
 
 
 

Re-engineering for Evolvability 
 

Considering social as well as technical requirements for 
software products 
 
Hataichanok Unphon 
 

 
 
Thesis submitted for the Degree of Doctor of Philosophy 
 
 
16 October 2009



 



     iii 

ABSTRACT 
 
 

Today’s software products are used by a number of organisations to 
serve their businesses. The software is often customised to support a 
variety of needs and uses in an organisation. Over time, software has 
evolved to support changes in the way it is used. The challenge for the 
software to maintain its Evolvability—that is, its adaptability and at the 
same time its sustainability with respect to the way it is used and 
further developed—deserves serious consideration in academia and 
industry. 

The goal of this research is to propose engineering discipline for 
enhancing continuous evolvability. The research is designed as a 
qualitative empirical study using two case studies—DHI Water 
Environment and Health (DHI) and EASI-WAL, an open source 
project let by a Belgian government agency—that re-engineer their 
software products using software product line approach, and an 
interview study with different product developing companies. 

The study with DHI took place over a time span of 2.5 years as an 
action research project. The study with EASI-WAL triangulates the 
first one; the research took place during a three-month stay in Belgium. 
The interview study was performed as yet another triangulation in order 
to see whether the observed practices in the two cases studies can be 
observed in other organisations as well. 

The two case studies (a long-term involvement and a short-term 
involvement case study) centre on the re-engineering of socially 
embedded systems in which the design and evolution depend on usage, 
development cooperation, and changes to the technical base. Based on 
the initial empirical research, an evolvability framework is identified 
that contains six contextual dimensions (business context, use context, 
software engineering organisation, software engineering practice, 
technical infrastructure, and technical selection) which need to be 
considered when evolving the software product in a sustainable 
manner. The research highlights architectural changes and changes to 
the architectural practice when introducing a product line approach. 
E.g. to promote awareness of architecture in everyday development, the 
build hierarchy in DHI was changed to represent the design 
architecture and thus promote the alignment of design and code 
architecture. 



ABSTRACT iv 

As a result, this thesis proposes and evaluates an Architecture-Level 
Evolvability Assessment (ALEA) method allowing the development 
team to assess adaptability as well as sustainability with respect to the 
six contextual dimensions when evolving the software product. 

The interview study investigates the architecture practices of product 
developing companies. Based on interviews with architects and in some 
cases also team members of 13 software product teams in eight 
organisations, the study confirms that architecture is communicated and 
maintained through socialisation rather than codification in form of 
documentation. Architecturing is carried out by walking architecture, a 
lead developer or chief architect cooperating and communicating with 
the developers. Based on the analysis, the study discusses the 
interaction of tools and representations and social protocols to 
promote architecture awareness in product evolution. 

The results indicate the importance of considering both the social 
and the technical dimension when improving architecture and software 
development. 

 



       v 

ACKNOWLEDGEMENTS 
 
 
I wish to express my deepest gratitude and grateful 

acknowledgement to my supervisor, Associate Professor Dr. Yvonne 
Dittrich for her advice, enthusiastic encouragement, and patient 
throughout my study. I also acknowledge Professor Dr. Peter Sestoft, 
Professor Søren Lauesen and Associate Professor Kasper Østerbye for 
their comments and recommendations. 

 
I would like to express my sincere gratitude to the Danish 

government and DHI Water Environment and Health (DHI) for partial 
financial support through the Evolvable Software Products (ESP) 
project. I am most grateful to IT University of Copenhagen for 
supporting my studentship. I should like to extend my grateful thanks 
to Professor Dr. Patrick Heymans from the Faculty of Computer 
Science, University of Namur, Belgium and Dr. Muhammad Ali Babar 
from LERO, University of Limerick, Ireland for hosting my three 
month stay abroad. I should like to extend my gratitude to Dr. Wolf-
Gideon Bleek for his constructive feedback and help in setting up the 
interview study. 

 
I record my thanks to all DHI staff members for the continuous help 

and valuable guidance. I kindly thank to all my interviewees in 
Belgium, China, Denmark, Germany, and Switzerland for taking part in 
my interviews that enabled me to fulfil my empirical works. 

 
Finally, grateful acknowledgement is extended to my parents, Samor 

and Kannikar Unphon, my boyfriend, Christian Edinger, and my 
friends for their dedication, support and constant encouragement 
throughout my PhD education. 

 



 



 vii 

CONTENTS 
 

 ABSTRACT……………………………………………. iii
 ACKNOWLEDGEMENTS…………………………….. v
 CONTENTS……………………………………………. vii
  
 PART   I 
  
1 INTRODUCTION……………………………………… 3
 1. Evolution and re-engineering of software product…... 4
 2. Research questions, approach and scope…………….. 5
 3. Thesis outline………………………………………… 6
  
2 RELATED RESEARCH……………………………….. 8
 1. Software architecture………………………………… 8
 1.1. Architecture defined……………………………. 8
 1.2. Architecture used……………………………….. 10
 2. Evolvability………………………………………….. 12
 2.1. Software evolution and evolvability……………. 12
 2.2. Designing evolvable software products………… 14
 3. Software product lines……………………………….. 15
 3.1. Organisational structure for product line 

engineering……………………………………... 16
 3.2. Integrating agile software development and 

software product line approaches………………. 17
  
3 RESEARCH APPROACHES………………………….. 19
 1. Research methods……………………………………. 19
 1.1. Cooperative method development (CMD)……... 19
 1.2. Interviews and grounded theory………………... 20
 2. Two case studies and one interview study…………… 21
 2.1. DHI case description……………………………. 21
 2.2. EASI-WAL case description…………………… 24
 2.3. Interview study…………………………………. 25
 3. Evaluation and credibility……………………………. 26
  
4 RESEARCH RESULTS………………………………... 29
 1. List of articles………………………………………... 29
 2. Other articles…………………………………………. 33



       viii 

 3. Summary of research results…………………………. 34
 4. The by-product of the thesis…………………………. 38
  
5 CONCLUSIONS……………………………………….. 40
 1. Thesis summary……………………………………… 40
 2. Limitation and future work…………………………... 41
   
 References……………………………………………… 42
  
 PART   II 
  
6 ORGANISATION MATTERS: HOW THE 

ORGANISATION OF SOFTWARE DEVELOPMENT 
INFLUENCES THE DEVELOPMENT OF PRODUCT 
LINE ARCHITECTURE……………………………….. 51

 1. Introduction………………………………………….. 51
 1.1. Organisation and product line architecture: an 

overview………………………………………... 53
 2.  Case descriptions and methods……………………… 53
 2.1. DHI Water Environment Health (DHI) study….. 53
 2.2. The simulation software………………………... 54
 2.3. Research methodology………………………….. 55
 3.  Organisation and business domain matters…………. 56
 3.1. Reflection on the technical design……………… 57
 3.2. Influences on the re-engineering project……….. 60
 3.3. Summing-up……………………………………. 62
 4. Discussions…………………………………………... 62
 4.1. Methods for producing product line architecture. 62
 4.2. Organising for software product lines………….. 63
 4.3. Software product lines: successful case studies… 64
 5. Conclusions and future work………………………… 64
 References……………………………………………… 66
  
7 TAKING CARE OF COOPERATION WHEN 

EVOLVING SOCIALLY EMBEDDED SYSTEMS:  
THE PLONEMEETING CASE………………………... 68

 1. Introduction………………………………………….. 69
 2. Terms and definitions………………………………... 69
 2.1. Socially embedded systems…………………….. 70



 ix 

 2.2. Software evolvability…………………………… 71
 3. Case description……………………………………… 72
 4. Research approach…………………………………… 74
 5. Evolution of PloneMeeting…………………………... 75
 5.1. Collège: the origin of PloneMeeting……………. 76
 5.2. The PloneMeeting product family today……….. 77
 5.3. Towards the PloneMeeting wizards…………….. 80
 6. Discussion……………………………………………. 82
 7. Conclusion and future works………………………… 84
 References……………………………………………… 85
  
8 MAKING USE OF ARCHITECTURE 

THROUGHOUT THE SOFTWARE LIFE CYCLE – 
HOW THE BUILD HIERARCHY CAN FACILITATE 
PRODUCT LINE DEVELOPMENT…………………... 87

 1. Introduction………………………………………….. 87
 2. Evolving product line architecture…………………... 88
 3. Case description……………………………………… 89
 4. Research approach…………………………………… 90
 4.1. The MIKE 11 re-engineering project…………... 90
 4.2. The merging of MIKE 11 and MOUSE engines 

re-engineering project………………………….. 91
 4.3. The MIKE 1D project…………………………... 92
 5. The concretisation of the architecture as the build 

hierarchy…………………………………………….. 93
 5.1. Designing architecture………………………….. 93
 5.2. Concretisation of the build hierarchy into 

development environment……………………… 95
 6. Beneficent effects of build hierarchy………………… 95
 6.1. Software quality and flexibility………………… 96
 6.2. Communication and cooperation to new 

developers……………………………………… 97
 6.3. Distribution of work and parallel implementation 97
 6.4. Usage by hydraulic and environmental 

consultants……………………………………… 98
 7. Challenges towards evolvability……………………... 99
 8. Discussion……………………………………………. 101
 8.1 General observations……………………………. 101
 8.2 Findings…………………………………………. 102



       x 

 9. Conclusion and requirements for the architectural 
analysis tools………………………………………… 103

 References……………………………………………… 105
  
9 SOFTWARE ARCHITECTURE AWARENESS IN 

SOFTWARE PRODUCT EVOLUTION………………. 107
 1. Introduction………………………………………….. 108
 2. Architecture, knowledge, and awareness……………. 110
 2.1. Software architecture…………………………… 110
 2.2. The role of the software architecture…………… 111
 2.3. Software product evolution and architecture…… 113
 2.4. Knowledge management……………………….. 114
 2.5. Awareness in software engineering…………….. 116
 3. Research methodology………………………………. 117
 3.1. Grounded theory………………………………... 118
 3.2. Interviews………………………………………. 119
 3.3. Analytic process………………………………… 120
 3.4. Credibility………………………………………. 120
 4. Background…………………………………………... 121
 4.1. Interviewees and organisation profiles…………. 122
 4.2. The presence of software architecture………….. 126
 5. Analysis of interviews……………………………….. 128
 5.1. Architecture: who needs it and at what level?...... 128
 5.2. Documentation………………………………….. 129
 5.2.1. Code base as actual documentation…... 130
 5.2.2. The absence of a document…………… 130
 5.3. Architecture knowledge acquisition: how 

newcomers learn the architecture………………. 131
 5.3.1. Discussion with a chief architect……... 132
 5.3.2. Intermixed with programming………... 132
 5.3.3. Learning by doing…………………….. 133
 5.4. The role of a chief architect…………………….. 133
 5.4.1. Controlling and communicating 

architecture within a development 
team………………………………….. 134

 5.4.2. Updating the ‘walking architecture’...... 135
 5.4.3. Interfacing to outward………………… 136
 5.5. Communication about changes…………………. 137
 5.6. Evolution and change........................................... 139



 xi 

 5.7. Problems………………………………………... 140
 6. Discussion……………………………………………. 142
 6.1. Architecture awareness is achieved through 

‘walking architecture’ practices………………... 142
 6.2. Good reasons for bad documentation…………... 143
 6.3. How to promote architecture awareness………... 144
 7. Conclusions………………………………………….. 145
 References……………………………………………… 147
  
10 ARCHITECTURE-LEVEL EVOLVABILITY 

ASSESSMENT…………………………………………. 154
 1. Introduction………………………………………….. 154
 2. Case description……………………………………… 155
 3. Research method……………………………………... 156
 4. Terms and definitions………………………………... 157
 4.1. Evolvability of socially embedded systems…….. 157
 4.2. Evolvability framework………………………… 159
 5. Architecture evaluations……………………………... 161
 5.1. State-of-the-art………………………………….. 161
 5.2. Industrial practice………………………………. 162
 6. Architecture-Level Evolvability Assessment………... 162
 6.1. ALEA method…………………………………... 163
 6.2. ALEA report template………………………….. 165
 7. Implementation and evaluation of ALEA at DHI…… 165
 7.1. MIKE 1D and DSS Platform compatibility…….. 166
 7.2. Lessons learned…………………………………. 169
 8. Discussion……………………………………………. 170
 8.1. Evolvability framework: comprehension and 

stakeholder affiliation…………………………... 170
 8.2. How ALEA can fit into FOCSAAM and 

industrial practice………………………………. 172
 9. Conclusions and future works……………………….. 172
 References……………………………………………… 174
  
11 INTRODUCING AN EVOLVABLE PRODUCT LINE 

ARCHITECTURE……………………………………… 177
 1. Introduction………………………………………….. 178
 2. Case description and research approach……………... 179
 2.1. DHI Water Environment Health (DHI) case…… 179



       xii 

 2.2. Research approach……………………………… 180
 3. Related research……………………………………… 181
 4.  Introducing product line architecture at DHI……….. 184
 4.1. The first cycle: the MIKE 11 re-engineering 

project…………………………………………... 184
 4.1.1. Research Activities…………………… 184
 4.1.2. Architectural practice changes………... 185
 4.1.3. Effects on software engineering 

organisation and practice……………... 185
 4.1.4. Effects on other contextual dimensions. 186
 4.1.5. Research outcomes…………………… 186
 4.2. The second cycle: the merging of MIKE 11 and 

MOUSE engines re-engineering project……….. 188
 4.2.1. Research activities……………………. 188
 4.2.2. Architectural practice changes………... 189
 4.2.3. Effects on software engineering 

organisation and practice……………... 190
 4.2.4. Effects on other contextual dimensions. 191
 4.2.5. Research outcomes…………………… 191
 4.3. The third cycle: the MIKE 1D project………….. 192
 4.3.1. Research activities……………………. 192
 4.3.2. Architectural practice changes………... 194
 4.3.3. Effects on software engineering 

organisation and practice……………... 196
 4.3.4. Effects on other contextual dimensions. 197
 4.3.5. Research outcomes…………………… 198
 5.  Discussion…………………………………………… 200
 5.1. The keys to success: conceptual, human and 

technical levels…………………………………. 201
 5.2. A framework for software product line practices. 202
 5.2.1. Product line planning: core assets and 

product development…………………. 202
 5.2.2. Management………………………….. 203
 5.3. Architecture evaluation and software product 

line evaluation………………………………….. 204
 5.4. The importance of introducing and deliberating 

architecture concepts for communicating change 205
 6. Conclusions and future work………………………… 207
 References…………………………………………........ 209



     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART   I 
 



       

 



1 
 

INTRODUCTION 
 

 
Today’s software products are often customised to support a variety 

of needs and uses in an organisation. Over time, the software products 
evolve to support changes in the way it is used. The challenge for the 
software is to stay adaptable in order to serve the needs of business and 
at the same time develop in a manner that assure its sustainability with 
respect to its usage and future development. This is what we call 
evolvability. The research presented in this thesis aims to establish an 
engineering discipline for evolving software products into more 
flexible designs, to enhance the evolution process in daily practice, and 
to prolong the software’s productive life. Note that the notion of 
engineering discipline refers to tools, practices and methods that are 
accountable, repeatable, and if possible it can be generalised. 

This thesis is grounded upon empirical research (two case studies 
and an interview study), which is motivated by the industrial demand to 
carry out evolution more efficiently. The empirical research enriches 
the understanding of the concept of evolvability from an industry 
perspective. Due to the aim of this thesis of proposing an engineering 
discipline, an action research approach is carried out. The approach is 
based on empirical understanding of the situation before introducing a 
new element into the situation. The research focuses on software 
architecture. The major part of this empirical research elaborates 
evolvability from re-engineering using a software product line 
approach [21]. The distinction between this research and prior research 
of software product lines is the focus on the type of software product. 
Prior research mostly focuses on technically embedded systems in 
which design decisions of the systems are constrained by interfaces to 
hardware and mechanical specification. Typical examples are drivers 
for printers, mobile phones, and security alarms. In contrast to this 
research, the focus is on socially embedded systems in which design 
decisions of the systems underline the importance of human interaction 
and cooperation via the systems for social activities. Examples here 
include enterprise resource planning (ERP) systems, hydraulic 
simulation software and e-Government applications. Note that the 



INTRODUCTION 4 

second example is the main case study presented in this thesis and the 
last example is a supplementary case study. 

In the beginning of the research, I, as a researcher, only looked at 
technical contexts. For example, I followed the formal approach of a 
product line architecture that was oriented to serve technical 
requirements, not the social requirements. However, working in the 
field and understanding contingencies of software development 
practice, it became clear that not only the technical contexts, but also 
the social contexts (i.e., use, business, development organisation and 
practice) play an important role. Floyd et al. [29] have already 
emphasised bringing the social contexts along with the technical in the 
essence of software development. However, they did not explicitly 
explain how to do that with respect to software architecture practice. 

The research presented in this thesis points out the importance of 
combining both technical and social aspects to a framework for 
evolvability. This framework further supports the architecture 
assessment method, so-called Architecture-Level Evolvability 
Assessment (ALEA), one of the proposed engineering disciplines in 
this thesis. ALEA emphasises both technical and social requirements as 
inputs for architecting, which contributes to the answer of “how to 
embed architecture work in everyday software development practice, 
and raising architecture awareness.” The research proposes 
engineering disciplines for making use of architecture throughout the 
software life cycle. Through interaction with industry, we have 
proposed engineering discipline does support software evolvability. 

 
1. Evolution and re-engineering of software products 

 
The notion of evolution appeared in Lehman’s work since the 1980s 

[11, 39, 40] in the criticism of the term software maintenance. Due to 
the software product’ changing requirements, the word “maintenance” 
should be replaced by “re-engineering” or “evolution” [65], which 
represents much broader activities. These activities not only fix faults 
in the original implementation, but also add new functionalities, 
dramatic enhancements, and alter original design functions into a new 
form. 

The success of many businesses is critically dependent on software 
products. Businesses need to be increasingly flexible and responsive to 
the marketplace, and to develop and market new products and services 



INTRODUCTION 5 

in a timely manner. To do this, software needs to be as flexible as 
possible and accommodating for rapid modification and enhancement. 
Handling software evolution properly is vital to the success of any 
company. 

Software needs to be upgraded with major enhancements done 
within a short time frame in order to meet new business opportunities 
and reduce the “time to market” for new products and services. After 
many changes, the evolvability of software often dramatically 
decreases. Many software products become difficult to understand and 
change. Apart from that, software often has been originally optimised 
for performance or space utilisation at the expense of comprehension. 
Sometimes, the initial program structure has been corrupted by a series 
of changes over time which leads to dead-end evolution. To simplify 
these problems, a company may decide to re-engineer the software to 
improve its structure and understandability [57] as well as business 
value, market share and development practice. 

The critical distinction of re-engineering from new software 
development is that the old software product acts as a specification. 
More precisely, the functionality of the software does not change. The 
costs of re-engineering depend on the extent of the work that needs to 
be carried out. For example, major architectural changes incur high 
additional costs. Using modern software engineering methods do not 
guarantee that the new development will not jeopardise the software 
product’s evolution. This raises the question of “how to develop 
software for long term evolution”, which leads to the research described 
in this thesis “re-engineering for evolvability”. 

 
2. Research questions, approach and scope 

 
This thesis attempts to answer research questions (RQs) on evolving 

software products by discussing the following issues: 
 

RQ1: What is software evolvability? 
RQ2: Do software developing companies manage to maintain 

evolvability of their software products over a long lifetime, and 
how do they do that? 

RQ3: How to develop software products for evolvability? 
 



INTRODUCTION 6 

 
Figure 1. The research scope 

In order to focus attention on RQ1 and RQ2, as well as deliver the 
engineering discipline posted in RQ3, an empirical qualitative research 
approach is selected. The mainline of research is a case study following 
the cooperative method development (CMD) approach [28]. The 
complemented case study addresses the design for product line 
architecture and making use of the architecture beyond the design 
phase. The research is expected delivering an engineering discipline for 
practitioners to work with evolvability. CMD allows combining 
empirical research with the introduction of an engineering discipline 
and its evaluation. Besides that, an interview study following a 
grounded theory approach is conducted. Results from the interview 
study triangulate [41] the mainline of the research as well as contribute 
to the answers of the above research questions. The answers are 
expected to cover the scope of the research, as shown in Figure 1, 
which includes product and development, partly in relation to the 
organisation of usage that is the organisation using the software and 
how the software use is organised. 

 
3. Thesis outline 
 

To summarise, this thesis points out the importance of social 
contexts as well as technical contexts when evolving software products. 
The research is an empirical study that is motivated by the industrial 
demand to carry out evolution in a systematic way. The research scope 
presented in Figure 1 draws the attention to product development and 
partially to organisation of usage. The result of this research is an 
engineering discipline for handling evolvability that embeds 
architecture work in everyday software development practice and 
raising architecture awareness. 



INTRODUCTION 7 

This thesis is divided into two parts; Part I: research introduction 
(Chapter 1-5); and Part II: a series of articles that contributes to the 
research (Chapter 6-11). Chapter 1 explains research topics and 
problem formulations for this research. Chapter 2 places the research in 
relation to different research communities. Chapter 3 explains research 
approaches including evaluation and credibility for this research. 
Chapter 4 describes how the articles that comprise the main body of the 
text will address the topic. Chapter 5 provides a general conclusion 
which integrates the material addressed in Chapter 6-11. 



2 
 

RELATED RESEARCH 
 
 

Re-engineering for evolvability brings together three existing 
topics: software architecture, evolvability, and software product lines. 
This chapter provides an overview of how the three existing topics 
relate to this research. 
 
1. Software architecture 
 

In programming, the term architecture has been used since the late 
1960’s [16] for discussing the high-level design of software products 
[55]. In the early 1970s, Parnas [45, 46, 47, 48] came up with many of 
the fundamental tenets and principles in software architecture. Based 
on Bass et al. book [7, p. 45], “Today, architecture as a field of study is 
large and growing because it left the realm of deep thinkers and 
visionaries and made the transition into practice.” Some architectural 
ideas have been refined and applied to such an extent that it has become 
an accepted state-of-the-art practical approach to software engineering, 
which is the main focus of this research. This section presents concepts 
and roles of software architecture, as shown in Sub-section 1.1 and 1.2 
respectively. 
 
1.1. Architecture defined 
 

To date there is no generally agreed upon definition of software 
architecture. The definitions provided here cover a number of different 
concepts, with key characteristics highlighted by the author in bold 
letters. 
 
“Software architecture is the structure of the components of a 
program/system and their interrelationships, along with principles and 
guidelines governing their design and evolution over time.” [30]. 
 
“An architecture is the set of significant decisions about the 
organization of a software system, the selection of structural elements, 



RELATED RESEARCH 9 

and their interfaces by which the system is composed, together with 
their behaviour as specified in the collaborations among those 
elements, the composition of those elements into progressively larger 
subsystems, and the architectural style that guides their organization -- 
those elements and their interfaces, their collaborations, and their 
composition.” [37]. 
 

The IEEE Recommended Practice for Architectural Description of 
Software Intensive Systems [56], referred to as IEEE 1471-2000, 
defines “architecture” as “the fundamental organisation of a system 
embodied in its components, their relationships to each other and to 
the environment and the principles guiding its design and evolution.” 

 
Apart from that, the following definitions are samples from 

software architects and software engineers given at the interview study 
for this research. They reflect the current understanding of software 
architecture among practitioners of this discipline. Again, the key 
characteristics are highlighted in bold letters by the author. 
 
Software architecture is: 
 

“The segmentation of the software which is segmented to module-
based architecture…” 

 
“The way we are assembling the large building blocks. … some 

kind of high-level patterns, for example, MVC.” 
 
“How you take different components and put them together, how 

you handle dependencies (between components) …” 
 
“An overall communication of the software.” 
 
“Design of the code.” 
 
“… A blueprint of how you organise software applications, 

typically in a class diagram or some kind of UML diagram.” 
 
“… mainly providing an overview for development teams, to get an 

overview … ” 



RELATED RESEARCH 10 

 
“Breaking (systems) into large pieces. … It could be a huge piece, 

or all the way down … to try to lay down object-oriented.” 
 
“Skeleton of software, how it is structured.” 
 
“Stack of technology.” 

 
Among many definitions for software architecture, the definition 

used in this thesis is taken from [7], the most cited book in the software 
architecture topic1, “Software architecture is the structure or structures 
of the system, which comprise software elements, the externally visible 
properties of these elements and relationships among them.” 
 
1.2. Architecture used 
 

Software architecture provides a unifying theme for engineering 
and management of compromises that must be made to complete a 
product [58]. The pragmatic role of software architecture in software 
development activities addressed in this research are (i) representing a 
set of design decisions, (ii) communication and knowledge transfer, 
(iii) performing quality attributes assessment, (iv) managing evolution 
and (v) introducing product lines. The first three roles are explained 
below while the last two are addressed in later sections. 

In a software lifecycle, the design of software architecture is located 
early in the lifecycle. The design is the first step after the specification 
requirements and is followed by later phases such as detailed design 
and implementation. The requirements tell what the software should be 
able to do and the architecture describes how that should be achieved. 
The implementation following the architecture will be divided into the 
prescribed elements that interact with each other in the prescribed 
fashion. Each element must satisfy its role in relation to the others as 
dictated by the architecture. 

When and how the software is developed depends on the software 
life cycle (e.g., iterative or evolutionary). In the traditional waterfall 
development model [52] or the contract-first development, stakeholders 
design the complete architecture before the implementation takes place. 
In contrast to agile development [23] or some of the in-house product 

                                                            
1 Cited by 3,168 articles according to http://scholar.google.com, last visited 27 July 2009. 



RELATED RESEARCH 11 

development practices, the stakeholders continuously design the 
architecture throughout the lifecycle of the project. In different 
approaches, different emphasis is put on architectural knowledge 
handling. The waterfall model emphasises creating documentation, e.g. 
design documents, whereas the agile development stresses face-to-face 
communication. The latter emphasis will be elaborated on in Chapter 8 
and 11. 

The software architecture addressed in this research can be seen as 
an implicit theory of how the structure of the program and its parts 
addresses the concerns of the usage [43] or explicitly represented in an 
architecture document. No matter what the architecture represents, 
stakeholders must be able to use the architecture as a basis for mutual 
understanding, communication and negotiation. For example, a chief 
architect may use the architecture as an introduction to the software for 
new project members. Architecture is often mentioned intensively 
during the design phase of software development. 

Software architecture plays a significant role in shaping the 
software’s quality attributes. Architecture assessment is considered an 
effective mechanism for identifying potential architectural risks and 
questionable design decisions early in the software’s development life 
cycle. The aims of architecture assessment are to evaluate the 
architecture’s ability to deliver a system capable of fulfilling the quality 
requirements, and to identify potential risks. Contemporary software 
architecture research increasingly emphasises the importance of having 
a defined review process. As a consequence, the architecture review 
research community has developed several dedicated methods to 
support the review process which is becoming relatively mature and 
rich, e.g. Scenario-based Architecture Analysis Method (SAAM) [36], 
Architecture Trade-off Analysis Method (ATAM) [34], Architecture 
Reviews for Intermediate Designs (ARID) [22], and Architecture-Level 
Maintainability Analysis (ALMA) [12]. However, a survey of the state 
of practice in software architecture reviewing [6] indicated that the 
usage of those proposed methods was relatively limited. If the proposed 
methods are used, they are rarely used “out of the box”. In other words, 
most architecture reviews occur on an ad-hoc basis. 

Besides the structure of the software being developed, other 
contexts also influence the architecture, e.g. organisation of software 
engineering, or work practice. An example of the organisation 
influencing architectural design decisions will be discussed in Chapter 



RELATED RESEARCH 12 

6. An example of the work practice influencing the decisions will be 
elaborated on in Chapter 7. 

From my point of view, when people talk about architecture or 
architecture assessment, rather than embedding it in the development 
practice, they put it beside. Even though software architecture research 
is often validated empirically [19], there is a lack of empirical research 
of the “anchoring” of architecture in developer’s work practices, 
businesses and use. Schougaard et al. [53] conducted an empirical 
study observing architectural techniques used in successful companies 
and analysing mismatches to the software architecture research. One of 
their findings was that when architects and developers use the 
techniques related to architectural quality, they tend to focus less on the 
architecture in relation to business and users. In support of this finding, 
the research discussed in this thesis aims at proposing architectural 
tools, practices, and methods that emphasise the importance of business 
and use contexts as well as technical contexts. Chapter 8 and 10 are 
examples of how to embed and establish a systematic approach for 
making use of architecture and architecture assessment in the 
development practice. The proposed architecture assessment covers 
necessary contexts for stakeholders to improve the capability to better 
understand and analyse systematically the impact of stimuli to the 
architecture. 

 
2. Evolvability 
 

This section reviews evolvability in literature and how it can be 
achieved in industry, as shown in Sub-sections 2.1 and 2.2, 
respectively. 
 
2.1. Software evolution and evolvability 
 

Belady and Lehman [11] first introduced the term “evolution of the 
software” and used that term to describe the sequence of changes to a 
software system over its lifetime which encompassed both development 
and maintenance. They made a number of observations about the size 
and complex growth relating to 21 releases of the OS/360 operating 
systems software. In the mid seventies, they proposed their laws of 
software evolution. Programs embedded in human activity, so called E-
type programs, create changes in the use context, which in turn create 



RELATED RESEARCH 13 

change requirements for the software. Lehman [40] further elaborated 
on the laws in the context of real systems using a small number of later 
releases of a general-purpose batch operating system. The initial laws 
have been periodically revised [38] as increasing insight and 
understanding have been achieved. The set of revised laws are given in 
the Table 1. These laws have been widely recognised and accepted. 

Following this criticism, the traditional term maintainability was 
replaced by the term evolvability. For example, Cook et al. [24] 
developed evolvability on top of the ISO 9126 maintainability 
characteristics and proposed the evolvability measurement at different 
levels of abstraction, i.e., at pre-design, architectural, detailed design, 
and source code levels. They have further proposed that the concept of 

Table 1. Lehman Laws of Evolution
 

No. Brief name Law 
I 
 

Continuing Change An E-type program that is used must be 
continually adapted or else it becomes 
progressively less satisfactory. 

II 
 

Increasing 
Complexity 

As a program is evolved, its complexity 
increases unless work is done to 
maintain or reduce it. 

III 
 

Self Regulation  The program evolution process is self-
regulating with close to normal 
distribution of measures of product and 
process attributes. 

IV 
 

Conservation of 
Organisational 
Stability (invariant 
work rate) 

The average effective global activity rate on 
an evolving system is invariant over the 
product lifetime. 

V Conservation of 
Familiarity 

During the active life of an evolving 
program, the content of successive 
releases is statistically invariant. 

VI Continuing Growth Functional content of a program must be 
continually increased to maintain user 
satisfaction over its lifetime. 

VII Declining Quality E-type programs will be perceived of as 
declining quality unless rigorously 
maintained and adapted to a changing 
operational environment. 

VIII Feedback System E-type Programming Processes constitute 
Multi-loop, Multi-level Feedback systems 
and must be treated as such to be 
successfully modified or improved 



RELATED RESEARCH 14 

evolvability brings together factors from three main areas: (i) software 
product quality, (ii) software evolution processes, and (iii) the 
organizational environment in which the software is used. Breivold et 
al. [15] proposed an evolvability model as a framework for analysis of 
software evolvability. Their proposed model is a union of quality 
characteristics with respect to changes and evolution of a software 
intensive system. The subcategories, i.e., analysability, integrity, 
changeability, extensibility, portability, testability and domain-specific 
attributes, serve as a checkpoint for evaluation. Independent of 
aforementioned research, Unphon et al. [61, 62] proposed an 
evolvability framework based on empirical research that not only looks 
at technical dimensions, but also social dimensions. The evolvability 
framework comprises six different contextual dimensions: business 
context, use context, software engineering organisation, software 
engineering practice, technical infrastructure and technical selection, 
and serves as a guiding framework for architecture evaluation [63]. 
Many prior researchers [13, 20, 24, 49, 51] included functional 
requirements from the use contexts for the evaluation, but they do not 
investigate how the new design impacts the other contexts (e.g. 
business), nor how the changes in the design are related to organisation 
and work practice in software development. Further details of this 
framework and evaluation will be found in Chapter 6-9 and 11. 
 
2.2. Designing evolvable software products 

 
Borches and Bonnema [13] have reviewed the benefits of designing 

evolvable software products that are considered to be the best practice 
in many industry domains. For example, companies can benefit from a 
software product that can adapt to changing requirements or different 
environments at a cost lower than what is needed to build a new 
system. Evolvability enables easier insertion of new technology and 
mitigation of the risk of obsolescence of the products. In addition, 
evolvability affords additional flexibility, as the company can either 
reuse the existing infrastructure to tackle changing requirements or 
develop a new product. 

By designing for evolvability, software products will be better 
suited to cope with unknown future requirements. Architecture has 
been known as a crucial factor to address evolvability [51], meaning 
that, to be capable of accommodating change, architecture must be 



RELATED RESEARCH 15 

specifically designed for it. However, modifying an architecture can 
have widespread effects on both the product’s functionality and its 
performance. Therefore, stakeholders have to be aware that the 
architecture will have to face unpredicted situations, and try to 
minimise the effects when those situations occur. This is usually 
delegated to the designer’s intuition. Borches and Bonnema [13] have 
proposed Design for Evolvability (DfE) to steer a design process in a 
direction where evolvability is designed into a system. DfE focuses on 
the creation of an evolvable architecture, the description of an 
evolutionary development process, and establishing an evolutionary 
environment. However, the research presented in this thesis takes its 
own existing evolvability framework (Chapter 7) one step further. This 
framework is embedded in the engineering discipline for designing 
evolvable software products (Chapter 10). Based on the research 
discussed in this thesis, the notion of evolvability is redefined as 
technical adaptability and sustainability with respect to organisational 
or business, as well as technical dimensions. 

 
3. Software product lines 
 

Software product lines (SPL) have been recognised as an approach 
for product developing companies to increase their productivity and 
flexibility for changing requirements. SPL are defined as “a set of 
software intensive systems sharing a common, managed set of features 
that satisfy the specific needs of a particular market segment or mission 
and that are developed from a common set of core assets in a 
prescribed way” [21]. Software product line engineering (SPLE) is a 
software engineering paradigm that institutionalises reuse throughout 
the software development process. SPLE dedicates a specific process, 
named Domain Engineering, to the development of reusable artefacts, 
a.k.a. core assets. These core assets are then reused extensively during 
the development of the final products, which is Application 
Engineering. The final products in a software product line share much 
of their software architecture and implementation, often because every 
system is derived from the same core assets. The true benefit of sharing 
software architectures (i.e., reuse) comes when they are applied in the 
form of product line architectures [14]. Product line architecture (PLA), 
a.k.a. reference architecture [64], is “a single specification capturing 
the overall architectures of a series of closely related products” [42]. 



RELATED RESEARCH 16 

The main challenges in designing PLA are based on the fact that (i) the 
architecture has to deal with many different products and releases at the 
same time and (ii) each product has many stakeholders involved, 
especially in large companies [14, 60, 64]. In terms of evolution, all 
main assets of software product lines evolve constantly because the 
requirements on the products evolve. The requirements can be initiated 
by existing products or by new products that need to be incorporated in 
the software product line. The changing requirements affect the 
requirements for entire product line, thus causing the product line 
architecture to evolve. 

Change requirements are often triggered by use. Many product 
developing companies do use their own software products to serve their 
business. These companies also feed their new requirements into the 
development process just as their customers do. It is widely recognised 
that the organisational structure of companies influence the success of 
the execution of the process surrounding software product line 
development. Prior study in software product lines exclusively focus on 
the organisation of development. Sub-section 3.1 and 3.2 will elaborate 
this point in detail. However, the companies also need to focus on the 
organisation for usage and the collaboration between organisation of 
usage and development. The research discussed in this thesis underlines 
this need. 
 
3.1. Organisational structure for product line engineering 
 

One of the principal characteristics of a successful software product 
is that, over time, it will be reused and adapted for purposes that 
become increasingly different from the product’s original purpose [9]. 
Having effective evolvability is not simply a matter of having the right 
software and system architecture. Organisational structure, 
management practices, and personal support are also affected. 
Brownsword and Clements [17] report the experiences of CelsiusTech 
Systems AB of Sweden., a company that builds large, complex, 
embedded, real-time shipboard command-and-control systems as a 
product line, developed in common from a base set of core software 
and organizational assets. The report describes the changes that 
CelsiusTech had to make to its software, organizational, and process 
structures to redirect the company towards a product line approach that 
yielded substantial economic and marketplace benefit to the company. 



RELATED RESEARCH 17 

Dager [26] reveals the importance of organizational structure issues 
based on the software product line experience at Cummins Engine Inc., 
the world’s largest manufacturer of large commercial diesel engines. 
The company changed its IT strategy to have a separate core asset 
group providing core assets to the product-building groups. Even the 
development process is quite different from that of other companies, 
but the organization plays a role in the development of a successful 
software product line. 

Bosch [14] has discussed a number of organisational models that can 
be applied when adopting a software product line approach to software 
development, i.e., development department, business units, domain 
engineering unit, and hierarchical domain engineering units. For each 
model, he describes the situations in which it is most applicable, as well 
as describing the advantages and disadvantages of the model and 
providing an example of a company that employs the model. These 
models have been further observed and identified into three basic 
structures: product-oriented, process-oriented, and matrix organisations 
[64]. In any case, management is necessary for the orchestration of the 
entire product line effort [21]. An example of the effort will be 
mentioned in Chapter 11. 
 
3.2. Integrating agile software development and software product 
line approaches 
 

Agile software development methods, e.g. extreme programming 
(XP) [10], offer an answer to the eager business community asking for 
cheaper, along with faster and more flexible software development 
processes [4]. In agile development practice, developers concentrate 
only on the functions needed immediately, delivering them fast, 
collecting feedback, and are thus able to react rapidly to business and 
technology changes [23]. Tian and Cooper [59] have compared agile 
software development paradigms and software product line 
development paradigms, and found that both are being promoted as 
means to reduce time to market, increase productivity, improve quality, 
and gain cost-effectiveness and efficiency. Integrating one paradigm 
into another is, however, associated with a unique set of challenges 
related to the underlying philosophies on which each paradigm is based 
[5, 18, 32, 59]. In contrast to the software product line approach, which 
requires upfront design to set up the architecture for product families, 



RELATED RESEARCH 18 

agile methods propose a simple, incremental design that merely designs 
for the product at hand [18]. The software product line approach 
addresses longer-term strategic objectives related to life-cycle product 
management, whereas agile software development addresses short-term 
tactical objectives, such as single projects developing one specific 
product [32]. The differences between the software product line 
approach and agile software development are also noticeable in the 
organisation of development team. Based on [59], software product line 
organisational management will be more likely to move their best 
people to core asset development and assign product development tasks 
to developers with average skills. In agile software development, all 
team members work together on the product development. 

 Recently, Ali Babar et al. [5] have presented an empirical study of 
the convergence of software product lines and agile software 
development practices, as well as the leverage to improve agile 
software development through product line architecture. They 
promoted architecture documentation, e.g. design decision 
documentation, for the use of product line architecture, whereas the 
research presented in this thesis emphasises the use of architecture as 
integration of architecture and architecturing in the development 
practice. This focus is not only specific with respect to problem of an 
architecture approach but provides a complete perspective to all 
aforementioned research. Further detail will be presented in Chapter 9. 

 
 To sum up, software architecture is very much focusing on 
technical design. Although the use context has come into the design as 
functional and non-functional requirements, the impact of changes on 
the use, business, and organisation is rarely discussed or taken into 
account. Though the synergy of social and technical contexts in 
evolving software products has been discussed, the question of how to 
achieve that in practice is still open. 



3 
 

RESEARCH APPROACHES 
 
 
This thesis is conducted as qualitative empirical research comprising 

two case studies (i.e., long-term/main case study and short-
term/supplementary case study), and an interview study. The main 
reason of choosing the qualitative empirical research is that this thesis 
questions the “why and how”, not just the “what”, of evolvability. The 
long-term case study offers an opportunity for in-depth understanding 
of, and the reasons that govern, evolvability. Moreover, the research 
aims to provide engineering discipline for evolvability. Thus, the 
research method must provide the leverage to introduce and evaluate 
the engineering discipline in the long-term case study, as well. To date, 
cooperative method development (CMD) [28] is the most structured 
method that provides this leverage. However, to deal with the 
trustworthiness issue, the long-term case study is complemented by the 
short-term case study and the interview study. Especially the interview 
does not only confirm the results of the case studies, but also provides 
additional insights. 

This chapter is outlined as follows: Section 1 elaborates on research 
methods; Section 2 is the description of two case studies and an 
interview study; Section 3 summarise evaluation and creditability. 

 
1. Research methods 

 
In order to get in-depth understanding of evolvability, as well as 

introduce and evaluate engineering discipline, cooperative method 
development (CMD) is the main research starting applied throughout 
the research discussed in this thesis, along with interviews and 
grounded theory. Sub-section 1.1 elaborates on CMD in detail. Sub-
section 1.2 presents the interviews and grounded theory. 

 
1.1. Cooperative method development (CMD) 

 
Cooperative method development (CMD) is a domain-specific 

adaptation of action research aiming at understanding and improving 



RESEARCH APPROACHES 20 

industrial practitioners’ practice [28], and at the same time improving 
method processes and tools. CMD is implemented as evolutionary 
cycles in which research is inspired by the industrial practitioners’ 
perspective. Each cycle has three phases: (a) understanding practice, (b) 
designing improvements, and (c) implementing and observing 
improvements. Each phase is elaborated on as follows: 

(a) Understanding practice starts with qualitative empirical 
investigations into the problem domain. This phase aims at 
understanding and explaining practitioners’ existing practices based on 
their historical and situational context in order to identify challenges. 

(b) Designing improvements brings the challenges from the 
previous phase and proposes possible solutions. 

(c) Implementing and observing improvements is to apply the 
solutions from the previous phase and follow the consequences of the 
changes. Researchers and practitioners will evaluate and summarise the 
consequences together. Consequently, the researchers will build the 
base for the scientific evaluation of the proposed improvement 
measures. 

In this thesis, the CMD is applied for two case studies: the long-
term/main case study and the short-term/supplementary case study. 
Section 2 gives an example of how the main case study carries out the 
CMD. In Chapter 6-8, 10 and 11, the CMD will be mentioned again in 
the research approach/method section. 
 
1.2. Interviews and grounded theory 

 
Interviewing as a research method [50] involves the researcher 

asking questions and receiving answers from interviewees. Interviews 
can be structured, semi-structured, or unstructured. Structured 
interviews have predetermined questions with fixed wording, usually in 
a pre-set order. An example of a structured interview is a survey. Semi-
structured interviews have predetermined questions, but the order can 
be modified or omitted based upon the interviewer’s perceptions. 
Unstructured interviews use conversation to develop a common area of 
interest and concern between interviewer and interviewee. In this 
thesis, unstructured interviews are performed in order to find out “how 
do product developing companies manage to maintain evolvability of 
their products over a long lifetime?” 



RESEARCH APPROACHES 21 

A strategy for collecting and analysing the interviews used in this 
thesis is the grounded theory [25]. The grounded theory approach was 
derived from a combination of Chicago style Interactionism and 
Pragmatism [31] in terms of data collection and analysis. In this thesis, 
data collection and analysis are an iterative process of switching 
between interviews and developing a concept. To build up the concept, 
different levels of coding from the interviews are combined in a 
reflexive manner. The grounded theory method and the results of the 
interviews will be detailed in Chapter 9. 

 
2. Two case studies and one interview study 

 
This section describes two case studies: a long-term/main case study 

at DHI Water Environment Health and a short-term/supplementary case 
study at EASI-WAL, as shown in Sub-section 2.1 and 2.2 respectively. 
The interview study is presented in Sub-section 2.3. 

 
2.1. DHI case description 

 
DHI Water Environment Health (DHI) is a pioneering organisation 

that develops software applications for hydraulic modelling. In 1972, 
System 11 and System 21 were two of the first computational 
modelling systems developed at DHI to simulate water flow patterns 
with the help of one-dimensional and two-dimensional models. A 
three-dimensional simulation was developed in the 1980s. Originally, 
the organisation focused on hydraulic characteristics research, not on 
software engineering. Software development and software maintenance 
were challenged only on a small scale. 

In the late 1980s, DHI released the MIKE 11 and the MOUSE 
software products. Both products originated from System 11 following 
requests for different usages, i.e., open channels and pipe networks. 
MIKE 11 and MOUSE are stand-alone Windows-based applications. 
The main users of these products are hydraulic and environmental 
consultants who perform simulations of hydraulic conditions (e.g., 
water level and flow), and analyse the hydrological effects of 
environmental change. Due to varying market needs, ownership was 
split into different consultancy departments; and during the past three 
decades MIKE 11 and MOUSE have been developed and maintained in 
parallel. Released in 2005, MIKE URBAN followed requests to have a 



RESEARCH APPROACHES 22 

more complete and integrated modelling framework for both water 
supply and wastewater systems. 

After decades of successful use and development, the requirements 
of the software have evolved as well. In particular, there is a growing 
tendency that the software be used in a more general setting, e.g., 
scheduled forecasts. The company was faced with the challenge of 
identifying and developing a kernel for data handling, simulation setup, 
and graphical interaction with simulations and their results. The first re-
engineering project started in 2006 with the MIKE 11 engine. Later on, 
the MOUSE engine was merged into the MIKE 11 re-engineering 
project. The existing source code for MIKE 11 and MOUSE totals 
approximately 550,000 lines. 

Meanwhile, the organisation was changing. DHI set up a software 
product department in order to strengthen the software development 
process and its design. As a consequence, the department decided to re-
engineer the core computational parts of some of the one-dimensional 
simulation software products – MIKE 11, MOUSE and MIKE URBAN 
– into a project called MIKE 1D. The project is estimated to require 
360 person-weeks merely for implementation. 

Lately, the software product department officially promoted another 
project called the Decision Support System (DSS) Platform. The DSS 
Platform affords end users the leverage to customise ongoing water 
simulation using historical, current, and predictive data. The DSS 
Platform usually uses data that has already been gathered into persistent 
storage and occasionally works from operational data. The simulation it 
builds on has to be set up as well by developing the model of the water 
system. 

The research cooperation with DHI addressed the introduction of 
product line architecture into product development. The basis for the 
research described here is the fieldwork which I have been involved in 
for two and a half years. I wrote a research diary documenting daily 
observations, interviews, and meetings. As a field worker, I was 
expected not only to observe, but also to influence the projects in which 
I participated. The research was designed as an action research by 
following CMD approach. The research activities are summarised in 
Table 1.  



RESEARCH APPROACHES 23 

 

Table 1. Summary of research activities at DHI
 

C
yc

le
 

   
   

   
  P

ha
se

 
1.) MIKE 11 re-

engineering project 
(August – 

November 2006) 

2.) Merging of MIKE 11 
and MOUSE engines re-

engineering project 
(December 2006 – 

October 2007) 

3.) MIKE 1D project 
(February 2007 – March 2009) 

Pa
rt

ic
ip

an
t o

bs
er

va
tio

n 

- Study functionalities 
and code architecture 
of MIKE 11 and 
MOUSE engines. 
- Compare between 
MIKE 11 and MOUSE 
engine source code. 
- Interview DHI staff 
members. 
- Found a striking 
similarity in the source 
code between MIKE 11 
and MOUSE engines. 
 

- Review of architectural 
documentation and online 
user references systems 
used at DHI. 
- Observe development 
practices and technical 
infrastructure of MIKE 11 
and MOUSE engines. 
- Review off-the-shelf 
documentation generators. 
- Interview developers and 
internal users of MIKE 11 
and MOUSE engines on 
how they can use the 
architecture document. 

- Review off-the-shelf static code 
analysis tools. 
- Analyse MIKE 1D source code using 
the reviewed tools and identify the 
relative complexity of its components. 
- Compare the analysis with the 
previous cycle projects. 
- Join MIKE 1D project weekly 
meetings. 
- Interview MIKE 1D team members on 
the idea of assessing the architecture 
and how they can use of the 
architecture as an aspect of software 
development. 

D
el

ib
er

at
in

g 
ch

an
ge

 

- Present a poster 
highlighting identical 
code parts between 
MIKE 11 and MOUSE 
engines. 
- Present a talk on 
software architecture 
and product line 
architecture. 
- Participate in a sub-
project on developing 
data access module 
architecture for the 
MIKE 11 re-
engineering project. 

- Propose a layered 
architecture to represent 
architectural knowledge. 
- Compare documentation 
generators and recommend 
a suitable one. 
- Update architecture 
documentation. 
- Create a prototype of an 
online architectural 
knowledge system. 

- Conduct a workshop on architecture 
discovery with MIKE 1D team 
members. 
- Introduce the basic idea of 
architectural conformity checking. 
- Recommend suitable static code 
analysis tools. 
- Present the “good” and “bad” parts of 
the source code from the static code 
analysis tools. 
- Present an empirical study on 
architecture evaluation in industrial 
practice, the concept of software 
evolvability, and evolvability framework. 
- Propose Architecture-Level 
Evolvability Assessment (ALEA), see 
Chapter 10. 
- Organise a workshop on MIKE 1D 
and DSS Platform compatibility. 

Ev
al

ua
tio

n 

- Evaluate the flexibility 
of the data access 
module by looking at 
different change 
scenarios at DHI and 
their implications in 
terms of 
implementation efforts. 
- Found that 
organisation of 
software development 
influenced product line 
architecture 
development. 
- Identified 6 contextual 
dimentions to be taken 
into accout when  
evolving the 
architecture. 

- Found that architectural 
knowledge was more visible 
in the discussion than in the 
document. 
- Found that the prototype of 
the online architectural 
knowledge system has been 
set up and used by 
developers and consultants 
at DHI headquater office. 

- Found that architectural analysis tools 
and techniques embedded in daily 
routine were welcome by the 
development team. 
- Found that the development team 
uses “build hierarchy”, see Chapter 8, 
to check the compliance of their source 
code against the architecture’s 
structure when they build the software. 
- Validate ALEA and evolvability 
framework with MIKE 1D team 
members. 

 



RESEARCH APPROACHES 24 

Due to a lengthy period of cooperation, research activities are 
chronologically divided into three cycles: (1) MIKE 11 re-engineering 
project, (2) merging of MIKE 11 and MOUSE re-engineering project, 
and (3) MIKE 1D project. Note that the research activities in the second 
cycle were finalised when the third cycle was under way. Each cycle 
consists of three phases (a, b, c on page 26). Most empirical evidence 
presented in this thesis is obtained from the last cycle. The DHI case 
will be presented again in Chapter 6, 8, 10 and 11. The DHI case 
reports the importance of architecture as a key for evolvability. The 
DHI case presents initial contextual dimension for evolvability that is 
later used for evaluating an evolvable architecture. The DHI case also 
reports how architecture is concretised in the development environment 
as a build hierarchy. 

 
2.2. EASI-WAL case description 

 
EASI-WAL is a government agency that was founded to simplify 

the communication between public entities and citizens or enterprises 
in Belgium’s Walloon region. EASI-WAL offers several software 
products and projects that support e-government and public 
administration at a local or regional level, e.g. a city council, regional 
government or parliament. This government agency was faced with the 
challenge of identifying generic parts, which are shared in a larger 
community, and specific/tailored parts, which are used by a single 
public body. Even if the specific/tailored parts will not benefit the 
larger community, the specific/tailored parts should be co-evolved with 
the generic parts at a reasonable cost and maintained by small teams 
[27, 33]. 

The first re-engineering project started with the College application 
that is currently called PloneMeeting—the official meeting 
management system for local or regional authorities. The research co-
operation with EASI-WAL addressed the development of an automatic 
variability configurator for PloneMeeting and its related products. The 
configurator will be implemented by a group of researchers at the 
PReCISE research centre, University of Namur, Belgium [3]. The 
researchers apply variability modelling from feature diagrams and 
relate it to PloneMeeting source codes. Based on the diagram and the 
constraints of the PloneMeeting, they can then select various features. 
The variability realisation mechanism will be chosen and bound to the 



RESEARCH APPROACHES 25 

source code. Afterwards, the feature diagram reasoning will show the 
acceptance results. 

The basis for the research is the fieldwork involving 
institutionalisation of variability management to the PloneMeeting 
project. While I was observing the project, I intervened by following 
the CMD idea even though I did not apply the approach formally. 
Further detail on the research method for EASI-WAL case will be 
presented in Chapter 7. However, the EASI-WAL case confirms the 
contextual dimensions, aka an evolvability framework that was a result 
of the early cycles of the DHI case. The EASI-WAL case also reports 
the concepts of software evolvability and socially embedded systems. 
Moreover, the EASI-WAL case emphasises the importance of the 
social perspective as well as the technical perspective in evolving a 
family of software products. 

 
2.3. Interview study 

 
This research was designed as an interview study, sampling eight 

software product development companies located in five different 
countries: Belgium, China, Denmark, Germany and Switzerland. Each 
company has its own ongoing software product developments. Sizes of 
the sampled companies range from three to more than twenty-thousand 
total employees. Interviewees were a mixed group and included a 
managing director, a chief technical officer, a chief architect, a 
marketing consultant, a group leader, and a number of software 
developers. Most of the interviewees did not want to disclose their 
personal or company names. 

An interview guideline was prepared for facilitating the semi-formal 
interviews. The interview guideline had two parts: a series of free 
response questions, and a series of multiple-choice questions. The free 
response questions contained six categories: company introduction and 
interviewee, software architecture, co-operation, awareness, product 
line, and evolvability. The interviews—audio-taped and transcribed—
were conducted from late 2007 till early 2008 with a duration that 
varied between thirty minutes and three hours. The transcription and 
analysis of the interviews were checked by the interviewees. Apart 
from that, we also provided confidentiality agreements for the 
interviewed companies. 



RESEARCH APPROACHES 26 

The interview study is detailed in Chapter 9. The study highlights the 
aspects that we consider relevant for developing support for 
architectural practices for software product development. The 
important of the “walking architecture”, “good reasons for bad 
documentation” indicate the need to develop social protocol fitting with 
local practices when introducing architecture representations and 
documentation, and we finally propose a means to promote architecture 
awareness. 

 
3. Evaluation and credibility 

 
Evaluation of prototypes, implementation efforts, tools and practices 

are part of the cooperative method development (CMD) which was 
mentioned earlier. Therefore, this section places emphasis on the 
credibility for the research. 

In order to explicitly get confirmation on understanding real world 
practices, and get valuable comments and feedback from practitioners, 
many evaluation workshops were organised, as shown in Table 2. 

The credibility or the trustworthiness of this research is based on how 
case studies and qualitative research interviews were performed and 
used. Examples for applying research methods were mentioned above, 
and with each chapter in Part II. However, the strategies to minimise 
possible threats to validity [50] shows as follows: 

Table 2. Workshops and interviews for evaluation
 

No. Title Month/Year Participant 
1 Prototype of data access module for 

MIKE11 Mar. 07 DHI 

2 Architecture discovery workshop Nov. 07 DHI 

3 Tools for visualising dependency in 
architecture Feb.- Jun. 08 DHI 

4 Product line architecture of 
PloneMeeting Mar. 08 EASI-WAL, 

PReCISE 
5 Variability configurators May 08 EASI-WAL, 

PReCISE 

6 
Introducing architecture awareness, 

product line architecture, architecture 
evaluation methods 

Jul. 08 DHI 

7 Architecture-Level Evolvability 
Assessment (ALEA) workshop Feb. 09 DHI 

 



RESEARCH APPROACHES 27 

Prolonged involvement strategy permits the development of a 
trusting relationship between the researcher and the practitioners. The 
prolonged involvement strategy is used in the main case study. The 
study at the DHI Water Environment Health (DHI) was begun in 
August 2006 and finalised in March 2009. I will show my 
understanding of the work practices and that the evaluation is sound. 

Triangulation.  The basic idea of triangulation, as summarised in 
[54], is to gather different types of evidence to support a proposition or 
a hypothesis. Based on [41], triangulation provides an explicit vehicle 
for tracking the principle issues or limitations presented by a single 
empirical study within the field, and provides a solid scientific basis for 
deriving “fact” from a number or interlinked (by research question) 
empirical studies. A supplementary case study at EASI-WAL focusing 
on the PloneMeeting project was conducted to triangulate the first 
research question (RQ1). The supplementary case study is a 
triangulation for a concept and a framework for evolvability proposed 
in the main case study as well as the software type studied in this thesis. 
At the same time, qualitative research interviews on architecture 
awareness were conducted to triangulate the second and third research 
question (RQ2 and RQ3). The interview study was a triangulation for 
the issue of architecture awareness and how people actually worked 
with architecture in development. In the end, the overall results were 
connected with, and contributed from, each empirical study presented 
in this thesis. 

Peer debriefing and support refers to the role of peer support 
groups in qualitative research as a mechanism for debriefing and 
guarding against bias, for keeping the researcher “honest” throughout 
the study [44, p. 99]. In this research, the participation with different 
research groups/centres (Software development group, IT University of 
Copenhagen, Denmark; PReCISE research centre, University of 
Namur, Belgium; LERO research Centre, University of Limerick, 
Ireland) offers me an opportunity to get and give feedback and ideas to 
and from other students and researchers. The supplementary case study 
was collaborated with the PReCISE research centre. The results of the 
main and supplementary case studies support each other. The 
cooperation with Dr. Wolf-Gideon Bleek from University of Hamburg, 
Germany supports setting up the interview study and introducing 
architectural tools and practices in the main case study. 



RESEARCH APPROACHES 28 

Leaving an audit trail means adopting a spirit of openness and 
documenting each step taken in data collection and analysis [44, p. 
101]. The audit trail strategy is not intended for exact replication, but it 
is a way to enhance another researcher to be able to use the audit trail to 
reproduce and verify the finding. In this research, a research diary 
documenting daily observations, informal interviews, and meetings for 
two case studies were written continuously. Formal interviews 
conducted in the case studies, the interview study, and the workshops 
shown in Table 2 were audiotaped and transcribed. The drawing 
artefacts and diagrams on the whiteboard were photographed. 

Member checking is a very valuable means of guarding against 
researcher bias [50, p. 175]. In this research, many evaluation 
workshops with specialists at DHI and EASI-WAL were conducted. 
Articles were reviewed by practitioners, with respect to studies, before 
they were published. All interviewees of software architecture 
awareness were required to check the transcription of their interviews 
before the data was analysed. 

 



4 
 

RESEARCH RESULTS 
 
 
The research discussed in this thesis aims at introducing an 

engineering discipline to support evolvability of software products. The 
introduced engineering discipline is empirically grounded; it is not just 
another academic method, but is applied and evaluated with respect to 
industry. This chapter shows research outcomes. Section 1 presents a 
collection of articles that answer the research questions discussed in the 
introduction of this thesis. Section 2 presents related articles which 
were produced during the research. Section 3 discusses the overall 
results for this thesis. Section 4 notes a by-product of this thesis. 

 
1. List of articles 

 
This section presents six articles in which the outcomes and 

contribution to this thesis are explained together with the answers to the 
research questions. The research questions (RQs) shown in Chapter 1 
are as follows: 

 
RQ1: What is software evolvability? 
RQ2: Do software developing companies manage to maintain 

evolvability of their software products over a long lifetime, and 
how do they do that?  

RQ3: How to develop software products for evolvability? 
 
Article 1. 

H. Unphon and Y. Dittrich, “Organisation matters: How the 
Organisation of Software Development Influences the Development of 
Product Line Architecture.” Innsbruck, Austria: IASTED International 
Conference on Software Engineering, 2008, pp. 178–183. 

The first article presented in Chapter 6 of this thesis shows empirical 
evidence of organisation and business domains alongside technical 
aspects influencing the development of product line architecture. The 
empirical evidence was categorised into six contextual dimensions 
around architecture: business context, use context, software engineering 



RESEARCH RESULTS 30 

organisation, software engineering practice, technical infrastructure, 
and technical selection. The business context is the context or 
environment to which the system belongs. The use context relates the 
system to the work practices of the intended users. The software 
engineering organisation is the organisational context in which the 
software development is carried out. The software engineering practice 
refers to the analysis of the work practices of the system developers. 
The technical infrastructure lists the hardware and basic software 
assets backing the system. The technical selection is part of a suggested 
design and needs to be seen in the context of existing and planned 
systems, as well as in the context of other systems that are part of the 
same design. The empirical evidence presented in the main case study 
results in answering RQ1 and addresses RQ3, and partly answers RQ2. 

 
Article 2. 

H. Unphon, Y. Dittrich, and A. Hubaux, “Taking Care of 
Cooperation when Evolving Socially Embedded Systems: The 
PloneMeeting Case.” Vancouver, Canada: The Cooperative and Human 
Aspects of Software Engineering 2009 (CHASE 2009), in conjunction 
with the 2009 IEEE 31st International Conference on Software 
Engineering (ICSE 2009), May 2009. 

The second article presented in Chapter 7 of this thesis is empirical 
evidence from the supplementary case study which supports the 
findings in the main case study. This article proposes an evolvability 
concept and an evolvability framework. The evolvability concept 
defined in this article is the adaptability of software in order to serve 
the needs of use and business contexts over time reflecting on its 
architecture. The evolvability framework is a successive of six 
contextual dimensions developed in the first article. The usage of the 
evolvability framework in this article is to analyse and support the 
understanding of change during their evolutions. This article 
contributes to answering RQ1 and directs to RQ2. 

 
Article 3. 

H. Unphon, “Making Use of Architecture throughout the Software 
Life Cycle—How the Build Hierarchy can Facilitate Product Line 
Development.” Vancouver, Canada: The Forth Workshop on Sharing 
and Reusing Architectural Knowledge (SHARK 2009), in conjunction 



RESEARCH RESULTS 31 

with the 2009 IEEE 31st International Conference on Software 
Engineering (ICSE 2009), May 2009. 

The third article presented in Chapter 8 of this thesis shows an 
empirical study of how architecture is actually used beyond the design 
phase of product line development. The article presents a build 
hierarchy1 that complements the agile development practice in the main 
case study. This article contributes to answering RQ2 and RQ3. 

 
Article 4. 

H. Unphon and Y. Dittrich, “Architecture awareness,” 2009, 
submitted to the journal of Systems and Software. 

The sixth article presented in Chapter 9 of this thesis is the interview 
study with eight product developing companies on the daily use of 
architecture. Results of the study indicate that a chief architect or 
central developer acts as a ‘waling architecture’ devising changes and 
discussing local designs while at the same time updating his own 
knowledge about problematic aspects that need to be addressed. 
Architecture documentation and representations might not be used, 
especially if they replace the feedback from ongoing developments into 
the ‘architecturing’ practices. Referring to results from Computer 
Supported Cooperative Work (CSCW), we discuss how explicating the 
existing structure needs to be complemented by social protocols to 
support the communication and knowledge sharing processes of the 
‘walking architecture’. This article broadens and refines the answer for 
RQ2 and RQ3. 

 
Article 5. 

H. Unphon, “Architecture-Level Evolvability Assessment,” 2009, 
submitted to Joint Working IEEE/IFIP Conference on Software 
Architecture 2009 & European Conference on Software Architecture 
2009. 

The fourth article presented in Chapter 10 of this thesis proposes a 
method for Architecture-Level Evolvability Assessment (ALEA). The 
evolvability framework proposed in the second article is applied to the 
ALEA method in order to propagate the effect of architectural changes. 
The ALEA method has been validated in the main case study. The 
evolvability concept was refined by taking sustainability along with 

                                                            
1 Build hierarchy is a technique to represent components and organise a series of generating 

executable code based on dependencies between the components. 



RESEARCH RESULTS 32 

adaptability of architectural changes. This article contributes to 
answering RQ3 and refines the answer for RQ1. 

 
Article 6. 

H. Unphon, “Introducing an evolvable product line architecture,” 
2009, submitted to the journal of Empirical Software Engineering. 

Table 1. A summary of articles contributing to research questions 
 
 RQ1 RQ2 RQ3 

 
Article 1. 

- Evolvability is not only 
about technical 
adaptability but it is also 
about the importance of 
future design supporting 
the work of organisation, 
business context, and 
work practice on 
organisation and 
developmental context.  
- The first version of 
evolvability framework. 

- Maintenance and re-
engineering the 
structure of software 
product. 
- Developing product 
line architecture. 

- Architecture must be 
designed for evolvability. 

 
Article 2. 

- The first version of 
evolvability concept.  
- The second version of 
evolvability framework. 
 

- Refactoring the 
structure of software 
products. 
- Developing 
variability 
management for the 
product family. 

 

 
Article 3. 

 - Architecture is used 
beyond design phase. 

Thinking in terms of 
architecture is embedded 
in an integrated 
development environment 
as a build hierarchy. 

 
Article 4. 

 - Walking architecture 
is a person or a group 
of people that is 
responsible for 
architecture related 
activities. 

- An engineering discipline 
for evolvability must 
promote architecture 
awareness as collaboration 
mechanism in 
development practice. 

 
Article 5. 

- The second version of 
evolvability concept. 

 - Evolvability framework is 
used in Architecture-Level 
Evolvability Assessment 
(ALEA) method in order to 
systematically analyse 
architecture. 

 
Article 6. 

- A summary of 
evolvability concept and 
framework. 

 - The engineering 
discipline for evolvability 
brings together conceptual, 
human and technical 
dimensions of software 
development. 



RESEARCH RESULTS 33 

The fifth article presented in Chapter 11 of this thesis proposes an 
engineering discipline for maintaining software evolvability that is 
suitable for industrial practice. This article summarises overall results 
from the main case study of the research. The proposed engineering 
discipline completes the answer for RQ3 and summarises the answer 
for RQ1. 

 
Table 1 summarises how each of above articles contribute to 

answering the research questions. 

2. Other articles 

The following articles relate to the research discussed in this thesis, 
but not included in this thesis. 
 

H. Unphon. (2007) Comparison of documentation generators for C#. 
Technical note. [Online]. Available: 
http://www.itu.dk/people/unphon/technical_notes/CDG_v2007-05-
15.pdf. 

This article presents and reviews general and technical information 
for a number of documentation generators which are mainly used for 
C# and .NET Framework 2.0and makes suggestions according to the 
given criteria from the main case study. 

 
A. Hubaux, P. Heymans, and H. Unphon, “Separating variability 

concerns in a product line re-engineering project,” in Proceedings of 
the Early Aspects Workshop at AOSD'08, Brussels, Belgium, 2008. 

This article gives an opportunity to collaborate with the 
supplementary case study, and presents the process for eliciting the 
variability of PloneMeeting, an Open Source project, and reports the 
initial results obtained when applying variability modelling techniques 
promoting separation of concerns between software variability and 
product line variability. 

 
H. Unphon. (2008) A comparison of variability modelling and 

configuration tools for product line architecture. Technical note. 
[Online].Available: http://www.itu.dk/people/unphon/technical_notes/ 
CVC_v2008-06-30.pdf. 



RESEARCH RESULTS 34 

This article presents a number of variability modelling and 
configuration tools for product line architecture that are currently 
available. The article categorises the comparisons into general 
information, technical infrastructure, operating systems support, 
rendering of modelling, format of input/output models support, 
modelling and configuration functionalities, and development 
functionalities. These categories and their corresponding criteria are 
based on the uses for PloneMeeting, an Open Source software family 
on eGovernment web applications. The purposes of this article are a 
guideline toward institutionalizing variability modelling and 
configuration tools to the PloneMeeting product family. There is 
supplementary material of the lecture on feature modelling given by the 
PReCISE research centre [3]. 

 
H. Unphon, M. A. Babar, and Y. Dittrich, “Identifying and 

Understanding Software Architecture Evaluation Practices,” Technical 
report (work in progress), 2009. 

The goal of this article is to describe design, logistics, and findings of 
an empirical study aimed at identifying and understanding different 
aspects of software architecture evaluation practices in industry. The 
results of this study are expected to provide useful insights into 
software architecture evaluation practices based on the experiences and 
perception of architects who regularly evaluate software architecture in 
various size applications. 

 
3. Summary of research results 

 
The research contribution is an engineering discipline for enhancing 

software evolvability. The research based on the main case study 
presents the success of introducing software product lines as a new 
software development approach for re-engineering legacy software 
products. The research supported by the supplementary case study 
confirms the understanding of evolvability. The engineering discipline 
proposed in the research combines conceptual, human, and technical 
dimensions in such a way that the new software development approach 
does not jeopardise the continuous evolvability of the re-engineered 
software products. The research emphasis is on the role of architecture 
for maintaining evolvability. Empirical study presented in this thesis 
shows that oftentimes what the literature or the software engineering 



RESEARCH RESULTS 35 

textbooks recommend underestimates the industrial practice, e.g. 
claiming that an architecture for a software system does not really exist 
except in its documentation [8, 35]. The study reveals one of many 
reasons that future research can make use of software architecture’s 
industrial practices in a better way. 

The research results have iteratively refined the answers to the 
research questions as follows: 

 
RQ1: What is software evolvability? 

 
Based on the empirical research, software evolvability is defined as 

technical adaptability and sustainability with respect to the use and 
business contexts as well as the development organisation and 
development practice reflecting on its architecture. Article 1 identifies 
six contextual dimensions (i.e., business context, use context, software 
engineering organisation, software engineering practice, technical 
infrastructure, and technical selection) that influence its architecture’s 
adaptability and sustainability. The business context is the context or 
environment which the system is used. The use context relates the 
system to the work practices of the intended users. The software 
engineering organisation is the organisational context in which the 
software development is carried out. The software engineering practice 
refers to the analysis of the work practices the system develops. The 
technical infrastructure lists the hardware and basic software assets 
backing the system. The technical selection is part of a suggested 
design and needs to be seen in the context of existing and planned 
systems, as well as in the context of other systems that are part of the 
same design. 

The evolvability framework presented in Figure 1 visualises 
interrelationships among the contextual dimensions; applying changes 
in one dimension induces changes in the other dimensions. The 
supplementary case study presented in this thesis confirms that the 
framework can be applied in order to understand changes and their 
effects for the socio-technical context [62]. 



RESEARCH RESULTS 36 

 
RQ2: Do software developing companies manage to maintain 

evolvability of their software products over a long lifetime, and 
how do they do that? 

 
Yes, they do. When the needs of use and business contexts trigger 

changes to the software, many decisions are taken at architecture-level. 
The research from the main case study looks into the developmental 
practice at DHI. It indicates that the observed practices deviate from 
what is proposed in many textbooks. To better understand this practice 
and to see how widespread it is, an interview study on architecture 
awareness was designed. The interview study resulted in Article 4. 

The research presented in this thesis proposes architecture awareness 
as a way to develop support for architectural practices for software 
product development. The structure of the software product is regarded 
as an important asset of the development. But rather than documenting 
it in a formal way, most companies rely on a ‘walking architecture’, a 
key person or a number of key persons who maintain and update the 
structure of the software, who are involved in the discussions of 
changes motivated in the development, or by new requirements, and 
who introduce new developers to the structure of the software. 
Representations of the architecture, thus are temporary and partial: 
sketches on whiteboard and scrap paper used in a specific situation. 
The result of this practice is not only the distribution of architectural 
knowledge to the development team, but also an update of the chief 

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

 
 

Figure 1. Evolvability framework 



RESEARCH RESULTS 37 

architect’s knowledge on the issues the developers discuss during 
implementation. This is more than what practitioners can get from 
traditional architecture documentation, which might be a ‘good reason’ 
for what academia may call ‘bad documentation’ practice. 

Introducing a more explicit architecture practice at DHI led to the 
research documented in Article 3. A build hierarchy representing the 
static architecture is implemented in developers’ integrated 
development environment in order to mediate the architecture 
conformance checking between design architecture and code 
architecture. The divergence between the design architecture and the 
code architecture will be reported within ten minutes after introducing 
and resolved within a day. Besides, an open workspace also promotes 
information flow (e.g., updating architecture knowledge) between team 
members within the same physical location. 
 
RQ3: How to develop software products for evolvability? 

 
The research results point out the importance of considering both the 

social and organisational as well as the technical dimensions so that the 
continuous evolution should not be jeopardised. Furthermore, the 
success of evolvable software product development is based on a 
synergy between conceptual, human, and technical levels: the 
conceptual level provides concepts for architectural design, 
architectural processes and evaluation that promotes the coherent 
perception of the state of the practice; the human level refers to work 
practices and social interaction of teams and stakeholders; and the 
technical level refers to a system or technical infrastructure.  

To illustrate this point, we use results from our empirical study (two 
case studies and an interview study). At the conceptual level, an 
evolvability framework is given as an example. The framework helps 
practitioners and us, as researchers, to understand how design happens. 
An example at the human level is the Architecture-Level Evolvability 
Assessment (ALEA) method. ALEA method helps project members to 
structure their discussions in such a way that the members take into 
account adaptability as well as sustainability when evaluating 
architectural changes. At the technical level, a build hierarchy is an 
example of an architecturing technique for agile development. 
However, success on the technical level can only be achieved through 
support and interaction at the human level. This is confirmed by the 



RESEARCH RESULTS 38 

interview study. The interviewees’ reports from their practice indicated 
the need to complement tools and representations with social protocols 
so that they become useful for architectural practice. 

 
4. The by-product of the thesis 

 
While the main case study was progressing, the interview study with 

product developing companies was started. To begin with, the ideas I 
had initially did not seem to fit what I was hearing or observing from 
practitioners. My ideas of software architecture were radically changed 
in relation to practitioner’s experiences. Based on this study, the term 
architecture awareness has been proposed. Architecture awareness 
focuses on the daily use of architectural knowledge: (i) how to make 
changes to a module that might have implications on other’s code – that 
is that change the interface – visible, (ii) how to monitor changes that 
are relevant for the task at hand, and (iii) how to monitor changes to the 
code, the requirements and the context that makes it necessary to 
change the architecture and thus change the design and implementation 
of the different modules. 

Initially, I discussed the design of the system with project members 
of the main case study. They showed me source code and function 
calls. At that time, the project members thought that the concept of 
architecture was too abstract, a piece of outdated drawing on a wall, or 
something that they could not run on their computer’s processors. After 
two and a half years of the co-operative research project, the thinking in 
terms of architecture and product line architecture becomes a 
trustworthy solution for practical and real-scale problems. 

The gap between academic research and industrial practice needs 
continuous attention. Looking at software engineering from a work 
practice perspective, it is interesting to learn how non-software 
engineers, or people who were educated in some other field (e.g., 
mathematics, physics, or hydraulics), do software development. I 
sometimes found that there was no software engineering discipline in 
an industrial context. Then, an interesting point arose about how the 
non-software engineers managed their work practice regardless. 

 
To summarise, the research discussed in this thesis takes an academic 

approach and makes it relevant to practitioners, for instance, in the case 
studies. At the same time, the research takes evidence from the 



RESEARCH RESULTS 39 

practitioners (e.g. the interview study) and makes sense of the evidence 
in order to establish research outcome grounded in real-life scenarios. 
The research presented in this thesis goes beyond the related research 
(Chapter 2) in the following way. The research proposes an evolvability 
framework grounded upon empirical evidence. Based on the 
evolvability framework, the research introduces ALEA method that 
extends adaptability with the complement of sustainability in order to 
evaluate the architecture. In addition, the research focuses on 
architecture as a product and architecturing as a process. Using the 
notion awareness mechanism as a social protocol derived from 
Computer Supported Cooperative Work (CSCW), this thesis 
implements architectural tools and practices that are integrated with the 
development practices in order to promote architecture awareness. 

 



5 
 

CONCLUSIONS 
 
 
This chapter summarises the research discussed in this thesis and 

reports limitations and future research, as shown in Section 1 and 2, 
respectively. 

 
1. Thesis summary 

 
The goal of this research is to propose engineering discipline for 

enhancing continuous evolvability. The research is designed as a 
qualitative empirical study using two case studies (i.e., DHI Water 
Environment and Health (DHI) [2] and EASI-WAL [1]) that re-
engineer their software products using software product line approach 
[21], and an interview study with different product developing 
companies. 

DHI is an independent research and consultancy organisation 
providing various commercial simulation software products for water 
and environment. The research described in this thesis firstly involved 
the re-engineering project of MIKE 11—the river modelling system 
dealing with surface water problems. For a supplementary case, EASI-
WAL is a government agency providing several open-source software 
products for public bodies in Belgium’s Walloon region and with 
Belgium’s French speaking communities. The research involved a 
recently released version of PloneMeeting—the official meeting 
management system for local and regional authorities, which applies 
the product line engineering approach to an open-source software 
product family. 

The two case studies are addressed as re-engineering legacy software 
products into software product lines approach. The main difference 
between these cases and prior cases of software product lines is the 
type of software products, which the research described in this thesis 
calls “socially embedded systems” [62]. Due to the dynamics of 
software evolution [40], dynamics of usage cannot be captured as 
variability requirements. Organisational and work practice aspects of 
the use context as well as the organisation and work practice of the 



CONCLUSIONS 41 

development context have to be considered for the architectural design. 
This entails not only understanding design decisions, but also 
improving the day-to-day software development process that enhances 
evolvability by re-engineering existing software products. 

The interview study reveals that, in everyday development practices, 
software architecture is a medium of discussion and evaluation for 
design decisions even on a small scale. For instance, the experienced 
software engineers explain their understanding to novices by informal 
sketches and references to source code. On the continuous evolution, 
the effects of change that are not in line with the original design 
rational may diffuse slowly and steadily in the architecture of software 
products. The research discussed in this thesis proposes ways to 
promote architecture awareness as an engineering discipline. 

 
2. Limitation and future work 

 
The research discussed in this thesis is rather biased toward the main 

case study at DHI. Although, the supplementary case study at EASI-
WAL was conducted for three months, it did not triangulate all the 
concepts and engineering disciplines that were later proposed in the 
main case study. Thus, the concepts and disciplines should be 
introduced to and studied in other product developing companies as 
well. Moreover, validating and refining the proposed concepts and 
framework should be addressed in future research. In my view, 
software evolution is truly a software engineering epic that continues 
with unanswered questions, and will need more contribution from 
future researchers to complete and correct them. 

The future researcher should continue to address how practitioners 
manage their practice and how to support those practices as opposed to 
“what would make sense for us as researchers?” In the beginning of my 
fieldwork, I as a researcher tried to “educate” practitioners. They 
quickly rejected my attempts, for they felt my advice was difficult to 
understand, or would waste their time learning an approach that did not 
fit their work practice. Since then, I always try to understand their 
methodologies before I “introduce” mine to them. 

  
 

 
 



 42 

References 
 
[1] Commissariat EASI-WAL. [Online]. Available: http://-
easi.wallonie.be/xml/  
[2] DHI Water Environment Health. [Online]. Available: http://-
www.dhigroup.com  
[3] The PReCISE research centre. [Online]. Available: http://-
www.fundp.ac.be/universite/interfacultaire/precise/  
[4] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, 
“New directions on agile methods: a comparative analysis,” in ICSE 
’03: Proceedings of the 25th International Conference on Software 
Engineering. Washington, DC, USA: IEEE Computer Society, 2003, 
pp. 244–254. 
[5] M. Ali Babar, T. Ihme, and M. Pikkarainen, “An industrial case 
of exploiting product line architectures in agile software development,” 
in accepted in the 13th International Conference on Software Product 
Lines, San Francisco, USA, 2009. 
[6] M. A. Babar and I. Gorton, “Software Architecture Review: The 
State of Practice,” Computer, vol. 42, no. 7, pp. 26–32, 2009. 
[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in 
Practice, 2nd ed. Addison-Wesley, 2003. 
[8] L. Bass and R. Kazman, “Architecture-based development,” 
Software Engineering Institute, Carnegie Mellon University, Tech. 
Rep. CMU/SEI-99-TR-007, 1999. [Online]. Available: 
www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr007.pdf  
[9] J. Bayer, J. Girard, M. Wuerthner, J. M. DeBaud, and M. Apel, 
“Transitioning legacy assets to a product line architecture,” in 
Proceeding of the Seventh European software Engineering Conference 
(ESEC’99), Lecture Notes in Computer Science 1687, Toulouse, 
France, September 1999, pp. 446–463. 
[10] K. Beck, Extreme Programming Explained: Embrace Change. 
Addison-Wesley Professional, October 1999.  
[11] L. Belady and M. Lehman, “A Model of Large Program 
Development,” IBM Systems Journal, vol. 15, no. 1, pp. 225–252, 
1976. 
[12] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, 
“Architecture-level modifiability analysis (ALMA),” J. Syst. Softw., 
vol. 69, no. 1-2, pp. 129–147, 2004. 



 43 

[13] P. D. Borches and G. M. Bonnema, “On the origin of evolvable 
systems: Evolvability or extinction,” in Proceedings of the TMCE 
2008, I. Horváth and Z. Rusák, Eds., Kusadasi, Turkey, April 21–25 
2008. 
[14] J. Bosch, Design and Use of Software Architectures: Adopting 
and evolving a product-line approach. New York, NY, USA: ACM 
Press/Addison-Wesley Publishing Co., 2000. 
[15] H. Breivold, I. Crnkovic, and P. Eriksson, “Analyzing software 
evolvability,” in Computer Software and Applications, 2008. 
COMPSAC ’08. 32nd Annual IEEE International, Turku, Finland, 
2008. 
[16] F. Brooks and K. Iverson, Automatic Data Processing (System 
360 Edition). John Wiley, 1969. 
[17] L. Brownsword and P. Clements, “A case study in successful 
product line development,” Software Engineering Institute, Carnegie 
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-96-TR-016, 
1996. 
[18] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, “Integrating 
Product Line Engineering and Agile Methods: Flexible Design Up-
front vs. Incremental Design,” in proceedings of the 1st International 
Workshop on Agile Product Line Engineering (APLE’06), Kyoto, 
Japan, 2006. 
[19] H. B. Christensen, K. M. Hansen, and K. R. Schougaard, 
“Ready! set! go! an action research agenda for software architecture 
research,” in WICSA ’08: Proceedings of the Seventh Working 
IEEE/IFIP Conference on Software Architecture (WICSA 2008). 
Washington, DC, USA: IEEE Computer Society, 2008, pp. 257–260. 
[20] J. A. Christian III, “A Quantitative Approach to Assessing 
System Evolvability,” NASA Johnson Space Center, NASA Johnson 
Space Center, Houston, TX 77058, Tech. Rep., 2004. 
[21] P. Clements and L. Northrop, Software Product Lines: Practices 
and Patterns. Boston, MA, USA: Addison-Wesley Longman 
Publishing Co., Inc., 2001. 
[22] P. Clements, “Active Reviews for Intermediate Designs,” SEI, 
Carnegie Mellon University, Tech. Rep. CMU/SEI-2000-TN-009, 
2000. 
[23] A. Cockburn, Agile Software Development, ser. Agile Software 
Development Series. Addison-Wesley Professional, October 2001. 



 44 

[24] S. Cook, H. Ji, and R. Harrison, “Software Evolution and 
Software Evolvability,” Working paper, 2000, university of Reading, 
UK. 
[25] J. Corbin and A. Strauss, Basic of Qualitative Research; 
Technique and Procedures for Developing Grounded Theory, 3rd ed. 
USA: Sage Publications, 2008. 
[26] J. Dager, Software Product Line: Experience and Practice. 
Kluwer Academic Publisher, 2000, ch. Cummin’s Experience in 
Developing a Software Product Line Architecture for Real-time 
Embedded Diesel Engine Controls, pp. 23–45. 
[27] G. Delannay, K. Mens, P. Heymans, P.-Y. Schobbens, and J.-M. 
Zeippen, “PloneGov as an Open Source Product Line,” in Proceedings 
on the Third International Workshops on Open Source Software and 
Product Lines, Kyoto, Japan, September 2007. 
[28] Y. Dittrich, K. Rönkkö, J. Eriksson, C. Hansson, and 
O. Lindeberg, “Cooperative method development,” Empirical Software 
Engineering, vol. 13, no. 3, pp. 231–260, 2008. 
[29] C. Floyd, R. Keil-Slawik, R. Budde, and H. Zullighoven, Eds., 
Software Development and Reality Construction. Secaucus, NJ, USA: 
Springer-Verlag New York, Inc., 1992, illustrator-Weiler-Kuhn, C. 
[30] D. Garlan and D. Perry, “Introduction to the special issue on 
software architecture,” IEEE Transactions on Software Engineering, 
vol. 21, no. 4, pp. 269–274, 1995. 
[31] B. G. Glaser and A. Strauss, The Discovery of Grounded 
Theory: Strategies for Qualitative Research. Chicago: Aldine, 1967. 
[32] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial 
case study on agile software product line engineering,” J. Syst. Softw., 
vol. 81, no. 6, pp. 843–854, 2008. 
[33] A. Hubaux, P. Heymans, and H. Unphon, “Separating 
variability concerns in a product line re-engineering project,” in 
Proceedings of the Early Aspects Workshop at AOSD’08, Brussels, 
Belgium, 2008. 
[34] R. Kazman, M. Klein, and P. Clements, “ATAM: Method for 
Architecture Evaluation,” Software Engineering Institute, Carnegie 
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2000-TR-
004, ADA382629, 2000. [Online]. Available: http://www.sei.cmu.edu/-
publications/documents/00.reports/00tr004.html  
[35] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G. 
Woods, “Experience with performing architecture tradeoff analysis,” in 



 45 

ICSE ’99: Proceedings of the 21st international conference on 
Software engineering. New York, NY, USA: ACM, 1999, pp. 54–63. 
[36] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A 
Method for Analyzing the Properties of Software Architectures,” in 
Proceedings of the 16th International Conference on Software 
Engineering, 1994, pp. 81–90. 
[37] P. Kruchten, The Rational Unified Process: An Introduction. 
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 
2003. 
[38] M. M. Lehman, “Laws of software evolution revisited,” in 
EWSPT ’96: Proceedings of the 5th European Workshop on Software 
Process Technology. London, UK: Springer-Verlag, 1996, pp. 108–
124. [Online]. Available: http://www.doc.ic.ac.uk/~mml/feast2/papers/-
pdf/556.pdf  
[39] M. Lehman, “On Understanding Law, Evolution, and 
Conservation in the Large-Program Life Cycle,” Systems and Software, 
vol. 1, no. 3, pp. 213–231, 1980. 
[40] M. Lehman, “Programs, life cycles, and laws of software 
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 
Sept. 1980. 
[41] J. Miller, “Triangulation as a basis for knowledge discovery in 
software engineering,” Empirical Softw. Engg., vol. 13, no. 2, pp. 223–
228, 2008. 
[42] H. Muccini and A. V. D. Hoek, “Towards Testing Product Line 
Architectures,” in International Workshop on Testing and Analysis of 
Component Based Systems, 2003, pp. 111–121. 
[43] P. Naur, “Programming as Theory Building,” Microprocessing 
and Microprogramming, vol. 15, pp. 253–261, 1985. 
[44] D. Padgett, Qualitative methods in social work research: 
challenges and rewards. SAGE Publications, 1998. 
[45] D. Parnas, “Information distribution aspects of design 
methodology,” in Proceedings of the 1971 IFIP Congress, North 
Holland, 1971. 
[46] D. Parnas, “On the criteria to be used in decomposing systems 
into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972. 
[47] D. Parnas, “On a ’Buzzword’: Hierarchical Structure,” in 
Proceedings of the 1974 IFIP Congress. Kluwer, 1974. 



 46 

[48] D. Parnas, “On the design and development of program 
families,” IEEE Transactions on Software Engineering, vol. 2, no. 1, 
1976. 
[49] G. S. Percivall, “System Architecture for Evolutionary System 
Development,” in Proceedings of the 4th Annual Symposium of the 
National Council on Systems Engineering, 1994, pp. 571–575. 
[50] C. Robson, Real world research: a resource for social scientists 
and practitioner-researchers, 2nd ed. UK: Blackwell publishing, 2002. 
[51] D. Rowe, J. Leaney, and D. Lowe, “Defining Systems 
Evolvability - A Taxonomy of Change,” Engineering of Computer-
Based Systems, IEEE International Conference on the, vol. 0, p. 0045, 
1998. 
[52] W. W. Royce, “Managing the development of large software 
systems: concepts and techniques,” in ICSE ’87: Proceedings of the 9th 
international conference on Software Engineering. Los Alamitos, CA, 
USA: IEEE Computer Society Press, 1987, pp. 328–338. 
[53] K. R. Schougaard, K. M. Hansen, and H. B. Christensen, 
“SA@Work,” Asia-Pacific Software Engineering Conference, vol. 0, 
pp. 411–418, 2008. 
[54] C. B. Seaman, “Qualitative methods in empirical studies of 
software engineering,” IEEE Transactions on Software Engineering, 
vol. 25, no. 4, pp. 557–572, 1999. 
[55] M. Shaw and D. Garlan, Software Architecture: Perspectives on 
an Emerging Discipline. Prentice Hall, April 1996. 
[56] IEEE Computer Society, IEEE Recommended Practice for 
Architectural Description of Software-Intensive Systems, IEEE-SA 
Standards Board Std., September 2000. 
[57] I. Sommerville, Software Engineering: (Update) (8th Edition) 
(International Computer Science Series), 8th ed. Addison Wesley, June 
2006. 
[58] D. Soni, R. L. Nord, and L. Hsu, “An empirical approach to 
software architectures,” in IWSSD ’93: Proceedings of the 7th 
international workshop on Software specification and design. Los 
Alamitos, CA, USA: IEEE Computer Society Press, 1993, pp. 47–51. 
[59] K. Tian and K. Cooper, “Agile and software product line 
methods: Are they so different,” in proceedings of the 1st International 
Workshop on Agile Product Line Engineering (APLE’06), Baltimore, 
Maryland, USA, 2006. 



 47 

[60] H. Unphon, “Making Use of Architecture throughout the 
Software Life Cycle—How the Build Hierarchy can Facilitate Product 
Line Development.” Vancouver, Canada: The Forth Workshop on 
Sharing and Reusing Architectural Knowledge (SHARK 2009), in 
conjunction with the 2009 IEEE 31st International Conference on 
Software Engineering (ICSE 2009), May 2009. 
[61] H. Unphon and Y. Dittrich, “Organisation matters: How the 
Organisation of Software Development Influences the Development of 
Product Line Architecture.” Innsbruck, Austria: IASTED International 
Conference on Software Engineering, 2008, pp. 178–183. 
[62] H. Unphon, Y. Dittrich, and A. Hubaux, “Taking Care of 
Cooperation when Evolving Socially Embedded Systems: The 
PloneMeeting Case.” Vancouver, Canada: The Cooperative and Human 
Aspects of Software Engineering 2009 (CHASE 2009), in conjunction 
with the 2009 IEEE 31st International Conference on Software 
Engineering (ICSE 2009), May 2009. 
[63] H. Unphon, “Architecture-Level Evolvability Assessment,” 
2009, unpublished results. 
[64] F. van der Linden, K. Schmid, and E. Rommes, Software 
Product Lines in Action: The Best Industrial Practice in Product Line 
Engineering. Springer-Verlag Berlin Heidelberg, 2007. 
[65] H. Yang and M. Ward, Successful Evolution of Software 
Systems. Norwood, MA, USA: Artech House, Inc., 2003. 

 
  

 
 
 



     



       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART   II 
 



     

 



6 
 

ORGANISATION MATTERS: HOW THE 
ORGANISATION OF SOFTWARE DEVELOPMENT 
INFLUENCES THE DEVELOPMENT OF PRODUCT 

LINE ARCHITECTURE 
 

Hataichanok Unphon, Yvonne Dittrich 

IT University of Copenhagen 
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark 

{unphon, ydi}@itu.dk 

ABSTRACT. Our work aims at understanding the design 
rationale for product line architecture by focusing on the 
design of common data access modules for complex 
simulation software products. This paper presents empirical 
evidence of organisational and business domain aspects that 
influence the development of product line architecture. We 
suggest that the assessment of use-situation and history of 
organisational structure should be considered when creating 
product line architectures, especially for products that are 
tailored and used interactively. 

KEY WORDS 

Product line architecture, software development organisation 
 
1.  Introduction 
 
Software architecture and product line architecture (PLA) are normally 
treated as purely technical issues by means of making the 
encompassing architecture for the products line. Many industrial 
experiences in PLA ([1], [2], [3], [4]) investigated into technical 
embedded systems. The architecture specifies ‘what is common and 
what are variations’ that are explicitly allowed among them. When 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

52 

starting with a research project around the design of simulation 
software we entered the cooperation with similar expectations. 
However, by taking part in the design of a first step towards PLA, our 
experience has taught us that organisation matters when we deal with a 
software product. This article discusses different organisational aspects 
that influence the development of a product line for non-technical 
embedded systems. We conclude that when introducing a PLA not only 
technical but also organisational and business domain aspects have to 
be taken into account, especially for products that are tailored and used 
interactively. 
Others also have discovered the relationship between organisation and 
software architecture: when a structure of the system is difficult to 
derive from low-level facts, e.g. source code, an organisational 
structure (organisation of the development groups that creates the 
system) might give insightful information according to Conway’s law 
[5]. Furthermore, Ganesan et. al. [1] have shown that recovered 
ownership architecture, which captures the relationship between the 
developers and the software components they work on, matches very 
well with the implemented architecture of product line. Although their 
definition of ownership works well in their case study, they cannot 
generalize the definition because it is based only on the commit 
history—the account of event that occurred when one’s changes to a 
working copy of source code which are reflected in the repository of 
Concurrent Versions System (CVS).  
Several influences between organisational structure and  PLA became 
visible when we tried to understand the architecture during a re-
engineering project at the DHI Water Environment Health (DHI), an 
independent research and consultancy organisation providing various 
simulation software products for the water and environment. This paper 
illustrates how organisation and business domains have a bearing on 
producing PLA for an end-user customised system.  
The next subsection discusses terms organisation and PLA to make 
clear the fundamental concepts of this paper. The rest of the paper is 
outlined as follows: Section 2 describes our case at DHI, the simulation 
software, and the research methodology; Section 3 illustrates how 
organisation and business domain matter in producing PLA by giving 
citation on our field material; Section 4 presents related works, i.e. 
methods for producing PLA, organising for software product lines, and 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

53 

successful case studies; Section 5 covers the conclusions and future 
work. 
 
1.1. Organisation and product line architecture: an overview 
 
To initiate a discussion on the relationship between organisation and 
product line architecture (PLA) it is first to define what is meant by 
each of the two terms. 
From an organisational studies perspective, organisations are defined as 
social arrangements for the controlled performance of collective goals 
[6]. In a broad sense, therefore, examples of an organisation may 
include a group of C# programmers, a software development team, the 
Water Resource Department, or the DHI.   
Now, what is meant by the term ‘product line architecture’? Product 
line is a group of products sharing a common, managed set of features 
that satisfy specific needs of a selected market or mission area [7]. But 
what is ‘architecture’? Well, again there is no single answer to this 
question. A suitable working definition for the purpose of this paper is 
that, in essence, the structure or structures of the system, which 
comprise software elements, the externally visible properties of those 
elements, and the relationships among them [8]. According to these 
definitions, product line architecture is a single specification capturing 
the overall architectures of a series of closely related products [9]. 
 
2.  Case descriptions and methods 
 
This section gives an overview of the company where we conducted 
our research, describes the simulation software, and explains our 
research methodology. 
 
2.1. DHI Water Environment Health (DHI) study 
 
The DHI Water Environment Health (DHI) is an independent research 
and consultancy organisation that was founded to promote 
technological development in areas relevant to water, environment and 
health in the field of ecology [10]. The organisation develops a wide 
range of software systems for complex simulations, based on well-
established computational kernels for solving partial differential 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

54 

equations. After nearly 30 years of successful use and development, 
however, the maintenance of the software was increasingly time 
consuming task. The company was faced with the challenge of identi-
fying and developing a kernel for data handling, simulation setup, and 
graphical interaction with simulations and their results. For this reason 
the idea of re-engineering the existing systems was initiated. The first 
re-engineering project started with the MIKE 11 system —the river 
modelling system dealing with surface water problems.   
 
2.2. The simulation software 
 
MIKE 11 was designed as a single-user desktop application for one-
dimensional models of river systems. On an abstract level the process 
of the complex simulation conducts as follows: i.) a set of input data is 
read from a file, ii.) simulations based on that data are performed, and 
iii.) a set of output data is produced.  
The architecture for handling data (see Fig. 1) has two parts: Setup 
part, handling setup data, and Result part, respectively handling result 
data. The Setup part has its own Graphical User Interface (GUI), which 
is called Setup GUI. Setup GUI is used by an end-user in order to enter 

File 

Setup 
GUI 

Engine 

Result 
GUI

File 

Figure 1. Run-time architecture of traditional data access 

re
ad

 

w
rit

e 

re
ad

 

re
ad

 

w
rit

e 

Other 
Setup 

w
rit

e 

a) Setup part b) Result part 

Data Flow 
Direction 

Component 

Files 

System 
Boundary 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

55 

a set of input data that will be stored in a file, which can be ASCII or 
binary format depending on geographical data types. The Setup GUI is 
able to retrieve existing input data from the file. Other programs might 
write the setup data directly to the file or database (Other Setup). An 
Engine is a basic part of the simulation. It reads the input data from the 
given file and performs the simulation. It produces a simulation result 
that will be stored in another file format.  The Result part has its own 
GUI, which is called Result GUI. Result GUI is used by an end-user in 
order to read a set of output data which is stored in the file.  The 
architecture of the Setup part and the Result part are shown in Fig. 1a 
and 1b respectively.  
As illustrated in Fig. 1, each GUI and Engine pair handles the same file, 
but since they run separately they have independent pieces of code 
handling the data access. It is noticeable that most of these code pieces 
in the Engine and the GUI are closely related with the respective ones 
in the other modules. From the software developers’ point of view, the 
main problem is trying to maintain three copies when changing the data 
format. In addition, complex simulation software products also 
encounter this problem even though the database is used as data storage 
instead of a file. Another problem is the lack of openness, or the 
inability to use hard coding, or programs, e.g. the third party (Other 
Setup). Undeniably, however, these were old problems in software 
development for a few decades ago. 
Besides the MIKE 11 software, DHI also develops and maintains two 
other branches of software for simulation on one-dimensional systems: 
MOUSE and MIKE Urban, the later uses ArcGIS® technology [11], 
for modelling of urban sewers. Though MOUSE and MIKE Urban use 
databases for transferring geographical data between GUI modules and 
the simulation Engine in addition to files, the same problems of 
maintaining duplicate and triplicate code are recognised.  
 
2.3. Research methodology 
 
The research cooperation with DHI addressed the redesign of the above 
described data access part of the MIKE 11 software. The basis for the 
research described here is the fieldwork by one of the authors involved 
in the MIKE 11 re-engineering project who wrote a research diary 
documenting daily observation, informal interviews, and meetings. 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

56 

Additionally, the transcript of recordings of one of the workshops was 
also analysed. From these materials, we derived several categories of 
factors that influenced producing PLA. As the field worker was 
expected to not only observe, but to also influence the re-engineering 
project, the research was designed as action research by following the 
co-operative method development approach (CMD) [12].  
 
• Participant observation: Initially, we began with participant 

observation of the MIKE 11 re-engineering project. We studied 
functionality of the existing application, structure of the source code, 
and its relevant product, i.e. MOUSE. We also compared the 
similarity of source code between MIKE 11 and MOUSE. In the 
mean time, we conducted informal interviews with the DHI staff 
members. 

 
• Deliberating change: After we found a striking similarity in the 

source code between MIKE 11 and MOUSE, we presented a poster 
highlighting identical code parts in the corridor in order to initiate 
discussion among software developers. We subsequently had a 
presentation on software architecture and PLA, which the ideas of 
cooperation between departments became visible. Later, we 
participated in a subproject that mainly discussed a new data access 
module and developed a prototype of the module. 

 
• Evaluation of the prototype and implementation efforts: Finally, 

we organised an evaluation workshop with a group of DHI software 
specialists. We evaluated the flexibility by comparing the new design 
of the data access module with the old design, which did not have the 
data access modules. We also looked at different change scenarios at 
DHI and their implication in terms of implementation efforts. Apart 
from that, we continued with participant observation of the data ac-
cess module subproject, a joint meeting between departments, and 
the informal interviews with DHI staff members. 

 
3.  Organisation and business domain matters 
  
When analysing the evaluation workshop and the discussions around 
the implementation of the new structure the influence of a series of 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

57 

organisational factors rather than technical design considerations 
became visible. We structure an analysis into two subsections. The first 
subsection is a reflection on the technical design, which focuses on 
rationale for creation of the old design. The second subsection explains 
influence on the re-engineering project, which discusses our research 
and analysis of the new design proposed by the project. This design 
attempts to minimise the maintenance effort when accessing data.  
 
3.1. Reflection on the technical design 
 
Based on the analysis of our field material we categorised the reflection 
on the technical design into a business context, use context, software 
engineering organisation, software engineering practice, technical 
infrastructure, and technical selection aspects.  
 
Business Context: DHI is a pioneering organisation that develops 
software application for hydraulic modelling. In 1972, System 11 and  
System 21 were the first computational models developed to simulate 
water flow patterns with the help of one-dimensional and two-
dimensional models. A three-dimensional simulation was developed in 
the 1980s. Originally, the organisation was founded on hydraulic 
research characteristic, not on software engineering. Software 
development and software maintenance were challenges on only a 
small scale. In the late 1970s, DHI developed System 11 to MIKE 11, 
MOUSE following the consultancy projects and the market requests of 
open channel and pipe network. In the last decade, MIKE11 and 
MOUSE were developed in parallel because the ownership was spitted. 
MIKE Urban (MU) was initiated 3-4 years ago following the request to 
have more complete and integrated modelling framework for both 
water supply and waste water systems. 
The internal policy made collaboration between the two departments 
more time consuming; the overhead cost was charged in the case of 
using resources across departments.  
Though the software was sold as a product series, the main business 
was to provide consultancy services to companies, such as spatial 
planning agencies.  
 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

58 

Use Context: DHI’s software applications are based on Windows 
operating systems because end-users were familiar with it. Most of the 
end-users have BSc. or MSc. in hydraulic engineering and are able to 
program by themselves; many of them used the DHI’s applications 
during their studies.  
The development of hydraulic modelling through the consultancy 
projects drove the development of the different software product lines. 
Many internal consultants feed their development of new modelling 
elements into the mainstream development branch of the respective 
department. They also put forward new requirements and report errors 
to the developers.  
 
Software Engineering Organisation: The WSD and URBAN 
departments both had their own software development teams and 
project consultants.  The WSD department was responsible for MIKE 
11, which basically solves river network issues. The URBAN 
department was responsible for MOUSE and MU, which works in the 
sewer network domain. The development teams organised software to 
be in line with their respective application domains. The coordination 
between the two teams within each domain was easily done; however, 

Figure 2. Run-time architecture of new data access module 

Data Access 

File 

re
ad

 

w
rit

e 

Database 

re
ad

 

w
rit

e 

Other Setup Setup GUI 
& 

Result GUI

Engine 

API

Data & 
Control 
Flow 
Direction 

Database 

Traditional 

New



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

59 

since both MIKE 11 and MOUSE branch off from System 11, the 
growth of the organisation is not optimised because of double imple-
mentation in software development, for example assigning developers 
to solve the same task, spending unnecessary resources on development 
and maintenance.  
 
Software Engineering Practice: Group of the developers have 
educational backgrounds on computer science and hydraulic 
engineering. Engine developers are hydraulic engineers while GUIs 
developers are software engineers/programmers. Many of the 
employees working today with software development began as 
consultants using and customising the software systems.  
When System 11 was first developed, its architectural representation 
was not documented; only “live” document, that is the tacit knowledge 
of an experienced developer, was available. Even today, the developers 
understand the architecture of the system from source code and data 
format; it takes approximate 6 months for a new employee to 
understand the organisation of the code. The architecture is only 
temporary explicit because it is rarely documented on paper or file but 
mainly discussed at a whiteboard. In addition, the development 
organisation paid less attention to written documents because of its 
rather agile developments practice since it developed to accommodate 
the frequent requirements of the consultants of the same department.  
A consequence of lacking a documented software architecture was the 
rise of redundant tasks. Because only reading the source code did not 
provide sufficient understanding for some of the new developers and 
deadlines were pressing, they implemented parts of the new code by the 
copy-and-paste technique. Another example is caused by the lack of a 
distinct outline for a GUI; we found some intensive computation 
functions in the Setup part, which we believed that it could be done in 
the Engine or a separated module.  
Another necessity is the use of a file as a solution for coordinating 
asynchronous work between GUIs and Engine teams. 
 
Technical Infrastructure: Nightly builds and the design of test suites 
for regression tests for the Engines were used for enabling the agile 
development practice and at the same time keep a stable and high-
quality product. New tests and setups were collected from the 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

60 

developers at regular meetings. A major effort was keeping different 
branches of these tests up to date when there were three applications: 
MIKE 11, MOUSE, MU, and two Engines: one for MIKE 11, another 
for MOUSE and MIKE Urban, which both originated from System 11.  
 
Technical Selection: Most of the hydraulic engineers were familiarised 
with C, C++, Delphi, or Fortran programming languages, therefore 
applications were implemented in these languages. In order to support 
safer dynamic memory allocation, technology benchmarking, 
communication to the other components in .NET environment and 
continuation for recruiting a new developer, they decided to change the 
programming language for implementation of the Engine from Delphi 
to be one of Fortran, unmanaged C++, managed C++, or C#. After the 
pros and cons discussion in the context of DHI, C# should be used. 
Each department has its own data access pattern; MIKE 11 defined data 
structure in an XML-like proprietary format and stores the data in a file 
while MOUSE and MU also use a database. 
 
3.2. Influences on the re-engineering project 
 
Likewise we demonstrate influence in the re-engineering project by 
first introducing the design of new data access module and then 
discussing a subset of the categories from the first subsection: technical 
selection, software engineering practice, software engineering 
organisation, and use context. 
 
Design of the New Data Access Modules: The long-term ambition of 
the re-engineering project is to have one Engine and one Data Access 
module for one-dimensional model simulation. The first sub-project is 
to handle data input and output, that means designing a new data access 
module. The new data access module is illustrated in Fig. 2.  When 
Setup GUI, Result GUI, Other Setup or Engine request data via the 
Data Access module, they access all data through an application 
program interface (API) and respond to the request. The module 
provides a common data model and shared functionalities, e.g. read 
from/write to file or database for MIKE 11, MOUSE and MU. With the 
new design, the data model and data access are decoupled from the 
GUIs and Engine, which reduces maintenance effort and enables the 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

61 

application to be changed or more readily adaptable to  change in the 
data model. Besides the implementation of a Data Access module, the 
change requires to free the Engine of the data access code.    
 
Technical Selection: During the evaluation workshop, a developer 
commented on the implementation languages.  
“… With the new structure, our developer has to learn 5 different 
languages, …, that will be a problem if they just want to try out 
something new.” Besides the programming languages, the Engine, and 
the GUIs are implemented in, developers have also to understand the 
database management language, i.e. SQL1, the language of a common 
data model, i.e. XML2, and the API. 
 
Software Engineering Practice: A prototype of the new Engine is 
available but its architecture has not been documented explicitly. When 
experienced developers resigned, “live” documentation left with them. 
The remaining developers encounter difficulties when continuing work 
on existing code structures. Also, the lack of documentation makes it 
difficult to coordinate substantial changes across the two departments. 
 
Software Engineering Organisation: The software engineering 
organisational influences on the ability to implement the proposed 
architecture as a common product line became visible in the negotiation 
around the funding of such a joint project. Initially, the re-engineering 
project belonged to WSD. Thus co-ordination with the URBAN 
department seemed impossible. When URBAN had a meeting on 
joining the re-engineering project with WSD, URBAN delegates 
questioned about the resource allocation and the approval of budget for 
the joint project. After the meeting, we interviewed those delegates 
separately and the concept of “we and they” between the two 
departments were obvious. A WSD delegate guessed that the 
collaboration would be possible after WSD delivered an output. An 
URBAN delegate was eager to join because of willing to reduce a gap 
of development between these 2 departments. In early 2007, the 

                                                 
1 Structured Query Language (SQL) 
2 Extensible Markup Language (XML) 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

62 

internal reorganisation of the software development and consultancy 
postponed the approval of the budget for WSD and URBAN, and re-
scheduled their joining into the re-engineering project. 
 
Use Context: The technical selection would also hinder the difficulties 
for internal consultants to experiment as freely with the software as 
today. How would that influence the consultants’ business and the flow 
from learning in the hydraulic modelling domain into the software de-
velopment? This question was raised in the evaluation meeting when 
discussing the new design. 
 
3.3. Summing-up  
 
MIKE 11 is an end user customised software product that used for 
simulating one dimensional flow of river network. When we began 
with the MIKE 11 re-engineering project, we tried to understand the 
existing architecture and to institutionalise PLA. We found that the 
organisation of software development including the organisation 
history played a role. In addition, the business context, the use-
situation, the work practices, the technical infrastructure and the 
technical selection played a part. Moreover, changing the design and 
development had implication for the whole simulation setup. 
 
4. Discussions 
  
This section describes several methods for producing PLA, presents 
organising for software product lines, and illustrates two successful 
case studies on organising for software product lines with comparisons 
to our work. 
 
4.1. Methods for producing product line architecture  
 
In order to produce software architecture that will satisfy the need of 
the product line in general and the individual products in particular, 
several methods are proposed, e.g. Component-Oriented Platform 
Architecting Method for Families of Software Intensive Electronic 
Products (COPA), Family-Oriented Abstraction Specification, and 
Translation process (FAST), Feature-Oriented Domain Analysis 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

63 

(FORM), Komponentenbasierte Anwendungsentwicklung (KobrA) 
which is German for “component-based application development”, and 
Quality-driven Architecture Design and quality Analysis (QADA). 
Matinlassi [13] compares these PLA methods. The initial processes of 
these methods rarely overlap. COPA first analyzes the customer needs. 
FAST, on the other hand, focuses on three processes, i.e. domain 
qualification, domain engineering and application engineering. FORM 
method starts with feature modelling to discover, understand, and 
capture commonalities and variability of a product line. KobrA uses the 
elicitation of user requirements within the scope of a framework as 
initial process. QADA first collects the driving ideas of the system and 
the technical properties on which the system is to be design.  
Obviously, these methods start with the assessment of the current state 
of the software. Through the methods are not starting a focus on 
technical embedded systems, the majority of the reported cases are 
from that domain. Our case study indicates that one should in parallel 
start with the assessment of the business, the use-situation, the history 
of the organisational structure, and the work practices around the 
software development.   
 
4.2. Organising for software product lines 
 
Bosch [4] presents four organisational models for software product 
lines: development department, business units, domain engineering 
units and hierarchical domain engineering units. Moreover, he 
discussed the applicability of the model, advantages and disadvantages, 
case studies, and a number of factors that influence the organisational 
models. Adaptability of these modes is not explored. Böckle et. al. [14] 
describes in their work how to create an adoption plan and how to 
institutionalize product line engineering in an organisation. The 
structure of the adoption plan has three major parts: i) characterisation 
of current state, ii) characterisation of desired state, and iii) strategies, 
objectives, and activities to get from the current to the desired state. 
Even here, the history of organisation structure is not included in the 
assessment topics which we explicitly present in our work. In our case, 
one could consider evaluating the consequences of introducing a 
product line approach on the whole organisation when developing the 
adoption plan. Our analysis categories indicate the areas to be 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

64 

considered in such an evaluation. One example from our case: even 
such a small change as the introduction of the new design of the data 
access, which is clearly beneficial from a maintenance point of view, 
could hamper the traditional collaboration between software 
development and consultancy departments. That in turn might hinder 
innovation of the base software and might push the consultancy de-
partments to maintain their own code base parallel to the software 
development organisation. 
 
 
 
4.3. Software product lines: successful case studies  
 
CelsiusTech Systems AB of Sweden had an experience of organisation 
in software product line [2]. The company builds large, complex, 
embedded, real-time shipboard command-and-control systems as a 
product line, based on a set of core software and organisational assets. 
CelsiusTech had to change its software, organisational and process 
structures to redirect the company toward a product line approach that 
yielded substantial economic and market benefit to the company. Dager 
[3] reveals the importance of organisational structure issues based on 
the software product line experience at Cummins Engine Inc., the 
world’s largest manufacturer of commercial large diesel engines. The 
company changed their IT strategy to have a separate core asset group 
providing core assets to the product building groups.  
Our experience of introducing PLA to an interactive system indicates 
that the different organisational and business factors are mutually 
dependent. When developing a PLA and perhaps adapting the organi-
sation to support such an approach, a complex interplay of implications 
has to be taken into account.  
  
5. Conclusions and future work 
 
While we were participating in re-engineering the MIKE 11 project at 
the DHI Water Environment Health (DHI), we confirmed that 
producing product line architecture (PLA) is not only a matter of 
analysing commonality and variability, choosing a technical platform 
and infrastructure from an architectural point of view, but one must 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

65 

also consider the organisation and practice of software development as 
well as the business domain and use context. Our observation based on 
producing PLA for the software products that can be customised by end 
users rather than technical embedded systems. 
Our analysis in Section 3 provides an empirical case showing how 
these organisational matters influence the design of common PLA. We 
elaborate the influences in relation to a number of contexts, i.e. 
business context, use context, software engineering organisation, 
software engineering practice, technical infrastructure, and technical 
selection, which we support with citations from our field material. We 
compare our work with the other software product lines case studies, 
methods for producing PLA, and organising for software product lines.  
At the time of writing, the organisation is restructuring; the cooperation 
between a consultancy organisation and the software development is 
changing. This created interest for our future work. because the 
experiment with a new architecture easily done in the old organisation 
might become more difficult for the new organisation as it would be 
regarded as influential for other redesign projects. The new 
organisation is decided upon the need to strengthen software 
development process and the design. DHI is implementing procedures 
to maintain collaboration and relationship between development and 
consultancy departments without hampering the work processes and 
development logistics required by the new organisation structure. 



      ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

66 

References 
 
[1] D. Ganesan, D. Muthig, J. Knodel, & K. Yoshimura, Discovering 
organizational aspects from the source code history log during the 
product line planning phase—a case study. Proc. 13th Working Conf. on 
Reverse Engineering, Benevento, Italy, 2006, 211-220.  
[2] L. Brownsword & P. Clements, A case Study in Successful Product 
Line Development. Technical Report, CMU/SEI-96-TR-016. 
[3] J. Dager, Cummin’s Experience in Developing a Software Product 
Line Architecture for Real-time Embedded Diesel Engine Controls, 
Software Product Line: Experience and Practice (MA: Kluwer 
Academic Publisher, 2000). 
[4] J. Bosch, Design and Use of Software Architectures: Adopting and 
evolving a product-line approach (Addison-Wesley, 2000). 
[5] M. E. Conway, How do committees invent?, Datamation, 14(4), 
1968, 28-31. 
[6] A. Huczynski & D. Buchanan, Organizational behaviour: an 
introductory text (Prentice-Hall, 1991). 
[7] P. Clements & L. Northrop, Software product lines (MA: Addison-
Wesley, 2001). 
[8] L. Bass, P. Clements & R. Kazman, Software Architecture in 
Practice (MA: Addison-Wesley, 2003). 
[9] H. Muccini & A. van der Hoek, Towards Testing Product Line 
Architectures. Electronic notes, Theoretical Computer Science, 82(6), 
2003. 
[10] DHI Water Environment Health website, 
http://www.dhigroup.com, last visited 28-08-2007. 
[11] ESRI GIS and Mapping Software website, 
http://www.esri.com/products.html#arcgis, last visited 28-
08-2007. 
[12] Y. Dittrich, K. Rönkkö, J. Erikson C. Hansson & O. Lindeberg, 
Co-Operative Method Development: Combining qualitative empirical 
research with method, technical and process improvement, accepted for 
publication in Empirical Software Engineering Journal. 
[13] M. Matinlassi, Comparison of Software Product Line Architecture 
Design Methods: COPA, FAST, FORM, KobrA and QADA. Proc. 26th 



ORGANISATION MATTERS: HOW THE ORGANISATION OF SOFTWARE 
DEVELOPMENT INFLUENCES THE DEVELOPMENT OF PRODUCT LINE 
ARCHITECTURE 

67 

International Conf. on Software Engineering, Scotland, UK, 2004, 127-
136. 
[14] G. Böckle, J. Muñoz, P. Knauber, C. W. Krueger, J. C. Sampaio 
do Prado Leite, F. van der Linden, L. Northrop, M. Stark & D. M. 
Weiss, Adopting and institutionalizing a product line culture. LNCS 
2379, Proc. 2nd International Conf. on Software Product Lines, San 
Diego, CA, USA, 2002, 49-59. 
 



7 
 

TAKING CARE OF COOPERATION WHEN 
EVOLVING SOCIALLY EMBEDDED SYSTEMS:  

THE PLONEMEETING CASE 
 

Hataichanok Unphon, Yvonne Dittrich 
Software Development Group 
IT University of Copenhagen 

Denmark 
{unphon, ydi}@itu.dk 

 
Arnaud Hubaux 

PReCISE Research Centre 
Faculty of Computer Science 

University of Namur 
Belgium 

ahu@info.fundp.ac.be 

ABSTRACT. This paper proposes a framework to (i) 
analyse the contexts of socially embedded systems and (ii) 
support the understanding of change during their 
evolutions. Our finding is based on a co-operative project 
with a government agency developing a partially-automated 
variability configurator for an open source software product 
family. By employing our framework, we realised that the 
way variations and their management are implemented have 
to accommodate work practices from the use context as 
well as development practice, and here especially the 
cooperation within the development team and between 
users and developers. The empirical evidence has 
confirmed our understanding of what is relevant when 
estimating the evolvability of socially embedded systems. 
We propose to use our framework in architecture-level 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

69 

design and evaluation in order to take these cooperative 
relationships into account early in the evolution cycle. 

1. Introduction 

 
In this paper, we study the effects of change on the design of software 
from the socio-technical perspective. Our objectives are to (1) clarify 
the meaning of socially embedded systems, and (2) understand how to 
support their further development. More specifically, we are interested 
in understanding how developers can evaluate the impact of changes on 
the cooperation within the team and between developers and users. We 
report here on a study of an open source project developed by a Belgian 
government agency. The case study has confirmed our prior 
understanding of what dimensions of categories to investigate. A model 
of contextual categories relevant to assess design proposals developed 
in [21] is successfully applied to the case. The study confirms that the 
cooperation between developers and between developers and users 
have to be considered when evolving the architecture of a software 
product. The analysis using the framework provided us with a better 
understanding of the project and helped us to improve and complement 
the development process with state-of-the-art techniques. We therefore 
recommend using the model as a tool for structuring design discussions 
when drafting architecture and when evaluating evolutions for socially 
embedded systems.  

This paper is outlined as follows. Section 2 introduces terms and 
definitions. Section 3 presents case description. Section 4 explains the 
research approach. Section 5 illustrates evolution of the PloneMeeting. 
Section 6 is discussion. Section 7 is conclusion and plan for future 
works. 

 
2. Terms and definitions  
 

This section defines two terms: (1) socially embedded systems, and (2) 
software evolvability, as shown in sections 2.1 and 2.2 respectively. To 
avoid terminological confusions between system and software, they are 
used interchangeably.  



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
70 

2.1. Socially embedded systems  

An embedded system has ongoing interaction with a dynamic external 
world [15]. The concept of embedded systems is widely known in 
terms of a combination of computer hardware and software, and 
potentially additional mechanical or other parts, designed to perform a 
dedicated function. Wolf [22] defined the term embedded systems as 
‘any computer that is a component in a larger system and that relies on 
its own microprocessor’. In this paper, we call such systems technically 
embedded systems. Typical examples are MP3 players, telephone 
switches, and hybrid cars. Usually, design decisions are mainly 
constrained by interfaces to hardware or mechanical specifications. We 
define the term socially embedded systems as any system that can be 
modelled intensively according to the environment and practices of its 
end-users. ERP systems, e-government applications, virtual office 
software, and decision support systems are examples of socially 
embedded systems. Design decisions of socially embedded systems 
underline the importance of the human interaction with and cooperation 
via the systems for the societal activities. Lehman [18] has defined a 
characteristic of Embedded programs (E-programs) that it has become a 
part of the world which it models. This implies a constant pressure for 
change. Since focused human or societal activities, the usability of the 
system is the main concern of E-programs.  The close co-operation 
between end-users, people working with the systems on a daily basis, 
and developers throughout the entire development process is strongly 
recommended for capturing the contexts and qualities of use that can-
not be fully anticipated at the initial phase.   

Participatory Design (PD) is a research discourse investigating in 
how to support cooperation between users and developers when 
designing socially embedded systems [17]. The focus of PD is to let IT-
designers work directly with their end-users in the end-user’s own 
environment and come up with design ideas in real-life work situations. 
Floyd et al. [12] have proposed STEPS, Software Technology for 
Evolutionary Participative System Development (STEPS) in order to 
promote user-developer cooperation as the use context is considered an 
inherent a part of the development. In this approach, software 
development does not start from pre-defined problems, but must be 
considered as a learning process involving the unfolding of the prob-
lems as well as the elaboration of a solution tackling the problems. 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

71 

Dittrich et al. [9] elaborated on how co-operation with the users can 
take place in an industrial project without jeopardising the planning and 
control of the development process. By employing mock-ups, 
prototypes, or scenarios of use, end-users can experience the new 
technology, and IT-designers can experience the new work practice. 

Socially embedded systems often allow users to tailor the software to 
specific needs. Examples of end-user tailoring categories are 
customisation, composition, expansion, and extension [11]. Apart from 
tailoring, the socially embedded systems also have to evolve over time. 

2.2. Software evolvability 

Belady and Lehman [3] first introduced and used the term evolution as 
‘a sequence of changes to the system over its lifetime which 
encompassed both development and maintenance’. Cook et al. [4] has 
developed the concept of software evolvability based on maintain-
ability characteristics in ISO 9126, and proposed the evolvability 
measurement at different levels of abstraction, i.e., at pre-design, 
architectural, detailed design and source code levels. The concept of 
evolvability brings together factors from three main areas: (1) software 
product quality, (2) software evolution processes, and (3) the 
organizational environment in which the software is used. They have 
defined the concept of software evolvability as ‘the capability of 
software products to be evolved to continue to serve their customer in a 
cost-effective way’.  

To survive in today’s competitive software market, it would be too 
restrictive to limit software evolvability to maintenance issues only. 
The growth dynamics of a system depends highly on the business 
context. To increase a market share, e.g., it may be vital to bring out 
new features. Yet, a system that is used will be changed [19]. We here 
define software evolvability as the adaptability of software in order to 
serve the needs of use and business contexts over time reflecting on its 
architecture. Software architecture represents a common abstraction of 
a system that many of the system’s stakeholders can use as a basis for 
mutual understanding, negotiation, consensus, and communication [2]. 
When the needs of use and business contexts trigger changes to the 
software, the stakeholders must handle the needs based on the 
architecture.  



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
72 

In this paper, we address how to relate cooperation among 
developers and between users and developers when evolving socially 
embedded systems. Based on previous research [21], we recommend 
framework that builds up on six contexts: business, use, software 
engineering organisation, software engineering practice, technical 
infrastructure, and technical selection. The business context is the 
context or environment to which the system belongs. The use context 
relates the system to the work practices of the intended users. The 
software engineering organisation is the organisational context in 
which the software development is carried out. The software 
engineering practice refers to the analysis of the work practices of the 
system developers. The technical infrastructure lists the hardware and 
basic software assets backing the system. The technical selection is part 
of a suggested design and needs to be seen in the context of existing 
and planned systems, as well as in the context of other systems that are 
part of the same design. 

Others have used the notion of context or contextual factors before. 
Kensing [16] has proposed a conceptual framework that IT-designers 
should be aware of when they design IT-applications to meet the needs 
of a specific organisation. The framework addresses: (1) project 
context, separating into design context and implementation context; (2) 
use context, dealing with work practice context and strategic context; 
and (3) technical context, interacting with system context and platform 
context. Kensing does not apply the framework to reflect on concrete 
design proposals. Dittrich and Lindeberg [8] developed Kensing’s 
framework further by mapping out contextual factors in order to 
understand the suitability of a – from a technical viewpoint – less 
advanced design for a specific industrial setting. Here, three contextual 
dimensions are used: development, use, and technical. We developed 
this framework to support architecture-based analysis when planning to 
evolve software products. 

 
3. Case description  
 
EASI-WAL1 is the Belgian government agency in charge of (1) the 
simplification of administrative tasks and (2) the global 

                                                            
1 The EASI-WAL website, http://easi.wallonie.be/. 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

73 

computerisation of the administrative processes of the Walloon region2. 
To this end, EASI-WAL develops open source web-based applications 
assisting the Walloon public institutions.  In order to stay independent 
of external contractors and to pool the efforts, the developers set out to 
develop applications generic enough to deal with the difference in 
scales and behavioural disparities of the various institutions. 

For each of their products, the developers struggled to properly elicit 
and express the requirements. Although, the elicitation of the 
requirements followed an iterative process of prototype demonstration 
and validation with users together with impromptu interviews with the 
users and results of developers’ experience in the field, it did not follow 
a specific elicitation protocol. As we examined their case, it turned out 
that most of the challenges came from the identification of the common 
parts, shared by all the institutions, and the specific parts, peculiar to a 
single or a set of them. We thus advocated software product line 
engineering [20] as solution to their problem of systematising the 
engineering of product families. In order to assess the potential of 
software product line engineering, the developers agreed to apply it to 
an existing application, viz. PloneMeeting [7, 14]. 

PloneMeeting provides advanced meeting management func-
tionalities like meeting workflow specifications and document 
generation. Figure 1 shows a screenshot of the graphical user interface 
of PloneMeeting. To further illustrate the functionalities proposed by 
PloneMeeting, we trace three representative use cases: meeting 
management, meeting workflow management, and document 
generation. 
Meeting management usually follows a three-step process. First, the 
meeting items are created and validated. Secondly, a meeting is created 
and existing meeting items are added to the meeting agenda. Third, 
after publication, the meeting takes place and the decisions related to 
the meeting items are recorded (label 1 in Figure 1, a.k.a. Figure1.1).  
Meeting workflow management. Central to PloneMeeting is the 
concept of meeting itself.  Each meeting is associated to a state of a 
workflow. The meeting states evolve according to a pre-defined 
workflow designed and selected at the installation of PloneMeeting. A 
                                                            
2 The Walloon region gathers a third of the Belgian population and covers about a 

half of the territory. The region includes a French-speaking and a minor German-
speaking community. 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
74 

typical workflow contains states like Created, Published, Frozen, 
Decided, Closed and Archived (Figure 1.2). The respective next states 
can be seen in the actions column (Figure 1.3). On top of specifying 
valid states, a workflow contains guards and potential actions on the 
transitions. Guards basically check the permissions of the user willing 
to trigger the transition (Figure 1.4). The available workflows are 
selected during the PloneMeeting base configuration. The user selects 
one of these workflows for each meeting created. The portal tabs show 
two meeting configurations, i.e. plonegov assembly and plonemeeting 
assembly (Figure 1.5).  
Document generation. Document generation is an essential 
functionality that must be provided by a meeting management system 
dedicated to governmental administration. For that reason, every 
meeting item, meeting and decision can be exported into various for-
mats like PDF, ODT and DOC in a single click. Different document 
templates can be specified and selected in the PloneMeeting 
configuration menu.  
 
4. Research approach  
 
Our research approach is a combination of co-operative method 
development (CMD) [10] and grounded theory approach [13]. The 
CMD is a domain-specific adaptation of action research consisting of 
three evolutional phases: (1) understanding practice, (2) deliberate 
improvements, and (3) implement and observe improvements. The 
grounded theory approach is an explicit and systematic technique for 

Figure 1. The PloneMeeting graphic user interface  



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

75 

developing theory iteratively from qualitative data. The initial analysis 
of data begins without any preconceived categories. When an 
interesting pattern emerges, it is repeatedly compared with existing 
data, and additional data is collected to support or refute the emerging 
theory. We have applied the grounded theory approach to our ob-
servation and field notes, transcripts of interviews and workshops, and 
other material collected through these activities including relevant 
literatures.  

We have applied the CMD to the basis of our fieldwork research 
aiming at institutionalising variability management for the 
PloneMeeting product family. Initially, we conducted interviews with 
three PloneMeeting developers, one working for EASI-WAL and the 
two others working for two different city councils. We studied 
functionality of the existing application, structure of the source code, 
and checked out the major related product, i.e. PloneTask. Besides 
these contact meetings, we held two workshops in which we succes-
sively studied: (1) the product line architecture of PloneMeeting, and 
(2) the feature modelling and configuration tools. In the first workshop, 
the main responsible developer of PloneMeeting reflected and 
explained the current architecture in terms of implementation tech-
niques and rationales behind it. In the second workshop, we presented a 
number of mainstream variability management tools on the market and 
suggested a work plan for integrating an automated configuration tool 
into the existing PloneMeeting architecture. The development of the 
configurator is currently supervised by a group of researchers from the 
PReCISE research centre3, University of Namur, Belgium.  

 
5. Evolution of PloneMeeting 
 
This section reveals the evolutionary story of PloneMeeting into three 
episodes: (1) Collège: the origin of PloneMeeting, (2) the 
PloneMeeting product family today, and (3) towards the PloneMeeting 
configuration wizards, as shown in sections 5.1, 5.2, and 5.3 re-
spectively. For each of these episodes, we will look into the contexts 
presented in section 2.2. 
 

                                                            
3 The PReCISE website, http://www.fundp.ac.be/universite/ interfacultaire/precise/. 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
76 

5.1. Collège: the origin of PloneMeeting 
 
Business context. Collège was a web-based application dedicated to 
the management of the official meeting of municipal authorities in 
Belgium. Developed in 2004, Collège has been in production three 
years. Part of the Belgium policy for e-government is to use open 
source software as much as possible. 
Technical infrastructure. Collège is a monolithic program or a self-
contained program4. 
The technical selection is not available. 
Software engineering practice. The developers report that the 
evolution of Collège was a challenge. Due to a lack of explicit 
architecture, most modifications were done at the source code level. 
Implementing a simple meeting template took a day. Templates could 
not be shared easily.  
Software engineering organisation. The Collège developer team was 
located in the same region. When a city requested a Collège product, 
the team copied the existing Collège source code and modified it 
according to the city’s specific needs. In case of updates, a power-user, 
who acted as administrator, had to go through the whole code base and 
manually update the code and resolve the conflicts. 
Use context. Laws and legal regulations constrained use cases. For 
example, Collège can generate a document only in PDF format because 
an official document should not be modified.  

It seemed impossible for users to change anything apart from three 
or four configurable elements. Most of the changes involved 
programming. During the first workshop on the PloneMeeting 
architecture, a developer mentioned that “Collège was used in three cit-
ies. …Three cities are OK, but what if you have 45 cities? This way of 
doing things is not manageable. This product was not designed 
correctly for a lot of organisations. That is the first limitation of the old 
architecture. ”. 

                                                            
4 Monolithic program or self-contained program indicates a program which is 
contained in a single function of the large program. 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

77 

5.2. The PloneMeeting product family today 

Business context. Since June 2007, PloneMeeting has been totally 
refactored from Collège and has gathered interest from other 
government agencies. PloneMeeting has been tailored for four main 
organisation types, i.e. general purpose, city, government, and 
parliament. A version for the parliament has been planned.  
Use context. PloneMeeting is used by civil servants. The amount of 
users per product is approximately 100 with up to 10 different roles like 
meeting manager or reviewer. The products are customised. Changing 
the display language and document layout are examples for simple 
customisations.   

When installing PloneMeeting power-users also can select their own 
workflows based on pre-defined UML state charts available in the 
PloneMeeting set of core assets. A power-user is free to implement its 
own workflow but it requires advanced programming skills. 
Technical infrastructure. PloneMeeting is developed on the top of an 
open source technology stack: Plone5, Zope6, and Python7.  
Technical selection. Since PloneMeeting is built on top of Plone, some 
architectural dependencies are directly managed by Plone. Using a 
plug-in architecture, the core of PloneMeeting is relatively simple and 
flexible enough so that nearly every aspect of its input and output can 
be modified by the plug-in. This mechanism is used for customising the 
behaviours of PloneMeeting.  

The most sensible part of the PloneMeeting architecture is the 
workflow. A workflow is composed of several states, actions, and 
guards and involves several categories of users. PloneMeeting comes 
with several workflows so as to meet the work practices of most 
organisations. PloneMeeting employs ArchGenXML to generate 
Python code from the workflows designed in UML before the product 
configuration. Although ArchGenXML builds on architecture-centric, 
model-based and test-driven development, PloneMeeting developers 
still have to write the code e.g. the body of a method or the trigger of a 
workflow transition manually. 

                                                            
5 The Plone website, http://plone.org. 
6 The Zope website, http://www.zope.org. 
7 The Python website, http://www.python.org. 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
78 

The current configuration tools do not enforce any constraints, e.g. a 
power-user can choose more than one option for a feature even if they 
exclude each other. 
Software engineering organisation. PloneMeeting belongs to larger 
open source project, namely PloneGov8. Five developers belonging to 
different municipalities or organisations are working part time on 
PloneMeeting. The developers gather requirements from their own 
organisations/entities. The architectural change occurs after developers 
get feedback from end-users. 

One of the developers has the main and coordinating responsibility. 
He reviews the modifications, checks in the updated source code, and 
tests it. To develop a subsequent product, every change is done after a 
careful discussion with all the developers. 

PloneMeeting developers do not only provide the software products 
to open source communities, but also are power-users and 
administrators for their own organisations. To reduce development 
time, the vision is to simplify configuration and leave it to power-users 
who have no development charges. When we discussed the 
configuration of the product, we were puzzled by the fact that 
configuration choices can be performed at different times in the 
lifecycle. This absence of control would notably allow configurations 
incompatible with the current state of the system (e.g. unknown 
workflow states for running meeting objects). We thus started to differ-
entiate configuration according to the binding time and evolvability of 
the choices – some can only be done once when installing the software, 
others can be changed repeatedly as part of the usage. Still, categori-
sation needs to be clarified in a systematic way. One approach would 
be to employ the categories used in end-user tailoring: customisation, 
composition, expansion, and extension, instead of the term 
configuration.  
The software engineering practice looks different depending on the 
role in the development process. We interviewed a developer working 
for an organisation that wants to replace their old systems with Plone-
Meeting. In the beginning, the developer met end-users of the old 
systems every second week. The developer presented a prototype of 
PloneMeeting and the end-users commented on it. He recorded the 
requirements and change requests to the Trac System, an enhanced 
                                                            
8 The PloneGov website, http://www.plonegov.org 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

79 

Wiki and issue tracking system. Then he changed the configurations, 
implemented and released the necessary code changes, which took 
about 2 weeks.  

PloneMeeting developers join in weekly sprints. A sprint is a fo-
cused development session lasting anywhere from a day to a week. 
During sprints, the developers prioritise the requirements, design, code, 
test and at the end of a day release a new version of PloneMeeting. 
Criteria for giving high priority requirements are (1) a requirement is 
highly required from several organisations, and (2) a requirement 
comes from the organisation that allocates the most resources, e.g. 
time, to the project. Most of the requirements are shared among 
organisations.  

Developers are located very close to the user organisations for which 
they create the local installation. For this, they have to configure and 
adapt a PloneMeeting profile manually, which is a time consuming task 
considering the great deal of technologies involved. To generate a 
skeleton of a product, they reuse and adapt, if needs be, the existing 
UML models.  

As much of the development is model driven, most of the code is 
generated. The architecture is not explicitly documented. The parallel 
development provides a challenge for the model driven approach as 
changes have to be coordinated at the model level as well as at the 
source code level. Since the deployment is dynamic, modification of 
the core product are automatically deployed on every new installation 
of PloneMeeting. In case of major changes that affect the data 

Table 1. Plan for PloneMeeting wizards and configuration tools 
 
 

KIND OF CONFIG. Initial install Product line related 
change 

Simple parameter 
change 

FREQ. OF USE Once Once a year Once a week 

ACTOR Power-user with 
business knowledge 

Power-user with business 
knowledge 

Power-user with 
technical knowledge  

INPUT/ 
PRE-COND. • Business analysis 

• Business analysis 
• PloneMeeting plug-in to 
Plone 

Simple parameter 
change request 

OUTPUT/ 
POST-COND. 

• PloneMeeting plug-
in to Plone 

• BuildOut 

• Adapted PloneMeeting 
plug-in 

• Adapted BuildOut 
• Migration script (if big 
change) 

Configuration data 
change 

COMPONENT TO USE Wizard Wizard Configuration tool 

 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
80 

structures, the developers provide a script for data migration so that 
local versions can be upgraded.  

Another time-consuming task for developers is to handle change 
requests after base installation. An example is the archive meeting case. 
A stakeholder requested to archive documentation of meetings. In order 
to add this unanticipated change request, the developer needed to 
change a number of parameters, customise and add some status to the 
workflow, write some Python method, etc. From the developers’ point 
of view, a critical issue in the shared development environment is an 
architecture that allows developers to capture commonality of the 
organisations into common parts as well as to easily integrate 
specificity among organisations that share and use PloneMeeting.  

5.3. Towards the PloneMeeting wizards 

A practical outcome of our research co-operation and the facts revealed 
with our framework is the development of an automated configurator 
for PloneMeeting. During the second workshop on feature modelling 
and configuration tools, we came up with a plan for the PloneMeeting 
wizard and configuration tool. Table 1 summarised the ideas and will 
be detailed later in this section. The difficulties described above 
indicate the need to better structure the configuration tasks. Different 
actors who configure and customise different aspects of the software at 
different points in time need different kinds of support. From the 
introduction of the development, business context and software 
engineering organisation, and technical infrastructure remain the same, 
but the use context, software engineering practice, and technology 
selection are impacted. 
Use context. PloneMeeting has at least 15 power-users from different 
government agencies in Belgium. PloneMeeting developers have an 
ambition to support their power-users to configure bigger parts of the 
software and be as independent from developers as possible. Although 
the power-users have little knowledge of software engineering, the 
wizards and the configuration tools can enable them to express their 
requirements by choosing from a list of existing features. For instance, 
to implement a meeting archive feature, they would use a wizard. The 
wizard would generate an instance of PloneMeeting product family 
using a given workflow including the meeting archive.  



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

81 

However, different levels and frequencies of configuration have to 
be distinguished. When first installing the software, a power-user with 
business knowledge will configure the basic family member using one 
wizard. The wizard will generate some components. The subsequent 
stages represent modification of the base configuration. The tools 
supporting the latter stages constrain configurations to what is allowed 
with respect to the running configuration.  
Software engineering practice. In order to create a wizard, developers 
are eliciting the user-level variability that will be used for developing 
the PloneMeeting wizard and configuration tool. This elicitation will be 
done at the requirements level. However, the requirements are not 
completely documented. Often, requirements gathering have been 
informal and chaotic. PloneMeeting has been refactored from Collège 
whose developer did neither use the Trac system nor any other tool for 
documentation. Furthermore, the documentation of requirements and 
product analysis are not standardised. PloneMeeting developers now 
have an ambition to have robust processes for requirement elicitation 
and traceability. As a starting point for the development of the 
PloneMeeting wizard and the configuration tool, we suggested to list all 
the questions that end-users, power-users and developers should be 
asked in parallel with likely answers, in order to systemise their 
elicitation process.  
Technical selection. Developers have distinguished configuration 
elements into features and simpler parameters. Email of power-user and 
meeting type are examples of a simple parameter. Document 
generation, document template, meeting archive and meeting workflow 
are examples of features. The simple parameter is used in settings that 
neither influence any feature nor effect on the rest of the configuration. 
The features are categorised into features that can be changed during 
runtime, e.g. the interface language, and features that are decided when 
first installing the product, e.g. the meeting workflow. If features need 
to be changed, the configured PloneMeeting instance must be removed 
and replaced by an updated version. There are thus three levels of 
configuration, which can change at different frequencies and require 
different expertises. 

The currently used feature modelling language is the cardinality-
based feature diagram of Czarnecki et al. [6]. The configuration process 
under evaluation is the multi-level staged configuration process, which 
offers a fine-grained and well-defined decomposition of the modelling 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
82 

perspectives into linked feature diagrams organised in sequential levels. 
The sustainability and gain of this approach are still to be diligently 
demonstrated. 

In order to automate the build process, developers choose BuildOut, 
a tool for developing, packaging, and deploying Plone applications. 
Another design option that will facilitate maintenance would be to 
enhance the existing PloneMeeting configurator with automation and 
export/import facilities. At the time of writing, the PloneMeeting 
developers have decided to represent the feature diagram directly in 
Python in order to avoid any dependency to existing tools and ease the 
binding with the code. 
 
6. Discussion 
 
In the discussion we take up three points: (1) the use of the six 
contextual dimensions as a framework to prepare and evaluate changes 
to software products, (2) how to introduce the framework into the 
architecture evaluation practice in a company, and (3) how product line 
and product line configuration approaches that are developed for 
technically embedded systems can be applied to socially embedded sys-
tems. 
Using the framework to design and evaluation of changes. The 
PloneMeeting case suggests that the six contextual dimensions – 
business, use, software engineering organisation, software engineering 
practice, technical infrastructure, and technical selection – can be 
applied in order to understand the effects of change for the socio-
technical context of socially embedded systems. The six contexts 
helped us to map out aspects affected by changes which have to be 
considered and resolved when analysing specific requirements.  

The analysis provided in this article helped to clarify the complexity 
of the configuration task for the PloneMeeting product family. When 
evaluating the concrete design for the configuration mechanism, the 
framework can be used to analyse and evaluate the impact of the 
chosen solution on the cooperation, respectively, the distribution of 
tasks between the local developers, the power-users, and end-users.  
Introducing the framework into architecture evaluation practices. 
The introduction of a method into an existing software development 
organisation is not always a straightforward task. Ali Babar et al. [1] 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

83 

have presented an empirical investigation of factors influencing 
industrial architecture evaluation practices. They have categorised the 
findings into: (1) organisational factors, involving: engagement models, 
governance frameworks, supporting software engineering or-
ganisational structures, design decision documentations, funding 
models, and training; (2) technical factors, including: quality attributes 
being evaluated, challenges caused by integration issues, techniques 
and tools for representing and visualising architectures, types of 
evaluation required, and methods and guidelines used; (3) socio-
political factors, relating to: soft skills, organisational politics, and 
vendor involvement; (4) managerial factors: pulling by management, 
support and commitment, objectives of evaluating architectures, and 
stakeholder-centric issues; and (5) business factors: resulting from 
business needs and industry standards, and requirements of business 
case. The CMD approach is based on cooperation between researchers 
and practitioners when deliberating, introducing and evaluating 
improvements and will thus provide a good base to explore the specific 
benefits and hinders when introducing our framework. So far, we did 
not explicitly introduce the framework into the development lifecycle. 
The analysis of its result helped us to better understand the context of 
PloneMeeting and worked as a catalyst to improve the development 
practices. This paper is only the first stage towards its understanding 
and uptake by practitioners. Additional work is still needed to assess 
the actual impact it will have once used by the different stakeholders. 
How to apply product-line architecture approaches to socially 
embedded systems? In the existing work, feature modelling has been 
applied to technically embedded systems [5]. But PloneMeeting is 
considered as a socially embedded system because of the extensive 
interactions with the environment and practices with users. The design 
decisions are loosely constrained by static conditions, and the contexts 
and qualities of use cannot be fully anticipated in the starting phase. 
The next step is to explore how feature modelling can be applied, in 
general, to socially embedded systems and evaluate to what extent it 
enhances their usability.   
 
 
 
 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
84 

7. Conclusion and future works 
 
The PloneMeeting case demonstrates how our framework can be used 
to understand the impact of changes in socially embedded systems on 
the cooperation among developers and between users and developers. 
In the PloneMeeting case, introducing a wizard and a configuration tool 
turned to solve some problems in the local development by controlling 
the instantiation of PloneMeeting and its features. From the early phase 
of the development of the wizard and the configuration tool, the 
changes are designed to support the work and development practices of 
the power-users.  

At the time of writing, we are assessing the impact of the wizard and 
configuration tool on the development and deployment of the appli-
cation in production sites. We are polishing up the terms and 
definitions as well as the analytical tool proposed in Section 2 with 
different cases. Apart from that, we keep up with the questions and 
challenges posed in the discussion section. 



TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 

85 

References 
 
[1] M. Ali Babar, L. Bass, and I. Gorton, “Factors Influencing 
Industrial Practices of Software Architecture Evaluation: An Empirical 
Investigation”, in S. Overhage et al. (Eds.), the 3rd Int. Conf. on the 
Quality of Software Architecture (QoSA), LNCS 4880, Spinger-Verlag, 
2007, pp. 90-107. 
[2] Bass, L., P. Clements, and R. Kazman, Software Architecture in 
Practice, 2nd edition, Addison-Wesley, 2003.  
[3] L.A. Belady, and M.M. Lehman, “A Model of Large Program 
Development”, IBM Systems Journal 15(1), 1976, pp. 225-252. 
[4] S. Cook, H. Ji, and R. Harrison, “Software Evolution and Software 
Evolvability”, Working paper, University of Reading, UK, 2000. 
[5] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker, 
“Generative Programming for Embedded Software: An Industrial 
Experience Report”, Proc. ACM SIGPLAN/SIGSOFT Conf. on 
Generative Programming and Component Engineering (GPCE’02), 
LNCS 2487, Springer-Verlag, Germany, 2002, pp. 156-172. 
[6] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration 
Through Specialization and Multi-level Configuration of Feature 
Models”, Software Process: Improvement and Practice 10(2), Special 
issue on Software Product Lines, John Wiley & Sons, 2005, pp. 143-
169. 
[7] G. Delannay, K. Mens, K., P. Heymans, P.-Y. Schobbens, and J.-M. 
Zeippen, “PloneGov as an Open Source Product Line”, Proc. 3rd Int. 
Workshops on Open Source Software and Product Lines, 2007. 
[8] Dittrich, Y., and O. Lindeberg, Designing for changing work and 
business practices, in Adaptive evolutionary information systems, IGI 
Publishing, USA, 2003, pp. 152-171. 
[9] Y. Dittrich, and O. Lindeberg, “How Use–Oriented Development 
can Take Place”, Information and Software Technology 46(9), 1 July 
2004, pp. 603-617. 
[10] Y. Dittrich, K. Rönkkö, J. Erikson, C. Hansson and O. Lindeberg, 
“Co-Operative Method Development: Combining qualitative empirical 
research with method, technical and process improvement”, Empirical 
Software Engineering Journal 13(3), Kluwer Academic Publishers, 
2008, pp. 231-260. 



      TAKING CARE OF COOPERATION WHEN EVOLVING SOCIALLY 
EMBEDDED SYSTEMS:  THE PLONEMEETING CASE 
86 

[11] Eriksson, J., Supporting the Cooperative Design Process of End-
User Tailoring, Doctoral Dissertation, Department of Interaction and 
System Design, School of Engineering, Blekinge Institute of 
Technology, Sweden, 2008. 
[12] C. Floyd, F.-M. Reisin, and G. Schmidt, “STEPS to Software 
Development with Users”, Proc. 2nd European Software Engineering 
Conf., LNCS 387, 1989, pp. 48-64. 
[13] Glaser, B.G., and A. Strauss, Discovering of Grounded Theory: 
Strategies for Qualitative Research, Sociology Press, 1967. 
[14] A. Hubaux, P. Heymans, and H. Unphon, “Separating Variability 
Concerns in a Product Line Re-Engineering Project”, Proc. 2008 AOSD 
workshop on Early Aspects, Brussels, Belgium, 2008. 
[15] Kaelbling, L.P., Learning in Embedded Systems, MIT Press, 1993. 
[16] F. Kensing, “Participatory Design in a Commercial Context – a 
Conceptual Framework”, Proc. Participatory Design Conf., USA, 28 
Nov.-1 Dec. 2000, pp. 116-126. 
[17] Kensing, F., Methods and Practices in Participatory Design, ITU 
Press, Denmark, 2003. 
[18] M.M. Lehman, “Programs, Life Cycles, and Laws of Software 
Evolution”, IEEE 68(9), 1980, pp. 1060-1076. 
[19] M.M. Lehman, “On Understanding Law, Evolution, and 
Conservation in the Large-Program Life Cycle”, Systems and Software 
1(3), 1980, pp. 213-231. 
[20] Pohl, K., G. Böckle, and F. J. van der Linden, Software Product 
Line Engineering: Foundations, Principles and Techniques, Springer-
Verlag, USA, 2005. 
[21] H. Unphon, and Y. Dittrich, “Organisation matters: How the 
Organisation of Software Development Influences the Development of 
Product Line Architecture”, Proc. IASTED Int. Conf. on Software 
Engineering, Innsbruck, Austria, 2008 , pp. 178-183. 
[22] W. Wolf, “What is Embedded Computing?”, Computer 35(1), 
IEEE Computer Society, 2002, pp. 136-137. 



8 
 

MAKING USE OF ARCHITECTURE THROUGHOUT 
THE SOFTWARE LIFE CYCLE – HOW THE BUILD 
HIERARCHY CAN FACILITATE PRODUCT LINE 

DEVELOPMENT 
 

Hataichanok Unphon 
IT University of Copenhagen & DHI Water Environment Health 

Denmark 
unphon@itu.dk 

 
ABSTRACT. This paper presents an empirical study of 
how the application of genuine architecture can be 
employed beyond the design phase of product line 
development. The study is based on a co-operative research 
project with a company developing product line architecture 
for hydraulic modelling software. By concretising the 
architecture as a build hierarchy the architecture mediates 
the evolution of the design throughout the whole software 
life cycle. The empirical evidence has confirmed the 
improvements of (1) the software quality and flexibility, (2) 
the communication and co-operation with new developers, 
(3) the distribution of work and parallel implementation, and 
(4) the foreseen usage by hydraulic and environmental 
consultants who tailor the software. Our research further 
indicates requirements for the architectural analysis tools 
that are deliberately embedded in the daily development 
practices. 

 
1. Introduction 
 
An ambition to establish architecture as the key aspect of software 
development prompts this work. The importance of software 
architecture has been recognised in the software engineering 
community for decades [3]. But, in many software industries, the use of 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

88 

explicit architecture is very limited. This paper presents empirical 
evidence of how developers can make use of architecture beyond the 
initial design phase. A case study shows that a team of software 
developers “concretises” architecture as a build hierarchy1. The 
developers use the build hierarchy to check the compliance of their 
source code against the architecture’s structure when they build the 
software. The developers get constant feedback about the match 
between design architecture and code architecture. As a consequence, it 
improves (1) the software quality and flexibility, (2) the 
communication and cooperation with new team members, (3) the 
distribution of development tasks and parallel implementation, and (4) 
the usage by hydraulic and environmental consultants. However, there 
are some challenges to the build hierarchy and its consequence with 
respect to different aspects of evolvability which should be explored in 
further detail later. Instead of inventing a new insight, the contribution 
of this work emphasises on making use of the architectural knowledge 
throughout the software life cycle. 

This paper is outlined as follows. Section 2 presents some challenges 
towards evolving architecture that is intentionally shared with a family 
of software products.  Section 3 presents case description. Section 4 
explains research approach. Section 5 illustrates concretisation of the 
architecture as the build hierarchy. Section 6 shows beneficent effects 
of build hierarchy.  Section 7 presents challenges towards evolvability. 
Section 8 is discussion. Section 9 draws conclusion and requirements 
for the architectural analysis tools. 

 
2. Evolving product line architecture 
 
A software product line consists of a product line architecture and a set 
of reusable components that are designed for incorporation into the 
product line architecture. In addition, the product line consists of the 
software products that are developed using mentioned reusable assets 
[6]. Software architectural design is one of the important incorporation 
elements in the software product line. When design architecture and 
code architecture are handled independently, the code architecture 
                                                            
1 A build hierarchy is a technique to organise a series of generating executable code 

based on dependencies between components. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

89 

usually diverges from the design architecture [12]. The design 
architecture can be thought of as the ideal implementation structure. 
The design architecture can be described using layers. Layers are 
usually described using stacked rectangular boxes. Proximity between 
these boxes represents allowable interfaces between components in 
different layers. The code architecture describes how the source code, 
binaries, and libraries are organised in the development environment 
[19], and should be implemented in the design architecture. The 
problems, then, are (1) how to describe the compliance between the 
design architecture and the code architecture, and (2) how to maintain 
that throughout the development. 
 
3. Case description 
 
DHI Water Environment Health (DHI) is a pioneering organisation that 
develops software applications for hydraulic modelling [8]. In 1972, 
System 11 and System 21 were one of the first computational 
modelling systems developed at DHI to simulate water flow patterns 
with the help of one-dimensional and two-dimensional models. A 
three-dimensional simulation was developed in the 1980s. Originally, 
the organisation focused on hydraulic characteristics research, not on 
software engineering. Software development and software maintenance 
were challenges on only a small scale. In the late 1980s, DHI released 
the MIKE 11 and the MOUSE software products. Both products were 
originated from System 11 following the requests of different usages, 
i.e. open channels and pipe networks. The main users of these products 
are consultants that do simulations of hydraulic conditions, i.e. water 
level and flow, and analyse the hydrological effects of environmental 
change, so-called hydraulic and environmental consultants. Due to the 
different market needs the ownership was split into different 
consultancy departments and, in the last decades MIKE 11 and 
MOUSE have been developed and maintained in parallel. Released in 
2005, MIKE URBAN followed the request to have a more complete 
and integrated modelling framework for both water supply and waste 
water systems.  

After decades of successful use and development, the requirements 
of the software have evolved as well. In particular there is a growing 
tendency that the software is used in a more general setting e.g. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

90 

scripting and scheduled forecasts. The company was faced with the 
challenge of identifying and developing a kernel for data handling, 
simulation setup, and graphical interaction with simulations and their 
results. For this reason the idea of re-engineering the existing software 
products was initiated. The first re-engineering project started with the 
MIKE 11 engine2. Later on, the MOUSE engine was merged into the 
MIKE 11 re-engineering project. While the merged re-engineering 
project was under way, the organisation was undergoing change. DHI 
set up a software product department in order to strengthen the software 
development process and the design. The software product department 
has taken development activities and ownership of DHI’s software 
products. As a consequence, the department decided to re-engineer the 
core computational parts of some of the one-dimensional simulation 
software products, i.e. MIKE 11, MOUSE and MIKE URBAN, in a 
project called MIKE 1D. The project is estimated for 360 person weeks 
of implementation. 

 
4. Research approach  
 
The cooperation with DHI addressed the introduction of product line 
architecture into product development. The basis for the research 
described here is the fieldwork which I have been involved in for two 
and a half years. I wrote a research diary documenting daily 
observations, interviews, and meetings. As a field worker, I was 
expected not only to observe, but also to influence the projects in which 
I participated. The research was designed as action research by 
following the cooperative method development approach (CMD) [9]. 
Due to a lengthy period of the cooperation, the research activities can 
be divided in to three cycles: (1) the MIKE 11 re-engineering project, 
(2) the merging of MIKE 11 and MOUSE re-engineering project, and 
(3) the MIKE 1D project, as shown in sub-section 4.1-4.3 respectively. 
 
4.1. The MIKE 11 re-engineering project 
 

                                                            
2 An engine is a basic part of simulation. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

91 

Participant observation. I studied the functionalities and code 
architecture of the MIKE 11 engine and its related product, i.e. the 
MOUSE engine. I also compared similarity of the source code between 
MIKE 11 and MOUSE engines. In the meantime, I conducted informal 
interviews with DHI staff members. I found that organisation of 
software development influenced the development of product line 
architecture [21]. 
Deliberating change. After finding a striking similarity in the source 
code between MIKE 11 and MOUSE engines, I presented a poster 
highlighting identical code parts in order to initiate a discussion among 
software developers. Subsequently, I made a presentation on software 
architecture and product line architecture making visible the benefits of 
merging MIKE 11 and MOUSE engines. Later, I participated in a 
subproject that discussed a new data access module architecture for the 
MIKE 11 re-engineering project and developed a prototype of the 
module. 
Evaluation of the prototype and implementation efforts. When I 
organised an evaluation workshop with a group of DHI software 
specialists, we evaluated the flexibility of the new data access module. 
We also looked at different change scenarios at DHI and their 
implication in terms of implementation efforts. I continued my 
participant observations of the data access module subproject, the 
merging MIKE 11 and MOUSE engines re-engineering project, and the 
informal interviews with DHI staff members. 

4.2. The merging of MIKE 11 and MOUSE engines re-engineering 
project 

Participant observation. In order to be close to the project, I took on a 
task to create the architectural documentation. I had reviewed some of 
DHI’s architectural documentation and online user references systems. 
I also observed development practices and technical infrastructure of 
the MIKE 11 and MOUSE engines. I reviewed a number of 
documentation generators which automate technical document 
production from the source code. I interviewed developers and internal 
users of MIKE 11 and MOUSE about how they can make use of the 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

92 

architectural documentation. I found that architectural knowledge was 
more in the discussion than in the documentation. 
Deliberating change. After analysing the code, I proposed a layered 
architecture to represent architectural knowledge. I reported a 
comparison of documentation generators and recommended a generator 
that was suitable for the project. I created a prototype of an online 
architectural knowledge system. The system contained a project 
overview, architectural knowledge, user references, and examples. The 
overview of the project explained the vision of MIKE 1D project. The 
architectural knowledge presented the overall design, layered 
architecture, and diagrams along with their precise explanations. The 
user references showed technical documentation, which was 
automatically generated from source code, e.g. class overviews, 
namespace overviews, and interface overviews. The examples 
described use scenarios of some components in a number of 
programming languages. The evaluation of this cycle was not possible 
because the merging project quickly moved to the MIKE 1D project. 
However, the prototype of the online architectural knowledge system 
has been set up and recently used internally. 

4.3. The MIKE 1D project 

Participant observation. I had reviewed static code analysis tools, 
e.g., [10], [13] and [5]. Employing those tools, I analysed the MIKE 1D 
source code and identified the relative complexity of the MIKE 1D 
components. I also compared the static analysis of the MIKE 1D 
project’s source code with that of the MIKE 11 re-engineering project, 
and the merging of MIKE 11 and MOUSE engines re-engineering 
project. I continued informal interviews with MIKE 1D team members 
and joined the weekly meetings of the MIKE 1D project. I found that 
architectural analysis tools and technique embedded in daily routine 
were welcome by the development team. 
Deliberating change. I and a group of software architecture experts 
conducted a workshop on architecture discovery with MIKE 1D team 
members. We also introduced the basic idea of checking for 
architectural conformity. We recommended tools for automated (1) 
checking source code and architecture at build time, (2) continuous 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

93 

integration server [7], and (3) checking source code for proper format 
[15]. After finding the “good” and “bad” parts of the source code by 
using static code analysis tools, I presented my findings at the weekly 
meetings of the project. The source code comparative analysis was 
presented in the form of a Kiviat metrics graph [20]. The 
interdependencies between components were represented in a layered 
architecture and a dependency structure matrix [16]. 
Evaluation of the uses of architecture. I had interviewed MIKE 1D 
team members about how they can make use of the architecture as an 
aspect of software development. I continued with my participant 
observation of the MIKE 1D project. At the time of writing, the team 
members and I are planning a workshop on architecture-level 
evolvability assessment. Part of the workshop will present the online 
architectural knowledge system, which the first feedback on the system 
are expected to be given.  
 
5. The concretisation of the architecture as the build 
hierarchy 
 
This section explains on how MIKE 1D developers design MIKE 1D 
architecture and how the developers concretise the build hierarchy into 
the development environment, as shown in sub-section 5.1 and 5.2 
respectively.  
 
5.1. Designing architecture 
 

Based on the architecture discovery workshop, the architecture of the 
MIKE 1D was explicitly defined. Figure 1 shows a sample of the 
MIKE 1D design architecture. Firstly, MIKE 1D developers divided the 
whole core computational part into a Data Access layer and an Engine 
layer. Secondly, the developers divided the Engine layer into two sub-
layers: Topology3 and Pure Calculation4. Thirdly, the Data Access 
layer is further divided into a number of components. So is the Engine. 
Later on, the developers focused on having the interfaces of the 
                                                            
3 Topology handles a static model data, e.g. network topology. 
4 Pure calculation handles a dynamic model data which is used in the actual 

computations and simulation state. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

94 

components as close to finished as possible. The interfaces identify 
how the components should communicate with each other. The 
developers logically categorised the components into the layers. 
Finally, the developers assembled everything based on design rules. 
The design rules defined acceptable dependency between components, 
i.e., (a) prohibition of upward relationships, it is inherent to layered 
architectures that references from lower to upper layers are not allowed 
– in other words, only downward relationships are allowed; (b) 
interface violations, usage of non interface artefacts of components by 
other components is not allowed; (c) several layer downward 
relationship is acceptable; and (d) prohibition of relationships within a 
layer, components in different line of products should not relate to each 
other. A build hierarchy is implied in the design architecture. The 
components in upper layers must be built after those in lower layers. 
For example, in Figure 1, the Network Engine component in the 
Topology layer must be built after the Network Data Access 

 
 

Figure 1. A sample of the MIKE1D design architecture 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

95 

component, the Structure Module component, and the Cross Section 
Data Access component in the Data Access layer.   

5.2. Concretisation of the build hierarchy into development 
environment 

Part of the reluctance to work with an explicit architecture was the fear 
of having outdated documents and a diverging code base. Introducing 
the architectural compliance checking into the daily routine was thus 
welcomed by the development team. Currently, a build hierarchy is 
defined in such a way that developers specify the build order. But, 
Microsoft Visual Studio has another way of handling the logic of a 
build hierarchy. Microsoft Visual Studio has a Solution, a top collection 
of Projects. MIKE 1D developers work under the same Solution, i.e. 
the MIKE 1D Solution. In the Solution, there is a list of Projects. Each 
developer is responsible for his Project(s) in the MIKE 1D Solution. 
Each Project contains actual source code and its unit tests. Each 
Project represents a component. Hence, the developers define the 
dependency between components through the Projects. Afterwards, the 
developers can see in which order the Projects are built. When the 
developers compile or build the Solution, the build hierarchy will 
automatically check whether the developers have followed the design 
architecture. When the developers check out from the source control 
system and re-compile or re-build the Solution, they will be aware of 
what the other developers have been doing. The developers also use 
unit test to assure that any functionality change will not break the 
architecture.  

Concretising the build hierarchy could be followed beyond Microsoft 
Visual Studio. A few examples of other build automation tools are 
GNU Make [11], Apache Ant [1], Apache Maven [2], and SCons [17].  

 
6. Beneficent effects of build hierarchy 
 
This section identifies advantages of concretisation of the architecture 
as the build hierarchy into software development. Confirmed by MIKE 
1D team members, the advantages are categorised into (1) software 
quality and flexibility, (2) communication and cooperation to new 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

96 

developers, (3) distribution of work and parallel implementation, and 
(4) usage by hydraulic and environmental consultants, as shown in sub-
section 6.1-6.4 respectively. 

6.1. Software quality and flexibility 

MIKE 1D developers iteratively work on the design architecture and 
keep on refining the architecture. For instance, with the help of the 
build hierarchy the developers are able to see if dependencies point to 
the wrong direction. In order to turn around the order of dependency, 
the developers will tweak a number of the other dependencies or 
introduce a new component. Consequently, the refined design 
architecture is reflected in the build hierarchy. Since the architecture 
has become modularised, each component can easily be tested 
thoroughly separately. 

The core components can be replaced. For example, to change the 
equation of water flow in a core component, a developer implements a 
specialised component with the same interface as that core component. 
Without knowing how the core component is internally implemented, 
the developer only sees the interface of the core component and 
implements his specialised functionality. Afterwards, he moves the 
core components out, and replaces the core components with the 
specialised component without impacting anything else in the build 
hierarchy.  

When the consultants needed a specific feature, the developers 
would look everywhere in the code and implement the specific feature 
even if the feature would benefit only that particular consultancy 
project. As a consequence, the software product will have changed 
between releases, and the specific feature is maintained, even though 
nobody else uses it. Also, the specific feature may give rise to 
additional work when the software product is upgraded or released in a 
new version. Even with interface in place, changes can degrade system 
if performance or other quality attribute of new version differs 
substantially from that of old version. With the design architecture, the 
developers can create a special component in a specific file for a 
specific feature and add it on independently of changes to other 
components. As long as the interface of the specific component does 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

97 

not change, the developers do not need to update the specific 
component.  

6.2. Communication and cooperation to new developers 

When new team members are introduced to the MIKE 1D project, their 
tasks are explained from an architectural point of view. The main 
developer shows the MIKE 1D design architecture, albeit not in much 
detail, but it helps the new members to start on the project. The new 
members can easily picture how the components will fit together. It is a 
strong point of the MIKE 1D project, one of the members said; the 
project has a “walking architecture5” that can go out and tell people 
about the architecture. 

The new team members are initially assigned to implement a self-
contained component6 of the design architecture. Thus, the new team 
members will not change anything in the core components. The new 
developers have templates to start implementing. When asked how to 
figure out into which component he should put the physical equation, 
one of the developers who had been introduced to the team replied: 
“Actually, the main developer showed me the component and told to 
put the equation here and here. Then I started it. For the framework of 
MIKE 1D, I didn’t really know how it works. …”. Another new member 
had experienced being a new developer in another project. He had to 
understand what the project was doing strictly by deciphering the 
source code. “That was a time consuming task, but much less now after 
I moved to MIKE 1D… ”, he reported.  

6.3. Distribution of work and parallel implementation 

The idea of a build hierarchy is straightforward to the developers. 
MIKE 1D developers distribute the work after the architecture has been 

                                                            
5 a.k.a. a chief architect or a main developer who carried most if not all the 

architectural knowledge and makes design decisions. 
6 A self-contained component refers to an independent component or a component 

that barely uses or is used by another component. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

98 

designed. They decide on a protocol for communication and 
dependencies between components up front. They can work on their 
own implementation without compromising each other’s work. Before 
the concept of design architecture was introduced, functionalities were 
often mixed together in the same file and on the same unit. The 
developers would practically always write on the same files at the same 
time. Then, they would merge their changes. They would sometimes 
experience that merging a file was not an agreeable approach to all. 
After the introduction of architecture as a way of thinking, the process 
of using architecture more explicitly has decreased the number of 
conflicts. For example, the developers hardly ever work on the same 
file. Even though their source control system becomes better, they do 
not need to merge a file as often as before because they are working in 
separate components. One of the MIKE1D developers said, “It’s just 
ways easier to handle it. It is much easier to test. It is just a lot easier 
for us to work with, and it works better.” 

The idea of out sourcing MIKE 1D development to the other 
developers that know both MOUSE and MIKE 11 engines was 
mentioned. The developers can implement some of the components if 
they have time. They can work on it in parallel without affecting the 
rest of the MIKE 1D developers. A milestone and release plan has been 
decided from a functional point of view. However, thinking in terms 
architecture and build hierarchy has implicitly impacted on the plan.   

 

6.4. Usage by hydraulic and environmental consultants 

At the time of writing, the MIKE 1D project is still in the production 
phases, i.e. it is not yet finished; the developers are already beginning 
to see the benefits that MIKE 1D will eventually yield. With the 
flexibility in design, as mentioned in sub-section 6.1, the users, i.e. the 
hydraulic and environmental consultants will be able to replace any 
components without impacting on the whole software product. The 
users can tailor the core components by adding a specific component 
without changing any of the core components. Other than that, the users 
can change the non interface code of the specific component without 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

99 

(a) waiting for the next release or (b) impacting the general software 
product. 
 
7. Challenges towards evolvability 
 
During the interview on perspectives of using architecture in 
development, MIKE 1D team members raised many interesting 
challenges towards evolvability. The challenges can be seen from 
different contexts, i.e., use context, technical infrastructure, technical 
selection, software engineering organisation, and software engineering 
practice. 
Use context. The developers are in favour of generic programming. 
They design the MIKE 1D architecture in such a way that generic 
components are clearly separated from the specific components. Then, 
users, i.e. hydraulic and environmental consultants, can replace 
components without consequence problem. On the other hand, the users 
are in favour of “generic modelling”. Separating the components does 
not guarantee that the users can model in the generic way. If the 
developers are not aware of the use side, it will be more annoying for 
the users. For example, there was a discussion about how to specify 
hydraulic resistance. Previously, the users had to specify the hydraulic 
resistance in many different files. Then, the first architectural 
recommendation was to do it in a specific way that required a lot of 
editing. But, the users would make more decisions and take time to set 
up their initial models.  One of the users exaggeratedly said, “In the 
way I understand it, the data should be located together with --- data 
and we could get it from that. You can do everything with it, but it will 
be terrible to work with the model in that way. You have repeated the 
number over and over again. That is not really the way to do it. …I do 
not want to copy my information. I want to have it at one place that can 
be pointed in. Oh, it should be thirteen, not ten! I do not want to change 
2,000 places. I want to change at one place. …”. The truth of this 
matter is that the users have slightly more work in some respect, but the 
architecture reduces the users’ work in another respect. 
Technical infrastructure. MIKE 1D components are implemented in 
the C# programming language. But the software products predating 
MIKE 1D were implemented in the C++, C#, and Delphi programming 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

100 

languages. Handling the mixture of different languages would not be an 
easy task. 
Technical selection. The ancestors of MIKE 1D have different 
approaches of implementing a similar functionality. In fact, the MIKE 
1D’s initial ambition is to make a common component between MIKE 
11 and MOUSE. But there are some places where two approaches are 
equally good. For example, the time step calculation between MIKE 11 
and MOUSE engines are different. MOUSE uses a smaller time 
interval, so the calculation takes longer time than in MIKE 11. Due to 
the general difference in length and time scales used by applications of 
MOUSE and MIKE 11 engines, they are optimised differently with 
respect to stability and accuracy. It is two different focuses that should 
be maintained. Although the developers try to merge the two 
approaches of implementing the same functionality as much as 
possible, they sometimes end up in the situation that “we need both”.  
Software engineering organisation. The software product department 
develops general purpose software products which can be sold to 
customers in great numbers. The consultancy departments have 
implemented very specific functionalities based on the needs of their 
projects. It is usually not possible to include a specific functionality 
into the generic products because (a) the functionality is not useful for 
the common user and (b) the functionality is implemented in a specific 
way rather than in a general sense. Thinking in terms of architecture is 
extremely important in the current DHI organisational structure. 
Without being aware of how the architecture looks, development in the 
consultancy department will diverge from that of the software product 
department. If the consultancy departments do not comply with the 
architecture in the software product department, they will potentially 
increase the maintenance as they may not be able to re-use components 
between releases. 
Software engineering practice. Everyone in the MIKE 1D project can 
program and gradually learn about the architecture. But it always ends 
up that only a “walking architecture” can set up the architecture for the 
others. 

One of the mentioned benefits is the interface-based design. But it 
becomes one of the weaknesses. Many interfaces have to be 
maintained. If the developers change the interfaces all the time, it will 
be difficult for the other people to work on any components. Therefore, 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

101 

the challenge is to define a viable interface of the core components as 
early as possible.  

 
8. Discussion 
 
This section notes general observations and findings, as shown in sub-
section 8.1 and 8.2 respectively.  

8.1 General observations 

Relation between design architecture and code architecture. During 
the whole software lifecycle, architecture is being developed. Planned 
solution at the start of project usually signals the design architecture to 
control the code architecture. When the project is progressing, the code 
architecture might not conform to the design architecture with a good 
reason. For instance, the code architecture may reveal an infeasibility 
of the planed solution. Thus, the design architecture must be adjusted in 
order to align itself with the code architecture. A build hierarchy 
facilitates the code architecture conformance checking. The build 
hierarchy instantly reveals a divergent coincidence between the design 
architecture and the code architecture at the build time. 
Waterfall process, iterative/incremental process, and agile 
methods. Development cycles – regardless of waterfall process, 
iterative/incremental process, or agile methods – are composed of 
analysis, design, implementation, and test. But time to complete a 
development cycle is what varied [4]. Moreover, a focus on the 
architecture in the design phase in each process/method is differed. The 
waterfall process requires the design of the complete architecture 
before the implementation, also called a “big design upfront”. The 
iterative/incremental process comes into the architecture at each design 
phase. The agile methods replace the “big design upfront” with “just 
enough design upfront” and “design as you go”. However, an 
architectural style [18] is taken as foundation of the agile methods. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

102 

8.2 Findings 

Limitations of the build hierarchy. When I interviewed the MIKE 1D 
developers about the uses of the architecture, we came across the 
informative issues of the build hierarchy. The main developer put 
emphasis on keeping the architecture simple, neat, and explainable so 
that the developer can easily introduce a new developer to the 
architecture within a day or two. Having a strictly layered architecture 
on the build system is one way of doing it. Developers have a 
“preconceived” idea about the layers into which the components 
belong. However, the boundaries of layered architecture are rather 
implicit. If a new developer comes from outside and sees the 
MIKE1D’s code architecture, he or she will not see the layer at first 
glance. 

When the architecture has isolated functionality in several 
components, the connectivity between those components becomes 
complicated. The developers will have difficulty understanding how the 
functionality is invoked. The build hierarchy gives an overview of how 
the components are connected and dependant on each other. But it does 
not tell “what and when” the components are invoked unlike the UML 
diagrams, more specifically, class and sequence diagrams. The build 
hierarchy initially follows the design architecture, as noted in 
architecture documentation, but both of them are easily out of sync 
during development. 
Acknowledged eXtreme programming practices and component-
based software engineering. The eXtreme programming (XP) is one 
of the most mature and best-known agile practices [14]. Some of the 
practices have been used in the MIKE 1D project, e.g. a unit testing and 
an open work space. The unit testing and the build hierarchy play a 
mutual role in order to facilitate the code architecture conformance 
checking. When the developers change something in the component 
that will effect or fail somebody else’s component, the unit test and the 
build hierarchy will capture that effect and instantly notify the 
developers.  

Confirmed by the MIKE 1D team members, the open work space is 
one of the important elements that promotes decentralisation of the 
architectural knowledge during the development. The members work in 
a common “airy” room where they can sit near each others. When it 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

103 

comes to architectural discussion, the “roommates” easily perceive 
“what and why” the architecture has been changed.  

A considerable extent of component-based software engineering 
provides flexibility for handling changes at the level of design 
architecture. A component interface design helps the MIKE 1D 
developers introduce new functionality with the minimum impact with 
regard to all changes. However, it is important that a “walking 
architecture” keeps an eye on any changes that could break the 
interface. 
Increasing awareness of architecture in the evolution of software 
product line. Handling the evolution of software assets in a product 
line is more intricate than that of a tailored product. Supported by the 
DHI case study and [6], the main reasons are (1) most of the assets rely 
upon various software products and versions, and (2) multiple 
organisational units are involved. To maintain an overview of the status 
of the asset base, the build hierarchy significantly increases awareness 
of architecture. When the software products are upgraded or released in 
new versions, changes at the asset base must comply with the previous 
release versions. With the help of interface-based design, if developers 
want to change some component in the assets base, the developers 
create a new component with the same interface as the previous 
version. When the developers build software with the new component, 
the build hierarchy will notify developer whether the new component 
complies with the architecture of the previous releases. Thus, 
maintainability, one of MIKE1D quality attributes, is influenced 
positively by the increased separation of components. However, the 
management among multiple organisation units should be optimised in 
parallel. 
 
9. Conclusion and requirements for the architectural 
analysis tools 
 
Architecture is taken as a foundation of many development processes 
or methods, but the use of explicit architecture throughout the software 
life cycle is hardly ever taken seriously, especially in the agile methods. 
But, this work shows that after the architecture was concretised as the 
build hierarchy, the architecture becomes the “first class citizen” of the 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

104 

software development. Whenever developers build the software, the 
development environment immediately notifies the developers of the 
compliance between the design architecture and the code architecture. 
However, the build hierarchy does not give any information on “what, 
when and why” the components are invoked. Confirmed by DHI case 
study, the concretisation of the architecture as the build hierarchy has 
improved, as shown in Section 6, (1) the software quality and 
flexibility, (2) the communication and cooperation to new team 
members, (3) the distribution of development tasks and parallel 
implementation, and (4) the foreseen usage by hydraulic and 
environmental consultants. 

Based on the case study, we reveal requirements for the architectural 
analysis tools that are meant to be embedded in the daily development 
practice. The tool should (a) give frequent feedback, the compliance 
between the design architecture and the code architecture should notify 
the developers at the build time; (b) not show only dependencies, each 
line of the dependency or the “uses” relationship should be displayed 
further in the UML diagrams; (c) support different programming 
languages, the software products often invoke or build on top of legacy 
objects; and especially (d) support product line architecture, 
relationships among multiple software products and releases are 
complex – any changes at the core components effect not only different 
products but also different releases. The tool arising from the build 
hierarchy could pragmatically promote the application and awareness 
of architecture throughout the whole software life cycle.  



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE LIFE 
CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT LINE 
DEVELOPMENT 

105 

References  
 
[1] Apache Ant website, http://ant.apache.org, last visited 10-02-09. 
[2] Apache Maven Project website, http://maven.apache.org, last 
visited 10-02-09. 
[3] Bass, L., P. Clements, and R. Kazman, Software Architecture in 
Practice, 2nd ed., Addison-Wesley, 2003. 
[4] K. Beck, “Embracing Change with Extreme Programming”, IEEE 
Computer, October 1999, pp. 70-77. 
[5] W. Bischofberger, J. Kühl and S. Löffler, “Sotograph - A Pragmatic 
Approach to Source Code Architecture Conformance Checking”, Proc. 
1st European Workshop on Software Architecture (EWSA2004), LNCS 
3047/2004, Springer-Verlag, Germany, 2004, pp. 1-9. 
[6] Bosch, J., Design and Use of Software Architectures: Adopting and 
evolving a product-line approach, Addison-Wesley Professional, 2000.  
[7] CruiseControl.NET website, http://sourceforge.net/projects/ccnet, 
last visited 24-01-2009. 
[8] DHI Water Environment Health website, http://www.dhigroup.com, 
last visited 21-01-2009. 
[9] Y. Dittrich, K. Rönkkö, J. Erikson, C. Hansson and O. Lindeberg, 
“Co-Operative Method Development: Combining qualitative empirical 
research with method, technical and process improvement”, Empirical 
Software Engineering Journal 13(3), Kluwer Academic Publishers, 
2008, pp. 231-260. 
[10] Lattix website, http://www.lattix.com, last visited 21-01-2009. 
[11] GNU Make website, http://www.gnu.org/software/make, last 
visited 10-02-09. 
[12] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software Reflexion 
Models: Bridging the Gap between Design and Implementation”, IEEE 
Transactions on Software Engineering 27(4), IEEE Computer Society, 
2001, pp. 364-380.  
[13] NDepend website, http://www.ndepend.com, last visited 21-01-
2009. 
[14] R.L. Nord, and J.E. Tomayko, “Software Architecture-Centric 
Methods ad Agile Develoment”, IEEE Software 23(2), IEEE Computer 
Society, 2006, pp. 47-53. 
[15] NStyle website, http://www.vadesoft.com/help/help.htm, last 
visited 24-01-2009. 



MAKING USE OF ARCHITECTURE THROUGHOUT THE SOFTWARE 
LIFE CYCLE – HOW THE BUILD HIERARCHY CAN FACILITATE PRODUCT 
LINE DEVELOPMENT 

106 

[16] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using 
Dependency Models to Manage Complex Software Architecture”, 
Proc. 20th Annual ACM SIGPLAN Conf. on Object Oriented 
Programming Systems Languages and Applications, ACM, 2005, pp. 
167-176. 
[17] SCons website, http://www.scons.org, last visited 10-02-09. 
[18] M. Shaw, and P. Clements, “Toward boxology: Preliminary 
classification of architectural styles”, Proc. 2nd Int. Software 
Architecture Workshop, ACM, 1996, pp. 50-54. 
[19] D. Soni, R.L. Nord, C. Hofmeister, “Software Architecture in 
Industrial Application”, Proc. 17th Int. Conf. on Software Engineering 
(ICSE’95), ACM, 1995, pp. 196-207. 
[20] SourceMonitor, Campwood Software website, 
http://www.campwoodsw.com, last visited 22-01-2009. 
[21] H. Unphon, and Y. Dittrich, “Organisation matters: How the 
Organisation of Software Development Influences the Development of 
Product Line Architecture”, Proc. IASTED Int. Conf. on Software 
Engineering, Innsbruck, Austria, Feb. 2008 , pp. 178–183. 



9 
 

 
 

SOFTWARE ARCHITECTURE AWARENESS IN 
SOFTWARE PRODUCT EVOLUTION 

 
 

Hataichanok Unphon and Yvonne Dittrich 

IT University of Copenhagen, 

Rued Langgards Vej 7, DK-2300, Copenhagen S, Denmark 
{unphon, ydi}@itu.dk 

ABSTRACT. Software architecture has been established in 
software engineering for almost 40 years. When developing 
and evolving software products, architecture is expected to 
be even more relevant compared to contract development. 
However, the research results seem not to have influenced 
the development practice around software products very 
much. The architecture often only exists implicitly in 
discussions that accompany the development. Nonetheless 
many of the software products have been used for over 10, 
or even 20 years. How do development teams manage to 
accommodate changing needs and at the same time 
maintain the quality of the product? In order to answer this 
question, semi-structured interviews were conducted in 
order to find out about the wide spectrum of architecture 
practices in software product developing organisations. Our 
results indicate that a chief architect or central developer 
acts as a ‘walking architecture’ devising changes and 
discussing local designs while at the same time updating his 
own knowledge about problematic aspects that need to be 
addressed. Architecture documentation and representations 
might not be used, especially if they replace the feedback 
from ongoing developments into the ‘architecturing’ 
practices. Referring to results from Computer Supported 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

108 

Cooperative Work, we discuss how explicating the existing 
architecture needs to be complemented by social protocols 
to support the communication and knowledge sharing 
processes of the ‘walking architecture’. 

 

KEYWORDS 

Cooperative and human aspects, software architecture, architecture 

knowledge management, qualitative empirical studies 
 

1. Introduction 
Software products are programs that are used by more than one 

organisation. They are often configured and customised to fit with the 
specific use context. They are long-living; often evolving over several 
decades. Bug fixes and upgrades are delivered on a regular basis. The 
study presented here has been motivated by research with several 
product developing companies [25, 26, 70]. Though especially for 
software products that need to evolve to keep up with technical and 
application domain developments the architecture should be an 
important asset, our previous research showed that the companies we 
have been in contact with did not have a formal architecture process. 
Nonetheless, the software was successful over long periods of use and 
evolution. So our questions were: how do these companies manage to 
maintain the evolvability of their products over a long life-time?; Are 
the development teams aware of the architecture of their product? If 
yes, how does the architecture knowledge become influential in the 
development, and how is the architecture updated in the ongoing 
evolution? 

The notion of awareness was first used by Heath and Luff in their 
analysis of the cooperation of line controllers and Divisional 
Information Assistants in line control rooms of the London 
underground [29]. Through both monitoring common displays and each 
other’s activity, they managed the common tasks–advising train drivers 
and informing passengers about delays–with little explicit coordination. 
Even the reactions of each colleague was monitored so that the missing 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

109 

of a necessary reaction could be caught, which then caused either a 
more emphasised behaviour or if necessary explicit coordination. Since 
then, such heedful situated coordination has been reported from a range 
of activities and resulted in specific awareness support in groupware 
applications [24]. Schmidt remarks on the topic in an article for a 
special issue of CSCW journal: awareness is a substantiation of an 
attribute of an activity [60]. Someone is acting in awareness of the 
activity of others and of changes in the context. The issue then is to 
understand what the coordination or awareness mechanisms in play are, 
and how they can be supported. In other words, what are the clues a co-
operator is reading, how does he or she make their own actions 
accountable to the surroundings, and what are the means and protocols 
in play? 

Applying the concept of awareness on software architecture 
indicates a focus on the daily use of architectural knowledge to a.) 
make changes to a module that might have implications on another’s 
code – that is changes the interface – visible, b.) monitor changes that 
are relevant for the task at hand, and c.) monitor changes to the code, 
the requirements, and the context that makes it necessary to change the 
architecture and thus change the design and implementation of the 
different modules. 

The article reports results of an interview study. Though awareness 
mechanisms in action need to be observed in practice, interviews 
provide the possibility to compare the practices reported about different 
companies, and thus give an indication of whether or not we are 
looking at a wider spread phenomenon. We interviewed members of 
eight software developing organizations in five countries (i.e., Belgium, 
China, Denmark, Germany, and Switzerland). Each organisation has 
ongoing software product development. The interviews were done and 
analysed in a grounded theory manner. The motivations of applying a 
grounded theory approach was to not only collect information of what 
is going on in the companies, but also what motivates different 
practices, and how they depend on each other. 

Our results indicate that the industrial practice in most cases is not 
what is recommended by applicable textbooks. Nonetheless, the 
structure of software products is regarded as an important asset of 
development. Rather than documenting it in a formal way, most 
companies rely on what we’ve begun to call a ‘walking architecture.’ 
This is a key person, or a number of key persons, who maintain and 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

110 

update the structure of the software, and are involved in discussions of 
changes motivated in the development, or by new requirements, and 
who introduce newcomers to the structure of the software. 
Representations of the architecture thus are temporary and partial, e.g., 
sketches on whiteboard and scrap paper used in a specific situation. 
The result of this practice is not only the distribution of architectural 
knowledge to the development team, but also an update of the chief 
architect’s knowledge on the issues the developers meet when they 
develop. 

We argue in our discussion that software architecture literature, so 
far, has underestimated this feedback, and that here maybe we can find 
reasons for the lack of appreciation of recommended software 
architecture methods in industry. By using the awareness concept from 
CSCW when discussing our findings, we highlight the importance to 
focus not only on documentation and tools when improving 
architectural practices, but also on the development of social protocols 
around such methods and tools. 

In the next section, we discuss related literature on software 
architecture and software evolution, but also on knowledge 
management in software engineering and the concept of awareness that 
originated in the discourse of computer supported cooperative work 
that has been adopted in research on distributed software engineering. 
Section 3 shows research methodology. Section 4 elaborates on 
interviewees and their companies, then briefly describes interview 
guideline. Section 5 shows an analysis of software architecture 
awareness. Section 6 is discussion. Section 7 is conclusions. 

 
2. Architecture, knowledge, and awareness 

 
This section introduces the research we build upon and contribute 

to. The section starts with discussing the notion of software product 
architecture and evolution, then discusses knowledge management in 
software engineering and the notion of awareness which stems from the 
discourse on computer supported cooperative work. 

 
2.1. Software architecture 

In programming, the term architecture has been used since the late 
1960’s [7]. In the early 1970s, Parnas contributed many of the 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

111 

fundamental tenets and principles behind software architecture [52-55]. 
The report and book by Garlan and Shaw [18, 62] not only redefined 
software architecture overall, but also introduced a number of 
architectural styles and reference architectures. They introduced the 
notions of components, connectors and constraints, emphasised the 
notion of the design rational, and illustrated how architectural 
representations can improve the understanding to complex software 
systems. 

Software architecture is meant to serve a number of purposes: as it 
decomposes the software into components, it helps to handle 
complexity in a divide and conquer manner; the decomposition serves 
also as a base to structure the implementation work into manageable 
chunks assigned to individuals or small teams; it provides a base to 
analyse and assess non-functional requirements of the software to be 
built, or of the changes introduced [3, 33, 64]. 

The practices proposed heavily rely on written representations, and 
when necessary, (semi-) formal notations, e.g., [1, 2, 5, 14, 15, 19, 20, 
41, 42, 44, 63, 67, 74]. The notations provide an explicit way of 
specifying the elements and their connections used in the architecture1. 
Over time, as the software evolves, the code structures become less 
tightly coupled with the design architecture (a.k.a. the code view vs. the 
module view [32]). The design architecture has layers, modules and 
dependencies, but the source code architecture contains folders and 
files, as well as, static and dynamic relationships between different 
classes. Keeping the correspondence between design architecture and 
code architecture alive requires a rigorous engineering discipline. 

 
2.2. The role of the software architect 

 
Literature places the main responsibility for the maintenance of the 

architectural structure of a software product with the software architect. 
The role of the software architect has been discussed mainly based on 
substantial experience. The roles and responsibilities of an architect or 

                                                            
1 Tools developed on top of those notations generate part of the implementation based 

on the architecture. In this way, the organisation of source code—when developed 
that way from scratch—conforms to major design elements and the relationships 
among them. Model Driven Development (MDD) aims at supporting the evolution 
through these tools [9, 23]. 

 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

112 

an architecture team listed in [34] are (i) defining the architecture of the 
system; (ii) maintaining the architectural integrity of the system; (iii) 
assessing technical risks; (iv) working out risk migration 
strategies/approaches; (v) participating in project planning; (vi) 
proposing order and content of iterations; (vii) consulting with design, 
implementation, and integration teams; and (viii) assisting product 
marketing and future product definitions. The definition of software 
architecture includes all the usual technical activities associated with 
design: Understanding requirements and qualities; extracting 
architecturally significant requirements; making choices; synthesizing a 
solution; exploring alternatives and validating them; etc. For certain 
challenging prototyping activities, architects may have to use services 
of software developers and testers. The maintenance of the architectural 
integrity takes place through regular reviews; writing guidelines, etc. 
and presenting the architecture to various parties as different levels of 
abstraction and technical depth. For many effort estimation aspects, or 
for the planning of distributed development, managers need the 
assistance of architects. Because of their technical expertise, architects 
are drawn into problem-solving and fire-fighting activities that are 
beyond solving strictly architectural issues. The architects have insights 
into what is feasible, doable, or ‘science fiction’ and their presence in a 
product definition or marketing team may be very effective. However, 
good architects should bring a good mix of domain knowledge, 
software development enterprise, and communication skills. 

Fowler [17] categorised architect’s roles into two types: Architectus 
Reloadus and Architectus Oryzus. Architectus Reloadus is an architect 
who makes all the important decisions. The architect in this type does 
this because a single mind is needed to ensure a system’s conceptual 
integrity, and perhaps because the architect doesn’t think that the team 
members are sufficiently skilled to make those decisions. Often, such 
decisions must be made early on so that everyone else has a plan to 
follow. Architectus Oryzus is an architect that must be very aware of 
what is going on in a project, looking out for important issues and 
tackling them before they become a serious problem. The most 
noticeable part of the work for Architectus Oryzus is the intense 
collaboration. By way of illustration, in the morning, the architect 
programs with a developer, trying to harvest some common locking 
code. In the afternoon, the architect participates in a requirements 
session, helping explain the technical consequences of ideas, such as 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

113 

development costs, in non-technical terms. The most important activity 
of Architectus Oryzus is mentoring the development team to raise their 
level so that they can take on more complex issues. Improving the 
development team’s ability allows an architect much greater leverage 
utilizing the entire team rather than being the sole decision maker and 
running the risk of becoming an architectural bottleneck. This leads to 
the rule of thumb that an architect’s value is inversely proportional to 
the number of decisions he or she makes. 

Based on more than ten years of experience, Kruchten has 
recommended a simple time-management practice for architects [35]. 
The recommended time ratio allocates 50% internal, 25% inward, and 
25% outward activities. The internal activities focus on architecting per 
se (architectural design, prototyping, evaluating, documenting, etc). 
The inward and outward refer to cooperation and communication with 
other stakeholders that the architects interact with. The inward is to get 
input from the outside world. For example, listening to customers, 
users, product manager, and other stakeholders (developers, 
distributors, customer support, etc.), and learning about technologies, 
other system’s architecture, and architectural practices. The outward 
can be seen as providing information or helping other stakeholders or 
organisations (e.g., communicating architecture, project management, 
or product definition). The 50:25:25 time-management ratio helps the 
architects to be aware of the risks of falling into one of the following 
situations: creating a perfect architecture for the wrong system, creating 
a perfect architecture that’s too hard to implement, architects in their 
ivory tower, or absent architects. 

 
2.3. Software product evolution and architecture 
 

The intrinsic evolutionary nature of real-world computer usage and 
of software embedded in its use context was originally recognised in [4, 
37]. Lehman defines E-type systems as operating in supporting an 
activity of the real world. The dynamism of the real world induces 
software to be continually changed, updated, and evolved over its life-
time. As the software evolves, its architectural integrity tends to dilute. 
For example, source code architecture drifts from its design 
architecture [46]. The gap between the source code and the design 
architecture hinders program understanding which leads to 
development and maintenance activities that are increasingly difficult 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

114 

and highly error prone [68, 69]. However, the effort emphasised on 
updating the software in order to improve upon the future 
maintainability without changing its current functionality, the so-called 
‘preventive maintenance’ [39] (a.k.a. anti-regressive activity [38], or 
refactoring [16]), is not highly prioritized [40, 59]. Even though 
preventive maintenance offers significant improvements in the 
simplicity of conducting maintenance interventions in the long term, it 
brings little to no immediate benefits [43]. As a result the software 
becomes more difficult to maintain. 

Decisions made during initial software development affect the 
ability of organisations to successfully perform software change. In 
particular, the selection of architecture could either aid or hinder 
changes made through evolution [43]. In software product line 
engineering, most case examples [6, 8, 73] report on the strong role of 
its architecture. The case examples rely on companies developing 
product lines of technically embedded systems. The product line 
designs are constrained by hardware and mechanical parts whose 
specification and variability are known in advance. Product line 
architecture is a common architecture for a set of related products or 
systems developed by an organisation. Designing such an architecture 
supports variability by taking the diversity of the technical environment 
into account. Once the first version of the product line architecture, 
along with the sets of components and products have been developed, 
the evolution of these assets will become the primary activity. 

Most of the companies we interviewed develop socially-embedded 
software2. The variability needed to accommodate is provided by 
configuration mechanisms [57]. However, this variability does not 
completely resolve the need of evolution, as it only implements support 
for anticipatable variability. To react on un-anticipated, evolving needs, 
the software itself evolves over time. 

 
2.4. Knowledge management 

 
Knowledge management has been a major topic in software 

engineering, even before the concept had been coined by Nonaka at the 
beginning of the nineties [49, 50]. In their seminal article ‘The rational 

                                                            
2 Socially-embedded software refers to software that can be modelled intensively 

according to the environment and practices of its end-users [72]. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

115 

design process: Why and how to fake it’, Parnas and Clement argue 
that though to design software by deriving the design and source code 
from the requirements is not possible, the software team should aim at 
producing the documentation that mirrors such a rational design 
process [56]. The reason is to document the reasoning and rationale 
behind design decisions in case revisions become necessary, and in 
order to have suitable documentation for the maintenance team. Today 
this argument could be related to what Dingsøyr and Conradi call 
codification approaches to knowledge management [13]: such 
approaches emphasis the codification, digital storage, and retrieval of 
information representing relevant knowledge. Complementary 
personalisation oriented approaches emphasize face-to-face 
communication between people in-the-know and who need to know. In 
his article ‘Programming and Theory Building’, Peter Naur [48] 
emphasises the importance of participation in the development team to 
understand the rationale behind a design. Only through participation in 
design and development can help software engineers to understand how 
the software models its problem domain and supports the needs of its 
users. 

Though software engineering from the beginning emphasised the 
importance of documentation for the development process, and 
therefore exhibited an affinity to codification oriented approaches to 
software engineering, empirical research indicates that face-to-face 
knowledge sharing is at least as important. In a dialogue situation, 
knowledge can be tailored to the context in which it is needed. Through 
this communication, the software engineer who shares his knowledge, 
also updates his knowledge. 

The discussion on software architecture knowledge emphasises the 
codification, storing and retrieval of information on architecture. 
However, this codification strategy does not work in practice [36]. The 
people involved in the architecting process (who own the knowledge) 
often do not document it [28]. The reasons are a lack the motivation to 
document and maintain architecture knowledge, as the benefits do not 
seem substantial enough to justify the effort; the short-term interest in 
the project becomes more important than the long-term architectural 
knowledge reuse; developers are absorbed in the creative flow of 
design and thus don’t reflect on long term impact of decisions; lack of 
training. Even worse, when the architecture knowledge is documented, 
it’s often not sufficiently shared within the organisation. As examples 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

116 

[28] gives (i) the knowledge is not disseminated to the appropriate 
stakeholders; (ii) the recipients of knowledge don’t use it in their own 
tasks, either intentionally, or because there is no provision in the 
processes; (iii) it’s cumbersome to search and locate the appropriate 
knowledge and adapt it in one’s needs. 

 
2.5. Awareness in software engineering 

 
The concept of awareness as developed in the introduction 

highlights what can be called a situated socialisation-based knowledge 
sharing mechanism. In software engineering, the notion of awareness is 
so far mostly used to address coordination of distributed development. 
Storey et al. [66] give an overview of different tools that are designed 
to help programmers monitor changes to the common software under 
development that might become relevant for their own programming. 
Particularly, in spatially distributed development, parallel ongoing 
work cannot be monitored by means of ‘overhearing’ design 
discussions taking place in the vicinities. Also, meetings, such as daily 
stand-up meetings, that are designed to provide a project team with a 
development overview, with respect to the common product, cannot 
help this need. Tools visualising social-technical dependencies, and 
thus helping to contact the correct person (e.g. [11]), are designed to 
address this lack. Such tools can be understood as support for fine-grain 
knowledge sharing. Recent research, however, indicates that technical 
support addresses only one side of the problem: awareness problems 
can also occur in cases of mismatched social protocols [10]. 

The importance of such protocols has already been indicated in the 
early studies on the London underground control room. ‘However, it is 
clear that whilst certain activities are primarily accomplished by 
specific categories of individuals, the in situ accomplishment of these 
tasks is sensitive to, and coordinated with, the actions and 
responsibilities of colleagues within the immediate environment. The 
competent production of a range of specialised individual tasks within 
the Control room is thoroughly embedded in, and inseparable from, a 
range of socio-interactional demands’ [29, p. 82, highlighting by the 
authors]. This interlacing of their own and their co-workers activities is 
not only guided by a codex of explicit rules, but depends on 
competence with respect to understanding established practices [29, p. 
78]. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

117 

The usefulness of the technology that is the base of this interaction 
‘relies upon a collection of tacit practices and procedures through 
which Controller and Divisional Information Assistant (DIA) 
coordinate information flow and monitor each other’s conduct [29, p. 
87, see also 60]. 

With the term ‘practice,’ we describe a common way of acting 
acknowledged by the community that shares the practice [27, p. 1296]. 
A group of co-operators maintains the common practice through 
reproducing it in their every day actions. Practice thus is distinguished 
from ad-hoc behaviour, which as such is only perceivable by its 
deviation from both the formalized rules and the established practice. 
Such practices as well as explicitly agreed on procedures have been 
also called social protocols [21, 61]. They are developed and 
maintained through ongoing ‘articulation work’ or ‘meta-work’ of the 
members and can only to some extent be designed from the outside. 

So far, only one project addresses awareness issues with respect to 
software architecture: application programmer interfaces (APIs), the 
interfaces that make the functionality of one module available, are 
discussed in a way that can be regarded as implementing the material 
side of an awareness mechanism [12]. Often when APIs are used to 
indicate boundaries between development groups, corresponding social 
protocols are established indicating that software teams who implement 
functionality using the module are informed if the API needs to change. 
The article, however, does not refer to the role of the architecture, nor 
the everyday work of the software architect. 

 
3. Research methodology 

 
The study has been designed as triangulation for in depth 

ethnographically informed studies in two organisations. Being aware of 
those architectural practices in situ would be best observed by 
participatory observation, we therefore decided for an interview study. 
The interviews [58] aimed at mapping out the architectural practices as 
well as documents and artefacts and their usage. The questions cover 
business contexts of the software products, development process, 
architecture, dimension and use of the architecture, cooperation of 
development, and awareness of change in the software, software 
product line, and software evolution. Our interviews focused on 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

118 

understanding concrete practices rather than a polished record, as we 
focused on both the tools used and concrete occasions. We transcribed 
the interviews and analysed them in a grounded theory manner. This 
section is outlined as follows: Sub-section 3.1 presents grounded 
theory; Sub-section 3.2 presents interviews as data collection; and Sub-
section 3.3 shows analytic process. 

3.1. Grounded theory 

Among flexible research strategies, grounded theory claims that it 
is useful in new, applied areas where there is a lack of theory and 
concepts to describe and explain what is going on. Grounded theory 
approach was derived from a combination of Chicago style 
Interactionism and Pragmatism [22], in terms of data collection and 
analysis. Data analysis focuses upon concepts. It is achieved by 
carrying out three kinds of coding: open coding to find concepts; axial 
coding to interconnect them; and selective coding to establish core 
concept(s). The result of this process of data collection and analysis is a 
substantive theory relevant to a specific problem, issue, or group [58, 
see also 17]. 

In grounded theory, data analysis is an iterative process. Open 
coding results in a set of initial concepts about the phenomenon. For 
each concept, sub-concepts referring to properties and dimensions are 
established. For axial coding, the data is assembled in relation to the 
concepts developed in the open coding. Selective coding central 
phenomenon, or a core concept, explores causal condition, or concepts 
of conditions that influence the phenomenon. In the selective coding 
phase, researchers integrate the concepts of the axial coding in a model 
that will reveal conditional propositions or hypotheses in the selective 
coding phase. Data collection and analysis continues until no new 
concepts and relations are found in the new data. 

According to Robson [58], typical features of grounded theory are 
(i) applicable to wide variety of phenomena; (ii) commonly interview-
based; and (iii) a systematic, but flexible research strategy which 
provides detailed prescriptions for data analysis and theory generation. 

The problems in using grounded theory are (i) that it is not possible 
to start a research study without some pre-existing theoretical ideas and 
assumptions; (ii) there are tensions between the evolving and inductive 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

119 

style of a flexible study and the systematic approach of grounded 
theory; (iii) it may be difficult in practice to decide when categories are 
‘saturated,’ or when the theory is sufficiently developed; and (iv) 
grounded theory has particular types of prescribed categories as 
components of the theory which may not appear appropriate for a 
particular study. 

3.2. Interviews 

For the interviews, we contacted eight software product 
development organisations in five countries, i.e. Belgium, China, 
Denmark, Germany and Switzerland. Each organisation had its own 
ongoing software product development. Sizes of the interviewed 
organisations ranged from a three-person organisation, to an 
international organisation with more than 20,000 employees. The 
sample included normal industrial product development as well as an 
open source project lead by a governmental agency, a research 
institution, and a semi-private research and consultancy company. 
Interviewees included a managing director, a chief technical officer, a 
chief architect, a senior consultant, a group leader, and a number of 
software developers. Most of the interviewees did not want to disclose 
their name and organisation name, thus, we present them under 
assumed names. 

We prepared an interview guideline with two parts, i.e. a number of 
open questions, and a series of multiple-choice questions. The free 
response questions addressed the six categories listed in the 
introduction of this section. The fixed questions were asked after the 
open question. The answers thus quantified what had been discussed 
during the interview. 

The interviews were conducted from late 2007 until early 2008. The 
duration of each interview varied between 30 minutes and three hours, 
depending on the interviewee. The interviews were audiotaped and 
transcribed. The transcription and analysis of the interviews were 
checked by the interviewees. Apart from that, we also provided 
confidentiality agreements for the interviewed organisations. 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

120 

3.3. Analytic process 

The analysis process started with reading each transcription in order 
to get a feeling of what the interviewees were telling. We came back 
and listened to the voice recordings of the interviews while reading the 
transcriptions. The first tentative concepts were presented as memos 
and a springboard of our analysis. These codes were then highlighted in 
the transcription together with words or terms that supported properties 
and dimensions of the concept. During this work, higher-level 
categorisations, or lower-level explanatory concepts became visible. 
With this list of concepts and codes, we proceeded to the next 
transcription. New concepts appearing in later interviews were added to 
the coding scheme which required returning to previous interviews. 
This part of the analysis process continued until we were satisfied that 
we had accounted for the contents of the interview. 

Relations between different concepts became visible. In order to 
fully understand concepts, we explored the semantic and process 
context of the concepts in the interviews. For the semantic context, we 
explored conditions and relationships between the concepts the 
interviewees expressed in the interviews. For the process context, we 
explored how interviewees responded to concepts through action, 
interaction, and emotions. That way, we further explored the meaning 
of the concepts and linked the concepts to one another. 

We represented the relationship between major categories and 
subcategories as the foundation for the theoretical structure that we 
iteratively refined by going back to transcripts and memos. Figure 1 
shows such a representation of how the categories referred to each 
other. Section 5 presents the central concepts, and also indicates how 
they relate to each other. Section 4 provides the background of the 
organisations and the results of the closed questions asked at the end of 
the interview. 

3.4. Credibility 

The strategies to minimise possible threats to validity [58] and to 
enhance trustworthiness shows as follows: 

Triangulation. The term triangulation, borrowed from navigational 
science and land surveying, referred to using two or more sources to 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

121 

achieve a comprehensive picture of a fixed point of reference [51 , 
p.186]. The data were triangulated from 13 interviews (given by 15 
interviewees from eight different product developing organisations). 
The interview study was stop when concepts, categories and theoretical 
structure were saturated. 

Member checking. All interviewees were required to check the 
transcription of their interview before the data was analysed. This 
article was reviewed by the interviewees before submission. 

Audit trail. All interviews were audio-taped and transcribed. During 
data collection and data analysis, drawing artefacts and diagrams on the 
whiteboard were photographed. Detailed analytic and self-reflective 
memos were documented. 

 
4. Background 

 
This section describes the base of the analysis. Sub-section 4.1 

presents interviewees and organisation profiles. Sub-section 4.2 
outlines dimensions, sophistications, and states of architecture. 

 
 

Figure 1. Early diagram over analysis concepts regarding 
architecture awareness 

 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

122 

4.1. Interviewees and organisation profiles 

There are 15 interviewees from eight organisations developing and 
maintaining their own software products. Table 1 gives an overview 
over interviewees and companies. Note that the order of interviewees 
follows the chronological order of the interviews. 

The first company is EW, a Belgian government agency in the 
Walloon region. The main task of EW is to simplify the lives of 
citizens and enterprises that need to communicate with public entities. 
EW develops and acquires 20 software products and projects for e-
government, and on-line public administration. EW has a total of 22 
employees, ten of whom are in IT department. EW employs the core 
contributors for an open source project following a product-line 
approach that is developed together with a number of IT people in 
different municipalities. We interviewed Gaëtan, a senior developer 
educated in computer science who has been working at EW for two 
years. He is the main developer of the open source project and 
cooperates with a Belgian university to explore Model Driven 
Development (MDD), along with feature modelling techniques. The 
project started with evolving a product family for advanced meeting 

Table 1. Summary of sampled organisations 

No. Company 
name Software product industry Total 

employees Interviewees 

1. EW E-government applications 20-22 one senior software 
engineer 

2. ABC 

Hydraulic simulation 

800 

five senior software 
engineers, and two 
offshore junior 
software engineers 

3. OMD 
Business identity 
management 72 

one junior software 
engineer and one 
senior consultant 

4. ARG CRM and telecommunication 3 one managing 
director 

5. GDT 
Computer security 

51-200 
one senior software 
engineer/chief 
architect 

6. CO Visual office solutions 10 one chief technology 
officer 

7. XYZ 
Internet searching and 
organising universal 
information 

20,000 
one software engineer 

8. DZ Controlling cryogenic 
processes for colliders 1,001-5,000 one group leader and 

one software engineer 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

123 

management functionality, like meeting workflow specifications and 
document generation. 

The second organisation is ABC, an independent research and 
consultancy in the field of water, environment, and health. The 
company has approximately 800 employees, and is based in more than 
25 countries worldwide with their headquarters in Denmark. ABC 
develops more than 15 commercial software products supporting water 
resources management, with the main expertise in hydrodynamic 
simulation. Some of the software products have been evolved for more 
than 20 years. Of the 35 developers, we interviewed five senior 
developers at their headquarters, and two offshore developers in China. 
One of the senior developers is the head of development and 
responsible for all products. The rest are responsible for different 
products, shown as ABC product#1-5 in Table 2. The five senior 
developers are educated in hydraulic engineering, while the two 
offshore developers are educated in IT. One of the interviewed 
developers is working closely with us on a project that re-engineers a 
core computational part of three existing products using a software 
product line approach. However, architectural tools and practices were 
introduced to the project after this interview study. 

The third organisation is OMD, a Danish founded company that 
provides software and consultancy services for identity management, 
specifically delivering tools for Role Based Access Control (RBAC) 
and assisting organisations to comply with IT access regulations. 
Established in 1999, OMD has operations in Europe, Africa, Australia 
and North America, delivering its solution via a network of skilled 
partners and system integrators. The company has 72 employees: two 
in USA, three in Germany and the rest in Denmark. The IT team 
consists of 18 people, 12 of whom are developers. The company offers 
three standard software products of which only two are maintained. We 
interviewed two employees, to be hereafter named as Santiago and 
Neeraj. Santiago is a senior consultant, specialised in Business Process 
Management and educated in Economics. Neeraj is a junior software 
developer educated in IT. 
The forth organisation is ARG, a private consultancy company in the 
field of customer relations management and telecommunications. For 
the past two years, ARG has been developing software products on top 
of call recording systems and CRM systems. We interviewed Ole, a 
managing director and a founder of ARG. ARG’s office and 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

124 

development centre is based in Germany. The company has three 
employees educated in computer science: Ole, and two developers. Ole 

Table 2. The presence of architecture with respect to software products 
 

    Software products 
      

E
W

 P
ro

du
ct

s 

A
BC

 P
ro

du
ct

 #
1 

A
BC

 P
ro

du
ct

 #
2 

A
BC

 P
ro

du
ct

 #
3 

A
BC

 P
ro

du
ct

 #
4 

A
BC

 P
ro

du
ct

 #
5 

O
M

D
 P

ro
du

ct
s 

A
R

G
 P

ro
du

ct
s 

G
D

T 
Pr

od
uc

ts
 

C
O

 P
ro

du
ct

s 

XY
Z 

Pr
od

uc
t 

D
Z 

P
ro

du
ct

s 

In somebody’s head X  X  X X   X X X X 
Documented in folder, 
binder, or internet X X  X  X  X X  X  

In which form 
is the 

architecture 
presented in 
the process? 

Readily available in 
workspace  X    X X  X   X 

Text X  X X  X  X X   X 
Source code X X X X X X X X X X X X 
Boxes and arrows X X  X    X X X   
Class, packages, and 
diagrams X X X   X X X  X   

Architecture Description 
Language (ADL) X            

How is the 
architecture 

represented? 

Different views X      X   X   
Design  X  X X X X X X X  X X 
Communication between 
developers X X  X X X X X X X X X 

Communication about 
changes X X  X X X  X X  X X 

Communication when 
designing new features X X  X X X X X X  X X 

Communication for bug 
fixing X   X   X X   X  

As feedback for ongoing 
implementation X   X  X     X X 

Distribution of work and 
responsibility X  X X X X  X X X X X 

How the 
architecture 

representation 
is used? 

Generation of diagrams X     X X X     
Never   X X X     X X X 
Regularly controlled X X    X X X X  X X 
Continuously  X     X  X   X 
Related to an overall plan 
and release plan X      X      

D
iff

er
en

t d
im

en
si

on
s 

of
 a

rc
hi

te
ct

ur
e 

re
pr

es
en

ta
tio

n 
an

d 
us

ag
e 

How is the 
architecture 

representation 
updated? 

Only when problem occurs X X    X     X  
Overall X X X X X X X  X X X X 
Classes X X  X X X X X  X X  
Styles X X        X   
Patterns  X X    X X X  X X  
Design patterns X      X X  X X X 

To
 w

ha
t d

et
ai

l i
s 

th
e 

ar
ch

ite
ct

ur
e 

re
pr

es
en

te
d?

 

Various views X X         X  
Implicitly  Source code X X X  X X   X X X X 

Diagram X X X   X X  X X X  Explicitly 
Textual description X        X    

H
ow

 is
 th

e 
ar

ch
ite

ct
ur

e 
ex

pr
es

se
d?

 

Requiring substantial knowledge of 
implementation base/pattern architecture X    X X X  X X X X 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

125 

invented and designed the prototype of the systems. He’s the only 
person in the company that has domain knowledge in the field of 
telecommunication. 

The fifth organisation is GDT, a security software company 
headquartered in Germany. The company size ranges between 51-200 
employees, while 10-11 of them are developers. GDT offers ten 
security software products for home users and businesses. Those 
software products have been in development for more than 18 years. 
We interviewed Hans, a senior software engineer and chief architect at 
GDT. Hans has been working at GDT more than eight years. 

The sixth organisation is CO, a European software publisher 
founded in 1999 by Belgian Internet pioneers who specialize in virtual 
office solutions. The organisation is a small company having an 
approximately ten employees, three of whom are developers. We 
interviewed Guillaume, a back-end developer and a chief technology 
officer (CTO) who has been working with the company for more than 
nine years. 

The seventh organisation is XYZ, one of the world’s leading 
internet companies that provides searching, organises information, and 
makes it accessible. XYZ has provided dozens of products since the 
late nineties. The company has approximate 20,000 employees. 
Although, XYZ is a large company, the size of the development team is 
kept between 4-6 people. The interaction between teams is the 
responsibility of architects and product managers. Team members are 
changed regularly depending on the need of products and projects. The 
headquarters is located in the USA, but the company has a software 
development centre in Switzerland where we interviewed Marie, a 
software engineer educated in computer science. At the time of the 
interview, she was working on a two-year-old product. Because 
development processes and practices at XYZ are varied from team to 
team, the XYZ product shown in Table 2 refers only to the product that 
Marie is working with. 

The eighth and last organisation is DZ, based in Germany. It is one 
of the world's leading centres for the investigation of the structure of 
matter. DZ develops, runs, and uses accelerators and detectors for 
photon science and particle physics. The company ranges between 
1,001-5,000 employees who are allocated to various groups. Each 
group is responsible for its own projects and products. The products are 
all open-source and are often developed together with other companies 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

126 

and institutes worldwide. We interviewed two employees, i.e. Jan and 
Matthias. Matthias is a group leader who had proposed his idea to 
develop the system which was established as a project before Jan, a 
software engineer, joined the group. The project was to evolve two 
products that needed to be used together for the system to control 
cryogenic processes for the colliders. One of the products had been in 
use for 20 years, and another had been in development for one year. 
Currently, both products are developed by 2-2.5 developers and are 
assembled in 15-20 applications. 

4.2. The presence of software architecture 

This study is based on interviewees’ perception on software 
architecture. We wanted to know about their architectural 
understanding and how the software architecture is present in the 
development practice: “What is your understanding of software 
architecture?” The answers were given differently. The term software 
architecture had been explained using a variety of buzzwords, e.g. a 
blue-print/skeleton of software, components, design of source code, 
high-level patterns/abstraction, 4+1 views, structuring, assembling 
building blocks, stack of technology, layering, dependencies, plug-ins, 
design patterns, UML diagrams, overall description of the 
communication of the software, and overview for the development 
team. The implications of what interviewees understood about software 
architecture ranged from source code to human activities. 

Table 2 summarises the results with respect to software products 
that interviewees were working with. Product pseudonyms are used to 
represent the software products as company-based products because of 
confidential information. The presence of architecture is categorised 
into Different dimensions of architecture representation and usage; To 
what detail is the architecture represented?; and How is the 
architecture expressed?. The cross sign (X) denotes existence of the 
item with respect to software product names. This is rather coarse 
information and has to be interpreted together with the qualitative 
analysis of section 5. 

The first category, different dimensions of architecture 
representation and usage, are further categorised into In which form is 
the architecture presented in the process?; How is the architecture 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

127 

represented?; How the architecture representation is used?; and How 
can the architecture representation be updated?. For example, the 
architecture for EW products is presented in the form of in somebody’s 
head, and documented in folder, binder, or internet, but is not readily 
available in the workspace. The architecture for EW products is 
represented in text, source code, boxes and arrows, class and package 
diagrams, Architecture Description Language (ADL), and provides 
different views. The architecture representation for EW products is used 
in design, communication between developers, communication about 
changes, communication when designing new features, communication 
for bug fixing, as feedback for on going implementation, distribution of 
work and responsibility, and generation of diagrams. The architecture 
representation for EW products is updated, regularly controlled, 
related to an overall plan and release plan, or only when problem 
occurs. The many marks in EW’s column indicates an elaborated 
practice which might have been due to the cooperation with the local 
university. 

The next category is To what detail is the architecture represented? 
containing five levels: overall, classes, styles, patterns, design patterns, 
and various views. For example, the architectures of ABC product#1-5 
are all detailed at overall level. The architecture of ABC product#1 is 
detailed at the levels of overall, classes, styles, patterns, and various 
views, but not design patterns. The architectures of ABC Product#3-4 
are detailed at the levels of overall and classes. The architecture of 
ABC Product#5 is detailed at the levels of overall, classes, and 
patterns. 

The last category is How is the architecture expressed? that is 
further categorised into implicitly, explicitly, and requiring substantial 
knowledge of implementation base/pattern architecture. For example, 
the architectures for OMD products are explicitly expressed using 
diagram and requiring substantial knowledge of implementation 
base/pattern architecture. 

Based on Table 2, the architecture is mostly presented in the 
process as a form in somebody’s head. All our interviewees report that 
the architecture is represented in the source code, but architecture 
description languages (ADLs) are hardly ever used to represent the 
architecture. The architecture representation is commonly used for 
design, communication between developers, communication about 
changes, communication when designing new features, and distribution 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

128 

of work and responsibility. Updates of architecture representation are 
almost equally distributed between never and regularly controlled. 
However, the updates rarely relates to overall plan and release plan. 
Most of the interviewees confirmed that the architectures are 
represented at the overall detail; only a few addressed styles and 
various views. The architectures are almost equally expressed implicitly 
in source code, explicitly in diagram and almost always requiring 
substantial knowledge of implementation base/pattern architecture. 
However, the architectures are rarely expressed explicitly in textual 
description. 

 
5. Analysis of interviews 

 
Our interview study focused on the real life application of 

architecture in daily development practice. Based on our interview data, 
we drew a diagram, as shown in Figure 1, to organise our data, 
concepts, categories, sub-categories, and the relationship between them. 
We continued comparisons of categories against actual data in order to 
substantiate possible explanations which resulted in the following sub-
sections: Sub-section 5.1 begins the analysis with target groups of 
architecture and their understanding levels in the architecture; Sub-
section 5.2 is documentation for the architecture; Sub-section 5.3 
explains how newcomers learn the architecture of software products; 
Sub-section 5.4 points out the role of architect(s); Sub-section 5.5 
shows communication channels that developers use for updating 
information about changes in their software products; Sub-section 5.6 
addresses the architecture with respect to evolvability and changes; and 
Sub-section 5.7 presents architectural problems as addressed by our 
interviewees. 

In the presentation, we use citations from the interviews to illustrate 
and support our analysis. These citations keep as much as possible to 
the original wording. We minimally edited them to for readability and 
Grammar. 

5.1. Architecture: who needs it and at what level? 

Throughout the software life cycle, development team members 
carry on their tasks depending upon their roles. Different team 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

129 

members use architecture in different ways in order to collaborate with 
others. The interviewees distinguished three groups, i.e. newcomers, 
developers, and chief architects. The newcomers need architecture as a 
springboard to understand the software that they are going to develop. 
The developers share and accumulate architectural knowledge, in 
particular, the part of architecture that they are responsible on a daily 
basis. The chief architect orchestrates all architectural activities based 
on their architectural knowledge. 

The different roles refer to the architecture on different levels of 
abstraction. These levels define a protocol on how to discuss and 
understand the architecture. Marie from XYZ company said: “Usually, 
we talk to each other verbally [face-to-face], and we can imagine 
[understand] because we know the code basis. When we do it on the 
team, we never go to class level. Otherwise, nothing will be done. We 
define the interface level, i.e. how do we talk to each other.” But not 
everyone will be able to look from a high-level abstraction point-of-
view. Guillaume, the CTO from CO company, told us when he 
reviewed his colleague’s work, the code worked fine, but it was not 
easy to understand. The main challenge was that it required a lot of 
abstraction to interpret. “You don’t have to tell how the code works in 
the [function name], but what it does. For example, yesterday, he 
[Guillaume’s colleague] wrote a function ‘setStyle’. What the function 
does is to change the style. But that is very low-level interpretation. In 
fact, at the high-level it is to add background to the menu and the exact 
name would be ‘setBackground’, not ‘setStyle’ … ..” The difference 
between levels of abstraction became visible again when we asked Jan 
and Matthias from DZ to draw and explain their architecture. They 
worked on the same product, but Matthias explained the architecture as 
the overall picture, while Jan explained what he was responsible for on 
the daily basis. 

5.2. Documentation 

Forms of documentation and how it was used was subject to each of 
the interviews. The code base presented throughout the interviews is 
regarded as the best and only up-to-date representation of de-facto 
architecture, whereas independent documentation is regarded as 
problematic because it is outdated quickly. 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

130 

5.2.1. Code base as actual documentation 
 
Source code is seen as ‘the’ actual documentation while the other 

kinds of documentation are informally produced to support situated 
discussion. However, UML diagrams are produced in small scale 
mostly by need, for example, to get feedback from other developers 
before implementation of a large component. Direct discussion with 
developers is more efficient. Many integrated development 
environments (IDEs) support synchronisation between UML and 
source code, however, the developers feel comfortable to start with 
programming. The developers have the impression that understanding 
and becoming familiar with UML diagrams takes longer than looking 
into source code. 

A common problem is a lack of documentation on the overview of 
a system, in particular a design rationale, and the description of the 
main interfaces or functions. A few documents are provided for 
newcomers to become familiar with architecture. Newcomers feel that 
comprehending systems from documents only, is hopeless, so they as 
well prefer to start with programming. 

When the source code becomes the actual documentation, the 
naming of classes, methods, or interfaces is extremely crucial for on-
going development. If the name is on the correct level of abstraction, it 
facilitates the other developers to understand the concept behind the 
name. The citation above by Guillaume shows that architects are well 
aware of this need and take care to implement it. Apart from the on-
going development, shared distributed development or end-users 
development also gain this benefit. 

5.2.2. The absence of a document 
 
Our interviewees give several reasons for the absence of explicit 

documentation. Some software products have been used more than 20 
years. When the products were first developed, the main purpose of 
development was to solve domain problems for a short time, thus, there 
was no effort on architectural documentation. When developers started 
with a small feature, they neglected to document, so when that feature 
grew bigger, documentation hardly ever existed. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

131 

Though a document might have been created, the effort of keeping 
the document up to date leads to maintenance neglect. Developers have 
the responsibility to document what they have been programming, but 
they are aware that their documentation will soon be out of date. Marie 
said: “Documentation is like […] cleaning. You have to clean 
regularly, but it will get dirty again. When we document, we know that 
the documentation will be out of date soon.” Maintenance and updating 
documents is a boring task for developers. The architecture document 
often has a simple notation or diagram using boxes and arrows, so it’s 
not convenient to update the diagram. Therefore, documentation 
diverges from what is actually present in the source code. 

In a complex and specialised domain area, e.g. hydraulic 
simulation, domain expertise is strongly required for developing a 
software product. Often, a developer is a domain expert rather than a 
software expert because it is a big task for the software expert to get 
familiar with the domain, so documentation is often neglected by 
domain experts. This in turn becomes a problem. Our interviewees 
reported that even a developer with domain expertise could spend up to 
a year to fully understand and implement a new functionality in a 
software product. The main reasons are not only the complexity of 
software products building on top of a stack of technology, but also the 
unavailability of architecture documents. The architecture exists in 
somebody’s head rather than a written document. When a developer or 
an architect doesn’t document the current architecture before leaving a 
company, it causes problems for other developers who follow that 
architecture. 

5.3. Architecture knowledge acquisition: how newcomers learn the 
architecture 

A well-attuned team might not have any problems with informal 
architectural practices, so we asked specifically how new developers 
are introduced to software architecture. All our interviewees reported 
on their informal knowledge-sharing practices. In this sub-section, we 
show how architectural knowledge is acquired and developed by team 
members, discussed with a chief architect, intermixed with 
programming, and learning by experience. 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

132 

5.3.1. Discussion with a chief architect 
 

Throughout a software’s life cycle, a chief architect discusses with 
developers in order to update the progress of the tasks, and realise the 
changes in the architecture. Since tasks are clearly distributed based on 
architecture, each developer is responsible for his task, for example, 
making new features or adding some functionality. The chief 
architect’s discussions with developers ensure that they understand the 
tasks before they begin implementation. The chief architect often draws 
boxes-and-arrows or UML-like diagrams on a piece of paper, or 
whiteboard, or makes a Power Point presentation of a software 
prototype and its architecture. If the chief architect’s explanation is not 
precise, bad design decisions could result. In order to avoid that 
situation, one of ABC senior developers explained how he transfers 
architectural knowledge to the ABC off-shore developers: “We go to 
China and explain this [diagram] to them. Then we show them how 
things [architecture] are now and explain […] what we want to add to 
this, [the] new feature to put in….” 

The chief architect synchronises architectural knowledge with other 
developers by discussion, in particular, team members situated at the 
same physical location. The discussion happens in weekly meetings or 
daily conversations that take place spontaneously in communal areas, 
like kitchens, canteens, or coffee corners. The chief architect has the 
most up-to-date architectural knowledge, but that knowledge is hardly 
ever documented. In order to get that knowledge, one has to update 
from the chief architect. When we asked Neeraj, a junior developer at 
OMD, about a certain architectural style and patterns currently used for 
OMD software products, he said: “You have to ask our system 
architects. I’m not able to answer that.” 

5.3.2. Intermixed with programming 
 

Training with a chief architect or a senior developer is a 
springboard for newcomers to understand architecture. Based on our 
interviewee’s experience, a common training technique is pair-
programming, where two developers program together at a workstation. 
In the vast majority of cases, the newcomer is assigned to implement a 
simple task. The chief architect, or the senior developers, sit down with 
the newcomers and allow them to ask questions. The newcomers get an 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

133 

overview and design rationale of the software product. They develop a 
‘feeling’ – as one of out interviewees expressed it – of how the 
software product works, how to implement using provided tools, and 
how the repository is organised. The newcomers look into packages, 
files, and source code, and at the same time, begin programming, so 
they gradually learn how the software is architected. Later on, the 
newcomers become developers who are responsible for the architecture 
of his or her sub-systems. This intermix process of architecting and 
programming facilitates both architecture acquisition and work 
progress. However, the chief architect or the senior developers need to 
contribute his or her time to educate each newcomer. 

5.3.3. Learning by doing 
 

A software product can be developed on top of a third party 
software product. Often, the third party architecture is not fully 
transparent, nor does it provide sufficient architectural documentation 
to explain how the system is implemented or how it can attach a new 
functionality. Every time the developers and the chief architect begin 
developing on top of a new third-party software product, they feel like 
they are ‘opening Pandora’s box.’ Moreover, changes are hardly 
controlled. When the third party releases a new version, the only way to 
understand that new architecture is to look directly in the source code. 
It is always a time-consuming and painful process.  

5.4. The role of a chief architect 

The analysis so far points to and underlines the importance of the 
software architect acting on what we have begun to call a ‘walking 
architecture.’ Not all companies have a ‘chief architect’. However, all 
products have a person or group of people acting in that role, even 
though their title might be different, like chief technology officer 
(CTO), senior developer, product manager, project leader, or system 
architect. Chief architects have – explicitly, or due to the recognition of 
their expertise – the responsibility for designing and updating the 
architecture throughout the software life-cycle. The chief architect 
informs and updates the developers regarding architectural changes on 
a daily or weekly basis. In their formal and informal meetings, the 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

134 

developers also update the chief architects about architectural issues in 
the parts of the program for which they are responsible. The chief 
architect sometimes creates documents containing a few diagrams to 
give a good view of the software, however, most developers still prefer 
talking directly to the chief architect. The developers usually ask about 
relevant parts of the software that are changing, and even publicly-kept 
architectural documents. Still, the most updated version of architecture 
is ‘stored’ in the head of the chief architect. This is also the 
understanding of the chief architects themselves, as it becomes 
apparent in a question put to Hans, the chief architect from GDT, on 
how he knows about the current or de facto architecture. “I’ve worked 
in the company for eight years. Most of architectures are my 
architectures.” 

As our interviewees emphasize, a good chief architect has both 
expertise in software engineering, and the domain. This sub-section 
categorises three main roles of the chief architect, i.e. controlling and 
communicating architecture within a development team, and 
interfacing to outward. 

5.4.1. Controlling and communicating architecture within a 
development team 

 
 A chief architect is responsible for most design decisions. In initial 

design discussions, the chief architect sometimes brainstorms with 
domain and software experts before designing the architecture. This 
discussion covers data type, quality attributes, design patterns, and 
platforms for the architecture. Most of the design architectures have 
clear interfaces and low dependency between components. The design 
architecture is often used for distributing developmental tasks and 
defining social protocols that aim at using the architecture as a 
coordination mechanism. Examples for such protocols are: when 
changing an interface the programmer must contact the relevant 
developer; the chief architect synchronises the tasks by collecting, 
reviewing and accepting everything before checking changes and 
documenting requirements for the next release; and the chief architect 
schedules meetings or workshops with developers when the 
architecture needs to be updated. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

135 

During the implementation, some types of problems cannot be 
resolved by tools automatically, e.g. naming of a function at the right-
level of abstraction. Thus, code review is often part of the tasks of chief 
architects. When they find a problem in the implementation, the chief 
architects will talk directly to developers and motivate them to resolve 
the problem. 

Chief architects often train newcomers by assigning simple tasks, 
e.g. implementing a new component. They know where to add these 
new components or functionalities without endangering the 
architecture. When they have sufficient knowledge, the chief architect 
will assign developers to work on critical parts. 

5.4.2. Updating the ‘walking architecture’ 
 
Maybe because we did not ask explicitly, the interviewees did not 

always emphasise the above understanding of the mentioned practices, 
in that they may also serve the purpose of updating the chief architect’s 
knowledge of architectural issues that might lead to reconsidering the 
architecture itself. This became visible in two ways within our 
interview material; the communication with developers was talked 
about as a two-way communication, and the problems that arose when 
the feedback channel did not exist. 

Marie from XYZ answered the question of how their team 
discussed architectural issues: “When it becomes larger, especially [if] 
it affects a whole sub-team, or the other part/team, or [we need a] 
sanity check, we set up [a] meeting or talk informally with the people 
who care about the affect and need to know.” Or as one of the project 
leaders at ABC said: “Generally, it’s [a] very informal way, [talking] 
between colleagues that know about this thing.” On the question of 
how developers get to know about relevant changes in the architecture, 
another of the ABC architects answered: “Hopefully the one making the 
changes tell other people.” 

These informal update becomes problematic when the development 
becomes distributed. One of ABC senior developers reported: 
“Sometimes they do not. […] Normally, when developers were in 
Prague, most things [were] developed there, [so] they knew what [was] 
going on and we [had] weekly meeting with them, talking about 
different things, and what different people [had] been doing. […] Now, 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

136 

it’s not the same [as] what we do in China. So, it’s more difficult, now. 
Developers do not know anymore what changes in the application. […] 
It’s difficult.” One of our interviewees reported: “Sometimes we have 
people implementing core components that destroy other component. 
Not so much within the engine group, because we have only two 
people. But the other, especially Singapore or Shanghai groups that did 
some core components change, because there [was] no documentation 
up there. They didn’t know that the components [failed] because they 
[relied] on special functionality.” 

Some of our interviewees reported about explicit measures to stay 
up-to-date with the architecturally relevant changes to the software 
product. A protocol might have been established that developers must 
inform the chief architect before changing central parts, core 
components, or data structures. 

The integrated development environment can indicate architecture 
violations if set up in the right way. Also, nightly builds can indicate 
when new code breaks an interface. In some companies, the chief 
architect reviews changes to the code and based on the reviews, 
discusses changes with the developers. 

Guillaume from CO, keeps up-to-date with changes in the common 
parts of the software through regularly reading the source code and 
common Wiki. “In the Wiki, every change in the software is 
documented, not with a lot of detail. … In the trunk [of the CVS], we 
document every commit. … I take care of [reading] source code, Wiki 
and the commit.” 

5.4.3. Interfacing to outward 
 

Chief architects reported that they need to interface with people 
working outside of the development team, e.g. people gathering 
requirements and working with other related products, clients, or end-
users. In order to utilise the design architecture, chief architects have to 
ensure that agreement with people working outside the development 
team have been made. In a conflict situation, chief architects need to 
negotiate and compromise with those outside sources. 

Chief architects are aware that feedback from outside 
professionalises the development. They often discuss expectations of 
implementation with their clients before conversations with developers. 
They go back and collect feedback from the clients or the end-users 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

137 

before the next release. If chief architects have no direct contact with 
clients or end-users, they have discussions with sales and marketing 
people. The feedback from the clients or marketing people will help the 
chief architects get a correct understanding of the requirements. Based 
on this understanding, they prioritise and delegate the requirements for 
the next release. 

Due to business or organisational reasons, related software products 
might be developed in different units. In some cases, more than one 
team together develops a software product. In such situations, chief 
architects needs to coordinate with other development teams in the 
same company or from contract companies. In software product lines, 
changes in one product may cause malfunctions in other products. 
Thus, chief architects must take heed of the changes. If problems occur, 
it is their task to find solutions. The solutions vary from collaboration 
to architecting. Examples are as follows: the chief architect 
communicates with another development team on the changes overall 
effect; the chief architect develops interfaces (e.g., API) to express a 
common concept of another product; or the chief architect designs the 
architecture in a way that accommodates the interest of both teams. 
Guillaume, a chief technology officer at CO, told us how he handled 
recent changes: “Last week, XYZ company published an API to access 
the address book [of XYZ product]. There [was] a request to implement 
a mechanism to import the address book from XYZ to CO. XYZ 
implemented most of APIs under a common umbrella [XYZ product]. I 
think I have to take care; I develop[ed an] interface in [a] generic way 
in order to express the concept of [XYZ product].” 

5.5. Communication about changes 

Team members need to be updated about changes. In this sub-
section, we categorise communication from the current software 
development practice that covers both human interaction and support 
tools. Each practice presented below is ranked from the most 
commonly used to rarely used. Note that each interviewee reports on 
more than one practice.  

Verbal communication or face-to-face communication (i.e., free-
form dialogue, explanation, and discussion) with colleagues is the most 
common practice. It is used by all interviewees and seems to be the 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

138 

simplest way to update them about architectural changes. Just another 
quote from our interviews complementing the many above: “We don’t 
have state diagrams and seldom use sequence diagrams. But we need 
knowledge about what [method is] to be called first or second. That’s 
not explicitly stated. It is just something that we make use of by asking 
people that know about this typical sequence of calling.” 

Meeting. A development team must meet regularly where each 
developer goes through all the tasks and updates what the other 
colleagues are doing, so the team members can synchronise their 
understanding of the architecture. In some distributed development 
projects, a whole development team assembles for a longer ‘coding 
camp’ meeting at the same location in order to brainstorm about new 
designs, or to finalise a new release. 

Nightly builds and testing. Nightly build mechanisms notify 
developers the next morning if the changes checked in the day before 
had affected other parts of the software, for instance, breaking 
interfaces or violating the design rules. 

Email, mailing list, and instant messaging are used spontaneously 
by team members to send messages (e.g., “By the way, you broke our 
code!”), or inform the other members within a team, or between teams, 
about changes. Sometimes, messages are automatically sent from an 
IDE or a support tool. 

Concurrent Versions System (CVS) and Subversion repository. In 
some cases, everyone in a team has their own branch on repository to 
work on as a sand-box. Later, they carefully merge all the changes in a 
common branch or a trunk in order to rebuild the software. When a 
developer commits changes in the source code into the trunk, the CVS 
repository automatically sends an email to the other developers. 

Rich IDE. Some IDE provides multi-disciplined team members 
with an integrated set of tools for architecture, design, development and 
testing of applications. The IDE can report problems in architecture and 
do quality assurance. Ole from ARG told us how his developers knew 
the relevant parts of the software were changing: “[IDE name] tell us 
which part of the architecture has problems. … [IDE name] is a golden 
gun. It is a very complicated environment … It can do much for 
software engineering.” 

The main advantage of the integration is to handle the changes 
within a monolithic tool. Guillaume from CO supported this with: “I 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

139 

can modify code and the code is still consistent for all applications … It 
is quite easy to handle.” 

Code review. Changes in the source code are sometimes reviewed 
by chief architects before one can commit to repository. They correct 
mistakes in the source code and improve the quality of software while 
doing code review, then often discuss the changes and rationale with 
developers.  

Wiki. Every change in the software can be documented in a Wiki. 
Though the documentation is not fully detailed, everybody is aware of 
the changes and can use the Wiki to inform about the ones he 
introduced. (See also section 5.4.2.) Only few interviewees report the 
use Wikis to update or inform team members about changes to the 
source code or the architecture. However Wikis are sometimes used for 
collecting ideas and requirements from users and developers. 

5.6. Evolution and changes 

When the original architecture had first been established, people 
had no intention of ever changing it. However, changes initiated by use 
and business contexts of software products resulted in new 
requirements which in turn affected the architecture. Typical examples 
include: a user request for some functionality that could benefit other 
users; an intuition from a developer who might even use the software 
himself triggers changes; and marketing strategy or competition. From 
all organisations, our interviewees confirmed that chief architects have 
to be involved in or responsible for all changes, in particular, 
architectural changes. Chief architects need to satisfy the change 
requests and existing architecture in order to reduce the effect on the 
architecture. They might decide to add new components or 
functionalities. If re-design of the whole architecture is the only 
solution, they could suggest creating a new software product. 

Regarding changes implied in the development, protocols might be 
put in place to support information and knowledge sharing. For 
instance, developers are not allowed to change a common part, core 
component, or data structure without informing the chief architect; the 
developers should synchronise their changes with their colleague; or 
developments have to be done based on the latest version. 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

140 

Although chief architects are initially responsible for establishing 
architecture and taking care of changes, it is difficult to keep track 
when architecture evolves over long periods of time. Changes in source 
code affect the other parts of a software product, for example, changing 
a common part causes a software malfunction. One of ABC senior 
developers complained: “On the entire ABC product line, if you change 
something on the core components, you may destroy 95% of the 
component here…. It’s difficult to know exactly what component you 
are touching by changing the code.” Furthermore, the changes 
sometimes have effect beyond a company’s boundary. Ole, a managing 
director at ARG, told us about customising a third party product: 
“When they [the third party product developing companies] make 
changes on the architecture, we know it by the malfunction on our 
software, not by documentation.” 

5.7. Problems 

Our interviewees also talked about problems in their architectural 
practice. The problems address technical infrastructure as well as co-
operational aspects of software development. The common problems in 
the technical context are changes in technical infrastructure, 
framework, or standard that a software product builds upon, e.g. 
changing virus scanners to support Unicode base, or changing global 
unify identification mechanisms for CRM systems. 

With respect to co-operational aspects, some software 
design/developmental approaches are likely to obstruct day-to-day 
development practices and hinder collaboration. Furthermore, a lack of 
awareness, a lack of domain or software engineering expertise, or the 
loss of architecture knowledge often causes architectural problems. 

 Gaëtan, a senior developer at EW, reported from his daily practice: 
“we have a problem with the model; it is a binary file, not text file. So it 
means that if I want to change a part of the model, and, at the same 
time, the other developer wants to modify another part. It is just one 
file. So one of the two guys can make modification, the other cannot 
touch anything. Once one finishe[s] and commit[s] the file, another can 
check-in. It is not easy to modify the design with more than one 
[person] at a time. For source code is different; the code is in plenty of 
files. People can work on separate sets of the files. When people work 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

141 

on the same file, we can ‘make diff’ between elements and see [the 
code] that a guy works on this part […] and merge [the] changes, or 
the changes can be merged automatically because it doesn't touch the 
same part. It is easier to work [in a] collaborative way with code. But 
with this [the model] is not possible.” It is reasonable to claim that, 
apart from being ‘the’ actual document, code basis supports 
collaborative development better than the model. 

Although many existing tools and practices are used for informing 
changes and controlling evolution (e.g., nightly builds, unit test, or 
regression test), these tools do not resolve all the problems. Lacking 
information about changes as reported in section 5.4.2 is common, 
especially in distributed software. Although documentation problems 
are addressed here, creating a document might not be the best, or the 
only solution. Hans, a chief architect at GDT, said: “If it [the 
document] would be a good view on the software, I will do it. …We 
don’t need overview for every class.” Therefore, giving and controlling 
information about changes should be done at the right level. 

One of ABC senior developers stated: “This kind of dependency 
graph would tell them we have to tell someone about something, that 
we [need to] make changes. It helps people be aware that if they 
change here [a component it] may affect [something] elsewhere. 
Otherwise, it will be difficult to see by [yourself].”  

Finding the right people and keeping them is a challenge in many 
software developing companies. “One year ago, unfortunately, our 
excellent developer left our company. It is very hard to find [new] 
developers. We are looking everywhere,” Guillaume, a chief 
technology officer at CO complained. 

Developing software products need both domain and software 
engineering expertise, but they rarely come together. Ole, a managing 
director of ARG, addressed his biggest concern: “our developers do not 
know anything about telecommunication via telephone, although they 
use it. … On the other hand, [third party product] developers 
understand very well about telecommunication and techniques of voice 
over IP, or something like that, but they don’t know anything about 
software factories, processes or design patterns. They know nothing 
about the architecture and development cycle.” 

If newcomers or developers have only software engineering 
expertise, they will need time to acquire sufficient domain expertise. If 
the developers have only domain expertise, they will need time to get 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

142 

software engineering expertise. When developers acquired both, their 
expertise becomes an important asset for companies. However, 
companies cannot always hold onto their personnel. Losing a central 
developer or chief architect can result in the failure of a software 
product. One of ABC senior developers said: “the software products 
are going to the dying phase or dead-code when the key programmer 
left. … We don’t know how to write them.” 

 
6. Discussion 

 
This empirical study focuses on the development of software 

products. The practices revealed in this study might be different from 
the contract development [45] or the development of high-integrity 
systems [31]. Software products constantly evolve. Changes in the 
software product must be handled consciously in order to prevent dead-
end development. Through our interviews it became clear that the main 
issue is not to implement the design architecture, but to maintain the 
architecture when evolving the software in a viable state, so it can 
support future requirements and innovations. In the discussion now, we 
highlight the aspects that we consider relevant for developing support 
for architectural practices for software product development. The 
importance of the ‘walking architecture’, ‘good reasons for bad 
documentation’ indicate the need to develop social protocols fitting 
with local practices when introducing architecture representations and 
documentation, and we finally propose a means to promote architecture 
awareness. 

6.1. Architecture awareness is achieved through Walking 
Architecture practices 

The analysis indicates that product development teams depend on 
chief architects or group of architects who act as what we started to 
refer to as the ‘walking architecture’ for communicating the 
architecture to the developers, and in turn communicate problems 
which might become architectural issues to the software architect. The 
walking architecture takes most, if not all, design decisions and solves 
architectural problems throughout on-going development. Architectural 
issues arise from inside as well as outside the development team, cover 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

143 

technical and social aspects of software development, and require 
domain, as well as software engineering expertise. In order to solve 
these issues, the chief architect interacts with technical and business 
people, establishes tools and practices, and recruits or trains team 
members for that expertise, etc. Because architecturing is not just only 
a matter of technical design, but also of juggling the social contexts of 
software development that make it almost unable to automate [71]. 

Our analysis both confirms the importance of inward and outward 
interaction as part of the role of the software architect [34], and deepens 
the understanding of the importance of this interaction. In the 
interviews, the rational behind these practices becomes visible. On the 
one hand, developers need up-to-date knowledge about the architecture, 
here and now. The architect can explain the structure of the software in 
relationship to the problem at hand. On the other hand, the chief 
architect may stay in contact with the development of the source code 
and become aware of potential issues. The emphasis on face-to-face 
communications provides a strong indication that whatever methods 
and tools software engineering research proposes needs to be aligned 
with the practices of knowledge-sharing by, and with, the walking 
architecture. 

6.2. Good reasons for bad documentation 

A lack of up-to-date architecture documentation is problematic 
according to our interviewees, and software architecture researchers. If 
the lack of documentation phenomenon is so widespread, one might 
suspect ‘good reasons’ for ‘bad documentation’ (See also [30].) 

As presented in section 2, architecture research emphasises written 
representation (e.g., formal notations or documentation) and codified 
knowledge. Written representation describing software architecture 
might suit a researcher’s practice rather than a chief architect’s practice. 
Based on our empirical evidence, the architecture almost always exists 
in somebody’s head. Architecture knowledge management can be 
described as socialisation-heavy. Face-to-face communication is the-
state-of-the-practice of architectural knowledge management. For 
example, we often overhear a team member say to his/her colleague: “I 
know you worked on this component, please tell me about it,” or “The 
best person to ask is the architect.” Team members are used to 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

144 

conversing with a chief architect about their work. Through these 
discussions, chief architects not only educate and inform developers, 
but also take heed of changes that may cause problems to the 
architecture later on. They converse with the team members in order to 
find a solution for architectural problem. Given these practices, the 
absence of documents is not a risk for software companies. On the 
contrary, if documentation was successfully established even in parts 
instead of the aforementioned practice, the chief architect would lose 
track of what is going on in the architecture. As a consequence, nobody 
could maintain the architecture anymore, which may in turn result in 
serious problems. 

If a shared form of documentation is established, social protocols 
need to be established, as well, to make sure that the walking 
architecture learns about developments in the code and potential 
architectural issues. One example of such a social protocol is the 
practice of regularly reading the common wiki-based documentation, 
the checked in source code, and the CVS information in order to keep 
up-to-date with the changes to the code. 

6.3. How to promote architecture awareness 

Practitioners and researchers agree on the importance of software 
architecture being part of everyday software development in order to 
enhance quality attributes [47], in particular evolvability [72]. Many 
software companies have successfully evolved their products even 
though they hardly ever emphasise explicit architectural 
documentation, or keep architecture documents up-to-date. However, 
source code is a reification of design. Developers and architects are 
well aware of the architectural structures: software developers know 
when to change the source code, where to change it, who to ask, who to 
inform, etc. Architecture is alive with a walking architecture. 

Tools and methods for promoting architecture awareness should 
support this practice, rather than establishing a diverging approach. 
Two promising examples of how to do this are as follow: 

One of our interviewees reports on his projects sharing and 
cooperatively maintaining the architecture knowledge in the form of a 
common wiki (See section 5.4.2.). Documentation in Wiki and CVS, 
albeit not very detailed, can communicate changes to team members, 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

145 

and especially the chief architect. The documentation in Wiki and CVS 
becomes one way of communicating about changes continuously that 
does not hinder, but supports the chief architect. The chief architect can 
then read through the changes and be aware of anything that might 
affect the architecture. 

A similar tool is proposed by Solis et al. [65]. Personal 
communication (Muhammad Ali Babar) on the usage of this tool 
indicates that a social protocol similar to the one reported above, 
evolved around its usage. 

As part of the research with a product developing company, 
Unphon [69] presented the introduction of a ‘build hierarchy’ matching 
the static architecture as a technique to give developers continuous 
feedback about whether their code complied with the design 
architecture. This architecture-based built hierarchy can be 
implemented as part of the integrated development environment (IDE), 
or the nightly build infrastructure. That way, the build hierarchy 
supports on-going architecting through architectural compliance 
checking between design architecture and code architecture. If 
implemented as part of the IDE, developers can be informed with every 
compile command whether their changes affect the other parts of the 
software or break the architecture. If changes in the source code break 
the design architecture, the developers need to revise the changes or 
discuss it with the chief architects and their colleagues. Through the 
discussion, the chief architects are updated about development 
problems that might become architectural issues. 

 
7. Conclusions 

 
This article began with postulating the question, what architecture 

practices do software product developing companies apply to keep their 
products alive, sometimes over several decades. The study presented in 
this paper shows that architecture practices emphasise face-to-face 
communication rather than the codification in documents. The analysis 
emphasises the importance of a chief architect acting as a walking 
architecture who is responsible for maintaining and evolving the 
software products’ architecture. Through face-to-face communication 
with developers, as part of the everyday development, the chief 
architect communicates the software architecture in a form most suited 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

146 

to help the developers with problems at hand, and at the same time, 
becomes aware of potential architectural problems. 

Other research has promoted documentation as a recommended 
practice for development teams. Based on our analysis, we hesitate to 
join this chorus. A document quickly becomes outdated if not 
continuously maintained. Moreover, the documentation could disrupt 
the practice of the walking architecture: if reading the document 
replaced discussions, the chief architect would not be informed about 
potential problems in a timely manner. In the long run, being uniformed 
could result in changes to the overall architecture that may conflict with 
the needs and constraints of different modules. 

Applying the notions of awareness and social protocols as a base 
for sharing information about a cooperatively achieved task allowed us 
to take another approach to tools and methods supporting software 
architecture. If document and tools are devised, they need to be fitted 
into everyday developmental practices, and require a change in the 
social protocol around architecting. As examples, we discussed the 
usage of a common Wiki from our field material, and using the build 
hierarchy as a reification of the design architecture based on related 
research. With this result, the article confirms the importance of taking 
cooperative aspects into account when devising solutions for seemingly 
technical problems. 

 

ACKNOWLEDGEMENTS. 

We kindly thank all interviewees for participating in this study. We 
should like to extend our gratitude to Dr. Wolf-Gideon Bleek for his 
inspiration and help in setting up this study. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

147 

References 
 
[1] R. Allen and D. Garlan. A formal basis for architectural connection. 
ACM Trans. Softw. Eng. Methodol., 6 (3): 213–249, 1997. ISSN 1049-331X. 
doi: http://doi.acm.org/10.1145/258077.258078. 
[2] R. B. Allen and D. Garlan. A Formal Approach to Software 
Architecture. In Proceedings of the IFIP 12th World Computer Congress on 
Algorithms, Software, Architecture - Information Processing ’92, Volume 1, 
pages 134–141, Amsterdam, The Netherlands, The Netherlands, 1992. North-
Holland Publishing Co. ISBN 0-444-89747-X. 
[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in 
Practice. Addison-Wesley, 2nd edition, 2003. 
[4] L. Belady and M. Lehman. A Model of Large Program Development. 
IBM Systems Journal, 15 (1): 225–252, 1976. 
[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling 
Language User Guide. Addison-Wesley Professional, Reading, Massachusetts 
etc., September 1998. ISBN 0201571684. URL http://www.amazon.com/-
exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201571684. 
[6] J. Bosch. Design and Use of Software Architectures: Adopting and 
evolving a product-line approach. ACM Press/Addison-Wesley Publishing 
Co., New York, NY, USA, 2000. ISBN 0-201-67494-7. 
[7] F. Brooks and K. Iverson. Automatic Data Processing (System 360 
Edition). John Wiley, 1969. 
[8] P. Clements and L. Northrop. Software Product Lines: Practices and 
Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 
2001. 
[9] K. Czarnecki, U. Eisenecker, and K. Czarnecki. Generative 
Programming: Methods, Tools, and Applications. Addison-Wesley 
Professional, June 2000. ISBN 0201309777. 
[10] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the 
Wild: Why Communication Breakdowns Occur. In Proceedings of the 
international Conference on Global Software Engineering, pages 81–90. 
ICGSE, IEEE Computer Society, Washington DC., August 27 - 30 2007. doi: 
http://dx.doi.org/10.1109/ICGSE.2007.13. 
[11] C. de Souza, J. Froehlich, and P. Dourish. Seeking the source: 
software source code as a social and technical artifact. In GROUP ’05: 
Proceedings of the 2005 international ACM SIGGROUP conference on 
Supporting group work, pages 197–206, New York, NY, USA, 2005. ACM. 
ISBN 1-59593-223-2. doi: http://doi.acm.org/10.1145/1099203.1099239. 
[12] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and 
J. Patterson. Sometimes you need to see through walls: a field study of 
application programming interfaces. In CSCW ’04: Proceedings of the 2004 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

148 

ACM conference on Computer supported cooperative work, pages 63–71, 
New York, NY, USA, 2004. ACM. ISBN 1-58113-810-5. doi: 
http://doi.acm.org/10.1145/1031607.1031620. 
[13] T. Dingsøyr and R. Conradi. A survey of case studies of the use of 
knowledge management in software engineering. International Journal of 
Software Engineering and Knowledge Engineering, 2 (1): 391–414, 2002. 
[14] K. Dunsire, T. O’Neill, M. Denford, and J. Leaney. The ABACUS 
Architectural Approach to Computer-Based System and Enterprise Evolution. 
In ECBS ’05: Proceedings of the 12th IEEE International Conference and 
Workshops on Engineering of Computer-Based Systems, pages 62–69, 
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2308-0. 
doi: http://dx.doi.org/10.1109/ECBS.2005.66. 
[15] P. H. Feiler, B. A. Lewis, and S. Vestal. The SAE Architecture 
Analysis &Design Language (AADL) a standard for engineering performance 
critical systems. In Proc. IEEE Computer Aided Control System Design IEEE 
International Conference on Control Applications IEEE International 
Symposium on Intelligent Control, pages 1206–1211, 4–6 Oct. 2006. doi: 
10.1109/CACSD-CCA-ISIC.2006.4776814. 
[16] M. Fowler. Refactoring: Improving the Design of Existing Code. 
Addison-Wesley, 1999. 
[17] M. Fowler. Who needs an architect? IEEE Software, 20 (5): 11–13, 
2003. ISSN 0740-7459. doi: 
http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231144. 
[18] D. Garlan and M. Shaw. An Introduction to Software Architecture. 
Technical report, Pittsburgh, PA, USA, 1994. URL http://portal.acm.org/-
citation.cfm?id=865128. 
[19] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture description 
interchange language. In CASCON ’97: Proceedings of the 1997 conference 
of the Centre for Advanced Studies on Collaborative research, page 7. IBM 
Press, 1997. 
[20] E. Gasparis, J. Nicholson, and A. H. Eden. LePUS3: An Object-
Oriented Design Description Language. In Diagrams ’08: Proceedings of the 
5th international conference on Diagrammatic Representation and Inference, 
pages 364–367, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-
87729-5. doi: http://dx.doi.org/10.1007/978-3-540-87730-1_37. 
[21] E. M. Gerson and S. L. Star. Analyzing due process in the workplace. 
ACM Trans. Inf. Syst., 4 (3): 257–270, 1986. ISSN 1046-8188. doi: 
http://doi.acm.org/10.1145/214427.214431. 
[22] B. G. Glaser and A. Strauss. The Discovery of Grounded Theory: 
Strategies for Qualitative Research. Aldine, Chicago, 1967. 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

149 

[23] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: 
Assembling Applications with Patterns, Models, Frameworks, and Tools. 
Wiley, August 2004. ISBN 0471202843. 
[24] C. Gutwin and S. Greenberg. A Descriptive Framework of Workspace 
Awareness for Real-Time Groupware. Computer Supported Cooperative 
Work, 11 (3): 411–446, November 2002. doi: 
http://dx.doi.org/10.1023/A:1021271517844. 
[25] C. Hansson, Y. Dittrich, and D. Randall. Agile Processes Enhancing 
User Participation for Small Providers of Off-the-Shelf Software. In Extreme 
Programming and Agile Processes in Software Engineering. Proceedings of 
the 5th International Conference, XP 2004, Garmisch-Partenkirchen, 
Germany, June 6-10 2004. 
[26] C. Hansson, Y. Dittrich, B. Gustafsson, and S.Zarnak. How Agile are 
Industrial Software Development Practices? Journal of Systems and Software, 
79: 1295–1311, 2006. 
[27] C. Hansson, Y. Dittrich, B. Gustafsson, and S. Zarnak. How agile are 
industrial software development practices? J. Syst. Softw., 79 (9): 1295–1311, 
2006. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2005.12.020. 
[28] N. B. Harrison, P. Avgeriou, and U. Zdun. Using patterns to capture 
architectural decisions. IEEE Software, 24 (4): 38–45, 2007. ISSN 0740-7459. 
doi: http://doi.ieeecomputersociety.org/10.1109/MS.2007.124. 
[29] C. Heath and P. Luff. Collaboration and Control: Crisis management 
and multimedia technology in London Underground Line Control Rooms. 
Computer Supported Cooperative Work (CSCW), 1 (1-2): 69–94, March 1992. 
doi: 10.1007/BF00752451. 
[30] C. Heath and P. Luff. Documents and professional practice: “bad” 
organisational reasons for “good” clinical records. In CSCW ’96: Proceedings 
of the 1996 ACM conference on Computer supported cooperative work, pages 
354–363, New York, NY, USA, 1996. ACM. ISBN 0-89791-765-0. doi: 
http://doi.acm.org/10.1145/240080.240342. 
[31] M. G. Hinchey and J. P. Bowen. High-Integrity System Specification 
and Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. 
ISBN 3540762264. 
[32] C. Hofmeister, R. Nord, and D. Soni. Applied software architecture. 
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. 
ISBN 0-201-32571-3. 
[33] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 
12 (6): 42–50, 1995. ISSN 0740-7459. doi: 
http://doi.ieeecomputersociety.org/10.1109/52.469759. 
[34] P. Kruchten. The Architects—The Software Architecture Team. In 
P. Donohoe, editor, Software architecture: TC2 first Working IFIP 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

150 

Conference on Software Architecture (WICSA1), pages 565–583, San 
Antonio, Texas, USA, February 1999. Kluwer Academic. 
[35] P. Kruchten. Controversy Corner: What do software architects really 
do? J. Syst. Softw., 81 (12): 2413–2416, 2008. ISSN 0164-1212. doi: 
http://dx.doi.org/10.1016/j.jss.2008.08.025. 
[36] P. Lago, P. Avgeriou, R. Capilla, and P. Kruchten. Wishes and 
boundaries for a software architecture knowledge community. Software 
Architecture, Working IEEE/IFIP Conference on, 0: 271–274, 2008. doi: 
http://doi.ieeecomputersociety.org/10.1109/WICSA.2008.25. 
[37] M. Lehman. On Understanding Law, Evolution, and Conservation in 
the Large-Program Life Cycle. Systems and Software, 1 (3): 213–231, 1980. 
[38] M. M. Lehman. Laws of software evolution revisited. In EWSPT ’96: 
Proceedings of the 5th European Workshop on Software Process Technology, 
pages 108–124, London, UK, 1996. Springer-Verlag. ISBN 3-540-61771-X. 
URL http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/556.pdf. 
[39] B. P. Lientz and E. B. Swanson. Software Maintenance Management. 
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980. 
ISBN 0201042053. 
[40] B. P. Lientz and E. B. Swanson. Problems in application software 
maintenance. Commun. ACM, 24 (11): 763–769, 1981. ISSN 0001-0782. doi: 
http://doi.acm.org/10.1145/358790.358796. 
[41] D. C. Luckham. Rapide: A Language and Toolset for Simulation of 
Distributed Systems by Partial Orderings of Events. Technical report, 
Stanford, CA, USA, 1996. 
[42] D. C. Luckham and J. Vera. An Event-Based Architecture Definition 
Language. IEEE Transactions on Software Engineering, 21 (9): 717–734, 
1995. ISSN 0098-5589. doi: 
http://doi.ieeecomputersociety.org/10.1109/32.464548. 
[43] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry. Software 
Evolution and Feedback: Theory and Practice. John Wiley & Sons, 2006. 
ISBN 0470871806. 
[44] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and 
environment for architecture-based software development and evolution. In 
ICSE ’99: Proceedings of the 21st international conference on Software 
engineering, pages 44–53, New York, NY, USA, 1999. ACM. ISBN 1-58113-
074-0. doi: http://doi.acm.org/10.1145/302405.302410. 
[45] R. Mitchell, J. McKim, and B. Meyer. Design by contract, by 
example. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, 
USA, 2002. ISBN 0-201-63460-0. 
[46] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion 
models: bridging the gap between source and high-level models. In SIGSOFT 
’95: Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

151 

software engineering, pages 18–28, New York, NY, USA, 1995. ACM. ISBN 
0-89791-716-2. doi: http://doi.acm.org/10.1145/222124.222136. 
[47] K. Naik and P. Tripathy. Software Testing and Quality Assurance: 
Theory and Practice. John Wiley & Sons, Inc., 2008. 
[48] P. Naur. Programming as Theory Building. Microprocessing and 
Microprogramming, 15: 253–261, 1985. 
[49] I. Nonaka. A Dynamic Theory of Organizational Knowledge 
Creation. Organization Science, 5 (1): 14–37, Feb. 1994. 
[50] I. Nonaka. The Knowledge-Creating Company. In Harvard Business 
Review on Knowledge Management. Harvard Business School Publishing, 
Boston, 1998. 
[51] D. K. Padgett. Qualitative methods in social work research. SAGE 
Publications, 2nd edition, 2008. 
[52] D. Parnas. Information distribution aspects of design methodology. In 
Proceedings of the 1971 IFIP Congress, North Holland, 1971. 
[53] D. Parnas. On the criteria to be used in decomposing systems into 
modules. Commun. ACM, 15 (12): 1053–1058, 1972. ISSN 0001-0782. doi: 
http://doi.acm.org/10.1145/361598.361623. 
[54] D. Parnas. On a ’Buzzword’: Hierarchical Structure. In Proceedings 
of the 1974 IFIP Congress. Kluwer, 1974. 
[55] D. Parnas. On the design and development of program families. IEEE 
Transactions on Software Engineering, 2 (1), 1976. 
[56] D. L. Parnas and P. C. Clements. A rational design process: How and 
why to fake it. IEEE Trans. Softw. Eng., 12 (2): 251–257, Feb. 1986. 
[57] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line 
Engineering : Foundations, Principles and Techniques. Springer, September 
2005. ISBN 3540243720. URL http://www.amazon.com/exec/obidos/-
redirect?tag=citeulike07-20&path=ASIN/3540243720. 
[58] C. Robson. Real world research: a resource for social scientists and 
practitioner-researchers. Blackwell publishing, UK, second edition, 2002. 
[59] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt. Determining 
the distribution of maintenance categories: Survey versus measurement. 
Empirical Softw. Engg., 8 (4): 351–365, 2003. ISSN 1382-3256. doi: 
http://dx.doi.org/10.1023/A:1025368318006. 
[60] K. Schmidt. The Problem with ’Awareness’: Introductory Remarks on 
’Awareness in CSCW’. Computer Supported Cooperative Work, 11 (3): 285–
298, 2002. ISSN 0925-9724. doi: 
http://dx.doi.org/10.1023/A:1021272909573. 
[61] K. Schmidt and C. Simone. Coordination mechanisms: towards a 
conceptual foundation of cscw systems design. Comput. Supported Coop. 
Work, 5 (2-3): 155–200, 1996. ISSN 0925-9724. doi: 
http://dx.doi.org/10.1007/BF00133655. 



      SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION 

152 

[62] M. Shaw and D. Garlan. Software Architecture: Perspectives on an 
Emerging Discipline. Prentice Hall, April 1996. ISBN 0131829572. 
[63] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and 
G. Zelesnik. Abstractions for Software Architecture and Tools to Support 
Them. IEEE Trans. Softw. Eng., 21 (4): 314–335, 1995. ISSN 0098-5589. doi: 
http://dx.doi.org/10.1109/32.385970. 
[64] I. C. Society. IEEE Recommended Practice for Architectural 
Description of Software-Intensive Systems, September 2000. 
[65] C. Solís and N. Ali. ShyWiki-A Spatial Hypertext Wiki. In 
Proceedings of the 2008 international symposyum on Wikis. WikiSym ’08, 
ACM, 2008. 
[66] M.-A. D. Storey, D. Cubranic, and D. M. German. Ón the use of 
visualization to support awareness of human activities in software 
development: a survey and a framework. In SoftVis ’05: Proceedings of the 
2005 ACM symposium on Software visualization, pages 193–202, New York, 
NY, USA, 2005. ACM. ISBN 1-59593-073-6. doi: 
http://doi.acm.org/10.1145/1056018.1056045. 
[67] The Open Group. ArchiMate 1.0 Specification. VAN HAREN 
PUBLISHING, May 2009. 
[68] J. B. Tran, M. W. Godfrey, E. H. Lee, and R. C. Holt. Architectural 
repair of open source software. International Conference on Program 
Comprehension, 0: 48, 2000. ISSN 1092-8138. doi: 
http://doi.ieeecomputersociety.org/10.1109/WPC.2000.852479. 
[69] H. Unphon. Making Use of Architecture throughout the Software Life 
Cycle—How the Build Hierarchy can Facilitate Product Line Development. 
Vancouver, Canada, May 2009. The Forth Workshop on Sharing and Reusing 
Architectural Knowledge (SHARK 2009), in conjunction with the 2009 IEEE 
31st International Conference on Software Engineering (ICSE 2009). 
[70] H. Unphon and Y. Dittrich. Organisation matters: How the 
Organisation of Software Development Influences the Development of 
Product Line Architecture. pages 178–183, Innsbruck, Austria, 2008. 
IASTED International Conference on Software Engineering. 
[71] H. Unphon, M. A. Babar, and Y. Dittrich. Identifying and 
Understanding Software Architecture Evaluation Practices. Technical report 
(in progress), 2009. work in progress. 
[72] H. Unphon, Y. Dittrich, and A. Hubaux. Taking Care of Cooperation 
when Evolving Socially Embedded Systems: The PloneMeeting Case. 
Vancouver, Canada, May 2009. The Cooperative and Human Aspects of 
Software Engineering 2009 (CHASE 2009), in conjunction with the 2009 
IEEE 31st International Conference on Software Engineering (ICSE 2009). 



SOFTWARE ARCHITECTURE AWARENESS IN SOFTWARE PRODUCT 
EVOLUTION       

153 

[73] F. van der Linden, K. Schmid, and E. Rommes. Software Product 
Lines in Action: The Best Industrial Practice in Product Line Engineering. 
Springer-Verlag Berlin Heidelberg, 2007. 
[74] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, 
Analysis, Design. Morgan Kaufmann, February 2008. 



 

10 
 

ARCHITECTURE-LEVEL EVOLVABILITY 
ASSESSMENT 

 
 

Hataichanok Unphon 
IT University of Copenhagen & DHI Water Environment Health 

Denmark 
unphon@itu.dk 

 
ABSTRACT. This paper proposes a method for 
Architecture-Level Evolvability Assessment (ALEA). The 
method has been developed and implemented during a 
cooperative project with a company developing product 
line architecture for hydraulic modelling software. ALEA 
aims to evaluate how well the current design architecture 
can accommodate future use and business contexts. ALEA 
not only broadens prospects of architectural changes, but 
also takes sustainability of the changes into account. To 
assess sustainability, ALEA applies an evolvability 
framework consisting of sufficient contexts to propagate 
the effects of architectural changes. Based on a case study, 
empirical evidence of validating ALEA and the 
evolvability framework are presented. Confirmed by 
practitioners, ALEA offers a good structure for architecture 
assessment. Furthermore, practitioners favour its 
comprehensiveness, illustrations, and visualisation of the 
evolvability framework. 

 
 

1. Introduction 
 
Discovering a method to enhance software evolvability from re-

engineering and modularising software products prompts our research 
work. This work aims to analyse how well the current design 
architecture aligns with business and use contexts. By looking at the 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 155 

current design architecture, the stakeholders are able to assess possible 
architectural changes and the effects of the changes on architectural 
contexts.  

The main contribution of this paper is to propose Architecture-Level 
Evolvability Assessment (ALEA). ALEA has been developed, 
implemented, and validated during a cooperative project with a 
company developing product line architecture for surface water 
modelling systems. Due to the environment, user practices, and 
business vision, the architecture needs to allow for intensive tailoring 
and continuous development. ALEA provides the necessary elements 
for analysing design architecture. A framework proposed in [26] 
successfully complements a keystone of ALEA from the socio-
technical perspective. However, there are some challenges to ALEA 
which should be further refined in order to support the evaluation more 
pragmatically. To avoid terminological confusion among architecture 
analysis, architecture assessment, architecture evaluation and 
architecture review, they are used interchangeably in this paper. 

This paper is outlined as follows. Section 2 presents the case 
description. Section 3 explains our research method. Section 4 
introduces terms and definitions. Section 5 reviews architecture 
evaluations. Section 6 elaborates on ALEA. Section 7 shows the 
implementation and evaluation of ALEA on the case study. Section 8 is 
discussion. Section 9 draws conclusions and looks at future works. 
 
2. Case description 
 

DHI Water Environment Health (DHI) is a pioneering organisation 
that develops software applications for hydraulic modelling [1]. In 
1972, System 11 and System 21 were two of the first computational 
modelling systems developed at DHI to simulate water flow patterns 
with the help of one-dimensional and two-dimensional models. A 
three-dimensional simulation was developed in the 1980s. Originally, 
the organisation focused on hydraulic research, not on software 
engineering. Software development and software maintenance were 
challenges only on a small scale. All simulation programs were built in 
a similar way, i.e., an engine implementing differential equations 
changes the data in a set up model for one time step per simulation 
loop. In the late 1980s, DHI released the MIKE 11 and the MOUSE 
software products. Both products originated from System 11 following 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 156 

the requests of different usages, i.e. open channels and pipe networks. 
MIKE 11 and MOUSE are standalone Windows-based applications. 
The main users of these products are consultants who do simulations of 
hydraulic conditions, i.e. water level and flow, and analyse the 
hydrological effects of environmental change. Due to different market 
needs, ownership was split into different consultancy departments and 
in the last decades MIKE 11 and MOUSE have been developed and 
maintained in parallel. Released in 2005, MIKE URBAN followed 
requests to have a more complete and integrated modelling framework 
for both water supply and wastewater systems.  

Through decades of successful use and development, the 
requirements of the software have evolved as well. In particular, the 
software is used in a more general setting, e.g. scheduled forecasts. The 
company was faced with the challenge of identifying and developing a 
kernel for data handling, simulation setup, and graphical interaction 
with simulations and their results. The first re-engineering project 
started with the MIKE 11 engine in 2006. Later, the MOUSE engine 
was merged into the MIKE 11 re-engineering project. Meanwhile, the 
organisation was changing. DHI set up a software product department 
in order to strengthen the software development process and the design. 
The software product department has taken development activities and 
ownership of DHI’s software products. As a consequence, the 
department decided to re-engineer the core computational parts of some 
of the one-dimensional simulation software products, i.e. MIKE 11, 
MOUSE and MIKE URBAN, in a project called MIKE 1D. The project 
is estimated for 360 person weeks of implementation. 

Lately, the software product department officially promoted another 
project called the Decision Support System (DSS) Platform. The DSS 
Platform affords end users the leverage to customise ongoing water 
simulation using historical, current, and predictive data. The DSS 
Platform usually uses data that has already been gathered into persistent 
storage and occasionally works from operational data. The simulation it 
builds on has to be set up as well by developing the model of the water 
system. 
 
3. Research method 
 

The research cooperation with DHI addressed the introduction of 
product line architecture into product development. The basis for the 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 157 

research described here is the fieldwork which I have been involved in 
for two and a half years. I wrote a research diary documenting daily 
observations, interviews, and meetings. As a field worker, I was 
expected not only to observe, but also to influence the projects in which 
I participated. The research was designed as action research by 
following the cooperative method development approach (CMD) [12]. 
The research activities are summarised in Table 1. Due to a lengthy 
period of cooperation, research activities are chronologically divided 
into three cycles: 1.) MIKE 11 re-engineering project, 2.) merging of 
MIKE 11 and MOUSE re-engineering project, and 3.) MIKE 1D 
project. Note that the research activities in the second cycle were 
collected when the third cycle was under way. Each cycle consists of 
three phases, i.e., participant observation, deliberating change, and 
evaluation. Most empirical evidence presented in this paper is obtained 
from the last cycle. 
 
4. Terms and definitions 

 
This section introduces (1) evolvability of socially embedded 

systems and (2) evolvability framework, as shown in Subsections 4.1 
and 4.2 respectively. To avoid terminological confusions between 
system and software, the two terms are used interchangeably. 
 
4.1. Evolvability of socially embedded systems 
 

Unphon et al. [26] have defined socially embedded systems as any 
system that can be modelled intensively according to the environment 
and practices of its end users. ERP systems, e-government 
applications, virtual office software, and decision support systems are 
examples of socially embedded systems. Design decisions of socially 
embedded systems underline the importance of human interaction. 
According to Lehman [21], an Embedded program (E-program) is a 
part of the world which it models. This implies a constant pressure for 
change. The usability of the system is the main concern of E-programs. 
Close cooperation between end users, people working with the systems 
on a daily basis, and developers throughout the entire development 
process is strongly recommended for capturing the contexts and 
qualities of use that cannot be fully anticipated at the initial phase. In 
use-oriented design, Participatory Design (PD) is regarded as a method  



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 158 

 

Table 1. Summary of research activities
 

Ph
as

e C
yc

le
 1.) MIKE 11 re-

engineering project 
 
 

(Aug. – Nov.06) 

2.) Merging of MIKE 11 
and MOUSE engines re-
engineering project 
 

(Dec.06 – Oct.07) 

3.) MIKE 1D project 
 
 
 

(Feb.07 – Mar.09) 

Pa
rt

ic
ip

an
t o

bs
er

va
tio

n 

- Study functionalities 
and code architecture 
of MIKE 11 and 
MOUSE engines. 

- Compare between 
MIKE 11 and MOUSE 
engine source code. 

- Interview DHI staff 
members. 

- Found a striking 
similarity in the source 
code between MIKE 
11 and MOUSE 
engines. 

- Review of architectural 
documentation and online 
user references systems 
used at DHI. 

- Observe development 
practices and technical 
infrastructure of MIKE 11 
and MOUSE engines. 

- Review off-the-shelf 
documentation generators. 

- Interview developers and 
internal users of MIKE 11 
and MOUSE engines on 
how they can use the 
architecture document. 

- Review off-the-shelf static code 
analysis tools. 

- Analyse MIKE 1D source code 
using the reviewed tools and 
identify the relative complexity of its 
components. 

- Compare the analysis with the 
previous cycle projects. 

- Join MIKE 1D project weekly 
meetings. 

- Interview MIKE 1D team 
members on the idea of assessing 
the architecture and how they can 
use of the architecture as an aspect 
of software development. 

D
el

ib
er

at
in

g 
ch

an
ge

 

- Present a poster 
highlighting identical 
code parts between 
MIKE 11 and MOUSE 
engines. 

- Present a talk on 
software architecture 
and product line 
architecture. 

- Participate in a 
subproject on 
developing data 
access module 
architecture for the 
MIKE 11 re-
engineering project. 

- Propose a layered 
architecture to represent 
architectural knowledge. 

- Compare documentation 
generators and recommend 
a suitable one. 

- Update architecture 
documentation. 

- Create a prototype of an 
online architectural 
knowledge system. 

- Conduct a workshop on 
architecture discovery with MIKE 
1D team members. 

- Introduce the basic idea of 
architectural conformity checking. 

- Recommend suitable static code 
analysis tools. 

- Present the “good” and “bad” 
parts of the source code from the 
static code analysis tools. 

- Present an empirical study on 
architecture evaluation in industrial 
practice, the concept of software 
evolvability, and evolvability 
framework. 

- Propose Architecture-Level 
Evolvability Assessment (ALEA). 

- Organise a workshop on MIKE 
1D and DSS compatibility. 

Ev
al

ua
tio

n 

- Evaluate the 
flexibility of the data 
access module by 
looking at different 
change scenarios at 
DHI and their 
implications in terms of 
implementation efforts. 

- Found that 
organisation of 
software development 
influenced product line 
architecture 
development [25]. 

- Found that architectural 
knowledge was more visible 
in the discussion than in the 
document. 

- Found that the prototype 
of the online architectural 
knowledge system has 
been set up and used 
internally. 

- Found that architectural analysis 
tools and techniques embedded in 
daily routine were welcome by the 
development team. 

- Found that the development 
team uses “build hierarchy” to 
check the compliance of their 
source code against the 
architecture’s structure when they 
build the software [Error! 
Reference source not found.]. 

- Validate ALEA and evolvability 
framework with MIKE 1D team 
members. 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 159 

for improving usability [18].  

Socially embedded systems often allow users to tailor the software 
to specific needs. Examples of end user tailoring categories are 
customisation, composition, expansion, and extension [13]. Apart from 
tailoring, socially embedded systems must also evolve over time. 
Belady and Lehman [6] first introduced and used the term evolution as 
‘a sequence of changes to the system over its lifetime which 
encompasses both development and maintenance’. In today’s 
competitive software market, it would be too restrictive to limit 
evolvability to maintenance issues only. The growth dynamics of a 
system depend highly on the business context. To increase market 
share, it may be vital to bring out new features. Yet, a system that is 
used will be changed [20]. Unphon et al. [26] have further defined 
evolvability as the adaptability of software in order to serve the needs 
of use and business contexts over time reflecting on its architecture. 
Architecture represents a common abstraction of a system that many of 
the system’s stakeholders can use as a basis for mutual understanding, 
negotiation, consensus, and communication [5]. Architecture and other 
contexts around it must be adapted to accommodate the needs of use 
and business contexts.  
 
4.2. Evolvability framework 
 

We apply the evolvability framework proposed in [26] to review the 
effects of architectural changes as shown in Figure 1. The framework 
presents interaction between architecture and the six contextual 
dimensions, i.e., business, use, software engineering organisation, 
software engineering practice, technical infrastructure, and technical 
selection. Each contextual dimension is defined and illustrated as 
follows:  

Business context is the context or environment to which the system 
belongs. For example, DHI software is a commercial software product 
and sold as licensed.  

Use context relates the system to the work practices of the intended 
users. For example, hydraulic engineers use DHI software for water 
flow modelling, wave simulation, or flood forecasting.  

Software engineering organisation is the organisational context in 
which the software development is carried out. For example, DHI 
software is developed in Denmark, the Czech Republic, and China. 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 160 

DHI software product department employs Microsoft Solutions 
Framework (MSF) team model [2]. MIKE 11 and MIKE URBAN 
software products were developed by different departments.  

Software engineering practice refers to the analysis of the work 
practices of the system developers. For example, the development 
process at DHI is a mixture between iterative/incremental processes 
and agile methods. The core computational simulation developers are 
educated in hydraulic engineering, but the graphic user interface (GUI) 
developers are computer scientists. Most if not all MIKE 1D developers 
are highly educated in water and environmental engineering, not 
software engineering.  

Technical infrastructure lists the hardware and basic software assets 
backing the system, focusing on the design as it is now. For example, 
MIKE 1D components are implemented in the C# programming 
language. The MIKE 1D project has unit test, nightly build, and build 
hierarchy as development infrastructure. DHI software only supports 
the Microsoft operating system.  

Technical selection is part of a suggested design and relevant to 
design implementation. It needs to be seen in the context of existing 
and planned systems, as well as in the context of other systems that are 
part of the same design. For example, a common data access module 
handles setup data of MIKE 11 and MOUSE. 

Others have used the notion of context or contextual factors before. 
Kensing [17] proposed a conceptual framework that IT designers 
should be aware of when they design applications for a specific 

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

 
 

Figure 1. Evolvability framework 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 161 

organisation. The framework addresses: (1) project context, separating 
into design and implementation; (2) use context, dealing with work 
practice and strategy; and (3) technical context, interacting with system 
and platform contexts. Kensing does not apply the framework to 
concrete design proposals. Dittrich and Lindeberg [11] developed 
Kensing’s framework further by mapping out contextual factors in 
order to understand the suitability of a less technically advanced design 
for a specific industrial setting. We further develop this framework to 
support architecture-based analysis when planning to evolve software 
products. 

 
5. Architecture evaluations 

 
This section reviews architecture evaluations from state-of-the-art 

and industrial practice, as shown in Subsections 5.1 and 5.2 
respectively. 

 
5.1. State-of-the-art 

 
Ali et al. [4] classified and compared eight software architecture 

evaluation methods: Scenario-based Architecture Analysis Method 
(SAAM) [15], Architecture Trade-off Analysis Method (ATAM) [14], 
Active Reviews for Intermediate Design (ARID) [10], SAAM for 
Evolution and Reusability (SAAMER) [22], Architecture-Level 
Modifiability Analysis (ALMA) [8], Scenario-Based Architecture Re-
engineering (SBAR) [7], SAAM for Complex Scenario (SAAMCS) 
[19], and Integrating SAAM in domain-Centric and Reuse-based 
development (ISAAMCR) [24]. Kazman et al. [16] contended that the 
categorisation and comparison are based on features of the methods 
instead of effectiveness and usability of the methods. The effectiveness 
of a method refers to producing results of real benefit to the 
stakeholders in a predictable, repeatable way. The usability of a method 
refers to capability of understanding and executing by its participants, 
learning reasonably quickly, and performing cost effectively. They 
further suggested four fundamental criteria for analysing an architecture 
evaluation method as follows: (1) context and goal identification, (2) 
focus and properties under examination, (3) analysis support, and (4) 
determining analysis outcomes. Nonetheless, both works point out 
features and criteria that need to be addressed when creating an 
architecture evaluation method. 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 162 

 
5.2. Industrial practice 

 
Unphon et al. [27] reported an empirical study on architecture 

evaluation in industrial practice. Findings of the study were based on 
interviews of ten architects who evaluated architecture of their 
organisations and other organisations. The findings showed a diversity 
of processes, participants and evaluation criteria in how architecture 
evaluation can be done in different organisations or business domains. 
Moreover, the findings also revealed preparation and challenges of 
architecture evaluation. The findings stated that non-technical issues 
(process, people, organisation, communication, and finance) can be the 
root cause of various architectural problems. Consequently, non-
technical issues were also seen as the challenges of architecture 
evaluation. The findings confirmed that interaction between business 
and technical stakeholders is significant throughout the architecture 
evaluation. They emphasised the crucial role of an architect, i.e. (1) a 
middleman between business requirements and technical development, 
and (2) a responsible person for intellectual control over software being 
developed. Although the findings might not be generalised to any 
organisation, they provide good advice when designing a method to 
evaluate architecture. 

 

6. Architecture-Level Evolvability Assessment 
 
Architecture-Level Evolvability Assessment (ALEA) is a method to 

analyse how well the architecture supports future use and business 
contexts. The main concern of ALEA is sustainability of architectural 
change. Meaning that, if the current architecture is changed, how will 
the envisioned architecture look? The effects of changes will be 
checked with respect to quality factors and evolvability framework. 

ALEA has been designed for assessing architecture of socially 
embedded systems. ALEA participants are stakeholders of the systems, 
e.g. end users, developers, a chief architect, and the project manager. 
To identify an assessment item, ALEA promotes interaction between 
business and technical stakeholders. Instead of assuming change or 
predicting use, each assessment item comes from stakeholders who tell 
what is expected to happen. It is vital that a “walking architecture” is 
involved throughout the assessment. The walking architecture is a chief 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 163 

architect or a main developer who carries most if not all the 
architectural knowledge and makes design decisions. ALEA entails a 
mechanism of follow-up by producing assessment complete assessment 
report. The details of ALEA methods and report templates are shown in 
Subsections 6.1 and 6.2. 

 
6.1. ALEA method 

 
A summary of ALEA method is shown in Figure 2. The ALEA 

method is divided into 3 stages: elicitation, assessment and reporting. 
The elicitation stage aims to prepare necessary elements for the 
assessment stage. The elements are existing architecture, quality 
factors, an assessment goal and assessment items. The existing 
architecture can be elicited from an architecture document or a 
“walking architecture”. The quality factors [23] represent behavioural 
characteristics of a system. They include correctness, reliability, 
flexibility, testability, maintainability and reusability. The assessment 
goal is a purpose of the assessment. If the goal is not specifically 
identified, it will lead to involving unnecessary stakeholders and 
difficulties in identifying assessment items. The assessment items can 
be seen as new requirements, use scenarios [9], change issues, etc. If 
assessment items are abundantly identified, they must be prioritised. 
The assessment will start from the high-priority items. 

1. Elicitation
• Elicit existing architecture 
• Elicit quality factors 
• Identify an assessment goal 
• Identify and prioritise assessment items 
2. Assessment 

For each assessment item 
• Architecture adaptation 
o Assess the existing architecture with respect to 

assessment item 
o Envision the architecture 
o Assess the envisioned architecture with respect to 

relevant quality factors 
• Sustainability assessment 
o Assess the envisioned architecture with respect to 

evolvability framework 
3. Reporting 
• Document the whole assessment  
• Follow-up 

Figure 2. Summary of ALEA 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 164 

The second stage is assessment. This can be seen as a loop in which 
architecture adaptation and sustainability of the adaptation will be 
reviewed for each item. Architecture adaptation includes (1) assessing 
existing architecture with respect to assessment item, (2) envisioning 
architecture, and (3) assessing envisioned architecture with respect to 
relevant quality factors. The envisioned architecture can be seen as the 
existing architecture with new components added, adding new 
interfaces to existing components, changing existing components, and 
changing existing interfaces. However, the design decision for the 
envisioned architecture will support or impede quality factors. On the 
other hand, the analysis with respect to quality factors provide a sound 
basis for making an objective decision in case of design trade-offs.  

Sustainability assessment addresses the envisioned architecture with 
respect to the evolvability framework. If need be, some contexts might 
be adapted to support the envisioned architecture or the assessment 
item, or the envisioned architecture has to be refined. Because the 
envisioned architecture will “inhabit” the same context as the existing 
architecture, it is vital to be aware of what the root context of an 
assessment item is, which contexts could be affected, and how they 

Architecture-Level Evolvability Assessment 
PART I 

Goal: [Description]+ 
Quality factors: [List of quality attributes] + 
Existing Architecture: [Figure and description] + 
Asessment items: [List of assessment items]+ 

PART II 
Assessment item: [Prioritised number, assessment 

item name, description] + 
Architectureal discussion: [Description] + 
Envisioned architecture: [Figure and description]* 
Related quality factors: [Description]* 
Sustainability discussion 
□ Business context: [Description]* 
□ Use context: [Description]* 
□ Software engineering organisation: [Description]* 
□ Software engineering practice: [Description]* 
□ Technical infrastructure: [Description]* 
□ Technical selection: [Description]* 
Conclusion: [Description] + 
Action plan: [Description]* 
 

Note     [  ]+ is a required field.  [  ]* is an optional field. 
 
 

Figure 3. ALEA report template 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 165 

could be adapted. In case the envisioned architecture has to be refined, 
the quality factors will be assessed again. 

The reporting stage aims to document the whole assessment, which 
entails a mechanism of follow-up. It is absolutely essential that all 
findings are backed by evidence. For example, a problem in the 
architecture should come from stakeholder input. The mechanism of 
follow-up makes the design decision visible to responsible stakeholders. 
The mechanism is not to take decision immediately, but to inform and 
broaden solutions. For example, if the stakeholders are aware of what 
they gain from a possible solution, will they favour it or will they find 
another solution? There can be multiple solutions for the same 
assessment item, so the stakeholders can see which quality factors or 
evolvability contexts are affected by each solution. 
 
6.2. ALEA report template 
 

The ALEA method needs to produce a complete document for the 
assessment. Figure 3 shows an ALEA report template which is 
consistent with the ALEA method. The template has two parts, Part I 
and Part II, corresponding to the elicitation and assessment stages. 
Every field in Part I is required. Part II has both required and optional 
fields. 

Part I captures a goal, quality factors, existing architecture, and 
assessment items. Part II captures a set of assessment items along with 
their architecture discussion, envisioned architecture, related quality 
factors, sustainability discussion, conclusion, and action plan. 

 
7. Implementation and evaluation of ALEA at DHI 

 
This section presents empirical evidence in which we implemented 

and evaluated architecture-level evolvability assessment (ALEA) in a 
case study. Subsection 7.1 describes the implementation of the ALEA 
at DHI. Subsection 7.2 presented lessons learned. 

 
 
 
 
 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 166 

7.1. MIKE 1D and DSS Platform compatibility 
 

When MIKE 1D team members and I implemented the ALEA 
method at DHI, our ambition was to ensure that the MIKE 1D ongoing 
development would align with the DHI business vision. One of the 
focuses at the MIKE 1D project is to support the uses of DSS Platform. 
We then prompted a workshop on MIKE 1D and DSS Platform 
compatibility. Our aim was to assess whether MIKE 1D architecture is 
good enough for DSS Platform usage. The workshop had two parts. 
The first part aimed at eliciting assessment items from the DSS 
Platform project. The second part aimed at discussing the items based 
on the ALEA method. 

Due to limited funding, we arranged the first part of the workshop as 
a lunch meeting. Participants were not only team members of the 
MIKE 1D project and the DSS Platform project, but also all the 
interested stakeholders from DHI consultancy departments. The 
participants got information on current MIKE 1D design architecture, 
and ideas on how the DSS Platform could work with the MIKE 1D 
architecture. The participants gave direct input to the MIKE 1D team. 

The input or assessment items were discussed in the second part of 
the workshop. Participants were MIKE 1D team members, an 
architecture expert and me. We discussed assessment items based on 
the ALEA method. At the end of the workshop, we reflected on the 
ALEA method and evolvability framework. After the workshop, the 
discussion was documented following the ALEA report template. 

The MIKE 1D design architecture is shown in Figure 4. It consists of 
four layers: Application, Controller, Data access, and Utilities. Each 
layer comprises a number of components. Each component has its own 
interface which can be accessed by the other components. Only the 
Data access layer has two sub-layers of grouping components. Arrows 
show the “uses” relationship of components, layers, and products. For 
example, Application MIKE URBAN component uses MU Proxy 
components. 

The Application layer contains Application and Application MIKE 
URBAN that can be run from a command prompt. The Controller layer 
handles the simulation of a water model. The Controller layer contains 
MIKE 1D Engine, MIKE 1D Controller, and MIKE 1D Engine 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 167 

Factories. The Data Access layer handles the setup of the water model. 
The Data Access layer contains the MIKE 1D Data Access component 
and the other self-contained components, e.g. Network Data Access, 
HD Parameter Data Access, and Boundary Data Access components. 
The Utilities layer provides generic components which can be used by 
the higher layer components. 

Design decisions of MIKE 1D architecture promote quality factors, 
such as maintainability, usability and integrity. For example, through 
the Data Access layer, the MIKE 1D Engine component, GUIs, and 
third-party users can handle the setup of a water model in a 
straightforward manner without accessing any persistent storage 
directly. As long as they can handle these data access components, they 
can set up or simulate a water model. The MIKE 1D Data Access 
component can read data from MIKE URBAN and MIKE 11 files and 
populates the setup data. Potentially, if a user wants to simulate a 
specific water model from a specific file, the user creates a specific file 
reader for that file and populates the MIKE 1D Data Access 
component. Then the user can perform simulation without changing 
anything in the MIKE 1D Engine component. Also, the user can 
validate the data before performing the simulation. 

Figure 4. MIKE 1D design architecture 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 168 

In the workshop, a member of the DSS Platform project posed an 
assessment item regarding setup data manipulation, which can be seen 
as a new requirement. He works with an operational flow forecasting 
system. One functional requirement of the DSS Platform is to handle 
“what if” situations. End users are free to change setup data like water 
inflow during a simulation. To forecast the next simulation, the DSS 
platform needs to know which setup data to use, results from previous 
simulation, manual input or calibrated setup data, e.g. when starting the 
forecast after a computing failure. 

MIKE 1D team members suggested writing a “wrapper” around the 
Data Access layer. The wrapper is a minimal interface component that 
gives high-level functionalities to the Data Access layer. The wrapper 
would get data from the previous simulation, the calibrated setup data, 
or another persistent storage, e.g. a database or a result file from 
another simulation system. Thus, the wrapper would require metadata 
for transforming data appropriately. To create such a wrapper, nothing 
would change in the existing MIKE 1D design architecture. The 
architecture already supported the necessary extraction of the metadata. 
But an envisioned architecture would add the wrapper beside the Data 
Access layer, which can be done outside the MIKE 1D architecture. 

In sustainability discussion, the MIKE 1D team members saw that 
the manipulation of setup data originated from the context of DSS 
Platform use. The envisioned architecture coined good questions on 
software engineering organisation and business context, i.e. “With the 
current organisational structure, who should implement the wrapper? 
The MIKE 1D team, the DSS Platform team, or someone else?” and 
“Will the wrapper be one of DHI’s saleable components? If so, who 
will take the lead on that?”. 

To follow up the manipulation of setup data, the MIKE 1D team 
created the extra component on top of the existing MIKE 1D design 
architecture. They were aware that they should collaborate with the 
DSS Platform team to achieve the goal, i.e. MIKE 1D and DSS 
Platform compatibility. 

 

 

 

 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 169 

7.2. Lessons learned 
 
As reported in literature [25], organisation issues influenced the 

architecture. The funding model resulted in identifying an assessment 
goal and planning for the workshop. The first evidence is identification 
of assessment goal, i.e. MIKE 1D and DSS Platform compatibility. 
Comparing to another potential assessment goal, this goal can be 
assessed (a) between two in-house projects, and (b) without hiring any 
external hydraulic and environmental consultants. The second evidence 
is the workshop schedule. The workshop was split into two parts: 
elicitation and assessment. Elicitation was scheduled as a lunch 
meeting. Assessment was scheduled as an internal meeting. At DHI, the 
lunch meeting is considered as an internal meeting in which the host 
shall not spend extra budget for any participants because it is 
considered as part of common contribution. Thus, holding such a 
meeting means economics collaboration between different in-house 
projects or departments. 

At the end of the workshop, the MIKE 1D team members gave 
feedback on the architecture-level evolvability assessment (ALEA). 
The team members found that the term “evolvability” is a rather 
abstract and difficult concept in itself. Some of the MIKE 1D team 
members wondered why it was discussed in their project. Eliciting 
quality factors was another challenge. The team members were not 
familiar with the term “quality factors”. Thus, giving a clear definition 
and showing examples could help better understand the ALEA method 
on the first implementation. 

Elicitation of the assessment item is crucial. During the workshop, a 
DSS Platform team member raised a known issue which the 
participants discussed. When the MIKE 1D team had internal 
architectural discussion, one of its team members complained that “I 
don’t know how they do that in practice actually.” 

The MIKE 1D team members suggested improving this method by 
either giving extremely precise instructions or eliciting a practical 
assessment item. The later suggestion can be seen as participatory 
design. More specifically, DSS Platform team members should have 
come up with how they actually handle the concrete online system. 
This could be done by showing how the DSS Platform team members 
use MIKE 11 or MIKE URBAN and generalising the concrete case. 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 170 

The summary could help MIKE 1D team members to frame an overall 
idea of an assessment item and to connect it to actual practice. 

After experiencing ALEA, the MIKE 1D team members approved of 
the structure, transparent decision-making process and trade-off 
analysis for product-line architecture. Before the method was 
introduced to the MIKE 1D team members, they assessed the 
architecture informally at the whiteboard. One of the members reported 
that “When we do it (architecture assessment on the whiteboard), I 
think we get only half of the quality factors and half of the contexts (of 
the evolvability framework) because it is not structured. By getting this 
structure, we are able to make a more sound decision about what to 
do.” Apart from that, the ALEA endorsed product-line architecture. 
One difficulty at DHI was thinking in terms of product line 
architecture. Often, a developer just came up with an idea to solve a 
problem. Due to this pragmatic decision, the developer often added his 
solution directly into the source code without considering whether it 
could be used for future projects. With the ALEA, the developer is 
encouraged to consider the consequences of change not only on his 
own project, but also sustainability in relation to other projects. 

After the first implementation of the method, the members gradually 
learn the terms used in the method and connections between the 
architecture and its relevant contexts. At the time of writing, the 
members have planned to assess their architecture at the beginning of 
each milestone. “It would be good tool for a project leader.”, one of the 
members suggested. 

 
8. Discussion 

 
This section presents notes on evolvability framework, and how 

ALEA can fit in a FramewOrk for Comparing Software Architecture 
Analysis Methods (FOCSAAM) [3] and industrial practice, as shown in 
Subsections 8.1 and 8.2. 

 
8.1. Evolvability framework: comprehension and stakeholder 
affiliation 

 
Positive feedback by MIKE 1D team members on evolvability 

framework are comprehensiveness, illustrations, and visualisation. The 
evolvability framework, as shown in Figure 1, was used in 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 171 

sustainability discussion. I found that the team members can visualise 
the consequence and propagate the effects of an envisioned architecture 
in a short period of time. What impressed me the most was the 
accuracy with which team members were able to predict the 
consequences suggested changes to the architecture.  

When the evolvability framework was introduced, a team member 
questioned (1) the difference between technical selection and technical 
infrastructure and (2) how the framework relates to stakeholders. The 
answer to the first question is defined and illustrated in the Subsection 
4.2. The answer to the second question is that the stakeholders can 
belong to contextual dimensions. For example, based on an assessment 
item of MIKE 1D and DSS Platform compatibility, as mentioned in 
Subsection 7.1, the DSS Platform team represents the use context. 

 
 

Table 2. Summary of ALEA based on FOCSAAM
 

FOCSAAM ALEA 
Component Elements Brief explanation 

Software 
architecture definition 

Structure(s) of system which comprise software 
elements, the externally visible properties of those 
elements, and the relationships among them [5] 

Specific goal Change impact analysis 
Quality attributes Evolvability and other elicited quality factors 
Applicable stage All stages of software life cycle 
Input & Output Embedded in method description 

Context 

Application domain Socially embedded systems 
Benefits Continuous quality check and specific benefit 

according to the assessment goal 
Involved 

Stakeholders 
“Walking architecture” and selected stakeholders 

depending on the assessment item 
Process support Embedded in method description, participatory 

design (recommended) 
Socio-technical 

issues 
Embedded in method description 

Stakeholders 

Required resources Funding, person hours spent for elicitation, 
assessment and reporting 

Method’s activities Three main stages: elicitation, assessment and 
reporting 

Software 
architecture description

Design architecture and code architecture 

Evaluation 
approaches 

Based on change requirements, an expert 
evaluation 

Contents 

Tool support Evolvability framework 
Maturity of method Developing and continuous validation Reliability 
Method’s validation Case study 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 172 

8.2. How ALEA can fit into FOCSAAM and industrial practice 
 
Ali Babar and Kitchenham [3] have developed a FramewOrk for 

Comparing Software Architecture Analysis Methods (FOCSAAM). We 
apply FOCSAAM to assess ALEA, as shown in Table 2. We found that 
ALEA provides essential features, as does most of the well-established 
architecture evaluation methods presented in [4]. ALEA contained 
evolvability framework as its tool support in the sustainability 
discussion section. Note that evolvability is the central “quality 
attribute” of ALEA. But the “quality factors” are elicited using ALEA. 
We consider effects on the quality factors as a part of evolvability. For 
example, in the continuous development of a system, the quality factors 
of the new version can differ significantly from those of the old 
version. 

ALEA uses face-to-face conversation to convey information rather 
than documentation. However, ALEA reports are used to complement 
follow-up mechanisms. The follow-up mechanism is basically face-to-
face conversation to “the right people” or responsible stakeholders. 
Based on an assessment item of MIKE 1D and DSS Platform 
compatibility, as mentioned in Subsection 7.1, MIKE 1D team 
members and DSS Platform team members are potential candidates for 
developing a wrapper. Due to the software engineering organisation at 
DHI, this decision will be taken by a head of the development group. 

Validated by DHI case study, ALEA looks promising in terms of 
effectiveness and usability. Main reasons could be (a) the concept of 
architecture was “concretised” in the development environment before 
ALEA was implemented; (b) ALEA is designed based on industrial 
practice, especially DHI context; and (c) ALEA gives precedence to 
socio-technical perspective. 

 
9. Conclusions and future works 

 
This paper proposes a method called Architecture-Level Evolvability 

Assessment (ALEA) to evaluate how well the current design 
architecture can accommodate future use and business context. ALEA 
has been developed, implemented, and validated during a cooperative 
project with DHI Water Environment and Health. After the first 
validation, we found that Participatory Design (PD) can complement 
the elicitation stage of ALEA. Due to ALEA having been designed for 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 173 

review architecture of socially embedded systems, engaging end users 
beyond the design phase is unavoidable. It is somewhat misleading to 
state that ALEA is complete in its existing form. Rather, we expect 
ALEA to be refined with a wide range of assessment goals and items in 
order to better support architecture evaluation. Our ambitions for the 
refined ALEA are (a) comprehensible for a novice, and (b) applicable 
to continuous development of software product lines. Future research 
will have to show whether and how ALEA can be applied in different 
contexts.  



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 174 

References 
 

[1] DHI Water Environment Health. [Online]. Available: 
http://www.dhigroup.com  
[2] MSF Team Model v.3.1, Microsoft Solutions Framework (MSF) Team 
Model. [Online]. Available: 
http://www.microsoft.com/downloads/details.aspx?familyid=C54114A3-
7CC6-4FA7-AB09-2083C768E9AB&displaylang=en  
[3] M. Ali Babar and B. Kitchenham, “Assessment of a Framework for 
Comparing Software Architecture Analysis Methods,” in Proceedings 11th 
International Conference on Evaluation and Assessment in Software 
Engineering (EASE), B. Kitchenham, P. Brereton, and M. Turner, Eds., Keele 
University, UK, 2 - 3 April 2007. [Online]. Available: 
http://www.bcs.org/upload/pdf/ewic_ea07_paper2.pdf  
[4] M. Ali Babar, L. Zhu, and R. Jeffery, “A framework for classifying and 
comparing software architecture evaluation methods,” in Proceedings 
Australian Software Engineering Conference (ASWEC), 2004, pp. 309–318. 
[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 
2nd ed. Addison-Wesley, 2003. 
[6] L. Belady and M. Lehman, “A Model of Large Program Development,” 
IBM Systems Journal, vol. 15, no. 1, pp. 225–252, 1976. 
[7] P. Bengtsson and J. Bosch, “Scenario-based software architecture 
reengineering,” Software Reuse, 1998. Proceedings. Fifth International 
Conference on, pp. 308–317, Jun 1998. 
[8] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-level 
modifiability analysis (alma),” J. Syst. Softw., vol. 69, no. 1-2, pp. 129–147, 
2004. 
[9] J. M. Carroll, Making Use: Scenario-Based Design of Human-Computer 
Interactions, 1st ed. The MIT Press, 2000. 
[10] P. C. Clements, “Active Reviews for Intermediate Designs,” SEI, 
Carnegie Mellon University, Tech. Rep. CMU/SEI-2000-TN-009, 2000. 
[11] Y. Dittrich and O. Lindeberg, “Designing for changing work and 
business practices,” in Adaptive evolutionary information systems. USA: IGI 
Publishing, 2003, pp. 152–171. 
[12] Y. Dittrich, K. Rönkkö, J. Eriksson, C. Hansson, and O. Lindeberg, 
“Cooperative method development,” Empirical Software Engineering, 
vol. 13, no. 3, pp. 231–260, 2008. 
[13] J. Eriksson, “Supporting the Cooperative Design Process of End-User 
Tailoring,” Ph.D. dissertation, Department of Interaction and System Design, 
School of Engineering, Blekinge Institute of Technology, Sweden, 2008. 
[14] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and 
J. Carriere, “The Architecture Tradeoff Analysis Method,” in Proceedings of 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 175 

the Fourth IEEE International Conference on Engineering of Complex 
Computer Systems (ICECCS), Monterey, CA, August 1998, pp. 68–78. 
[15] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A Method for 
Analyzing the Properties of Software Architectures,” in Proceedings of the 
16th International Conference on Software Engineering, 1994, pp. 81–90. 
[16] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. Northrop, “A Basis 
for Analyzing Software Architecture Analysis Methods,” Software Quality 
Control, vol. 13, no. 4, pp. 329–355, 2005. 
[17] F. Kensing, “Participatory Design in a Commercial Context - a 
conceptual framework.” New York, USA: Participatory Design Conference, 
2000. 
[18] F. Kensing and J. Blomberg, “Participatory Design: Issues and 
Concerns,” Computer Supported Cooperative Work (CSCW), vol. 7, no. 3-4, 
pp. 167–185, September 1998. 
[19] N. Lassing, D. Rijsenbrij, and H. van Vliet, “On Software Architecture 
Analysis of Flexibility, Complexity of Changes: Size Isn't Everything,” in 
Proc. Second Nordic Software Architecture Workshop (NOSA '99), 1999, pp. 
1103–1581. 
[20] M. Lehman, “On Understanding Law, Evolution, and Conservation in the 
Large-Program Life Cycle,” Systems and Software, vol. 1, no. 3, pp. 213–231, 
1980. 
[21] M. Lehman, “Programs, life cycles, and laws of software evolution,” 
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sept. 1980. 
[22] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An Approach to 
Software Architecture Analysis for Evolution and Reusability,” in 
Proceedings of CASCON '97, Toronto, ON, November 1997. 
[23] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software 
Quality,” U.S. Department of Commerce, Washington, DC, Tech. Rep. 
RADC-TR-77-369, 1977. 
[24] G. Molter, “Integrating SAAM in Domain-Centric and Reuse-based 
Development Processes,” in Proc. of the 2nd Nordic Workshop on Software 
Architecture (NOSA), 1999. 
[25] H. Unphon and Y. Dittrich, “Organisation matters: How the Organisation 
of Software Development Influences the Development of Product Line 
Architecture.” Innsbruck, Austria: IASTED International Conference on 
Software Engineering, 2008, pp. 178–183. 
[26] H. Unphon, Y. Dittrich, and A. Hubaux, “Taking Care of Cooperation 
when Evolving Socially Embedded Systems: The PloneMeeting Case.” 
Vancouver, Canada: The Cooperative and Human Aspects of Software 
Engineering 2009 (CHASE 2009), in conjunction with the 2009 IEEE 31st 
International Conference on Software Engineering (ICSE 2009), May 2009. 



ARCHITECTURE-LEVEL EVOLVABILITY ASSESSMENT 176 

[27] H. Unphon, M. A. Babar, and Y. Dittrich, “Identifying and 
Understanding Software Architecture Evaluation Practices,” Technical report 
(in progress), 2009. 

 
 
 

 
 
 



11 
 
INTRODUCING AN EVOLVABLE PRODUCT LINE 

ARCHITECTURE 
 

Hataichanok Unphon 
 

IT University of Copenhagen,  
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark; 

and DHI Water Environment Health, 
 Agern Allé 5, DK-2970 Hørsholm, Denmark 

 
e-mail: unphon@itu.dk 

 
Direct phone: +45 7218 5358 

Mobile: +45 6072 9789 
Fax: +45 7218 5001 

www.itu.dk/people/unphon 

ABSTRACT. The main contribution of this work is to 
develop an engineering discipline for maintaining software 
evolvability that is suitable for industrial practice. This 
paper presents a case study on: (i) how software 
architecture and product line architecture (PLA) has been 
introduced into the development practice, and (ii) how the 
architecture can be maintained over time. During two and 
one-half years of research collaboration with DHI Water 
Environment Health (DHI), we implemented (i) a 
conceptual framework providing consistent terminology for 
architectural changes, (ii) a work practice promoting 
adoptability and sustainability of architectural changes, and 
(iii) a supportive technical work practice for architectural 
changes through agile software development. This work 
combines conceptual, human, and technical levels in such a 
way that the development of the PLA does not jeopardise 
the continuous software evolvability. 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 178 

 

KEYWORDS 

 Product line architecture • Architecture evaluation • Qualitative 

empirical research • Software engineering organisation 

1.  Introduction 

Software evolution (Belady and Lehman 1976) can be described in 
different ways: e.g., software aging (Parnas 1994), maintainability 
(Lehman 1980; Bennett 1996; Cook et al. 2000), or refactoring (Mens 
and Tourwe 2004). But software also evolves when brand-new features, 
different development paradigms, or shifting business and 
organisational goals are introduced (Breivold 2008). Moreover, the 
software that is used will continue to evolve (Lehman 1980a). Software 
evolution becomes much more interdisciplinary, combining technical 
and non-technical aspects, with increasing concern for end users 
(Bennett and Rajlich 2000). Software that is required for change must 
be designed in such a way that the architecture is capable of meeting 
current needs, while providing a means of accommodating likely 
change throughout the software lifespan (Rowe et al. 1998). However, 
architecture evolution has typically been done in an ad-hoc manner 
(Chaki et al. 2009). The motivation of this work is to develop an 
engineering discipline for maintaining evolvable architecture that is 
suited for industrial practice. 

This work was conducted as a research project with DHI Water 
Environment Health (DHI)1. DHI is an independent, international 
consulting and research organisation specialising in the area of water, 
environment and health. DHI offers a wide range of consulting services 
and leading-edge technologies, software tools, chemical and biological 
laboratories, and physical model test facilities, as well as field surveys 
and monitoring programmes. The research project initially addressed 
the re-engineering of one of DHI’s software products, and introduced 
thinking in terms of product line architecture (PLA). After two and 
one-half years, PLA thoughts had begun to crystallise, especially after 

                                                            
1 DHI Water Environment Health website: http://www.dhigroup.com 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 179 

the architecture has been employed beyond the design phase of product 
line development. This work confirmed that organisation of software 
development influenced the development of PLA. Furthermore, an 
evolvability framework, a build hierarchy2 and an Architecture-Level 
Evolvability Assessment (ALEA) have been proposed for guidance in 
mediating evolution throughout the whole software life cycle. The 
proposed engineering discipline reveals that the dynamic behaviour of 
software evolution, referred to as “evolvability” in Unphon et al. 
(2009), does not only cover the adaptability, but also the sustainability 
of continuous development and use. Furthermore, the proposed 
engineering discipline ensures that the development of the PLA does 
not jeopardise the continuous evolvability. 

This paper is outlined as follows. Section 2 introduces the case 
description and the research approach. Section 3 presents related 
research. Section 4 elaborates on the introduction of PLA at DHI. 
Section 5 is discussion. Section 6 concludes the paper and outlines 
future work. 

2.  Case description and research approach 

2.1. DHI Water Environment Health (DHI) case 

DHI Water Environment Health (DHI) is a pioneering organisation 
that develops software applications for hydraulic modelling. In 1972, 
System 11 and System 21 were two of the first computational 
modelling systems developed at DHI to simulate water flow patterns 
with the help of one-dimensional and two-dimensional models. A 
three-dimensional simulation was developed in the 1980s. Originally, 
the organisation focused on hydraulic characteristics research, not on 
software engineering. Software development and software maintenance 
were challenges only on a small scale. 

In the late 1980s, DHI released the MIKE 11 and the MOUSE 
software products. Both products originated from System 11 following 
requests for different usages, i.e., open channels and pipe networks. 

                                                            
2 A build hierarchy is a technique to generate executable code based on dependencies 

between components. 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 180 

MIKE 11 and MOUSE are stand-alone Windows-based applications. 
The main users of these products are hydraulic and environmental 
consultants who perform simulations of hydraulic conditions (e.g., 
water level and flow), and analyse the hydrological effects of 
environmental change. Due to varying market needs, ownership was 
split into different consultancy departments; and during the past three 
decades MIKE 11 and MOUSE have been developed and maintained in 
parallel. Released in 2005, MIKE URBAN followed requests to have a 
more complete and integrated modelling framework for both water 
supply and wastewater systems. 

After decades of successful use and development, the requirements 
of the software have evolved as well. In particular there is a growing 
tendency that the software be used in a more general setting, e.g., 
scripts and scheduled forecasts. The company was faced with the 
challenge of identifying and developing a kernel for data handling, 
simulation setup, and graphical interaction with simulations and their 
results. The first re-engineering project started with the MIKE 11 
engine in 2006. Later on, the MOUSE engine was merged into the 
MIKE 11 re-engineering project. The existing source code for MIKE 
11 and MOUSE totals approximately 550,000 lines. 

Meanwhile, the organisation was changing. DHI set up a software 
product department in order to strengthen the software development 
process and its design. The software product department has taken 
charge of development activities and ownership of DHI’s software 
products. As a consequence, the department decided to re-engineer the 
core computational parts of some of the one-dimensional simulation 
software products – MIKE 11, MOUSE and MIKE URBAN – into a 
project called MIKE 1D. The project is estimated to require 360 
person-weeks merely for implementation. 

2.2. Research approach 

The motivation of this research is to deliver a framework, a tool, and 
an evaluation method for engineering architecture evolution that is 
suitable for industrial practice. This research was designed as action 
research by following cooperative method development (CMD) 
(Dittrich et al. 2008). CMD is a domain-specific adaptation of action 
research consisting of three evolutional phases: 1) understanding 
practice; 2) deliberating improvement; and 3) implementing and 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 181 

observing improvements. The research analysis described here is based 
on a research diary documenting daily observations, talks, and weekly 
meetings. In addition, transcripts of recordings of formal interviews and 
workshops are also analysed. Research activities are chronologically 
divided into three cycles: 1) the MIKE 11 re-engineering project; 2) the 
merging of MIKE 11 and MOUSE re-engineering project; and 3) the 
MIKE 1D project. Figure 1 shows the timeline of the three cycles, 
together with prominent research activities. Note that the research 
activities in the second cycle were collected when the third cycle was 
underway. The main reason for the overlap is that the third cycle 
officially began after the number of MIKE 1D project members had 
increased and become established. During the two and one-half years of 
research collaboration, research activities were temporarily suspended 
twice when I, as a fieldworker, travelled abroad. At the end of my 
fieldwork study, the research project members’ feedback and the 
research results were discussed with MIKE 1D team members and 
external specialists. 

3.  Related research 

In Bosch (2000), a software product line is described as consisting of 
a common architecture for a set of related products – also known as 
product line architecture (PLA) – and a set of reusable components that 
are designed for incorporation into the architecture. In addition, the 
software product line consists of software products that are developed 

 

Figure 1. Research activities timeline 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 182 

using the aforementioned reusable assets. Architecture represents a 
common abstraction of a system that many of the system’s stakeholders 
can use as a basis for mutual understanding, negotiation, consensus, 
and communication (Bass et al. 2003). The stakeholders refer to people 
or organisations who will be affected by the system and who have a 
direct or indirect influence on the system requirements (Kotonya and 
Sommerville 1998). Software architectural design is one of the key 
elements in the software product line. The design reflects how well an 
organisation can field software products that are built efficiently from 
the reusable assets. On the other hand, organisation of software 
development also reflects the design (Ganesan et al. 2006), as discussed 
in Section 4. Much has been written about software product line case 
studies (Bosch 2000; Clements and Northrop 2001; Pohl et al. 2005). 
But the DHI case study is unlike the others, with the following 
noteworthy exceptions. 

First, DHI software development practice follows agile software 
development (Cockburn 2001), inspired by eXtreme Programming 
(XP) (Beck 1999) and test-driven development (Beck 2002). In XP, 
planning, analysing, and designing are done a little at a time. Test-
driven development is related to the test-first programming concepts of 
XP. Software product line engineering starts with a domain engineering 
phase (Pohl et al. 2005). Domain engineering requires a substantial 
amount of work in terms of up-front analysis, which goes against the 
core principles and beliefs of XP (Ghanam and Maurer 2009). 

Second, the design decisions for PLA at DHI include the preparation 
for adaptations via end user development. DHI software products are 
extensively tailored by end users. Some of the end users are allowed to 
integrate adaptation of the code into the mainstream development (Sub-
section 4.1). Although PLA addresses some of the design issues, the 
design is resolved within the development organisation. There is no 
systematic categorisation of different possibilities for end user 
development (Dittrich 2007). Apart from that, most of the product line 
frameworks originate from “technically embedded systems,” where 
design decisions are constrained by interfaces with hardware or 
mechanical specifications. But this work is constrained by use contexts 
that cannot be fully anticipated at the initial phase. 

Third, PLA research rarely mentions code architecture conformance 
checking (Bischofberger et al. 2004), and vice versa. During the whole 
software lifecycle, in particular the programming, a planned solution at 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 183 

the start of the project usually signals that design architecture will 
control code architecture. The design architecture can be thought of as 
the ideal implementation structure. The code architecture describes how 
the source code, binaries, and libraries are organised in the 
development environment (Soni et al. 1995) and implement the design 
architecture (Sub-section 4.3). When the project is in progress, the code 
architecture might, for a good reason, not conform to the design 
architecture. For instance, the code architecture may reveal an 
infeasibility of the planned solution. Thus, the design architecture must 
be adjusted in order to align itself with the code architecture. The 
problems, then, are (i) how to describe the compliance between the 
design architecture and the code architecture, and (ii) how to maintain 
it throughout the development. These problems are among the most 
important issues addressed in this work. 

Fourth, PLA research focuses on adaptability (Böckle et al. 2002) or 
modifiability (Bengtsson et al. 2004), but this work takes sustainability 
into account (Section 4.3). The challenge when introducing PLA is how 
to assure the stakeholders that the PLA will support future uses and 
business contexts. If need be, the PLA is adapted to serve the needs of 
use and business contexts. However, the adaptation often affects or 
jeopardises the other contexts for continuous evolution. In order to 
prevent such a situation, sustainability is taken into account in 
engineering discipline. 

Finally, different things become relevant. Carrying out PLA is more 
intricate than the architecture of a one-of-a-kind product. The main 
reasons are (i) most software assets rely on a set of products and 
versions, and (ii) multiple organisational units are involved (Bosch 
2000; Unphon 2009b). 

One contribution of this work is to increase the body of knowledge 
on the implementation of PLA in a development environment in such a 
way that the development of PLA does not jeopardise its continuing 
evolvability. Furthermore, this work addresses the role of architecture 
on the continuous evolution of a product line. Compliance between 
design architecture and code architecture is important and must be 
maintained throughout the software life cycle. 

 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 184 

4.  Introducing product line architecture at DHI 

This section reveals how PLA has been introduced and implemented 
at DHI into three sub-sections. Each sub-section represents its own 
cycle, as mentioned in Section 3. Sub-section 4.1 presents the MIKE 11 
re-engineering project. Sub-section 4.2 shows the merging of MIKE 11 
and MOUSE engines re-engineering project. Sub-section 4.3 describes 
the MIKE 1D project. Each sub-section explains research activities, 
architectural practice changes, effects on software engineering 
organisation and practice, effects on other contextual dimensions, and 
research outcomes. Note that the outline of each sub-section is rather 
unusual for the sake of readability. The explanation of the research 
activities follows the three evolutionary phases of CMD. Only the first 
cycle did not include the final CMD phase because of the shift to the 
second cycle. 

 
4.1. The first cycle: the MIKE 11 re-engineering project 

 
The first cycle began in August 2006 as an initial fieldwork study 

with the MIKE 11 re-engineering project. The cycle ended when the 
project was officially expanded in November 2006. In this cycle, the 
members were a project leader and two developers, all educated in 
hydraulic engineering. 

4.1.1. Research Activities 
 

Understanding practices. Initially, my participation began by 
observing the re-engineering and modularising of the existing MIKE 11 
product. I studied the code architecture and functionality of the MIKE 
11 product, as well as its corresponding products, i.e., MOUSE. I 
compared the similarity of the source code between the MIKE 11 and 
MOUSE engines. I found some GUI functionality that I believed 
should have been done in an engine or a separate module. The engine is 
the main computational part. All the functionalities were poorly 
organized, and on the same file and the same unit. 

Most of the DHI software products’ end users have a BSc or MSc in 
hydraulic engineering, and are able to program on their own; many of 
them used DHI’s applications during their studies. In an organisational 
context, I found that each consultancy department had its own software 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 185 

development team and consultancy team. Coordination between two 
teams in the same department was easily achieved. The consultancy 
team fed its development of new hydraulic modelling elements into the 
mainstream development branch of the respective department. But the 
growth of the organisation was not optimised because of double 
implementation of software development: for example, assigning 
developers to solve the same task, thus spending unnecessary resources 
on development and maintenance. 

Deliberating improvements. After finding a striking similarity in 
the source code between MIKE 11 and MOUSE, I presented a poster 
highlighting the identical code parts in order to initiate a discussion 
among the software developers. Subsequently, I made a presentation on 
software architecture and PLA. Later I participated in a subproject that 
discussed new data access module architecture, and developed a 
prototype of the module. In the meantime, I conducted informal 
interviews with DHI staff members. 

4.1.2. Architectural practice changes 
 

The benefit of merging the MIKE 11 and MOUSE engines was 
clearly visible, and project members became well aware of that benefit. 
MIKE 11 and MOUSE have their own data access patterns. MIKE 11 
defines data structures in an XML-like proprietary format, and stores 
the data in a file. But MOUSE and MIKE URBAN use a database. 
When the project members designed a new data access module, they 
took these data access patterns into consideration. Project members, 
however, struggled with understanding MOUSE architecture from 
source code and data format standpoints. Spontaneous discussions on 
the architecture of the data access module took place, with various 
conceptions drawn on a white board. 

4.1.3. Effects on software engineering organisation and practice 
 

The MIKE 11 and MOUSE engines were developed in parallel, as 
they were derived from different departments. Initially, the re-
engineering project was conducted by one department. The company’s 
internal policy for collaboration among departments is time-consuming 
and costly. Thus, coordination with another department seemed 
impossible. When both departments had a meeting on merging the re-



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 186 

engineering project, one of the departments had questions about 
resource allocation and budget approval for the joint project. After the 
meeting, I conducted separate interviews with members of the two 
departments, during which the concept of “we” and “they” became 
obvious. One team member suggested that collaboration would be 
possible once the output of the re-engineering project had been 
delivered. Another member was eager to join, and was willing to 
reduce the gap in development between the two departments. In 
December 2006 the internal re-organisation of the software 
development and consultancy postponed the approval of the budget for 
both departments, and rescheduled a merging of the MIKE 11 and 
MOUSE engine re-engineering project. 

4.1.4. Effects on other contextual dimensions 
 

Most of the hydraulic engineers at DHI were familiar with the C, 
C++, Delphi, or Fortran programming languages. Therefore, 
applications were implemented in these languages. In order to support 
safer dynamic memory allocation, technology benchmarking, 
communication with other components in the .NET environment, and 
continuity in recruiting new developers, it was decided to change the 
programming language for implementation of the data access module 
from Delphi to either Fortran, unmanaged C++, managed C++, or C#. 
After some discussion and evaluation of the pros and cons, in the 
context of DHI, a decision to use the programming language C# was 
made. 

Due to a lack of explicit architectural documentation, the 
coordination between the two departments in terms of suggesting or 
implementing substantial software changes was difficult. When both 
departments had a meeting on joining the re-engineering project, the 
MIKE 11 developers presented the prototype of a common part by 
showing C# source code. The prototype was discussed with the 
MOUSE developers. 

4.1.5. Research outcomes 
 

When MIKE 11 and MOUSE evolved from System 11, their explicit 
architectural representations were not fully documented. Only a 
“walking architecture” was available. Walking architecture is a term for 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 187 

the chief architect or main developer who possesses most, if not all, of 
the architectural knowledge and, consequently, makes crucial design 
decisions. When a developer has to implement some part of the code 
without understanding 100% of the existing code, he would usually 
copy and paste from the old code. However, the assumption for this 
practice was a lack of architectural documentation. If the architecture 
documentation exits, does it solve the root of the problem(s)? This 
question brought us to the next cycle. 

The first cycle showed that not only technical perspectives but also 
the organisation of software development and use issues influenced 
MIKE 11’s architecture evolution (Unphon and Dittrich 2008). A 
framework comprised of six contextual dimensions around architecture 
– business context, use context, software engineering organisation, 
software engineering practice, technical infrastructure, and technical 
selection – was gradually developed. Figure 2 visualises the 
framework. Each contextual dimension is defined as follows: 

 
Business context is the context or environment to which the system 

belongs. 
Use context relates the system to the work practices of the intended 

users. 
Software engineering organisation is the organisational context in 

which the software development is carried out. 
Software engineering practice refers to the analysis of the work 

practices of the system developers. 

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

Technical 
selection

Technical 
infrastructure

Software 
engineering 

practice

Software 
engineering 
organisation

Use 
context

Business 
context

Architecture

 
Figure 2. Evolvability framework 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 188 

Technical infrastructure lists the hardware and basic software assets 
backing the system, focusing on the design as it is now. 

Technical selection is part of a suggested design and relevant to 
design implementation. It should be seen in the context of existing and 
planned systems, as well as in the context of other systems that are part 
of the same design. 

4.2. The second cycle: the merging of MIKE 11 and MOUSE 
engines re-engineering project 

This cycle started in November 2006 and ended in October 2007. In 
this cycle, a project leader was changed and a developer in the previous 
cycle resigned. Thus, the members now included a new project leader 
plus a developer. Both of them were educated in hydraulic engineering. 

4.2.1. Research activities 
 

Understanding practices. In order to be close to the project, I took 
it upon myself to create the architectural documentation. I had reviewed 
some of DHI’s architectural documentation and online user references 
systems. I also observed the development practices and technical 
infrastructure of the MIKE 11 and MOUSE engines. I reviewed a 
number of documentation generators which automate technical 
document production from the source code. I interviewed developers 
and internal users of MIKE 11 and MOUSE about how they could 
make use of the architectural documentation. 

Deliberating improvements. I organised an evaluation workshop 
with a group of DHI software specialists. A comparison was made 
between the traditional data access design in MIKE 11/MOUSE and a 
new design with a data access module. The flexibility of the new data 
access module was evaluated. The different change scenarios at DHI 
and their implications in terms of implementation efforts were 
inspected. Apart from that, I reported on a comparison of 
documentation generators and recommended a generator that was 
suitable for the project. 

Implementing and observing improvements. After analysing the 
source code and understanding the practice of software development, I 
proposed layered architecture (Buschmann et al. 2007) to represent 
explicit design architecture. I created a prototype of an online 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 189 

architectural knowledge system. The system contained a project 
overview, architectural knowledge, user references, and examples. The 
overview of the project explained the project’s vision. The architectural 
knowledge presented the overall design, layered architecture, and 
diagrams along with detailed explanations. The user references showed 
technical documentation, which was automatically generated from 
source code, e.g., class overviews, namespace overviews, and interface 
overviews. The examples described used scenarios of some 
components in six different programming languages: C#, Visual Basic 
(within Excel), MATLAB, Delphi, VBScript and JScript. 

4.2.2. Architectural practice changes 
 

During the DHI department re-organisation, the merging of the 
MIKE 11 and MOUSE engines re-engineering project proceeded 
slowly; but this was soon moved to the MIKE 1D project. The 
prototype of the online architectural knowledge system was set up and 
used internally. But architectural knowledge was still being discussed 
rather than documented. The role of “walking architecture” was 
recognised. 

Since the architecture was explicitly defined, I found that the MIKE 
1D’s implementation followed design architecture. Figure 3 shows a 
sample of the initial design architecture, which represented a core 

Data Access

Engine

Note:

component
interface

Cross Section 
Data Access

Network Data Access

Structure 
Module

Rainfall Run-off 
Data Access

Network Engine

MIKE1D Engine

Result 
Data Access

Rainfall 
Run-off 
Engine

MIKE1D 
Data Access

Pure 
Calculation

Topology

Layer

The relation ”uses”

 
Figure 3. A sample of the initial design architecture 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 190 

computational part of future MIKE 11 and MOUSE products. The 
entire core computational part was divided into a Data Access layer and 
an Engine layer. The Engine layer was further divided into two sub-
layers: Topology3 and Pure Calculation4. The Data Access layer was 
further divided into a number of components, as was the Engine. Later 
on, viable interfaces for these components were defined. The interfaces 
identified how the components should communicate with each other. 
The components were categorised into layers and assembled based on 
design rules, which defined acceptable dependencies between 
components: i.e., (a) prohibition of upward relationships – it is inherent 
in layered architecture that references from lower to upper layers are 
not allowed (in other words, only downward relationships are allowed); 
(b) interface violations – usage of non-interface artefacts of 
components by other components is not allowed; (c) several layer 
downward relationships are acceptable; and (d) prohibition of 
relationships within a layer – components in different lines of products 
should not relate to each other. 

A considerable amount of component-based software engineering 
provides flexibility for handling changes at the level of design 
architecture. A component interface design helps developers introduce 
new functionalities with minimal impact on all changes. However, it is 
important that a “walking architecture” keeps an eye on any change that 
could possibly break the interface. 

4.2.3. Effects on software engineering organisation and practice 
 

Before the re-organisation, the development teams organised 
software to be in line with each department. After the re-organisation, 
DHI grouped software product development teams from different 
departments into one department. The DHI software product 
department was founded in December 2006, addressing a need to 
strengthen the software development process. Ownership of software 
products changed hands from consultancy departments to the software 
product department. This re-structuring of the organisation of software 
development accommodated the design of PLA. 

                                                            
3 Topology handles static model data, e.g., network topology. 
4 Pure calculation handles dynamic model data, which is used in actual computations 

and the simulation state. 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 191 

The new software product department employs the Microsoft 
Solutions Framework (MSF) team model5. The MSF team model is 
based on six interdependent, multidisciplinary roles: product 
management, program management, deployment, testing, user 
experience, and release management. The team roles are flexible 
enough to follow agile methods, especially in keeping documentation 
to a minimum. Release of software products changed from once a year 
to once every two years. 

4.2.4. Effects on other contextual dimensions 
 

In the evaluation workshop on the design of the data access module, 
one of the developers found that the new design did not allow for easy 
usage. The data access module was, he felt, set up in such a way that 
every developer had to learn five different languages in order to simply 
try something new. Another question was raised about the new design. 
What were the possibilities of experimenting freely with the software 
as it was? Meanwhile, DHI was implementing procedures to maintain 
collaboration and relationships between the development and 
consultancy departments without disrupting the work processes and 
development logistics required by the new organisational structure. 

4.2.5. Research outcomes 
 

In parallel with creating a prototype of an online architectural 
knowledge system, a project was begun to explicate design 
architecture. Project members began to discuss their software using 
software architecture terms: for instance, “layered architecture,” and 
“dependencies between modules.” However, the architecture was not 
concretised into development practice. The evolvability framework 
which had been developed in the first cycle, as shown in Figure 2, was 
still being used as a tool for structuring design discussions when 
drafting architecture and when evaluating architecture evolution. But 
the framework had not yet been introduced to any project members. 

 

                                                            
5 MSF Team Model v.3.1, Microsoft Solutions Framework (MSF) Team Model. 

http://www.microsoft.com/downloads/details.aspx?familyid=C54114A3-7CC6-
4FA7-AB09-2083C768E9AB&displaylang=en 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 192 

4.3. The third cycle: the MIKE 1D project 

The MIKE 1D project was announced in February 2007, but the 
cycle did not actually start until October 2007. The MIKE 1D project is 
still ongoing. But this cycle ended in March 2009, coinciding with the 
end of this fieldwork study. At the beginning of the cycle, a project 
leader was changed and two full-time developers and a part-time 
developer joined. Thus, the initial members of the team were a new 
project leader and four developers. Later on, a hydraulic consultant was 
brought in as a part-time software tester. Midway through this cycle the 
main developer resigned. Shortly after that, another full-time developer 
left the company. The company then recruited a new full-time 
developer. At the time of this writing, the members consist of a project 
manager, two full-time developers, a part-time developer, and a part-
time tester. They are a mixed group with different educational 
backgrounds, i.e., hydraulics, mathematics and physics. 

4.3.1. Research activities 
 

Understanding practices. I reviewed static code analysis tools. 
Employing those tools, I analysed the MIKE 1D source code and 
identified a complexity measure (McCabe 1976) of the MIKE 1D 
components. I also compared the MIKE 1D project’s source code with 
that of the MIKE 11 re-engineering project, and the merging of the 
MIKE 11 and MOUSE engines re-engineering project. I joined the 
weekly meetings of the MIKE 1D project and conducted informal 
interviews with MIKE 1D team members, e.g., an interview on how 
they made use of the architecture as an aspect of software development. 

Deliberating improvements. Together with a group of software 
architecture experts, I conducted a workshop on architecture discovery 
with MIKE 1D team members. The basic idea of checking for 
architectural conformity was introduced to the team members. Tools 
for automated (i) checking source code and architecture at build time, 
(ii) continuous integration server, and (iii) checking source code for 
proper format were recommended. After finding the “good” and “bad” 
parts of the source code by using static code analysis tools, I presented 
my findings at the weekly meetings of the project. The source code 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 193 

comparative analysis was presented in the form of a Kiviat graph6. The 
interdependencies between components were represented in a layered 
architecture and a dependency structure matrix. 

Implementing and observing improvements. I presented an 
empirical study of architecture evaluation in industrial practice, 
including the concept of software evolvability, and an evolvability 
framework. I proposed the Architecture-Level Evolvability Assessment 
(ALEA) method to analyse how well the architecture would support 
future uses and business contexts. A summary of the ALEA method is 
shown in Figure 4. The main concern of ALEA is sustainability of 
architectural change: that if the current architecture were changed, how 
the envisioned architecture would work. 

When the team members and I implemented ALEA, our ambition 
was to make sure that the ongoing MIKE 1D development would align 
with DHI’s business vision. One of the focus areas of the MIKE 1D 
project was to support the use of a Decision Support System (DSS) 
platform. The DSS platform was another project promoted by the DHI 
software product department, which affords end users the leverage to 
customise ongoing hydraulic simulations using historical, current, and 

                                                            
6 A Kiviat graph is a multi-vector line graph showing the interrelationship of multiple 

variables: for example, percentage of comment, number of methods per class, and 
average complexity. 

1. Elicitation 
• Elicit existing architecture. 
• Elicit quality factors. 
• Identify an assessment goal. 
• Identify and prioritise assessment items. 
2. Assessment 

For each assessment item: 
• Architecture adaptation 
o Assess the existing architecture with respect to assessment item. 
o Envision the architecture. 
o Assess the envisioned architecture with respect to relevant quality factors. 

• Sustainability assessment 
o Assess the envisioned architecture with respect to evolvability framework: business 

context, use context, software engineering organisation, software engineering 
practice, technical infrastructure and technical selection. 

3. Reporting 
• Document the whole assessment. 
• Follow-up. 

Figure 4. Summary of the Architecture-Level Evolvability 
Assessment (ALEA) method



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 194 

predictive data. MIKE 1D team members and I organised a workshop 
on MIKE 1D and DSS platform compatibility following the ALEA 
method. The aim of the workshop was to assess whether MIKE 1D 
architecture was good enough to be used by the DSS platform. 

4.3.2. Architectural practice changes 
 

Part of the reluctance to work with an explicit architecture was the 
fear of having outdated documents and a diverging code base. 
Introducing a build hierarchy for architectural compliance checking in 
the daily routine was, therefore, welcomed by the development team. 
The build hierarchy was implied in the design architecture, so that 
components in upper layers must be built after those in a lower layer. 
For example, in Figure 3 the Network Engine component in the 
Topology layer must be built after the Network Data Access 
component, the Structure Module component, and the Cross Section 
Data Access component in the Data Access layer. 

Currently, the build hierarchy is defined in such a way that 
developers specify the build order. But Microsoft Visual Studio has 
another way of handling the logic of a build hierarchy. Microsoft 
Visual Studio has a solution, a top collection of projects. MIKE 1D 
developers work under the same solution, i.e., the MIKE 1D Solution. 
In the solution, there is a list of projects. Each developer is responsible 
for his project(s) in the MIKE 1D Solution. Each project contains actual 
source code and its unit tests. Each project represents a component. 
Hence, the developers define the dependency between components 
through the projects. Afterwards, the developers can see in which order 
the projects are built. When the developers compile or build the 
solution, the build hierarchy will automatically check whether the 
developers have followed the design architecture. When the developers 
check out the source control system and re-compile or re-build the 
solution, they will be aware of what the other developers have been 
doing. The developers also use unit tests to assure that any functionality 
change will not break the architecture. 

MIKE 1D developers iteratively work on the design architecture and 
continue to refine it. With the help of the build hierarchy, the 
developers are able to see if dependencies point in the wrong direction. 
In order to realign the order of dependency, the developers can tweak a 
number of other dependencies, or introduce a new component. 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 195 

Consequently, the refined design architecture is reflected in the build 
hierarchy. Since the architecture has become modularised, components 
can be tested separately, and as each component is composed. The core 
components can also be replaced. For example, to change the equation 
of water flow in a core component, a developer can implement a 
specialised component with the same interface as that core component. 
Without knowing how the core component is internally implemented, 
the developer only sees the interface of the core component and 
implements his specialised functionality. Afterwards, he moves the 
core components out, and replaces the core components with the 
specialised component without impacting anything else (specifically in 
a DHI context) in the build hierarchy. 

The architecture has been used intensively via the build order of 
Microsoft Visual Studio. All of the developers on the team have the 
MIKE 1D solution, and in that solution there is a list of projects. Each 
developer works on different projects; but they still use the same 
solution, and re-compile every ten minutes. And every ten minutes, 
they can also check out and re-build the solution and find out what the 
others have been doing. They follow eXtreme Programming (XP) 
practices (Beck 1999) and test-driven development (Beck 2002). Since 
they each have their own unit tests, they are immediately aware when 
someone checks in and updates the base module; and the higher-level 
module captures any changes using this unit testing. This solution 
works very well with all the unit tests. Thus, changes can be captured if 
the module compromises something else, or if it compromises someone 
who uses this module at a relatively early stage. 

When software products are upgraded or released in a new version, 
changes at the asset base must comply with previously released 
versions. With the help of interface-based design, if developers want to 
change a particular component in the asset base, they can create a new 
component with the same interface as in the previous version. When 
the developers build software with the new component, the build 
hierarchy will notify developers whether the new component complies 
with the architecture of previous releases. Thus, maintainability – one 
of the MIKE 1D quality attributes – is influenced positively by the 
increased separation of components. However, the management of 
multiple organisational units should be optimised in parallel. 

After becoming acquainted with ALEA, the MIKE 1D team 
members approved the structure, the transparent decision-making 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 196 

process, and the trade-off of analysis vis-à-vis PLA. Before the method 
was introduced to the MIKE 1D team members, they assessed the 
architecture informally at the whiteboard. One of the members reported 
that: “When we do it (architecture assessment on the whiteboard), I 
think we get only half of the quality factors and half of the contexts (in 
the sustainability assessment) because it is not structured. By getting 
this structure, we are able to make a more sound decision about what 
to do.” 

4.3.3. Effects on software engineering organisation and practice 
 

When new team members are introduced to the MIKE 1D project, 
their tasks are explained from an architectural point of view. The main 
developer illustrates the MIKE 1D design architecture, albeit not in 
much detail. But this helps the new members to begin working on the 
project. New members can easily picture how the components will fit 
together. This is a strong point of the MIKE 1D project, as one of the 
members said; the project has a walking architecture that essentially 
describes itself. New team members will initially be assigned to 
implement a self-contained component7 of the design architecture. 
Thus, the new team members will not change any of the core 
components. New developers will use implementation templates to get 
started. When asked how to decide into which component he should put 
the physical equation, one of the developers who had been newly 
introduced to the team replied: “Actually, the main developer showed 
me the component and told me to put the equation here and here. Then 
I started it. As for the framework of MIKE 1D, I didn’t really know how 
it works….” Another new member had experienced being a new 
developer in another project. At that time he had to attempt to 
understand the project strictly by deciphering the source code. “That 
was a time-consuming task, but it’s much more manageable now after I 
moved to MIKE 1D,” he reported. 

The idea of a build hierarchy is straightforward to the developers. 
MIKE 1D developers distribute the work after the architecture has been 
designed. They decide up front on a protocol for communication and 
dependencies between components. They can work on their own 

                                                            
7 A self-contained component refers to an independent component or a component 

that is barely used by other components. 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 197 

implementation without compromising each other’s work. They hardly 
ever work on the same file. Even though their source control system 
improves, they do not need to merge a file as often as before because 
they are working on separate components. One of the MIKE 1D 
developers said, “It’s just way easier to handle it. It is much easier to 
test. It is just a lot easier for us to work with, and it works better.” The 
idea of outsourcing MIKE 1D development to other developers who are 
familiar with both MOUSE and MIKE 11 engines was mentioned. The 
developers would thus be able to implement some of the components if 
they have time, or work on them in parallel without affecting other 
MIKE 1D developers. A milestone and release plan was decided upon 
from a functional point of view. However, thinking in terms of 
architecture and build hierarchy indirectly impacted on the plan, and 
introduced a new component. 

MIKE 1D team members work in a common “airy” room where they 
can sit near each other. When it comes to architectural discussion, the 
“roommates” easily perceive “what and why” the architecture has been 
changed. As confirmed by the MIKE 1D team members, the open work 
space is one of the important elements that promotes decentralisation of 
architectural knowledge during development. 

After the initial implementation of the ALEA method, the 
MIKE 1D team members gradually learned the terms used in the 
method, as well as the connections between the architecture and its 
relevant contexts. At the time of this writing, the members plan to 
assess their architecture at the beginning of each milestone. “It would 
be a good tool for a project leader,” one of the members suggested. 

4.3.4. Effects on other contextual dimensions 
 

Although the MIKE 1D project is still in the production phase (i.e., it 
is not yet finished at the time of writing), the developers are already 
beginning to see the benefits that MIKE 1D will eventually yield. 
Because of its flexibility in design, the users (i.e., hydraulic and 
environmental consultants) will be able to replace a particular 
component without impacting the whole software product. The users 
can tailor the core components by adding a specific component without 
changing any of the core components. Additionally, the users can 
change the non-interface code of a specific component without (a) 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 198 

waiting for the next release, or (b) having an impact on the general 
software product. 

DHI is now willing to fully open the MIKE 1D data access 
interfaces and documentation for their customers and end users. The 
MIKE 1D team has already put some of the architecture on the online 
help page. MIKE 1D components will be used as core assets for the 
MIKE 11 product, as well as for MIKE URBAN or MOUSE products. 
End users will use the same product as before, except they will not 
have a product called MOUSE. They will use the MIKE URBAN 
product instead. Since the MIKE URBAN product uses the MOUSE 
product as one of its engines, and since the MOUSE engine has merged 
with the MIKE 11 engine to become the MIKE 1D engine, end users 
can use the MIKE URBAN product as they would the MOUSE 
product. 

4.3.5. Research outcomes 
 

During the entire software life cycle, architecture evolves. A build 
hierarchy becomes a key element in making architecture visible, and 
influencing day-to-day development practice. The build hierarchy 
facilitates code architecture conformance checking, and instantly 
reveals a divergent coincidence between the design architecture and the 
code architecture at the build time. Usages of the build hierarchy for 
product line development have been published in Unphon (2009b). 

ALEA promotes thinking in terms of PLA. When a developer comes 
up with an idea to solve a problem, he often adds his solution directly 
into the source code without considering whether it could be used for 
future projects. With ALEA, the developer is encouraged to consider 
the consequences of change – not only on his own project, but also its 
sustainability in relation to other projects. The details of ALEA can be 
found in Unphon (2009a). 

Based on interviews on the perspectives of using architecture (in 
workshops on the development of MIKE 1D and DSS compatibility) 
MIKE 1D team members raised interesting challenges regarding 
evolvability. These challenges confirmed that changes in the 
architecture or any of the contextual dimensions affect everything else. 

 
Business context. One of the requirements for DSS platform usage is 

to handle “what if” situations in setup data manipulation. Based on the 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 199 

MIKE 1D architecture, as shown in Figure 3, MIKE 1D team members 
suggested writing a “wrapper” around the Data Access layer. The 
wrapper is a minimal interface component that gives high-level 
functionalities to the Data Access layer. One of the questions to be 
considered is: “Will the wrapper be one of DHI’s saleable 
components?” 

Use context. The developers have designed MIKE 1D architecture in 
such a way that dependencies between components are clearly defined. 
Thus, users or hydraulic and environmental consultants can replace 
components with respect to the dependencies without any subsequent 
problems. But the dependencies do not guarantee that the users can 
model in a better way. If the developers are not aware of the user side, 
it will be more annoying for the users. For example, there was a 
discussion about how to specify hydraulic resistance. Previously, users 
had to specify the hydraulic resistance in many different files. Then, an 
architectural recommendation was made to do this in a specific way, in 
which the users would make more decisions and take time to set up 
their initial models. One of the users complained: “The way I 
understand it, the data should be located together with __ data, and we 
could get it from that. You can do everything with it, but it will be 
terrible to work with the model in that way. You will have repeated the 
number over and over again. That is not really the way to do it. I do not 
want to copy my information. I want to have it all in one place. Oh, it 
should be 13, not 10! I do not want to change 2,000 places. I want to 
change one place.” The truth of the matter is that the users would have 
slightly more work in some respects, but the architecture would reduce 
the users’ work in other respects. 

Technical infrastructure. MIKE 1D components are implemented 
in the C# programming language. But the software products predating 
MIKE 1D were implemented in the C++, C#, and Delphi programming 
languages. Handling the mixture of different languages would not be an 
easy task. 

Technical selection. The ancestors of MIKE 1D had different 
approaches of implementing similar functionality. In fact, MIKE 1D’s 
initial ambition was to create a common component between MIKE 11 
and MOUSE. But there are some instances where the two approaches 
are equally good. For example, the time step calculations between 
MIKE 11 and MOUSE engines are different. MOUSE uses a smaller 
time interval, so the calculation takes longer than with MIKE 11. Due 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 200 

to the general difference in time scales used by applications of MOUSE 
and MIKE 11 engines, they are optimised differently with respect to 
stability and accuracy. These two different focuses should be 
maintained. Although the developers try to merge the two approaches 
of implementing the same functionality as much as possible, they 
sometimes end up in the situation that “we need both.” 

Software engineering organisation. The software product 
department develops general purpose software products which can be 
sold to customers in great numbers. The consultancy departments have 
implemented very specific functionalities based on the needs of their 
projects. It is usually not possible to include a specific functionality in 
generic products because the functionality is not practical for the 
common user. Thinking in terms of architecture is extremely important 
in the current DHI organisational structure. Without being aware of 
how the architecture looks, development in the consultancy department 
will diverge from that of the software product department. And if the 
consultancy department does not comply with the architecture in the 
software product department, they will potentially increase future 
maintenance, as they may not be able to re-use components across 
releases. 

Software engineering practices. Everyone in the MIKE 1D project 
can program and gradually learn about the architecture. But it always 
ends up that only a “walking architecture” can set up the architecture 
for the others. One of the mentioned benefits is the interface-based 
design. However, at the same time, this design becomes one of the 
weaknesses. Many interfaces have to be maintained. If the developers 
change the interfaces frequently, it will be difficult for others to work 
on any components. Therefore, the challenge was and remains how to 
define a viable interface of the core components as early as possible. 

5.  Discussion 

This section sums up the keys to success of this work; shows how the 
DHI case study complies with a framework for software product line 
practice; reviews related methods for architecture evaluation and 
software product line evaluation; and emphasises the importance of 
introducing and deliberating architecture concepts for communicating 
change (as shown in Sub-sections 5.1-5.4, respectively). 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 201 

 

5.1. The keys to success: conceptual, human and technical levels 

The main contribution of this work is to develop engineering 
discipline for maintaining evolvability in such a way that the 
development of PLA does not jeopardise the continuous evolution. The 
success of introducing PLA into product development at DHI covers 
three levels of concern: conceptual, human and technical. The 
conceptual level gives coherence to the state of the practice at the early 
states of this work (Sub-section 4.1), i.e., evolvability framework and 
walking architecture. The evolvability framework helps the researcher 
understand how design takes place. The walking architecture reflects 
how the architecture is presented in a DHI development environment. 
The human level refers to work practices and social interaction of 
stakeholders. The ALEA method and open workspace are considered to 
promote the importance of the human level, communication in 
particular. The ALEA method structures the discussion in such a way 
that project members take adaptability as well as sustainability into 
account when evaluating architectural changes from new requirements. 
Open workspace can be seen as informative workspace in XP primary 
practices. The technical level refers to a system or technical 
infrastructure, i.e., a build hierarchy and an online architectural 
knowledge system. The build hierarchy is an architecting technique for 
XP developers. The online architectural knowledge system combines 
architectural and technical documentation for developers and end users. 
At the time of this writing, the system has been used internally at DHI. 
Note that success at the technical level requires support at the human 
level. Synergy between the conceptual, human and technical levels is 
not only considered to be the key to success, but also will increase the 
architectural awareness of project members on the evolvable PLA 
development. 

In Knodel et al. (2008), architecture compliance checking has been 
successfully applied to software product line engineering for 
technically embedded systems. Architecture compliance checking was 
performed by a tool that analysed and visualised the compliance 
between the design architecture and the code architecture. Later, 
compliance checking feedback was collected and discussed in 
workshops, after which decisions were made. However, a compliance 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 202 

checking cycle took a relatively long time; the shortest cycle lasted two 
months. Using a build hierarchy, compliance checking takes ten minute 
per cycle, i.e., at the build time. The shortened cycle is suitable for XP 
or any feedback-obsessive practice in agile methods. A comparison of 
agile methods and software product line approaches presented in Tian 
and Cooper (2006) gives an idea for tailoring the software product line 
method with agility, although they have a few conflicts (Hanssen and 
Fægri 2008) – in particular, design for changes (Carbon et al. 2006). 
However, this work has already suggested solutions to the conflicts 
between conceptual, human and technical levels, as mentioned as the 
keys to success. In addition, the suggested solutions are relevant to 
software product companies seeking ways to increase agility and 
productivity through agile methods and software product line 
engineering. 

5.2. A framework for software product line practices 

Among the number of exiting frameworks, a framework from the 
most cited book8 of software product lines is selected to show how the 
DHI case study put development and management activities into an 
existing framework for a software product line. The Software 
Engineering Institute (SEI) has continuously developed a mature 
framework (Clements and Northrop 2001) that captures the latest 
information about successful software product line practices9. The 
framework proposes essential activities and practices supporting core 
asset development, product development and management. However, 
the framework does not give concrete instructions on implementing 
specific engineering tasks (Vehkomäki and Känsälä 2000). But a use 
for the framework in this paper is to explain product line planning and 
management at DHI, as follows. 

5.2.1. Product line planning: core assets and product development 
 

The MIKE 1D project can be seen as a core asset development, 
where the main requirement is to maintain the existing core 

                                                            
8 Cited by 1,486 articles according to http://scholar.google.com (last visited 11 July 

2009). 
9 A framework for software product line practice (version 5.0) is available online at 

http://www.sei.cmu.edu/productlines/framework.html 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 203 

functionalities of the MIKE 11, MIKE URBAN, and MOUSE products. 
These basically simulate one-dimensional water flow models for rivers, 
urban water supplies and sewers, and rainstorm events. In other words, 
MIKE 11 and MIKE URBAN products use MIKE 1D core 
components. MIKE 1D builds up on unit systems, time series objects, 
and license systems, etc. DHI has a top-down architectural approach; 
components for a product line are pre-defined in a way that indicates 
what component should be included in the product using the license 
system. For example, it must be known which license the core 
components belong to. End users must have the appropriate license 
number, so that the core components which are used in the 
corresponding product will be executable. The DHI software sales 
department is responsible for controlling the version number and 
modules for the products. In the MIKE 1D project, they reused most of 
the algorithms or equations that were optimised in the MIKE 11 or 
MOUSE products. Since the programming language was changed from 
Delphi to C#, the MIKE 1D developers had to build the core assets 
from scratch. At the same time, they re-factored and restructured the 
code, and made an effort to write comments. 

5.2.2. Management 
 

Since MIKE 1D is used for existing products, maintenance and 
debugging costs can be reduced by following software product line 
engineering discipline. DHI has a reference group for the MIKE 1D 
project comprised of the heads of the consultancy departments, 
executive salespeople, a head of the customer care department and a 
head of the software department, as well as the MIKE 1D project 
manager. The group has regular meetings with regard to management 
of the project, and its risks and requirements. The group must ensure 
that the requirements will not disrupt the ideal architecture of MIKE 1D 
and corresponding products, while at the same time considering 
marketing aspects and making sure that the products satisfy end users. 
DHI has a customer care department and a sales department in charge 
of customer and supplier interface management. DHI also has a 
technology road map and release board. The technology road map is a 
plan with short-term and long-term goals, with recommended 
technological solutions to achieve those goals. The release board is a 
group of people who examine all products and vote for which to deliver 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 204 

at the forthcoming release and at future releases. DHI actively 
empowers itself as a product line champion. It is moving forward to 
develop other core assets for two- and three-dimensional water 
modelling and GUIs. 

What goes beyond the framework are the two proposed testing 
techniques, build hierarchy and the ALEA method. The ALEA method 
is a kind of testing or validation of artefacts, i.e. the architecture. The 
build hierarchy and the ALEA method afford test-driven development 
the leverage to balance quality attributes usually presented in a product 
line. 

5.3. Architecture evaluation and software product line evaluation 

Since future uses and business contexts can change over time, 
architecture evaluation should be performed regularly to discover 
whether PLA is still evolvable, as proposed in the ALEA method. 
Contextual dimensions have been discussed extensively in other 
methods, such as Architecture-Level Modifiability Analysis (ALMA) 
(Bengtsson et al. 2004), Architecture Trade-off Analysis Method 
(ATAM) (Kazman et al. 2000), and Architecture Reviews for 
Intermediate Designs (ARID) (Clements 2000). However, the 
dimensions are not structured for analysis or review in these other 
methods. The main difference between ALEA and ALMA, the closest 
evaluation method, is that the ALEA method evaluates not only the 
modifiability but also the sustainability of the architecture with respect 
to an explicit evolvability framework. ALEA requires half a day, 
excluding preparation and preliminaries, instead of three full days spent 
on ATAM, or one to two days spent on ARID. That way architecture 
evaluation can be performed more frequently, and becomes part of the 
agile development cycle. Apart from that, the artefacts examined in the 
ALEA method cover both design architecture and code architecture. 

Besides architecture evaluation, the evolvability framework is a 
decision-making tool to find a sustainable way to improve software 
product line engineering. A BAPO-based framework (Business-
Architecture-Process-Organisation) introduced in the Family 
Evaluation Framework (FEF) (van der Linden et al. 2004) is a model 
similar to the evolvability framework. Mapping between the BAPO 
model and the evolvability framework can be seen as: B-Business 
context, A-Architecture, P-Software engineering practice, and O-



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 205 

Software engineering organisation. The BAPO model identifies 
interrelationships among four independent software development 
concerns; applying changes in one concern induces changes in the other 
three concerns. Each has its own profile scale for benchmarking. 
However, an action that improves one of the profile scales may lead to 
a reduction in the values of the other scales. The BAPO model has been 
developed, mostly if not exclusively, from technically embedded 
systems. Therefore, the use context was not explicitly mentioned, as 
opposed to the evolvability framework. The evolvability framework 
was developed from socially embedded systems. Design decisions of 
socially embedded systems underline the importance of human 
interaction with (and cooperation via) the software in terms of societal 
activities. However our evolvability framework does not offer any scale 
for each contextual dimension, as explicitly stated in the BAPO model. 
But the evolvability framework introduced in the ALEA method 
actually helps stakeholders be aware of changes in one context that 
induce changes in the other contexts, and involving the right people. 
For instance, a requirement for MIKE 1D architecture was to support 
the future use by a DSS Platform. The envisioned MIKE 1D 
architecture that resulted from the architecture adaptation discussion 
was to have an extra component in addition to the current MIKE 1D 
architecture. In the sustainability discussion, MIKE 1D team members 
posed good questions regarding the software engineering organisation 
and business contexts: “With the current organisational structure, who 
should implement the extra component? The MIKE 1D team member, 
the DSS Platform team, or someone else?” and “Will the extra 
component be one of DHI’s saleable components? If so, who will take 
the lead on that?” Furthermore, the MIKE 1D team members were 
aware that they should collaborate with the DSS Platform team to 
implement the requirements. This exemplifies how the ALEA method 
affords an organisation the leverage to adapt and sustain a software 
product line approach. 

5.4. The importance of introducing and deliberating architecture 
concepts for communicating change 

This work aims to take an academic approach and make it relevant to 
practitioners, while at the same time taking evidence from the 
practitioners and feeding both into the research to evolve established 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 206 

results. The most challenging aspect of this work is to bridge the gap 
between the terminology used in the academic and industrial worlds. 
Moving between one discipline and another, it is necessary to introduce 
a common “language” to talk about software architecture, software 
product lines, and software evolution. One of the MIKE 1D team 
members said: “This [introducing architecture] is the success criteria 
for us as a company. When [a new team member] first came here, I 
spent half a day introducing him to the main concept of MIKE 1D 
architecture, and then he started to work.” Another member confirmed 
that: “On the first day, I looked at the code and saw it had been well 
designed. It is very easy to understand. That is the great thing.” 
However, the introduced terminologies – e.g., evolvability, PLA, 
quality attribute, and stakeholder – are rather abstract for practitioners 
who are not academically trained in software engineering. One MIKE 
1D developer complained that: “I think it [terminology] has been one of 
the things limiting this project. We have difficulties understanding what 
we are talking about.” Practitioners need concrete terminology that can 
provide answers to questions such as: “What does evolvability mean in 
our context? What does PLA cover? Who are the stakeholders? And 
what are their interests? The stakeholders are always there, but why 
are they there?” 

An idea for improvement is to carefully introduce necessary terms, 
and use practitioners’ language and discipline as a basis for 
communication. Having different languages to be able to talk in 
different ways about architecture also helps practitioners follow the 
terminology. Apart from that, the terminology should be re-introduced 
over time. When project members leave midway through a particular 
project, they take with them a great deal of embedded knowledge of 
what has already been introduced. Although the company can replace 
the vacant position, the embedded knowledge is lost. Another risk of 
introducing terminology is a terminology gap between people who are 
involved in the project and those who are not. For instance, when 
MIKE 1D project members showed MIKE 1D design architecture in a 
workshop on MIKE 1D and DSS Platform compatibility, the MIKE 1D 
project members were presenting modules, but the others talked about 
the API (application programming interface). 

To summarise, the evolvability framework, the build hierarchy, and 
the ALEA method are proposed as engineering disciplines to introduce 
an evolvable PLA at DHI which would link up at conceptual, human, 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 207 

and technical levels. The ALEA method and the build hierarchy are 
seamlessly integrated into test-driven development’s primary practices 
in such a way that the PLA can be regularly validated. As a 
consequence, awareness of the architecture is dramatically increased 
throughout the software life cycle. Compared to existing architecture 
evaluations and software product line evaluation, the evolvability 
framework and the ALEA method put more emphasis on the 
sustainability of architectural changes on a long-term basis. 

6. Conclusions and future work 

The DHI case study reveals how architecture evolution can be 
engineered. Re-engineering one-of-a-kind product development into 
product line development is one way to maintain the evolvability of 
DHI’s software products. In particular, the architecture of the main 
computational part used in MIKE 11, MOUSE, and MIKE URBAN has 
evolved into MIKE 1D architecture. The engineering practices do not 
only concern the evolution of core assets, variations, and assembly of 
MIKE 11, MOUSE and MIKE URBAN, but also the adaptations by 
hydraulic and environmental engineers. Thus, the use of architecture is 
taken seriously throughout the process, not just during the design 
phase. This work proposes an evolvability framework, a build 
hierarchy, and an ALEA method to concretise architecture in the 
development environment and practice. This study shows that this 
concretisation has resulted in a number of improvements: software 
quality and flexibility; communication and cooperation among new 
team members; distribution of development tasks and parallel 
implementation; and foreseeable usage by hydraulic and environmental 
consultants. Empirical evidence from this case confirmed that 
developing PLA has been accommodated by re-structuring of the 
software engineering organisation. 

Apart from that, terminology used in academia and industry should 
be further refined. Many software products are developed by non-
computer scientists. Although they may be eager to follow the best 
software engineering discipline, they are sometimes obstructed by the 
daunting academic terminology. A simple solution would be to have 
different explanations in order to communicate effectively with both 
academia and industry. Practitioners have found that newly introduced 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 208 

terminology, tools, or methods are useless without incorporating them 
into daily practices in an industry context. Moreover, the terminology 
should be re-introduced over time, because the turnover of people in 
the industry is unavoidable. 

At the time of this writing, MIKE 1D team members and I, as an 
academic researcher, are planning to write an internal report 
summarising this cooperative research project. We are simplifying the 
academic terminology for an industrial context, using concrete 
examples in describing the PLA at DHI. The report also recommends 
practices for other DHI software projects based on the findings of this 
research project. 

 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 209 

References 

Bass L, Clements P, Kazman R (2003) Software architecture in 
practice. 2nd ed. Addison-Wesley Professional, Don Mills, Ontario, 
Canada 

Beck K (1999) Extreme programming explained: embrace change. 
Addison-Wesley Professional, Don Mills, Ontario, Canada 

Beck K (2002) Test-driven development: by example. Addison-
Wesley, Boston MA 

Belady L, Lehman M (1976) A model of large program development. 
IBM System Journal, 15(1):225–252 

Bengtsson P, Lassing N, Bosch J, van Vliet H (2004) Architecture-level 
modifiability analysis (ALMA). J Syst Softw, 69(1-2):129–147 

Bennett K (1996) Software evolution: past, present and future. 
Information Software Technology, 38(11):673–680 

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a 
roadmap. In: ICSE '00: Proceedings of the Conference on the Future 
of Software Engineering. New York NY, 73–87 

Bischofberger W, Kühl J, Löffler S (2004) Sotograph - a pragmatic 
approach to source code architecture conformance checking. In: The 
1st European Workshop on Software Architecture (EWSA 2004). St. 
Andrews, UK, 1–9 

Böckle G, Muñoz JB, Knauber P, Krueger CW, do Prado Leite JCS, 
van der Linden F, Northrop L, Stark M, Weiss, DM (2002) Adopting 
and institutionalizing a product line culture. In: Proceedings of the 
2nd International Conference of Software Product Lines. San Diego 
CA, 49–59 

Bosch J (2000) Design and use of software architectures: adopting and 
evolving a product-line approach. Addison-Wesley, New York NY 

Breivold HP Crnkovic I, Eriksson PJ (2008) Analyzing software 
evolvability. In: Computer Software and Applications, 2008 – 32nd 
Annual IEEE International. Turku, Finland, 327–330 

Buschmann F, Henney K, Schmidt DC (2007) Pattern-oriented 
software architecture: a pattern language for distributed computing. 
Vol. 4. Wiley, Hoboken, NJ 

Carbon R, Lindvall M, Muthig D, Costa P (2006) Integrating product 
line engineering and agile methods: flexible design up-front vs. 
incremental design. In: Proceedings of the 1st International 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 210 

Workshop on Agile Product Line Engineering (APLE '06). Kyoto, 
Japan 

Chaki S, Diaz-Pace A, Garlan D, Gurfinkel A, Ozkaya I (2009) 
Towards engineered architecture evolution. The Third Workshop on 
Modelling in Software Engineering (MiSE 2009), in conjunction 
with the 2009 IEEE 31st International Conference on Software 
Engineering (ICSE 2009). Vancouver, Canada 

Clements P, Northrop L (2001) Software product lines: practices and 
patterns. Addison-Wesley Longman, Boston MA 

Clements PC (2000) Active reviews for intermediate designs. 
[Technical report CMU/SEI-2000-TN-009] Software Engineering 
Institute, Carnegie Mellon University, Pittsburgh, PA 

Cockburn A (2001) Agile software development. Addison-Wesley 
Professional, Don Mills, Ontario, Canada 

Cook S, Ji H, Harrison R (2000) Software evolution and software 
evolvability. [Working paper] University of Reading, Reading, UK 

Dittrich Y (2007) Rethinking the software life cycle: about the interlace 
of different design and development activities. In: Dagstuhl Seminar: 
End User Software Engineering. Dagstuhl, Germany 

Dittrich Y, Rönkkö K, Eriksson J, Hansson C, Lindeberg O (2008) 
Cooperative method development. Empirical Software Engineering, 
13(3):231–260 

Ganesan D, Muthig D, Knodel J, Yoshimura K (2006) Discovering 
organisational aspects from the source code history log during the 
product line planning phase – a case study. In: Proceedings of the 
13th Working Conference on Reverse Engineering. Benevento, Italy, 
211–220 

Ghanam Y, Maurer F (2009) Extreme product line engineering: 
managing variability & traceability via executable specifications. In: 
Agile Conference 2009. Chicago IL 

Hanssen GK, Fægri TE (2008) Process fusion: An industrial case study 
on agile software product line engineering. Journal of Systems and 
Software, 81(6):843–854 

Kazman R, Klein M, Clements P (2000) ATAM: Method for 
architecture evaluation. [Technical report CMU/SEI-2000-TR-004, 
ADA382629] Software Engineering Institute, Carnegie Mellon 
University, Pittsburgh, PA 

Knodel J, Muthig D, Haury U, Meier G (2008) Architecture 
compliance checking – experiences from successful technology 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 211 

transfer to industry. In: The 12th European Conference on Software 
Maintenance and Reengineering (CSMR 2008). Athens, Greece, 43–
52 

Kotonya G, Sommerville I (1998) Requirements engineering: processes 
and techniques. Wiley, Chichester, UK 

Lehman M (1980a) On understanding law, evolution, and conservation 
in the large-program life cycle. Journal of Systems and Software, 
1(3):213–231 

Lehman M (1980b) Programs, life cycles, and laws of software 
evolution. Proceedings of IEEE special issue on Software 
Engineering, 68(9):1060–1076 

McCabe TJ (1976) A complexity measure. In: ICSE '76: Proceedings of 
the 2nd international conference on software engineering. San 
Francisco CA, p 407 

Mens T, Tourwe T (2004) A survey of software refactoring. IEEE 
Transactions on Software Engineering, 30(2):126–139 

Parnas DL (1994) Software aging. In: ICSE '94: Proceedings of the 
16th international conference on software engineering. Sorrento, 
Italy, 279–287 

Pohl K, Böckle G, van der Linden FJ (2005) Software product line 
engineering: foundations, principles and techniques. Springer, Berlin, 
Germany 

Rowe D, Leaney J, Lowe D (1998) Defining systems evolvability - a 
taxonomy of change. In: IEEE International Conference and 
Workshop: Engineering of Computer-Based Systems. Jerusalem, 
Israel 

Soni D, Nord RL, Hofmeister C (1995) Software architecture in 
industrial applications. In: Proceedings of the 17th International 
Conference on Software Engineering (ICSE’95). Seattle WA, 196–
207 

Tian K, Cooper K (2006) Agile and software product line methods: are 
they so different? In: Proceedings of the 1st International Workshop 
on Agile Product Line Engineering (APLE '06). Baltimore, MD 

Unphon H (2009a) Architecture-level evolvability assessment. [Work 
in progress] 

Unphon H (2009b) Making use of architecture throughout the software 
life cycle – how the build hierarchy can facilitate product line 
development. In: The Fourth Workshop on Sharing and Reusing 
Architectural Knowledge (SHARK 2009), in conjunction with the 



INTRODUCING AN EVOLVABLE PRODUCT LINE ARCHITECTURE 212 

2009 IEEE 31st International Conference on Software Engineering 
(ICSE 2009). Vancouver, Canada 

Unphon H, Dittrich Y (2008) Organisation matters: How the 
organisation of software development influences the development of 
product line architecture. In: IASTED International Conference on 
Software Engineering. Innsbruck, Austria, 178–183 

Unphon H, Dittrich Y, Hubaux A (2009) Taking care of cooperation 
when evolving socially embedded systems: the PloneMeeting case. 
In: The Cooperative and Human Aspects of Software Engineering 
2009 (CHASE 2009), in conjunction with the 2009 IEEE 31st 
International Conference on Software Engineering (ICSE 2009). 
Vancouver, Canada 

van der Linden F, Bosch J, Kamsties E, Känsälä K, Obbink H (2004) 
Software product family evaluation. Softw Product Lines, 3154:110–
129 

Vehkomäki T, Känsälä K (2000) A comparison of software product 
family process frameworks. In: IW-SAPF-3: Proceedings of the 
International Workshop on Software Architectures for Product 
Families. Springer-Verlag, London, pp 135–145 

 



 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




