the stages.Milestones are marked with circles on the stages. Stages can contain child stagesor activities.Further, GSM model has the notion of GSM Business steps (or B-steps), whichfocus on updates to a snapshot (i.e., description of current state of a GSM systemat a given point of time) when a single incoming event is to be incorporated into it.Basically a B-step primarily concentrates on how the GSM system should react toan incoming event and the focus will be on what stages are opened/closed, and whatmilestones are achieved/ invalidated.Moreover, the operational semantics of GSM model are given by Prerequisite-Antecedent-Consequent (PAC) Rules, which specify how to make an update to snap-shot in a single B-step. PAC rules impose certain restrictions to avoid inconsistenciesor anomaly in the GSM system such as a stage can not opened and closed in a singleB-step. Finally GSM model has the notion of events and messages to interact withthe external environment.
7.3.2.1.2 Encoding a GSM model into DCR GraphsIn this section, we briefly explain a tentative way of encoding a GSM model intoDCR Graphs. The GSM model is data-centric and hence it would appropriate to use

204 Chapter 7. Conclusion and Future Work

Figure 7.3: A sample GSM model

Figure 7.4: DCR Graph for sample GSM model
DCR Graphs with data extension as explained in the Sec. 4.3. The tasks and stagesin GSM model can be encoded as the events and nested sub graphs in DCR Graphs.The status variables and sentries in GSM model can be encoded as variables andboolean expressions.Figure 7.3 shows a sample GSM model containing one stage (S1) with a guardand two milestones with sentries associated to guards and milestones as shown inthe figure. There can be sub stages or tasks as child elements for a stage, but weabstract away from the child elements as they can be encoded in the similar fashionas the stage S1. Further opening and closing of the stages can be modeled by usinginclude/exclude relations in DCR Graphs.The sample GSM model encoded into DCR Graphs is shown in the figure 7.4.

7.3. Future Work 205

The status attributes for stages and milestones are encoded explicitly as variables(for e.g. actS1, m1). The opening of a stage, achieving/invalidating of a milestone aremodeled as explicit events in the DCR Graph. The sentries associated with guardsand milestones in GSM model are modeled as guards (boolean expression condition)for the events.
7.3.2.1.3 Challenges of Encoding GSM model into DCR GraphsEven though the GSM model and DCR Graphs have a lot of similarities in declarativeaspects, but they differ in some subtle aspects, which will make encoding challengingand we will mention some of the issues briefly here. First of all user request isexplicitly modeled in GSM model as some kind of input events to the system, whereas in DCR Graphs the user request is quite implicit. Moreover, the execution ofevents in DCR Graphs are based on the user’s choice thereby user driven, where asthe execution semantics of GSM model are more like automatic updates to the systemstate, which be difficult to model. Of course one could add a notion of auto eventsto DCR Graphs, which can model the behavior of automatic updates to some extent,but in that one must make sure that the semantics of PAC rules (e.g toggle-onceprinciple) are correctly observed. Further explicit interaction with the environmentin GSM model is also difficult to model in the DCR Graphs.However, as part of the future work in the coming months, we are planning tostudy the relation between DCR Graphs and GSM model formally in the similar linesmention above, which could results in some more extensions to our formal model.
7.3.2.2 Declare modelDeclare is a framework for flexible workflows using declarative modeling primitivesbased on the constraints defined in LTL and it was briefly introduced in backgroundchapter (Sec. 2.2) as one of the motivating formalisms for our model. As part ofthe future work, we want to relate our formal model with the Declare’s declarativelanguage ConDec [van der Aalst & Pesic 2006a] by encoding it’s LTL based constraintsinto DCR Graphs and also encoding the relations of DCR Graphs into ConDec.Our approach is closely related to the work on ConDec [van der Aalst et al. 2009,van der Aalst & Pesic 2006a]. The crucial difference is that we allow nesting and afew core constraints making it possible to describe the state of a process as a simplemarking. ConDec does not address dynamic inclusion/exclusion, but allows one tospecify any relation expressible within Linear-time Temporal Logic (LTL). This offersmuch flexibility with respect to specifying execution constraints. In particular thecondition and response relations in our model are same as precedence and responseconstraints in ConDec [van der Aalst & Pesic 2006a] and hence we have used the samegraphical notation. Furthermore, we have encoded büchi automaton in DCR Graphsusing a straight forward construction in Sec. 3.5, which shows that DCR Graphs canexpress all ω-regular languages and thereby more expressive than LTL.As part of the future work, we are planning to translate constraints from ConDecas a direct encoding into DCR Graphs. Even though most of the constraints from

206 Chapter 7. Conclusion and Future Work

ConDec can be directly encoded in DCR Graphs using the five core relations, butwe think some of constraints from ConDec could be difficult to encode directly. Forexample, in ConDec the constraint disjunctive response says that only one of thechoices are to be executed as a response, which can not be expressed directly inDCR Graphs. Therefore we are expecting few extensions to DCR Graphs as part ofthe work on relating our model to ConDec. On the other hand, expressing dynamicinclude / exclude relations from DCR Graphs in terms of LTL could be difficult inConDec.
7.3.2.3 Refinement for Transition SystemsModal transition systems (MTS) [Larsen & Thomsen 1988, Antonik et al. 2008] arebasic transition system model supporting stepwise specification and refinement ofparallel processes, which can be regarded as label transition systems with required
(must) and allowed(may) transitions, with a consistency condition that all must tran-sitions should be matched directly by a may transition. An over-approximation andan under-approximation of a process can be defined using a MTS simultaneously. Aclass of MTS without the consistency condition is known as Mixed Transition Sys-tems [Dams et al. 1997], which places no restrictions on the relationship betweenmay and must transitions.Some of the researchers in our group are working on providing a new gener-alization of MTS as Transition Systems with Responses [Carbone et al. 2012] usingthe labeled transition system of DCR Graphs with response set to define a notion ofrefinement by taking prescribe medicine healthcare workflow as an example. Studyof deadlock and liveness properties in DCR Graphs in relation to Transition Systemswith Responses, adding notion of refinement could be part of the future work onDCR Graphs.

Appendix A

PROMELA Code for Verification of
Properties

A.1 PROMELA Code for Deadlock Free Property

1E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

/*
DCRS Example: Givemedicine‐nonstronglydedalockfree PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐27T00:50:32 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a
byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

inline model_specification()
{ /* Specification of DCR Graph */
 /* Specification of Relations */
 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */

2E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which events are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐>
 can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐>
 can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;
 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;

3E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 od;
 /* Non deterministic execution for deadlock free. */
 if
 :: (enabledset[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 dead_lock_reached: printf("Dead lock reached after %u executions!",
 executed_event_count);
 assert(false);
 /* If we dont have any events enabled and
 no included pending responses, then we exit. */
 :: else ‐> goto deadlock_free_label;
 fi;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Specification of DCR graph */
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which events are enabled */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();

4E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 /* Compute state after execution. */
 compute_state_after_execution();
 od;

 deadlock_free_label:
 printf("The given DCR graph is deadlock free");
}

212 Appendix A. PROMELA Code for Verification of Properties

A.2 PROMELA Code for Strongly Deadlock Free Property

1E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

/*
DCRS Example: Givemedicine‐nonstronglydedalockfree PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐28T18:01:59 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;

2E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;
 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;

3E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly deadlock free. */
 if
 :: (enabledset[pm] == 1) && (responses[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) && (responses[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) && (responses[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) && (responses[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached:printf("Strongly dead lock reached after %u executions!",
 executed_event_count);
 assert(0);
 /* If we dont have any enabled events and no included pending responses, then we exit. */
 :: else ‐> goto strongly_deadlock_free_label;
 fi;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification() to assign necessary constraints*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();

4E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 strongly_deadlock_free_label: printf("The given DCR graph is strongly deadlock free");
}

A.3. PROMELA Code for Liveness Property 217

A.3 PROMELA Code for Liveness Property

1C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

/*
DCRS Example: Givemedicine PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐30T02:22:24 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

/* New Variables for acceptance over infinite runs. */
byte state_index = 0;
bit include_response_current[event_count];
bit included_actions_nextstate[event_count];
bit pending_responses_nextstate[event_count];
bit include_response_nextstate[event_count];
bit acceptable_responses_set[event_count];
bit m_set[event_count];
byte min_include_response_current;
byte min_m_set;
byte m_set_count = 0;
byte include_response_current_set_count = 0;
byte include_response_nextstate_set_count = 0;
bit accepting_state_visited = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

2C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;
 response_relation[pm].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;

3C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐> any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly Liveness. */
 if
 :: (enabledset[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached: printf("Dead lock reached after %u executions!",

executed_event_count);
 assert(false);
 /* If we dont have any actions enabled and no included pending responses, then we exit. */
 :: else ‐> goto end_state;
 fi;
 fi;
}

inline compute_include_response_sets()
{
 index = 0;
 do
 :: index < event_count ‐>
 /* Update for include_response_current set. */
 include_response_current[index] = ((included[index] && responses[index]) ‐> 1: 0);
 /* Calculation of next state set */
 /* Updating the included_actions_nextstate set */
 if
 :: include_relation[random_event_executed].to[index] ‐> included_actions_nextstate[index] = 1 ;
 :: exclude_relation[random_event_executed].to[index] ‐> included_actions_nextstate[index] = 0 ;
 :: else ‐> included_actions_nextstate[index] = included[index];
 fi;
 /* Updating the pending_responses_nextstate set */
 /* Clear the pending response for random_event_executed unless it is not included by itself */
 if
 :: response_relation[random_event_executed].to[index] ‐> pending_responses_nextstate[index] = 1 ;
 :: else ‐> pending_responses_nextstate[index] = ((random_event_executed == index) ‐> 0: responses

[index]);
 fi;
 /* Updating the include_response_nextstate set */
 include_response_nextstate[index] = ((included_actions_nextstate[index] &&

pending_responses_nextstate[index]) ‐> 1: 0);
 /* Compute the acceptable_responses_set (I and R \ (I' and R') U (e)) */
 acceptable_responses_set[index] = (include_response_current[index] && (!

include_response_nextstate[index]) ‐> 1:0);
 m_set[index] = ((include_response_current[index] && (index > state_index)) ‐> 1: 0);
 index = index + 1;
 :: else ‐> break;

4C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 od;
 /* Add the current random action executed to the acceptable_responses_set to get (I and R \ (I' and R'

) U (e))*/
 acceptable_responses_set[random_event_executed] = 1;
}

inline compute_set_minimum()
{
 /* Initially set the min_m_set to highest number as default as 0 is also used as action index */
 min_m_set = event_count;
 min_include_response_current = event_count;
 /* Assign the index to event_count, as we will loop through the array in reverse order to find out min

. */
 index = event_count;
 m_set_count = 0;
 include_response_current_set_count = 0;
 include_response_nextstate_set_count = 0;
 do
 :: index > 0 ‐>
 /* min for m_set */
 if
 :: m_set[index ‐1] ‐> min_m_set = (index ‐1);
 m_set_count++;
 :: else ‐> skip;
 fi;
 /* min for include_response_current set */
 if
 :: include_response_current[index ‐1] ‐> min_include_response_current = (index ‐1);
 include_response_current_set_count++;
 :: else ‐> skip;
 fi;
 /* Find out how many elements are in the include_response_nextstate set */
 include_response_nextstate_set_count = (include_response_nextstate[index ‐1] ‐>

include_response_nextstate_set_count + 1 : include_response_nextstate_set_count);
 index‐‐;
 :: else ‐> break;
 od;
}

inline check_state_acceptance_condition()
{
 if
 /* If no pending responses in the next set. */
 :: (include_response_nextstate_set_count == 0) ‐>
 progress_state_0: accepting_state_visited = 1;
 :: ((m_set_count > 0) && (acceptable_responses_set[min_m_set])) ‐>
 progress_state_1: accepting_state_visited = 1; state_index = min_m_set ;
 :: ((m_set_count == 0) && (min_include_response_current < event_count) &&

(acceptable_responses_set[min_include_response_current])) ‐>
 progress_state_2: accepting_state_visited = 1; state_index = min_include_response_current ;
 /* Otherwise dont change the state index. */
 :: else ‐> accepting_state_visited = 0;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

5C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification() to assign necessary constraints*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();
 /* Compute include response sets and m‐set etc */
 compute_include_response_sets();
 /* Compute minimum values for include response sets and m‐set etc */
 compute_set_minimum();
 /* Compute state accepting conditions */
 check_state_acceptance_condition();
 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 end_state: printf("End state reached after %u", executed_event_count);
}

A.4. PROMELA Code for Strongly Liveness Property 223

A.4 PROMELA Code for Strongly Liveness Property

1C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

/*
DCRS Example: Givemedicine PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐30T02:22:24 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

/* New Variables for acceptance over infinite runs. */
byte state_index = 0;
bit include_response_current[event_count];
bit included_actions_nextstate[event_count];
bit pending_responses_nextstate[event_count];
bit include_response_nextstate[event_count];
bit acceptable_responses_set[event_count];
bit m_set[event_count];
byte min_include_response_current;
byte min_m_set;
byte m_set_count = 0;
byte include_response_current_set_count = 0;
byte include_response_nextstate_set_count = 0;
bit accepting_state_visited = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

2C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;
 response_relation[pm].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;

3C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1)
 && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly Liveness. */
 if
 :: (enabledset[pm] == 1) && (responses[pm] == 1) ‐>
 random_event_executed = pm;
 :: (enabledset[s] == 1) && (responses[s] == 1) ‐>
 random_event_executed = s;
 :: (enabledset[gm] == 1) && (responses[gm] == 1) ‐>
 random_event_executed = gm;
 :: (enabledset[dt] == 1) && (responses[dt] == 1) ‐>
 random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached:
 printf("Dead lock reached after %u executions!",
 executed_event_count);
 assert(false);
 /* If we dont have any actions enabled and
 no included pending responses, then we exit. */
 :: else ‐> goto end_state;
 fi;
 fi;
}

inline compute_include_response_sets()
{
 index = 0;
 do
 :: index < event_count ‐>
 /* Update for include_response_current set. */
 include_response_current[index] =
 ((included[index] && responses[index]) ‐> 1: 0);
 /* Calculation of next state set */
 /* Updating the included_actions_nextstate set */
 if
 :: include_relation[random_event_executed].to[index] ‐>
 included_actions_nextstate[index] = 1 ;
 :: exclude_relation[random_event_executed].to[index] ‐>
 included_actions_nextstate[index] = 0 ;
 :: else ‐> included_actions_nextstate[index] = included[index];
 fi;
 /* Updating the pending_responses_nextstate set */
 /* Clear the pending response for random_event_executed
 unless it is not included by itself */
 if
 :: response_relation[random_event_executed].to[index] ‐>

4C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 pending_responses_nextstate[index] = 1 ;
 :: else ‐> pending_responses_nextstate[index] =
 ((random_event_executed == index) ‐> 0: responses[index]);
 fi;
 /* Updating the include_response_nextstate set */
 include_response_nextstate[index] =
 ((included_actions_nextstate[index] && pending_responses_nextstate[index]) ‐> 1: 0);
 /* Compute the acceptable_responses_set (I and R \ (I' and R') U (e)) */
 acceptable_responses_set[index] =
 (include_response_current[index] && (!include_response_nextstate[index]) ‐> 1:0);
 m_set[index] = ((include_response_current[index] && (index > state_index)) ‐> 1: 0);
 index = index + 1;
 :: else ‐> break;
 od;
 /* Add the current random action executed to the acceptable_responses_set to get (I and R \ (I' and R')

 U (e))*/
 acceptable_responses_set[random_event_executed] = 1;
}

inline compute_set_minimum()
{
 /* Initially set the min_m_set to highest number as default as 0 is also used as action index */
 min_m_set = event_count;
 min_include_response_current = event_count;
 /* Assign the index to event_count, as we will loop through the array in reverse order to find out min

. */
 index = event_count;
 m_set_count = 0;
 include_response_current_set_count = 0;
 include_response_nextstate_set_count = 0;
 do
 :: index > 0 ‐>
 /* min for m_set */
 if
 :: m_set[index ‐1] ‐> min_m_set = (index ‐1);
 m_set_count++;
 :: else ‐> skip;
 fi;
 /* min for include_response_current set */
 if
 :: include_response_current[index ‐1] ‐> min_include_response_current = (index ‐1);
 include_response_current_set_count++;
 :: else ‐> skip;
 fi;
 /* Find out how many elements are in the include_response_nextstate set */
 include_response_nextstate_set_count = (include_response_nextstate[index ‐1] ‐>

include_response_nextstate_set_count + 1 : include_response_nextstate_set_count);
 index‐‐;
 :: else ‐> break;
 od;
}

inline check_state_acceptance_condition()
{
 if
 /* If no pending responses in the next set. */
 :: (include_response_nextstate_set_count == 0) ‐>
 progress_state_0: accepting_state_visited = 1;
 :: ((m_set_count > 0) && (acceptable_responses_set[min_m_set])) ‐>
 progress_state_1: accepting_state_visited = 1; state_index = min_m_set ;
 :: ((m_set_count == 0) && (min_include_response_current < event_count) &&

(acceptable_responses_set[min_include_response_current])) ‐>
 progress_state_2: accepting_state_visited = 1; state_index = min_include_response_current ;
 /* Otherwise dont change the state index. */
 :: else ‐> accepting_state_visited = 0;
 fi;

5C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification()*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based
 on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();
 /* Compute include response sets and m‐set etc */
 compute_include_response_sets();
 /* Compute minimum values for include
 response sets and m‐set etc */
 compute_set_minimum();
 /* Compute state accepting conditions */
 check_state_acceptance_condition();
 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 end_state: printf("End state reached after %u",
 executed_event_count);
}

Appendix B

Zing Code for Give Medicine
Example

1E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

/*
DCRS Example: Givemedicine ZING language code for model checking in ZING tool.
Generated on 2010‐06‐17T14:17:56 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

// Section for Common Declarations
enum TypeActionsEnum {pm, s, gm, dt };

set TypeActionsSet TypeActionsEnum;

set TypeRelationsSet Relation;

class DCRSMain
{
 // set of actions whose conditions are executed.
 static TypeActionsSet EnabledActionsList;
 // E set
 static TypeActionsSet ExecutedActionsList;
 // I set
 static TypeActionsSet IncludedActionsList;
 // R set
 static TypeActionsSet PendingResponsesList;

 static TypeActionsEnum executingAction;

 static int numberOfExecutions;

 static bool atleast_one_accepting_run;

 activate static void Main()
 {
 // Initialise the sets for the state..
 EnabledActionsList = new TypeActionsSet;

 ExecutedActionsList = new TypeActionsSet;

 IncludedActionsList = new TypeActionsSet;

 PendingResponsesList = new TypeActionsSet;

 // Get the DCRS model specification
 DCRSModel.Initialise();

 while(true)
 {
 ComputeEnabledActions();

 assert(sizeof(EnabledActionsList) > 0, "Dead lock");

 //assert (sizeof(PendingResponsesList) == 0, "accepting state reached");

 executingAction = choose(EnabledActionsList);

 UpdateStatespace(executingAction);

 if(sizeof(PendingResponsesList) == 0)
 {
 atleast_one_accepting_run = false;
 }

 //atleast_one_accepting_run = (sizeof(PendingResponsesList) == 0) ? true :

2E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

atleast_one_accepting_run ;

 //event (numberOfExecutions, (numberOfExecutions > 0));
 //trace ("Number of executions {0}", numberOfExecutions);

 }

 assert((!atleast_one_accepting_run), "There is not even a single accepting run!");

 }

 static void ComputeEnabledActions()
 {

 // start with an assumption that all the included actions are enabled
 EnabledActionsList = CloneActionSets(IncludedActionsList, EnabledActionsList);

 // Here the logic is to iterate through all the ConditionsSet relations, and find out
 //which actions are to be deleted.
 foreach(Relation relation in DCRSModel.ConditionsSet)
 {
 if (! (relation.Child in ExecutedActionsList))
 {
 EnabledActionsList = EnabledActionsList ‐ relation.Parent ;
 }
 }

 // Here the logic is to iterate through all the ConditionsSet relations, and find out
 //which actions are to be deleted.
 foreach(Relation relation1 in DCRSModel.StrongConditionsSet)
 {
 if (! (relation1.Child in ExecutedActionsList)) if (relation1.Child in PendingResponsesList)
 {
 EnabledActionsList = EnabledActionsList ‐ relation1.Parent ;
 }
 }

 }

 static void UpdateStatespace(TypeActionsEnum exeAction)
 {

 // Update the counter for numberOfExecutions
 //numberOfExecutions = numberOfExecutions + 1;

 // First update ExecutedActionsList.
 ExecutedActionsList = ExecutedActionsList + exeAction;

 // Update IncludedActionsList with includes and excludes

 // Here the logic is to iterate through all the include relations, and find out
 // which actions are to be included.
 foreach(Relation relation1 in DCRSModel.IncludesSet)
 {
 if (relation1.Parent == exeAction)
 {
 IncludedActionsList = IncludedActionsList + relation1.Child ;
 }
 }

 // Here the logic is to iterate through all the exclude relations, and find out

3E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 // which actions are to be excluded.
 foreach(Relation relation2 in DCRSModel.ExcludesSet)
 {
 if (relation2.Parent == exeAction)
 {
 IncludedActionsList = IncludedActionsList ‐ relation2.Child ;
 }
 }

 // update pending responses (ie remove exeAction)
 PendingResponsesList = PendingResponsesList ‐ exeAction ;

 foreach(Relation relation3 in DCRSModel.ResponsesSet)
 {
 if (relation3.Parent == exeAction)
 {
 PendingResponsesList = PendingResponsesList + relation3.Child ;
 }
 }

 }

 static TypeActionsSet CloneActionSets(TypeActionsSet source, TypeActionsSet target)
 {
 // Make sure that no elements are left in the set.
 if(sizeof(target) > 0)
 {
 target = new TypeActionsSet;
 }

 // Copy all elements one by one.
 foreach(TypeActionsEnum action in source)
 {
 target = target + action ;
 }

 return target;
 }

};

class DCRSModel
{

 static TypeActionsSet ActionsList;

 static TypeRelationsSet IncludesSet;

 static TypeRelationsSet ExcludesSet;

 static TypeRelationsSet ConditionsSet;

 static TypeRelationsSet StrongConditionsSet;

 static TypeRelationsSet ResponsesSet;

 static void Initialise()
 {
 ActionsList = new TypeActionsSet;

 ActionsList = ActionsList + TypeActionsEnum.pm;

 ActionsList = ActionsList + TypeActionsEnum.s;

4E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 ActionsList = ActionsList + TypeActionsEnum.gm;

 ActionsList = ActionsList + TypeActionsEnum.dt;

 // Initialize include relations.

 IncludesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.gm, IncludesSet);

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.dt, IncludesSet);

 // Initialize Exclude relations.

 ExcludesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.dt, ExcludesSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.gm, ExcludesSet);

 // Initialize condition relations.

 ConditionsSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.pm, ConditionsSet);

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.s, ConditionsSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, ConditionsSet);

 // Initialise StrongConditionsSet
 StrongConditionsSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.s, StrongConditionsSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, StrongConditionsSet);

 // // Initialize Responses relations.

 ResponsesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.pm, TypeActionsEnum.gm, ResponsesSet);

 CreateRelation(TypeActionsEnum.pm, TypeActionsEnum.s, ResponsesSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, ResponsesSet);

 // update included set with actions which are initially included.
 //DCRSMain.IncludedActionsList = ActionsList;

 DCRSMain.IncludedActionsList = DCRSMain.CloneActionSets(ActionsList, DCRSMain.IncludedActionsList);

 }

 static void CreateRelation(TypeActionsEnum dom, TypeActionsEnum ran, TypeRelationsSet relationSet)
 {

5E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 Relation rel;

 rel = new Relation;

 rel.Initialise(dom, ran);

 relationSet = relationSet + rel;

 }

};

class Relation
{
 TypeActionsEnum Child;

 TypeActionsEnum Parent;

 void Initialise(TypeActionsEnum dom, TypeActionsEnum ran)
 {
 Parent = dom;

 Child = ran;
 }

};

Bibliography

[Aalst & Weske 2001] Wil M. P. van der Aalst and Mathias Weske. The P2P Ap-
proach to Interorganizational Workflows. In Proceedings of the 13th Interna-tional Conference on Advanced Information Systems Engineering, CAiSE ’01,pages 140–156, 2001. (Cited on page 121.)

[Aalst et al. 2011] W M P Van Der Aalst, K M Van Hee, A H M Hofstede andN Sidorova. Soundness of Workflow Nets : Classification , Decidability , and
Analysis. Technology, vol. 23, no. 3, pages 1–48, 2011. (Cited on page 55.)

[Aalst 2001] W M P Van Der Aalst. Exterminating the Dynamic Change Bug: A Con-
crete Approach to Support Workflow Change. Information Systems Frontiers,vol. 3, no. 3, pages 297–317, 2001. (Cited on page 55.)

[Aalst 2004] Wil M P Van Der Aalst. Business Process Management Demystified
: A Tutorial on Models , Systems and Standards for Workflow Management.Lectures on Concurrency and Petri Nets, vol. 3098, no. 3098, pages 1–65, 2004.(Cited on page 4.)

[Adams et al. 2006] Michael Adams, Arthur H M Hofstede, David Edmond and Wil MP Van Der Aalst. Worklets : A Service-Oriented Implementation of Dynamic
Flexibility in Workflows. On the Move to Meaningful Internet Systems 2006CoopIS DOA GADA and ODBASE, vol. 4275, no. 19, pages 291–308, 2006. (Citedon page 56.)

[Adams 2007] Michael James Adams. Facilitating Dynamic Flexibility and Exception
Handling for Workflows by. PhD thesis, Queensland University of TechnologyBrisbane, Australia, 2007. (Cited on page 56.)

[Andrews et al. 2004] Tony Andrews, Shaz Qadeer, Sriram Rajamani, Jakob Rehof andYichen Xie. Zing: Exploiting Program Structure for Model Checking Concurrent
Software. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 -Concurrency Theory, volume 3170 of Lecture Notes in Computer Science, pages1–15. Springer Berlin / Heidelberg, 2004. (Cited on pages 157 and 183.)

[Antonik et al. 2008] Adam Antonik, Michael Huth, Kim Larsen, Ulrik Nyman and An-drzej Wasowski. 20 Years of Mixed and Modal Specifications. Bulletin of theEuropean Association for Theoretical Computer Science, May 2008. (Cited onpage 206.)
[Ash et al. 2004] J.S. Ash, M. Berg and E. Coiera. Some Unintended Consequences of

Information Technology in Health Care: The Nature of Patient Care Information
System-related Errors. J Sm Med Inform Assoc., vol. 11, pages 104–112, 2004.(Cited on page 37.)

236 Bibliography

[Augusto et al. 2003] Juan C. Augusto, Michael Butler, Carla Ferreira and StephenCraig. Using SPIN and STeP to verify business processes specifications. In InProceedings of Eeshov Memorial Conference, pages 207–213. Springer, 2003.(Cited on page 159.)
[Bardram & Bossen 2005] J.E. Bardram and C. Bossen. Mobility Work: The Spatial

Dimension of Collaboration at a Hospital. Computer Supported CooperativeWork (CSCW), vol. 14, no. 2, pages 131–160, April 2005. (Cited on page 29.)
[Bates et al. 2001] D.W. Bates, M. Cohen, L.L. Leape, J.M. Overhage, M.M. Shabot andT. Sheridan. Reducing the frequency of errors in medicine using information

technology. J Am Med Inform Assoc, vol. 8, pages 299–308, 2001. White Paper.(Cited on page 29.)
[Ben-Ari 2008] Mordechai Ben-Ari. Principles of the spin model checker. Springer,2008. (Cited on pages 157, 159, 165 and 166.)
[Berg & Toussaint 2003] M. Berg and P. Toussaint. The mantra of modeling and

the forgotten powers of paper: A sociotechnical view on the development of
process-oriented ICT in health care. Int J Med Inform , vol. 69, pages 223–234,2003. (Cited on page 37.)

[Berg et al. 2000] M. Berg, Klasien Horstman, Saskia Plass and Michelle van Heus-den. Guidelines, professionals and the production of objectivity: standardisation
and the professionalism of insurance medicine. Sociology of Health & Illness,vol. 22, pages 765–791(27), November 2000. (Cited on page 38.)

[Bhattacharya et al. 2007a] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigamand F. Y. Wu. Artifact-centered operational modeling: lessons from customer
engagements. IBM Syst. J., vol. 46, pages 703–721, October 2007. (Cited onpages 56 and 159.)

[Bhattacharya et al. 2007b] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, RongLiu and Jianwen Su. Towards formal analysis of artifactcentric business process
models. In In preparation, pages 288–304, 2007. (Cited on pages 4 and 159.)

[Bjørner et al. 2000] Nikolaj S. Bjørner, Anca Browne, Michael A. Colon, BerndFinkbeiner, Zohar Manna, Henny B. Sipma and Tomas E. Uribe. Verifying tem-
poral properties of reactive systems: A STeP tutorial. In FORMAL METHODSIN SYSTEM DESIGN, page 2000, 2000. (Cited on page 159.)

[Bødker & Christiansen 2004] S. Bødker and E. Christiansen. Designing for ephemer-
ality and prototypicality. In Proceedings of the 5th conference on Designinginteractive systems: processes, practices, methods, and techniques., Cambridge,MA, USA, 2004. ACM Press. (Cited on page 29.)

Bibliography 237

[Bowen & Stavridou 1993] J. Bowen and V. Stavridou. Safety-critical systems, formal
methods and standards. Software Engineering Journal, vol. 8, no. 4, pages 189–209, jul 1993. (Cited on page 5.)

[Brauer et al. 1987] Wilfried Brauer, Wolfgang Reisig and Grzegorz Rozenberg, ed-itors. Petri nets: Central models and their properties, advances in petri nets1986, part ii, proceedings of an advanced course, bad honnef, 8.-19. september1986, volume 255 of Lecture Notes in Computer Science. Springer, 1987. (Citedon pages 158 and 255.)
[Bravetti & Zavattaro 2007] Mario Bravetti and Gianluigi Zavattaro. Contract Based

Multi-party Service Composition. In International Symposium on Fundamentalsof Software Engineering (FSEN), volume 4767, pages 207–222. Springer, 2007.(Cited on pages 121 and 122.)
[Bravetti & Zavattaro 2009] Mario Bravetti and Gianluigi Zavattaro. A theory of con-

tracts for strong service compliance. Mathematical. Structures in Comp. Sci.,vol. 19, pages 601–638, June 2009. (Cited on pages 121 and 122.)
[BURNS 1977] J. C. BURNS. The evolution of office information systems. Datamation,vol. vol. 23,no. 4, pages 60–64, April 1977. (Cited on page 2.)
[Bussler & Jablonski 1994] Christoph Bussler and Stefan Jablonski. Implementing

agent coordination for workflow management systems using active database
systems. In Research Issues in Data Engineering, 1994. Active Database Sys-tems. Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.(Cited on pages 7 and 52.)

[Cabana et al. 1999] M.D. Cabana, C.S. Rand, N.R. Powe, A.W. Wu, M.H. Wilson, P.A.Abboud and H.R. Rubin. Why don’t physicians follow clinical practice guide-
lines? A framework for improvement. JAMA, vol. 282, no. 15, pages 1458–1465,OCTOBER 1999. (Cited on page 30.)

[Carbone et al. 2007] Marco Carbone, Kohei Honda and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In 16th EuropeanSymposium on Programming (ESOP’07), LNCS, pages 2–17. Springer, 2007.(Cited on pages 122, 148 and 200.)

[Carbone et al. 2012] Marco Carbone, Thomas Hildebrandt, Hugo A. Lopez, Gian Per-rone and Andrzej Wasowski. Refinement for Transition Systems with Responses.In Accepted for International Workshop on Foundations of Interface Technolo-gies, 2012. (Cited on page 206.)
[Castellani et al. 1999] Ilaria Castellani, Madhavan Mukund and P. Thiagarajan. Syn-

thesizing Distributed Transition Systems from Global Specifications. In Foun-dations of Software Technology and Theoretical Computer Science, volume1738, pages 219–231. Springer Berlin / Heidelberg, 1999. (Cited on page 122.)

238 Bibliography

[Cheng 1995] Allan Cheng. Petri Nets, Traces, and Local Model Checking. In Pro-ceedings of AMAST, pages 322–337, 1995. (Cited on pages 57 and 58.)
[Cicekli & Cicekli 2006] Nihan Kesim Cicekli and Ilyas Cicekli. Formalizing the spec-

ification and execution of workflows using the event calculus. Information Sci-ences, vol. 176, no. 15, pages 2227 – 2267, 2006. (Cited on pages 55 and 90.)
[Cicekli & Yildirim 2000] Nihan K. Cicekli and Yakup Yildirim. Formalizing Workflows

Using the Event Calculus. In Proceedings of the 11th International Confer-ence on Database and Expert Systems Applications, DEXA ’00, pages 222–231.Springer-Verlag, 2000. (Cited on page 55.)
[Cimatti et al. 2000] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NUSMV:

a new symbolic model checker. International Journal on Software Tools forTechnology Transfer, vol. 2, page 2000, 2000. (Cited on page 157.)
[Cohn & Hull 2009] David Cohn and Richard Hull. Business Artifacts : A Data-

centric Approach to Modeling Business Operations and Processes. Manage-ment, vol. 32, no. 3, pages 1–7, 2009. (Cited on page 4.)
[Coiera 2006] E. Coiera. Communication systems in healthcare. Clin Biochem Rev ,vol. 27, pages 89–98, 2006. (Cited on page 38.)
[Crafa et al. 2007] Silvia Crafa, Daniele Varacca and Nobuko Yoshida. Compositional

Event Structure Semantics for the Internal pi -Calculus. In Luís Caires andVasco Thudichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes
in Computer Science, pages 317–332. Springer, 2007. (Cited on page 48.)

[D. Eastlake 2002] D. Solo D. Eastlake J. Reagle. RFC 3275: XML-Signature Syntax
and Processing, 2002. http://www.ietf.org/rfc/rfc3275.txt. (Cited onpage 20.)

[Damaggio et al. 2011] Elio Damaggio, Richard Hull and Roman Vaculín. On the
Equivalence of Incremental and Fixpoint Semantics for Business Artifacts with
Guard-Stage-Milestone Lifecycles. In Stefanie Rinderle-Ma, Farouk Toumaniand Karsten Wolf, editors, BPM, volume 6896 of Lecture Notes in Computer
Science, pages 396–412. Springer, 2011. (Cited on pages 56 and 202.)

[Dams et al. 1997] Dennis Dams, Rob Gerth and Orna Grumberg. Abstract interpre-
tation of reactive systems. ACM Trans. Program. Lang. Syst., vol. 19, pages253–291, March 1997. (Cited on page 206.)

[Das et al. 1996] S. Das, K. Kochut, J. Miller, A. Sheth and D. Worah. ORBWork: A Re-
liable Distributed CORBA-based Workflow Enactment System for METEOR2.Technical report, The University of Georgia, 1996. (Cited on page 123.)

[Davenport 1993] T.H. Davenport. Process innovation: reengineering work through in-formation technology. Harvard Business School Press, 1993. (Cited on page 2.)

http://www.ietf.org/rfc/rfc3275.txt

Bibliography 239

[Davis & Taylor-Vaisey 1997] D.A. Davis and A. Taylor-Vaisey. Translating guidelines
into practice. A systematic review of theoretic concepts, practical experience
and research evidence in the adoption of clinical practice guidelines. CMAJ,vol. 157, no. 4, pages 408–416, August 1997. (Cited on page 29.)

[Davulcu et al. 1998] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan and I.V. Ra-makrishnan. Logic Based Modeling and Analysis of Workflows. In Proceedingsof ACM SIGACT-SIGMOD-SIGART, pages 1–3. ACM Press, 1998. (Cited onpages 7, 52, 55 and 90.)
[de Jong 1991] Gjalt G. de Jong. An Automata Theoretic Approach to Temporal Logic.In PROCEEDINGS OF 3 RD WORKSHOP ON COMPUTER AIDED VERIFICA-TION (CAV91), VOLUME 575 OF LECTURE NOTES IN COMPUTER SCIENCE,pages 477–487. Springer-Verlag, 1991. (Cited on page 39.)
[Deutsch et al. 2009] Alin Deutsch, Richard Hull, Fabio Patrizi and Victor Vianu. Au-

tomatic verification of data-centric business processes. In Proceedings of the12th International Conference on Database Theory, ICDT ’09, pages 252–267,New York, NY, USA, 2009. ACM. (Cited on pages 159 and 201.)
[Diaz et al. 2005] Gregorio Diaz, Juan-José Pardo, María-Emilia Cambronero, Valen-tín Valero and Fernando Cuartero. Automatic Translation of WS-CDL Chore-

ographies to Timed Automata. Formal Techniques for Computer Systems andBusiness Processes, pages 230–242, 2005. (Cited on page 158.)
[Dijkman et al. 2008] Remco M. Dijkman, Marlon Dumas and Chun Ouyang. Seman-

tics and analysis of business process models in BPMN. Information and Soft-ware Technology, vol. 50, no. 12, pages 1281 – 1294, 2008. (Cited on page 158.)
[Dong et al. 2000] Guozhu Dong, Richard Hull, Bharat Kumar, Jianwen Su and GangZhou. A Framework for Optimizing Distributed Workflow Executions. In Re-vised Papers from the 7th International Workshop on Database ProgrammingLanguages: Research Issues in Structured and Semistructured Database Pro-gramming, DBPL ’99, pages 152–167, London, UK, 2000. Springer-Verlag. (Citedon page 122.)
[Dong et al. 2006] Jin Dong, Yang Liu, Jun Sun and Xian Zhang. Verification of Compu-

tation Orchestration Via Timed Automata. In Zhiming Liu and Jifeng He, editors,Formal Methods and Software Engineering, volume 4260 of Lecture Notes in
Computer Science, pages 226–245. Springer Berlin / Heidelberg, 2006. (Citedon page 158.)

[Drucker 1993] P.F. Drucker. The New Realities. Harper & Row, 1993. (Cited onpage 37.)
[Dun et al. 2008] Haiqiang Dun, Haiying Xu and Lifu Wang. Transformation of BPEL

Processes to Petri Nets. In Theoretical Aspects of Software Engineering, 2008.

240 Bibliography

TASE ’08. 2nd IFIP/IEEE International Symposium on, pages 166 –173, june2008. (Cited on page 158.)
[Dwyer et al. 1998] Matthew B. Dwyer, George S. Avrunin and James C. Corbett.

Property specification patterns for finite-state verification. In Proceedings ofthe second workshop on Formal methods in software practice, FMSP ’98, pages7–15, New York, NY, USA, 1998. ACM. (Cited on page 24.)
[Ellis & Nutt 1980] Clarence A. Ellis and Gary J. Nutt. Office Information Systems

and Computer Science. ACM Comput. Surv., vol. 12, pages 27–60, March 1980.(Cited on page 2.)
[Ellis & Nutt 1996] Clarence A Ellis and Gary J Nutt. Workflow: The Process Spec-

trum. In AmitEditor Sheth, editor, Proceedings of the NSF Workshop on Work-flow and Process Automation in Information Systems, pages 140–145, 1996.(Cited on page 2.)
[Ellis et al. 1995] Clarence Ellis, Karim Keddara and Grzegorz Rozenberg. Dynamicchange within workflow systems, pages 10–21. ACM Press, 1995. (Cited onpage 55.)
[Ellis 1979] Clarence A. Ellis. Information Control Nets: A Mathematical Model of

Office Information Flow. Proceedings of the Conference on Simulation, Mea-surement and Modeling of Computer Systems, ACM SIGMETRICS PerformanceEvaluation Review, vol. 8, no. 3, pages 225–240, 1979. (Cited on page 2.)
[Eshuis & Wieringa 2004] R. Eshuis and R. Wieringa. Tool support for verifying UML

activity diagrams. Software Engineering, IEEE Transactions on, vol. 30, no. 7,pages 437 – 447, july 2004. (Cited on page 157.)
[Eshuis 2002] H. Eshuis. Semantics and Verification of UML Activity Diagrams for

Workflow Modelling. PhD thesis, Univ. of Twente, November 2002. CTIT Ph.D.-thesis series No. 02-44. (Cited on pages 5 and 157.)
[Exformatics 2009] Exformatics, 2009. http://exformatics.dk/. (Cited on page 197.)
[Fahland 2007] Dirk Fahland. Towards Analyzing Declarative Workflows. In Au-tonomous and Adaptive Web Services, 2007. (Cited on page 123.)
[Fdhila & Godart 2009] Walid Fdhila and Claude Godart. Toward synchronization

between decentralized orchestrations of composite web services. In Collabo-rateCom’09, pages 1–10, 2009. (Cited on page 122.)
[Fdhila et al. 2009] Walid Fdhila, Ustun Yildiz and Claude Godart. A flexible approach

for automatic process decentralization using dependency tables. InternationalConference on Web Services, 2009. (Cited on page 122.)

http://exformatics.dk/

Bibliography 241

[Feder et al. 1999] G. Feder, M. Eccles, R. Grol, C. Griffiths and J. Grimshaw. Clinical
guidelines: using clinical guidelines. BMJ, vol. 318, pages 728–730, 1999. (Citedon page 37.)

[Fernandes et al. 1997] Alvaro A. A. Fernandes, M. Howard Williams and Norman W.Paton. A logic-based integration of active and deductive databases. New Gen.Comput., vol. 15, no. 2, pages 205–244, 1997. (Cited on pages 6 and 51.)
[Ferrara 2004] Andrea Ferrara. Web Services: A Process Algebra Approach. Pro-ceedings of the 2nd international conference on Service oriented computing,pages 242–251, 2004. (Cited on page 158.)
[Field & Lohr 1992] M. J. Field and K. N. Lohr. Guidelines for Clinical Practice: From

Development to Use, 1992. (Cited on page 30.)
[Fournet et al. 2004] Cedric Fournet, Tony Hoare, Sriram Rajamani and Jakob Rehof.

Stuck-Free Conformance. In Rajeev Alur and Doron Peled, editors, ComputerAided Verification, volume 3114 of Lecture Notes in Computer Science, pages314–317. Springer Berlin / Heidelberg, 2004. (Cited on pages 157 and 183.)
[Fu et al. 2004a] Xiang Fu, Tevfik Bultan and Jianwen Su. Analysis of interacting

BPEL web services. In Proceedings of the 13th international conference onWorld Wide Web, WWW ’04, pages 621–630, New York, NY, USA, 2004. ACM.(Cited on page 158.)
[Fu et al. 2004b] Xiang Fu, Tevfik Bultan and Jianwen Su. Realizability of Conversa-

tion Protocols With Message Contents. In Proceedings of the IEEE InternationalConference on Web Services, ICWS ’04, pages 96–, Washington, DC, USA, 2004.IEEE Computer Society. (Cited on pages 121 and 122.)
[Gabbay 1987] Dov M. Gabbay. The Declarative Past and Imperative Future: Exe-

cutable Temporal Logic for Interactive Systems. In Temporal Logic in Specifi-cation, pages 409–448, London, UK, 1987. Springer-Verlag. (Cited on pages 25and 27.)
[Georgakopoulos et al. 1995] Diimitrios Georgakopoulos, Mark Hornick and AmitSheth. An Overview of Workflow Management: From Process Modeling

to Workflow Automation Infrastructure. In DISTRIBUTED AND PARALLELDATABASES, pages 119–153, 1995. (Cited on page 3.)
[Gerede & Su 2007] Cagdas E. Gerede and Jianwen Su. Specification and Verifica-

tion of Artifact Behaviors in Business Process Models. In Proceedings of the5th international conference on Service-Oriented Computing, ICSOC ’07, pages181–192, Berlin, Heidelberg, 2007. Springer-Verlag. (Cited on pages 4 and 159.)
[Gerede et al. 2007] C.E. Gerede, K. Bhattacharya and Jianwen Su. Static Analysis of

Business Artifact-centric Operational Models. In Service-Oriented Computing

242 Bibliography

and Applications, 2007. SOCA ’07. IEEE International Conference on, pages 133–140, june 2007. (Cited on pages 4 and 159.)
[Gerth et al. 1995] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den DolechEindhoven, D. Peled, M. Y. Vardi and Pierre Wolper. Simple On-the-fly Auto-

matic Verification of Linear Temporal Logic. In In Protocol Specification Testingand Verification, pages 3–18. Chapman & Hall, 1995. (Cited on page 180.)
[Gerth et al. 1996] Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper. Simple

on-the-fly automatic verification of linear temporal logic. In Proceedings ofthe Fifteenth IFIP WG6.1 International Symposium on Protocol Specification,Testing and Verification XV, pages 3–18, London, UK, UK, 1996. Chapman &Hall, Ltd. (Cited on pages 39 and 41.)
[Grimshaw et al. 2004] J.M. Grimshaw, R.E. Thomas, G. MacLennan, C. Fraser, C.R.Ramsay, L. Vale, P. Whitty, M.P. Eccles, L. Matowe, L. Shirran, M. Wensing,R. Dijkstra and C. Donaldson. Effectiveness and efficiency of guideline dis-

semination and implementation strategies. Health Technol Assess 8, vol. iii-iv,pages 1–72, 2004. (Cited on page 30.)
[Grol & Grimshaw 2003] R. Grol and J. Grimshaw. From best evidence to best practice:

effective implementation of change in patients’ care. The Lancet, vol. 362, pages1225–1230, 2003. (Cited on pages 29 and 37.)
[Guelfi & Mammar 2005] Nicolas Guelfi and Amel Mammar. A Formal Semantics of

Timed Activity Diagrams and its PROMELA Translation. In APSEC’2005: AsiaPacific Software Engineering Conference. IEEE Computer Society Press, 2005.(Cited on pages 157 and 159.)
[Guelfi et al. 2004] Nicolas Guelfi, Amel Mammar and Benoît Ries. A Formal Ap-

proach for the Specification and the Verification of UML Structural Properties:
Application to E-Business Domain. In International Workshop on SoftwareVerification and Validation (SVV 2004), workshop of ICFEM’04. IEEE ComputerSociety, 2004. (Cited on pages 157 and 159.)

[Hammer & Champy 1993] Michael Hammer and James Champy. Reengineering thecorporation: A manifesto for business revolution, volume 5. Harper Business,1993. (Cited on page 2.)
[Hammer 1990] Michael Hammer. Reengineering Work: Don’t Automate, Obliterate.Harvard Business Review, vol. 68, pages 104–112, 1990. (Cited on page 2.)
[Harmon 2007] P. Harmon. Business process change: a guide for business managersand bpm and six sigma professionals. The MK/OMG Press. Elsevier/MorganKaufmann Publishers, 2007. (Cited on pages 2 and 3.)

Bibliography 243

[Havelund et al. 1998] Klaus Havelund, Mike Lowry and John Penix. Formal Analysis
of a Space Craft Controller using SPIN. In In Proceedings of the 4th SPINworkshop, 1998. (Cited on page 159.)

[Hee et al. 2004] Kees Van Hee, Natalia Sidorova and Marc Voorhoeve. Generalised
Soundness of Workflow Nets Is Decidable. Applications and Theory of PetriNets 2004, vol. 3099, page 197Ű215, 2004. (Cited on page 55.)

[Heinl et al. 1999] Petra Heinl, Stefan Horn, Stefan Jablonski, Jens Neeb, Katrin Steinand Michael Teschke. A Comprehensive Approach to Flexibility in Workflow
Management Systems. In Proceedings of WACC ’99, pages 79–88. ACM Press,1999. (Cited on page 200.)

[Heljanko & Stefanescu 2005] Keijo Heljanko and Alin Stefanescu. Complexity Re-
sults for Checking Distributed Implementability. In Proceedings of the Fifth In-ternational Conference on Application of Concurrency to System Design, pages78–87, 2005. (Cited on pages 122 and 123.)

[Hildebrandt & Mukkamala 2010] Thomas T. Hildebrandt and Raghava Rao Mukka-mala. Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs. In Kohei Honda and Alan Mycroft, editors, PLACES, vol-ume 69 of EPTCS, pages 59–73, 2010. (Cited on pages 51 and 189.)

[Hildebrandt & Mukkamala 2011] Thomas Hildebrandt and Raghava Rao Mukka-mala. Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs. In Post proceedings of International Workshop on Program-ming Language Approaches to Concurrency and Communication-cEntric Soft-ware (PLACES 10), 2011. (Cited on page 51.)

[Hildebrandt & Sassone 1996] Thomas Hildebrandt and Vladimiro Sassone. Compar-
ing transition systems with independence and asynchronous transition sys-
tems. In Ugo Montanari and Vladimiro Sassone, editors, CONCUR ’96: Con-currency Theory, volume 1119 of Lecture Notes in Computer Science, pages84–97. Springer Berlin / Heidelberg, 1996. (Cited on page 200.)

[Hildebrandt et al. 2011a] Thomas Hildebrandt, Raghava Rao Mukkamala and TijsSlaats. Declarative Modelling and Safe Distribution of Healthcare Workflows.In International Symposium on Foundations of Health Information Engineeringand Systems, Johannesburg, South Africa, August 2011. (Cited on page 199.)
[Hildebrandt et al. 2011b] Thomas Hildebrandt, Raghava Rao Mukkamala and TijsSlaats. Designing a Cross-organizational Case Management System using

Dynamic Condition Response Graphs. In Proceedings of IEEE InternationalEDOC Conference, 2011. (Cited on page 60.)
[Hildebrandt et al. 2011c] Thomas Hildebrandt, Raghava Rao Mukkamala and TijsSlaats. Nested Dynamic Condition Response Graphs. In Proceedings of Fun-

244 Bibliography

damentals of Software Engineering (FSEN), April 2011. (Cited on pages 60, 93and 150.)
[Hildebrandt et al. 2011d] Thomas Hildebrandt, Raghava Rao Mukkamala and TijsSlaats. Safe Distribution of Declarative Processes. In 9th International Confer-ence on Software Engineering and Formal Methods (SEFM) 2011, 2011. (Citedon pages 145 and 152.)
[Hildebrandt 2008] Thomas Hildebrandt. Trustworthy Pervasive Healthcare Pro-

cesses (TrustCare) Research Project. Webpage, 2008. http://www.trustcare.
dk/. (Cited on pages 10 and 17.)

[Hildebrandt 2010] Thomas Hildebrandt. Interest Group for Processes and IT. Web-page, 2010. http://www.infinit.dk/dk/interessegrupper/processer_og_
it/. (Cited on page 13.)

[Hill et al. 2006] Janelle B Hill, Jim Sinur, David Flint and Michael James Melen-ovsky. GartnerŠs Position on Business Process Management , 2006. ReVision,no. February, 2006. (Cited on page 1.)
[Hinz et al. 2005] Sebastian Hinz, Karsten Schmidt and Christian Stahl. Transforming

BPEL to Petri Nets. In Proceedings of the International Conference on BusinessProcess Management (BPM2005), volume 3649 of Lecture Notes in ComputerScience, pages 220–235. Springer-Verlag, 2005. (Cited on page 158.)
[Hofstede et al. 2010] Arthur H M Hofstede, Wil M P Aalst, Michael Adams andNickEditors Russell, editors. Modern business process automation. Springer-Verlag, 2010. (Cited on page 5.)
[Holzmann 1997] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw.Eng., vol. 23, pages 279–295, May 1997. (Cited on pages 157, 159, 165, 166and 180.)
[Holzmann 2004] Gerard J. Holzmann. Spin model checker, the: Primer and referencemanual. Addison-Wesley Professional, 2004. (Cited on pages 157, 159, 165, 166and 201.)
[Hull et al. 2011a] Richard Hull, Elio Damaggio, Riccardo De Masellis, FabianaFournier, Manmohan Gupta, Fenno Terry Heath III, Stacy Hobson, Mark Line-han, Sridhar Maradugu, Anil Nigam, Piwadee Noi Sukaviriya and Roman Va-culin. Business artifacts with guard-stage-milestone lifecycles: managing ar-

tifact interactions with conditions and events. In Proceedings of the 5th ACMinternational conference on Distributed event-based system, DEBS ’11, pages51–62, New York, NY, USA, 2011. ACM. (Cited on pages 56, 113 and 202.)
[Hull et al. 2011b] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta,Fenno Heath, Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam,

http://www.trustcare.dk/
http://www.trustcare.dk/
http://www.infinit.dk/dk/interessegrupper/processer_og_it/
http://www.infinit.dk/dk/interessegrupper/processer_og_it/

Bibliography 245

Piyawadee Sukaviriya and Roman Vaculin. Introducing the Guard-Stage-
Milestone Approach for Specifying Business Entity Lifecycles. In Mario Bravettiand Tevfik Bultan, editors, Web Services and Formal Methods, volume 6551 of
Lecture Notes in Computer Science, pages 1–24. Springer Berlin / Heidelberg,2011. (Cited on pages xv, 56, 202 and 203.)

[Janssen et al. 1998] Wil Janssen, Radu Mateescu, Sjouke Mauw and Jan Spring-intveld. Verifying Business Processes using SPIN. In Proceedings of the 4thInternational SPIN Workshop, pages 21–36, 1998. (Cited on page 159.)
[Karamanolis et al. 2000] C. Karamanolis, D. Giannakopoulou, J. Magee and S.M.Wheater. Model checking of workflow schemas. In Enterprise DistributedObject Computing Conference, 2000. EDOC 2000. Proceedings. Fourth Interna-tional, pages 170 –179, 2000. (Cited on page 158.)
[Kesten et al. 1996] Yonit Kesten, Zohar Manna and Amir Pnueli. Verification of

Clocked and Hybrid Systems. In European Educational Forum: School onEmbedded Systems’96, pages 4–73. Springer-Verlag, 1996. (Cited on page 157.)
[Khalaf & Leymann 2006] R. Khalaf and F. Leymann. Role-based Decomposition of

Business Processes using BPEL. In Web Services, 2006. ICWS ’06. InternationalConference on, pages 770 –780, sept. 2006. (Cited on page 122.)
[Kilov 2002] Haim Kilov. Business models: A guide for business and it. Prentice Hall;,2002. (Cited on page 1.)
[Kindler et al. 2000] Ekkart Kindler, Axel Martens and Wolfgang Reisig. Inter-

operability of Workflow Applications: Local Criteria for Global Soundness. InBusiness Process Management, Models, Techniques, and Empirical Studies,pages 235–253, London, UK, 2000. Springer-Verlag. (Cited on page 121.)
[Knapp et al. 2002] Alexander Knapp, Stephan Merz and Christopher Rauh. Model

Checking - Timed UML State Machines and Collaborations. In Proceedingsof the 7th International Symposium on Formal Techniques in Real-Time andFault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, FTRTFT ’02, pages395–416, London, UK, UK, 2002. Springer-Verlag. (Cited on page 158.)
[Kohn et al. 2000] L.T. Kohn, J.M. Corrigan and M.S Donaldson. To err is human.building a safer health system. National Academic Press, Washington DC,2000. (Cited on pages 29 and 37.)
[Kowalski 1992] Robert Kowalski. Database updates in the event calculus. J. Log.Program., vol. 12, no. 1-2, pages 121–146, 1992. (Cited on page 55.)
[Krukow et al. 2008] Karl Krukow, Mogens Nielsen and Vladimiro Sassone. A logical

framework for history-based access control and reputation systems. J. Comput.Secur., vol. 16, pages 63–101, January 2008. (Cited on page 48.)

246 Bibliography

[Laroussinie et al. 2002] F. Laroussinie, N. Markey and Ph. Schnoebelen. Temporal
logic with forgettable past. In Proceedings of 17th IEEE Symp. Logic in Com-puter Science (LICS’2002), pages 383–392, Copenhagen, Denmark, July 20022002. IEEE Computer Society Press. (Cited on page 25.)

[Larsen & Thomsen 1988] K.G. Larsen and B. Thomsen. A modal process logic. InLogic in Computer Science, 1988. LICS ’88., Proceedings of the Third AnnualSymposium on, pages 203 –210, jul 1988. (Cited on page 206.)
[Larsen et al. 1997] Kim G. Larsen, Paul Pettersson and Wang Yi. UPPAAL in a

Nutshell, 1997. (Cited on page 158.)
[Latella & Massink 2001] D. Latella and M. Massink. A formal testing framework for

UML statechart diagrams behaviours: from theory to automatic verification. InHigh Assurance Systems Engineering, 2001. Sixth IEEE International Sympo-sium on, pages 11 –22, 2001. (Cited on page 157.)
[Latella et al. 1999] Diego Latella, Istvan Majzik and Mieke Massink. Automatic Ver-

ification of a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker. Formal Aspects of Computing, vol. 11, no. 6, pages 637–664,December 1999. (Cited on page 157.)

[Lenz & Reichert 2007] Richard Lenz and Manfred Reichert. IT support for healthcare
processes - premises, challenges, perspectives. Data Knowl. Eng., vol. 61, no. 1,pages 39–58, 2007. (Cited on pages 29 and 37.)

[Levitt 1960] Theodore Levitt. Marketing myopia. 1960. Harvard Business Review,vol. 82, no. 7-8, pages 138–49, 1960. (Cited on page 2.)
[Lilius & Paltor 1999] J. Lilius and I.P. Paltor. vUML: a tool for verifying UML models.In Automated Software Engineering, 1999. 14th IEEE International Conferenceon., pages 255 –258, oct 1999. (Cited on page 158.)
[Liu et al. 2007] Rong Liu, Kamal Bhattacharya and Frederick Wu. Modeling Busi-

ness Contexture and Behavior Using Business Artifacts. In John Krogstie, An-dreas Opdahl and Guttorm Sindre, editors, Advanced Information Systems En-gineering, volume 4495 of Lecture Notes in Computer Science, pages 324–339.Springer Berlin / Heidelberg, 2007. (Cited on pages 56 and 159.)
[Lyng et al. 2008] Karen Marie Lyng, Thomas Hildebrandt and Raghava Rao Mukka-mala. From Paper Based Clinical Practice Guidelines to Declarative Work-

flow Management. In Proceedings of 2nd International Workshop on Process-oriented information systems in healthcare (ProHealth 08), pages 36–43, Milan,Italy, 2008. BPM 2008 Workshops. (Cited on pages 7, 18, 52, 53, 73, 89, 91, 92,148, 155 and 199.)

Bibliography 247

[Martens 2005] Axel Martens. Analyzing Web Service Based Business Processes. InFundamental Approaches to Software Engineering. Springer Berlin / Heidel-berg, 2005. (Cited on page 121.)
[M.Clarke et al. 1999] Edmund M.Clarke, Orna Grumberg and Doron A.Peled. Modelchecking. MIT Press, 1999. (Cited on pages 5, 24 and 41.)
[McNaughton 1966] Robert McNaughton. Testing and generating infinite sequences

by a finite automaton. Information and Control, vol. 9, no. 5, pages 521–530,1966. (Cited on page 89.)
[Microsoft-Research 2010] Microsoft-Research. Zing Model Checker. Webpage,2010. http://research.microsoft.com/en-us/projects/zing/. (Cited onpage 16.)
[Milosevic et al. 2006] Zoran Milosevic, Shazia Sadiq and Maria Orlowska. Towards

a Methodology for Deriving Contract-Compliant Business Processes. In Busi-ness Process Management, volume 4102 of Lecture Notes in Computer Science,pages 395–400. Springer Berlin / Heidelberg, 2006. (Cited on page 122.)
[Mimnagh & Murphy. 2004] C. Mimnagh and M. Murphy. Junior doctors working pat-

terns: application of knowledge management theory to junior doctors training.In Proc. of the conf. on current perspectives in healthcare computing, pages42–47. Harrogate, 2004. (Cited on page 38.)
[Mitra et al. 2008] Saayan Mitra, Ratnesh Kumar and Samik Basu. Optimum Decen-

tralized Choreography for Web Services Composition. In Proceedings of the2008 IEEE International Conference on Services Computing - Volume 2, 2008.(Cited on page 122.)
[Mohan et al. 1995] C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Guenthoerand M. Kamath. Exotica: a project on advanced transaction management and

workflow systems. SIGOIS Bull., vol. 16, pages 45–50, August 1995. (Cited onpage 123.)
[Montali 2010] Marco Montali. Specification and verification of declarative open in-teraction models: A logic-based approach, volume 56 of Lecture Notes in Busi-

ness Information Processing. Springer, 2010. (Cited on page 123.)
[Morimoto 2008] Shoichi Morimoto. A Survey of Formal Verification for Business Pro-

cess Modeling. New York, vol. 5102, pages 514–522, 2008. (Cited on page 158.)
[Mukkamala & Hildebrandt 2010] Raghava Rao Mukkamala and Thomas Hilde-brandt. From Dynamic Condition Response Structures to Büchi Automata. InProceedings of 4th IEEE International Symposium on Theoretical Aspects ofSoftware Engineering (TASE 2010), August 2010. (Cited on pages 51 and 189.)

http://research.microsoft.com/en-us/projects/zing/

248 Bibliography

[Mukkamala et al. 2008] Raghava Rao Mukkamala, Thomas Hildebrandt andJanus Boris Tøth. The Resultmaker Online Consultant: From Declarative Work-
flow Management in Practice to LTL. In Proceeding of DDBP, 2008. (Cited onpages 7, 18, 52, 53 and 89.)

[Mukund & Nielsen 1992] Madhavan Mukund and Mogens Nielsen. CCS, locations
and asynchronous transition systems. In Rudrapatna Shyamasundar, editor,Foundations of Software Technology and Theoretical Computer Science, volume652 of Lecture Notes in Computer Science, pages 328–341. Springer Berlin /Heidelberg, 1992. (Cited on page 200.)

[Mukund 2002] M. Mukund. From Global Specifications to Distributed Implementa-
tions. In Synthesis and Control of Discrete Event Systems. Springer, 2002.(Cited on page 122.)

[Mulyar et al. 2007] N. Mulyar, M. Pesic, W.M. van der Aalst and M. Peleg. Towards
the Flexibility in Clinical Guideline Modelling Languages. BPM Center Report(Ext. rep. BPM-07-04)., vol. 8, 2007. (Cited on page 29.)

[Nanda et al. 2004] Mangala Gowri Nanda, Satish Chandra and Vivek Sarkar. De-
centralizing execution of composite web services. SIGPLAN Not., vol. 39, pages170–187, October 2004. (Cited on page 122.)

[Narayanan & McIlraith 2002] Srini Narayanan and Sheila A. McIlraith. Simulation,
verification and automated composition of web services. In Proceedings of the11th international conference on World Wide Web, WWW ’02, pages 77–88,New York, NY, USA, 2002. ACM. (Cited on page 158.)

[Nielsen et al. 1979] Mogens Nielsen, Gordon Plotkin and Glynn Winskel. Petri nets,
event structures and domains. In Gilles Kahn, editor, Semantics of ConcurrentComputation, volume 70 of Lecture Notes in Computer Science, pages 266–284.Springer Berlin / Heidelberg, 1979. 10.1007/BFb0022474. (Cited on pages 43and 53.)

[Nigam & Caswell 2003] A. Nigam and N. S. Caswell. Business artifacts: An approach
to operational specification. IBM Syst. J., vol. 42, pages 428–445, July 2003.(Cited on pages 56 and 159.)

[OASIS WSBPEL Technical Committee 2007] OASIS WSBPEL Technical Committee.
Web Services Business Process Execution Language, Version 2.0, 2007. http:
//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. (Cited onpages 5, 122 and 158.)

[Object Management Group BPMN Technical Committee 2011] Object ManagementGroup BPMN Technical Committee. Business Process Model and Notation, Ver-
sion 2.0. Webpage, january 2011. http://www.omg.org/spec/BPMN/2.0/PDF.(Cited on pages 5 and 158.)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/BPMN/2.0/PDF

Bibliography 249

[OMG 2007] OMG. OMG Unified Modeling Language Infrastructure, Version
2.1.2. Webpage, November 2007. http://www.omg.org/spec/UML/2.1.2/
Infrastructure/PDF. (Cited on page 5.)

[Orlikowski & Gash 1994] Wanda J. Orlikowski and Debra C. Gash. Technological
frames: making sense of information technology in organizations. ACM Trans.Inf. Syst., vol. 12, no. 2, pages 174–207, April 1994. (Cited on page 38.)

[Paul et al. 1997] Santanu Paul, Edwin Park and Jarir Chaar. RainMan: a workflow
system for the internet. In Proceedings of the USENIX Symposium on InternetTechnologies and Systems on USENIX Symposium on Internet Technologiesand Systems, 1997. (Cited on page 123.)

[Pesic et al. 2007] M. Pesic, H. Schonenberg and W.M.P. van der Aalst. DECLARE:
Full Support for Loosely-Structured Processes. In Proceedings of the 11th IEEEInternational Enterprise Distributed Object Computing Conference, pages 287–.IEEE Computer Society, Washington, DC, USA, 2007. (Cited on pages 40, 41and 53.)

[Pesic 2008] Maja Pesic. Constraint-Based Workflow Management Systems: Shifting
Control to Users. PhD thesis, Eindhoven University of Technology, Netherlands,2008. (Cited on pages 7, 8 and 52.)

[Petri 1977] C.A. Petri. Non-sequential processes: translation of a lecture given atthe immd jubilee colloquium on "parallelism in computer science", universityof erlngen-nürnberg, june 1976. GMD-ISF report. GMD, Ges. für Math. undDatenverarb., 1977. (Cited on page 43.)
[Petri 1980] C. A. Petri. Introduction to General Net Theory. In Proceedings of theAdvanced Course on General Net Theory of Processes and Systems: Net The-ory and Applications, pages 1–19, London, UK, 1980. Springer-Verlag. (Citedon page 43.)
[Pnueli 1977] A. Pnueli. The temporal logic of programs. In Proceedings of 18th IEEEFOCS, pages 46–57, 1977. (Cited on pages 15, 17, 24, 40, 167 and 195.)
[Porres 2001] I. Porres. Modeling and Analyzing Software Behavior in UML. PhDthesis, TUCS Turku Centre for Computer Science, 2001. (Cited on page 157.)
[Quaglini et al. 2001] S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso and S. Pan-zarasa. Flexible guideline-based patient careflow systems. Artif Intell Med .,vol. 22, pages 65–80, 2001. (Cited on page 29.)
[Ranno & Shrivastava 1999] F. Ranno and S. K. Shrivastava. A Review of Distributed

Workflow Management Systems. In Proceedings of the international joint con-ference on Work activities coordination and collaboration, 1999. (Cited onpage 123.)

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

250 Bibliography

[Reddy et al. 2001] Madhu C. Reddy, Paul Dourish and A. Pratt. Coordinating Het-
erogeneous Work: Information and Representation in Medical Care. In In Prinzet al, pages 239–258. Kluwer Academic Publishers, 2001. (Cited on page 37.)

[Reichert & Bauer 2007] Manfred Reichert and Thomas Bauer. Supporting Ad-Hoc
Changes in Distributed Workflow Management Systems. In Robert Meersmanand Zahir Tari, editors, On the Move to Meaningful Internet Systems 2007:CoopIS, DOA, ODBASE, GADA, and IS, volume 4803 of Lecture Notes in Com-
puter Science, pages 150–168. Springer Berlin / Heidelberg, 2007. (Cited onpage 123.)

[Reichert & Dadam 1997] Manfred Reichert and Peter Dadam. A Framework for Dy-
namic Changes in Workflow Management Systems. In in ‘Proceedings, 8th Int’lConference on Database and Expert Systems Applications (DEXA-97, pages42–48. IEEE Computer Society Press, 1997. (Cited on page 6.)

[Reichert & Dadam 1998] M Reichert and P Dadam. ADEPTflex: Supporting Dy-
namic Changes of Workflow without Loosing Control. Journal of IntelligentInformation Systems, vol. 10, pages 93–129, 1998. (Cited on page 55.)

[Reichert et al. 2003] Manfred Reichert, Stefanie Rinderle and Peter Dadam. ADEPT
Workflow Management System Flexible Support for Enterprise-Wide Business
Processes - Tool Presentation -. In Proc. 1st Int’l Conf. on Business ProcessManagement (BPM ’03), number 2678 of LNCS, pages 371–379. Springer, June2003. (Cited on page 55.)

[Reichert et al. 2009] M. U. Reichert, T. Bauer and P. Dadam. Flexibility for Dis-
tributed Workflows. In Handbook of Research on Complex Dynamic ProcessManagement: Techniques for Adaptability in Turbulent Environments, pages137–171. IGI Global, Hershey, PA, 2009. (Cited on page 123.)

[Reisig 1991] Wolfgang Reisig. Petri nets and algebraic specifications. Theor. Comput.Sci., vol. 80, pages 1–34, March 1991. (Cited on page 158.)
[Resultmaker 2008] Resultmaker, 2008. http://www.resultmaker.com/. (Cited onpage 195.)
[Rinderle et al. 2003] Stefanie Rinderle, Manfred Reichert and Peter Dadam. Evalua-

tion of Correctness Criteria for Dynamic Workflow Changes. German Research,pages 41–57, 2003. (Cited on page 55.)
[Rinderle et al. 2004] Stefanie Rinderle, Manfred Reichert and Peter Dadam. Cor-

rectness criteria for dynamic changes in workflow systemsŰŰa survey. Data &Knowledge Engineering, vol. 50, no. 1, pages 9–34, 2004. (Cited on page 55.)
[Rinderle et al. 2006] Stefanie Rinderle, Andreas Wombacher and Manfred Reichert.

Evolution of Process Choreographies in DYCHOR. In On the Move to Meaningful

http://www.resultmaker.com/

Bibliography 251

Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4275 of
LNCS, pages 273–290. Springer, 2006. (Cited on pages 121 and 122.)

[Rummler & Brache 1990] G A Rummler and A P Brache. How to Manage the White
Space on the Organization Chart. JosseyBass Inc California USA, 1990. (Citedon page 2.)

[Rummler & Brache 1995] Geary A Rummler and Alan P Brache. Improving perfor-mance: How to manage the white space on the organization chart. Jossey-BassPublishers, 1995. (Cited on page 2.)
[Russel & Ter Hofstede 2009] Nick Russel and Arthur H M Ter Hofstede. new YAWL:

Towards Workflow 2.0. Transactions on Petri Nets and Other Models of Con-currency II, vol. 5460/2009, pages 79–97, 2009. (Cited on page 3.)
[Sadiq et al. 2001] Shazia W Sadiq, Wasim Sadiq and Maria E Orlowska. Pockets of

flexibility in workflow specification. Science, vol. 2224, pages 513–526, 2001.(Cited on page 56.)
[Sadiq et al. 2006] W. Sadiq, S. Sadiq and K. Schulz. Model Driven Distribution of

Collaborative Business Processes. In Services Computing, 2006. SCC ’06. IEEEInternational Conference on, pages 281 –284, sept. 2006. (Cited on page 122.)
[Salaun et al. 2004] G Salaun, L Bordeaux and M Schaerf. Describing and reason-

ing on web services using process algebra. Proceedings IEEE InternationalConference on Web Services 2004, vol. 1, no. 2, pages 43–50, 2004. (Cited onpage 158.)
[Sara & Aguilar-Saven 2004] Ruth Sara and Aguilar-Saven. Business process mod-

elling: Review and framework. International Journal of Production Economics,vol. 90, no. 2, pages 129 – 149, 2004. (Cited on pages 1 and 2.)
[Saunders-Evans & Winskel 2007] Lucy Saunders-Evans and Glynn Winskel. Event

Structure Spans for Nondeterministic Dataflow. Electron. Notes Theor. Comput.Sci., vol. 175, pages 109–129, June 2007. (Cited on page 48.)
[Scheer 1998] August-Wilhelm W. Scheer. Aris-business process frameworks.Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2nd édition, 1998. (Citedon page 5.)
[Scott 1970] D Scott. Outline of a mathematical theory of computation. Fourth AnnualPrinceton Conference on Information Sciences and Systems, pages 169–176,1970. (Cited on page 43.)
[Scott 1976] D Scott. Data Types as Lattices. SIAM Journal on Computing, vol. 5,no. 3, pages 522–587, 1976. (Cited on page 43.)
[Scott 1982] Dana S Scott. Domains for Denotational Semantics. Automata languagesand programming, no. 140, pages 577–610, 1982. (Cited on page 43.)

252 Bibliography

[Senkul et al. 2002] Pinar Senkul, Michael Kifer and Ismail H. Toroslu. A Logical
Framework for Scheduling Workflows Under Resource Allocation Constraints.In In VLDB, pages 694–705, 2002. (Cited on pages 7, 52 and 55.)

[Shojania et al. 2007] K. G. Shojania, M. Sampson, M. T. Ansari, J. Ji, S. Doucetteand D. Moher. How quickly do systematic reviews go out of date? A survival
analysis. Ann Intern Med, vol. 147, no. 4, pages 224–233, August 2007. (Citedon page 29.)

[Shrivastava et al. 1998] Wheater Shrivastava, S. M. Wheater, S. K. Shrivastava andF. Ranno. A CORBA Compliant Transactional Workflow System for Internet
Applications. In Proc. Of IFIP Intl. Conference on Distributed Systems Platformsand Open Distributed Processing, Middleware 98, pages 1–85233. Springer-Verlag, 1998. (Cited on page 123.)

[Sim et al. 2001] I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan,H. Lehmann and P. C. Tang. Clinical decision support systems for the prac-
tice of evidence-based medicine. J Am Med Inform Assoc, vol. 8, no. 6, pages527–534, 2001. (Cited on page 37.)

[Singh et al. 1995] Munindar P. Singh, Greg Meredith, Christine Tomlinson andPaul C. Attie. An Event Algebra for Specifying and Scheduling Workflows.In Proceedings of DASFAA, pages 53–60. World Scientific Press, 1995. (Citedon pages 7 and 52.)
[Sistla et al. 1983] A.P. Sistla, M. Vardi and P. Wolper. Reasoning about infinite com-

putation paths. In Proceedings of 24th IEEE FOCS, pages 185–194, 1983. (Citedon pages 24 and 25.)
[Slaats 2009] Tijs Slaats. Workflow and business process execution based on tempo-ral logic models. Master’s thesis, IT University of Copenhagen, Denmark, 2009.(Cited on page 39.)
[Spin 2007] Spin. Basic Spin Manual. http://spinroot.com/spin/Man/Manual.

html, 2007. (Cited on pages 16, 157, 166 and 170.)
[Spin 2008] Spin. ON-THE-FLY, LTL MODEL CHECKING with SPIN. Webpage, 2008.

http://spinroot.com/spin/whatispin.html. (Cited on pages 16, 157, 159,165 and 166.)
[Strong & Miller 1995] Diane M. Strong and Steven M. Miller. Exceptions and ex-

ception handling in computerized information processes. ACM Trans. Inf. Syst.,vol. 13, pages 206–233, April 1995. (Cited on page 6.)
[ter Hofstede et al. 2003] Arthur ter Hofstede, Rob van Glabbeek and David Stork.

Query Nets: Interacting Workflow Modules That Ensure Global Termination.In Business Process Management. Springer Berlin / Heidelberg, 2003. (Citedon page 121.)

http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/whatispin.html

Bibliography 253

[Thorsen & Makela 1999] Thorkil Thorsen and Marjukka Makela, editors. Changingprofessional practice., volume Vol. 99.05. Danish Institute for Health ServicesResearch and Development, 1999. (Cited on page 37.)
[Uppaal-Group 2009] Uppaal-Group. Uppaal Model Checker. Webpage, 2009. http:

//www.uppaal.org/. (Cited on page 201.)
[van der Aalst & Pesic 2006a] Wil M.P van der Aalst and Maja Pesic. A Declarative

Approach for Flexible Business Processes Management. In Proceedings DPM2006, LNCS. Springer Verlag, 2006. (Cited on pages xiii, 7, 8, 9, 15, 17, 24, 25,39, 40, 41, 49, 52, 53, 54, 55, 90, 123 and 205.)
[van der Aalst & Pesic 2006b] Wil M.P van der Aalst and Maja Pesic. DecSerFlow:

Towards a Truly Declarative Service Flow Language. In M. Bravetti, M. Nunezand Gianluigi Zavattaro, editors, Proceedings of Web Services and FormalMethods (WS-FM 2006), volume 4184 of LNCS, pages 1–23. Springer Verlag,2006. (Cited on pages 15, 17, 24, 25, 30, 33, 39, 40, 41, 49, 53, 54, 55 and 123.)
[Van Der Aalst et al. 1997] W M P Van Der Aalst, D Hauschildt and H M W Verbeek.Petri-net-based tool to analyze workflows, pages 78–98. University of Hamburg(FBI-HH-B-205/97), 1997. (Cited on page 55.)
[van der Aalst et al. 2003] W.M.P. van der Aalst, A. H. M. Ter Hofstede and M. Weske.

Business Process Management: A Survey. In Proceedings of the 1st Interna-tional Conference on Business Process Management, volume 2678 of LNCS,pages 1–12. Springer-Verlag, 2003. (Cited on pages xiii, 1, 2, 3, 4, 5 and 6.)
[van der Aalst et al. 2009] Wil M. P. van der Aalst, Maja Pesic and Helen Schonen-berg. Declarative workflows: Balancing between flexibility and support. Com-puter Science - R&D, vol. 23, no. 2, pages 99–113, 2009. (Cited on pages 6, 7,9, 40, 41, 52, 53, 54, 55, 90, 200 and 205.)
[van der Aalst et al. 2010a] Wil van der Aalst, Maja Pesic, Helen Schonenberg,Michael Westergaard and Fabrizio M. Maggi. Declare. Webpage, 2010.

http://www.win.tue.nl/declare/. (Cited on pages 15, 17, 40, 49, 53 and 195.)
[van der Aalst et al. 2010b] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe,Christian Stahl and Karsten Wolf. Multiparty Contracts: Agreeing and Imple-

menting Interorganizational Processes. The Computer Journal, vol. 53, no. 1,pages 90–106, January 2010. (Cited on page 121.)
[van der Aalst 1999a] W. M. P. van der Aalst. Interorganizational Workflows: An Ap-

proach based on Message Sequence Charts and Petri Nets. Systems Analysis -Modelling - Simulation, vol. 34, no. 3, pages 335–367, 1999. (Cited on page 121.)
[van der Aalst 1999b] W. M. P. van der Aalst. Woflan: a Petri-net-based workflow

analyzer. Syst. Anal. Model. Simul., vol. 35, pages 345–357, May 1999. (Citedon page 158.)

http://www.uppaal.org/
http://www.uppaal.org/
http://www.win.tue.nl/declare/

254 Bibliography

[van der Aalst 2003] W.M.P. van der Aalst. Inheritance of Interorganizational Work-
flows: How to Agree to Disagree Without Loosing Control? Information Tech-nology and Management, vol. 4, pages 345–389, 2003. (Cited on page 121.)

[Vanderaalst et al. 2005] W Vanderaalst, M Weske and D Grunbauer. Case handling:
a new paradigm for business process support. Data & Knowledge Engineering,vol. 53, no. 2, pages 129–162, 2005. (Cited on page 55.)

[Vardi & Wolper 1986] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. In Symposium on Logic in Computer Science(LICS’86), pages 332–345, Washington, D.C., USA, June 1986. IEEE ComputerSociety Press. (Cited on pages 159, 165 and 166.)

[Verbeek & Aalst 2000] Eric Verbeek and Wil M P Van Der Aalst. Woflan 2.0: a petri-net-based workflow diagnosis tool, volume 1825, pages 475–484. Springer,2000. (Cited on page 55.)
[Verbeek & van der Aalst 2000] Eric Verbeek and Wil M. P. van der Aalst. Woflan

2.0: a Petri-net-based workflow diagnosis tool. In Proceedings of the 21stinternational conference on Application and theory of petri nets, ICATPN’00,pages 475–484, Berlin, Heidelberg, 2000. Springer-Verlag. (Cited on page 158.)
[Weske 2007] M. Weske. Business process management: Concepts, languages, archi-tectures. Springer, 2007. (Cited on page 1.)
[Westergaard 2011] Michael Westergaard. Better Algorithms for Analyzing and En-

acting Declarative Workflow Languages Using LTL. In Proc. of BPM, 2011.(Cited on page 42.)
[WfMC 1999] WfMC. Workflow Management Coalition Terminology & Glossary. Man-agement, vol. 39, no. 3, pages 1–65, 1999. http://www.wfmc.org/standards/

docs/TC-1011_term_glossary_v3.pdf. (Cited on page 3.)
[Winskel & Nielsen 1993] Glynn Winskel and Mogens Nielsen. Models for Concur-

rency. Technical Report DAIMI PB-463, Computer Science Department, AarhusUniversity, Denmark, 1993. (Cited on pages 43, 45 and 53.)
[Winskel & Nielsen 1995] Glynn Winskel and Mogens Nielsen. Models for Concur-

rency. In S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum, editors, Handbookof Logic and the Foundations of Computer Science, volume 4, chapter Modelsfor Concurrency, pages 1–148. Oxford University Press, Oxford, UK, 1995. (Citedon page 43.)
[Winskel 1982] Glynn Winskel. Event Structure Semantics for CCS and Related Lan-

guages. In Proceedings of the 9th Colloquium on Automata, Languages andProgramming, pages 561–576, London, UK, 1982. Springer-Verlag. (Cited onpage 48.)

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Bibliography 255

[Winskel 1986] Glynn Winskel. Event Structures. In Brauer et al. [Brauer et al. 1987],pages 325–392. (Cited on pages 15, 17, 43, 49, 53, 89 and 195.)
[Winskel 2011] Glynn Winskel. Events, Causality and Symmetry. The Computer Jour-nal, vol. 54, no. 1, pages 42–57, 2011. (Cited on page 43.)
[Wodtke & Weikum 1997] Dirk Wodtke and Gerhard Weikum. A Formal Foundation

for Distributed Workflow Execution Based on State Charts. In Proceedings ofthe 6th International Conference on Database Theory, pages 230–246, London,UK, 1997. Springer-Verlag. (Cited on page 121.)
[Workflow Management Coalition 1993] Workflow Management Coalition. Workflow

Management Coalition, 1993. http://www.wfmc.org/. (Cited on page 4.)
[Workflow Management Coalition 2008] Workflow Management Coalition. Process

Definition Interface - XML Process Definition Language. Webpage, Oc-tober 2008. http://www.wfmc.org/index.php?option=com_docman&task=
doc_download&Itemid=72&gid=132. (Cited on page 4.)

[Yi & Kochut 2004a] X. Yi and K.J Kochut. Process composition of web services with
complex conversation protocols. In Design, Analysis, and Simulation of Dis-tributed Systems Symposium at Adavanced Simulation Technology, 2004. (Citedon pages 121 and 122.)

[Yi & Kochut 2004b] Xiaochuan Yi and Krys Kochut. A CP-nets-based Design and
Verification Framework for Web Services Composition. In ICWS’04, pages 756–760, 2004. (Cited on page 158.)

[Zielonka 1987] W. Zielonka. Notes on finite asynchronous automata. InformatiqueThéorique et Applications, vol. 21(2), pages 99–135, 1987. (Cited on page 122.)
[Zisman 1977] M. D. Zisman. Representation, Specification and Automation of Office

Procedures. PhD thesis, Wharton School, University of Pennsylvania, 1977.(Cited on page 2.)

http://www.wfmc.org/
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&Itemid=72&gid=132
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&Itemid=72&gid=132

	Abstract
	Acknowledgments
	Contents
	List of Tables
	Listings
	List of Figures
	Introduction
	Brief Historical Perspective of Business Processes
	Business Process Management and IT
	BPM Standardization Approaches

	Why Formal Models?
	Motivation for Declarative Models
	Thesis Statement
	TrustCare Project
	Research Goal

	Thesis Outline
	List of Publications
	Chapters Outline

	Background
	Resultmaker Online Consultant - A Declarative Workflow
	Resultmaker Online Consultant - Formalization
	Case Study: Healthcare Workflow
	Preliminary conclusion to the case study
	Conclusion

	DECLARE: A Constraint Based Approach For Flexible Workflows
	Process Modeling
	Process Execution
	Conclusion

	Event Structures
	Introduction
	Event Structures, Configurations
	Conclusion

	Summary

	Dynamic Condition Response Graphs
	Motivation
	DCR Graphs as generalized Event Structures

	Related Work
	Dynamic Condition Response Graphs
	Condition Response Event Structures
	DCR Graphs - Formal Semantics
	Distributed Dynamic Condition Response Graphs
	Infinite runs - From DCR Graphs to Büchi-automata

	DCR Graphs - Graphical Notation
	Expressibility of DCR Graphs
	Büchi Automaton
	Encoding of Büchi Automaton into DCR Graphs - Example
	Bisimulation between büchi and DCR Graph
	Conclusion

	Summary

	Dynamic Condition Response Graphs - Extensions
	Nested Dynamic Condition Response Graphs
	Nested DCR Graphs by Healthcare Workflow Example
	Nested DCR Graphs - Formal Semantics
	Case Study: Case Management Example In Nested DCR Graphs

	Nested DCR Graphs with Sub Processes
	Formal definition of Nested DCR Graphs with sub processes
	Flattening of Nested DCR Graph with sub processes
	Execution Sematics of DCR Graphs with Subprocesses

	DCR Graphs with Data
	Nested DCR Graphs with Data
	Healthcare Example in DCR Graphs with Data

	Summary

	Distribution of DCR Graphs
	Introduction
	Related Work
	DCR Graphs - Projection and Composition
	Projection
	Composition
	Safe Distributed Synchronous Execution of DCR Graphs
	Distribution of Case Management Example

	Distribution of Nested DCR Graphs
	Projections
	Distributed Execution in Nested DCR Graphs
	Distribution of Healthcare Workflow

	Summary

	Formal Verification, Tools and Implementation
	Related Work
	Safety and Liveness for DCR Graphs
	Executions and Must Executions
	Safety Properties
	Liveness Properties

	Formal Verification using SPIN
	Brief overview of SPIN and PROMELA lanaguage
	Encoding DCR Graphs into PROMELA
	Verification of Safety Properties
	Verification of Liveness Properties

	Formal Verification using ZING
	Prototype Tools
	DCRG Process Engine
	Process Repository
	Windows-based Graphical Editor
	Web Client
	Model Checking Tool
	Serialization Format for DCR Graphs

	Summary

	Conclusion and Future Work
	Conclusion
	Contribution
	Future Work
	Extensions to Formal Model
	Relating to the other formal models

	Appendix PROMELA Code for Verification of Properties
	PROMELA Code for Deadlock Free Property
	PROMELA Code for Strongly Deadlock Free Property
	PROMELA Code for Liveness Property
	PROMELA Code for Strongly Liveness Property

	Appendix Zing Code for Give Medicine Example
	Bibliography

