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Abstract

As part of the long-standing drive for mathematical machinery to reason about
computer programs, we use the technique of denotational logical relations to prove
contextual equivalence of stateful programs. We propose the notion of approximate
locations to solve the non-trivial problem of existence and solve the fundamental
type-worlds circularity by metric-space theory. This approach scales to state-of-the-
art step-indexed techniques and permits unrestricted relational reasoning by the use
of so-called Bohr relations.

Along the way, we develop auxiliary theory; most notably a generalized version
of a classical fixed-point theorem for functors on certain metric spaces by America
and Rutten. Also we investigate the use of recursively defined metric worlds in an
operational setting and arrive at constructions akin to step-indexed models.

On a different, though related, note, we explore a relational reading of separation
logic with assertion variables. In particular, we give criteria for when standard,
unary separation logic proofs lift to the binary setting. Phrased differently, given
a module-dependent client and a standard separation logic proof of its correctness,
we ponder the default question of representation-independence: is the client able to
– or unable to – observe implementation specific details about its module.
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Chapter 1

Introduction

1.1 Cannons and Contextual Equivalence

There was a time, when providing incentive meant more than taxing cigarettes.
Cast-iron cannons, if cast badly, will burst into fragments when fired, much like
a bomb; hence the makers of cannons were required to fire their products once
while sitting on top of it. This tested the functionality and, in addition, encouraged
constant care on part of the makers.

Quality assurance remains an issue, these days also in the development of com-
puter programs. Malfunctioning software sends space-bound rockets falling from
the skies, blows up gas pipelines and cause no small annoyance to those working
close to deadlines. Such errors prevail, even in the face of extensive testing and
despite significant (and mostly non-physical) incentive to get things right. In this
dissertation we propose a further development of a formal method of proving com-
puter programs indiscernible; it is a step in the classic quest of eliminating errors
in computer programs by harnessing the power of mathematics

The objects of our study are computer programs. The long-term goal is to
reason about real-life programs, so to speak, but we restrict attention to computer
programs written in a somewhat academic programming language: the polymorphic
typed lambda calculus with recursive types and general references. It is, despite the
lengthy name, a standard language of theoretical computer science, well suited for
formal reasoning. At the same time, it is no toy-language; it is easily as expressive
as industry-standard programming languages, though it may fail to match their
practical ease of use.

The purpose is (mainly) to give tools for proving computer programs indis-
cernible. The gold standard is contextual equivalence, a well-studied concept of
theoretical computer science with a wide range of applications. Two computer pro-
grams are contextually equivalent if, roughly speaking, replacing one by the other
in some larger program – the context – does not change the behavior of that larger
program. If we break open the two programs and compare them, instruction by
instruction, then they may be quite different, but there should be no way of telling
that from the outside, i.e., from the observations that the context can make.

The framework is mathematics. We need to specify, in all details, the behavior
of computer programs before we can hope to reason precisely about them. We
do this by way of denotational semantics, a well-known method of giving meaning
to computer programs as mathematical entities. It is pleasantly abstract, but is
somewhat removed from the workings of real computers; hence we must take care
not to loose touch with reality.

Our method of choice is logical relations. The programming language is typed,
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meaning that it distinguishes between different types of data and their uses. We
tend to eat oranges and throw frisbees instead of the other way round; in much
the same way, a computer program may increase a number by one or spell-check
a word, but typing rules will prevent it from doing the opposite. Hence our use of
logical relations: they are a standard technique for reasoning about well-behaved,
i.e., typed programs.

1.2 Reader’s Guide

This dissertation is a collection of 6 papers / manuscripts and two minor notes.
With the exception of the latter, each part comes with contextual information, i.e.,
motivation, textual explanation and discussion of related work, in addition to the
technical results. This information will not be repeated in full here; we give only
terse summaries and try to stress the interrelation between the parts. While all
explanations are textual, the text assumes familiarity with semantic concepts such
as logical relations, relational parametricity, etc. The aim is to provide a sort of
(technical) reader’s guide.

For each work we give the publication status, i.e., we denote whether it has been
submitted, published, etc.

1.2.1 Relational Parametricity for References and Recursive
Types [14]

We build a logical relation for a language with recursive types, universal types and
general references. Existence of the logical relation is the major contribution; it is
proved along the lines of Pitts [23]. As a means to that end, we devise the concept
of approximated locations1, a necessity for the proof to go through. A location, say
l, is modelled, conceptually, not just as the integer l but rather as an infinite list
l, l, l, . . .; this crucially has approximations in the form of finite lists of l’s.

The logical relation is indexed over worlds to keep track of types of values in the
store. Worlds, in this setting, are syntactic, i.e., they map locations to syntactic
types. The latter may contain free type variables and this entangles the choice of
space of semantic types. Our answer, the somewhat awkwardly named semantic
closed types, strikes a balance between pure syntax and pure semantics – more
expressive than the former but without the definitional circularities of the latter.
Their access to the world is indirect, but, in combination with a peculiar notion of
future worlds, they are quite expressive.

Looking back, the notion of syntactic worlds is unsatisfactory to the semanticist
as we get no proper understanding of types. Also, the semantic closed types seem
unwieldy; the authors have not explored them beyond the scope of this paper. On
the other hand, the paper did give the first denotational and relationally parametric
logical relation for a language with the aforementioned types. And it provided ideas
and intuition that pervade the following development, most notably the reuse of
approximated locations.

This is joint work with Lars Birkedal and Kristian Støvring. The paper was
presented in Savannah in 2009 at the TLDI workshop affiliated with the POPL
conference.

1These are also, confusingly, referred to as semantic locations elsewhere.
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1.2.2 Realizability Semantics of Parametric Polymorphism,
General References, and Recursive Types [8]

Again we build a logical relation for a language with recursive and universal types
and general references. But as opposed to the previous work, the worlds are now
semantic, they associate semantic types with locations. This means, that we face
the type-world circularity head on: the semantic definition of either presupposes
the definition of the other. A proper solution to this is the main contribution: we
phrase the circularity as a functor fixed-point equation on a certain category of
metric spaces; the existence of a fixed point – our semantic types – is guaranteed
by a classic result by America and Rutten [4].

The metrics pervade the development in general, semantic type are non-expansive
maps from worlds to certain relations and the interpretation of recursive types is by
Banach’s fixed-point theorem. The approximated locations from the previous work
are reemployed; they are necessary to prove non-expansiveness of the interpretation
of reference types.

This is joint work with Lars Birkedal and Kristian Støvring. The paper has been
submitted to Mathematical Structures in Computer Science; it has been reviewed
to provisional acceptance, i.e., final acceptance is subject to certain revisions being
carried out. These revisions are incorporated in the version included here. An
extended abstract [13] of this paper was presented in York in 2009 at the FOSSACS
conference.

1.2.3 The Category-Theoretic Solution of Recursive Metric-
Space Equations [7]

We digress from the development of logical relations to give a generalization of the
metric fixed-point theorem of America and Rutten [4] along the lines of work by
Smyth and Plokin [26].

In solving the type-world circularity as described in the previous subsection, we
observed that solving for types and then defining worlds afterwards worked out,
but the other way round did not. Worlds come with an ordering corresponding to
further allocation, and types need to be monotone with respect to that. But the
theorem by America and Rutten supplies fixed-points only in a category of plain
metric spaces and hence cannot be used to solve for worlds.

While merely a curiosity in the original construction, this is an issue proper in
work to scale the model to the notion of worlds found in work by Ahmed, Dreyer
and Rossberg [1]. In their work, which relies on step-indexing to break circularities
as described in the next section, the type-world circularity is of a more complex
nature; indeed, it is a world-world circularity rather. We were unable to solve it
using the existing theorem by America and Rutten for the reason sketched above.

Such was, in summa, the motivation behind this work: to give a version of
the theorem for a category of certain ordered metric spaces. In the end, we went
further, as the existence result given in the paper suffices for, but is not limited to,
that purpose; the notions of M-categories and locally contractive functors are quite
general. Also the paper has related results on compact ultrametric spaces and the
relation between O-categories and M-categories.

This is joint work with Lars Birkedal and Kristian Støvring. The paper has been
accepted for publication in Theoretical Computer Science subject to the rephrasing
of a minor comment. An extended abstract of this paper [9] was presented in
Coimbra in 2009 at the FICS workshop.

4



1.2.4 A Relational Realizability Model for Higher-Order State-
ful ADTs [11]

We demonstrate that the idea of worlds as the fixed-point of a functor on certain
metric spaces scales to match the state-of-the-art notions of worlds found in work
by Ahmed, Dreyer and Rossberg [1]. The generalized fixed point theorem proved
by the authors [7] is applied and we need a to make various technical adjustments
to the existing model [8]; the use of approximate locations is still crucial.

A novelty is the use of Bohr relations. In the previous models, we required
uniformity of our relations; this implied that we could not, say, relate a pair of
integers to their sum, roughly because they behave differently under certain pro-
jections. The insight here is, that the cause of this restriction is the pursuit of
a logical relation that approximates contextual equivalence – and that aiming for
contextual approximation instead lifts the restriction. The Bohr relations are the
technical counterpart to this and we are free to make use of (the closure of) any
relation when working in the model.

This is joint work with Lars Birkedal and Kristian Støvring. The paper has been
submitted to the Nordic Workshop on Programming Theory 2009 special issue of
Journal of Logic and Algebraic Programming.

1.2.5 Kripke Models over Recursively Defined Metric Worlds:
Steps and Domains [10]

We re-apply the above recipe for constructing worlds, but in an operational rather
than denotational setting. Concretely, we give a unary world-indexed syntactic
interpretation of the types of polymorphic lambda calculus with general references.
In the denotational setting, the metric on semantic values was derived from the
structure supplied with solutions to recursive domain equations; this, obviously, is
not possible here. Instead we decorate syntactic values with natural numbers that,
inspired by step-indexed models, provide formal approximations to each element.
We build metrics on top, and are, thus, able to phrase worlds as the fixed-point of
a functor, very similar to our denotational setup [8]. The resulting model is related
and akin to, e.g., the step-indexed model of Ahmed [3], but is, we argue, simpler
because we have a proper notion of worlds instead of the stratified solution of the
cited thesis.

Also we show that our approach specializes to recent work on indirection theory
by Hobor, Dockins and Appel; indirection theory is, roughly, an abstraction and
generalization of the stratified construction of worlds as proposed by Ahmed [3] and
refined, e.g., by Ahmed, Dreyer and Rossberg [1]. Finally we give an operational
analogue of an existing denotational model of separation logic for nested Hoare
triples; for that application it is important to have a proper space of worlds. In
conclusion, we provide evidence of the wide applicability of our metric techniques,
also outside the realm of denotational semantics.

This is joint work with Lars Birkedal and Kristian Støvring. The manuscript
is unpublished. The contents are, however, included in a paper submitted to the
ICFP 2010 conference. The submission also applies the techniques to Chargueraud
and Pottier’s capability calculus [16] and has Reus, Schwinghammer and Yang as
additional coauthors.

1.2.6 Two for the Price of One: Lifting Separation Logic
Assertions [29]

The last work strays from the main development: We strive to give a relational
reading of separation logic proofs involving assertion variables. The idea is to prove
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a client program correct by means of standard separation logic and then give a
relational reading of that proof to obtain – for free, so to speak – representation
independence properties. It is a natural extension of work by Birkedal and Yang
[15]; their assertions came without assertion variables.

The Achilless’ heel is the use of the rule of consequence of separation logic. The
hypotheses of this rule include implications between assertions; the main contribu-
tion of the manuscript are deliberations on whether, semantically speaking, validity
in the unary reading of an implication between assertions lifts to validity in the
binary reading. Concretely, we investigate assertions with assertion variables of a
certain form and give, based on the layout of the assertion variables, a complete
characterization of when semantic validity lifts from the unary to the binary reading.

This is joint work with Lars Birkedal and Hongseok Yang. This manuscript is,
as of now, unpublished.

1.2.7 A Tale of Two Recursive Predicates (note) [31]

All of our logical relations rely on the use of approximate locations, in this note we
seek to justify this. By contradiction, we show that certain world-indexed logical
relations do not exist; these are cooked-down versions of our first logical relation
[14] with the all-important distinction that locations are modelled as flat integers.
This is not to say that approximated locations are the only solution to the problem,
neither that they are necessarily the best, but it does demonstrate that there is
a problem. In the spirit of approximated locations, this note also gives a possible
work-around to an open problem posed by Benton, Kennedy, Beringer and Hofmann
[6, Section 6.2].

This is a note, not a stand-alone work. It should be read in the context of our
logical relation constructions, most notable the two first [14, 8], which have fairly
direct notions of worlds.

1.2.8 From M-categories to O-categories (note) [30]

In our generalization [7] of the fixed-point theorem of America and Rutten [4] we
gave a construction of M-categories from O-categories. It is such, that a locally
continuous functor on the O-category gives rise to a locally contractive functor on
the M-category; furthermore, we can move the unique fixed-point of the latter back
across the divide to give a minimal invariant [23] of the former.

In this note, we go the other way. For starters, we construct complete partial
orders from complete ultrametric spaces, and use this to prove Banach’s fixed-point
theorem on the former by Kleene’s fixed-point theorem on the latter. We then scale
to categories, proceeding exactly as sketched above, only going the other way.

This note is even less self-contained than the previous; it should be read only in
connection with our work on the generalized fixed-point theorem [7].

1.3 Some Related Techniques

The bulk of this dissertation pursues contextual equivalence by means of (world-
indexed) denotational logical relations. Other roads lead to Rome, in this section
we sketch alternative techniques. This is no comprehensive survey but merely a
pointer to a few crucial results closely related to the dissertation.

1.3.1 Syntactic Logical Relations

The origins of logical relations are denotational but they can also be built directly
on the language terms / operational semantics. In an expository presentation [22,
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Chapter 7] based on earlier work [25, 24], Pitts gives an operational logical relation
for a functional language with universal types and term-level recursion. It is opera-
tional in the sense that the relation associated to a (closed) type really is a relation
between terms of that type. To prove that relatedness is preserved under the typ-
ing rule rule for fixed-points, Pitts faces the standard recursive-term problem: the
hypothesis only yields that finite unfoldings are related. To solve this, he effectively
works with syntactic ⊤⊤-closed relations, much in the same way we build relations
on computations from relations on values.

An advantage of working in an operational setting is that Pitts obtains a log-
ical relation that is not only sound but also complete with respect to contextual
equivalence. Completeness is proved by squeezing contextual equivalence into ciu-
equivalence; the latter is similar to contextual equivalence but limits the choice of
contexts. Ciu-equivalence is, then again, squeezed into the logical relation. The
proof relies on the observation that, for closed types, the logical relation respects
ciu-equivalence; this is another benefit of working with ⊤⊤-closed relations. While
satisfying, practical uses of completeness are not immediate. One may ‘import’ into
the logical relations contextual equivalences from elsewhere; apart from that, how-
ever, it does not appear readily applicable. Confer also the discussion in a recent
submission by Dreyer, Neis and Birkedal [18, Section 8].

The programme to build syntactic logical relations by refitting denotational
techniques was continued by Birkedal and Harper [12] and later Crary and Harper
[17], the former include a single recursive type and the latter full recursive types
and universal as well as existential quantification. As is the standard problem for
logical relations over recursive types, definition by induction on types will not do,
so one needs to argue the existence of the logical relation otherwise. The solution
adopted in both papers is, stated tersely, to give a syntactic analogue of the minimal
invariance property of solutions to domain equations [23].

The pioneering work of Pitts and Stark on world-indexed logical relations [21,
Pages 227-274] also belong in this subsection; it is not unreasonable to say that
main parts of this dissertation are (denotational) extensions of their work to richer
languages. They build a syntactic logical relation for a language with term-level
recursion and ground store, i.e., references to integers only; it is sound and complete
with respect to contextual equivalence by arguments along the lines discussed above.
More to the point, though, is that the logical relation is world-indexed, although this
is not their choice of nomenclature. Worlds, as in this dissertation, are abstractions
over stores; a pair of stores belong to a world if they meet the requirements of
the world. In this early work, this is very concrete, worlds are plain relations on
stores. Their use is twofold, again as in this dissertation: To interpret the reference
type (and functions types) some (though not absolute) knowledge of the store is
required; what are, e.g., the allocated locations and which locations store identical
integers. This knowledge is obtained by parameterizing the logical relation over
worlds. Secondly, worlds may capture reasoning that relies on local use of store,
e.g., some relation between stored values that cannot be disrupted by the context
because the locations are not exported. Pitts and Stark give a thorough presentation
of the technical development and prove non-trivial equivalences such as contextual
equivalence of certain functions and their memoised versions.

1.3.2 Step-indexed Models

Over the last decade, operational, step-indexed models have emerged. Coined by
Appel and McAllester [5], the basic idea goes something like this. While it is nice to
know that the value v has type � , we sometimes can make do with less: it may suffice
to know that v will behave as if it has type � for some n execution steps. In other
words, the assumption that v has type � may be wrong, but it takes at least n+ 1
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steps to discover that. We say that the v has type � to approximation n; the pair
(true, (4, 3)) of a boolean and a pair of integers, e.g., has type bool×(bool×bool)
to approximation 2. This is because it will take two steps (two projections) to
extract, e.g., 4 with the alleged type bool and then one more step to break down
on account of this faux pas.

The reason for stratifying types is to break circularities. One such is the
recursive-types circularities mentioned in the subsection above: We like to inter-
pret types by induction on their structure, but in the presence of recursive types
this breaks down: we would, e.g., say that fold v has type ��. � if v has type
� [��. �/�], but the latter type is no subtype of the former. If, however, we only
require that fold v has type ��. � to approximation n + 1 then it will suffice to
verify that v has type � [��. �/�] to approximation n because it takes one execution
step to unfold the recursive value. Hence, if we do nested induction with the outer
induction on the steps and the inner induction on the types, we break the circularity.
Not only the recursive-types circularity but also the type-world circularity solved in
this dissertation [8] by metric means can be broken. When interpreting a reference
type, say ref � , one roughly wants to return the allocated locations that hold values
of type � ; hence we index our interpretations by worlds, which, in this context, are
lists of allocated locations with associated types. Unfortunately, this introduces a
definitional circularity, if we store semantic types in our worlds: the space of se-
mantic types depends on the space of worlds and vice versa. If, however, we only
require that a location l has type ref � to approximation n + 1 then it suffices to
verify that � and the type of values stored at location l agree to approximation n
because, e.g., a memory lookup takes one execution step. This again means, that
to decide whether a value lies in some type in some world to approximation n+ 1,
we need only inspect the types of the world to approximation n. Hence we may
stratify our types / worlds and the circularity is broken.

In her thesis [3], Ahmed explores this idea. She considers an untyped polymor-
phic lambda calculus augmented with mutable references and existentials and gives
a unary, step-indexed safe interpretation of types including recursive and impredica-
tive quantified types as well as general references. It uses none of the aforementioned
sophisticated operational techniques: syntactic minimal invariance is superfluous by
the breaking of the recursive-types circularity and since, in essence, she considers
only finite unfoldings of recursive terms there is no need for syntactic admissibil-
ity or ⊤⊤-closure. Neither does she produce a proper solution to the type-world
circularity as in the work in this dissertation, rather it is simply broken by the
step-indexing as described above.

Ahmed proceeds [2] to build a step-indexed syntactic logical relation for a lan-
guage with recursive and impredicative quantified types, but no state. The relation
is proved sound and complete with respect to contextual equivalence, the latter
by the ‘standard’ method of embedding ciu-approximation into the logical rela-
tion; this, again, require her to consider only ciu-approximation respecting relations
when, e.g., arguing by relational parametricity.

In recent work, Ahmed, Dreyer and Rossberg [1] have extended Ahmed’s thesis
to give a logical relation for recursive types, general references and impredicative
quantification. As compared to the thesis, the major novelty is the binary inter-
pretation that is sound with respect to contextual equivalence and, more to the
point, a quite expressive notion of worlds. Apart from keeping track of the types
of allocated references, the worlds can capture complex and dynamic invariants of
the heap that hold for reasons of local use of store. This idea was present already
in the work by Pitts and Stark [21, Pages 227-274] as mentioned, but is extended
considerably. In a recent submission by Dreyer, Neis and Birkedal [18], the dynamic
behavior of such invariants is explored further, to the point where complex call-back
patterns can be captured elegantly using a finite-state machine.
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Much of this dissertation has to do with the type-world circularity in a denota-
tional setting. Approximative locations are introduced [14] to permit a denotational
logical relation indexed by syntactic worlds; they are reused [8] to give an actual
solution to the type-world circularity by metric techniques, this grants a logical
relation indexed over semantic worlds, i.e., worlds that associate locations with se-
mantic, rather than syntactic, types. Finally we extend [11] the notion of worlds to
meet the standards of the work by Ahmed, Dreyer and Rossberg [1], demonstrating
that our techniques scale to state-of-the-art in terms of world-expressivity.

What, then, does our mathematical machinery buy us compared to the some-
what low-tech approach of step-indexing? There is room for discussion here. We
know of no contextual equivalence that may be proved by our methods but not
by step-indexing. On the other hand, our approach yields more abstract models.
Indeed, it is not unreasonable to claim that direct proofs in our model are at a level
of abstraction comparable to recent logics [19, 20] built on top of the step-indexed
models; these feature modal logic to do away with the steps that otherwise clutter
calculations in the model. Also we expect that our models will do better in terms
of categorical / logical properties but this remains to be investigated further.

Bisimulation

In the search for contextual equivalence, the use of bisimulations is an alternative
to logical relations. The two are dissimilar: Building a logical relation is a game,
so to speak, of giving a binary interpretation of types that is rich enough to re-
late a great many things, whilst restrictive enough to be maintained across typed
constructions of terms. This will, roughly speaking, imply contextual equivalence,
since the context cannot ‘escape’ the relation – provided that the relation exists in
the first place.

On the other hand, to prove a contextual equivalence by use of bisimulations,
we try to outwit the context. We build a set, the bisimulation, of pairs of possibly
different values of equal type; this set should be closed under any typed decompo-
sition that a context might apply: if, say, it contains ((v1, v2), (w1, w2)), both with
type �× � , then it should contain (v1, w1) of type � too. Intuitively, the set should
contain all differences that the context may extract from the two programs under
scrutiny. If no pairs in the set give rise to expressions that fail to co-terminate, then
any two values that is in the set are contextually equivalent since there is no way
for the context to produce uneven termination behavior.

Bisimulations are employed, e.g., in work by Sumii and Pierce [28], to give a
complete proof method for a typed �-calculus with full universal, existential and
recursive types. This is extended to cover general references in recent work by Sumii
[27]. To do so, one also needs to keep track of the states in which values are related
to facilitate, e.g., lookup.

As compared to logical relations, bisimulations are closer to a direct proof of
contextual equivalence. They employ only elementary math as opposed to deno-
tational logical relations or even syntactic ones before the advent of step-indexing.
Many concrete examples can be proved, some with nice and short proofs; programs
that are alike in terms of syntax tend to do well. Sumii [27] gives a wider range of
examples than Ahmed, Dreyer and Rossberg [1], confer also a recent submission by
Dreyer, Neis and Birkedal [18]. On the other hand, bisimulations are less abstract,
and do not provide an answer to questions such as, e.g., what all the contextually
equivalent values at some type are. In other words, they do not give models of
types.
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Abstract
We present a possible world semantics for a call-by-value higher-
order programming language with impredicative polymorphism,
general references, and recursive types. The model is one of the first
relationally parametric models of a programming language with all
these features.

To model impredicative polymorphism we define the semantics
of types via parameterized (world-indexed) logical relations over
a universal domain. It is well-known that it is non-trivial to show
the existence of logical relations in the presence of recursive types.
Here the problems are exacerbated because of general references.
We explain what the problems are and present our solution, which
makes use of a novel approach to modeling references. We prove
that the resulting semantics is adequate with respect to a standard
operational semantics and include simple examples of reasoning
about contextual equivalence via parametricity.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Denotational
semantics; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Denotational Semantics, Possible World Semantics,
Relational Parametricity, Impredicative Polymorphism, General
References, Recursive Types

1. Introduction
Relational parametricity was proposed by Reynolds [34] to reason
about polymorphic programs, in particular, to show equivalence of
polymorphic programs and to show representation independence
for abstract data types. In this paper we provide one of the first1

relationally parametric models of a programming language with
recursive types and general references. We prove that the resulting
semantics is adequate with respect to a standard operational seman-
tics, which means that we can use parametricity to show contextual
equivalence of expressions in the language.

Our model is based on logical relations over an untyped model
of the language. The logical relations are parameterized over pos-

1 Independent work [3] by Ahmed, Dreyer and Rossberg came to our atten-
tion after writing this paper, cf. section 6; we know of no other models.
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on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
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sible worlds which are used to capture dynamic allocation of ref-
erences, much as in [7, 11, 22, 31]. It is well-known that it is non-
trivial to show the existence of logical relations in the presence of
recursive types [28]. Here the problems are exacerbated because of
general references. We explain the problems and present our solu-
tion, which makes use of a novel approach to modeling references.

In this paper we focus on the challenge of defining an adequate
semantics, in particular on the challenge pertaining to the existence
of the logical relations. The resulting model can be used to prove
equivalence and parametricity results for programs using references
in simple ways. In future work, we plan to extend the parameters
of our logical relations to accommodate local relational reasoning
about programs using local state. We plan to do this using the first
author’s earlier work on relational reasoning for languages with
references and recursive types (but not polymorphism) [11].

1.1 Background
The theory of relational parametricity was originally proposed in
the setting of the second-order lambda calculus. That setting is by
now fairly well-understood, see, e.g., [9, 33]. But, of course, we
would like to use relational parametricity for real programs with
recursion and other effects. There has been a lot of research towards
this goal — the efforts can be grouped roughly into two categories:
equational type theories with effects and programming languages
with effects.

Work in the former category was initiated by Plotkin [32], who
suggested a second-order linear type theory with a polymorphic
fixed-point combinator to combine polymorphism with recursion.
That approach was further investigated in [10]. One of the remark-
able features of this calculus is that it allows one to encode a wide
range of data types, including recursive types, with the desired uni-
versal properties following from parametricity. Hasegawa studied
the combination of polymorphism and another effect, namely con-
trol [15]. Recently, this line of work was extended by Møgelberg
and Simpson [25], who proposed a general polymorphic type the-
ory for effects, as captured by computational monads. The general
framework has been specialized to control effects in [26].

Work in the latter category focuses on programming languages
defined using an operational semantics, specifying evaluation or-
der, etc., and was initiated by Wadler [37]. Relational parametric-
ity is concerned with program equivalence which is here typically
defined as contextual equivalence: two program expressions are
equivalent if they have the same observable behaviour when placed
in any program context C.

It is generally quite hard to show directly that two program ex-
pressions are contextually equivalent because of the universal quan-
tification over all contexts. Thus there has been an extensive re-
search effort to find reasoning methods that are easier to use for
establishing contextual equivalence (see, e.g., [30] for a fairly re-
cent overview), and the work on parametricity for programming
languages with effects has been closely related to the research on
reasoning methods for contextual equivalence. Relationally para-
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metric models have been developed for languages with recursion
and inductive / coinductive types, see, e.g., [8, 16, 17, 29] and, re-
cently, also for languages with recursive types [2, 13, 23]. In ad-
dition, a number of bisimulation-based methods for proving con-
textual equivalence have recently been proposed; the methods most
relevant for the work in this paper cover a pure language with re-
cursive and existential types [36], untyped languages with general
references and/or control operators [18, 19, 35], and a pure lan-
guage with parametric polymorphism and recursive types [20, 21].

The two categories of work are, of course, related: the type
theories serve as metalanguages and can be used to give seman-
tics to programming languages. This has, e.g., been done by
Møgelberg [24], who showed how to give a parametric model of
the programming language FPC extended with polymorphism (i.e.,
a language with recursion, recursive types and polymorphism).
Using a model of the type theory, adequacy wrt. the operational
semantics of the programming language was proved, allowing
Møgelberg to prove results about contextual equivalence using the
reasoning principles of the type theory.

1.2 Overview of the technical development
In Section 2 we define the operational semantics of our program-
ming language, which is a standard, direct-style, call-by-value
higher-order language with impredicative polymorphism, recur-
sive types, and references. The operational semantics is non-
deterministic since dynamic allocation of references is modeled in
the standard way via a nondeterministic choice of a new location.

In Section 3 we present an untyped denotational semantics of
the language using a universal domain. In the denotational seman-
tics we assume that the semantic set of locations is well-ordered
(the set of locations is a copy of the natural numbers) and alloca-
tion is modeled by choosing the smallest free location. We use a
novel form of semantic locations in the semantics; the motivation
for these comes from the need to establish the existence of logical
relations in the following section.

We prove that the denotational semantics is sound and adequate
with respect to the operational semantics. This is done almost in
the standard way by defining a logical formal approximation rela-
tion between the operational and denotational semantics. For the
adequacy proof it suffices to give a logical relation for closed types
and therefore, as we show, the existence of the logical relation
can be proved using standard techniques [28]. The adverb ’almost’
above refers to the following. For the existence proof one needs
to show that the relations are suitably admissible and the standard
proofs of that rely on determinacy of the operational semantics,
see [28, Sec. 5, Page 81], but here we have a non-deterministic op-
erational semantics. Intuitively, the denotational semantics should
be adequate since the choice of new location should not matter for
the final result of a program. In earlier domain-theoretic models
of references for which adequacy have been proved [7, 11, 22],
both language and denotational semantics have been defined in a
monadic (continuation-passing) style; hence it was fairly easy to
capture that the choice of location does not matter for the final re-
sult. Here we decide to stick to a direct-style language and opera-
tional semantics to make sure that our results do not depend on a
monadic presentation and instead we define the logical relation in a
continuation-passing style, which suffices for proving adequacy. In
summary, the language is in direct style, but the proof of adequacy
is in continuation-passing style.

The untyped semantics can only be used to establish simple
forms of contextual equivalence. In Section 4 we therefore present
a typed possible world semantics of the language by defining a
family of parameterized logical relations over the universal domain
for which we prove the fundamental theorem of logical relations.
In combination with adequacy of the untyped semantics this proves

adequacy for the typed semantics. To reason about parametricity
we need to give a semantics not only of closed types but also of
open types. This turns out to complicate the existence proof of
the logical relation because, loosely speaking, we need to compare
semantic types in the logical relation for reference types in order
to check that the type for the location in the current world (a store
typing) agrees with the type of the reference. We solve this problem
by modeling references using a novel semantic notion of location
which permits approximations to locations. The approximations are
crucial for the existence proof of the logical relation. We explain
what the problem is by highlighting what goes wrong if we omit
such approximations.

In Section 5 we present a few examples of equivalences that can
be proved using the resulting possible world semantics.

Finally, in Section 6 we conclude and briefly discuss directions
for future work.

2. Types and Operational Semantics
Types, expressions and values are given in Figure 1. A context of
type variables is a list of type variables with no repeats. For any
such context Ξ and any type � we write Ξ ⊢ � if the free type
variables of � are all in Ξ and we write TypeΞ for all such types.
A world is a partial map with finite domain from ℕ to the set
of types; we have a partial ordering on worlds defined by setting
Δ ⊑ Δ′ provided dom(Δ) ⊂ dom(Δ′) and Δ(l) = Δ′(l) for
all l ∈ dom(Δ). A context of term variables is a partial map with
finite domain from the set of term variables to the set of types. For
any context of type variables Ξ and any world Δ we write Ξ ⊢ Δ
if Ξ ⊢ Δ(l) for all l ∈ dom(Δ) and we let WorldΞ be the set of
worlds with this property. We define Ξ ⊢ Γ for a context of term
variables Γ similarly.

We give selected typing rules in Figure 2, a complete presenta-
tion is found in Appendix A. The rules assign types to expressions
under assumptions of contexts of type variables, worlds and con-
texts of term variables. It is not hard to see that the various side
conditions ensure that Ξ ∣ Δ ∣ Γ ⊢ e : � implies Ξ ⊢ Δ, Ξ ⊢ Γ
as well as Ξ ⊢ � . Also it is worth noticing that the language is ex-
plicitly typed to ensure type uniqueness: Given Ξ ∣ Δ ∣ Γ ⊢ e : �1
and Ξ ∣ Δ ∣ Γ ⊢ e : �2 we can conclude that �1 = �2 and that the
derivations of the judgments coincide.

As usual we identify expressions up to �-equivalence. For con-
venience we write ��0→�1x. e for fix�0→�1f(x).e where f is
some arbitrary variable not occurring free in e.

A syntactic store is a partial map with finite domain from ℕ
to the set of values. Using that definition, we define a standard
big-step operational semantics; selected rules are given in Figure
3, see Appendix B for the unabridged story. It is a quaternary
relation between syntactic stores and expressions on the one hand
and syntactic stores and values on the other. Notice that the memory
allocator is nondeterministic in the standard way: Any free location
may be picked.

For a context Ξ, a world Δ, a context Γ and a syntactic store Π
we write Ξ ∣ Δ ∣ Γ ⊢ Π to denote that dom(Δ) = dom(Π) and
that for all l ∈ dom(Δ) we have Ξ ∣ Δ ∣ Γ ⊢ Π(l) : Δ(l). We have
the following standard proposition (see Chapter 13 of Pierce [27]):

Proposition 1 (Type Preservation). Assume Π, e ⇓ Π′, v. Suppose
furthermore that we have ∅ ∣ Δ ∣ ∅ ⊢ Π and ∅ ∣ Δ ∣ ∅ ⊢ e : � for
some world Δ and some type � . Then there is Δ′ ⊒ Δ such that
∅ ∣ Δ′ ∣ ∅ ⊢ Π′ and ∅ ∣ Δ′ ∣ ∅ ⊢ v : � .

The proof is by induction on the structure of the derivation of
the judgment. It relies on basic properties of the type system such
as standard substitution lemmas for type and term variables as well
as the fact that an expression of some type in one world has the
same type in any larger world.
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� ::= � ∣ unit ∣ int ∣ � ref ∣ � × � ∣ � + � ∣ ��.� ∣ ∀�.� ∣ � → �

e ::= x ∣ () ∣ n ∣ l ∣ op(e± e) ∣ ifzero e then e else e ∣ (e, e) ∣ fst(e) ∣ snd(e) ∣ inl�0+�1(e) ∣
inr

�0+�1(e) ∣ case e of inl(x). e else inr(x). e ∣ fold��.� (e) ∣ unfold��.� (e) ∣
Λ�.e ∣ e[� ] ∣ fix�0→�1f(x).e ∣ e(e) ∣ ref(e) ∣ ! e ∣ e := e

v ::= () ∣ n ∣ l ∣ (v, v) ∣ inl�0+�1(v) ∣ inr�0+�1(v) ∣ fold��.� (v) ∣ Λ�.e ∣ fix�0→�1f(x).e

Figure 1. Types, expressions and values.

Ξ ∣ Δ ∣ Γ ⊢ l : � ref (Ξ ⊢ Δ, Ξ ⊢ Γ, l ∈ dom(Δ), Δ(l) = � )

Ξ, � ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ Λ�.e : ∀�.�
(Ξ ⊢ Δ, Ξ ⊢ Γ)

Ξ ∣ Δ ∣ Γ ⊢ e : ∀�.�0
Ξ ∣ Δ ∣ Γ ⊢ e[�1] : �0[�1/�]

(Ξ ⊢ �1)

Ξ ∣ Δ ∣ Γ, f : �0 → �1, x : �0 ⊢ e : �1

Ξ ∣ Δ ∣ Γ ⊢ fix�0→�1f(x).e : �0 → �1

Ξ ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref

Ξ ∣ Δ ∣ Γ ⊢ e : � ref

Ξ ∣ Δ ∣ Γ ⊢ ! e : �

Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref Ξ ∣ Δ ∣ Γ ⊢ e1 : �

Ξ ∣ Δ ∣ Γ ⊢ e0 := e1 : unit

Figure 2. Select typing rules. The general form is Ξ ∣ Δ ∣ Γ ⊢ e :
� for a context of type variables Ξ, a world Δ, a context of term
variables Γ, an expression e and a type � .

Π,Λ�.e ⇓ Π,Λ�.e

Π, fix�0→�1f(x).e ⇓ Π, fix�0→�1f(x).e

Π, e ⇓ Π′,Λ�.e′ Π′, e′[�/�] ⇓ Π′′, v

Π, e[� ] ⇓ Π′′, v

Π, e0 ⇓ Π′, fix�0→�1 f(x).e Π′, e1 ⇓ Π′′, v
Π′′, e[v/x, fix�0→�1 f(x).e/f ] ⇓ Π′′′, v′

Π, e0(e1) ⇓ Π′′′, v′

Π, e ⇓ Π′, v

Π, ref(e) ⇓ Π′[l 7→ v], l
(l /∈ dom(Π′))

Π, e ⇓ Π′, l

Π, ! e ⇓ Π′, v
(l ∈ dom(Π′), Π′(l) = v)

Π, e0 ⇓ Π′, l Π′, e1 ⇓ Π′′, v

Π, e0 := e1 ⇓ Π′′[l 7→ v], ()
(l ∈ dom(Π′′))

Figure 3. Select rules of the big-step operational semantics. The
general form is Π, e ⇓ Π′, v where Π and Π′ are syntactic stores, e
is an expression and v a value.

Contextual equivalence of expressions (in empty worlds) is de-
fined in the standard manner:

Definition 2. If Ξ ∣ ∅ ∣ Γ ⊢ ei : � , for i = 1, 2, then e1 and e2 are
contextually equivalent, written

Ξ ∣ ∅ ∣ Γ ⊢ e1 =ctx e2 : � ,

if, for all closing contexts C[.] : (Ξ ∣ ∅ ∣ Γ ⊢ �) ⇒ (∅ ∣ ∅ ∣ ∅ ⊢
int), for all n,

∃Π1. ∅, C[e1] ⇓ Π1, n⇔ ∃Π2. ∅, C[e2] ⇓ Π2, n

3. Untyped Denotational Semantics
We first present an ’untyped’ denotational semantics of our lan-
guage. By this we mean that all expressions are interpreted by
means of a certain complete partial order (cpo) U , and that the
interpretation essentially ignores all type information in the lan-
guage. Since U must in effect allow us to model an untyped variant
of our language, we have the familiar requirement for models of
the untyped �-calculus: U must contain a copy of a function space
with U itself as the domain. Therefore we construct U by solving a
recursive domain equation.

We work with a concrete, domain-theoretic setting: Let Cppo⊥
be the category of pointed !-cpos (i.e., cpos containing a least
element) and strict, continuous functions. The cpo U is constructed
by solving a domain equation of the form

U ∼= F (U,U)

where F is a mixed-variance functor on Cppo⊥ (see below).
It is not enough that U is any solution to the equation above:

the standard methods for solving recursive domain equations give
solutions that are so-called minimal invariants [28]. In our setting,
minimal invariance of U means that there exist continuous func-
tions �n : U ⊸ U (one for each n ∈ ℕ) satisfying, among other
properties, that for each u ∈ U ,

�0u ⊑ �1u ⊑ ⋅ ⋅ ⋅ ⊑ �nu ⊑ ⋅ ⋅ ⋅ and
⊔

n∈ℕ
�nu = u .

We say that each element u of U is the limit of its projections
�nu. The ’projection’ functions �n therefore provide a handle for
proving properties about U by induction on n. Moreover, unlike
in any earlier work we are aware of, these functions are directly
used in the definition of the (untyped) semantics; that will turn out
to be essential when we construct our typed semantics in the next
section.

We now turn to the formal development.

Definition 3. Let i : F (U,U) ∼= U be a minimal invariant of the
locally continuous functor F : Cppoop⊥ × Cppo⊥ → Cppo⊥
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defined on objects by

F (D,E) = 1⊥ ⊕ ℤ⊥ ⊕ (ℕ× E)⊥ ⊕ (E ⊗ E)⊕ (E ⊕ E)⊕
E ⊕

[
(ℕ fin→ D↓)⊥ ⊸ (ℕ fin→ E↓)⊥ ⊗ E

]
⊥⊕[

(ℕ fin→ D↓)⊥ ⊗D ⊸ (ℕ fin→ E↓)⊥ ⊗ E
]
⊥.

F is assembled from standard components [28] with one ex-
ception: For any pointed cpo D we define a new cpo ℕ fin→ D↓
by having s ⊑ s′ if dom(s) = dom(s′) and s(l) ⊑ s′(l) for all
l ∈ dom(s). Lifting then yields the pointed cpo (ℕ fin→ D↓)⊥
and this endofunction on objects of Cppo⊥ is extended natu-
rally – much as a smash product – to a locally continuous functor
Cppo⊥ → Cppo⊥ which is used in the above definition. Here
A

fin→ B denotes partial maps with finite domain from a set A to a
set B and D↓ is all but the least element of a pointed cpo D.

Notice that the minimal invariant U exists by virtue of Theorem
3.3 of [28]. In accordance with this source we define the continuous
map � : (U ⊸ U) → (U ⊸ U) by �(e) = i ∘ F (e, e) ∘ i−1

for any e ∈ U ⊸ U . We then define �n as �n(⊥) for any
n ∈ ℕ; as discussed above, minimality of the invariant means that⊔
n∈ℕ �n = idU . Note �m ∘ �n = �m∧n for any m,n ∈ ℕ.
The cpo U is our universal domain: one can intuitively think

of U as the domain of all untyped semantic values, analogous to
the untyped closed values of our syntactic language. We define
S = (ℕ fin→ U↓)⊥ which intuitively is the collection of states.
The cpo S ⊸ S ⊗ U models computations, i.e., functions from an
initial state either diverge or return a state and a semantic value.

From the isomorphism i and the definition of F (U,U) we
obtain functions for injecting integers, pairs, functions, etc. into the
universal domain: inunit : 1 → U , inint : ℤ → U , inref : (ℕ ×
U)→ U , in× : U⊗U ⊸ U , in+ : U⊕U ⊸ U , in� : U ⊸ U ,
in∀ : (S ⊸ S ⊗ U) → U , and in→ : (S ⊗ U ⊸ S ⊗ U) → U .
The injection inref is explained in more detail below. We use the
cpo S ⊸ S ⊗ U of ’computations’ as the domain of in∀ because,
in the untyped semantics, a syntactic value Λ�.e is treated simply
as a suspension of the computation e: the type argument is ignored.

We now introduce the semantic locations as promised:

Definition 4. For l ∈ ℕ we define Λl : U → U continuous and
order-monic by �u ∈ U. inref(l, u). We define �nl = Λnl (⊥) for
any l, n ∈ ℕ and finally choose

�l =
⊔

n∈ℕ
�nl .

Using the the observation that �n+1 ∘ Λl = Λl ∘ �n holds for
any l, n ∈ ℕ it is not hard to prove the following properties:

Lemma 5 (Location). For any k, l, l′, n ∈ ℕ and u ∈ U we have:

(i) �k(�nl ) = �n∧kl , �n(�l) = �nl .

(ii) �n+1
l = �n+1

l′ ⇔ l = l′

(iii) �n(u) ⊒ �nl ⇔ �n(u) = �nl , u ⊒ �l ⇔ u = �l.
(iv) u ⊑ �nl ⇔ ∃j ≤ n. u = �jl , u ⊑ �l ⇔ u = �l ∨ ∃j. u = �jl .

Definition 6. Any type judgment Ξ ∣ Δ ∣ Γ ⊢ e : � is interpreted
as [[Ξ ∣ Δ ∣ Γ ⊢ e : � ]] ∈ S ⊗ (dom(Γ) → U↓)⊥ ⊸ S ⊗ U by
induction on the typing derivation, important cases are in Figure 4,
see Appendix D for a complete presentation.

Verification of continuity is tedious but standard with the one
exception that we use the Location Lemma and the particular or-
dering on S in the cases involving references.

If we have ∅ ∣ Δ ∣ ∅ ⊢ v : � for a value v then there naturally
is a unique u ∈ U↓ such that [[∅ ∣ Δ ∣ ∅ ⊢ v : � ]]s = ⌊s, u⌋ for
any s ∈ S↓, we denote this u by [[Δ ⊢ v : � ]]. Similarly, if we
have ∅ ∣ Δ ∣ ∅ ⊢ Π we define [[Δ ⊢ Π]] = �l ∈ dom(Δ). [[Δ ⊢

Π(l) : Δ(l)]] ∈ S↓. With this notation in place we are ready to
prove adequacy and soundness of our untyped interpretation:

Theorem 7 (Adequacy). For ∅ ∣ Δ ∣ ∅ ⊢ e : int and ∅ ∣ Δ ∣ ∅ ⊢
Π we get that

[[∅ ∣ Δ ∣ ∅ ⊢ e : int]][[Δ⊢Π]] ∕= ⊥ =⇒ Π, e ↓ .
Here and below we use write Π, e ↓ to denote termination,

i.e., the existence of a syntactic store Π′ and a value v such that
Π, e ⇓ Π′, v.

Proposition 8 (Soundness). For ∅ ∣ Δ ∣ ∅ ⊢ e : int and
∅ ∣ Δ ∣ ∅ ⊢ Π, any syntactic store Π′ and any n ∈ ℕ we get

Π, e ⇓ Π′, n =⇒
∃s ∈ S↓. [[∅ ∣ Δ ∣ ∅ ⊢ e : int]][[Δ⊢Π]] = ⌊s, inint(n)⌋.

Proving soundness is slightly nontrivial due to the nondetermin-
istic memory allocation of the operational semantics. On the other
hand, the problem intuitively comes down to location renaming,
i.e., we may perform substitutions of one location for another to
make the operational semantics mimic the ’least free’ memory al-
location of the denotational semantics. Details are deferred to Ap-
pendix C .

To prove adequacy we proceed along the lines of the proof of
Proposition 5.1 in [28]. But since our operational semantics is not
deterministic due to the nondeterministic allocation, we resort to
a continuation passing style proof to ensure admissibility of the
’formal approximation’ relations. We introduce continuations for
that purpose, these are just expressions with one free term variable:
For a context of type variables Ξ, a world Δ, an expression K, a
variable x and types �0 and �1 we write Ξ ∣ Δ ⊢ K : (x : �0 → �1)
if we have Ξ ∣ Δ ∣ x : �0 ⊢ K : �1 and we refer to K as
a continuation. It is a simple yet important property that for any
syntactic store Π and any expression e we have

Π, (��0→�1x. K)(e) ↓ ⇔ ∃Π′, v. Π, e ⇓ Π′, v ∧Π′,K[v/x] ↓
We fix some further sets of syntax: For a world Δ and a type

� with ∅ ⊢ Δ and ∅ ⊢ � we let ValΔ� and ExprΔ
� denote the

set of values and expressions respectively that have type � under
the assumption of Δ and empty contexts. SynStΔ is the set of
syntactic stores Π with ∅ ∣ Δ ∣ ∅ ⊢ Π and ContΔ

x:�0→�1 is the set
of continuations K with ∅ ∣ Δ ⊢ K : (x : �0 → �1).

Proposition 9. There is a family of ’formal approximation’ rela-
tions ⊲Δ

� ⊂ U↓ ×ValΔ� with the properties of Figure 5 and with
{u ∈ U↓ ∣ u⊲Δ

� v} chain complete and ⊲Δ
� ⊂ ⊲Δ′

� for Δ ⊑ Δ′.

Proof. Denote by UAdmSub(U) all uniform and admissible
subsets of U in the sense that they are closed under application of
�n for any n ∈ ℕ, contain ⊥ and are chain complete. This con-
stitutes a complete lattice with ordinary set inclusion as ordering
since all properties are preserved by intersection, and hence the
following is a complete lattice too with pointwise ordering:

K =
{
f ∈

∏

(Δ,�)∈World∅×Type∅

ValΔ� → UAdmSub(U)
∣∣∣

∀Δ,Δ′ ∈World∅∀� ∈ Type∅∀v ∈ ValΔ� .

Δ ⊑ Δ′ =⇒ f(Δ, �)(v) ⊂ f(Δ′, �)(v)
}
.

In Figure 6 we define a monotone map Φ : Kop × K → K and
mimicking the proof of Theorem 4.16 from [28] one can establish
the existence of a fixed point, i.e., a K ∈ K with Φ(K,K) = K.
We write u⊲Δ

� v for u ∈ K(Δ, �)(v) ∖ {⊥} and are done.

Note that in the proof above we make use of a complete lat-
tice of functions from syntactic types (and worlds). This makes it
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[[Ξ ∣ Δ ∣ Γ ⊢ x : � ]]s� = ⌊s, �(x)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ l : � ref]]s� = ⌊s, �l⌋
[[Ξ ∣ Δ ∣ Γ ⊢ Λ�.e : ∀�.� ]]s� =

⌊
s, in∀(�s

′ ∈ S↓.[[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]]s
′
� )
⌋

[[Ξ ∣ Δ ∣ Γ ⊢ e[�1] : �0[�1/�]]]s� =

{
'(s′) [[Ξ ∣ Δ ∣ Γ ⊢ e : ∀�.�0]]s� = ⌊s′, in∀(')⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ fold
��.� (e) : ��.� ]]s� =

{
⌊s′, in�(u)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : � [��.�/�]]]s� = ⌊s′, u⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ fix
�0→�1f(x).e : �0 → �1]]s� =

⌊
s, (in→ ∘ fix )

(
�' ∈ S ⊗ U ⊸ S ⊗ U.

�(s′, u) ∈ S↓ × U↓. [[Ξ ∣ Δ ∣ Γ, f : �0 → �1, x : �0 ⊢ e : �1]]s
′
�[f 7→in→('),x 7→u]

)⌋

[[Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref]]s� =

⎧
⎨
⎩
⌊s′[l 7→ u], �l⌋

[
[[Ξ ∣ Δ ∣ Γ ⊢ e : � ]]s� = ⌊s′, u⌋,
l /∈ dom(s′), ∀l′ < l. l′ ∈ dom(s′)

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ ! e : � ]]s� =

⎧
⎨
⎩

⌊s′, s′(l)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : � ref]]s� = ⌊s′, �l⌋, l ∈ dom(s′)

⌊s′, �n(s′(l))⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : � ref]]s� = ⌊s′, u⌋, �n+1(u) = �n+1
l ,

�n+2(u) ∕= �n+2
l , l ∈ dom(s′), �n(s′(l)) ∕= ⊥

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ e0 := e1 : unit]]s� =

⎧
⎨
⎩

⌊s′′[l 7→ u], inunit(∗)⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref]]s� = ⌊s′, �l⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s

′
� = ⌊s′′, u⌋, l ∈ dom(s′′)

⌊s′′[l 7→ �n(u)], inunit(∗)⌋

⎡
⎣

[[Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref]]s� = ⌊s′, u′⌋
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s

′
� = ⌊s′′, u⌋, �n+1(u′) = �n+1

l ,
�n+2(u′) ∕= �n+2

l , l ∈ dom(s′′), �n(u) ∕= ⊥
⊥ otherwise

Figure 4. Untyped interpretation, select cases. The general form of the left hand side is [[Ξ ∣ Δ ∣ Γ ⊢ e : � ]]s� with s ∈ S↓ and

� ∈ dom(Γ)→ U↓. The right hand side is an element of S ⊗ U , recall that S = (Loc
fin→ U↓)⊥.

u⊲Δ
unit () ⇐⇒ u = inunit(∗)

u⊲Δ
int n ⇐⇒ u = inint(n)

u⊲Δ
� ref l ⇐⇒ u ⊑ �l

u⊲Δ
�0×�1 (v0, v1) ⇐⇒ ∃u0, u1 ∈ U↓. u = in×(⌊u0, u1⌋) ∧ u0 ⊲Δ

�0 v0 ∧ u1 ⊲Δ
�1 v1

u⊲Δ
�0+�1 inl

�0+�1(v) ⇐⇒ ∃u′ ∈ U↓. u = (in+ ∘ inl)(u′) ∧ u′ ⊲Δ
�0 v

u⊲Δ
�0+�1 inr

�0+�1(v) ⇐⇒ ∃u′ ∈ U↓. u = (in+ ∘ inr)(u′) ∧ u′ ⊲Δ
�1 v

u⊲Δ
��.� fold

��.� (v) ⇐⇒ ∃u′ ∈ U↓. u = in�(u′) ∧ u′ ⊲Δ
� [��.�/�] v

u⊲Δ
∀�.� Λ�.e ⇐⇒ ∃' ∈ S ⊸ S ⊗ U. u = in∀(') ∧ ∀Δ′ ⊒ Δ. ∀� ′ ∈ Type∅. '⊲Δ′

T� [� ′/�] e[�
′/�]

u⊲Δ
�0→�1 fix

�0→�1f(x).e ⇐⇒ ∃' ∈ S ⊗ U ⊸ S ⊗ U. u = in→(') ∧ ∀Δ′ ⊒ Δ. ∀u′, v. u′ ⊲Δ′
�0 v ⇒

�s ∈ S↓. '(⌊s, u′⌋) ⊲Δ′
T�1 e[fix

�0→�1f(x).e/f, v/x]

s⊲Δ Π ⇐⇒ dom(s) = dom(Π) ∧ ∀l ∈ dom(s). s(l) ⊲Δ
Δ(l) Π(l)

k ⊲Δ
K� K ⇐⇒ ∀Δ′ ⊒ Δ. ∀u, v, s,Π. u⊲Δ′

� v ∧ s⊲Δ′ Π⇒
[
k(⌊s, u⌋) ∕= ⊥ ⇒ Π, (��→intx. K)(v) ↓

]

'⊲Δ
T� e ⇐⇒ ∀s,Π, k,K. s⊲Δ Π ∧ k ⊲Δ

K� K ⇒
[
k('(s)) ∕= ⊥ ⇒ Π, (��→intx. K)(e) ↓

]

Figure 5. Desired properties of an indexed family of ’formal approximation’ relations ⊲Δ
� ⊂ U↓ ×ValΔ� . Also we define three auxiliary

families of relations, ⊲Δ ⊂ S↓ × SynStΔ, ⊲Δ
K� ⊂ (S ⊗ U ⊸ S ⊗ U)×ContΔ

x:�→int and ⊲Δ
T� ⊂ (S ⊸ S ⊗ U)×ExprΔ

� .

particularly easy to define the interpretation of (closed) recursive
and polymorphic types, cf., the definition of Φ in Figure 6, and
means that we find the interpretation of all types by taking one fixed
point of Φ, rather than via a nested sequence of fixed points as in,
e.g., [13, 14]. This idea of using a function-space lattice was also
used in the first author’s earlier work [11], albeit more implicitly.

Proposition 10. Given Ξ ∣ Δ ∣ Γ ⊢ e : � with Ξ = �1, . . . , �m
and Γ = x1 : �1, . . . , xn : �n. Pick �1, . . . , �m ∈ Type∅
and denote application of the substitution [�1/�1, . . . , �m/�m]
by overlining. For any Δ0 ∈ World∅ with Δ0 ⊒ Δ and any
u1, . . . , un ∈ U↓ and any values v1, . . . , vn with ui⊲Δ0

�i
vi for all

1 ≤ i ≤ n, we have

�s ∈ S↓.[[Ξ ∣ Δ ∣ Γ ⊢ e : � ]]s� ⊲Δ0
T� e[v1/x1, . . . , vn/xn]

with � = [x1 7→ u1, . . . , xn 7→ un] ∈ dom(Γ)→ U↓.

Loosely, this proposition says that any expression is related to
itself. Applying the identity continuation it is not hard to see that it
has adequacy as a corollary as we have [[Δ ⊢ v : � ]] ⊲Δ

� v for any
value v with ∅ ∣ Δ ∣ ∅ ⊢ v : � .

Proof. We prove the proposition by induction on the typing deriva-
tion, details follow for a few cases. For the case of memory alloca-
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Φ(ℛ,S)(Δ, unit)(()) = {⊥} ∪ {inunit(∗)}
Φ(ℛ,S)(Δ, int)(n) = {⊥} ∪ {inint(n)}

Φ(ℛ,S)(Δ, � ref)(l) = {u ∈ U ∣ u ⊑ �l}
Φ(ℛ,S)(Δ, �0 × �1)((v0, v1)) = {⊥} ∪ (in× ∘ ⌊−⌋)(S(Δ, �0)(v0) ∖ {⊥} × S(Δ, �1)(v1) ∖ {⊥})
Φ(ℛ,S)(Δ, �0 + �1)(inl(v)) = {⊥} ∪ (in+ ∘ inl)(S(Δ, �0)(v) ∖ {⊥})
Φ(ℛ,S)(Δ, �0 + �1)(inr(v)) = {⊥} ∪ (in+ ∘ inr)(S(Δ, �1)(v) ∖ {⊥})
Φ(ℛ,S)(Δ, ��.�)(fold(v)) = {⊥} ∪ in�(S(Δ, � [��.�/�])(v) ∖ {⊥})

Φ(ℛ,S)(Δ, ∀�.�)(Λ�.e) = {⊥} ∪
{
in∀(') ∣ ' ∈ S ⊸ S ⊗ U ∧

∀Δ′ ⊒ Δ.∀� ′ ∈ Type∅. ' ∈ ΦT (ℛ,S)(Δ′, � [� ′/�])(e[� ′/�])
}

Φ(ℛ,S)(Δ, �0 → �1)(fix�0→�1f(x).e) = {⊥} ∪
{
in→(') ∣ ' ∈ S ⊗ U ⊸ S ⊗ U ∧

∀Δ′ ⊒ Δ. ∀v ∀u ∈ ℛ(Δ′, �0)(v) ∖ {⊥}.
�s ∈ S↓. '(⌊s, u⌋) ∈ ΦT (ℛ,S)(Δ′, �1)

(e[fix�0→�1f(x).e/f, v/x])
}

ΦS(S)(Δ)(Π) = {⊥} ∪
{
s ∈ S↓ ∣ dom(s) = dom(Π) ∧ ∀l ∈ dom(s). s(l) ∈ S(Δ,Δ(l))(Π(l)) ∖ {⊥}

}

ΦK(ℛ,S)(Δ, �)(K) =
{
k ∈ S ⊗ U ⊸ S ⊗ U ∣ ∀Δ′ ⊒ Δ. ∀v,Π.

∀u ∈ ℛ(Δ′, �)(v) ∖ {⊥}. ∀s ∈ ΦS(ℛ)(Δ′)(Π) ∖ {⊥}.
k(⌊s, u⌋) ∕= ⊥ ⇒ Π, (��→intx. K)(v) ↓

}

ΦT (ℛ,S)(Δ, �)(e) =
{
' ∈ S ⊸ S ⊗ U ∣ ∀Π,K.

∀s ∈ ΦS(ℛ)(Δ)(Π) ∖ {⊥}. ∀k ∈ ΦK(S,ℛ)(Δ, �)(K).
k('(s)) ∕= ⊥ ⇒ Π, (��→intx. K)(e) ↓

}

Figure 6. Definition of Φ : Kop × K → K using three auxiliary maps ΦS : K → ∏
Δ∈World∅

SynStΔ → P(S), ΦK : Kop × K →∏
(Δ,�)∈World∅×Type∅

ContΔ
x:�→int → P(S⊗U ⊸ S⊗U) and ΦT : Kop×K →∏

(Δ,�)∈World∅×Type∅
ExprΔ

� → P(S ⊸ S⊗U).

tion, consider
Ξ ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref

and assume that the proposition holds for the premise. Choose types
�1, . . . , �m, Δ0 ⊒ Δ and u1, . . . , un elements of U↓, values
v1, . . . , vn and � ∈ dom(Γ) → U↓ as stated. Furthermore pick
s,Π, k and K with s ⊲Δ0 Π and k ⊲Δ0

K� ref K. We now assume
that

k([[∅ ∣ Δ ∣ Γ ⊢ ref(e) : � ref]]s�) ∕= ⊥
and are to prove that

Π, (�� ref→intx. K)(ref(e[v1/x1, . . . , vn/xn])) ↓ .
The map �(s, u) ∈ S↓ × U↓. k(⌊s[l 7→ u], �l⌋) where we
choose l ∈ ℕ minimal such that l /∈ dom(s) defines a map
k′ ∈ S ⊗ U ⊸ S ⊗ U . Also we define a continuation K′ ∈
ContΔ0

x:�→int by K′ = (�� ref→intx. K)(ref(x)) and by the
induction hypothesis it suffices to show that k′⊲Δ0

K� K
′. According

to definition we pick Δ′ ⊒ Δ0 and u′, v′, s′,Π′ with u′⊲Δ′
� v′ and

s′ ⊲Δ′ Π′, we assume that k′(⌊s′, u′⌋) ∕= ⊥ and aim to prove that
Π′, (��→intx. K′)(v′) ↓. We remark that

⊥ ∕= k′(⌊s′, u′⌋) = k(⌊s′[l′ 7→ u′], �l′⌋)
for l′ ∈ ℕ with l′ /∈ dom(s′). By s′ ⊲Δ′ Π′ we have l′ /∈
dom(s′) = dom(Π′) and hence Π′, ref(v′) ⇓ Π′[l′ 7→ v′], l′. We
obviously have Δ′[l′ 7→ � ] ⊒ Δ′ and �l′⊲Δ′[l′ 7→� ]

� ref l′. Also for any
l ∈ dom(s′) ∪ {l′} we have s′[l′ 7→ u′](l) ⊲Δ′

Δ′[l′ 7→� ](l) Π′[l′ 7→
v′](l) and hence s′[l′ 7→ u′](l) ⊲Δ′[l′ 7→� ]

Δ′[l′ 7→� ](l) Π′[l′ 7→ v′](l) too

which means that s′[l′ 7→ u′] ⊲Δ′[l′ 7→� ] Π′[l′ 7→ v′] and we are
done as we initially assumed that k ⊲Δ0

K� ref K.
This case warrants some comments: It is here that we need the

continuations to ’work’ in all future worlds, in the other cases this
property is just pushed through the proof. Also this is where we rely

on the property that the formal approximations grow with larger
worlds. Finally note that the operational semantics may allocate
any free location, in particular we can pick the least free to match
the behavior of the denotational semantics.

Consider now the case of lookup, i.e., consider

Ξ ∣ Δ ∣ Γ ⊢ e : � ref

Ξ ∣ Δ ∣ Γ ⊢ ! e : �

and assume that the proposition holds for the premise. Choose types
�1, . . . , �m, a world Δ0 ⊒ Δ and u1, . . . , un elements of U↓,
values v1, . . . , vn and � ∈ dom(Γ) → U↓ as stated. Furthermore
pick s,Π, k and K with s ⊲Δ0 Π and k ⊲Δ0

K� K. We now assume
that

k([[∅ ∣ Δ ∣ Γ ⊢! e : � ]]s�) ∕= ⊥
and are to prove that

Π, (��→intx. K)(! e[v1/x1, . . . , vn/xn]) ↓ .
We define k′ ∈ S⊗U ⊸ S⊗U by mapping any (s, u) ∈ S↓×U↓
to S ⊗ U by copying the interpretation of lookup and applying k:
⎧
⎨
⎩

k(⌊s, s(l)⌋) u = �l, l ∈ dom(s)

k(⌊s, �n(s(l))⌋) �n+1(u) = �n+1
l , �n(s(l)) ∕= ⊥,

�n+2(u) ∕= �n+2
l , l ∈ dom(s)

⊥ otherwise

Similarly we define K′ ∈ ContΔ
x:� ref→int by

K′ = (��→intx. K)(! x)

and by induction it suffices to show that k′ ⊲Δ0
K� ref K

′.
For that purpose we pick Δ′ ⊒ Δ0, u′, v′, s′ and Π′ with

u′ ⊲Δ′
� ref v

′ and s′ ⊲Δ′ Π′, we assume that k′(⌊s′, u′⌋) ∕= ⊥ and
have to prove that Π′, (�� ref→intx. K′)(v′) ↓. From u′ ⊲Δ′

� ref v
′

we deduce that there is l′ ∈ dom(Δ′) with v′ = l′, Δ′(l′) = � and
u′ ⊑ �l′ . Also s′ ⊲Δ′ Π′ yields that l′ ∈ dom(Δ′) = dom(s′) =
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dom(Π′) and this gives Π′, ! l′ ⇓ Π′,Π′(l′) and we also have
s′(l′) ⊲Δ′

� Π′(l′).
Assume now that u′ = �l′ . From the definition of k′ we get

that ⊥ ∕= k(⌊s′, s′(l′)⌋) and we may use the original assumption
k⊲Δ0

K�K to prove the required. Suppose now that u′ ∕= �l′ , i.e., that
u′ = �n

′+1
l′ for some n′ ∈ ℕ. We get ⊥ ∕= k(⌊s′, �n′(s′(l′))⌋)

which yields⊥ ∕= k(⌊s′, s′(l′)⌋) by monotonicity and we are back
on the above track.

4. Typed Denotational Semantics
In this section we present the typed possible world semantics. As
mentioned in the Introduction, to reason about parametricity we
need to give a semantics not only of closed types (as sufficed for
proving adequacy in the previous section) but also of open types.
This has two consequences for the technical development which we
explain before proceeding with the technical development proper.

Recall first that the overall idea is to define the semantics of
types by means of world-indexed binary relations over the univer-
sal domain U . These relations will be both uniform and admissible:
such relations are completely determined by their elements of the
form (�nu, �nu

′). One explanation of the formal construction be-
low is therefore the following. To define the various relations that
together constitute the semantics of types, it suffices to determine
for each n ∈ ℕ whether the pairs of the form (�nu, �nu

′) be-
long to the various relations; this can be done by induction on n.
For all types except reference types, this approach works well
due to properties of the �n. For example, �n+1(in+(inl u)) =
in+(inl (�nu)) and �n+1(in×(u1, u2)) = in×(�nu1, �nu2).

For the case of reference types, the idea is roughly that, for a
type Ξ ⊢ � , for a world Δ ∈WorldΞ, and for semantics types �
corresponding to the type environment Ξ,

(u, u′) ∈ [[� ref]]Ξ(�)(Δ)

if and only if,

∃l ∈ dom(Δ). u = u′ = l ∧ [[� ]]Ξ(�)(Δ) = [[Δ(l)]]Ξ(�)(Δ).

That is, u and u′ should be the same location l and, moreover, the
interpretation of the type � should be the same as the interpretation
of the type Δ(l) found in the store type Δ. The latter is, of course,
to ensure sound modelling of lookup and assignment.

The problem with the above definition is that it is not in-
ductive: to determine whether the pair (�n+1 u, �n+1 u

′) be-
longs to [[� ref]]Ξ(�)(Δ), we need to know the entire relations
[[� ]]Ξ(�)(Δ) and [[Δ(l)]]Ξ(�)(Δ), not just their elements of the
form (�nu0, �nu

′
0). That is the reason for introducing semantic

locations �l and �nl . By means of these we can refine the above
idea to what you see in Figure 8. The idea is that approximative
locations �n+1

l are related in case the interpretations of types agree
up to level n and that ideal locations �l are related in case the in-
terpretations really are equal. (As shown, the real definition also
includes a quantification over future worlds, but that is not related
to what we are discussing here.)

More formally, the problem with the definition of [[� ref]] above
is that it prevents one from proving the existence of the family
of logical relations constituting the semantics of types. The usual
proof by fixed-point induction and minimal invariance [28] does
not go through: indeed, for an earlier variant of the setup presented
here, we could actually give a formal proof showing that relations
satisfying such conditions do not exist.

Clearly, there are some relations between our semantic locations
and step-indexed approaches to recursive types [2, 5, 6]; see Sub-
section 4.1 for comments on how one can attempt to make the con-
nection formal.

The second consequence of interpreting open types is also re-
lated to the use of world-indexed relations. It has to do with how
we should interpret quantified types ∀�. � . When one is only inter-
ested in a semantics of closed types, one can define the seman-
tics of ∀�. � simply as the intersection over all syntactic types∩
�∈Type[[� [�/�]]], as we essentially did in the adequacy proof

earlier. For a semantics of open types, one typically defines the
semantics of ∀�. � by a big intersection over some universe ST
of semantic types (think of ST as the set of all admissible rela-
tions)

∩
�∈ST[[� ]](�). However, in our case the meaning of a type

depends on the current world. One attempt to accommodate this
dependency would be to interpret a closed universal type ∀�.� es-
sentially as an intersection over semantic types indexed by closed
worlds:

∩
�∈World∅→ST[[� ]](�). The problem with this attempt is

that in the natural Kripke-style definition of [[� ]](�) one needs to ap-
ply � not only to closed worlds, but to worlds containing free occur-
rences of �. Worse, if � contains nested universal types, one needs
to apply � to worlds containing additional new type variables. For
example, if � occurs in � below a universal quantifier ∀�, then one
needs to be able to apply � to an arbitrary world Δ ∈World�,� .

Informally, one attempt to interpret such an occurrence of �
would be

[[�]]�,�(�, �′)(Δ) = � (�, �′) (Δ) ,

i.e., to interpret � in a world Δ ∈ World�,� , one applies �
not only to Δ, but also to the � and �′ that interpret � and �,
respectively. But this attempt introduces a circularity: it is not clear
what the formal definition of � should be, since � must now be
applicable to itself as well as an arbitrary other �′. To break the
circularity in the above interpretation of �, we instead apply � to
the interpretation function itself, partially applied to (�, �′) and Δ:

[[�]]�,�(�, �′)(Δ) = � [��0 ∈ Type∅.[[�0]]�,�(�, �′)(Δ)] .

In this way (�, �′) and Δ are indirectly passed to �. (Notice that the
�0 on the right hand side contains fewer free type variables than �.)

In summary, we use a novel interpretation of types, where ∀�. �
is interpreted essentially by a big intersection

∩

�∈(Type→ST)→ST

[[� ]](�)

over semantic types indexed over a function that can interpret
closed types (i.e., types with one fewer type variable than � ). This
essentially allows us to delay the choice of semantic type until we
know how the world should be interpreted.

We now continue with the formal development after which we
discuss an alternative approach to dealing with the second issue
mentioned above and then present some examples. In the formal
development we make use of admissible relations that satisfy a
couple of additional conditions, uniformity and strictness. Unifor-
mity is typical for interpretations of polymorphism and recursive
types [4]; strictness is used to capture contextual equivalence (also
used in [11]).

Definition 11. Let UARel(U) be the set of binary relations on U
that relate⊥ to⊥ and to nothing else, are closed under �n for any
n ∈ ℕ and are closed under taking least upper bounds of chains.

We speak of uniform and admissible relations over U . It is not
hard to see that UARel(U) with ordinary set inclusion constitutes
a complete lattice as all properties are preserved by intersection. We
can now define the semantic closed types:

Definition 12. For any context of type variables Ξ we let SCTΞ

be the monotone maps � of
[
TypeΞ → UARel(U)

] mon→ UARel(U)
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for which it holds that for any two arguments ','′ ∈ TypeΞ →
UARel(U) and any n ∈ ℕ we have that

[
∀� ∈ TypeΞ. '(�)

n
= '′(�)

]
=⇒ �(')

n
= �('′).

Above and below we use R
n
= S for n ∈ ℕ and R,S ∈

UARel(U) to mean that �n(R) ⊂ S and �n(S) ⊂ R hold;
we shall also use R

n⊂ S to denote just the first of these properties.
Intuitively, the demand that ’n-equality’ be preserved by semantic
closed types allows us to work with approximations of types – a
property we need to prove the existence of the desired interpreta-
tion of types. For any context of type variables Ξ and any syntactic
type � ∈ TypeΞ we furthermore define

�Ξ(�) = �' ∈ TypeΞ → UARel(U). '(�)

and it is easily verified that we indeed have �Ξ(�) ∈ SCTΞ.
We shall need a few minor definitions: For every type in context

�1, . . . , �m ⊢ � we define the following measure

#(�1, . . . , �m ⊢ �) = min{0 ≤ n ≤ m ∣ �1, . . . , �n ⊢ �} ;

recall here that type contexts are ordered lists. For a context of type
variables Ξ = �1, �2, . . . , �m we write SCTΞ as shorthand for

SCT∅ × SCT�1 × SCT�1,�2 × ⋅ ⋅ ⋅ × SCT�1,�2,...,�m−1 .

Finally, assume that we have type contexts Ξ, Ξ′, � ∈ SCTΞ,
�′ ∈ SCTΞ′ , Δ ∈ WorldΞ and Δ′ ∈ WorldΞ′ . We now
define [Ξ∣� ∣Δ] ⊑ [Ξ′ ∣�′ ∣Δ′] to denote the existence of type
variables �1, �2, . . . , �m and semantic closed types �1 ∈ SCTΞ,
�2 ∈ SCTΞ,�1 up to �m ∈ SCTΞ,�1,...,�m−1 such that Ξ, �1,
�2, . . . , �m = Ξ′ and (�, �1, �2, . . . , �m) = �′ and Δ ⊑ Δ′. This
definition captures our typed notion of ’future’ worlds: Not only
does the world itself grow, we also allow extension of the context
of type variables with corresponding semantic closed types. We are
now ready to define the lattice ℒ of type interpretations:

Definition 13. We define a complete lattice by pointwise ordering

ℒ =
{
f ∈

∏

Ξ

SCTΞ → TypeΞ →WorldΞ → UARel(U)
∣∣∣

[Ξ∣� ∣Δ] ⊑ [Ξ′ ∣�′ ∣Δ′] ∧ � ∈ TypeΞ =⇒
f(Ξ)(�)(�)(Δ) ⊂ f(Ξ′)(�′)(�)(Δ′)

}
.

We also define Ψ : ℒop × ℒ → ℒ monotone in Figure 7: The
definition of Ψ(ℛ,S)(Ξ)(�)(�)(Δ) is by induction on #(Ξ ⊢ �).

Members of ℒ interpret types, and as we deal with open types
we parameterize over semantic closed types to ’plug in’ for the
free variables as well as over worlds. The intuition behind defining
Ψ by induction on #(Ξ ⊢ �) is that Ψ(ℛ,S)(Ξ)(�)(�)(Δ) is
obviously well defined if � is not a type variable, and from that
point on we can interpret type variables in the order they occur
in Ξ. It is worth noticing that the definition of Ψ in the cases
of references, polymorphic types and functions has been carefully
tailored to comply with monotonicity property in the definition of
ℒ: the quantification over ’future’ worlds has been baked in.

To obtain the desired interpretation of types we could just appeal
to the approach of the proof of Theorem 4.16 of [28] as done above
in the proof of Theorem 7. Instead we construct the sequence of
approximations and the fixed point by hand – we proceed in the
style of Kleene’s fixed point theorem rather than by appeal to the
Knaster-Tarski fixed point theorem. The difference is merely one
of presentation: The present approach is less general but arguably
has a more constructive feel to it that goes well with the intuition
of the semantic locations.

We define ℛ0 ∈ ℒ as constant {(⊥,⊥)}, S0 ∈ ℒ as constant
{(u, u′) ∈ U × U ∣ ∀n ∈ ℕ. �n(u) = ⊥ ⇔ �n(u′) = ⊥} and

inductively ℛn+1 = Ψ(Sn,ℛn) ∈ ℒ ∋ Ψ(ℛn,Sn) = Sn+1 for
all n ∈ ℕ. By induction we get the crucial fact that ℛn n

= Sn,
for all n ∈ ℕ, and choosing ∇ = ∩n∈ℕSn yields a fixed point
of Ψ, i.e., Ψ(∇,∇) = ∇. We are now able to interpret types:
We shall denote ∇(Ξ)(�)(�)(Δ) ∖ {(⊥,⊥)} by [[� ]]Ξ(�)(Δ) and
it is immediate that this interpretation has the properties listed in
Figure 8. Also the following is a consequence of the construction:

Lemma 14 (Monotonicity). For [Ξ∣� ∣Δ] ⊑ [Ξ′ ∣�′ ∣Δ′] and � ∈
TypeΞ we have [[� ]]Ξ(�)(Δ) ⊂ [[� ]]Ξ′(�

′)(Δ′).

We remark that (1) as for the adequacy proof, we again make
use of a complete lattice of functions, cf., Definition 13; and (2)
we would need to prove the existence of the logical relations using
a proof as the one above, even if we had left out recursive types
from the language. In that case, we could define the relation by
induction on the type, for all other type constructors but ref – for
ref it would not be possible, since the definition in the case for
� ref involves the meaning of arbitrary types in future worlds.
This is typical for models of higher-order store in which one can
have recursion through the store, even without recursive types.

Lemma 15 (Degenerate Substitution). With natural ranges of vari-
ables, in particular � ∈ TypeΞ,�,Ξ′ , Δ ∈ WorldΞ,�,Ξ′ and
� ∈ TypeΞ, we have that

[[� ]]Ξ,�,Ξ′(�, �Ξ(�), �′)(Δ) = [[� [�/�]]]Ξ,�,Ξ′(�, �Ξ(�), �′)(Δ).

It is easily proved by induction that the property holds for Sn for
all n ∈ ℕ and the above lemma follows – the validity of this lemma
is partial justification for the definition of interpretation of type
variables. We refer to the lemma as degenerate because we perform
no substitution in the world Δ and do not remove � and �Ξ(�) on
the right hand side. It is possible to state and prove a more standard
substitution lemma, but we shall not need that.

The main result of this section is a ’fundamental theorem of
logical relations,’ intuitively stating that every well-typed term is
related to itself. First some notation: For any two contexts of type
variables Ξ and Ξ′ we write Ξ ⊂ Ξ′ if all variables of Ξ occur in
Ξ′, i.e., if the inclusion holds when interpreting the contexts as sets.

Definition 16. Two expressions in context Ξ ∣ Δ ∣ Γ ⊢ ei : �
(i = 1, 2) are semantically related, written

Ξ ∣ Δ ∣ Γ ⊢ e1 ∼ e2 : � ,

if for all Ξ′ ⊃ Ξ, all �′ ∈ SCTΞ′ , all Δ′ ∈ WorldΞ′ with
Δ′ ⊒ Δ and all �, �′ ∈ dom(Γ) → U↓ such that (�(x), �′(x)) ∈
[[Γ(x)]]Ξ′(�

′)(Δ′) for each x ∈ dom(Γ), we have that the pair
(
�s ∈ S↓.[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s�, �s ∈ S↓.[[Ξ ∣ Δ ∣ Γ ⊢ e2 : � ]]s�′

)

belongs to [[� ]]TΞ′(�
′)(Δ′).

Theorem 17. Ξ ∣ Δ ∣ Γ ⊢ e : � implies Ξ ∣ Δ ∣ Γ ⊢ e ∼ e : � .

Proof. The proof is by induction on the typing derivation, we shall
present three decisive cases. Consider the lookup case, i.e., consider

Ξ ∣ Δ ∣ Γ ⊢ e : � ref

Ξ ∣ Δ ∣ Γ ⊢ ! e : �

and assume that the proposition holds for the premise. We pick
arbitrary Ξ′ ⊃ Ξ, �′ ∈ SCTΞ′ , Δ′ ∈ WorldΞ′ with Δ′ ⊒ Δ,
and �, �′ ∈ dom(Γ) → U↓ as specified in the definition of
semantic relatedness. Also we take arbitrary (s, s′) ∈ [[Δ′]]SΞ′(�

′)
and (k, k′) ∈ [[� ]]KΞ′(�

′)(Δ′) and we have to prove that either

k
(
[[Ξ ∣ Δ ∣ Γ ⊢ ! e : � ]]s�

)
= ⊥ = k′

(
[[Ξ ∣ Δ ∣ Γ ⊢ ! e : � ]]s

′
�′
)

or that the left hand side and the right hand side both terminate
and moreover both yield the value inint(n) for some n ∈ ℕ,
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Ψ(ℛ,S)(�1, . . . , �m)(�1, . . . , �m)(�n)(Δ) = �n
[
�� ∈ Type�1,...,�n−1

. Ψ(ℛ,S)(�1, . . . , �m)(�1, . . . , �m)(�)(Δ)
]

Ψ(ℛ,S)(Ξ)(�)(1)(Δ) = {(⊥,⊥)} ∪ {(inunit(∗), inunit(∗))}
Ψ(ℛ,S)(Ξ)(�)(int)(Δ) = {(⊥,⊥)} ∪ {(inint(n), inint(n)) ∣ n ∈ ℕ}

Ψ(ℛ,S)(Ξ)(�)(� ref)(Δ) = {(⊥,⊥)} ∪{
(�n+1
l , �n+1

l ) ∣ l ∈ dom(Δ) ∧ n ∈ ℕ ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ].ℛ(Ξ′)(�′)(�)(Δ′)

n⊂ S(Ξ′)(�′)(Δ′(l))(Δ′) ∧
ℛ(Ξ′)(�′)(Δ′(l))(Δ′)

n⊂ S(Ξ′)(�′)(�)(Δ′)
}
∪{

(�l, �l) ∣ l ∈ dom(Δ) ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ].ℛ(Ξ′)(�′)(�)(Δ′) ⊂ S(Ξ′)(�′)(Δ′(l))(Δ′) ∧

ℛ(Ξ′)(�′)(Δ′(l))(Δ′) ⊂ S(Ξ′)(�′)(�)(Δ′)
}

Ψ(ℛ,S)(Ξ)(�)(�0 × �1)(Δ) = {(⊥,⊥)} ∪
{

(in×(⌊u0, u1⌋), in×(⌊u′0, u′1⌋)) ∣ (u0, u
′
0) ∈ S(Ξ)(�)(�0)(Δ) ∖ {(⊥,⊥)} ∧

(u1, u
′
1) ∈ S(Ξ)(�)(�1)(Δ) ∖ {(⊥,⊥)}

}

Ψ(ℛ,S)(�)(Ξ)(�0 + �1)(Δ) = {(⊥,⊥)} ∪
{

((in+ ∘ inl)(u), (in+ ∘ inl)(u′)) ∣ (u, u′) ∈ S(Ξ)(�)(�0)(Δ) ∖ {(⊥,⊥)}
}

∪
{

((in+ ∘ inr)(u), (in+ ∘ inr)(u′)) ∣ (u, u′) ∈ S(Ξ)(�)(�1)(Δ) ∖ {(⊥,⊥)}
}

Ψ(ℛ,S)(�)(Ξ)(��.�)(Δ) = {(⊥,⊥)} ∪
{

(in�(u), in�(u′)) ∣ (u, u′) ∈ S(Ξ)(�)(� [��.�/�])(Δ) ∖ {(⊥,⊥)}
}

Ψ(ℛ,S)(Ξ)(�)(∀�.�)(Δ) = {(⊥,⊥)} ∪
{

(in∀('), in∀('
′)) ∣ ','′ ∈ S ⊸ S ⊗ U ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]∀� ∈ SCTΞ′ .

(','′) ∈ ΨT (ℛ,S)(Ξ′, �)(�′, �)(�)(Δ′)
}

Ψ(ℛ,S)(Ξ)(�)(�0 → �1)(Δ) = {(⊥,⊥)} ∪{
(in→('), in→('′)) ∣ ','′ ∈ S ⊗ U ⊸ S ⊗ U ∧

∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]∀(u, u′) ∈ ℛ(Ξ′)(�′)(�0)(Δ′) ∖ {(⊥,⊥)}.
[�s ∈ S↓.'(⌊s, u⌋), �s′ ∈ S↓.'′(⌊s′, u′⌋)] ∈ ΨT (ℛ,S)(Ξ′)(�′)(�1)(Δ′)

}

ΨS(S)(Ξ)(�)(Δ) = {(⊥,⊥)} ∪
{

(s, s′) ∈ (S↓)
2 ∣ dom(Δ) = dom(s) = dom(s′) ∧
∀l ∈ dom(Δ). (s(l), s′(l)) ∈ S(Ξ)(�)(Δ(l))(Δ) ∖ {(⊥,⊥)}

}

ΨK(ℛ,S)(Ξ)(�)(�)(Δ) =
{

(k, k′) ∈ (S ⊗ U ⊸ S ⊗ U)2 ∣ ∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ].
∀(s, s′) ∈ ΨS(ℛ)(Ξ′)(�′)(Δ′) ∖ {(⊥,⊥)}.
∀(u, u′) ∈ ℛ(Ξ′)(�′)(�)(Δ′) ∖ {(⊥,⊥)}.

[k(⌊s, u⌋) = ⊥ = k′(⌊s′, u′⌋)] ∨
[∃t, t′ ∈ S↓∃n ∈ ℤ. k(⌊s, u⌋) = ⌊t, inint(n)⌋ ∧

k′(⌊s′, u′⌋) = ⌊t′, inint(n)⌋
}

ΨT (ℛ,S)(Ξ)(�)(�)(Δ) =
{

(','′) ∈ (S ⊸ S ⊗ U)2 ∣ ∀(s, s′) ∈ ΨS(ℛ)(Ξ)(�)(Δ) ∖ {(⊥,⊥)}.
∀(k, k′) ∈ ΨK(S,ℛ)(Ξ)(�)(�)(Δ).

[k('(s)) = ⊥ = k′('′(s′))] ∨
[∃t, t′ ∈ S↓∃n ∈ ℤ. k('(s)) = ⌊t, inint(n)⌋ ∧

k′('′(s′)) = ⌊t′, inint(n)⌋
}

Figure 7. Definition of Ψ : ℒop × ℒ → ℒ using maps ΨS : ℒ → ∏
Ξ SCTΞ →WorldΞ → P(S2), ΨK : ℒop × ℒ → ∏

Ξ SCTΞ →
TypeΞ →WorldΞ → P((S ⊗ U ⊸ S ⊗ U)2) and ΨT : ℒop × ℒ →∏

Ξ SCTΞ → TypeΞ →WorldΞ → P((S ⊸ S ⊗ U)2).

confer the definition of [[� ]]TΞ′(�
′)(Δ′). Consider now the maps

k0, k
′
0 : S ⊗ U ⊸ S ⊗ U built by copying the interpretation

of lookup and applying k respectively k′, i.e., k0 is obtained by
mapping any (s0, u0) ∈ S↓ × U↓ to S ⊗ U as follows
⎧
⎨
⎩

k(⌊s0, s0(l)⌋) u0 = �l, l ∈ dom(s0)

k(⌊s0, �n(s0(l))⌋) �n+1(u0) = �n+1
l , �n(s0(l)) ∕= ⊥,

�n+2(u0) ∕= �n+2
l , l ∈ dom(s0)

⊥ otherwise

and k′0 is identical, with k′ exchanged for k. By the induction
hypothesis it suffices to prove that (k0, k

′
0) ∈ [[� ref]]KΞ′(�

′)(Δ′).
For that purpose we pick [Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′] and we pick
(s0, s

′
0) ∈ [[Δ0]]SΞ0

(�0) and (u0, u
′
0) ∈ [[� ref]]Ξ0(�0)(Δ0). The

latter yields one of two: Either we have u0 = u′0 = �n+1
l for

some l ∈ dom(Δ0) and an n ∈ ℕ with [[Δ0(l)]]Ξ0(�0)(Δ0)
n⊂

[[� ]]Ξ0(�0)(Δ0) ∪ {(⊥,⊥)} or we have u0 = u′0 = �l for some
l ∈ dom(Δ0) with [[Δ0(l)]]Ξ0(�0)(Δ0) = [[� ]]Ξ0(�0)(Δ0). And

in both cases the desired follows from the definitions of k0 and k′0
and from (s0, s

′
0) ∈ [[Δ0]]SΞ0

(�0) and (k, k′) ∈ [[� ]]KΞ′(�
′)(Δ′).

Let us now look at the case of memory allocation, i.e., consider

Ξ ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref

and assume that the proposition holds for the premise. We proceed
as above, i.e., we pick arbitrary Ξ′ ⊃ Ξ, �′ ∈ SCTΞ′ , Δ′ ∈
WorldΞ′ with Δ′ ⊒ Δ, and �, �′ ∈ dom(Γ) → U↓ as specified
in the definition of semantic relatedness. Also we take arbitrary
(s, s′) ∈ [[Δ′]]SΞ′(�

′) and (k, k′) ∈ [[� ref]]KΞ′(�
′)(Δ′) and we

construct k0, k
′
0 : S ⊗ U ⊸ S ⊗ U by copying the interpretation

of allocation and applying k respectively k′, i.e., k0 is built from
the map

�(s0, u0) ∈ S↓ × U↓. k(⌊s0[l 7→ u0], �l⌋)
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(u, u′) ∈ [[�n]]�1,...,�m(�1, . . . , �m)(Δ)⇔ (u, u′) ∈ �n
[
�� ∈ Type�1,...,�n−1

.[[� ]]�1,...,�m(�1, . . . , �m)(Δ) ∪ {(⊥,⊥)}
]
∖ {(⊥,⊥)}

(u, u′) ∈ [[1]]Ξ(�)(Δ) ⇐⇒ u = u′ = inunit(∗)
(u, u′) ∈ [[int]]Ξ(�)(Δ) ⇐⇒ ∃n ∈ ℤ. u = u′ = inint(n)

(u, u′) ∈ [[� ref]]Ξ(�)(Δ) ⇐⇒
[
∃l ∈ dom(Δ)∃n ∈ ℕ. u = u′ = �n+1

l ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]. [[� ]]Ξ′(�

′)(Δ′) ∪ {(⊥,⊥)} n
= [[Δ′(l)]]Ξ′(�

′)(Δ′) ∪ {(⊥,⊥)}
]
∨[

∃l ∈ dom(Δ). u = u′ = �l ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]. [[� ]]Ξ′(�

′)(Δ′) = [[Δ′(l)]]Ξ′(�
′)(Δ′)

]

(u, u′) ∈ [[�0 × �1]]Ξ(�)(Δ) ⇐⇒ ∃(u0, u
′
0) ∈ [[�0]]Ξ(�)(Δ)∃(u1, u

′
1) ∈ [[�1]]Ξ(�)(Δ). u = in×(⌊u0, u1⌋) ∧ u′ = in×(⌊u′0, u′1⌋)

(u, u′) ∈ [[�0 + �1]]Ξ(�)(Δ) ⇐⇒
[
∃(u0, u

′
0) ∈ [[�0]]Ξ(�)(Δ). u = (in+ ∘ inl)(u0) ∧ u′ = (in+ ∘ inl)(u′0)

]
∨[

∃(u1, u
′
1) ∈ [[�1]]Ξ(�)(Δ). u = (in+ ∘ inr)(u1) ∧ u′ = (in+ ∘ inr)(u′1)

]

(u, u′) ∈ [[��.� ]]Ξ(�)(Δ) ⇐⇒ ∃(u0, u
′
0) ∈ [[� [��.�/�]]]Ξ(�)(Δ). u = in�(u0) ∧ u′ = in�(u′0)

(u, u′) ∈ [[∀�.� ]]Ξ(�)(Δ) ⇐⇒ ∃','′ ∈ S ⊸ S ⊗ U. u = in∀(') ∧ u′ = in∀('
′) ∧

∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]∀� ∈ SCTΞ′ . (','′) ∈ [[� ]]TΞ′,�(�′, �)(Δ′)

(u, u′) ∈ [[�0 → �1]]Ξ(�)(Δ) ⇐⇒ ∃','′ ∈ S ⊗ U ⊸ S ⊗ U. u = in→(') ∧ u′ = in→('′) ∧
∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]∀(u0, u

′
0) ∈ [[�0]]Ξ′(�

′)(Δ′).
[�s ∈ S↓.'(⌊s, u0⌋), �s′ ∈ S↓.'′(⌊s′, u′0⌋)] ∈ [[�1]]TΞ′(�

′)(Δ′)

(s, s′) ∈ [[Δ]]SΞ(�) ⇐⇒ dom(Δ) = dom(s) = dom(s′) ∧ ∀l ∈ dom(Δ). (s(l), s′(l)) ∈ [[Δ(l)]]Ξ(�)(Δ)

(k, k′) ∈ [[� ]]KΞ (�)(Δ) ⇐⇒ ∀[Ξ′ ∣�′ ∣Δ′] ⊒ [Ξ∣� ∣Δ]∀(s, s′) ∈ [[Δ′]]SΞ′(�
′)∀(u, u′) ∈ [[� ]]Ξ′(�

′)(Δ′).[
k(⌊s, u⌋) = ⊥ = k′(⌊s′, u′⌋)

]
∨[

∃t, t′ ∈ S↓∃n ∈ ℤ. k(⌊s, u⌋) = ⌊t, inint(n)⌋ ∧ k′(⌊s′, u′⌋) = ⌊t′, inint(n)⌋
]

(','′) ∈ [[� ]]TΞ(�)(Δ) ⇐⇒ ∀(s, s′) ∈ [[Δ]]SΞ(�) ∀(k, k′) ∈ [[� ]]KΞ (�)(Δ).[
k('(s)) = ⊥ = k′('′(s′))

]
∨[

∃t, t′ ∈ S↓∃n ∈ ℤ. k('(s)) = ⌊t, inint(n)⌋ ∧ k′('′(s′)) = ⌊t′, inint(n)⌋
]

Figure 8. Desired properties of interpretation of types. For u, u′ ∈ U↓, a context Ξ, � ∈ TypeΞ, � ∈ SCTΞ and Δ ∈WorldΞ we specify
when (u, u′) ∈ [[� ]]Ξ(�)(Δ). Also we define [[Δ]]SΞ(�) ⊂ (S↓)

2, [[� ]]KΞ (�)(Δ) ⊂ (S⊗U ⊸ S⊗U)2, and [[� ]]TΞ(�)(Δ) ⊂ (S ⊸ S⊗U)2.

where we choose l ∈ ℕ with l /∈ dom(s0) and ∀l′ < l. l′ ∈
dom(s0) and k′0 is identical, with k′ exchanged for k. It now re-
mains to prove (k0, k

′
0) ∈ [[� ]]KΞ′(�

′)(Δ′). For that purpose we pick
[Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′] and we pick (s0, s

′
0) ∈ [[Δ0]]SΞ0

(�0)
and (u0, u

′
0) ∈ [[� ]]Ξ0(�0)(Δ0). From the former of these we

get k0(⌊s0, u0⌋) = k(⌊s0[l 7→ u0], �l⌋) and k′0(⌊s′0, u′0⌋) =
k′(⌊s′0[l 7→ u′0], �l⌋) with l the least such that l /∈ dom(Δ0). It is
immediate that (�l, �l) ∈ [[� ref]]Ξ0(�0)(Δ0[l 7→ � ]) and for any
l′ ∈ dom(Δ0[l 7→ � ]) we have (s0[l 7→ u0](l′), s′0[l 7→ u′0](l′)) ∈
[[Δ0[l 7→ � ](l′)]]Ξ0(�0)(Δ0) and hence (s0[l 7→ u0], s′0[l 7→
u′0]) ∈ [[Δ0[l′ 7→ � ]]]Ξ0(�0) by the Monotonicity Lemma. And
applying the original assumption (k, k′) ∈ [[� ref]]KΞ′(�

′)(Δ′) we
are done.

Finally we arrive at the the case of type application, this is where
we require the Degenerate Substitution Lemma. We consider

Ξ ∣ Δ ∣ Γ ⊢ e : ∀�.�0
Ξ ∣ Δ ∣ Γ ⊢ e[�1] : �0[�1/�]

(Ξ ⊢ �1)

and assume that the proposition holds for the premise. We proceed
as usual, pick arbitrary Ξ′ ⊃ Ξ, �′ ∈ SCTΞ′ , Δ′ ∈ WorldΞ′

with Δ′ ⊒ Δ and �, �′ ∈ dom(Γ) → U↓ as specified in the
definition of semantic relatedness. Also we take arbitrary (s, s′) ∈
[[Δ′]]SΞ′(�

′) and (k, k′) ∈ [[�0[�1/�]]]KΞ′(�
′)(Δ′) and we construct

k0, k
′
0 : S ⊗ U ⊸ S ⊗ U by copying the interpretation of type

application and applying k respectively k′, i.e., k0 is built from the
map

�(s, u) ∈ S↓ × U↓.
{
k('(s)) u = in∀(')
⊥ otherwise

and k′0 is identical, with k′ exchanged for k. It now remains to
prove (k0, k

′
0) ∈ [[∀�.�0]]KΞ′(�

′)(Δ′). For that purpose we pick
[Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′] and we pick (s0, s

′
0) ∈ [[Δ0]]SΞ0

(�0)
and (u0, u

′
0) ∈ [[∀�.�0]]Ξ0(�0)(Δ0). From the latter we get

'0, '
′
0 ∈ S ⊸ S ⊗ U such that u0 = in∀('0), u′0 = in∀('

′
0)

and (','′) ∈ [[�0]]TΞ0,�(�0, �Ξ0(�1))(Δ0), now it remains to show
that we have

(s0, s
′
0) ∈ [[Δ0]]SΞ0,�(�0, �Ξ0(�1))

and that we have

(k, k′) ∈ [[�0]]KΞ0,�(�0, �Ξ0(�1))(Δ0).

The first is an easy consequence of the Monotonicity lemma, for
the latter we use the Degenerate Substitution Lemma to conclude

[[�0]]KΞ0,�(�0, �Ξ0(�1))(Δ0) = [[�0[�1/�]]]KΞ0,�(�0, �Ξ0(�1))(Δ0),

this suffices as [Ξ0, �∣(�0, �Ξ0(�))∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′].

Corollary 18. Semantically related expressions in context are con-
textually equivalent: if Ξ ∣ ∅ ∣ Γ ⊢ e1 ∼ e2 : � then Ξ ∣ ∅ ∣ Γ ⊢
e1 =ctx e2 : �.

Proof. This follows in the standard manner from the proof of the
fundamental theorem (Theorem 17) above together with the ade-
quacy and soundness results from the previous section.

The theorem above, and its corollary, forms the basis for simple
reasoning about parametricity using our model. A few examples are
shown in Section 5.
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4.1 Alternative Approach
In this subsection we briefly discuss and sketch an alternative ap-
proach to the second issue: the interpretation of open types depend-
ing on worlds as mentioned in the introduction of Section 4.

Here, we interpret quantified types as intersections over seman-
tic closed types, the latter are members of UARel(U) parameter-
ized over interpretations of types with fewer type variables. This
somewhat syntactic choice goes nicely with syntactic worlds con-
taining free type variables. The alternative approach is to have se-
mantic worlds, mapping locations to semantic types and letting se-
mantic types be world-indexed members of UARel(U). This in-
troduces a mutual dependency between worlds and semantic types;
in effect, we ask for solutions to the mutually recursive equations
(recall that locations are natural numbers):

ST = W → UARel(U)

W = ℕ fin→ ST

It turns out that one can solve equations similar to the above in
suitable categories of complete ultra-metric spaces. Our solution
relies on well-known metrics associated with partial equivalence
relations [1, 4]. The alternative approach gives a more semantic
understanding of open types, in particular one can interpret quan-
tified types ∀�.� by the more standard

∩
�∈ST[[� ]](�). But it does

come at the price of using (yet) more mathematical machinery. The
present approach is a fairly (if not entirely) simple alternative. And
while the two approaches yield different models, it is not immediate
that either is superior in terms of proving more equivalences.

For lack of space we cannot present the details of the alternative
approach here; that will be done in a forthcoming paper. With this
approach we will also be able to make a more detailed comparison
to the step-indexed approach to recursive types and references [2,
6]; indeed, approximations to equations similar to those shown
above play a key role in recent step-indexed models [6].

5. Examples of Parametricity Reasoning
As explained in the Introduction, this paper focuses on the key
technical challenges involved in defining an adequate, parametric
model for a language with recursive types and general references.
The main contributions of the paper are our solutions to these chal-
lenges, including the concepts of semantic locations and seman-
tic closed types; extending the current setup to allow for more ad-
vanced applications involving local state [11] is deferred to future
work (see Section 6).

As illustrated by the first example below, one can use the para-
metricity results in this paper to prove equivalences between dif-
ferent functional implementations of abstract data types in an im-
perative language. The proof essentially proceeds in the standard
manner — but the point now is that the clients of such abstract data
types may be implemented using all the features of the language,
including general references, recursive types, etc. The remaining
three examples below illustrate that one can prove simple equiva-
lences involving imperative abstract data types and local state.

In the examples we use the standard encoding of n-ary products
by means of binary products. And we refer to the type unit by 1.

Example 19. In the first example, we show that a client of a mod-
ule that implements a counter cannot distinguish between two dif-
ferent, but related implementations of the module. The two imple-
mentations are very simple functional implementations, but we em-
phasize that the reasoning works for any client of the right type; the
client may be implemented using all the features of the language.

The type of counter-module clients is

�cl = ∀�.((1→ �)× (�→ �)× (�→ int)→ int) .

Intuitively, a client c of a counter module takes an unknown type �
(the concrete type used internally by the module to represent coun-
ters) and three functions (the first for creating a new counter, the
second for incrementing a counter, and the third for getting the
value of a counter) and returns a result of type int.

Let the two counter implementations be given by I1 and I2:

I1 = (�x : 1. 0, �x : int. x+ 1, �x : int. x)
I2 = (�x : 1. 0, �x : int. x− 1, �x : int. − x).

We can now use Corollary 18 to prove that

∅ ∣ ∅ ∣ c : �cl ⊢ c[int]I1 =ctx c[int]I2 : int .

The proof of relatedness of c[int]I1 and c[int]I2 proceeds as
expected, except that it is in continuation-passing style, and, of
course, involves the definition of a relation relating each integer
n to−n. Formally, one uses the semantic closed type �0 ∈ SCTΞ

defined by

�0(') = {(⊥,⊥)} ∪ {(inint(n), inint(−n)) ∣ n ∈ ℕ} .
Example 20. Consider now the following type of clients of an
imperative counter module:

� ′cl = ∀�.((1→ �)× (�→ 1)× (�→ int)→ int) .

As in the previous example, the intuition is that a client takes an
unknown type � and three functions implementing operations on
counters. The difference from the previous example is that the
second of the three functions has the type � → 1, reflecting that
the ’increment’ operation modifies its input and does not need to
return a result.

Let the two imperative implementations be given by I ′1 and I ′2:

I ′1 = (�x : 1. ref(0),
�x : int ref. x := !x+ 1,
�x : int ref. !x)

I ′2 = (�x : 1. ref(0),
�x : int ref. x := !x− 1,
�x : int ref. − (!x))

We can now use Corollary 18 to prove that

∅ ∣ ∅ ∣ c : � ′cl ⊢ c[int ref]I ′1 =ctx c[int ref]I ′2 : int .

To show semantic relatedness, we let Δ ∈ WorldΞ and � ∈
SCTΞ and (c1, c2) ∈ [[� ′cl]]Ξ(�)(Δ) for some arbitrary Ξ. We now
exploit the fact that ’future worlds’ may contain arbitrary new type
variables. Pick �0 /∈ Ξ; it suffices to show that

([[I ′1]], [[I ′2]]) ∈
[[(1→ �)× (�→ 1)× (�→ int)]]Ξ,�0,�(�, �0, �)(∅) ,

where �0 is defined as in the previous example, and where � =
�(Ξ,�0)(�0 ref) is the semantic closed type corresponding to the
syntactic type �0 ref.

From here, the most interesting part of the proof is the re-
latedness of the two implementations of the operation for cre-
ating a new counter. The core of the proof obligation is the
following: given [Ξ′ ∣�′ ∣Δ′] ⊒ [(Ξ, �0, �)∣(�, �0, �)∣∅], states
(s, s′) ∈ [[Δ′]]SΞ′(�

′), and continuations (k, k′) ∈ [[�]]KΞ′(�
′)(Δ′),

we must show that k [[ref 0]]s∅ and k′ [[ref 0]]s
′
∅ are both ⊥ or

contain the same integer component. But the characterization
of [[�]]KΞ′(�

′)(Δ′) in Figure 8 involves a quantification over all
Δ′′ ⊒ Δ′: we can exploit that quantification by choosing Δ′′ =
Δ′[l 7→ �0] where l is the smallest number not in the domain
of Δ′. The result easily follows.
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Example 21. As in Crary and Harper [13], we can introduce the
usual encoding of existential types by means of universal types:

∃�.� = ∀�.(∀�. � → �)→ � .

We then revisit the previous example: the type

�m = ∃�. (1→ �)× (�→ 1)× (�→ int)

can be used to model imperative counter modules.
Consider the following two module implementations, i.e.,

closed terms of type �m:

J1 = Λ�.�c. c[int ref]I ′1 and J2 = Λ�.�c. c[int ref]I ′2

(where I ′1 and I ′2 are defined in the previous example). We can use
Corollary 18 to prove that J1 and J2 are contextually equivalent.
The reasoning is essentially as in the previous example, except that
the ’answer type’ is now a universally quantified type variable �
instead of the fixed type int.

Example 22. One can alternatively implement an imperative
counter module by means of a local reference and two closures.
Consider the type �lr = 1→ ((1→ 1)× (1→ int)) and the two
counter implementations

J =�x : 1. let r = ref 0 in (�y : 1. r := !r + 1, �y : 1. !r)
J ′=�x : 1. let r = ref 0

in (�y : 1. r := !r − 1, �y : 1. − (!r))

where the let . . . in construct is syntactic sugar for a �-redex in
the usual way. Both J and J ′ are closed terms of type �lr, and we
can use Corollary 18 to show that the two terms are contextually
equivalent. As in Example 20, the proof involves introducing a new
type variable �0, interpreted by �0.

6. Conclusion and Future Work
We have given a first relationally parametric possible world seman-
tics for a call-by-value higher-order language with impredicative
polymorphism, general references, and recursive types. In particu-
lar, we have discovered a technical challenge in establishing the ex-
istence of the requisite relational interpretations of types and solved
the problem of existence by a novel model of references using a
semantic notion of location that permits a useful approximation re-
lation. We are convinced that the technical challenge is a real one
and think that the reason it has not been observed before when mod-
elling references with domains is that it only shows up when one
insists on modeling open types (as needed for parametricity).

As already mentioned, the logical relations suffice for proving
parametricity results for a language with recursive types and gen-
eral references. They are, however, not tailored for maximal ’proof
strength’, rather the focus is on the underlying semantic challenges.
In particular, reasoning about local state is not in general possible,
we may, e.g., not prove ’garbage collection’ of unused references.
We plan to extend and combine the present work with earlier work
on reasoning about local state [11] — this allows for formal proofs
that two implementations of an abstract type using local state in
different ways are related. Indeed in [12], the first author and Nina
Bohr extended the techniques in [11] to a language with impredica-
tive polymorphism and references to closed types (closed to avoid
the technical challenges addressed in this paper), and were, e.g.,
able to prove two implementations of an abstract stack type related,
one implementation using an ML-style list and the other using a
linked list implementation for the stack [12, Sec. 5].

Finally, recent work [3] by Ahmed, Dreyer and Rossberg came
to our attention after writing this paper. They too provide a relation-
ally parametric possible world semantics of a similar language, but
using a step-indexed approach rather than a domain theoretic. Also

their worlds are more flexible and hence applicable to more exam-
ples. Indeed, their work extend ideas from the aforementioned work
[11] but does so in a step-indexed fashion.
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A. Typing Rules Ξ ∣ Δ ∣ Γ ⊢ x : � (Ξ ⊢ Δ, Ξ ⊢ Γ, x ∈ dom(Γ), Γ(x) = � )

Ξ ∣ Δ ∣ Γ ⊢ () : unit (Ξ ⊢ Δ, Ξ ⊢ Γ)

Ξ ∣ Δ ∣ Γ ⊢ n : int (Ξ ⊢ Δ, Ξ ⊢ Γ)

Ξ ∣ Δ ∣ Γ ⊢ l : � ref (Ξ ⊢ Δ, Ξ ⊢ Γ, l ∈ dom(Δ), Δ(l) = � )

Ξ ∣ Δ ∣ Γ ⊢ e0 : int Ξ ∣ Δ ∣ Γ ⊢ e1 : int

Ξ ∣ Δ ∣ Γ ⊢ op(e0 ± e1) : int

Ξ ∣ Δ ∣ Γ ⊢ e : int Ξ ∣ Δ ∣ Γ ⊢ ei : �

Ξ ∣ Δ ∣ Γ ⊢ ifzero e then e0 else e1 : �

Ξ ∣ Δ ∣ Γ ⊢ e0 : �0 Ξ ∣ Δ ∣ Γ ⊢ e1 : �1

Ξ ∣ Δ ∣ Γ ⊢ (e0, e1) : �0 × �1

Ξ ∣ Δ ∣ Γ ⊢ e : �0 × �1
Ξ ∣ Δ ∣ Γ ⊢ fst(e) : �0

Ξ ∣ Δ ∣ Γ ⊢ e : �0 × �1
Ξ ∣ Δ ∣ Γ ⊢ snd(e) : �1

Ξ ∣ Δ ∣ Γ ⊢ e : �0

Ξ ∣ Δ ∣ Γ ⊢ inl�0+�1(e) : �0 + �1
(Ξ ⊢ �1)

Ξ ∣ Δ ∣ Γ ⊢ e : �1

Ξ ∣ Δ ∣ Γ ⊢ inr�0+�1(e) : �0 + �1
(Ξ ⊢ �0)

Ξ ∣ Δ ∣ Γ ⊢ e : �0 + �1 Ξ ∣ Δ ∣ Γ, x : �i ⊢ ei : �

Ξ ∣ Δ ∣ Γ ⊢ case e of inl(x). e0 else inr(x). e1 : �

Ξ ∣ Δ ∣ Γ ⊢ e : � [��.�/�]

Ξ ∣ Δ ∣ Γ ⊢ fold��.� (e) : ��.�

Ξ ∣ Δ ∣ Γ ⊢ e : ��.�

Ξ ∣ Δ ∣ Γ ⊢ unfold��.� (e) : � [��.�/�]

Ξ, � ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ Λ�.e : ∀�.�
(Ξ ⊢ Δ, Ξ ⊢ Γ)

Ξ ∣ Δ ∣ Γ ⊢ e : ∀�.�0
Ξ ∣ Δ ∣ Γ ⊢ e[�1] : �0[�1/�]

(Ξ ⊢ �1)

Ξ ∣ Δ ∣ Γ, f : �0 → �1, x : �0 ⊢ e : �1

Ξ ∣ Δ ∣ Γ ⊢ fix�0→�1f(x).e : �0 → �1

Ξ ∣ Δ ∣ Γ ⊢ e0 : �0 → �1 Ξ ∣ Δ ∣ Γ ⊢ e1 : �0

Ξ ∣ Δ ∣ Γ ⊢ e0(e1) : �1

Ξ ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref

Ξ ∣ Δ ∣ Γ ⊢ e : � ref

Ξ ∣ Δ ∣ Γ ⊢ ! e : �

Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref Ξ ∣ Δ ∣ Γ ⊢ e1 : �

Ξ ∣ Δ ∣ Γ ⊢ e0 := e1 : unit

Figure 9. Typing rules. The general form is Ξ ∣ Δ ∣ Γ ⊢ e : � for
a context of type variables Ξ, a world Δ, a context of term variables
Γ, an expression e and a type � .
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B. Big-Step Operational Semantics Π, () ⇓ Π, () Π, n ⇓ Π, n Π, l ⇓ Π, l

Π,Λ�.e ⇓ Π,Λ�.e

Π, fix�0→�1f(x).e ⇓ Π, fix�0→�1f(x).e

Π, e0 ⇓ Π′, n0 Π′, e1 ⇓ Π′′, n1

Π, op(e0 ± e1) ⇓ Π′′, n0 ± n1

Π, e ⇓ Π′, 0 Π′, e0 ⇓ Π′′, v

Π, ifzero e then e0 else e1 ⇓ Π′′, v′

Π, e ⇓ Π′, n Π′, e1 ⇓ Π′′, v

Π, ifzero e then e0 else e1 ⇓ Π′′, v′
(n ∕= 0)

Π, e0 ⇓ Π′, v0 Π′, e1 ⇓ Π′′, v1

Π, (e0, e1) ⇓ Π′′, (v0, v1)

Π, e ⇓ Π′, (v0, v1)

Π, fst(e) ⇓ Π′, v0

Π, e ⇓ Π′, (v0, v1)

Π, snd(e) ⇓ Π′, v1

Π, e ⇓ Π′, v

Π, inl�0+�1(e) ⇓ Π′, inl�0+�1(v)

Π, e ⇓ Π′, v

Π, inr�0+�1(e) ⇓ Π′, inr�0+�1(v)

Π, e ⇓ Π′, inl(v) Π′, e0[v/x] ⇓ Π′′, v′

Π, case e of inl(x). e0 else inr(x). e1 ⇓ Π′′, v′

Π, e ⇓ Π′, inr(v) Π′, e1[v/x] ⇓ Π′′, v′

Π, case e of inl(x). e0 else inr(x). e1 ⇓ Π′′, v′

Π, e ⇓ Π′, v

Π, fold��.� (e) ⇓ Π′, fold��.� (v)

Π, e ⇓ Π′, fold��.� (v)

Π, unfold��.� (e) ⇓ Π′, v

Π, e ⇓ Π′,Λ�.e′ Π′, e′[�/�] ⇓ Π′′, v

Π, e[� ] ⇓ Π′′, v

Π, e0 ⇓ Π′, fix�0→�1 f(x).e Π′, e1 ⇓ Π′′, v
Π′′, e[v/x, fix�0→�1 f(x).e/f ] ⇓ Π′′′, v′

Π, e0(e1) ⇓ Π′′′, v′

Π, e ⇓ Π′, v

Π, ref(e) ⇓ Π′[l 7→ v], l
(l /∈ dom(Π′))

Π, e ⇓ Π′, l

Π, ! e ⇓ Π′, v
(l ∈ dom(Π′), Π′(l) = v)

Π, e0 ⇓ Π′, l Π′, e1 ⇓ Π′′, v

Π, e0 := e1 ⇓ Π′′[l 7→ v], ()
(l ∈ dom(Π′′))

Figure 10. Big-step operational semantics. The general form is
Π, e ⇓ Π′, v where Π and Π′ are syntactic stores, e is an expression
and v a value.
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C. Proof of Soundness
The following definition captures equality up to location renaming:

Definition 23. For syntactic stores Π, Π′, expressions e, e′ and a
bijection � : dom(Π)→ dom(Π′) we write Π, e

�∼ Π′, e′ when

(i) �(e) = e′, ∀l ∈ dom(Π). �(Π(l)) = Π′(�(l)).
(ii) FL(e) ⊂ dom(Π), ∀l ∈ dom(Π). FL(Π(l)) ⊂ dom(Π).

Here application of � to an expression denotes the obvious substi-
tution and FL is the set of locations occurring in an expression.
The second clause prevents stray locations, it is necessary because
of the untyped approach we take in this appendix. Notice how the
definition also ensures that we have FL(e′) ⊂ dom(Π′) and that
for all l′ ∈ dom(Π′) have FL(Π′(l′)) ⊂ dom(Π′). We are able to
prove a simple coherence result:

Lemma 24. If we have Π, e
�∼ Π′, e′, Π, e ⇓ Πf , v and Π′, e′ ⇓

Π′f , v
′ then there is a a bijection �f : dom(Πf )→ dom(Π′f ) with

Πf , v
�f∼ Π′f , v

′ and with �f (l) = �(l) for all l ∈ dom(Π).

Notice that we implicitly rely on the fact that the domains of
syntactic stores cannot shrink during evaluation.

Proof. The lemma is stronger than we need to prove soundness
but the formulation is necessary for a proof by induction on the
structure of the first evaluation derivation to go through. We give
details of the case of memory allocation, i.e., we look at the rule

Π, e ⇓ Π′, v

Π, ref(e) ⇓ Π′[l 7→ v], l
(l /∈ dom(Π′))

and assume that the lemma holds for the premise. Pick Π†, e†,
Π†f , v† and any bijection � : dom(Π) → dom(Π†) and assume
that Π, ref(e)

�∼ Π†, e† and that Π†, e† ⇓ Π†f , v
†. As we have

e† = �(ref(e)) = ref(�(e)) we must have that the derivation of
Π†, e† ⇓ Π†f , v

† ends in

Π†, �(e) ⇓ Π‡, v‡

Π†, ref(�(e)) ⇓ Π‡[l† 7→ v‡], l†

for some Π‡, v‡ and l† /∈ dom(Π‡) with Π†f = Π‡[l† 7→ v‡]

and v† = l†. By the induction hypothesis and the fact that Π, e
�∼

Π†, �(e) we get a bijection �† : dom(Π′)→ dom(Π‡) extending

� with Π′, v
�†∼ Π‡, v‡. And as we know l /∈ dom(Π′) and

l† /∈ dom(Π‡) we may extend �† to a bijection �†[l 7→ l†] :
dom(Π′[l 7→ v]) → dom(Π‡[l† 7→ v‡]). It is immediate that
�†[l 7→ l†](l) = l†. For l′ ∈ dom(Π′[l 7→ v]) we have either
l′ ∈ dom(Π′) and hence that

�†[l 7→ l†](Π′[l 7→ v](l′)) = �†(Π′(l′))

= Π‡(�†(l′))

= Π‡[l† 7→ v‡](�†[l 7→ l†](l′))

or we have l′ = l in which case we get �†[l 7→ l†](Π′[l 7→
v](l′)) = v‡ = Π‡[l† 7→ v‡](�†[l 7→ l†](l′)). We now have

Π′[l 7→ v], l
�†[l 7→l†]∼ Π‡[l† 7→ v‡], l†

as the second clause of Definition 23 easily is verified.

We also need a deterministic version of the operational seman-
tics denoted ⇓∗, it is identical to the previously defined except for
a new rule for memory allocation:

Π, e ⇓ Π′, v

Π, ref(e) ⇓ Π′[l 7→ v], l

(
l /∈ dom(Π′),
∀l′ < l. l′ ∈ dom(Π′)

)

Switching from nondeterminism to the determinism does not af-
fect termination, but with appropriate substitution lemmas we may
prove soundness with respect to the deterministic version in the or-
dinary way. This is made precise in the following two results:

Lemma 25. Π, e
�∼ Π∗, e∗ and Π, e ↓ implies that Π∗, e∗ ↓∗.

Here the conclusion denotes existence of a syntactic store Π′ and a
value v such that Π∗, e∗ ⇓∗ Π′, v.

Proof. The proof is by induction on derivation of the termination
assumption – again we prove a little more than we need so as to
make the induction go through. We give details in two cases:

Consider the first case of branching on a sum, i.e., the rule

Π, e ⇓ Π′, inl(v) Π′, e0[v/x] ⇓ Π′′, v′

Π, case e of inl(x). e0 else inr(x). e1 ⇓ Π′′, v′

and assume that the lemma holds for the premises. Take any
syntactic store Π∗, any expression e∗ and any bijection � :
dom(Π) → dom(Π∗) and assume that Π, case e of inl(x). e0

else inr(x). e1
�∼ Π∗, e∗ holds. By applying the bijection we

get that e∗ = case �(e) of inl(x). �(e0) else inr(x). �(e1),
also we have Π, e

�∼ Π∗, �(e) which by the induction hypothe-
sis yields Π† and v∗0 with Π∗, �(e) ⇓∗ Π†, v∗0 . Lemma 24 pro-
vides us with a bijection �f : dom(Π′) → dom(Π†) extending
� such that Π′, inl(v)

�f∼ Π†, v∗0 , in particular we must have
v∗0 = �f (inl(v)) = inl(�f (v)). As FL(e0) ⊂ dom(Π) we get
that �f (e0[v/x]) = �f (e0)[�f (v)/x] = �(e0)[�f (v)/x] which
implies that Π′, e0[v/x]

�f∼ Π†, �(e0)[�f (v)/x] and the induction
hypothesis takes us home.

Consider now assignment, i.e., the rule

Π, e0 ⇓ Π′, l Π′, e1 ⇓ Π′′, v

Π, e0 := e1 ⇓ Π′′[l 7→ v], ()
(l ∈ dom(Π′′))

and assume that the lemma holds for the premises. Take any syntac-
tic store Π∗, any expression e∗ and any bijection � : dom(Π) →
dom(Π∗) and assume that Π, e0 := e1

�∼ Π∗, e∗ holds. We get
that e∗ = �(e0 := e1) = �(e0) := �(e1) and that Π, e0

�∼
Π∗, �(e0) which by the induction hypothesis yields Π† and v∗0
with Π∗, �(e0) ⇓∗ Π†, v∗0 . Lemma 24 provides us with a bijection
�f : dom(Π′)→ dom(Π†) extending � such that Π′, l

�f∼ Π†, v∗0 .
As FL(e1) ⊂ dom(Π) we get that �f (e1) = �(e1) which im-
plies that Π′, e1

�f∼ Π†, �(e1) and the induction hypothesis gives
us Π‡ and v∗1 with Π†, �(e1) ⇓∗ Π‡, v∗1 . Finally we just remark
that v∗0 = �f (l) ∈ dom(Π†) ⊂ dom(Π‡) and are done.

Proposition 26. For ∅ ∣ Δ ∣ ∅ ⊢ e : � and ∅ ∣ Δ ∣ ∅ ⊢ Π, any
syntactic store Π′ and any value v we get

Π, e ⇓∗ Π′, v =⇒
∃Δ′ ⊒ Δ. ∅ ∣ Δ′ ∣ ∅ ⊢ v : � ∧ ∅ ∣ Δ′ ∣ ∅ ⊢ Π′ ∧
[[∅ ∣ Δ ∣ ∅ ⊢ e : � ]][[Δ⊢Π]] =

⌊
[[Δ′ ⊢ Π′]], [[Δ′ ⊢ v]]

⌋
.

Proof of Proposition 8. Assume ∅ ∣ Δ ∣ ∅ ⊢ e : int and ∅ ∣ Δ ∣
∅ ⊢ Π. Suppose that for some syntactic store Π′ and some n ∈ ℕ
we have Π, e ⇓ Π′, n. As a consequence of our assumptions we
have Π, e

�∼ Π, e with � = iddom(Π). By Lemma 25 there is Π∗

and v with Π, e ⇓∗ Π∗, v and Lemma 24 ensures that v = n as
numbers are invariant under any renaming of locations. All that
remains now is to apply the above proposition.
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D. Untyped Interpretation
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[[Ξ ∣ Δ ∣ Γ ⊢ x : � ]]s� = ⌊s, �(x)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ () : unit]]s� = ⌊s, inunit(∗)⌋

[[Ξ ∣ Δ ∣ Γ ⊢ n : int]]s� = ⌊s, inint(n)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ l : � ref]]s� = ⌊s, �l⌋

[[Ξ ∣ Δ ∣ Γ ⊢ op(e0 ± e1) : int]]s� =

⎧
⎨
⎩
⌊s′′, inint(n0 ± n1)⌋

[
[[Ξ ∣ Δ ∣ Γ ⊢ e0 : int]]s� = ⌊s′, inint(n0)⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : int]]s

′
� = ⌊s′′, inint(n1)⌋

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ ifzero e then e0 else e1 : � ]]s� =

⎧
⎨
⎩

⌊s′′, u⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : int]]s� = ⌊s′, inint(0)⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e0 : � ]]s

′
� = ⌊s′′, u⌋

⌊s′′, u⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : int]]s� = ⌊s′, inint(n)⌋, n ∕= 0,

[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s
′
� = ⌊s′′, u⌋

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ (e0, e1) : �0 × �1]]s� =

⎧
⎨
⎩
⌊s′′, in×(⌊u0, u1⌋)⌋

[
[[Ξ ∣ Δ ∣ Γ ⊢ e0 : �0]]s� = ⌊s′, u0⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : �1]]s

′
� = ⌊s′′, u1⌋

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ fst(e) : �0]]s� =

{
⌊s′, u0⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : �0 × �1]]s� = ⌊s′, in×(⌊u0, u1⌋)⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ snd(e) : �1]]s� =

{
⌊s′, u1⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : �0 × �1]]s� = ⌊s′, in×(⌊u0, u1⌋)⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ inl
�0+�1(e) : �0 + �1]]s� =

{
⌊s′, (in+ ∘ inl)(u)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : �0]]s� = ⌊s′, u⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ inr
�0+�1(e) : �0 + �1]]s� =

{
⌊s′, (in+ ∘ inr)(u)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : �1]]s� = ⌊s′, u⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ case e of inl(x). e0 else inr(x). e1 : � ]]s� =
⎧
⎨
⎩

⌊s′′, u′⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : �0 + �1]]s� = ⌊s′, (in+ ∘ inl)(u)⌋,
[[Ξ ∣ Δ ∣ Γ, x : �0 ⊢ e0 : � ]]s

′
�[x7→u] = ⌊s′′, u′⌋

⌊s′′, u′⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : �0 + �1]]s� = ⌊s′, (in+ ∘ inr)(u)⌋,
[[Ξ ∣ Δ ∣ Γ, x : �1 ⊢ e1 : � ]]s

′
�[x 7→u] = ⌊s′′, u′⌋

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ fold
��.� (e) : ��.� ]]s� =

{
⌊s′, in�(u)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : � [��.�/�]]]s� = ⌊s′, u⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ unfold
��.� (e) : � [��.�/�]]]s� =

{
⌊s′, u⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : ��.� ]]s� = ⌊s′, in�(u)⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ Λ�.e : ∀�.� ]]s� =
⌊
s, in∀(�s

′ ∈ S↓.[[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]]s
′
� )
⌋

[[Ξ ∣ Δ ∣ Γ ⊢ e[�1] : �0[�1/�]]]s� =

{
'(s′) [[Ξ ∣ Δ ∣ Γ ⊢ e : ∀�.�0]]s� = ⌊s′, in∀(')⌋
⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ fix
�0→�1f(x).e : �0 → �1]]s� =

⌊
s, (in→ ∘ fix)

(
�' ∈ S ⊗ U ⊸ S ⊗ U.

�(s′, u) ∈ S↓ × U↓. [[Ξ ∣ Δ ∣ Γ, f : �0 → �1, x : �0 ⊢ e : �1]]s
′
�[f 7→in→('),x 7→u]

)⌋

[[Ξ ∣ Δ ∣ Γ ⊢ e0(e1) : �1]]s� =

⎧
⎨
⎩

'(⌊s′′, u⌋)
[

[[Ξ ∣ Δ ∣ Γ ⊢ e0 : �0 → �1]]s� = ⌊s′, in→(')⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : �0]]s

′
� = ⌊s′′, u⌋

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ ref(e) : � ref]]s� =

⎧
⎨
⎩
⌊s′[l 7→ u], �l⌋

[
[[Ξ ∣ Δ ∣ Γ ⊢ e : � ]]s� = ⌊s′, u⌋,
l /∈ dom(s′), ∀l′ < l. l′ ∈ dom(s′)

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ ! e : � ]]s� =

⎧
⎨
⎩

⌊s′, s′(l)⌋ [[Ξ ∣ Δ ∣ Γ ⊢ e : � ref]]s� = ⌊s′, �l⌋, l ∈ dom(s′)

⌊s′, �n(s′(l))⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e : � ref]]s� = ⌊s′, u⌋, �n+1(u) = �n+1
l ,

�n+2(u) ∕= �n+2
l , l ∈ dom(s′), �n(s′(l)) ∕= ⊥

⊥ otherwise

[[Ξ ∣ Δ ∣ Γ ⊢ e0 := e1 : unit]]s� =

⎧
⎨
⎩

⌊s′′[l 7→ u], inunit(∗)⌋
[

[[Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref]]s� = ⌊s′, �l⌋,
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s

′
� = ⌊s′′, u⌋, l ∈ dom(s′′)

⌊s′′[l 7→ �n(u)], inunit(∗)⌋

⎡
⎣

[[Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref]]s� = ⌊s′, u′⌋
[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s

′
� = ⌊s′′, u⌋, �n+1(u′) = �n+1

l ,
�n+2(u′) ∕= �n+2

l , l ∈ dom(s′′), �n(u) ∕= ⊥
⊥ otherwise

Figure 11. Untyped interpretation. The general form of the left hand side is [[Ξ ∣ Δ ∣ Γ ⊢ e : � ]]s� with s ∈ S↓ and � ∈ ((dom(Γ) →
U↓)⊥)↓. The right hand side is an element of S ⊗ U , remember that S = (Loc

fin→ U↓)⊥.
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E. Elaboration of Proof of Theorem 17
Proof of Theorem 17, continued. Consider the assignment case

Ξ ∣ Δ ∣ Γ ⊢ e0 : � ref Ξ ∣ Δ ∣ Γ ⊢ e1 : �

Ξ ∣ Δ ∣ Γ ⊢ e0 := e1 : unit

and assume that the proposition holds for the premises. We pick
arbitrary Ξ′ ⊃ Ξ, �′ ∈ SCTΞ′ , Δ′ ∈ WorldΞ′ with Δ′ ⊒ Δ
and �, �′ ∈ dom(Γ) → U↓ as specified in the definition of
semantic relatedness. Also we take arbitrary (s, s′) ∈ [[Δ′]]SΞ′(�

′)
and (k, k′) ∈ [[unit]]KΞ′(�

′)(Δ′). We build k0 : S ⊗ U → S ⊗ U
from the map that takes (s0, u0) ∈ S↓ × U↓ to

k(⌊s1[l 7→ u1], inunit(∗)⌋)

⎡
⎢⎢⎣

[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s0� =
⌊s1, u1⌋,
u0 = �l,
l ∈ dom(s1)

k(⌊s1[l 7→ �n(u1)], inunit(∗)⌋)

⎡
⎢⎢⎢⎢⎢⎢⎣

[[Ξ ∣ Δ ∣ Γ ⊢ e1 : � ]]s0� =
⌊s1, u1⌋,
�n+1(u0) = �n+1

l ,
�n+2(u0) ∕= �n+2

l ,
l ∈ dom(s1),
�n(u1) ∕= ⊥

⊥ otherwise

and naturally build k′0 : S⊗U → S⊗U in the same way, only we
exchange k′ for k. By first induction hypothesis it will now suffice
to prove that (k0, k

′
0) ∈ [[� ref]]KΞ′(�

′)(Δ′). Aiming to prove this,
we pick [Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′], (s0, s

′
0) ∈ [[Δ0]]SΞ0

(�0) and
(u0, u

′
0) ∈ [[� ref]]Ξ0(�0)(Δ0). We now branch according to the

two clauses of the definition of interpretation of reference types.
It may be the case that u0 = u′0 = �l for some l ∈ dom(Δ0)

with [[� ]]Ξ1(�1)(Δ1) = [[Δ1(l)]]Ξ1(�1)(Δ1) for all [Ξ1 ∣�1 ∣Δ1] ⊒
[Ξ0 ∣�0 ∣Δ0]. We build the map k1 : S ⊗ U ⊸ S ⊗ U from

�(s1, u1).

{
k(⌊s1[l 7→ u1], inunit(∗)⌋) l ∈ dom(s1)

⊥ otherwise

and k1 : S ⊗ U ⊸ S ⊗ U similarly with k′ exchanged for k. We
have Ξ0 ⊃ Ξ′ ⊃ Ξ, �0 ∈ SCTΞ0 , Δ0 ⊒ Δ′ ⊒ Δ and for any
x ∈ dom(Γ) we have

(�(x), �′(x)) ∈ [[Γ(x)]]Ξ′(�
′)(Δ′) ⊂ [[Γ(x)]]Ξ0(�0)(Δ0)

by the Monotonicity Lemma. It only remains to prove (k1, k
′
1) ∈

[[� ]]KΞ0
(�0)(Δ0) to be able to apply the second induction hy-

pothesis and be done with it. We unroll the definition and pick
[Ξ1 ∣�1 ∣Δ1] ⊒ [Ξ0 ∣�0 ∣Δ0] and (s1, s

′
1) ∈ [[Δ1]]SΞ1

(�1) and
(u1, u

′
1) ∈ [[� ]]Ξ1(�1)(Δ1). But (s1[l 7→ u1], s′1[l 7→ u′1]) ∈

[[Δ1]]SΞ1
(�1) is now within reach and we are done as we ob-

viously have (inunit(∗), inunit(∗)) ∈ [[unit]]Ξ1(�1)(Δ1) and
(k, k′) ∈ [[� ]]KΞ′(�

′)(Δ′) ⊂ [[� ]]KΞ1
(�1)(Δ1).

The second subcase to consider is u0 = u′0 = �n+1
l for some

l ∈ dom(Δ0) and n ∈ ℕ with [[� ]]Ξ1(�1)(Δ1)
n⊂ [[Δ1(l)]]Ξ1(�1)(Δ1)∪

{(⊥,⊥)} for all [Ξ1 ∣�1 ∣Δ1] ⊒ [Ξ0 ∣�0 ∣Δ0]. Somewhat pre-
dictably we build the k1 : S ⊗ U ⊸ S ⊗ U from

�(s1, u1).

⎧
⎨
⎩

k(⌊s1[l 7→ �n(u1)], inunit(∗)⌋)
[
l ∈ dom(s1),
�n(u1) ∕= ⊥

⊥ otherwise

and k1 : S ⊗ U ⊸ S ⊗ U similarly with k′ exchanged for k.
As above it now remains to prove (k1, k

′
1) ∈ [[� ]]KΞ0

(�0)(Δ0);
we pick [Ξ1 ∣�1 ∣Δ1] ⊒ [Ξ0 ∣�0 ∣Δ0], (s1, s

′
1) ∈ [[Δ1]]SΞ1

(�1) and
(u1, u

′
1) ∈ [[� ]]Ξ1(�1)(Δ1). But we have (s1[l 7→ �n(u1)], s′1[l 7→

�n(u′1)]) ∈ [[Δ1]]SΞ1
(�1) from the interpretation of the reference

type and are done.

We now turn to the case of type abstraction. We look at the rule

Ξ, � ∣ Δ ∣ Γ ⊢ e : �

Ξ ∣ Δ ∣ Γ ⊢ Λ�.e : ∀�.�
(Ξ ⊢ Δ, Ξ ⊢ Γ)

and as usual assume that the proposition holds for the premise.
Following standard procedure we pick arbitrary Ξ′ ⊃ Ξ, �′ ∈
SCTΞ′ , Δ′ ∈ WorldΞ′ with Δ′ ⊒ Δ and �, �′ ∈ dom(Γ) →
U↓ such that (�(x), �′(x)) ∈ [[Γ(x)]]Ξ′(�

′)(Δ′) for all x ∈
dom(Γ). Also we take arbitrary (s, s′) ∈ [[Δ′]]SΞ′(�

′) and (k, k′) ∈
[[∀�.� ]]KΞ′(�

′)(Δ′). From the definition of interpretation of type ab-
straction it suffices to show that
(
in∀([[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]](−)

� ), in∀([[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]]
(−)

�′ )
)

lies in [[∀�.� ]]Ξ′(�
′)(Δ′). This again comes down to proving

(
[[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]](−)

� , [[Ξ, � ∣ Δ ∣ Γ ⊢ e : � ]]
(−)

�′
)

a member of [[� ]]TΞ0,�(�0, �)(Δ0) for [Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′]
and � ∈ SCTΞ′ arbitrary. But as

(�(x), �′(x)) ∈ [[Γ(x)]]Ξ′(�
′)(Δ′) ⊂ [[Γ(x)]]Ξ0,�(�0, �)(Δ0)

holds for all x ∈ dom(Γ) by the Monotonicity Lemma we are
done by application of the induction hypothesis.

We now look into the case of function abstraction, i.e., the rule

Ξ ∣ Δ ∣ Γ, f : �0 → �1, x : �0 ⊢ e : �1

Ξ ∣ Δ ∣ Γ ⊢ fix�0→�1f(x).e : �0 → �1

and as usual assume that the proposition holds for the premise.
Following standard procedure we pick arbitrary Ξ′ ⊃ Ξ, �′ ∈
SCTΞ′ , Δ′ ∈ WorldΞ′ with Δ′ ⊒ Δ and �, �′ ∈ dom(Γ) →
U↓ such that (�(x), �′(x)) ∈ [[Γ(x)]]Ξ′(�

′)(Δ′) for all x ∈
dom(Γ). Also we take arbitrary (s, s′) ∈ [[Δ′]]SΞ′(�

′) and (k, k′) ∈
[[�0 → �1]]KΞ′(�

′)(Δ′). From the definition of interpretation of
function abstraction it shall suffice to show that the pair
[
(in→ ∘ fix)

(
�'.�(s, u). [[e : �1]]s�[f 7→in→('),x 7→u]

)
,

(in→ ∘ fix)
(
�'′.�(s′, u′). [[e : �1]]s

′
�′[f 7→in→('′),x 7→u′]

)]

lies in [[�0 → �1]]Ξ′(�
′)(Δ′). For layout reasons we have omitted

part of the typing judgments and the domains of the abstractions:
the domain of ' and '′ is S⊗U ⊸ S⊗U and the domain of (s, u)
and (s′, u′) is S↓ ×U↓. By the interpretation of function types and
for admissibility reasons this comes down to proving that for any
[Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′] and any (u, u′) ∈ [[�0]]Ξ0(�0)(Δ0) we
have the pair

[
[[e : �1]]

(−)

�[f 7→in→('),x 7→u], [[e : �1]]
(−)

�′[f 7→in→('′),x 7→u′]
]

in [[�1]]TΞ0
(�0)(Δ0) under the assumption that ','′ ∈ S ⊗ U ⊸

S ⊗ U with the property that for any [Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′]
and any (u, u′) ∈ [[�0]]Ξ0(�0)(Δ0) we have

[
'(⌊−, u⌋), '′(⌊−, u′⌋)

]
∈ [[�1]]TΞ0

(�0)(Δ0).

The induction hypothesis together with the Monotonicity Lemma
sees to that.

The final case we consider in detail is function application, i.e.,
we look at the rule

Ξ ∣ Δ ∣ Γ ⊢ e0 : �0 → �1 Ξ ∣ Δ ∣ Γ ⊢ e1 : �0

Ξ ∣ Δ ∣ Γ ⊢ e0(e1) : �1
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and assume that the proposition holds for the premises. For the
seventh time we pick arbitrary Ξ′ ⊃ Ξ, �′ ∈ SCTΞ′ , Δ′ ∈
WorldΞ′ with Δ′ ⊒ Δ and �, �′ ∈ dom(Γ) → U↓ such that
(�(x), �′(x)) ∈ [[Γ(x)]]Ξ′(�

′)(Δ′) for all x ∈ dom(Γ). And we
take arbitrary (s, s′) ∈ [[Δ′]]SΞ′(�

′) and (k, k′) ∈ [[�1]]
K
Ξ′(�

′)(Δ′).
We build k0 : S ⊗ U → S ⊗ U from the map

�(s0, u0).

⎧
⎨
⎩

k('(⌊s1, u1⌋))
[

[[Ξ ∣ Δ ∣ Γ ⊢ e1 : �0]]s0� =
⌊s1, u1⌋, u0 = in∀(')

⊥ otherwise

and naturally build k′0 : S ⊗ U → S ⊗ U in the same way, only
we exchange k′ for k. By the first induction hypothesis it will now
suffice to prove that (k0, k

′
0) ∈ [[�0 → �1]]KΞ′(�

′)(Δ′). Aiming
to prove this, we pick [Ξ0 ∣�0 ∣Δ0] ⊒ [Ξ′ ∣�′ ∣Δ′], (s0, s

′
0) ∈

[[Δ0]]SΞ0
(�0) and (u0, u

′
0) ∈ [[�0 → �1]]Ξ0(�0)(Δ0). The latter

implies the existence of ','′ ∈ S ⊗ U ⊸ S ⊗ U such that
u0 = in∀(') and u′0 = in∀('

′) and we have

['(⌊−, u⌋), '′(⌊−, u′⌋)] ∈ [[�1]]TΞ1
(�1)(Δ1)

for any choice of [Ξ1 ∣�1 ∣Δ1] ⊒ [Ξ0 ∣�0 ∣Δ0] and any (u, u′) ∈
[[�0]]Ξ1(�1)(Δ1). We can now build maps k1, k

′
1 : S⊗U → S⊗U ,

the former form the map �(s1, u1) ∈ S↓ × U↓. k('(⌊s1, u1⌋))
and the latter from �(s′1, u

′
1) ∈ S↓ × U↓. k

′('′(⌊s′1, u′1⌋)). By
the second induction hypothesis and the Monotonicity Lemma it
shall now suffice to prove that (k1, k

′
1) ∈ [[�0]]KΞ0

(�0)(Δ0). Once
again we look into the future and pick [Ξ1 ∣�1 ∣Δ1] ⊒ [Ξ0 ∣�0 ∣Δ0],
(s1, s

′
1) ∈ [[Δ1]]SΞ1

(�1) and (u1, u
′
1) ∈ [[�0]]Ξ1(�1)(Δ1). All

that remains is to remark that we of course have (k, k′) ∈
[[�1]]

K
Ξ1

(�1)(Δ1) too.
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We present a realizability model for a call-by-value, higher-order programming language

with parametric polymorphism, general first-class references, and recursive types. The

main novelty is a relational interpretation of open types that include general reference

types. The interpretation uses a new approach to modeling references.

The universe of semantic types consists of world-indexed families of logical relations over

a universal predomain. In order to model general reference types, worlds are finite maps

from locations to semantic types: this introduces a circularity between semantic types

and worlds that precludes a direct definition of either. Our solution is to solve a

recursive equation in an appropriate category of metric spaces. In effect, types are

interpreted using a Kripke logical relation over a recursively defined set of worlds.

We illustrate how the model can be used to prove simple equivalences between different

implementations of imperative abstract data types.

1. Introduction

In this article we develop a semantic model of a call-by-value programming language with

impredicative and parametric polymorphism, general first-class references, and recursive

types. Motivations for conducting this study include:

— Extending the approach to reasoning about abstract data types via relational para-

metricity from pure languages to more realistic languages with effects, here general

references. We discussed this point of view extensively earlier (Birkedal et al. 2009).

— Investigating what semantic structures are needed in general models for effects. In-

deed, we see the present work as a pilot study for studying general type theories and

models of effects (e.g., Levy 2006; Plotkin and Power 2004), in which we identify key

ingredients needed for semantic modeling of general first-class references.

— Paving the way for developing models of separation logic for ML-like languages with

reference types. Earlier such models of separation logic (Petersen et al. 2008) only
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treat so-called strong references, where the type on the contents of a reference cell can

vary: therefore proof rules cannot take advantage of the strong invariants provided

by ML-style reference types.

We now give an overview of the conceptual development of the paper. The development

is centered around three recursively defined structures, defined in three steps. In slogan

form, there is one recursively defined structure for each of the type constructors ∀, ref,

and � alluded to in the title.

First, since the language involves impredicative polymorphism, the semantic model is

based on a realizability interpretation (Amadio 1991) over a certain recursively defined

predomain V . Using this predomain we can give a denotational semantics of an untyped

version of the language. This part is mostly standard, except for the fact that we model

locations as pairs (l, n), with l a natural number corresponding to a standard location and

n ∈ ℕ∪{∞} indicating the “approximation stage” of the location (Birkedal et al. 2009).

These pairs, called semantic locations, are needed for modeling reference types in step

three. Intuitively, the problem with the more standard approach of modeling locations

as natural numbers is that such “flat” locations contain no approximation information

that can be used to define relations by induction.

Second, to account for dynamic allocation of typed reference cells, we follow earlier

work on modeling simple integer references (Benton and Leperchey 2005) and use a

Kripke-style possible worlds model. Here, however, the set of worlds needs to be recur-

sively defined since we treat general references. Semantically, a world maps locations to

semantic types, which, following the general realizability idea, are certain world-indexed

families of relations on V : this introduces a circularity between semantic types and worlds

that precludes a direct definition of either. Thus we need to solve recursive equations of

approximately the following form

W = ℕ0 ⇀fin T
T = W → CURel(V )

even in order to define the space in which types will be modeled. (Here CURel(V ) is

a set of “good” relations on V .) We formally define the recursive equations in certain

ultrametric spaces and show how to solve them using known results from metric-space

based semantics. The employed metric on relations on V is well-known from work on

interpreting recursive types and impredicative polymorphism (Abadi and Plotkin 1990;

Amadio 1991; Amadio and Curien 1998; Cardone 1989; MacQueen et al. 1986); here we

extend its use to reference types (combined with these two other features).

Third, having now defined the space in which types should be modeled, the actual

semantics of types can be defined. For recursive types, that also involves a recursive

definition. Since the space T of semantic types is a metric space we can employ Banach’s

fixed point theorem to find a solution as the fixed point of a contractive operator on T .†

This involves interpreting the various type constructors of the language as non-expansive

† We remark that the fixed point could also be found using the technique of Pitts (1996); the proof

techniques are very similar because of the particular way the requisite metrics are defined. In this

article we do in any case need the metric-space formulation, but not the extra separation of positive
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operators. For most type constructors doing so is straightforward, but for the reference-

type constructor it is not. That is the reason for introducing the semantic locations

mentioned above: using these, we can define a semantic reference-type operator (and

show that it is non-expansive). In fact, we give an abstract proof that the probably

most natural interpretation of reference types is, under certain assumptions, impossible.

Therefore, semantic locations (or some other construct) are indeed necessary.

Finally, having now defined semantics of types using a family of world-indexed logical

relations, we define the typed meaning of terms by proving the fundamental theorem of

logical relations with respect to the untyped semantics of terms.

Limitations. The model we construct does not validate standard equivalences involving

local state; indeed, it can only be used to equate computations that allocate references

essentially “in lockstep.” More precisely the model can only relate two program states

if they contain the same number of locations. Furthermore, a certain technical require-

ment on the relations we consider (“uniformity”) seems to be too restrictive. In recent

work (Birkedal et al. 2010b) we have shown that both these problems can be overcome:

one can use the techniques presented here to construct a model that validates sophisti-

cated equivalences in the style of Ahmed et al. (2009). One key idea is to weaken the

model such that the constructed relations can be thought of as inequalities instead of

equalities; then one can prove results about contextual approximation rather than con-

textual equivalence. The model there is rather more complicated than the one in the

present article, however. Here we rather aim to present the fundamental ideas behind

Kripke logical relations over recursively defined sets of worlds.

Overview of the rest of the article. The rest of the article is organized as follows. In

Section 2 we sketch the language we consider. In Section 3 we present the untyped

semantics, corresponding to step one in the outline above. In Section 4 we present the

typed semantics, corresponding to the last two steps. In Section 5 we give an abstract

proof that a certain simpler interpretation of reference types is impossible. In Section 6

we present a few examples of reasoning using the model. Related work is discussed in

Section 7.

2. Language

We consider a standard call-by-value language with universal types, iso-recursive types,

ML-style reference types, and a ground type of integers. The language is sketched in

Figure 1. Terms are not intrinsically typed; this allows us to give a denotational semantics

of untyped terms. The typing rules are standard (Pierce 2002). In the figure, Ξ and Γ

range over contexts of type variables and term variables, respectively.

The constructs that involve references have the following informal meaning: The term

ref t allocates a new reference cell initialized with the result of evaluating t. The term !t

and negative arguments in recursive definitions of relations, and hence we define the meaning of

recursive types via Banach’s fixed point theorem (Amadio 1991; Amadio and Curien 1998).
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looks up t in the current store (and gives an error if t evaluates to something which is

not a location). Finally, the term t1 := t2 assigns the value of t2 to t1 (provided that t1
evaluates to a location).

2.1. Operational semantics

We sketch an operational semantics of the untyped term language above. For this purpose,

we temporarily add syntactic locations to the language:

t ::= ⋅ ⋅ ⋅ ∣ l (l ∈ !)

The set of syntactic values is then given by:

w ::= x ∣ m ∣ l ∣ () ∣ (w1, w2) ∣ inlw ∣ inrw ∣ foldw ∣ Λ�.t ∣ �x.t
A term or syntactic value is closed if it contains no free variables and no free type

variables.

A syntactic store is a finite map from locations to closed syntactic values. Let � range

over syntactic stores. A configuration is a pair (�, t) consisting of a syntactic store � and

a closed term t.

The operational semantics is given by two judgements on configurations. First,

(�, t) ⇓ (�′, w) means that evaluation of t together with the store � terminates with

a value w and a possibly modified store �′. Second, (�, t) ⇓ error means that evaluation

of t together with the store � results in an error, either due to a memory fault or, e.g.,

an attempt to apply an integer constant to an argument.

Figure 2 shows some selected rules for the two judgements. As for the last rule, notice

that evaluation of allocation is deterministic: the newly allocated location is always the

least one not already in the store. In earlier work (Birkedal et al. 2009) we treated a

non-deterministic allocation rule; here we stick to deterministic allocation in order to

simplify the relationship with the denotational semantics in the next section.

A configuration (�, t) converges, written (�, t) ⇓, if there exist some �′ and w such

that (�, t) ⇓ (�′, w) holds. Two terms t and t′ are contextually equivalent if for every

(many-holed) term context C such that C[t] and C[t′] are closed terms,

(∅, C[t]) ⇓ ⇐⇒ (∅, C[t′]) ⇓ and (∅, C[t]) ⇓ error ⇐⇒ (∅, C[t′]) ⇓ error.

3. Untyped semantics

We now give a denotational semantics for the untyped term language above. As usual for

models of untyped languages, the semantics is given by means of a “universal” complete

partial order (cpo) in which one can inject integers, pairs, functions, etc. This universal

cpo is obtained by solving a recursive domain equation.

The only non-standard aspect of the semantics is the treatment of store locations: lo-

cations are modeled as elements of the cpo Loc = ℕ0×! where ! is the “vertical natural

numbers” cpo 1 ⊏ 2 ⊏ ⋅ ⋅ ⋅ ⊏ n ⊏ ⋅ ⋅ ⋅ ⊏∞. (For notational reasons it is convenient to call

the least element 1 rather than 0.) The intuitive idea is that locations can be approxi-

mated: the element (l,∞) ∈ Loc is the “ideal” location numbered l, while the elements
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Parametric Polymorphism, General References, and Recursive Types 5

Types: � ::= int ∣ 1 ∣ �1 × �2 ∣ 0 ∣ �1 + �2 ∣ ��.� ∣ ∀�.� ∣ � ∣ �1 → �2 ∣ ref �

Terms: t ::= x ∣ m ∣ ifz t0 t1 t2 ∣ t1 + t2 ∣ t1 − t2 ∣ () ∣ (t1, t2) ∣ fst t ∣ snd t

∣ void t ∣ inl t ∣ inr t ∣ case t0 x1.t1 x2.t2 ∣ fold t ∣ unfold t

∣ Λ�.t ∣ t [� ] ∣ �x.t ∣ t1 t2 ∣ fix f.�x.t ∣ ref t ∣ !t ∣ t1 := t2

Typing rules:

Ξ ∣ Γ ⊢ x : � (Ξ ⊢ Γ, Γ(x) = �) Ξ ∣ Γ ⊢ m : int (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t0 : int Ξ ∣ Γ ⊢ t1 : � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ ifz t0 t1 t2 : �

Ξ ∣ Γ ⊢ t1 : int Ξ ∣ Γ ⊢ t2 : int

Ξ ∣ Γ ⊢ t1 ± t2 : int Ξ ∣ Γ ⊢ () : 1 (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t1 : �1 Ξ ∣ Γ ⊢ t2 : �2

Ξ ∣ Γ ⊢ (t1, t2) : �1 × �2
Ξ ∣ Γ ⊢ t : 0

Ξ ∣ Γ ⊢ void t : �
(Ξ ⊢ �)

Ξ ∣ Γ ⊢ t : �1 × �2
Ξ ∣ Γ ⊢ fst t : �1

Ξ ∣ Γ ⊢ t : �1 × �2
Ξ ∣ Γ ⊢ snd t : �2

Ξ ∣ Γ ⊢ t : �1

Ξ ∣ Γ ⊢ inl t : �1 + �2
(Ξ ⊢ �2)

Ξ ∣ Γ ⊢ t : �2

Ξ ∣ Γ ⊢ inr t : �1 + �2
(Ξ ⊢ �1)

Ξ ∣ Γ ⊢ t0 : �1 + �2 Ξ ∣ Γ, xi : �i ⊢ ti : � (i = 1, 2)

Ξ ∣ Γ ⊢ case t0 x1.t1 x2.t2 : �

Ξ ∣ Γ ⊢ t : � [��.�/�]

Ξ ∣ Γ ⊢ fold t : ��.�

Ξ ∣ Γ ⊢ t : ��.�

Ξ ∣ Γ ⊢ unfold t : � [��.�/�]

Ξ, � ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ Λ�.t : ∀�.�
(Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t : ∀�.�0
Ξ ∣ Γ ⊢ t [�1] : �0[�1/�]

(Ξ ⊢ �1)

Ξ ∣ Γ, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ �x.t : �0 → �1

Ξ ∣ Γ ⊢ t1 : � → � ′ Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 t2 : � ′

Ξ ∣ Γ, f : �0 → �1, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ fix f.�x.t : �0 → �1

Ξ ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ ref t : ref �

Ξ ∣ Γ ⊢ t : ref �

Ξ ∣ Γ ⊢ !t : �

Ξ ∣ Γ ⊢ t1 : ref � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 := t2 : 1

Fig. 1. Programming language
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(�, t1) ⇓ (�′, �x.t) (�′, t2) ⇓ (�′′, w2) (�′′, t[w2/x]) ⇓ (�′′′, w)

(�, t1 t2) ⇓ (�′′′, w)

(�, t1) ⇓ (�′, w) w not of the form �x.t

(�, t1 t2) ⇓ error

(�, t) ⇓ (�′, l) l ∈ dom(�′)

(�, !t) ⇓ (�′, �′(l))

(�, t) ⇓ (�′, l) l /∈ dom(�′)

(�, !t) ⇓ error

(�, t1) ⇓ (�′, l) (�′, t2) ⇓ (�′′, w) l ∈ dom(�′′)

(�, t1 := t2) ⇓ (�′′[l 7→ w], ())

(�, t) ⇓ (�′, w) l = min{l ∈ ! ∣ l /∈ dom(�′)}
(�, ref t) ⇓ (�′ ⊎ [l 7→ w], l)

Fig. 2. Operational semantics (selected rules)

of the form (l, n) for n < ∞ are its approximations. It is essential for the construction

of the typed semantics in the next section that these “approximate locations” (l, n) are

included. (See the remark before Proposition 3.2 below.)

3.1. Domain-theoretic preliminaries

We assume that the reader is familiar with basic denotational semantics, as presented for

example in Winskel (1993), and with semantics in monadic style (Moggi 1991). Methods

for solving recursive domain equations are used in a few of the proofs, but not elsewhere in

the article. Familiarity with methods for proving the existence of invariant relations (Pitts

1996) should be useful, but is not assumed.

Let Cpo be the category of !-cpos and !-continuous functions. We use the standard

notation for products, sums, and function spaces in Cpo. Injections into binary sums are

written �1 and �2. For any set M and any cpo A, the cpo M ⇀fin A has maps from finite

subsets of M to A as elements, and is ordered as follows: f ⊑ f ′ if and only if f and f ′

has the same domain M0 and f(m) ⊑ f ′(m) for all m ∈M0.

A complete, pointed partial order (cppo) is a cpo containing a least element. We use

the notation A⊥ = {⌊a⌋ ∣ a ∈ A} ∪ {⊥} for the cppo obtained by “lifting” a cpo A. The

least fixed-point of a continuous function f : D → D from a cppo D to itself is written

fix f . The cppo of strict, continuous functions from a cpo A to a cppo D is written

A⊸ D.

We shall also need to work with partial, continuous functions; these will be represented

using the Kleisli category for the lifting monad (−)⊥. Let pCpo be the Kleisli category

for the lifting monad: objects are cpos, while morphisms from A to B are continuous

functions from A to B⊥. The identity maps in pCpo are written id ; they are given by
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lifting: id = �a.⌊a⌋. Composition in pCpo is written ∘:

f ∘ g = �a.

{
f b, if g a = ⌊b⌋,
⊥, otherwise.

The semantics below is presented in monadic style (Moggi 1991), i.e., structured using

a monad that models the effects of the language. More specifically, we use a continuation-

and-state monad (Benton and Leperchey 2005). It is most convenient to define this monad

by means of a Kleisli triple: for every cpo S and every cppo Ans, the continuation-and-

state monad TS,Ans : Cpo→ Cpo over S and Ans is given by

TS,Ans A = (A→ S → Ans)→ S → Ans

�A a = �k.�s. k a s

c ★A,B f = �k.�s. c (�a.�s′.f a k s′) s

where �A : A → TS,AnsA and ★A,B : TS,AnsA → (A → TS,AnsB) → TS,AnsB. In the

following we omit the type subscripts on � and ★. It is easy to verify that (TS,Ans , �, ★)

satisfies the three monad laws:

� a ★ f = f a (3.1)

c ★ � = c (3.2)

(c ★ f) ★ g = c ★ (�a. f a ★ g) . (3.3)

Continuations are included for a technical reason, namely to ensure chain-completeness

of the relations that will be used to model computations. (This will be made precise in

Lemma 4.27 below.) These relations will be defined by “biorthogonality” (Benton and Hur

2009; Pitts 1998). Informally, computations are related if they map related continuations

and related states to related answers, while continuations are in turn related if they map

related values and related states to related answers. This approach ensures closure under

limits of chains; see also Abadi (2000).

3.2. Uniform cpos

The standard methods for solving recursive domain equations give solutions that satisfy

certain induction principles (Pitts 1996; Smyth and Plotkin 1982). One aspect of these

induction principles is that, loosely speaking, one obtains as a solution not only a cpo A,

but also a family of “projection” functions $n on A (one function for each n ∈ !) such

that each element a of A is the limit of its projections $0(a), $1(a), etc. These functions

therefore provide a handle for proving properties about A by induction on n.

Definition 3.1.

1. A uniform cpo (A, ($n)n∈!) is a cpo A together with a family ($n)n∈! of continuous
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functions from A to A⊥, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (3.4)
⊔

n∈!
$n = idA = �a.⌊a⌋ (3.5)

$m ∘ $n = $n ∘ $m = $min(m,n) (3.6)

$0 = �e.⊥ . (3.7)

2. A uniform cppo (D, ($n)n∈!) is a cppo D together with a family ($n)n∈! of strict,

continuous functions from D to itself, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (3.8)
⊔

n∈!
$n = idD (3.9)

$m ∘$n = $n ∘$m = $min(m,n) (3.10)

$0 = �e.⊥ . (3.11)

Remark. Uniform cppos are exactly the algebras for a certain monad on the category of

cppos and strict, continuous functions. The monad is given by a natural monoid structure

on !: TuD = ! ⊗ D, �ue = (∞, e), �u(m, (n, e)) = (min(m,n), e). Our locations are

modeled using a free algebra for this monad: Loc⊥ ∼= ! ⊗ (ℕ0)⊥.

Uniform cppos are called rank-ordered cpos in earlier work by Baier and Majster-

Cederbaum (1997).

3.3. A universal uniform cpo

We are now ready to construct a uniform cpo (V, (�n)n∈!) such that V is a suitable

“universal” cpo. The exact requirements on the functions �n are written down rather

verbosely in the proposition below. This is not only convenient for proofs of properties

about V : the functions �n are also used in the definition of the untyped semantics.

Intuitively, if one for example looks up the approximate location (l, n + 1) in a store s,

one only obtains the approximate element �n(s(l)) as a result.

More abstractly, in order to construct the typed interpretation in the next section we

need the property that if one looks up the n+1-th approximation of location l in a store s,

one only obtains �n(s(l)) as a result. This is one reason for introducing approximated

locations: the property would not hold if locations were modelled as standard integers.

Proposition 3.2. There exists a uniform cpo (V, (�n)n∈!) satisfying the following two

properties:

1. The following isomorphism holds in Cpo:

V ∼= ℤ + Loc + 1 + (V × V ) + (V + V ) + V

+ TS,AnsV + (V → TS,AnsV ) (3.12)
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where

TS,AnsV = (V → S → Ans)→ S → Ans

S = ℕ0 ⇀fin V

Ans = (ℤ + Err)⊥

and

Loc = ℕ0 × !
Err = 1 .

2. Abbreviate TV = TS,AnsV and K = V → S → Ans. Define the following injec-

tion functions corresponding to the summands on the right-hand side of the isomor-

phism (3.12):

inℤ : ℤ→ V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV )→ V

in1 : 1→ V in� : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions �n : V → V⊥ satisfy (and are determined by) the

equations shown in Figure 3.

These two properties determine V uniquely, up to isomorphism in Cpo.

Proof (sketch) One solves the predomain equation (3.12) as usual (Smyth and Plotkin

1982); this gives a uniform cpo (V, ($n)n∈!) which is almost right, except that the values

of the $n on locations are wrong:

$n+1(inLoc p) = inLoc p.

Now define the functions �n (and �Tn etc.) as in the proposition (by induction on n).

All the requirements in the definition of a uniform cpo except the fact that ⊔n�n = id

are easy to show. To show that ⊔n�n = id, one first shows by induction on m that

�n ∘$m = $m ∘ �n for all n, and that

(⊔n�n) ∘$m = $m .

The conclusion then follows from the fact that ⊔m$m = id since (V, ($)n∈!) is a uniform

cpo.

As for the choice of answer type Ans in the continuation-and-state monad, we include

an explicit “error” answer in order to show later that well-typed programs do not give

errors (Corollary 4.37).

From here on, let V and (�n)n∈! be as in the proposition above. We furthermore use the

abbreviations, notation for injections, etc. introduced in the proposition; in particular,

TV = (V → S → Ans) → S → Ans. Additionally, abbreviate �l = inLoc(l,∞) and

�nl = inLoc(l, n); recall that here we have n ≥ 1. Let errorAns ∈ Ans be the “error
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�0 = �v.⊥ (3.13)

�n+1(inℤ(m)) = ⌊inℤ(m)⌋ (3.14)

�n+1(in1(∗)) = ⌊in1(∗)⌋ (3.15)

�n+1(inLoc(l,∞)) = ⌊inLoc(l, n+ 1)⌋ (3.16)

�n+1(inLoc(l,m)) = ⌊inLoc(l,min(n+ 1,m))⌋ (3.17)

�n+1(in×(v1, v2)) =

{
⌊in×(v′1, v

′
2)⌋ if �n v1 = ⌊v′1⌋ and �n v2 = ⌊v′2⌋

⊥ otherwise
(3.18)

�n+1(in+(�i v)) =

{
⌊in+(�i v

′)⌋ if �n v = ⌊v′⌋
⊥ otherwise

(i = 1, 2) (3.19)

�n+1(in� v) =

{
⌊in� v′⌋ if �nv = ⌊v′⌋
⊥ otherwise

(3.20)

�n+1(in∀ c) = ⌊in∀(�Tn+1 c)⌋ (3.21)

�n+1(in→ f) =

⌊
in→

(
�v.

{
�Tn+1 (f v′) if �n v = ⌊v′⌋
⊥ otherwise

)⌋
(3.22)

Here the functions �Sn : S → S⊥ and �Kn : K → K and �Tn : TV → TV are defined as

follows:

�S0 = �s.⊥ �K0 = �k.⊥ �T0 = �c.⊥ (3.23)

�Sn+1(s) =

{
⌊s′⌋ if �n ∘ s = �l.⌊s′(l)⌋
⊥ otherwise

(3.24)

�Kn+1(k) = �v.�s.

{
k v′ s′ if �n v = ⌊v′⌋ and �Sn+1 s = ⌊s′⌋
⊥ otherwise

(3.25)

�Tn+1(c) = �k.�s.

{
c (�Kn+1 k) s′ if �Sn+1 s = s′

⊥ otherwise .
(3.26)

Fig. 3. Characterization of the projection functions �n : V → V⊥.

answer” and let error ∈ TV be the “error computation”:

errorAns = ⌊�2∗⌋
error = �k.�s. errorAns .

We shall later need:

Proposition 3.3.

1. (S, (�Sn )n∈!) is a uniform cpo.

2. (K, (�Kn )n∈!) and (TV, (�Tn )n∈!) are uniform cppos.

In order to model the three operations of the untyped language that involve references,

we define the three functions alloc, lookup, and assign in Figure 4.
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alloc : V → TV, lookup : V → TV, assign : V → V → TV.

alloc v = �k �s. k (�free(s)) (s[free(s) 7→ v])

(where free(s) = min{n ∈ ℕ0 ∣ n /∈ dom(s)})

lookup v = �k �s.

⎧
⎨
⎩

k s(l) s if v = �l and l ∈ dom(s)

k v′ s if v = �n+1
l , l ∈ dom(s),

and �n(s(l)) = ⌊v′⌋
⊥Ans if v = �n+1

l , l ∈ dom(s),

and �n(s(l)) = ⊥
errorAns otherwise

assign v1 v2 = �k �s.

⎧
⎨
⎩

k (in1∗) (s[l 7→ v2]) if v1 = �l and l ∈ dom(s)

k (in1∗) (s[l 7→ v′2]) if v1 = �n+1
l , l ∈ dom(s),

and �n(v2) = ⌊v′2⌋
⊥Ans if v1 = �n+1

l , l ∈ dom(s),

and �n(v2) = ⊥
errorAns otherwise

Fig. 4. Functions used for interpreting reference operations.

Lemma 3.4. The functions alloc, lookup, and assign are continuous.

Notice that it would not suffice to define, e.g., lookup(�n+1
l )(k)(s) = ⊥ for l ∈ dom(s),

and hence avoid mentioning the projection functions: lookup would then not be contin-

uous.

We are now ready to define the untyped semantics.

Definition 3.5. Let t be a term and let X be a set of variables such that FV(t) ⊆ X.

The untyped semantics of t with respect to X is the continuous function JtKX : V X → TV

defined by induction on t in Figure 5.

The semantics of a complete program, i.e., a term with no free term variables or type

variables, is defined by supplying an initial continuation and the empty store:

Definition 3.6. Let t be a term with no free term variables or type variables. The

program semantics of t is the element JtKp of Ans defined by

JtKp = JtK∅∅ kinit sinit

where

kinit = �v.�s.

{ ⌊�1 m⌋ if v = inℤ(m)

errorAns otherwise

and where sinit ∈ S is the empty store.
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For every t with FV(t) ⊆ X, define the continuous JtKX : V X → TV by induction on t:

JxKX� = �(�(x))

JmKX� = �(inℤ m)

Jifz t0 t1 t2KX� = Jt0KX� ★ �v0.

⎧
⎨
⎩

Jt1KX� if v0 = inℤ 0

Jt2KX� if v0 = inℤ m where m ∕= 0

error otherwise

Jt1 ± t2KX� = Jt1KX� ★ �v1. Jt2KX� ★ �v2.

⎧
⎨
⎩

�(inℤ(m1 ±m2))

if v1 = inℤ m1

and v2 = inℤ m2

error otherwise

J()KX� = �(in1 ∗)
J(t1, t2)KX� = Jt1KX� ★ �v1. Jt2KX� ★ �v2. �(in×(v1, v2))

Jfst tKX� = JtKX� ★ �v.
{

�(v1) if v = in×(v1, v2)

error otherwise

Jsnd tKX� = JtKX� ★ �v.
{

�(v2) if v = in×(v1, v2)

error otherwise

Jvoid tKX� = JtKX� ★ �v. error

Jinl tKX� = JtKX� ★ �v. �(in+(�1 v))

Jinr tKX� = JtKX� ★ �v. �(in+(�2 v))

Jcase t0 x1.t1 x2.t2KX� = Jt0KX� ★ �v0.

⎧
⎨
⎩

Jt1KX,x1(�[x1 7→ v]) if v0 = in+(�1 v)

Jt2KX,x2(�[x2 7→ v]) if v0 = in+(�2 v)

error otherwise

J�x.tKX� = �(in→(�v. JtKX,x(�[x 7→ v])))

Jt1 t2KX� = Jt1KX� ★ �v1. Jt2KX� ★ �v2.

{
g v2 if v1 = in→ g

error otherwise

Jfix f.�x.tKX� = �(in→(fix (�gV→TV . �v. JtKX,f,x(�[f 7→ in→ g, x 7→ v]))))

Jfold tKX� = JtKX� ★ �v. �(in� v)

Junfold tKX� = JtKX� ★ �v.
{

�(v0) if v = in� v0

error otherwise

JΛ�.tKX� = �(in∀ (JtKX�))

Jt [� ]KX� = JtKX� ★ �v.
{

c if v = in∀ c

error otherwise

Jref tKX� = JtKX� ★ �v. alloc v

J!tKX� = JtKX� ★ �v. lookup v

Jt1 := t2KX� = Jt1KX� ★ �v1. Jt2KX� ★ �v2. assign v1 v2

Fig. 5. Untyped semantics of terms.
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3.4. Soundness and adequacy of the untyped semantics

In order to formulate soundness and adequacy of the denotational semantics with respect

to the operational semantics, we extend the denotational semantics to location constants:

JlKX = �(�l).

That is, the meaning of a location constant is the corresponding ideal location. The

meaning of a syntactic store is given pointwise: J�K = �l ∈ dom(�).J�(l)K∅.
We then have soundness:

1. If (�, t) ⇓ (�′, w), then for all continuations k we have JtK k J�K = k v J�′K where

JwK = �(v).

2. If (�, t) ⇓ error, then for all continuations k we have JtK k J�K = errAns .

This is shown in the usual way, by induction on evaluation derivations. Notice that no ap-

proximate locations occur in the soundness proof since location constants are interpreted

as ideal locations.

Computational adequacy can be stated as follows:

1. If JtKp = ⌊�1(m)⌋, then (∅, t) ⇓ (�,m) for some �.

2. If JtKp = errorAns , then (∅, t) ⇓ error.

It follows easily from the combination of soundness and adequacy that (possibly open)

terms with the same denotation are contextually equivalent.

We expect that computational adequacy can be shown using the standard technique

(Pitts 1996) also for our non-standard semantics of locations, lookup and assignment.

We have earlier shown a computational-adequacy result for a similar untyped semantics

that also contains approximate locations (Birkedal et al. 2009).

4. Typed semantics

In this section we present a “typed semantics”, i.e., an interpretation of types and typed

terms. As described in the introduction, types will be interpreted as world-indexed fam-

ilies of binary relations on the universal cpo V . Since worlds depend on semantic types,

the space of semantic types is obtained by solving a recursive metric-space equation, i.e.,

by finding a fixed-point of a functor on metric spaces.

The rest of this section is structured as follows. Section 4.1 presents the necessary

material on metric spaces. In Section 4.2 we construct an appropriate space of semantic

types. Then, in Section 4.3, we interpret each type of the language as a semantic type.

Based on that interpretation of types, we introduce a notion of semantic relatedness of

typed terms in Section 4.4. We then show that all the term constructs of the language

respect semantic relatedness; as a corollary, we have a “fundamental lemma” stating

that every well-typed term is semantically related to itself. It follows that well-typed

terms do not denote “error”. More interestingly, well-typed terms of polymorphic type

satisfy a relational parametricity principle. In fact, all well-typed terms satisfy a rela-

tional parametricity principle involving the store: this principle results from Kripke-style

quantification over all future “semantic store typings”.
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The reader is assumed to be familiar with basic properties of metric spaces (Smyth

1992), although the relevant definitions are repeated below.

4.1. Ultrametric spaces

Let ℝ+ be the set of non-negative real numbers.

Definition 4.1. A metric space (X, d) is a set X together with a function d : X ×X →
ℝ+ satisfying the following three conditions:

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z).

An ultrametric space is a metric space (X, d) that satisfies the stronger ultrametric in-

equality instead of (iii):

(iii’)d(x, z) ≤ max(d(x, y), d(y, z)).

A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X.

By a sequence in a metric space (X, d) we mean an !-indexed sequence (xn)n∈! of

elements of X.

Definition 4.2.

1. A Cauchy sequence in a metric space (X, d) is a sequence (xn)n∈! of elements of

X such that for all � > 0, there exists an N ∈ ! such that d(xm, xn) < � for all

m,n ≥ N .

2. A limit of a sequence (xn)n∈! in a metric space (X, d) is an element x of X such that

for all � > 0, there exists an N ∈ ! such that d(xn, x) < � for all n ≥ N .

3. A complete metric space is a metric space in which every Cauchy sequence has a limit.

In the following we shall consider complete, 1-bounded ultrametric spaces. As a canon-

ical example of such a metric space, consider the set ℕ! of infinite sequences of natural

numbers, with distance function d given by:

d(x, y) =

{
2−max{n∈!∣∀m≤n. x(m)=y(m)} if x ∕= y

0 if x = y.

To avoid confusion, call the elements of ℕ! strings instead of sequences. Here the ultra-

metric inequality simply states that if x and y agree on the first n “characters” and y

and z also agree on the first n characters, then x and z agree on the first n characters. A

Cauchy sequence in ℕ! is a sequence of strings (xn)n∈! in which the individual characters

“stabilize”: for all m, there exists N ∈ ! such that xn1(m) = xn2(m) for all n1, n2 ≥ N .

In other words, there is a number k such that xn(m) = k for almost all n, i.e., all but

finitely many n. The limit of the sequence (xn)n∈! is therefore the string x defined by

x(m) = k where xn(m) = k for almost all n.

As illustrated by the above example, it might be helpful to think of the function d of

a complete, 1-bounded ultrametric space (X, d) not as a measure of (euclidean) distance

between elements, but rather as a measure of the degree of similarity between elements.
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Definition 4.3.

1. A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is

non-expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1.

2. A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2) is

contractive if there exists c < 1 such that d2(f(x), f(y)) ≤ c ⋅ d1(x, y) for all x and y

in X1.

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as objects and

non-expansive functions as morphisms. This category is cartesian closed (Wagner 1994).

Products are defined in the natural way: (X1, d1)× (X2, d2) = (X1×X2, dX1×X2
) where

dX1×X2
((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1)→ (X2, d2) has the set of non-expansive maps from (X1, d1) to

(X2, d2) as the underlying set, and the “sup”-metric dX1→X2
as distance function:

dX1→X2
(f, g) = sup{d2(f(x), g(x)) ∣ x ∈ X1} .

For both products and exponentials, limits are pointwise.

Note that the category of (not necessarily ultra-) metric spaces and non-expansive maps

is not cartesian closed: the ultrametric inequality is required in order for the evaluation

maps (corresponding to the exponentials) to be non-expansive (Wagner 1994).

If X0 is a subset of the underlying set X of a metric space (X, d), then the restriction

d0 = d∣X0×X0 of d turns (X0, d0) into a metric space. If X0 is closed, then (X0, d0) is

complete:

Definition 4.4. Let (X, d) be a metric space. A subset X0 of X is closed (with respect

to d) if whenever (xn)n∈! is a sequence of elements of X0 with limit x, the limit element

x belongs to X0.

Proposition 4.5. Let (X, d) be a complete, 1-bounded ultrametric space, and let X0 be

a closed subset of X. The restriction d0 = d∣X0×X0
of d turns (X0, d0) into a complete,

1-bounded ultrametric space.

4.1.1. Banach’s fixed-point theorem We need the following classical result:

Theorem 4.6 (Banach’s fixed-point theorem). Let (X, d) be a non-empty, complete

metric space, and let f be a contractive function from (X, d) to itself. There exists a

unique fixed-point of f , i.e., a unique element x of X such that f(x) = x.

For a given complete metric space, consider the function fix that maps every contractive

operator to its unique fixed-point. On complete ultrametric spaces, fix is non-expansive

in the following sense (Amadio 1991):

Proposition 4.7. Let (X, d) be a non-empty, complete ultrametric space. For all con-

tractive functions f and g from (X, d) to itself, d(fix f,fix g) ≤ d(f, g).
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Proof. Let c < 1 be a non-negative number such that d(f(x), f(y)) ≤ c ⋅ d(x, y) for all

x and y in X. Now let x = fix f and y = fix g. By the ultrametric inequality,

d(x, y) = d(f(x), g(y))

≤ max(d(f(x), f(y)), d(f(y), g(y))

≤ max(d(f(x), f(y)), d(f, g))

≤ max(c ⋅ d(x, y), d(f, g)) .

If max(c ⋅ d(x, y), d(f, g)) = c ⋅ d(x, y) we have d(x, y) ≤ c ⋅ d(x, y), and hence d(x, y) =

0 ≤ d(f, g). Otherwise, max(c ⋅ d(x, y), d(f, g)) = d(f, g), and hence d(x, y) ≤ d(f, g).

4.1.2. Solving recursive metric-space equations The inverse-limit method for solving re-

cursive domain equations can be adapted from Cpo to CBUlt (America and Rutten 1989).

We sketch an account that suffices for this article.

In CBUlt, one finds fixed points of locally contractive functors instead of locally con-

tinuous functors.

Definition 4.8.

1. A functor F : CBUltop × CBUlt→ CBUlt is locally non-expansive if

d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′))

for all non-expansive functions f , f ′, g, and g′.
2. A functor F : CBUltop × CBUlt → CBUlt is locally contractive if there exists c < 1

such that

d(F (f, g), F (f ′, g′)) ≤ c ⋅max(d(f, f ′), d(g, g′))

for all non-expansive functions f , f ′, g, and g′.

One can obtain a locally contractive functor from a locally non-expansive one by

multiplying with a “shrinking” factor (America and Rutten 1989):

Proposition 4.9. Let 0 < c < 1.

1. Let (X, d) ∈ CBUlt, and define c ⋅ (X, d) = (X, c ⋅d) where c ⋅d : X×X → ℝ+ is given

by (c ⋅ d)(x, y) = c ⋅ d(x, y). We have c ⋅ (X, d) ∈ CBUlt.

2. Let F : CBUltop × CBUlt → CBUlt be a locally non-expansive functor. The functor

c ⋅ F given by

(c ⋅ F )((X1, d1), (X2, d2)) = c ⋅ F ((X1, d1), (X2, d2))

(c ⋅ F )(f, g) = F (f, g)

is locally contractive.

The main theorem about existence and uniqueness of fixed points of locally contractive

functors is actually most conveniently phrased in terms of the category of non-empty,

complete, 1-bounded ultrametric spaces. The reason is the essential use of Banach’s

fixed-point theorem in the proof. Rather than considering this subcategory, we impose

a technical requirement on the given mixed-variance functor F on CBUlt, namely that
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F (1, 1) ∕= ∅ where 1 is the one-point metric space. It is not hard to see that this

requirement holds if and only if F restricts to the full subcategory of non-empty metric

spaces.

By a well-known adaptation of the inverse-limit method, in the style of America and

Rutten (1989), one can then show:

Theorem 4.10. Let F : CBUltop × CBUlt → CBUlt be a locally contractive func-

tor satisfying that F (1, 1) ∕= ∅. There exists a unique (up to isomorphism) non-empty

(X, d) ∈ CBUlt such that F ((X, d), (X, d)) ∼= (X, d).

4.2. The space of semantic types

The space of semantic types is obtained by applying Theorem 4.10 above to a functor

that maps metric spaces to world-indexed binary relations on V . First, some standard

definitions:

Definition 4.11. For every cpo A, let Rel(A) be the set of binary relations R ⊆ A×A
on A.

1. A relation R ∈ Rel(A) is complete if for all chains (an)n∈! and (a′n)n∈! such that

(an, a
′
n) ∈ R for all n, also (⊔n∈!an,⊔n∈!a′n) ∈ R. Let CRel(A) be the set of complete

relations on A.

2. A relation R ∈ Rel(D) on a cppo D is pointed if (⊥,⊥) ∈ R and admissible if it is

pointed and complete. Let ARel(D) be the set of admissible relations on D.

3. For every cpo A and every relation R ∈ Rel(A), define the relation R⊥ ∈ Rel(A⊥) by

R⊥ = { (⊥,⊥) } ∪ { (⌊a⌋, ⌊a′⌋) ∣ (a, a′) ∈ R }.
4. For R ∈ Rel(A) and S ∈ Rel(B), let R→ S be the set of continuous functions f from

A to B satisfying that for all (a, a′) ∈ R, (f a, f a′) ∈ S.

On uniform cpos and uniform cppos, we furthermore define the set of uniform bi-

nary relations (Abadi and Plotkin 1990; Amadio 1991). The key point is that a uniform

and complete relation on a uniform cppo (D, ($n)n∈!) is completely determined by its

elements of the form ($n e,$n e
′).

Definition 4.12.

1. Let (A, ($n)n∈!) be a uniform cpo. A relation R ∈ Rel(A) is uniform with respect

to ($n)n∈! if $n ∈ R → R⊥ for all n. Let CURel(A, ($n)n∈!) be the set of binary

relations on A that are uniform with respect to ($n)n∈! and complete.

2. Let (D, ($n)n∈!) be a uniform cppo. A relation R ∈ Rel(D) is uniform with respect

to ($n)n∈! if $n ∈ R → R for all n. Let AURel(D, ($n)n∈!) be the set of binary

relations on D that are uniform with respect to ($n)n∈! and admissible.

Proposition 4.13. Let (D, ($n)n∈!) be a uniform cppo, and assume that R,S ∈
AURel(D, ($n)n∈!).

1. If $n ∈ R→ S, then $n′ ∈ R→ S for all n′ ≤ n.

2. If $n ∈ R→ S for all n, then R ⊆ S.
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We now define a number of metric spaces that will be used in constructing the universe

of semantic types. After defining one of these metric spaces (X, d), the “distance function”

d will be fixed, so we usually omit it and call X itself a metric space.

First, as in Amadio (1991), we obtain:

Proposition 4.14. Let (D, ($n)n∈!) be a uniform cppo. Then AURel(D, ($n)n∈!) is

a complete, 1-bounded ultrametric space with the distance function given by

d(R,S) =

{
2−max{n∈! ∣ $n∈R→S ∧ $n∈S→R } if R ∕= S

0 if R = S.

Proof. First we show that the function d is well-defined: if R ∕= S, then there exists a

greatest n in ! such that $n ∈ R→ S and $n ∈ S → R. Assume that R ∕= S. By (3.11)

we always have $0 ∈ R → S and $0 ∈ S → R, so there is at least one such n. Now

assume that there are infinitely many such n; then Proposition 4.13 implies that R ⊆ S
and S ⊆ R, i.e., that R = S, a contradiction.

Proposition 4.13(1) implies the following property, which we shall need below:

d(R,S) ≤ 2−n if and only if $n ∈ R→ S and $n ∈ S → R. (4.1)

It is easy to see that the function d defines a 1-bounded ultrametric. To see that it is

complete, let (Rm)m∈! be a Cauchy sequence. Then for all n there exists a number Mn

such that d(Rm, Rm′) ≤ 2−n for all m,m′ ≥Mn. For all m,m′ ≥Mn, (4.1) then implies

that $n ∈ Rm → Rm′ . Therefore, for all e, e′ ∈ D,

($n e,$n e
′) ∈ Rm =⇒ (($n ∘$n) e, ($n ∘$n) e′) ∈ Rm′ (by definition of d)

=⇒ ($n e,$n e
′) ∈ Rm′ , (by (3.10))

and the other way around by symmetry. This means that the set of related elements

of the form ($n e,$n e
′) is the same in the relations RMn

, RMn+1, etc. Now define the

relation R by

(e, e′) ∈ R ⇐⇒ for all n, ($n e, $n e
′) ∈ RMn

.

We first show that R is admissible and uniform, and then that R is the limit of (Rm)m∈!.

First, R is pointed by (3.11) and the fact that each Rn is pointed. R is complete since

it is an intersection of inverse images of the continuous functions $n with respect to the

complete relations RMn
. R is also uniform: let (e, e′) ∈ R; then for all m and n, uniformity

of RMn
and (3.10) imply that ($n($m e), $n($m e′)) = ($m($n e), $m($n e

′)) ∈ RMn
,

and hence ($m e,$m e′) ∈ R.

It remains to show that R is the limit of (Rm)m∈!. It suffices to show: for all n and

all m ≥Mn,

$n ∈ R→ Rm and $n ∈ Rm → R .

First, let (e, e′) ∈ R. Then ($n e, $n e
′) ∈ RMn by definition on R, and hence

($n e, $n e
′) ∈ Rm

since m ≥ Mn. Second, let (e, e′) ∈ Rm. By uniformity of Rm also ($n e,$n e
′) ∈ Rm.

But then ($n e,$n e
′) belongs to RMn

since m ≥Mn. It then follows easily from (3.10)

and the definition of R that ($n e,$n e
′) ∈ R.
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Proposition 4.15. Let (X, d) be a complete, 1-bounded ultrametric space. The set

ℕ0 ⇀fin X of finite maps from natural numbers to elements of X is a complete, 1-

bounded ultrametric space with the distance function given by

d′(Δ,Δ′) =

{
max {d(Δ(l),Δ′(l)) ∣ l ∈ dom(Δ)} if dom(Δ) = dom(Δ′)
1 otherwise.

Proof (sketch) Standard. CBUlt has all products and sums. Then, the set ℕ0 ⇀fin X

can be viewed as a sum of products:
∑
L⊆finℕ0

XL and the distance function above reflects

that fact. In general, two elements of different summands are given the maximal possible

distance 1.

Definition 4.16. For every (X, d) ∈ CBUlt , define an “extension” ordering ≤ on the

set ℕ0 ⇀fin X by

Δ ≤ Δ′ ⇐⇒ dom(Δ) ⊆ dom(Δ′) ∧ ∀l ∈ dom(Δ).Δ(l) = Δ′(l) .

Proposition 4.17. Let (X, d) ∈ CBUlt , let (D, ($n)n∈!) be a uniform cppo, and let

(ℕ0 ⇀fin X)→mon AURel(D, ($n)n∈!)

be the set of functions � from ℕ0 ⇀fin X to AURel(D, ($n)n∈!) that are both non-

expansive and monotone in the sense that Δ ≤ Δ′ implies �(Δ) ⊆ �(Δ′). This set is a

complete, 1-bounded ultrametric space with the “sup”-metric, given by

d′(�, �′) = sup {d(�(Δ), �′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin X} .
Proof. The set (ℕ0 ⇀fin X) →mon AURel(D, ($n)n∈!) is a subset of the underlying

set of the exponential (ℕ0 ⇀fin X)→ AURel(D, ($n)n∈!) in CBUlt, namely the subset

of monotone as well as non-expansive functions, and the distance function d defined above

is the same as for the larger set. By Proposition 4.5 it therefore suffices to show that the

set of monotone and non-expansive functions is a closed subset of the (complete) metric

space of all non-expansive functions.

Let (�m)m∈! be a sequence of monotone and non-expansive functions from

(ℕ0 ⇀fin X) to AURel(D, ($n)n∈!) with limit � (for some function � which is non-

expansive). We must show that � is monotone. To that end, let Δ and Δ′ be el-

ements of ℕ0 ⇀fin X such that Δ ≤ Δ′; we must show that �(Δ) ⊆ �(Δ′). By

Proposition 4.13(2) it suffices to show that $n ∈ �(Δ) → �(Δ′) for all n. So let n

be given. Since (�m)m∈! has limit �, there exists an m such that d(�, �m) ≤ 2−n.

By definition of the metric on exponentials, this implies that d(�(Δ), �m(Δ)) ≤ 2−n,

and hence that $n ∈ �(Δ) → �m(Δ) by Proposition 4.13(1). But �m is assumed to

be monotone, so �m(Δ) ⊆ �m(Δ′) and therefore $n ∈ �(Δ) → �m(Δ′). Since also

d(�(Δ′), �m(Δ′)) ≤ 2−n, we have $n ∈ �m(Δ′) → �(Δ′), and conclude by (3.10) that

$n ∈ �(Δ)→ �(Δ′).

Propositions 4.14 and 4.17 and a little extra work give analogous results for uniform

cpos:

Proposition 4.18. Let (A, ($n)n∈!) be a uniform cpo. Below, abbreviate CURel(A) =

CURel(A, ($n)n∈!).
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1. The set CURel(A) is a complete, 1-bounded ultrametric space with the distance

function given by

d(R,S) =

{
2−max{n∈! ∣ $n∈R→S⊥ ∧ $n∈S→R⊥ } if R ∕= S

0 if R = S.

2. Let (X, d) ∈ CBUlt , and let (ℕ0 ⇀fin X) →mon CURel(A) be the set of functions �

from ℕ0 ⇀fin X to CURel(A) that are both non-expansive and monotone in the sense

that Δ ≤ Δ′ implies �(Δ) ⊆ �(Δ′). This set is a complete, 1-bounded ultrametric

space with the “sup”-metric, given by

d′(�, �′) = sup {d(�(Δ), �′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin D} .

Proof.

1: It is easy to see that the family of strict extensions $†n : A⊥ → A⊥ of the pro-

jection functions $n : A → A⊥ turns (A⊥, ($†n)n∈!) into a uniform cppo. Abbreviate

AURel(A⊥) = AURel(A⊥, ($†n)n∈!). By definition of uniform relations,

R ∈ CURel(A) if and only if R⊥ ∈ AURel(A⊥) (4.2)

for all R in Rel(A). Furthermore, Proposition 4.14 gives a metric on the set AURel(A⊥),

and it is easy to see that the distance function on CURel(A) defined in Part 1 above is

induced by the lifting operator, i.e., d(R,S) = d(R⊥, S⊥). Since the lifting operator is

injective, this induced distance function turns CURel(A) into a 1-bounded ultrametric

space.

However, not every S in AURel(A⊥) has the form R⊥ for some R in CURel(A): unless

A is empty, some relations in AURel(A⊥) relate ⊥ to elements different from ⊥. In other

words, the lifting operator from CURel(A) to AURel(A⊥) is not surjective. Therefore,

completeness of AURel(A⊥) does not immediately imply completeness of CURel(A).

What we need to show is that the subset of AURel(A⊥) consisting of strict relations,

i.e., relations S for which (a,⊥) ∈ S or (⊥, a) ∈ S implies a = ⊥, is a closed subset of

AURel(A⊥). Proposition 4.5 then implies that the subset of strict relations is a complete

metric space, and (4.2) implies that it is isomorphic to CURel(A), which is therefore also

complete.

More generally, let (D, ($′n)n∈!) be a uniform cppo, and abbreviate AURel(D) =

AURel(D, ($′n)n∈!); we show that the subset SAURel(D) ⊆ AURel(D) of strict relations

is closed. So let (Rm)m∈! be a sequence of strict relations (elements of SAURel(D)) with

limit R for some R ∈ AURel(D). We must show that R is strict. So let (⊥, e) ∈ R: we show

that e = ⊥. (The case where (e,⊥) ∈ R is completely symmetric.) By (3.9) it suffices to

show that $′n e = ⊥ for all n. Given n, choose m large enough that d(R,Rm) ≤ 2−n. Then

$′n ∈ R → Rm by Proposition 4.13(1), and therefore (⊥, $′n e) = ($′n ⊥, $′n e) ∈ Rm.

But this implies that $′n e = ⊥ since Rm is strict. In conclusion, R is strict.

2: In the proof of Part 1 we showed that CURel(A) is isomorphic to the complete, 1-

bounded metric space SAURel(A⊥) of strict, uniform, and admissible relations on A⊥.

The isomorphism is the lifting operator on relations, and this operator clearly preserves
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and reflects set-theoretic inclusion, i.e., R ⊆ S if and only if R⊥ ⊆ S⊥. It therefore suffices

to show that the set (ℕ0 ⇀fin X) →mon SAURel(A⊥) of non-expansive and monotone

functions from ℕ0 ⇀fin X to SAURel(A⊥) is a complete metric space with the “sup”

metric on functions:

d′(�, �′) = sup {d(�(Δ), �′(Δ)) ∣ Δ ∈ ℕ0 ⇀fin D} .

By Proposition 4.5 it is enough to show that (ℕ0 ⇀fin X)→mon SAURel(A⊥) is a closed

subset of (ℕ0 ⇀fin X) →mon AURel(A⊥). But this follows immediately from the fact

that SAURel(A⊥) is a closed subset of CURel(A⊥), as shown in Part 1, since limits with

respect to the “sup” metric on functions are pointwise.

In the rest of this section we do not need the extra generality of uniform cpos: re-

call that V is the cpo obtained from Proposition 3.2 and abbreviate CURel(V ) =

CURel(V, (�n)n∈!).

Proposition 4.19. The operation mapping each (X, d) ∈ CBUlt to the monotone func-

tion space (ℕ0 ⇀fin X) →mon CURel(V ) (as given by the previous proposition) can be

extended to a locally non-expansive functor F : CBUltop → CBUlt in the natural way:

F (X, d) = (ℕ0 ⇀fin X)→mon CURel(V )

F (f) = ��. �Δ. �(f ∘Δ)

Proof. Let (X1, d1) and (X2, d2) be complete, 1-bounded ultrametric spaces. For every

non-expansive function f from X2 to X1, the F (f) given above is clearly a well-defined

function from (ℕ0 ⇀fin X1)→mon CURel(V ) to the set of functions from (ℕ0 ⇀fin X2)

to CURel(V ). It is also easy to see that F (f)(�) is monotone for every � in F (X1, d1):

let Δ,Δ′ ∈ (ℕ0 ⇀fin X2) such that Δ ≤ Δ′; then f ∘Δ ≤ f ∘Δ′ by definition of ≤, and

therefore

F (f)(�)(Δ) = �(f ∘Δ) ⊆ �(f ∘Δ′) = F (f)(�)(Δ′)

since � is monotone.

We now show the following property: for all non-expansive functions f and f ′ from X2

to X1, all � and �′ in (ℕ0 ⇀fin X1)→mon CURel(V ), and all Δ and Δ′ in (ℕ0 ⇀fin X2),

d(F (f)(�)(Δ), F (f ′)(�′)(Δ′)) ≤ max(d(f, f ′), d(�, �′), d(Δ,Δ′)) . (4.3)

By definition, F (f)(�)(Δ) = �(f ∘Δ) and F (f ′)(�′)(Δ′) = �′(f ′∘Δ′). By the ultrametric

inequality,

d(f ∘Δ, f ′ ∘Δ′) ≤ max(d(f ∘Δ, f ′ ∘Δ), d(f ′ ∘Δ, f ′ ∘Δ′))

But d(f ∘ Δ, f ′ ∘ Δ) ≤ d(f, f ′) by definition of the metric on (ℕ0 ⇀fin X2) and d(f ′ ∘
Δ, f ′ ∘Δ′) ≤ d(Δ,Δ′) by the fact that f ′ is non-expansive. Therefore,

d(f ∘Δ, f ′ ∘Δ′) ≤ max(d(f, f ′), d(Δ,Δ′)) .
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Then, by the ultrametric inequality and the fact that �′ is non-expansive,

d(�(f ∘Δ), �′(f ′ ∘Δ′)) ≤ max(d(�(f ∘Δ), �′(f ∘Δ)), d(�′(f ∘Δ), �′(f ′ ∘Δ′)))

≤ max(d(�, �′), d(f ∘Δ, f ′ ∘Δ′))

≤ max(d(�, �′), d(f, f ′), d(Δ,Δ′)) ,

which shows (4.3).

Now, for all f and �, taking f ′ = f and �′ = � in (4.3) shows that F (f)(�) is non-

expansive. Similarly, taking f ′ = f and Δ′ = Δ in (4.3) shows that F (f) is non-expansive.

All in all, we have now shown that F (f) is a morphism from F (X1, d1) to F (X2, d2) when

f is a morphism from (X2, d2) to (X1, d1).

The functor laws are then easily verified:

F (idX) = ��. �Δ. �(idX ∘Δ) = ��. �Δ. �(Δ) = idF (X,d) .

(F (g) ∘ F (f))(�) = ((��. �Δ. �(g ∘Δ)) ∘ (��. �Δ. �(f ∘Δ)))(�)

= �Δ. (�Δ′. �(f ∘Δ′))(g ∘Δ))

= �Δ. �(f ∘ g ∘Δ)

= F (f ∘ g)(Δ) .

It remains to show that F is locally non-expansive, i.e., that

d(F (f), F (f ′)) ≤ d(f, f ′)

for all non-expansive functions f and f ′. But that follows from (4.3) by taking �′ = �

and Δ′ = Δ′.

Proposition 4.19, Proposition 4.9 (with c = 1/2), and Theorem 4.10 now immediately

imply:

Theorem 4.20. There exists a complete, 1-bounded ultrametric space T̂ such that the

isomorphism

T̂ ∼= 1
2 ((ℕ0 ⇀fin T̂ )→mon CURel(V )) (4.4)

holds in CBUlt .

Remark 4.21. Since in general the underlying sets of 1/2 ⋅ (X, d) and (X, d) are the

same, the theorem above gives a continuous, but not distance-preserving, bijection

T̂ ⇄ ((ℕ0 ⇀fin T̂ )→mon CURel(V )) .

We implicitly use that bijection below. Notice that the function space (ℕ0 ⇀fin T̂ )→mon

CURel(V ) consists of non-expansive functions, so one cannot simply forget about the

metric, i.e., generalize to the category of sets and functions and view T̂ as a solution to

an equation like (4.4) but without the “1/2”. Likewise, one cannot view T̂ as a solution

to such an equation in the category of metric spaces and continuous functions.
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4.3. Interpretation of types

Let in the following T̂ be a complete, 1-bounded ultrametric space satisfying (4.4),

and let i : T̂ → 1
2 ((ℕ0 ⇀fin T̂ ) →mon CURel(V )) be an isomorphism with inverse

i−1 : 1
2 ((ℕ0 ⇀fin T̂ )→mon CURel(V ))→ T̂ . For convenience, we use the following ab-

breviations (where the names W and T are intended to indicate “worlds” and “types”,

respectively):

W = ℕ0 ⇀fin T̂
T =W →mon CURel(V ) .

With that notation, (4.4) expresses that T̂ is isomorphic to 1
2T .

We choose T as our space of semantic types: types of the language will be interpreted as

elements of T , i.e., as certain world-indexed families of relations on V . We additionally

define families of relations on “states” (elements of S), “continuations” (elements of

K = V → S → Ans), and “computations” (elements of TV ).

Definition 4.22. Abbreviate

AURel(TV ) = AURel(TV, (�Tn )n∈!),

AURel(K) = AURel(K, (�Kn )n∈!), and

CURel(S) = CURel(S, (�Sn )n∈!) .

Let

TT =W →mon AURel(TV )

TK =W →mon AURel(K)

be the complete, uniform 1-bounded ultrametric spaces given by Proposition 4.17. Fur-

thermore, let

TS =W → CURel(S)

be the complete, uniform 1-bounded ultrametric space obtained from Propositions 4.15

and 4.18 and the exponential in CBUlt. (The elements of TS are non-expansive but not

necessarily monotone functions.)

In all the ultrametric spaces we consider here, all non-zero distances have the form

2−m for some m. For such ultrametric spaces, there is a useful notion of n-approximated

equality of elements:

Definition 4.23. For every complete, 1-bounded ultrametric space (D, d), every natural

number n ≥ 0, and all elements x, y ∈ D, the notation x
n
=d y means that d(x, y) ≤ 2−n.

When the distance function d is clear from the context, we shall just write x
n
= y for

x
n
=d y.

(In general, such approximated equality relations can of course also be defined for

numbers not of the form 2−n.) The ultrametric inequality implies that each relation
n
=d

is transitive, and therefore an equivalence relation:
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Proposition 4.24. If x
n
=d y and y

n
=d z, then x

n
=d z.

The fact that the evaluation map corresponding to a given exponential is non-expansive

can now be expressed as a congruence property for approximated equality: for non-

expansive maps f, f ′ : (D1, d1)→ (D2, d2) and elements x, x′ ∈ D1,

f
n
= f ′ ∧ x

n
= x′ =⇒ f(x)

n
= f ′(x′) . (4.5)

That property will be used frequently below.

To interpret types of the language as elements of T , it remains to define a number of

operators on T (and TT and TK) that will be used to interpret the various type con-

structors of the language; these operators are shown in the lower part of Figure 6. Notice

that the operator ref is defined in terms of n-approximated equality
n
= on CURel(V ), as

defined above.

In order to interpret the fragment of the language without recursive types, it suffices

to verify that these operators are well-defined (e.g., ref actually maps elements of T into

T .) In order to interpret recursive types, however, we furthermore need to verify that

the operators are non-expansive.

The proofs below depend on a number of lemmas that give more concrete descriptions

of the metric spaces involved; these lemmas can be found in Appendix A. In particular,

the factor 1/2 in (4.4) implies that worlds that are “(n+1)-equal” only contain “n-equal”

semantic types.

Lemma 4.25. The function states fromW to Rel(S) defined in the lower part of Figure 6

is an element of TS .

Proof. First, for every Δ ∈ W, the relation states(Δ) is complete: this follows from

the fact that i(Δ(l)) (Δ) is complete for all l ∈ dom(Δ). We now show that

Δ
n
= Δ′ =⇒ �Sn ∈ states(Δ)→ states(Δ′)⊥

for all Δ,Δ′ ∈ W. From this implication, uniformity follows by taking Δ′ = Δ and

using Lemma A.2(1), and non-expansiveness of states follows from Lemma A.2(1) and

symmetry. So, let Δ
n
= Δ′ and let (s, s′) ∈ states(Δ); we must show that either �Sn (s) =

�Sn (s′) = ⊥, or �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ where (s0, s
′
0) ∈ states(Δ′). If n = 0

we are done by (3.23); assume therefore that n > 0. Then dom(Δ) = dom(Δ′) by the

definition of the metric on W, and furthermore, for every l ∈ dom(Δ),

i(Δ(l))(Δ)
n
= i(Δ(l)) (Δ′) (i(Δ(l)) non-expansive)

n−1
= i(Δ′(l)) (Δ′) . (Lemma A.1)

By transitivity (Proposition 4.24),

i(Δ(l)) (Δ)
n−1
= i(Δ′(l)) (Δ′) ,

and therefore Lemma A.2(1) gives that

�n−1 ∈ i(Δ(l)) (Δ)→ (i(Δ′(l)) (Δ′))⊥ .

Since the above holds for every l ∈ dom(Δ), Equation (3.24) gives that either �Sn (s) =
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For every Ξ ⊢ � , define the non-expansive J�KΞ : T Ξ → T by induction on � :

J�KΞ' = '(�)

JintKΞ' = �Δ. { (inℤ k, inℤ k) ∣ k ∈ ℤ }
J1KΞ' = �Δ. { (in1 ∗, in1 ∗) }

J�1 × �2KΞ' = J�1KΞ'× J�2KΞ'

J0KΞ' = �Δ. ∅
J�1 + �2KΞ' = J�1KΞ'+ J�2KΞ'

Jref �KΞ' = ref (J�KΞ')

J∀�.�KΞ' = �Δ. { (in∀ c, in∀ c
′) ∣ ∀� ∈ T . (c, c′) ∈ comp(J�KΞ,�'[� 7→ �])(Δ) }

J��.�KΞ' = fix
(
��. �Δ. { (in� v, in� v

′) ∣ (v, v′) ∈ J�KΞ,�'[� 7→ �] (Δ) }
)

(see Theorem 4.29)

J�1 → �2KΞ' = (J�1KΞ')→ (comp(J�2KΞ'))

The following operators and elements are used above:

× : T × T → T comp : T → TT
+ : T × T → T cont : T → TK

ref : T → T states ∈ TS
→ : T × TT → T RAns ∈ CRel(Ans)

(�1 × �2)(Δ) = { (in×(v1, v2), in×(v′1, v
′
2)) ∣ (v1, v

′
1) ∈ �1(Δ) ∧ (v2, v

′
2) ∈ �2(Δ) }

(�1 + �2)(Δ) = { (in+(�1 v1), in+(�1 v
′
1)) ∣ (v1, v

′
1) ∈ �1(Δ) } ∪

{ (in+(�2 v2), in+(�2 v
′
2)) ∣ (v2, v

′
2) ∈ �2(Δ) }

ref (�)(Δ) = { (�l, �l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. i(Δ(l)) (Δ1) = �(Δ1) } ∪
{ (�n+1

l , �n+1
l ) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. i(Δ(l)) (Δ1)

n
= �(Δ1) }

(� → �)(Δ) = { (in→ f, in→ f ′) ∣ ∀Δ1 ≥ Δ. ∀(v, v′) ∈ �(Δ1) .(f v, f ′ v′) ∈ �(Δ1) }

cont(�)(Δ) = { (k, k′) ∣ ∀Δ1 ≥ Δ. ∀(v, v′) ∈ �(Δ1).

∀(s, s′) ∈ states(Δ1). (k v s, k′ v′ s′) ∈ RAns }

comp(�)(Δ) = { (c, c′) ∣ ∀Δ1 ≥ Δ.∀(k, k′) ∈ cont(�)(Δ1).

∀(s, s′) ∈ states(Δ1). (c k s, c′ k′ s′) ∈ RAns }

states(Δ) = { (s, s′) ∣ dom(s) = dom(s′) = dom(Δ)

∧ ∀l ∈ dom(Δ). (s(l), s′(l)) ∈ i(Δ(l)) (Δ) }

RAns = { (⊥,⊥) } ∪ { (⌊�1 m⌋, ⌊�1 m⌋) ∣ m ∈ ℤ }

Fig. 6. Interpretation of types.
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�Sn (s′) = ⊥, and we are done, or �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ for some s0 and s′0 such

that (s0(l), s′0(l)) ∈ i(Δ′(l)) (Δ′) for all l ∈ dom(Δ′). But the latter means exactly that

(s0, s
′
0) ∈ states(Δ′).

Lemma 4.26. Let Δ, Δ′, and Δ1 be elements of W such that Δ
n
= Δ′ and Δ ≤ Δ1.

There exists a Δ′1 such that Δ1
n
= Δ′1 and Δ′ ≤ Δ′1.

Proof. If n = 0 we can take Δ′1 = Δ′; in fact, any extension of Δ′ would do. If n > 0

we have dom(Δ) = dom(Δ′) by definition of the metric on W. Now define Δ′1 ∈ W with

dom(Δ′1) = dom(Δ1) by

Δ′1(l) =

{
Δ′(l) if l ∈ dom(Δ)

Δ1(l) if l ∈ dom(Δ1) ∖ dom(Δ).

Clearly Δ′ ≤ Δ′1 since dom(Δ) = dom(Δ′). Also, by definition of the metric on W (as a

maximum of the distances for each “l”), d(Δ1,Δ
′
1) = d(Δ,Δ′) ≤ 2−n.

Lemma 4.27. The operators ×, +, ref , →, cont , and comp defined in the lower part of

Figure 6 are non-expansive.

Proof. We show that each operator maps into the appropriate codomain and that it

is non-expansive.

× : T × T → T :

It is easy to see that (�1× �2)(Δ) is complete for all Δ ∈ W. To see that �1× �2 belongs

to T , it therefore suffices to verify the two conditions of Lemma A.2(3). Condition (a),

monotonicity, is immediate. As for Condition (b), we show a more general fact which

furthermore implies non-expansiveness of ×: for all �1, �2, �′1, and �′2 in T and all Δ and

Δ′ in ℕ0 ⇀fin T̂ ,

�1
n
= �′1 ∧ �2

n
= �′2 ∧ Δ

n
= Δ′ =⇒ �n ∈ (�1 × �2)(Δ)→ (�′1 × �′2)(Δ)⊥ .

Condition (b) then follows by taking �1 = �′1 and �2 = �′2. Non-expansiveness of × follows

by taking Δ = Δ′ and using parts 1 and 2 of Lemma A.2 (and symmetry).

So, assume that �1
n
= �′1 and �2

n
= �′2 and Δ

n
= Δ′, and let

(in×(v1, v2), in×(v′1, v
′
2)) ∈ (�1 × �2)(Δ) .

We must show that either (1) �n(in×(v1, v2)) = �n(in×(v′1, v
′
2)) = ⊥ or otherwise (2)

�n(in×(v1, v2)) = ⌊w⌋ and �n(in×(v′1, v
′
2)) = ⌊w′⌋ for some w and w′ such that (w,w′) ∈

(�′1 × �′2)(Δ′). If n = 0 we are done by Equation (3.4); assume therefore that n > 0. By

definition of (�1 × �2)(Δ) we know that (v1, v
′
1) ∈ �1(Δ) and (v2, v

′
2) ∈ �2(Δ). Since �1

and �2 are non-expansive functions, (4.5) gives that

�1(Δ)
n−1
= �′1(Δ′) and �2(Δ)

n−1
= �′2(Δ′) .

Therefore �n−1 ∈ �1(Δ)→ �′1(Δ′)⊥ and �n−1 ∈ �2(Δ)→ �′2(Δ′)⊥ by Lemma A.2(1). By

definition of �i(Δ)→ �′i(Δ
′)⊥ (for i = 1, 2) there are now two cases:

1. �n−1(v1) = �n−1(v′1) = ⊥ or �n−1(v2) = �n−1(v′2) = ⊥.
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2. There exist (w1, w
′
1) ∈ �′1(Δ′) and (w2, w

′
2) ∈ �′2(Δ′) where �n−1(v1) = ⌊w1⌋ and

�n−1(v′1) = ⌊w′1⌋ and �n−1(v2) = ⌊w2⌋ and �n−1(v′2) = ⌊w′2⌋.
In case (1), (3.18) gives that �n(in×(v1, v2)) = �n(in×(v′1, v

′
2)) = ⊥ and we are done.

In case (2), (3.18) gives that �n(in×(v1, v2)) = ⌊in×(w1, w2)⌋ and �n(in×(v′1, v
′
2)) =

⌊in×(w′1, w
′
2)⌋. By definition of (�′1 × �′2)(Δ′) we have that (in×(w1, w2), in×(w′1, w

′
2)) ∈

(�′1 × �′2)(Δ′) and we are done.

ref : T → T :

First, ref (�)(Δ) is complete for all Δ: this follows from the general fact that if R
n
= S

for all n ∈ !, then d(R,S) = 0 and hence R = S. It is also easy to see that ref (�) is

monotone. Similarly to the previous case, we then show that ref (�) belongs to T and

that ref is non-expansive by showing that

�
n
= �′ ∧ Δ

n
= Δ′ =⇒ �n ∈ ref (�)(Δ)→ ref (�′)(Δ′)⊥

for all � and �′ in T and all Δ and Δ′ in ℕ0 ⇀fin T̂ .

So, assume that �
n
= �′ and Δ

n
= Δ′, and let (�ml , �

m
l ) ∈ ref (�)(Δ). (The case where

(�l, �l) ∈ ref (�)(Δ) is similar, but slightly easier.) If n = 0 we are done by Equation (3.4).

If n > 0, (3.17) gives that �n(�ml ) = ⌊�min(n,m)
l ⌋, and it therefore remains to show that

(�
min(n,m)
l , �

min(n,m)
l ) ∈ ref (�′)(Δ′). To that end, let l ∈ dom(Δ′) and Δ′1 ≥ Δ′; we

must show that i (Δ′(l)) (Δ′1)
min(n,m)−1

= �′(Δ′1). Lemma 4.26 gives a Δ1 ≥ Δ such that

Δ1
n
= Δ′1. Then:

i(Δ′(l)) (Δ′1)
n
= i(Δ′(l)) (Δ1) (i(Δ′(l)) non-expansive)

n−1
= i(Δ(l)) (Δ1) (Lemma A.1)

m−1
= �(Δ1) (since (�ml , �

m
l ) ∈ ref (�)(Δ))

n
= �′(Δ1) (Lemma A.2(2))
n
= �′(Δ′1) . (�′ non-expansive)

Hence by transitivity i(Δ′(l)) (Δ′1)
min(n,m)−1

= �′(Δ′1).

+ : T × T → T :

It is easy to see that (�1 +�2)(Δ) is complete for all Δ ∈W , and that �1 +�2 is monotone.

It then suffices to show that

�1
n
= �′1 ∧ �2

n
= �′2 ∧ Δ

n
= Δ′ =⇒ �n ∈ (�1 + �2)(Δ)→ (�′1 + �′2)(Δ′)⊥

for all �1, �2, �′1, and �′2 in T and all Δ and Δ′ in ℕ0 ⇀fin T̂ .

So, assume that �1
n
= �′1 and �2

n
= �′2 and Δ

n
= Δ′, and let

(in+(�1 v), in+(�1v
′)) ∈ (�1 + �2)(Δ) .

(The case with �2 instead of �1 is completely symmetric.) If n = 0 we are done by

Equation (3.4); assume therefore that n > 0. By definition of (�1 + �2)(Δ) we have

(v, v′) ∈ �1(Δ). Then, since �1
n
= �′1 and Δ

n
= Δ′ implies �1(Δ)

n
= �′1(Δ′), there are two
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cases: either �n−1(v) = �n−1(v′) = ⊥, and we are done, or �n−1(v) = ⌊w⌋ and �n−1(v′) =

⌊w′⌋ where (w,w′) ∈ �′1(Δ′). But then (3.19) gives that �n(in+(�1v)) = ⌊in+(�1w)⌋ and

�n(in+(�1v
′)) = ⌊in+(�1w

′)⌋ with (in+(�1w), in+(�1w
′)) ∈ (�′1 + �′2)(Δ′).

cont : T → TK :

First, cont(�)(Δ) is admissible for each Δ ∈ W since RAns is admissible. Also, cont(�)

is monotone. By Lemma A.3(3), it then suffices to show that

�
n
= �′ ∧ Δ

n
= Δ′ =⇒ �Kn ∈ cont(�)(Δ)→ cont(�′)(Δ′)

for all � and �′ in T and all Δ and Δ′ in W. So, assume that �
n
= �′ and Δ

n
= Δ′ and let

(k, k′) ∈ cont(�)(Δ); we must show that (�Kn (k), �Kn (k′)) ∈ cont(�′)(Δ′). If n = 0 this

follows from (3.23) and the fact that cont(�′)(Δ′) is pointed. Otherwise, let Δ′1 ≥ Δ′ and

(v, v′) ∈ �′(Δ′1) and (s, s′) ∈ states(Δ′1). We must show that (�Kn (k) v s, �Kn (k′) v′ s′) ∈
RAns . First, Lemma 4.26 gives a Δ1 ≥ Δ such that Δ1

n
= Δ′1. By (4.5), �(Δ1)

n
= �′(Δ′1).

Furthermore, the fact that states belongs to TS , shown above, implies that states(Δ1)
n
=

states(Δ′1). Therefore, by (3.25), either �Kn (k) v s = �Kn (k′) v′ s′ = ⊥, and we are done,

or �Kn (k) v s = k w s0 and �Kn (k′) v′ s′ = k′ w′ s′0 where �n(v) = ⌊w⌋ and �n(v′) = ⌊w′⌋
and �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ with (w,w′) ∈ �(Δ1) and (s0, s

′
0) ∈ states(Δ1). In

the latter case, (k w s0, k
′ w′ s′0) ∈ RAns since (k, k′) ∈ cont(�)(Δ) and Δ ≤ Δ1.

comp : T → TT :

Similar to cont . First, comp(�)(Δ) is admissible for each Δ ∈ W since RAns is admissible.

Also, comp(�) is monotone. By Lemma A.3(3), it then suffices to show that

�
n
= �′ ∧ Δ

n
= Δ′ =⇒ �Tn ∈ comp(�)(Δ)→ comp(�′)(Δ′)

for all � and �′ in T and all Δ and Δ′ in W. So, assume that �
n
= �′ and Δ

n
= Δ′

and let (c, c′) ∈ comp(�)(Δ); we must show that (�Tn (c), �Tn (c′)) ∈ comp(�′)(Δ′). If

n = 0 this follows from (3.23) and the fact that comp(�′)(Δ′) is pointed. Otherwise,

let Δ′1 ≥ Δ′ and (k, k′) ∈ cont(�′)(Δ′1) and (s, s′) ∈ states(Δ′1). We must show that

(�Tn (c) k s, �Tn (c′) k′ s′) ∈ RAns . Lemma 4.26 gives a Δ1 ≥ Δ such that Δ1
n
= Δ′1. Since

cont is non-expansive,

cont(�)(Δ1)
n
= cont(�′)(Δ1)

n
= cont(�′)(Δ′1) .

Furthermore, the fact that states belongs to TS implies that states(Δ1)
n
= states(Δ′1).

Therefore, by (3.26), either �Tn (c) k s = �Tn (c′) k′ s′ = ⊥, and we are done, or �Tn (c) k s =

c (�Kn (k)) s0 and �Tn (c′) k′ s′ = c′ (�Kn (k′)) s′0 where �Sn (s) = ⌊s0⌋ and �Sn (s′) = ⌊s′0⌋ with

(�Kn (k), �Kn (k′)) ∈ cont(�)(Δ1) and (s0, s
′
0) ∈ states(Δ1). In the latter case,

(c (�Kn (k)) s0, c
′ (�Kn (k′)) s′0) ∈ RAns

since (c, c′) ∈ comp(�)(Δ) and Δ ≤ Δ1.

→: T × TT → T :

It is easy to see that (� → �)(Δ) is admissible for all Δ ∈ W since � maps worlds
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to admissible relations. Also, � → � is obviously monotone. By Lemma A.3(3), it then

suffices to show that

�
n
= �′ ∧ �

n
= �′ ∧ Δ

n
= Δ′ =⇒ �n ∈ (� → �)(Δ)→ (�′ → �′)(Δ′)⊥

for all � and �′ in T , all � and �′ in TT , and all Δ and Δ′ in W. So, assume that �
n
= �′

and �
n
= �′ and Δ

n
= Δ′, and let (in→f, in→f ′) ∈ (� → �)(Δ). If n = 0 we are done by

Equation (3.4); assume therefore that n > 0. Define the two functions

g = �v.

{
�Tn (f w) if �n−1 v = ⌊w⌋
⊥ otherwise

g′ = �v′.

{
�Tn (f ′ w′) if �n−1 v

′ = ⌊w′⌋
⊥ otherwise

By (3.22), it suffices to show that (in→(g), in→(g′)) ∈ (�′ → �′)(Δ′). To that end, let

Δ′1 ≥ Δ′ and let (v, v′) ∈ �′(Δ′1); we must show that (g(v), g′(v′)) ∈ �′(Δ′1). Lemma 4.26

gives a Δ1 ≥ Δ such that Δ1
n
= Δ′1. Then �(Δ1)

n−1
= �′(Δ′1), and there are therefore two

cases: either �n−1 v = �n−1 v
′ = ⊥, and we are done, or �n−1 v = ⌊w⌋ and �n−1 v

′ = ⌊w′⌋
for some w,w′ such that (w,w′) ∈ �(Δ1). In the latter case (f w, f ′ w′) ∈ �(Δ1) since

(f, f ′) ∈ (� → �)(Δ) and Δ1 ≥ Δ. Then by (4.5), �(Δ1)
n
= �′(Δ′1), and therefore

(�Tn (f w), �Tn (f ′ w′)) ∈ �′(Δ′1). But this means exactly that (g(v), g′(v′)) ∈ �′(Δ′1).

It is here, in order to show that ref is well-defined (and non-expansive), that we

need the approximate locations �nl . Suppose for the sake of argument that locations

were modeled simply using a flat cpo of natural numbers, i.e., suppose that Loc =

ℕ0 and that �1(inLoc l) = ⌊inLoc l⌋ for all l ∈ ℕ0. The definition of ref would then

have the form ref (�)(Δ) = {(inLoc l, inLoc l) ∣ l ∈ dom(Δ) ∧ . . . }. The function ref (�)

from worlds to relations must be non-expansive. But assume then that Δ =1 Δ′; then

ref (�)(Δ) =1 ref (�)(Δ′) by non-expansiveness, and hence ref (�)(Δ) = ref (�)(Δ′) since

�1 is the (lifted) identity on locations. In other words, ref (�) would only depend on

the “first approximation” of its argument world Δ: this can never be right, no matter

what the particular definition of ref is.‡ This observation generalizes to variants where

�n(inLoc l) = ⌊inLoc l⌋) for some arbitrary finite n.

For any finite set Ξ of type variables, the set T Ξ of functions from Ξ to T is a metric

space with the product metric:

d′(','′) = max{ d('(�), '′(�)) ∣ � ∈ Ξ } .
We are now ready to formulate the interpretation of types:

Definition 4.28. Let � be a type and let Ξ be a type environment such that Ξ ⊢ � .

The relational interpretation of � with respect to Ξ is the non-expansive function J�KΞ :

T Ξ → T defined by induction on � in Figure 6. The interpretation of recursive types is

by appeal to Banach’s fixed-point theorem (see Theorem 4.29).

‡ In particular, the obvious definition of ref as ref (�)(Δ) = {(inLoc l, inLoc l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥
Δ. i(Δ(l)) (Δ1) = �(Δ1)} would not be well-defined, since it would not be non-expansive in Δ.
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In more detail, well-definedness of J�KΞ must be argued together with non-

expansiveness, by induction on � (see below). This is similar to the more familiar situation

with the untyped semantics of terms presented in Section 3: there, well-definedness must

be argued together with continuity because of the use of Kleene’s fixed-point theorem in

the interpretation of fix f.�x.t.

Theorem 4.29. Let � be a type such that Ξ ⊢ � .

1. The function J�KΞ : T Ξ → T defined in Figure 6 is non-expansive.

2. If Ξ = Ξ′, � then for all '′ ∈ T Ξ′
we have that ��. �Δ. { (in� v, in� v

′) ∣ (v, v′) ∈
J�KΞ′,�'

′[� 7→ �] Δ } is a contractive function from T to T . In particular, J��.�K is

well-defined.

Proof. First, generalize Part 2 above:

2’. �'�Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J�KΞ'Δ } is a contractive function from T Ξ to T .

By the definition of the product metric, 2’ implies 2.

We now show 1 and 2’ by simultaneous induction on n.

1: If � is int, 1, or 0, then J�KΞ is a constant function and hence trivially non-expansive. If

� is a type variable �, then non-expansiveness of J�KΞ follows directly from the definition

of the product metric. In the cases where � is �1 × �2, �1 + �2, ref � ′, or �1 → �2, non-

expansiveness follows directly from Lemma 4.27 and the induction hypothesis.

It remains to consider the cases where � is ��.� ′ or ∀�.� ′. First, assume that � is

��.� ′ for some � ′ such that Ξ, � ⊢ � ′. We know from 2’ and the induction hypothesis

that J��.� ′KΞ is a (well-defined) function from T Ξ to T . To show that J��.� ′KΞ is non-

expansive, let '
n
= '′; we must show that J��.� ′KΞ'

n
= J��.� ′KΞ'

′. By Proposition 4.7 it

suffices to show that the two contractive functions g, g′ : T → T defined by

g = ��. �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J� ′KΞ,�'[� 7→ �] Δ }

g′ = ��. �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J� ′KΞ,�'

′[� 7→ �] Δ }

satisfy that g
n
= g′. So let � ∈ T be given; we must show that g �

n
= g′ �. But this follows

from 2’ and the induction hypothesis. Therefore, J��.� ′KΞ is non-expansive.

Now assume that � is ∀�.� ′ for some � ′ such that Ξ, � ⊢ � ′. First, J∀�.� ′KΞ'Δ is

complete for all Δ ∈ W since arbitrary intersections of complete relations are complete.

It is also easy to see that J∀�.� ′KΞ' is monotone since comp(J� ′KΞ,�'[�→ �]) is monotone

for all � ∈ T . By Lemma A.2(3), it then suffices to show that

'
n
= '′ ∧ Δ

n
= Δ′ =⇒ �n ∈ J∀�.� ′KΞ'Δ→ (J∀�.� ′KΞ'

′ Δ′)⊥

for all ' and '′ in T Ξ and all Δ and Δ′ in W. So, let (in∀ c, in∀ c′) ∈ J∀�.� ′KΞ'Δ. If

n = 0 we are done by Equation (3.4); assume therefore that n > 0. By (3.21) it then

suffices to show that (in∀(�Tn c), in∀(�Tn c
′)) ∈ J∀�.� ′KΞ'

′Δ′. To this end, let Δ′1 ≥ Δ′

and � ∈ T ; we must show that (�Tn c, �
T
n c
′) ∈ comp(J� ′KΞ,�'

′[� 7→ �])Δ′1. Lemma 4.26

gives a Δ1 ≥ Δ such that Δ1
n
= Δ′1. Then (c, c′) ∈ comp(J� ′KΞ,�'[� 7→ �])Δ1 since

(in∀ c, in∀ c′) ∈ J∀�.� ′KΞ'Δ. By the induction hypothesis, J� ′KΞ,� is non-expansive, and
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therefore

J� ′KΞ,�'[� 7→ �]
n
= J� ′KΞ,�'

′[� 7→ �]

by the definition of the product metric. Now, the operator comp is non-expansive by

Lemma 4.27, and therefore

comp(J� ′KΞ,�'[� 7→ �])
n
= comp(J� ′KΞ,�'

′[� 7→ �]) .

Finally, by (4.5),

comp(J� ′KΞ,�'[� 7→ �])Δ1
n
= comp(J� ′KΞ,�'

′[� 7→ �])Δ′1 ,

and we conclude that

(�Tn c, �
T
n c
′) ∈ comp(J� ′KΞ,�'

′[� 7→ �])Δ′1

by Lemma A.3(1) and the fact that (c, c′) ∈ comp(J� ′KΞ,�'[� 7→ �])Δ1.

2’: Let G = �'�Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J�KΞ'Δ }; we must show that G is a

contractive function from T Ξ to T . First, it is easy to see that G(') is monotone and

that G(')(Δ) is admissible for all ' and Δ. To show that G has codomain T it therefore

remains to verify Condition (b) of Lemma A.2(3). We show the following more general

property which furthermore implies that G is contractive: for all ' and '′ in T Ξ and all

Δ and Δ′ in W,

'
n
= '′ ∧ Δ

n
= Δ′ =⇒ �n+1 ∈ G(')(Δ)→ G('′)(Δ′)⊥ .

Notice the n+ 1 on the right-hand side: the above property implies that G is contractive

with factor � = 1/2 (by taking Δ = Δ′ and using Lemma A.2(1) and symmetry).

So, let '
n
= '′ and Δ

n
= Δ′, and let (in� v, in� v

′) ∈ G(')(Δ). We know that (v, v′) ∈
J�KΞ'Δ by definition ofG. Part 1 gives that J�KΞ is non-expansive, and therefore J�KΞ'

n
=

J�KΞ'
′. By (4.5), J�KΞ'Δ

n
= J�KΞ'

′Δ′, and there are therefore two cases: either �n v =

�n v
′ = ⊥, in which case we are done by (3.20), or there exists (w,w′) ∈ J�KΞ'

′ Δ′ such

that �n v = ⌊w⌋ and �n v
′ = ⌊w′⌋. But in the latter case, (3.20) gives that �n+1(in� v) =

⌊in� w⌋ and �n+1(in� v
′) = ⌊in� w′⌋ where (in� w, in� w

′) ∈ G('′)(Δ′).
Finally, to appeal to Banach’s fixed-point theorem and conclude that the interpretation

of recursive types is well-defined, we need to ensure that the complete metric space T
is non-empty. We have already observed that, e.g., the constant function �Δ.∅, used to

interpret the type 0, belongs to T .

We need the following weakening and substitution properties, easily proved by induc-

tion on � :

Proposition 4.30.

1. Let � be a type such that Ξ ⊢ � , and let � /∈ Ξ. For all ' in T Ξ and � ∈ T ,

J�KΞ' = J�KΞ,�'[� 7→ �] .

2. Let � and � ′ be types such that Ξ, � ⊢ � and Ξ ⊢ � ′. For all ' in T Ξ,

J� [� ′/�]KΞ' = J�KΞ,�('[� 7→ J� ′KΞ']) .
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Corollary 4.31. For Ξ, � ⊢ � and ' ∈ T Ξ,

J��.�KΞ' = �Δ. { (in� v, in� v
′) ∣ (v, v′) ∈ J� [��.�/�]KΞ'Δ } .

4.4. Interpretation of terms

As for the interpretation of terms, we must show that the untyped meaning of a typed

term is related to itself at the appropriate type. We first show that comp respects the

operations � and ★ of the monad T (defined on page 7).

Definition 4.32. For � ∈ T and � ∈ TT and Δ ∈ W, let �
Δ→ � be the binary relation

on functions V → TV defined by

�
Δ→ � = { (f, f ′) ∣ ∀Δ1 ≥ Δ.∀(v, v′) ∈ �(Δ1). (f v, f ′ v′) ∈ �(Δ1) } .

Proposition 4.33. Let �, �1, �2 ∈ T and Δ ∈ W.

1. If (v, v′) ∈ �(Δ), then (� v, � v′) ∈ comp(�)(Δ).

2. If (c, c′) ∈ comp(�1)(Δ) and (f, f ′) ∈ �1
Δ→ comp(�2), then

(c ★ f, c′ ★ f ′) ∈ comp(�2)(Δ) .

Proof.

1: Assume that (v, v′) ∈ �(Δ). By definition, � v = �k.�s. k v s, and similarly for � v′. To

show that (� v, � v′) ∈ comp(�)(Δ), let Δ1 ≥ Δ and (k, k′) ∈ cont(�)(Δ1) and (s, s′) ∈
states(Δ1); we must show that ((� v) k s, (� v′) k′ s′) ∈ RAns , i.e., that (k v s, k′ v′ s′) ∈
RAns . But this follows directly from the definition of cont(�)(Δ1) since (v, v′) ∈ �(Δ) ⊆
�(Δ1) by monotonicity.

2: Assume that (c, c′) ∈ comp(�1)(Δ) and (f, f ′) ∈ �1
Δ→ comp(�2). By definition,

c ★ f = �k.�s. c (�v.�s1.f v k s1) s, and similarly for c′ ★ f ′. To show that (c ★ f, c′ ★ f ′) ∈
comp(�2)(Δ), let Δ1 ≥ Δ and (k, k′) ∈ cont(�2)(Δ1) and (s, s′) ∈ states(Δ1); we must

show that ((c ★ f) k s, (c′ ★ f ′) k′ s′) ∈ RAns , i.e., that

(c (�v.�s1.f v k s1) s, c′ (�v′.�s′1.f
′ v′ k′ s′1) s′) ∈ RAns .

Since (c, c′) ∈ comp(�1)(Δ) and Δ1 ≥ Δ and (s, s′) ∈ states(Δ1), it suffices to show

that (�v.�s1.f v k s1, �v
′.�s′1.f

′ v′ k′ s′1) ∈ cont(�1)(Δ1). So, let Δ2 ≥ Δ1 and (v, v′) ∈
�1(Δ2) and (s1, s

′
1) ∈ states(Δ2); we must show that (f v k s1, f

′ v′ k′ s′1) ∈ RAns . First,

(f v, f ′ v′) ∈ comp(�2)(Δ2) by assumption on (f, f ′). By monotonicity of cont(�2) we

have (k, k′) ∈ cont(�2)(Δ2), and by assumption, (s1, s
′
1) ∈ states(Δ2). Therefore, it

follows from the definition of cont(�2)(Δ2) that (f v k s1, f
′ v′ k′ s′1) ∈ RAns .

Definition 4.34. For every term environment Ξ ⊢ Γ, every ' ∈ T Ξ, and every Δ ∈ W,

let JΓKΞ'Δ be the binary relation on V dom(Γ) defined by

JΓKΞ'Δ = { (�, �′) ∣ ∀x ∈ dom(Γ). (�(x), �′(x)) ∈ JΓ(x)KΞ'Δ } .
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Definition 4.35. Two typed terms Ξ ∣ Γ ⊢ t : � and Ξ ∣ Γ ⊢ t′ : � of the same type are

semantically related, written Ξ ∣ Γ ∣= t ∼ t′ : � , if for all ' ∈ T Ξ, all Δ ∈ W, and all

(�, �′) ∈ JΓKΞ'Δ,
(
JtKdom(Γ)�, Jt′Kdom(Γ)�

′) ∈ comp(J�KΞ')(Δ) .

Theorem 4.36 (Fundamental Theorem). Every typed term is semantically related

to itself: if Ξ ∣ Γ ⊢ t : � , then Ξ ∣ Γ ∣= t ∼ t : � .

Proof. By showing the stronger property that semantic relatedness is preserved by all

the term constructs. We use Proposition 4.33 to avoid tedious reasoning about continu-

ations and states for the term constructs that do not directly involve references. Below

are some illustrative cases.

1. If Γ(x) = � , then Ξ ∣ Γ ∣= x ∼ x : � . Indeed, let ' ∈ T Ξ and Δ ∈ W and (�, �′) ∈
JΓKΞ'Δ be given. Then (�(x), �′(x)) ∈ J�KΞ'Δ. Therefore, by Proposition 4.33(1),

(JxKdom(Γ)�, JxKdom(Γ)�
′) = (�(�(x)), �(�′(x))) ∈ comp(J�KΞ')(Δ) ,

as required.

2. If Ξ ∣ Γ ∣= t ∼ t′ : ��.� , then Ξ ∣ Γ ∣= unfold t ∼ unfold t′ : � [��.�/�]. Indeed,

let ' ∈ T Ξ and Δ ∈ W and (�, �′) ∈ JΓKΞ'Δ be given. Recall that Junfold tKdom(Γ)� =

JtKdom(Γ)� ★ f and Junfold t′Kdom(Γ)�
′ = Jt′Kdom(Γ)�

′ ★ f where f : V → TV is given by

f v =

{
�(v0) if v = in� v0

error otherwise.

By assumption, (JtKdom(Γ)�, Jt′Kdom(Γ)�
′) ∈ comp(J��.�KΞ')(Δ). Therefore, by Proposi-

tion 4.33(2), it suffices to show that

(f, f) ∈ J��.�KΞ'
Δ→ comp(J� [��.�/�]KΞ') .

To see this, let Δ1 ≥ Δ and (v, v′) ∈ J��.�KΞ'Δ1 be given; we must show that

(f v, f v′) ∈ comp(J� [��.�/�]KΞ')(Δ1). By Corollary 4.31, (v, v′) = (in� v0, in� v
′
0) for

some (v0, v
′
0) ∈ J� [��.�/�]KΞ'Δ1. But then by Proposition 4.33(1),

(f v, f v′) = (�(v0), �(v′0)) ∈ comp(J� [��.�/�]KΞ')(Δ1) ,

as required.

3. If Ξ, � ∣ Γ ∣= t ∼ t′ : � and Ξ ⊢ Γ, then Ξ ∣ Γ ∣= Λ�.t ∼ Λ�.t′ : ∀�.� . Indeed,

let ' ∈ T Ξ and Δ ∈ W and (�, �′) ∈ JΓKΞ'Δ be given. Recall that JΛ�.tKdom(Γ)� =

�(in∀(JtKdom(Γ)�)) and that JΛ�.t′Kdom(Γ)�
′ = �(in∀(Jt′Kdom(Γ)�

′)). We must therefore

show that
(
�(in∀(JtKdom(Γ)�)), �(in∀(Jt′Kdom(Γ)�

′))
)
∈ comp(J∀�.�KΞ')(Δ) .

By Proposition 4.33(1) it suffices to show that
(
in∀(JtKdom(Γ)�), in∀(Jt′Kdom(Γ)�

′)
)
∈ J∀�.�KΞ'Δ .

We proceed according to the definition of J∀�.�KΞ. Let � ∈ T be given; we must show

that (JtKdom(Γ)�, Jt′Kdom(Γ)�
′) ∈ comp(J�KΞ,�'[� 7→ �])(Δ). But this follows from the
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assumption that Ξ, � ∣ Γ ∣= t ∼ t′ : � since Proposition 4.30(1) (weakening) gives that

(�, �′) ∈ JΓKΞ,�'[� 7→ �].

4. If Ξ ∣ Γ ∣= t ∼ t′ : ∀�.�0 and Ξ ⊢ �1, then Ξ ∣ Γ ∣= t [�1] ∼ t′ [�1] : �0[�1/�]. Indeed,

let ' ∈ T Ξ and Δ ∈ W and (�, �′) ∈ JΓKΞ'Δ be given. Recall that Jt [�1]Kdom(Γ)� =

JtKdom(Γ)� ★ g and Jt′ [�1]Kdom(Γ)�
′ = Jt′Kdom(Γ)�

′ ★ g where g : V → TV is given by

g v =

{
c if v = in∀ c
error otherwise.

By assumption, (JtKdom(Γ)�, Jt′Kdom(Γ)�
′) ∈ comp(J∀�.�KΞ')(Δ). Therefore, by Proposi-

tion 4.33(2), it suffices to show that

(g, g) ∈ J∀�.�KΞ'
Δ→ comp(J�0[�1/�]KΞ') .

To see this, let Δ1 ≥ Δ and (v, v′) ∈ J∀�.�KΞ'Δ1 be given; we must show that

(g v, g v′) ∈ comp(J�0[�1/�]KΞ')(Δ1). By the definition of J∀�.�0KΞ we know that (v, v′) =

(in∀ c, in∀ c′) for some c and c′ satisfying that (c, c′) ∈ comp(J�0KΞ,�'[� 7→ �])(Δ1) for

all � ∈ T . Now choose � = J�1KΞ': Proposition 4.30(2) (substitution) gives that

(g v, g v′) = (c, c′) ∈ comp(J�0[�1/�]KΞ')(Δ1) ,

as required.

5. If Ξ ∣ Γ ∣= t ∼ t′ : � , then Ξ ∣ Γ ∣= ref t ∼ ref t′ : ref � . Indeed, let ' ∈ T Ξ and

Δ ∈ W and (�, �′) ∈ JΓKΞ'Δ be given. Recall that Jref tKdom(Γ)� = JtKdom(Γ)�★�v. alloc v

and Jref t′Kdom(Γ)�
′ = Jt′Kdom(Γ)�

′★�v. alloc v. By assumption, (JtKdom(Γ)�, Jt′Kdom(Γ)�
′) ∈

comp(J�KΞ')(Δ). Therefore, by Proposition 4.33(2), it suffices to show that

(alloc, alloc) ∈ J�KΞ'
Δ→ comp(Jref �KΞ') .

To see this, let Δ1 ≥ Δ and (v, v′) ∈ J�KΞ'Δ1 be given; we must show that

(alloc v, alloc v′) ∈ comp(Jref �KΞ')(Δ1). We proceed according to the definition of

comp. Let Δ2 ≥ Δ1 and (k, k′) ∈ cont(Jref �KΞ')(Δ2) and (s, s′) ∈ states(Δ2) be given;

we must show that

(alloc v k s, alloc v′ k′ s′) ∈ RAns . (4.6)

We know that dom(s) = dom(s′) = dom(Δ2). Let l0 ∈ ℕ0 be the least number such that

l0 /∈ dom(Δ2); then

alloc v k s = k �l0 (s[l0 7→ v]) (4.7)

alloc v′ k′ s′ = k′ �l0 (s′[l0 7→ v′]) . (4.8)

We now aim to use the assumption that (k, k′) ∈ cont(Jref �KΞ')(Δ2). Define Δ3 =

Δ2[l0 7→ i−1(J�KΞ')] (where i−1 = i−1 is the isomorphism associated with the recur-

sive metric-space equation.) Clearly Δ3 ≥ Δ2 since l0 /∈ dom(Δ2). Then (�l0 , �l0) ∈
Jref �KΞ'Δ3 = ref (J�KΞ')(Δ3) since for all Δ4 ≥ Δ3 we have

i(Δ4(l0)) = i(Δ3(l0)) = i(i−1(J�KΞ')) = J�KΞ' .
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Furthermore, (s[l0 7→ v], s′[l0 7→ v′]) ∈ states(Δ3): for l ∈ dom(Δ2) we have

((s[l0 7→ v])(l), (s′[l0 7→ v′])(l)) = (s(l), s′(l)) ∈ i(Δ2(l)) (Δ2)

= i(Δ3(l)) (Δ2)

⊆ i(Δ3(l)) (Δ3) ,

by monotonicity of i(Δ3(l)) ∈ W →mon CURel(V ), and also,

((s[l0 7→ v])(l0), (s′[l0 7→ v′])(l0)) = (v, v′) ∈ J�KΞ'Δ1

⊆ J�KΞ'Δ3 ,

by monotonicity of J�KΞ'. All in all, (s[l0 7→ v], s′[l0 7→ v′]) ∈ states(Δ3). Therefore,

(4.7), (4.8), and the assumption that (k, k′) ∈ cont(Jref �KΞ')(Δ2) gives (4.6), as required.

6. If Ξ ∣ Γ ∣= t ∼ t′ : ref � , then Ξ ∣ Γ ∣= !t ∼ !t′ : � . Indeed, let ' ∈ T Ξ and Δ ∈ W and

(�, �′) ∈ JΓKΞ'Δ be given. Using exactly the same reasoning as in the previous case, we

see that it suffices to show that

(lookup, lookup) ∈ Jref �KΞ'
Δ→ comp(J�KΞ') .

Therefore, let Δ1 ≥ Δ and (v, v′) ∈ Jref �KΞ'Δ1 be given; we must show that

(lookup v, lookup v′) ∈ comp(J�KΞ')(Δ1)

. According to the definition of Jref �KΞ' = ref (J�KΞ') there are two cases: either v =

v′ = �l for some l ∈ dom(Δ1), or v = v′ = �n+1
l for some n ∈ ! and l ∈ dom(Δ1).

Assume that we are in the latter case; the former case is similar, but easier.

We proceed according to the definition of comp. So, let Δ2 ≥ Δ1 and (k, k′) ∈
cont(J�KΞ')(Δ2) and (s, s′) ∈ states(Δ2) be given; we must show that

(lookup v k s, lookup v′ k′ s′) ∈ RAns . (4.9)

By the definition of ref we have v = v′ = �n+1
l where i(Δ1(l))(Δ2)

n
= J�KΞ'Δ2. Since

(s, s′) ∈ states(Δ2) we know that

(s(l), s′(l)) ∈ i(Δ2(l))(Δ2) .

Since l ∈ dom(Δ1) and Δ2 ≥ Δ1, we have

i(Δ2(l))(Δ2) = i(Δ1(l))(Δ2)
n
= J�KΞ'Δ2 .

There are therefore two cases: either �n(s(l)) = �n(s′(l)) = ⊥, or (�n(s(l)), �n(s′(l))) =

(⌊v0⌋, ⌊v′0⌋) where (v0, v
′
0) ∈ J�KΞ'Δ2. In the first case, the definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (⊥,⊥) ∈ RAns .

and we are done. In the second case, the definition of lookup gives

(lookup v k s, lookup v′ k′ s′) = (k v0 s, k
′ v′0 s

′) . (4.10)

By assumption, (k, k′) ∈ cont(J�KΞ')(Δ2). Therefore, by definition of cont , we have

(k v0 s, k
′ v′0 s

′) ∈ RAns . From (4.10) we then conclude (4.9), and we are done.

7. For many of the remaining cases, the core of the proof is to show that comp preserves
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logical relatedness. For example:

(Jt1K�, Jt′1K�′) ∈ comp(J� → � ′KΞ�)(Δ) ∧ (Jt2K�, Jt′2K�′) ∈ comp(J�KΞ�)(Δ) =⇒
(Jt1 t2K�, Jt′1 t′2K�′) ∈ comp(J� ′KΞ�)(Δ) (4.11)

(Jt1K�, Jt′1K�′) ∈ comp(J�1KΞ�)(Δ) ∧ (Jt2K�, Jt′2K�′) ∈ comp(J�2KΞ�)(Δ) =⇒
(J(t1, t2)K�, J(t′1, t′2)K�′) ∈ comp(J�1 × �2KΞ�)(Δ) (4.12)

Corollary 4.37.

1. If ∅ ∣ ∅ ⊢ t : � is a closed term of type � , then JtK∅∅ ∕= error.

2. If ∅ ∣ ∅ ⊢ t : int is a closed term of type int, then JtKp ∕= errorAns .

Proof. 1. The theorem gives that (JtK∅∅, JtK∅∅) ∈ comp(J�K∅∅)(∅). Now let sinit ∈ S be

the empty store, and let k0 ∈ K be the continuation that always gives the answer 0, i.e.,

k0 v s = �1 0 for all v and s. It follows immediately from the definitions that (k0, k0) ∈
cont(J�K∅∅)(∅) and that (sinit , sinit) ∈ states(∅). Therefore, (JtK∅∅ k0 sinit , JtK∅∅ k0 sinit) ∈
RAns . By the definition of RAns we must then have JtK∅∅ k0 sinit ∕= errorAns which implies

that JtK∅∅ ∕= error.

2. Recall that JtKp = JtK∅∅ kinit sinit where sinit ∈ S is the empty store and where

kinit = �v.�s.

{ ⌊�1 m⌋ if v = inℤ(m)

errorAns otherwise .

It is easy to show that (kinit , kinit) ∈ cont(JintK∅∅)(∅). Furthermore, as already argued,

(sinit , sinit) ∈ states(∅).
The theorem gives that (JtK∅∅, JtK∅∅) ∈ comp(J�K∅∅)(∅), which then implies that

(JtKp, JtKp) = (JtK∅∅ kinit sinit , JtK∅∅ kinit sinit) ∈ RAns .

Therefore JtKp ∕= errorAns by definition of RAns .

5. On the need for approximate locations

Consider the following, tentative interpretation of reference types:

ref (�)(Δ) = {(�l, �l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. i(Δ(l))(Δ1) = �(Δ1)} .

As discussed on page 29, this function ref (�) is not non-expansive and hence does not

belong to the space T of semantic types. Accordingly, we have introduced approximate

locations and settled for a more complicated interpretation of reference types.

Still, it might be that one could interpret semantic types and worlds differently, perhaps

by solving a recursive equation in a different category, in order to achieve a “simple”

interpretation of reference types above.

In this section we show, in an abstract setup, and under some relatively mild assump-

tions, that such a simple interpretation is impossible. The proof works for an arbitrary

set V of “syntactic values”, not required to be a domain, and there is no requirement that
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the elements �l are particular values such as integers. The intuitive idea of the proof is

that that semantic worlds (as expressed by a solution to the recursive equations between

types and worlds) can in a certain sense be used to encode recursive types, and that

recursive types and “simple” reference types are incompatible.

Let V be a set, and let GRel(V ) be a set of subsets of V × V which is closed under

finite intersections and contains the empty set. We think of GRel(V ) as the set of “good”

relations on V . Example: In the setup of the paper, V is the universal predomain from

Proposition 3.2 and GRel(V ) is CURel(V ).

Now assume that T̂ is a set and that i : T̂ → T is a bijection into some subset T of

(Loc ⇀fin T̂ )→mon GRel(V ). That is, T is a subset of those functions that are monotone

with respect to the “extension” order on W = Loc ⇀fin T̂ and the inclusion order on

GRel(V ). We assume that T contains all the constant functions, and that for all �1 ∈ T
and �2 ∈ T the monotone function �1 ∧ �2 given by

(�1 ∧ �2)(Δ) = �1(Δ) ∩ �2(Δ)

belongs to T .

The idea is that T should be thought of as the set of “good” monotone functions. In

the concrete metric-space setup, T consists of the non-expansive, monotone functions.

We now add the following assumption:

Assumption 5.1. There is an injective function c : V → V such that for every l ∈ !,
the monotone function �l given by

�l(Δ) =

{
{(c(v), c(v′)) ∣ (v, v′) ∈ i(Δ(l))(Δ)} if l ∈ dom(Δ)

∅ otherwise.

belongs to T .

For every R ∈ GRel(V ) we define c(R) = {(c(v), c(v′) ∣ (v, v′) ∈ R}; with that notation,

the assumption implies that �l(Δ) =c(i(Δ(l))(Δ)) when l ∈ dom(Δ). The idea is that

�l is a “self-application” operator, up to some function c which could potentially be the

identity function. We furthermore assume that for every R ∈ GRel(V ), the relation c(R)

belongs to GRel(V ).

In the concrete model presented in this paper, we can choose c = in�. Then the

function �l defined above is indeed non-expansive (and hence belongs to T ): Lemma A.1

gives that if Δ =n Δ′ for some n > 0, then dom(Δ) = dom(Δ′). The same lemma

furthermore gives that if l belongs to these two domains, then i(Δ) =n−1 i(Δ′) and

hence i(Δ)(Δ) =n−1 i(Δ′)(Δ′). Finally, by the definition of the projection functions,

in�(i(Δ)(Δ)) =n in�(i(Δ′)(Δ′)), as desired.

Returning to the abstract setup, we now show that �l has the following “universality”

property:

Proposition 5.2. For every � ∈ T there exists Δ0 ∈ W such that

�l(Δ) = c(�(Δ)) for all Δ ≥ Δ0.
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Proof. Choose Δ0 = [l 7→ i−1(�)]. Then for all Δ ≥ Δ0 we have

�l(Δ) = c(i(Δ(l))(Δ) = �(Δ).

Even though the proof of the proposition is about as simple as it could be, the propo-

sition itself is in our opinion slightly counterintuitive: how can it possibly be that every

type � ∈ T “agrees with �l” somewhere? One answer is that the set of worlds W is not

just some abstract preorder; it is a set which is so large that it includes T itself.

It follows that all endofunctions on T have “fixed points up to c” in a certain sense:

Corollary 5.3. For every function F from T to T there exists some �′ ∈ T and Δ0 ∈ W
such that

�′(Δ) = c(F (�′)(Δ)) for all Δ ≥ Δ0.

Furthermore, for every location l ∈ ! one can choose the �′ and Δ0 above such that

dom(Δ0) = {l}.

Proof. Choose � = F (�l) in the previous proposition.

Using these results, we show that the simple interpretation of reference types is im-

possible:

Proposition 5.4. Let �(−) : ! → V be an arbitrary, injective function. There is no

function ref : T → T satisfying

ref (�)(Δ) = {(�l, �l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. i(Δ(l))(Δ1) = �(Δ1)}

for all � ∈ T and Δ ∈ W.

Proof. Assume that ref is such a function. We derive a contradiction.

First, observe that every singleton relation {(�l, �l)} belongs to GRel(V ): for an ar-

bitrary � ∈ T we have {(�l, �l)} = ref (�)([l 7→ i−1(�)]), so {(�l, �l)} is in the image

of ref (�) ∈ T . Then, by assumption on c, the relation {(c(�l), c(�l))} also belongs to

GRel(V ). Finally, the function single(c(�l)) = �Δ.{(c(�l), c(�l))} belongs to T since we

have assumed that T contains all the constant functions.

Let l ∈ ! be an arbitrarily chosen number and define F : T → T by F (�) = ref (� ∧
single(c(�l))). Corollary 5.3 gives � ∈ T and Δ0 ∈ W such that

�(Δ) = in�(F (�)(Δ)) = in�(ref (�)(Δ) ∩ {(c(�l), c(�l))})

for all Δ ≥ Δ0. By the last clause of the corollary we can assume that l /∈ dom(Δ0) (by

choosing dom(Δ0) = {l′} for some l′ ∕= l). Now let Δ′0 = Δ0[l 7→ i−1(∅)]; we aim to show

that

(�l, �l) /∈ F (�)(Δ) for all Δ ≥ Δ′0. (5.1)

To that end, assume that (�l, �l) ∈ F (�)(Δ) for some Δ ≥ Δ0’. First, the definition of

F and the assumption on ref give that i(Δ(l))(Δ) = (� ∧ single(c(�l))(Δ) (here we use
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that �(−) is injective). Then, since Δ ≥ Δ′0,

�(Δ) ∩ {(c(�l), c(�l))} = (� ∧ single(c(�l)))(Δ)

= i(Δ(l))(Δ)

= i(Δ′0(l))(Δ)

= ∅,

which means that (c(�l), c(�l)) /∈ �(Δ). But �(Δ) = c(F (�)(Δ)) since Δ ≥ Δ′0 ≥ Δ0,

and we therefore conclude that (�l, �l) /∈ F (�)(Δ), a contradiction. This shows (5.1).

In particular, taking Δ = Δ′0 in (5.1), we get that (�l, �l) /∈ F (�)(Δ′0). But then, by

definition of F and the assumption on ref , there is some Δ ≥ Δ′0 such that i(Δ′0(l))(Δ) ∕=
(�∧ single(c(�l))(Δ). Since i(Δ′0(l))(Δ) = ∅ this means that (�∧ single(c(�l))(Δ) is non-

empty; in other words, that (c(�l), c(�l)) ∈ �(Δ). Therefore, since �(Δ) = c(F (�)(Δ))

and since c is injective, (�l�l) ∈ F (�)(Δ). But this contradicts (5.1).

The proof above only depends on the existence of a particular “recursive type” �(Δ) =

in�(F (�)(Δ)). Accordingly, one can show a more syntactic variant of the proposition

above that does not depend on Assumption 5.1: below we merely assume that c : V → V

is some injective function satisfying that c(R) ∈ GRel(V ) for all R ∈ GRel(V ). The

semantic type � will then obtained as the interpretation of a syntactic recursive type.

In order to express the syntactic counterpart of the semantic type � we add finite

intersection types �1 ∧ �2 to the language.

Proposition 5.5. Let �(−) : ! → V be an arbitrary, injective function. There is no

interpretation function J−K(−), mapping types in context Ξ to functions from T Ξ to T ,

that satisfies

J�KΞ�(Δ) = �(�)(Δ)

Jref �KΞ�(Δ) = {(�l, �l) ∣ l ∈ dom(Δ) ∧ ∀Δ1 ≥ Δ. i(Δ(l))(Δ1) = J�KΞ�(Δ1)}
J��.�KΞ�(Δ) = {(c(v), c(v′)) ∣ (v, v′) ∈ J� [��.�/�]K�(Δ)}
J�1 ∧ �2K�(Δ) = J�1KΞ�(Δ) ∩ J�2KΞ�(Δ)

for all � and Δ.

To show this, one essentially repeats the argument in the previous proof by taking

� = J��.(ref � ∧ �)K� [� 7→ single(c(�l))].

6. Examples

The model can be used to prove the equivalences in Section 5 of our earlier work (Birkedal

et al. 2009). More specifically, one can use the model to prove that some equivalences

between different functional implementations of abstract data types are still valid in

the presence of general references, and also prove some simple equivalences involving

imperative abstract data types. (See Section 7 for more about extending the model to

account properly for local state.) Here we only sketch two of these examples, as well
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as a “non-example”: an equivalence that cannot be shown because of the existence of

approximated locations in the model.

6.1. Encoding of existential types

We use the usual encoding of existential types by means of universal types (Crary and

Harper 2007): ∃�.� = ∀�.(∀�. � → �) → � where � does not occur free in � . On the

term level, define pack(� ′, t) = Λ�.�x.x [� ′] t where x does not occur free in t.

The natural proof principle for relatedness at existential types is then derivable:

Proposition 6.1. Let Ξ ∣ Γ ⊢ pack(�1, t) : ∃�.� and Ξ ∣ Γ ⊢ pack(�2, t
′) : ∃�.� . Assume

that � ∈ T satisfies: for all Δ ∈ W, all � ∈ T Ξ, and all (�, �′) ∈ JΓK�(Δ),

(JtK�, Jt′K�′) ∈ comp(J�K(�[� 7→ �]))(Δ).

Then

Ξ ∣ Γ ∣= pack(�1, t) ∼ pack(�2, t
′) : ∃�.� .

Proof. By the congruence properties of semantic relatedness (see the proof of Theo-

rem 4.36) it suffices to show

Ξ, � ∣ Γ, x : ∀�.� → � ∣= x [�1] t ∼ x [�2] t′ : �.

(Here we have renamed � and x to ensure that they do not occur in Ξ and Γ, respectively.)

To that end, let Δ ∈ W and � ∈ T Ξ,� and (�, �′) ∈ JΓ, x : ∀�.� → �K�(Δ) be given; we

must show that

(Jx [�1] tK�, Jx [�2] t′K�′) ∈ comp(�(�))(Δ). (6.1)

Since � and �′ are related we have �(c) = in∀ c and �′(c) = in∀ c′ for some c and c′ with

(in∀ c, in∀ c′) ∈ J∀�.� → �K�(Δ). The interpretation of universal types then gives that

(Jx [�1]K�, Jx [�2]K�′) = (c, c′) ∈ comp(J� → �K(�[� 7→ �]))(Δ). (6.2)

The assumption of the proposition (and weakening with respect to � and x) gives

(JtK�, Jt′K�′) ∈ comp(J�K(�[� 7→ �]))(Δ) (6.3)

Then, using (4.11) on page 36, we get that (6.2) and (6.3) imply (6.1).

6.2. Example: imperative counter module

Here we use the encoding of existential types presented just above. The type

�m = ∃�. (1→ �)× (�→ 1)× (�→ int)

can be used to model imperative counter modules: the idea is that a value of type �m
consists of some hidden type �, used to represent imperative counters, as well as three

operations for creating a new counter, incrementing a counter, and reading the value of

a counter, respectively.
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Consider the following two module implementations, i.e., closed terms of type �m:

J = pack(ref int, I) and J ′ = pack(ref int, I ′) where

I = (�x.ref 0, �x. x := !x+ 1, �x. !x)

I ′ = (�x.ref 0, �x. x := !x− 1, �x.−(!x)

We now show by parametricity reasoning, i.e., by exploiting the universal quantification

in the interpretation of universal types, that ∅ ∣ ∅ ∣= J ∼ J ′ : �m.

First, abbreviate � = (1→ �)× (�→ 1)× (�→ int). By Proposition 6.1 it suffices to

find � ∈ T such that (JIK, JI ′K) ∈ comp(J�K[�→ �])(Δ) for all Δ.

Let R = {(inZ(n), inZ(−n)) ∣ n ∈ !} and choose � = ref (�Δ.R). That is, we choose

� to be the semantic type of locations that point to R-related values. Now let Δ ∈ W be

given. By (4.12) on page 36 it suffices to show:

(J�x.ref 0K, J�x.ref 0K) ∈ comp(J1→ �K[� 7→ �])(Δ) (6.4)

(J�x. x := !x+ 1K, J�x. x := !x− 1K) ∈ comp(J�→ 1K[� 7→ �])(Δ) (6.5)

(J�x. !xK, J�x.−!xK) ∈ comp(J�→ intK[� 7→ �])(Δ) (6.6)

In all three cases we use the first part of Proposition 4.33. Then, (6.5) and (6.6) follow

straightforwardly from the definitions given our choice of �.

Now consider (6.4). Let �(in→f) = J�x.ref 0K; we must show that

(in→f, in→f) ∈ J1→ �K[� 7→ �](Δ). (6.7)

Let Δ1 ≥ Δ and (v, v′) ∈ J1K(Δ) be given. We must now show that (f(v), f(v′)) ∈
comp(�)(Δ1). To that end, we unfold the definition of comp: let Δ2 ≥ Δ1 and (k, k′) ∈
cont(�)(Δ2) and (s, s′) ∈ states(Δ2) be given. We must show that

(f(v) k s, f(v′) k′ s′) ∈ RAns .

By the interpretation of allocation, f(v) k s = k �l (s[l 7→ inZ0]) where l is the smallest

number such that l /∈ dom(s). Since (s, s′) ∈ states(Δ2) we have dom(s) = dom(s′) =

dom(Δ2), and therefore f(v′) k′ s′ = k′ �l (s′[l 7→ inZ0]). (That is, the new location is

the same one as above.) Since (k, k′) ∈ cont(�)(Δ2) it therefore suffices to find Δ3 ≥ Δ2

such that

(�l, �l) ∈ �(Δ3) (6.8)

(s[l 7→ inZ0], s′[l 7→ inZ0]) ∈ states(Δ3). (6.9)

Choose Δ3 = Δ2[l 7→ i−1(�Δ.R)]. Then (6.8) follows directly from the fact that

� = ref (�Δ.R): indeed, for all Δ4 ≥ Δ3we have

i(Δ4(l))(Δ4) = R = (�Δ.R)(Δ4).

As for (6.9), it is clear that

((s[l 7→ inZ0])(l), (s′[l 7→ inZ0])(l)) = (inZ0, inZ0) ∈ i(Δ3(l))(Δ3).
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For l′ ∕= l, the fact that (s, s′) ∈ states(Δ2) (and monotonicity) gives

((s[l 7→ inZ(0)])(l′), (s′[l 7→ inZ(0)])(l′)) = (s(l′), s′(l′)) ∈ i(Δ2(l))(Δ2)

= i(Δ3(l))(Δ2)

⊆ i(Δ3(l))(Δ3).

We conclude that (6.9) holds, and hence that ∅ ∣ ∅ ∣= J ∼ J ′ : �m.

6.3. Example: local references and closures

One can alternatively implement an imperative counter module by means of a local

reference and two closures. Consider the type �lr = 1 → ((1 → 1)× (1 → int)) and the

two counter implementations

M =�x : 1. let r = ref 0 in (�y : 1. r := !r + 1, �y : 1. !r)

M ′=�x : 1. let r = ref 0 in (�y : 1. r := !r − 1, �y : 1. −(!r))

where the let . . . in construct is syntactic sugar for a �-redex in the usual way. Both M

and M ′ are closed terms of type �lr. By “store parametricity” reasoning, i.e., by exploiting

the universal quantification over all larger worlds in the definition of cont, one can show

that ∅ ∣ ∅ ∣= M ∼M ′ : �lr.

In a little more detail, let �(in→f) = JMK and �(in→f ′) = JM ′K. Let Δ ∈ W be

given; we must show that (in→f, in→f ′) ∈ J�lrK(Δ). To that end, let Δ1 ≥ Δ and

(v, v′) ∈ J1K(Δ1) be given; we must show that

(f(v), f ′(v′)) ∈ comp(J(1→ 1)× (1→ int)K)(Δ1). (6.10)

We unfold the definition of comp: let Δ2 ≥ Δ1 and

(k, k′) ∈ cont(J(1→ 1)× (1→ int)K)(Δ2)

and (s, s′) ∈ states(Δ2) be given. We must show that

(f(v) k s, f ′(v′) k′ s′) ∈ RAns . (6.11)

Let l ∈ ! be the least number not in dom(Δ2). Then

f(v) k s = k (in×(in→g1, in→g2)) (s[l 7→ inZ(0)])

f ′(v′) k′ s′ = k′ (in×(in→g
′
1, in→g

′
2)) (s′[l 7→ inZ(0)])

where �(in→g1) = J�y : 1. r := !r + 1K[r 7→ �l] and �(in→g2) = J�y : 1. !rK[r 7→ �l];

similarly for g′1 and g′2. In order to show (6.11), it therefore suffices to find Δ3 ≥ Δ2 such

that

(in→g1, in→g
′
1) ∈ J1→ 1K(Δ3)

(in→g2, in→g
′
2) ∈ J1→ intK(Δ3)

(s[l 7→ inZ(0)], s′[l′ 7→ inZ(0)]) ∈ states(Δ3).

It is not hard to see that these conditions can be satisfied by choosing Δ3 = Δ2[l 7→ �Δ.R]

where R = {(inZ(n), inZ(−n)) ∣ n ∈ !} as in the previous example.
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6.4. Example: references to the empty type

Consider the two terms K = �x.2 and K ′ = �x.3 of type ref 0→ int. Given a standard

operational semantics for the language, a simple bisimulation-style argument should suf-

fice to show that K and K ′ are contextually equivalent: no reference cell can ever contain

a value of type 0, and therefore neither function can ever be applied. However, as we will

show next, the equivalence ∅ ∣ ∅ ∣= K ∼ K ′ : ref 0→ int does not hold. Briefly, the reason

is the existence of approximate locations in the model.

First, by the congruence property of semantic relatedness (Theorem 4.36), if ∅ ∣ ∅ ∣=
K ∼ K ′ : ref 0→ int holds, then so does ∅ ∣ x : ref 0 ∣= K x ∼ K ′ x : int. Therefore it

suffices to show that the latter does not hold.

Let R ∈ CURel(V ) be the singleton relation {(in1∗, in1∗)}. (Any other non-empty

relation in CURel(V ) would also do.) Also, let l ∈ ! be an arbitrary location and define

Δ = [l 7→ i−1(�Δ′.R)]. Then

(�1
l , �

1
l ) ∈ Jref 0K(Δ) (6.12)

since l ∈ dom(Δ) and since i(Δ(l))(Δ1)
0
= J0K(Δ1) holds vacuously for all Δ1. Now let

� = [x 7→ �1
l ]; then (�, �) ∈ Jx : ref 0K(Δ). We claim that

(JK xK�, JK ′ xK�) /∈ comp(JintK)(Δ) (6.13)

which shows that ∅ ∣ x : ref 0 ∣= K x ∼ K ′ x : int does not hold. Indeed, JK xK� = �(inZ2)

while JK ′ xK� = �(inZ3), so

(JK xK� kinit [l 7→ in1∗], JK ′ xK� kinit [l 7→ in1∗]) = (⌊�1(2)⌋, ⌊�1(3)⌋) /∈ Ans

which shows (6.13). We conclude that ∅ ∣ x : ref 0 ∣= K x ∼ K ′ x : int does not hold and

hence that ∅ ∣ ∅ ∣= K ∼ K ′ : ref 0→ int does not hold.

Looking back, the problem is indeed the presence of approximate locations: equa-

tion (6.12) intuitively implies that ref 0 is “inhabited,” while the operational equivalence

between K and K ′ expresses exactly that ref 0 is not inhabited.

7. Related Work

Metric spaces. As already mentioned, the metric-space structure on uniform relations

over universal domains is well-known (Abadi and Plotkin 1990; Amadio 1991; Amadio

and Curien 1998; Cardone 1989; MacQueen et al. 1986). The inverse-limit method for

solving recursive domain equations was first adapted to metric spaces by America and

Rutten (1989).

Approximate locations. Approximate (or “semantic”) locations were first introduced in

our earlier work (Birkedal et al. 2009). That work contains an adequacy proof with respect

to an operational semantics, and also an entirely different, quasi-syntactic interpretation

of open types. Here we instead present an in some ways more natural interpretation that

results from solving a recursive metric-space equation, thus obtaining a proper universe

of semantic types. Open types are then interpreted in the expected way, i.e., as maps

from environments of semantic types to semantic types.

76



L. Birkedal, K. Støvring, and J. Thamsborg 44

Game semantics. Abramsky et al. (1998) present a game semantics for a language with

general reference types. References are, informally speaking, modelled as pairs of “get”

and “set” functions, following an idea by Reynolds. This model of references allows for

a compositional interpretation of reference types, as in this paper. In other words, the

meaning of the reference type ref � is completely determined by the meaning of the

type � . On the other hand, modelling references as pairs of functions introduces the so-

called “bad variable” problem: there is no guarantee that a pair of functions inhabiting

the reference type behaves like a reference cell, in the sense that, e.g., calling “get” returns

the most recent value given to “set.” Another consequence is that the model cannot be

used to interpret equality testing of references.

Our model has a related, but milder variant of the bad variable problem. As illustrated

by the example in Section 6.4, there is no guarantee that an inhabitant of a semantic

reference type behaves like an actual location in terms of observations performed by

lookup and assignment. It is, however, guaranteed that every inhabitant corresponds to

an actual reference cell, and that lookup and assignment operations are domain-theoretic

approximations of the “real” operations on that reference cell. The model can easily be

used to interpret equality testing of references. On the other hand, the model of Abramsky

et al. is fully abstract for a language that includes a “bad-variable constructor,” while

our model is far from fully abstract.

Laird (2007) presents a fully abstract trace semantics for a language with general

references. This model, which has a strong game-semantics “flavor,” does not exhibit the

bad variable problem.

Game semantics have been used to model recursive types (McCusker 2000) and im-

predicative polymorphism (Abramsky and Jagadeesan 2005). The latter model features

a very different approach to parametricity that allows for non-relational reasoning about

terms of polymorphic type. We are not aware of any game semantics that models the

combination of impredicative polymorphism, general reference types, and recursive types

considered in this article.

Step-indexing and recursively defined worlds. The technique of solving a metric-space

equation in order to build a Kripke-style model, as presented in this paper, has sub-

sequently been used by Schwinghammer et al. in their model of separation logic for a

language with higher-order store (Schwinghammer et al. 2009), and in a more recent

extension (Schwinghammer et al. 2010) (with F. Pottier) that includes an “anti-frame

rule” for local reasoning about state.

The fundamental circularity between worlds and types in realizability-style possible-

worlds models of polymorphism and general references was observed by Ahmed (2004,

p. 62) in the setting of operational semantics (and for unary relations). Rather than

solve a recursive equation, her solution is to stratify worlds and types into different

levels, represented by natural numbers. So-called step-indexing is used in the definition

to ensure that a stratified variant of the fundamental theorem holds. These stratified

worlds and types are somewhat analogous to the approximants of recursive-equation

solutions that are employed in the inverse-limit method. The main advantage in “going

to the limit” of the approximations and working with an actual solution (as we do here)
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is that approximation information is then not ubiquitous in definitions and proofs; by

analogy, the only “approximation information” in our model is in the interpretation of

references and in the requirement that user-supplied relations are uniform.§

In recent work, the authors and others (Birkedal et al. 2010a) have shown that the

metric-space approach presented here can used together with step-indexing, providing

a high-level approach to giving operational semantics that involve recursively defined

structures. In particular, we have presented a model of Charguéraud and Pottier’s type-

and-capability system for an ML-like higher-order language, and also an operational

model of the logic of Schwinghammer et al. (2009).

Ahmed et al. (2009) have recently (and independently) proposed a step-indexed model

of a language very similar to ours, but in which worlds are defined in a more complicated

way: this allows for proofs of much more advanced equivalences involving local state. As

described in the introduction, we have recently shown that our approach extends to this

style of worlds (Birkedal et al. 2010b). In future work, we furthermore plan to investigate

local-state parameters in the style of Bohr and Birkedal (2006). In the present paper,

we instead hope to have presented the fundamental ideas behind Kripke logical relations

over recursively defined sets of worlds as needed for semantic modeling of parametric

polymorphism, recursive types, and general references.
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Appendix A. Concrete descriptions of some metric spaces

Recall that the set T = W →mon CURel(V ) is a subset of the underlying set of the

exponential T = W → CURel(V ) in CBUlt, and as such is given a natural metric by

Proposition 4.18. Call that metric d1 below. In addition, let d2 be the metric on T̂
associated with the isomorphism i : T̂ → 1/2 ⋅ T obtained from Theorem 4.20. The fact

that i is an isomorphism then implies that

d2(�̂, �̂′) = 1/2 ⋅ d1(i(�̂), i(�̂′)) (A.1)

for all �̂ and �̂′ in T̂ .

Lemma A.1. For Δ,Δ′ ∈ W, we have that Δ
n
= Δ′ if and only if either (1) n = 0, or

(2) n > 0 and dom(Δ) = dom(Δ′) and

i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0

for all l ∈ dom(Δ) and all Δ0 ∈ W.

§ In future work we plan to perform a more formal comparison.
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(The “n− 1” comes from the “1/2” on the right-hand side of the isomorphism (4.4).)

Proof. “Only if”: Assume that Δ
n
= Δ′ and that n > 0; we must show that dom(Δ) =

dom(Δ′) and that i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0 for all l ∈ dom(Δ) and all Δ0 ∈ W. Since

d(Δ,Δ′) ≤ 2−n < 1, the definition of the metric on W implies that dom(Δ) = dom(Δ′)
and that d(Δ,Δ′) = max{d2(Δ(l),Δ′(l)) ∣ l ∈ dom(Δ)}. Now let l ∈ dom(Δ) and

Δ0 ∈ W. First, d2(Δ(l),Δ′(l)) ≤ d(Δ,Δ′) ≤ 2−n, and (A.1) therefore gives that

d1(i(Δ(l)), i(Δ′(l))) = 2 ⋅ d2(Δ(l),Δ′(l)) ≤ 2−(n−1) .

Then by definition of the metric d1 on T (Proposition 4.18),

d(i(Δ(l))Δ0, i(Δ
′(l))(Δ0)) ≤ d1(i(Δ(l)), i(Δ′(l))) ≤ 2−(n−1) ,

i.e., i(Δ(l))Δ0
n−1
= i(Δ′(l))(Δ0), and we are done.

“If”: The relation Δ
0
= Δ′ holds for any Δ and Δ′ sinceW is 1-bounded. So assume that

n > 0, that dom(Δ) = dom(Δ′), and that i (Δ(l))Δ0
n−1
= i (Δ′(l))Δ0 for all l ∈ dom(Δ)

and all Δ0 ∈ W. Then for every l ∈ dom(Δ) we have d1(i (Δ(l)), i(Δ′(l))) ≤ 2−(n−1) by

definition of d1, and hence

d2(Δ(l),Δ′(l)) = 1/2 ⋅ d1(i(Δ(l)), i(Δ′(l))) ≤ 2−n

by (A.1). Therefore, d(Δ,Δ′) ≤ 2−n, i.e., Δ
n
= Δ′.

Lemma A.2. Let (A, ($n)n∈!) be a uniform cpo. Abbreviate

CURel(A) = CURel(A, ($n)n∈!)

and consider the metrics on CURel(A) and W →mon CURel(A) given by Proposi-

tion 4.18.

1. For R,S ∈ CURel(A), we have that R
n
= S if and only if $n ∈ R → S⊥ and

$n ∈ S → R⊥.

2. For �, �′ ∈ W →mon CURel(A), we have that �
n
= �′ if and only if �(Δ0)

n
= �′(Δ0)

for all Δ0 ∈ W.

3. A function � from W to CRel(A) belongs to W →mon CURel(A) if and only if it

satisfies the following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ ≤ Δ′, then �(Δ) ⊆ �(Δ′).

(b) If Δ
n
= Δ′, then $n ∈ �(Δ)→ �(Δ′)⊥.

Lemma A.3. Let (D, ($n)n∈!) be a uniform cppo. Abbreviate

AURel(D) = AURel(D, ($n)n∈!)

and consider the metrics on AURel(D) and W →mon AURel(D) given by Proposi-

tions 4.14 and 4.15.

1. For R,S ∈ AURel(D), we have that R
n
= S if and only if $n ∈ R → S and $n ∈

S → R.

2. For �, �′ ∈ W →mon AURel(D), we have that �
n
= �′ if and only if �(Δ0)

n
= �′(Δ0) for

all Δ0 ∈ W.
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3. A function � from W to ARel(D) belongs to W →mon AURel(D) if and only if it

satisfies the following two conditions for all Δ,Δ′ ∈ W:

(a) If Δ ≤ Δ′, then �(Δ) ⊆ �(Δ′).
(b) If Δ

n
= Δ′, then $n ∈ �(Δ)→ �(Δ′).
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Abstract

It is well known that one can use an adaptation of the inverse-limit con-
struction to solve recursive equations in the category of complete ultrametric
spaces. We show that this construction generalizes to a large class of categories
with metric-space structure on each set of morphisms: the exact nature of the
objects is less important. In particular, the construction immediately applies
to categories where the objects are ultrametric spaces with ‘extra structure’,
and where the morphisms preserve this extra structure. The generalization is
inspired by classical domain-theoretic work by Smyth and Plotkin.

For many of the categories we consider, there is a natural subcategory in
which each set of morphisms is required to be a compact metric space. Our
setting allows for a proof that such a subcategory always inherits solutions of
recursive equations from the full category.

As another application, we present a construction that relates solutions of
generalized domain equations in the sense of Smyth and Plotkin to solutions
of equations in our class of categories.

Our primary motivation for solving generalized recursive metric-space equa-
tions comes from recent and ongoing work on Kripke-style models in which
the sets of worlds must be recursively defined. We show a series of examples
motivated by this line of work.

Keywords: Metric space, fixed point, recursive equation.

1 Introduction

Smyth and Plotkin [22] showed that in the classical inverse-limit construction of
solutions to recursive domain equations, what matters is not that the objects of the
category under consideration are domains, but that the sets of morphisms between
objects are domains. In this article we show that, in the case of ultrametric spaces,
the standard construction of solutions to recursive metric-space equations [6, 11] can
be similarly generalized to a large class of categories with metric-space structure on
each set of morphisms. The generalization in particular allows one to solve recursive
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equations in categories where the objects are ultrametric spaces with some form of
additional structure, and where the morphisms preserve this additional structure.
Some applications from recent and ongoing work in semantics are shown in Section 7.

For many of the categories we consider, there is a natural variant, indeed a
subcategory, in which each set of morphisms is required to be a compact metric
space [3, 10]. Our setting allows for a general proof that such a subcategory inherits
solutions of recursive equations from the full category. Otherwise put, the problem
of solving recursive equations in such a ‘locally compact’ subcategory is, in a certain
sense, reduced to the similar problem for the full category. The fact that one can
solve recursive equations in a category of compact ultrametric spaces [10] arises as a
particular instance. (For various applications of compact metric spaces in semantics,
see the references in the introduction to van Breugel and Warmerdam [10].)

As another application, we present a construction that relates solutions of gener-
alized domain equations in the sense of Smyth and Plotkin to solutions of equations
in our class of categories. This construction generalizes and improves an earlier one
due to Baier and Majster-Cederbaum [7].

The key to achieving the right level of generality in the results lies in inspiration
from enriched category theory. We shall not refer to general enriched category
theory below, but rather present the necessary definitions in terms of metric spaces.
The basic idea is, however, that given a cartesian category V (or more generally,
a monoidal category), one considers so-called V -categories, in which the ‘hom-sets’
are in fact objects of V instead of sets, and where the ‘composition functions’ are
morphisms in V .

Other related work. The idea of considering categories with metric spaces as
hom-sets has been used in earlier work [10, 19]. Rutten and Turi [19] show ex-
istence and uniqueness of fixed points in a particular category of (not necessarily
ultrametric) spaces, but with a proof where parts are more general: some aspects
of our Lemma 3.2 are covered. In other work, van Breugel and Warmerdam [10]
show uniqueness for a more general notion of categories than ours, again not re-
quiring ultrametricity. Neither of these articles contain a theorem about existence
of fixed points for a general class of ‘metric-enriched’ categories (as in our Theo-
rem 3.1), nor a general theorem about fixed points in locally compact subcategories
(Theorem 4.1).

Alessi et al. [4] consider solutions to non-functorial recursive equations in cer-
tain categories of metric spaces, i.e., recursive equations whose solutions cannot
necessarily be described as fixed-points of functors. In contrast, we only consider
functorial recursive equations in this article.

Wagner [25] gives a comprehensive account of a generalized inverse limit con-
struction that in particular works for categories of metric spaces and categories of
domains. Our generalization is in a different direction, namely to categories where
the hom-sets are metric spaces. We do not know whether there is a common gener-
alization of our work and Wagner’s work. In this article we do not aim for maximal
generality, but rather for a level of generality that seems right for applications in
the style of those in Section 7.

A more detailed discussion of the level of generality of our results, and of their
relation to results in the literature, can be found in Section 9.

2 Ultrametric spaces

We first recall some basic definitions and properties about metric spaces [21].
A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X. We shall

only work with 1-bounded metric spaces. One advantage of doing so is that one
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can define coproducts and general products of such spaces; alternatively, one could
have allowed infinite distances.

An ultrametric space is a metric space (X, d) that satisfies the ‘ultrametric in-
equality,’

d(x, z) ≤ max(d(x, y), d(y, z)),

and not just the weaker triangle inequality (where one has + instead of max on the
right-hand side). It might be helpful to think of the function d of an ultrametric
space (X, d) not as a measure of (euclidean) distance between elements, but rather
as a measure of the degree of similarity between elements.

A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2)
is non-expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1. Stronger, such a
function f is contractive if there exists c < 1 such that d2(f(x), f(y)) ≤ c ⋅ d1(x, y)
for all x and y in X1. Notice that a non-expansive function is (uniformly) continuous
in the metric-space sense and hence preserves limits of convergent sequences.

A metric space is complete if it is Cauchy-complete in the usual sense, i.e., if
every Cauchy sequence in the metric space has a limit. By Banach’s fixed-point
theorem, every contractive function from a non-empty, complete metric space to
itself has a unique fixed point.

In the following we only consider complete, 1-bounded ultrametric spaces. As a
canonical example of such a metric space, consider the set ℕ! of infinite sequences
of natural numbers, with distance function d given by:

d(x, y) =

{
2−max{n∈!∣∀m≤n. x(m)=y(m)} if x ∕= y
0 if x = y.

To avoid confusion, call the elements of ℕ! strings instead of sequences. Here the
ultrametric inequality simply states that if x and y agree on the first n ‘characters’
and y and z also agree on the first n characters, then x and z agree on the first
n characters. A Cauchy sequence in ℕ! is a sequence of strings (xn)n∈! in which
the individual characters ‘stabilize’: for every m there exists N ∈ ! such that
xn1(m) = xn2(m) for all n1, n2 ≥ N .

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as
objects and non-expansive functions as morphisms [6]. This category is carte-
sian closed [21]; here one needs the ultrametric inequality. The terminal object
is the one-point metric space. Binary products are defined in the natural way:
(X1, d1)× (X2, d2) = (X1 ×X2, dX1×X2

) where

dX1×X2
((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2), sometimes written (X2, d2)(X1,d1), has the
set of non-expansive functions from (X1, d1) to (X2, d2) as the underlying set, and
the ‘sup’-metric dX1→X2

as distance function: dX1→X2
(f, g) = sup{d2(f(x), g(x)) ∣

x ∈ X1}. For both products and exponentials, limits are pointwise. It follows from
the cartesian closed structure that the function (X3, d3)(X2,d2) × (X2, d2)(X1,d1) →
(X3, d3)(X1,d1) given by composition is non-expansive; this fact is needed in several
places below.

Moreover, the category CBUlt is complete [18]: general products are defined in
the same way as binary ones, except that the distance function on an infinite product
space is in general given by a supremum instead of a maximum. An equalizer of
two parallel arrows f, g : X −→ Y is given by the subset {x ∈ X ∣ f(x) = g(x) } of
X, with the metric inherited from X.

CBUlt is also cocomplete. The coproduct of a family (Xj , dj)j∈J of CBUlt-
objects is (

∐
j∈J Xj , d) where

∐
j∈J Xj is the disjoint union (coproduct in Set) of
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the underlying sets Xj , and where the distance function d is given by

d(x, y) =

{
dj(x, y), if x ∈ Xj and y ∈ Xj for some j ∈ J ,

1, otherwise.

Coequalizers are more complicated to describe, and we shall not need them in this
article.

It is a trivial fact, but for our purposes a rather annoying one, that Banach’s
fixed-point theorem only holds for non-empty metric spaces. To avoid tedious spe-
cial cases below, we shall therefore not work with the category CBUlt, but rather
with the full subcategory CBUltne of non-empty, complete, 1-bounded ultrametric
spaces. This category is also cartesian closed: since it is a full subcategory of CBUlt,
it suffices to verify that CBUlt-products of non-empty metric spaces are non-empty,
and similarly for exponentials. The category CBUltne is not complete, and in fact
it does not even have all limits of !op-chains. We return to that point in Section 5.

In some settings it is useful to work with compact metric spaces [3, 10]. Recall
that a metric space is compact in the usual topological sense if and only if is both
complete and totally bounded [21]: for every � > 0, there exist finitely many points
x1, . . . , xn in the space such that the open balls with centers xi and radius � cover
the space. As a canonical example of a compact, 1-bounded ultrametric space,
consider the set {0, 1}! of infinite sequences of zeros or ones, with distance function
given as in the example with sequences of natural numbers above. (Any finite set
other than {0, 1} would also work.)

Let KBUlt be the full subcategory of CBUlt consisting of compact, 1-bounded
ultrametric spaces, and let KBUltne be the full subcategory of non-empty such
spaces. Both of these categories are cartesian closed [21] and have finite coproducts.
KBUlt has all finite limits, but neither KBUlt nor KBUltne is complete. We return
to that point in Section 4.

2.1 M-categories

Recall from the introduction that the basic idea of this article is to generalize a
theorem about a particular category of metric spaces, here CBUltne, to a theorem
about all ‘CBUltne-categories’ where the hom-sets are in fact appropriate metric
spaces. In analogy with the O-categories of Smyth and Plotkin (O for ‘order’ or
‘ordered’) we call such categories M -categories.

Definition 2.1. An M -category is a category C where each hom-set C(A,B) is
equipped with a distance function turning it into a non-empty, complete, 1-bounded
ultrametric space, and where each composition function ∘ : C(B,C) × C(A,B) →
C(A,C) is non-expansive with respect to these metrics. (Here the domain of such a
composition function is given the product metric.)

In other words, an M -category is a category where each hom-set is equipped with
a metric which turns it into an object in CBUltne; furthermore, each composition
function must be a morphism in CBUltne.

A simple example of an M -category is CBUltne itself. The distance function on
each hom-set CBUltne(A,B) is defined as for the exponential BA in CBUltne, i.e.,
d(f, g) = sup{dB(f(x), g(x)) ∣ x ∈ A}. The fact that the composition functions
are non-expansive, as observed in Section 2, depends on the ultrametric inequality.
Since CBUltne is itself an M -category the results below can be used to solve standard
recursive equations over ultrametric spaces.

Let C be an M -category. A functor F : Cop × C → C is locally non-expansive if
d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′ with appropriate
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domains and codomains. In other words, such an F is locally non-expansive if each
component

FA,A′,B,B′ : C(A′, A)× C(B,B′)→ C(F (A,B), F (A′, B′))

is a morphism in CBUltne. Stronger, F is locally contractive if there exists some
c < 1 such that d(F (f, g), F (f ′, g′)) ≤ c⋅max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′.
Notice that c is global in the sense that it is a common ‘contractiveness factor’ for all
components of the functor: each component FA,A′,B,B′ is contractive with factor c.

In the particular categories we consider in the examples in Section 7, many
‘natural’ functors such as those given by binary products or coproducts are only
locally non-expansive, not locally contractive. On each of these categories C there
is, however, an appropriate functor 1

2 : C → C which multiplies all distances in
hom-sets by the factor 1/2. Composing a locally non-expansive functor with 1

2 then
yields a locally contractive functor.

3 Solving recursive equations

Let C be an M -category. We consider mixed-variance functors F : Cop × C → C on
C and recursive equations of the form

X ∼= F (X,X) .

In other words, given such an F we seek a fixed point of F up to isomorphism.
Covariant endofunctors on C are a special case of mixed-variance functors. It

would in some sense suffice to study covariant functors: if C is an M -category,
then so are Cop (with the same metric on each hom-set as in C) and Cop × C (with
the product metric on each hom-set), and it is well-known how to construct a
‘symmetric’ endofunctor on Cop × C from a functor such as F above. We explicitly
study mixed-variance functors since the proof of the existence theorem below would
in any case involve an M -category of the form Cop × C. As a benefit we directly
obtain theorems of the form useful in applications. For example, for the existence
theorem we are interested in completeness conditions on C, not on Cop × C.

3.1 Uniqueness of solutions

The results below depend on the assumption that the given functor F is locally
contractive. One easy consequence of this assumption is that, unlike in the domain-
theoretic setting [22], there is at most one fixed point of F up to isomorphism.

Theorem 3.1. Let F : Cop × C → C be a locally contractive functor on an M -
category C, and assume that i : F (A,A) → A is an isomorphism. Then the pair
(i, i−1) is a bifree algebra for F in the following sense: for all objects B of C and
all morphisms f : F (B,B) → B and g : B → F (B,B), there exists a unique
pair of morphisms (k : B → A, ℎ : A → B) such that ℎ ∘ i = f ∘ F (k, ℎ) and
i−1 ∘ k = F (ℎ, k) ∘ g:

F (A,A)
F (k,ℎ) //

i

��

F (B,B)

f

��

F (ℎ,k)
oo

A
ℎ //_______

i−1

OO

B
k

oo_ _ _ _ _ _ _

g

OO

In particular, A is the unique fixed point of F up to isomorphism.
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Proof. First we observe that there is an obvious way to define a category of ‘bialge-
bras’ for F such that a bifree algebra, as defined above, is an initial object in this
category. It follows that any two bifree algebras are isomorphic as bialgebras, hence
that their underlying C-objects are isomorphic. So once we have shown that every
fixed point of F is a bifree algebra, it follows that there is at most one fixed point
of F up to isomorphism.

Let now i : F (A,A) → A be an isomorphism and assume that F is locally
contractive with factor c < 1; we show that (i, i−1) is a bifree algebra. Let
f : F (B,B) → B and g : B → F (B,B) be given. Recall that hom-sets in C
are equipped with metrics that turn them into objects of CBUltne, and let X be
the CBUltne-object C(B,A) × C(A,B). We obtain the desired pair of morphisms
(k : B → A, ℎ : A → B) as the unique fixed point of the following contractive
operator on X:

D(k, ℎ) = (i ∘ F (ℎ, k) ∘ g, f ∘ F (k, ℎ) ∘ i−1) .

First we verify that this operator is indeed contractive. Given (k1, ℎ1) and (k2, ℎ2)
in X,

d(D(k1, ℎ1), D(k2, ℎ2)) = max(d(i ∘ F (ℎ1, k1) ∘ g, i ∘ F (ℎ2, k2) ∘ g),

d(f ∘ F (k1, ℎ1) ∘ i−1, f ∘ F (k2, ℎ2) ∘ i−1) ,

by the definition of the product metric. But the composition functions of an M -
category are required to be non-expansive: therefore,

d(i ∘ F (ℎ1, k1) ∘ g, i ∘ F (ℎ2, k2) ∘ g) ≤ max(d(i, i), d(F (ℎ1, k1), F (ℎ2, k2)), d(g, g))

= d(F (ℎ1, k1), F (ℎ2, k2))

≤ c ⋅max(d(ℎ1, ℎ2), d(k1, k2))

= c ⋅ d((k1, ℎ1), (k2, ℎ2)) ,

and similarly,

d(f ∘ F (k1, ℎ1) ∘ i−1, f ∘ F (k2, ℎ2) ∘ i−1) ≤ d(F (k1, ℎ1), F (k2, ℎ2))

≤ c ⋅max(d(ℎ1, ℎ2), d(k1, k2))

= c ⋅ d((k1, ℎ1), (k2, ℎ2)).

Therefore, d(D(k1, ℎ1), D(k2, ℎ2)) ≤ c ⋅ d((k1, ℎ1), (k2, ℎ2)), and D is locally con-
tractive with factor c.

Since hom-sets of C are non-empty complete metric spaces, the operator D has
a unique fixed point by Banach’s theorem. It only remains to show that a pair of
morphisms (k : B → A, ℎ : A → B) is a fixed point of D if and only if it makes
the diagram in the statement of the theorem commute. But this is easy since i is
an isomorphism: k = i ∘ F (ℎ, k) ∘ g holds if and only if i−1 ∘ k = F (ℎ, k) ∘ g holds,
and similarly, ℎ = f ∘F (k, ℎ) ∘ i−1 holds if and only if ℎ ∘ i = f ∘F (k, ℎ) holds. We
conclude that (i, i−1) is a bifree algebra for F .

In particular, if F is covariant and i : FA → A is an isomorphism, then i is
an initial F -algebra and i−1 is a final F -coalgebra. As an example, consider the
M -category CBUltne and take F to be the covariant functor 1

2 : CBUltne → CBUltne
which given a metric space yields the same metric space but with all distances
multiplied by 1/2, and which is the identity on morphisms. Evidently, the one-
point metric space is a fixed-point of F . By the theorem above it is also an initial
algebra of F : this fact is essentially Banach’s fixed-point theorem for functions that
are contractive with coefficient 1/2.
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3.2 Existence of solutions

In the existence theorem for fixed points of contractive functors, the M -category
C will be assumed to satisfy a certain completeness condition involving limits of
!op-chains. Since there are different M -categories satisfying more or less general
variants of this condition, it is convenient to present the existence theorem in a form
that lists a number of successively weaker conditions.

One sufficient condition is that C has all limits of !op-chains, i.e., all limits of
diagrams of the form

A0 A1
g0oo . . .g1oo An

gn−1oo . . . .gnoo

A weaker condition is that C has all limits of !op-chains of split epis, i.e., all limits
of diagrams as above, but where each gn has a right inverse. This perhaps rather
odd-looking condition is the one that best matches the category CBUltne itself.

A still weaker condition is the following. An increasing Cauchy tower is a
diagram

A0

f0 //
A1

g0
oo

f1 // . . .
g1
oo

fn−1 //
An

gn−1

oo
fn // . . .
gn
oo

where gn ∘ fn = idAn
for all n (so each gn is split epi, as above), and where

limn→∞ d(fn ∘ gn, idAn+1
) = 0. Notice that this definition only makes sense for

M -categories. The M -category C has inverse limits of increasing Cauchy towers if
for every such diagram, the sub-diagram containing only the arrows gn has a limit.
We return to a more detailed treatment of general Cauchy towers and their limits
in Section 6.

Lemma 3.2. Let (An, fn, gn)n∈! be an increasing Cauchy tower as above, and let
(A, jn)n∈! be a cone from A to the !op-chain (An, gn)n∈!:

A
j0

}}||||||||
j1

��

jn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

The following two conditions are equivalent: (1) The cone (An, jn)n∈! is limiting.
(2) There exist morphisms in : An → A such that (A, in)n∈! is a cocone from the
!-chain (An, fn)n∈! to A,

A==
i0

|||||||| OO

i1

hh
in

QQQQQQQQQQQQQQQ

... ...

A0
f0

// A1
f1

// . . .
fn−1

// An
fn

// . . . ,

and such that jn ∘ in = idAn
for all n and limn→∞ d(in ∘ jn, idA) = 0.

Proof. (1) implies (2): Assume that the cone above is limiting. For each m we must
define a morphism im : Am → A into the object A of the limiting cone. We do so
by defining a cone from Am to (An, gn)n∈!,

Am
ℎm
0

}}{{{{{{{{
ℎm
1

��

ℎm
n

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . ,
gn
oo
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where

ℎmn =

⎧
⎨
⎩

idAm , if n = m,

gn ∘ gn+1 ∘ ⋅ ⋅ ⋅ ∘ gm−1, if n < m,

fn−1 ∘ fn−2 ∘ ⋅ ⋅ ⋅ ∘ fm, if n > m.

It is easy to see that these morphisms indeed constitute a cone: in the case n > m
one uses that gn−1 ∘fn−1 = id . Hence there exists a unique morphism im : Am → A
such that jn ∘ im = ℎmn for all n. In particular, jm ∘ im = ℎmm = idAm

, as required
in the statement of the lemma.

We must also show that im+1∘fm = im. By the defining property of im, it suffices
to show that im+1∘fm is also a cone morphism in the sense that jn∘(im+1∘fm) = ℎmn
for all n. And indeed, jn ∘ im+1 ∘ fm = ℎm+1

n ∘ fm = ℎmn by the defining property
of im+1 and the definition of ℎm+1

n .
It remains to show that limn→∞ d(in ∘ jn, idA) = 0, or equivalently, that

limn→∞ in ∘ jn = idA in the metric space C(A,A). To do so, we first show that
(in ∘ jn)n∈! is a Cauchy sequence. Given � > 0, choose N large enough that
d(fn ∘ gn, idAn+1

) ≤ � for all n ≥ N . Then for all n ≥ N ,

d(in ∘ jn, in+1 ∘ jn+1) = d((in+1 ∘ fn) ∘ (gn ∘ jn+1), in+1 ∘ jn+1)

= d(in+1 ∘ (fn ∘ gn) ∘ jn+1, in+1 ∘ idAn+1
∘ jn+1)

≤ max(d(in+1, in+1), d(fn ∘ gn, idAn+1
), d(jn+1, jn+1))

= d(fn ∘ gn, idAn+1
)

≤ � ,

where we have used that the composition functions of an M -category are required
to be non-expansive. From the ultrametric inequality one now easily obtains that
d(in ∘ jn, im ∘ jm) ≤ � for all n,m ≥ N . Hence (in ∘ jn)n∈! is a Cauchy sequence.

Since C(A,A) is a complete metric space, the Cauchy sequence (in ∘ jn)n∈! has
a limit limn→∞ in ∘ jn. It remains to show that this limit is in fact the identity
morphism on A. To do so, we show that limn→∞ in ∘ jn is a cone morphism from
the limiting cone (A, jm)m∈! to itself: for all m,

jm ∘
(

lim
n→∞

in ∘ jn
)

= jm ∘
(

lim
n≥m

in ∘ jn
)

= lim
n≥m

(jm ∘ in ∘ jn) (‘∘’ non-expansive)

= lim
n≥m

(ℎnm ∘ jn) (defining property of in)

= lim
n≥m

jm (by definition of ℎnm)

= jm .

In the second line we have again used that the composition functions of an M -
category are non-expansive, hence continuous, and the fact that continuous func-
tions preserve (metric-space) limits. We conclude that limn→∞ in ∘ jn is a cone
morphism from a limiting cone to itself, and therefore that limn→∞ in ∘ jn = idA.

(2) implies (1): Now assume that we have a commuting diagram

A==
i0

|||||||| OO

i1

hh
in

QQQQQQQQQQQQQQQ

... ...

A0
f0

// A1
f1

// . . .
fn−1

// An
fn

// . . . ,

such that jn ∘ in = idAn
for all n and limn→∞ d(in ∘ jn, idA) = 0. We must show

that (A, jn)n∈! is a limiting cone for the given !op-chain. So let (B, bn)n∈! be
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another cone:

B
b0

}}||||||||
b1
��

bn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

We aim to define a mediating morphism q : B → A as the limit of the sequence
(in ∘ bn)n∈!. We first show that this is a Cauchy sequence. The argument is
completely similar to the one for the sequence (in ∘ jn)n∈! above: given � > 0,
choose N large enough that d(fn ∘ gn, idAn+1

) ≤ � for all n ≥ N . Then for all
n ≥ N ,

d(in ∘ bn, in+1 ∘ bn+1) = d((in+1 ∘ fn) ∘ (gn ∘ bn+1), in+1 ∘ bn+1)

≤ d(fn ∘ gn, idAn+1
)

≤ � ,

and it follows that (in ∘ jn)n∈! is a Cauchy sequence.
Since the metric space C(B,A) is complete, the Cauchy sequence above has a

limit: define q = limn→∞ in ∘ bn. We must show that q is the unique mediating
morphism from the cone (B, bm)m∈! to the cone (A, jm)m∈!. Again, the argument
is as above: first,

jm ∘ q = jm ∘
(

lim
n→∞

in ∘ bn
)

= jm ∘
(

lim
n≥m

in ∘ bn
)

= lim
n≥m

(jm ∘ in ∘ bn)

= lim
n≥m

(ℎnm ∘ bn)

= lim
n≥m

bm

= bm ,

so q is indeed a cone morphism. Second, given another such cone morphism r :
B → A,

r = idA ∘ r =
(

lim
n→∞

in ∘ jn
)
∘ r = lim

n→∞
(in ∘ jn ∘ r) = lim

n→∞
(in ∘ bn) = q ,

so q is unique. We conclude that (A, jn)n∈! is a limiting cone for the !op-chain
(An, gn)n∈!.

Although not strictly necessary for our purposes, it is natural to ask whether
the cocone described in Condition 2 of the lemma must be colimiting. We now show
that this is the case by exploiting the generality of M -categories: the fact that Cop
is also an M -category allows for a simple proof of a limit-colimit coincidence (cf.
Smyth and Plotkin [22]).

Proposition 3.3. Let C be an M -category, let (An, fn, gn)n∈! be an increasing
Cauchy tower in C (as above), and let A be an object of C. The following three
conditions are equivalent:

1. A is a limit of the !op-chain (An, gn)n∈!.

2. A is a colimit of the !-chain (An, fn)n∈!.

3. There exist a cone (jn)n∈! from A to (An, gn)n∈! and a cocone (in)n∈! from
(An, fn)n∈! to A satisfying that jn ∘ in = idAn

for all n and in addition that
limn→∞ d(in ∘ jn, idA) = 0.
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Furthermore, in any pair consisting of a cone and a cocone that together satisfy the
requirements in the third condition, the cone is limiting and the cocone is colimiting.

Proof. Lemma 3.2 shows that (1) and (3) are equivalent and that any cone (jn)n∈!
as in the third condition is limiting. The lemma also shows that these facts hold for
the increasing Cauchy tower (An, gn, fn)n∈! in the M -category Cop. But by duality,
this means exactly that (2) and (3) are equivalent and that any cocone (in)n∈! as
in the third condition is colimiting.

We now turn to the main result.

Theorem 3.4. Assume that the M -category C satisfies any of the following (suc-
cessively weaker) conditions:

1. C is complete.

2. C has a terminal object and limits of !op-chains.

3. C has a terminal object and limits of !op-chains of split epis.

4. C has a terminal object and inverse limits of increasing Cauchy towers.

Then every locally contractive functor F : Cop × C → C on C has a unique fixed
point up to isomorphism.

Proof. Uniqueness follows from the previous theorem, so it is enough to show that
there exists some A such that F (A,A) ∼= A. Assume that C satisfies Condition 4
above and let 1 be a terminal object of C. By induction on n we construct a diagram

A0

f0 //
A1

g0
oo

f1 // . . .
g1
oo

fn−1 //
An

gn−1

oo
fn // . . .
gn
oo

as follows: A0 = 1 and An+1 = F (An, An) for n > 0. We take g0 to be the unique
morphism from A1 to 1 and f0 to be an arbitrary morphism in the other direction;
recall that all hom-sets in an M -category are non-empty. Finally, fn+1 = F (gn, fn)
and gn+1 = F (fn, gn) for n > 0.

We now show by induction on n that this diagram is an increasing Cauchy tower.
More specifically, let c < 1 be a contractiveness factor of F . Then, for all n:

1. gn ∘ fn = idAn

2. d(fn ∘ gn, idAn+1
) ≤ cn.

For n = 0, Part 1 follows from the fact that g0∘f0 must be the identity morphism
on the terminal object A0. Also, all distances in the spaces we consider are at most
c0 = 1, so Part 2 holds trivially.

As for the inductive case,

gn+1 ∘ fn+1 = F (fn, gn) ∘ F (gn, fn)

= F (gn ∘ fn, gn ∘ fn)

= F (idAn
, idAn

) (ind. hyp.)

= idAn+1
,

and furthermore,

d(fn+1 ∘ gn+1, idAn+2) = d(F (gn, fn) ∘ F (fn, gn), idAn+2)

= d(F (fn ∘ gn, fn ∘ gn), idAn+2)

= d(F (fn ∘ gn, fn ∘ gn), F (idAn+1 , idAn+1))

≤ c ⋅max(d(fn ∘ gn, idAn+1), d(fn ∘ gn, idAn+1 , ))

≤ c ⋅ cn (ind. hyp.)

= cn+1 ,
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so both parts hold. We conclude that the diagram above is indeed an increasing
Cauchy tower.

By assumption on C there exists an inverse limit of this Cauchy tower, i.e., a
limiting cone

A
j0

}}||||||||
j1

��

jn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

By Lemma 3.2 there exist morphisms in : An → A such that (A, in)n∈! is a cocone
from the !-chain (An, fn)n∈! to A, and such that jn ∘ in = idAn

for all n and
limn→∞ d(in ∘ jn, idA) = 0. In particular we have a diagram

A

j0

~~}}}}}}}}}}}}}}}
>>

i0

}}}}}}}}}}}}}}}

j1

��

jn

((PPPPPPPPPPPPPPPPPPPPPPPPPP

... ...

A0

f0 //
A1

f1 //

i1

OO

g0
oo . . .

g1
oo

fn−1 //
An

gn−1

oo
fn //

in

hhPPPPPPPPPPPPPPPPPPPPPPPPPP . . .
gn

oo

which commutes in the sense that gn ∘ jn+1 = jn and in+1 ∘ fn = in for all n.
Removing the first object of the Cauchy tower (An, fn, gn)n∈! clearly gives a new
Cauchy tower, and it is easy to see that the collection of arrows in and jn with
n > 0 satisfies Condition 2 of Lemma 3.2 with respect to that Cauchy tower. Hence
by that lemma, A is also a limit of the !op-chain (An, gn)n>0 that starts from A1.

We now show that F (A,A) is also a limit of the !op-chain (An, gn)n>0. From
that it follows that F (A,A) ∼= A and we are done. First we apply F to the diagram
above, obtaining a diagram

F (A,A)

j′0

||yyyyyyyyyyyyyyyy
<<

i′0

yyyyyyyyyyyyyyyy

j′1

��

j′n

((QQQQQQQQQQQQQQQQQQQQQQQQQQ

... ...

A1

f ′0 //
A2

f ′1 //

i′1

OO

g′0

oo . . .
g′1

oo
f ′n−1 //

An+1
g′n−1

oo
f ′n //

i′n

hhQQQQQQQQQQQQQQQQQQQQQQQQQQ
. . .

g′n

oo

that commutes in the same sense. Here i′n = F (jn, in) and j′n = F (in, jn), and
similarly for the f ′n and g′n. But by definition of the original Cauchy tower, the
bottom line of the above diagram is exactly that Cauchy tower starting from A1.
Now, by functoriality we have j′n ∘ i′n = F (in, jn) ∘ F (jn, in) = F (jn ∘ in, jn ∘ in) =
F (id , id) = id for each n, and furthermore,

lim
n→∞

d(i′n ∘ j′n idF(A,A)) = lim
n→∞

d(F (jn, in) ∘ F (in, jn), idF(A,A))

= lim
n→∞

d(F (in ∘ jn, in ∘ jn),F (idA, idA))

≤ lim
n→∞

c ⋅ d(in ∘ jn, idA)

= c ⋅ lim
n→∞

d(in ∘ jn, idA)

= 0 ,

since F is contractive with factor c. Hence the morphisms in the diagram above
satisfy Condition 2 of Lemma 3.2 with respect to the increasing Cauchy tower
starting from A1. By that lemma, F (A,A) is therefore a limit of the !op-chain
(An, gn)n>0. Since A is also such a limit we conclude that F (A,A) ∼= A.
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By the fact that Cop is also an M -category we additionally obtain a dual version
of Theorem 3.4. For example, if C has an initial object and colimits of !-chains of
split monos (‘embeddings’), then every locally contractive mixed-variance functor
on C has a unique fixed point up to isomorphism. In the applications we have
considered these dual conditions seem less useful since colimits in the categories
involved are harder to describe than limits.

4 Locally compact subcategories of M-categories

The condition in Theorem 3.4 that involves Cauchy towers is included in order to
accommodate categories where the hom-sets are compact ultrametric spaces. The
simplest example is the full subcategory KBUltne of CBUltne consisting of compact,
non-empty metric spaces. This category does not have all limits of !op-chains,
not even of those chains where the morphisms are split epi. One can construct
a counterexample as follows: for each n ∈ !, let An be the set {0, 1, . . . , n − 1}
equipped with the discrete metric. Let fn : An → An+1 be the inclusion and let
gn : An+1 → An be the function that maps n to n − 1 and every other number to
itself. We claim that the !op-chain (An, gn)n∈! in KBUltne does not have a limit.
To see this, assume that (A, jn)n∈! is a limiting cone with jn : A → An for all n.
By the argument in the beginning of the proof of Lemma 3.2 there exist morphisms
in : An → A such that jn ∘ in = idAn

for all n. Since every An can in this way be
embedded in A, we conclude that A contains arbitrarily large discrete subspaces.
But then A cannot be totally bounded: for � = 1/2 there is no finite set of points
such that the open balls with centers in those points and radius � cover A. Hence
A is not compact, a contradiction. This argument also works for KBUlt instead of
KBUltne.

The subcategory KBUltne is merely the simplest example of a full, ‘locally com-
pact’ subcategory of an M -category. The setting of M -categories allows for a proof
that such a subcategory always inherits fixed points of functors from the full cate-
gory:

Theorem 4.1. Assume that C is an M -category with a terminal object and limits
of !op-chains of split epis. Let I be an arbitrary object of C, and let D be the full
subcategory of C consisting of the objects A such that C(I, A) is a compact metric
space. D is an M -category with limits of increasing Cauchy towers, and hence
every locally contractive functor F : Dop × D → D has a unique fixed point up to
isomorphism.

Notice that the theorem refers to functors on D, not on C. There is in general
no guarantee that a functor on C restricts to one on the subcategory D, and hence
formulating a recursive equation by means of a functor on D can require additional
work [3]. In that sense, one might say that it is not exactly the problem of solving
recursive equations which has been reduced to the case for the full category C, but
rather the problem of finding fixed-points of functors.

Proof. First, D is an M -category, being a subcategory of an M -category. Second,
D contains each terminal object 1 of C since C(I, 1) is the one-point metric space
which is clearly compact.

We next show that D has limits of increasing Cauchy towers; it then follows
from Theorem 3.4 that D has fixed points of locally contractive functors. To that
end, let (An, fn, gn)n∈! be an increasing Cauchy-tower in D (and hence also in C).
Each gn is split epi, so by assumption the !op-chain (An, gn)n∈! has a limiting cone
(A, (jn)n∈!) in C. Since D is a full subcategory, it now suffices to show that the
limit object A belongs to D, i.e., that C(I, A) is compact.
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Here we use the characterization of compactness from Section 2: we already
know that C(I, A) is complete, so it remains to show that C(I, A) is totally bounded.
First, by Lemma 3.2 applied to C and the limiting cone (A, (jn)n∈!), there exists a
family of morphisms (in : An → A)n∈! satisfying certain conditions: in particular,
jn ∘ in = idAn

for each n and limn→∞ d(in ∘jn, idA) = 0. Now we show that C(I, A)
is totally bounded. Given � > 0, choose n large enough that d(in ∘ jn, idA) < �.
Since C(I, An) is compact, it is totally bounded. Hence there exists a finite set S
of elements of C(I, An) such that for every f ∈ C(I, An) there is an s ∈ S with
d(f, s) < �. Let T be the finite subset {in ∘ s ∣ s ∈ S} of C(I, A). Now let a
be an arbitrary element of C(I, A). We show that a has distance less than � to
some element of T ; hence C(I,A) is totally bounded. Indeed, choose s ∈ S such
that d(jn ∘ a, s) < �. Then by the ultrametric inequality and the assumption that
composition is non-expansive,

d(a, in ∘ s) ≤ max(d(a, in ∘ jn ∘ a), d(in ∘ jn ∘ a, in ∘ s))
≤ max(d(idA, in ∘ jn), d(jn ∘ a, s))
< � .

Here one obtains KBUltne by taking C = CBUltne and I = 1. In general, for a
monoidal closed C, the tensor unit is an appropriate choice of I. Since we show in
the next section that CBUltne has limits of !op-chains of split epis, the theorem in
particular gives:

Corollary 4.2 ([10]). Every locally contractive functor from KBUltne
op ×KBUltne

to KBUltne has a unique fixed point up to isomorphism.

Moreover, the proof of the theorem above essentially works by using the hom-
functor C(I,−) : D → KBUltne to reduce the general case to the special case con-
sidered in the corollary.

5 Examples of categories admitting solutions

We now turn to some examples of categories that satisfy the different completeness
requirements in Theorem 3.4. This section thereby illustrates which of the require-
ments in that theorem one might attempt to show given a particular M -category.

5.1 CBUlt∗

Consider first the category CBUlt∗ of pointed, complete, 1-bounded ultrametric
spaces. Objects are pairs (A, x) where A is a complete, 1-bounded ultrametric
space and x is an element of A (a distinguished ‘point’). Morphisms from (A1, x1)
to (A2, x2) are non-expansive maps f from A1 to A2 which ‘preserve the point’, i.e.,
satisfy that f(x1) = x2. We equip the hom-sets of CBUlt∗ with the ‘sup’-metric, as
given by the exponential in CBUlt:

d(f, g) = sup{dA2
(f(x), g(x)) ∣ x ∈ A1} .

Proposition 5.1. CBUlt∗ is a complete M -category.

Proof. First, it is easy to see that CBUlt∗ is an M -category. Each hom-set is non-
empty since it contains the constant function whose value is the distinguished point
of the codomain. The distance functions above clearly turn each hom-set into a
1-bounded ultrametric space; indeed, a sub-space of an exponential in CBUlt. Each
such space is complete since the limit of a sequence of point-preserving functions is
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also point-preserving. The composition functions are non-expansive since they are
restrictions of composition functions from CBUlt.

To see that CBUlt∗ is complete, it is easy to construct products and equalizers
directly (as in CBUlt). More abstractly, CBUlt∗ is the comma category (1 ↓ CBUlt),
and the forgetful functor from this category to CBUlt creates limits [16, Exer-
cise V.1.1].

5.2 CBUltne

We have already observed that the category CBUltne of non-empty, complete,
1-bounded ultrametric spaces is an M -category with distance functions on hom-sets
given as for exponentials. However, unlike CBUlt∗, it is not complete and does not
even have all limits of !op-chains. To see this, let T be a rooted tree that contains
nodes of arbitrarily large depth but contains no infinite path (by König’s Lemma
such a tree must be infinitely branching.) For each n, let An be the set of nodes of T
of depth n, equipped with the discrete metric. Let gn : An+1 → An map each node
to its parent. Then the !op-chain (An, gn)n∈! in CBUltne does not have a limit. In-
deed, a limit in CBUltne would also be a limit in CBUlt. But the limit of (An, gn)n∈!
in the complete category CBUlt is the set of tuples { (an)n∈! ∣ ∀n. gn(an+1) = an }
with the product metric; this set is empty since T does not contain any infinite
path, and hence the limit does not belong to CBUltne.

Proposition 5.2. CBUltne is an M -category with limits of !op-chains of split epis.

Proof. Since CBUltne is a full subcategory of the complete category CBUlt, it suffices
to show that CBUlt-limits of !op-chains of split epis in CBUltne are non-empty. Let
(An, gn)n∈! be such an !op-chain, and let for each n the function fn be a right
inverse of gn. A concrete limit in CBUlt of such a chain is, as mentioned above, the
set of tuples { (an)n∈! ∣ ∀n. gn(an+1) = an } with the product metric. Now let a0
be an arbitrary element of A0 (which is non-empty by assumption). It is easy to
see that the limit above contains the tuple ((fn−1 ∘ ... ∘ f0)(a0))n∈! and is therefore
also non-empty.

5.3 CBUlt

The category CBUlt is not an M -category since the set of morphisms from any non-
empty metric space to the empty metric space is empty. Nevertheless, there is an
obvious definition of ‘locally contractive’ for functors on this category, and given a
locally contractive functor F : CBUltop × CBUlt→ CBUlt that restricts to CBUltne,
one can use the main theorem with the category CBUltne to find a fixed point of F .
It is not hard to see that F restricts to CBUltne if and only if F (1, 1) is non-empty
(where 1 is the one-point metric space):

Theorem 5.3. Let F : CBUltop × CBUlt→ CBUlt be a locally contractive functor
satisfying that F (1, 1) ∕= ∅. There exists a unique (up to isomorphism) non-empty
A ∈ CBUlt such that F (A,A) ∼= A.

Proof. We show that F restricts to the full subcategory CBUltne: given non-empty
A and B, we must show that F (A,B) is non-empty. Since B is non-empty there
exist morphisms f : A→ 1 and g : 1→ B in CBUlt. Then F (f, g) is a function from
F (1, 1) to F (A,B). Since F (1, 1) is non-empty by assumption, the existence of such
a function implies that F (A,B) is non-empty too. The theorem now immediately
follows from Theorem 3.4 applied to the M -category CBUltne.

Note that uniqueness is only among non-empty metric spaces: a functor F as
in the theorem might furthermore satisfy that F (∅, ∅) = ∅.
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5.4 PreCBUltne

The examples in Section 7 use the category PreCBUltne of pre-ordered, non-empty,
complete, 1-bounded ultrametric spaces. Objects of this category are pairs (A,≤)
consisting of an object A of CBUltne and a preorder ≤ on the underlying set of
A such that the following condition holds: if (an)n∈! and (bn)n∈! are converging
sequences in A with an ≤ bn for all n, then also limn→∞ an ≤ limn→∞ bn. The
morphisms of the category are the non-expansive and monotone functions between
such objects. We equip the hom-sets of PreCBUltne with the usual ‘sup’-metric.

Proposition 5.4. PreCBUltne is an M -category with limits of !op-chains of split
epis.

Proof. To see that PreCBUltne is an M -category we proceed as in the proof of
Proposition 5.2. The only new thing to show is that if (fn)n∈! is a converging
sequence of monotone and non-expansive functions between objects (A,≤A) and
(B,≤B) of PreCBUltne, then the limit f is a monotone (as well as non-expansive)
function. But this follows immediately from the requirement above: if a ≤A a′,
then

f(a) = lim
n→∞

fn(a) ≤B lim
n→∞

fn(a′) = f(a′) .

It remains to show that PreCBUltne has limits of !op-chains of split epis. Let
(An, gn)n∈! be such a chain. It is easy to verify that the limit is the set of tuples
{ (an)n∈! ∣ ∀n. gn(an+1) = an } with the product metric and the product preorder,
and that this set is non-empty as in the proof of Proposition 5.2.

5.5 Locally compact subcategories

We have already seen, using Theorem 4.1, that the full subcategory KBUltne of
CBUltne has unique fixed points of locally contractive functors. Similarly, that the-
orem applied to the M -categories CBUlt∗ and PreCBUltne of the previous examples
gives unique fixed points of locally contractive functors on the ‘compact’ variants of
these two categories. Notice that for CBUlt∗, the choice I = 1 in Theorem 4.1 does
not work: one must instead choose I to be the metric space consisting of two points
with distance 1. (CBUlt∗ is not cartesian closed, but it is symmetric monoidal closed
with this I as tensor unit.)

6 An alternative existence theorem

We next consider an alternative existence theorem for solutions of recursive equa-
tions in M -categories. Roughly put, the overall picture is as follows. In Section 3
above we generalized the results of America and Rutten [6] to M -categories; this
was done in the style of Smyth and Plotkin [22]. In this section, we outline a simi-
lar generalization of the results of Alessi et al. [4]. The resulting existence theorem
can, at least informally, be viewed as a closer categorical analogy to Banach’s fixed-
point theorem than the existence theorem in Section 3. In particular it will not
be required that the M -category has a terminal object: any object will suffice to
start the inductive construction of the solution. On the other hand, the M -category
must satisfy a stronger completeness property. We do not know any applications
that depend on these slightly different conditions on the category.

Let C be an arbitrary M -category. In the existence proof in Section 3 we worked
extensively with pairs of morphisms (f, g) such that f : A→ B and g : B → A for
some objects A and B of C and such that g ∘ f = idA. Following Alessi et al. [3]
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we call such pairs embedding-projection pairs.1 The proof essentially takes place in
a category that has such pairs as morphisms; this is made precise in, e.g., America
and Rutten [6]. The alternative approach explored in this section does not depend
on the embedding condition g ∘ f = idA and so works with all pairs of morphisms
with opposite domain and codomain. These pairs were introduced independently
as �-adjoint pairs in Rutten [18] and as �-isometries in Alessi et al. [3]. In Alessi
et al. [4] it was shown that the standard existence theorem on non-empty, com-
plete, 1-bounded metric spaces from America and Rutten [6] could be obtained
using �-adjoint pairs instead of embedding-projection pairs. Here we outline a gen-
eralization of that result to M -categories.

Definition 6.1. The category C≈ has the objects of C and morphisms � : A → B
that are pairs of morphisms � = ⟨i, j⟩ of C such that i : A → B and j : B → A.
Composition of �1 = ⟨i1, j1⟩ : A→ B and �2 = ⟨i2, j2⟩ : B → C is defined naturally
by �2 ∘ �1 = ⟨i2 ∘ i1, j1 ∘ j2⟩ : A → C. The identity morphism on the object A is
⟨idA, idA⟩.

We immediately remark that two objects are isomorphic in C if and only if they
are isomorphic in C≈ and hence we shall purposely blur the distinction. We may
’flip’ any morphism � = ⟨i, j⟩ : A → B by swapping the components to obtain a
morphism � = ⟨j, i⟩ : B → A.

Definition 6.2. The noise of a morphism � = ⟨i, j⟩ : A→ B in C≈ is defined as

�(�) = max(dC(A,A)(idA, j ∘ i), dC(B,B)(i ∘ j, idB)).

Note that we rely on the M -category structure on C to define the noise but make
no attempt to make an M -category out of C≈.

Intuitively, the noise measures ’how far’ A and B are from each other by �.
Having �(�) = 0 obviously implies j ∘ i = idA and i ∘ j = idB ; in particular two
objects are isomorphic if and only if there is a zero-noise morphism from one to
the other. Also by definition �(�) = �(�) for any morphism � of C≈. These two
observations are somewhat analogous to the first and second of the defining axioms
of an (ultra)metric space; the following lemma provides a cousin to the ultrametric
inequality:

Lemma 6.3 (Noise Lemma). For �1 : A→ B and �2 : B → C we have �(�2 ∘ �1) ≤
max(�(�2), �(�1)).

Proof. Write �1 = ⟨i1, j1⟩ and �2 = ⟨i2, j2⟩. Then:

�(�2 ∘ �1) = �(⟨i2 ∘ i1, j1 ∘ j2⟩)
= max(d(idA, j1 ∘ j2 ∘ i2 ∘ i1), d(i2 ∘ i1 ∘ j1 ∘ j2, idC))

≤ max
(
max(d(idA, j1 ∘ i1), d(j1 ∘ idB ∘ i1, j1 ∘ j2 ∘ i2 ∘ i1)),

max(d(i2 ∘ i1 ∘ j1 ∘ j2, i2 ∘ idB ∘ j2), d(i2 ∘ j2, idC))
)

≤ max
(
max(�(�1), �(�2)), max(�(�1), �(�2))

)

= max(�(�1), �(�2)).

Here we have used the ultrametric inequality as well as the ubiquitous fact that the
composition functions of an M -category are non-expansive.

In a metric space, to prove two elements equal it suffices to show that their
distance is smaller than every � > 0. The corresponding technique in our metric-
inspired setting is the following:

1We do not, however, use any analogue of the ‘projection’ condition f ∘ g ⊑ idB from the
domain-theoretic case.
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Lemma 6.4 (Proximity Lemma). Two objects A and B of C are isomorphic if
there is a sequence of C≈-morphisms (⟨in, jn⟩)n∈! with ⟨in, jn⟩ : A → B such that
limn→∞ �(⟨in, jn⟩) = 0 and such that (in)n∈! and (jn)n∈! are Cauchy sequences in
C(A,B) and C(B,A), respectively.

Proof. By completeness of C(A,B) and C(B,A) we know that limn→∞ in : A→ B
and limn→∞ jn : B → A exist. We now have:

dC(A,A)

(
idA, lim

n→∞
jn ∘ lim

n→∞
in

)
= dC(A,A)

(
idA, lim

n→∞
jn ∘ in

)

= lim
n→∞

dC(A,A)(idA, jn ∘ in)

≤ lim
n→∞

�(�n)

= 0

Here we have used non-expansiveness of composition and the fact that, for any
ultrametric space (X, d), the distance function d : X×X → ℝ is itself non-expansive
and hence preserves limits. We conclude that idA = limn→∞ jn ∘ limn→∞ in and by
symmetry we get the other way round.

By analogy with the standard metric argument one might try to do away with the
second demand that the component sequences be Cauchy. However, as observed in
Remark 4.4 of Alessi et al. [4], this is not possible. A consequence is that a ‘proper’
distance between two objects defined as the infimum of the noises of morphisms
from one to the other gives only a pseudo-metric; that is, the distance between two
distinct objects can be zero. This problem is explored in Section 4 of Alessi et al. [4]
and solved by restricting to compact metric spaces.

Definition 6.5. A tower in C≈ is a sequence of pairs of objects and morphisms
(An, �n) such that �n : An → An+1 for all n ∈ !. It is Cauchy if limn→∞ �(�n) = 0,
i.e., if

∀� > 0. ∃N ∈ ℕ. ∀n ≥ N. �(�n) < �.

Notice that a Cauchy tower (An, �n)n∈! where all the �n are embedding-projection
pairs is exactly an ‘increasing Cauchy tower’ as defined in Section 3.

As in the case of standard Cauchy sequences, the objects of a Cauchy tower
intuitively get arbitrarily close, measured here by the noises of the morphisms. By
the Noise Lemma, i.e., due to our ultrametric setup, we immediately have that the
above criterion is equivalent to one that may look more familiar:

∀� > 0. ∃N ∈ ℕ. ∀m > n ≥ N. �(�m−1 ∘ ⋅ ⋅ ⋅ �n) < �.

Definition 6.6. A limit of a Cauchy tower (An, �n)n∈! is a pair (A, (n)n∈!) of an
object and a sequence of morphisms n : An → A in C≈ such that

A

An

n

DD						

�n
// An+1

n+1

\\9999999

commutes for all n ∈ ! and such that limn→∞ �(n) = 0.

(Proposition 6.8 below relates limits of Cauchy towers in the sense above to
inverse limits of the kind considered in Section 3.)

Proposition 6.7. For any two limits (A, (n)n∈!) and (A′, (′n)n∈!) of the same
Cauchy tower (An, �n)n∈! the objects A and A′ are isomorphic.
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Proof. This comes down to applying the Proximity Lemma. The setup is this:

A

A0
�0 //

0

==|||||||||

′0   BBBBBBBBB A1
�1 //

1

OO

′1

��

⋅ ⋅ ⋅ �n−1 //

⋅⋅⋅

⋅⋅⋅

An
�n //

n

hhQQQQQQQQQQQQQQQQQ

′n
vvnnnnnnnnnnnnnnnnn ⋅ ⋅ ⋅

⋅⋅⋅

⋅⋅⋅

A′

We have ′n ∘ n : A → A′ for all n ∈ !, and since limn �(n) = limn �(n) = 0 =
limn �(

′
n) we get limn �(

′
n ∘n) = 0 by the Noise Lemma. Now write n = ⟨gn, ℎn⟩

and ′n = ⟨g′n, ℎ′n⟩ for all n ∈ !. It remains to show that (g′n∘ℎn)n∈! and (gn∘ℎ′n)n∈!
are Cauchy sequences in the metric spaces C(A,A′) and C(A′, A), respectively. For
any n ∈ !

dC(A,A′)(g
′
n ∘ ℎn, g′n+1 ∘ ℎn+1) = dC(A,A′)(g

′
n+1 ∘ in ∘ jn ∘ ℎn+1, g

′
n+1 ∘ ℎn+1)

= dC(An+1,An+1)(in ∘ jn, idAn+1)

≤ �(�n)

where we write �n = ⟨in, jn⟩. But then (g′n ∘ ℎn)n∈! is Cauchy because (An, �n)n∈!
is a Cauchy tower. By symmetry (gn ∘ ℎ′n)n∈! is also Cauchy.

Notice how we use our ability to flip a morphism � : A→ B to obtain � : B → A;
in the category of embedding-projection pairs this is not possible in general.

We say that C≈ is tower-complete if all Cauchy towers have limits. Verifying
this condition directly may be an arduous task. The following criterion is sufficient:

Proposition 6.8. C≈ is tower-complete if C has inverse limits of Cauchy towers.

We omit the proof. The arguments follow those in the first part of the proof
of Lemma 3.2, but are more involved since we no longer restrict to embedding-
projection pairs. More specifically, the cone (ℎmn )n∈! from Am to (An, gn)n∈! in
that proof must now be defined as follows:

ℎmn =

⎧
⎨
⎩

kn, if n = m,

gn ∘ gn+1 ∘ ⋅ ⋅ ⋅ ∘ gm−1 ∘ km, if n < m,

kn ∘ fn−1 ∘ fn−2 ∘ ⋅ ⋅ ⋅ ∘ fm, if n > m.

where each kn : An → An is obtained as a limit of a Cauchy sequence:

kn = lim
p≥n

(gn ∘ gn+1 ∘ ⋅ ⋅ ⋅ ∘ gp−1 ∘ fp ∘ fp−1 ∘ ⋅ ⋅ ⋅ ∘ fn) .

For a domain-theoretic analogue of dropping the restriction to embedding-projection
pairs, see Taylor [23].

6.1 Fixed points of Functors

We now move on to apply the theory to build fixed points of functors. We say that
a functor Φ : C≈ → C≈ is contractive if there is a c < 1 such that �(Φ(�)) ≤ c ⋅ �(�)
holds for all morphisms � of C≈. Similarly it is called non-expansive if the noises
do not increase, i.e., if �(Φ(�)) ≤ �(�) holds for all �. We may build functors on C≈
from functors on C:
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Proposition 6.9. Let F : Cop × C → C. We define F≈ : C≈ → C≈ by

F≈(A) = F (A,A), F≈(⟨i, j⟩) = ⟨F (j, i), F (i, j)⟩

for any object A and any morphism � = ⟨i, j⟩ : A → B of C≈. This constitutes a
well defined functor. Moreover, if F is locally contractive then F≈ is contractive
and if F is locally non-expansive then F≈ is non-expansive.

We saw in Theorem 3.1 that a locally contractive functor F : Cop × C → C
has at most one fixed point up to isomorphism (for arbitrary C.) One can give
an alternative proof of that fact using the Proximity Lemma and the contractive
functor F≈ derived from F . But even in the concrete case C = CBUltne it is an
open question whether every contractive endofunctor on C≈ has at most one fixed
point [3, p. 7].

Just as non-expansive maps between metric spaces are continuous and thus
preserve limits of sequences, we have the following proposition as an immediate
consequence of the above definitions:

Proposition 6.10. Non-expansive functors preserve limits of Cauchy towers. That
is, for any non-expansive functor Φ : C≈ → C≈ and any Cauchy tower (An, �n)n∈!
with limit (A, (n)n∈!) we have that (Φ(An),Φ(�n))n∈! is a Cauchy tower with
limit (Φ(A), (Φ(n))n∈!).

Theorem 6.11. If C≈ is nonempty and tower-complete then any contractive functor
Φ : C≈ → C≈ has a fixed point, i.e., an object A of C≈ with A ∼= Φ(A).

Proof. Much of the theory above targets this proof; it is quite short and analogous
to the proof of Banach’s fixed-point theorem.

Let A0 be any object of C≈ and define An+1 = Φ(An) for every n ∈ !. Let
�0 : A0 → A1 be any morphism of C≈ and define �n+1 = Φ(�n) : An+1 → An+2

for every n ∈ !. We can always initiate this process: C≈ was assumed to have
an object, and �0 : A0 → A1 always exists as the hom-sets of an M -category are
non-empty.

It is immediate by the contractiveness of Φ that (An, �n)n∈! is a Cauchy tower
and hence has a limit (A, (n)n∈!) as C≈ was assumed tower-complete. A con-
tractive functor is in particular non-expansive and non-expansive functors preserves
limits of Cauchy towers, so (Φ(An),Φ(�n))n∈! = (An+1, �n+1)n∈! is a Cauchy tower
too with limit (Φ(A), (Φ(n))n∈!). But (A, (n+1)n∈!) is a limit of (An+1, �n+1)n∈!
too and uniqueness of limits (Proposition 6.7) gives A ∼= Φ(A).

Combining Proposition 6.8, Proposition 6.9, and Theorem 6.11 we have:

Theorem 6.12. If C has an object and has inverse limits of Cauchy towers then
every locally contractive functor F : Cop × C → C has a unique fixed point up to
isomorphism.

Notice that here we require all Cauchy towers to have inverse limits, not just the
increasing ones. Therefore Theorem 6.12 does not immediately imply Theorem 3.4.

7 Applications

This section contains a series of examples of recursive equations motivated by recent
and ongoing work in semantics. In all but the first of the examples we do not
consider exactly those equations that arise from applications; for clarity we consider
simplified variants that capture the essence of the circularity issues. We conclude
the section by discussing in what sense the generality of M -categories is needed in
applications.
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7.1 Realizability semantics of dynamically allocated store

The first two examples of recursive equations come from realizability semantics of
dynamically allocated store. In recent work [9] the authors presented a model that
allows for simple parametricity-style reasoning about imperative abstract data types
in an ML-like language with universal types, recursive types, and reference types.
As in Standard ML, references are dynamically allocated during program execution.

Here is a brief outline of the model. First, the model is based on a realizability
interpretation [5] over a certain recursively defined predomain V . In addition, we
follow earlier work on modeling simple integer references [8] and use a Kripke-style
possible worlds model. Here, however, the set of worlds needs to be recursively
defined since we treat general references. Semantically, a world maps locations to
semantic types, which, following the general realizability idea, are certain world-
indexed families of relations on V : this introduces a circularity between semantic
types and worlds that precludes a direct definition of either. Thus we are led to
solving recursive (metric-space) equations of approximately the following form

W ∼= ℕ⇀fin T
T ∼= W →mon CURel(V )

(see below) even in order to define the space in which types will be modeled.
We now describe these equations in more detail. CURel(V ) is the set of binary

relations on V that satisfy certain technical requirements. The metric on CURel(V )
is defined essentially as in earlier work on realizability semantics [5], using the fact
that V is a canonical solution to a predomain equation. The space ℕ⇀fin T consists
of partial functions from ℕ to T with finite domain: the distance between two
functions with different domains is 1, while the distance between two functions with
the same domain is given as a maximum of pointwise distances. The space ℕ⇀fin T
(and hence also W) is equipped with an extension order: for Δ,Δ′ ∈ ℕ⇀fin T we
take Δ ≤ Δ′ to mean that dom(Δ) ⊆ dom(Δ′) and that Δ(n) = Δ′(n) for all n
in dom(Δ). Finally, in order to ensure soundness of the interpretation, we require
the usual ‘Kripke monotonicity’: the space W →mon CURel(V ) should consist of
functions that are both non-expansive and monotone with respect to the extension
order on W and the inclusion order on CURel(V ).

In order to apply the main theorem to solve these equations, we have to express
them in terms of a mixed-variance functor on an M -category. There are two ap-
proaches. First, one can ‘solve for worlds’ by defining a contravariant functor F on
PreCBUltne such that

F (X,≤) = (ℕ⇀fin
1
2 ((X,≤)→mon CURel(V ))), ≤′)

where ≤′ is the extension order on partial functions, as defined above. (Here the 1
2

is needed in order to ensure that F is locally contractive.) Then (W,≤) can be
defined as the unique fixed point of F .

Alternatively, one can ‘solve for types’ [9] by defining a contravariant functor G
on CBUltne (or on CBUlt as in Section 5.3) such that

G(X) = 1
2 ((ℕ⇀fin X)→mon CURel(V )) .

Then T can be defined as the unique fixed point of G. In this case we do not use
the generality of M -categories: instead we exploit that the two mutually recursive
equations above have a form that allows one to solve them in CBUltne by combining
them into a single recursive equation in the right way. In the next example such an
approach will not be possible; there, M -categories seem to be needed.
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Remark. Even though metric spaces appear naturally in this example through ear-
lier work on realizability, one might ask whether the equations above cannot in-
stead be solved in a category of domains. Indeed they can, but the solution does
not appear to be useful for our purpose. The main reason is that the quantitative
information given by the metric-space approach appears to be needed in order to
model reference types [9].

7.2 A more advanced model of store

In the previous example, semantic types were modeled as world-indexed families of
binary relations on the predomain V of ‘untyped values’. The intuitive idea is that
worlds provide information about the currently allocated references, and that the
interpretation of a type grows as more references are allocated.

The fact that relations are binary allows one to use the model to prove equiva-
lences between programs that allocate references dynamically. However, the set of
worlds W ∼= ℕ⇀fin T of the previous example only allows for fairly limited equiv-
alence proofs. There, a world is no more than a single ‘semantic store typing’ that
only allows one to describe situations where the two programs under consideration
allocate references in lockstep.

Ongoing work suggests that the metric-space approach allows one to solve an
equation involving more advanced Kripke worlds in the style of Ahmed et al. [2],
and thereby allows for more advanced reasoning about local state.2 Here we present
a simplified equation that illustrates the main circularity issue. Let S = ℕ ⇀fin V
be the set of stores, i.e., partial maps with finite domain from ℕ to V . Whereas
the simple worlds of the previous example induce a binary relation on stores that
require two related stores to have the same domain, we now seek an alternative
definition of worlds that induce a more liberal relation on stores.

The intuitive idea is that a worldW ′ consists of a finite sequence of ‘islands’ I [2],
each of which induces a local requirement on stores by describing how two specific
parts of two given stores are required to be related. Consider the metric-space
equations

W ′ ∼= I∗

I ∼=
∑

N1,N2∈Pfin(ℕ)

1
2 (W ′ →mon CURel(S)N1,N2

)

which are to be understood as follows. The space CURel(S) [9] consists of binary
relations on stores satisfying certain technical conditions; it is equipped with a
metric in the same way as CURel(V ) above. Given finite subsets N1 and N2 of
ℕ, the sub-space CURel(S)N1,N2 of CURel(S) only contains relations with support
(N1, N2), i.e., R ∈ CURel(S)N1,N2 and (s1, s2) ∈ R implies (s′1, s

′
2) ∈ R if s1(n) =

s′1(n) for all n in N1 and s2(n) = s′2(n) for all n in N2. Intuitively, such relations are
local in the sense that they only depend on locations from N1 and N2, respectively.
The sum on the right-hand side of the second equation consists of triples (N1, N2, f);
the distance between two such triples is 1 if either of the first two components
differ, and the distance between the third components otherwise. Finally, assuming
that the second equation holds, the space I∗ consists of finite sequences of triples
(N1, N2, f) such that the first components are pairwise disjoint, and similarly for
the second components: the ‘islands’ must not overlap. The extension order on I∗,
and hence on W ′, is sequence containment; the maps of the second equation are
monotone with respect to this order and the inclusion order on CURel(S)N1,N2

.

2Ahmed et al. do not solve the recursive equation they consider, but instead work with a family
of sets that are, intuitively, approximations to a solution.
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Because of the different dependencies on finite subsets of integers, it does not
seem possible to combine the two equations above into one equation in CBUltne:
some extra structure on metric spaces is needed, no matter what one tries to ‘solve
for’. Indeed, the equations can be ‘solved for worlds’ by defining a contravariant
functor H on PreCBUltne directly from the equations,

H(X,≤) =

(( ∑

N1,N2∈Pfin(ℕ)

1
2 ((X,≤)→mon CURelN1,N2

(S))

)∗
, ≤′

)

where ≤′ is the extension order on sequences, and then letting W ′ be the unique
fixed point of H.

7.3 Storable locks

In recent work by Gotsman et al. separation logic has been extended to reason
about storable locks and threads [14]. As observed in loc. cit. the natural model of
predicates involves a circular definition because locks protecting invariants (predi-
cates) can be stored in the heap. However, Gotsman et al. side-step this issue by
restricting the storable locks to protect only a statically determined finite set of
kinds of invariants. In ongoing work, Birkedal and Buisse are generalizing the work
by Gotsman et al. by solving a suitable recursive equation. The equation is

UPred ∼= 1
2

((
ℕ⇀fin (ℕ + (ℕ×UPred))

)
→mon P↓(ℕ)

)
.

Here P↓(ℕ) is the complete, bounded ultrametric space consisting of downwards-
closed subsets of ℕ; this set forms a complete Heyting algebra. The idea is that
a semantic predicate is a P↓(ℕ)-valued predicate on heaps, which are maps from
locations (numbers) to either numbers or pairs (k, I) consisting of a thread id k and
a semantic predicate I. The latter is used if the location is a lock, held by thread k
and protecting the invariant I.

This equation can be solved in CBUltne by solving for UPred (much as in the
example in Section 7.1), or by solving for heaps by defining a contravariant functor
on PreCBUltne.

7.4 Semantics of nested Hoare triples

In recent work, Schwinghammer et al. [20] investigate the semantics of separation
logic for higher-order store. There uniform admissible subsets of heaps form the
basic building block when interpreting the assertions of the logic. Since assertions
in general depend on invariants for stored code (because of higher-order store), the
space of semantic predicates consists of functionsW → UAdm from a set of ‘worlds,’
describing the invariants, to the collection of uniform admissible subsets of heaps.
The set UAdm is an ultrametric space with metric given as for CURel(V ) above.
But, the invariants for stored code are themselves semantic predicates, and hence
the space of worlds W should be ‘the same’ as W → UAdm. Thus the following
equation is solved in CBUltne:

W ∼= 1
2 (W → UAdm) .

7.5 Discussion

As we have seen, three of the four examples above could be treated by solving
recursive equations in CBUltne, i.e., without using the generality of M -categories.
The fourth example, the advanced model of store in Section 7.2, does seem to require
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M -categories; however, a recent simplification [13] leads to an equation that can be
solved in CBUltne.

In a little more detail, the general situation is the following. Instead of directly
finding a fixed point of an endofunctor F : C → C on an M -category, one can
attempt to express the functor as F = G ∘ H for functors H : C → CBUltne and
G : CBUltne → C, and then find a fixed point of H ∘G : CBUltne → CBUltne instead
of F . In this way, only the classical existence theorem is needed. (It could of course
also be that one came up with H ∘ G instead of F in the first place.) In the first
example above, this is the approach that could be used to ‘solve for types’ instead
of ‘solving for worlds.’

Despite of this possibility of rewriting a recursive equation to an equation in
CBUltne, we find M -categories genuinely useful in applications for the following
reasons. First, there is no guarantee that one can rewrite a given recursive equation;
as already noted, we cannot see how to treat the example in Section 7.2 by solving
an equation in CBUltne. Second, and more subtly: in the first and third examples
above, the ‘rewriting’ approach still depends on the fact that PreCBUltne is an M -
category. More specifically, to obtain a well-defined endofunctor on CBUltne in these
examples, one implicitly uses the defining property of objects of PreCBUltne that
guarantees that hom-sets of PreCBUltne are complete metric spaces. Without having
identified PreCBUltne as an M -category, this leads to some ad-hoc calculations and
results about monotone function spaces, as can be seen in Birkedal et al. [9].

8 Domain equations:
from O-categories to M-categories

As another illustration of M -categories, we present a general construction that
gives for every O-category C (see below) a derived M -category D. In addition,
the construction gives for every locally continuous mixed-variance functor F on C
a locally contractive mixed-variance functor G on D such that a fixed point of G,
necessarily unique by Theorem 3.1, is the same as a fixed point of F that furthermore
satisfies the ‘minimal invariance’ condition of Pitts [17].3 Thus, generalized domain
equations can be solved in M -categories.

The construction generalizes and improves an earlier one due to Baier and
Majster-Cederbaum (BM) [7] which is for the particular category Cppo⊥ of pointed
cpos and strict, continuous functions (or full subcategories thereof.) More precisely,
taking C to be a full subcategory of Cppo⊥ in our Proposition 8.2 below gives a
result that strengthens Lemma 4.18 of BM. In general, the goal of that earlier work
is to relate recursive domain equations over full subcategories of Cppo⊥ to recursive
equations over full subcategories of a particular category CMS of complete metric
spaces. Working with those particular categories instead of arbitrary O-categories
and M -categories complicates the relations one can obtain: for example, Theorem 3
of BM only applies to a restricted class of domain equations that does not include
general function spaces. The reason is that the construction of BM, which must be
applied to a full subcategory of Cppo⊥, does not yield a category that is (in any
obvious way) a full subcategory of CMS. It is, however, an M -category in which
every locally contractive functor has a unique fixed point. We hence believe to have
at least partially answered the question left open in the conclusion of BM whether
a suitable notion of correspondence exists for general domain equations.

Rank-ordered cpos [7], recently re-discovered under the name ‘uniform cpos’ [9],
arise from a particular instance of an M -category obtained from the construction

3The latter is in turn the same as a bifree algebra for F in the same sense as in Theorem 3.1.
See the argument in Pitts [17].
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here, namely by taking C = Cppo⊥. The extra metric information in that category,
as compared with the underlying O-category, is useful in realizability models [1, 5];
in particular it is used to define the metric on the set of binary relations CURel(V )
in the work described in Section 7.1 [9]. In earlier work, Abadi and Plotkin [1,
Section 8] give a metric-space formulation of a realizability model of polymorphism
and recursive types. They note that the extra metric information can be used to
model subtypes and bounded quantification.

We now turn to the results. An O-category [22] is a category C where each
hom-set C(A,B) is equipped with an !-complete partial order, usually written ⊑,
and where each composition function is continuous with respect to these orders. A
functor F : Cop × C → C is locally continuous if each function on hom-sets that it
induces is continuous.

Assume now that C is an O-category such that each hom-set C(A,B) contains
a least element ⊥A,B and such that the composition functions of C are strict:
f ∘ ⊥A,B = ⊥A,C = ⊥B,C ∘ g for all f and g. We construct an M -category D
of ‘rank-ordered C-objects’ as follows. An object (A, (�n)n∈!) of D is a pair con-
sisting of an object A of C and a family of endomorphisms �n : A → A in C that
satisfies the following four requirements:

(1) �0 = ⊥A,A.

(2) �m ⊑ �n for all m ≤ n.

(3) �m ∘ �n = �n ∘ �m = �min(m,n) for all m and n.

(4)
⊔
n∈! �n = idA.

(See also the rank-ordered sets of Baier and Majster-Cederbaum [7] and the projec-
tion spaces of de Vries [12].) Then, a morphism from (A, (�n)n∈!) to (A′, (�′n)n∈!)
in D is a morphism f from A to A′ in C that is uniform [1] in the sense that
�′n ∘ f = f ∘ �n for all n. Composition and identities in D are the same as in C. Fi-
nally, the distance function on a hom-set D((A, (�n)n∈!), (A′, (�′n)n∈!)) is defined
as follows:

d(f, g) =

{
2−max{n∈!∣�′n∘f=�′n∘g } if f ∕= g
0 if f = g.

To see that d is well-defined, suppose that f ∕= g. Then there must exist a greatest
number n such that �′n ∘ f = �′n ∘ g. Indeed, n = 0 is such a number by (1) above
and strictness of the composition functions of C. If the equation holds for arbitrarily
large n, then by (3) above it holds for all n. But then by (4) above and the fact
that the composition functions of C are continuous,

f = idA′ ∘ f =
( ⊔

n∈!
�′n
)
∘ f =

⊔

n∈!
(�′n ∘ f) =

⊔

n∈!
(�′n ∘ g) = ⋅ ⋅ ⋅ = g ,

a contradiction. Hence d is well-defined.

Proposition 8.1. D is an M -category.

Proof. First, each hom-set D((A, (�n)n∈!), (A′, (�′n)n∈!)) is non-empty: it contains
the element ⊥A,A′ since �′n ∘ ⊥A,A′ = ⊥A,A′ ∘ �n = ⊥A,A′ by strictness. Second, it
is easy to see that the distance function on such a hom-set gives rise to a 1-bounded
ultrametric space. Third, the composition functions of D are non-expansive: it
suffices to see that if �′′n ∘ f1 = �′′n ∘ f2 and �′n ∘ g1 = �′n ∘ g2, then �′′n ∘ (f1 ∘ g1) =
�′′n ∘ f2 ∘ g1 = f2 ∘ �′n ∘ g1 = f2 ∘ �′n ∘ g2 = �′′n ∘ (f2 ∘ g2).

It remains to show that each hom-set is a complete metric space. Let (fm)m∈!
be a Cauchy sequence. It follows from the definition of d that for each n ∈ ! there
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exists gn such that �′n ∘ fm = gn for all sufficiently large m. Then by (2) above the
sequence (gn)n∈! is increasing: given n, we have gn = �′n ∘ fm ⊑ �′n+1 ∘ fm = gn+1

for all sufficiently large m.
The supremum g = ⊔n∈!gn is the limit of the sequence (fm)m∈!. Indeed, given

an arbitrary number k, by (3) we have �′k ∘ gn = �′k ∘ �′n ∘ fm = �′k ∘ fm = gk for
all n ≥ k (and sufficiently large m), and therefore, by continuity of composition,
�′k ∘ (⊔n∈!gn) = ⊔n≥k(�′k ∘ gn) = gk = �′k ∘ fm for all sufficiently large m. This
shows that d(fm, g) ≤ 2−k for all sufficiently large m. Hence g is indeed the limit
of the sequence (fm)m∈!.

We must show that g is uniform. First, each gn is uniform since for all k and all
sufficiently large m we have �′k ∘ gn = �′k ∘ �′n ∘ fm = �′n ∘ �′k ∘ fm = �′n ∘ fm ∘ �k =
gn ∘ �k. Second, g is uniform since each gn is: �′k ∘ (⊔n∈!gn) = ⊔n∈!(�′k ∘ gn) =
⊔n∈!(gn ∘ �k) = (⊔n∈!gn) ∘ �k. In conclusion, each hom-set is complete, and D is
an M -category.

Now let F : Cop×C → C be a locally continuous functor. We construct a locally
contractive functor G : Dop ×D → D from F :

∙ On objects, G is given by

G((A, (�An )n∈!), (B, (�Bn )n∈!)) = (F (A,B), (�A,Bn )n∈!)

where �A,B0 = ⊥ and �A,Bn+1 = F (�An , �
B
n ) for all n.

∙ On morphisms, G is the same as F , i.e., G(f, g) = F (f, g).

To see that G is well-defined on objects, we must verify conditions (1)-(4) in
the definition of objects of D. Here (1) is immediate, (3) follows from strictness
of composition and functoriality of F , and (2) and (4) follow from local continu-
ity of F . In addition, given morphisms f : (A′, (�A

′
n )n∈!) → (A, (�An )n∈!) and

g : (B, (�Bn )n∈!) → (B′, (�B
′

n )n∈!), we must show that G(f, g) = F (f, g) is a well-

defined morphism in D. Clearly, �A
′,B′

0 ∘ F (f, g) = F (f, g) ∘ �A,B0 , and for all n,

�A
′,B′

n+1 ∘ F (f, g) = F (�A
′

n , �B
′

n ) ∘ F (f, g)

= F (f ∘ �A′n , �B
′

n ∘ g)

= F (�An ∘ f, g ∘ �Bn )

= F (f, g) ∘ F (�An , �
B
n )

= F (f, g) ∘ �A,Bn+1 .

Finally, G is locally contractive with factor 1/2: it suffices to see that if �An ∘ f1 =
�An ∘ f2 and �B

′
n ∘ g1 = �B

′
n ∘ g2, then

�A
′,B′

n+1 ∘ F (f1, g1) = F (�A
′

n , �B
′

n ) ∘ F (f1, g1)

= F (f1 ∘ �A
′

n , �B
′

n ∘ g1)

= F (�An ∘ f1, �B
′

n ∘ g1)

= F (�An ∘ f2, �B
′

n ∘ g2)

= �A
′,B′

n+1 ∘ F (f2, g2) .

Proposition 8.2. Let G be constructed from F as above, and let A be an object
of C. The following two conditions are equivalent.

(1) There exists an isomorphism i : F (A,A)→ A such that

idA = fix (�eC(A,A). i ∘ F (e, e) ∘ i−1) .

(Here fix is the least-fixed-point operator.)
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(2) There exists a family of morphisms (�n)n∈! such that A = (A, (�n)n∈!) is
the unique fixed-point of G up to isomorphism.

Proof. (1) implies (2): Define the C-morphisms �n : A → A by induction on n:
�0 = ⊥A,A and �n+1 = i ∘ F (�n, �n) ∘ i−1. We must show that (A, (�n)n∈!) is
an object of D by verifying the four requirements in the definition of D. The first
requirement is immediate by definition, the second and third requirements are easy
to show by induction, and the fourth requirement is exactly the assumption that
idA = fix (�eC(A,A). i ∘ F (e, e) ∘ i−1). Now let A = (A, (�n)n∈!). It remains to
show that G(A,A) ∼= A; uniqueness follows from Theorem 3.1. We claim that the
isomorphism i : F (A,A)→ A in C is also an isomorphism from G(A,A) to A in D,
i.e., that both i and its inverse i−1 in C are uniform with respect to the families
of morphisms (�A,An )n∈! and (�n)n∈! on F (A,A) and A, respectively. Clearly

�0 ∘ i = i ∘ �A,A0 by strictness. Also,

�n+1 ∘ i = (i ∘ F (�n, �n) ∘ i−1) ∘ i = i ∘ F (�n, �n) = i ∘ �A,An+1

by the definitions of �n+1 and �A,An+1. So i is uniform. The proof that i−1 is uniform

is completely similar. In conclusion, i : G(A,A)→ A is an isomorphism in D.
(2) implies (1): Assume that i : G(A,A) → A is an isomorphism in D. Then

i : F (A,A) → A is clearly also an isomorphism in C; formally one applies the
forgetful functor D → C to i. Since i is uniform, as are all morphisms in D, we have
that �n+1 ∘ i = i ∘ �A,An+1 = i ∘ F (�n, �n), and hence that �n+1 = i ∘ F (�n, �n) ∘ i−1.
By the definition of objects of D we furthermore have that �0 = ⊥A,A and that
⊔n∈!�n = idA. But then

fix (�eC(A,A). i ∘ F (e, e) ∘ i−1) =
⊔

n∈!
�n = idA .

It remains to discuss how completeness properties of C transfer to D. One can
show, using theO-category variant of Lemma 3.2 [22], that the forgetful functor from
D to C creates terminal objects and limits of !op-chains of split epis. Alternatively,
by imposing an additional requirement on C one can show that the forgetful functor
creates all limits: for a given limit in C, the induced bijection between cones and
mediating morphisms must be an isomorphism in the category of cpos (where cones
are ordered pointwise, using the order on each hom-set). That requirement is in
particular satisfied by the usual concrete categories of cpos.

9 Discussion and related work

We now discuss the level of generality of our results and clarify what the contribution
is compared to other results in the literature.

Metric spaces vs. ultrametric spaces. In the definition of an M -category we
require that hom-sets are ultrametric spaces and not merely general metric spaces.
In most of the related work on metric-space equations that we cite there is no such
restriction; only Rutten [18] restricts to ultrametric spaces.

There are two reasons that we restrict to ultrametric spaces. The first is per-
haps mostly a matter of taste: the category of complete, general metric spaces is
not cartesian closed, only symmetric monoidal closed [15]. This complicates the
inspiration one can draw from enriched category theory. For example, van Breugel
and Warmerdam [10] consider a product of CMS -categories which is given by the
cartesian structure, and not the canonical monoidal structure, of the category CMS
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of complete metric spaces; one has to show ‘by hand’ that this gives a well-defined
CMS -category.

The main reason, however, that we restrict to ultrametric spaces is that doing
so seems to be sufficient for applications in semantics. Turi and Rutten [24, p.529]
observe:

In semantics, one usually works with these more specific structures [ul-
trametric spaces], but it is convenient to state the general theorems in
the full generality of metric spaces.

We agree that ultrametric spaces suffice, but unlike Turi and Rutten we found it
convenient not to state the results for general metric spaces. The simple reason is
that some definitions and proofs would become more complicated. More specifically,
the definition of an increasing Cauchy tower below would need to be modified in
the style of the definition of a ‘converging tower’ in America and Rutten [6]. With
that change, we expect that at least the results of Sections 3 and 4 would carry
through also for general metric spaces.

Actually, one could specialize further. All the ultrametric spaces we consider in
the applications in Section 7 have an even more special form: all non-zero distances
in those spaces are of the form 2−n for some natural number n ≥ 0. In practice,
this means that when working with those applications, and in particular in calcula-
tions, one considers the metric-space structure as given by a family of equivalence
relations =n where x =n y holds if and only if d(x, y) ≤ 2−n. One could perhaps
specialize even further, by requiring that these relations =n are obtained from ‘pro-
jection’ functions [7, 12]. We did not restrict to any such structures, but found
ultrametric spaces to give simple proofs at a reasonable level of generality.

Generalized ultrametric spaces. Apart from the distinction between general
metric spaces and ultrametric spaces, there are other choices one could consider in
the definition of M -categories. First, it is likely that the restriction to non-empty
metric spaces could be removed, but that this would require unpleasant special cases
in the uniqueness and existence theorems.

Generalizing in a different direction than metric spaces, one could consider cat-
egories where the hom-sets are generalized ultrametric spaces [18]. In these spaces,
only the ultrametric inequality and the axiom d(x, x) = 0 are required: the distance
function need not be symmetric, and distinct elements can have distance 0. These
spaces are particularly nice from an (enriched) category theoretic viewpoint, since
they are exactly categories enriched over the preorder category [0, 1]op. On the other
hand, limits in such spaces are somewhat more complicated than in ordinary metric
spaces, and some basic intuitions need to be revisited: for example, non-expansive
functions are not necessarily continuous.

A remarkable aspect of generalized ultrametric spaces is that they generalize
both metric spaces and preorders. We find this particularly interesting in light of the
comparison between M -categories and O-categories in Section 8: one could imagine
that categories enriched over (complete) generalized ultrametric spaces would allow
for a result about solving recursive equations that generalizes both our work and
the classical result of Smyth and Plotkin. We do not know whether there exists
such a common generalization and leave it as a direction for future work.

Finally, one could perhaps go even further and generalize from the preorder
category [0, 1]op to arbitrary quantales. Here the goal would be to prove results
that relate to the work of Wagner [25] in the same way that Smyth and Plotkin’s
work on O-categories relates to Scott’s classical inverse limit construction. All of
this is merely speculation, however, and quite far from the more application-oriented
goals of this paper.
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Contributions compared to related work. As mentioned in the introduction,
the idea of considering categories with metric spaces as hom-sets has been used in
earlier work [10, 19]. We now turn to a more detailed description of what is new in
our results.

First of all, while the results in Sections 4 (on locally compact subcategories)
and 8 (on relating O-categories to M -categories) are generalizations of earlier work,
we find these generalizations sufficiently far-reaching and non-trivial to be consid-
ered new in their own right.

As for the main results in Section 3 about solutions to recursive equations,
the contribution with respect to previous work consists in Lemma 3.2, Proposi-
tion 3.3, and Theorem 3.4. First, Lemma 3.2 (and its immediate consequence,
Proposition 3.3) shows a limit-colimit coincidence result for general M -categories.
Theorem 4.15 of Rutten and Turi [19] gives some, but not all of this result. That
theorem only refers to cones in a category CE of embedding-projection pairs4, and
does not relate these cones to limiting cones or colimiting cocones in C. In particu-
lar, the theorem does not show that an inverse limit in C can be turned into a cone
in a category of embedding-projection pairs. This argument, which is an essential
part of the construction of fixed points of functors, is later given in the concrete
case of a category of complete metric spaces only (Theorem 4.23).

Second, Theorem 3.4 is new: we do not know of any other existence theorem
about fixed points of functors for a general class of ‘metric-enriched’ categories. A
small contribution here is the identification of suitable completeness conditions on
M -categories, together with examples that illustrate their use. In particular, the
condition of having all inverse limits of split epis is needed for the prime example
of an M -category, namely CBUltne itself. This condition seems to be of general use
given that the hom-sets of an M -category are required to be non-empty.

Still, it is fair to say that (as one reviewer put it) the ingredients of the existence
theorem already occur in various places in the literature. Perhaps a more proper
way to evaluate our main result is to consider how the applications in Section 7
would be treated using these previous results, notably Theorem 4.25 of Rutten and
Turi [19]. Although the recursive equations in the applications can be solved in
this way, we think that the route requires sufficient extra work that it useful to
state a general existence theorem that directly applies to mixed-variance functors
on arbitrary M -categories. Most importantly, in the absence of our Lemma 3.2 it
is, as noted above, necessary to argue ‘by hand’ that inverse limits of !op-chains in
PreCBUltne can be turned into cones in a category of embedding-projection pairs.

10 Conclusion

We have generalized the standard solution of recursive equations over complete
ultrametric spaces [6] to the abstract setting of M -categories where, in the style of
Smyth and Plotkin [22], the focus is on the metric structure on the morphisms rather
than the objects. We have furthermore outlined an alternative existence theorem
which is, at least informally, a closer categorical analogy to Banach’s fixed-point
theorem.

We have given a general account of ‘compact’ variants of such categories, showing
that these subcategories always inherit solutions of recursive equations from the full
categories. As another application we have presented a construction that provides a
correspondence between solutions of generalized domain equations in O-categories
with solutions of equations in M -categories.

In addition, we have sketched a number of applications from denotational seman-
tics. In particular, the application in Section 7.2 requires a solution to a recursive

4We assume that the second C in the statement of that theorem should have been CE .
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equation over metric spaces with additional structure; our results provide such a
solution.
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A Relational Realizability Model for

Higher-Order Stateful ADTs

Lars Birkedal, Kristian Støvring, Jacob Thamsborg∗

IT University of Copenhagen

Abstract

We present a realizability model for reasoning about contextual equivalence
of higher-order programs with impredicative polymorphism, recursive types,
and higher-order mutable state.

The model combines the virtues of two recent earlier models: (1) Ahmed,
Dreyer, and Rossberg’s step-indexed logical relations model, which was de-
signed to facilitate proofs of representation independence for “state-dependent”
ADTs and (2) Birkedal, Støvring, and Thamsborg’s realizability logical rela-
tions model, which was designed to facilitate abstract proofs without tedious
step-index arithmetic. The resulting model can be used to give abstract
proofs of representation independence for “state-dependent” ADTs.

Keywords: Abstract Data Types, Logical Relations, Local State,
Parametricity

1. Introduction

The method of logical relations has proved to be a useful technique for
reasoning about the equivalence of higher-order programs that use different
internal data representations to implement the same functionality. Since
Reynold’s seminal work on using logical relations for reasoning about rela-
tional parametricity for pure System F, there has been a long series of work
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on generalizing and extending the technique to reason about increasingly
realistic programming languages [26, 28, 23, 10, 4, 17].

For programming languages involving recursive types and general refer-
ences there are two main technical challenges:

Well-definedness Show that the logical relation is well-defined (that is ex-
ists); traditionally logical relations have been defined by induction on
the structure of types but that is not possible in the presence of recur-
sive types (and/or references).

Mutable Abstract Data Types Define the logical relation in such a way
that one can use it to show equivalences of programs using local state
for implementing mutable abstract data types in different ways

Recently (in 2009) two logical relation models, developed in parallel, were
proposed for reasoning about a call-by-value language with impredicative
polymorphism, recursive types, and general references: one was developed
by Ahmed, Dreyer, and Rossberg (hereafter ADR) [3] and one was devel-
oped by the current authors (hereafter BST) [12]. Both models use Kripke
logical relations to capture that the meaning of types depends on how many
references have been allocated

We now highlight some features of the ADR and BST models to situate
the present paper.

The ADR model is a step-indexed model over the operational semantics
in which the logical relation is indexed by natural numbers, following ideas
of Appel and McAllester [8]. Step-indexing is used to address the challenge
of showing well-definedness of the logical relation. The main technical inno-
vation in the ADR model is an advanced definition of worlds, which makes
it possible to show contextual equivalences of many examples involving local
state. In particular, it is possible to reason about programs using local state
invariants that evolve over time.

However, because of the use of step-indexing it is quite painful to reason
directly using the model because one is forced to engage in tedious step-
index arithmetic to derive even simple results. For example, to show that a
function f1 contextually approximates another function f2 it does not suffice
to show that they map related arguments to related results. Instead, one
must show the stronger condition that, for any n ∈ ℕ, if v1 and v2 are
logically related for n steps, then f1(v1) and f2(v2) are logically related for
n steps as well. The step-stratified possible worlds that arise in a model like
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ADR only make matters worse by requiring additional quantification over
future worlds throughout the proof.

This led Dreyer et al. to develop logics for reasoning more abstractly
about step-indexed logical relation models, first for a language without refer-
ences [20] and then, most recently, for reasoning about the ADR model [21].
The latter logic, called LADR, is a modal relational logic in which one can
reason about ADR style contextual equivalences at a higher level of abstrac-
tion avoiding low-level details about steps and worlds.

The focus of the BST model was to obtain a relatively abstract logical
relations model, without any step-indexing, by constructing the logical re-
lations over a simple adequate domain-theoretic model of the programming
language. Thence the well-definedness of the model was more complicated to
establish and the main technical innovations in the BST model were (i) the
observation that one can solve the naturally occurring recursive world equa-
tion in a category of ultrametric spaces and (ii) a novel modeling of locations
with a domain-theoretic codification of approximation information, crucially
used for establishing the well-definedness of the model. The model is indeed
more abstract than the ADR model in the sense that, e.g., two functions
f1 and f2 are related if they map related arguments to related results and
there is no reasoning about steps. On the other hand, the BST model used a
simple form of world, which only allowed to prove equivalences of programs
that used local state in simple ways.

In this paper we extend the BST model with more refined worlds similar
to those from the ADR model (specifically, we use the world description of
LADR, which is a slight simplification of the one in ADR). Thus we show
that the semantic techniques used in the BST model scale to state-of-the-art
world descriptions and the resulting model can be used to show equivalences
like those that can be shown using the ADR model, but with more abstract
reasoning without any step-indexing. We compare reasoning in the resulting
model to reasoning using the ADR model and the LADR logic.

2. Overview of the Technical Development

The present paper is a lengthy and somewhat technical one. To navi-
gate safely the many details, we provide a quick, informal overview of the
development and give extended textual explanations of some high points.
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The language in question, including typing rules, is introduced in Sec-
tion 3. It is a quite standard call-by-value language with universal,
recursive and reference types.

An untyped denotational semantics is given in Section 4. The seman-
tics is adequate and is given in monadic style by means of a universal
predomain; this again, is obtained as the solution to a recursive do-
main equation. The semantics is quite standard with the exception of
approximate locations, see Subsection 2.1 below. This section also de-
fines the crucial domain-theoretic notions of uniform predomains and
domains.

Some basic metric space theory is recalled in Section 5, in particular
we discuss the notion of ultrametrics. Also we introduce a category of
certain ordered metric spaces with an associated fixed-point theorem
to be used in Section 7.

Bohr relations on uniform predomains and domains are defined and also
equipped with a metric in Section 6. These are the kind of relations
on states and values we will work with; the definition is motivated in
Subsection 2.2 below.

The possible worlds of our Kripke logical relations are built in Section 7.
These mimic the worlds of ADR. They are obtained as the fixed point
of a functor on a certain category of ordered metric spaces; we labo-
riously build this functor and verify that it meets the requirements of
the fixed point theorem. See also Subsection 2.3 below for a short, in-
formal description of the worlds and some considerations on the choice
of categories and fixed-point theorem.

The world-indexed logical relation is finally built in Section 8. The re-
lation on states induced by a world corresponds to the approach taken
in ADR, the interpretation of reference types does not, rather we take a
more extensional approach. The remaining types are interpreted much
as in BST, in particular we rely on our metric setup and Banach’s
fixed-point theorem in the case of recursive types. Also we rely on the
approximate locations discussed in Subsection 2.1 below to ensure that
the interpretation of reference types is well-defined.
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The fundamental theorem of logical relations and proof resides in Sec-
tion 9 after a definition of semantic relatedness; that the latter im-
plies contextual approximation is an immediate corollary. The proof is
lengthy, but it is a simple matter of verification in light of the defini-
tions of the previous sections, and we only include some of the proof
cases.

A worked-out example is the last Section 10 of the paper. We introduce
some necessary syntactic sugar and prove the equivalence of Example
5.1 in ADR. This particular example is spelled out in ADR too, and
so one can compare reasoning in the two models. Indeed, we conclude
this section with some general considerations on this, also taking into
account the recent LADR logic [21]. This serves as conclusion to the
entire paper as well and has directions for future work.

2.1. Approximate Locations
As mentioned in the introduction, it is not, in general, trivial to prove

the existence of logical relations in the presence of recursive types; a simple
definition by induction on the types will not do. Minimal invariance as
proposed by Pitts [27] and others is, arguably, the method of choice to tackle
this issue, but it is not readily applicable because of the general reference
types. In some sense, the standard, flat modelling of locations as integers
does not provide enough foothold to get the iterative machinery of minimal
invariance going.

Faced with this issue, the authors coined the idea of approximate locations
in earlier work [13]. A location, say l, is modelled by an element �l that is
the least upper bound of an ascending chain �1

l ⊑ �2
l ⊑ ⋅ ⋅ ⋅ ⊑ �l of so-called

approximate locations. The interpretation of references to a type � then
has ‘proper’ semantic locations such as �l as well as approximate semantic
locations such as �n+1

k ; the latter intuitively signifies that � and the type of
values stored at location k might agree only up to the nth approximation.

This idea was rewrapped and reused in BST; we copy that usage here,
apart from a minor technical change to the interpretation of lookup and
assignment due to the more refined worlds. See Section 4 for details.

The approximated locations are required for technical reasons; the in-
terpretation of reference types simply would not be non-expansive without
them. On the other hand, they do not mirror anything in the language
and are, as such, junk. Some implications of their presence in the model is
discussed at the end of Section 10.

118



2.2. Bohr Relations

One novelty of this paper is the particular choice of conditions we impose
on our relations.

We carve our relations out of a universal predomain V that loosely cor-
responds to the set of closed, syntactic values. V is essentially obtained
as the solution to a recursive domain equation as prescribed by Smyth and
Plotkin [32]. But we must impose some restrictions – it will not do to allow
all relations on V . The presence of recursive terms requires that relations
respect the denotational construction of fixed points. And recursive types
renders the existence of the logical relation non-trivial and the relations must
accommodate that.

In BST we worked with complete, uniform relations. Complete means
chain-complete, i.e., if we have an ascending chain of pairs in a relation, then
the pair of the least upper bounds also must be in the relation. Uniform
loosely means closed under the projections that come with solutions to re-
cursive domain equations. For each n ∈ ! we have a projection �n : V → V⊥;
a relation R ⊆ V × V is uniform if for all (v1, v2) ∈ R and all n ∈ ! we have
that

(�n(v1), �n(v2)) ∈ {⊥,⊥} ∪ {⌊w1⌋, ⌊w2⌋ ∣ (w1, w2) ∈ R},
where ⌊−⌋ : V → V⊥ is the standard inclusion. Completeness and uniformity
deal with the issues that arise from recursive terms and types respectively.
Indeed, they are both well-known approaches, completeness is present, e.g.,
in work by Reynolds [30] and uniformity is found, e.g., in work by Abadi and
Plotkin [2] and by Amadio [5].

Restricting to uniform and complete relations comes at a price, however:
we are, e.g., unable to relate an integer to a pair of integers since the latter
but not the former ‘bottom out’ under application of �1 : V → V⊥. This is a
shortcoming because the conceptual relations that one ‘plugs into’ universal
types must be complete and uniform too, which limits the use of relational
parametricity. Note that the restriction to uniform and complete relations
does have some intuitive merit; we do, after all, approximate contextual
equivalence with our relations and thus relating bottom to non-bottom seems
inappropriate.

It is this shortcoming we address with Bohr relations, which we formally
introduce in Section 6. Conceptually, we aim for relations that approximate
contextual approximation rather than contextual equivalence. Technically,
Bohr relations only restrict the left hand side: Bohr relations are chain-
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complete and downwards closed in the left coordinate. The former means,
that if we have a sequence of pairs in the relation such that the left coordinates
form an ascending chain and the right coordinates are identical, then the pair
of the least upper bound of the left coordinates and the right coordinate must
be in the relation too. The latter means, that if we have a pair in the relation,
then any pair with a smaller left coordinate and identical right coordinate
must be in the relation too. Being uniform instead of downwards closed in the
left coordinate would work as well, but we stick to the latter for simplicity.

While not all relations on V are Bohr relations, they all have a least
Bohr relation that contain them; this closure can be ‘plugged into’ universal
types. Thus the overall idea is to remove the artificial ‘synchronization’ re-
striction imposed by (two-sided) uniformity and so be free to apply relational
parametric reasoning at will.

Going for contextual approximation instead of contextual equivalence
seems standard in recent step-indexed models of recursive types. There is an
analogy to Bohr relations here: step-indexed models, e.g. [4], do not require
expressions to terminate in the same number of steps in order for them to
be related. Rather they allot a number of steps for the left hand side to ter-
minate, and if this happens then the right hand side is required to terminate
in any number of steps. Requiring the expressions to march in step would,
most likely, not invalidate the soundness of the reasoning but rather prove
fewer (albeit stronger) equivalences.

For expository reasons, we have focused on relations between values and
reasoning by relational parametricity in the explanations above. It is worth-
while, however, to note, that the restrictions on relations apply to relations
between states too. In particular, we would have been unable to relate, say,
the empty state to any non-empty state with the (two-sided) uniformity re-
quirement of BST. This posed no problem in BST because of the simple
notion of worlds, but it would have been a severe limitation here.

We finally remark that the idea of approximating contextual approxima-
tion rather than contextual equivalence is present in the 4-tuples of Bohr
and Birkedal [17], hence the nomenclature. Their setup handled any kind of
relation, whether complete or not, uniform or not. We think we have distilled
this ability: 4-tuples are – roughly and in retrospect – just two Bohr relations
grouped together to be able to argue both ways of contextual approximation
in one go.
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2.3. Solving Recursive World Equations

Definitional circularities arise when modelling higher order store phenom-
ena; the main accomplishment of BST is the use of metric space theory to
solve one such circularity. That particular circularity involves both the space
of types and the space of worlds and so one has the choice of solving for either.
This is not, however, an immaterial choice. Types come with no particular
order and we can make do with a classic fixed-point result for functors on
the category of ultrametric spaces by America and Rutten [6]; this was the
approach taken in BST. Worlds, on the other hand, come with an extension
ordering that corresponds to further allocation. Hence we arrive at a functor
on certain ordered metric spaces and the cited result no longer suffices.

In ADR, the notion of world is far more refined than in BST. A world
is a series of islands, each managing separate parts of the store. Islands
themselves are dynamic, they have a population that may grow according
to a population law. Also each island has a heap law that regulates the
part of the store managed by the island; the heap law is indexed by the
population and hence may vary over time. We refer the reader to Section 7
and in particular to ADR for further motivation and explanation; here it shall
suffice to state that the heap laws are indexed also over worlds themselves
and so the definition of worlds is circular. But unlike the circularity solved in
BST, there seems to be no way of ‘cycling’ this circularity to arrive at point
where the fixed-point result of America and Rutten is applicable.

Faced with this challenge, the authors proved a generalized fixed-point
theorem [15] that allows for additional structure on the metric spaces, in
particular certain orderings. And it is a special case of this theorem that we
shall apply in Section 7 to build our space of worlds.

Recently, Dreyer et al. have developed the logic LADR [21] to facilitate
reasoning in the ADR model. In the process, they simplified the ADR model
somewhat and it is the notion of worlds from this, simpler model, that we
have chosen to settle on in this paper. We believe that this simplification
has removed the obstacles that prevented the use of the fixed-point result
of America and Rutten in our adaptation of the original ADR model. In
other words, we probably could do without the aforementioned generalized
fixed-point result. It would, however, take some amount of ‘hacking’ to do
so and the development would be more complicated.
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3. Programming Language

We consider the same programming language as the one used in the BST
model [12]. It is a standard call-by-value language with universal types,
iso-recursive types, ML-style reference types, and a ground type of integers.

The language is sketched in Figures 1 and 2. The typing rules are stan-
dard [25]. In the figure, Ξ and Γ range over contexts of type variables and
term variables, respectively. As we do not consider operational semantics in
this article, there is no need for location constants, and hence no need for
store typings.

4. Untyped semantics

The terms of the language above are not intrinsically typed. In other
words, the language consists of an untyped term language and a set of rules
for assigning types to untyped terms. We now take advantage of this dis-
tinction and give a semantics of the untyped term language. This “untyped
semantics” is almost identical to the one used in the BST model [12, 16] (we
point out some minor differences below), but we include a description here
in order to keep the article self-contained.

As usual for models of untyped languages, the semantics is given by means
of a “universal” complete partial order (cpo) in which one can inject integers,
pairs, functions, etc. This universal cpo is obtained by solving a recursive
domain equation.

The only non-standard aspect of the semantics is the treatment of store
locations. As explained in Section 2.1, the model includes approximate lo-
cations. This means that locations are modeled as elements of the cpo
Loc = ℕ × ! where ! is the “vertical natural numbers” cpo: 1 ⊏ 2 ⊏
⋅ ⋅ ⋅ ⊏ n ⊏ ⋅ ⋅ ⋅ ⊏∞. (For notational reasons it is convenient to call the least
element 1 rather than 0.) The intuitive idea is that locations can be approx-
imated: the element (l,∞) ∈ Loc is the “ideal” location numbered l, while
the elements of the form (l, n) for n <∞ are its approximations. As already
mentioned, these approximate locations are included in order to ensure that
the logical relation we construct is well-defined.

4.1. Domain-theoretic preliminaries

We assume that the reader is familiar with basic denotational semantics,
as presented for example in Winskel [34], and with semantics in monadic
style [24].
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Types: � ::= int ∣ 1 ∣ �1 × �2 ∣ 0 ∣ �1 + �2 ∣ ��.� ∣ ∀�.� ∣ � ∣ �1 → �2 ∣ ref �

Terms: t ::= x ∣ m ∣ ifz t0 t1 t2 ∣ t1 + t2 ∣ t1 − t2 ∣ () ∣ (t1, t2) ∣ fst t ∣ snd t

∣ void t ∣ inl t ∣ inr t ∣ case t0 x1.t1 x2.t2 ∣ fold t ∣ unfold t

∣ Λ�.t ∣ t [� ] ∣ �x.t ∣ t1 t2 ∣ fix f.�x.t ∣ ref t ∣ !t ∣ t1 := t2

Typing rules:

Ξ ∣ Γ ⊢ x : � (Ξ ⊢ Γ, Γ(x) = �) Ξ ∣ Γ ⊢ m : int (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t0 : int Ξ ∣ Γ ⊢ t1 : � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ ifz t0 t1 t2 : �

Ξ ∣ Γ ⊢ t1 : int Ξ ∣ Γ ⊢ t2 : int

Ξ ∣ Γ ⊢ t1 ± t2 : int Ξ ∣ Γ ⊢ () : 1 (Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t1 : �1 Ξ ∣ Γ ⊢ t2 : �2

Ξ ∣ Γ ⊢ (t1, t2) : �1 × �2

Ξ ∣ Γ ⊢ t : 0

Ξ ∣ Γ ⊢ void t : �
(Ξ ⊢ �)

Ξ ∣ Γ ⊢ t : �1 × �2

Ξ ∣ Γ ⊢ fst t : �1

Ξ ∣ Γ ⊢ t : �1 × �2

Ξ ∣ Γ ⊢ snd t : �2

Ξ ∣ Γ ⊢ t : �1

Ξ ∣ Γ ⊢ inl t : �1 + �2

(Ξ ⊢ �2)
Ξ ∣ Γ ⊢ t : �2

Ξ ∣ Γ ⊢ inr t : �1 + �2

(Ξ ⊢ �1)

Ξ ∣ Γ ⊢ t0 : �1 + �2 Ξ ∣ Γ, xi : �i ⊢ ti : � (i = 1, 2)

Ξ ∣ Γ ⊢ case t0 x1.t1 x2.t2 : �

(Continued in Figure 2.)

Figure 1: Programming language
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Ξ ∣ Γ ⊢ t : � [��.�/�]

Ξ ∣ Γ ⊢ fold t : ��.�

Ξ ∣ Γ ⊢ t : ��.�

Ξ ∣ Γ ⊢ unfold t : � [��.�/�]

Ξ, � ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ Λ�.t : ∀�.�
(Ξ ⊢ Γ)

Ξ ∣ Γ ⊢ t : ∀�.�0

Ξ ∣ Γ ⊢ t [�1] : �0[�1/�]
(Ξ ⊢ �1)

Ξ ∣ Γ, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ �x.t : �0 → �1

Ξ ∣ Γ ⊢ t1 : � → � ′ Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 t2 : � ′

Ξ ∣ Γ, f : �0 → �1, x : �0 ⊢ t : �1

Ξ ∣ Γ ⊢ fix f.�x.t : �0 → �1

Ξ ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ ref t : ref �

Ξ ∣ Γ ⊢ t : ref �

Ξ ∣ Γ ⊢ !t : �

Ξ ∣ Γ ⊢ t1 : ref � Ξ ∣ Γ ⊢ t2 : �

Ξ ∣ Γ ⊢ t1 := t2 : 1

Figure 2: Programming language (ctd.)

Let Cpo be the category of !-cpos and !-continuous functions. We use the
standard notation for products, sums, and function spaces in Cpo. Injections
into binary sums are written �1 and �2. For any set M and any cpo A, the
cpo M ⇀fin A has maps from finite subsets of M to A as elements, and is
ordered as follows: f ⊑ f ′ if and only if f and f ′ has the same domain M0

and f(m) ⊑ f ′(m) for all m ∈M0.
A complete, pointed partial order (cppo) is a cpo containing a least el-

ement. We use the notation A⊥ = {⌊a⌋ ∣ a ∈ A} ∪ {⊥} for the cppo
obtained by “lifting” a cpo A. The least fixed-point of a continuous function
f : D → D from a cppo D to itself is written fix f . The cppo of strict,
continuous functions from a cpo A to a cppo D is written A ⊸ D. For
continuous functions f : A→ B⊥ and g : B → C⊥ we define g ∘ f : A→ C⊥
as follows:

f ∘ g = �a.

{
f b, if g a = ⌊b⌋,
⊥, otherwise.

Having now specified the kinds of partial orders we use, we follow common
practice and introduce some more abstract terminology: in this article, a
predomain simply means a cpo, and a domain means a cppo.

The semantics below is presented in monadic style [24], i.e., structured
using a monad that models the effects of the language. It is most convenient
to define this monad by means of a Kleisli triple: for every predomain S and
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every domain Ans , the continuation-and-state monad TS,Ans : Cpo → Cpo
over S and Ans is given by

TS,Ans A = (A→ S → Ans)→ S → Ans

�A a = �k.�s. k a s

c ★A,B f = �k.�s. c (�a.�s′.f a k s′) s

where �A : A → TS,AnsA and ★A,B : TS,AnsA → (A → TS,AnsB) → TS,AnsB.
In the following we omit the type subscripts on � and ★. (Continuations are
included for a technical reason, namely to ensure chain-completeness of the
relations that will be used to model computations.)

4.2. A universal uniform predomain

The standard methods for solving recursive domain equations give solu-
tions that satisfy certain induction principles [32, 27]. One way of formulating
this property is that one obtains as a solution not only a domain D, but also
a sequence of “projection” functions $n on D such that each element d of D
is the limit of its projections $0(d), $1(d), etc. These functions therefore
provide a handle for proving properties about D by induction on n.

Definition 4.1.

1. A uniform predomain (A, ($n)n∈!) is a predomain A together with a
family ($n)n∈! of continuous functions from A to A⊥, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (1)
⊔

n∈!
$n = �a.⌊a⌋ (2)

$m ∘ $n = $n ∘ $m = $min(m,n) (3)

$0 = �e.⊥ . (4)

2. A uniform domain (D, ($n)n∈!) is a domain D together with a family
($n)n∈! of strict, continuous functions from D to itself, satisfying

$0 ⊑ $1 ⊑ ⋅ ⋅ ⋅ ⊑ $n ⊑ . . . (5)
⊔

n∈!
$n = idD (6)

$m ∘$n = $n ∘$m = $min(m,n) (7)

$0 = �e.⊥ . (8)
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Uniform domains are called rank-ordered cpos in earlier work by Baier
and Majster-Cederbaum [9].

Proposition 4.2. There exists a uniform predomain (V, (�n)n∈!) satisfying
the following two properties:

1. The following isomorphism holds in Cpo:

V ∼= ℤ + Loc + 1 + (V × V ) + (V + V ) + V

+ TS,AnsV + (V → TS,AnsV ) (9)

where

TS,AnsV = (V → S → Ans)→ S → Ans

S = ℕ⇀fin V

Ans = (ℤ + Err)⊥

and

Loc = ℕ0 × !
Err = 1 .

2. Abbreviate TV = TS,AnsV and K = V → S → Ans. Define the
following injection functions corresponding to the summands on the
right-hand side of the isomorphism (9):

inℤ : ℤ→ V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV )→ V

in1 : 1→ V in� : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions �n : V → V⊥ satisfy (and are deter-
mined by) the equations shown in Figure 3.

These two properties determine V uniquely, up to isomorphism in Cpo.

Proof (sketch). Proposition 3.2 of Birkedal et al. [14] gives a uniform predo-
main (V, ($n)n∈!) where V satisfies (9). The proposition furthermore gives
a uniform predomain (S, ($S

n)n∈!) as well as uniform domains (K, ($K
n )n∈!)

126



�0 = �v.⊥ (10)

�n+1(inℤ(m)) = ⌊inℤ(m)⌋ (11)

�n+1(in1(∗)) = ⌊in1(∗)⌋ (12)

�n+1(inLoc(l,∞)) = ⌊inLoc(l, n+ 1)⌋ (13)

�n+1(inLoc(l,m)) = ⌊inLoc(l,min(n+ 1,m))⌋ (14)

�n+1(in×(v1, v2)) =

{
⌊in×(v′1, v

′
2)⌋ if �n v1 = ⌊v′1⌋ and �n v2 = ⌊v′2⌋

⊥ otherwise

(15)

�n+1(in+(�i v)) =

{
⌊in+(�i v

′)⌋ if �n v = ⌊v′⌋
⊥ otherwise

(i = 1, 2) (16)

�n+1(in� v) =

{
⌊in� v′⌋ if �nv = ⌊v′⌋
⊥ otherwise

(17)

�n+1(in∀ c) = ⌊in∀(�Tn c)⌋ (18)

�n+1(in→ f) =

⌊
in→

(
�v.

{
�Tn (f v′) if �n v = ⌊v′⌋
⊥ otherwise

)⌋
(19)

Here the functions �Sn : S → S⊥ and �Kn : K → K and �Tn : TV → TV are
defined as follows:

�S0 = �s.⊥ �K0 = �k.⊥ �T0 = �c.⊥ (20)

�Sn+1(s) =

{
⌊s′⌋ if �n+1 ∘ s = �l.⌊s′(l)⌋
⊥ otherwise

(21)

�Kn+1(k) = �v.�s.

{
k v′ s′ if �n+1 v = ⌊v′⌋ and �Sn+1 s = ⌊s′⌋
⊥ otherwise

(22)

�Tn+1(c) = �k.�s.

{
c (�Kn+1 k) s′ if �Sn+1 s = ⌊s′⌋
⊥ otherwise .

(23)

Figure 3: Characterization of the projection functions �n : V → V⊥.
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and (TV, ($T
n )n∈!) where S, K, and TV are as above. Now define the func-

tions �n as shown in Figure 3, by induction on n. We must show that
(V, (�n)n∈!) is a uniform predomain.

One can show the following inequalities by mutual induction:

$n ⊑ �n+1 ⊑ $n+1

$S
n ⊑ �Sn ⊑ $S

n+1

$K
n ⊑ �Kn ⊑ $K

n+1

$T
n ⊑ �Tn ⊑ $T

n+1 .

It follows from the first inequality that (�n)n∈! is increasing. Furthermore,
the same inequality gives that

⊔
n∈! �n = �v.⌊v⌋ since

⊔
n∈!$n =

⊔
n∈!$n+1 =

�v.⌊v⌋. The remaining requirements in the definition of a uniform predomain
are easy to check.

From here on, let V and (�n)n∈! be as in the proposition above. We
furthermore use the abbreviations, notation for injections, etc. introduced
in the proposition; in particular, TV = (V → S → Ans) → S → Ans .
Additionally, abbreviate �l = inLoc(l,∞) and �nl = inLoc(l, n). Let errorAns ∈
Ans be the “error answer” and let error ∈ TV be the “error computation”:

errorAns = ⌊�2∗⌋
error = �k.�s. errorAns .

The proof of the proposition above gives:

Proposition 4.3.

1. (S, (�Sn )n∈!) is a uniform predomain.

2. (K, (�Kn )n∈!) and (TV, (�Tn )n∈!) are uniform domains.

In order to model the three operations of the untyped language that
involve references, we define the three functions alloc, lookup, and assign in
Figure 4.

Lemma 4.4. The functions alloc, lookup, and assign are continuous.

Notice that the definitions of lookup and assign depend on the projec-
tion functions �Sn . Intuitively, if one for example looks up the approximate
location (l, n + 1) in a store s, one only obtains the approximate element
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alloc : V → TV, lookup : V → TV, assign : V → V → TV.

alloc v = �k �s. k (�free(s)) (s[free(s) 7→ v])

(where free(s) = min{n ∈ ℕ ∣ n /∈ dom(s)})

lookup v = �k �s.

⎧
⎨
⎩

k s(l) s if v = �l and l ∈ dom(s)

k s′(l) s if v = �n+1
l , l ∈ dom(s),

and �Sn (s) = ⌊s′⌋
⊥Ans if v = �n+1

l , l ∈ dom(s),
and �Sn (s) = ⊥

errorAns otherwise

assign v1 v2 = �k �s.

⎧
⎨
⎩

k (in1∗) (s[l 7→ v2]) if v1 = �l and l ∈ dom(s)

k (in1∗) (s′[l 7→ v′2]) if v1 = �n+1
l , l ∈ dom(s),

and �Sn (s) = ⌊s′⌋
and �n(v2) = ⌊v′2⌋

⊥Ans if v1 = �n+1
l , l ∈ dom(s),

and (�Sn (s) = ⊥ or �n(v2) = ⊥)

errorAns otherwise

Figure 4: Functions used for interpreting reference operations.
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�Sn+1(s)(l) as result. It would not suffice to define, e.g., lookup(�n+1
l )(k)(s) =

⊥ for l ∈ dom(s), and hence avoid mentioning the projection functions:
lookup would then not be continuous.

We are now ready to define the untyped semantics.

Definition 4.5. Let t be a term and let X be a set of variables such that
FV(t) ⊆ X. The untyped semantics of t with respect to X is the continuous
function [[t]]X : V X → TV defined by induction on t in Figures 5 and 6.

Definition 4.6. Let t be a term with no free term variables or type variables.
The program semantics of t is the element [[t]]p of Ans defined by

[[t]]p = [[t]]∅∅ kinit sinit

where

kinit = �v.�s.

{
⌊�1m⌋ if v = inℤ(m)
errorAns otherwise

and where sinit ∈ S is the empty store.

Remark. The model in this section differs slightly from the BST model. First,
the projection functions have been modified in order to ease calculations.
Second, the semantic functions lookup and assign depend on projections of
entire stores, not just projections of the individual values to be looked up
or stored. This latter modification seems necessary when relations on stores
must be described by the more refined “worlds” in this article. Intuitively, the
refined worlds allow binary relations on stores that are not simply composed
from binary relations on the individual values in the stores.

5. Ultrametric spaces

We recall some basic definitions and properties about metric spaces. For
more details, see for example de Bakker and de Vink [18] or the long version
of the article about the BST model [16].

A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X. An
ultrametric space is a metric space that satisfies the ‘ultrametric inequality,’

d(x, z) ≤ max(d(x, y), d(y, z)),

and not just the weaker triangle inequality (where one has + instead of max
on the right-hand side). It might be helpful to think of the function d of an
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For every t with FV(t) ⊆ X, define the continuous [[t]]X : V X → TV by
induction on t:

[[x]]X� = �(�(x))

[[m]]X� = �(inℤm)

[[ifz t0 t1 t2]]X� = [[t0]]X� ★ �v0.

⎧
⎨
⎩

[[t1]]X� if v0 = inℤ 0
[[t2]]X� if v0 = inℤm where m ∕= 0
error otherwise

[[t1 ± t2]]X� = [[t1]]X� ★ �v1. [[t2]]X� ★ �v2.

⎧
⎨
⎩

�(inℤ(m1 ±m2))
if v1 = inℤm1
and v2 = inℤm2

error otherwise

[[()]]X� = �(in1 ∗)
[[(t1, t2)]]X� = [[t1]]X� ★ �v1. [[t2]]X� ★ �v2. �(in×(v1, v2))

[[fst t]]X� = [[t]]X� ★ �v.

{
�(v1) if v = in×(v1, v2)
error otherwise

[[snd t]]X� = [[t]]X� ★ �v.

{
�(v2) if v = in×(v1, v2)
error otherwise

[[void t]]X� = [[t]]X� ★ �v. error

[[inl t]]X� = [[t]]X� ★ �v. �(in+(�1 v))

[[inr t]]X� = [[t]]X� ★ �v. �(in+(�2 v))

(Continued in Figure 6.)

Figure 5: Untyped semantics of terms.
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[[case t0 x1.t1 x2.t2]]X� = [[t0]]X� ★ �v0.

⎧
⎨
⎩

[[t1]]X,x1(�[x1 7→ v]) if v0 = in+(�1 v)
[[t2]]X,x2(�[x2 7→ v]) if v0 = in+(�2 v)
error otherwise

[[�x.t]]X� = �(in→(�v. [[t]]X,x(�[x 7→ v])))

[[t1 t2]]X� = [[t1]]X� ★ �v1. [[t2]]X� ★ �v2.

{
g v2 if v1 = in→ g
error otherwise

[[fix f.�x.t]]X� = �(in→(fix (�gV→TV . �v. [[t]]X,f,x(�[f 7→ in→ g, x 7→ v]))))

[[fold t]]X� = [[t]]X� ★ �v. �(in� v)

[[unfold t]]X� = [[t]]X� ★ �v.

{
�(v0) if v = in� v0

error otherwise

[[Λ�.t]]X� = �(in∀ ([[t]]X�))

[[t [� ]]]X� = [[t]]X� ★ �v.

{
c if v = in∀ c
error otherwise

[[ref t]]X� = [[t]]X� ★ �v. alloc v

[[!t]]X� = [[t]]X� ★ �v. lookup v

[[t1 := t2]]X� = [[t1]]X� ★ �v1. [[t2]]X� ★ �v2. assign v1 v2

Figure 6: Untyped semantics of terms (ctd.)
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ultrametric space (X, d) not as a measure of (euclidean) distance between el-
ements, but rather as a measure of the degree of similarity between elements.

A function f : X1 → X2 from a metric space (X1, d1) to a metric space
(X2, d2) is non-expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1.
Stronger, such a function f is contractive if there exists c < 1 such that
d2(f(x), f(y)) ≤ c ⋅ d1(x, y) for all x and y in X1.

A metric space is complete if every Cauchy sequence has a limit. By
Banach’s fixed-point theorem, every contractive function from a non-empty,
complete metric space to itself has a unique fixed point.

For a given complete metric space, consider the function fix that maps
every contractive operator to its unique fixed-point. On complete ultrametric
spaces, fix is non-expansive in the following sense [5]:

Proposition 5.1. Let (X, d) be a non-empty, complete ultrametric space.
For all contractive functions f and g from (X, d) to itself, d(fix f, fix g) ≤
d(f, g).

All the metric spaces we consider satisfy the following property:

Definition 5.2. A metric space is bisected if all non-zero distances are of
the form 2−n for some natural number n ≥ 0.

The following notation is convenient when working with bisected metric
spaces: in such a space, x =n y means that d(x, y) ≤ 2−n. Notice that
each relation =n is an equivalence relation. Here transitivity follows from
the ultrametric inequality. Also, notice that a bisected metric space is one-
bounded. In other words, the relation x =0 y always holds.

Proposition 5.3. Let (X1, d1) and (X2, d2) be bisected metric spaces. A
function f : X1 → X2 is non-expansive if and only if

x1 =n x
′
1 =⇒ f(x1) =n f(x′1)

holds for all x1, x
′
1 ∈ X1 and all natural numbers n > 0.

5.1. Categories of ultrametric spaces

Let CBUltne be the category with non-empty, complete, 1-bounded ultra-
metric spaces as objects and non-expansive functions as morphisms. This
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category is cartesian closed [31, 16]; here one needs the ultrametric inequal-
ity. The terminal object is the one-point metric space. Binary products are
defined in the natural way: (X1, d1)× (X2, d2) = (X1 ×X2, dX1×X2) where

dX1×X2((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2) has the set of non-expansive functions
from (X1, d1) to (X2, d2) as the underlying set, and the ‘sup’-metric dX1→X2

as distance function: dX1→X2(f, g) = sup{d2(f(x), g(x)) ∣ x ∈ X1}. For both
products and exponentials, limits are pointwise.

Let PreCBUltne be the category of pre-ordered, non-empty, complete, 1-
bounded ultrametric spaces. Objects of this category are pairs (A,≤) con-
sisting of an object A of CBUltne and a preorder ≤ on the underlying set of A
such that the following condition holds: if (an)n∈! and (bn)n∈! are converging
sequences in A with an ≤ bn for all n, then also limn→∞ an ≤ limn→∞ bn. The
morphisms of the category are the non-expansive and monotone functions be-
tween such objects. We refer to the objects of this category as ‘continuous
preorders’.

Birkedal et al. [14] generalize the standard construction of solutions to
recursive metric-space equations [6, 19] to a large class of categories with
metric-space structure on each set of morphisms. In particular, one can
solve recursive equations in the category PreCBUltne:

Definition 5.4. A functor F : PreCBUltne
op × PreCBUltne → PreCBUltne is

locally non-expansive if d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′)) for all
f ,f ′, g, and g′ with appropriate domains and codomains. Stronger, F is
locally contractive if there exists some c < 1 such that d(F (f, g), F (f ′, g′)) ≤
c ⋅max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′.

Theorem 5.5 ([14]). Every locally contractive functor F : PreCBUltne
op ×

PreCBUltne → PreCBUltne has a unique fixed point: there exists an object Z
of PreCBUltne such that Z ∼= F (Z,Z), and if Z ′ is another such object then
Z ∼= Z ′.

6. Bohr Relations on Uniform Domains and Predomains

We introduce the notion of Bohr relations on domains and predomains.
And we equip spaces of such with complete bisected ultrametrics. To do this,
we need additional structure, we require uniform domains and predomains.
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First up, we introduce a Hausdorff metric on the admissible, downwards
closed subsets of a uniform domain. This buys us the metric on Bohr rela-
tions on a uniform domain. Then we show that there is a simple bijective
correspondence between chain-complete, downwards closed subsets of a uni-
form predomain and the admissible, downwards closed subsets of the uniform
domain obtained by lifting. We define a metric on the former by means of
this bijection and this gives us the metric on Bohr relations on a uniform
predomain.

We apply standard metric space constructions such as Hausdorff distance
and carving closed subsets out of complete metric spaces. As such, we save
some mileage by appeal to standard (mostly completeness) results. But the
route is sufficiently indirect that going directly for the Theorems 6.9 and 6.16
by brute force is a viable alternative; indeed, this was the approach of the
authors in [12].

6.1. Distance on ADSub(D)

In the following subsection (D, (�n)n∈!) denotes an arbitrary uniform
domain.

Based on the additional structure on the domain D given by the projec-
tions, we build a metric on D:

Proposition 6.1. There is a (unique) complete, bisected, ultrametric d� on
D such that for any n ∈ ! and any two d, e ∈ D we have

d =n e ⇐⇒ �n(d) = �n(e).

Proof. We define the map d� : D ×D → ℝ by mapping any two d, e ∈ D to

d�(d, e) =

{
0 if d = e

2−max{n∈!∣�n(d)=�n(e)} if d ∕= e.

Let us initially verify that this is well-defined, we need to show that for d ∕= e
we have that the set {n ∈ ! ∣ �n(d) = �n(e)} is non-empty and finite. The
former is a consequence of having �0(d) = ⊥ = �0(e). Note now that for
m ≤ n we have that �n(d) = �n(e) implies �m(d) = �m(e) since we have
�m(d) = �min(m,n)(d) = �m(�n(d)) = �m(�n(e)) = �min(m,n)(e) = �m(e). If
now the set in question was infinite, then all projections of d and e would
agree and they would be equal, contradicting our assumption.
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By similar reasoning we easily show that for any n ∈ ! and any two
d, e ∈ D we have d =n e iff �n(d) = �n(e). The map d� is bisected by
construction and for any two d, e ∈ A we easily have that d = e iff d�(d, e) = 0
and that d�(d, e) = d�(e, d). It remains to prove the strong triangle inequality
and completeness. In search for the former, we pick d, e, f ∈ D and aim to
prove

d�(d, f) ≤ max(d�(d, e), d�(e, f)).

Without loss of generality we may assume d ∕= f , d ∕= e and e ∕= f . There
are n,m ∈ ! such that d�(d, e) = 2−n and d�(d, e) = 2−m, let l = min(n,m).
But then d =l e and e =l f and so �l(d) = �l(e) = �l(f) and we have

d�(d, f) ≤ 2−l = 2−min(n,m) = max(2−n, 2−m) = max(d�(d, e), d�(e, f)).

To prove completeness we take an arbitrary Cauchy sequence (dn)n∈! in
D, we must build an d ∈ D such that limn dn = d. For each m ∈ ! we
pick an Mm ∈ ! such that we for any n ≥ Mm have that dn =m dMm . We
may without loss of generality assume that Mm ≤Mm+1 for all m ∈ !. Our
candidate for the limit now is

d =
⊔

m∈!
�m(dMm).

To verify that this least upper bound actually exists, we remark that for any
m ∈ ! we have

�m(dMm) = �m(dMm+1) ⊑ �m+1(dMm+1).

To finally prove that d is the limit we take any m ∈ ! and note that for any
n ≥Mm we have that

�m(d) = �m

(⊔

o∈!
�o(dMo)

)

=
⊔

o∈!
�min(m,o)(dMo)

=
⊔

o≥m
�m(dMo)

=
⊔

o≥m
�m(dMm)

= �m(dMm)

= �m(dn)
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which as noted implies that d =m dn and we are done.

We recollect the notion of Hausdorff distance:

Definition 6.2. The Hausdorff distance dH between two non-empty subsets
X, Y ⊆M of a 1-bounded metric space (M,d) is defined as follows:

dH(X, Y ) = max
(

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
)

The notion of Hausdorff distance is standard, cf. Definitions 2.2 and 2.6
and Lemma 2.7 of [18] for an expository presentation. We restrict to 1-
bounded metric spaces to avoid dealing with unbounded suprema and also
focus on non-empty sets to simplify the presentation.

The Hausdorff distance is not a metric on the entire set of non-empty
subsets of M as a distance of zero may fail to imply equality. But if we
restrict ourselves to the closed, non-empty subsets we get a proper metric
and completeness carries over:

Proposition 6.3. The Hausdorff distance is a 1-bounded metric on the set
Pncl(X) of non-empty and closed subsets of a 1-bounded metric space (X, d).
(Pncl(X), dH) is ultrametric and complete and if (X, d) is ultrametric and
complete, respectively.

These are textbook result, cf. Theorems 2.3 and 2.10 of [18].
Intuitively, the Hausdorff distance between X and Y is the least distance

r such that for any x ∈ X we can find y ∈ Y with mutual distance no greater
than r and vice versa. This intuition is captured in the following proposition
under the assumption that the the underlying metric space is bisected:

Proposition 6.4. Let (M,d) be a bisected metric space. Then for any non-
empty X, Y ⊆M we have that dH(X, Y ) is zero or of the form 2−n for some
n ∈ ! and for any n ∈ ! we get

X =n Y ⇐⇒ ∀x ∈ X∃y ∈ Y. x =n y ∧ ∀y ∈ Y ∃x ∈ X. x =n y.

Proof. To prove that for two non-empty X, Y ⊆ M we have dH(X, Y ) ∈
{0} ∪ { 2−m ∣ m ∈ ! } we simply observe that this set is closed under non-
empty suprema and infima.

We now proceed to prove the biimplication. Pick non-empty X, Y ⊆ M
and n ∈ ! arbitrarily. To prove that the left hand side implies the right hand
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side we assume that X =n Y , take arbitrary x ∈ X and need to find y ∈ Y
with x =n y. For the sake of deriving a contradiction we assume that this
cannot be done, i.e., that for every y ∈ Y we have d(x, y) > 2−n. By the
assumption of the proposition this would mean that d(x, y) ≥ 2−n+1 for all
y ∈ Y which would imply that

dH(X, Y ) ≥ sup
z∈X

inf
y∈Y

d(z, y) ≥ inf
y∈Y

d(x, y) ≥ 2−n+1

which contradicts our assumption that X =n Y . Proving the other conjunct
proceeds similarly and the reverse implication is standard and does not rely
on the special form of the metric.

We are now in a position to define a distance on the set ADSub(D) of
admissible and downwards closed subsets of D as the Hausdorff distance on
top of the distance d� on D.

Proposition 6.5. Any downwards closed and chain-complete subset of D is
a closed subset of the metric space (D, d�).

Proof. Let X ⊆ D be a downwards closed and chain-complete subset of D.
Let (xm)m∈! be a sequence in X with limm xm = x for some x ∈ D. We must
prove that x ∈ X too. We know that

x =
⊔

m

�m(x)

so by chain-completeness of D it suffices to show that �m(x) ∈ D holds
for any m ∈ !. But this is a consequence of D being downwards closed
since for any m ∈ ! there is Mm ∈ ! with x =m xMm which implies that
�m(x) = �m(xMm) ⊑ xMm ∈ D.

Any admissible subset of D is non-empty as it contains the least element
and so ADSub(D) ⊆ Pncl(D). By Propositions 6.3 and Proposition 6.4 we
know that dH is a complete, bisected ultrametric on Pncl(D). Hence dH is
a bisected ultrametric on ADSub(D) too, where we overload dH to mean
both the Hausdorff distance on Pncl(D) and its restriction to ADSub(D). To
obtain completeness we need the following:

Proposition 6.6. The set ADSub(D) is a closed subset of the metric space
(Pncl(D), dH).

138



Proof. Take some sequence (Xm)m∈! inADSub(D) and assume that limmXm =
X for some X ∈ Pncl(D), we must prove that X ∈ ADSub(D) too.

Let us initially prove that the least element ⊥ ∈ D is in X. For any
m ∈ ! there is Mm such that XMm =m X. And as ⊥ ∈ XMm we know that
there is is a member, xm say, of X with ⊥ =m xm by Proposition 6.4. But
then clearly limm xm = ⊥ and since X was closed we have ⊥ ∈ X.

We now prove X chain-complete. We take an increasing chain (xm)m∈!
in X and aim to show that x = ⊔mxm ∈ X. Take any n ∈ !, there is Mn

such that XMn =n X and so the increasing chain (�n(xm))m∈! is in XMn as
XMn was downwards closed. But XMn was chain-complete too and hence
�n(x) ∈ XMn and so we may find yn ∈ X with yn =n �n(x) =n x. Clearly
limn yn = x and since X was closed we have x ∈ X.

Finally take x, y ∈ D with x ⊑ y and y ∈ X, we need to show x ∈ X. For
any any m ∈ !, there is Mm such that XMm =m X and hence �m(y) ∈ XMm

as XMm was downwards closed. But then �m(x) ∈ XMm too as XMm was
downwards closed and we proceed as above.

In summa, we have the following:

Corollary 6.7. There is a (unique) complete, bisected ultrametric dH on
ADSub(D) such that for any two X, Y ∈ ADSub(D) and any n ∈ ! we have

X =n Y ⇐⇒ �n(X) ⊆ Y ∧ �n(Y ) ⊆ X.

6.2. Bohr Relations on Uniform Domains

Definition 6.8 (Bohr Relation). A relation R ⊆ D ×D on a domain D is
called a Bohr relation if for any e ∈ D we have that

R(−, e) = {d ∣ (d, e) ∈ R}

is admissible and downwards closed.

Theorem 6.9. Let (D, (�n)n∈!) be a uniform domain. There is a (unique)
complete, bisected ultrametric dB on BoℎrRel(D) such that for any two
R, S ∈ BoℎrRel(D) and any n ∈ ! we have

R =nS ⇐⇒ ∀e ∈ D. �n(R(−, e)) ⊆ S(−, e) ∧ �n(S(−, e)) ⊆ R(−, e)

The proof proceeds along the lines of the proof of Theorem 6.16 only we
appeal to Corollary 6.7 instead of Proposition 6.13.

It is not hard to prove the following:
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Proposition 6.10. Let (D, (�n)n∈!) be a uniform domain. Let (Rn)n∈! and
(Sn)n∈! be sequences in BoℎrRel(D) such that limnRn = R and limn Sn = S
for R and S also in BoℎrRel(D). We then have that

(∀n ∈ !.Rn ⊆ Sn) =⇒ R ⊆ S.

Summing up, we have that the Bohr relations on a uniform domain
equipped with the metric from Theorem 6.9 above and ordered by set-
theoretic inclusion is an object of PreCBUltne; see also Subsection 5.1.

6.3. Distance on CDSub(A)

In the following subsection, (A, (�n)n∈!) denotes an arbitrary uniform
predomain.

Now let us return to uniform predomains. Recall our goal of obtaining
a metric on the set of chain-complete and downwards closed subsets of a
uniform predomain. We employ lifting to build a a uniform domain from a
given uniform predomain and then apply the above theory.

It is well known that we may lift a predomain A to a domain A⊥ by
introducing a least element. This idea extends naturally to build uniform
domains from uniform predomains:

Proposition 6.11. Define, for m ∈ !, a new projection �′m : A⊥ → A⊥ by

�′m(d) =

{
�m(a) if d = ⌊a⌋
⊥ if d = ⊥

for each d ∈ A⊥. Then (A⊥, (�′m)m∈!) is a uniform domain.

Proof. That A⊥ is a domain and the new projections continuous are basic
results of domain theory, see, e.g., section 8.3.4 of [34]. As the projections are
strict by definition, it remains to verify the four defining axioms of uniform
domains under the assumption of the axioms of uniform predomains:

For any m ∈ ! we need initially to show �′m ≤ �′m+1. We prove this
pointwise so we take d ∈ A⊥ arbitrary. We may without loss of generality
assume d = ⌊a⌋ for some a ∈ A and we have �′m(d) = �m(a) ≤ �m+1(a) =
�′m+1(d).

We need to show ⊔m�′m = idA⊥ . As above, we take d ∈ A⊥ arbitrary and
discharge the case d = ⊥ easily. So assume d = ⌊a⌋ for some a ∈ A we get
that (⊔

m

�′m

)
(d) =

⊔

m

�m(a) =

(⊔

m

�m

)
(a) = ⌊a⌋ = d.
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For the third axiom we pick m,n ∈ ! and must show that �′m ∘ �′n =
�′n ∘ �′m = �′min(m,n). We prove this pointwise, so we take take d ∈ A⊥ and

may without loss of generality assume that d = ⌊a⌋ for some a ∈ A. But
then we need to show that

�′m(�n(a)) = �′n(�m(a)) = �min(m,n)(a)

which coincides with the third axiom of uniform predomains.
The fourth and final axiom requires �′0 to be constant bottom which is

obviously true as it holds for �0 by assumption.

We now give a bijective correspondence between the set CDSub(A) of
chain-complete, downwards closed subsets of A and the set ADSub(A⊥). For
X ⊆ A we let X⊥ denote {⌊x⌋ ∣ x ∈ X} ∪ {⊥}; this provides the bijection:

Proposition 6.12. The map (−)⊥ : P(A) → P(A⊥) establishes a bijective
correspondence between CDSub(A) and ADSub(A⊥).

Proof. Take X ∈ CDSub(A), we must prove that X⊥ ∈ ADSub(A⊥). To
prove chain-completeness we take an increasing chain (dn)n∈! in X⊥ and we
must show

⊔
n dn ∈ X⊥ too. We may without loss of generality assume that

no elements of the chain are bottom and hence we can choose an xn ∈ X
with dn = ⌊xn⌋ for all n ∈ !. But then (xn)n∈! is an increasing chain too
and we have

⊔
n xn ∈ X by assumption. By continuity we get

⊔

n

dn =
⊔

n

⌊xn⌋ =

⌊⊔

n

xn

⌋
∈ X⊥

and since ⊥ ∈ X⊥ by definition we have proved admissibility. Downwards
closure is simple, take d, e ∈ A⊥ with d ⊑ e and e ∈ X⊥, we must show
d ∈ X⊥ too. If d = ⊥ we are done, otherwise there is x ∈ A and y ∈ X with
d = ⌊x⌋ and e = ⌊y⌋ and hence x ≤ y which means that x ∈ X too.

For any two X, Y ∈ P(A) we have that X⊥ = Y⊥ readily implies X = Y .
It remains to show that for any X ∈ ADSub(A⊥) there is an Y ∈ CDSub(A)
with X = Y⊥. Unsurprisingly, we aim for

Y = {a ∈ A ∣ ⌊a⌋ ∈ X}

which obviously has Y⊥ = X since we must have ⊥ ∈ X. Continuity of ⌊−⌋
immediately yields that Y ∈ CDSub(A) and we are done.
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Proposition 6.13. There is a (unique) complete, bisected ultrametric d⊥ on
CDSub(A) such that for any two X, Y ∈ CDSub(A) and any n ∈ ! we have

X =n Y ⇐⇒ �n(X) ⊆ Y⊥ ∧ �n(Y ) ⊆ X⊥.

Proof. Given the preceding development, it should come as no surprise that
we lift the uniform predomain to obtain the uniform domain (A⊥, (�′m)m∈!)
by Proposition 6.11. A⊥ is endowed with the complete, bisected ultrametric
d� of Proposition 6.1 and ADSub(A⊥) with the complete, bisected ultramet-
ric dH of Corollary 6.7. For any two X, Y ∈ CDSub(A) we now define

d⊥(X, Y ) = dH(X⊥, Y⊥),

which yields a complete, bisected ultrametric on CDSub(A) by Proposition
6.12. Now take any two X, Y ∈ CDSub(A) and any n ∈ !, we must prove
that

X =n Y ⇐⇒ �n(X) ⊆ Y⊥ ∧ �n(Y ) ⊆ X⊥.

Assume that we have X =n Y , i.e., that X⊥ =n Y⊥. We take x ∈ X and
must prove that �n(x) ∈ Y⊥. We have ⌊x⌋ ∈ X⊥ and hence there is y ∈ Y⊥
such that ⌊x⌋ =n y. As Y⊥ is downwards closed we have �′n(y) ∈ Y⊥ and so

�n(x) = �′n(⌊x⌋) = �′n(y)

and we have proved the desired; proving the other conjunct proceeds simi-
larly.

Going for the other implication, we assume that �n(X) ⊆ Y⊥ ∧ �n(Y ) ⊆
X⊥ and must prove X =n Y , i.e., that X⊥ =n Y⊥. So take x ∈ X⊥, we must
produce y ∈ Y⊥ with x =n y. We may without loss of generality assume
x ∕= ⊥. So there is x′ ∈ X with x = ⌊x′⌋ and our assumption buys us that
�′n(x) = �n(x′) ∈ Y⊥. But we obviously have �′n(x) =n x and are done; the
symmetric property is proved similarly.

6.4. Bohr Relations on Uniform Predomains

Definition 6.14 (Bohr Relation). A relation R ⊆ A×A on a predomain A
is called a Bohr relation if for any b ∈ A we have that

R(−, b) = {a ∣ (a, b) ∈ R}

is chain-complete and downwards closed.
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As the defining property of Bohr relations is preserved by set-theoretic
intersection, we easily get the following closure operator:

Proposition 6.15. For any relation R ⊆ A× A we have that

R =
∩

R⊆S⊆A×A, S Bohr

S

is a Bohr relation, furthermore it is least such that contain R.

Theorem 6.16. Let (A, (�n)n∈!) be a uniform predomain. There is a (unique)
complete, bisected ultrametric dB on BoℎrRel(A) such that for any two
R, S ∈ BoℎrRel(A) and any n ∈ !

R =nS ⇐⇒[
∀(a, b) ∈ R. �n(a) = ⊥ ∨ (∃a′ ∈ A. �n(a) = ⌊a′⌋ ∧ (a′, b) ∈ S)

]
∧[

∀(a, b) ∈ S. �n(a) = ⊥ ∨ (∃a′ ∈ A. �n(a) = ⌊a′⌋ ∧ (a′, b) ∈ R)
]
.

Proof. Consider the space of all functions A → CDSub(A). We may define
a distance dF between any two members f, g ∈ A → CDSub(A) of this set
by setting

dF (f, g) = sup
b∈A

d⊥(f(b), g(b))

and it is a textbook result that this constitutes a complete ultrametric as
this is the case for CDSub(D) by Proposition 6.13. See, e.g., Lemmas 1.24
and 1.28 of [18] for details. As d⊥ is bisected and the set {0}∪{2−n ∣ n ∈ !}
is closed under non-empty suprema we have that dF is bisected as well, and
we may replace the supremum by the maximum in the above definition. We
now define the map Φ : BoℎrRel(A)→ (A→ CDSub(A)) by setting

Φ(R)(b) = R(−, b)

for any R ∈ BoℎrRel(A) and any b ∈ A. This is well-defined by the definition
of Bohr relations and furthermore a bijection. We define the distance dB
between two R, S ∈ BoℎrRel(A) by setting

dB(R, S) = dF (Φ(R),Φ(S))

and by a bijection argument we have that dB is a complete, bisected ultra-
metric on BoℎrRel(A).
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Take now two R, S ∈ BoℎrRel(A) and any n ∈ ! and assume that we
have R =n S. Take (a, b) ∈ R, assume that �n(a) = ⌊a′⌋ for some a′ ∈ A,
we must prove that (a′, b) ∈ S. By definition we have Φ(R) =n Φ(S) which
means that

R(−, b) = Φ(R)(b) =n Φ(S)(b) = S(−, b)
and since a ∈ R(−, b) we have �n(a) ∈ (S(−, b))⊥ by Proposition 6.13.
But since �n(a) = ⌊a′⌋ we must have a′ ∈ S(−, b), i.e., S(a′, b). Proving the
second conjunct of the right hand side of the biimplication proceeds similarly.

So assume now that the right hand side of the desired biimplication holds,
we must prove that R =n S. This means proving Φ(R) =n Φ(S) which again
comes down to proving that for any b ∈ A we have

R(−, b) = Φ(R)(b) =n Φ(S)(b) = S(−, b)

So take a ∈ R(−, b), i.e., R(a, b) holds. We must by Proposition 6.13 prove
that �n(a) ∈ (S(−, b))⊥ but this is exactly what the first disjunct of the right
hand side gives us. And the second disjunct similarly buys us the converse
implication.

As was the case for uniform domains, we can prove the following:

Proposition 6.17. Let (A, (�n)n∈!) be a uniform predomain. Let (Rn)n∈!
and (Sn)n∈! be sequences in BoℎrRel(A) such that limnRn = R and limn Sn =
S for R and S also in BoℎrRel(A). We then have that

(∀n ∈ !.Rn ⊆ Sn) =⇒ R ⊆ S.

As concluded for Bohr Relations on uniform domains, we also have that
the Bohr relations on a uniform predomain equipped with the metric from
Theorem 6.16 above and ordered by set-theoretic inclusion is an object of
PreCBUltne; we refer to Subsection 5.1 for a definition of this category.

7. Building Worlds

In this section we build the space of worlds to be used in our Kripke
logical relation. The space of worlds is obtained using Theorem 5.5, i.e., as
the fixed point of a functor on certain pre-ordered metric spaces.
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7.1. M-categories

Since we aim to apply Theorem 5.5 we need to keep track of whether the
functors we build are locally contractive. To that end, it is most convenient to
introduce the general M -categories of Birkedal et al. [14]; these are categories
such as CBUltne or PreCBUltne that have a metric-space structure on each
hom-set. This subsection can be skipped on a first reading: one can then
read the definitions of the functors in the following sections while taking for
granted that they do satisfy the required technical conditions.

Definition 7.1. An M -category is a category C where each hom-set C(A,B)
is equipped with a distance function turning it into a non-empty, complete,
1-bounded ultrametric space, and where each composition function

∘ : C(B,C)× C(A,B)→ C(A,C)

is non-expansive with respect to these metrics. (Here the domain of such a
composition function is given the product metric.)

In other words, anM -category is a category where each hom-set is equipped
with a metric which turns it into an object in CBUltne; furthermore, each com-
position function must be a morphism in CBUltne. We observe that if C is an
M -category, then so are Cop (with the same metric on each hom-set as in C)
and Cop × C (with the product metric on each hom-set)

Proposition 7.2 ([14]). CBUltne and PreCBUltne are M-categories when each
hom-set is given the ‘sup’-metric:

dC(X1,X2)(f, g) = sup{dX2(f(x), g(x)) ∣ x ∈ X1}

Definition 7.3. A functor F : C → D between M-categories C and D is
called locally "-Lipschitz for some " ≥ 0 if, for all morphisms f, g : A → B
of C, we have

d(F (f), F (g)) ≤ " ⋅ d(f, g),

where the leftmost distance is in the hom-set D(F (A), F (B)) and the right-
most is in the hom-set C(A,B).

We also say that the functor has the local Lipschitz constant ". Notice that
being locally contractive and locally non-expansive comes down to having a
local Lipschitz constant strictly less than one and less than or equal to one,
respectively.
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The following are compositional rules for computing the local Lipschitz
constant. They are stated in their most general form, notice in particular
that the shrinking functor of Proposition 7.9 cannot readily be generalized
to arbitrary M -categories. We omit all proofs as they are quite simple.

Proposition 7.4 (Identity Functor). Let C be an M-category. The identity
functor on C is locally 1-Lipschitz.

Proposition 7.5 (Constant Functor). Let C and D be M-categories and
let D be a fixed object of D. The constant functor that maps objects and
morphisms of C to D and 1D respectively is locally 0-Lipschitz.

Proposition 7.6 (Functor Pairing). Let C, D and ℰ be M-categories and
let F : C → D and G : C → ℰ be locally "-Lipschitz and locally �-Lipschitz
respectively. Then ⟨F,G⟩ : C → D × ℰ is locally max{�, "}-Lipschitz.

Proposition 7.7 (Hom Functor). Let C be an M-category. The hom functor
(−) → (−) : Cop × C → CBUltne defined in the standard way is locally 1-
Lipschitz.

Note that this is not, in general, an exponential. Rather, we just return
the set of morphisms equipped with the metric structure it has according to
the definition of M -categories.

Proposition 7.8 (Functor Composition). Let C, D and ℰ be M-categories
and let F : C → D and G : D → ℰ be locally "-Lipschitz and locally �-
Lipschitz respectively. Then G ∘ F : C → ℰ is locally �"-Lipschitz.

Proposition 7.9 (Shrinking Functor). For any 0 < " ≤ 1 we have that the
functor " ⋅ (−) : CBUltne → CBUltne that multiplies all distances by " is locally
"-Lipschitz.

Proposition 7.10 (Product Functor). The standard metric product functor
(−)× (−) : CBUltne × CBUltne → CBUltne is locally 1-Lipschitz.

Proposition 7.11 (Finite Maps Functor). Let X be an arbitrary set. The
functor X ⇀fin (−) : CBUltne → CBUltne is locally 1-Lipschitz. It assigns
the distance 1 to maps with different domains and the pointwise maximum
otherwise, the action on morphisms is the obvious.
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7.2. The Space W of Worlds

We now turn to constructing the space of worlds. First, for any set X we
let ℒ(X) denote the set {(x, L) ∈ X ×P(X) ∣ x ∈ L} of pairs of elements of
X and subsets of X such that the former belongs to the latter. It is obviously
non-empty provided that X is.

Proposition 7.12. The functor I : PreCBUltne
op → CBUltne defined by

ℒ(P(V ))×
(
P(V )→ 1

2
[− → BohrRel(S)]

)

is locally 1
2
-Lipschitz. And so is the functor W : PreCBUltne

op → CBUltne
defined by

P(Loc)× P(Loc)× (ℕ⇀fin I(−)) .

The proof is a simple application of the above propositions. But the def-
initional one liners call for a few comments: We implicitly equip ℒ(P(V )),
P(V ) and P(Loc) with the discrete metric and, as such, consider them ob-
jects of CBUltne. The rightmost arrow in the definition of the functor I is the
standard hom functor on PreCBUltne, i.e., it is the set of all non-expansive
and monotone functions equipped with the supremum metric (see Proposi-
tion 7.7). And the arrow preceding that is the standard hom functor on
CBUltne but reduces to the full function space because of the discrete metric
on P(V ).

We need some notation to work with the output of the functors; we strive
for compatibility with the nomenclature of LADR [21]. Let A be an object
of PreCBUltne and let Δ ∈ W (A), we write

Δ = (Δ.&1,Δ.&2,Δ.ℐ)

for Δ.&1,Δ.&2 ⊆ Loc and Δ.ℐ ∈ ℕ⇀fin I(A). Intuitively, a world2 Δ oversees
pairs of stores. It has a set of left locations Δ.&1 and right locations Δ.&2 that
keep track of the allocated locations in the left and right hand side stores,
respectively. Also it has an island map Δ.I that holds islands, each of which
manages separate parts of the stores.

2Outside of this subsection, we speak of worlds only as the results of applying W to the
specific fixed-point Ŵ that we produce below, not to an arbitrary object of PreCBUltne.
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For Θ ∈ I(A) we write

Θ = (Θ.CP ,Θ.PL,Θ.HL)

for Θ.CP ⊆ V , Θ.PL ⊆ P(V ) and Θ.HL ∈ P(V )→ 1
2

[A→ BohrRel(S)]. An
island3 Θ has three components, the current population Θ.CP , the population
law Θ.PL and the heap law Θ.HL. The population captures the current state
of the island, it may vary over time, but only within the bonds given by the
population law: because of our use of ℒ(P(V )) instead of P(V )× P(P(V ))
in the definition of the functor I we get that Θ.CP ∈ Θ.PL always holds.
The heap law provides the set of pairs of heaps that the island accepts; the
idea is to feed it the current population and the current world.

Returning to the technical development, we have a locally 1
2
-Lipschitz

functor W : PreCBUltne
op → CBUltne and are almost ready to apply the

fixed-point existence theorem that will give us the space of worlds W . First
we must remedy one shortcoming, though: the functor maps into CBUltne
so we must equip the images under W of objects with continuous preorders;
this will give us a functor that maps into PreCBUltne.

Definition 7.13. Let A be an object of PreCBUltne. For any two Δ1,Δ2 ∈
W (A) we say that Δ2 extends Δ1 and we write Δ1 ⊑ Δ2 if we have

Δ1.&1 ⊆ Δ2.&1 ∧Δ1.&2 ⊆ Δ2.&2 ∧ ∀n ∈ dom(Δ1.ℐ). Δ1.ℐ(n) ⊑ Δ2.ℐ(n),

where we write Θ1 ⊑ Θ2 for any two Θ1,Θ2 ∈ I(A) if we have

Θ1.CP ⊆ Θ2.CP ∧Θ1.PL = Θ2.PL ∧Θ1.HL = Θ2.HL.

On the conceptual level, world extension has two separate components.
We may add new islands to the island map, often to manage newly allocated
store; there are no restrictions on these new islands with respect to the
old world. This is known as width extension in LADR. But the existing
islands can also change: their populations may grow within the bounds of the
population law. The population and heap laws are themselves immutable,
but as we apply the heap law to the current population, it may permit
different pairs of stores in the old and new worlds. Such population growth
loosely corresponds to a state change of some existing object in the store; it
is termed depth extension in LADR.

3As for worlds, an island, in general, belongs to the result of applying I to the specific
fixed point Ŵ built below.
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Proposition 7.14. For any object A of PreCBUltne we have that the above
ordering on W (A) is a continuous preorder; for any morphism f : B → A of
PreCBUltne we have that W (f) : W (A)→ W (B) is monotone with respect to
this ordering.

Proof. The ordering is easily a preorder. To show that it is a continu-
ous preorder we take sequences (Δn)n∈! and (Γn)n∈! in W (A) with limits
limn Δn = Δ and limn Γn = Γ such that Δn ⊑ Γn for all n ∈ !; we must
show that we have Δ ⊑ Γ too. We now pick an m ∈ ! such that Δm =1 Δ
and that Γm =1 Γ. But then by our construction we get

Δ.&1 = Δm.&1 ⊆ Γm.&1 = Γ.&1,

and by a similar argument we get that Δ.&2 ⊆ Γ.&2 and dom(Δ.ℐ) ⊆ dom(Γ.ℐ).
Also, for any n ∈ dom(Δ.ℐ) we have that Δm.ℐ(n) =1 Δ.ℐ(n) and Γm.ℐ(n) =1

Γ.ℐ(n). But then

Δ.ℐ(n).CP = Δm.ℐ(n).CP ⊆ Γm.ℐ(n).CP = Γ.ℐ(n).CP

and also Δ.ℐ(n).PL = Γ.ℐ(n).PL. Assume now that we have Δ.ℐ(n).HL ∕=
Γ.ℐ(n).HL for some n ∈ dom(Δ.ℐ), this means that we can pick l ∈ ! such
that Δ.ℐ(n).HL ∕=l Γ.ℐ(n).HL. Pick k ∈ ! such that Δk =l Δ and that
Γk =l Γ. But then

Δ.ℐ(n).HL =l Δk.ℐ(n).HL = Γk.ℐ(n).HL =l Γ.ℐ(n).HL

which is a contradiction.
We proceed to prove the second property. For f : B → A in PreCBUltne

and Δ ∈ W (A) arbitrary we can write out the action of the functor W on
the morphism f as follows:

W (f)(Δ.&1,Δ.&2,Δ.ℐ) =
(
Δ.&1,Δ.&2, �n ∈ dom(Δ.ℐ). I(f)(Δ.ℐ(n))

)
.

For Θ ∈ I(A) arbitrary we can similarly write out the action of the functor
I on the morphism f as follows:

I(f)(Θ.CP ,Θ.PL,Θ.HL) =
(
Θ.CP ,Θ.PL, F (f)(Θ.HL)

)
,

where F : PreCBUltne
op → CBUltne is a shorthand for the component functor

P(V )→ 1
2
(− → BohrRel(S)). From these observations it is immediate that

W (f) is monotone with respect to the above ordering.
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Corollary 7.15. We may extend W : PreCBUltne
op → CBUltne to a locally

1
2
-Lipschitz functor W : PreCBUltne

op → PreCBUltne by equipping the images
of objects with the continuous preorder from Definition 7.13.

Definition 7.16 (Worlds). Let Ŵ be an object such that Sq : W (Ŵ) ∼=
Ŵ holds in PreCBUltne; existence (and uniqueness up to isomorphism) is
guaranteed by Theorem 5.5. We write W for W (Ŵ).

We conclude with a remark on the metric on worlds. Reasoning in the
finished model often require us to define non-expansive maps out of the space
W of worlds, this is the case, e.g., when we build new types as well as
heap laws for new islands. An example of this is found in Section 10. It is
worthwhile to note, that in many cases we have non-expansiveness for free.

For any two worlds Δ1,Δ2 ∈ W with Δ1 =1 Δ2, it is immediate by our
use of discrete metric spaces and the finite maps functor in the construction
of the functor W that we have

Δ1.&1 = Δ2.&1, Δ1.&2 = Δ2.&2, dom(Δ1.ℐ) = dom(Δ2.ℐ)

and for any n in the shared domain of the island maps we have

Δ1.ℐ(n).CP = Δ2.ℐ(n).CP , Δ1.ℐ(n).PL = Δ2.ℐ(n).PL,

again because of our use of the discrete metric on ℒ(P(V )). This means that
we cannot invalidate non-expansiveness by inspection of these components,
or, phrased differently, if we never ‘project out’ any heap laws then we have
non-expansiveness automatically. If, however, we make use of the heap laws,
then we must proceed with caution; see, e.g., the proof Proposition 8.2 for
an example of this.

8. Logical Relation

We now construct a Kripke logical relation that uses the space of worldsW
obtained above. First up is the definition of types:

Definition 8.1 (Types). The space of types is T = W →mon BohrRel(V ),
i.e., the set of non-expansive and monotone functions fromW to BohrRel(V ).
It comes equipped with the supremum metric, i.e., for �, � ∈ T and n ∈ !
we have

� =n � ⇐⇒ ∀Δ ∈ W . �(Δ) =n �(Δ).
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This is well defined and the metric a complete, bisected ultrametric by
Proposition 7.2.

We need quite a few different function spaces and introduce some section-
specific notation to help out. An arrow between metric spaces denotes the set
of non-expansive maps as, e.g., in T → T . If the metric spaces are ordered
and the arrow has the monotonicity subscript then we restrict attention to
functions that are both non-expansive and monotone; an example is the
definition of the space T of types above. A superscript 1 on the arrow, on the
other hand, indicate that we only require the maps to be one-expansive, i.e.,
Lipschitz continuous with Lipschitz constant 2. This is a weaker requirement
than non-expansive; in the context of bisected metric spaces it means that
elements that are (n+ 1)-equal are mapped to elements that are n-equal, for
all n ∈ !. An example is W →1 BohrRel(S) which we shall meet soon. (In
general, a one-expansive function from X to Y is the same as a non-expansive
function from X to 1

2
Y .)

There is some room for variation here. If we modified the functor I
that builds the islands of worlds by replacing 1

2
[− →mon BohrRel(S)] with

1
2
(−) →mon BohrRel(S), i.e., by requiring one-contractive heap laws, then

the operations states , cont and comp defined below would be non-expansive.
But then the types would be one-contractive too, and we would rely on that
to prove the allocation case of the fundamental theorem of logical relations.
Similar considerations apply to the slight change of the projection functions
compared to BST, see also the discussion at the end of Section 4; none of
the variations appear superior to the other, however.

The full definition of the logical relation is shown in Figures 7 and 8.
In the rest of this section we show that the logical relation is indeed well-
defined. This essentially amounts to checking that all relations involved in the
definition are Bohr relations, and that all functions involved in the definition
are non-expansive or one-expansive and possibly monotone. In particular,
the clause for recursive types is then well-defined by Banach’s fixed-point
Theorem.

In many (but not all) of the cases where we prove non-expansiveness it
is actually possible to prove the stronger property of contractiveness. But
this would clutter the picture, and so we skip it as we do not need this in
the overall development. Remember also that the sets of values and states,
V and S, are uniform predomains whereas the sets of computations and
continuations, TV and K, are uniform domains, see Propositions 4.2 and
4.3. In particular, we have Bohr relations with metric on the former two
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according to Definition 6.14 and Theorem 6.16 whereas the Bohr relations
with metric on the latter two follow Definition 6.8 and Theorem 6.9.

We focus on the cases involving states and references. The remaining
cases are essentially as in Birkedal et al. [16], where more details can be
found.

8.1. Relations on states, continuations and computations

Proposition 8.2. The operator states defined in Figure 8 satisfies states ∈
W →1 BohrRel(S).

Proof. We must show that for Δ ∈ W we have that states(Δ) ∈ BoℎrRel(S),
and we must also show that states : W → BohrRel(S) is one-expansive.
The first property is a consequence of the definition of order on the set of
states S, the finiteness of dom(Δ.ℐ) and the fact that for any n ∈ dom(Δ.ℐ)
we have that Δ.ℐ(n).HL(Δ.ℐ(n).CP) maps into BohrRel(S). As for one-
expansiveness, assume that Δ1 =n+1 Δ2. We must show that states(Δ1) =n

states(Δ2). By the construction of worlds, we have

Δ1.&1 = Δ2.&1, Δ1.&2 = Δ2.&2, and dom(Δ1.ℐ) = dom(Δ2.ℐ) .

Also we get for all m ∈ dom(Δ1.ℐ) = dom(Δ2.ℐ) that Δ1.ℐ(m).CP =
Δ2.ℐ(m).CP and hence that

Δ1.ℐ(m).HL(Δ1.ℐ(m).CP) =n+1 Δ2.ℐ(m).HL(Δ2.ℐ(m).CP),

in the space 1
2
(Ŵ → BohrRel(S)). But this means that we only have n-

equality in the space Ŵ → BohrRel(S), and as Sq(Δ1) =n+1 Sq(Δ2) holds
too, we get

Δ1.ℐ(m).HL(Δ1.ℐ(m).CP)(Sq(Δ1)) =n Δ2.ℐ(m).HL(Δ2.ℐ(m).CP)(Sq(Δ2)) .

Now let (s1, s2) ∈ states(Δ1) and assume that �Sn (s1) = ⌊s′1⌋ ∕= ⊥. We
must show that (s′1, s2) ∈ states(Δ2). But this follows easily from the above
equation.

It is worthwhile to note that it is the (necessary) use of the shrinking
factor 1

2
in the construction of worlds in Section 7 that prevents us from

proving non-expansiveness. This will haunt us throughout this subsection.

Lemma 8.3. For all n ∈ ! and all Δ1,Δ2,Δ
′
1 ∈ W with Δ1 =n Δ2 and

Δ1 ⊑ Δ′1 there is Δ′2 ∈ W with Δ′1 =n Δ′2 and Δ2 ⊑ Δ′2.
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For Ξ ⊢ � we define the non-expansive [[� ]]Ξ : T Ξ → T by induction on � :

[[�]]Ξ' = '(�)

[[int]]Ξ' = �Δ. {(inℤn, inℤn) ∣ n ∈ ℤ}
[[1]]Ξ' = �Δ. {(in1∗, in1∗)}

[[�1 × �2]]Ξ' = [[�1]]Ξ'× [[�2]]Ξ'

[[0]]Ξ' = �Δ. ∅
[[�1 + �2]]Ξ' = [[�1]]Ξ'+ [[�2]]Ξ'

[[ref � ]]Ξ' = ref ([[� ]]Ξ')

[[∀�.� ]]Ξ' = �Δ. {(in∀c1, in∀c2) ∣ ∀� ∈ T . ∀Δ′ ⊒ Δ.
(c1, c2) ∈ comp([[� ]]Ξ,�'[� 7→ �])(Δ′)}

[[��.� ]]Ξ' = fix (��. �Δ. {(in�v1, in�v2) ∣ (v1, v2) ∈ [[� ]]Ξ,�'[� 7→ �](Δ)})
[[�1 → �2]]Ξ' = [[�1]]Ξ'→ [[�2]]Ξ'

The following operators and elements are used above:

× : T × T → T comp : T → (W →1 BohrRel(TV ))

+ : T × T → T cont : T → (W →1
mon BohrRel(K))

ref : T → T states :W →1 BohrRel(S)

→ : T × T → T RAns ∈ BohrRel(Ans)

(�1 × �2)(Δ) = { (in×(v1, v2), in×(v′1, v
′
2)) ∣ (v1, v

′
1) ∈ �1(Δ) ∧ (v2, v

′
2) ∈ �2(Δ) }

(�1 + �2)(Δ) = { (in+(�1 v1), in+(�1 v
′
1)) ∣ (v1, v

′
1) ∈ �1(Δ) } ∪

{ (in+(�2 v2), in+(�2 v
′
2)) ∣ (v2, v

′
2) ∈ �2(Δ) }

(�1 → �2)(Δ) = { (in→ f, in→ f
′) ∣ ∀Δ′ ⊒ Δ. ∀(v, v′) ∈ �(Δ′) .(f v, f ′ v′) ∈ comp(�2)(Δ′) }

comp(�)(Δ) = { (c, c′) ∣ ∀(k, k′) ∈ cont(�)(Δ).
∀(s, s′) ∈ states(Δ). (c k s, c′ k′ s′) ∈ RAns }

cont(�)(Δ) = { (k, k′) ∣ ∀Δ′ ⊒ Δ.∀(v, v′) ∈ �(Δ′).
∀(s, s′) ∈ states(Δ′). (k v s, k′ v′ s′) ∈ RAns }

RAns = { (⊥, a) ∣ a ∈ Ans} ∪ { (⌊�1m⌋, ⌊�1m⌋) ∣ m ∈ ℤ }

(Continued in Figure 8.)

Figure 7: Logical relation.
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Definition of ref : T → T

ref (�)(Δ) =
{

(�l1 , �l2) ∣ ∀Δ′ ⊒ Δ. l1 ∈ Δ′.&1 ∧ l2 ∈ Δ′.&2 ∧
∀(s1, s2) ∈ states(Δ′).

(s1(l1), s2(l2)) ∈ �(Δ′) ∧
∀(v1, v2) ∈ �(Δ′).

(s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(Δ′)
}
∪{

(�n+1
l1

, �l2) ∣ ∀Δ′ ⊒ Δ. l1 ∈ Δ′.&1 ∧ l2 ∈ Δ′.&2 ∧
∀(s1, s2) ∈ states(Δ′). �n(s1) = ⌊s′1⌋ =⇒

(s′1(l1), s2(l2)) ∈ �(Δ′) ∧
∀(v1, v2) ∈ �(Δ′). �n(v1) = ⌊v′1⌋ =⇒

(s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(Δ′)
}
.

Definition of states :W →1 BohrRel(S)

states(Δ) = {(s1, s2) ∣ dom(s1) = Δ.&1 ∧ dom(s2) = Δ.&2 ∧ (s1, s2) ∈ sep(Δ)}

where sep(Δ) is an auxiliary relation on S defined by

(s1, s2) ∈ sep(Δ) ⇐⇒ ∃�1, �2 : dom(Δ.ℐ)→ S.

s1 =
⊎

n∈dom(Δ.ℐ)

�1(n) ∧ s2 =
⊎

n∈dom(Δ.ℐ)

�2(n) ∧

∀n ∈ dom(Δ.ℐ).

(�1(n), �2(n)) ∈ Δ.ℐ(n).HL(Δ.ℐ(n).CP )(Sq(Δ))

Figure 8: Logical relation (ctd.)
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Proposition 8.4. The operator cont defined in Figure 7 satisfies cont ∈
T → (W →1

mon BohrRel(K)).

Proof. We must show that for all � ∈ T and all Δ ∈ W we have that
cont(�)(Δ) ∈ BohrRel(K). We must furthermore show that cont : T →
(W → BohrRel(S)) is non-expansive in the first argument and one-expansive
in the second argument, and that for all � ∈ T and all Δ1,Δ2 ∈ W we have
that

Δ1 ⊑ Δ2 =⇒ cont(�)(Δ1) ⊆ cont(�)(Δ2).

The first property is an immediate consequence of the fact that RAns is itself
a Bohr relation on the domain ℤ⊥. The expansiveness properties follow from
Proposition 8.2, Lemma 8.3, and the definition of �Kn in Figure 3. Mono-
tonicity is immediate from the quantification over future worlds.

Proposition 8.5. The operator comp defined in Figure 7 satisfies comp ∈
T → (W →1 BohrRel(TV )).

The proof proceeds just as the proof of Proposition 8.4, except that one
does not need to check monotonicity. This definition is, by the way, the
exact point where we benefit from a continuation passing style semantics.
The obvious direct style definition would not have continuations but rather
call for some future world in which the results of the computations should be
suitably related; this, however, is inherently chain-incomplete, and we would
have a hard time producing relations in BohrRel(TV ).

8.2. Some Type Constructors

Proposition 8.6. The operator ref defined in Figure 8 satisfies ref ∈ T → T .

Proof. Note first that, in both clauses, we quantify over pairs of states
(s1, s2) ∈ states(Δ′); in particular we that l1 ∈ Δ′.&1 = dom(s1) and l2 ∈
Δ′.&2 = dom(s2) by the definition of states(Δ′) and so we only read and
write allocated locations.

We must now show that for all � ∈ T and all Δ ∈ W we have that
ref (�)(Δ) ∈ BohrRel(V ). Furthermore, we must show that ref : T → W →
BohrRel(V ) is non-expansive in both arguments, and that for all � ∈ T and
all Δ1,Δ2 ∈ W we have that

Δ1 ⊑ Δ2 =⇒ ref (�)(Δ1) ⊆ ref (�)(Δ2).
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The first property is a consequence of the fact that states(Δ) and �(Δ) are
themselves Bohr relations for all Δ ∈ W . Monotonicity is immediate from the
quantification over future worlds. Let us, however, prove non-expansiveness
in some detail.

Let n ∈ !, �1, �2 ∈ T and Δ1,Δ2 ∈ W be given and assume that
�1 =n+1 �2 and Δ1 =n+1 Δ2. We aim to show that

ref (�1)(Δ1) =n+1 ref (�2)(Δ2) .

Take (v1, v2) ∈ ref (�1)(Δ1) and assume that �n+1(v1) = ⌊v′1⌋ holds, we must
prove (v′1, v2) ∈ ref (�2)(Δ2). There must be l2 ∈ Loc such that v2 = �l2 and
there must be l1 ∈ Loc and m ≤ n such that v′1 = �m+1

l1
. Since ref (�1)(Δ1) ∈

BohrRel(V ) we have (�m+1
l1

, �l2) ∈ ref (�1)(Δ1). We set forth to prove that

we have (�m+1
l1

, �l2) ∈ ref (�2)(Δ2) too.
According to definition, we take Δ′2 ⊒ Δ2 and must show that l1 ∈ Δ′2.&1

and l2 ∈ Δ′2.&2. By Lemma 8.3 we pick Δ′1 ⊒ Δ1 with Δ′1 =n+1 Δ′2 and get
that l1 ∈ Δ′1.&1 = Δ′2.&1 and l2 ∈ Δ′1.&2 = Δ′2.&2. We now pick (s1, s2) ∈
states(Δ′2) and assume that �m(s1) = ⌊s′1⌋ and get that (s′1, s2) ∈ states(Δ′1)
since states(Δ′1) =m states(Δ′2). Since �m(s′1) = ⌊s′1⌋ we furthermore get
(s′1(l1), s2(l2)) ∈ �1(Δ′1) and

∀(v1, v2) ∈ �1(Δ′1). �m(v1) = ⌊v′1⌋ =⇒
(s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(Δ′1).

Now �m(s′1(l1)) = ⌊s′1(l1)⌋ and so (s′1(l1), s2(l2)) ∈ �2(Δ′2) as �1(Δ′1) =n+1

�2(Δ′2). Take now (v1, v2) ∈ �2(Δ′2) and assume that �m(v1) = ⌊v′1⌋, we must
show that (s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(Δ′2). But since (v′1, v2) ∈ �1(Δ′1)
and �m(v′1) = ⌊v′1⌋ we get (s′1[l1 7→ v′1], s2[l2 7→ v2]) ∈ states(Δ′1) which in
combination with the fact that �m(s′1[l1 7→ v′1]) = ⌊s′1[l1 7→ v′1]⌋ gives us the
desired.

This interpretation of reference types differs markedly from ADR. The
interpretation above is extensional whereas the one in ADR is intensional: it
requires that the world must have an island that looks exactly as if it had
been added according to the proof of the case of allocation in the proof of the
fundamental theorem of logical relations. The intensional definition in ADR
means that we may fail to recognize values as having reference type even
though they, for some reason, behave just as references. The extensional def-
inition above does, on the other hand, only support lookup and assignment.
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It would not suffice to model a language with equality testing on references
such as the language in ADR. We conjecture that some notion of bijective
bookkeeping could be added to remedy this, but we have not pursued the
matter.

Proposition 8.7. The operator→ defined in Figure 7 belongs to T ×T → T .

We omit a detailed proof but note that the one-expansiveness (in the
second argument) of the operator comp is cancelled out by the index-shift in
projections, see Equation 19 in Figure 3. A similar story can be told about
the interpretation of universal types and reference types; in the latter case we
do not, however, rely on the projections but rather on the index-shift from
�n+1
l1

to �n in the second clause of the definition of ref . In some sense, this
is as far as the one-expansiveness caused by the shrinking factor gets, confer
the comment following the proof of Proposition 8.2.

Proposition 8.8. The operators × and + defined in Figure 7 belong to
T × T → T .

8.3. Interpretation of Types

Theorem 8.9. For all Ξ ⊢ � we have that [[� ]]Ξ : T Ξ → T defined by induc-
tion on � according to Figure 7 is well-defined and non-expansive. Here T Ξ

is equipped with the product metric.

Proof. This is immediate from Propositions 8.6, 8.7, and 8.8 for all except
universal and recursive types. And verifying the claim for Ξ ⊢ ∀�.� under
the assumption that it holds for Ξ, � ⊢ � is not hard.

Consider now the case of Ξ ⊢ ��.� . We assume that [[� ]]Ξ,� : T Ξ,� → T
is well defined and non-expansive. For ' ∈ T Ξ we define

Φ' = �� ∈ T . �Δ ∈ W . {(in�v1, in�v2) ∣ (v1, v2) ∈ [[� ]]Ξ,�'[� 7→ �](Δ)}

and it is not hard to see that this constitutes a contractive map Φ' : T → T .
This means that fix (Φ') is well defined by Banach’s fixed point theorem.
Furthermore we have that for any two '1, '2 ∈ T Ξ with '1 =n '2 for some
n ∈ ! we get Φ'1 =n+1 Φ'2 . It then follows from Proposition 5.1 that
fix (Φ'1) =n+1 fix (Φ'2). In summa, [[��.� ]]Ξ : T Ξ → T is well-defined and
contractive.
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9. Fundamental Theorem of Logical Relations

This definition with ensuing lemma will do much of the bookkeeping for
us in the proofs to come:

Definition 9.1. For �, � ∈ T and Δ ∈ W we define a relation on V → TV
by

�→Δ � = {(f1, f2) ∣ ∀Δ′ ⊒ Δ. ∀(v1, v2) ∈ �(Δ′). (f1v2, f2v2) ∈ comp(�)(Δ′).

Lemma 9.2. For � ∈ T , Δ ∈ W and (v1, v2) ∈ �(Δ) we have

(� v1, � v2) ∈ comp(�)(Δ),

and for �, � ∈ T , Δ ∈ W, (c1, c2) ∈ comp(�)(Δ), (f1, f2) ∈ �→Δ � we have

(c1 ★ f1, c2 ★ f2) ∈ comp(�)(Δ).

Proof. To prove the first, we take related pairs (k1, k2) ∈ cont(�)(Δ) and
(s1, s2) ∈ states(Δ) and get that

((� v1) k1s2, (� v2) k2s2) = (k1v1s1, k2, v2, s2) ∈ RAns

by the definition of � : V → TV and cont(�)(Δ).
To prove the second, we similarly take related pairs (k1, k2) ∈ cont(�)(Δ)

and (s1, s2) ∈ states(Δ) and must prove that

((c1 ★ f1) k1s1, (c2 ★ f2) k2s2) ∈ RAns.

By definition of ★ : TV × (V → TV )→ TV we get that

(
(c1★f1) k1s1, (c2★f2) k2s2

)
=
(
c1(�v1. �t1. f1v1k1t1)s1, c2(�v2. �t2. f2v2k2t2)s2

)

and so it remains to prove that

(�v1. �s
′
1. f1v1k1s

′
1, �v2. �s

′
2. f2v2k2s

′
2) ∈ cont(�)(Δ).

So we take Δ′ ⊒ Δ, (v1, v2) ∈ �(Δ′), (s′1, s
′
2) ∈ states(Δ′) and must prove

that we have
(f1v1k1s

′
1, f2v2k2s

′
2) ∈ RAns.

But the definition of � →Δ � gives us that (f1v1, f2v2) ∈ comp(�)(Δ′) and
by monotonicity we have (k1, k2) ∈ cont(�)(Δ′) and we are done.
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We are now ready to define what it means for two terms of the same type
to be semantically related. First up is the definition of related environments:

Definition 9.3. For every term environment Ξ ⊢ Γ, every ' ∈ T Ξ and every
Δ ∈ W we let [[Γ]]Ξ'(Δ) be the binary relation on V dom(Γ) defined by

[[Γ]]Ξ'(Δ) = {(�1, �2) ∣ ∀x ∈ dom(Γ). (�1(x), �2(x)) ∈ [[Γ(x)]]Ξ'(Δ)}.

Definition 9.4. Assume Ξ ⊢ Γ and terms t1 and t2 with free variables in
dom(Γ). We say that t1 and t2 are semantically related, written Ξ ∣ Γ ∣=
t1 ∼ t2 : � , if for all ' ∈ T Ξ, all Δ ∈ W, and all (�1, �2) ∈ [[Γ]]Ξ'(Δ),

(
[[t1]]dom(Γ)�1, [[t2]]dom(Γ)�2

)
∈ comp([[� ]]Ξ')(Δ).

Theorem 9.5 (Fundamental Theorem). Semantic relatedness is preserved
by all typing rules. In particular, we have that any typed term is semantically
related to itself, i.e, for any Ξ ∣ Γ ⊢ t : � we have Ξ ∣ Γ ∣= t ∼ t : � .

Proof. We provide proofs for only a few interesting cases, and refer to BST [12]
with associated technical report [16] for the remaining. The definitions that
concern state and references have changed sufficiently that going through the
cases of lookup, assignment and allocation in detail is reasonable.

The Case of Lookup

Consider the case of lookup. Assume that Ξ ∣ Γ ⊢ t1 ∼ t2 : ref � holds,
we must show that Ξ ∣ Γ ⊢ ! t1 ∼ ! t2 : � holds too. We unroll the definition;
take ' ∈ T Ξ, Δ ∈ W and (�1, �2) ∈ [[Γ]]Ξ'(Δ) and aim to show that

([[! t1]]X�1, [[! t2]]X�2) ∈ comp([[� ]]Ξ')(Δ),

where we for brevity write X for dom(Γ). By definition we have that

([[! t1]]X�1, [[! t2]]X�2) = ([[t1]]X�1 ★ �v1. lookup v1, [[t2]]X�2 ★ �v2. lookup v2),

and by Lemma 9.2 we are down to proving

(�v1. lookup v1, �v2. lookup v2) ∈ [[ref � ]]Ξ'→Δ [[� ]]Ξ'.

Again we unroll, take Δ′ ⊒ Δ and related pairs (v1, v2) ∈ [[ref � ]]Ξ'(Δ′),
(k1, k2) ∈ cont([[� ]]Ξ')(Δ′) and (s1, s2) ∈ states(Δ′); our proof obligation
now is

(lookup v1 k1 s1, lookup v2 k2 s2) ∈ RAns.
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We branch on the possible values of v1 and v2 according to the definition of
[[ref � ]]Ξ'(Δ′). The first possibility is that there are l1 and l2 in Loc such
that v1 = �l1 and v2 = �l2 and such that we know l1 ∈ dom(s1), l2 ∈ dom(s2)
and (s1(l1), s2(l2)) ∈ [[� ]]Ξ'(Δ′). But in that case we have

(lookup v1 k1 s1, lookup v2 k2 s2) = (k1 s1(l1) s1, k2 s2(l2) s2) ∈ RAns

and are done.
In the second possible branch there are n ∈ ! and l1 and l2 in Loc such

that v1 = �n+1
l1

and v2 = �l2 and such that we know l1 ∈ dom(s1), l2 ∈
dom(s2). Furthermore, we know that if �n(s1) = ⌊s′1⌋ then (s′1(l1), s2(l2)) ∈
[[� ]]Ξ'(Δ′). If now �n(s1) = ⊥ we get

(lookup v1 k1 s1, lookup v2 k2 s2) = (⊥, lookup v2 k2 s2) ∈ RAns,

by the definition of lookup : V → TV . On the other hand, �n(s1) = ⌊s′1⌋
gives us that

(lookup v1 k1 s1, lookup v2 k2 s2) = (k1 s
′
1(l1) s1, k2 s2(l2) s2) ∈ RAns.

The Case of Assignment

We now turn to assignment. Assume that we have Ξ ∣ Γ ⊢ t1 ∼ t2 : ref �
and Ξ ∣ Γ ⊢ u1 ∼ u2 : � , we must prove that Ξ ∣ Γ ⊢ t1 := u1 ∼ t2 := u2 : 1.
Take ' ∈ T Ξ, Δ ∈ W and (�1, �2) ∈ [[Γ]]Ξ'(Δ) and aim to show that

([[t1 := u1]]X�1, [[t2 := u2]]X�2) ∈ comp([[1]]Ξ')(Δ),

where we for brevity write X for dom(Γ). As was the case for lookup, we
proceed by recalling the interpretation of the terms; we have that

[[t1 := u1]]X�1 = [[t1]]X�1 ★ �v1. [[u1]]X�1 ★ �w1. assign v1w1

and similarly that

[[t2 := u2]]X�2 = [[t2]]X�2 ★ �v2. [[u2]]X�2 ★ �w2. assign v2w2.

By an application of Lemma 9.2 in conjunction with the first assumption of
this case we need to prove only that

(�v1. [[u1]]X�1 ★ �w1. assign v1w1, �v2. [[u2]]X�2 ★ �w2. assign v2w2)
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is a member of [[ref � ]]Ξ'→Δ [[1]]Ξ'. Take Δ′ ⊒ Δ, (v1, v2) ∈ [[ref � ]]Ξ'(Δ′)
and apply Lemma 9.2 with the second assumption of this case to arrive at
the proof obligation

(�w1. assign v1w1, �w2. assign v2w2) ∈ [[� ]]Ξ'→Δ′ [[1]]Ξ'.

We pick Δ′′ ⊒ Δ′ and (w1, w2) ∈ [[� ]]Ξ'(Δ′′), (k1, k2) ∈ cont([[1]]Ξ')(Δ′′) and
(s1, s2) ∈ states(Δ′′) and arrive – finally – at the core of this case, as we plan
to show

(assign v1w1 k1 s1, assign v2w2 k2 s2) ∈ RAns.

As above, we branch on the possible values of v1 and v2 according to the
definition of [[ref � ]]Ξ'(Δ′). The first possibility is that there are l1 and l2
in Loc such that v1 = �l1 and v2 = �l2 and such that we know l1 ∈ dom(s1),
l2 ∈ dom(s2) and (s1[l1 7→ w1], s2[l2 7→ w2]) ∈ states(Δ′′). This means that

(assign v1w1, k1 s1, assign v2w2 k2 s2) =

(k1 (in1∗) s1[l1 7→ w1], k2 (in1∗) s2[l2 7→ w2]).

and this branch is done.
The second possibility is that there are n ∈ ! and l1 and l2 in Loc such

that v1 = �n+1
l1

and v2 = �l2 and such that we know l1 ∈ dom(s1), l2 ∈
dom(s2). Furthermore, if �n(s1) = ⌊s′1⌋ we have that �n(w1) = ⌊w′1⌋ means
that we have (s′1[l1 7→ w′1], s2[l2 7→ w2]) ∈ states(Δ′′). If either �n(s1) = ⊥
or �n(w1) = ⊥ we get that

(assign v1w1, k1 s1, assign v2w2 k2 s2) = (⊥, assign v2w2 k2 s2) ∈ RAns

by the definition of assign : V → V → TV . Otherwise we get �n(s1) = ⌊s′1⌋
and �n(w1) = ⌊w′1⌋ for some s′1 ∈ S and w′1 ∈ V . And this buys us

(assign v1w1, k1 s1, assign v2w2 k2 s2) =

(k1 (in1∗) s′1[l1 7→ w′1], k2 (in1∗) s2[l2 7→ w2])

which is an element of RAns.

The Case of Allocation

We will now go into the allocation of new references. Assume that we
have Ξ ∣ Γ ⊢ t1 ∼ t2 : � , we must prove Ξ ∣ Γ ⊢ ref t1 ∼ ref t2 : ref � . We
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make the canonical choices of ' ∈ T Ξ, Δ ∈ W and (�1, �2) ∈ [[Γ]]Ξ'(Δ) and
proceed to show

([[ref t1]]X�1, [[ref t2]]X�2) ∈ comp([[ref � ]]Ξ')(Δ),

where we, as usual, write X for dom(Γ). Now, we have by definition that

([[ref t1]]X�1, [[ref t2]]X�2) = ([[t1]]X�1 ★ �v1. alloc v1, [[t2]]X�2 ★ �v2. alloc v2)

and so we apply the assumption of the case together with Lemma 9.2, pick
Δ′ ⊒ Δ, (v1, v2) ∈ [[� ]]Ξ'(Δ′), (k1, k2) ∈ cont([[ref � ]]Ξ')(Δ′) and (s1, s2) ∈
states(Δ′) and are now down to proving

(alloc v1 k1 s1, alloc v2 k2 s2) ∈ RAns.

As a first step, we rewrite the above pair according to the definition of
alloc : V → TV to get

(alloc v1 k1 s1, alloc v2 k2 s2) = (k1 �l1 s1[l1 7→ v1], k2 �l2 s2[l2 7→ v2])

where l1 ∈ Loc is the least with l1 /∈ dom(s1) and l2 ∈ Loc is the least with
l2 /∈ dom(s2). As we have allocated new locations we should extend the world
correspondingly. We define for each Δ̂ ∈ Ŵ a relation Φ(Δ̂) on S by

{(s1, s2) ∣ l1 ∈ dom(s1) ∧ l2 ∈ dom(s2) ∧ (s1(l1), s2(l2)) ∈ [[� ]]Ξ'(Sq−1(Δ̂))}

and remark that Φ : Ŵ → BoℎrRel(S) is well-defined, monotone and non-
expansive. But then Θ = {∅, {∅}, � .Φ} easily is an island, i.e., a member of
I(Ŵ). We define Δ′′ ∈ W by

Δ′′.&1 = Δ′.&1 ∪ {l1},Δ′′.&2 = Δ′.&2 ∪ {l2},Δ′′.ℐ = Δ′.ℐ[n 7→ Θ]

where n ∈ ! is the least with n /∈ dom(Δ′.ℐ). It is immediate by definition
that Δ′′ ⊒ Δ′ and so it remains to prove that (�l1 , �l2) ∈ [[ref � ]]Ξ'(Δ′′) and
that (s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(Δ′′).

Addressing the first issue, take Δ′′′ ⊒ Δ′′, we have l1 ∈ Δ′′.&1 ⊆ Δ′′′.&1
and l2 ∈ Δ′′.&2 ⊆ Δ′′′.&2 by definition of world extension. Assume now
that we have (q1, q2) ∈ states(Δ′′′). This would imply the existence of sub-
heaps q′1 ⊆ q1 and q′2 ⊆ q2 with (q′1, q

′
2) ∈ Φ(Sq(Δ′′′)), also by the def-

inition of world extension. This means that l1 ∈ dom(q′1), l2 ∈ dom(q′2)
and that (q1(l1), q2(l2)) = (q′1(l1), q′2(l2)) ∈ [[� ]]Ξ'(Δ′′′). And if we pick
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(w1, w2) ∈ [[� ]]Ξ'(Δ′′′) then we have (q′1[l1 7→ w1], q′2[l2 7→ w2]) ∈ Φ(Sq(Δ′′′))
and hence (q1[l1 7→ w1], q2[l2 7→ w2]) ∈ states(Δ′′′). In conclusion, (�l1 , �l2) ∈
[[ref � ]]Ξ'(Δ′′). Showing that (s1[l1 7→ v1], s2[l2 7→ v2]) ∈ states(Δ′′) holds
is not hard as we recall that (s1, s2) ∈ states(Δ′) and that for any m ∈
dom(Δ′.ℐ) we have Δ′′.ℐ(m) = Δ′.ℐ(m), but do notice that this where we
crucially rely on monotonicity of types and of the heap law of an island.

10. Examples

10.1. Syntactic Sugar: Existential Types

Our language has universal types with associated term constructs but
does not, a priori, come with existential types. But we can apply the standard
encoding of existential types as universal types [25, Section 24.3] as follows:

Definition 10.1. We write ∃�. � for the type ∀�. (∀�. � → �)→ � where �
is not in � . And we write pack �, t for the term Λ�. �f. f [�] t.

It is easy to show that

Ξ ⊢ � Ξ ∣ Γ ⊢ t : � [�/�]

Ξ ∣ Γ ⊢ pack �, t : ∃�. �
is a derived typing rule. We do not need to unpack existential packages in
the examples to come, but this could be encoded too. Instead we provide
the following semantic lemma that is both useful and reassuring:

Lemma 10.2. Define in∃ : TV → V by in∃(c) = in∀(�(in→( c))) where

 c = �u. �(u) ★ �v.

{
d v = in∀(d)

error otherwise
★ �w. c ★ �x.

{
f x w = in→(f)

error otherwise
.

We then have for Ξ, � ⊢ � , ' ∈ T Ξ, Δ ∈ W and c1, c2 ∈ TV that

(
∃� ∈ T .∀Δ′ ⊒ Δ. (c1, c2) ∈ [[� ]]Ξ,�'[� 7→ �](Δ′)

)
=⇒(

(in∃(c1), in∃(c
′)) ∈ [[∃�. � ]]Ξ'(Δ)

)
.

Notice here the similarity with the interpretation of types, only the quan-
tification is different. And that we cannot reason both ways; we do not know
whether the reverse implication holds. The map in∃ : TV → V was con-
structed by unrolling the interpretation of pack �, t to the point where no
syntax was left; indeed, we have [[pack �, t]]X� = �(in∃([[t]]X�)) whenever all
term variables of t are in X.
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10.2. More Sugar: Let Bindings and Sequencing

Definition 10.3. For terms s and t and a variable x we write let x = s in t
for the term (�x. t) s. For terms s and t we write s; t for let x = s in t
where x is not in t.

We have the obvious derived typing rules

Ξ ∣ Γ ⊢ s : � Ξ ∣ Γ, x : � ⊢ t : �

Ξ ∣ Γ ⊢ let x = s in t : �

Ξ ∣ Γ ⊢ s : � Ξ ∣ Γ ⊢ t : �

Ξ ∣ Γ ⊢ s; t : �

and by using the convenient fact that we have �(v) ★ f = f(v) for any v ∈ V
and f ∈ V → TV we easily have the following lemma:

Lemma 10.4. We have that [[let x = s in t]]X� = [[s]]X�★�v. [[t]]X,x�[x 7→ v]
and that [[s; t]]X� = [[s]]X� ★ � . [[t]]X�.

10.3. Booleans

We need the type bool of booleans in the example to come. Abbreviate

bool = 1 + 1

true = inl ()

false = inr ()

We also introduce some convenient notation on the semantic side: Let B =
{0, 1} be the discrete two-point predomain, and define inB : B → V by
inB(1) = in+(�1(∗)) and inB(0) = in+(�2(∗)). Then [[true]]X� = �(inB 1) and
[[false]]X� = �(inB 0).

It is furthermore convenient to add an integer comparison operator t1 ≤ t2
to the language. It has the following typing rule and semantics:

Ξ ∣ Γ ⊢ t1 : int Ξ ∣ Γ ⊢ t2 : int

Ξ ∣ Γ ⊢ t1 ≤ t2 : bool

[[t1 ≤ t2]]X� = [[t1]]X�★�v1. [[t2]]X�★�v2.

⎧
⎨
⎩

�(inB 1) v1 = inℤ n, v2 = inℤm, n ≤ m

�(inB 0) v1 = inℤ n, v2 = inℤm, n > m

error otherwise.

(One can encode this operator using ifz and fix, but the encoding is fairly
complicated.)
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10.4. Name Generator

Consider the program t1 given by

t1 = let x = ref 0 in pack int, (�z. x := ! x + 1; ! x, �z. z ≤ ! x).

It is not hard to assign it the type ∃�. (1 → �) × (� → bool). The idea is
that of a name generator, each call to the first function returns a fresh name
of type � by incrementing and then returning the value stored at location x.
The second function is a sanity check, it asserts that a supplied value of
type � is valid, i.e., does not exceed the largest name supplied so far. Put
roughly, it can never return false because there is no way of producing stray
values of �. And indeed, we shall prove e1 contextually equivalent to the
program t2 given by

t2 = let x = ref 0 in pack int, (�z. x := ! x + 1; ! x, �z. true),

where we have replaced the second function with a dummy that always re-
turns true. The approach is, of course, to prove the interpretation of e1

semantically related to the interpretation of e2 at type ∃�. (1 → �) × (� →
bool) and the other way round, we shall do only the first.

So, let us take on the task. We must show that ∣= t1 ∼ t2 : ∃�. (1 →
�) × (� → bool) where we note that both the type and term contexts are
empty. This means picking Δ ∈ W arbitrary, taking (k1, k2) ∈ cont(∃�. (1→
�)× (�→ bool))(Δ) and (s1, s2) ∈ states(Δ) and proving

([[t1]] k1 s1, [[t2]] k2 s2) ∈ RAns.

A few calculations gives us that the left component [[t1]] k1 s1 equals

[[pack int, (�z. x := ! x + 1; ! x, �z. z ≤ ! x)]]x[x 7→ �l1 ] k1 s1[l1 7→ 0]

where l1 ∈ ! is the least such that l1 /∈ dom(s1). Similarly we have that right
component [[t2]] k2 s2 equals

[[pack int, (�z. x := ! x + 1; ! x, �z. true)]]x[x 7→ �l2 ] k2 s2[l2 7→ 0]

where l2 ∈ ! is the least such that l2 /∈ dom(s2). Writing out a few more
lines we arrive at

k1 in∃([[(�z. x := ! x + 1; ! x, �z. z ≤ ! x)]]x�1) s1[l1 7→ 0],
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and at
k2 in∃([[(�z. x := ! x + 1; ! x, �z. true)]]x�2) s2[l2 7→ 0]

as our left and right hand side components, respectively. For brevity we write
�1 for [x 7→ �l1 ] and �2 for [x 7→ �l2 ].

We are now, so to speak, at a point where allocation has been made by
both programs and so we aim to extend the world to reflect this. First up,
we define for each n ∈ ! a relation on S indexed by Δ̂ ∈ Ŵ as follows:

Φn(Δ̂) = {(s1, s2) ∣ l1 ∈ dom(s1) ∧ l2 ∈ dom(s2) ∧ s1(l1) = s2(l2) = inℤ n}

It is easy to verify that Φn : Ŵ → BoℎrRel(S) is well-defined and since it is
constant it is monotone and non-expansive too. Let now Pn = {1, 2, . . . , n}
for any n ∈ !, in particular we have P0 = ∅. We then define

Θ =

(
P0, {Pn ∣ n ∈ !}, �X.

{
Φn X = Pn

otherwise

)

and note that this is island, i.e., Θ ∈ I(Ŵ). The population corresponds
to the names generated so far; as the left and right name generators work
in lock-step they always have the same set of generated names. Notice that
it is initially empty because no names have been generated so far and that
we restrict it to values from {P0, P1, . . .}. The heap law just matches pop-
ulations with the indexed relations on states; the definition requires us to
define images of all of the subsets of V but we shall only ever need images
of {P0, P1, . . .} and hence leave the remaining unspecified. We now define
Δ′ ∈ W by

Δ′.&1 = Δ.&1 ∪ {l1},Δ′.&2 = Δ.&2 ∪ {l2},Δ′.ℐ = Δ.ℐ[n 7→ Θ]

where n ∈ ! is the least with n /∈ dom(Δ.ℐ). It is immediate that Δ′ ⊒ Δ.
Having extended the world with an island that keeps track of the counters

of both name generators we now build the type of generated names. These
are exactly the population of the new island, so we just read them off; define
a relation on V for Δ∗ ∈ W by

�(Δ∗) =

⎧
⎨
⎩
{(inℤ v, inℤ v) ∣ v ∈ Δ∗.ℐ(n).CP} n ∈ dom(Δ∗.ℐ)∧

Δ∗.ℐ(n).PL = Θ.PL

∅ otherwise.
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We shall only apply this type to the world Δ′ and possible extensions of this
and so the second clause is really unreachable. But we cannot do without it,
as the definition of T requires us to give values to all worlds. It is not hard to
prove � : W → BoℎrRel(V ) well defined, non-expansive and monotone; we
rely on the fact that island populations cannot shrink under world extension
for the latter.

We now return to the issue at hand. As continuations are required to
behave in future worlds and as (s1[l1 7→ 0], s2[l2 7→ 0]) easily is a member of
states(Δ′), it shall suffice to show that the pair

(
in∃([[(�z. x := ! x + 1; ! x, �z. z ≤ ! x)]]x�1),

in∃([[(�z. x := ! x + 1; ! x, �z. true)]]x�2)
)

is a member of [[∃�. (1→ �)× (�→ bool)]](Δ′). Now take Δ′′ ⊒ Δ′ arbi-
trary, by Lemma 10.2 it shall suffice to show that

(
[[(�z. x := ! x + 1; ! x, �z. z ≤ ! x)]]x�1, [[(�z. x := ! x + 1; ! x, �z. true)]]x�2

)

is a member of comp([[(1→ �)× (�→ bool)]]�[� 7→ �])(Δ′′). This again
comes down to the following two obligations:

1. Prove that ([[�z. x := ! x + 1; ! x]]x�1, [[�z. x := ! x + 1; ! x]]x�2) is a mem-
ber of comp([[1→ �]]�[� 7→ �])(Δ′′).

2. Prove that for Δ′′′ ⊒ Δ′′ we have that ([[�z. z ≤ ! x]]x�1, [[�z. true]]x�2)
is a member of comp([[�→ bool]]�[� 7→ �])(Δ′′′).

By inspection of proof obligation 1 we arrive at the following two sub-
obligations that we must address:

1.a. Let Δ′′′ ⊒ Δ′′ be arbitrary. Prove that ([[x := ! x + 1]]x�1, [[x := ! x + 1]]x�2)
is a member of comp([[1]]�[� 7→ �])(Δ′′′).

1.b. Let Δ† ⊒ Δ′′′ be arbitrary. Prove that ([[! x]]x�1, [[! x]]x�2) is a member
of comp([[�]]�[� 7→ �])(Δ†).

We now attack the sub-obligation 1.a head-on. Let Δ′′′ ⊒ Δ′′ be arbitrary.
By definition of the untyped interpretation we derive that [[x := ! x + 1]]x�1 is

lookup �l1 ★ �v1.

{
�(inℤ(m+ 1)) v1 = inℤm

error otherwise
★ �w1. assign �l1 w1
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and the same for [[x := ! x + 1]]x�2, only exchange �l2 for �l1 . Take (k1, k2) ∈
cont([[1]]�[� 7→ �])(Δ′′′) and (t1, t2) ∈ states(Δ′′′). Since Δ′′′ ⊒ Δ′ we know
that Δ′′′.ℐ(n) is well-defined and equals Θ defined above, modulo a change of
population. In particular there must be m ∈ ! such that Δ′′′.ℐ(n).CP = Pm
and we know that l1 ∈ dom(t1), l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inℤm.
Summing up we get

[[x := ! x + 1]]x�1 k1 t1 = (�(inℤ(m+ 1)) ★ �w1. assign �l1 w1) k1 t1

= assign �l1 inℤ(m+ 1) k1 t1

= k1 in1(∗) t1[l1 7→ inℤ(m+ 1)]

and similarly that

[[x := ! x + 1]]x�2 k2 t2 = k2 in2(∗) t2[l2 7→ inℤ(m+ 1)].

We now build Δ† as a copy of Δ′′′ with the one exception that Δ†.ℐ(n).CP =
Pm+1 which gives us Δ† ⊒ Δ′′′ and (t1[l1 7→ inℤ(m+1)], t2[l2 7→ inℤ(m+1)]) ∈
states(Δ†) and this sub-obligation is done. Note, amidst the technicalities,
that we have just generated a new name m+ 1 and updated the population
of island n correspondingly.

Sub-obligation 1.b is a bit shorter. Let Δ† ⊒ Δ′′′ be arbitrary. Take
(k1, k2) ∈ cont([[�]]�[� 7→ �])(Δ†) and (t1, t2) ∈ states(Δ†). As above, there
must be m ∈ ! such that Δ†.ℐ(n).CP = Pm and we know that l1 ∈ dom(t1),
l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inℤm. But then we get

([[! x]]x�1 k1 t1, [[! x]]x�2 k2 t2) = (k1 (inℤm) t1, k2 (inℤm) t2).

And all we need to finish this sub-obligation is just to remark that

[[�]]�[� 7→ �])(Δ†) = �(Δ†) = {(inℤ v, inℤ v) ∣ v ∈ Pm} ∋ (inℤm, inℤm).

Finally we tackle obligation 1. Let Δ′′′ ⊒ Δ′′ be arbitrary. We can derive
that [[z ≤ ! x]]x,z�1[z 7→ v1] k1 t1 is

lookup �l1 ★ �w1.

⎧
⎨
⎩

�(inB 1) v1 = inℤ k, w1 = inℤm, k ≤ m

�(inB 0) v1 = inℤ k, w1 = inℤm, k > m

error otherwise.

Pick Δ† ⊒ Δ′′′, (v1, v2) ∈ [[�]]�[� 7→ �])(Δ†) = �(Δ†), (k1, k2) ∈ cont([[bool]]�[� 7→
�](Δ†) and (t1, t2) ∈ states(Δ†), we must show that

([[z ≤ ! x]]x,z�1[z 7→ v1] k1 t1, [[true]]x,z�2[z 7→ v2] k2 t2) ∈ RAns.
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As above, there must be m ∈ ! such that Δ†.ℐ(n).CP = Pm and we know
that l1 ∈ dom(t1), l2 ∈ dom(t2) and that t1(l1) = t2(l2) = inℤm. This also
means that (v1, v2) = (inℤ k, inℤ k) for some 1 ≤ k ≤ m. Combining our
efforts we arrive at

[[z ≤ ! x]]x,z�1[z 7→ v1] k1 t1 = k1(inB 1) t1

and as we immediately have

[[true]]x,z�2[z 7→ v2] k2 t2 = k2 (inB1) t2

we are done. Taking a few steps back, all that happens is that the interpre-
tation of the type [[�]]�[� 7→ �] = � ensures that the input values must be in
the population of island n; also the heap law enforces that the related states
both contain the maximum name of the population at location l1 and l2
respectively.

10.5. Discussion

We have written out the proof of the Name Generator example in much
detail so as to make it easy to compare this proof with the one in the ADR
model [3]. Looking at the two proofs we can conclude (as claimed in the
introduction) that the semantic techniques from the BST model scale to
state-of-the-art world descriptions and that the resulting model can be used
to prove programs equivalent at a fairly abstract level, without any form of
low-level step-indexed reasoning. Indeed the proof we have given here in the
model is at an abstraction level which is similar to the one provided by the
LADR logic [22, Pages 56–58].

The same is the case for the other examples involving local state in
(L)ADR.4 The model similarly gives rise to fairly abstract proofs of the
Plotkin-Power axioms for global state and local state [29] as formulated by
Staton [33].5

For proving some equivalences of programs involving recursive types and/or
reference types, LADR uses a so-called “later” modality and Löb’s rule to
abstractly account for induction over step-indices (This idea comes from [7].)

4LADR cannot handle the “callback-with-lock” example of ADR and the same is the
case with our model here (see [21] for further discussion).

5Three of the axioms, GS6, GS7, and B3, cannot be formulated as simple, typed
equations in our language, but equivalent semantic formulations do hold in the model.
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For example, the later modality and Löb’s rule are used to prove that Landin’s
knot—the construction of a fixed-point using backpatching—works [21, Sec-
tion 9.3]. In the present model, this example would instead proceed via
fixed-point induction.

Note that the proof of the name generator involves references and thus
locations, but that there are no approximate locations in the proof at all.
This is typical of examples that involve allocation and uses of references
(such as the (L)ADR examples); approximate locations do not appear in the
proofs since they are not used as denotations of references allocated in the
programs. But, of course, there are examples, where they show up. Indeed,
when one considers examples involving free variables of reference type (or,
equivalently, functions that take arguments of reference type), then one also
has to consider approximate locations. These approximate locations are in
some sense additional junk in the denotational model, and because of them
there are equivalences that we cannot prove using the model. The simplest
concrete example we know of is the following [12]:

∅ ∣ ∅ ∣= �x.true ∕∼ �x.false : ref 0→ bool

Intuitively, these two functions should be contextually equivalent: since refer-
ences are initialized when allocated, no closed value encountered in a running
program can ever have the type ref 0, and therefore neither of the two func-
tions can ever be applied. However, the two functions are not semantically
related in our model. Loosely speaking, the reason is that approximate lo-
cations can be related at the type ref 0.

We leave it as future work to investigate further if one can find a more
abstract model, which does not involve either a form of semantic location or
some form of step-indexing. We believe this is a challenging problem — for
an earlier version of the BST model we could show that a putative logical
relation formulated without approximate locations did not exist! — and it
is related to questions of existence of recursively defined relations in [11].

Other future work includes the formulation of a program logic for rea-
soning about equivalence based on the present model. Such a logic would
naturally combine ideas from LADR concerning syntactic formulations of is-
lands, etc., with ideas from earlier domain-theoretically inspired logics for
call-by-value (see, e.g., [1]). In particular it would not include the later
modality and the Löb rule of LADR but rather have a fixed point induction
rule.
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Abstract

We show that models of higher-order store phenomena
naturally can be given as Kripke models over worlds that
are recursively defined in a category of metric spaces. It
leads to a unification of methods based on classical do-
main theory and on step-indexed operational models. We
show that our metric approach covers a wide range of step-
indexed models, by demonstrating how it can be specialized
to Hobor et. al.’s recent indirection theory, and by develop-
ing a new step-indexed model of separation logic for higher-
order store.

1 Introduction

Over the last decade, there has been a lot of research
on semantic models for reasoning about advanced program-
ming language features involving recursive structures aris-
ing from various forms of higher-order store, see, e.g. [12,
19, 23, 25, 29, 30]. Many proposed methods have been
based on either traditional domain theory or on more recent
step-indexed models [2–4, 8, 9]. In this paper, we argue
that the essence of these models is that they can be seen
as Kripke models over recursively defined sets of worlds.
Indeed, we show how to define such worlds using appropri-
ate recursively-defined metric spaces and, moreover, show
how this method applies both to domain-theoretic models
and to step-indexed models, thus achieving a unification of
methods. In earlier work, we have used solutions to re-
cursive metric-space equations in connection with domain-
theoretic models [18], so in this paper, we focus mostly on
step-indexed models. In particular, we show how our metric
approach can be specialized to Hobor et. al.’s recent abstract
description of step-indexed models [24] and argue why it is
useful to take the metric viewpoint we suggest. The latter is
done, in part, by presenting a step-indexed model of a sep-
aration logic for higher-order store [32], the soundness of
which involves the use of a recursively defined operation on
the recursively-defined set of worlds.

Higher-order Store We use “higher-order store” loosely
to refer to programming language features that involve
some form of dynamic allocation of data whose type / spec-
ification depends on the types / specifications of already
stored data. Thus higher-order store can, e.g., describe
the ability to dynamically allocate heap storage and store
code directly in the heap; C function pointers; ML refer-
ences; but also dynamically allocated locks that protect re-
source invariants that depend on already allocated locks’ re-
source invariants. For expressiveness, type systems and log-
ics for higher-order store often involve some form of recur-
sive types / specifications, and also some form of universal
quantification over types (impredicative polymorphism) or
specifications. The semantic methods we present scale well
to these features (see, e.g., [18]), but they are not at the heart
of the challenge of modeling higher-order store, so we shall
not dwell too long on them in this paper, but just sketch how
the methods apply.

Semantic Models of What Semantic models of higher-
order store can, among other things, be used to show sound-
ness of type systems and logics for reasoning about pro-
grams. The latter can involve Hoare-style logics for reason-
ing about a single program or logics for relational reasoning
about equality of programs. Our methodology applies to all
of these, but relational reasoning involves a host of other
mostly orthogonal issues, so we focus on models for type
systems and logics for reasoning about a single program us-
ing unary predicates instead of relations, except for some
discussion in the related work section.

2 Introductory Example: ML references

By way of introduction of our general setup, let us con-
sider how to model a programming language with impred-
icative polymorphism and general ML-like references; i.e.,
an extension of the polymorphic lambda calculus with a
standard call-by-value operational semantics. We first de-
scribe the general idea at an intuitive level and then, in the
following two subsections, we explain how to realize the
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general idea in a domain-theoretic setting (based on an ade-
quate denotational semantics of the programming langauge)
and in a step-indexed stetting (based purely on the opera-
tional semantics of the programming language).

Recall that for the polymorphic lambda calculus, without
general references, we can model types as predicates (sub-
sets) on some fixed set of values. But since our language
of interest now includes dynamic allocation, it is natural to
follow earlier work on models of languages with dynamic
allocation of simple integer cells (e.g., [11, 25]), and use a
Kripke-style possible-worlds model. Here, however, the set
of worldsW needs to be recursively defined since we con-
sider general references: Semantically, a world maps loca-
tions (modeled as natural numbers) to semantic types in T ,
and we thus arrive at the following recursive equations:

V = set of values, including locations
W = ℕ⇀fin T
T = W → Pred(V )

With such a semantic model of types, one can give meaning
to types in T , in particular, the meaning of a reference type
ref � can be defined roughly as

(ref �)w = {l ∣ w(l) = �},

i.e, for a world w, it is the set of locations l such that the
semantic type recorded in the world at l is the same as � .

Some readers might have expected that semantic types
would be monotone wrt. an extension ordering of worlds.
Indeed, it is often advantageous to build monotonicity into
the model of types, but since this issue is mostly orthogo-
nal to the point we are trying to make now, we will omit
discussion of monotonicity until Section 3.2.

Observe that the natural model of types here is a Kripke
model over a recursively-defined set of worlds. It is a
Kripke model because the semantic types are parameterized
over worlds. The problem is, of course, that, for cardinal-
ity reasons, there is no solution to the above equations in
the category of sets (unfolding the above equation we get
W = ℕ⇀fin (W → Pred(V )) withW in a negative posi-
tion, see also [3]).

This observation leads Hobor et. al. [24] to propose that
we should give up solving the equation and instead use an
approximate solution, where the equations are not solved
up to isomorphism, but where one only finds a retraction
between two sets, equipped with some additional approxi-
mation information akin to the indices used in step-indexed
models. As Hobor et. al. show, this suffices for many step-
indexed models.

Instead, we here propose to solve the equation in a cer-
tain simple category of metric spaces. Our approach ap-
plies not only to step-indexed models but also to domain-
theoretic models; it can be specialized to Hobor et. al.’s

indirection theory (see Section 3.1), and has a number of
other advantages that we shall explain in Section 3.2. In the
following two subsections we exemplify the approach in a
domain-theoretic setting and in step-indexed setting, but let
us first call to mind some facts about the metric spaces we
are going to use.

Recap of ultrametric spaces A 1-bounded ultrametric
space (X, d) is a metric space where the distance func-
tion d : X × X → ℝ takes values in the closed
interval [0, 1] and satisfies the strong triangle inequality
d(x, y) ≤ max{d(x, z), d(z, y)}, for x, y, z ∈ X . An
(ultra-)metric space is complete if every Cauchy sequence
has a limit. A function f : X1 → X2 between metric spaces
(X1, d1), (X2, d2) is non-expansive if for all x, y ∈ X1,
d2(f(x), f(y)) ≤ d1(x, y), i.e., if application does not in-
crease the distance between points. It is contractive if for
some � < 1, d2(f(x), f(y)) ≤ � ⋅d1(x, y) for all x, y ∈ X1.

The complete, 1-bounded, non-empty, ultrametric spaces
and non-expansive functions between them form a Carte-
sian closed category CBUltne. Products in CBUltne are
given by the set-theoretic product where the distance is
the maximum of the componentwise distances, and expo-
nentials are given by the non-expansive functions equipped
with the sup-metric. (i.e., the exponential (X1, d1) →
(X2, d2) has the set of non-expansive functions from
(X1, d1) to (X2, d2) as underlying set, and distance func-
tion: dX1→X2

(f, g) = sup{d2(f(x), g(x)) ∣ x ∈ X1}).
For any set S and space (X, d) ∈ CBUltne, the set of fi-
nite partial functions S ⇀fin X from S to X is again a
complete bounded ultrametric space with distance function
given by d(f, g) = 1, if the domain of f and g are not equal,
and d(f, g) = max{d(f(s), g(s)) ∣ s ∈ dom(f)}, if the
domain of f and g are equal.

A functor F : CBUltne
op × CBUltne −→ CBUltne

is locally non-expansive if d(F (f, g), F (f ′, g′)) ≤
max{d(f, f ′), d(g, g′)} for all non-expansive f, f ′, g, g′,
and it is locally contractive if d(F (f, g), F (f ′, g′)) ≤ � ⋅
max{d(f, f ′), d(g, g′)} for some � < 1. By multiplication
of the distances of (X, d) with a shrinking factor � < 1
one obtains a new ultrametric space, � ⋅ (X, d) = (X, d′)
where d′(x, y) = � ⋅ d(x, y). By shrinking, a locally non-
expansive functor F yields a locally contractive functor
(� ⋅ F )(X1, X2) = � ⋅ (F (X1, X2)). For a less condensed
introduction to ultrametric spaces we refer to [33].

It is well-known that one can solve recursive domain-
equations in CBUltne, by an adaptation of the inverse-limit
method from classical domain theory:

Theorem 2.1 (America-Rutten [7]). Let F : CBUltne
op ×

CBUltne → CBUltne be a locally contractive functor. Then
there exists a unique (up to isomorphism) (X, d) ∈ CBUltne
such that F ((X, d), (X, d)) ∼= (X, d).
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2.1 Domain-Theoretic Model

In [18] we gave a relationally parametric domain-
theoretic model of a call-by-value language with impredica-
tive polymorphism, general references, and recursive types.
We now explain how it fits the intuitive model from above.

The model is based on an adequate domain-theoretic
“untyped” model of the programming language that is de-
fined in a mostly standard way, using a recursively defined
predomain (complete partial order) V of values. The pre-
domain V comes equipped with a family of projections
�n : V → V⊥, satisfying the usual conditions for projec-
tions arising from solutions to recursive domain equations.
In particular, the minimal invariance property: the least up-
per bound of the projections

⊔
n �n is the identity on V .

For the modeling of types, we use not all predicates on
V , but only those that are complete (admissible), i.e., closed
under least upper bounds of chains, and uniform. A subset
P of V is uniform if it is closed under all the projections,
i.e., if ∀v ∈ P.∀n.�n(v) ∈ P⊥. For subsets P and Q of V ,
we write �n : P → Q to mean that ∀v ∈ P. �n(v) ∈ Q⊥.
It is well-known from earlier work on interpreting recursive
types and impredicative polymorphism [1, 5, 6, 20, 26] that
the set CUPred(V ) of all complete uniform predicates on
V form a complete 1-bounded ultrametric space. The dis-
tance function d is defined by

d(P,Q) =

{
2−max{n∈ℕ ∣ �n∈P→Q ∧ �n∈Q→P } if P ∕= Q

0 if P = Q.

The distance is well-defined by properties of the projec-
tion functions, in particular the minimal invariance property.

It is easy to see that the functor X 7→ ℕ ⇀fin
1
2 (X →

CUPred(V )) from CBUltne
op to CBUltne is locally con-

tractive and thus, by Theorem 2.1, there exists a complete
1-bounded ultrametric spaceW satisfying:

W ∼= ℕ⇀fin
1
2 (W → CUPred(V )) in CBUltne.

Note that the rightmost function-space arrow in the display
above denotes the function space in CBUltne, i.e., the set of
non-expansive functions. The 1

2 is an example of a shrink-
ing factor and, technically, ensures that the functor is locally
contractive; it is a standard technique [7]. The intuitive rea-
son for why it is ok to use the 1

2 shrinking factor is that “it
takes a computation step to dereference a location” (in [18]
this is modelled via so-called semantic locations).

Having now succeeded in establishing the existence of
the recursively defined set of worlds W , we can define se-
mantic types T to be the set of non-expansive functions
fromW to CUPred(V ). With this semantic model of types,
we can give an interpretation of all the types of the program-
ming language. (For recursive types, we employ Banach’s
fixed point theorem to find a solution as the fixed point of

a contractive operator on T .) Finally, we can define the
typed meaning of terms by proving the fundamental theo-
rem of logical relations wrt. the untyped semantics of terms.
See [18] for a detailed treatment.

2.2 Step-Indexed Model

Now suppose that we want to build a semantic model
over the operational semantics directly, without passing
through a domain-theoretic model of the programming lan-
guage. Then we can let V be the set of closed syntactic val-
ues v used in the operational semantics (i.e., v can be a pair
of syntactic values v1 and v2, a syntactic lambda abstrac-
tion, etc.), and, in keeping with the ideas of step-indexed
models [2, 3, 8, 9], we can model types as (world-indexed)
subsets of ℕ× V that are downwards-closed in the step (ℕ)
component. More precisely, we define UPred(V ) to be

{P ⊆ ℕ× V ∣ ∀(k, v) ∈ P.∀j ≤ k. (j, v) ∈ P}.

We can define a distance function on UPred(V ), which
measures “up-to-what-level” two uniform predicates agree,
as follows: First, for P ∈ UPred(V ), let P

k
denote

{(m, v) ∈ P ∣ m < k}, and then define distance func-
tion d by:

d(P,Q) =

{
2−n if P ∕= Q and n = max{k ∣ P k = Q

k}
0 if P = Q.

Lemma 2.2. (UPred(V ), d) is a well-defined object in
CBUltne.

Thus, by an application of Theorem 2.1, there exists a
complete 1-bounded ultrametric spaceW satisfying

W ∼= ℕ⇀fin
1
2 (W → UPred(V )) in CBUltne,

and we can then define semantic types T to be the set of
non-expansive functions fromW to UPred(V ).

Thus by working in CBUltne we can indeed solve the
wished-for equations, even in a setting based on operational
semantics. With this semantic model of types, one can then
define an interpretation of all the types of the programming
language, with definitions similar to those used in existing
step-indexed models [3], but knowing that one has a so-
lution to the wished-for recursive equation of worlds. We
show how this can be done in Appendix A. Again, the intu-
itive reason for why it is ok to use the 1

2 shrinking factor is
that “it takes a computation step to dereference a location”.

We remark that it is not surprising that there is a connec-
tion between metric spaces and step-indexed models; this
was already pointed out in [8]. The point is that it is use-
ful not to forget this connection because it, e.g., allows us
to define solutions to recursive world equations such as the
one above. (See also the discussion in Section 3.2.)
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We do not present a formal relationship to existing mod-
els for this particular example, but rather show, in the fol-
lowing section, how all the step-indexed models described
via the indirection theory of Hobor et. al. can be obtained
by a specialization of our general approach. In Section 3.2
we explain why it is useful to solve the world equation using
metric spaces, and in Section 4 we present a new applica-
tion.

3 The Essence of Step-Indexed Models

3.1 Specialization to Indirection Theory

Faced with a higher-order store recursive equation, Ho-
bor, Dockins and Appel [24] provide an approximative so-
lution. This is a section-retraction pair characterized by the
two axioms of indirection theory that elegantly capture the
approximative nature of the solution. Our approach is dif-
ferent, we solve the recursion proper in a certain category of
metric spaces. In both cases, however, the solution provides
a notion of worlds1 to be used in Kripke models as exem-
plified amply in loc.cit. and in the previous section. In this
section we shall argue that our approach is the more gen-
eral in the sense that, for the same recursive equation, one
may build the approximative solution of Hobor et. al. from
our solution – this is Theorem 3.6. A consequence is that,
somewhat indirectly, we have shown our method applicable
to all examples considered by Hobor et. al.

This specialization to indirection theory is not uncondi-
tional. The construction presented by Hobor et. al. is pa-
rameterized over a set-theoretic functor F : Set → Set
but our approach deals in metric-space equations phrased in
terms of a locally non-expansive functor on CBUltne. So we
must have one of the latter corresponding to the former or,
more precisely, we must have a plain lift of F : Set→ Set,
as defined below, to apply the specialization. Fortunately,
in many cases such a lift exists; indeed it always holds for
functors on Set built with standard constructors as is made
precise in Proposition 3.7. In particular we have plain lifts
of the functors of all the examples of Hobor et. al.2

Definition 3.1. A functor F̂ : CBUltne → CBUltne is called
non-shrinking if for any object X and any morphism ' :
X → X of CBUltne and any m > 0 such that

∀x, y ∈ X. x =m y ⇒ '(x) = '(y)

we also have that

∀x, y ∈ F̂ (X). x =m y ⇒ F̂ (')(x) = F̂ (')(y).

1There is a conflict of nomenclature, what we call worlds are known as
knots to Hobor et. al. Their worlds are pairs of knots and values.

2With the possible exception of [24, Example 2.7.]. The functor in that
example is complex and the presentation dense to it is a bit hard to tell.

Here x =m y is short for d(x, y) ≤ 2−m where d is
the distance on X . Intuitively, elements of F̂ (X) contain
components from X . If closeness of two elements of F̂ (X)
implies similar closeness between the components, then F̂
is non-shrinking because F̂ (') applies ' to all components.
Note that the condition is required only to hold for m > 0;
the case m = 0 comes down to preserving constant func-
tions and that would preclude, e.g., constant functors.

Definition 3.2. A metric space is bisected if any non-zero
distance is of the form 2−m for some m ∈ ℕ.

For bisected metric spaces we have the following propo-
sition which is useful for showing maps non-expansive:

Proposition 3.3. A map ' : X → X on a bisected metric
space X is non-expansive if and only if we have

∀m ∈ ℕ. ∀x, y ∈ X. x =m y ⇒ '(x) =m '(y).

Definition 3.4. We say that a functor F̂ : CBUltne →
CBUltne is the lift of a functor F : Set → Set if the fol-
lowing diagram commutes

CBUltne
F̂ //

U

��

CBUltne

U

��
Set

F
// Set,

where U : CBUltne → Set is the obvious forgetful functor.
Furthermore, we say that a functor F̂ : CBUltne → CBUltne
is plain if it is non-shrinking, locally non-expansive and, on
objects, preserves the property of being bisected.

Theorem 3.5. Let F̂ : CBUltne → CBUltne be a locally
non-expansive functor and O a non-empty set. Then there
is a non-empty, complete, 1-bounded ultrametric space X
and an isometry

Φ : X ∼= F̂
(

1
2 (X →ne UPred(O))

)
.

This is an easy consequence of Theorem 2.1: F̂ is as-
sumed locally non-expansive and the functor 1

2 ((−) →ne

UPred(O)) is a locally contractive contravariant functor on
CBUltne and so is the composite of the two.

Envision now a functor F : Set → Set, a non-empty
set O of values and a request for a solution to the recursive
equation K ∼= F (K×O → 2). Indirection theory provides
an approximative such, the above theorem another and the
next theorem builds the former from the latter, thus demon-
strating the generality of our approach.

We deviate from indirection theory as introduced by Ho-
bor et. al. on two counts: We do not parameterize over the
set of truth values but stick to 2 = {0, 1}; the generaliza-
tion, while probably technically feasible, appears unmoti-
vated. More importantly, we build a solution that features
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only hereditary maps fromK×O to 2, see the definition be-
low. This is a direct consequence of the uniformity required
of members of UPred(O), lifting the latter constraint would
most likely remove the former too. But we regard it as a
strength, not a shortcoming, as we really would like to stay
hereditary all the way and now we know that ’unsquash-
ing a knot’ does not invalidate this wish – compare with the
discussion in the last paragraph of [24, Section 10].

Theorem 3.6. Let F : Set→ Set be a functor with a plain
lift F̂ : CBUltne → CBUltne. We can, from the isometry
of Theorem 3.5, build a set K, a subset of hereditary maps
K × O →ℎer 2 of the full function space K × O → 2 and
two maps

K
unsquash // ℕ× F (K ×O →ℎer 2)
squash

oo

with the following three properties:

1. squash ∘ unsquash = 1K .

2. (unsquash ∘ squash)(m, �) = (m,F (approxm)(�)) .

3. ∀ ∈ K ×O → 2.  ∈ K ×O →ℎer 2⇔  = □ .

Here the level = fst ∘ unsquash : K → ℕ and the map
approxm : (K × O →ℎer 2) → (K × O →ℎer 2) is
defined, for each m ∈ ℕ, by

approxm( )(k, o) =  (k, o) ∧ level(k) < m.

And for  ∈ K ×O → 2 we define □ ∈ K ×O → 2 by

(□ )(k, o) = ∀l ∈ K. kA∗ l⇒  (l, o),

where A∗ is the reflexive, transitive closure of the relation
A on K defined, for any two k, l ∈ K, by

kA l⇔ unsquash(k) = (m+ 1, �) ∧ l = squash(m, �).

Proposition 3.7. There is a plain lift of any functor built
from the identity, constant non-empty sets, products, sums
and (possibly finite and partial) maps from a constant set.

3.2 Advantages of Metric Solution Approach

Having proved that our metric-space approach special-
izes to the indirection theory of Hobor et. al. we now pro-
ceed to argue some advantages of our approach in general.

A first remark is this: We do not think of the operational
semantics based version of our metric-space approach as
more expressive than standard step-indexed models. Rather
we view it as a framework for doing step-indexing, a con-
ceptual guideline of sorts. This goes even if we disregard

higher-order store circularities. Consider, e.g., the interpre-
tation of recursive types in Section 2.2 above and in Ap-
pendix A below. The idea of ’stepping one down’ when in-
terpreting ��.� seems natural to anyone familiar with step-
indexed models. But coming up with the correct criteria on
the interpretation function for this to work out properly, also
with nested recursive types, is not, a priori, so easy. If, how-
ever, we employ the metric approach, including Banach’s
fixed-point theorem, then writing down the requirements as
done in the appendix is straightforward. Another example
is the step-indexed model of Section 4, where we crucially
rely on the metric on the worlds to define the ⊗ operator by
Banach’s fixed-point theorem. A similar construction could
possibly be pushed through either with hand-built approxi-
mate worlds as employed by Ahmed et. al. [4] or with the
indirection theory of Hobor et. al. [24]. But the precise
course of action is less immediate and we expect that one
could end up reinventing parts of metric theory on the way.

In direct comparison with the indirection theory in [24],
we believe that our alternative approach of solving recur-
sive metric equations has benefits. Both yield worlds to be
used in Kripke models. There is, however, already a body of
supporting theory for the metric-space approach that makes
available a far greater range of worlds. To illustrate this
point, let us focus on the step-indexed model of ML refer-
ences discussed in Section 2.2 above and in Sections 2.1, 4.1
and 5 of [24]. In the model provided by indirection theory,
types are arbitrary maps from worlds to values, modulo cur-
rying and nomenclature. But, as argued in [24, Section 5.1],
we really want types that are both hereditary and monotone.
In [24, Section 5.1] such types are elegantly identified using
modal operators, but this does not change the problem that
the types in a world may fail these criteria. This is recog-
nized in the last paragraph of [24, Section 10] where an al-
ternative, and less straightforward, model with only heredi-
tary types in the worlds is sketched. But that means starting
the model construction all over from scratch and does not
buy us monotonicity. On the other hand, to obtain heredi-
tary types with the metric approach we just use the unifor-
mity condition on UPred(V ), verify Lemma 2.2 and apply
Theorem 2.1. And to work with monotone types we can ap-
ply a slightly stronger existence result, cf. Appendix A and
[17, Proposition 5.4] for pre-ordered metric spaces. A simi-
lar argument goes for the extension to mixed variance func-
tors discussed [24, Section 10]: it is already supported by
the metric-space approach. Indeed, in unpublished work we
have used mixed-variance functors to verify that the metric-
space approach scales to the elaborate worlds of [4].

Finally, we think that it is advantageous that the metric
approach applies both to models based on domain theory
and to models based on operational semantics.
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4 Application: Step-Indexed Model of Sepa-
ration Logic for Nested Hoare Triples

We next turn to a new application of recursively-defined
sets of Kripke worlds: a step-indexed model of separation
logic for nested Hoare triples.

In recent work, Schwinghammer et al. [32] present a
domain-theoretic model of a variant of separation logic for
a language that allows code to be stored in the heap (a form
of “higher-order store”). The model is used to prove sound-
ness of rules for “recursion through the heap” as well as
soundness of higher-order frame rules that take stored code
into account. (Both kinds of rules will be explained in more
detail below.) The model is based on the solution of a re-
cursive world equation using complete uniform subsets of a
domain, akin to the situation in Section 2.1.

In this section we present a new, operational model of
the same logic, following the approach outlined in Sec-
tion 2.2. We do this for three reasons: first, to substan-
tiate the claim that the metric-space technique works for
both domain-theoretic and step-indexed models, and sec-
ond, to illustrate the use of obtaining a solution (rather than
an approximation of a solution) of a recursive equation for
“worlds,” and three, to obtain a simpler model than the one
in [32]. (We do not claim that the new model is sound for
more inference rules than the one in [32].)

The development in the rest of this section mostly fol-
lows the one in [32]; we shall highlight some key differ-
ences. The reader is assumed to be familiar with basic prop-
erties of separation logic [31].

4.1 Programming language

Figure 1 presents the language we consider [32]. It de-
viates from the “standard” core programming language of
separation logic [31] in two ways. First, stack variables are
immutable: only heap cells can be updated. Second, com-
mands are first-class values that can be stored in the heap:
there is a new form of expression called a quoted command,
written ‘C‘, and a new command for evaluating stored com-
mands, written eval [e]. Informally, if the value of e is an
integer n, and if the current heap contains the quoted com-
mand ‘C‘ at location n, then the command eval [e] executes
C as a subroutine.

We write fv(C) for the set of free variables of the com-
mand C, and similarly for expressions. Let V be the set of
closed values of the language, and letH be the set of heaps,
i.e., finite maps from integers to closed values:

V = ℤ ∪ {‘C‘ ∣ fv(C) = ∅},
H = ℤ⇀fin V.

For two heaps ℎ1, ℎ2 ∈ H we write ℎ1#ℎ2 if they have
disjoint domains and ℎ1 ⋅ ℎ2 for their union if this is the

Expressions:

e ::= x ∣ ‘C‘ ∣ n ∣ e1 + e2 ∣ . . . (n ∈ ℤ)

Commands:

C ::= [e1] := e2 ∣ let x = [e] in C ∣ eval [e]
∣ let x = new(e) in C ∣ free e
∣ skip ∣ C1;C2 ∣ if (e1 = e2) then C1 else C2

Figure 1. Programming language.

case. An environment is a finite map � from variables
to closed values. When C is a command satisfying that
fv(C) ⊆ �, we let �(C) denote the result of applying � to
C as a capture-avoiding substitution. Given an expression e
and an environment � such that fv(e) ⊆ dom(�), we define
[[e]]� ∈ V as follows. When e is a quoted command ‘C‘ we
let [[e]]� = [[‘C‘]]� = �(C). When e is an arithmetic expres-
sion, [[e]]� is defined in the expected way, except that arith-
metic operations on quoted commands are, for definiteness,
given the meaning 0. Thence we avoid the complications of
introducing undefined expressions in a Hoare-style logic.3

The operational semantics of the language is defined by a
small-step semantics, with configurations of the form (C, ℎ)
or abort. Configurations of the form (skip, ℎ) or abort are
terminal; An abort configuration indicates a memory fault
or a runtime “type error” due to confusion between inte-
gers and quoted commands. The semantics is standard, all
the reduction rules can be found in Appendix; here we just
present the reduction rule for eval [e]:

(eval [e], ℎ) ↝ (C, ℎ) if [[e]] = n and ℎ(n) = ‘C‘.

Example 4.1 (Iteration). The language does not include
any high-level constructs for iteration. One can encode a
“while” loop by means of “Landin’s knot” in the heap:

while [e] ∕= 0 do C
def
= let x = new(‘skip‘) in

([x] := ‘ let y = [e] in
if (y = 0) then free x
else (C; eval [x])‘ ;

eval [x])

(Here x, y /∈ fv(e, C).) With that abbreviation, the follow-
ing rule is derivable in the logic we present below:

Γ ⊢ {∃y. e 7→ y ∗ I(y) ∧ y ∕= 0}C{∃y. e 7→ y ∗ I(y)}
Γ ⊢ {∃y. e 7→ y ∗ I(y)}while [e] ∕= 0 do C{e 7→ 0 ∗ I(0)}

3A more robust approach would be to introduce a simple type system
that distinguishes integers from quoted commands; for simplicity we do
not do so here.
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4.2 Logic

The formulas of the logic [32] are called assertions and
are generated by the grammar:

P,Q ::= false ∣ true ∣ P ∧Q ∣ P ∨Q ∣ P ⇒ Q ∣
∀x.P ∣ ∃x.P ∣ int(e) ∣ e1 = e2 ∣ e1 ≤ e2 ∣
e1 7→ e2 ∣ emp ∣ P ∗ Q ∣ P −∗ Q
{P}e{Q} ∣ P ⊗Q ∣ ⋅ ⋅ ⋅

where the dots refer to atomic predicates and recursively
defined predicates of the form (��(x).P )(e) with � in P
only occurring in “contractive” positions. (For space rea-
sons, we de not formalize recursively defined assertions
syntactically, but just treat them semantically, see below.)
Unlike in standard separation logic, assertions are used both
to describe predicates on heaps and to describe specifica-
tions of commands.

Indeed, the assertion {P}e{Q} means, intuitively, that
the value of e is a quoted command ‘C‘ which satisfies the
Hoare triple with precondition P and postcondition Q in
the usual sense of separation logic. Since Hoare triples are
assertions, they can appear in pre- and post-conditions of
other triples. Such nested triples are useful for reasoning
about stored code: the specification of a command C can
depend on the specification of other code in the heap, e.g.,

{P ∗ ∃y. x 7→ y ∧ {P ′}y{Q′}}‘C‘{Q} . (1)

Here a part of the precondition of C is that x points to a
command y satisfying {P ′}y{Q′}. Presumably, the reason
is that C contains one or more occurrences of eval [x].

The assertion P ⊗Q should be thought of as “the as-
sertion P extended with the invariant Q” and this asser-
tion form is used to codify higher-order frame rules [15].
See [32] for detailed discussion of soundness and unsound-
ness of variations higher-order frame rules in the presence
of higher-order store.

Proof Rules The proof rules include the standard rules for
intuitionistic predicate logic and the logic of bunched im-
plications [28]. Moreover, there are variations of standard
separation logic proof rules (for dereferencing, sequencing,
and so on). For brevity we only show the rule for derefer-
encing (the rest can be found in Appendix):

Γ, x ⊢ {P ∗ e 7→x}‘C‘{Q}
(x /∈ fv(e,Q))

Γ ⊢ {∃x. P ∗ e 7→x}‘let x = [e] in C‘{Q}
Here Γ ranges over finite sets of variables.

In addition to these standard rules, there are two kinds
of frame rules and a rule for executing stored code, see Fig-
ure 2. Rule (⊗-FRAME) is a deep frame rule in which
the invariant Q intuitively is added to all pre- and post-
conditions inside P . The latter intuition is captured by the

Γ ⊢ P
Γ ⊢ P ⊗Q (⊗-FRAME)

Γ ⊢ {P}e{Q} ⇒ {P ∗ R}e{Q ∗ R} (∗-FRAME)

Γ, k ⊢ R[k]⇒ {P ∗ e 7→R[ ]}k{Q}
Γ ⊢ {P ∗ e 7→R[ ]}‘eval [e]‘{Q}

(EVAL)

Figure 2. Selected Proof Rules.

axioms in Figure 3. Rule (∗-FRAME) is a shallow (first-
order) frame axiom. Finally, rule (EVAL) is the rule for
executing stored code. Here, e 7→R[ ] is an abbreviation
of ∃x. e 7→x ∧R[x] (for an x not free in R).

4.3 A step-indexed model

To model invariant extension P ⊗Q, Schwinghammer
et. al. [32] models an assertion as a function that takes the
meaning of a second, arbitrary assertion (to be thought of
as the “invariant” that the first assertion is extended with)
and gives a predicate on heaps.4 This approach introduces a
circularity, however, since such a function will in particular
be applicable to itself. In the next section we show how to
formalize and solve the circularity using metric spaces.

4.3.1 Semantic predicates

Following Section 2.2, we let UPred(H) be the set of sub-
sets of ℕ × H that are downwards closed in the first com-
ponent:

{p ⊆ ℕ×H ∣ ∀(k, ℎ) ∈ p.∀j ≤ k. (j, ℎ) ∈ p}.

We give UPred(H) the same distance function as in
Section 2.2; the set then becomes a complete, bounded ul-
trametric space. Using Theorem 2.1 we obtain a unique
W ∈ CBUltne satisfying

W ∼= 1
2 (W → UPred(H)) . (2)

Define Pred = 1
2 (W → UPred(H)) and let i : Pred →W

be the isomorphism. We will model assertions as elements
of Pred .

Let the letters p and q range over elements of Pred . We
order the elements of Pred pointwise:

p ≤ q ⇐⇒ ∀w ∈ W. p(w) ⊆ q(w)

4This idea follows earlier work on invariant extension [15, 16], which
does not, however, deal with nested Hoare triples.
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P ∘R def
= (P ⊗R) ∗ R {P}e{Q}⊗R ⇐⇒ {P ∘R}e{Q ∘R}

(�x.P )⊗R ⇐⇒ �x.(P ⊗R) (� ∈ {∀, ∃}, x /∈ fv(R))
(P ⊕Q)⊗R ⇐⇒ (P ⊗R)⊕ (Q⊗R) (⊕ ∈ {⇒,∧,∨, ∗,−∗})

P ⊗R ⇐⇒ P (P is true, false, emp, e1 = e2, e1 7→ e2, or int(e))
(P ⊗R)⊗R′ ⇐⇒ P ⊗(R ∘R′) P ⊗ emp ⇐⇒ P

Figure 3. Axioms for invariant extension.

Lemma 4.2. With the ordering above and the following op-
erations, Pred is a complete BI-algebra [14]:

emp(w) = {(n, []) ∣ n ∈ ℕ}
(p ∗ q)(w) = {(n, ℎ) ∣ ∃ℎ1, ℎ2. ℎ = ℎ1 ⋅ ℎ2

∧ (n, ℎ1) ∈ p(w) ∧ (n, ℎ2) ∈ q(w)

(p −∗ q)(w) = {(n, ℎ) ∣ ∀m ≤ n.
((m,ℎ′) ∈ p(w) ∧ ℎ#ℎ′)⇒ (m,ℎ ⋅ ℎ′) ∈ q(w)}

The fact that Pred is a complete BI algebra immediately
gives us a sound interpretation of most of the assertions in
the logic [14], but to interpret recursive predicates we also
need to know that the operations are non-expansive:

Lemma 4.3. The BI-algebra operations on Pred given by
the previous lemma are non-expansive:

∗,−∗,→,∧,∨ : Pred × Pred → Pred⋁
I ,
⋀
I : (I → Pred)→ Pred .

(In the last two operations, the indexing set I is given the
discrete metric.)

Proof. Easy verification. One first shows the analogous
property for UPred(H). To illustrate what follows, con-
sider ∗: UPred(H) × UPred(H) → UPred(H): It suf-
fices to show that if p n

= p′ and q
n
= q′, then also (p ∗

q)
n
= (p′ ∗ q′). The latter is equivalent to showing that

∀m < n. (m,ℎ) ∈ p ∗ q ⇐⇒ (m,ℎ) ∈ p′ ∗ q′, which
follows easily by the assumption.

4.3.2 Interpretation of invariant extension

To interpret invariant-extension assertions P ⊗Q, we need
a operator ⊗ on the set of semantic predicates Pred . The
most convenient way to specify ⊗ is to give a certain re-
cursive equation that it must satisfy. Using the metric-space
setup we can then prove that there exists a unique operator
satisfying this specification, by an easy application of Ba-
nach’s fixed point theorem, as in [32].

Proposition 4.4. There exists a unique function⊗ : Pred×
W → Pred in CBUltne satisfying

p⊗w = �w′. p(w ∘w′)
where ∘ :W ×W →W is given by

w1 ∘ w2 = i((i−1(w1)⊗w2) ∗ i−1(w2)) .

Observe that it is here that we exploit that we have ob-
tained a proper solution to the world equation (2) as a metric
space such that we can now easily establish the existence of
the recursively-defined ⊗-operation.

The basic properties of ⊗ and ∘ are conveniently sum-
marized as follows:

Proposition 4.5. 1. (W, ∘,emp) is a monoid.

2. The operator ⊗ is a monoid action ofW on Pred : for
all P ∈ Pred andw1, w2 ∈ W we have P ⊗emp = P
and (P ⊗w1)⊗w2 = P ⊗(w1 ∘w2).

4.3.3 Interpretation of assertions

We next define a semantic interpretation of Hoare triples.
To this end we let Safem be the set of configurations in the
operational semantics that are safe for m reduction steps,
that is, those configurations that do not reduce to abort in
m (or fewer) steps. We write ↝k for the k-step reduction
relation of the operational semantics.

Now say that w ∣=n (p, C, q) holds iff: For all r ∈
UPred , all m < n and all heaps ℎ, if (m,ℎ) ∈ p(w) ∗
i−1(w)(emp) ∗ r, then:

1. (C, ℎ) ∈ Safem.

2. For all k ≤ m and all ℎ′ ∈ H , if (C, ℎ) ↝k (skip, ℎ′),
then (m− k, ℎ′) ∈ q(w) ∗ i−1(w)(emp) ∗ r.

This definition is similar to the one in [32] with its use of
the invariant w and the baking-in of the first order frame
rule, i.e., the quantification over r. The difference is that the
meaning is now relative to the operational semantics (rather
than denotational) and that we use step-indexing to measure
to what extent pre- and post-conditions should hold.

The intention is, of course, that a Hoare-triple assertion
is interpreted using the above semantic construct. However,
to see that this interpretation gives a well-defined member
of Pred , we need to know that a semantic Hoare triple is
“non-expansive in w”:

Proposition 4.6. If w =k w′ and w ∣=n (p, C, q), then
w′ ∣=n∧(k−1) (p, C, q).

Proof. Easy verification, using the fact that the separating
conjunction ∗ on UPred(V ) is non-expansive (Lemma 4.3).
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The interpretation of an assertion Γ ⊢ P is now defined
to be an element [[P ]]� in Pred , for � an environment map-
ping the variables in the domain of Γ to V . The definition
uses the complete BI-algebra structure on Pred given ear-
lier to interpret the standard logical connectives, e.g.,

[[P ∗ Q]]�w = [[P ]]�w ∗ [[Q]]�w.

Invariant extension is interpreted as follows:

[[P ⊗Q]]�w =
(

[[P ]]� ⊗ i([[Q]]�)
)
w

and, finally, Hoare triples are interpreted like this:

[[{P}e{Q}]]�w ={
{(n, ℎ) ∣ w ∣=n ([[P ]]�, C, [[Q]]�) } if [[e]]� = ‘C‘

∅ otherwise.

The concrete interpretation of all the logical connectives can
be found in Appendix. As in [32], recursively defined pred-
icates are interpreted via Banach’s fixed point theorem:

Proposition 4.7. Let I be a set and suppose that, for each
i ∈ I , Fi : PredI → Pred is a contractive function.
Then there exists a unique p⃗ = (pi)i∈I ∈ PredI such that
Fi(p⃗) = pi, for all i ∈ I .

4.3.4 Soundness of proof rules

We define semantic validity of (open) assertions as follows:
For an assertion P with free variables belonging to Γ, say
that Γ ∣= P iff: For all environments � with Γ ⊆ dom(�)
and all w ∈ W we have [[P ]]�w = ℕ×H . This amounts to
saying that [[P ]]� is the top element of the BI algebra Pred .

Theorem 4.8. If Γ ⊢ P , then Γ ∣= P .

Proof. By showing the stronger property that each proof
rule holds semantically, that is, with ⊢ replaced by ∣=. We
only include the proof case for eval [e] (the other interest-
ing cases are the ones for invariant extension; there one uses
Proposition 4.5). We must show: if Γ, z ∣= R[z] ⇒ {P ∗
e 7→R[ ]}z{Q}, then Γ ∣= {P ∗ e 7→R[ ]}‘eval [e]‘{Q}.

Let � be an environment with Γ ⊆ dom(�), and let w
and n be arbitrary. We must show that

w ∣=n {[[P ∗ e 7→R[ ]]]�}‘�(eval [e])‘{[[Q]]�}. (3)

So let k < n and r ∈ UPred and let (k, ℎ) ∈ [[P ∗
e 7→R[ ]]]�(w) ∗ i−1(w)(emp) ∗ r. Then ℎ = ℎ1 ∗
[l 7→ v] ∗ ℎ2 ∗ ℎ3, where (k, ℎ1) ∈ [[P ]]�(w) and
[[e]]� = l and (k, [l 7→ v]) ∈ [[R[z]]]�[z 7→ v](w) and
(k, ℎ2) ∈ i−1(w)(emp) and (k, ℎ3) ∈ r. Using valid-
ity of the premise, we get that (k, [l 7→ v]) ∈ [[{P ∗
e 7→R[z]}z{Q}]]�[z 7→ v](w), which means that v = ‘C‘
for some C, and that w ∣=k {[[P ∗ e 7→R[z]]]�}C{[[Q]]�}.

Now, if k = 0, then conditions 1 and 2 in the definition of ∣=
are clearly satisfied (item 2 because (�(eval [e]), ℎ) takes a
reduction step), so (3) holds, as required. If k > 0 then, first
observe that by downwards closure we have (k − 1, ℎ) ∈
[[P ∗ e 7→R[ ]]]�(w) ∗ i−1(w)(emp) ∗ r. Therefore,
(C, ℎ) ∈ Safek−1, which implies that (�(eval [e]), ℎ) ∈
Safek, so condition 1 in definition of ∣= is satisfied. For
condition 2, we finally assume that (�(eval [e]), ℎ) ↝m

(skip, ℎ′) for some ℎ′ and m ≤ k. Then (C, ℎ) ↝m−1

(skip, ℎ′). Sincem−1 ≤ k−1, we then get ((k−1)−(m−
1), ℎ′) ∈ [[Q]]�(w) ∗ i−1(w)(emp) ∗ r, as required.

4.4 Discussion

In summa, we have developed a new step-indexed model
of separation logic with nested Hoare triples for reason-
ing about higher-order store. The new model is arguably
simpler than the one in [32], since it is phrased directly in
terms of the operational semantics without passing through
a domain-theoretic denotational semantics. A usual advan-
tage of using domain-theory is a more abstract semantics,
but in [32], it was in necessary to employ certain “step-like,”
rank functions, so in the end the model of loc.cit. was not
more abstract than the new one presented here.

5 Related and Future Work

Relational Reasoning We have focused on unary reason-
ing in this paper, but as mentioned in the introduction the
techniques developed here also apply to relational reason-
ing. Relational reasoning about higher-order store, e.g., log-
ical relations for reasoning about contextual equivalence of
programs, have been developed both based on domain the-
ory, e.g., [12, 18], and on step-indexed models, e.g., [4].
For such relational reasoning, the worlds are typically more
sophisticated than the worlds we have discussed so far, in
order to describe situations in which programs are contex-
tually equivalent even though they use local state in differ-
ent ways. The third author has recently phrased the state-
of-the-art world model from [4] as a recursive world equa-
tion over a domain-theoretic model. The reason for doing
so is to obtain more abstract reasoning principles when us-
ing the resulting model for proving actual program equiv-
alences, without having to reason about step-indices. As
an alternative, Dreyer et. al. [22] have shown how to ex-
tend the relational step-indexed model [4] to a model of
a modal logic for more abstract reasoning about program
equivalences. The latter modal logic has been derived from
the step-indexed model; we believe it is still a challenge
to develop relational step-indexed models of some existing
logics; e.g., for Hoare Type Theory [27]. Alternatively, one
might try to develop a new formulation of (the ideas of)
Hoare Type Theory based on a step-indexed model.
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Formalization An often mentioned advantage of the tra-
ditional step-indexed approach is that it lends itself well to
formalization in theorem provers and, indeed, impressive
formalization work has been carried out in, e.g., Coq [10].

Thus, one may wonder, whether our proposed metric ap-
proach will hinder formalizations. We claim that it will not.
Indeed, Varming has recently formalized the solution of re-
cursive metric-space equations in Coq [34], following the
treatment in [17]. This formalization can be used in concert
with a formalization of operational semantics to yield, e.g.,
formalizations of the models in Sections 2.2 4, or with the
formalizations of Benton et. al. of domain theory [13] to
yield formalizations of models based on domain theory.

6 Conclusion and Acknowledgements

In conclusion, the key conceptual contributions of this
paper are (1) the realization that models of higher-order
store phenomena naturally can be given as Kripke mod-
els over worlds that are recursively defined in a category
of metric spaces; and (2) a unification of methods based
on classical domain theory and on step-indexed operational
models. Our technical contributions include that (1) we
have shown how to solve world equations for concrete step-
indexed models; (2) we have shown that our metric ap-
proach can be specialized to Hobor et. al.’s recent pro-
posal [24] (and argued that the metric approach has some
advantages); and (3) we have developed a new model of
separation logic with nested Hoare triples for reasoning
about higher-order store, a model which shows the utility of
the metric approach since it relies on a recursively defined
operator on worlds.

We would like to thank Aquinas Hobor, Robert Dockins,
Andrew W. Appel and Francois Pottier for helpful discus-
sions and insightful comments.

References

[1] Martı́n Abadi and Gordon D. Plotkin. A per model of polymorphism and re-
cursive types. In Proceedings of LICS, pages 355–365, 1990.

[2] A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general
references. In Proceedings of LICS 2002, 2002.

[3] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis.

[4] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent repre-
sentation independence. In Proceedings of POPL, 2009. To appear.

[5] Roberto M. Amadio. Recursion over realizability structures. Information and
Computation, 91(1):55–85, 1991.

[6] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi.
Cambridge University Press, 1998.

[7] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–375, 1989.

[8] A. W. Appel and D. A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5),
2001.

[9] A. W. Appel, P. Melliès, C. D. Richards, and J. Vouillon. A very modal model
of a modern, major, general type system. In Proceedings of POPL 2007, 2007.

[10] A.W. Appel, R. Dockins, and A. Hobor. Mechanized semantic library.
http://msl.cs.princeton.edu/, 2009.

[11] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proceedings of TLCA, 2005.

[12] N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics
for effect-based program transformations: Higher-order store. In Proceedings
of PPDP’09, 2009.

[13] N. Benton, A. Kennedy, and C. Varming. Some domain theory and denotational
semantics in coq. In Proceedings of TPHOLs’09, 2009.

[14] B. Biering, L. Birkedal, and N. Torp-Smith. Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5),
2007.

[15] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5:1), 2006.
URL http://dx.doi.org/10.2168/LMCS-2(5:1)2006.

[16] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang. A Simple Model of
Separation Logic for Higher-order Store. In Proceedings of ICALP 2008, 2008.

[17] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic solution of
recursive metric-space quations. Technical Report ITU-2009-119, IT Univer-
sity of Copenhagen, 2009.

[18] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of para-
metric polymorphism, general references, and recursive types. In Proceedings
of FOSSACS, number 5504 in LNCS, pages 456–470, 2009.

[19] N. Bohr and L. Birkedal. Relational reasoning for recursive types and refer-
ences. In Proceedings of APLAS, number 4279 in LNCS, pages 79–96, 2006.

[20] F. Cardone. Relational semantics for recursive types and bounded quantifica-
tion. In Proceedings of ICALP, 1989.

[21] Jaco de Bakker and Erik de Vink. Control flow semantics. MIT Press, Cam-
bridge, MA, USA, 1996. ISBN 0-262-04154-5.

[22] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal logic for
higher-order stateful ADTs. In Proceedings of POPL’2010, 2010.

[23] A. Hobor, A.W. Appel, and F.Z. Nardelli. Oracle semantics for concurrent
separation logic. In Proceedings of ESOP’08, 2008.

[24] A. Hobor, R. Dockins, and A.W. Appel. A theory of indirection via approxi-
mation. In Proceedings of POPL’2010, 2010.

[25] P. B. Levy. Possible world semantics for general storage in call-by-value. In
CSL: 16th Workshop on Computer Science Logic, volume 2471 of LNCS.

[26] David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71(1/2):95–130, 1986.

[27] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in
hoare type theory. In Proceedings of ICFP’06, 2006.

[28] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bul-
letin of Symbolic Logic, 5(2):215–244, June 1999.

[29] Bernhard Reus and Jan Schwinghammer. Separation logic for higher-order
store. In Proc. CSL’06, volume 4207 of LNCS, pages 575–590, 2006.

[30] Bernhard Reus and Thomas Streicher. Semantics and logic of object calculi.
In Proceedings of 17th Annual IEEE Symposium Logic in Computer Science,
pages 113–124. IEEE Computer Society Press, 2002.

[31] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of LICS, pages 55–74, 2002.

[32] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples
and frame rules for higher-order store. In Proceedings of CSL, number 5771 in
LNCS, pages 440–454, 2009.

[33] Michael B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science. Oxford Univer-
sity Press, 1992.

[34] C. Varming. Recursive metric-space equations in coq. Personal Communica-
tion, 2009.

185



A Step-Indexed Model of References

A.1 Language

The language is as in [22] , except that we split the con-
text for type variables and term variables in two so that term
judgments take the form:

Δ; Γ; Σ ⊢M : �

for Δ a context of type variables �1, . . . , �n, Γ a context
of term variables x1 : �1, . . . , xm : �m, and Σ a context of
locations l1 : �1, . . . , lk : �k.

Detailed typing judgments and operational semantics
can be found in the online appendix to [22].

A.2 Model

Let V denote the set of closed syntactic values and let
UPred(V ) be the set

{P ⊆ ℕ× V ∣ ∀(k, v) ∈ P.∀j ≤ k. (j, v) ∈ P}.

We can define a distance function on UPred(V ), which
measures “up-to-what-level” two uniform predicates agree,
as follows: First, for P ∈ UPred(V ), let P

k
denote

{(m, v) ∈ P ∣ m < k}, and then define distance func-
tion d by:

d(P,Q) =

{
2−n if P ∕= Q and n = max{k ∣ P k = Q

k}
0 if P = Q.

Lemma A.1. (UPred(V ), d) is a well-defined object in
CBUltne.

In the same manner, we let E denote the set of closed
syntactic expressions and define UPred(E) to the corre-
sponding set of uniform predicates on E.

Let PreCBUltne denote the category with objects (A,≤)
where A an object of CBUltne and ≤ is a preorder on the
underlying set of A such that the following condition holds:
if (an)n∈ℕ and (bn)n∈ℕ are converging sequences inAwith
an ≤ bn for all n, then also limn→∞ an ≤ limn→∞ bn.
Morphisms are functions that are both monotone and non-
expansive. By Proposition 5.4 in [17] we then immediately
get:

Theorem A.2. There exists a preordered non-empty com-
plete bounded ultra-metric space W with an isomorphism

W ∼= ℕ⇀fin
1
2 (W →mon UPred(V ))

in PreCBUltne. One member of the right hand side is less
than another if the domain of the first is included in the do-
main of the second and they agree on the former.

Semantic value types will be modeled as elements of

T = W →mon UPred(V ),

and the semantic computation types will be modeled as el-
ements of

TE = W → UPred(E).

For Δ a context of type variables, we use ' to range over
the product space T ∣Δ∣ in CBUltne.

We now define the interpretation of types in context as a
function

V[[Δ ⊢ � ]] : T ∣Δ∣ → T

in CBUltne (i.e., note that the function space consists of non-
expansive functions). The function is defined like this:

V[[Δ ⊢ 1]]' = �w. {(k, ∗) ∣ k ∈ ℕ}
V[[Δ ⊢ �]]' = '(�)
V[[Δ ⊢ �1 → �2]]' = �w. {(k, v) ∣ ∀w′ ≥ w.∀j ≤ k.

∀v1. (j, v1) ∈ V[[Δ ⊢ �1]]'w′

⇒ (j, vv1) ∈ ℰ [[Δ ⊢ �2]]'w′}
V[[Δ ⊢ ref � ]]' = �w. {(k, l) ∣

(l ∈ dom(w) ∧ w(l)
k
=T V[[Δ ⊢ � ]]')}

V[[Δ ⊢ ��.� ]]' = fix (�r. �w. {(k, fold v) ∣ k > 0⇒
(k − 1, v) ∈ V[[Δ, � ⊢ � ]]'[� 7→ r]w})

V[[Δ ⊢ ∀�.� ]]' = �w. {(k, v) ∣ ∀�0 ∈ Type.∀r ∈ T.
∀w′ ≥ w.∀j ≤ k.

(j, v[�0]) ∈ ℰ [[Δ, � ⊢ � ]]'[� 7→ r]w′})
ℰ [[Δ ⊢ � ]]' = �w. {(k, e) ∣ ∀j ≤ k. ∀s, v, s′.(

(e, s) ⇓j (v, s′) ∧ s :k w
)

⇒
(
∃w′ ≥ w. s′ :k−j w′ ∧ (k − j, v) ∈ V[[Δ ⊢ � ]]'w′

)
}

s :k w ⇐⇒ ∀j < k. dom(s) = dom(w)∧
∀l ∈ dom(w). (j, s(l)) ∈ w(l)(w)

Remark A.3.

∙ Note that in the case for V[[Δ ⊢ ref � ]], we use k-
equality in the space T .

Lemma A.4. If w n
= w′ and w0 ≥ w then there exists w′0

with

w′0(l) =

{
w′(l) if l ∈ dom(w′)

w0(l) otherwise

and w′0 ∈W and w′0
n
= w0.

Lemma A.5. If s :k w and w n
=W w′ and k < n, then also

s :k w
′.

Proof. We are to show that ∀j < k. dom(s) = dom(w′) ∧
∀l ∈ dom(w′). (j, s(l)) ∈ w′(l)(w′). It holds vacously if
k = 0, so assume k > 0. Then also n > 0. Let j < k
be arbitrary. By the assumption that w n

=W w′, we get that
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dom(w) = dom(w′) ∧ ∀l ∈ dom(w).∀w0. w(l)(w0)
n−1
=

w′(l)(w0). Since dom(s) = dom(w) by the assumption
that s :k w (using k > 0), we get dom(s) = dom(w′), as
required. Moreover, we find that

w(l)(w)
n
= w(l)(w′)

n−1
= w′(l)(w′)

with the first equality since w(l) is non-expansive, and the
second equality by the assumption that w n

=W w′. Thus,
as (j, s(l)) ∈ w(l)(w) by assumption, and since j < k ≤
n− 1, we also get (j, s(l)) ∈ w′(l)(w′), as desired.

Lemma A.6. V[[Δ ⊢ � ]] and ℰ [[Δ ⊢ � ]] are well-defined. In
particular,

∙ V[[Δ ⊢ � ]]' ∈ T (so non-expansive and monotone),

∙ ℰ [[Δ ⊢ � ]]' ∈ TE (so non-expansive),

∙ V[[Δ ⊢ � ]] is a non-expansive map,

∙ The function r 7→ �w. {(k, fold v) ∣ k > 0 ⇒
(k − 1, v) ∈ V[[Δ, � ⊢ � ]]'[� 7→ r]w} is contractive
so the fixed point taken in V ′[[Δ ⊢ ��.� ]] exists (this
boils down to the use of k − 1).

We now define interpretations of contexts and the logical
relation interpretation of well-typed expressions:

D[[Δ]] : T ∣Δ∣

D[[∅]] = ∅
D[[Δ, �]] = {'[� 7→ r] ∣
' ∈ D[[Δ]] ∧ r ∈ T}

G[[Δ ⊢ Γ]] : T ∣Δ∣ →W → UPred(V ∣Γ∣)
G[[Δ ⊢ ∅]]' = ∅
G[[Δ ⊢ Γ, x : � ]]' = �w. {(k, [x 7→ v]) ∣

(k, ) ∈ G[[Γ]]'w ∧ (k, v) ∈ V[[Δ ⊢ � ]]'w}

S[[Σ]] = {(k,w) ∣ ∀(l : �) ∈ Σ.
(k, l) ∈ V[[∅ ⊢ ref � ]]∅w}

Δ; Γ; Σ ⊢ e :log � ⇐⇒
∃�1, . . . , �n.Δ = �1, . . . , �n ∧ ∀�1, . . . , �n.
∀k ≥ 0.∀'.∀.∀w.(
' ∈ D[[Δ]] ∧ (k, ) ∈ G[[Δ ⊢ Γ]]'w ∧ (k,w) ∈ S[[Σ]]

)

⇒
(
(k, [�1 7→ �1, . . . , �n 7→ �n]((e))) ∈ ℰ [[Δ ⊢ � ]]'w

)

Theorem A.7 (Fundamental Theorem of Logical Rela-
tions). If Δ; Γ; Σ ⊢ e : � , then Δ; Γ; Σ ⊢ e :log � .

B Specialization to Indirection Theory,
Three Proofs

Proof of Proposition 3.3. It is immediate that any non-
expansive ' has the stated property. Assume, on the other

hand, that we need to show ' non-expansive. Let x, y ∈ X ,
we must show that d('(x), '(y)) ≤ d(x, y), where d is
the metric on X . We may without loss of generality as-
sume that d(x, y) ∕= 0. But then there is m ∈ ℕ with
d(x, y) = 2−m, in particular we have d(x, y) ≤ 2−m which
we usually write x =m y. From the assumption we get that
'(x) =m '(y), i.e., that d('(x), '(y)) ≤ 2−m and we are
done.

Proof of Theorem 3.6. Let X and Φ be the result of apply-
ing Theorem 3.5 to F̂ . Note initially that X must be bi-
sected. This is by definition the case for UPred(O) and
hence any two elements of X →ne UPred(O) have a
distance that is the supremum of a nonempty subset of
{0} ∪ {2−m ∣ m ∈ ℕ}. But this set is closed under
nonempty suprema and so X →ne UPred(O) is bisected
too. Both of the functors 1

2 (−) and F̂ preserve the prop-
erty of being bisected, the former by construction and the
latter by assumption. And so X , which is isometric to
F̂
(

1
2 (X →ne UPred(O))

)
, must be bisected.

Without further ado, let us plunge into the construction.
For every m ∈ ℕ we know that =m is an equivalence rela-
tion on X , for x ∈ X we denote by [x]m the equivalence
class containing x. We let K be the sum of all but the first
of the sets of equivalence classes:

K =
∑

m≥1

X/ =m

Furthermore we let K × O →ℎer 2 consist of the set-
theoretic maps  : K × O → 2 such that for any
(m, [x]m) ∈ K, any o ∈ O and any 0 < n < m we have

 ((m, [x]m), o)⇒  ((n, [x]n), o).

To build squash and unsquash we need auxiliary maps:

1
2 (X →ne UPred(O))

H //
K ×O →ℎer 2

B
oo

defined by

H(') = �((m, [x]m), o) ∈ K ×O. '(x) ∋ (m− 1, o)

respectively by

B( ) = �x ∈ X. {(m, o) ∣  ((m+ 1, [x]m+1), o)}.

These are well-defined. To verify this for H take ' ∈
1
2 (X →ne UPred(O)), (m, [x]m) ∈ K and o ∈ O. No-
tice initially that the choice of the representative x does
not matter for if x =m y holds for two x, y ∈ X we
have '(x) =m '(y) too, in particular (m − 1, o) ∈ '(x)
if and only if (m − 1, o) ∈ '(y). To prove H(') ∈
K × O →ℎer 2 we furthermore take 0 < n < m and as-
sume that H(')((m, [x]m), o) holds, i.e., that (m− 1, o) ∈
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'(x). Proving H(')((n, [x]n), o) comes down to showing
(n− 1, o) ∈ '(x) which is true by uniformity of '(x).

To verify that B is well-defined we take  ∈ K ×
O →ℎer 2. First we take x ∈ X and must prove {(m, o) ∣
 ((m + 1, [x]m+1), o)} uniform. So assume that we have
n < m ∈ ℕ and o ∈ O with  ((m + 1, [x]m+1), o), we
immediately get  ((n + 1, [x]n+1), o). Second we take
x, y ∈ X with x =m y for somem ∈ ℕ, we must show that
B( )(x) =m B( )(y), i.e., that for all n < m ∈ ℕ and all
o ∈ O we have ((n+1, [x]n+1), o) iff ((n+1, [y]n+1), o)
but this is immediate since [x]n+1 = [y]n+1. Here we used
Proposition 3.3 to prove non-expansiveness of B( ).

Going back and forth with H and B gets you nowhere.
For  ∈ K ×O →ℎer 2 we get that

H(B( )) = H(�x. {(m, o) ∣  ((m+ 1, [x]m+1), o)})
= �((m, [x]m), o).  ((m, [x]m), o)

=  

and for ' ∈ 1
2 (X →ne UPred(O)) we get

B(H(')) = B(�((m, [x]m), o). '(x) ∋ (m− 1, o))

= �x. {(m, o) ∣ '(x) ∋ (m, o)}
= '.

Up until this point, the maps H and B have been
merely set-theoretic and not morphisms in CBUltne, indeed,
K × O →ℎer 2 is itself just a set. But now we equip it
with the metric induced by the bijection with 1

2 (X →ne

UPred(O)), i.e., the distance between to elements is the
distance between the images of these elements under appli-
cation of B. With this metric we obviously get an object of
CBUltne and the maps H and B are morphisms of CBUltne,
indeed, they are isometries. We need this to be able to apply
F̂ to them.

Also we need, for each m ∈ ℕ, to define �m on
1
2 (X →ne UPred(O)) by pointwise application of the re-
striction map, i.e., for ' ∈ 1

2 (X →ne UPred(O)) we de-
fine

�m(')(x) = '(x)∣m.
We should verify that this is a non-expansive map. It
has been argued above that 1

2 (X →ne UPred(O)) is bi-
sected so by Proposition 3.3 we take '0, '1 ∈ 1

2 (X →ne

UPred(O)), n ∈ ℕ, assume '0 =n '1 and aim to prove
�m('0) =n �m('1). We may without loss of general-
ity assume n > 0. For x ∈ X we get by assumption
that '0(x) =n−1 '1(x) which implies that '0(x)∣m =n−1

'1(x)∣m too and we are done. Really we would like to talk
about the maps (approxm)m∈ℕ on K × O →ℎer 2 but we
cannot since squash and unsquash have not been defined
yet; instead we deal in (�m)m∈ℕ on 1

2 (X →ne UPred(O)).
We shall need and prove a close correspondence between
the two below.

We are now ready to construct the promised set-theoretic
maps squash and unsquash. For (m, [x]m) ∈ K we define

unsquash(m, [x]m) =
(
m− 1, (F̂ (H) ∘ F̂ (�m−1) ∘ Φ)(x)

)

and for (m, �) ∈ ℕ× F̂ (K ×O →ℎer 2) we set

squash(m, �) =
(
m+ 1, [(Φ−1 ∘ F̂ (B))(�)]m+1

)
.

Our first aim is to verify that unsquash is indeed well-
defined, i.e., that the choice of the representative x does not
matter. For x, y ∈ X with x =m y for some m > 0 we
get Φ(x) =m Φ(y) too. For any two '0, '1 ∈ 1

2 (X →ne

UPred(O)) we get that if '0 =m '1 then for any z ∈ X
we have '0(z) =m−1 '1(z). But then

�m−1('0)(z) = '0(z)∣m−1

= '1(z)∣m−1

= �m−1('1)(z)

so we have �m−1('0) = �m−1('1). As F̂ was assumed
non-shrinking, we can now conclude that F̂ (�m−1)(x) =
F̂ (�m−1)(y) and we know that unsquash is well defined.

Before we go on, we need a quick comment on an easily
overlooked issue. The maps squash and unsquash are both
set-theoretic as desired but really they go between K and
ℕ × U(F̂ (K × O →ℎer 2)) where U : CBUltne → Set is
the forgetful functor. But we assumed F̂ a lift of F so

U(F̂ (K ×O →ℎer 2)) = F (U(K ×O →ℎer 2))

and the latter is what we usually just write F (K ×O →ℎer

2). So the domain respectively codomain of squash and
unsquash really are what they are supposed to be.

With the issues of well-definedness taken care of, we
now pursue the promised equalities. For (m, [x]m) ∈ K
we calculate as follows:

(squash ∘ unsquash)(m, [x]m)

= squash
(
m− 1, (F̂ (H) ∘ F̂ (�m−1) ∘ Φ)(x)

)

= (m, [(Φ−1 ∘ F̂ (B) ∘ F̂ (H) ∘ F̂ (�m−1) ∘ Φ)(x)]m)

= (m, [(Φ−1 ∘ F̂ (�m−1) ∘ Φ)(x)]m).

A bit of reasoning remains to show that this is indeed
(m, [x]m). Notice first that we may rewrite x = (Φ−1 ∘
F̂ (1 1

2 (X→neUPred(O))) ∘ Φ)(x). This means that if we can
prove

�m−1 =m 1 1
2 (X→neUPred(O))

then we are done as F̂ was assumed locally non-expansive.
So take ' ∈ 1

2 (X →ne UPred(O)). For any y ∈ X we get
that

�m−1(')(y) = '(y)∣m−1 =m−1 '(y)
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so in X →ne UPred(O) we have �n−1(') =m−1 ' and
we are done because of the shrinking factor.

For (m, �) ∈ ℕ× F̂ (K ×O →ℎer 2) we get

(unsquash ∘ squash)(m, �)

= unsquash
(
m+ 1, [(Φ−1 ∘ F̂ (B))(�)]m+1

)

= (m, (F̂ (H) ∘ F̂ (�m) ∘ Φ ∘ Φ−1 ∘ F̂ (B))(�))

= (m, (F̂ (H) ∘ F̂ (�m) ∘ F̂ (B))(�)).

To finish this we need to look into the relationship between
�m and the map approxm. Take  ∈ K × O →ℎer 2, we
start from one end and get that

(�m ∘B)( )

= �m(�x. {(n, o) ∣  ((n+ 1, [x]n+1), o)})
= �x. {(n, o) ∣  ((n+ 1, [x]n+1), o) ∧ n < m}
= �x. {(n, o) ∣ approxm( )((n+ 1, [x]n+1), o)}
= (B ∘ approxm)( )

where we remember that level(n + 1, [x]n+1)) = n since
level is the composite of the first projection and unsquash.
Summing up we have proved that

(unsquash ∘ squash)(m, �)

= (m, (F (H) ∘ F (B) ∘ F (approxm))(�))

= (m,F (approxm)(�)

as desired – again we applied that F̂ is a lift of F .
We now consider the third property; we need to prove

that the subset K × O →ℎer 2 of the full function space
K × O → 2 coincides with the functions that are hered-
itary in the sense that they are fixed under application of
□. Take initially (m, [x]m) and (n, [y]n) in K, we get that
(m, [x]m)A (n, [y]n) holds iff we have

unsquash(m, [x]m) = (l + 1, �) ∧ (n, [y]n) = squash(l, �)

⇔ (m− 1, (F̂ (H) ∘ F̂ (�m−1) ∘ Φ)(x)) = (l + 1, �)∧
(n, [y]n) = (l + 1, [(Φ−1 ∘ F̂ (B))(�)]l+1)

⇔ m = n+ 1∧
[y]n = [(Φ−1 ∘ F̂ (B) ∘ F̂ (H) ∘ F̂ (�m−1) ∘ Φ)(x)]n

⇔ m = n+ 1 ∧ [y]n = [x]n.

Here the last biimplication is a consequence of the fact that
x =m (Φ−1 ∘ F̂ (�m−1)∘Φ)(x) by arguments used to prove
squash ∘ unsquash = 1K above. It is immediate from this
that for the closure A∗ of A we have

(m, [x]m)A∗ (n, [y]n) ⇐⇒ m ≥ n ∧ [y]n = [x]n.

We know by definition that for  ∈ K × O → 2 we have
 = □ iff for all (m, [x]m) ∈ K and all o ∈ O we have

 ((m, [x]m), o) = (□ )((m, [x]m), o).

But by our characterization of A∗ we have that the right
hand side again equals

∀(n, [y]n) ∈ K. (m, [x]m)A∗(n, [y]n)⇒  ((n, [y]n), o)

= ∀n ≤ m.  ((n, [x]n), o).

From this it is immediate that  = □ holds iff we have
that  ∈ K ×O →ℎer 2 and we are done.

Proof of Proposition 3.7. We shall consider only three of
the cases.

Constant Non-empty Sets Let X be some fixed non-
empty set. Let F : Set → Set be the constant functor
mapping any set to X and any function to the identity map
1X . We need to come up with a plain lift F̂ : CBUltne →
CBUltne of F . We naturally choose F̂ to be the constant
functor mapping any object of CBUltne to X equipped with
the discrete metric d1 and any morphism of CBUltne to
the identity map 1X . This easily constitutes a locally non-
expansive functor F̂ : CBUltne → CBUltne and obviously
is a lift of F . For any ' : (Y, d)→ (Z, e) whatsoever we get
that for any m > 0 and any two x, y ∈ F̂ (Y, d) = (X, d1)
with x =m y we have x = y, in particular we have that
F̂ (')(x) = 1X(x) = 1X(y) = F̂ (')(y). Hence F̂ is non-
shrinking. Finally note that since (X, d1) is bisected we
have that F̂ maps all objects to bisected objects, in particu-
lar those that were bisected already.

Products Let us consider the case of products; we shall
work with binary products only but the construction gener-
alizes to any finite product. Take two functors F,G : Set→
Set and define H : Set → Set by mapping a set X to the
set F (X)×G(X) and a map ' : X → Y to F (')×G(') :
F (X) × G(X) → F (Y ) × G(Y ). Under the assumption
that we have plain lifts F̂ , Ĝ : CBUltne → CBUltne of F
and G, we have to build a plain lift Ĥ of H .

For an object (X, d) ∈ CBUltne we write (Y, e) =
F̂ (X, d) and (Z, f) = Ĝ(X, d) and assign

Ĥ(X, d) = (Y × Z, e× f),

where the product metric e × f on Y × Z is defined by
(e × f)((y0, z0), (y1, z1)) = max(e(y0, y1), f(z0, z1)) for
any two (y0, z0), (y1, z1) ∈ Y × Z. For a morphism
' : (X0, d0) → (X1, d1) ∈ CBUltne we write F̂ (') =
(Y0, e0) → (Y1, e1) and Ĝ(') = (Z0, f0) → (Z1, f1) and
assign

Ĥ(') = F̂ (')× Ĝ(') : Y0 × Z0 → Y1 × Z1.

It is well known that this yields a well-defined and locally
non-expansive functor Ĥ : CBUltne → CBUltne. For the
action on objects, this is spelled out in Lemmas 1.24 and
1.28 of [21].
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We now proceed to prove that the functor Ĥ is indeed a
plain lift of H . First up is the property of being a lift, take
an object (X, d) of CBUltne. We write (Y, e) = F̂ (X, d)
and (Z, f) = Ĝ(X, d) and get that

U(Ĥ(X, d)) = U(Y × Z, e× f)

= Y × Z
= U(F̂ (X, d))× U(Ĝ(X, d))

= F (U(X, d))×G(U(X, d))

= H(U(X, d)).

For a morphism ' : (X0, d0) → (X1, d1) ∈ CBUltne
we get the weirdly easy calculation U(Ĥ(')) = Ĥ(') =
F̂ (')× Ĝ(') = F (')×G(') = H(') since the forgetful
functor has no action on morphisms.

Next up is proof that Ĥ is non-shrinking. Take a mor-
phism ' : (X0, d0) → (X1, d1) ∈ CBUltne, we write
F̂ (') = (Y0, e0) → (Y1, e1) and Ĝ(') = (Z0, f0) →
(Z1, f1). Assume that for some m > 0 we have that

∀x, y ∈ X0. x =m y ⇒ '(x) = '(y).

Now take (y0, z0), (y1, z1) ∈ Y0 × Z0 and assume that we
have (y0, z0) =m (y1, z1). But then y0 =m y1 and z0 =m

z1 by the definition of the metric e0 × f0. And so we have

Ĥ(')(y0, z0) =
(
F̂ (')× Ĝ(')

)
(y0, z0)

=
(
F̂ (')(y0), Ĝ(')(z0)

)

=
(
F̂ (')(y1), Ĝ(')(z1)

)

=
(
F̂ (')× Ĝ(')

)
(y1, z1)

= Ĥ(')(y1, z1)

since both F̂ and Ĝ were assumed non-shrinking. Finally
we remark that Ĥ preserves the property of being bisected
since that holds by assumption for F̂ and Ĝ and because the
product metric introduces no new distances.

Finite, Partial Maps from a Constant Set Now on to
finite, partial maps from a constant set. Take a set X and a
functor F : Set→ Set, define G : Set→ Set by mapping a
set Y to the set X ⇀fin F (Y ) of partial maps with a finite
domain. A map ' : Y → Z is mapped to � : X ⇀fin

F (Y ). F (')∘ . Under the assumption that we have a plain
lift F̂ : CBUltne → CBUltne of F , we have to build a plain
lift Ĝ of G.

For an object (Y, d) ∈ CBUltne we write (Z, e) =
F̂ (Y, d) and assign

Ĝ(Y, d) = (X ⇀fin Z, eX⇀fin
),

where eX⇀fin
( 0,  1) is maxx∈dom(') e( 0(x),  1(x))

for any two  0,  1 : X ⇀fin Z with identical domain,
otherwise the distance is 1. For a morphism ' : (Y0, d0)→
(Y1, d1) in CBUltne we write F̂ (') : (Z0, e0) → (Z1, e1)
and employ that F̂ is a lift of F to simply assign

Ĝ(') = G(') : (X ⇀fin Z0)→ (X ⇀fin Z1).

It is easily verifiable – if not exactly well known – that this
yields a well-defined and locally non-expansive functor Ĝ :
CBUltne → CBUltne, a high level argument is given in the
proof of Proposition 22 of [18].

We now proceed to prove that the functor Ĝ is a plain lift
of G. First we verify that it is a lift, take an object (Y, d) of
CBUltne. We write (Z, e) = F̂ (Y, d) and get that

U(Ĝ(Y, d)) = U(X ⇀fin Z, eX⇀fin
)

= X ⇀fin Z

= X ⇀fin U(F̂ (Y, d))

= X ⇀fin F (U(Y, d))

= G(U(Y, d)).

The case of morphisms holds by definition.
Next up is proof that Ĝ is non-shrinking. Take a mor-

phism ' : (Y0, d0) → (Y1, d1) ∈ CBUltne, we write
F̂ (') = (Z0, e0)→ (Z1, e1). Assume that for somem > 0
we have that

∀x, y ∈ Y0. x =m y ⇒ '(x) = '(y).

Now take  0,  1,∈ X ⇀fin Z0 and assume that we have
 0 =m  1. We have dom( 0) = dom( 1) and further-
more know that for all x ∈ dom( 0) we have  0(x) =m

 1(x). We obviously have dom(Ĝ(')( 0)) = dom( 0) =
dom( 1) = dom(Ĝ(')( 0)) and for any x in this domain
we get

Ĝ(')( 0)(x) = G(')( 0)(x)

= (F (') ∘  0)(x)

= F (')( 0(x))

= F (')( 1(x))

= (F (') ∘  1)(x)

= G(')( 1)(x)

= Ĝ(')( 1)(x)

Finally we remark that Ĝ preserves the property of being bi-
sected since that holds by assumption for F̂ and because we
introduce no new distances by taking a maximum of finitely
many existing distances.
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Γ, x ⊢ {P ∗ e 7→x}‘C‘{Q}
(x /∈ fv(e,Q))

Γ ⊢ {∃x. P ∗ e 7→x}‘let x = [e] in C‘{Q}
(DEREF)

Γ ⊢ {e 7→ ∗ P}‘[e] := e0‘{e 7→ e0 ∗ P} (UPDATE)

Γ, x ⊢ {P ∗ x 7→ e}‘C‘{Q}
(x /∈ fv(P, e,Q))

Γ ⊢ {P}‘let x = new(e) in C‘{Q}
(NEW)

Γ ⊢ {e 7→ ∗ P}‘free e‘{P} (FREE)

Γ ⊢ {P}‘skip‘{P} (SKIP)

Γ ⊢ {P}‘C1‘{R} Γ ⊢ {R}‘C2‘{Q}
Γ ⊢ {P}‘C1;C2‘{Q}

(SEQ)

Γ ⊢ {P ∧ e1 = e2}‘C1‘{Q} Γ ⊢ {P ∧ e1 ∕= e2}‘C2‘{Q}
Γ ⊢ {P}‘if (e1 = e2) then C1 else C2‘{Q}

(IF)

Γ ⊢ P ′ ⇒ P Γ ⊢ Q⇒ Q′

Γ ⊢ {P}e{Q} ⇒ {P ′}e{Q′}
(CONSEQ)

Γ ⊢ P
Γ ⊢ P ⊗Q (⊗-FRAME)

Γ ⊢ {P}e{Q} ⇒ {P ∗ R}e{Q ∗ R} (∗-FRAME)

Γ, k ⊢ R[k]⇒ {P ∗ e 7→R[ ]}k{Q}
Γ ⊢ {P ∗ e 7→R[ ]}‘eval [e]‘{Q}

(EVAL)

Figure 5. Proof rules for Hoare triples.

C Step-Indexed Model of Separation Logic
for Nested Hoare Triples

In this section we include additional definitions and
proofs for the step-indexed model of separation logic for
nested Hoare triples.

The operational semantics is specified in Figure 4.
See Figure 5 for additional separation logic proof rules.
The interpretation of assertions is written out in full in

Figure 6.
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([e1] := e2, ℎ) ↝ (skip, ℎ[n 7→ [[e2]]) if [[e1]] = n and n ∈ dom(ℎ)
(let x = [e] in C, ℎ) ↝ (C[v/x], ℎ) if [[e]] = n and ℎ(n) = v

(eval [e], ℎ) ↝ (C, ℎ) if [[e]] = n and ℎ(n) = ‘C‘
(let x = new(e) in C, ℎ) ↝ (C[n/x], ℎ ∗ [n 7→ [[e]]]) if n /∈ dom(ℎ)

(free e, ℎ) ↝ (skip, ℎ′) if [[e]] = n and ℎ = ℎ′ ∗[n 7→ v]
(C1;C2, ℎ) ↝ (C′

1;C2, ℎ
′) if (C1, ℎ) ↝ (C′

1, ℎ
′)

(skip;C2, ℎ) ↝ (C2, ℎ)
(if (e1 = e2) then C1 else C2, ℎ) ↝ (C1, ℎ) if [[e1]] = [[e2]]
(if (e1 = e2) then C1 else C2, ℎ) ↝ (C2, ℎ) if [[e1]] ∕= [[e2]]

([e1] := e2, ℎ) ↝ abort if [[e1]] = ‘C‘ or [[e1]] = n where n /∈ dom(ℎ)
(let x = [e] in C, ℎ) ↝ abort if [[e]] = ‘C‘ or [[e]] = n where n /∈ dom(ℎ)

(eval [e], ℎ) ↝ abort if [[e]] = ‘C‘ or [[e]] = n where n /∈ dom(ℎ)
(eval [e], ℎ) ↝ abort if [[e]] = n where ℎ(n) = m

(free e, ℎ) ↝ abort if [[e]] = ‘C‘ or [[e]] = n where n /∈ dom(ℎ)
(C1;C2, ℎ) ↝ abort if (C1, ℎ) ↝ abort

Figure 4. Operational semantics.

[[false]]�w = ∅
[[true]]�w = ℕ×H

[[P ∧Q]]�w = [[P ]]�w ∩ [[Q]]�w

[[P ∨Q]]�w = [[P ]]�w ∪ [[Q]]�w

[[P ⇒ Q]]�w = {(n, ℎ) ∣ ∀m ≤ n. (m,ℎ) ∈ [[P ]]�w ⇒ (m,ℎ) ∈ [[Q]]�w

[[∀x.P ]]�w =
∩
v∈V [[P ]]�[x 7→v]w

[[∃x.P ]]�w =
∪
v∈V [[P ]]�[x 7→v]w

[[int(e)]]�w =

{
ℕ×H if [[e]]� = m for some m ∈ ℤ
∅ otherwise

[[e1 = e2]]�w =

{
ℕ×H if [[e1]]� = [[e2]]�
∅ otherwise

[[e1 ≤ e2]]�w =

{
ℕ×H if [[e1]]� = m1 and [[e2]]� = m2 where m1 ≤ m2

∅ otherwise

[[e1 7→ e2]]�w =

{
{(n, [m 7→ [[e2]]�]) ∣ n ∈ ℕ} if [[e1]]� = m for some m ∈ ℤ
∅ otherwise

[[emp]]�w = ℕ× {[ ]}
[[P ∗ Q]]�w = [[P ]]�w ∗ [[Q]]�w

[[P −∗ Q]]�w = [[P ]]�w −∗ [[Q]]�w

[[{P}e{Q}]]�w =

{
{(n, ℎ) ∣ w ∣=n ([[P ]]�, C, [[Q]]�) } if [[e]]� = ‘C‘

∅ otherwise

[[P ⊗Q]]�w =
(

[[P ]]� ⊗ i([[Q]]�)
)
w

[[(��(x).P )(e)]]�w = . . .

[[�(e)]]�w = . . .

Figure 6. Interpretation of assertions.
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Two for the Price of One: Lifting Separation Logic Assertions

Jacob Thamsborg and Lars Birkedal
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Abstract

Recently, data abstraction has been studied in the
context of separation logic, with noticeable practical
successes: the developed logics have enabled clean
proofs of tricky challenging programs, such as subject-
observer patterns, and they have become the basis of ef-
ficient verification tools for Java (jStar), C (VeriFast)
and Hoare Type Theory (Ynot). In this paper, we give
a new semantic analysis of such logic-based approaches
using Reynolds’s relational parametricity. The core of
the analysis is our lifting theorems, which give a sound
and complete condition for when a true implication be-
tween assertions in the standard interpretation entails
that the same implication holds in a relational inter-
pretation. Using these theorems, we provide an algo-
rithm for identifying abstraction-respecting client-side
proofs; the proofs ensure that clients cannot distinguish
two appropriately-related module implementations.

1 Introduction

Data abstraction is one of the key design principles
for building computer software, and it has been the fo-
cus of active research from the early days of computer
science. Recently, data abstraction has been studied in
the context of separation logic [14, 4, 11, 15, 7], with no-
ticeable practical successes: the developed logics have
enabled clean proofs of tricky challenging programs,
such as the subject-observer pattern, and they have
become the basis of efficient verification tools for Java
(jStar [8]), C (VeriFast [10]) and Hoare Type Theory
(Ynot [12]).

In this paper, we give a new semantic analysis
of these logic-based approaches using Reynolds’s re-
lational parametricity. Our techniques can be used
to prove representation independence, i.e., that clients
cannot distinguish between related module implemen-
tations, a consequence that we would expect from using
data abstraction, but (as we shall see) a consequence
that only holds for certain good clients.

Interface Specification

{1↪→ }init{a} {a}nxt{b} {b}fin{1↪→ }
{a}inc{a} {b}dec{b}

Two Implementations of a Counter

init1
def
= [1]:=0 nxt1

def
= skip fin1

def
= skip

inc1
def
= [1]:=[1]+1 dec1

def
= [1]:=[1]−1

init2
def
= [1]:=0 nxt2

def
= [1]:=−[1] fin2

def
= [1]:=−[1]

inc2
def
= [1]:=[1]+1 dec2

def
= [1]:=[1]+1

Definitions of Abstract Predicates

a1
def
= 1↪→ , b1

def
= 1↪→ , a2

def
= 1↪→ , b2

def
= 1↪→

Client-side Proof Attempts

{1↪→ } init; {a}
inc; {a}
nxt; {b}
dec; {b}
fin {1↪→ }

{1↪→ } init; {a}
inc; {a}
nxt; {b}
[1]:=[1]−1; {???}

Figure 1. Two-stage Counter

Logic-based Data Abstraction The basic idea of
the logic-based approaches is that the private states of
modules are exposed to clients only abstractly using
assertion variables [4], also known as abstract predi-
cates [14]. For concreteness, we consider a two-stage
counter module and client programs in Figure 1. The
module realizes a counter with increment and decre-
ment operations, called inc and dec. An interesting
feature is that the counter goes through two stages in
its lifetime; in the first stage, it can perform only the
increment operation, but in the second, it can only run
the decrement. The interface specification in the figure
formalizes this intended behavior of the counter using
assertion variables a and b, where a means that the
counter is in the first stage and b that the counter is
in the second. The triple for init says that the ini-
tialization can turn the assertion 1↪→ , denoting heaps
with cell 1, to the assertion variable a, which describes
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an abstract state where we can only call inc or nxt

(since a is the precondition of only those operations).
The abstract state a can be changed to b by calling
nxt, says the triple for the nxt operation. In b we are
allowed to run dec but not inc. Finally, fin can turn
the abstract state b back to 1↪→ . Note that by using
a and b, the interface specification does not expose the
private state of the module to the client. It reveals only
partial information about the private state of the mod-
ule; here it is whether the private state is in the first or
the second stage. The flexibility afforded by revealing
partial information is very useful in applications; see
the examples mentioned in the references above.

In these logic-based approaches, proof attempts for
clients of a module can succeed only when they are
given with respect to the abstract interface specifica-
tion, without making any further assumptions on as-
sertion variables. For instance, the proof attempt on
the bottom left of Figure 1 is successful, whereas the
bottom right one is not, because the latter assumes
that the assertion variable b entails the allocatedness
of cell 1. This is so, even when the entailment holds
for an actual definition of b.

Representation Independence In this paper, we
analyze the condition for successful client-side proofs,
using representation independence: given two imple-
mentations of a module, if there are coupling relations
between the definitions of assertion variables in the two
modules and, furthermore, the relations are preserved
by the corresponding operations of the implementa-
tions, then a proved client will give the same result
no matter whether it is executed with one or the other
module implementation. For instance, Figure 1 de-
scribes two implementations of the counter, where cell
1 is used in both to represent their private states, but
in different ways — the first stores the current value
of the counter, but the second stores the current value
or its negative version, depending on whether it is in
the first stage or the second. In both cases, the asser-
tion variables a and b are defined to be the same 1↪→ .
The operations of the two implementations preserve
the coupling relations ra and rb:

ra
def
= {(ℎ1, ℎ2) ∣ 1∈dom(ℎ1)∩dom(ℎ2) ∧ ℎ1(1)=ℎ2(1)}

rb
def
= {(ℎ1, ℎ2) ∣ 1∈dom(ℎ1)∩dom(ℎ2) ∧ ℎ1(1)=−ℎ2(1)}

Thus, the representation independence result says that
all proved clients, such as the one on the left bottom of
Figure 1, should behave the same for both implemen-
tations.

In earlier work [6] we were able to prove such a rep-
resentation independence result for a more restricted
form of logical data abstraction, namely one given

Interface Specification

{1↪→ }init{1↪→ ∧ a ∗ b} {a}fin{1↪→ }
{1↪→ ∗ a ∨ 1↪→ ∗ b}badfin{1↪→ }

Two Implementations

init1
def
= skip fin1

def
= skip badfin1

def
= [1]:=1

init2
def
= skip fin2

def
= skip badfin2

def
= [1]:=2

Definitions of Abstract Predicates

a1
def
= 1↪→ , b1

def
= true, a2

def
= 1↪→ , b2

def
= true

Two Client-side Proofs

{1↪→ }
init;
{1↪→ ∧ a ∗ b}
{a}
fin

{1↪→ }

{1↪→ }
init;
{1↪→ ∧ a ∗ b}
{1↪→ ∗ a ∨ 1↪→ ∗ b}
badfin

{1↪→ }

Figure 2. Good or Bad Client-side Proofs

by frame rules rather than general assertion variables.
Roughly speaking, frame rules use a restricted form of
assertion variables that are not exposed to clients at all,
as can be seen from some models of separation logic
in which frame rules are modelled via quantification
over semantic assertions [5]. This means that the rules
do not allow the exposure of even partial information
about module internals. (On the other hand, frame
rules implement information hiding, because they com-
pletely relieve clients of tracking the private state of a
module, even in an abstracted form.) Our model in [6]
exploited this restricted use of assertion variables, and
gave relational meanings to Hoare triple specifications,
which led to representation independence.

Removing this restriction and allowing assertion
variables in client proofs turned out to be very chal-
lenging. The main problem was that it was unclear
under which conditions a standard unary implication
between assertions in the rule of consequence could be
lifted to a relational one. “Always” is not an answer,
because only some, not all, implications can be lifted.
In this paper, we provide a sound and, in a certain
sense, complete answer to when the lifting can be done.

For instance, consider the example in Figure 2. Our
answer lets us conclude that the client on the left is
good but the one on the right is bad. The client on
the left calls init and ends with the post-condition
(1↪→ ∧ a ∗ b). Since (1↪→ ∧ a ∗ b) =⇒ a is true in the
standard interpretation (in an intuitionistic setup1),

1In an intuitionistic setup, ' ∗  =⇒ ' holds for all ', .
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the rule of consequence can be applied to yield the pre-
condition of fin, which can be called, ending up with
the postcondition (1↪→ ). The key point here is the im-
plication used in the rule of consequence. Our results
imply that this implication can indeed be lifted to an
implication between relational meanings of assertions
(1↪→ ∧ a ∗ b) and a (Theorem 8 in Section 4). They
also entail that this lifting implies the representation
independence theorem. We can confirm the claim of
the theorem, simply noting that both init1; fin1 and
init2; fin2 are the same skip command.

The client on the right also first calls init and then
uses the rule of consequence. But this time our results
say that a true implication (1↪→ ∧ a ∗ b) =⇒ (1↪→ ∗
a ∨ 1↪→ ∗ b) in the rule of consequence does not lift
to an implication between relational meanings of the
assertions (Theorem 15 in Section 5 or just Example
12.) Because of this failure, the proof of the client does
not ensure representation independence. In fact, the
client can indeed distinguish between the two module
implementations — when the client is executed with
the first module implementation, the final heap maps
address 1 to 1, but when the client is executed with the
second, the final heap maps address 1 to 2.

Note that we phrase the lifting only in terms of se-
mantically true implications, without referring to how
they are proved. By doing so, we make our results rel-
evant to automatic tools that use the semantic model
of separation logic to prove implications, such as the
ones based on shallow embeddings of the assertion
logic [12, 9].

To sum up, the question of whether representation
independence holds for a client comes down to whether
the implications used in the rule of consequence in a
client-side proof can be lifted to a relational interpre-
tation. In this paper, we give a sound and complete
characterization of when that is the case.

2 Semantic Domain

In the following section we will define the meaning
of an assertion to be an n-ary relation on heaps. To
formalize this relational meaning, we need a semantic
domain IReln of relations, which we define and explain
in this section.

Let Heap be the set of finite partial functions from

positive integers to integers (i.e., Heap
def
= PosInt →fin

Int), ranged over by f, g, ℎ. This is a commonly used
set for modelling heaps in separation logic, and it has
a partial commutative monoid structure ([], ⋅), where []
is the empty heap and the ⋅ operator combines disjoint
heaps:

[]
def
= ∅, f ⋅ g def

=

{
f ∪ g if dom(f)∩ dom(g) = ∅
undefined otherwise

The operator ⋅ induces a partial order ⊑ on Heap, mod-
elling heap extension, by f ⊑ g iff g = f ⋅ℎ for some ℎ.

We also consider the + operator for combining
possibly-overlapping but consistent heaps, and the −
operator for subtracting one heap from another:

f + g
def
=

{
f ∪ g if ∀l∈dom(f) ∩ dom(g). f(l)=g(l)
undefined otherwise

(f − g)(l)
def
=

{
f(l) if l ∈ dom(f) ∖ dom(g)
undefined otherwise

We call an n-ary relation r ⊆ Heapn upward closed
iff (f1, . . . , fn) ∈ r ∧ (∀i. fi ⊑ gi) =⇒ (g1, . . . , gn) ∈ r.

Definition 1 IReln is the family of upward closed n-
ary relations on heaps.

Note that IRel1 consists of upward closed sets of heaps,
which are frequently used to interpret assertions in sep-
aration logic for garbage-collected languages. We call
elements of IRel1 predicates and denote them by p, q.

For every n ≥ 1, domain IReln has a complete lat-
tice structure: join and meet are given by union and
intersection, bottom is the empty relation, and top is
Heapn. The domain also has a semantic separating
conjunction connective defined by

(f1, .., fn)∈ r ∗ s def⇐⇒ ∃(g1, .., gn)∈ r. ∃(ℎ1, .., ℎn)∈ s.
(f1, .., fn) ⋅ (g1, .., gn) = (ℎ1, .., ℎn).

Here we use the component-wise extension of ⋅ for tu-
ples. Intuitively, a tuple is related by r ∗ s when it can
be splitted into two disjoint tuples, one related by r
and the other by s.

The domain IRel1 of predicates is related to IReln for

every n, by the map Δn
def
= �p.{(f, . . . , f) ∣ f ∈ p}↑,

where ↑ is the upward closure on relations. Note that
each predicate is turned into an n-ary identity relation
on p modulo the upward closure. This map behaves
well with respect to the structures discussed on IRel1
and IReln, as expressed by the lemma below:

Lemma 2 Function Δn preserves the complete lattice
structure and the ∗ operator.

3 Assertions and Relational Semantics

Let Var and AVar be disjoint sets of normal variables
x, y, ... and assertion variables a, b, ..., respectively. Our
assertions ' are from higher-order separation logic, and
they conform to the following grammar:

E ::= x ∣ 0 ∣ 1 ∣ E + E ∣ . . . P ::= E ↪→E ∣ . . .
' ::= P ∣ a ∣ ' ∗ ' ∣ true ∣ ' ∧ ' ∣ false ∣ ' ∨ '
∣ ∀x. ' ∣ ∃x. '
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[[P ]]n�,�
def
= Δn(LP M�) [[' ∗  ]]n�,�

def
= [[']]n�,� ∗ [[ ]]n�,�

[[a]]n�,�
def
= �(a) [[' ∧  ]]n�,�

def
= [[']]n�,� ∩ [[ ]]n�,�

[[true]]n�,�
def
= Heapn [[' ∨  ]]n�,�

def
= [[']]n�,� ∪ [[ ]]n�,�

[[false]]n�,�
def
= ∅ [[∀x.']]n�,�

def
=
∩
v∈Int[[']]n�[x7→v],�

[[∃x.']]n�,�
def
=
∪
v∈Int[[']]n�[x7→v],�

where LP M� is the standard semantics of P as an upward
closed set of heaps, which satisfies:

LE↪→F M� = {f ∣ [[E]]� ∈ dom(f) ∧ f([[E]]�) = [[F ]]�}.

Figure 3. Interpretation of Assertions

In the grammar, E is a heap-independent expression,
and P is a primitive predicate, which in the standard
interpretation denotes an upward closed set of heaps.
For instance, E↪→E′ means heaps containing cell E
with contents E′. Formulas ' are assertions in higher-
order separation logic that do not include negation nor
implication. Note that these assertions can include as-
sertion variables, thus called higher-order. The dots in
the grammar indicate possible extensions of cases, such
as multiplication for E and inductive predicates for P .
We will use the abbreviation E↪→ for ∃y.E↪→y.

An assertion ' is given a meaning [[']]n�,� ∈ IReln as
an n-ary relation on heaps, where n is a parameter of
the semantics. Here environment � maps normal vari-
ables in ' to integers, and � maps assertion variables
in ' to n-ary relations in IReln. When ' does not con-
tain any assertion variables, we often omit � and write
[[']]n� , because the meaning of ' does not depend on �.

We define the semantics of ', using the complete lat-
tice structure and the ∗ operator of the domain IReln;
see Figure 3. Note that the relational semantics of
primitive predicates is defined by embedding their stan-
dard meanings via Δn. In fact, this embedding rela-
tionship holds for all assertions, because Δn preserves
the semantic structures of the domains (Lemma 2).

Lemma 3 For all ' and �, �, �′, if Δn(�(a)) = �′(a)
for every a ∈ AVar, we have that Δn([[']]1�,�) = [[']]n�,�′ .

We write ' ∣=n  to mean that [[']]n�,� ⊆ [[ ]]n�,�
holds for all environments �, �. If n=1, this reduces
to the standard semantics of assertions in separation
logic. We will use the phrase “' =⇒  is n-ary valid”
to mean that ' ∣=n  holds. In addition, we write
' ∣=n

�  for a fixed � to mean that [[']]n�,� ⊆ [[ ]]n�,�
holds for all environments �; we say that “' =⇒  is
n-ary �-valid” if this is true.

4 Lifting Theorems and Completeness

We call an assertion ' simple if it is of the form
(
⋁I
i=1

⋀J
j=1 '(i,j) ∗ a(i,j)), where a(i,j) is a vector of

assertion variables and 'i,j is an assertion not contain-
ing any assertion variables. We will consider the ques-
tion of lifting an implication between simple assertions
', to a binary relational interpretation: when does
' ∣=1  imply that ' ∣=2  ?

The starting point is to realize that it is sufficient to
study implications of the form:

M⋀

i=1

'i∗ai,1∗⋅ ⋅ ⋅∗ai,Mi
=⇒

N⋁

j=1

 j ∗bj,1∗⋅ ⋅ ⋅∗bj,Nj
(1)

where 'i’s and  j ’s do not contain assertion variables,
and no assertion variables occur only on the right hand
side of the implication.

Lemma 4 There is an algorithm taking simple as-
sertions ', and returning finitely many implica-
tions {'l =⇒  l}l∈L, such that (a) 'l =⇒  l has the
form (1) and (b) for any n ∈ {1, 2}, we have that
' ∣=n  holds iff 'l ∣=n  l holds for all l ∈ L.

The algorithm in the lemma is given in Appendix B.
Thus, in this section, we will focus on lifting impli-

cations of the form (1). Specifically, we will give a com-
plete answer to the following question: Given one such
implication that is �-valid in the unary interpretation
for some environment �, can we decide if the implica-
tion is �-valid in the binary interpretation merely by
inspection of the layout of the assertion variables? The
answer will come in two parts. The first part, in Sec-
tion 4.2, provides three lifting theorems, each of which
has a criterion on the variable layout that, if met, im-
plies that �-validity may be lifted regardless of the 'i’s
and  j ’s. The second part, in Section 4.3, is a com-
pleteness theorem; it states that if the variables fail
the criteria of all three lifting theorems then there are
choices of 'i’s and  j ’s with no variables such that we
have unary but not binary validity.

This approach has ups and downs. Assume that we
have an implication of the aforementioned form that is
valid in the unary interpretation, and we would like to
know if it is valid in the binary interpretation too. Try-
ing out the layout of the variables against the criteria
of the three lifting theorems is an easily decidable and
purely syntactical process – and if it succeeds then we
have binary validity. If it fails, however, we are at a
loss; we know that there are 'i’s and  j ’s with the same
variable layout such that lifting fails but we do not
learn anything about our concrete implication. There
is, however, an alternate use of the theory below if the
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lifting criteria fail: We can sidestep the general lifting
theorems and try to verify directly the Parametricity
Condition from Definition 6 for all environments �. It
is a semantic condition and probably undecidable in
general, but it involves no assertion variables and only
unary semantics – and if it holds then, by Proposition
7, we have binary validity. Indeed, the lifting theorems
with direct verification of the Parametricity Condition
as backup can be thought of as an algorithm. It is com-
plete in some cases: Theorem 15 expresses that binary
�-validity and the Parametricity Condition imply each
other if Mi ≤ 2 for all 1 ≤ i ≤M .

4.1 Notation

We need some notation that will accompany us
throughout this section. Consider an implication of
the form (1). Let V =

∪M
i=1{ai,1, . . . , ai,Mi

} be the
set of all left hand side assertion variables, these in-
clude the right hand side assertion variables too by
assumption. Define Π : {1, . . . ,M} → NatV and
Ω : {1, . . . , N} → NatV by the following:

Π(i)(c)
def
= ∣{k ∣ ai,k ≡ c}∣, Ω(j)(c)

def
= ∣{k ∣ bj,k ≡ c}∣.

These functions give vectors of assertion variable
counts for each conjunct and disjunct. For 1 ≤ i ≤ M
and 1 ≤ j ≤ N we write Π(i) ≥ Ω(j) if we have
Π(i)(c) ≥ Ω(j)(c) for each variable c ∈ V , i.e., if
conjunct i has the same or a greater number of oc-
currences of all variables than disjunct j. We write
Π(i) ≱ Ω(j) if this fails, i.e., if there is c ∈ V such that
Π(i)(c) < Ω(j)(c). If a conjunct, say conjunct i, has no
variables, i.e., if Π(i)(c) = 0 holds for all c ∈ V , then
we say it empty ; the same goes for the disjuncts.

We shall write − to denote ∃n,m. n↪→m, meaning
heaps with at least one cell. On the semantic side, we
write [m] for m ∈ PosInt to denote the heap that stores
0 at location m and nothing else. For m0, ...,mn ∈
PosInt different we write [m0, ...,mn] for [m0] ⋅ ... ⋅ [mn].

Finally we introduce a piece of sanity-preserving
graphical notation. We depict an implication of the
form (1) as a complete bipartite graph with the con-
juncts lined up on the left hand side and the disjuncts
on the right hand side. For any 1 ≤ i ≤M and any 1 ≤
j ≤ N we draw a solid line from conjunct i to disjunct
j if Π(i) ≥ Ω(j). We label that line with all the c ∈ V
such that Π(i)(c) > Ω(j)(c) if indeed there are any
such. If, on the other hand, Π(i) ≱ Ω(j) then we draw
a dashed line instead and label it with all the c ∈ V
such that Π(i)(c) < Ω(j)(c). Note that the drawing of
edges depend solely on the layout of the variables; the
'i’s and  j ’s have no say in the matter. As examples
we refer the reader to Examples 12 and 13 for graphical

representations of 1↪→ ∧ a ∗ b =⇒ 1↪→ ∗ a ∨ 1↪→ ∗ b
and −∗a∗b∧a∗a =⇒ −∗a∗a∨−∗−∗b respectively.

4.2 Layouts that Lift

The following is a first example of a layout of vari-
ables that ensure that for any choice of 'i’s and  j ’s
we get that unary �-validity of the implication yields
binary �-validity. That it holds is a consequence of
Theorem 8 but we have spelled out a concrete proof
that will serve as a guide to the further development.

Example 5 (Shadow-Lift) For any four assertions
'1, '2,  1,  2 with no assertion variables and any ap-
propriate environment � we have that unary �-validity
of the following implication implies binary �-validity:

'1 ∗ a ∗ b ∙ b ___

b

9
9

9
9

9 ∙  1 ∗ a ∗ b ∗ b

'2 ∗ a ∗ b ∗ b ∙
a

��������� ∙  2 ∗ b ∗ b

Assume that we have unary �-validity. Before we go on
to consider the binary case we derive a simple unary
consequence that does not involve assertion variables:
For any ℎ ∈ Heap with subheaps ℎ1 ⊑ ℎ and ℎ2 ⊑ ℎ
such that ℎ1 ∈ [['1]]1� and ℎ2 ∈ [['2]]1� we get that ℎ2 ∈
[[ 1]]1� or that ℎ2 ∈ [[ 2]]1�.

To prove this, let ℎ, ℎ1 and ℎ2 be as assumed. We
build � : {a, b} → IRel1 by letting �(a) = Heap and
letting �(b) be the following union of sets of heaps:

{(ℎ− ℎ1) ⋅ [n, n+ 1]}↑ ∪ {(ℎ− ℎ2) ⋅ [n]}↑ ∪ {[n+ 1]}↑

where n = max(dom(ℎ) ∪ {0}) + 1. It is now immedi-
ate that ℎ ⋅ [n, n + 1] lies in the interpretation of both
conjuncts and by our assumption on the original im-
plication it must lie in the interpretation on one of the
disjuncts too. Suppose that we have

ℎ ⋅ [n, n+ 1] ∈ [[ 1 ∗ a ∗ b ∗ b]]1�,� = [[ 1]]1� ∗ �(b) ∗ �(b),

where the equality holds because �(a) = Heap is the
unit for ∗. We then write ℎ ⋅ [n, n + 1] = g1 ⋅ g2 ⋅ g3

for g1 ∈ [[ ]]1� and g2, g3 ∈ �(b). But as g2 and g3 have
disjoint domains we must have (ℎ − ℎ2) ⋅ [n] ⊑ g2 and
[n+ 1] ⊑ g3 or the version with g2 and g3 swapped. In
any case we have that

dom(g1) = dom(ℎ ⋅ [n, n+1]) ∖ (dom(g2 ⋅ g3))
⊆ dom(ℎ ⋅ [n, n+1]) ∖ (dom(ℎ−ℎ2)∪{n, n+1})
= dom(ℎ2).

But then we have g1 ⊑ ℎ2 and since g1 ∈ [[ 1]]1� we get
ℎ2 ∈ [[ 1]]1� too. If we have ℎ ⋅ [n, n+ 1] ∈ [[ 2 ∗ b ∗ b]]1�,�
we proceed similarly.
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The above short proof is the crux of the example. It
implies unary �-validity – this we knew already – but
also the binary �-validity. To see this, we pick an arbi-
trary environment � : {a, b} → IRel2, we take arbitrary
(ℎ1, ℎ2) ∈ [['1 ∗ a ∗ b ∧ '2 ∗ a ∗ b ∗ b]]2�,� and we aim to
prove that (ℎ1, ℎ2) ∈ [[ 1 ∗ a ∗ b ∗ b ∨  2 ∗ b ∗ b]]2�,� too.
We split (ℎ1, ℎ2) according to the conjuncts. Because
of Lemma 3 and the upward closedness condition of
IRel2, we can write

(ℎ1, ℎ2) = (g1, g1) ⋅ (g2
1 , g

2
2) ⋅ (g3

1 , g
3
2)

for g1 ∈ [['1]]1�, (g2
1 , g

2
2) ∈ �(a) and (g3

1 , g
3
2) ∈ �(b). Also

we can write

(ℎ1, ℎ2) = (f1, f1) ⋅ (f2
1 , f

2
2 ) ⋅ (f3

1 , f
3
2 ) ⋅ (f4

1 , f
4
2 )

for f1 ∈ [['2]]1�, (f2
1 , f

2
2 ) ∈ �(a) and (f3

1 , f
3
2 ), (f4

1 , f
4
2 ) ∈

�(b). But now g1 + f1 with subheaps g1 and f1 fulfills
the above properties and so we get f1 ∈ [[ 1]]1� or f1 ∈
[[ 2]]1� and the second splitting of (ℎ1, ℎ2) shows that
(ℎ1, ℎ2) lie in the binary interpretation of the first or
second disjunct, respectively. Notice that neither g1 ∈
[[ 1]]1� nor g1 ∈ [[ 2]]1� would have worked since the first
conjunct has too few variables, i.e., Π(1) ≱ Ω(1) and
Π(1) ≱ Ω(2)

Generalizing the unary consequence that served as
the crucial stepping stone in the above example we ar-
rive at the following condition on our implications:

Definition 6 (Parametricity Condition) Assume
that we have an implication of the form (1) and an ap-
propriate environment �. For all ℎ, ℎ1, . . . , ℎM ∈ Heap
with ℎi ⊑ ℎ and ℎi ∈ [['i]]

1
� for all 1 ≤ i ≤M we must

have one or two of these options:

1. There are 1 ≤ i ≤ M and 1 ≤ j ≤ N such that
ℎi ∈ [[ j ]]

1
�, Π(i) ≥ Ω(j) and the j-th disjunct is

not empty.

2. There is 1 ≤ j ≤ N such that ℎ ∈ [[ j ]]
1
� and the

j-th disjunct is empty.

Note that specializing the Parametricity Condition,
henceforth just the PC, to an implication of the form
treated in the above example yields the stated unary
consequence because no disjuncts are empty. The sec-
ond option in the PC will be motivated later.

We emphasize that the PC may hold or may fail for
any given combination of an implication and environ-
ment �. But if it holds then we have binary �-validity;
the proof in case of the first option of the PC is an easy
generalization of the latter half of the above example:

Proposition 7 The PC implies binary �-validity.

We arrive now at the first lifting theorem. It is a gen-
eralization of the former half of Example 5; the proof
of the theorem has a lot more details to it than the
example but the overall idea is the same. The theorem
states a criterion on the layout of the variables that, if
met, means that unary �-validity implies the PC and
hence also binary �-validity. The criterion is, loosely,
that we can remove all variables that occur as labels
of solid lines without introducing new solid lines and
without emptying any disjuncts:

Theorem 8 (Shadow-Lift) Unary �-validity of an
implication implies the PC if each dashed line has a
label that is not a label on a solid line and each dis-
junct has an occurrence of a variable that is not a label
on a solid line. Spelling it out in symbols, we require,
with L = {(i, j) ∣ 1 ≤ i ≤M ∧ 1 ≤ j ≤ N}, that

∀(i, j) ∈ L. Π(i) ≱ Ω(j) =⇒
∃c ∈ V. Π(i)(c) < Ω(j)(c) ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)

and

∀1 ≤ j ≤ N. ∃c ∈ V. Ω(j)(c) > 0 ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
.

As motivation for the next lifting theorem, we note
that the variable layout criterion of the above theo-
rem fails if one or more disjuncts are empty. Corre-
spondingly, we never touch upon the second option of
the PC. But there are variable layouts with empty dis-
juncts that ensure lifting:

Example 9 (Balloon-Lift) For any four assertions
'1, '2,  1,  2 with no assertion variables and any ap-
propriate environment � we have that unary �-validity
of the following implication implies binary �-validity:

'1 ∗ a ∙ b ___
a

999999999 ∙  1 ∗ a ∗ b

'2 ∗ a ∗ b ∙
a,b

��������� ∙  2

Assume unary �-validity. As in Example 5 we derive
a unary consequence as intermediate result: For any
ℎ ∈ Heap with subheaps ℎ1 ⊑ ℎ and ℎ2 ⊑ ℎ such
that ℎ1 ∈ [['1]]1� and ℎ2 ∈ [['2]]1� we have that either
ℎ2 ∈ [[ 1]]1� or ℎ ∈ [[ 2]]1� .

To prove this, let ℎ, ℎ1 and ℎ2 be as assumed. We
construct � : {a, b} → IRel1 by letting �(a) = Heap and
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�(b) = {ℎ− ℎ2}↑. We get that

ℎ ⊒ ℎ1 ∈ [['1]]1� = [['1]]1� ∗ Heap = [['1 ∗ a]]1�,�,

and

ℎ = ℎ2 ⋅ (ℎ− ℎ2)
∈ [['2]]1� ∗ �(b) = [['2]]1� ∗ Heap ∗ �(b) = [['2 ∗ a ∗ b]]1�,�.

This means that ℎ must lie in the interpretation of
one of the disjuncts. If it is the first, we inspect the
interpretation and get that

ℎ = g1 ⋅ g2 ⋅ g3

for g1 ∈ [[ 1]]1�, g2 ∈Heap and g3⊒ℎ−ℎ2. It means that

dom(g1) = dom(ℎ) ∖ dom(g2 ⋅ g3) ⊆ dom(ℎ) ∖ dom(g2)
⊆ dom(ℎ) ∖ dom(ℎ− ℎ2) = dom(ℎ2)

which implies that g1 ⊑ ℎ2 and so ℎ2 ∈ [[ 1]]1�. If,
on the other hand, ℎ lies in the interpretation of the
second disjunct then we are done immediately.

Now we prove the claim of binary �-validity. We
pick an arbitrary environment � : {a, b} → IRel2, we
take arbitrary (ℎ1, ℎ2) ∈ [['1 ∗ a ∧ '2 ∗ a ∗ b]]2�,� and we
must prove that (ℎ1, ℎ2) ∈ [[ 1 ∗ a ∗ b ∨  2]]2�,� too. We
write

(ℎ1, ℎ2) = (g1, g1) ⋅ (g2
1 , g

2
2)

for g1 ∈ [['1]]1� and (g2
1 , g

2
2) ∈ �(a), and

(ℎ1, ℎ2) = (f1, f1) ⋅ (f2
1 , f

2
2 ) ⋅ (f3

1 , f
3
2 )

for f1 ∈ [['2]]1�, (f2
1 , f

2
2 ) ∈ �(a) and (f3

1 , f
3
2 ) ∈ �(b). But

now g1+f1 with subheaps g1 and f1 satisfies the above
properties and so we get f1 ∈ [[ 1]]1� or g1 +f1 ∈ [[ 2]]1�.
If f1 ∈ [[ 1]]1� holds then the second splitting shows that
(ℎ1, ℎ2) is in the interpretation of the first disjunct. If
g1 + f1 ∈ [[ 2]]1�, we are done too, since we may write
(ℎ1, ℎ2) = (g1 +f1, g1 +f1) ⋅ (e1, e2) for some (e1, e2) ∈
Heap2 and so (ℎ1, ℎ2) lies in the interpretation [[ 2]]2� =
Δ([[ 2]]1�) of the second conjunct.

Just as we did for Example 5 we may generalize the
former half of this example, this yields Theorem 10
below. The latter half of the example, on the other
hand, constitutes an example of the approach of the
proof of Proposition 7 in case we run into the second
option of the PC.

Theorem 10 (Balloon-Lift) Unary �-validity of an
implication implies the PC if there is a subset B ⊆ V
with the following three properties. First, each conjunct
has at most one occurrence of a variable from B, i.e.,

∀1 ≤ i ≤M.
∑

c∈B
Π(i)(c) ≤ 1.

Second, each disjunct is empty or has exactly one oc-
currence of a variable from B, i.e.,

∀1 ≤ j ≤ N.
∑

c∈V
Ω(j)(c) = 0 ∨

∑

c∈B
Ω(j)(c) = 1.

Third, each dashed line must have a label from B. That
is, when L = {(i, j) ∣ 1 ≤ i ≤M ∧ 1 ≤ j ≤ N},

∀(i, j)∈L. Π(i) ≱ Ω(j) =⇒ ∃c∈B. Π(i)(c) < Ω(j)(c).

One thing to note about the theorem is that if we have
no empty disjuncts, none of the variables in the subset
B ⊆ V can be labels of a solid line. In particular, the
conditions of Theorem 8 are met, so the above theorem
is really only useful if one or more disjuncts are empty.

The final lifting theorem captures the oddities of the
special case of just one conjunct:

Theorem 11 (Lonely-Lift) Unary �-validity of an
implication implies the PC if there is just one conjunct,
i.e., M=1, and all lines are solid, i.e., Π(1)≥Ω(j) for
all 1≤ j≤N .

4.3 Completeness

It is now time for examples of implications that do
not lift, i.e., that are valid in the unary interpretation
but not in the binary. The first is based on the following
observation: If ℎ ∈ [[1↪→ ]]1� and ℎ ∈ p ∗ q for ℎ ∈ Heap
and p, q ∈ IRel1 then we have ℎ ∈ [[1↪→ ]]1� ∗ p or ℎ ∈
[[1↪→ ]]1� ∗ q. This is because we must have [1 7→ n] ⊑ ℎ
for some n ∈ Int and so writing ℎ = ℎ1 ⋅ ℎ2 with ℎ1 ∈ p
and ℎ2 ∈ q gives us [1 7→ n] ⊑ ℎ1 or [1 7→ n] ⊑ ℎ2.
But this line of argument breaks down if we change to
binary reading. We have, e.g., ([1], [1]) ∈ [[1↪→ ]]2� and

([1], [1]) ∈ {([1], [])}↑ ∗ {([], [1])}↑ but both [[1↪→ ]]2� ∗
{([1], [])}↑ and [[1↪→ ]]2� ∗ {([], [1])}↑ are empty. We can
recast this as an implication that cannot be lifted:

Example 12 (Fan-Counter) This implication is
valid on the unary but not on the binary level:

1↪→ ∙
a

___

b

:
:

:
:

: ∙ 1↪→ ∗ a

a ∗ b ∙
a

b

��������� ∙ 1↪→ ∗ b

First we argue that the implication holds on the unary
level. Let � : {a, b} → IRel1 be an arbitrary environ-
ment of upwards closed sets of heaps to a and b. Let
ℎ ∈ Heap be arbitrary and assume that

ℎ ∈ [[1↪→ ∧ (a ∗ b)]]1�,� = [[1↪→ ]]1� ∩ (�(a) ∗ �(b)).
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By the above observation we get either ℎ ∈ [[1↪→ ]]1� ∗
�(a) or ℎ ∈ [[1↪→ ]]1� ∗�(b) which matches the right hand
side of the implication.

Now we move on to prove that the implication fails
on the binary level. Define an environment � : {a, b} →
IRel2 by �(a) = {([1], [])}↑ and �(b) = {([], [1])}↑. Then,
[[1↪→ ∧ a ∗ b]]2�,� = [[1↪→ ]]2�,� ∩ (�(a) ∗ �(b)), which con-
tains the pair ([1], [1]). But, as observed, both disjuncts
have empty binary interpretations.

An observation of similar nature is that for p ∈ IRel1
we have either p = Heap or p ⊆ [[−]]1� = {[m 7→n] ∣
m ∈ PosInt, n ∈ Int}↑ because if ℎ ∕= Heap then
it cannot contain the empty heap. On the binary
level, however, we have Heap2 ∕= {([1], [])}↑ ⊈ [[−]]2� =

{([m7→n], [m7→n]) ∣ m ∈ PosInt, n ∈ Int}↑. One conse-
quence is this:

Example 13 (Bridge-Counter) This implication is
valid on the unary but not on the binary level:

− ∗ a ∗ b ∙ a ___
a

999999999 ∙ − ∗ a ∗ a

a ∗ a ∙
b

___

��������� ∙ − ∗ − ∗ b

First we argue that the implication holds on the unary
level. Let � : {a, b} → IRel1 be an arbitrary environ-
ment that assigns upwards closed sets of heaps to each
of the two variables. We branch on the value of �(a).
If �(a) ∕= Heap then we have �(a) ⊆ [[−]]1� which again
means that the first conjunct directly implies the sec-
ond disjunct. If �(a) = Heap holds, we get that

[[− ∗ a ∗ b]]1�,� = [[−]]1�,� ∗ Heap ∗ �(b) = [[−]]1�,� ∗ �(b)

⊆ [[−]]1�,� = [[−]]1�,� ∗ Heap ∗ Heap = [[− ∗ a ∗ a]]1�,�

because Heap is the unit for ∗. Hence we get that the
first conjunct implies the first disjunct and we have
proved that the implication holds unarily.

Now we prove that the implication fails on the bi-
nary level. Define an environment � : {a, b} → IRel2
by �(a) = {([1], [])}↑ ∪ {([2], [2])}↑ and �(b) = Heap2.
Observe now that ([1, 2], [2]) = ([2], [2]) ⋅ ([1], []) ⋅ ([], []),
which implies that ([1, 2], [2]) ∈ [[− ∗ a ∗ b]]2�,�. From
the rewriting ([1, 2], [2]) = ([1], []) ⋅ ([2], [2]), we get
([1, 2], [2]) ∈ [[a ∗ a]]2�,� too and so this pair of heaps
lies in the interpretation of the left hand side. But
it does not belong to the interpretation of either dis-
junct. An easy – if somewhat indirect – way of real-
izing this is to note that any pair of heaps in either
[[−]]2�,� or in [[a ∗ a]]2�,� must have a second component
with nonempty domain. But then any pair of heaps in

the interpretation of either disjunct must have a second
component with a domain of at least two elements. In
particular, neither can contain the pair ([1, 2], [2]).

In principle, the above two observations are all that
we need to prove completeness. Or, phrased differently,
assume that we have a layout of variables that fail the
criteria of all three lifting theorems; by applying one
of the two observations, we can then build a concrete
implication with that variable layout and with unary
but not binary validity.

Having said that, the territory to cover is huge; the
full completeness proof is a lengthy and rather techni-
cal journey, the details of which do not provide much
insight. We supply it as a series of lemmas in Appendix
D; these include generalizations of Example 12 and Ex-
ample 13 above. If one verifies the lemmas in the order
listed and apply them as sketched then it is feasible, if
not exactly easy, to prove the following:

Theorem 14 (Completeness) If a variable layout
meets none of the criteria in Theorems 8, 10 and 11,
then there are choices of 'i’s and  j’s with no variables
such we have unary but not binary validity.

5 Higher Arities and Parametricity

We saw in Proposition 7 that the PC implies binary
�-validity of an implication. It is easy to show that the
PC also implies unary �-validity, either directly or by
observing that binary implies unary. A natural ques-
tion to ask is whether we can reverse this? Example 12
shows that unary validity does not entail the PC, be-
cause the latter fails for that concrete implication. But
as binary validity fails too, we could hope that binary
validity would enforce the PC. Unfortunately, this is
not the case, as demonstrated by the implication

1↪→ ∧ a ∗ a ∗ b =⇒ 1↪→ ∗ a ∨ 1↪→ ∗ b.

Here the PC is the same as for Example 12 and hence
still is not true, but we do have binary validity. We
do not, however, have ternary validity but the example
could easily be scaled: having n occurrences of a in the
second conjunct means n-ary but not n+1-ary validity
for any n ≥ 1. In summary, we have seen that for any
n ≥ 1 we can have n-ary validity whilst the PC fails.

What does hold, however, is the following:

Theorem 15 For an implication of the form (1) and
an appropriate environment � we have that n-ary �-
validity implies the PC if n ≥ max{M1, . . . ,MM}.
Notice how this fits nicely with the above example:
with n occurrences of a we have n-ary validity but we
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need (n+1)-ary validity to prove the PC since there is
also a single b. The proof is in Appendix E, and reuses
techniques from the proofs of Theorems 8 and 10.

By an easy generalization of Proposition 7 we have
the following corollary to the above theorem:

Corollary 16 The PC holds iff we have n-ary �-
validity for all n ≥ 1.

This corollary can be read, loosely, as a coincidence
between parametric polymorphism as introduced by
Strachey [19] and relational parametricity as proposed
by Reynolds [18]: The PC corresponds to Strachey
parametricity in the loose sense that if it holds, then
there is an approach, parametric in the assertion vari-
ables, that produce right hand side proofs of heap mem-
bership from the left hand side ones: Take a heap, split
it along the conjuncts, apply the PC to the parts in
the interpretations of the '’s and you are done, pos-
sibly after discarding some variables. This involves no
branching or other intrinsic operations on the assertion
variables, which we are free to discard by our intuition-
istic setup. If, on the other hand, the implication is
�-valid for arbitrary arity, then it is fair to call it re-
lationally parametric. Note also that the Examples 12
and 13 branch on assertion variable values.

This result is analogous to the conjecture of coin-
cidence between Strachey parametricity and n-ary re-
lational parametricity for traditional type-based para-
metricity [17, Page 2].

Finally we note that as a consequence of the above
corollary we have that the lifting theorems in the pre-
vious really show that unary validity can be lifted
to validity of arbitrary arity. In some sense, they
are stronger than required for representation indepen-
dence, for which binary validity suffices. The authors
are unaware of any practical applications of this fact.

6 Representation Independence

In this section, we relate our lifting theorems to
representation independence. We consider separation
logic with assertion variables where the rule of con-
sequence is restricted according to our lifting theo-
rems, and we define a relational semantics of the logic,
which gives a representation independence theorem:
all proved clients cannot distinguish between appro-
priately related module implementations. For space
reasons, our presentation will be minimalistic, covering
only a part of the logic; the missing parts, in particu-
lar allocation of new cells, we believe, can be handled
using FM sets, following [6].

We consider commands C given by the grammar:

C ::= k ∣ [E]:=E ∣ let y=[E] inC ∣ C;C ∣ if BC C

Chk('′, ') '′ ∣=1 ' {'}C{ }  ∣=1  ′ Chk( , ′)

{'′}C{ ′}
{'}C{'′}

{' ∗  }C{'′ ∗  }
{'}C{ }

{∃x. '}C{∃x.  } x ∕∈FV(C)

Γ, {'}k{ } ⊢ {'}k{ } {E↪→ }[E]:=F{E↪→F}
{' ∗E↪→x}letx=[E] inC{ }
{∃x.' ∗E↪→x}letx=[E] inC{ } x ∕∈FV( )

{'}C{'′} {'′}C ′{ }
{'}C;C ′{ }

{' ∧B}C{ } {' ∧ ¬B}C ′{ }
{'}if BC C ′{ }

Figure 4. Proof Rules

Here B is a heap-independent boolean expression, such
as x=0. Commands C are from the loop-free simple
imperative language. They can call module operations
k, and manipulate heap cells; command [x]:=E assigns
E to the heap cell x, and this assigned value is read
by let y=[x] inC, which also binds y to the read value
and runs C under this binding.

Properties of commands C are specified using Hoare
triples Γ ⊢ {'}C{ }, where the context Γ is a set of
triples for module operations. Figure 4 shows rules
for proving these properties. In the figure, we omit
contexts, if the same context Γ is used for all the triples.

The rule of consequence deserves attention. Note
that the rule uses semantic implications ∣=1 in the
standard unary interpretation, thus allowing the use of
existing theorem provers for (higher-order) separation
logic. The rule does not allow all semantic implica-
tions, but only those that pass our algorithm Chk, so
as to ensure that the implications can lift to the re-
lational level. Our algorithm Chk(', ) performs two
checks, and returns true only when both succeed. The
first check is whether ' and  can be transformed to
simple assertions '′ and  ′, using only the distribution
of ∗ over ∃x and ∨ and distributive lattice laws for ∨
and ∧. If this check succeeds and gives '′ and  ′, the
algorithm transforms '′ ∣=1  ′ to a set of implications
of the form (1) in Section 4 (Lemma 4). Then, it uses
the method outlined just before Section 4.1, and does
the second check on whether all the implications in the
resulting set lift to the relational level.

Commands C are interpreted in a standard way, as
functions of the type: [[C]]�,u ∈ Heap→ (Heap∪{err}).
Here err denotes a memory error, and � and u are en-
vironments that provide the meanings of, respectively,
free ordinary variables and module operations. For in-
stance, [[k]]�,u is u(k).

Our semantics of triples, on the other hand, is not
standard, and uses the binary interpretation of asser-
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tions: (�, �,u) ∣=2 {'}C{ } iff

∀r ∈ IRel2. ∀f, g ∈ Heap. (f, g)∈ [[']]2�,� ∗ r =⇒
([[C]]�,u1

(f), [[C]]�,u2
(g)) ∈ [[ ]]2�,� ∗ r.

The environment � provides the meanings of assertion
variables, and the 2-dimensional vector u gives the two
meanings for module operations; intuitively, each ui
corresponds to the i-th module implementation. The
interpretation means that if two module implementa-
tions u are used by the same client C, then these com-
binations should result in the same computation, in the
sense that they map '-related input heaps to  -related
outputs. The satisfaction of triples can be extended to
(�, �,u) ∣=2 Γ, by asking that all triples in Γ should
hold wrt. (�, �,u). Using these satisfaction relations on
triples and contexts, we define the notion of 2-validity
of judgements: Γ ⊢ {'}C{ } is 2-valid iff

∀(�, �,u). (�, �,u) ∣=2 Γ =⇒ (�, �,u) ∣=2 {'}C{ }.

Theorem 17 Every derivable Γ⊢ {'}C{ } is 2-valid.

It is this theorem that we use to derive the represen-
tation independence results mentioned in the introduc-
tion. Consider again the example in Figure 1. Since the
proof of the left hand side client C is derivable using
the above rules, with Γ being the interface specification
for the operations of the counter, we get 2-validity of
Γ ⊢ {1↪→ }C{1↪→ }. Therefore, when we run the client
C with the related module implementations in the in-
troduction, we find that C maps [[1↪→ ]]2-related heaps
(i.e, heaps with the same value at cell 1) to [[1↪→ ]]2-
related heaps again.

7 Conclusion and Discussion

In this paper, we have given a sound and com-
plete characterization of when semantic implications
between assertions in higher-order separation logic can
be lifted to a relational interpretation. This characteri-
zation has, then, been used to identify proofs of clients
that respect the abstraction of module internals, spec-
ified by means of assertion variables, and to show rep-
resentation independence for clients with such proofs.
We hope that our results provide a solid semantic basis
for recent logic-based approaches to data abstraction.

In earlier work, Banerjee and Naumann [2] stud-
ied relational parametricity for dynamically allocated
heap objects in a Java-like language. Banerjee and
Naumann made use of a non-trivial semantic notion of
confinement to describe internal resources of a mod-
ule; here instead we use higher-order separation logic
to describe which resources are internal to the module.

Relational interpretations have also been used to
give models of programming languages with local state,
which can validate representation independence re-
sults [13, 16, 3, 1]. These results typically rely on the
module allocating the private state, whereas we use
the power of separation logic and allow the ownership
transfer of states from client to module. For instance,
in the two-stage counter in the introduction, the own-
ership of the cell 1 is transferred from the client to
the module upon calling init. Even with this own-
ership transfer, representation independence is guar-
anteed, because we consider only those clients having
(good) proofs in separation logic. This contrasts with
representation independence results in local state mod-
els, which consider not some but all well-typed clients.
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A Proofs of Lemma 2 and Lemma 3

Lemma 2 Function Δn preserves the complete lattice
structure and the ∗ operator.

Proof: From the definition, it is immediate that
Δn(Heap) = Heapn and Δn(∅) = ∅. Now consider a
non-empty family {pi}i∈I of predicates in IRel1. In or-
der to show the preservation of the complete lattice
structure, we need to prove that

Δn(
∩

i∈I
pi) =

∩

i∈I
Δn(pi) ∧

∪

i∈I
Δn(pi) = Δn(

∪

i∈I
pi).

The ⊆ direction in both cases is easy; it follows from
the monotonicity of Δn.

We start with the ⊇ direction for the meet operator.
Pick (ℎ1, . . . , ℎn) from

∩
i∈I Δn(pi). Then,

∀i ∈ I. (ℎ1, . . . , ℎn) ∈ Δn(pi).

By the definition of Δn, this means that

∀i ∈ I. ∃fi ∈ pi. fi ⊑ ℎ1 ∧ . . . ∧ fi ⊑ ℎn. (2)

Let f =
∑
i∈I fi. The sum here is well-defined, because

(a) there are only finitely many f ’s such that f ⊑ ℎk for
all 1 ≤ k ≤ n, and (b) any two such f and g should have
the same value for every location in dom(f) ∩ dom(g).
Since all fi’s satisfy (2), their sum f also satisfies

f ⊑ ℎ1 ∧ . . . ∧ f ⊑ ℎn.

Furthermore, f ∈ ∩
i∈I pi, because pi’s are upward

closed and f is an extension of fi in pi. Hence,
Δn(

∩
i∈I pi) ⊆

∩
i∈I Δn(pi).

Next we prove the ⊇ direction for the join operator.
Pick (ℎ1, . . . , ℎn) from Δn(

∪
i∈I pi). Then,

∃i ∈ I. ∃f ∈ pi. f ⊑ ℎ1 ∧ . . . ∧ f ⊑ ℎn.

Hence, by the definition of Δn,

(ℎ1, . . . , ℎn) ∈ Δn(pi) ⊆
∪

i∈I
Δn(pi),

as desired.
Finally, it remains to show that Δn preserves the ∗

operator. Consider predicates p, q ∈ IRel1. We need to
prove that

Δn(p ∗ q) = Δn(p) ∗Δn(q).

Choose an arbitrary (ℎ1, . . . , ℎ1) from Δn(p ∗ q). By
the definition of Δn(p ∗ q), it follows that

∃f ∈ p. ∃g ∈ q. (dom(f) ∩ dom(g) = ∅) ∧
f ⊑ ℎ1 ∧ . . . ∧ f ⊑ ℎn ∧ g ⊑ ℎ1 ∧ . . . ∧ g ⊑ ℎn.

Now, define fi = f and gi = ℎi − f for i ∈ {1, . . . , n}.
Then,

(∀i ∈ {1, . . . , n}. fi ⋅ gi = ℎi)

∧ (f1, . . . , fn) ∈ Δn(p) ∧ (g1, . . . , gn) ∈ Δn(q).

Hence, (ℎ1, . . . , ℎn) ∈ Δn(p) ∗Δn(q). This shows that
Δn(p ∗ q) ⊆ Δn(p) ∗ Δn(q). For the other inclusion,
suppose that

(ℎ1, . . . , ℎ1) ∈ Δn(p) ∗Δn(q).

Then, by the definition of ∗,

∃(f1, . . . , fn) ∈ Δn(p). ∃(g1, . . . , gn) ∈ Δn(q).

(∀i ∈ {1, . . . , n}. fi ⋅ gi = ℎi).

Since (f1, . . . , fn) ∈ Δn(p) and (g1, . . . , gn) ∈ Δn(q),
there are f ∈ p and g ∈ q such that

f ⊑ f1 ∧ . . . ∧ f ⊑ fn ∧ g ⊑ g1 ∧ . . . ∧ g ⊑ gn.

Furthermore, since f1 and g1 have disjoint domains,
their subheaps f and g must have disjoint domains as
well. Consequently, f ⋅ g is well defined, and it satisfies

f ⋅ g ∈ p ∗ q ∧ (∀i ∈ {1, . . . , n}. f ⋅ g ⊑ fi ⋅ gi ⊑ ℎi).

This implies that (ℎ1, . . . , ℎn) ∈ Δn(p ∗ q), as desired.

Lemma 3 For all ' and �, �, �′, if Δn(�(a)) = �′(a)
for every a ∈ AVar, we have that Δn([[']]1�,�) = [[']]n�,�′ .

Proof: We prove by induction on the structure of '.
All the inductive cases and the cases of true and false
follow from the preservation result of Lemma 2. Thus,
it is sufficient to show the lemma when ' ≡ a or ' ≡ P .
When ' ≡ a, the assumption of the lemma implies that

Δn([[a]]1�,�) = Δn(�(a)) = �′(a) = [[a]]n�,�′ .

When ' ≡ P , we note that Δn∘Δ1 = Δn, and conclude
that

Δn([[P ]]1�,�) = Δn(Δ1(LP M�)) = Δn(LP M�) = [[P ]]n�,�′ .

B Proof of Lemma 4

Lemma 4 There is an algorithm taking simple as-
sertions ', and returning finitely many implica-
tions {'l =⇒  l}l∈L, such that (a) 'l =⇒  l has the
form (1) and (b) for any n ∈ {1, 2}, we have that
' ∣=n  holds iff 'l ∣=n  l holds for all l ∈ L.
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Proof: The algorithm first transforms  in the con-
junctive normal form, using proof rules in classical
logic, which hold in all the n-ary semantics. This gives
an implication of the form:

I⋁

i=1

J⋀

j=1

'(i,j) ∗ a(i,j) =⇒
K⋀

k=1

L⋁

l=1

 (k,l) ∗ b(k,l).

Then, the algorithm constructs the below set:

⎧
⎨
⎩

J⋀

j=1

'(i,j) ∗ a(i,j) =⇒
L⋁

l=1

 (k,l) ∗ b(k,l)

⎫
⎬
⎭

1≤i≤I,1≤k≤K

.

Finally, it removes, in each implication, all the dis-
juncts that include assertion variables not appearing
on the LHS of the implication. The outcome of this
removal becomes the result of the algorithm.

C Layouts that Lift

Lemma 18 (Segregation) For any I, J ≥ 1 there

are non-empty, finite segregating subsets SI,Ji,j ⊆ PosInt
for all 1 ≤ i ≤ I and 1 ≤ j ≤ J with these properties:

1. ∀1≤ i1, i2≤ I.
∪

1≤j≤J SI,Ji1,j =
∪

1≤j≤J SI,Ji2,j .

2. ∀1≤ i≤ I. ∀1≤ j1 ∕= j2≤ J. SI,Ji,j1 ∩ SI,Ji,j2 = ∅.

3. ∀1≤ i1 ∕= i2≤ I. ∀1≤ j1, j2≤ J. SI,Ji1,j1∩SI,Ji2,j2 ∕= ∅.

By 1 we define SI,J =
∪

1≤j≤J SI,Ji,j for any 1 ≤ i ≤ I.

Theorem 8 (Shadow-Lift) Unary �-validity of an
implication implies the PC if each dashed line has a
label that is not a label on a solid line and each disjunct
has an occurrence of a variable that is not a label on a
solid line. Spelling it out in symbols, we require, with
L = {(i, j) ∣ 1 ≤ i ≤M ∧ 1 ≤ j ≤ N}, that

∀(i, j) ∈ L. Π(i) ≱ Ω(j) =⇒
∃c ∈ V. Π(i)(c) < Ω(j)(c) ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)

and

∀1 ≤ j ≤ N. ∃c ∈ V. Ω(j)(c) > 0 ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
.

Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
�, that the stated criterion on the variable layout holds
and that we have unary �-validity. We must show that
the PC holds.

According to Definition 6 we assume that we have
heaps ℎ, ℎ1, . . . , ℎM ∈ Heap with ℎi ⊑ ℎ and ℎi ∈ [['i]]

1
�

for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment � : V → IRel1.
For that purpose we need some notation. For a subset
M ⊆ PosInt we denote by [M ] the heap that has do-
main M and stores some fixed value, say 0, at all these
locations. Let C ⊆ V be the set of assertion variables
that do not occur as labels on solid edges, i.e., for a
c ∈ V we have that c ∈ C iff

∀1 ≤ i ≤M. ∀1 ≤ j ≤ N.
Π(i) ≥ Ω(j) =⇒ Π(i)(c) = Ω(j)(c).

For each 1 ≤ i ≤ M we let Ki be the set of second
indices of all variables in conjunct i that lie in C, i.e.,
we set Ki = {1 ≤ k ≤ Mi ∣ ai,k ∈ C}. If non-empty,
we let ki = min(Ki).

We now define �(c) = Heap for c ∈ V ∖ C. For a
variable c ∈ C we let �(c) be the union of

∪

1 ≤ i ≤M,
Ki ∕= ∅,
ai,ki

≡ c

(ℎ−ℎi) ⋅ [SM,K
i,ki

+L] ⋅
∏

1 ≤ k ≤ K,
k /∈ Ki

[SM,K
i,k +L]

and

∪

1≤i≤M,Ki ∕=∅,k∈Ki∖{ki},ai,k≡c
[SM,K
i,k + L],

where we have used K = max{M1, . . . ,MM} and L =
max(dom(ℎ) ∪ {0}). For each 1 ≤ i ≤M we can write
ℎ ⋅ [SM,K + L] as the following product

ℎi ⋅ (ℎ− ℎi) ⋅
∏

k∈Ki

[SM,K
i,k + L] ⋅

∏

1≤k≤K,k/∈Ki

[SM,K
i,k + L],

which implies that we have ℎ ⋅ [SM,K +L] a member of
[['i ∗ ai,1 ∗ ⋅ ⋅ ⋅ ∗ ai,Mi

]]1�,�. In summary, we have shown

that ℎ ⋅ [SM,K + L] lies in the unary interpretation of
the left hand side in the environments � and �. By
assumption, the same must hold for the right hand side
and from this we aim to derive the PC.

We now know that ℎ ⋅ [SM,K + L] lies in the inter-
pretation of some disjunct, say disjunct j. This means
that

ℎ ⋅ [SM,K + L] ∈ [[ j ∗ bj,1 ∗ ⋅ ⋅ ⋅ ∗ bj,Nj
]]1�,�

= [[ j ]]
1
� ∗
∏

k∈J
�(bj,k),

where J = {1 ≤ k ≤ Nj ∣ bj,k ∈ C} is the set of second
indices of variables of disjunct j that are in C. By the
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second assumption of the theorem we know that J ∕= ∅.
We write

ℎ ⋅ [SM,K + L] = g ⋅
∏

k∈J
gk

for g ∈ [[ j ]]
1
� and gk ∈ �(bj,k) for each k ∈ J . By the

properties of segregating sets we get that there must
be a common 1 ≤ i ≤ M such that for all k ∈ J there
is lk ∈ Ki with

[SM,K
i,lk

+ L] ⊑ gk,

i.e., the gk’s are all ‘from the same conjunct’. But this
implies Π(i)(c) ≥ Ω(j)(c) for all c ∈ C as the segre-
gating sets are non-empty. But then Π(i)(c) ≥ Ω(j)(c)
must hold for c ∈ V ∖ C too by the first assumption
of the lemma and so Π(i) ≥ Ω(j). Also we must have
Π(i)(c) = Ω(j)(c) for each c ∈ C by definition of C.
By construction we have

dom

(∏

k∈J
gk

)
⊇ dom(ℎ− ℎi) ∪ (SM,K + L)

But then dom(g) ⊆ ℎi and so we have ℎi ∈ [[ j ]]
1
� too

and we have proved the first option of the PC.

Theorem 10 (Balloon-Lift) Unary �-validity of an
implication implies the PC if there is a subset B ⊆ V
with the following three properties. First, each conjunct
has at most one occurrence of a variable from B, i.e.,

∀1 ≤ i ≤M.
∑

c∈B
Π(i)(c) ≤ 1.

Second, each disjunct is empty or has exactly one oc-
currence of a variable from B, i.e.,

∀1 ≤ j ≤ N.
∑

c∈V
Ω(j)(c) = 0 ∨

∑

c∈B
Ω(j)(c) = 1.

Third, each dashed line must have a label from B. That
is, when L = {(i, j) ∣ 1 ≤ i ≤M ∧ 1 ≤ j ≤ N},

∀(i, j)∈L. Π(i) ≱ Ω(j) =⇒ ∃c∈B. Π(i)(c) < Ω(j)(c).

Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
�, that the stated criterion on the variable layout holds
and that we have unary �-validity. We must show that
the PC holds.

According to Definition 6 we assume that we have
heaps ℎ, ℎ1, . . . , ℎM ∈ Heap with ℎi ⊑ ℎ and ℎi ∈ [['i]]

1
�

for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment � : V → IRel1.

We define �(c) = Heap for c ∈ V ∖ B. For a variable
c ∈ B we let �(c) be the following union

∪

1≤i≤M,1≤k≤Mi,ai,k≡c
ℎ− ℎi.

For each 1 ≤ i ≤M we can write ℎ = ℎi ⋅ (ℎ− ℎi) and
so we have ℎ in [['i ∗ ai,1 ∗ ⋅ ⋅ ⋅ ∗ ai,Mi ]]

1
�,� by the first

of the original assumption on the set B. In summary,
we have shown that ℎ lies in the unary interpretation
of the left hand side in the environments � and �. By
assumption, the same must hold for the right hand side
and from this we aim to derive the PC.

We now know that ℎ lies in the interpretation of
some disjunct, say disjunct j. If this disjunct is empty
we have proved the second option of the PC. Otherwise
we know that there is exactly one 1 ≤ k ≤ Nj such that
bj,k ∈ B. But then we have

ℎ ∈ [[ j ∗ bj,1 ∗ ⋅ ⋅ ⋅ ∗ bj,Nj
]]1�,� = [[ j ]]

1
� ∗ �(bj,k).

We write
ℎ = g ⋅ gk

for g ∈ [[ j ]]
1
� and gk ∈ �(bj,k). There must be an 1 ≤

i ≤M such that gk ⊒ ℎ−ℎi and such that Π(i)(bj,k) =
Ω(j)(bj,k) = 1. The first gives ℎi ∈ [[ j ]]

1
� and the

second implies Π(i) ≥ Ω(j) by the third assumption on
B. And we have arrived at the first option of the PC.

D Completeness

Lemma 19 (Fan-Counter) Suppose that the layout
of variables is as follows. There are at least two con-
juncts, i.e., M ≥ 2, and one conjunct has the property
that each variable occurring in the conjunct also occurs
as a label of a solid line leaving the conjunct and ending
in a non-empty disjunct. In symbols the latter is

∃1 ≤ i ≤M. ∀c ∈ V. Π(i)(c) > 0 =⇒
∃1 ≤ j ≤ N. Π(i) ≥ Ω(j) ∧Π(i)(c) > Ω(j)(c) ∧
∃d ∈ V. Ω(j)(d) > 0.

Then there are choices of 'i’s and  j’s with no vari-
ables such that the implication holds on the unary level
but not on the binary level.

In the search for counterexamples we may without loss
of generality assume the negation of the conditions of
the above lemma. This means, provided at least two
conjuncts, that for any non-empty set of solid lines
leaving one common conjunct and ending in non-empty
disjuncts there is a variable that occurs in the conjunct
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but is not a label of either of the lines. If, loosely
phrased, we invalidate that variable, then all the solid
lines break down, i.e., become dashed.

Lemma 20 (X-Counter) Suppose that the layout of
variables is as follows. There are two distinct con-
juncts i0 and i1 and two distinct non-empty disjuncts
j0 and j1 such that Π(i0) ≱ Ω(j0) while Π(i0) ≥ Ω(j1),
Π(i1) ≥ Ω(j0) and Π(i1) ≥ Ω(j1). Then there are
choices of 'i’s and  j’s that the implication holds on
the unary level but not on the binary level.

Again we may without loss of generality assume that
the negation of this lemma holds when building coun-
terexamples. Picture the graph of the implication with-
out empty disjuncts and without dashed lines. The
negation of the above means that we may arrive at all
vertices in the connected component containing some
vertex by paths from that vertex of length 2 or less.
Also all connected components are complete, in partic-
ular no two vertices with a dashed line between them
can belong to the same component.

Lemma 21 (Bridge-Counter) Suppose that the lay-
out of variables is as follows. There are at least two
conjuncts, i.e., M ≥ 2, all disjuncts are non-empty
and there is a dashed line with labels that all occur as
labels on solid lines too. In symbols the last demand is

∃1 ≤ i ≤M. ∃1 ≤ j ≤ N. Π(i) ≱ Ω(j) ∧
∀c ∈ V. Π(i)(c) < Ω(j)(c) =⇒
∃1 ≤ k ≤M. ∃1 ≤ l ≤ N.

Π(k) ≥ Ω(l) ∧Π(k)(c) > Ω(l)(c).

Then there are choices of 'i’s and  j’s with no vari-
ables such that the implication holds on the unary level
but not on the binary level.

This lemma deals with the case of a variable layout
with at least two conjuncts and no empty disjuncts
but where the first condition of Theorem 8 fails.

Lemma 22 (All-Out-Counter) Suppose that the
layout of variables is as follows. There are at least
two conjuncts, i.e., M ≥ 2, at least one non-empty
disjunct and for each variable one of the following two
holds: Either the variable occurs as a label on a solid
line ending in a non-empty disjunct. Or it occurs at
least twice in a conjunct and we have an empty dis-
junct. In symbols the variable condition is

∀c ∈ V.
(
∃1 ≤ i ≤M. ∃1 ≤ j ≤ N. Π(i) ≥ Ω(j) ∧

Π(i)(c) > Ω(j)(c) ∧ ∃d ∈ V. Ω(j)(d) > 0
)
∨

(
∃1 ≤ i ≤M. Π(i)(c) ≥ 2 ∧
∃1 ≤ j ≤ N. ∀d ∈ V. Ω(j)(d) = 0

)
.

Then there are choices of 'i’s and  j’s 'i’s and  j’s
with no variables such that the implication holds on the
unary level but not on the binary level.

This lemma deals with two cases. The first is the case
of a variable layout with at least two conjuncts and
no empty disjuncts but where the second condition of
Theorem 8 fails while the first holds. The second is the
case of a variable layout with at least two conjuncts, at
least one empty disjunct and no dashed lines for which
Theorem 10 fails.

E Higher Arities and Parametricity

Theorem 15 For an implication of the form (1) and
an appropriate environment � we have that n-ary �-
validity implies the PC if n ≥ max{M1, . . . ,MM}.
Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
�, that n ≥ max{M1, . . . ,MM} and that we have n-
ary �-validity. We must show that the PC holds. We
consider only the case n ≥ 2, the case n = 1 proceeds
along the lines of the proof of Theorem 10.

According to Definition 6 we assume that we have
heaps ℎ, ℎ1, . . . , ℎM ∈ Heap with ℎi ⊑ ℎ and ℎi ∈ [['i]]

1
�

for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment � : V → IReln.
For that purpose we need some notation. Define, for
each 1 ≤ k ≤ n, a map k : Heap→ Heapn by letting

k(ℎ) =
(

k−1︷ ︸︸ ︷
[], . . . , [], ℎ,

n−k︷ ︸︸ ︷
[], . . . , []

)

for any ℎ ∈ Heap, i.e., it returns the n-tuple that has ℎ
as the k-th entry and the empty heap everywhere else.
Similarly, we define � : Heap→ Heapn by setting

�(ℎ) =
(

n︷ ︸︸ ︷
ℎ, . . . , ℎ

)

for any ℎ ∈ Heap, i.e., it returns the n-tuple that has
ℎ as all entries. For a subset M ⊆ PosInt we denote
by [M ] the heap that has domain M and stores some
fixed value, say 0, at all these locations.

For a variable c ∈ V we now define �(c) to be the
following union of relations in IReln:

∪

1≤i≤M,1≤k≤Mi,a(i,k)≡c
{k(ℎ− ℎi) ⋅ 1([SM,K

i,k + L])}↑

where K = max{M1, . . . ,MM}, L = max(dom(ℎ)).
This is well-defined because of our assumption that n ≥
max{M1, . . . ,MM}. For each 1 ≤ i ≤M we have that

�(ℎ) = �(ℎi) ⋅ 1(ℎ− ℎi) ⋅ ⋅ ⋅ ⋅ ⋅ n(ℎ− ℎi)
⊒ �(ℎi) ⋅ 1(ℎ− ℎi) ⋅ ⋅ ⋅ ⋅ ⋅ Mi(ℎ− ℎi)
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where we use the extension order for heap tuples de-
fined by pointwise extension in all entries. Also, we
have that

[SM,K + L] = [SM,K
i,1 + L] ⋅ ⋅ ⋅ ⋅ ⋅ [SM,K

i,K + L]

⊒ [SM,K
i,1 + L] ⋅ ⋅ ⋅ ⋅ ⋅ [SM,K

i,Mi
+ L].

This gives us that �(ℎ) ⋅ 1([SM,K + L]) extends the
following n-tuple of heaps:

�(ℎi) ⋅
∏

1≤k≤Mi

k(ℎ− ℎi) ⋅ 1([SM,K
i,k + L])

which again means that �(ℎ) ⋅ 1([SM,K + L]) lies in

[['i ∗ ai,1 ∗ ⋅ ⋅ ⋅ ∗ ai,Mi
]]n�,�.

In summary, we have shown that �(ℎ) ⋅ 1([SM,K +L])
lies in the n-ary interpretation of the left hand side in
the environments � and �. By assumption, the same
must hold for the right hand side and from this we aim
to derive the PC.

There is 1 ≤ j ≤ N such that we have

�(ℎ) ⋅ 1([SM,K + L]) ∈ [[ j ∗ bj,1 ∗ ⋅ ⋅ ⋅ ∗ bj,Nj
]]n�,�.

Consider first the case of a non-empty disjunct, i.e., the
case Nj > 0. We split along the disjunct and get

�(ℎ) ⋅ 1([SM,K + L]) = �(g) ⋅ g1 ⋅ ⋅ ⋅ ⋅ ⋅ gNj

for g ∈ [[ j ]]
1
� and gk ∈ �(bj,k) for all 1 ≤ k ≤ Nj .

By the properties of segregating sets we get that there
must be a common 1 ≤ i ≤ M such that for all 1 ≤
k ≤ Nk there is 1 ≤ kk ≤Mi with

kk(ℎ− ℎi) ⋅ 1([SM,K
i,kk

+ L]) ⊑ gk,

i.e., the gk’s are all ‘from the same conjunct’. But
this implies Π(i) ≥ Ω(j) as the segregating sets are
non-empty. Also the above equality enforces dom(g) ⊆
dom(ℎ) by the definition of 1. Indeed we must have
dom(g) ⊆ dom(ℎi) since in particular we have

1k
(ℎ− ℎi) ⋅ 1([SM,K

i,1k
+ L]) ⊑ g1.

But then g ⊑ ℎi so we have ℎi ∈ [[ j ]]
1
� too and the first

option of the PC holds.
We consider now the case of an empty disjunct, i.e.,

the case Nj = 0. As above we split along the disjunct
and get

�(ℎ) ⋅ 1([SM,K + L]) = �(g) ⋅ g

for g ∈ [[ j ]]
1
� and g ∈ Heapn. Again we must have

dom(g) ⊆ dom(ℎ) which implies g ⊑ ℎ and the second
option of the PC holds.

F Proof of Theorem 17

Theorem 17 Every derivable Γ⊢ {'}C{ } is 2-
valid.

Proof: We will show that all the rules in Figure 4 are
sound. This lets us prove the theorem by induction
on the height of the derivation of a judgment, because
using the soundness of the rules, we can handle all the
base and inductive cases.

Let’s start with the rule for the module operation k.
Suppose that (�, �,u) ∣=2 (Γ, {'}k{ }). Then, by the
definition of ∣=2, we should have (�, �,u) ∣=2 {'}k{ }
as well. From this follows the soundness of the rule.

Next, consider four rules: (a) the frame rule for
adding − ∗ ' to the pre and post-conditions, (b) the
rule for adding ∃x to the pre and post-conditions, (c)
the rule for sequencing, and (d) the rule for the condi-
tional statement. All these rules are sound, because of
the following four facts:

(�, �,u) ∣=2 {'}C{'′}
=⇒ (�, �,u) ∣=2 {' ∗  }C{'′ ∗  }

(x ∕∈ FV(C)) ∧ (�, �,u) ∣=2 {'}C{ }
=⇒ (�, �,u) ∣=2 {∃x.'}C{∃x. }

(�, �,u) ∣=2 {'}C{'′} ∧ (�, �,u) ∣=2 {'′}C ′{ }
=⇒ (�, �,u) ∣=2 {'}C;C ′{ }

(�, �,u) ∣=2 {' ∧B}C{ } ∧
(�, �,u) ∣=2 {' ∧ ¬B}C ′{ }

=⇒ (�, �,u) ∣=2 {'}if BC C ′{ }

The first fact is an easy consequence of using the quan-
tification over IRel2 in the semantics of triples. The sec-
ond also follows easily from the semantics of triples and
the fact that [[C]]�,ui = [[C]]�[x7→v],ui

for all v ∈ Int, as
long as one remembers that the ∗ operator distributes
over union. The third and fourth are not different,
and they follow from the semantics of triples and com-
mands. Here we will go through the details of proving
the fourth fact. Consider (�, �,u) satisfying the as-
sumption of the fact. Pick r ∈ IRel2 and heaps f, g
such that

(f, g) ∈ [[']]2�,� ∗ r.

Now we do the case analysis on whether [[B]]� is true
or not. If it is true, then

(f, g) ∈ [[' ∧B]]2�,� ∗ r
∧ [[if BC C ′]]�,u1(f) = [[C]]�,u1(f)

∧ [[if BC C ′]]�,u2
(g) = [[C]]�,u2

(g).
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Hence, by assumption, we get that
(

[[if BC C ′]]�,u1
(f), [[if BC C ′]]�,u2

(g)
)

=
(

[[C]]�,u1
(f), [[C]]�,u2

(g)
)
∈ [[ ]]2�,� ∗ r.

If [[B]]� is not true, we reason similarly, but with C ′

instead of C, and get that

(
[[if BC C ′]]�,u1

(f), [[if BC C ′]]�,u2
(g)
)
∈ [[ ]]2�,� ∗ r.

We have just shown that in both cases, the outcomes
of the conditional statements are related by [[ ]]2�,� ∗ r,
as claimed by the fourth fact.

We move on to the rules for heap update and deref-
erence. They are sound because of the below two facts:

(�, �,u) ∣=2 {E↪→ }[E]:=F{E↪→F}

x ∕∈ FV( ) ∧ (�, �,u) ∣=2 {' ∗E↪→x}letx=[E] inC{ }
=⇒ (�, �,u) ∣=2 {∃x.' ∗E↪→x}letx=[E] inC{ }

To prove the first, we pick (�, �,u), a relation r ∈ IRel2
and heaps f, g such that

(f, g) ∈ [[E ↪→ ]]2�,� ∗ r.

Then, there exist heaps ℎ, f1, g1 such that

(f, g) = (ℎ, ℎ)⋅(f1, g1) ∧ [[E]]� ∈ dom(ℎ) ∧ (f1, g1) ∈ r.

Thus,

( [[[E]:=F ]]�,u1
(f), [[[E]:=F ]]�,u2

(g) )

=
(
ℎ[[[E]]� 7→[[F ]]�] ⋅ f1, ℎ[[[E]]� 7→[[F ]]�] ⋅ g1

)

∈ [[E↪→F ]]2�,� ∗ r,

as desired by the first fact. For the proof of the second
fact, suppose that the assumption of the second fact
holds, and pick r ∈ IRel2 and heaps f, g such that

(f, g) ∈ [[∃x. ' ∗ E↪→x]]2�,� ∗ r.

Then, there exists an integer v and heaps ℎ, f1, g1 such
that

(f, g) = (ℎ, ℎ) ⋅ (f1, g1) ∧ (f1, g1) ∈ r
∧ ℎ ∈ [[' ∗ E↪→x]]1�[x7→v],�.

Thus, (f, g) ∈ [[' ∗ E↪→x]]1�[x 7→v],� ∗ r, and f([[E]]�) =

g([[E]]�) = v. Using these and the assumed triple of the
second fact, we derive the below:

( [[letx=[E] inC]]�,u1
(f), [[letx=[E] inC]]�,u2

(g) )

=
(

[[C]]�[x 7→v],u1
(f), [[C]]�[x 7→v],u2

(g)
)

∈ [[ ]]2�[x 7→v],� ∗ r
= [[ ]]2�,� ∗ r.

The last equality holds, because x does not appear in '.
We have just proved that the output states of two deref-
erencing commands are ([[ ]]2�,� ∗ r)-related, as claimed
by the second fact.

Finally, we prove that the rule of consequence is
sound. It is sufficient to show that

Chk('′, ') ∧ '′ ∣=1 ' ∧
Chk( , ′) ∧  ∣=1  ′ ∧ (�, �,u) ∣=2 {'}C{ }

=⇒ (�, �,u) ∣=2 {'′}C{ ′}.

From the first four conjuncts of the assumption, it fol-
lows that

'′ ∣=2 ' ∧  ∣=2  ′.

This is due to the correctness of Chk, which holds
because all the transformations used in the first check
of Chk are based on semantic equivalences holding in
IRel2 and the second lifting check is sound because of
our lifting theorems. In order to prove the conclusion
of the above implication, pick r ∈ IRel2 and heaps f, g
such that

(f, g) ∈ [['′]]2�,� ∗ r.
Since the ∗ operator is monotone and '′ ∣=2 ', we get
that

(f, g) ∈ [[']]2�,� ∗ r.
This relationship and the assumed triple {'}C{ },
then, imply the below:

( [[C]]�,u1(f), [[C]]�,u2(g) ) ∈ [[ ]]2�,� ∗ r.

Again, since  ∣=2  ′, the monotonicity of the ∗ oper-
ator implies that

( [[C]]�,u1(f), [[C]]�,u2(g) ) ∈ [[ ′]]2�,� ∗ r.

Note that this is the conclusion that we are looking for.
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Chapter 8

A Tale of Two Recursive
Predicates (note)
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A Tale of Two Recursive Predicates

Jacob Thamsborg, thamsborg@itu.dk, May 9, 2010

Flat Locations and Recursion

Consider – without further ado – some language with
integers, recursive types and general reference types,
i.e.,

� ::= � ∣ int ∣ ref � ∣ ��. � ∣ ⋅ ⋅ ⋅

and a set V with maps inint : ℤ→ V , inref : ! → V ,
and in� : V → V with disjoint images; we have, e.g,
inint(ℤ) ∩ inref(V ) = ∅.
We should like to have a world-indexed interpretation
of the closed types as subsets of V such that

JintK(Δ) = inint(ℤ),

such that

Jref �K(Δ)

= inref
(
{l ∈ dom(Δ) ∣ JΔ(l)K(Δ) = J�K(Δ)}

)

and finally such that

J��. �K(Δ) = in�
(
J� [��. �/�]K(Δ)

)
.

Here the Δ ranges over worlds, i.e., partial, finite
maps from ! to closed syntactic types. We stick, as
in [3], to syntactic worlds for simplicity.

Looking for trouble, we assume the existence of an
interpretation with the stated properties and focus
on the type � given by

��. ref �

in the context of the world Δ given by

0 7→ ref int.

For an easy start, we take a shot at interpreting the
type stored at location zero:

JΔ(0)K(Δ)

= Jref intK(Δ)

= inref({l ∈ {0} ∣ JΔ(l)K(Δ) = JintK(Δ)})

=

{
inref({0}) if JΔ(0)K(Δ) = JintK(Δ)

∅ if JΔ(0)K(Δ) ∕= JintK(Δ)

We have, unsurprisingly, hit a circularity and di-
rect calculations will get us nowhere. But we must
have JΔ(0)K(Δ) ⊆ inref(!) and hence the for-
mer cannot equal JintK(Δ) = inint(ℤ), since, e.g.,
inint(ℤ) ∋ inint(0) /∈ inref(!). Hence we conclude
that JΔ(0)K(Δ) = ∅.
But how, then, about interpreting � in the world Δ?
Being a reference type in the context of a world with
singleton domain leaves little room for diversity: ei-
ther it must be empty

J�K(Δ) = ∅

or it must contain the single allocated location

J�K(Δ) = in�(inref({0})).

The first guess is arguably the most tempting, but it
is easily seen from the following that either possibility
implies the other:

J�K(Δ)

= J��. ref �K(Δ)

= in�(Jref �K(Δ))

= in�(inref({l ∈ {0} ∣ JΔ(l)K(Δ) = J�K(Δ)}))

=

{
in�(inref({0})) if JΔ(0)K(Δ) = J�K(Δ)

∅ if JΔ(0)K(Δ) ∕= J�K(Δ).
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We arrive at the contradiction ∅ = in�(inref({0}))
and are forced to conclude that there is no such in-
terpretation.

A natural work-around would be to consider syntac-
tic rather than semantic equality when interpreting
reference types, i.e., to demand

Jref �K(Δ) = inref
(
{l ∈ dom(Δ) ∣ Δ(l) = �}

)

of the interpretation of reference types, where the last
equality is syntactical. But proceeding along those
lines we get into trouble when extending to open
types since we cannot deal with non-syntactic types
– we get no proper space of semantic types. In par-
ticular, we obstruct relational parametric reasoning
in an envisioned binary interpretation.

The problem appears to persist in the presence of se-
mantic worlds as in [2]. Also, it can be replayed with
a more realistic version of � such as linked lists of
integers if we equip the language with sum, product
and unit types. A serious shortcoming – so to speak
– of the counter-example is, however, that it does
not scale to a more realistic interpretation of refer-
ence types that quantify over future worlds as used
in [3, 2]. In other words, if we change our demand on
reference types to be

Jref �K(Δ) = inref
(
{l ∈ dom(Δ) ∣

∀Δ′ ⊒ Δ. JΔ(l)K(Δ′) = J�K(Δ′)}
)

then the possibility J�K(Δ) = ∅ is no longer (imme-
diately) inconsistent. Here we write Δ′ ⊒ Δ for two
worlds Δ and Δ′ to indicate that dom(Δ) ⊆ dom(Δ′)
and that that the worlds agree on the domain of Δ.

Let us take our game to the next level. Assume the
above interpretation of reference types with quantifi-
cation over future worlds, the original interpretation
of recursive types, and an additional type constructor
nozero interpreted as follows:

Jnozero �K(Δ) = J�K(Δ) ∖ {inloc(0)}.

We reuse � from above, but redefine Δ to be the
world

0 7→ nozero �.

By calculations as above, it is not hard to see that
for any Δ′ ⊒ Δ we have that in�(inref(0)) ∈ J�K(Δ′)
implies Jnozero �K(Δ′) = J�K(Δ′), an unfortunate
combination. On the other hand, J�K(Δ) = ∅ implies,
sadly, the existence of a world Δ′ ⊒ Δ such that
in�(inref(0)) ∈ J�K(Δ′).
How much did we cheat in adding the novel, to say
the least, type operator? Some, at least; it is of a
very semantic nature, and its applicability to a spe-
cific, alleged model cannot be determined from the
(intentionally) vague requirements we make on mod-
els here. Having said that, it works in practice and
shows that if we go with flat locations in either [3] or
[2] then the logical relations do not exist.

The second counter-example was discovered indepen-
dently by the author and Kristian Støvring based on
a related, but rather more complex and semantic,
counter-example by Kristian Støvring.

A Quest for Purity

The following question was posed by Benton,
Kennedy, Beringer and Hofmann [1, Section 6.2]: Let
i : A→ A⊥ ∼= A be the minimal invariant of the pre-
domain functor (−) → (−)⊥; is it possible to find a
(necessarily chain-complete) subset P ⊆ A of A with

a ∈ P ⇐⇒ ∀b ∈ P. i−1(a)(p) ∈ {⊥, ⌊b⌋} ?

Intuitively, A models commands that work on stores
with a single global cell and P – if it exists – singles
out the hereditarily read-only commands: they may
freely read the contents of the cell and decide to ter-
minate or not on that basis, but they may not change
the contents. Provided, in all fairness, that the con-
tents of the cell is itself a pure command; hence the
recursive requirement and hence the name.

To the best of the knowledge of the author, this ques-
tion remains unanswered. It is, however, tempting to
ask if the technique of approximated (or semantic) lo-
cations coined by Birkedal, Støvring and Thamsborg
[3, 2] could be adapted to this setting. After all, the
existence of a similarly recursive predicate is their rai-
son d’etre. And indeed, as we shall see, it is possible
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to proceed along those lines to obtain something that
approximates P above. This, unfortunately, does not
answer the original question and whether an approx-
imated solution suffices for the larger purpose of the
cited paper is not at all clear.

Let ! = {0, 1, 2, . . .} and !̄1 = {1, 2, 3, . . . ,∞}. De-
fine T ⊆ P(!̄1×A) to be the set of subsets P ⊆ !̄1×A
that are downwards closed, i.e.,

∀(n, a) ∈ P.∀1 ≤ m < n. (m, a) ∈ P
as well as complete, i.e.,

∀a ∈ A. [∀1 ≤ n <∞. (n, a) ∈ P ] =⇒ (∞, a) ∈ P.
If, for any P,Q ∈ T and n ∈ !, it is the case that
(a,m) ∈ P iff (a,m) ∈ Q for all a ∈ A and all 1 ≤
m ≤ n we write P =n Q; note that P =0 Q always
holds. It is easy to show the following:

Proposition 1. There is a (unique) complete ultra-
metric d : T × T → {0} ∪ {2−n ∣ n ∈ !} such that

P =n Q ⇐⇒ d(P,Q) ≤ 2−n

for all P,Q ∈ T and n ∈ !.

Recall that, by the standard construction [4], A
comes equipped with an increasing chain of continu-
ous projections (�n)n∈! from A to A⊥ such that

�0 = �a ∈ A.⊥,
⊔

n∈!
�n = �a ∈ A.⌊a⌋

and such that

�̄n ∘ �m = �̄m ∘ �n = �n∧m

for any n,m ∈ !; for any continuous map ' : A →
A⊥, we denote by '̄ : A⊥ → A⊥ the strict ex-
tension. For ease of notation we furthermore set
�∞ = �a ∈ A.⌊a⌋, this extension does not invalidate
the last property of the projections.

Using these projections we define Φ : T → T by

Φ(P ) =
{

(n, a) ∣ ∀(m, b) ∈ P.
�̄(n−1)∧m(i−1(a)(b)) ∈ {⊥, �(n−1)∧m(b)}

}

for any P ∈ T ; it is not hard to prove Φ well-defined
using the properties of the projections.

We now proceed to the main result:

Proposition 2. Φ : T → T is contractive.

Proof. Take any two P,Q ∈ T and any n ∈ !, it shall
suffice to prove that P =n Q implies Φ(P ) =n+1

Φ(Q). So we assume P =n Q, take an arbitrary
(m, a) ∈ Φ(P ) with m ≤ n + 1 and must prove that
we have (m, a) ∈ Φ(Q) too; symmetry makes short
work of the other direction.

By definition, we pick (l, b) ∈ Q and must show that

�̄(m−1)∧l(i
−1(a)(b)) ∈ {⊥, �(m−1)∧l(b)}.

If n = 0 it must be the case that m = 1 and we get
�̄(m−1)∧l(i−1(a)(b)) = �̄0(i−1(a)(b)) = ⊥. If l ≤ n we
have (l, b) ∈ P and we are done since (m, d) ∈ Φ(P ).
Otherwise we have l > n ≥ 1. By downwards closure
of Q we must have (n, b) ∈ Q too and so (n, b) ∈ P
and we have

�̄(m−1)∧n(i−1(a)(b)) ∈ {⊥, �(m−1)∧n(b)}.

Luckily, we also have (m− 1) ∧ l = m − 1 =
(m− 1) ∧ n and we are done.

By Banach’s fixed-point theorem we have the follow-
ing corollary:

Corollary 3. There is P ′ ∈ T such that

(n, a) ∈ P ′ ⇐⇒ ∀(m, b) ∈ P ′.
�̄(n−1)∧m(i−1(a)(b)) ∈ {⊥, �(n−1)∧m(b)}.

Consider now elements of P ′ that have infinite index;
these are the closest thing we get to hereditary read-
only commands. Take one such, say (∞, a) ∈ P ′;
for any other (∞, b) ∈ P ′ we do have i−1(a)(b) ∈
{⊥, ⌊b⌋} as desired. The converse, however, does not
hold: to prove (∞, a) ∈ P ′ it does not suffice to test
against all (∞, b) ∈ P ′, we have to consider elements
with finite index too. We rationalize: elements with
finite index 1 ≤ n <∞ are intuitively read-only up to
equality under �n−1; it is, therefore, fair that proper
read-only commands behave up to equality under �n
when applied to such. The index-increase is due to
our ‘folding’ of the argument as member of A rather
than a function.
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By loose analogy with approximated locations, a
function of type ref � → � must function for all val-
ues in the interpretation of ref � , be they proper or
approximated locations. Hence such functions must
have some approximated behavior in the latter case,
e.g., applying the appropriate projection to whatever
it looks up in the memory.
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1 Banach from Kleene

In the context of an ultrametric space, say (X, d), we write x =n y to denote
that d(x, y) ≤ 2−n for any two elements x and y of X and any n ∈ ℕ. This is
an equivalence relation by the ultrametric inequality. For convenience we shall
furthermore denote equality on-the-nose by =∞. Indeed, it simplifies notation
in general to allow indices ro range over ℕ∞ = ℕ ∪ {∞} and not just over ℕ.
We consider ℕ∞ partially ordered in the obvious way. Addition is extended too,
to cover n+∞ =∞+n =∞ for any n ∈ ℕ∞; we still have that n ≤ m implies
n+ 1 ≤ m+ 1.

Definition 1. The qualification of a 1-bounded ultrametric space (X, d) is the
partial order

(X, d) =

( ∑

n∈ℕ∞

X/ =n, ⊑
)

where

(n, [x]n) ⊑ (m, [y]m) ⇐⇒ n ≤ m ∧ [x]n ⊇ [y]m ⇐⇒ n ≤ m ∧ x =n y.

Elements with index ∞ are called ideal, the remaining are shadow elements.

Notice that if (X, d) is non-empty then (X, d) is non-empty too, indeed it is
pointed since for any x ∈ X we have that (0, [x]0) is the least element.

Proposition 2. The qualification of a complete, 1-bounded ultrametric space
(X, d) is a complete partial order. Indeed, for any increasing chain of elements

(n0, [x0]n0) ⊑ (n1, [x1]n1) ⊑ (n2, [x2]n2) ⊑ ⋅ ⋅ ⋅

we either have that the set of indices is finitely bounded, i.e., ∃N ∈ ℕ∀m ∈
ℕ. nm < N , in which case the chain is constant from a certain point, or we have
have that ⊔

m

(nm, [xm]nm
) = (∞, [lim

m
xm]∞).

Proof. Assume that we have an increasing chain of elements

(n0, [x0]n0
) ⊑ (n1, [x1]n1

) ⊑ (n2, [x2]n2
) ⊑ ⋅ ⋅ ⋅ .

This means that we have

n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ and x0 =n0 x1, x1 =n1 x2, x2 =n2 x3, ⋅ ⋅ ⋅ .
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We may without loss of generality assume that the set of indices is not finitely
bounded because otherwise the chain is constant from some point. Hence, for
any N ∈ ℕ there is an M ∈ ℕ such that nM ≥ N . But then for any m ≥ M
we have that xM =N xm and hence (xm)m is a Cauchy sequence which by
completeness of (X, d) has a limit. This means that (∞, [limm xm]∞) is well-
defined, it now remains to prove that it is the least upper bound.

Let M ∈ ℕ be arbitrary. As xM =nM
xm for any m ≥ M we must have

xM =nM
limm xm and hence (nM , [xM ]nM

) ⊑ (∞, [limm xm]∞), i.e., the candi-
date is an upper bound. Now take any other upper bound, it must necessarily
be of the form (∞, [x]∞). For any N ∈ ℕ there is an M ∈ ℕ such that nM ≥ N
and hence limm xm =N xM =N x and so we must have limm xm = x, hence
(∞, [limm xm]∞) is the unique upper bound, in particular it is the least.

Proposition 3. Let (X, d) be a non-empty, complete, 1-bounded ultrametric
space and let f : X → X be contractive with factor 1

2 , i.e., d(f(x), f(y)) ≤
1
2 ⋅d(x, y) for all x, y ∈ X. Then f has a fixed point, i.e., there is an x ∈ X such
that f(x) = x.

Proof (using Kleenes’ fixed point theorem). We form the qualification

(X, d) =

( ∑

n∈ℕ∞

X/ =n, ⊑
)

according to Definition 1. Consider now the map f : (X, d)→ (X, d) defined by

f(n, [x]n) = (n+ 1, [f(x)]n+1),

which is well-defined by the assumption of contractiveness. We have monotonic-
ity since n ≤ m and x =n y implies n + 1 ≤ m + 1 and f(x) =n+1 f(y). To
prove continuity, assume that we have an increasing chain of elements

(n0, [x0]n0) ⊑ (n1, [x1]n1) ⊑ (n2, [x2]n2) ⊑ ⋅ ⋅ ⋅ ,
we may without loss of generality assume that the set of indices is not finitely
bounded for the same reasons as in the proof of Proposition 2. But then we
have

f(
⊔

m

(nm, [xm]nm
)) = f(∞, [lim

m
xm]∞)

= (∞, [f(limmxm)]∞)

= (∞, [limmf(xm)]∞)

=
⊔

m

(nm + 1, [f(xm)]nm)

=
⊔

m

f((nm, [xm]nm
)),

and continuity is done. By Kleene’s fixed point theorem, the continuous function
f on the complete pointed partial order (X, d) has a (least) fixed point, i.e., there
is (n, [x]n) ∈ (X, d) such that

(n, [x]n) = f((n, [x]n)) = (n+ 1, [f(x)]n+1).

This implies that n = ∞, i.e., the fixed point is an ideal element, and we get
f(x) = x.
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Kleene’s fixed point theorem is also sometimes referred to as Scott’s fixed
point theorem. Indeed, according to John Reynolds, the latter may be the most
correct in terms of giving due credit for discovery.

2 O-categories from M-categories

Definition 4. The qualification of an M -category D is the category in which
the objects are pairs (n,A) of an index n ∈ ℕ∞ and an object A of D and the
morphisms from (n,A) to (m,B) are the elements (i, [f ]i) of the qualification of
D(A,B) with i ≤ n ∧m. Given a morphism (i, [f ]i) from (n,A) to (m,B) and
a morphism (j, [g]j) from (m,B) to (l, C) we define composition by

(j, [g]j) ∘ (i, [f ]i) = (i ∧ j, [g ∘ f ]i∧j).

Notice how we may apply qualification to the hom-sets of D since they come
equipped with metrics turning them into (non-empty, complete,) 1-bounded
ultrametric spaces.

Proposition 5. The qualification an M -category is a well-defined O-category.

Proof. Let D be an M -category. Let us initially verify that the qualification C
of D is a well-defined category. Composition is well defined, because for objects
A, B and C and morphisms f, f ′ : A→ B and g, g′ : B → C of D with f =i f

′

and g =j g
′ for any i, j ∈ ℕ∞ we have g ∘ f =i∧j g′ ∘ f ′ by non-expansiveness

of composition in D. Also composition in C is associative because both taking
the minimum in ℕ∞ and composition in D are associative. The identity on an
object (n,X) is (n, [1X ]n) where 1X is the identity on X in D.

Consider now the hom-set of morphisms from an object (n,A) to another
object (m,B). If we have n = m =∞ then the hom-set is just the qualification
of D(A,B) which is complete partial order by Proposition 2. If either or both
of m and n are natural numbers, we consider only the subset of elements of
the qualification with indices less than our equal to n ∧m. But any ascending
chain in this subset must have finitely bounded indices and thus be constant
from some point, i.e., the subset is itself a complete partial order. It remains to
prove that for any three objects (n,A), (m,B) and (l, C) of C we have that the
composition function ∘ : C((m,B), (l, C))×C((n,A), (m,B))→ C((n,A), (l, C))
is continuous. Monotonicity goes first: let (i, [f ]i), (i

′, [f ′]i′) ∈ C((n,A), (m,B))
and (j, [g]j), (j

′, [g′]j′) ∈ C((m,B), (l, C)) with

(i, [f ]i) ⊑ (i′, [f ′]i′) ∧ (j, [g]j) ⊑ (j′, [g′]j′)

be given. But i∧j ≤ i′∧j′ and also f =i∧j f ′ and g =i∧j g′ are immediate from
the definition and non-expansiveness of composition in D yields g∘f =i∧j g′ ∘f ′
and so we have

(j, [g]j) ∘ (i, [f ]i) = (i ∧ j, [g ∘ f ]i∧j)

⊑ (i′ ∧ j′, [g′ ∘ f ′]i′∧j′)
= (j′, [g′]j′) ∘ (i′, [f ′]i′).

Finally, assume that we have ascending chains

(i0, [f0]i0) ⊑ (i1, [f1]i1) ⊑ (i2, [f2]i2) ⊑ ⋅ ⋅ ⋅
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and
(j0, [g0]g0) ⊑ (j0, [g0]g0) ⊑ (j0, [g0]g0) ⊑ ⋅ ⋅ ⋅

in C((n,A), (m,B)) respectively C((m,B), (l, C)). We have to show that the
composition of the least upper bound equals the least upper bound of the com-
positions. If neither of the chains have finitely bounded indices we calculate as
follows:

⊔

n

(jn, [gn]n) ∘
⊔

n

(in, [fn]n) = (∞, [lim
n
gn]∞) ∘ (∞, [lim

n
fn]∞)

= (∞, [lim
n
gn ∘ lim

n
fn]∞)

= (∞, [lim
n
gn ∘ fn]∞)

=
⊔

n

(in ∧ jn, [gn ∘ fn]in∧jn)

=
⊔

n

(jn, [gn]jn) ∘ (in, [fn]in).

Suppose now that one chain, say the one in C((n,A), (m,B)), has finitely
bounded indices but that the other has not. Pick N ∈ ℕ such that for any
n ≥ N we have (iN , [fN ]iN ) = (iN+n, [fN+n]iN+n

) and such that jN ≥ iN . We
get the following:

⊔

n

(jn, [gn]n) ∘
⊔

n

(in, [fn]n) = (∞, [lim
n
gn]∞) ∘ (iN , [fN ]iN )

= (iN , [lim
n
gn ∘ fN ]iN )

= (iN , [gN ∘ fN ]iN )

=
⊔

n

(in ∧ jn, [gn ∘ fn]in∧jn)

=
⊔

n

(jn, [gn]jn) ∘ (in, [fn]in).

The final case of both chains having finitely bounded indices holds trivially
because it is the case that the chain of pairs is constant from some point.

It is worth noticing that the construction yields not only an O-category, but
one in which all hom-sets are pointed and all composition functions are bi-strict.
These additional properties are not formal requirements of an O-category, but
are necessary for the standard construction of solutions to domain equations.

Next up is building locally continuous functors on the qualification of an
M -categories from locally contractive ones on the M -category itself:

Definition 6. Let D be an M -category and let G : Dop ×D → D be a mixed-
variance functor that is locally contractive with factor 1

2 . The qualification of
G is the mixed variance functor F : Cop × C → C on the qualification C of D
that maps objects ((n,A), (m,B)) to ((n ∧ m) + 1, G(A,B)) and morphisms
((i, [f ]i), (j, [g]j)) to ((i ∧ j) + 1, [G(f, g)](i∧j)+1).
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Proposition 7. The qualification of a locally contractive functor is a well-
defined locally continuous functor.

Proof. With the nomenclature of Definition 6 we initially prove that F : Cop ×
C → C is well defined. For any two objects ((n,A), (m,B)) and ((n′, A′), (m′, B′))
of Cop × C and any morphism ((i, [f ]i), (j, [g]i)) between them we know that
i ≤ n ∧ n′ and j ≤ m ∧ m′ and so we get (i ∧ j) + 1 ≤ (n ∧ m) + 1 and
(i∧ j) + 1 ≤ (n′ ∧m′) + 1. Also we know that G(f, g) : G(A,B)→ G(A′, B′) so
((i ∧ j) + 1, [G(f, g)](i∧j)+1) really is a morphism from ((n ∧m) + 1, G(A,B))
to ((n′ ∧ m′) + 1, G(A′, B′)). To verify representation independence we pick
f ′ : A′ → B′ and g′ : B → B′ with f =i f

′ and g =j g
′ and note that since

G is locally contractive with factor 1
2 we get that G(f, g) =(i∧j)+1 G(f ′, g′).

It remains to show that F respects identity and composition. The former is
immediate by definition, to prove the latter we take two composable morphisms
((i, [f ]i), (j, [g]j)) and ((i′, [f ′]i′), (j′, [g′]j′)) and get

F (((i′, [f ′]i′), (j
′, [g′]j′)) ∘ ((i, [f ]i), (j, [g]i)))

= F ((i′ ∧ i, [f ∘ f ′]i∧i′), (j ∧ j′, [g′ ∘ g]j∧j′))

= (((i′ ∧ i) ∧ (j ∧ j′)) + 1, [G(f ∘ f ′, g′ ∘ g)]((i′∧i)∧(j∧j′))+1)

= (((i ∧ j) + 1) ∧ ((i′ ∧ j′) + 1), [G(f ′, g′) ∘G(f, g)]((i∧j)+1)∧((i′∧j′)+1))

= ((i′ ∧ j′) + 1, [G(f ′, g′)](i′∧j′)+1) ∘ ((i ∧ j) + 1, [G(f, g)](i∧j)+1)

= F ((i′, [f ′]i′), (j
′, [g′]j′)) ∘ F ((i, [f ]i), (j, [g]i)).

To prove that F is locally monotone we take two morphisms ((i, [f ]i), (j, [g]j))
and ((i′, [f ′]i′), (j′, [g′]j′)) that agree on both domain and codomain and we
assume that the former is less than or equal to the latter in the qualification
ordering on the hom-set. This implies that i ≤ i′, j ≤ j′, f =i f

′ and g =j g
′

which again means that (i ∧ j) + 1 ≤ (i′ ∧ j′) + 1 and that G(f, g) =(i∧j)+1

G(f ′, g′). But then

F ((i, [f ]i), (j, [g]j)) = ((i ∧ j) + 1, [G(f, g)](i∧j)+1)

⊑ ((i′ ∧ j′) + 1, [G(f ′, g′)](i′∧j′)+1)

= F ((i′, [f ′]′i), (j
′, [g′]′j)).

Finally, to prove F locally continuous we take an increasing chain of morphisms

((i0, [f0]i0), (j0, [g0]j0)) ⊑ ((i1, [f1]i1), (j1, [g1]j1)) ⊑ ⋅ ⋅ ⋅

in a hom-set and we need to prove that the image under F of the least upper
bound equals the least upper bound of the image of the chain under F . Consider
initially the case where neither of the component chains have finitely bounded
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indices, this yields

F (
⊔

n

((in, [fn]in), (jn, [gn]jn))) = F (
⊔

n

(in, [fn]in),
⊔

n

(jn, [gn]jn))

= F ((∞, [lim
n
fn]∞), (∞, [lim

n
gn]∞))

= (∞, [G(lim
n
fn, lim

n
gn)]∞)

= (∞, [lim
n
G(fn, gn)]∞)

=
⊔

n

((in ∧ jn) + 1, [G(fn, gn)](in∧jn)+1)

=
⊔

n

G((in, [fn]in), (jn, [gn]jn)).

Suppose now that one of the component chains, say the first, has finitely
bounded indices but that the other does not. Much as in the proof of Propo-
sition 5 we pick N ∈ ℕ such that for any n ≥ N we have (iN , [fN ]iN ) =
(iN+n, [fN+n]iN+n

) and such that jN ≥ iN . This gives us the following:

F (
⊔

n

((in, [fn]in), (jn, [gn]jn))) = F (
⊔

n

(in, [fn]in),
⊔

n

(jn, [gn]jn))

= F ((iN , [fN ]iN ), (∞, [lim
n
gn]∞))

= (iN + 1, [G(fN , lim
n
gn)]iN+1)

= (iN + 1, [G(fN , gN )]iN+1)

=
⊔

n

((in ∧ jn) + 1, [G(fn, gn)](in∧jn)+1)

=
⊔

n

G((in, [fn]in), (jn, [gn]jn)).

Finally we observe that if both component chains have finitely bounded indices
then the chain is constant from some point and the desired equality is trivially
true.

Proposition 8. A locally contractive functor inherits fixed points from its
qualification. Indeed, let D be an M -category and C its qualification. Let
G : Dop × D → D be a mixed-variance functor that is locally contractive with
factor 1

2 and let F : Cop × C → C be its qualification. If now F ((n,A), (n,A)) is
isomorphic to (n,A) in C then we have that G(A,A) is isomorphic to A in D.

Proof. We have a morphism (i, [f ]i) from F ((n,A), (n,A)) = (n + 1, G(A,A))
to (n,A) and a morphism (j, [g]j) the other way such that

(j, [g]j) ∘ (i, [f ]i) = (i ∧ j, [g ∘ f ]i∧j) = (n+ 1, [1G(A,A)]n+1)

and such that

(i, [f ]i) ∘ (j, [g]j) = (j ∧ i, [f ∘ g]j∧i) = (n, [1A]n).

In particular we have n + 1 = n which leaves n = ∞ as the only option. But
then g ∘ f = 1G(A,A) and f ∘ g = 1A and we are done.
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Finally we observe (we omit the proof) that if an M -category has the com-
pleteness properties that permits the (symmetric) construction of solutions to
recursive metric equations then its qualification has completeness properties that
similarly permit the construction of solutions to recursive domain equations:

Proposition 9. Let D be an M -category and let C be its qualification. If D is
nonempty and has inverse limits of Cauchy towers then C has a terminal object
and limits of !op-chains of split epis.
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