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Abstract

Regarding complexity of computation, randomness is a significant resource be-
side time and space. Particularly from a theoretical viewpoint, it is a funda-
mental question whether availability of random numbers gives any additional
power. Most of randomized algorithms are analyzed under the assumption that
independent and unbiased random bits are accessible. However, truly random
bits are scarce in reality. In practice, pseudorandom generators are used in place
of random numbers; usually, even the seed of the generator does not come from
a source of true randomness. While things mostly work well in practice, there
are occasional problems with use of weak pseudorandom generators. Further,
randomized algorithms are not suited for applications where reliability is a key
concern.

Derandomization is the process of minimizing the use of random bits, either
to small amounts or removing them altogether. We may identify two lines of
work in this direction. There has been a lot of work in designing general tools
for simulating randomness and making deterministic versions of randomized al-
gorithms, with some loss in time and space performance. These methods are
not tied to particular algorithms, but work on large classes of problems. The
central question in this area of computational complexity is “P=BPP?”.

Instead of derandomizing whole complexity classes, one may work on deran-
domizing concrete problems. This approach trades generality for possibility of
having much better performance bounds. There are a few common techniques
for derandomizing concrete problems, but often one needs to specifically design
a new method that is “friendlier” to deterministic computation. This kind of
solutions prevails in this thesis.

A central part of the thesis are algorithms for deterministic selection of hash
functions that have a “nicely spread” image of a given set. The main application
is design of efficient dictionary data structures. A dictionary stores a set of keys
from some universe, and allows the user to search through the set, looking for
any value from the universe. Additional information may be associated with
each key and retrieved on successful lookup. In a static dictionary the stored set
remains fixed after initialization, while in a dynamic dictionary it may change
over time. Our static dictionaries attain worst-case performance that is very
close the expected performance of best randomized dictionaries. In the dynamic
case the gap is larger; it is a significant open question to establish if a gap
between deterministic and randomized dynamic dictionaries is necessary.

We also have a new analysis of the classical linear probing hash tables, show-
ing that it works well with simple and efficiently computable hash functions.
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Here we have a randomized structure in which the randomness requirements are
cut down to a reasonable level. Traditionally, linear probing was analyzed un-
der the unrealistic uniform hashing assumption that the hash function employed
behaves like a truly random function. This was later improved to explicit, but
cumbersome and inefficient families of functions. Our analysis shows that prac-
tically usable hash functions suffice, but the simplest kinds of functions do not.

Apart from dictionaries, we look at the problem of sparse approximations
of vectors, which has applications in different areas such as data stream com-
putation and compressed sensing. We present a method that achieves close to
optimal performance on virtually all attributes. It is deterministic in the sense
that a single measurement matrix works for all inputs.

One of our dictionary results and the result on sparse recovery of vectors
share an important tool, although the problems are unrelated. The shared tool
is a type of expander graphs. We employ bipartite expander graphs, with un-
balanced sides. For some algorithms, expander graphs capture all the required
“random-like” properties. In such cases they can replace use of randomness,
while maintaining about the same performance of algorithms.

The problems that we study require and allow fast solutions. The algorithms
involved have linear or near-linear running times. Even sublogarithmic factors in
performance bounds are meaningful. With such high demands, one has to look
for specific deterministic solutions that are efficient for particular problems; the
general derandomization tools would be of no use.
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Chapter 1

Introduction

The first generation of electronic computers was primarily used to perform scien-
tific computations for military use. Not much later, people realized advantages
of representing and storing information in digital form. The 1960s saw an in-
creasing use of computers in information management. Storage, retrieval, and
communication of data have since then become a very significant, if not domi-
nant, application of computers.

One of basic query types in database systems is to select records that on a
particular attribute match a given value. This simple type of query is ubiquitous,
sometimes being an entire query, sometimes a part of a more complex query. Not
less important is use of this kind of search within numerous other information
processing methods. Abstract data structure that directly addresses this basic
searching problem is called dictionary. The name of the structure reflects a
clear association to classical natural-language dictionaries, which comprise a set
of words with additional information given for each word, such as meaning,
pronunciation etc.

The dictionary problem is very simple to state and there are simple solutions
with reasonable performance. Yet, because of its so frequent use in algorithms
and data structures, and directly as an indexing structure, it is of interest to
have dictionary structures of outstanding performance. Along with continuous
advances in computer hardware, growing is the amount of data that needs to be
handled. In some computational procedures dictionaries even cause the perfor-
mance bottleneck.

A big part of this thesis is devoted to improving performance of deterministic
dictionaries through development of new hashing techniques. While notable
progress has been made, the problem remains unsettled. Very little is known
about the necessary complexity of deterministic dictionary structures, less than
for some “richer” problems. Therefore, it is hard to say how close we are to the
optimal performance.

In this chapter we review some (basic) background information. In Sec-
tion 1.1 we say something about families of hash functions. Section 1.2 gives a
summary about expander graphs, which have use as a derandomization tool. The
dictionary problem and the problem of sparse approximation of vectors, which is
also studied in the thesis, are introduced in Section 1.3. The relevant models of
computation are presented in Section 1.4. Finally, in Section 1.5 we summarize

1



Chapter 1. Introduction

the results contained in the thesis.

1.1 Families of Hash Functions

1.1.1 The family of all functions

Let h be a function chosen uniformly at random from the set of all functions
with domain U and range R. We denote r = |R|. For any x ∈ U we may view
the value h(x) as a random variable. For any distinct elements x1, x2, . . . , xm
from U , the variables h(x1), . . . , h(xm) are fully independent, that is,

Pr
{ m∧

i=1

h(xi) = yi

}
=

m∏

i=1

Pr{h(xi) = yi} = 1/rm , (1.1)

for any sequence y1, . . . , ym of elements of R. Let S be any subset of U of size
n. For any y ∈ R, the probability that there exists x ∈ S such that h(x) = y is∑n

i=1(−1)i−1
(n
i

)
1
ri , by inclusion-exclusion. As a result, the expected size of h(S)

is n− n−1
2r + (n−1)(n−2)

6r2
− . . . Putting n = αr, we see that E(|h(S)|) is somewhat

larger than n(1− α
2 ). All elements of S that are mapped to the same value y ∈ R

are said to form a chain. The expected length of the longest chain is Θ( log n
log log n)

[Gon81].

Classical analyses of hashing methods were done under an idealized uniform
hashing assumption that the hash function employed behaves like a truly random
function. The practical performance of simple hashing heuristics, which do not
have theoretical foundation, often follows the predicted performance of the same
methods analyzed under the uniform hashing assumption. Yet, use of heuristics
occasionally creates problems in practice as well. From a theoretical point of
view, it is not satisfactory to rely on such an unrealistic assumption. A lot
of work has been done on investigating explicit, and much smaller families of
functions. When using feasible families of functions, some hashing algorithms
have the same or similar performance as with uniform hashing. Results shown
for uniform hashing can be useful for theoretical work, as they provide a reference
point and a goal to reach.

1.1.2 Universal families

A family H is called c-universal if for any distinct x, y ∈ U , Pr{h(x) = h(y)} ≤
c/r, over random choices of h ∈ H. The notion of universality was introduced
by Carter and Wegman [CW79]. Uses of universal hash functions go beyond
data structures. Many algorithms make use of hash functions that are expected
to have a small number of collisions on a set S ⊂ U . If no further knowledge
about the distribution of values h(x), x ∈ S, is needed, it is sufficient to employ
a universal class of functions. The expected number of collisions will be at most(n
2

)
c
r . The number of collisions also gives an upper bound on n− |h(S)|.
The family of all functions from U to R is, of course, 1-universal. More

interesting are explicit families of functions that are efficiently computable. We

2



1.1. Families of Hash Functions

list a few examples of universal families. With U = {0, . . . , u − 1} and R =
{0, 1, . . . , r − 1}, one class is

{x 7→ (ax mod p) mod r | a ∈ (Fp)
∗} ,

where p is a fixed prime larger than u (see [FKS84], although they they do not
explicitly refer to universal classes). Another universal class of functions, with
U = {0, . . . , 2w − 1} and R = {0, . . . , 2v − 1}, is

{x 7→ (ax mod 2w) div 2w−v : a ∈ U, a odd}
It was analyzed in [DHKP97]. These functions do not actually require integer
division. A more general form of these multiplicative functions is

x 7→ br · frac(ax)c , (1.2)

where frac(x) denotes x− bxc. It appears already in [Knu73]. In Chapter 4 we
study functions of type (1.2), in a new way.

Now view elements of U as d-dimensional vectors over Fp. For an element
x we write x = (x1, x2, . . . , xd), xi ∈ Fp. It is easy to check that the following
family is 1-universal.

{
x 7→

d∑

i=1

ai · xi | (a1, . . . , ad) ∈ (Fp)
d
}

(1.3)

The multiplications are in Fp (that is, mod p if the components are viewed as
integers). The size of this family is pd. A related case is when the components
of x and a come form a bounded integer domain {0, . . . , 2v − 1}, and we use
ordinary integer multiplications in functions x 7→ ∑d

i=1 aixi. The set of such
functions is also universal, although with a slightly weaker constant c > 1. The
functions of this “dot-product” form appear in Chapter 2. We show how to
efficiently pinpoint a function that is as “good” on a given set S as a random
function from the class. We do not explicitly mention universality in Chapter 2,
as we specifically work with perfect hash functions.

1.1.3 k-wise independent families

Just limiting the number of collisions in insufficient for some applications of hash
functions. A stronger property than simple universality is independence of hash
values. Instead of full independence (1.1), which is typically unnecessary, we
may consider families that give limited independence of small order. A family H
of functions is k-wise independent if for any k distinct elements x1, . . . , xk ∈ U
and h chosen uniformly at random from H

Pr
{ k∧

i=1

h(xi) = yi

}
=

k∏

i=1

Pr{h(xi) = yi} ≤ c/rk ,

for any sequence y1, . . . , yk of elements of R and constant c ≥ 1. Such families
have also been called c strongly k universal or (c, k)-universal.1

1Some authors have called (c, k)-universal families that satisfy something similar to k-
wise independence, with only an upper bound on probabilities. That is, satisfying only
Pr{

Vk
i=1 h(xi) = yi} ≤ c/rk.

3



Chapter 1. Introduction

The set of all polynomials of degree k − 1 over finite field Fp is a (1, k)-
universal family of functions with U = R = Fp. If we identify the elements of
Fp with integers 0, . . . , p − 1 and compose each polynomial function with the
function x 7→ x mod r, we get a family with range R = {0, . . . , r − 1} that is
(1 + r/p)k strongly k universal.

In this thesis, strongly universal classes appear in Chapter 5. We study
the performance of hash tables with linear probing under hash functions from
families of small independence.

1.2 Expander Graphs

Expanders are graphs that are sparse yet highly connected. The study of expan-
sion properties began in the early 1970s. Over time, it became clear that the
significance of expander graphs goes far beyond graph theory. They were found
useful in several areas of computer science and mathematics. Unsurprisingly, ex-
pansion properties are important in design of robust communication networks.
Less obvious are close connections to pseudorandom generators, randomness ex-
tractors, and error-correcting codes. A unified view on these objects began to
form since late 1990s. Expander graphs also have applications in algorithms and
data structures, as we will see in this thesis. In mathematics they play a role, for
example, in study of metric embeddings. For a thorough discussion of expanders
and list of references see the survey [HLW06]. We will make a brief introduction
here.

Graph expansion is often defined in combinatorial terms, but closely related
notions can be defined in algebraic or probabilistic terms as well. In the general
case we consider undirected and d-regular graphs. In combinatorial terms, we
may look at edge expansion or vertex expansion of a graph. A d-regular graph
G = (V,E) is a δ-edge-expander if for every set S ⊂ V of size at most 1

2 |V |
there are at least δd|S| edges connecting S and S = V \ S. To see the algebraic
characterization, let A be the adjacency matrix of G, that is, the n× n matrix,
with Aij being the number of edges between vertex i and vertex j. Since A is a
real and symmetric matrix, it has n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let U1

be the eigenspace of value λ1. It is easy to see that (1, 1, . . . , 1) ∈ U1 and λ1 = d.
Further, dim(U1) = 1 (or equivalently λ1 > λ2) iff G is connected. It holds that
λ2 = maxx⊥(1,...,1)〈Ax, x〉/〈x, x〉. The following inequalities, which relate λ2 to
the expansion parameter δ, are well known.

1
2(1− λ2/d) ≤ δ ≤

√
2(1 − λ2/d)

A high expansion (or small λ2) implies another random-like property of G.
Namely, for any two sets S, T ⊂ V the number of edges between S and T is
close to d

n |S||T |, which equals the expected number of edges between S and T
in a random graph with edge density d/n. A probabilistic notion of expansion
is based on random walks on graphs. The distribution induced on V by the
random walk on an expander G rapidly converges to the uniform distribution.

Expanders are more interesting and useful when d small. Probabilistic ar-
guments easily show that there exist constant-degree expanders. However, it is

4



1.2. Expander Graphs

not easy to verify if a given graph is indeed an expander. It is of interest to
have explicit and efficiently constructible expander graphs. There are two (stan-
dard) levels of explicitness of constructions of such graphs. The weaker level
requires the n-vertex graph to be constructible in time nO(1). The stronger level
requires that given any vertex v and i ∈ {1, . . . , d}, the ith neighbour of v can
be computed in time poly(log n). Such a construction is said to be fully explicit.
In applications that use the entire graph, it may be enough to have the weaker
explicitness. In applications that use only small parts of the entire graph, the
stronger level is more adequate.

As an example of a fully explicit family of constant-degree expanders, we
state the construction from [Mar73] and [GG81]. The family contains graphs of
order m2, for every integer m. The vertex set is Vm = Zm×Zm. The neighbours
of vertex (x, y) are (x + y, y), (x − y, y), (x, y + x), (x, y − x), (x + y + 1, y),
(x− y + 1, y), (x, y + x+ 1), (x, y − x + 1) (all operations are in the ring Zm).
These graphs are 8-regular.

For any vertex subset S ⊂ V , define Γ(S) = {y ∈ V | (∃x ∈ S) {x, y} ∈ E}.
The property of vertex expansion is that |Γ(S) \ S| ≥ δd|S|, for any |S| ≤
α|V | and fixed α, δ. Vertex expansion is a somewhat stronger notion than edge
expansion. In particular, if α = 1/2 then the graph is clearly a δ-edge-expander
as well.

Some applications of expanders require the graph to be bipartite. Further,
it is often sufficient that subsets of only one side of the bipartition have large
neighbour sets. In a bipartite graph G = (U,R,E), we may respectively call
U and R as the “left” part and the “right” part; a vertex belonging to the left
(right) part is called a left (right) vertex. We denote the sizes of U and R by u
and r. A bipartite graph is called left-d-regular if every vertex in the left part
has exactly d neighbors in the right part. Such a graph may be specified by a
function Γ : U× [d]→ R, where Γ(x, i) gives the ith neighbour of x. A bipartite,
left-d-regular graph G = (U,R,E) is a (N, δ)-expander if any set S ⊂ U of at
most N left vertices has at least δd|S| neighbours. Some applications require
bipartite expanders with highly unbalanced sides, so that r � u. Intuitively, it
seems harder to achieve good expansion with highly unbalanced sides, because
there is less space in which to expand. Ideally we would like to simultaneously
have a small degree d, high expansion factor δ, and a value of N that is “close”
to r. Using the probabilistic method one can show that there exist (N, 1 − ε)-
expanders with d = O( 1

ε log u
N ) and r = O(N · d/ε). The parameter ε cannot be

smaller than 1/d, as some vertices must share neighbours. Logarithmic degree
is known to be necessary when r = O(N · δd).

No explicit constructions with the aforementioned (optimal) parameters are
known. It is a longstanding open problem to approach the optimal parame-
ters with an explicit construction. Notable progress has been made over time.
Currently, the best result achieves left degree d = O((log u)(logN)/ε)1+1/α and
right set size O(d2N1+α), for any fixed α > 0 [GUV07]. We note that proofs
based on analyzing λ2 are not able show expansion better than δ = 1/2. That
is, spectral methods alone cannot yield strong (N, 1− ε)-expanders.

We may make an interesting comparison of bipartite expanders with families
of hash functions. A bipartite expander may be interpreted as a family of d
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functions with domain U and range R. For any set S ⊂ U of size at most N the
average size of Γ(S, i), over i ∈ [d], is at least δ|S|. In other words, on a function
chosen randomly among Γ(·, 1), . . . ,Γ(·, d) the image of S will be “large”. This is
also true if we take a universal family of functions. The minimal possible size of
a c-universal family is r(dlog u/ log re − 1)/c [Meh84]. This means that Ω(log r)
random bits are needed to pick a random function from a universal family, as
opposed to log d = O(log log u) bits needed to pick Γ(·, i). If one needs more
than a good bound on the image size, for example, a good upper bound on the
number of collisions, then functions coming from expanders are not suitable.

Unbalanced bipartite expanders are an essential tool of the methods from
Chapters 6 and 7.

1.3 Applications of Hashing and Expanders

The two main problems targeted in this thesis are the dictionary problem and
the problem of sparse approximation of vectors. We introduce them in this
section. Other applications of hashing techniques and expander graphs are not
covered here.

1.3.1 Dictionaries

Dictionaries are among the most fundamental data structures. A dictionary
stores a set S which may be any subset of universe U , and it answers membership
queries of type “Is x in S?”, for any x ∈ U . The elements of S may be accom-
panied by satellite data which can be retrieved in case x ∈ S. Some dictionaries
also support more general predecessor queries, which find max{y ∈ S | y ≤ x}.
The size of the set S is standardly denoted by n.

A dictionary is said to be dynamic if it also supports updates of S through
insertions and deletions of elements. Otherwise, the dictionary is static. Even
static dictionaries are sometimes used as stand-alone structures, but more often
they appear as components of other algorithms and data structures, including
dynamic dictionaries.

The classical solution to the dictionary problem are balanced search trees.
They come in many concrete variants, yet without significant differences in per-
formance. Search trees naturally allow predecessor queries. They can easily be
augmented to support some other types of queries, such as rank and select. All
queries, as well as update operations, run in O(log n) time. It is sufficient to sup-
ply a comparison predicate to implement the query procedures. The universe U
may be abstractly viewed as an arbitrary totally ordered set. The performance
of balanced search trees is optimal for the restricted comparison-based model,
which they operate in.

To surpass the limitations of comparison-based structures one has to know
more about the structure of the universe U . Most often the domain of search
keys is a set of numbers or a set of character strings. It is then unnecessarily
restrictive to consider U just as an ordered set. Especially for the problem of
answering membership questions, it is natural to assume that search keys can
be viewed as integers or binary strings; keys can always be encoded in that way.
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We distinguish between the cases of finite and infinite universe. For example, it
is infinite if U = {0, 1}∗. Not all data structures are efficient when keys are long
strings. Ideally, we want to have a dictionary where the cost of each operation
is proportional to the cost of reading the key.

The dictionary problem has been well studied. Many solutions have been
given, having different characteristics regarding space usage, time bounds, model
of computation, and universe in question. A challenge is to simultaneously
achieve good performance on all the terms. We consider only dictionaries with
realistic space usage of O(n) registers of size Θ(log u) bits. In the usual case
when u is at least polynomially larger than n, this amount of space is necessary
(ignoring constant factors) regardless of presence of satellite data. Some data
structures focus on conserving space, using an amount close to the information-
theoretic minimum, and paying attention to constant factors. A more common
practice in analysis of algorithms and data structures is to neglect constant
factors in space and time bounds. In this thesis we do not put the highest
priority on space usage, and we will usually not keep track of constant factors.
The only exception is Chapter 5, where we analyze the performance of linear
probing hash tables, as a function of the load factor of the table.

Despite of being among the oldest problems in computer science, our un-
derstanding of the complexity of the dictionary problem in realistic models of
computation has been far from complete. Designing highly efficient dictionaries
without resorting to use of randomness appeared to be a particularly challeng-
ing task. Randomized dictionaries reached a stage of high development (yet,
some open questions still remain). The progress on deterministic dictionaries
was much slower. The goal is to bridge the gap between attainable worst-case
performance for deterministic dictionaries and the attainable expected perfor-
mance for randomized dictionaries. As we will see in Chapters 2 and 3, in the
static case there is now only a small gap remaining. We do not have a real im-
provement in the dynamic case. There is some reason to believe that there has
to be a gap in the dynamic case, but still there is no definite proof. It is one of
major challenges in data structures research to either significantly improve per-
formance of dynamic dictionaries, or to prove general lower bounds that would
definitely establish a gap between deterministic and randomized dictionaries.

Information about previous work can be found in the introductory sections
of Chapters 2 through 6. Our results are summarized in Section 1.5.

1.3.2 Sparse approximation of vectors

Suppose that data elements are vectors in a high-dimensional space Rn, and that
we are able to map Rn to a low-dimensional space Rm in a way that roughly
preserves some property of interest. Then we can operate on small sketches of
given vectors, and conclude something about the original vectors from Rn. It is
desirable to use linear maps for dimension reduction, that is, to use sketches of
form Ax, where A is a m × n matrix and x ∈ Rn. A reason is that it is easy
to update the sketch value Ax under linear updates to x. Likewise, it is easy to
obtain the sketch of x+ y given the sketches of x and y.

To illustrate dimension reduction maps, it is well known that for any finite
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set S ⊂ Rn there are (plenty of) linear maps to RO(log |S|) that approximately
preserve `2 norm on S. In this example, a metric relation is approximately
preserved on a set of points. Reductions of this type have been studied for
decades. More recently it was discovered that linear maps may be used for
obtaining succinct approximate representations of vectors (or signals). Although
m is typically much smaller than n, the sketch Ax contains plenty of useful
information about the signal x. The vector Ax is also called the measurement
vector.

The linearity of the sketching method is very convenient for a wide variety of
applications. In the area of data stream computing [Mut03, Ind07], the vectors
x are often very large, and cannot be represented explicitly; for example, xi
could denote the total number of packets with destination i passing through a
network router. It is thus preferable to maintain instead the sketch Ax, under
incremental updates to x. Specifically, if a new packet arrives, the corresponding
coordinate of x is incremented by 1. This can be easily done if the sketching
procedure is linear.

Another area of application is compressed sensing [CRT06a, Don06, TLW+06,
DDT+08]. In this setting x is a physical signal, such as an image. Measure-
ments Ax describe data acquisition process, done using (analog or digital) hard-
ware. Linearity of measurements corresponds to the hardware capabilities. Com-
pressed sensing is an alternative to classical Nyquist/Shannon sampling. Instead
of acquiring the entire signal and then compressing it, the idea is to directly sense
a compressed version using a smaller number of measurements. It is wasteful to
make n samples to acquire every xi, 1 ≤ i ≤ n, if “main structure” of the signal
can be determined using much fewer samples. Many natural or man-made sig-
nals can be well-approximated by sparse vectors, which have a limited number
of nonzero coefficients.

Formally, we say that a vector k-sparse if it contains at most k nonzero
entries. It is natural to pose a problem of exactly recovering k-sparse signals
using a sketch of size “around” k. This is generalized to the problem of finding
good sparse approximations of arbitrary vectors. The goal is to find a vector
x̂ such that the `p approximation error ‖x − x̂‖p is at most c > 0 times the
smallest possible `q approximation error ‖x − x′‖q, where x′ ranges over all k-
sparse vectors (we denote this type of guarantee by “`p ≤ c `q”). Note that for
any value of q, the error ‖x− x̂‖q is minimized when x̂ consists of the k largest
(in magnitude) coefficients of x.

The problem has been subject to an extensive research over the last few years,
in several different research communities, including applied mathematics, digital
signal processing and theoretical computer science. The goal of that research was
to obtain encoding and recovery schemes with low probability of error (ideally,
deterministic schemes), short sketch lengths, low encoding, update and recovery
times, good approximation error bounds and resilient to measurement noise. We
use the term “deterministic” for a scheme in which one matrix A works for all
signals x, and “randomized” for a scheme that generates a “random” matrix A
which, for each signal x, works with probability 1− 1/n. However, “determinis-
tic” does not mean “explicit” — we allow the matrix A to be constructed using
the probabilistic method.
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Information about previous work can be found in Chapter 7. Most of the
known algorithms for recovering sparse approximations of signals from their
sketches can be roughly classified as either combinatorial or geometric. With
combinatorial algorithms, the measurement matrix is sparse and often binary.
Typically, it is obtained from an adjacency matrix of a sparse bipartite random
graph. Although not always explicitly stated, usually the actual requirement is
that the graph is a high-quality unbalanced expander graph, which a random
graph satisfies with high probability. A general prescription of combinatorial
recovery algorithms is to iteratively identify and eliminate “large” coefficients of
x in some way.

The geometric approach originates from [CRT06b, Don06], and has been
extensively investigated since then. Here the matrix A is dense, with at least a
constant fraction of nonzero entries. Typically, each row of A is independently
selected from a sub-exponential n-dimensional distribution, such as Gaussian.
The key property of the matrix A is the Restricted Isometry Property [CRT06b],
which requires that ‖Ax‖2 = (1 ± δ)‖x‖2 for any k-sparse vector x. Then, the
recovery process can be accomplished by solving the following linear program.

min ‖x̂‖1 subject to Ax̂ = Ax

A few methods have mixed characteristics from both approaches.

1.4 Models of Computation

Algorithms and data structures are always analyzed with respect to a chosen
model of computation. Doing rigorous analysis on a precise model of a real
computer would be prohibitively difficult. Although there are many kinds and
variations of real computers, differing in performance of execution, their funda-
mental qualities rarely change. Therefore, theoretical study is done over abstract
models of computation. A theoretical model should be relatively simple to make
analysis easier, as well as statements and comparisons of results. On the other
hand, it should be related to real computers, that is, theoretical findings should
be a reasonably good indicator of performance on (related types of) actual com-
puters. It is not easy to find a good balance between these demands.

Many different models of computation have been defined. They are not all
equally realistic, but concrete context determines their appropriateness. For
example, models where main memory storage is represented as a sequentially
movable tape are completely inappropriate for analysis of data structures that
support fast on-line searches, while they may be acceptable for general study of
limits of computation, within the field of computational complexity. Since such
archaic models do not make study of computational complexity easier, beside
being inadequate, it is unclear if they need to be used at all.

Below we give an overview of models that appear in this thesis. We use them
to different extents; our main model is the word RAM. The listed models cover
a large part of algorithmic research.
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1.4.1 Word RAM

This is a variation of the classical “random access machine” model. Unlike
the classic RAM, whose memory cells may contain arbitrarily large integers,
content of memory cells in the word RAM model is bounded to integers from
{0, 1, . . . , 2w−1}. As in the classic RAM, there is a (countably) infinite number of
memory cells, with addresses 0, 1, . . . The memory is not assumed to be initialized
in any particular way on start of execution. Computation takes place in a
central processing unit that has a constant number of local registers. RAM
includes standard load/store instructions, control-flow instructions, as well as
instructions for performing arithmetic operations on registers. An algorithm is
a finite sequence of such instructions.

In the word RAM, the content of a memory cell is often called a word. Be-
side being viewed as an integer, a word can be interpreted as a bit string from
{0, 1}w . The parameter w is hence called the word length. The word RAM has
instructions for left and right shifts, as well as bitwise Boolean operations AND,
OR, and NOT. These operations would be unnatural on infinite-length registers,
present in the classic RAM. Unfortunately, the set of arithmetic operations that
should be included in the word RAM has not been standardized. Therefore we
have a few variations of the word RAM model. Addition and subtraction are nec-
essarily included. If we stop here, we have a restricted RAM model, sometimes
called practical RAM.2 At the next level we include multiplication, and finally
we may include all four basic arithmetic operations. The reason for uncertainty
about what arithmetic operations should be among the native instructions is
mentioned in the following subsection. When saying “the word RAM model”
one usually assumes that at least multiplication is a native instruction.

Cost of operations

The execution of every instruction is usually assumed to take constant time. To
be more precise, we may charge each instigation with a cost of 1. In this thesis
we adopt this unit cost model. In practical terms, this is a fairly good approxi-
mation; within our instruction set, there are only minor differences in execution
times, especially on processors from the last several years. The relative differ-
ences may also change over time. For example, in the 1990s compilers would
translate the multiplication 5 · x as one shift instruction, followed by an addi-
tion. A few years later, this combination became slower than one multiplication
instruction.

From a theoretical viewpoint, one might argue that it is unfair to say that all
instructions take constant time, independent of w. The reason is that multipli-
cation and division belong to NC1 \AC0, that is, they require logarithmic-depth
circuits. The other word RAM operations belong to AC0, that is, they can
be implemented with constant-depth, unbounded-fanin Boolean circuits of size
wO(1). Although practical experience does not suggest the possibility of having
unbounded fan-in gates in reality, standard instructions that can be classified as

2Whether this is a good name is questionable. Still, since it has been used a few times in
the literature, we mention it here.
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AC0 are somewhat faster and simpler to implement on actual computers than
instructions like multiplication and division. Theoretical scalability of AC0 in-
structions was a motivation for studying the AC0 RAM model. In this model,
arbitrary AC0 instructions are allowed at unit cost. Although AC0 RAM in
principle has an infinite instruction set, any concrete program will use only a
finite number of them. This leads to a feasible RAM variant that may be useful
for the concrete problem. If some currently nonstandard instructions prove to
be really valuable, at least in such a theoretical study, in future they could be
promoted to a standard instruction set.

Operations of reading and writing words into memory cells are also assumed
to have unit cost, independent of the memory address. This corresponds well
to situations where all data fits into the internal memory of a computer. While
this is often the case, there are also many applications that involve massive data
sets, which far exceed the size of the main memory. Such instances are better
modeled by the external memory models.

Trans-dichotomous assumption

In data structure problems it is usually assumed that the universe U matches
the set {0, 1, . . . , 2w − 1} of elements representable by machine words. This also
means that n < 2w, where n is the size of the set stored by the data struc-
ture. This is sometimes called the trans-dichotomous assumption, as it bridges
the dichotomy between the parameters of the problem and the model. If in-
put keys span O(w) bits, instead of only w, a data structure analyzed under
the trans-dichotomous assumption would loose only constant factors in perfor-
mance. Intermediate results of computation may also freely have O(w) bits,
as all operations on arguments of O(w) bits can be realized through a constant
number of native instructions. If keys may span a larger (superconstant) number
of words, different effects may be seen in different data structures; somewhere
performance will scale linearly, somewhere not.

The restriction of the universe to nonnegative integers in range {0, 1, . . . , 2w−
1} is not as strict as it may seem at first sight. Negative numbers were not
specified just for simplicity; most of (if not all) word RAM algorithms could
easily be adjusted to the model that also includes negative numbers, encoded
in two’s-complement system. Some problems, such as sorting, on floating-point
numbers represented in IEEE 754 standard can be solved using algorithms de-
signed for integer data, even without any changes. Not all problems can be
reduced to instances with integer (or bit string) universes. But for membership-
style problems, which are a main part of this thesis, restriction to universes of
type {0, 1, . . . , 2w − 1} means no limitation whatsoever.

Some people have argued that the word RAM (with the trans-dichotomous
assumption) should be called the “standard model”, as it is the de-facto standard
for modeling internal memory computation.

Uniformity

Some algorithms make use of constants that depend only on the word length
w. We may say that such constants are computed at “compile time”. A small
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number of natural constants, such as w itself, can be assumed to be hard-wired
(i.e. available free of charge in the model). For more specialized constants,
which are shared by few algorithms, the preprocessing time should be noted. It
is usually algorithms which explicitly employ word-level parallelism that require
special constants. Many such constants are easily computable in time O(logw),
which is typically negligible. It is not negligible only in (purely theoretical)
cases of very large word lengths, for example w = 2n

10
. Then, the preprocessing

time may far exceed the running time of main algorithm. Superpolynomial
preprocessing times, such as 4w, give reason for concern.

An algorithm is called weakly nonuniform if it assumes free availability of
special constants which depend only on w (that is, the computation of those
constants was not included in the stated time bounds). There are many uniform
algorithms. For example, take any comparison-based algorithm.

1.4.2 Real RAM

The real RAM is also a variant of the classical RAM model. The domain of
values of memory registers is even wider — it is the set of all real numbers.
The four standard arithmetic operations and comparisons can be performed on
arguments stored in registers. Sometimes the floor function is also included, but
this gives a lot of power to the model. If used just for the purpose of hashing, it
is quite reasonable to allow conversion to integers. The real RAM is commonly
used in computational geometry. Some methods have problems with accuracy
of results when working in bounded-precision arithmetic. On the other hand,
when an algorithm or data structure that works in the word RAM model can
be translated to the real RAM, it shows independence from boundedness of the
universe.

1.4.3 External memory models

Some applications process massive datasets much larger than the size of the main
memory. Large datasets need to be stored in data structures on external storage
devices such as disks. The I/O communication between internal and external
memory may become the main performance bottleneck, far exceeding the other
operations in the process. The theoretical I/O-model was introduced to analyze
behavior of algorithms on inputs that exceed the size of the main memory. Even
long before the formal definition of the model, I/O performance and development
of practically efficient data structures was a key issue in database management
systems.

The I/O models specifies the size of the main memory M and the size of disk
block B as the numbers of data “items” they can accommodate. The context
specifies what items are; they may be for example search keys, or records, or
even single bits. All computation takes place at the level of internal memory.
Data needs to be moved to and from external memory to be processed. An
I/O operation is the operation of reading or writing a block from/to disk. The
main performance measures are the number of I/Os committed by an algorithm
and the amount of space (disk blocks) used. Sometimes the internal memory
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computation time is specified as well; the computation time is analyzed as in
the word RAM model. The I/O model is simple and allows relatively simple
analysis of algorithms, while capturing (most) important part of the memory
hierarchy.

The main memory needs to be sufficiently large. It is normal to assume at
least that M ≥ 2B. One can sometimes see tall-cache assumptions, such as
M ≥ B2.

Cache-oblivious model

A variant of the I/O-model is the cache-oblivious model, where the algorithm
does not know the values of M and B, that is, the analysis should be valid for
any B and M . In this model, I/Os are assumed to be performed automatically
by an optimal offline cache replacement policy. Cache-oblivious algorithms are
essentially word RAM algorithms, but analyzed in the I/O model, with arbitrary
values of M and B. A cache-oblivious algorithm that works well on a machine
with the two-level memory hierarchy, also works well on a machine with a deeper
memory hierarchy and different relative parameters between neighbouring levels.

Parallel disk model

A way of increasing performance of I/O systems is to combine several disks in
parallel. Parallel storage systems have been a reality in practice for a number
of years. In theoretical research, the parallel disk model has received some
attention. In this model there are D storage devices, each consisting of an
array of memory blocks with capacity for B data items. The performance of an
algorithm is measured in the number of parallel I/Os, where one parallel I/O
consists of retrieving (or writing) a block of B data items from (or to) each of
the D storage devices. The model can be seen as an extension of the serial I/O
model.

1.4.4 Streaming model

A data stream is a sequence of data elements, which is much larger than the
amount of available memory. Data elements may be, for example, integer num-
bers, geometric points, etc. The goal is to compute (often approximately) some
function of the data by making only one pass over the stream (somewhere, multi-
ple passes may be allowed). A typical situation where data stream computation
may be used is a network router. A router cannot afford to store information
about every packet that passes thorough. Yet, various statistics of the network
traffic are useful to know.

Memory space allowed for streaming algorithms is sublinear, most often poly-
logarithmic in the size required to represent the object given by a stream ex-
plicitly. Processing time per stream element should be relatively fast. Because
a very limited amount of information is kept, we have to allow approximation in
the result of computation, for almost every function that one wants to compute.
Randomization is often necessary to achieve good space bounds. Still, there are
problems where good deterministic solutions are possible as well.
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We mention one common type of stream data. Let x be a vector variable
taking values from Zm (or Nm, Rm, etc.). The value of x changes over time
through updates of its coordinate values. Every update can be specified in form
of a double (i, a), 1 ≤ i ≤ m and a is an integer, which has a meaning of
increasing the value of xi by a. A stream is a sequence of such doubles. The
value of x before the first update is initialized to zero vector. We may say that
x is implicitly determined by the stream. Questions about different statistics
of x may be asked after a stream is processed. For example, we may want an
estimate of ‖x‖p.

1.5 Summary of the Results in the Thesis

In Chapter 2 we present a new type of hash functions and associated algorithms
for injectively mapping a given set of n keys to a set of signatures of O(log n)
bits. The methods are computationally efficient in various models of computa-
tion, especially for keys of medium to large lengths. More precisely, when given
keys have a length of at least log3+ε n bits, the algorithms for selecting perfect
hash functions have a linear running cost on sorted input. Applications of the
technique yield a few new solutions to the dictionary problem and even the pre-
decessor problem. Representative results are: a dictionary with a lookup time of
O(log log n) and construction time of O(n) on sorted input on a word RAM, and
a static predecessor structure for variable and unbounded length binary strings
that in the cache-oblivious model has a query performance of O( |s|

B + log |s|)
I/Os, for query argument s. All algorithms are deterministic and use linear
space.

Chapter 3 complements Chapter 2, yielding static dictionaries with a con-
stant lookup cost and having worst-case cost of the construction that is propor-
tional to only log log n times the cost of sorting the input. Chapter 3 has two
parts. One part uses the same type of functions that as in Chapter 2, but we gave
up the requirement of complete injectiveness, and replaced it with considerably
weaker and rather specific properties. These weaker functions are meaningful
only within our dictionary construction. With this different notion of “good”
functions, we achieved a faster construction time in the case of keys of length
logO(1) n bits. The second part describes a very efficient dictionary for universes
of size nO(1). Beside its use in composition with methods that perform universe
reduction, this case has a significance of its own. We devised a different and
more efficient construction algorithm for a known type of hash functions.

A new analysis of the well-known family of multiplicative hash functions can
be found in Chapter 4, along with deterministic algorithms for selecting “good”
functions from this family. Building on these algorithms, we obtain completely
uniform dynamic dictionaries that achieve a performance of the following type:
lookups in time O(t) and updates in amortized time O(n1/t), for an appropriate
parameter function t. The result is for the word RAM model. However, it also
holds in the real RAM model, which illustrates complete independence from the
word size. This is not a feature of any other known hashing method.

Hashing with linear probing is the subject of Chapter 5. Here the goal
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is not full derandomization, but proving that linear probing works well with
simple kinds of hash functions, which are space and time efficient. We show that
selecting a random function from a 5-wise independent family is enough to ensure
constant expected time per operation. A relatively small number of random bits
is required for such a selection. On the negative side, we show that families
that are only pairwise independent may result in expected logarithmic cost per
operation. We also present two variations to the linear probing algorithm that
have a somewhat better performance, at least in the theoretical sense. The
results of Chapter 5 are a joint work with Rasmus Pagh and Anna Pagh.

After a classical topic, like linear probing, we move on to algorithms for the
parallel disk model in Chapter 6. We describe a deterministic load balancing
scheme based on expander graphs. This may be of independent interest, yet
we primarily use the load balancing scheme as tool for obtaining efficient dic-
tionaries in the parallel disk model. Our main results show that if the number
of disks is O(log u), which is moderately large, a performance similar to the ex-
pected performance of randomized dictionaries can be achieved. Thus, we may
avoid randomization by extending parallelism. We give several algorithms with
different performance trade-offs. The contents of this chapter is joint work with
Mette Berger, Esben Rune Hansen, Rasmus Pagh, Mihai Pǎtraşcu, and Peter
Tiedemann.

Chapter 7 is devoted to the problem of sparse recovery of vectors. Our
method achieves close to optimal performance on virtually all attributes. In
particular, it is the first scheme that guarantees optimal O(k log(n/k)) sketch
length, and near-linear O(n log(n/k)) recovery time simultaneously. It also fea-
tures low encoding and update times, and is noise-resilient. The only drawback
of our scheme is the `1 ≤ C`1 error guarantee, which is known to be weaker than
the `2 ≤ C

k1/2 `1 guarantee achievable by some of the earlier schemes. The result
is a joint work with Piotr Indyk.
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Chapter 2

Making Deterministic
Signatures Quickly

Abstract

We present a new technique of universe reduction. Primary applications are the
dictionary problem and the predecessor problem. We give several new results on
static dictionaries in different computational models: the word RAM, the prac-
tical RAM, and the cache-oblivious model. All algorithms and data structures
are deterministic and use linear space. Representative results are: a dictionary
with a lookup time of O(log log n) and construction time of O(n) on sorted input
on a word RAM, and a static predecessor structure for variable and unbounded
length binary strings that in the cache-oblivious model has a query performance
of O( |s|B + log |s|) I/Os, for query argument s.

2.1 Introduction

Dictionaries are among the most fundamental data structures. A dictionary
stores a set S which may be any subset of universe U , and it answers membership
queries of type “Is x in S?”, for x ∈ U . The elements of S may be accompanied
by satellite data which can be retrieved when x ∈ S. Some dictionaries also
support more general predecessor queries, which find max{y ∈ S | y ≤ x}. The
size of set S is standardly denoted by n.

We consider universes whose elements can be viewed as integers or binary
strings. In this chapter we concentrate on static dictionaries — a static dictio-
nary is constructed over a given set S that remains fixed. Dynamic dictionaries
allow further updates of S through insertions and deletions of elements. Even
static dictionaries are sometimes used as stand-alone structures, but more often
they appear as components of other algorithms and data structures, including
dynamic dictionaries.

The most important performance parameters of a dictionary are: the amount
of required storage space, the time needed for performing a query, and the time
spent on an update or construction of the whole dictionary. The dictionary
problem has been well studied and many solutions have been given. There
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are still a few open questions and places to improve, especially in the area of
deterministic dictionaries.

A concept which is often encountered in the solutions to the dictionary prob-
lem and more general searching problems is universe reduction. The goal is to
find a mapping from U to a smaller set, with the function being injective on S.
Then either continue recursively or make use of a special procedure that takes
advantage of the smaller universe.

We present a new method of universe reduction down to a range of size
polynomial in n. Every element of S gets a unique signature of O(log n) bits.
Conceptually, the reduction process is gradual. Yet, with appropriate combi-
nations of the basic method, it is possible to calculate the result of the final
mapping quickly. The function that is the building block of the entire method is
rather simple. We show that it is possible to relatively efficiently find parameters
of that function that make it injective on a given set of keys.

Applications of the technique yield a few new solutions to the dictionary
problem and even the predecessor problem. Our predecessor structures are suit-
able for variable-length keys. New results can be expressed in different com-
putational models: the word RAM, the practical RAM, and (for strings) the
cache-oblivious model. All algorithms are deterministic and use linear space.

Having a dictionary based on signatures can be an advantage in some set-
tings. A weaker form of dictionaries answers not membership but retrieval
queries: given x ∈ S retrieve the data associated with x, and arbitrary out-
put if x /∈ S. We can rephrase this as: retrieve the data associated with the
signature of x, if any. An example of a setting where this kind of dictionary can
occasionally be useful is a distributed system. If keys are relatively long then we
may send a short signature of a key x to a remote data server. If x ∈ S or the
signature of x does not belong to the signature set of S, then the correct answer
and data will be returned. Otherwise, data associated to some (unknown) ele-
ment of S will be returned. When this kind of behavior is acceptable, the use of
signatures increases the throughput of the system.

2.1.1 Related work for word RAM

The word RAM is a common computational model in the data structures litera-
ture. The parameter w represents the machine word size. A usual assumption for
RAM dictionaries is that the elements of U fit in one machine word. Algorithms
from this chapter do not use division operation.

Among the dictionaries with constant lookup time, the structure described
in Chapter 3 has the fastest construction time, which is proportional to log log n
times the cost of sorting the input. With the currently fastest sorting algorithm
[Han04] this makes a running time of O(n(log log n)2). A part of that solution
is actually a follow-up on the technique of universe reduction that is described
in the present chapter. Another part is a very efficient dictionary for universes
of size nO(1).

At the moment, the fast static dictionaries from Chapter 3 do not yield an im-
provement for dynamic deterministic dictionaries. Known (generic) dynamiza-
tion techniques give the same performance as they give with a construction time
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of O(n log n) for static dictionary, which was earlier achieved by Hagerup, Mil-
tersen, and Pagh [HMP01]. A similar performance in the dynamic case has the
structure from Chapter 4.

Fusion trees of Fredman and Willard [FW93], which also support predecessor
queries, have a good performance when the word size is very large. A general-
ization of the fusion trees gives a linear-space static dictionary with a query time
of O(1 + log n

logw ) and O(n) construction time on sorted input (this was explicitly
stated by Hagerup [Hag98b]).

Andersson’s exponential search trees [And96] are a general method for turn-
ing a static polynomial-space predecessor structure into a linear-space dynamic
predecessor structure. Beame and Fich [BF02] proved a tight bound of Θ( logw

log logw )
for the predecessor problem in polynomial space (when expressed only in terms
of w). Plugging fusion trees and the structure of Beame and Fich into the frame-
work of exponential search trees results in a predecessor dictionary with a query

time of O(min{ logw
log logw log log n,

√
log n

log logn}). That structure can be constructed

from a sorted list of keys in O(n) time. A result by Pǎtraşcu and Thorup [PT06]
implies that in linear space predecessor queries cannot be answered in time faster
than Ω(logw).

2.1.2 Related work for practical RAM

The unit-cost assumption for all standard instructions may be regarded as too
strong because multiplication requires a Boolean circuit of depth Θ( logw

log logw ),

when circuit size is wO(1). The presence of an instruction of that circuit com-
plexity was shown to be necessary to achieve constant time lookups [AMRT96].
Some work was done on investigating how efficient dictionaries (and more general
predecessor structures) are possible when only “cheap” instructions are used.

Exclusion of multiplication and division from the word RAM leads to a model
sometimes called practical RAM. Brodnik, Miltersen, and Munro [BMM97]
showed how to achieve a lookup time of O(

√
log n(log log n)1+o(1)) on a practi-

cal RAM. They also described some computational routines relying only on the
basic instruction set. Of interest to us is multiplication of two words in time
(logw)1+o(1). The routine applies well to field-wise multiplication: Ω(w/v) prod-
ucts of v-bit integers packed in words can be computed in time (log v)1+o(1). Spe-
cial constants must be available, but they can be computed in time vO(1) logw.
It is not claimed that doing multiplication this way is practical.

Andersson [And95] showed that in the practical RAM model there is a
data structure which enables an arbitrary set of Θ(log n) search requests to be
answered in O(log n log log n) time; here search means the stronger neighbour
search. However, the preprocessing time and the required space are superpoly-
nomial.

2.1.3 Strings and the cache-oblivious model

Real computers don’t have one plain level of memory but a memory hierarchy.
Transfers of data between levels of memory may be a dominant term in execu-
tion times. The theoretical I/O-model was introduced to analyze behavior of
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algorithms in such a setting. A variant of the I/O-model is the cache-oblivious
model [FLPR99], where the algorithm does not know the size of the internal
memory M and the block size B; that is, the analysis of an algorithm should be
valid for any values of B and M .

Comparison-based sorting of n integers (which occupy one memory cell) takes
Θ(Sort(n)) I/Os, where Sort(n) = n

B logM/B
n
B [FLPR99]. The complexity of

sorting strings has not been settled even in the I/O-model. Some results on de-
terministic sorting appear in [AFGV97]. In the cache-oblivious model a simple
upper bound is O(Sort(N)), where N is the total number of characters in the
strings, and it can be achieved by building a suffix array [KS03] over the con-
catenation of the strings. A faster external-memory sorting algorithm appears
in [FPP06], but it is randomized.

In the I/O-model the string B-trees of Ferragina and Grossi [FG99] support
lookups and updates in O(logB n+ |s|/B) I/Os, with s being the argument. This
bound is optimal for comparison-based structures and unbounded alphabets.
String B-trees crucially depend on knowing the value of B. Using a different
technique, Brodal and Fagerberg [BF06] gave a static data structure for the
cache-oblivious model with the same search performance of O(logB n + |s|/B)
I/Os. Their structure can be constructed using O(Sort(N)) I/Os, with N being
the total length of the strings. The structure assumes M ≥ B2+ε, and it is
not simple. Bender et al. [BFCK06] introduced a randomized structure called
cache-oblivious string B-trees, which are dynamic and support also predecessor
searches; here the tall-cache assumption is of type M ≥ B2.

The string B-trees support range queries. A special case of range query is
prefix query : finding strings that have the query argument as a prefix. The cache-
oblivious string dictionary from [BF06] supports prefix searches. However, those
data structures exhibit no speed-up when only membership queries are wanted.
Using some types of hash functions it is possible to do dictionary lookups using
optimal O(|s|/B) I/Os, but no previously known algorithm can deterministically
construct an appropriate function using a reasonably low number of I/Os.

2.2 Our Results

Our main technical contribution lies in novel universe reduction techniques. The
results we state on dictionaries basically come as corollaries. Other advanced
data structures are used as ingredients in the dictionary results, but the universe
reduction results are pretty independent. The results on predecessor structures
for long strings were made possible primarily due to the new efficient dictionaries
for strings; still, they do not come as completely obvious consequences.

Our main contributions can be viewed as a single technique which then gets
adjusted for different models. In this section statements of results will be orga-
nized according to computational model.

To create dictionary structures based on our reduction method, we need to
utilize an efficient dictionary for universes of size nO(1). Currently, the fastest
dictionary for that case is given in Chapter 3. It is convenient that we can use
it for all three computational models. Since multiplications are not utilized,
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there are no differences between word RAM and practical RAM versions of the
structure. In the version for the cache-oblivious model only the sorting procedure
needs to be changed. The construction cost scales nicely when several keys can
be packed in single machine word on a RAM, again by using an appropriate
sorting procedure.

We use notation [x] to represent the set {0, 1, . . . , x− 1}.

2.2.1 Results for word RAM

We start with a universe reduction result. Here we consider the case where
w ≤ nO(1). The (unrealistic) situation with w ≥ nΩ(1) can be covered efficiently
with fusion trees.

Theorem 2.2.1. In the word RAM model with a word length of w ≤ nO(1) bits,
for a given set S of n keys there is a function mapping [2w] to [nO(1)] that is one-
to-one on S, with O(1) evaluation time and description of size O(1) words that

can be computed deterministically in time O(n + n (log n)3

w (log w
log n)3) assuming

that the input set of keys is sorted.

It is apparent that for w > (log n)3+ε the construction of the function takes
linear time on sorted input. The assumption that w ≤ nO(1) helps the evaluation
procedure, and we are able to state constant evaluation time. In the general case
it is possible to achieve an evaluation time of O(log logw) with our signature
functions. Further, excluding large word sizes allows us to neglect additive terms
in construction times of type logw(log n)O(1), which would become dominant
when w approaches 2n. The method does not require any special constants that
depend on w to be prepared “in advance”. All the necessary computations are
included in the stated time bound.

By composing the method from Theorem 2.2.1 with the dictionary for small
universes from Chapter 3, and combining the resulting structure with fusion
trees [FW93, Hag98b] to cover the case w ≥ nΩ(1), we get the result formulated
next. Although the construction time of the dictionary for small universes is in
general O(n log log n), the time is O(n) when Ω(log n(log log n)2) input keys can
be packed in a word.

Theorem 2.2.2. For w > (log n)3+ε there is a deterministic linear-space solu-
tion to the static dictionary problem with O(1) lookup time and O(n) construc-
tion time on sorted input.

In Section 2.6 we will see that the reduction method can be adapted to
work with binary strings that can span multiple words and can have different
lengths. We are also interested in linear-space predecessor structure that accepts
unbounded and variable length keys. In Section 2.7, we show how to modify the
method of recursion on universe size from the van Emde Boas (vEB) structure
[vEBKZ77] to work in that setting.

Theorem 2.2.3. Let S be a set of n binary strings, and let N be the sum of
their lengths in bits. There is a deterministic static predecessor structure that can
store S using O(N) bits of space and answer queries in O( |s|

w +log |s|) time, with
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s being the query argument. On sorted input set, the structure can be constructed
in time O(n+N/w).

The best alternatives are relatively simple comparison-based solutions that
have a query time of O( |s|w + log n). We have an improved query time for ar-
guments of length O(n) bits. In the special case when all keys have a fixed
length of w bits, the implementation is considerably simpler. Query time is
then O(logw).1 An interesting dictionary structure with a very fast construc-
tion time can be created by using the predecessor structure for fixed-length keys
when w ≤ (log n)3+ε, and otherwise using the dictionary from Theorem 2.2.2.

Theorem 2.2.4. There is a deterministic linear-space solution to the static
dictionary problem with O(log log n) lookup time and O(n) construction time on
sorted input.

2.2.2 Results for practical RAM

Our primitive type of functions involves one multiplication, and one operand is
always a “small” integer. This enables us to get a theoretically interesting result
in the practical RAM model, with a particularly good performance when small
sets of search requests are given at once. In Section 2.4 we will see that it is
relatively easy to derive the algorithms for this model form the corresponding
algorithms for the word RAM model. Here we place no restriction on w.

Proposition 2.2.5. In the practical RAM model with word length w, for a given
set S of n keys there is a function h : [2w] → [nO(1)] that is one-to-one on S,
with the following properties:

• the description of h can be computed in time

O(n log n(log log n)2(logw)1+o(1) + (logw)O(1))

with a deterministic algorithm;

• the evaluation time of h on single argument x is O((log log n)1+o(1) log w
log n);

• For any set T ⊂ U of Ω(log w
log n) arguments, the values h(x), x ∈ T , can

be computed in total time O(|T |(log log n)1+o(1)).

A consequence of Proposition 2.2.5 is the following:

Theorem 2.2.6. In the practical RAM model with word length w, there exists
a deterministic linear-space solution to the static dictionary problem with a con-
struction time of O(n log n(log log n)2(logw)1+o(1) + (logw)O(1)), and a lookup
time of O((log log n)1+o(1) log w

log n) for single keys. Additionally, for any set
T ⊂ U of size Ω(log w

log n), lookups of all elements of T can be committed in total

time O(|T |(log log n)1+o(1)).

1The result for fixed-length word-size keys is not really a new thing. It could have been
stated as soon as the dictionary from [HMP01] appeared.
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An interesting property of this dictionary is efficient processing when query
arguments are given in a small batch. In batched evaluation, the cost of process-
ing per element is exponentially lower than the lower bound for single lookups in
the stronger AC0 RAM model [AMRT96]. Previous solutions with asymptoti-
cally efficient lookups in the restricted RAM models [BMM97, AMRT96, Hag98a]
make use of universal hash functions. Without randomization, their construction
times are considerably higher than that of our dictionary.

2.2.3 Results for cache-oblivious model

We again start with a result about signature functions. Since we assume that
strings are over binary alphabet, the values of I/O parameters B andM represent
quantities in bits.

Theorem 2.2.7. Let S be a set of n binary strings, and let N be the sum of
their lengths in bits. In the cache-oblivious model, there is a function mapping
{0, 1}∗ to [nO(1)] that is one-to-one on S, and on sorted input its description can
be computed deterministically in

O

(
N

B
+

log2 n · logM/B(n/B)

B

∑

s∈S
log |s|

)
(2.1)

I/Os. Evaluation of the function on argument s requires O( |s|
B ) I/Os. The bound

on performance of the construction holds under a tall-cache assumption of type
M > B1+δ. The evaluation procedure needs no tall-cache assumption.

The tall-cache assumption is solely due to sorting algorithm. When the
average length of the strings from S is Ω(log2+ε n logM/B(n/B)) bits, then the
value of (2.1) is O(N/B).

The signature mapping can be composed with the dictionary for universes
of polynomial size (Chapter 3).

Theorem 2.2.8. Let S be a set of n binary strings, and let N be the sum of
their lengths in bits. In the cache-oblivious model, a dictionary structure can
store S using O(N) bits, perform lookups in O( |s|B ) I/Os on argument s, and
have I/O cost of the construction as in (2.1) assuming that input set is sorted.

In a similar way that the predecessor structure for strings on a RAM is
constructed, we create a predecessor structure for external memory. This is
discussed in Section 2.7.

Theorem 2.2.9. Let S be a set of n binary strings, and let N be the sum of
their lengths in bits. There is deterministic static predecessor structure that can
store S using O(N) bits of space and answer queries in O( |s|

B +log |s|) I/Os, with
s being the query argument. On sorted input set, the structure can be constructed
using O(N/B) I/Os.

We have an improved query time for arguments of length O(n) bits. The
shorter the query string is, the greater advantage we have over the classical
O( |s|B + log n) bound. For string dictionaries we can also have the following

trade-off: lookups in O( |s|B + log log n) I/Os, and construction cost of O(NB ) on
sorted input.
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2.3 Basis of Universe Reduction Method

This section describes our primitive method for reducing a universe of size u
to a universe of size “around”

√
u, assuming that u ≥ nd for a sufficiently

large constant d. We start in Section 2.3.1 with defining the type of functions
that carry out the reduction, and expressing some observations about those
functions. Subsequently, Section 2.3.2 outlines the algorithm for selecting an
injective function on a given set S. The crucial subprocedure of the algorithm
comes in two versions, which are discussed in Sections 2.3.3 and 2.3.4. All other
constructions from the chapter use as the building block the method presented
in this section.

Model-dependent aspects are presented with a focus on the word RAM
model, with occasional remarks about practical RAMs. Adjustments for the
external memory models are straightforward. The universe U = [u] is such that
u ≤ 2w. We use the notation S = {x1, x2, . . . , xn}. Also, log x means log2 x.

2.3.1 Type of functions

The essential type of functions is

f(x, s, a) = x div 2s + a · (x mod 2s) ,

where a is a parameter chosen from {1, 2, . . . , nc − 1}, c ≥ 2. The parameter
s will have a value dependent only on the domain of x. If x can take any
value from U then a suitable choice for s is d 1

2 log ue. The integer division
and modulo functions were chosen as they are perhaps the simplest of all pairs
of functions (φ, ψ) such that (φ, ψ) is 1-1 on U , and so that both functions
map to a (significantly) smaller universe. In a more general form, we write
f(x, a) = φ(x) + a · ψ(x). The parameter s is left out when its value is not
relevant or is understood.

The selection of a value for the parameter a that makes f injective on S
is done through a type of binary search, as we will see in the next subsection.
Throughout this section µ will denote the middle point of an interval in the
binary search. The algorithms compute the set {f(x, µ) : x ∈ S} at every step
of the binary search, and make a decision where to continue the search based on
some properties of this set.

We see that for i 6= j:

f(xi, a) = f(xj, a) ⇐⇒ a(ψ(xi)− ψ(xj)) = φ(xj)− φ(xi) . (2.2)

If ψ(xi) = ψ(xj) then φ(xi) 6= φ(xj), so no parameter causes a collision between
xi and xj. Otherwise, there is at most one multiplier for which xi and xj collide.

The value
φ(xj)−φ(xi)
ψ(xi)−ψ(xj)

may not be an integer, but possible non-integralities will

be disregarded in the binary search; that is, all values
φ(xj)−φ(xi)
ψ(xi)−ψ(xj)

, for different i

and j, which are contained in a selected interval are counted, and they will be
referred to as the bad parameters.

The equivalence stated in (2.2) involves two equalities. Obviously, we can
substitute an inequality operator for the equality operator, namely:

f(xi, a) ≷ f(xj, a) ⇐⇒ a(ψ(xi)− ψ(xj)) ≷ φ(xj)− φ(xi) .
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We apply a straightforward case analysis that shows a relation of the bad pa-
rameter for a pair (xi, xj), i 6= j, to the given value of µ. W.l.o.g. we assume
that φ(xi) ≤ φ(xj). Recall that the set of candidates for the multiplier consists
only of positive values.

1. If (φ(xi) < φ(xj)∧ψ(xi) < ψ(xj))∨ φ(xi) = φ(xj)∨ψ(xi) = ψ(xj) then f
maps xi and xj to different values for any a.

2. If φ(xi) < φ(xj) ∧ ψ(xi) > ψ(xj) then consider the following subcases:

(a) f(xi, µ) > f(xj , µ) : a collision between xi and xj can occur only for
a parameter smaller than µ (and larger than 0).

(b) f(xi, µ) < f(xj , µ) : a collision between xi and xj can occur only for
a parameter larger than µ.

(c) f(xi, µ) = f(xj , µ) : f maps xi and xj to different values for any
a 6= µ.

Define the following two values:

m1 = |{ {i, j} : φ(xi) < φ(xj) ∧ f(xi, µ) > f(xj, µ)}| ,
m2 = |{ {i, j} : ψ(xi) > ψ(xj) ∧ f(xi, µ) < f(xj, µ)}| .

According to the case analysis, m1 counts exactly the pairs which fall under
the case 2(a). Thus, it is the number of bad parameters in (0, µ), which is an
upper bound on the number of multipliers from {1, . . . , µ−1} for which f is not
injective. Analogously, m2 counts exactly the pairs which fall under the case
2(b). Thus, it is the number of bad parameters in (µ,+∞), which is an upper
bound on the number of multipliers from {µ+ 1, . . . , nc − 1} for which f is not
injective.

2.3.2 Choosing a good multiplier

There are at most
(n
2

)
parameters of f which are to be avoided. The binary

search for an appropriate value of a starts by setting the left end of the interval
to 1, the right end to nc − 1, and µ to be the midpoint. If f(x, µ) is found to
be 1-1 then µ is selected as the parameter and the procedure is finished. The
interesting case is when f is not 1-1 and we want to reduce the search space in
such a way that the repeated procedure is guaranteed to find a good multiplier.

Since m1 and m2 represent the sizes of disjoint classes of bad parameters, we
have that m1 +m2 ≤

(n
2

)
. We may evaluate both m1 and m2, and then choose

the half with the smaller corresponding value. Then the search space is reduced
to an interval which contains at most n2/4 bad parameters. The same upper
bound may be achieved by computing only m1, and then choosing the lower half
if m1 < n2/4.

Suppose that we are left with an interval (l̄, r̄) such that l̄ > 0. To determine
the number of inappropriate parameters inside the lower half, we may subtract
from (the new value of) m1 the number of bad parameters not larger than l̄ —
that value is accumulated in previous steps of the binary search. Yet, if only
approximations of the m1 values are computed (constant factor approximations)
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and not exact values, then this “subtraction method” does not work. We will
describe a simple reduction that works in both cases. Since it was decided to
select a multiplier from (l̄, r̄), the function may be written as φ(x)+ (l̄+a)ψ(x),
where a is now to be chosen from {1, . . . , r̄ − l̄ − 1}. The function x 7→ (φ(x) +
l̄ · ψ(x), ψ(x)) is 1-1 on U as well. Thus, by replacing the φ(xi) values with
φ(xi) + l̄ · ψ(xi), the problem becomes equivalent to the one in the first step
of the binary search. Note that in the same way we could reduce the problem
of counting bad parameters in the higher half to the problem of counting bad
parameters in the lower half of a shifted interval.

After completing O(log n) steps of the binary search we have isolated a multi-
plier for which f is injective on S. We will present two algorithms for computing
values of type m1. The first one performs exact computation, while the second
one returns approximate values. The selection procedure based on approximate
calculations is faster, at a cost of requiring a slightly larger domain of parame-
ters. With the first algorithm we may set c to be as low as 2, whereas the second
one allows c to be as low as 3.42. The approximation-based procedure cannot
use values of type m2 because such values have to be combined using subtraction
to get the number of bad parameters in the higher half of current interval (recall
that m2 gives the number of bad parameters in an unbounded interval). As
there is no real benefit from estimating the number of bad parameters in both
halves of an interval, both procedures are set to choose the lower half when (an
estimate or exact value of) m1 is low enough.

2.3.3 Exact computation of m1

We utilize a dynamic data structure supporting rank queries. For a multiset
Ŝ ⊂ R (i.e., Ŝ may contain duplicates), the rank of a number x with respect to
Ŝ is defined as rankŜ(x) = |{x′ ∈ Ŝ : x′ < x}|. The problem of answering rank

queries and supporting insertions and deletions on Ŝ is is known as the subset
rank problem. An augmented balanced search tree supports all operations in
O(log n) time — every internal node additionally maintains information about
the sizes of subtrees rooted at that node. Dietz [Die89] made an improvement to
O(log n/ log log n) time per operation, which in general matches the lower bound
from [FS89]. In our case, deletions do not need to be supported by the subset
rank structure, which makes implementation easier.

The method for computing m1 starts by sorting the set S according to the
φ values of the elements. Without loss of generality, suppose that the sorted
sequence is (x1, x2, . . . , xn), meaning that φ(xi) ≤ φ(xj) for any i < j. As the
next step, the multiset F = {f(x, µ) : x ∈ S} is sorted; this provides for each
value f(xi, µ) its rank within F . Denote the resulting values by rankf(xi, µ).
That way, F is mapped to the set [n] by a monotonically increasing function.
The subset rank data structure is initialized so that Ŝ = {rankf(xn, µ)}. Then,
in reverse order, from n − 1 to 1, the values rankŜ(rankf(xi, µ)) are summed

and the values rankf(xi, µ) are inserted into Ŝ. But if some value φ(xi) is
not unique among the φ-values, the element rankf(xi, µ) is not immediately
added to Ŝ. Suppose that (φ(xj), φ(xj+1), . . . , φ(xk)) is a maximal run of equal
φ-values, that is, it cannot be extended on left or right. First all the values
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rankŜ(rankf(xi, µ)) are computed, j ≤ i ≤ k, and afterwards the multiset

{rankf(xj, µ), . . . , rankf(xk, µ)} is added to Ŝ. The final output value is equal
to the sum of calculated rankŜ(rankf(xi, µ)) values. This procedure correctly
computes m1.

The performance of the procedure depends on the choices for sorting algo-
rithm and subset rank data structure. One option is to pick the fastest general
(deterministic) methods. Naturally, we would choose Han’s sorting algorithm
[Han04], and Dietz’s data structure. In that case, the computation of m1 would
take O(n log log n+ n log n/ log log n) time. However, when several keys may fit
into one word, an even better performance can be achieved by using simpler
algorithms and data structures that exploit word-level parallelism to a greater
extent. Also observe that the subset rank structure works with keys of only log n
bits.

For rank computations, a structure that takes advantage of relatively larger
word sizes is the packed B-tree [FW93, And95], augmented to support rank
queries. The rank procedure utilizes prefix summation on word level; that cannot
be done in constant time on a practical RAM, so these improvements apply to
the word RAM model only. In one step of the binary search, all rank queries

and insertions into trees take O
(
n(1 + log n/ log w

log n)
)

time.

As for sorting, we may choose a serial version of the parallel sorting algorithm
due to Albers and Hagerup [AH92, AHNR98]. They show that if K keys can
fit in a certain word-size structure, then merging two sorted sequences stored
in such structures takes O(logK) time. Merging longer sequences is done using
this subroutine instead of going down to single comparisons. In this way a factor
of Θ(K/ logK) is saved comparing to standard merge sort. In our case, K can
in principle be as high as n. Even if the word size is very large, we have no use
of being able to accommodate more than n keys. Therefore we can put K =
min{ w

dlog ue , n}. If K = Ω(n) then sorting takes O((log n)2) time. Otherwise,
when the word size is not so large, the cost of sorting tasks in the computation
of m1 is O(n log n logu

w log w
logu) when the mentioned sorting procedure is used.

There is no reason to employ word-level parallelism on other jobs, like computing
function values, because rank computations are more expensive anyway.

2.3.4 Substituting rank queries with permutation inversions

Viewing the definition of m1, one may observe that it resembles counting certain
inversions. A problem with reduction to inversions of a permutation is that there
may be duplicates among the φ-values and the function values. A solution is to
define strict linear orders which will separate equal values but will not cause any
additional inversions. We define orders ≺f and ≺φ with:

x ≺f y ⇐⇒ f(x, µ) < f(y, µ) ∨ (f(x, µ) = f(y, µ) ∧ φ(x) < φ(y)) ,

x ≺φ y ⇐⇒ φ(x) < φ(y) ∨ (φ(x) = φ(y) ∧ x ≺f y) .

Rank functions based on these order relations are rankf : S → [n], rankf(x) =
|{x′ ∈ S : x′ ≺f x}|, and rankφ : S → [n], rankφ(x) = |{x′ ∈ S : x′ ≺φ x}|.
The values of the rank functions for the whole set S are calculated by first sorting
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the ordered pairs (f(xi, µ), φ(xi)), and then using the produced rankf values
sorting the set of ordered pairs (φ(xi), rankf (xi)). Let π1 be a permutation of
[n] given by π1(i) = rankf (rank

−1
φ (i)). It is easy to check that m1 = Inv(π1),

where Inv represents the number of inversions of a permutation.
Currently, the fastest method for exactly computing the number of inversions

of a permutation runs in time O(n log n/ log log n) using the subset rank data
structure of Dietz (though there is no known superlinear lower bound for the
problem). However, finding an approximate number of inversions is much easier.
Diaconis and Graham [DG77] showed that

Inv(π) ≤ D(π) ≤ 2Inv(π) , (2.3)

where D(π) =
∑n−1

i=0 |π(i) − i|.
The decisions in the binary search are now done as follows. In the first step

of the search, the lower half is chosen if D(π1) <
2
3
n2

2 . According to (2.3), this
kind of choice guarantees to yield no more than

min

(
D(π1),

n2

2
− D(π1)

2

)
≤ 2

3

n2

2
(2.4)

bad parameters in the selected interval. Similarly, in later steps the decision
to choose the lower half is made if D(π1) is less than 2/3 of the upper bound
on the number of bad multipliers in the current interval. The upper bound
is determined by an expression analogous to the left-hand side of (2.4), with

the corresponding values taken from the previous step. Consequently, log3/2
n2

2
steps are needed to isolate a suitable multiplier. The initial search space must
be large enough to allow this number of iterations, so it must be of size at least
(n2/2)1/ log 3

2 . The value of c may be set to 2 · 1.71 = 3.42.
The technical description of efficient computation of D(π1) is given in Sec-

tion 2.8.2. The techniques used are standard for algorithms that parallelize
operations on word level. The computation of D(π1) is the only non-trivial step
performed in the algorithm for finding a suitable multiplier. Assuming that the
input to the algorithm for multiplier selection is given in a word-packed form, a
bound on the running time is

O

(
n log n

(
1

K
+ min

(
log log n,

log n logK

K

)))
, (2.5)

where K is the number of keys that can be packed in a machine word. The
expression with the minimum corresponds to the choice of sorting procedure.
As before, we have that K can be as high as n. The algorithm needs Ω((log n)3)
time even for extremely large words, say w = 2n.

2.4 General Universe Reduction — Top-down Ap-
proach

The basic function f can be combined in different ways to achieve a larger
reduction of universe. The ultimate goal is to have a function that maps original
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keys to signatures of O(log n) bits. In this section we discuss the most natural
approach, direct composition of (several versions of) function f . This method
allows the final function to have a rather succinct description on a word RAM.
An interesting feature of the method in the practical RAM model is efficient
batched evaluation.

We will define a sequence of functions (g0, g1, . . .) that are created through
compositions of function f . A set {a0, a1, . . .} represents multiplier parameters,
and the shrinking ranges of the functions will have bit-lengths given by the
elements of the sequence v defined by v0 = w, vk+1 = dvk/2e+ dc log ne+ 1. By
induction, for k > 0 it holds that

vk <
w

2k
+ (dc log ne+ 2)

(
1 +

1

2
+ . . .

1

2k−1

)
.

As a result, vk <
w
2k + 2dc log ne + 4, for all k. Define g0(x) = f(x, dv0/2e, a0),

and for k > 0, define gk : U → [2vk+1 ] with gk(x) = f(gk−1(x), dvk/2e, ak). Let
k0 = dlog w

c log ne−1. Using one of the selection algorithms from Section 2.3, it is
possible to set values of the parameters from {a0, a1, . . . , ak0} so that the function
gk0 maps each original key from S to a unique signature of 3dc log ne + 4 bits.
In other words, k0 simple steps are needed to perform the universe reduction to
a polynomial-size universe.

We state a technical result regarding the evaluation of the function gk0 . The
result is a feature of the function family — it is independent of the way the
parameters are chosen. The technical proof is given in Section 2.8.1.

Lemma 2.4.1. Let k0 = dlog w
c log ne − 1. Given a set of keys {x1, x2, . . . , xk0}

from U , the values of all signatures gk0(xi), 1 ≤ i ≤ k0, can be computed in time
O(k0) on a word RAM. On a practical RAM the time is O(k0(log log n)1+o(1)).

The procedure for batch evaluation makes use of word-level parallelism. To
obtain the following result it remains to analyze the cost of instantiating the
parameters a0, a1, . . . , ak0 .

Proposition 2.4.2. In the word RAM model with word length w, for a given set
S of n keys there is a function h : [2w]→ [nO(1)] that is one-to-one on S, with the
following properties: (i) the description of h has a size of O(log w

log n · log n) bits;

(ii) the description can be computed in time O(n log n(log log n)2+(log n)3 logw)
with a deterministic algorithm; (iii) the evaluation time of h on single argument
x is O(log w

log n). Further, for any set T ⊂ U of Ω(log w
logn) arguments, the values

h(x), x ∈ T , can be computed in total time O(|T |).

Proof. For setting of parameter values we decide to use the variant of the selec-
tion algorithm that is described in Section 2.3.4. Sorting operations are dominant
in execution times, see (2.5). A couple of sorting operations are performed at ev-
ery bisection step of every binary search. In the first few levels of the reduction,
more precisely for k ≤ log log n, we choose to utilize Han’s sorting algorithm in
selection of ak. In that phase, a total of O(n log n(log log n)2) time is spent on
sorting tasks. After completion of the first phase we have that K = Ω(log n)
values of type gk(xi) can fit in single machine word. To take advantage of this,
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for k > log log n the algorithm of Albers and Hagerup is used. The total cost of
sorting tasks in the second phase is

O
( k0∑

j=log log n

max
{
n(log n)2

j

2j
, (log n)3

})
= O(n log n log log n+ logw(log n)3)

because of the halving of the key sizes and compactions similar as in the proce-
dure of Lemma 2.4.1 (for implementation details, see the proof of Lemma 2.4.1
in Section 2.8.1).

It is interesting to mention that other known types of functions suitable for
deterministic selection [FKS84, Ram96, HMP01, Ruž08b] require a description
of size Ω(w) bits, when the range is of size nO(1).

To adapt the construction procedure to the practical RAM model we simply
replace machine instructions for multiplication with software routines. Multiply-
ing two w-bit numbers requires (logw)1+o(1) time with the restricted instruction
set [BMM97]. We need full-word multiplication mainly in the general sorting
procedure in the first log log n reduction steps. Outside of sorting procedures we
have full-word multiplication with special, simple constants only; it is simpler
and more efficient to replace those instructions with combinations of shift and
addition instructions. The second phase of the construction procedure, where
k > log log n, requires only block multiplication of “small” numbers of O(log n)
bits (for details, see the proof of Lemma 2.4.1). The result on universe reduction
in the practical RAM model is formally stated in Proposition 2.2.5. A number of
constants needed to carry out the “software” multiplications are computed dur-
ing the construction. The term (logw)O(1) in the construction bound represents
time for preparing those constants.

2.4.1 Going down to size n
2+ε

In the definition of the function sequence g we decided to always set the pa-
rameter s of the function f to equal half of the bit-length of the domain of
x. Many other choices would do as well, affecting running times of the al-
gorithms by a constant factor. Alternative values of s which do not increase
the running times are those which are “a little” smaller than one half of the
bit-length. For example, we may set s = d(w − dc log ne)/2e for the top-level
function, and so on. Then, instead of the sequence v we may define a sequence
v̂ with v̂0 = w, v̂k+1 = (v̂k + dc log ne)/2 + 2. It holds that w/2k < v̂k <
vk. The elements of the modified function sequence ĝ are ĝk : U → [2v̂k+1 ],
ĝk(x) = f(ĝk−1(x), d(v̂k − dc log ne)/2e, ak). There is a small advantage of ĝ in
comparison with g. With g, if we go beyond k0 the image sizes of gk converge to
2dc log ne+O(1) bits, which means that the reduced universe cannot be smaller
than n4. On the other hand, the image sizes of ĝk converge to dc log ne+O(1) bits.
The algorithm from Section 2.3.3, based on exact computations of m1 values,
allows setting c to 2. Consequently, for any fixed ε > 0 there is k1 = k0 + O(1)
and a function ĝk1 with a range of size n2+ε. The time taken to construct ĝk1 is
O(n log n(log n+logw)) on a word RAM. Note that we can also use the function
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sequence ĝ or a similar one in combination with the faster selection algorithm
from Section 2.3.4. In that case the final range can be of size about n3.5.

2.5 General Universe Reduction — String Approach

In Section 2.4 we saw one way of combining several versions of the function
f that achieves large reduction of the universe. Another approach is to view
keys as strings over some chosen alphabet, and then apply f on (some of) the
characters, and combine the values in some way. Many concrete variants of
this approach can be imagined, yet we will need only two. Let x[0]x[1] . . . x[q −
1] be a string representation of key x over some alphabet. One possibility is
to apply f to all characters and concatenate the resulting values, viewed as
binary strings. We may use the same multiplier parameter for all characters, and
thus the length-reduced value for key x after one level of reduction has a form
of f(x[0], a)f(x[1], a) . . . f(x[q − 1], a). The process is repeated with different
multipliers and possibly different alphabets at subsequent levels of reduction.
We will refer to this way of combining function f as the parallel reduction.
In the second version, which we call suffix reduction, only the last characters
get reduced at a single reduction level. Although the structure of reduction
sequences is different for those two variants, as well as the processes of parameter
selection, the final functions for those two compositions can have similar dot
product forms. A precondition for this is to suitably set intermediate alphabet
sizes in the parallel reduction. For example, after two levels of parallel reduction
we want the function to have a form of x 7→ f(f(x[0], a)f(x[1], a), a′) . . . f(f(x[q−
2], a)f(x[q − 1], a), a′). Having the final functions in dot product form means
that they can be evaluated rather efficiently on a word RAM, as we will see in
Section 2.5.3.

The method of suffix reduction allows a smaller range of the final function.
We may go down to the desired O(log n) bits with one application of the method.
However, the construction time is reasonably fast only for relatively small string-
length q. On the other hand, parallel reduction allows rapid construction for
large keys, and reasonably fast construction for some intermediate range of key
lengths. The result from Theorem 2.2.1 is obtained by having two stages of
reduction, one for each method. First, using parallel reduction we map keys of
w bits to keys of O(log n log w

log n) bits. Suffix reduction then takes over, and
maps the given values of size O(log n log w

log n) bits to O(log n)-bit values.

The presentation is mainly for the word RAM model. Adapting to the exter-
nal memory setting with fixed-length keys is trivial. Some issues are nonexistent
when only performance of memory transfers is analyzed, and the algorithms
become simpler. Variable-length keys are treated in Section 2.6. For the word
RAM implementation we assume that w < nO(1).

2.5.1 Parallel reduction

Let x[i]σ denote the ith character of key x viewed as a string over alphabet [2σ ].
If σ is not too small, e.g. σ > 4 log n, we may apply f to individual characters
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and concatenate the resulting values, viewed as binary strings. The length-
reduced value for key x can be written as f(x[0]σ, s, a)f(x[1]σ , s, a) . . . f(x[q −
1]σ , s, a), where q = dlog u/σe and x is zero-padded to make x[q − 1] a σ-bit
value (if necessary). For integer keys on a word RAM, all q characters fit in one
machine word. This way of computing signatures is used in sorting algorithms
from [AHNR98, FPP06]. They use different types of hash functions and the
functions are chosen randomly. Here we investigate what can be achieved with
this approach by using our type of hash functions.

To make the mapping to the reduced universe injective on S it is not neces-
sary to make f injective on all character values that appear in the keys. Observe
the trie for S, with the elements of S viewed as strings over alphabet [2σ ]. It
is enough to make f injective on the set of character values that correspond to
outgoing edges of branching nodes in the trie. The number of such edges is equal
to the number of leaves plus the number of branching nodes minus one. In a trie
with n leaves, this is at most 2n− 2 edges. We will call the characters that are
the labels of outgoing edges of branching nodes as branching characters.

Three tasks can be identified at each level of reduction: the first one is to
collect all branching characters, the second one is to remove possible duplicate
values, and the third one is to find a suitable multiplier for the collected set of
σ-bit values. We discuss them in reverse order.

The algorithm of Section 2.3.4 takes O(n(log n)2 log q
q ) time to yield a suitable

multiplier. We will soon describe how exactly to set the value of the parameter σ
at each level. Generally, the value of σ will not decrease across reduction steps.
Beside being non-decreasing, the character lengths will stay within a constant
factor from the initial value of σ at the first level of reduction. Consequently,
the time spent on the third task does not change much over different levels, and
the total time for all the levels is O(n(log n)2 log q

q log w
log n), where the value of q

from the first level is assumed, for concreteness.

The process of removing duplicate values among branching characters can
be performed efficiently even when many values are packed in a machine word.
We make sure that fields that store the collected characters have size at least
σ + 1. We start with sorting, of course. Doing an XOR operation on each pair
of neighbouring values, it is possible to transform each run of equal values to a
nonzero value in the first field in the run followed by a sequence of zero fields.
Using standard word-parallelism tricks, in a few operations it is possible to zero-
out the character values that are aligned with the zero fields, and to leave all the
other characters intact. Finally, a sorting operation pushes all the empty fields
to one end of the sequence of word-packed characters.

To carry out the task of collecting the branching characters we may perform
the first two phases of a known algorithm for constructing a path-compressed
trie. The first step is to sort the input keys; w.l.o.g. assume that the sorted
sequence is (x1, x2, . . . , xn). In the the second step for each i < n we find
the first distinguishing character position for xi and xi+1 (in other words, find
the longest common prefix). If such position is j, then xi[j] and xi+1[j] are
added to the set. Locating the first distinguishing character amounts to finding
the most significant one-bit in a word, which can be done in constant time
[FW93, AHNR98].
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It turns out that after the first level of the reduction, the task of collecting
the branching characters can be done in a simpler and faster way than with the
two phases of the path-compressed trie construction. The topology of the tries
(in unordered versions) cannot be preserved across different levels, since we wish
to conduct a large reduction of the universe. Yet, the topology changes gradually
and in a nice way, especially if we choose alphabet sizes suitably. We do not
really need a representation of the trie, only the set of labels of outgoing edges
of branching nodes (of the full trie), meaning that the order in the sequence of
collected characters is not relevant to us.

We initialize σ to c log n log w
c log n at the first step. Let v1 be the number

of bits needed to represent a result of the function f at the first level. Let us
choose the character length at the second level to equal 2v1. Continuing in this
fashion, we set the character length at the (i+ 1)st level to equal 2vi, where vi
is the bit-length of the image of f at the ith level. If two strings have a common
prefix of 2p characters at the beginning of level k, they will have a common
prefix of p characters at the beginning of level k+1. If the length of the longest
common prefix of two strings is 2p+ 1 at level k, the longest common prefix at
level k + 1 will be of length p. This process of trie “unfolding” and pushing the
branching nodes towards the root is depicted in Figure 2.1. Suppose that at level
k the first distinguishing characters for every pair of strings are included in the
collected set (such characters for a pair of strings may have got extracted from
some other strings with which they share appropriate prefixes). That property
continues to hold at level k + 1 as long as we decide to collect every character
that contains an image of a branching character from level k. At every level
at most two characters from one string are extracted and added to the set of
branching characters. If at the kth level characters at positions 2p and 2p + 1
are the selected characters of some string, then starting from level k + 1 only
one character will be taken from that string.

The size of the range of the function f that operates on characters at a
reduction step depends on the alphabet size, the size of the domain of multipliers
and the value of the parameter s. Deciding on a value for s is a simple matter;
we may always set s = σ/2. The size of the multiplier domain is again c log n
bits. As in the top-down approach, the key length will get “almost” halved after
every step. The initial value of σ was set so that the final character length in
bits stays only a constant factor larger.

Although the values of keys get properly reduced, their physical represen-
tations are not automatically reduced in this variant of the string approach.
In the I/O model, compacting the strings with reduced character values is a
trivial operation. However, on a word RAM we achieve compaction through
interleaving of characters of different strings. Compactions are performed using
shift-and-adds, like in the procedure of Lemma 2.4.1, only here we operate at
the level of characters, not whole keys. The order of the characters within one
key stays the same as in the standard representation. The characters of a string
are spread out at equal distances, and they are all inside one word. Different
keys in a word appear at different offsets. This representation is illustrated in
Figure 2.2. Logical masks used for extracting branching characters can be easily
maintained with this representation as well. Masked characters can be collected
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Figure 2.1: Trie unfolding. The leftmost illustration shows a part of the trie
at the beginning of the kth level of reduction; the middle one shows the corre-
sponding part at the beginning of level k + 1, and the final one represents the
end of level k + 1.

by pushing them to the highest-order portion of a word using multiplication, as
illustrated in Figure 2.3. The interleaved representation of strings is not relevant
to the tasks of removing duplicates and finding a suitable multiplier.

By inspecting all parts of the construction procedure and substituting q =
Θ(w/(log n log w

log n)), we find that the total running time is

O(n
(log n)3

w
(log

w

log n
)3 + n) ,

assuming that the input sequence of keys is already sorted. Finally, we need
to express the structure of a partially reduced key in terms of the original key
value. That way we also get the form of the final reduction function, which is
important for the evaluation process. Let ⊕ denote the concatenation operator.
It is not hard to see that after k levels of the reduction, a key x ∈ U is mapped
to

q

2k−1 −1⊕

i=0

2k−1∑

j=0

αj · x[i · 2k + j]σ/2 , where (2.6)

αj =
k−1∏

l=0

φ(j, l, al) , φ(j, l, z) =

{
z if lth bit of j is 1,
1 otherwise

.

Given parameters al, 0 ≤ l ≤ O(log w
log n), in time O(logw) it is possible to

compute all the multipliers αj, 0 ≤ j < 2q, that are used in the final reduction
function. Here computing all the multipliers αj means creating a word containing
the sequence (α0, α1, . . . , α2q−1), which is exactly what we need.

34



2.5. General Universe Reduction — String Approach

Figure 2.2: Interleaved string representation. The white-spaces represent zeros
which complement the characters within fields.

Figure 2.3: Collecting branching characters using multiplication.

2.5.2 Suffix reduction

In the method of suffix reduction we want to find multipliers a0, a1, . . . , aq−2

such that the function

x 7→ a0 ·x[0]σ +(. . .+(aq−3 ·x[q− 3]σ +(aq−2 ·x[q− 2]σ +x[q− 1]σ)) . . .) (2.7)

is injective on S. The conceptual sequence of reductions is designated by the
parentheses in the expression. A partially reduced key after k reduction levels
consists of the prefix x[0]σ . . . x[q − k − 2]σ of the original key x along with a
reduced value of the remaining suffix x[q − k − 1]σ . . . x[q − 1]σ. The process of
parameter selection proceeds in accordance with the reduction sequence, starting
from aq−2, and finishing with a0.

In this variant of the string approach we may set σ = O(log n). The range
of the final function has a size of O(log n + log q) = O(log n + log log u

log n) bits.
Therefore, the final range has a size of O(log n) bits, except for very large key
lengths. In our framework we mainly use the suffix reduction method for the
second phase of the general reduction. The input universe for the second phase
has a size of O(log n log w

log n) bits, which is relatively small.

Beside the calls to the multiplier selection procedure, in the construction
algorithm there is a preparation task of splitting and partitioning the keys
so that the elements in the sets {x1[0], x2[0], . . . , xn[0]}, {x1[1], . . . , xn[1]}, . . .,
{x1[q − 1], . . . , xn[q − 1]} are grouped together. The cost of this partitioning
is proportional to log q times the cost of reading the keys (they may be packed
into words). However, the computationally dominant task is multiplier selection.
The selection algorithm is applied q − 1 times. From (2.5) we see that the cost

of one call to the selection procedure is O(n (log n)3

w log w
log n +(log n)3), since K =

min{Θ( w
log n), n} input elements can fit in one word. Because q = O(log w

log n),

the total running time of the construction algorithm is O(n+n (log n)3

w (log w
log n)2).

When evaluating the function from (2.7) we obviously do not need to go
through the reduction sequence from the construction process. The function
can be evaluated instantly using a dot product calculation.
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2.5.3 Function evaluation

On a word RAM, dot product of integer vectors packed into single words can
be computed in constant time when one operand is a constant and the word
size is not very large relative to n. The constant operand can be preprocessed
offline so that dot products can later be computed via standard multiplication.
Denote the arguments by x and a, where the value of a stays constant. The
vectors have d integer components of size Ω(log n) bits. The procedure needs to
calculate

∑d−1
i=0 x[i]a[i]. The vector x is represented in dense word-packed form;

in other words, it is just a binary string from {0, 1}w interpreted in different
way, like in the previous subsections. Let σ be the bit-length of components of
x and a. For simplicity, we will suppose that the values of the components of
a can be represented using at most σ − logw bits, as this typically is the case
in our applications of the procedure. The top logw bits in every field of a are
assumed to be zero (if this could not be fulfilled, it would not be a problem to
make additional splits of the operands, as long as w ≤ nO(1)).

Let aR be the vector produced from a by reversing the order of the fields,
that is aR[d− 1− i] = a[i]. We split aR into two parts, a′ and a′′, such that the
fields of a′ and a′′ alternate between zero fields and fields retained from aR. We
have that aR = a′ + a′′. The vectors a′ and a′′ are prepared at the end of the
construction procedure, when constant a is found. We need to preprocess one
constant for the parallel reduction and one for the suffix reduction.

During evaluation the vector x is split into two parts, call them x′ and x′′,
the same way the vector aR was split. Suppose first that d is even. The dot
product value is given by

((x′ · a′′ + x′′ · a′) SHR (d− 1)σ) AND (2σ − 1) ,

where SHR stands for the operation of right shift, and the multiplication operators
denote standard multiplication of w-bit integers. Splitting of operands into two
parts prevented overflows from spoiling the result. If d is odd, the resulting value
is given by ((x′ · a′ + x′′ · a′′) SHR (d− 1)σ) AND (2σ − 1).

2.6 Variable-length Keys

It is of interest to discuss making signatures of “real” strings that can span
multiple words. We consider binary strings, and they can be of different lengths.
Because strings can possibly be long, we also care about I/O performance of
the evaluation and construction procedures. Every key is represented with an
encoding of the key length followed by a sequence of data bits. Usually, a fixed
number of bits can be reserved for storing the length attribute. In general, a
prefix-free code is sufficient. If it can be assumed that all length codes have the
same size, the method becomes a bit simpler. We will discuss the general case.
No distinction is made between the length part and the data part of a string in
this general variant of the method, they are reduced together as one key.

The reduction again starts with a process of parallel reduction. Most of the
points from Section 2.5.1 translate easily to this setting. However the parameter
w, which figured in the setting of alphabet sizes, does not have a counterpart
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in the case of unbounded and variable length strings. Here we choose to set the
initial character length to c log n log log n bits. We utilize the same construction
procedure for log log n levels of reduction. If at some level a key is comprised of
only one character then it is set aside to enter the second phase of the reduction;
keys set aside have lengths of O(log n log log n) bits. After log log n levels, all
the remaining keys have lengths smaller than their original lengths by a factor
of Ω(log n). At that time, a full sorting operation can be afforded. The process
is then repeated by resetting the character length to c log n log log n.

In the second phase, signatures of length O(log n log log n) bits are further
reduced by suffix reduction, or the top-down composition from Section 2.4 if
only I/O performance is relevant. However, elements that completed the first
phase at different times may have equal signatures. For that reason, we group
elements according to time they take to finish the first phase of the reduction.
Let Sk be the set of elements of S that were reduced to one character after k
levels. Every nonempty set Sk is assigned a unique identifier from [n]. The final
signature value of a key from Sk is composed of the assigned identifier of the set
Sk and the key’s signature produced by the second-phase function. The final
signatures are unique over S, and they have a length of O(log n) bits. To make
all input values for the second phase have the same string-length, we implicitly
pad with zeros all keys from S0 to length c log n log log n (the elements of S0

originally have smaller lengths).

If L is the maximum length of strings in S, there are O(log L
log n+log log n) =

O(logL) levels of reduction in total. For every level, storage of the multiplier
parameter occupies c log n bits. There are also O(log L

log n) distinguished groups
of keys, some of which may be empty. Associating the number k with the
identifier of (nonempty set) Sk requires O(log n) bits of storage. In total, the
description of the entire signature function fits in O(logL log n) bits.

The result for the cache-oblivious model is stated in Theorem 2.2.7. It is
not hard to check that the expression in (2.1) covers both phases of the con-
struction. A similar result for strings in the word RAM model could also be
stated. An important adjustment is making a phase transition when reduced
values become smaller than the word size. This ensures efficient evaluation on a
RAM. Also, some processes are simpler when values span more than one word.
For example, there are no interleavings of physical representations of keys (see
Section 2.5.1). For any key we may freely spend Ω(1) time per reduction level,
as long as the reduced value does not become smaller than the word size. Keys
that are originally short, smaller than one word, are implicitly zero-padded to
word length.

2.7 Predecessor Structures

We now turn to the problem of answering predecessor queries on sets of un-
bounded and variable-length binary strings. Basically the same structure lies
behind Theorem 2.2.3, which is for the word RAM model, and Theorem 2.2.9,
which is for the external memory models. Differences are in the sorting proce-
dure that is called by the construction algorithms, and in dictionary substruc-
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tures. Sorting needs to be optimized for one of the computational models. For
both models we can use variants of merge sort. Dictionary substructures that
we use are a composition of the signature functions from this chapter and the
dictionary for polynomial-size universes from Chapter 3. That combination is
sufficiently fast for this purpose because polylogarithmic factors in construction
times can easily be absorbed. For concreteness, let the further discussion refer
to the structure that is analyzed in the I/O model (Theorem 2.2.9).

Our predecessor structure for strings has two pieces. The top piece is used to
find a “small” neighbourhood of the result, and the bottom piece is an array of
simple comparison-based structures built over those small neighbourhoods. This
division technique is commonly used to absorb or amortize a higher operation
cost on some part of a data structure. In our case, it absorbs higher construction
cost of the top piece.

To begin the construction, the sorted input is partitioned into groups that
have size of log3 n elements each. A key (string) of minimum length from each
group is included into the input to the top structure. In the bottom array,
binary search is used as the search method; additional information about longest
common prefixes is needed, e.g. as in a known method for searching within suffix
array. Search results can be tabulated for all strings of length smaller than log n
bits. Doing that, for very small strings we avoid paying a cost of Θ(log log n)
I/Os for searching within the bottom structures.

The method behind the top piece is a variation of the method of the vEB
structure [vEBKZ77]; we made it suitable for variable-length keys, keeping the
construction I/O efficient. On a conceptual level it may be said that we use
dictionary structures for jumping between the edges and nodes of the trie for
the set of keys viewed as binary strings.

The top piece in the predecessor structure

The actual structure will not store a full representation of the trie; we avoid trie
traversals in order to get a simpler I/O-efficient construction algorithm. Both
the search procedure and the construction procedure of our structure can be
thought of as recursive procedures, with every step of recursion reducing bit-
lengths of keys by a constant factor. We will describe one step of each these
procedures. We observe the full, not path-compressed, trie for the input binary
strings.

Two pointers to bottom structures are associated with every branching node,
call them pmin and pmax. The value of pmin for a node t indicates the po-
sition in the bottom piece of the minimum element in the subtrie rooted at t.
Analogously, pmax points to the maximum element in the subtrie rooted at t.

Suppose that the search procedure is to find the predecessor of string x in
the subtrie rooted at node u, where u need not be a branching node. If u is not
a branching node, equality tests involving a prefix of x can lead us to the first
branching node. If there is a mismatch with the prefix of x then we easily resolve
the query — either the predecessor of x is the maximum element in the subtrie,
or the successor of x is the minimum element of the subtrie. The ultimate result
is found in the bottom piece, indexed by either pmin or pmax. If x matches
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until the first branching node, then we check whether the branch that should be
followed leads to a single leaf. If yes then we easily handle the case; otherwise
we will use signatures to skip “big” parts of the trie. Remark that the branch
that should be followed is decided by the value of a single bit.

Let t denote the first branching node in the trie rooted at u, and let xt be the
string obtained by discarding the prefix of x that led to t. W.l.o.g. we assume
that xt is not longer than the height of the subtrie rooted at t; any further bits
would be insignificant to the search procedure. Let l be the power of two that is
nearest to |xt|/2. For every power of two smaller than the height of the subtrie
there is an associated string dictionary. We look up the value of l-bit prefix of
xt in the dictionary associated to l. If there is a match, we retrieve the node u ′

up to which x certainly matches. The search continues in the subtrie rooted at
u′ with the remaining suffix of xt (and hence x) as the argument. Otherwise if
there is no match, the search proceeds in the upper part of the trie rooted at t,
with the l-bit prefix of xt as the argument. This means that a dictionary lookup
with the l/2-bit prefix of xt follows, and so on. Each edge of the trie is “cut” at
most once, and only one dictionary may hold an entry that refers to the edge.

Construction of the structure. Initially we find the first branching node
of the entire trie for S, and store information about the prefix that leads to
that node. Now consider the strings with the initial prefix removed and suppose
that the trie starts with a branching node. Let l be the height of the trie,
rounded up to the nearest power of two. For every k > 0, strings having length
between l/2k+1 and l/2k are put in a separate set that will “join” the upper-part
recursion of the construction after k steps; here we sort the strings according to
their lengths. To get an effect of cut, the l/2-bit prefixes of the remaining strings
are gathered in sorted order; no sorting procedure needs to be executed since
we assumed that the input sequence of strings is given in sorted order, and it
is trivial to maintain that order in this algorithm. All values of l/2-bit prefixes
that appear only once are put aside into the set for the upper-part recursion;
keys corresponding to such values can be distinguished in the upper part of the
trie. For every maximal run of strings with equal values of l/2-bit prefixes, the
prefix value is put in the dictionary and with it is associated a pointer to the
structure that will be built in the lower-part recursion over the set of suffixes of
the strings in the run. The value of the prefix enters the set for the upper-part
recursion. Initializing pointers pmin and pmax at branching nodes is a trivial
matter.

2.8 Appendix: Technical Details

2.8.1 The proof of Lemma 2.4.1

We describe the computational procedure for the word RAM model, and after-
wards we state small adjustments for the practical RAM model. Let ddxee denote
2dlog xe, that is, the smallest power of two that is not smaller than number x.
W.l.o.g. we assume that w is a power of two; if this is not the case we may use
the largest portion of the word whose size is a power of two.
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The result of function gk−1 can be represented with vk bits. It serves as
the argument of function f(x, dvk/2e, ak) in the computation of gk, and so on.
We store the values gk−1(xi) in fields of ddvkee bits. Fields are packed in words,
with w/ddvkee fields in each word, except that in the last word some fields may
be empty. Within each field the contained number is stored right justified,
meaning that the least significant bit position of the number is aligned with the
least significant position of the field. Possible empty space of ddvkee − vk bits is
filled with zeros.

The fields holding the values from (gk−1(xi))
k0
i=1 will not appear in order of

increasing i. As k increases they will get more and more shuffled. Once the
values from (gk0(xi))

k0
i=1 are computed, the original order will be restored.

It can be seen that vk <
1
2vk−2, for k ≤ k0 − 1. Hence, while k ≤ k0 − 1

the field size decreases by a factor of two at least once in two levels. When k is
lower (and vk larger) the shrinking happens more frequently.

We state the process of computing the values gk(xi) given the values gk−1(xi)
in the word-packed form specified before. Let l = w/ddvkee. There are l fields
in every word and they start at bit positions i · ddvkee, 0 ≤ i < l. When step k
starts, the constant

Ml =
l−1∑

i=0

2iw/l

will be available as part of the output of step k − 1. The number Ml has one-
bits exactly at starting positions of fields within a word. Let SHL stand for
the operation of left shift, and SHR stand for the operation of right shift. The
following preprocessing stage is done for level k:

phi offset ← dvk/2e
mask psi ← ((1 SHL phi offset) - 1) · Ml

mask phi ← (−1) - mask psi

Later, in the discussion for the practical RAM model, we will see that the mul-
tiplication by Ml can be avoided for free. The procedure executed on a word X
is:

Z ← X AND mask psi

Y ← (X AND mask phi) SHR phi offset

X ← Y + ak·Z

The procedure is repeated on all words which contain fields with gk−1(xi) values.
If ddvk+1ee < ddvkee the fields are compacted as follows. All the words con-

taining the data are partitioned into pairs, except for one word if the number of
words is odd. Let X1 and X2 be the words in a pair. They are replaced with one
word containing X1 + (X2 SHL ddvk+1ee). It doesn’t matter that one word may
be unpaired; some fields will simply be empty. The constant M2l is obtained as
Ml + (Ml SHL

w
2l ).

At the end of level k0, when the values from (gk0(xi))
k0
i=1 are computed, all the

compaction operations are reversed, thereby putting the signatures into proper
order. Entire procedure of computing signatures involves a time of O(k0 · (1 +
1/2 + 1/4 + . . .)) = O(k0).
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To adapt the algorithm for the practical RAM model, we need to get rid
of multiplications. Observe the level preprocessing procedure. We can actually
obtain the mask mask psi in a similar way we obtained Ml using the value for
the previous level. Let mask psik denote the mask used at level k, and let tk be

mask psik−1 AND (mask psik−1 SHR (dvk−1/2e − dvk/2e)) .

The mask tk has the same number of blocks of 1-bits as mask psik−1, but each
block is smaller. If compaction was not performed at level k − 1 then we set
mask psik = tk; otherwise set mask psik = tk + (tk SHL ddvkee).

The multiplication by ak values cannot be avoided. In this place we use
the observation of Brodnik et al. [BMM97] on doing multiplication using basic
instructions. We need a number of constants precomputed at the time when the
data structure is built. To exploit the fact that one multiplier is “small” we use
block multiplication. What we want to perform is multiplication of numbers of
bit-length ddvkee/2 in fields of the word denoted by Z (in the code fragment) and
the numbers in fields of the precomputed constant ak ·Ml. Yet this is imple-
mented through multiplications of blocks of size O(log n) bits (two multiplica-
tions on split operands followed by an addition). Every field can accommodate
the result of the multiplication, since involved numbers occupy one half of field
size. The multiplication takes time (log log n)1+o(1). Over the whole procedure,
we require access to k0 constants of type ak ·Ml, and k0 · (log log n)1+o(1) con-
stants needed by the multiplication routine. Computing all of them takes time
O(k2

0 + k0(log log n)O(1)), which should be added to the structure’s construction
time.

2.8.2 Computing D(π1)

Here we describe the main computational process of the algorithm from Sec-
tion 2.3.4. Since some operations are similar to those made in the procedure
of Lemma 2.4.1, the presentation will not be overly detailed. The structures
which are to be packed into words consist of two fields plus one reserved bit
at the most significant position of the structure; this bit is used by the sort-
ing algorithm of Albers and Hagerup. The low order field of structure instance
contains a key value — in the first step of the binary search the keys are the
values xi, and in the subsequent steps the keys are modified according to the
reduction described in Section 2.3.2. The high order field of structure instance
accommodates a function value of type f(x, µ), where x is the key in the second
field. The function values are computed at every step of the binary search, as µ
takes different values. Let l denote the number of structure instances which are
packed into a single word.

Calculating the function values and placing them next to the arguments
is done analogously to the method of Lemma 2.4.1, which is described in the
previous section of the appendix. Next comes sorting of the packed structures
which naturally determines the order ≺f . The function value in each structure
needs to be replaced by the rankf value. Such operation is performed in constant
time per word by utilizing the constant M 2

l + i · Ml, where i is the position
of the word in the sorted order. To make the second sorting step order the
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structures according to ≺φ, we need to exchange the order of the fields within
every structure, which is easy to accomplish. After the second sorting we are
ready to calculate D(π1). W.l.o.g. we describe the operations performed on the
first word in the sorted sequence. Let P be the word obtained by masking out
all the bits except those that belong to the written rankf values. Because of
the exchange of field order, rankf values are now aligned with the beginning of
every structure. The following sequence of operations is executed:

D ← (P + (Ml SHL dlog ne)) - M 2
l

mask positive ← D AND (Ml SHL dlog ne)
mask positive ← mask positive - (mask positive SHR dlog ne)
D p ← D AND mask positive

mask negative ← NOT mask positive

D n ← (M2
l AND mask negative) - (P AND mask negative)

D ← D p + D n

return D·Ml SHR (l − 1)wl

For the ith word in the sequence, the constant M 2
l is replaced with M 2

l + i ·Ml.
The returned values are summed to ultimately produce D(π1). After inspecting
the structure of the whole procedure, the upper bound on the running time given
in Section 2.3.4 easily follows.

2.8.3 Faster function evaluation for large w

In Section 2.5.3 we saw a way of evaluating the signature functions based on
dot-product computation. In this section we describe an alternative evaluation
procedure that runs in time O(log log w

log n). The running time is nonconstant;
yet there is no assumption on the size of w (earlier, for fast evaluation we assumed
that w ≤ nO(1)).

Recall the function representation given in (2.6). When w is very large we
cannot compute the final result in constant time on a word RAM, but we can
gradually increase the number of levels for which the result can be computed in
constant time. We represent (partly reduced) keys in a sparse form, distributing
characters uniformly across the word and leaving zeros between the characters.
There will be big and small reduction steps. Conducting each big step requires
the same amount of computation, and also conducting each small step requires
the same amount of computation. In big steps several levels of application of the
function f are carried out at once, while small steps carry out only one level of
application of the function f . Between every two neighbouring big steps there
is a small step, whose purpose is to ensure that the required conditions hold at
the beginning of the next big step. We require the following conditions at the
beginning of the mth big step: the string is in the sparse form with characters
of σ bits and spaces of 22m+1σ zero-bits between the characters, where σ is the
character size at the first level. The mth big step computes the result of 2m

levels of application of function f . The rule of setting the character lengths to
values 2vi should hold for levels within each big step. Before the first big step,
three single-level reductions are performed to create enough zero-space.

In the mth big step k = 2m levels are computed in a combined way. The
procedure computes all the products αjx[i], zeros out the unwanted ones, and
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then performs appropriate summations. The computation of the products is
illustrated in Figure 2.4. The first (constant) multiplication operand and the
logical masks can be computed in time O(logw) during the construction of
the functions. After zeroing-out the unwanted products, the summing of terms
within groups of 2k neighbouring terms produces characters of σ + k · c log n+
k bits, with zeros in between. In the small step that follows, we carry out
one reduction step with function f to compact the obtained characters of σ +
kc log n+k bits to characters of σ bits. This is possible with just one application
of f because k < 1

2 log w
c log n , and therefore σ > 1

2 (σ+kc log n+k)+c log n+1. The
results of the function f may be padded with zeros to get characters of exactly σ
bits. There are now more that 22k+1σ = 22m+1+1σ zero-bits between characters.
All the required conditions are maintained. Consequently, universe reduction to
a range of size O(log n log w

log n) bits can be done in time O(log log w
log n). Going

down to a polynomial-size universe takes up O(log log w
log n) time with the level-

by-level computation.

Figure 2.4: Operands in the multiplication that realizes all products αjx[i].
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Chapter 3

Constructing Efficient
Dictionaries in Close to
Sorting Time

Abstract

The dictionary problem is among the oldest problems in computer science. Yet
our understanding of the complexity of the dictionary problem in realistic models
of computation has been far from complete. Designing highly efficient dictio-
naries without resorting to use of randomness appeared to be a particularly
challenging task. We present solutions to the static dictionary problem that
significantly improve the previously known upper bounds and bring them close
to obvious lower bounds. Our dictionaries have a constant lookup cost and use
linear space, which was known to be possible, but the worst-case cost of construc-
tion of the structures is proportional to only log log n times the cost of sorting
the input. Our claimed performance bounds are obtained in the word RAM
model and in the external memory models; only the involved sorting procedures
in the algorithms need to be changed between the models.

3.1 Introduction

Dictionaries are among the most fundamental data structures. A dictionary
stores a set S which may be any subset of universe U , and it answers member-
ship queries of type “Is x in S?”, for any x ∈ U . The elements of S may be
accompanied by satellite data which can be retrieved in case x ∈ S. The size of
the set S is standardly denoted by n.

We consider universes whose elements can be viewed as integers or binary
strings. In this chapter we concentrate on static dictionaries — a static dictio-
nary is constructed over a given set S that remains fixed. Dynamic dictionaries
allow further updates of S through insertions and deletions of elements. Even
static dictionaries are sometimes used as stand-alone structures, but more often
they appear as components of other algorithms and data structures, including
dynamic dictionaries.
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The dictionary problem has been well studied. Many solutions have been
given, having different characteristics regarding space usage, time bounds, model
of computation, and universe in question. A challenge is to simultaneously
achieve good performance on all the terms. We consider only dictionaries with
realistic space usage of O(n) registers of size Θ(log |U |) bits. In the usual case
when |U | is at least polynomially larger than n, this amount of space is necessary
(ignoring constant factors) regardless of presence of satellite data. Algorithms
involved in construction of a dictionary may be randomized — they require a
source of random bits and their time bounds are either expectations or hold with
high probability. Randomized dictionaries reached a stage of high development
and theoretically there is little left to be improved. On the other hand, the
progress on deterministic dictionaries was much slower. While in the dynamic
case we have some reason to believe that there is a considerable gap between at-
tainable worst-case performance for deterministic dictionaries and the attainable
expected performance for randomized dictionaries, there is not any evidence of
a required gap in the static case.

A theoretical interest in deterministic dictionaries comes from the question
of what resources are necessary to implement an efficient dictionary structure,
and random bits are a resource. Having guaranteed time bounds, determin-
istic structures can be used in systems with strict performance demands. A
sufficiently simple deterministic dictionary having comparable performance to a
randomized dictionary would make the randomized structure obsolete. Unfortu-
nately, the new solutions described here are not simple enough to be competitive
in practice, except possibly in some special cases.

In this chapter we focus on dictionaries with constant lookup time. Be-
cause of faster construction time, dictionaries with slightly slower lookups may
sometimes be of interest. For example, a structure supporting searches in time
O(log log n) can be built in linear time on sorted input (Chapter 2).

3.1.1 The word RAM model and related work

The word RAM is a common computational model in data structures literature.
It has the machine word size of w bits and a standard instruction set, resembling
the primitive instructions of the language C. Execution of any instruction takes
one unit of time. A usual assumption for RAM dictionaries is that the elements
of U fit in one machine word.1 Contents of a word may be interpreted either
as an integer from {0, . . . , 2w − 1} or as a bit string from {0, 1}w . For more
information see, e.g., [Hag98b].

We will list some important results for deterministic dictionaries with con-
stant query time. Each of those results required a different idea, and a new
insight into properties and possibilities of some family of hash functions. A
seminal work by Fredman, Komlós, and Szemerédi [FKS84] showed that in the
static case it is possible to construct a linear space dictionary with a constant
lookup time for arbitrary word sizes (no assumptions about relative values of w
and n). This dictionary implementation is known as the FKS scheme. Besides

1This assumption simplifies analysis. Some schemes, including ours, scale well when keys
are multi-word strings.
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a randomized version with expected O(n) construction time, they also gave a
deterministic construction algorithm with a running time of O(n3w). A bottle-
neck was choosing of appropriate hash functions. Any universal family of hash
functions [CW79] contains functions suitable for use in the FKS scheme. Raman
[Ram96] devised a deterministic algorithm for finding good functions from a cer-
tain universal family running in time O(n2w); this implies the same time bound
for construction of the FKS dictionary. For w = nΩ(1), an efficient static dictio-
nary can be built in time O(n) on a sorted sequence of keys. This follows from
a generalization of the fusion trees of Fredman and Willard [FW93], and it was
observed by Hagerup [Hag98b]. The previously fastest deterministic dictionary
with constant lookup time is a result of Hagerup, Miltersen and Pagh [HMP01].
Their construction method has a running time of O(n log n). There exists an
issue with compile-time computation of a special constant that is required for
each w, because the only known computation method is a brute-force search
that takes time 2Ω(w).

Allowing randomization, the FKS scheme can be dynamized to support up-
dates in amortized expected constant time [DKM+94]. The lower bound result
in the same paper states that a deterministic dynamic dictionary, based on pure
hashing schemes, with worst-case lookup time of t(n) must have amortized in-
sertion time of Ω(t(n) · n1/t(n)) (this lower bound does not hold in general, e.g.
see the result of Pagh [Pag00]). A standard dynamization technique [OvL81]
applied to the static dictionary from [HMP01] yields a similar type of trade-offs:
lookups in time O(t(n)), insertions in time O(n1/t(n)), and deletions in time
O(log n), where t is a “reasonable” parameter function. The method in Chap-
ter 4 was devised as an alternative to the method from [HMP01] that eliminates
the problem with the high compile-time demand.

3.1.2 External memory models

Real computers do not have one plain level of memory but a memory hier-
archy. The theoretical I/O-model was introduced to model behavior of algo-
rithms in such a setting, focusing on the cost of I/O communication between
two levels of memory [AV88]. Related to the I/O-model is the cache-oblivious
model [FLPR99], where the algorithm does not know the size of the internal
memory M and the block size B. In these models, comparison-based sorting
of n integers (which occupy one memory cell) takes Θ(Sort(n)) I/Os, where
Sort(n) = n

B logM/B
n
B .

From the structures mentioned previously for the word RAM model, it can
be observed that the methods from [Ram96] and Chapter 4 can easily be adapted
to the external memory models and attain analogous bounds; respectively they
are O(n

2

B log |U |) and O(n
1+ε

B ) I/Os. We take the block size parameter B to
represent the number of log |U |-bit items that can fit in a memory block. For
the dictionary from [HMP01], no better bound than O(n log n) I/Os can be
stated. The main problem for I/O performance was the dictionary for universes
of size polynomial in n, which is a component of the construction from [HMP01].
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3.1.3 Background of our techniques

Our contribution consists of two parts. One part is a very efficient dictionary for
universes of size nO(1). Beside its use in composition with methods that perform
universe reduction, this case has a significance of its own. The most prominent
example of stand-alone use of dictionaries for “small” universes is representation
of a graph. In the problem of storing and (random) accessing edges of a graph,
the universe is of quadratic size. The problem is also of interest to some situations
in practice, since in reality integer keys are not often very large relative to n. The
main part of our structure uses the same kind of hash functions that were used
in [HMP01] for this case. Interestingly, those functions are very similar to the
functions from [TY79] where construction time was Θ(n2). The construction
algorithm from [HMP01] runs in time Θ(n log n). We devised a different and
more efficient construction algorithm.

The other part of the contribution is a follow-up on our technique of making
deterministic signatures from Chapter 2. There we introduced a new type of
hash functions and associated algorithms for injectively mapping a given set of
keys to a set of signatures of O(log n) bits. The methods are computationally
efficient in various models of computation, especially for keys of medium to large
lengths. More precisely, when given keys have a length of at least log3+ε n bits,
the algorithms for selecting perfect hash functions have a linear running cost
on sorted input. Those functions have rather succinct descriptions, and they
might have an application outside of dictionary structures. In our quest for a
faster construction in the case w = logO(1) n we will give up the requirement
of complete injectiveness, and replace it with considerably weaker and rather
specific properties. These weaker functions will be meaningful only within our
dictionary construction.

3.1.4 Our results

The result for the case of universes of polynomial size is summarized in the
following theorem.

Theorem 3.1.1. Let S be any given set of n integers from the universe {0, 1, 2,
. . . , nO(1)}. In the word RAM model, in time O(n log log n) it is possible to de-
terministically construct a static dictionary over S that performs lookups in con-
stant time and occupies linear space. In the cache-oblivious model, and hence in
the I/O model as well, a similar structure can be built using O(Sort(n) log log n)
I/Os.

The method is discussed in Section 3.2. The given structure complements
additional results from Chapter 2 in the external memory setting, such as a
static predecessor structure for variable and unbounded length binary strings.

In the second part of the paper (Section 3.3) we describe the structures and
associated procedures that are efficient when w = logO(1) n. In conjunction with
the earlier results, this implies the claimed results for the general case, which
are formally expressed in the following theorems. In the performance bounds
we plugged in the currently known upper bounds on sorting (which may be
optimal).
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Theorem 3.1.2. In the cache-oblivious model, a static linear space dictionary
on a set of n keys can be deterministically constructed using O(Sort(n) log log n)
I/Os, so that lookups to the dictionary take O(1) I/Os.

Theorem 3.1.3. In the word RAM model, a static linear space dictionary on
a set of n keys can be deterministically constructed in time O(n(log log n)2), so
that lookups to the dictionary take time O(1).

We could have also listed results for strings, etc. The stated general bounds
do not match the actual times in every case. We make remarks on some mean-
ingful special cases, when performance is better.

Remark 3.1.4. Suppose that log |U | = Ω(log n log log n). The construction cost
of the dictionary referred to in Theorem 3.1.2 is O(Sort(n)) I/Os.

Remark 3.1.5. Supposing that w = O(log n log log n), the time taken to build
the dictionary from Theorem 3.1.3 is O(n log log n).

Remark 3.1.6. If w > log3+ε n and the input set of keys is sorted, the time
taken to build the dictionary from Theorem 3.1.3 is O(n).

At the moment, our fast static dictionaries do not yield an improvement
for dynamic deterministic dictionaries. It is one of major challenges in data
structures research to either significantly improve performance of dynamic dic-
tionaries, or to prove general lower bounds that would definitely establish a
gap between deterministic and randomized dictionaries. How far deterministic
dictionaries can go remains unknown, even in the static case.

3.2 Universes of Polynomial Size

3.2.1 Notation and comments

We use the symbol ⊕ to denote bitwise exclusive or operation. The number
of collisions of a function h on a subset A of its domain represents the value
|{ {x, y} : h(x) = h(y) ∧ x, y ∈ A ∧ x 6= y}|. For multisets A and B, the
value |{ {x, y} ∈ A × B : x = y}|, which may be thought of as the number
of collisions between the multisets, is denoted by coll(A,B). For a multiset A,
A⊕ y stands for the multiset {x⊕ y}x∈A. We use notation [x] to represent the
set {0, 1, . . . , x− 1}. Also, log x means log2 x.

Throughout the presentation, statements of performance bounds for both the
word RAM model and the external memory models will appear at several places.
The discussion was not separated for different models because we end up with
essentially one construction algorithm for all the models, with the only difference
being the sorting procedure that gets called (although on a RAM sorting can
be avoided at some places, and we may have slightly simpler algorithms). By
changing the procedure for sorting, we get methods efficient in the word RAM
model, the I/O model, or the cache-oblivious model. In the external memory
models we take the block size parameter B to represent the number of (log |U |)-
bit items that can fit in a memory block. For this problem, log |U | = O(log n).

49



Chapter 3. Constructing Efficient Dictionaries in Close to Sorting Time

3.2.2 About universe size

Suppose that the universe has size 2d2 logN−2 log logNe, for some N which is
a power of two. We provide a dictionary structure that on a given set of
n ≤ N keys uses memory space of size O(N), can be constructed in time
O(n log logN + N), and performs lookups in O(1) time. Hence, for universes
of size O(n2/ log2 n) such a structure immediately satisfies the desired perfor-
mance. In case Ω(n2/ log2 n) ≤ |U | ≤ nO(1) we may use a sequence of dictionary
structures of the same type. The first dictionary is built over the projection of
S on the first 2 log n− 2 log log n bits. If the size of the projected set is n1, then
each projected value can be assigned a unique identifier in the set [n1]. During
lookups these identifiers can be retrieved using the dictionary. The second dic-
tionary is built over elements that are formed by concatenating the associated
identifier and the projection of original key on the next 2 log n−log n1−2 log log n
bits. This process is continued until all bits are exhausted. Since |U | = nO(1)

there is a constant number of dictionaries in the sequence.
A possible practical optimization is to handle small subsets directly. Namely,

if an identifier value corresponds to a “small” number of elements of S, a spe-
cialized structure can store those elements, and they skip the rest of the general
procedure. There are structures that can very efficiently handle sets of size
logO(1)N (see Section 3.2.8).

3.2.3 Central part

Here we give a high-level description of the construction. Explanations of subpro-
cedures and second-level structures follow in later subsections. Let Ψ = logN
and Φ = dlogN − 2 log logNe. Suppose that φ : U → {0, 1}Φ and ψ : U →
{0, 1}Ψ are functions such that the combined function (φ, ψ) is 1-1 on U . An
easy choice is to take φ to be the projection on the Φ highest order bits, and ψ
to be the projection on the Ψ lowest order bits of binary representations of keys.
We have that Φ + log Φ + log Ψ ≤ Ψ + 1 and log n ≤ Ψ.

The main hash function is of type

h(x) = ψ(x)⊕ aφ(x) ,

where (ai) is an array of Ψ-bit elements, with i ∈ {0, 1}Φ. Our aim is to set
the values of the array elements in a way that makes the function h have no
more than 3Φ2n collisions on a given set S ⊂ U . It will become clear that this
is always possible. After the function h is fixed, buckets of elements colliding
under h need to be resolved. This is much easier than the original problem,
since the average size of buckets is small. If the size of a bucket is less than
Φ3Ψ then a structure specialized for small sets will handle it. The total number
of elements in the remaining (“large”) buckets is O( n

ΦΨ). This can be seen by

analyzing function
∑

i bi under constraint
∑

i

(bi
2

)
≤ 3Φ2n and with variable

domains [Φ3Ψ, ∞). Let S ′ be the subset of S comprising the elements that fall
in the “large” buckets. Constructing an efficient dictionary over S ′ will be an
easier task, because we can afford to spend O(|S ′|ΦΨ + 2Ψ) construction time
on it; we cover this in Section 3.2.9. No additional new techniques are required
to design these second-level structures.
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We will now give an overview of the algorithm for selecting values for the
elements of the array a. The array a is initially set to all-zeros. Values of
array elements will be decided in stages, with each stage being responsible for
a separate set of bit positions. In our numbering of bit positions, position 0
refers to the most-significant bit position. Let i∗ = blog Ψ− log log Φ−1c. There
will be a total of 2i∗ + 2 = O(log Ψ) stages. In the stages numbered 1, 2, . . . , i∗
the sizes of active sets of bit positions decrease roughly geometrically, while
in the remaining i∗ + 2 stages they have the same (small) size. Let p0 = 0,
pi = b(1 − 2−i)Ψc − i · blog Φc for 0 < i ≤ i∗, and pi = pi−1 + blog Φc for
i∗ < i ≤ 2i∗ + 2. In the ith stage bits at positions between pi−1 and pi − 1
(inclusive) are decided on all elements of a.

The last i∗ +2 stages could be replaced with different and shorter sequences.
Yet, in this presentation of the algorithm we keep the chosen setting because it
is relatively simple and incurs a relatively small increase in the overall constant
factor. Operation in all the stages is done by the same procedure, parameterized
by values pi−1 and pi. We introduce symbols ηi denoting 2pi−pi−1+blog Φc.

After the ith stage of the algorithm, the projection of h(x) on the high-order
pi bits is known. In other words, for any x ∈ U the value of h(x) div 2Ψ−pi is
fixed after the ith stage. To describe operation of the algorithm in stage i, we
will define sets T (v, j, k), v ∈ {0, 1}pi−1 , 0 ≤ j ≤ Φ, 0 ≤ k < 2Φ−j (whenever
we talk about sets T (v, j, k) the stage number i is assumed to be fixed). Sets
T (v, j, k) are defined recursively as follows:

• For any v ∈ {0, 1}pi−1 , T (v,Φ, 0) = {x ∈ S | h(x) div 2Ψ−pi−1 = v}.

• For j < Φ, if |T (v, j + 1, k div 2)| < ηi then T (v, j, k) = ∅.

• For j < Φ, if |T (v, j + 1, k div 2)| ≥ ηi then

T (v, j, k) = {x ∈ T (v,Φ, 0) | k2j ≤ φ(x) < (k + 1)2j} .

Only non-empty sets T (v, j, k) are of interest to us. For any fixed v, subset
relation on the family of non-empty sets T (v, j, k) can be described by a binary
tree, with nodes labeled by pairs (j, k). Sets T (v, j, k) that correspond to leaves
of that tree are those that satisfy j = 0 or T (v, j−1, 2k)∪T (v, j−1, 2k+1) = ∅.
Let {Svl}v, l be the collection of all such “leaf” sets, over v ∈ {0, 1}pi−1 . The
collection {Svl} is a partition of the set S.

No matter how the elements of the array a are modified in current and later
stages, that is on bit positions from pi−1 to Ψ−1, the number of collisions that h
may create is bounded by

∑
v

∑
l1<l2

|Svl1 | · |Svl2 | plus a bound on the total num-
ber of collisions within the sets Svl. If a set Svl has size greater than ηi then it has
to be one of the sets T (v, 0, k). However, the set {x ∈ S | φ(x) = k} ⊃ T (v, 0, k)
is always mapped injectively by h. This follows from the definition of the func-
tion h, the fact that (φ, ψ) is 1-1 on U , and the properties of xor operation.
Therefore collisions may happen only within the sets Svl such that |Svl| < ηi.
An upper bound on the total number of collisions that may happen within the
sets Svl is 1

2nηi, which can easily be seen by analyzing function 1
2

∑n
j=1 b

2
j under

constraint
∑

j bj = n and over domain [0, ηi]
n. The goal of processing in stage i
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is to modify the values in the array a so that the number of collisions of h on S
does not exceed

ηi
n

2
+

1

2pi−pi−1

∑

v

∑

l1<l2

|Svl1 | · |Svl2 | , (3.1)

when the stage ends. By solving appropriate recurrences, the following technical
lemma can be shown. The proof is in Section 3.2.4.

Lemma 3.2.1. If modifications to the array a by the selection algorithm make
the number of collisions of h on S not exceed (3.1) at the end of stage i, for each
i, then the final number of collisions will be less than 3Φ2n.

The term
∑

v

∑
l1<l2

|Svl1 | · |Svl2 | from (3.1) can be re-expressed in an algo-
rithmically more useful form. Each set T (v, j, k) is the union of some sets Svl.
Thus, we may write |T (v, j, k)| = ∑ |Svl|, where the sum is over all l such that
Svl ⊂ T (v, j, k). The product |Svl1 | · |Svl2 |, for some l1, l2, will be a term in the
expanded expression for a product of type |T (v, j, 2k)| · |T (v, j, 2k+1)|. Actually
it will appear as a component of exactly one such product; in the mentioned
binary tree, the node with label (j+1, k) has to be the lowest common ancestor
of the nodes that correspond to the sets Svl1 and Svl2 . As a result, it holds that

∑

v

∑

l1<l2

|Svl1 | · |Svl2 | =
∑

v

Φ−1∑

j=0

2Φ−j−1−1∑

k=0

|T (v, j, 2k)| · |T (v, j, 2k + 1)| .

After we specified the goal of processing in every stage, we proceed to giving
a high-level description of the sequence of operations done at each stage. We
introduce multiset variables X(v, j, k), and we implicitly initialize all of them
to ∅. In the outermost loop of the procedure, j takes values from 0 to Φ − 1.
We describe principal operations performed for a fixed j. First, for all leaf sets
T (v, j, k), i.e. those that equal one of the sets Svl, we make the assignment

X(v, j, k) = {(h(x) div 2Ψ−pi) mod 2pi−pi−1 | x ∈ T (v, j, k)} ,

where values h(x) are taken to be determined by the current state of the array a.
We effectively calculated the projections of the current values h(x), x ∈ T (v, j, k),
on the bits at positions pi−1 through pi− 1. The multisets can be stored as sets
of element-multiplicity pairs. For each k, 0 ≤ k ≤ 2Φ−j−1−1, the algorithm will
find a value δ ∈ {0, 1}pi−pi−1 such that

∑

v

coll(X(v, j, 2k), X(v, j, 2k+1)⊕δ) ≤ 1

2pi−pi−1

∑

v

|T (v, j, 2k)|·|T (v, j, 2k+1)|

and then make assignments X(v, j + 1, k) = X(v, j, 2k) ∪ (X(v, j, 2k + 1) ⊕ δ),
where the union is in the multiset sense. The subprocedure that finds a suitable
value δ is described in Section 3.2.6. The elements of the array a are modified
so that al = al ⊕ 0pi−1δ 0Ψ−pi , for (2k + 1)2j ≤ l < (2k + 2)2j . At the end of
the current iteration of the loop over j, the equality

X(v, j + 1, k) = {(h(x) div 2Ψ−pi) mod 2pi−pi−1 | x ∈ T (v, j + 1, k)}

52



3.2. Universes of Polynomial Size

holds for every non-leaf set T (v, j + 1, k).

It is not hard to formally verify that a procedure conforming with this high-
level description meets the specified goal of reducing the number of collisions of
the function h on the set S. Performance analysis is completed in Section 3.2.7.
We mention here that the following fact is used.

Lemma 3.2.2. There can be at most 4nΦ+1
ηi

non-empty multisets X(v, j, k).

3.2.4 The proof of Lemma 3.2.1

An upper bound on the number of possible collisions after completion of stage i
is given by the following recurrence for i ≤ i∗:

c0 =
n2

2
, ci = 2pi−pi−12blog Φcn

2
+

1

2pi−pi−1
ci−1 .

The solution to the recurrence is

ci = 2blog Φcn
2

i∑

j=1

2pj−pj−1

2pi−pj
+

1

2pi

n2

2
.

According to the definition of the sequence (pi), the difference pi − pj , for j <
i ≤ i∗, satisfies the following inequality.

|(pi − pj) − (2−j − 2−i)Ψ + (i− j)blog Φc| ≤ 1 . (3.2)

Using (3.2) we may bound 2pj−pj−1

2pi−pj
by 4 · 22−iΨ + (i−j−1)blog Φc. As a result,

ci ≤ 4 · 22−iΨn

2

i−1∑

j=0

2jblog Φc +
2iblog Φc

2(1−2−i)Ψ
n2 .

A simple and relatively tight upper bound on ci∗ is 22−i∗Ψ2i∗blog Φc(n+ n2

2Ψ ). We
use this value as the starting point in the recurrence that corresponds to the
remaining stages:

c̄0 = 22−i∗Ψ2i∗blog Φc
(
n+

n2

2Ψ

)
, c̄i = 22blog Φcn

2
+

1

2blog Φc c̄i−1 .

The solution to this recurrence is

c̄i = 22blog Φcn
2

i−1∑

j=0

1

2jblog Φc +
1

2iblog Φc c̄0 .

After the whole procedure of selecting values for the elements of a is finished,
the number of collisions of h on S is no more than c̄i∗+2 < nΦ2(2+2−Ψn). From
Ψ ≥ log n it follows that c̄i∗+2 < 3Φ2n, as required at the beginning.
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3.2.5 Determining and arranging sets Svl

We need a procedure that efficiently determines which of the sets T (v, j, k) are
leaf sets, that is, those that equal one of the sets Svl. This procedure needs to be
executed at the beginning of every stage of the algorithm. The output should be
a list of triples of form (v, j, k). Naturally, the first step of the procedure is to sort
the elements of S according to values of the function (h(x) div 2Ψ−pi−1 , φ(x)).
One way of determining leaf sets T (v, j, k) is to build path-compressed tries. A
trie would be built for each value of h(x) div 2Ψ−pi−1 separately. By computing
and storing weights of subtrees at each internal node, it is easy to determine
the leaf sets recursively by the definition. This method would be efficient in the
word RAM model, but we would have problems making it worst-case efficient in
the external memory models.

We constructed a different and somewhat simpler algorithm for this problem,
which is efficient both in terms of RAM time and I/O cost. The pseudo-code of
the procedure for determining leaf sets T (v, j, k) is listed in Algorithm 1. Apart
from the initial sorting, it runs in O(n) time making O(n/B) I/Os. In terms of
external memory computation, effectively two scans of the array are made; it is
possible to do only a single scan with a small complication. The algorithm is
not completely trivial, but it is not a problem to prove its correctness. We leave
the tedious details out. Performance in the external memory setting is obvious.
The only non-obvious points in time analysis for the RAM model are the two
while loops that increase/decrease values of j and k. We charge each iteration
of these loops to the latest output leaf set that contained at least 1

2ηi elements.
The crucial observation is that a total of O(Φ) iterations may be charged to a
set, possibly split between different executions of the loops. Since ηi > Φ, for
any i, we are done.

So far we have the labels of the leaf sets T (v, j, k) in form of triples (v, j, k),
and the set S is stored so that the elements of each set T (v, j, k) appear at
consecutive cells. As a preparation for subsequent computations, the sets are
separated into Φ groups according to the value of the index j. Consider the group
j̄, for some 0 ≤ j̄ < Φ. The sets in group j̄ do not participate in computations
during the first j̄ iterations of the outer loop in stage i, i.e. for 0 ≤ j < j̄. When
j reaches value j̄ it is time to include those sets in processing, which requires
the corresponding multisets X(v, j̄, k) to be computed (remember that we are
dealing only with leaf sets at this point). Remark that the description of the
function h has changed since the start of stage i, and therefore this computation
cannot be performed at an earlier time, before the iteration number j̄. In the
external memory setting the computation of the multisets X(v, j̄, k) involves
sorting of all elements in ∪v,kT (v, j̄, k), where the union only includes the leaf
sets, according to values of the function φ, in order to compute the values of the
function h on those elements. The function values are then computed by making
linear scans over the obtained sorted sequence and the array a. Another sorting
operation is used to group elements of each set X(v, j̄, k) together, with the sets
laid out sorted according to the values of indices k and v, respectively (having
φ(x) as the first attribute in a sorting key is not the same as having k-value as
the first attribute when the key is composite).
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(xq)← sequence of elements of S sorted according to values of the
function (h(x) div 2Ψ−pi−1 , φ(x));

j ← Φ;
k ← 0;
v ← h(x1) div 2Ψ−pi−1 ;
count← 1;
qstart ← 1;

for q ← 2 to n do
if v 6= h(xq) div 2Ψ−pi−1 then

if count > 0 then
Append triple (v, j, k) to the output list;

j ← Φ;
k ← 0;
v ← h(xq) div 2Ψ−pi−1 ;
count← 1;
qstart ← q;

else if φ(xq) ≥ (k + 1)2j then
if count > 0 then

Append triple (v, j, k) to the output list;

while (k + 2)2j < φ(xq) do
j ← j + 1;
k ← k div 2;

end
k ← k + 1;
count← 1;
qstart ← q;

else
count← count+ 1;
if count ≥ ηi then

while j > 0 ∧ (k + 1)2j > φ(xq) do
j ← j − 1;
k ← 2k;

end
if (k + 1)2j ≤ φ(xq) then

if φ(qstart) < (k + 1)2j then
Append triple (v, j, k) to the output list;
while φ(qstart) < (k + 1)2j do

qstart ← qstart + 1;
count← count− 1;

end
k ← k + 1;

end

Algorithm 1: Finding leaf sets T (v, j, k)
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3.2.6 Finding suitable δ values and merging the multisets

We do not store the multisets X(v, j, k) in the simplest form. To facilitate bit-
by-bit selection of δ values, we store weighted full binary tree representations of
the multisets X(v, j, k). Namely, for each multiset X(v, j, k) we store an array
of length si = 2pi−pi−1+1 − 1. Let (wq)

si
q=1 denote such an array. Then for

2pi−pi−1 ≤ q ≤ si, wq has the value of the multiplicity of element q − 2pi−pi−1 in
the multiset. The multiplicity of an element that does not belong to the multiset
is zero. For 1 ≤ q < 2pi−pi−1 , wq has the value of w2q + w2q+1.

Applying the operator ⊕ with argument δ on X(v, j, k) has the following
effect on its weighted binary tree representation: if the bit at position l of δ has
value 1 then for every node of level l its left and right subtree are interchanged
(the root is at level 0). Each level in the weighted tree for the set X(v, j, k) ⊕ δ
is a permutation of the same level in the tree for X(v, j, k). For level l, the first
l bits of δ determine the permutation.

For leaf sets T (v, j, k) the weighted tree representations of the corresponding
multisets X(v, j, k) are constructed after computation and grouping of the sets
X(v, j, k), mentioned in Section 3.2.5. It will be convenient to have the arrays
of weights split into segments corresponding to levels of the trees, and to group
together segments for each level. There are pi − pi−1 groups, and within each
group segments are arranged sorted according to the values of indices k and v
of their sets X(v, j, k). All this preprocessing of data structures is done for the
multisets X(v, j̄, k) that correspond to the leaf sets T (v, j̄, k) in the (j̄ + 1)-st
iteration of the outer loop in stage i. A result of the first j̄ iterations of the loop
are the same kind of data structures for the multisets X(v, j̄ , k) that correspond
to non-leaf sets T (v, j̄, k), also laid out in the same way. As the last preparation
step in the (j̄ + 1)-st iteration, before doing the main operations, those two sets
of data structures are merged into one. Since in both parts all pieces are already
arranged sorted according to tree-level number, and then indices k and v, no
sorting operation is involved in this step.

Recall of our principal task at this place — for fixed j and k we need to
select δ such that the following relation is satisfied.

∑

v

coll(X(v, j, 2k), X(v, j, 2k + 1)⊕ δ) ≤

1

2pi−pi−1

∑

v

|T (v, j, 2k)| · |T (v, j, 2k + 1)| (3.3)

Initially δ is set to 0, and in increasing order of bit positions it is decided whether
to set the bit to 1 or not. Since in each problem the values of j and k are fixed,
we may use (wvq) to denote the weight arrays of the multisets X(v, j, 2k), and
(wδvq) to denote the weight arrays of the multisets X(v, j, 2k+1)⊕ δ. Define the
function

µ(l, δ) =
∑

v

2l+1−1∑

q=2l

wvq · wδvq .
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For any δ, the value of µ(pi − pi−1, δ) is an upper bound on

∑

v

coll(X(v, j, 2k), X(v, j, 2k + 1)⊕ δ) .

Therefore it is sufficient to set the bits of δ so that µ(l + 1, δ) ≤ 1
2µ(l, δ), for

every l (only the first l bits of δ influence µ(l, δ)). Let δl be the value obtained by
taking the first l bits of δ and setting the remaining bits to zeros. By expanding
wvq and wδvq into wv 2q + wv 2q+1 and wδlv 2q + wδlv 2q+1, we get that

µ(l, δ) =
∑

v

2l+2−1∑

q=2l+1

(wv q · wδlv q +wv q+1 · wδlv q+1) +

+
∑

v

2l+2−1∑

q=2l+1

(wv q · wδlv q+1 +wv q+1 · wδlv q) .

We expressed µ(l, δ) as the sum of two terms such that: if the bit at position l
of δ is set to 0 then µ(l+ 1, δ) becomes equal to the first term, and otherwise if
it is set to 1 then µ(l + 1, δ) becomes equal to the second term. The choice is
made based on which value is smaller.

When deciding on the value of bit at position l, the procedure needs to

permute the sequence (w0
vq)

2l+2−1
q=2l+1 according to δl to get (wδlvq)

2l+2−1
q=2l+1 , for each v.

In the word RAM model this is easy to do in O(2l+1) time, while in external
memory sorting is required. Joining the weighted binary tree representations of
multisets X(v, j, 2k) and X(v, j, 2k+1)⊕ δ into the same type of representation
for the multiset X(v, j + 1, k) is straightforward. It can even be done on-the-fly
during the selection of bits of δ. If the data structures for X(v, j + 1, k) are
stored at the same places were the structures for X(v, j, 2k) resided, then the
memory that stored the structures for X(v, j, 2k + 1) becomes available. The
space should be compacted to contain no unused holes. The compaction can
be done either at the end of processing in the iteration number j, or on-the fly
during the other computations.

Total time spent in stage i on all operations covered in this subsection can be
expressed as O(2pi−pi−1) = O(ηi

Φ ) per every non-empty multiset X(v, j, k). When
counting the number of I/Os in the external memory version, note that sorting
operations in this part of the algorithm are conducted as procedures of multi-
sorting of groups of elements of equal sizes. All other operations involve only
sequential scans. The total number of I/Os made in stage i for the operations
covered in this subsection can be expressed as O(Sort(2pi−pi−1)) = O( 1

ΦSort(ηi))
per every non-empty set X(v, j, k).

3.2.7 Completing the analysis of the main algorithm

We analyze the total cost of one stage of the algorithm for selecting values for
the elements of the array a. Aggregate complexity of the procedures specified
in Section 3.2.5 is proportional to the complexity of sorting n integers of size
O(logN) bits. In the external memory setting the limited size of numbers does
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not help us (at least it is not known to), and the required complexity is simply
O(Sort(n)) I/Os. In the version for the word RAM model we choose to use
radix sort when n ≥ N/ log2N . Then, using a space of size O(n) sorting takes
time O(n). When n < N/ log2N we use a comparison-based sorting sorting
procedure. In any case, a time bound for this part is O(n+N/ logN).

In Section 3.2.6 it was said that the total time spent in stage i on all the
operations from that part can be expressed as O( ηi

Φ ) per every non-empty set
X(v, j, k). Lemma 3.2.2 implies that the operations described in Section 3.2.6
run in total time O(n) in any stage. In the cache-oblivious model the cost is
O( nB logM/B ηi) = O(Sort(n)) I/Os.

Proof of Lemma 3.2.2. Consider any fixed v and the set T (v,Φ, 0) with
its associated binary tree that captures the subset relation on non-empty sets
T (v, j, k). In the degenerate case |T (v,Φ, 0)| < ηi the tree is just the root node,
and X(v, j, k) = ∅ for any j, k (X(v,Φ, 0) is also empty since no assignment
involving that variable is made in the course of the algorithm; the outermost loop
goes until j = Φ− 1). Suppose that |T (v,Φ, 0)| ≥ ηi. Since the collection of leaf
sets T (v, j, k) is a partition of T (v,Φ, 0), among the leaf sets there can be at most
2|T (v,Φ, 0)|/ηi sets having size at least ηi/2. Any non-leaf set has a descendant
leaf set of size at least ηi/2, which is straightforwardly derived from the definition
of sets T (v, j, k). We “assign” each non-leaf node to one of its descendant leaf
node sets of size at least ηi/2 (multiple nodes can be assigned to a leaf node).
Further, we assign each leaf node (j, k) such that |T (v, j, k)| < ηi/2 to one leaf
descendant (j1, k1) of its parent for which |T (v, j1, k1)| ≥ ηi/2. Each leaf node
(j, k) such that |T (v, j, k)| ≥ ηi/2 can have at most 2(Φ − j) nodes assigned to
it — at most two per every level on the path to the root. Consequently, there
can be at most (2Φ + 1) 2

ηi
|T (v,Φ, 0)| non-empty sets X(v, j, k), for the chosen

fixed v. Summing over all v finishes the proof.

The only remaining thing is to take into account the operations of modifying
the elements of a, that is, the operations of type

al = al ⊕ 0pi−1δ 0Ψ−pi .

Every element gets modified Φ times in every stage of the algorithm; therefore
O(2ΦΦ) time is spent on this process in one stage. Because of the inequality
Φ + log Φ + log Ψ ≤ Ψ + 1, a time bound is O(2Ψ/Ψ) = O(N/ logN). The
elements of (al) are modified in order of increasing index l. Hence, I/O cost is
O( N

B logN ).

Even if the sequence (pi) was changed, possibly resulting in a higher number
of stages, there could be at most Ψ = logN stages. Hence, the bounds which
were expressed only in terms of N yield a combined bound of O(N) over the
entire algorithm. With the chosen parameters there are O(log Ψ) = O(log logN)
stages, implying a complete time bound of O(n log logN + N). In the cache-
oblivious model the algorithm makes O(Sort(n) log logN +N/B) I/Os.
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3.2.8 Subsets of size logO(1)
N

In the word RAM model, a generalization of fusion trees of Fredman and Willard
[FW93] yields a linear-space static dictionary that on a set ofm keys has a lookup
time of O(1 + logm

logw ) and it can be constructed in O(m) time on sorted input

(this was explicitly stated by Hagerup [Hag98b]). Plugging in m = logO(1)N
and w = Ω(logN) shows that lookup time would be O(1) in our case. Sorted
sequence can be obtained through radix-sorting elements of type (bucket-id, x)
from all the small buckets.

Alternatively, we may use a combination of our deterministic signatures
method (Chapter 2) and packed B-trees (e.g. see [And95]). This combination
is a bit simpler than fusion trees, and it can also be used in external memory.
A signature function that maps keys to O(log logN) bit values can be found in
linear time on sorted input. The signatures of size O(log logN) bits are stored
in a packed B-tree. Since the word size is Ω(logN) bits, the tree will have a
constant depth.

3.2.9 The secondary structure for large buckets

On a RAM we could resort to using the structure for polynomial-size universes
from [HMP01]. Because there are o(n/ log n) elements at this part, the added
construction cost is o(n). However, in external memory this structure is ineffi-
cient to construct.

We will use a variation of our algorithm to cut the number of collisions on
these elements down to o(n/ log n). Then within the buckets created by this
second-level structure we use hash functions with quadratic range; quadratic
space can be afforded in each bucket because the sum of collisions is small.
This approach is the same as in the FKS scheme [FKS84]. To find injective
hash functions deterministically we may use the algorithm from [Ram96] or the
algorithm from Chapter 4. The former one would run in time O(m2 log n) on a
bucket of size m, while the latter one would take time O(m2 logm). In any case
the combined time is o(n). These algorithms can easily be made efficient in the
cache-oblivious model.

It remains to describe changes to some parameters from Section 3.2, which
will allow a higher drop in the number of collisions. The parameters that cor-
respond to sequences (pi) and (ηi) will be set differently. Now there will be Ψ
stages. We simply set p̂i = i and η̂i = 1, for 0 ≤ i ≤ Ψ. The algorithm is obtained
by substituting p̂i and η̂i for pi and ηi, respectively. Except from some parts
of the analysis, everything else stays the same. The recurrence for the number
of possible collisions after completion of stage i is now simply: ĉ0 = O(( n

ΦΨ)2),
ĉi = 1

2 ĉi−1. The final number of collisions is O(n/(ΦΨ)2) = O(n/ log2 n). Per-
formance bounds for procedures described in Section 3.2.6 grew by a factor of
O(ΦΨ), but this was amortized by having the input set of smaller size.

Remark that only a small fraction of the elements goes through the additional
complications from this part.

59



Chapter 3. Constructing Efficient Dictionaries in Close to Sorting Time

3.3 Larger Universes

3.3.1 Background on signature functions

The basic type of functions used in Chapter 2 is f(x, s, a) = x div 2s + a ·
(x mod 2s), where a is a parameter chosen from {1, 2, . . . , nc − 1}, c ≥ 2. The
parameter s has a value dependent only on the domain of x, for example s =
b12 log |U |c. The integer division and modulo functions were chosen as they are
perhaps the simplest of all pairs of functions (φ, ψ) such that (φ, ψ) is 1-1 on U ,
and so that both functions map to a (significantly) smaller universe. In a more
general form, we write f(x, a) = φ(x) + a · ψ(x). Suppose that K is the number
of keys that can be packed in a machine word. With c = 3.42, on any given
set of n keys, a value for the parameter a that makes the function f injective
on the set can be found in time O(n(log n)2 logK

K + (log n)3). The basic function
can be combined in different ways to achieve a larger reduction of universe. The
ultimate goal is to have a function that maps original keys to signatures of size
O(log n) bits. Many concrete variants of this approach can be imagined, yet we
need only two.

Let x[0]x[1] . . . x[q − 1] be a string representation of key x over some al-
phabet. One possibility is to apply f to all characters and concatenate the
resulting values, viewed as binary strings. We may use the same multiplier pa-
rameter for all characters, and thus the length-reduced value for key x after
one level of reduction has a form of f(x[0], a)f(x[1], a) . . . f(x[q − 1], a). The
process is repeated with different multipliers and possibly different alphabets at
subsequent levels of reduction. We refer to this way of combining function f
as the parallel reduction. In the second version, which we call suffix reduction,
only the last characters get reduced at a single reduction level. Although the
structure of reduction sequences is different for those two variants, as well as
the processes of parameter selection, the final functions for those two compo-
sitions can have similar dot product forms. A precondition for this is to suit-
ably set intermediate alphabet sizes in the parallel reduction. For example,
after two levels of parallel reduction we want the function to have a form of
x 7→ f(f(x[0], a)f(x[1], a), a′) . . . f(f(x[q − 2], a)f(x[q − 1], a), a′). Having the
final functions in dot product form means that they can be evaluated rather effi-
ciently on a word RAM. For more information about these methods see Chapter
2.

A final injective function is composed of functions generated by the method
of parallel reduction and the method of suffix reduction. It can be evaluated in
constant time on a word RAM. When log3+ε n < w < 2

n
log n the construction

algorithm runs in linear time on sorted input. We may use fusion trees to cover
the extreme case w ≥ 2

n
log n efficiently. In this chapter we show an improved

complexity of dictionary construction in the case that w ≤ logO(1) n.

3.3.2 Speed-up of the suffix reduction

The briefly outlined method of making deterministic signatures produces per-
fect hash functions with ranges of polynomial size. The functions have rather
succinct descriptions, and they might have an application outside of dictionary
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structures. Here we will give up the injectiveness requirement, and replace it
with considerably weaker properties. These weaker functions will be useful only
when combined with additional data structures, foremost a dictionary structure
for universes of polynomial size. The variant of the suffix reduction method that
we introduce is particularly efficient in the external memory models. Yet it also
produces some useful results in the word RAM model.

Let x[i]σ denote the ith character of key x viewed as a string over the alphabet
[2σ]. It is assumed that σ = Ω(log n). In the original version of suffix reduction
we want to find multipliers a0, a1, . . . , aq−2 such that the function

a0 · x[0]σ + (. . . + (aq−3 · x[q − 3]σ + (aq−2 · x[q − 2]σ + x[q − 1]σ)) . . .) (3.4)

is injective on S. The multiplier selection algorithm is applied q − 1 times, as
suggested by the expression in (3.4). In the new version, the multiplier selection
procedure is again called q − 1 times, but each time with an input set of size
O(n/(log n)2). There will be no limit on the number of collisions that the final
function may cause. Yet the function will have some properties that will allow
the initial searching problem to be reduced either to a problem over a universe
of size O(σ) bits, or to a problem over a set of size O(log2 n). The high level idea
is to look for clusters of elements that already piled up and will hash to equal
values by the final function, and to prevent further collisions between already
formed clusters. Sorting operations (over shorter keys) will dominate the running
times. Suppose that values for the parameters al, al+1, . . . , aq−2 were selected.
If two keys x and y share the prefix of length l and the function values on their
suffixes of length q − l collide, i.e. al · x[l]σ + al+1 · x[l + 1]σ + . . . + x[q − 1]σ =
al · y[l]σ + al+1 · y[l+1]σ + . . .+ y[q− 1]σ, then x and y will certainly be mapped
to the same value by the final function. On the other hand, if the length l
prefixes of x and y differ, it does not matter what are the values of the partial
function on their suffixes of length q− l, since the separation of their hash values
will be decided at a later time. The construction algorithm will keep track of
sufficiently large clusters of elements that are certain to collide given the already
selected multipliers. Different clusters will be ensured to map to different values.
However keys not yet belonging to any cluster are able to join existing clusters
or form new ones. The time of joining a cluster for a given key, specified by a
prefix length, is possible to determine quickly during lookups. Some pieces of
information related to this joining point will enable us to substantially reduce
the search space. To be precise, the reduced search space will consist of keys of
length O(σ) bits. If we set σ = Θ(log n) then the method can be composed with
the structure from Section 3.2. In some uses of the method, as we will see in
Section 3.3.3, we need to set a higher value of σ; there the “pipelined” dictionary
for keys of length O(σ) bits is more complex.

The computationally dominant process in the construction algorithm will
usually be sorting. The procedure performs O(q) sorting operations over sets of
O(n) keys of length O(σ) bits. In the external memory models this amounts to
O(Sort(n)) I/Os (with the block size B expressed in terms of (log |U |)-bit items,
where U is the universe of keys that are input to the method). Combining this
with the result from Section 3.2 produces the result stated in Theorem 3.1.2. In
the word RAM model, the total sorting time is in general O(nq log log n), based
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on [Han04]. When σ = Θ(log n) we may use radix sort and get a time bound of
O(nq), which explains Remark 3.1.5. When q is sufficiently large it makes sense
to use a serial version of the parallel sorting algorithm from [AH92]; however, in
our applications, suffix reduction is used with relatively small values of q.

We will mainly describe the process of constructing the functions, and through
it provide understanding of the properties that the functions possess. The lookup
procedure will become immediate once the construction is understood.

Suppose w.l.o.g that the sequence of the input keys is ordered as x1 < x2 <
. . . < xn. As a preparation step, the procedure will assign some identifiers to
prefixes of the keys. The identifiers need to be relatively small. Consider the
set {x[0]σx[1]σ . . . x[l − 1]σ | x ∈ S} of prefixes of length l of the keys. To each
value in this set we want to assign a unique identifier from the set [n]. No
relation is imposed between identifiers of prefixes of different lengths. For each
element xk ∈ S we further want to have identifiers of its prefixes stored in a word-
packed form, in the natural order. Assignment of prefix identifiers and storing of
identifier sequences can be done simultaneously, doing an iteration through the
sorted sequence of keys. For the first element we write the sequence (0, 0, . . . , 0).
Suppose that the sequence of prefix identifiers for xk is (p0, p1, . . . , pq−1). Let l
be the length of the longest common prefix of xk and xk+1. Then for element
xk+1 we write the sequence

(p0, p1, . . . , pl, pl+1 + 1, . . . , pq−2 + 1, pq−1 + 1) .

The entire operation involving elements xk and xk+1 can be executed in con-
stant time using some standard techniques of computation using word-level par-
allelism. Let p(k, l) denote the identifier value of prefix of xk of length l.

We introduce a collection variable C and initialize it to ∅. During the con-
struction procedure, every element of S will be assigned at most one element
from C. Let (ci)

n
i=1 be an array such that ci holds a reference to the item from

C assigned to xi, if one exists; otherwise ci has value −1.
For the first parameter in the sequence, which is aq−2, we do not even need

to run the selection algorithm; we simply put some value, e.g. aq−2 = 1. Then,
the algorithm computes the set of triples

{(p(k, q − 2), aq−2 · xk[q − 2]σ + xk[q − 1]σ, k)}nk=1 .

This set gets sorted in lexicographic order. The algorithm inspects subsets con-
taining elements that match on the first two fields of the triples. Subsets of size
less than log2 n are ignored. Consider a subset of size m ≥ log2 n. Let the value
of the second field be y and the set of values at the third field be {k1, k2, . . . , km}.
The tuple (k1, y) is added to the collection C, and references to it are set on cki

,
1 ≤ i ≤ m. No matter how the remaining parameters are selected, the elements
xk1 , . . . , xkm will be mapped to the same value by the final function.

Suppose that values for the parameters al+1, al+2, . . . , aq−2 were selected.
We feed as input to the procedure that should select a value for al the set
{(y, xk[l]σ) | (k, y) ∈ C} (the input was represented as a set of pairs of values
of functions φ and ψ). After the selection of al, the set of triples {(p(k, l), al ·
xk[l]σ + al+1 · xk[l+ 1]σ + . . .+ xk[q− 1]σ , k)}nk=1, is computed and then sorted
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in lexicographic order. The algorithm inspects the subsets containing elements
that match on the first two fields of the triples. Subsets of size less than log2 n
are ignored. Consider a subset of size m ≥ log2 n. Let the value of the second
field be y and the set of values at the third field be {k1, k2, . . . , km}. If cki

= −1
for all i ∈ {1, . . . ,m}, then the tuple (k1, y) is added to C, and references to it
are set on cki

, 1 ≤ i ≤ m. Otherwise, suppose that ckj
6= −1. According to

our construction, if cki
6= −1 for any i ∈ {1, . . . ,m}, then it must be cki

= ckj
.

The assignments cki
= ckj

are made for all i 6= j, and the second field of the
associated tuple in C is changed to y.

Denote the final function by g. If q = nO(1) the range of g has a size of
O(σ) bits. The set {g(x) | x ∈ S} is plugged in as the input to a dictionary
for universe of size O(σ) bits. For any i, 1 ≤ i ≤ n, it holds that either |{x ∈
S | g(x) = g(xi)}| < log2 n or ci 6= −1. The former case can be directly handled
by a specialized structure. In the latter case, let (k, y) be the element of C
referenced by ci. The index k becomes the associated attribute of the hash value
g(xi) = g(xk).

For keys x ∈ U whose hash value g(x) falls in one of the buckets of size no
less than log2 n, define function ḡ by

ḡ(x) = (l, p(k, l), x[l], al+1 · x[l + 1]σ + . . .+ x[q − 1]σ) ,

where k is the index associated with value g(x), and l is the length of the longest
common prefix between x and xk. It is not hard to prove that |{x ∈ S | ḡ(x) =
y}| < log2 n, for any y. The elements ḡ(x) are stored in another dictionary for
universes of size O(σ) bits, for keys x ∈ S whose hash value g(x) falls in one of
the “large” buckets. With each stored value ḡ(x) we associate a reference to a
dictionary specialized for sets of size logO(1) n.

Examining the performance complexity of the presented method is easy. Sup-
posing that the pipelined dictionary for keys of length O(σ) bits has a lookup
cost of O(1), the entire cost of lookup is (a larger) constant. Excluding the
construction complexity of the secondary dictionaries, sorting processes usually
dominate the cost of the construction procedure (only when q is extremely large
will the cost of the basic procedure that selects a0, . . . , aq−2 outweigh the cost
of sorting in the main procedure, and we never use this method for large q).
The main procedure performs O(q) sorting operations over sets of O(n) keys of
length O(σ) bits.

It is interesting to observe that recursively applying the above reduction
method a constant number of times leads to a dictionary with a construction
time of O(n logε n) on keys of length logO(1) n bits, for any fixed ε > 0; the
lookup time is constant for a fixed ε, but grows quickly as ε decreases towards
0. A theoretically superior approach is outlined in Section 3.3.3.

3.3.3 Speed-up of the parallel reduction

This section covers the remaining case that ω(log n log log n) < w < log3+ε n
to complete Theorem 3.1.3. The approach is conceptually very similar to the
approach that led to the speed-up of the method of suffix reduction, but some
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details are different and the computation is more involved. Because of the simi-
larities we give only an outline; it should be enough for understanding, provided
that Section 3.3.2 is understood (as well as some of the prior work on our sig-
nature functions, on which everything is based).

Consider partially reduced keys, after some number of levels of the parallel
reduction. We call a prefix value heavy if it is shared by at least (log n)2 partially
reduced keys. We ensure that the current level of reduction avoids any collisions
between heavy prefixes. For this purpose, it is convenient to maintain the trie
of the partially reduced set (see [Ruž07]). It is again possible to substantially
reduce the search space for a given key by using information related to the key’s
point of joining a cluster of piled up elements.

In order to determine the level at which a key joined a cluster in constant
time, we need to evaluate partially reduced values of the key for all levels in
constant time. This is possible if Ω(K2) copies of a key can fit in a single
machine word, where K is the number of reduction levels. We explain this
now. For simplicity, assume that 2K2 copies of a key can fit into one word; the
assumption will easily generalize to Ω(K2). The value of each partial evaluation
is a concatenation of dot products (in a complete evaluation there is just one dot
product). The constant operand is the same for all products (at one level), while
the second operand is a segment of a key; different segment for different products.
Because the constant operand is the same, all dot products can still be computed
in constant time, using two multiplications and a few bitwise operations. The
resulting value is not compacted — there are gaps with zero bits — but this is
not a problem, they may stay this way. However, partial evaluations that go
until different levels use different kinds of dot products, and the key needs to be
prepared (split using bitwise AND) differently due to different alphabet sizes.
Therefore, we write K equidistant copies of the key in one word. The other
word contains constant operands of dot products for different levels, spaced at
distance equal to two key sizes. There needs to be a lot of zero space between
copies of the key in the first word to hold all K calculation results. Actually, for
each copy there is one meaningful result which is kept; the others are by-products
of the computation, and they are thrown away.

For w = logO(1) n we have that K = O(log log n). To provide a situ-
ation where Ω(K2) copies of a key can fit into one word, we use two lev-
els of the searching problem reduction from Section 3.3.2, using the setting
q = O(log log n). Hence the incurred construction cost from these two reduction
steps is O(n(log log n)2).

The construction of this version of the parallel reduction function has a time
cost proportional to K times the sorting time. For w = logO(1) n we again get
a bound of O(n(log log n)2). Since through the method of parallel reduction we
map the keys to a range of size O(log n log w

log n) bits, at the bottom end we
again employ the suffix reduction, but this time paired with the dictionary for
polynomial-size universes.
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Chapter 4

Uniform Deterministic
Dictionaries

Abstract

We present a new analysis of the well-known family of multiplicative hash func-
tions, and improved deterministic algorithms for selecting “good” hash functions.
The main motivation is realization of deterministic dictionaries with fast lookups
and reasonably fast updates. The model of computation is the word RAM, and
it is assumed that the machine word size matches the size of keys in bits. Many
of the modern solutions to the dictionary problem are weakly non-uniform, i.e.
they require a number of constants to be computed at “compile time” for stated
time bounds to hold. In contrast, our dictionaries do not require any special con-
stants or instructions, and running times are completely independent of the word
(and key) length. Our family of dynamic dictionaries achieves a performance of
the following type: lookups in time O(t) and updates in amortized time O(n1/t),
for an appropriate parameter function t. Update procedures require division,
whereas searching uses multiplication only.

4.1 Introduction

A dictionary is a data structure that stores a subset S of keys from a universe
U , and supports answering of membership queries of type “Is x in S?”, for
x ∈ U . The keys come from the universe U = {0, 1}w and may be accompanied
by satellite data which can be retrieved in case x ∈ S. A dictionary is said to
be dynamic if it also supports updates of S through insertions and deletions of
elements. Otherwise, the dictionary is static. The size of set S is standardly
denoted by n.

There are several characteristics that make distinction between various kinds
of dictionaries, the most important being the amount of space required by the
dictionary, the time needed for performing a query, and the time spent on an
update or construction of the whole dictionary. We consider only dictionaries
with realistic space usage of O(n) registers. We put more priority to search
times rather than update times. In some situations updates occur infrequently
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compared to queries so having a dictionary with asymmetric query and update
times can be useful.

Our model of computation is the word RAM model with a standard instruc-
tion set, resembling the primitive instructions of the language C. Multiplication
and division are included in the instruction set. We adopt the unit-cost model,
where all native instructions and memory accesses have cost 1, i.e. their comple-
tion takes one unit of time. A usual assumption for RAM dictionaries is that the
elements of U fit in one machine word. Contents of a word may be interpreted
either as an integer from {0, . . . , 2w − 1} or as a bit string from {0, 1}w .

Algorithms involved in construction of a dictionary may be randomized —
they require a source of random bits and their time bounds are either expecta-
tions or hold with high probability. Randomized dictionaries reached a stage of
high development and theoretically there is little left to be improved. On the
other hand, our knowledge about the possibilities of deterministic dictionaries
is rather incomplete. It is of theoretical interest to examine performance lim-
its of deterministic dictionaries. A sufficiently simple and efficient deterministic
structure would be of significant practical interest as well. Faster and simpler
deterministic methods might also help to produce simpler randomized schemes
which use few random bits, by assigning some subproblems to deterministic pro-
cedures. Yet, it is still hard to imagine a deterministic dictionary with good
performance in both theoretical and practical terms. The present work is also
primarily interesting on theoretical and conceptual levels.

Many of the modern data structures involve algorithms that are weakly
nonuniform. Namely, an algorithm is called weakly nonuniform if it assumes
availability of certain constants which depend (only) on the word length w.
Such constants may be thought of as being computed at “compile time”. Some
efficient dictionaries [HMP01, Pag00] even require constants that are not known
to be computable in polynomial time; this may be problematic even for moder-
ate word sizes. In (theoretical) case of extremely large word sizes, virtually all
nonuniform dictionaries give rise to non-negligible costs of preparing the special
constants. We give efficient dictionary realizations with uniform algorithms; the
code does not require even knowing the value of w. (Yet, access to such simple
and natural constants should be allowed in the model; in reality, at least the
compiler needs to know the value of w.) A single type of structure is used for
the entire range of w (relative to n); there is no splitting into different cases and
accordingly applying different types of structures.

4.1.1 Related work

A seminal work by Fredman, Komlós, and Szemerédi [FKS84] showed that in
the static case it is possible to construct a linear space dictionary with constant
lookup time for arbitrary word sizes (no assumptions about relative values of w
and n). This dictionary implementation is known as the FKS scheme. Besides
a randomized version with expected O(n) construction time, they also gave a
deterministic construction algorithm with a running time of O(n3w). A bottle-
neck was choosing of appropriate hash functions. Any universal family of hash
functions [CW79] contains functions suitable for use in the FKS scheme. Ra-
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man [Ram96] devised a deterministic algorithm for finding good functions from
a certain universal family, with a running time of O(n2w); this implies the same
time bound for construction of the FKS dictionary. For w = nΩ(1), an efficient
static dictionary can be built in time O(n) on a sorted sequence of keys. This
follows from a generalization of the fusion trees of Fredman and Willard [FW93],
and it was observed by Hagerup [Hag98b]. Alon and Naor [AN96] derandom-
ized a variant of the FKS scheme, achieving construction time O(nw(log n)4).
However, their lookup operation takes time O(w/ log n).

Hagerup, Miltersen and Pagh [HMP01] gave an efficient dictionary with
constant lookup time and O(n log n) construction time. There is a significant
nonuniformity in their method. A motivation for the work of this chapter was
to achieve a similar performance in dynamic settings, while minimizing the issue
of nonuniformity. Later work [Ruž08a, Ruž09] surpassed the performance of the
dictionary from [HMP01]. The structures from [Ruž08a, Ruž09] are meant to be
used when w ≤ nO(1); the case of very large words is left to fusion trees, which
means there is a weak nonuniformity.

Allowing randomization, the FKS scheme can be dynamized to support up-
dates in amortized expected constant time [DKM+94]. The lower bound result
in the same paper states that a deterministic dynamic dictionary, based on
pure hashing schemes, with worst-case lookup time of t(n) must have amor-
tized insertion time of Ω(t(n) · n1/t(n)). A standard dynamization technique
[OvL81] applied to the static dictionary from [HMP01] yields a similar type
of trade-offs: lookups in time O(t(n)), insertions in time O(n1/t(n)), and dele-
tions in time O(log n); all time bounds are worst-case, and the parameter func-
tion t must satisfy t(n) = O(

√
log n). A different combination, queries in time

O((log log n)2/ log log log n) and updates in time O((log n log log n)2) is due to
Pagh [Pag00].

Among the dictionaries with equal times for all operations, the best result
is O(

√
log n/ log log n) time per operation; it uses the data structure of Beame

and Fich [BF02] with the dynamization result of Andersson and Thorup [AT00].
This data structure also supports neighbour queries.

Andersson et al. [AMRT96] showed that a unit-cost RAM that allows linear
space dictionaries with constant query time must have an instruction of circuit
depth Ω(logw/ log logw). This matches the circuit depth of multiplication and
division. Some work has been done on minimizing query time on RAMs with
weaker instruction sets. Most notably, for the AC0 instruction set, there is tight
bound of Θ(

√
log n/ log log n) on query time [AMRT96].

4.1.2 Overview of our contributions

The primitive type of hash functions in our techniques is ha(x) = br · frac(ax)c.
These multiplicative hash functions have been known for decades [Knu73]. One
concrete family of functions of this type (see (4.2)) was shown to be universal in
[DHKP97]. Raman’s algorithm selects “good” hash functions from this universal
family in bit-by-bit fashion using the method of conditional probabilities.

We do not use the concept of universality directly and we take a bit un-
usual approach in investigating properties of multiplicative functions by observ-
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ing their real extensions. In Section 4.2 we give a characterization of function
parameters not causing a collision between a pair of keys, using periodic real
sets. It will be easy to observe that only the difference between two keys decides
whether they collide for a certain function. We will estimate the measures of the
sets of multipliers which produce “few” collisions on a given set of differences.
Since we ultimately work with discrete classes of functions, it will be shown that
appropriate members of a certain discrete class can be found. Members of our
discrete class can be represented using w + O(log n) bits, which is little more
than w − 1 bits needed for functions related to the algorithm of Raman.

We describe two different function selection algorithms in Section 4.3. The
first one is more general and it accepts as input a special subset of all the
differences between the keys from S. The size of this subset affects the running
times and the “quality” of the returned function. When the subset is maximal,
the algorithm can find both functions usable at the first and at the second
levels of the FKS scheme in time O(n2 log n). This completely removes the
dependency on w present in Raman’s algorithm, which was the fastest method
for finding a suitable hash function with a description of O(w) bits and an
unconstrained range. The scheme of Hagerup et al. [HMP01] includes a faster
algorithm for finding appropriate functions with range Ω(n2). A small drawback
of our algorithm is the use of division. We may make a theoretically interesting
remark that the algorithm can be trivially adapted to the real RAM model to
work with real numbers of arbitrary precision, using only arithmetic operations
and comparisons of real numbers. This is not a feature of any other known
hashing method.

The second algorithm is specialized for finding perfect hash functions with
a polynomial range. It has a running time of O(nw log2 n). The range of the
function can be tuned, and it influences a constant factor hidden in the big-
oh. The range can be as low as n4 with use of division, and n7 without use
of division. After performing the universe reduction by a chosen function, a
dictionary for polynomial-size universes may be used to finish the construction
of a static dictionary; see Chapter 3 or [HMP01, Sect. 4].

In Section 4.4 we present a parameterized family of static and dynamic dictio-
naries based on our new (general) algorithm for choosing a good hash function.
In the static case the parameter τ : N→ N should be a nondecreasing function
computable in time and space O(n), and satisfying τ(n) = O(

√
log n). We at-

tain the combination of search time O(τ(n)) and construction time O(n1+1/τ(n)).
For the dynamic dictionaries we add the constraint τ(2n) = O(τ(n)), and the
trade-off is a search time of O(τ(n)) and updates in amortized time O(n1/τ(n)).
Our dynamic dictionaries match the result of Hagerup, Miltersen and Pagh,
with the exception that our update bounds are amortized instead of worst-case.
Our data structures are organized according to a multi-level hashing scheme,
which is more natural and rational to dynamize than the static dictionary from
[HMP01]. That is why the gap between the static versions is (almost) closed
in the dynamic case. Our dictionaries comply with the conditions of the lower
bound result from [DKM+94], and the time bounds of our dictionaries match
the lower bounds.
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Notation

In the whole chapter, S denotes the set that is to be stored, n represents the
size of S, and w is the word size of the machine. We denote the elements of S
as {x1, x2, . . . , xn}. The universe is U = {0, . . . , 2w − 1}, except in Section 4.2.1
where we observe how to efficiently evaluate the hash functions on long keys.
The variables r, a, m, and s will also retain their interpretation throughout the
text after they get introduced. Logarithms are normally with base 2.

The subset of a set X which contains elements satisfying some property φ
will usually be written as {x ∈ X : φ(x, . . .)} instead of {x ∈ X | φ(x, . . .)}.
The reason is greater clarity, because there will often be absolute values or set
cardinality operators in such expressions.

ByQv we denote {u/2v : 0 < u < 2v, u integer}. The set Qv can be roughly
regarded as the set of numbers from (0, 1) given in precision 2−v.

Unlike a single letter m, m(X) denotes Lebesgue measure of a set X. Only
simple sets (i.e. finite unions and intersections of intervals) will appear, so
thorough knowledge of the theory of Lebesgue measure is not necessary for
comprehension of the chapter. The complement of a set X is denoted by X c.

4.2 Family of Functions

Multiplicative hashing families can generally be regarded as families of type

HA = {ha(x) = br · frac(ax)c : a ∈ A} (4.1)

where frac(x) denotes x − bxc. Each member of HA maps U to {0, . . . , r − 1}.
Functions of this type have been used as an old hashing heuristic known as ”the
multiplication method”. The universal family (shown in [DHKP97])

{x 7→ (ax mod 2w) div 2w−v : a ∈ U, a odd} (4.2)

is of type (4.1). Allowing a to be wider than w bits, the same holds for

{x 7→ b(kx mod p) · r/pc : k ∈ U, p fixed prime, p > 2w} ,

a variation of the well-known family from [FKS84].

Our dictionaries use functions from HQv , where v = w+O(log n). It will be
shown that the discrete families mentioned previously inherit good distribution
of elements from their real extensionHR = {ha : R→ Zr | a ∈ R}. The following
simple result is the base of our construction methods.

Lemma 4.2.1. If x 6= y and

a ∈
⋃

k∈Z

(
1

|x− y|
(
k +

1

r

)
,

1

|x− y|
(
k + 1− 1

r

))
(4.3)

then ha(x) 6= ha(y), for ha ∈ HR.
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Proof. It is easy to see that (4.3) is equivalent to frac(a · |x − y|) ∈
(

1
r , 1− 1

r

)
.

In case x > y we have

frac(a · |x− y|) = frac(ax− ay)
= frac(n1 + frac(ax)− (n2 + frac(ay))) .

If frac(ax) > frac(ay) then it follows that frac(ax)− frac(ay) > 1/r. Otherwise,
when frac(ax) < frac(ay), from frac(ax− ay) < 1− 1

r it follows that frac(ay)−
frac(ax) > 1/r. The case y < x makes no difference. We conclude that (4.3)
implies |frac(ax) − frac(ay)| > 1/r, which is sufficient for ha(x) 6= ha(y) to be
true.

The condition (4.3) is not necessary for avoiding a collision between x and y.
Yet, the set of multipliers which certainly cause the collision is not much smaller.
We may freely focus on multipliers from (0, 1) because ha(x) = ha+1(x). Clearly,
only the difference between keys x and y affects the set in (4.3). Henceforth, for
d ∈ U \ {0} we define sets Ad as

Ad =

d−1⋃

k=0

(
k + 1

r

d
,
k + 1− 1

r

d

)
.

Sets Ad have a nice periodic structure which will be exploited later.
Let D = {dk}sk=1 be a multiset of elements from U \ {0}. The elements of

D are interpreted as differences between some keys. With m being a (fixed)
positive integer, we define the set

B = {a ∈ (0, 1) : |{d ∈ D : a ∈ Acd}| < m} . (4.4)

Throughout the chapter, m will retain the interpretation of bounding the “al-
lowed” number of collisions. The following relation is obvious.

B ⊂ {a ∈ (0, 1) : |{d ∈ D : (∃x ∈ U)(ha(x) = ha(x+ d)}| < m}

The next lemma shows a bound on the measure of the set of “unsuitable”
multipliers, which are not guaranteed to cause less than m collisions. The claim
will be referred to in Section 4.3. An interesting corollary is also derived from
it.

Lemma 4.2.2. Let D = {dk}sk=1 be a given multiset of differences, let B be
defined as in (4.4), and (a1, a2) be an interval within the set (0, 1). Then,

m
(
Bc ∩ (a1, a2)

)
<

1

m

s∑

k=1

m
(
Acdk
∩ (a1, a2)

)
. (4.5)

Proof. Let Kd : [0, 1] → {0, 1} be the characteristic function of set Acd. For a
fixed a, the number of elements d ∈ D such that a ∈ Acd is

∑s
k=1Kdk

(a). We
use more common Riemann integral because it is equal to Lebesgue integral in
this case:

∫ a2

a1

s∑

k=1

Kdk
(t) dt =

s∑

k=1

∫ a2

a1

Kdk
(t) dt =

s∑

k=1

m
(
Acdk
∩ (a1, a2)

)
.
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The measure of the set {a ∈ (a1, a2) :
∑s

k=1Kdk
(a) ≥ m} can be at most

1
m

∑s
k=1m

(
Acdk
∩ (a1, a2)

)
.

Corollary 4.2.3. Let Ĉ be the set of all a from (0, 1) such that the number
of pairs {x, y} ∈

(
S
2

)
for which ha(x) = ha(y) is less than m. Then Ĉ has a

measure of at least 1− n(n−1)
rm .

Proof. Observe that for any d, m(Acd) = 2/r. Setting a1 = 0, a2 = 1, and the
multiset D = {|x − y| : x, y ∈ S, x 6= y}, the claim follows from Lemma 4.2.2
and inequality m(Ĉ) ≥ 1−m(Bc).

For example, choosing m = Θ(n) yields functions usable at the first level of
the FKS scheme. If the range is set to n and m = 2n, then more than ”half”
of the functions from HR would be usable. The corollary demonstrates that
the ”goodness” of the mentioned families is not essentially due to some number-
theoretic properties; of course, the way a discrete subfamily of HR is chosen does
matter.

A set Acd consists of disjoint and evenly spaced intervals. We call them sup-
port intervals because they form the support of the set’s characteristic function.
Ends of support intervals are generally not in Qv, where the value of v will be
completely determined by Theorem 4.3.1, and it satisfies v = w + O(log n) =
O(w). But our algorithm needs to calculate some measures with bounded preci-
sion arithmetic. From now, when referring to computation of some measure, the
following redefinition of the set Acd will be implicitly assumed: for each support
interval, its left end is rounded up, and its right end is rounded down to a number
in Qv. Some care must be taken: for example, the bounds of a support interval
cannot be determined by adding 1/d (which is also rounded) to the bounds of
the previous interval. The set derived from Acd by rounding its support intervals
still contains all unsuitable a’s from our discrete set. The parameter v will be
large enough so that no rounded support interval becomes empty. Therefore,
calculating rounded measures will not violate the correctness of the algorithm
given in Theorem 4.3.1.

Finding rounded interval bounds is simpler when 1/r can be represented
using w bits in the standard encoding. Since r is assumed to be an integer, that
is true only when r is a power of two. We restrict the possible ranges of the
functions to powers of two, for simplicity.

Lemma 4.2.4. Given d ∈ U \ {0} and b, c ∈ Qv, let p be the number of support
intervals of the set Acd which intersect (b, c). The measure of (b, c) ∩ Acd can be
computed in O(p) time with use of division.

Proof. Let support intervals of Acd be [bk, ck], where 0 ≤ k ≤ d and bk, ck are
values rounded in the specified way. For a particular k, the values of bk, ck are
computed by dividing k± 1

r by d, producing the first v bits of the result and the
information whether the remainder is nonzero. The latter is used in rounding
towards infinity when computing bk. The division takes constant time as the
divisor fits in a machine word, the dividend has 2w bits, and O(w) bits of the
result are computed.
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Let i = max{k | bk < b} and j = min{k | ck > c}; they can be determined
in constant time — we use division by 1/d, which amounts to multiplication. If
i = j the result is c − b. Otherwise, we calculate the lengths of (b, c) ∩ [bi, ci]
and (b, c) ∩ [bj , cj ]. To their sum (which may be zero) we add the lengths of the
intermediate support intervals and get the measure. Endpoints of at most p+ 2
intervals are computed, with each computation taking constant time.

With the chosen policy of rounding and computation, no numerical errors
appear. With a more flexible way of rounding interval endpoints and allowing
small numerical error, it would be possible to compute the measure of (b, c)∩Ac

d

in O(1) time. Numerical errors would then have to accounted for in the proof of
Theorem 4.3.1. However, the simple method of Lemma 4.2.4 will be used only
in situations where p ≤ 2, and thus is quite sufficient.

Lemma 4.2.5. Let the set B be defined as in (4.4). If c − b ≤ 2−w−log r, then
B ∩ (b, c) consists of at most m different intervals.

Proof. Only one support interval from each set Acd can have nonempty in-
tersection with (b, c) and it cannot be completely inside (b, c) because it has
greater length. Let (ck)

p
k=1, p ≤

(
n
2

)
, be the increasing sequence of the right

ends of support intervals that have nonempty intersection with (b, c). Also let
q = max{0, p − m + 1}, and c0 = b. Obviously, (b, cq] is not in B. Suppose
that an interval [a1, a2] is not in B and that (a2, a3) is. The number of collisions
decreases at a2 and this can happen only at one of the points cq+i, 0 ≤ i < m.
Thus, there are at most m left boundary points of B ∩ (b, c), so the set consists
of at most m different intervals.

The next result is used in the running-time analysis for the algorithm of
Theorem 4.3.1.

Lemma 4.2.6. For any α > 1, the set {|x − y| : x, y ∈ S, x 6= y} may be
partitioned into at most ndlogα ne disjoint classes D1, D2, . . . , DN , where every
class Di has the following property: if d1, d2 are arbitrary elements of Di then
d1 < 3αd2.

Proof. Let (x1, x2, . . . , xn) be the increasing sequence of keys from S. We prove
a slightly stronger claim by induction: for all k, 2 ≤ k ≤ n, the set {|xi − xj| :
i < j ≤ k} may be partitioned into kdlogα ne classes such that the elements of
each class are within a factor of α(1 + 1

n−1)k−2 from each other. The case k = 2
is trivial.

By the inductive hypothesis, the set {|xi − xj| : i < j ≤ k} has a partition
of size kdlogα ne. Let d = xk+1−xk; d is the smallest difference in {|xk+1−xj| :
j ≤ k}. Define

Dk+1
i =

{
xk+1 − xj : j ≤ k, αid ≤ xk+1 − xj < αi+1d

}
, 0 ≤ i <

⌈
log n

log α

⌉
.

Add to the partition all the sets Dk+1
i , 0 ≤ i < dlogα ne. The remaining differ-

ences induced by xk+1 will be distributed to the classes formed in earlier steps.
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Let xk+1−xj be such a difference; then xk+1−xj ≥ nd. Also xk−xj ≥ (n−1)d,
and

xk+1 − xj
xk − xj

=
xk − xj + d

xk − xj
= 1 +

d

xk − xj
≤ 1 +

1

n− 1
.

We put xk+1 − xj in the class of element xk − xj. It is easy to verify that after
all the differences are put into appropriate classes, the elements of each class are
within a factor of α(1 + 1

n−1)k+1−2 from each other. When k + 1 = n we have

that α(1 + 1
n−1)n−2 < αe, which completes the proof.

4.2.1 Evaluation on multi-word keys

Suppose that elements of the universe have a length of Lw bits, and suppose that
log r+logL < w. The latter could be easily generalized to log r+logL = O(w),
which is a reasonable assumption. Let x = xL−1 . . . x1x0 and a = a−1a−2 . . . a−L
be a key and a multiplier represented as vectors of w-bit words. Define the
functions

ĝa(x) =
L−2∑

i=0

(xi · a−i−1 + xi · a−i−2 div 2w) + xL−1 · a−L ,

and ga(x) = (ĝa(x) mod 2w) div 2w−log r. Evaluation of function ga takes time
O(L). The value of ga(x) is either equal to ha(x) or equal to ha(x)− 1. The size
of the longest chain of colliding elements for the function ga is at most twice the
size of the longest chain for the function ha. The longest chains play a key role
in the construction algorithms of the dictionaries of Section 4.4.

4.3 Finding a Good Function

4.3.1 General algorithm

Let (x1, x2, . . . , xn) be the increasing sequence of keys from S. The main algo-
rithm, described in Theorem 4.3.1, operates on a multiset of differences, denote
it by D, which is a subset of the multiset {|x− y|}x,y∈S. If D could be an arbi-
trary subset of {|x − y|}x,y∈S , superlinear space would generally be required to
represent it. However, dictionaries described in Section 4.4 require only subsets
of the form

D =
n−1⋃

i=1

ni⋃

j=1

{xi+j − xi} , (4.6)

where (ni)
n−1
i=1 is a sequence of positive integers such that ni ≤ n−i. The multiset

D is entirely specified by the sequence (ni) and the sorted list of keys.

Theorem 4.3.1. Let D be a multiset of differences given by (4.6), and let s =
|D|. Define v = w+ dlogme+ dlog re+ 3. If rm ≥ 6s,1 we can find a multiplier

1A theorem with requirement 2s
rm

≤ ν < 1, for a constant ν, could similarly be proved. Only
constants hidden in the time bound and the bit length of a would be affected.
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a ∈ Qv ∩ B (B is defined in (4.4)) with a uniform deterministic algorithm that
uses space O(n+m) and runs in time

O(s(log n+ log r) + n log n logm+ n logr n log2m) . (4.7)

Proof. On start the search space is the interval (0, 1). The algorithm works in
stages, with every stage selecting a smaller subinterval in which to continue the
search for a. In most stages the newly selected interval will be a half of the
previously selected interval. In some stages the newly selected interval may be
a very small subinterval of the previously selected interval. When the active in-
terval gets sufficiently small, the algorithm explicitly determines the intersection
of B and that small interval.

In the (p + 1)st step the working interval is denoted by (a
(p)
1 , a

(p)
2 ); the

superscripts will be omitted when referring to actions in a single step. In every
step we observe a partition of the set of differences into three classes. For the

(p+ 1)st step we write D = D
(p+1)
big ∪D(p+1)

mid ∪D(p+1)
sml where

D
(p+1)
big =

{
d ∈ D :

2

rd
≥ a(p)

2 − a
(p)
1

}
,

D
(p+1)
mid = D \ (D

(p+1)
big ∪D(p+1)

sml ) ,

D
(p+1)
sml =

{
d ∈ D :

2

d
< a

(p)
2 − a

(p)
1

}
.

Smaller d corresponds to bigger support intervals; sizes and periods of support
intervals make the key distinction. Again, superscripts will be omitted when sets
and values correspond to one stage of the algorithm. For any d ∈ Dmid the period
of the set Acd is not smaller than the length of a half of the working interval.
Consequently, at most two support intervals of Acd may intersect each half, and
at most three support intervals may intersect the whole working interval (a1, a2).

For now, we consider the case where Dmid 6= ∅. In this case, the current step
of the algorithm chooses a half of the working interval. Let b = (a1 + a2)/2.
The algorithm will estimate m(Bc∩ (a1, b)) and m(Bc∩ (b, a2)), and the interval
with lower value (greater estimated intersection with B) wins.

We first describe in what way the differences from Dbig are handled. For d ∈
Dbig, if the set (a1, a2)∩Acd is nonempty and (a1, a2) * Acd, then it is completely
determined either by the right end of the intersecting support interval, or the
left end of the interval. Support intervals that cover (a1, a2) are irrelevant to
the choices made by the algorithm. For accounting partial intersections, two
ordered sequences are stored — one for the right ends and one for the left ends.
Observe that we need information only about the last m right ends and the first
m left ends. Let b1 be the mth largest right end and b2 be the mth smallest left
end (if they don’t exist take b1 = a1 and/or b2 = a2). The elements of (a1, b1]
and [b2, a2) are certainly not in B. We can employ a balanced tree structure
to maintain the two ordered sequences. If the number of elements in the tree
that stores the right ends grows to m + 1, the smallest element is deleted, as
it becomes irrelevant, and the value of b1 gets updated. Similarly, in the tree
that holds the left ends the largest element gets deleted and b2 changes when the
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number of elements grows to m+ 1. We augment the search trees to efficiently
support finding the sum and the number of the stored elements smaller than a
given value. The change to the trees is simple to realize, and it provides efficient
computation of the values

∑
d∈Dbig

m(Acd ∩ (b1, b)) and
∑

d∈Dbig
m(Acd ∩ (b, b2)).

The structures are updated as p increases.

From the requirements of the theorem and our construction, it will follow
that B ∩ (a1, a2) 6= ∅; hence, it must be that b1 < b2. If b2 ≤ b then (a1, b) is
chosen, if b1 ≥ b then (b, a2) is chosen. Supposing that b1 < b < b2, we have:

m(Bc ∩ (a1, b)) = m((a1, b1]) +m(Bc ∩ (b1, b))

≤ b1 − a1 +
1

m

∑

d∈D
m(Acd ∩ (b1, b)) (According to Lemma 4.2.2)

= b1 − a1 +
1

m

( ∑

d∈Dbig

m(Acd ∩ (b1, b)) +

∑

d∈Dmid

m(Acd ∩ (b1, b)) +
∑

d∈Dsml

m(Acd ∩ (b1, b))
)
.

The sum over the elements of Dbig can be computed in time O(logm). Assuming
that we can efficiently retrieve the elements of Dmid, the terms in the middle
sum can be computed in constant time per element, as claimed by Lemma 4.2.4.
The last sum is approximated by 1

m |Dsml|(b − b1)2
r . The absolute error of this

estimate of the actual sum (over d ∈ Dsml) can be bounded by the length of one
support interval per each member of Dsml:

E =
1

m

∑

d∈Dsml

2

rd
.

We describe the process of retrieving the elements of D
(p+1)
mid , and the data

structures involved in it. For each i from {1, 2, . . . , n−1} such that (xi+ni−xi) /∈
Dbig, we store a double (i, ji), where ji = min{j ∈ {1, . . . , ni} : (xi+j −
xi) /∈ Dbig}. All doubles (i, ji) such that (xi+ji − xi) ∈ Dmid are stored in
an array in arbitrary order. Knowing ji it is easy to efficiently retrieve all
elements from {xi+j − xi}ni

j=1 that belong to Dmid. All doubles (i, ji) such that
(xi+ji − xi) ∈ Dsml are stored in a priority queue, with the priority of (i, ji)
being xi+ji−xi. Between the steps p+1 and p+2 it is checked if some elements
should be extracted from the priority queue and added to the array; this will

be the case when the corresponding differences enter the set D
(p+2)
mid . Likewise,

it is checked what elements should be removed from the array and inserted into

the priority queue; for index i this will be the case if (xi+ji − xi) ∈ D
(p+2)
big and

(xi+ji+1−xi) ∈ D(p+2)
sml . A simple binary heap will suffice for the priority queue.

Let µ
(p+1)
1 denote the value produced by summing the obtained values for

the three sums (over the three classes of differences). The value µ
(p+1)
1 is our

estimate of m(Bc∩(a1, b)). The other interval (b, a2) is processed analogously to

the first one, and the resulting estimate is denoted by µ
(p+1)
2 . Note that the error

bound E is the sum of errors made on both intervals because the intervals are
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consecutive. If µ
(p+1)
1 ≤ µ(p+1)

2 then (a1, b) is the new active interval; otherwise,
(b, a2) is the new active interval.

We now describe the operation in the case where D
(p+1)
mid = ∅. We prefetch

the difference d̄ from the top of the priority queue to see its value. This mode of
operation that considers only the elements of Dbig lasts until we get a working
interval of length between 1/d̄ and 2/d̄. Let k be the number of meaningful right

endpoints of support intervals that have nonempty intersection with (a
(p)
1 , a

(p)
2 );

these meaningful right ends are stored in an augmented search tree as described
above, and k ≤ m. Let c be the bk/2cth largest such endpoint. Here we set
b = max{a1 + 1/d̄, min{c, a2 − 1/d̄}}. The two competing intervals (a1, b) and
(b, a2) may be asymmetric in terms of length, but each of them has a length of

at least 1/d̄ since a2 − a1 > 2/d̄ from the definition of D
(p+1)
sml . We decide to

select (b, a2) iff µ2

a2−b ≤
µ1

b−a1 . Computation of µ
(p+1)
1/2 takes O(logm) time since

we consider only the elements of Dbig. We accomplished to either immediately
select an appropriate interval of length 1/d̄, or to prune away k/2 right endpoints
from the set of meaningful endpoints. Consequently, after at most dlogme steps
we either get a working interval of length between 1/d̄ and 2/d̄, or we get a
working interval with no right ends of support intervals of elements from Dbig

in its interior. When the latter case happens, we simply select (a1, a1 + 1/d̄) as
the next working interval.

The described process of narrowing the search space is conducted until a
(p)
2 −

a
(p)
1 ≤ 2−w−dlog re. We remark that the value of w need not be known to represent

value 2−w−dlog re using two words in a standard way. Let q be the final value of

p (i.e. the number of the last conducted step). It is D = D
(q+1)
big , and Lemma

4.2.5 suggests how we can find a suitable point using the search trees if m(B ∩
(a

(q)
1 , a

(q)
2 )) is large enough. We need to prove that m(B∩(a

(q)
1 , a

(q)
2 )) will indeed

be large enough.

For p > 0, let µ(p) be the measure estimate (made by the algorithm) for the
winning interval selected at the end of the pth step. For the initial estimate µ(0)

we take the bound on m(Bc ∩ (0, 1)) given by Lemma 4.2.2: µ(0) = 2s
rm ≤ 1/3.

Define sp+1 = |D(p)
sml \D

(p+1)
sml | for p > 1, and s1 = 0. By looking at the structure

of our measure estimates, it is not hard to see that if in the (p + 1)st step

D
(p+1)
mid 6= ∅ then

µ
(p+1)
1 + µ

(p+1)
2 ≤ µ(p) +

sp+1

m
· 2(a

(p)
2 − a

(p)
1 )

r
= µ(p) +

4sp+1

rm
(a

(p+1)
2 − a(p+1)

1 ) .

The relation is true for p = 0 because in the first step the total contribution of

the elements from D
(1)
sml to µ

(1)
1/2 is calculated without error; to see this, remark

that D
(1)
big = ∅, and thus b1 = 0, b2 = 1. Setting µ(p+1) = min{µ(p+1)

1 , µ
(p+1)
2 }

gives the inequality

µ(p+1) ≤ 1

2
µ(p) +

2sp+1

rm
(a

(p+1)
2 − a(p+1)

1 ) .
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If in the (p+ 1)st step D
(p+1)
mid = ∅ then it holds that

µ(p+1) ≤ a
(p+1)
2 − a(p+1)

1

a
(p)
2 − a

(p)
1

µ(p) ,

which can easily be shown by using that µ
(p+1)
1 + µ

(p+1)
2 = µ(p) in this case. A

simple induction argument shows that in any case

µ(p+1)

a
(p+1)
2 − a(p+1)

1

≤ 1

3
+

2

rm

p∑

i=0

si+1 . (4.8)

Since
∑q

i=0 si+1 ≤ s, from (4.8) it follows that

m(Bc ∩ (a
(q)
1 , a

(q)
2 )) ≤ µ(q) ≤ 2

3
m((a

(q)
1 , a

(q)
2 )) . (4.9)

According to Lemma 4.2.5 and (4.9), within B ∩ (a
(q)
1 , a

(q)
2 ) there must be an

interval of length at least 1
3m (a

(q)
2 − a

(q)
1 ). Hence, using the balanced trees,

in time O(m) we can find such an interval and within it an element from
Qw+dlog re+dlogme+3.

It remains to complete the time analysis. When D
(p+1)
mid 6= ∅, the contribution

of elements from D
(p+1)
mid to µ

(p+1)
1/2 is computed in time O(|D(p+1)

mid |). We show

that an element of D stays in Dmid at most dlog re steps. The element d is in

D
(p+1)
mid iff

a
(p)
2 − a

(p)
1

r
≤ 2

rd
< a

(p)
2 − a

(p)
1 ⇐⇒ 1

2(a
(p)
2 − a

(p)
1 )
≥ d > 1

2r(a
(p)
2 − a

(p)
1 )

.

(4.10)

Let p1 be the smallest value of p for which 1
2(a

(p)
2 −a

(p)
1 )−1 ≥ d. Since the working

interval is at least halved in each stage, it will be

1

2r(a
(p1+dlog re)
2 − a(p1+dlog re)

1 )
≥ 1

2(a
(p1)
2 − a(p1)

1 )
≥ d .

Therefore, d /∈ D(p+1+dlog re)
mid . The cost of using the priority queue can be simply

bounded by O(log n) per element ofD. There would be no gain in using a priority
queue structure more advanced than the binary heap, because the processing
time for a difference while it is in Dmid is typically dominant. Each element of
D eventually enters Dbig, and update time per element is O(logm) = O(log n)
(the parameter m makes sense only if lower than

(
n
2

)
). Thus, the total load

related to Dmid is O(s(log n+ log r)).

The tree structures are used to acquire the contribution of elements from

D
(p+1)
big to µ

(p+1)
1/2 . The procedure, which takes O(logm) time, occurs at most cu

times, where cu is the number of p-s for which D
(p+1)
mid 6= ∅. The tree structures

are also used in finding an appropriate subinterval in the case D
(p+1)
mid = ∅. The
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total time spent in this part of the algorithm is O(ct log
2m), where ct is the

number of transitions to the state D
(p+1)
mid = ∅.

It remains to determine bounds on ct and cu. Set α = r/6 and observe the
partition of {|x− y| : x, y ∈ S, x 6= y} given by Lemma 4.2.6. This induces a
partition of D of the same size of O(n logr n). As a consequence of (4.10), when
the first element of a certain class (in the partition) enters Dmid, it will not leave
Dmid before the last element of the class enters Dmid. It easily follows that the

number of p-s for which elements of one class belong to D
(p)
mid is O(log r); hence,

cu = O(n logr n log r) = O(n log n). Since Dmid certainly does not become empty
for the period of processing elements from one class, the number of transitions
ct is not greater than the number of classes: ct = O(n logr n).

Putting all the bounds together gives (4.7). Nonconstant space requirements
come from the balanced tree structures and the data structures used for retriev-
ing the members of Dmid. They need space O(m) and O(n), respectively.

Usually log r = Θ(log n), so a simple time upper bound isO(s log n+n log2 n).
Remark that the algorithm itself is not too complicated, in spite of lengthy jus-
tification of its actions. Only classical data structures appear as auxiliary struc-
tures in the method; thereby aggregate implementation complexity is not high.
The disadvantages of the algorithm are the use of division and high dependence
on n. For typical relations of parameters w,m, r the evaluation of the function
ha would require 2-3 multiplications.

4.3.2 Reduction to a polynomial-size universe in time O(nw log2
n)

In this section we describe a more specialized algorithm for finding a perfect hash
function with range polynomial in n. Throughout the section we assume that
m = 1, because we seek for perfect functions only. Consequently, B c = ∪Acd.

When the measure of the set B is rather large, e.g. when r = Ω(n5), we may
view the problem of deciding bits of a function parameter as that of avoiding very
bad choices, rather than finding the best. Intuitively, we expect that calculating

a rough approximation of µ
(p)
1/2 will suffice in this case. The ability to perform

more approximative calculations will enable us to reduce implicit redundancy in
computation by processing groups of differences at once. First it will be shown
how to find measure estimates up to a constant factor higher than those obtained
by the algorithm of Theorem 4.3.1. That way, we will be able to reject “terrible”
intervals, not choose the better ones. It will be proved that this is good enough
for selecting a perfect function with a polynomial range.

Let Fd = {k/d | 0 ≤ k ≤ d}. A point from Fd belongs to an interval (b− ν, b]
iff

b− ν <
(
b div

1

d

)
1

d
≤ b

⇐⇒ b− ν < bbdc
d
⇐⇒ bd− bbdc < νd . (4.11)

Function frac is a homomorphism from (R,+, 0) to ([0, 1),+1, 0), where x+1 y
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represents the operation frac(x+ y). Putting d = x− y in (4.11), we get

frac(b(x− y)) = frac(bx)−1 frac(by) < νd . (4.12)

One of the key ideas in the proof of Theorem 4.3.1 was almost ignoring the
elements of Dsml in every step. The support intervals of those elements repeat
with periods less than (a2−a1)/2, which means that at least two support intervals
intersect with each half of the working interval. Here, we see that the condition
(4.12) makes sense only when d < 1/ν; otherwise there is always a nonempty
intersection. In the following we assume d < 1/ν. Transforming the condition
(4.12) into an expression over R only, yields

Fd ∩ (b− ν, b] 6= ∅ ⇐⇒ frac(bx)− νd < frac(by) ≤ frac(bx) (4.13)

∨ frac(bx) + 1− νd < frac(by) .

Note that it is not possible for both disjuncts to be true.

A point from Fd belongs to (a, a + ν] if and only if (badc + 1)/d ≤ a + ν.
Proceeding analogously to the above, we get a condition over R:

Fd ∩ (a, a+ ν] 6= ∅ ⇐⇒ frac(ax) < frac(ay) ≤ frac(ax) + νd (4.14)

∨ frac(ay) ≤ frac(ax)− 1 + νd .

Suppose that interval (a, b) is fixed; this will later be a half of the working
interval in one bit-choosing step. Given a set Ŝ ⊂ U , suppose that x ∈ U satisfies
x > max Ŝ and 1/(x−min Ŝ) > b−a; this ensures that (∀y ∈ Ŝ)|Fx−y∩(a, b]| ≤ 1.
Define the function

µab(Ŝ, x) =
∑

m(Acx−y ∩ (a, b)) +m
(⋃(

Acx−y ∩ (a, b)
))

, (4.15)

where the sum is over all y ∈ Ŝ for which Fx−y ∩ (a, b] 6= ∅, and the union is

over all y ∈ Ŝ for which Fx−y ∩ (a, b] = ∅ (subscript ab will be omitted when the
interval is understood). Lebesgue measure is a subaditive function, and thus

µab(Ŝ, x) ≥ m


⋃

y∈bS

(
Acx−y ∩ (a, b)

)

 .

Lemma 4.3.2. Suppose that interval (a, b) is fixed. Let Ŝ ⊂ U , with n̂ =
|Ŝ|. There is a dynamic data structure storing Ŝ and supporting queries of the
following type.

Check whether a given x ∈ U satisfies: x > max Ŝ, x − min Ŝ < 2(x −
max Ŝ), 1/(x − min Ŝ) > b − a, and 2

r(x−max bS)
< b − a. If it does, then

return σ(x) such that µ(Ŝ, x) ≤ σ(x) < 4µ(Ŝ, x).

Updates and queries are performed in O(log n̂) worst-case time.
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Proof. We use two instances of a structure supporting rank and neighbour
queries, for example an augmented balanced tree. One stores {frac(ay) | y ∈ Ŝ},
and the other stores {frac(by) | y ∈ Ŝ}. It is trivial to check whether x is a
regular input to a query — all we need are min Ŝ and max Ŝ.

Denote the first and the second term in (4.15) by µ′(x) and µ′′(x) respectively.
We first describe how to approximate µ′(x). Set d̂ = x−min Ŝ and ν = (b−a)/2.
From (4.13) it follows that

Fx−y ∩
(
b− ν d̂

x− y , b
]
6= ∅ ⇐⇒ frac(bx)− νd̂ < frac(by) ≤ frac(bx)

∨ frac(bx) + 1− νd̂ < frac(by) .

The previous equivalence specifies appropriate rank queries which determine

{y ∈ Ŝ : Fx−y ∩ (b− νd̂/(x− y), b] 6= ∅}

by two pairs of indices, one for each disjunct. Analogously, from (4.14) we derive
rank queries which determine {y ∈ Ŝ : Fx−y∩(a, a+νd̂/(x−y)] 6= ∅} by another
two pairs of indices. Some elements may appear in both sets; finding the union
takes constant time. Denote the size of the union by n̄. Since 1 ≤ d̂/(x−y) < 2,

n̄ =
∣∣∣{y ∈ Ŝ : Fx−y ∩ (a, b] 6= ∅}

∣∣∣ .

Finally, set σ′(x) = n̄ 2

r(x−max bS)
. If all support intervals that intersect with (a, b)

lie completely inside (a, b), we would have an upper bound σ ′(x) < 2µ′(x). But
measures due to partially intersecting intervals may be down to one half of their
length. Thus, the upper bound of σ′(x) < 4µ′(x) is tight.

For the value µ′′(x) we have

µ′′(x) = max

(
max

{
ba(x− y)c 1

x− y +
1

r(x− y) − a : y ∈ Ŝ
}
, 0

)

+max

(
max

{
b− bb(x− y)c+ 1

x− y +
1

r(x− y) : y ∈ Ŝ
}
, 0

)

= max

(
max

{
1

x− y

(
−frac(a(x− y)) +

1

r

)
: y ∈ Ŝ

}
, 0

)

+max

(
max

{
1

x− y

(
frac(b(x− y))− 1 +

1

r

)
: y ∈ Ŝ

}
, 0

)
.

We approximate µ′′(x) by

σ′′(x) = max

(
1

x−max Ŝ

(
−min

y∈bS
frac(a(x− y)) +

1

r

)
, 0

)

+max

(
1

x−max Ŝ

(
max
y∈bS

frac(b(x− y))− 1 +
1

r

)
, 0

)
.

The minimum of frac(a(x− y)) = frac(ax)−1 frac(ay) can be found as

min

(
frac(ax)− predecessor(frac(ax)), frac(ax) + 1−max

y
(frac(ay))

)
,
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where predecessor(X) returns the largest element smaller than, or equal to X
(that is, not strictly smaller). Similarly, the maximum of frac(b(x − y)) equals
to

max

(
frac(bx) + 1− successor(frac(bx)), frac(bx)−min

y
(frac(by))

)
,

with successor(X) returning the smallest element strictly larger than X. It is
not hard to realize that µ′′(x) ≤ σ′′(x) ≤ 2µ′′(x), which proves the lemma.

Theorem 4.3.3. Suppose that r = n7, and let q = w + dlog re. In time
O(nw log2 n) we can deterministically find a ∈ Qq+1 such that ha is perfect
on S. The algorithm is uniform.

Proof. At the beginning, the elements of S are sorted to get an increasing se-

quence (xi)
n
i=1. The working interval in the (p+1)st step is denoted by (a

(p)
1 , a

(p)
2 );

superscripts will be omitted when referring to actions in a single step. Unlike

in the algorithm of Theorem 4.3.1, (a
(p+1)
1 , a

(p+1)
2 ) will usually be little smaller

than a half of (a
(p)
1 , a

(p)
2 ). It will be shown that 2−(p+1) < a

(p)
2 − a

(p)
1 ≤ 2−p.

Recall that b = (a1 + a2)/2.

In this algorithm D = {|x − y| : x, y ∈ S, x 6= y}, so all the differences,
and hence sets Acd, are eventually accounted for. The classes of differences in

one step are: D
(p+1)
big = {d ∈ D : 2

rd ≥ 2−p

4 }, D
(p+1)
sml = {d ∈ D : 1

d <
2−p

2 }, and
Dmid = D \ (Dbig ∪Dsml). Remark that the classes are defined little differently
than in Theorem 4.3.1. An action at the end of each step will ensure that
Acd ∩ (a1, a2) = ∅ for every d ∈ Dbig.

Selection of intervals proceeds until p = q. Any point from (a
(q)
1 , a

(q)
2 ) pro-

duces a perfect function, since D = D
(q+1)
big . We choose a point with the smallest

possible bit length, namely, a value from Qq+1.

Define the sets Cp+1 = D
(p)
sml \ D

(p+1)
sml , p ≥ 0. Set Cp+1 contains all the

differences that entered Dmid in the (p + 1)st step. Let t = dlog re − 3. The
number of steps a difference stays in Dmid is t + 1, which is shown as in the

analogous part in Theorem 4.3.1. We may write D
(p+1)
mid =

⋃min(t,p)
k=0 Cp+1−k.

In a single bit-choosing step, for every i > 1 and every k such that 0 ≤ k ≤
min{t, p}, we define functions left(i, k) and right(i, k), returning indices which
satisfy the following:

• left(i, k) ≤ right(i, k) ≤ i;

• If xi − x1 ∈ Cp+1−k1 and k1 > k, then left(i, k) = right(i, k) = 0;

• If xi − xi−1 ∈ Cp+1−k1 and k1 < k (k1 may be negative), then left(i, k) =
right(i, k) = i;

• Otherwise, let

left(i, k) = min{j : xi − xj ∈ Cp+1−k1 ∧ k1 ≥ k} ,
right(i, k) = 1 + max{j : xi − xj ∈ Cp+1−k1 ∧ k1 ≤ k} .
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Consequently, {xi − xj : left(i, k) ≤ j < right(i, k)} ⊂ Cp+1−k. If Cp+1−k ∩
{xi − xj : j < i, fixed i} = ∅ then left(i, k) = right(i, k).

For 0 ≤ k ≤ min{t, p}, we define

η
(p+1)
1 (k) =

n∑

i=2

µa1b({xleft(i,k), . . . , xright(i,k)−1}, xi) ,

and we set η
(p+1)
1 (k) = 0 for k > p. Now we combine values η

(p+1)
1 (k), defining

η
(p+1)
1 =

t∑

k=0

Kt−kη(p+1)
1 (k) , (4.16)

with K = 8
5 . Analogous values for the interval (b, a2) are defined similarly and

they are denoted by η
(p+1)
2 (k) and η

(p+1)
2 . In every step we compute approxima-

tions of η1 and η2 — denote them by σ1 and σ2 — and the interval with lower
value wins. First we describe the computation of σ1/2, and afterwards we prove
the correctness of the algorithm.

The approximations σ1/2 are calculated in an iteration where i goes from
2 to n. For any k, updating left(i, k) and right(i, k) takes total O(n) time, as
they may increase only, and checking whether left(i, k) = xj , for a particular xj ,
consumes constant time. Summing the work of updating left(i, k) and right(i, k),
for all k, gives a load of O(nt) = O(n log n). The set

{xleft(i,0), xleft(i,0)+1, . . . , xright(i,t)−1}

is kept partitioned into t + 1 classes of consecutive elements: the kth class is
given by {xleft(i,k), . . . , xright(i,k)−1} provided that left(i, k) 6= right(i, k), and it is
empty otherwise. If y, z are arbitrary elements of a class then xi−y < 2(xi− z).
Each class is stored in two instances of the data structure of Lemma 4.3.2 —
one for the interval (a1, b) and the other for the interval (b, a2). Maintaining
the properties of the partition as i changes requires movement of elements from
one class to another. Every element of S may be moved t + 1 times per bit-
choosing step, implying O(n log2 n) time cost of updating the data structures.
For every i, the data structures are queried and the results are added to the
partial sums of σ1/2(k), the approximations of η1/2(k). After final iteration,
σ1/2(k) are combined as in (4.16) producing σ1 and σ2. The sum of query times

is O(n log2 n) per bit-choosing step.
Without loss of generality, suppose that the first interval wins, that is, σ1 ≤

σ2. By Lemma 4.3.2:
η1 ≤ σ1 ≤ σ2 < 4η2 . (4.17)

It will be shown that η1 (and η1(t), as a result) is small enough to disallow
Fd ∩ (a1, b) 6= ∅, for any d ∈ Cp+1−t. The method of Lemma 4.3.2 (the second

part of the proof) is used to determine (a
(p+1)
1 , a

(p+1)
2 ) such that: a

(p+1)
1 − a1 +

b− a(p+1)
2 ≤ 2η1(t) and (∀d ∈ Cp+1−t)

(
Acd ∩ (a

(p+1)
1 , a

(p+1)
2 ) = ∅

)
.

The description of the algorithm and time analysis are now completed. We
are left to show the correctness of the operation.
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From η
(p+1)
1 (k)+η

(p+1)
2 (k) ≤ η(p)(k−1) and (4.16) we get a relation between

η
(p+1)
1/2 and η(p):

η
(p+1)
1 + η

(p+1)
2 ≤ K−1

(
η(p) − η(p)(t)

)
+Kt

(
η

(p+1)
1 (0) + η

(p+1)
2 (0)

)
.

Eliminating η
(p+1)
2 using (4.17) gives

η
(p+1)
1 ≤ 4

5
K−1

(
η(p) − η(p)(t)

)
+

4

5
Kt
(
η

(p+1)
1 (0) + η

(p+1)
2 (0)

)
. (4.18)

By induction on p we will prove that

η(p) − η(p)(t)

a
(p)
2 − a

(p)
1

≤
(
|D| − |D(p)

sml|
) 4

5
Kt 16

r
− 1

4

p∑

i=1

2η(i)(t)
1
2(a

(i−1)
2 − a(i−1)

1 )
, (4.19)

and also that a
(p)
2 − a

(p)
1 > 2−(p+1). Before the induction argument, observe a

consequence of (4.19).

η(p) − η(p)(t)

a
(p)
2 − a

(p)
1

≤ |D|4
5
K log r−3 16

r
= |D|4

5

(r
8

)log 8
5 16

r
=

25

8
|D|rlog 8

5
−1

< 2n2rlog
8
5
−1 = 2n2n7(log 8

5
−1) < 2n−

1
4 . (4.20)

The sum of ratios of cut off regions in (4.19) will be needed to prove the second
part of the hypothesis regarding the length of the working intervals.

Before the first step, when p = 0, it is (a
(0)
1 , a

(0)
2 ) = (0, 1) andD

(0)
mid = D∩{1}.

Therefore η(0) = Ktη(0)(0) = |D(0)
mid|Kt 2

r , and so (4.19) holds for p = 0. Suppose
that (4.19) is true for some p. From (4.18) we get

η
(p+1)
1

b− a(p)
1

≤ 1

2

η(p) − η(p)(t)
1
2 (a

(p)
2 − a

(p)
1 )

+
4

5
Kt η

(p+1)
1 (0) + η

(p+1)
2 (0)

1
2(a

(p)
2 − a

(p)
1 )

.

From the definitions of the sets Cp+1 and D
(p+1)
sml , it follows that 2−p−1 ≤ 1/d <

2−p, for every d ∈ Cp+1. For any d ∈ Cp+1 and any interval of length 2−p, denote
it by Ip, we may bound m(Acd ∩ Ip) by the measure of two support intervals
(though, for larger d, Acd ∩ Ip may span across three support intervals, two of

which only partially intersect with Ip). Hence, η
(p+1)
1 (0)+η

(p+1)
2 (0) ≤ |Cp+1|2 2

r2p .

The inductive hypothesis, including a
(p)
2 − a

(p)
1 > 2−(p+1), and the bound on

η
(p+1)
1 (0) + η

(p+1)
2 (0) give

η
(p+1)
1

b− a(p)
1

≤
(
|D| − |D(p)

sml|
) 4

5
Kt 16
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4
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sml |
) 4

5
Kt 16

r
−

p∑

i=1

η(i)(t)

a
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2 − a(i−1)

1

. (4.21)
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Denoting X = 2η(p+1)(t)

b−a(p)
1

= 2η(p+1)(t)
1
2
(a

(p)
2 −a(p)

1 )
, we have

η
(p+1)
1 − η(p+1)

1 (t)

a
(p+1)
2 − a(p+1)

1

≤ η
(p+1)
1 − η(p+1)

1 (t)

b− a(p)
1 − 2η

(p+1)
1 (t)

=
η

(p+1)
1 − η(p+1)

1 (t)

b− a(p)
1

1

1−X .

Taylor’s expansion of the function f(x) = (1 + x)−1 with Lagrange’s remainder
is f(x) = 1 − x + x2(1 + Θx)−3, and it holds for |x| < 1. For − 1

4 < x ≤ 0, an

upper bound is f(x) ≤ 1+2|x|. As a result of (4.20) and the relation η (p+1)(t) <

K−1
(
η(p) − η(p)(t)

)
, it follows X < 5n−

1
4 < 1

4 for n = Ω(1). Therefore, (1 −
X)−1 ≤ 1 + 2X. Since also

η
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1 −η(p+1)

1 (t)

b−a(p)
1

< 1
8 by (4.21) and (4.20), we obtain
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Finally,

η
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1 − η(p+1)

1 (t)

a
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2 − a(p+1)
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≤ η
(p+1)
1

b− a(p)
1

− 1

4
X ,

which together with (4.21) proves the first part of the claim for p+ 1.

It remains to show that a
(p+1)
2 −a(p+1)

1 > 2−(p+2). At the end of the (p+1)st
step, the working interval is shrank in such a way that

a
(p+1)
2 − a(p+1)

1 ≥ 1

2

(
a

(p)
2 − a

(p)
1

)(
1− 2η(p+1)(t)

1
2(a

(p)
2 − a

(p)
1 )

)
. (4.22)

Inequalities (4.19) and (4.20) imply

p+1∑

i=1

2η(i)(t)

1
2 (a

(i−1)
2 − a(i−1)

1 )
< 8n−

1
4 .

The minimum of function f(x1, x2, . . . , xp+1) = (1 − x1)(1 − x2) · · · (1 − xp+1)
under condition x1 + · · · + xp+1 = c is attained for xi = c

p+1 , 1 ≤ i ≤ p + 1.
Thus, after unrolling (4.22) we get

a
(p+1)
2 − a(p+1)

1 ≥ 2−(p+1)

(
1− 8

n
1
4 (p+ 1)

)p+1

> 2−(p+2) .

We make observations on how to change the range of the universe reduction
function and how to avoid the use of division. Lemma 4.3.2 can be restated so
that query regularity conditions include x−min Ŝ < α(x−max Ŝ), for 1 < α ≤ 2,
instead of x −min Ŝ < 2(x −max Ŝ). Then σ(x), the query result, will satisfy
µ(Ŝ, x) ≤ σ(x) < 2αµ(Ŝ, x). The main algorithm is modified so that every set
Cp+1−k is broken into 1/ log α sets which are stored in separate data structures.
Instead of (4.17), we have η1 ≤ σ1 ≤ σ2 < 2αη2. Then, we may set K = 2 2α

2α+1 .
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With obvious modifications, the rest of the analysis is preserved. For example,
letting α = 1.2 and acting as in (4.20), it may be checked that r = n4 is large
enough.

The only place where division is needed is the computation of 1

x−max bS
in

the algorithm of Lemma 4.3.2. Approximating the value by a nearby power of
2 avoids division but makes the result of the query less precise. Namely, in this
case the result satisfies µ(Ŝ, x) ≤ σ(x) < 4αµ(Ŝ, x).

4.4 Uniform Dictionaries

Theorem 4.4.1. Let τ : N→ N be a nondecreasing function computable in time
and space O(n), and satisfying τ(n) = O(

√
log n). There exists a linear space

static deterministic dictionary that has a query time of O(τ(n)) and construction
time O(n1+1/τ(n)).

Proof. We employ a multi-level hashing scheme. Levels of the tree are con-
structed top-down and parameters for hash functions differ from level to level.
Let t = 3τ(n). There will be at most t levels. A lookup consists of t evaluations
of hash functions and following pointers to lower levels. The last two levels are
resolved using the two-level FKS scheme, and function parameters, that is, s,
r, and m, are set accordingly. We describe the construction of the remaining
levels.

The FKS scheme is never applied immediately at the first level, since t ≥ 3.
For the top-level hash function we set ni = min{2dn1/te, n− i}, 1 ≤ i ≤ n (recall
the structure of the set D given in (4.6)), and let the range be r = 3n/t. Also,
we allow m = 4tdn1/te collisions, thereby satisfying the condition of Theorem
4.3.1 that 2s

rm ≤ 1/3. The algorithm described in Theorem 4.3.1 returns a value

a. A time bound for the first level is O(n1+1/t log n).

Define Pi = {j ∈ {i + 1, . . . , i + ni} : ha(xi) = ha(xj)}; it holds that∑n−1
i=1 |Pi| < m. Suppose that ha(xi) = y, for some i ≤ n − 2dn1/te. At least

2n1/t − |Pi| keys cannot hash to slot y. Take xj ∈ S, such that j ≤ n− 2dn1/te,
i /∈ Pj , and ha(xj) = y. Because of the structure of D, another 2n1/t− |Pj | keys
cannot hash to slot y. From the set {xk, . . . , xn}, with k = n−2dn1/te+1, at most
1+
∑n−1

i=k |Pi| elements can hash to slot y. Through an induction argument we get
an upper bound on the longest chain: 1

2n
1−1/t +m. From 3 ≤ t(n) ≤ O(

√
log n)

it follows that m = o(n1−1/t(n)). Assuming that n is sufficiently large, we may
write m < 1

2n
1−1/t. Hence, the length of the longest chain is less than n1−1/t.

In general, let N be the size of a bucket at the kth level, where 1 ≤ k ≤ t− 2
(the first level bucket is the whole set S). Suppose that N > log2 n; otherwise
we choose to apply the FKS scheme. Let u(k) =

(
1− k−1

t

)
t. The procedure for

selecting a hash function for the node of that bucket takes parameters

s = 2N
⌈
N1/u(k)

⌉
, r =

3N

t
, m = 4t

⌈
N1/u(k)

⌉
.

As k ≤ t − 2, we have u(k) ≥ 3. Therefore m = O(t · N 1/3). The assumption
N > log2 n provides t(n) = o(N 1/3). Then m = o(N 2/3) and we can bound
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the longest chain by N 1−1/u(k), when n (and hence N) is large enough. The
construction procedure is performed recursively.

By induction, the number of elements in a node at the kth level does not
exceed n1−(k−1)/t. As a result, at most n2/t elements can be mapped to a node
at level t− 1. Note that log2 n = o(n2/O(

√
log n)).

For the function f(x) = x1+1/u(k) it holds that f(x1 + x2 + · · · + xk) >
f(x1)+f(x2)+ · · ·+f(xk). Thus, the constructions at the kth level will take the
most time if all nonempty slots have the same size that matches the upper bound
on bucket size. This bounds the time of constructing the kth level, excluding
the FKS constructions, by

n
k−1

t O

((
n1− k−1

t

)1+1/u(k)
log n

)
= O

(
n1+1/t log n

)
.

The total time spent on the FKS constructions is at most

n1−2/tO
((
n2t
)2

log n
)

= O
(
n1+2/t log n

)
.

The factor of log n can be subdued by a factor of n1/t. Adding the times for all
the levels and substituting t back to 3τ(n) gives the claimed construction time.

The setting for r at each node makes the total space consumption stay linear
in n.

The described static dictionary is dynamized naturally because data is stored
in a tree structure.

Theorem 4.4.2. Let τ : N→ N be a nondecreasing function computable in time
and space O(n), and satisfying τ(n) = O(

√
log n) and τ(2n) = O(τ(n)). There

exists a linear space dynamic deterministic dictionary with query time O(τ(n))
and update time O(n1/τ(n)). The bound on lookup time is worst case, while the
bound for update times is amortized.

Proof. A rebuilding scheme of varying locality is used. A rebuilding initiated at
some node causes the reconstruction of the whole subtree rooted at that node.
Here N will denote the number of elements of S in a subtree after the last recon-
struction and k again represents the level of a particular node. The value of k
will not change as long as the node exists. The construction method of Theorem
4.4.1 is slightly modified by setting t = 5τ(2n) and doubling the function param-
eters s and m at each (non FKS) node. This causes the longest chain to be at
most 1

2N
1−1/u(k) immediately after a reconstruction. The value of parameter t

occurs in update procedures and it changes only on global rebuildings. A global
rebuilding is the one which is triggered at the top level node. Due to constraint
τ(2n) = O(τ(n)) there are at most t = O(τ(n)) levels of the tree. Also if n gets
halved during updates of S there will still be O(τ(n)) levels.

Rebuilding of the bottom two nodes on any path takes place whenever inser-
tion causes a collision and no reconstruction at a higher level is triggered. Local
rebuilding of a (non FKS) subtree is performed in two cases: when updates cause
the longest chain at the root of the subtree to grow to N 1−1/u(k), or when the
number of elements drops below N/2. The former is aimed at preserving the
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claimed search time, while the latter is aimed at keeping the space usage linear.
A global rebuilding is performed when those conditions are satisfied at the root
node or when the size of S doubles compared to the value on the previous global
rebuilding.

For analysis, assume that only insertions are performed; it will be clear that
this is worse than a case of mixed insertions and deletions. Suppose that the
number of elements in a subtree that is to be rebuilt is δN . At least 1

2N
1−1/u(k)

elements must have been inserted for reconstruction to occur; the number can
be this small only when all new elements are “pumped” to the same slot in the
root of the subtree and that slot had contained a chain of maximum length upon
the last rebuilding. Thus, δ ≥ 1 + 1

2N
−1/u(k).

Let n̄ be a value such that n̄1−(k−1)/t = δN ; it will be smaller than n when
the subtree is smaller than the maximal allowed size for a bucket at the kth
level. Then buckets in the reconstructed subtree may have size not more than
n̄1−(j−1)/t, where j is the level number in the global tree, j ≥ k (the bound is
less tight than in Theorem 4.4.1 because we neglect a factor of 1/2 per each
level; yet, this is ultimately insignificant). A time upper bound for the jth level,
excluding the FKS constructions, is

δN / n̄1− j−1
t O

((
n̄1− j−1

t

)1+1/u(j)
log n

)
= O

(
δNn̄1/t log n

)
.

The time spent on the FKS constructions is at most

O
(
δNn̄2/t log n

)
= δN O

(
n2/t log n

)
.

The latter dominates over the sum of t former times. The cost assigned to each
of δN −N new elements is

δ

δ − 1
O
(
n3/t

)
= N1/u(k) O

(
n3/t

)
= O

(
n̄1/tn3/t

)
= O

(
n4/t

)
.

Each inserted key may be regarded as a “new element” in rebuildings up to t
times. The total amortized cost of an update becomes O(t · n4/t) = O(n5/t),
which finishes the proof since t > 5τ(n) at any time before the next global
rebuilding.

Acknowledgments

The author thanks Rasmus Pagh and an anonymous reviewer whose comments
helped to improve the presentation of the paper.

87



Chapter 4. Uniform Deterministic Dictionaries

88



Chapter 5

Linear Probing with Constant
Independence

Abstract

Hashing with linear probing dates back to the 1950s, and is among the most
studied algorithms. In recent years it has become one of the most important
hash table organizations since it uses the cache of modern computers very well.
Unfortunately, previous analyses rely either on complicated and space consuming
hash functions, or on the unrealistic assumption of free access to a hash function
with random and independent function values. Already Carter and Wegman, in
their seminal paper on universal hashing, raised the question of extending their
analysis to linear probing. However, we show that linear probing using a pairwise
independent family may have expected logarithmic cost per operation. On the
positive side, we show that 5-wise independence is enough to ensure constant
expected time per operation. This resolves the question of finding a space and
time efficient hash function that provably ensures good performance for linear
probing.

5.1 Introduction

Hashing with linear probing is perhaps the simplest algorithm for storing and
accessing a set of keys that obtains nontrivial performance. Given a hash func-
tion h, a key x is inserted in an array by searching for the first vacant array
position in the sequence h(x), h(x)+1, h(x)+2, . . . (Here, addition is modulo r,
the size of the array.) Retrieval of a key proceeds similarly, until either the key is
found, or a vacant position is encountered, in which case the key is not present
in the data structure. Deletions can be performed by moving keys backward
in the probe sequence in a greedy fashion (ensuring that no key x is moved to
before h(x)), until no such move is possible (when a vacant array position is
encountered).

Linear probing dates back to 1954, but was first analyzed by Knuth in a 1963
memorandum [Knu63] now considered to be the birth of the area of analysis of
algorithms [Pe98]. Knuth’s analysis, as well as most of the work that has since
gone into understanding the properties of linear probing, is based on the assump-
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tion that h has uniformly distributed and independent function values. In 1977,
Carter and Wegman’s notion of universal hashing [CW79] initiated a new era in
the design of hashing algorithms, where explicit and efficient ways of choosing
hash functions replaced the unrealistic assumption of complete randomness. In
their seminal paper, Carter and Wegman state it as an open problem to “Extend
the analysis to [...] double hashing and open addressing.”1

5.1.1 Previous results using limited randomness

The first analysis of linear probing relying only on limited randomness was given
by Siegel and Schmidt in [SS90, SS95]. Specifically, they show that O(log n)-wise
independence is sufficient to achieve essentially the same performance as in the
fully random case. (We use n to denote the number of keys inserted into the
hash table.) Another paper by Siegel [Sie04] shows that evaluation of a hash
function from a O(log n)-wise independent family requires time Ω(log n) unless
the space used to describe the function is nΩ(1). A family of functions is given
that achieves space usage nε and constant time evaluation of functions, for any
ε > 0. However, this result is only of theoretical interest since the associated
constants are very large (and growing exponentially with 1/ε).

A potentially more practical method is the “split and share” technique de-
scribed in [DW05]. It can be used to achieve characteristics similar to those of
linear probing, still using space nε, for any given constant ε > 0. The idea is to
split the set of keys into many subsets of roughly the same size, and simulate
full randomness on each part. Thus, the resulting solution would be a collection
of linear probing hash tables.

A significant drawback of both methods above, besides a large number of
instructions for function evaluation, is the use of random accesses to the hash
function description. The strength of linear probing is that for many practical
parameters, almost all lookups will incur only a single cache miss. Perform-
ing random accesses while computing the hash function value may destroy this
advantage.

According to our knowledge, the first paper in analysis of algorithms where
exactly 5-wise independence appeared was [KR93]. They study a version of
Quicksort that uses a 5-wise independent pseudorandom number generator.

5.1.2 Our results

We show in this chapter that linear probing using a pairwise independent fam-
ily may have expected logarithmic cost per operation. Specifically, we resolve
the open problem of Carter and Wegman by showing that linear probing inser-
tion of n keys in a table of size 2n using a function of the form x 7→ ((ax +
b) mod p) mod 2n, where p = 4n + 1 is prime and we randomly choose a ∈
[p]\{0} and b ∈ [p], requires Ω(n log n) insertion steps in expectation for a worst

1Nowadays the term “open addressing” refers to any hashing scheme where the data struc-
ture is an array containing only keys and empty locations. However, Knuth used the term
to refer to linear probing in [Knu63], and since it is mentioned here together with the double
hashing probe sequence, we believe that it refers to linear probing.
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case insertion sequence (chosen independently of a and b). Since the total inser-
tion cost equals the total cost of looking up all keys, the expected average time
to look up a key in the resulting hash table is Ω(log n). The main observation
behind the proof is that if a is the multiplicative inverse (modulo p) of a small
integer m, then inserting a certain set that consists of two intervals has expected
cost Ω(n2/m).

On the positive side, we show that 5-wise independence is enough to ensure
constant expected time per operation, for load factor α

def
= n/r bounded away

from 1. Our proof is based on a new way of bounding the cost of linear probing
operations, by counting intervals in which “many” probe sequences start. When
beginning this work, our first observation was that a key x can be placed in
location h(x) + l mod r only if there is an interval I 3 h(x) where |I| ≥ l and
there are |I| keys from S with hash value in I. A slightly stronger fact is shown
in Lemma 5.4.1. Since the expected number of hash values in an interval I is
α|I|, long such intervals are “rare” if the hash function exhibits sufficiently high
independence.

Our analysis gives a bound of O( 1
(1−α)13/6 ) expected time per operation at

load factor α. This implies a bound of O( 1
(1−α)7/6 ) expected time on average for

successful searches. These bounds are a factor Ω( 1
(1−α)1/6 ) higher than for linear

probing with full independence. (The exponent can be made arbitrarily close to
zero by increasing the independence of the hash function.)

The gap to the fully random case vanishes if we slightly change the probe
sequence to

h(x), h(x) ⊕ 1h(x)⊕ 2, h(x) ⊕ 3, . . .

where ⊕ denotes bitwise exclusive or. Also, the range r should be a power of 2.
This probe sequence is arguably even more cache friendly than classical linear
probing if we assume that memory block boundaries are at powers of 2. In fact, in
Section 5.5 we analyze a slightly more general class of open addressing methods
called blocked probing, which also includes a special kind of bidirectional linear
probing. For this class we get the same dependence on α (up to constant factors)
as for full independence, again using only 5-wise independent hash functions. A
particularly precise analysis of successful searches is conducted, showing that
the expected number of probes made during a search for a random element in
the table is less than 1 + 2

1−α .

In Section 5.6 we describe an alternative to linear probing that preserves
the basic property that all memory accesses of an operation are within a small
interval, but improves the expected lookup time exponentially to O(log( 1

1−α )).

5.1.3 Significance

Several recent experimental studies [BMQ98, HL05, PR04] have found linear
probing to be the fastest hash table organization for moderate load factors (30-
70%). While linear probing operations are known to require more instructions
than those of other open addressing methods, the fact that they access an in-
terval of array entries means that linear probing works very well with modern
architectures for which sequential access is much faster than random access (as-
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suming that the keys we are accessing are each significantly smaller than a cache
line, or a disk block, etc.). However, the hash functions used to implement linear
probing in practice are heuristics, and there is no known theoretical guarantee on
their performance. Since linear probing is particularly sensitive to a bad choice
of hash function, Heileman and Luo [HL05] advice against linear probing for
general-purpose use. Our results imply that simple and efficient hash functions,
whose description can be stored in CPU registers, can be used to give provably
good expected performance.

The work on linear probing given in this chapter has been built upon by other
researchers in designing hash tables with additional considerations. Blelloch
and Golovin [BG07] described a linear probing hash table implementation that
is strongly history independent. Thorup [Tho09] studied how to get efficient
compositions of hash functions for linear probing when the domain of keys is
complex, like the set of variable-length strings.

5.2 Preliminaries

5.2.1 Notation and definitions

Let [x]
def
= {0, 1, . . . , x− 1}. Throughout this chapter S denotes a subset of some

universe U , and h will denote a function from U to R
def
= [r]. We denote the

elements of S by {x1, x2, . . . , xn}, and refer to the elements of S as keys. We let

n
def
= |S|, and α

def
= n/r.

A family H of functions from U to R is k-wise independent if for any k
distinct elements x1, . . . , xk ∈ U and h chosen uniformly at random from H, the
random variables h(x1), . . . , h(xk) are independent2. We refer to the variable

ᾱH
def
= n max

x∈U, ρ∈R
Prh∈H{h(x) = ρ}

as the maximum load of H. When the hash function family in question is un-
derstood from the context, we omit the subscript of ᾱ. If H distributes hash
function values of all elements of U uniformly on R, we will have ᾱ = α, and in
general ᾱ ≥ α.

For Q ⊆ R we introduce notation for the “translated set”

a+Q
def
= {(a+ y) mod r | y ∈ Q} .

An interval (modulo r) is a set of the form a+ [b], for integers a and b. When
we write [a − b, a) this interval represents the set a − 1 − [b]. We will later use
sets of the form h(x) +Q, for a fixed x and with Q being an interval.

5.2.2 Hash function families

Carter and Wegman [WC81] observed that the family of degree k−1 polynomials
in any finite field is k-wise independent. Specifically, for any prime p we may

2We note that in some papers, the notion of k-wise independence is stronger in that it is
required that function values are uniformly distributed in R. However, some interesting k-wise
independent families have a slightly nonuniform distribution, and we will provide analysis for
such families as well.

92



5.2. Preliminaries

use the field defined by arithmetic modulo p to get a family of functions from
[p] to [p] where a function can be evaluated in time O(k) on a RAM, assuming
that addition and multiplication modulo p can be performed in constant time.
To obtain a smaller range R = [r] we may map integers in [p] down to R by a
modulo r operation. This of course preserves independence, but the family is
now only close to uniform. Specifically, the maximum load ᾱ for this family is
in the range [α, (1 + r/p)α]. By choosing p much larger than r we can make ᾱ
arbitrarily close to α.

A recently proposed k-wise independent family of Thorup and Zhang [TZ04]
has uniformly distributed function values in [r], and thus ᾱ = α. From a the-
oretical perspective (ignoring constant factors) it is inferior to Siegel’s highly
independent family [Sie04], since the evaluation time depends on k and the
space usage is the same (though the dependence of ε is better). We mention it
here because it is the first construction that makes k-wise independence truly
competitive with popular heuristics, for small k > 3, in terms of evaluation
time. In practice, the space usage can be kept so small that it does not matter.
The construction for 4-wise independence has been shown to be particularly effi-
cient. Though this is not stated in [TZ04], it is not hard to verify that the same
construction in fact gives 5-wise independence, and thus our analysis will apply.

5.2.3 A probabilistic lemma

Here we state a lemma that is essential for our upper bound results, described in
Section 5.4. It gives an upper bound on the probability that an interval around
a particular hash function value contains the hash function values of “many”
keys. The proof is similar to the proof of [KRS90, Lemma 4.19].

Lemma 5.2.1. Let S ⊆ U be a set of size n, and H a 5-wise independent family
of functions from U to R with maximum load at most ᾱ < 1. If h is chosen
uniformly at random from H, then for any Q ⊂ R of size q, and any fixed
x ∈ U \ S,

Pr
{∣∣{y ∈ S : h(y) ∈ (h(x) +Q)}

∣∣ ≥ ᾱq + d
}
<

4ᾱq2

d4
.

Proof. Denote by A the event that
∣∣{y ∈ S : h(y) ∈ (h(x) + Q)}

∣∣ ≥ ᾱq + d.
We will show a stronger statement, namely that the same upper bound holds
for the conditional probability Pr{A | h(x) = ρ}, for any ρ ∈ R. Notice that the
subfamily {h ∈ H | h(x) = ρ} is 4-wise independent on U \ {x}, and that the
distribution of function values is identical to the distribution when h is chosen
from H. The statement of the lemma will then follow from

Pr(A) =
∑

ρ∈R
Pr{h(x) = ρ}Pr{A | h(x) = ρ} < r · 1

r

4ᾱq2

d4
.

Let pi
def
= Pr{h(xi) ∈ (h(x) +Q)}, and consider the random variables

Xi
def
=

{
1− pi, if h(xi) ∈ h(x) +Q
−pi, otherwise

.
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Let X
def
=
∑

iXi and observe that

∣∣{y ∈ S : h(y) ∈ (h(x) +Q)}
∣∣ = X +

∑

i

pi ≤ X + ᾱq .

The last inequality above is by the definition of maximum load. So to prove the
lemma it suffices to bound Pr{X ≥ d}. We will use the 4th moment inequality

Pr{X ≥ d} ≤ E(X4)/d4 .

Clearly, E(Xi) = 0 for any i, and the variables X1, . . . , Xn are 4-wise indepen-
dent. Therefore we have E(Xi1Xi2Xi3Xi4) = 0 unless i1 = i2 = i3 = i4 or
(i1, i2, i3, i4) contains 2 numbers, both of them exactly twice. This means that

E(X4) =
∑

1≤i1,i2,i3,i4≤n
E(Xi1Xi2Xi3Xi4)

=
∑

1≤i≤n
E(X4

i ) +
∑

1≤i<j≤n

(4
2

)
E(X2

i )E(X2
j ).

The first sum can be bounded as follows:
∑

i

E(X4
i ) =

∑

i

(pi(1− pi)4 + (1− pi)p4
i )

=
∑

i

pi(1− pi)((1 − pi)3 + p3
i )

<
∑

i

pi ≤ ᾱq .

The second sum is:
∑

1≤i<j≤n
6(pi(1− pi))(pj(1− pj)) < 3

∑

1≤i,j≤n
pipj

= 3(
∑

i

pi)
2 ≤ 3(ᾱq)2 .

In conclusion we have

Pr{X ≥ d} ≤ E(X4)/d4 <
3(ᾱq)2 + ᾱq

d4
<

4ᾱq2

d4
,

finishing the proof.

5.3 Pairwise independence

In this section we show that pairwise independence is not sufficient to ensure
good performance for linear probing: Logarithmic time per operation is needed
for a worst-case set. This complements our upper bounds for 5-wise (and higher)
independence. We will consider two pairwise independent families: The first one
is a very commonly used hash function family. The latter family is similar to the
first, except that we have ensured function values to be uniformly distributed in
R. To lower bound the cost of linear probing we use the following lemma.
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Lemma 5.3.1. Suppose a set S of n keys is inserted in a linear probing hash
table of size r > n. Let {Sj}`j=1 be any partition of S such that for every set

Sj the set Ij
def
= h(Sj) is an interval (modulo r), and |Ij | ≤ r/2. Then the total

number of steps to perform the insertions is at least

∑

1≤j1<j2≤`
|Ij1 ∩ Ij2 |2/2 .

Proof. We proceed by induction on `. Since the number of insertion steps is
independent of the order of insertions [Knu98, p. 538], we may assume that
the insertions corresponding to S` occur last and in left-to-right order of hash
values. By the induction hypothesis, the total number of steps to do all preceding
insertions is at least ∑

1≤j1<j2≤`−1

|Ij1 ∩ Ij2 |2/2 .

For 1 ≤ j1, j2 ≤ ` let Sj1j2 denote the set of keys from Sj1 that have probe
sequences starting in Ij2 , i.e Sj1j2 = {x ∈ Sj1 | h(x) ∈ Ij2}. For any x ∈ S`j the
insertion of x will pass all the elements of Sj` “after h(x)”, i.e., whose hash value
is in h(x) + [r/2]. This means that at least |Ij ∩ I`|2/2 steps are used during the
insertions of the keys from S` to pass locations occupied by keys of Sj. Summing
over all j < ` and adding to the bound from the induction hypothesis yields the
desired result.

5.3.1 Linear congruential hash functions

We first consider the following family of functions, introduced by Carter and
Wegman [CW79] as a first example of a universal family of hash functions:

H(p, r)
def
= {x 7→ ((ax+ b) mod p) mod r | 0 < a < p, 0 ≤ b < p}

where p is any prime number and r ≤ p is any integer. Functions in H(p, r) map
integers of [p] to [r].

Theorem 5.3.2. For r = dp/2e there exists a set S ⊆ [p], |S| ≤ r/2, such that
the expected cost of inserting the keys of S in a linear probing hash table of size
r using a hash function chosen uniformly at random from H(p, r) is Ω(r log r).

Proof. We give a randomized construction of S, and show that when choosing
h at random from H(p, r) the expected total insertion cost for the keys of S is
Ω(r log r). This implies the existence of a fixed set S with at least the same
expectation for random h ∈ H(p, r). Specifically, we partition [p] into 8 intervals
U1, . . . , U8, such that

⋃
i Ui = [p] and r/4 ≥ |Ui| ≥ r/4 − 1 for i = 1, . . . , 8,

and let S be the union of two of the sets U1, . . . , U8 chosen at random (without
replacement). Note that |S| ≤ r/2, as required.

Consider a particular function h ∈ H(p, r) and the associated values of a and

b. Let ĥ(x)
def
= (ax + b) mod p, and let m denote the unique integer in [p] such

that am mod p = 1 (i.e., m = a−1 in GF(p)). Since ĥ is a permutation on [p],
the sets ĥ(Ui), i = 1, . . . , 8, are disjoint. We note that for any x, ĥ(x + m) =
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(ĥ(x) + 1) mod p. Thus, for any k, ĥ({x, x + m,x + 2m, . . . , x + km}) is an
interval (modulo p) of length k + 1. This implies that for all i there exists a set
L̂i of m disjoint intervals such that ĥ(Ui) =

⋃
I∈L̂i

I. Similarly, for all i there
exists a set Li of at most m + 1 intervals (not necessarily disjoint) such that
we have the multiset equality h(Ui) =

⋃
I∈Li

I. Since all intervals in
⋃
i L̂i are

disjoint and their sizes differ by at most 1, an interval in
⋃
i Li can intersect at

most two other intervals in
⋃
i Li. We now consider two cases:

1. Suppose there is some i such that

∑

I1,I2∈Li,I1 6=I2
|I1 ∩ I2| ≥ r/16 . (5.1)

With constant probability it holds that Ui ⊆ S. We apply Lemma 5.3.1
on the set Ui and on a partition of Ui that corresponds to the interval
collection Li. The lemma gives us a lower bound of

∑

I1,I2∈Li,I1 6=I2
|I1 ∩ I2|2/2 (5.2)

on the number of probes made during all insertions. This sum is mini-
mized if all nonzero intersections have the same size. Suppose that there
are k = O(m) nonzero intersections. According to (5.1) the equal size
of intersections would have to be Ω(r/k). Therefore the sum in (5.2) is
Ω(r2/k) = Ω(r2/m).

2. Now suppose that for all i,

∑

I1,I2∈Li,I1 6=I2
|I1 ∩ I2| < r/16 .

Note that any value in [r−1] is contained in exactly two intervals of
⋃
i Li.

By the assumption, the number of values that occur in two intervals from
the same collection Li, for any i, is less than 8 · r/16 = r/2. Thus there
exist i1, i2, i1 6= i2, such that |h(Ui1) ∩ h(Ui2)| = Ω(r). With constant
probability we have that S = Ui1 ∪ Ui2 . We now apply Lemma 5.3.1.
Consider just the terms in the sum of the form |I1 ∩ I2|2/2, where I1 ∈ Li1
and I2 ∈ Li2 . As before, this sum is minimized if all O(m) intersections
have the same size, and we derive an Ω(r2/m) lower bound on the number
of insertion steps.

For a random h ∈ H(p, r), m is uniformly distributed in {1, . . . , p} (the
mapping a 7→ a−1 is a permutation of {1, . . . , p}). This means that the expected
total insertion cost is:

Ω

(
1

p

p∑

m=1

r2/m

)
= Ω

(
r2

p
log p

)
= Ω(r log r) .
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5.3.2 Family with uniform distribution

One might wonder if the lower bound shown in the previous section also holds
if the hash function values are uniformly distributed in R. We slightly mod-
ify H(p, r) to remain pairwise independent and also have uniformly distributed

function values. Let p̂
def
= dp/re r, and define:

g(y, ŷ)
def
=

{
ŷ if ŷ ≥ p
y otherwise

.

For a vector v let vi denote the i+ 1st component (indexes starting with zero).
We define:

H∗(p, r)
def
= {x 7→ g((ax + b) mod p, vx) mod r | 0 ≤ a < p, 0 ≤ b < p, v ∈ [p̂]p}

Lemma 5.3.3 (Pairwise independence). For any pair of distinct values x1, x2 ∈
[p], and any y1, y2 ∈ [r], if h is chosen uniformly at random from H∗(p, r), then

Pr{h(x1) = y1 ∧ h(x2) = y2} = 1/r2 .

Proof. We will show something stronger than claimed, namely that the family

H∗∗ = {x 7→ g((ax + b) mod p, vx) | 0 ≤ a < p, 0 ≤ b < p, v ∈ [p̂]p}
is pairwise independent and has function values uniformly distributed in [p̂].
Since r divides p̂ this will imply the lemma. Pick any pair of distinct values
x1, x2 ∈ [p], and consider a random function h ∈ H∗∗. Clearly, vx1 and vx2 are
uniform in [p̂] and independent. We note as in [CW79] that for any y ′1, y

′
2 ∈ [p]

there is exactly one choice of a and b that makes (ax1 + b) mod p = y′1 and

(ax2 + b) mod p = y′2. This is because the matrix

(
x1 1
x2 1

)
is invertible. As

a consequence, (ax1 + b) mod p and (ax2 + b) mod p are uniform in [p] and
independent. We can think of the definition of h(x) as follows: The value is
vx unless vx ∈ [p], in which case we substitute vx for another random value in
[p], namely (ax + b) mod p. It follows that hash function values are uniformly
distributed, and pairwise independent.

Corollary 5.3.4. Theorem 5.3.2 holds also if we replace H(p, r) by H∗(p, r).
In particular, pairwise independence with uniformly distributed function values
is not a sufficient condition for linear probing to have expected constant cost per
operation.

Proof. Consider the parameters a, b, and v of a random function in H∗(p, r).
Since r = dp/2e we have p̂ = p+ 1, and (p/p̂)p > 1/4. Therefore, with constant
probability it holds that a 6= 0 and v ∈ [p]p. Restricted to functions satisfying
this, the family H∗(p, r) is identical to H(p, r). Thus, the lower bound carries
over (with a smaller constant). By Lemma 5.3.3, H∗ is pairwise independent
with uniformly distributed function values.

We remark that the lower bound is tight. A corresponding O(n log n) up-
per bound can be shown by applying the framework of section 5.4, but using
Chebychev’s inequality rather than Lemma 5.2.1 as the basic tool for bounding
probabilities.
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5.4 5-wise independence

We want to bound the expected number of probes into the table made during
any single operation (insertion, deletion, or lookup of a key x) when the hash
table contains the set S of keys. It is well known that for linear probing, the set
P of occupied table positions depends only on the set S and the hash function,
independent of the sequence of insertions and deletions performed. An operation
on key x makes no more than

1 + max{l | h(x) + [l] ⊆ P}

probes into the table, because the iteration stops when the next unoccupied
position is found (or sooner in case of a successful search). We first show a
lemma which intuitively says that if the operation on the key x goes on for at
least l steps, then there are either “many” keys hashing to the interval h(x)+[l],
or there are “many” keys that hash to some interval having h(x) as its right
endpoint.

Lemma 5.4.1. For any l > 0 and ᾱ ∈ (0, 1), if h(x) + [l] ⊆ P then at least one
of the following holds:

1.
∣∣{y ∈ S \ {x} : h(y) ∈ (h(x) + [l])}

∣∣ ≥ 1+ᾱ
2 l − 1, or

2. (∃`)
∣∣{y ∈ S : h(y) ∈ [h(x) − `, h(x))}

∣∣ ≥ `+ 1−ᾱ
2 l .

Proof. Suppose that
∣∣{y ∈ S \ {x} : h(y) ∈ (h(x) + [l])}

∣∣ < 1+ᾱ
2 l − 1. Then in

either case, x ∈ S or x /∈ S, it holds that
∣∣{y ∈ S : h(y) ∈ (h(x)+ [l])}

∣∣ < 1+ᾱ
2 l.

Let
l′

def
= max{` : [h(x)− `, h(x)] ⊆ P} .

Now, fix any way of placing the keys in the hash table, e.g., suppose that keys
are inserted in sorted order. Consider the set S∗ ⊆ S of keys stored in the
interval I = [h(x)− l′, h(x) + l− 1]. By the choice of l′ there must be an empty
position to the left of I, so h(S∗) ⊆ I. This means:

∣∣{y ∈ S : h(y) ∈ [h(x) − l′, h(x))}
∣∣ ≥

∣∣{y ∈ S∗ : h(y) ∈ [h(x)− l′, h(x))}
∣∣

≥ |S∗| −
∣∣{y ∈ S∗ : h(y) ∈ (h(x) + [l])}

∣∣
> |I| − 1+ᾱ

2 l

= l′ + 1−ᾱ
2 l .

5.4.1 A simple bound

We start out with a bound that is simpler to derive than our final bound in
section 5.4.2. It is possible to skip this section, but we believe that reading it
makes it easier to understand the more complicated argument in section 5.4.2.

The next lemma upper bounds the probability that there exists some interval
of form [h(x)−`, h(x)) having `+d keys hashing into it, with d being a parameter.
The derived bound will later be used to cover the case 2 from Lemma 5.4.1.
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Lemma 5.4.2. Let S ⊆ U be a set of size n, and H a 5-wise independent
family of functions from U to R with a maximum load of ᾱ < 1. If h is chosen
uniformly at random from H, then for any x ∈ U and λ > 0,

Pr

{
max
`

(∣∣{y ∈ S : h(y) ∈ [h(x)− `, h(x))}
∣∣ − `

)
≥ λ+ 1

(1− ᾱ)3/2

}
<

8ᾱ

λ2
.

Proof. We will use the symbol ∆ to denote d λ2 (1− ᾱ)−3/2e. Let Ai be the event
that ∣∣{y ∈ S : h(y) ∈ [h(x) − i∆, h(x))}

∣∣ − i∆ ≥ ∆ .

We claim that it is sufficient to show Pr
(⋃

i>0Ai
)
< 8ᾱ

λ2 . To see this, suppose

that
∣∣{y ∈ S : h(y) ∈ [h(x)−`, h(x))}

∣∣−` ≥ λ+1
(1−ᾱ)3/2 , for some `. Let i′ = d `∆e.

Then

∣∣{y ∈ S : h(y) ∈ [h(x)− i′∆, h(x))}
∣∣ ≥ `+

λ+ 1

(1− ᾱ)3/2

≥ i′∆− (∆− 1) + λ(1 − ᾱ)−3/2 + 1

≥ i′∆ +
λ

2
(1− ᾱ)−3/2 + 1 ≥ i′∆ + ∆ .

In this lemma we use a simple upper bound Pr(
⋃
i>0Ai) ≤

∑
i>0 Pr(Ai). We

use Lemma 5.2.1 to estimate each value Pr(Ai). Note that intersections of any
interval [h(x) − `, h(x)) with the sets h(S \ {x}) and h(S) are the same.

∑

i>0

Pr(Ai) ≤
∑

i>0

4ᾱ(i∆)2

((1− ᾱ)i∆ + ∆)4
≤ 4ᾱ

∆2

∑

t

( t
1−ᾱ )2

(t+ 1)4

We used the substitution t = (1 − ᾱ)i. The last sum is over t ∈ {1 − ᾱ, 2(1 −
ᾱ), . . .}. The function t2

(1+t)4
is first increasing and then decreasing on [0,∞).

Thus the sum can be bounded by the integral 1
1−ᾱ

∫∞
1−ᾱ

t2

(1+t)4
dt plus the value

of the biggest term in the sum.

∑

i>0

Pr(Ai) <
4ᾱ

∆2

1

(1− ᾱ)2

(
max
t>0

t2

(1 + t)4
+

1

1− ᾱ

∫ ∞

1−ᾱ

t2

(1 + t)4
dt

)

<
4ᾱ

∆2

1

(1− ᾱ)3

(
1

10
+

∫ ∞

0

t2

(1 + t)4
dt

)

<
2ᾱ

∆2
(1− ᾱ)−3 ≤ 8ᾱ

λ2
.

Theorem 5.4.3. Consider any sequence of operations (insertions, deletions,
and lookups) in a linear probing hash table where the hash function h used has
been chosen uniformly at random from a 5-wise independent family of func-
tions H. Let n and ᾱ < 1 denote, respectively, the maximum number of keys
in the table during a particular operation and the corresponding maximum load.
Then the expected number of probes made during that operation is O((1−ᾱ)−5/2).
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Proof. We refer to x, S, and P as defined previously in this section. As argued
above, the expected probe count is bounded by

1 +
∑

l>0

Pr{h(x) + [l] ⊆ P} .

Let l0 = 10
(1−ᾱ)5/2 . For l ≤ l0 we use the trivial upper bound Pr{h(x) + [l] ⊆

P} ≤ 1. In the following we consider the case l > l0.

Let Al be the event that
∣∣{y ∈ S \ {x} : h(y) ∈ (h(x) + [l])}

∣∣ ≥ 1+ᾱ
2 l − 1,

and let Bl be the event that (∃`)
∣∣{y ∈ S : h(y) ∈ [h(x)− `, h(x))}

∣∣ ≥ `+ 1−ᾱ
2 l.

Lemma 5.4.1 implies that

∑

l>l0

Pr{h(x) + [l] ⊆ P} ≤
∑

l>l0

(
Pr(Al) + Pr(Bl)

)
.

Estimates of Pr(Al) and Pr(Bl) are obtained from Lemma 5.2.1 and Lemma 5.4.2
respectively:

∑

l>l0

(
Pr(Al) + Pr(Bl)

)
<

∑

l>l0

(
4ᾱl2

(1−ᾱ
2 l − 1)4

+
8ᾱ

( (1−ᾱ)5/2

2 l − 1)2

)

= O

(
ᾱ
∑

l>l0

(
(1− ᾱ)−4l−2 + (1− ᾱ)−5l−2

))

= O
(
(1− ᾱ)−5/l0

)
= O((1− ᾱ)−5/2) .

5.4.2 Improving the bound

By inspecting the proof of Theorem 5.4.3, one notices that an improvement
to the result of Lemma 5.4.2 directly leads to an improvement of the main
upper bound. The following lemma gives a bound with better dependence on α,
which is significant for high load factors. The stated constant factor is far from
being tight. Showing a considerably better constant factor would require a more
tedious proof with inelegant calculations.

Lemma 5.4.4. Let S ⊆ U be a set of size n, and H a 5-wise independent family
of functions from U to R with a maximum load of ᾱ. If h is chosen uniformly
at random from H, then for any x ∈ U ,

Pr

{
max
`

(∣∣{y ∈ S : h(y) ∈ [h(x)− `, h(x))}
∣∣ − `

)
≥ λ+ 2

(1− ᾱ)7/6

}
<

500ᾱ

λ2
.

Proof. We will use the symbol ∆ to denote d λ3 (1− ᾱ)−7/6e. Let A′
i be the event

that ∣∣{y ∈ S : h(y) ∈ [h(x)− i∆, h(x))}
∣∣ − i∆ ≥ 2∆ .

It is sufficient to find a good upper bound on Pr(
⋃
i>0A

′
i). To see this, suppose

that
∣∣{y ∈ S : h(y) ∈ [h(x)−`, h(x))}

∣∣−` ≥ λ+2
(1−ᾱ)7/6 , for some `. Let i′ = d `∆e.
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Then

∣∣{y ∈ S : h(y) ∈ [h(x)− i′∆, h(x))}
∣∣ ≥ `+

λ+ 2

(1− ᾱ)7/6

≥ i′∆− (∆− 1) + λ(1 − ᾱ)−7/6 + 2

≥ i′∆ + 2
λ

3
(1− ᾱ)−7/6 + 2 ≥ i′∆ + 2∆ .

We define the events Ai by Ai = A′
i \
⋃
j>iA

′
j . It holds that Ai ∩ Aj = ∅,

i 6= j, and
⋃
i>0Ai =

⋃
i>0A

′
i. Therefore, Pr(

⋃
i>0A

′
i) =

∑
i>0 Pr(Ai).

For the purpose of determining certain constraints that values Pr(Ai) must
satisfy, we define the events Bi and Cij by

Bi =
{
h ∈ H :

∣∣{y ∈ S : h(y) ∈ [h(x)− i∆, h(x))}
∣∣ ≥ 1 + ᾱ

2
i∆ + ∆

}

and

Cij =
{
h ∈ H :

∣∣{y ∈ S : h(y) ∈ [h(x)−i∆, h(x)−j∆}
∣∣ ≥ 1− ᾱ

2
j∆+(i−j+1)∆

}

for i > j > 0. Intuitively, Bi is the event that A′
i nearly holds, with no more

than (1 + 1−ᾱ
2 i)∆ elements missing in the interval. Cij is the event that the

interval [h(x)− i∆, h(x)− j∆
)

contains the hash values of at least 1−ᾱ
2 j∆ more

elements than the size of the interval. For k < i, it holds that

Ai ⊆ A′
i ⊆ Bi−k ∪ Ci, i−k . (5.3)

Hence, for a fixed j, ⋃

i>j

(Ai \ Cij) ⊂ Bj ,

and as a result
∑

i>j Pr(Ai \ Cij) ≤ Pr(Bj). Summing over j > 0 and re-
expressing the sums we get:

∑

i>0

∑

j>0

Pr(Ai \ Cij) ≤
∑

i>0

Pr(Bi) . (5.4)

We will first estimate
∑

i Pr(Bi) using Lemma 5.2.1 (note that intersections of
any interval [h(x)− `, h(x)) with the sets h(S \ {x}) and h(S) are the same):

∑

i>0

Pr(Bi) ≤
∑

i>0

4ᾱ(i∆)2

(1−ᾱ
2 i∆ + ∆)4

<
4ᾱ

∆2

8

(1− ᾱ)3

(
max
t>0

t2

(1 + t)4
+

∫ ∞

1−ᾱ

t2

(1 + t)4
dt

)

<
4ᾱ

∆2

8

(1− ᾱ)3

(
1

10
+

∫ ∞

0

t2

(1 + t)4
dt

)

<
16ᾱ

∆2
(1− ᾱ)−3 .

Again using Lemma 5.2.1 to estimate Pr(Cij), for i > j > 0, we get:

Pr(Cij) ≤
4ᾱ(i− j)2∆2

(1−ᾱ
2 (2i − j)∆ + ∆)4

<
4ᾱ

∆2

(i− j)2
(1−ᾱ

2 i+ 1)4
.
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For the probability of the event Ai \ Cij we use a trivial lower bound of
Pr(Ai)− Pr(Cij). Hence, for any i > 0,

i−1∑

k=1

Pr(Ai \ Ci, i−k) >
i−1∑

k=1

max

{
0, Pr(Ai)−

4ᾱ

∆2

k2

(1−ᾱ
2 i+ 1)4

}
.

Let pi = Pr(Ai), γi = 4ᾱ
∆2 (1−ᾱ

2 i + 1)−4, and ki = b
√
pi/γic. Lemma 5.2.1 gives

pi <
4ᾱ(i∆)2

((1−ᾱ)i∆+2∆)4
, and so ki ≤ bi/4c ≤ i− 1. We further have that

kipi − γi
ki∑

k=1

k2 > pi(
√
pi/γi − 1)− γi

(
(pi/γi)

3/2

2
+ 1

)
=

p
3/2
i

2
√
γi
− pi − γi .

An upper bound on
∑

i>0 pi can be obtained through solving an optimization
problem over real variables x1, x2, . . ., xbr/∆c. The problem is to maximize∑

i>0 xi subject to the constraint that

∑

i>0

x
3/2
i

2
√
γi
− xi ≤

16ᾱ

∆2
(1− ᾱ)−3 +

∑

i>0

γi .

The vector (p1, p2, . . .) is a feasible solution to the problem and thus
∑

i>0 pi
is not larger than the optimal value. By employing the method of Lagrange
multipliers we find that the optimal solution is xi = γiy

2, where y is a value that
satisfies:

y3 − y2 =
4

(1− ᾱ)3
1∑

i>0(
1−ᾱ

2 i+ 1)−4
+ 1 .

We have that 2
3(1−ᾱ) <

∑
i>0(

1−ᾱ
2 i+1)−4 < 1+ 2

3(1−ᾱ) . Suppose that y > 2.5, so

we may write 1
2y

3 < y3−y2−1. It follows that y < ( 16
(1−ᾱ)2 )1/3. Since 3

√
16 > 2.5

the calculated upper bound on y is true in general. Finally,

∑

i>0

pi <
∑

i>0

γiy
2 <

(
16

(1− ᾱ)2

)2/3 72ᾱ

λ2
(1− ᾱ)14/6−1 <

500ᾱ

λ2
.

By changing l0 to 50
(1−ᾱ)13/6 in the proof of Theorem 5.4.3, and utilizing the

previous lemma, the following result is proved.

Theorem 5.4.5. Consider any sequence of operations (insertions, deletions,
and lookups) in a linear probing hash table where the hash function h used has
been chosen uniformly at random from a 5-wise independent family of func-
tions H. Let n and ᾱ < 1 denote, respectively, the maximum number of keys
in the table during a particular operation and the corresponding maximum load.
Then the expected number of probes made during that operation is O((1−ᾱ)−13/6).
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5.5 Blocked probing

In this section we propose and analyze a family of open addressing methods,
containing among other a variant of bidirectional linear probing. The expected
probe count for any single operation is within a constant factor from the cor-
responding value in linear probing with a fully random hash function. For suc-
cessful searches we do a more precise analysis. It is shown that the expected
number of probes made during a search for a random element of S is less than
1+ 2

1−ᾱ
ᾱ
α . The bounds for single operations require a 5-wise independent family

of functions. The bound for average successful search requires 4-wise indepen-
dence.

Suppose that keys are hashed into a table of size r by a function h. For
simplicity we assume that r is a power of two. Define x	a = x− (x mod a), for
any integers x and a. Let V i

j = {j, j + 1, . . . , j + 2i − 1}, where j is assumed to

be a multiple of 2i. The intervals V i
j may be thought of as sets of references to

slots in the hash table. In a search for key x, intervals V i
j that enclose h(x) are

examined in the order of increasing i. More precisely, V 0
h(x) is examined first; if

the search did not finish after traversing V i
h(x)	2i , then the search proceeds in

the untraversed half of V i+1
h(x)	2i+1 . The search stops after traversal of an interval

if any of the following three cases hold:

a) key x was found,

b) the interval contained empty slot(s),

c) the interval contained key(s) whose hash value does not belong to the
interval.

In case (a) the search may obviously stop immediately on discovery of x — there
is no need to traverse through the rest of the interval. In cases (b) and (c) we
will be able to conclude that x is not in the hash table.

Traversal of unexamined halves of intervals V i
j may take different concrete

forms; the only requirement is that every slot is probed exactly once. From a
practical point of view, a good choice is to probe slots sequentially in a way
that makes the scheme a variant of bidirectional linear probing. This concrete
version defines a probe sequence that in probe numbers 2i to 2i+1 − 1 inspects
either slots

(h(x)	 2i + 2i, h(x) 	 2i + 2i + 1, . . . , h(x)	 2i + 2i+1 − 1)

or (h(x)	 2i − 1, h(x)	 2i − 2, . . . , h(x)	 2i − 2i)

depending on whether h(x) mod 2i = h(x) mod 2i+1 or not. A different probe
sequence that falls in this class of methods, but is not sequential, is (x, j) 7→
h(x)⊕ j, with j starting from 0.

Insertions. Until key x which is being inserted is placed in a slot, the same
probe sequence is followed as in a search for x. However, x may be placed in a
non-empty slot if its hash value is closer to the slot number in a special metric
which we will now define. Let d(y1, y2) = min{i | y2 ∈ V i

y1	2i}. The value of
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d(y1, y2) is equal to the position of the most significant bit in which y1 and y2

differ. If during insertion of x we encounter a slot y containing key x′ such that
d(h(x), y) < d(h(x′), y) then key x is put into slot y. In an implementation
there is no need to evaluate d(h(x), y) values every time. We can keep track of
what interval V i

h(x)	2i is being traversed at the moment and check whether h(x′)
belongs to that interval.

When x is placed in slot y which was previously occupied by x′, a new slot
for x′ has to be found. Let i = d(h(x′), y). The procedure now continues as if x′

is being inserted and we are starting with traversal of V i
h(x′)	2i \ V i−1

h(x′)	2i−1 . If

the variant of bidirectional linear probing is used, the traversal may start from
position y, which may matter in practice.

Deletions. After removal of a key we have to check if the new empty slot
can be used to bring some keys closer to their hash values, in terms of the metric
d. Let x be the removed key, y be the slot in which it resided, and i = d(h(x), y).
There is no need to examine V i−1

h(x)	2i−1 . If V i
h(x)	2i \ V i−1

h(x)	2i−1 contains another

empty slot then the procedure does not continue in wider intervals. If it contin-
ues and an element gets repositioned then the procedure is recursively applied
starting from the new empty slot.

It is easy to formally check that appropriate invariants hold and that the
above described set of procedures works correctly.

5.5.1 Analysis

We analyze the performance of operations on a hash table of size r when blocked
probing is used. Suppose that the hash table stores an arbitrary fixed set of n
elements, and let ᾱ denote the maximum load of H on sets of size n. Let CU

ᾱ , CIᾱ,
CDᾱ , and CS

ᾱ be the random variables that represent, respectively: the number of
probes made during an unsuccessful search for a fixed key, the number of probes
made during an insertion of a fixed key, the number of probes made during a
deletion of a fixed key, and the number of probes made during a successful search
for a random element from the set. In the above notation we did not explicitly
include the fixed set and fixed elements that are used in the operations; they
have to be implied by the context. The upper bounds on the expectations of CΞ

ᾱ

variables, which are given by the following theorem, do not depend on choices
of those elements.

In this section, upper bounds have explicit constant factors. We introduce a
function that appears in statements of some upper bounds. Define T (ᾱ) as the
function over domain (0, 1) with the value given by

T (ᾱ) =

{
5.2ᾱ

(1−ᾱ)2
+ 1

3 for ᾱ ≥ 1
3 ,

2.5ᾱ
(1−ᾱ)4 for ᾱ < 1

3 .

It can be checked that T (ᾱ) < 5.7ᾱ
(1−ᾱ)2

. By frac(x) we denote the function x 7→
x− bxc.

Theorem 5.5.1. Let H be a 5-wise independent family of functions which map
U to R. For a maximum load of ᾱ < 1, blocked probing with a hash function
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chosen uniformly at random from H provides the following expectations.

E(CU
ᾱ ) < 1 + T (ᾱ)

E(CI
ᾱ) < 1 + 2T (ᾱ)

E(CD
ᾱ ) < 1 + 2T (ᾱ)

Proof. Denote by x the fixed element from U\S that is being inserted or searched
(unsuccessfully). Let C̄Uᾱ be the random variable that takes value 2i when 2i−1 <

CUᾱ ≤ 2i, 0 ≤ i ≤ lg r. We can write C̄Uᾱ = 1 +
∑lg r

i=1 2i−1Ti, where Ti is
an indicator variable whose value is 1 when at least 2i−1 + 1 probes are made
during the search. Let Aj be the event that the interval of slots V j

h(x)	2j is fully

loaded, meaning that at least 2j elements of S are hashed into the interval. If
Ti = 1 then Ai−1 holds, so we have:

E(C̄Uᾱ ) ≤ 1 +

lg r∑

i=1

2i−1Pr(Ai−1) .

An upper bound on Pr(Ai) can be derived from Lemma 5.2.1. Denoting K =
3ᾱ2

(1−ᾱ)4
, we may write Pr(Ai) <

K
22j + K

3ᾱ·23j (we used the bound from the end

of the proof of the lemma; that bound was simplified in the lemma statement).
Yet, for small lengths, and ᾱ not small, the aforementioned bound is useless;
then we will simply use the trivial upper bound of 1. We first consider the case
K ≥ 1. Denoting j∗ =

⌈
1
2 lgK

⌉
we have that

E(CU
ᾱ − 1) ≤ 2j∗ − 1 +

lg r∑

j=j∗

2j
(
K

22j
+

K

3ᾱ · 23j

)

= 2j∗ − 1 +K

lg r∑

j=j∗

2−j +
K

3ᾱ

lg r∑

j=j∗

2−2j

< 2j∗ − 1 +
K

2j∗
1

1− 1
2

+
K

3ᾱ · 4j∗
1

1− 1
4

≤
√
K · 21−frac(lg

√
K) − 1 + 2

√
K · 2−(1−frac(lg

√
K)) + 4

9ᾱ

≤ 3
√
K + 4

9ᾱ − 1 .

The last inequality is true because 2t+2 ·2−t ≤ 3, for t ∈ [0, 1]. The assumption
that K ≥ 1 implies that ᾱ > 0.29, but we decide to use the obtained bound for
ᾱ ≥ 1

3 . Thus, we may replace 4
9ᾱ − 1 with an upper bound of 1

3 . Doing an easier
calculation without splitting of the sum at index j∗ gives E(CU

ᾱ ) < 1+K(2+ 4
9ᾱ ).

When ᾱ < 1
3 , we may replace K(2 + 4

9ᾱ ) with an upper bound of 2.5ᾱ
(1−ᾱ)4

.

We now move on to analyzing insertions. Let C̄Iᾱ be the random variable
that takes value 2i when 2i−1 < CIᾱ ≤ 2i, 0 ≤ i ≤ lg r. The variable CU

ᾱ gives
us the slot where x is placed, but we have to consider possible movements of
other elements. If x is placed into a slot previously occupied by key x′ from a
“neighbouring” interval V i+1

h(x)	2i+1 \ V i
h(x)	2i , then as many as 2i probes may be

necessary to find a place for x′ in V i
h(x)	2i , if there is one. If V i+1

h(x)	2i+1 is fully

105



Chapter 5. Linear Probing with Constant Independence

loaded, then as many as 2i+1 additional probes may be needed to find a place
within V i+2

h(x)	2i+2 \V i+1
h(x)	2i+1 , and so on. In general — and taking into account all

repositioned elements — we use the following accounting to get an overestimate
of E(C̄Iᾱ): For every fully loaded interval V i

h(x)	2i we charge 2i probes, and for

every fully loaded neighbouring interval V i+1
h(x)	2i+1 \ V i

h(x)	2i we also charge 2i

probes. The probability of a neighbouring interval of length 2i being full is equal
to Pr(Ai). As a result,

E(C̄Iᾱ) ≤ 1 +

lg r−1∑

i=0

2i · 2Pr(Ai) < 1 + 2T (ᾱ) .

The analysis of deletions is analogous.

For higher values of ᾱ, the dominant term in the upper bounds is O( 1
(1−ᾱ)2

).

The constant factors in front of term (1 − ᾱ)−2 are relatively high compared
to standard linear probing with fully random hash functions. This is in part
due to approximative nature of the proof of Theorem 5.5.1, and in part due
to tail bounds that we use, which are weaker than those for fully independent
families. In the fully independent case, the probability that an interval of length
q is fully loaded is less than eq(1−α+lnα), according to Chernoff-Hoeffding bounds
[Che52, Hoe63]. Plugging this bound into the proof of Theorem 5.5.1 would give,
for example,

E(CU
α ) < 1 +

e1−α+lnα

ln 2 · |1− α+ lnα| . (5.5)

For α close to 1, a good upper bound on (5.5) is 1 + 2
ln 2(1−α)−2. The constant

factor here is ≈ 2.88, as opposed to ≈ 5.2 from the statement of Theorem 5.5.1.
As α gets smaller, the bound in (5.5) gets further below 1 + 2

ln 2(1− α)−2.

5.5.2 Analysis of successful searches

As before, we assume that the function h is chosen uniformly at random from
H. For a subset Q of R, let Xi be the indicator random variable that has value
1 iff h(xi) ∈ Q, 1 ≤ i ≤ n. The variable X =

∑n
i=1Xi counts the number of

elements that are mapped to Q. We introduce a random variable that counts
the number of elements that have overflowed on Q. Define Y = max{X − q, 0},
where q = |Q|. We will find an upper bound on E(Y ) that is expressed only in
terms of q and ᾱH. Denote such a bound by M ᾱ

q . It is clear that

E(CS
ᾱ ) ≤ 1 +

1

n

lg r−1∑

l=0

2l
r

2l
M ᾱ

2l = 1 +
1

α

lg r−1∑

l=0

M ᾱ
2l .

We are starting the analysis of E(Y ), for an arbitrary fixed set Q. The value
of E(Y ) is

∑n−q
j=1 j · Pr{X = q + j}. A bound on E(Y ) can be obtained as the

optimal value of an optimization problem, which we will introduce. We denote
E(X) shortly by µ. Let variables pi, 0 ≤ i ≤ n have domain [0, 1]. Define the
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following optimization problem in variables p0, . . . , pn:

maximize

n−q∑

j=1

j · pq+j

subject to constraints:
n∑

i=0

pi = 1 ,

dµe−1∑

i=0

(µ− i)pi =

n∑

i=bµc+1

(i− µ)pi ,

n∑

i=0

(µ− i)kpi = Dk .

If we choose an even k ≥ 2, and set Dk to be an upper bound on the value of
the kth central moment of X, then the optimal value of the objective function
is an upper bound on E(Y ). Remark that in an optimal solution pi = 0 for
dµe ≤ i ≤ q. We will actually not solve the above problem, but its relaxation.
We introduce variables di, i ∈ I = {−dµe, . . . ,−2,−1, 1, 2, . . . n − q}. For i ∈
{−dµe, . . . ,−1} the domain of variables di is (0, µ]; for i ∈ {1, . . . n − q} the
domain of variables di is (q − µ, n]. The variables representing probabilities are
still denoted by pi, but the index set is now I. Define optimization problem Π
over all variables pi, di as:

maximize

n−q∑

j=1

pj(dj − (q − µ))

subject to constraints:∑

i∈I
pi = 1 , (5.6)

dµe∑

i=−1

dipi =

n−q∑

i=1

dipi , (5.7)

∑

i∈I
dki pi = Dk . (5.8)

The optimal value of the objective function for the problem Π is not smaller
than the optimal value in the original problem.

Lemma 5.5.2. Let (p̄, d̄) be an optimal solution to the problem Π such that
d̄i 6= d̄j for 0 < i < j and 0 > i > j. Then only one value among p̄1, . . . , p̄n−q is
not equal to 0, and only one value among p̄−1, . . . , p̄−dµe is not equal to 0.

Proof. We will prove the claims for i > 0 and i < 0 separately. Suppose the
contrary, that there are two non-zero values among p̄1, . . . , p̄n−q. W.l.o.g. we
may assume that p̄1 > 0 and p̄2 > 0. Define function f(d1, d2) over d1, d2 ≥ 0 as

f(d1, d2) = p̄1(d1 − (q − µ)) + p̄2(d2 − (q − µ)) .

107



Chapter 5. Linear Probing with Constant Independence

We are interested in finding the maximum of f subject to constraint p̄1d
k
1 +

p̄2d
k
2 − D = 0, where D = p̄1d̄

k
1 + p̄2d̄

k
2 . According to the method of Lagrange

multipliers, the only point in the interior of the domain that is a candidate for an

extreme point is (d̂, d̂), where d̂ = k

√
D

p̄1+p̄2
. We cannot establish the character of

the point directly through an appropriate quadratic form, because the required
forms evaluate to zero (the form should be positive definite or negative definite to
establish the local minimum or maximum, respectively). However, by comparing
f(d̂, d̂) to the values of f at boundary points ( k

√
D/p̄1, 0) and (0, k

√
D/p̄2), we

find that the maximum is reached in the interior of the domain and it must
be at point (d̂, d̂). It is not hard to show that d̂ ∈ (q − µ, n], by looking at
the set determined by equation p̄1d

k
1 + p̄2d

k
2 − D = 0 and using the fact that

(d̄1, d̄2) ∈ (q − µ, n]× (q − µ, n].

We construct a new solution (p̃, d̃) to the problem Π in two phases. In the
first phase: set p̃i = p̄i and d̃i = d̄i for i /∈ {1, 2}, set p̃2 = d̃2 = 0, d̃1 = d̂ and

p̃1 = p̄1d̄1+p̄2d̄2
d̂

. From (d̂, d̂) being the point of maximum of f , it follows that

p̄1d̄1 + p̄2d̄2

d̂
< p̄1 + p̄2 .

Now (p̃, d̃) exactly satisfies (5.7) and it satisfies the inequality conditions corre-
sponding to (5.6) and (5.8). Already now, the value of the objective function
is higher than the value at (p̄, d̄). It increases even further when we increase
values of p̃1 and p̃−1 in a way that satisfies all the conditions with equalities. We
reached a contradiction, meaning that (p̄, d̄) cannot have two non-zero values
among p̄1, . . . , p̄n−q.

Suppose that there are two non-zero values among p̄−1,. . ., p̄−dµe. W.l.o.g.
we may assume that p̄−1 > 0 and p̄−2 > 0. To reach a contradiction we use an
argument that is in some way dual to the argument for the first part. Define
function g(d−1, d−2) = p̄−1d

k
−1 + p̄−2d

k
−2. Now we are interested in finding the

minimum of g subject to constraint p̄−1d−1 + p̄−2d−2 − (p̄−1d̄−1 + p̄−2d̄−2) = 0.
The proof continues similarly to the first part.

Lemma 5.5.3. Let OPT be the optimal value of the objective function for the
problem Π. Then OPT < 1

2
k
√
Dk, and also

OPT <





1
2

k−1
k k
√
Dk − 1

2(q − µ) when
Dk(1− 1

k
)k

(q−µ)k ≥ 1
2 ,

Dk

(q−µ)k−1 ((1− 1
k )
k−1 − (1− 1

k )
k) otherwise.

Proof. According to Lemma 5.5.2, an optimal solution to Π can be obtained
from the following simplified problem:

maximize p1(d1 − (q − µ))

subject to constraints:

p1d1 = (1− p1)d−1 ,

p1d
k
1 + (1− p1)d

k
−1 = Dk .
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Eliminating d−1 yields the constraint dk1(p1 +
pk
1

(1−p1)k−1 ) = Dk. Expressing d1

from this constraint shows that the objective function is equivalent to

f(p1) =
k
√
Dk

k

√
p1−k
1 + (1− p1)1−k

− p1(q − µ)

The value of the first term is symmetrical around the point 1
2 . Therefore, the

maximum of f is reached in the interval (0, 1
2 ]. By analyzing only the first term,

we get a simple upper bound of 1
2

k
√
Dk. To get the other bound we look at the

function
f̄(p1) = k

√
Dk · p1−1/k

1 − p1(q − µ) ,

which satisfies f < f̄ . Analyzing f̄ ′ we easily find the maximum of f̄(p1) over
p1 ∈ (0, 1

2 ].

Corollary 5.5.4. Suppose that H is 4-wise independent. Define

M ᾱ
q =





1
2

√
ᾱq If ᾱ

(1−ᾱ)2q
≥ (
√

2 + 1)2 ,
1√
2

√
ᾱq − 1

2q(1− ᾱ) If 2 ≤ ᾱ
(1−ᾱ)2q

< (
√

2 + 1)2 ,
1
4

ᾱ
1−ᾱ If 1√

2
≤ ᾱ

(1−ᾱ)2q
< 2 ,

0.11 · 3ᾱ2q+ᾱ
(1−ᾱ)3q2

If ᾱ
(1−ᾱ)2q

< 1√
2
.

It holds that E(Y ) < M ᾱ
q .

Proof. For the first three cases we used k = 2, and for the fourth case k = 4 was
used. The constants in the problem Π were substituted as: µ = ᾱq, D2 = ᾱq,
and D4 = 3ᾱ2q2 + ᾱq. The bound on the fourth central moment is proved very
similarly to the proof of of Lemma 5.2.1. The bound on the variance is easier to
prove.

The analysis is finalized with the following theorem.

Theorem 5.5.5. Let H be a 4-wise independent family of functions which map
U to R. When blocked probing is used with a hash function chosen uniformly at
random from H, then

E(CS
ᾱ ) < 1 + ᾱ

α ·





2
1−ᾱ 0.5 ≤ ᾱ ,
1.1
1−ᾱ 0.3 < ᾱ < 0.5 ,
0.85
1−ᾱ ᾱ ≤ 0.3 .

Proof. As stated at the beginning of this section, E(CS
ᾱ ) is upper-bounded by

1 +
1

α

lg r−1∑

l=0

M ᾱ
2l .

Now that we have M ᾱ
q values, we are only left to carry out summation of

∑
lM

ᾱ
2l .

We split the sum into four parts. The splitting indexes are set as follows: l1 =⌊
lg ᾱ

(
√

2+1)2(1−ᾱ)2

⌋
, l2 =

⌊
lg ᾱ

2(1−ᾱ)2

⌋
, l3 =

⌊
lg

√
2ᾱ

(1−ᾱ)2

⌋
. Some of the indices may
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be smaller than 0, in which case the sum is split into fewer parts. For tighter
bounding, we will also need the following values: t1 = frac

(
lg ᾱ

(
√

2+1)2(1−ᾱ)2

)
,

t2 = frac
(
lg ᾱ

2(1−ᾱ)2

)
, and t3 = frac

(
lg

√
2ᾱ

(1−ᾱ)2

)
.

Suppose first that l1 ≥ 0. Simple calculations yield the following four in-
equalities.

l1∑

l=0

M ᾱ
2l <

1√
2

ᾱ

1− ᾱ2−t1/2

l2∑

l=l1+1

M ᾱ
2l ≤

ᾱ

1− ᾱ
((

1 + 1√
2

)
2−t2/2 − 2−t1/2 − 1

22−t2 + 1
(
√

2+1)2
2−t1

)

l3∑

l=l2+1

M ᾱ
2l ≤

1

4

ᾱ

1− ᾱ (l3 − l2)

∞∑

l=l3+1

M ᾱ
2l ≤ 0.24

ᾱ

1 − ᾱ2t3 + 0.02
1 − ᾱ
ᾱ

22t3

For the third inequality, we notice that l3 − l2 = 2 for t3 ≤ 1
2 , and l3 − l2 = 1

for t3 >
1
2 . The assumption l1 ≥ 0 implies that ᾱ > 1

2 (we do not need the
exact bound on ᾱ), which we use for the second term of the r.h.s. of the fourth
inequality. Maximizing over t1, t2, t3 shows that

∑∞
l=0M

ᾱ
2l <

2ᾱ
1−ᾱ .

Now suppose that l1 < 0 and l2 ≥ 0. The first part of the sum is now

l2∑

l=0

M ᾱ
2l ≤

ᾱ

1− ᾱ
((

1 + 1√
2

)
2−t2/2 − 1

22−t2
)
−
(
1 + 1√

2

)√
ᾱ+

1− ᾱ
2

,

while the bounds on the other two parts stay the same. Since l1 < 0, it follows
that ᾱ < 0.7. When ᾱ < 0.7, it holds that 3

√
ᾱ > ᾱ

1−ᾱ . On the other hand,

l2 ≥ 0 is equivalent to ᾱ ≥ 1
2 . When ᾱ ≥ 1

2 , it holds that
√
ᾱ > 1 − ᾱ. Simple

calculations again show that
∑∞

l=0M
ᾱ
2l <

2ᾱ
1−ᾱ (a slightly lower constant could

also be stated).
Now suppose that l2 < 0 and l3 ≥ 0. This assumption implies that ᾱ > 0.3,

and we may write 1−ᾱ
ᾱ < 6ᾱ

1−ᾱ . In this case, we get
∑∞

l=0M
ᾱ
2l < 1.1 ᾱ

1−ᾱ .

In the final case, l3 < 0, we have
∑∞

l=0M
ᾱ
2l <

0.66ᾱ2

(1−ᾱ)3
+ 0.15ᾱ

(1−ᾱ)3
. Since ᾱ < 0.33

in this case, we may use ᾱ
(1−ᾱ)2

< 0.75 and 1
(1−ᾱ)2

< 2.25 to get the stated

bound.

5.6 Improving the lookup cost

In this section we briefly describe an alternative to standard linear probing that
improves the cost of lookups exponentially, without significantly changing the
characteristics of linear probing. Update operations exhibit the same memory
access pattern as before. Lookups perform jumps in memory, but still access
only memory locations within a small interval – at most twice the length of the
interval that would be inspected by the standard lookup procedure.
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The idea is to order the keys of each maximal interval of occupied positions
according to values of the hash function, in order to be able to do a doubling
search during lookups. In other words, if there is a choice of more than one key
to be placed at slot i then we choose the key having the hash value farthest from
i (in the metric (i− h(x)) mod r). If there is more than one key with the most
distant hash value, the smallest such key is stored at slot i. This invariant can
be maintained during insertions and deletions at no asymptotic cost in running
time, and the analysis of all operations stays the same.

Now consider a search for a key x, and assume for simplicity of exposition
that r is a power of 2, and that the table is not full. Instead of searching for
x sequentially we do a doubling search in the interval h(x) + [r − 1] (which
must contain x). For this to work we must argue that inspecting a location
(h(x) + i) mod r allows us to determine whether we should continue the search
for x before or after. If (h(x)+ i) mod r is an empty location, it is clear that we
must search before. By the invariant the same is true if location (h(x)+i) mod r
contains a key x′ such that h(x′) ∈ h(x) + 1 + [i] or h(x′) = h(x) ∧ x′ > x.
Otherwise, x cannot be in h(x) + [i]. The doubling search finds an interval
h(x) + [i, 2i] that contains x in case x ∈ S. Binary search is then applied on
this interval. This means that any search that would take time l using standard
linear probing now takes time O(log l). Specifically, the expected search time
goes down to O(log 1

1−ᾱ ).

5.7 Open problems

An immediate question is whether the dependence on α for linear probing with
constant independence matches the dependence on α in the case of full indepen-
dence, up to a constant factor. It is unclear whether 4 or even 3-wise indepen-
dence can guarantee good expected performance for linear probing. If one could
prove a sufficiently strong tail bound in a style of the bound from Lemma 5.2.1 it
could be plugged into the framework of Section 5.4; the bound would have to be
polynomially stronger than the bound that results from Chebyshev’s inequality.

In general, the problem of finding practical, and provably good hash functions
for a range of other important hashing methods remains unsolved. For example,
cuckoo hashing [PR04] and its variants presently have no such functions. Also,
if we consider the problem of hashing a set into n/ log n buckets such that the
number of keys in each bucket is O(log n) w.h.p., there is no known explicit
class achieving this with function descriptions of O(log |U |) bits. Possibly, such
families could be designed using efficient circuits, rather than a standard RAM
instruction set.
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Chapter 6

Deterministic load balancing
and dictionaries in the parallel
disk model

Abstract

We consider deterministic dictionaries in the parallel disk model, motivated by
applications such as file systems. Our main results show that if the number
of disks is moderately large (at least logarithmic in the size of the universe
from which keys come), performance similar to the expected performance of
randomized dictionaries can be achieved. Thus, we may avoid randomization
by extending parallelism. We give several algorithms with different performance
trade-offs. One of our main tools is a deterministic load balancing scheme based
on expander graphs, that may be of independent interest.

6.1 Introduction

Storage systems for large data sets are increasingly parallel. There exist disk
arrays consisting of more than a thousand disks1, and Network-Attached Storage
(NAS) solutions could in principle scale up to an arbitrary number of storage
servers. A simple, feasible model for these kinds of situations is the parallel disk
model [VS94]. In this model there are D storage devices, each consisting of an
array of memory blocks with capacity for B data items; a data item is assumed
to be sufficiently large to hold a pointer value or a key value. The performance
of an algorithm is measured in the number of parallel I/Os, where one parallel
I/O consists of retrieving (or writing) a block of B data items from (or to) each
of the D storage devices.

The problem studied in this chapter is the design of dictionaries, that is,
data structures storing a set of n keys from some bounded universe U , as well as
“satellite” information associated with each key, supporting lookups of keys and
dynamic updates to the key set. This is a fundamental and well-studied problem

1For example, the Hitachi TagmaStore USP1100 disk array can include up to 1152 disks,
storing up to 32 petabytes.
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in computer science. In the context of external memory, note that a dictionary
can be used to implement the basic functionality of a file system: Let keys
consist of a file name and a block number, and associate them with the contents
of the given block number of the given file. Note that this implementation gives
“random access” to any position in a file.

Most external memory algorithms for one disk can improve their performance
by a factor of D in the parallel disk model using striping. For external memory
data structures we can expect no such improvement, since at least one I/O is
needed to answer on-line queries. For example, the query time of a B-tree in
the parallel disk model is Θ(logBD n), which means that no asymptotic speedup
is achieved compared to the one disk case unless the number of disks is very
large, D = Bω(1). Randomized dictionaries based on hashing support lookups
and updates in close to 1 I/O per operation, as in the single disk case.

6.1.1 Our results and comparison with hashing

In this chapter we show a new kind of benefit by moving from one to many
disks: Efficient randomized dictionaries may be replaced by deterministic ones
of essentially the same efficiency. Besides the practical problem of giving an
algorithm access to random bits, randomized solutions never give firm guarantees
on performance. In particular, all hashing based dictionaries we are aware of
may use n/BO(1) I/Os for a single operation in the worst case. In contrast, we
give very good guarantees on the worst case performance of any operation. No
previously known dynamic dictionary in a feasible model of computation has
constant worst-case cost for all operations and linear space usage.

Randomized dictionaries

The most efficient randomized dictionaries, both in theory and practice, are
based on hashing techniques. Much work has been devoted to the trade-off
between time and space for such dictionaries, but in the context of this chapter
we will only require that a dictionary uses linear space. While hashing algorithms
were historically analyzed under the so-called uniform hashing assumption, most
modern results are shown using explicit, and efficiently implementable, hash
functions. In the context of external memory, the key requirement on a hash
function is that its description should fit into internal memory. A reasonable
assumption, made in the following, is that internal memory has capacity to hold
O(log n) keys. This allows O(log n)-wise independent hash functions, for which
a large range of hashing algorithms can be shown to work well, see e.g. [SS90,
SSS95].

There are dictionaries having performance that is, in an asymptotic sense,
almost as good as one can hope for in a randomized structure. If one wants a
randomized dictionary such that bounds on running times of its operations can
be expressed in form O(1), without interest in the actual constant, then a choice
is the dictionary of [DGMP92], having lookup and update costs of O(1) I/Os
with high probability (the probability is 1 − O(n−c), where c can be chosen as
any constant).
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Method Lookup
I/Os

Update
I/Os

Bandwidth Conditions

[DGMP92] O(1) O(1) whp. - -

Section 6.4.1 O(1) O(1) - D = Ω(log u)

Hashing, no overflow 1 whp. 2 whp. O
(
BD
log n

)
BD = Ω(log n)

Section 6.4.1 1 2 O
(
BD
log n

)
D = Ω(log u)
B = Ω(log n)

[PR04] 1 O(1)
am. exp.

O(BD) -

[DGMP92] + trick 1 + ε
avg. whp.

2 + ε
avg. whp.

O(BD) -

Section 6.4.3 1 + ε
avg.

2 + ε avg. O(BD) D = Ω(log u)
B = Ω(log n)

Figure 6.1: Old and new results for linear space dictionaries with constant time
per operation. The parameter ε can be chosen to be any positive constant; u
denotes the size of the universe U . Update bounds take into account the cost
of reading a block before it can be written, making 2 I/Os the best possible.
Bounds that hold on average over all elements in the set are marked “avg.”
Where relevant (for dictionaries using close to 1 I/O), the bandwidth is also
stated.

In our setting, having D parallel disks can be exploited by striping, that is,
considering the disks as a single disk with block size BD. If BD is at least
logarithmic in the number of keys, a linear space hash table (with a suitable
constant) has no overflowing blocks with high probability. This is true even
if we store associated information of size O(BD/ log n) along with each key.
Note that one can always use the dictionary to retrieve a pointer to satellite
information of size BD, which can then be retrieved in an extra I/O. However,
it is interesting how much satellite information can be returned in a single I/O.
We call the maximum supported size of satellite data of a given method its
bandwidth. Cuckoo hashing [PR04] can be used to achieve bandwidth BD/2,
using a single parallel I/O, but its update complexity is only constant in the
amortized expected sense.

In general, the average cost of an operation can be made arbitrarily close to
1, whp., by the following folklore trick: Keep a hash table storing all keys that
do not collide with another key (in that hash table), and mark all locations for
which there is a collision. The remaining keys are stored using the algorithm
of [DGMP92]. The fraction of searches and updates that need to go to the
dictionary of [DGMP92] can be made arbitrarily small by choosing the hash
table size with a suitably large constant on the linear term. Note that the
bandwidth for this method can be made Θ(BD) by allowing extra I/Os for
operations on the keys in the second dictionary.
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Our results

In this chapter we present deterministic and worst-case efficient results closely
matching what can be achieved using hashing. All of our dictionaries use linear
space. The first of our dictionaries achieves O(1) I/Os in the worst case for both
lookups and queries, without imposing any requirements on the value of B.
A variation of this dictionary performs lookups in 1 I/O and updates in 2 I/Os,
but requires that B = Ω(log n); the bandwidth is O( BDlog n), like in the comparable
hashing result. We also give another dictionary that achieves the bandwidth of
O(BD) at the cost of relaxed operation performance; lookups take 1+ ε I/Os on
average, and updates take 2+ε I/Os on average. The worst-case cost is O(log n),
as opposed to hashing where the worst-case cost is usually linear. Figure 6.1.1
shows an overview of main characteristics of all the mentioned dictionaries —
the new ones and the comparable hashing-based structures.

All of our algorithms share features that make them suitable for an environ-
ment with many concurrent lookups and updates:

• There is no notion of an index structure or central directory of keys.
Lookups and updates go directly to the relevant blocks, without any knowl-
edge of the current data other than the size of the data structure and the
size of the universe U .

• If we fix the capacity of the data structure and there are no deletions (or if
we do not require that space of deleted items is reused), no piece of data is
ever moved, once inserted. This makes it easy to keep references to data,
and also simplifies concurrency control mechanisms such as locking.

The results in Figure 6.1.1 are achieved by use of an unbalanced expander
graph of degree O(log u). While the existence of such a graph is known, the
currently best explicit (i.e., computationally efficient) construction has degree
polynomially larger than the optimal value [GUV07]. The presented dictionary
structures may become a practical choice if and when practically efficient con-
structions of unbalanced expander graphs appear.

6.1.2 Motivation

File systems are by excellence an associative memory. This associative retrieval
is implemented in most commercial systems through variations of B-trees. In
a UNIX example, to retrieve a random block from a file (inode), one follows
pointers down a tree with branching factor B; leaves hold pointers to the blocks
of the file.

Since one does not need the additional properties of B-trees (such as range
searching), a hash table implementation can be better. In theory, this can save
an O(logB n) factor. In practice, this factor is a small constant: in most settings
it takes 3 disk accesses before the contents of the block is available. However,
the file system is of critical importance to overall performance, and making just
one disk read instead of 3 can have a tremendous impact. Furthermore, using a
hash table can eliminate the overhead of translating the file name into an inode
(which we have not counted above), since the name can be easily hashed as well.

116



6.1. Introduction

Note that the above justification applies only to random accesses, since for
sequential scanning of large files, the overhead of B-trees is negligible (due to
caching). One may question the need for such random access. For algorithms
on massive data sets it is indeed not essential. However, there are also critical
applications of a more data-structural flavor. Popular examples include webmail
or http servers. These typically have to retrieve small quantities of information
at a time, typically fitting within a block, but from a very large data set, in a
highly random fashion (depending on the desires of an arbitrary set of users).
Arrays of disks are of course the medium of choice for such systems, so parallelism
is readily available. Our results show how parallelism can, at least in theory, be
used to provide an attractive alternative to B-trees in such settings.

From a theoretical perspective, we observe a trade-off between randomness
and parallelism that has not been explored before. But our main motivation
comes from looking at the potential applications. Randomization at the file-
system level is an idea that is often frowned upon. For one, having to deal with
expected running times adds unnecessary complications to a critical component
of the operating system, and a potential for malfunction. More importantly, the
file system often needs to offer a real-time guarantee for the sake of applications,
which essentially prohibits randomized solutions, as well as amortized bounds.

6.1.3 Related work

The idea of using expander graphs for dictionaries appeared earlier in [BMRV02,
ÖP02]. The results of [BMRV02] can be used to make a static dictionary (i.e.
not supporting updates) in the parallel disk model, performing lookups in 1
I/O. The results of [ÖP02], which give a randomized structure for a serial RAM,
can be modified to get a deterministic dynamic dictionary in a parallel setting
[BHT05]. That dictionary has good amortized bounds on the time for updates,
but analyzed in the parallel disk head model [AV88] (one disk with D read/write
heads), which is stronger than the parallel disk model, and fails to model existing
hardware. Additionally, the worst-case cost of updates was shown in [BHT05]
to be linear in n. Our dictionaries have good worst-case performance, the I/O
bounds on operations hold in the parallel disk model, and the methods are even
simpler, in implementation as well as analysis, than the method of [ÖP02].

Other efforts towards efficient deterministic dictionaries (on a serial RAM)
can be seen as derandomizations of hashing algorithms. However, the currently
best methods need update time nΩ(1) to achieve constant lookup time [Ruž08a,
HMP01, Ruž08b].

6.1.4 Overview of chapter

In Section 6.2 we present definitions and notation to be used throughout the
chapter. One of our main tools, a deterministic load balancing scheme is pre-
sented in Section 6.3. In section 6.4.1 we explain how to use the load balancing
scheme to get an efficient dictionary in the parallel disk model. Section 6.4.2
presents another way of using expanders to get an efficient dictionary in the par-
allel disk model, in the static case where there are no updates. In Section 6.4.3
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this scheme is dynamized to get a scheme that uses close to the optimal number
of I/Os for operations, on average over all elements.

6.2 Preliminaries

An essential tool, common to all of our dictionary constructions is a class of
expander graphs. There have been a number of definitions of expander graphs,
some of them equivalent, and different notations have been used in the literature.
The graphs that we use are bipartite. In a bipartite graph G = (U, V,E), we
may refer to U as the “left” part, and refer to V as the “right” part; a vertex
belonging to the left (right) part is called a left (right) vertex. In our dictionary
constructions, the left part corresponds to the universe U of keys, and the right
part corresponds to the disk blocks of the data structure. A bipartite graph is
called left-d-regular if every vertex in the left part has exactly d neighbors in the
right part.

Definition 6.2.1. A bipartite, left-d-regular graph G = (U, V,E) is a (d, ε, δ)-
expander if any set S ⊂ U has at least min ((1− ε)d|S|, (1− δ)|V |) neighbors.

Since expander graphs are interesting only when |V | < d|U |, some vertices
must share neighbors, and hence the parameter ε cannot be smaller than 1/d.

We introduce notation for the cardinalities of important sets: u = |U |, v =
|V |, and n = |S|. The set of neighbors of a set S ⊂ U is denoted by

ΓG(S) = {y ∈ V | (∃x ∈ S) (x, y) ∈ E} .

The subscript G will be omitted when it is understood, and we write Γ(x) as a
shorthand for Γ({x}).

WhenG is an (d, ε, δ)-expander, then for any set S ⊂ U such that |S| < (1−δ)v
(1−ε)d

it holds that |Γ(S)| ≥ (1 − ε)d|S|. It will be convenient to introduce another
notational definition of expander graphs; this definition is used starting from
Section 6.4.2 and until the end of the chapter.

Definition 6.2.2. A bipartite, left d-regular graph G = (U, V,E) is an (N, ε)-
expander if any set S ⊂ U of at most N left vertices has at least (1 − ε)d|S|
neighbors.

There exist (d, ε, δ)-expanders with left degree d = O(log( uv )), for any v and
positive constants ε, δ. If we wish that every subset of U having less than N
elements expands “very well”, that is, if we need a (N, ε)-expander it is possible
to have v = Θ(Nd) (clearly it is a requirement that v = Ω(Nd)).

For applications one needs an explicit expander, that is, an expander for
which we can efficiently compute the neighbor set of a given node (in the left
part). In the context of external memory algorithms, our requirement on an
explicit construction is that the neighbor set can be computed without doing
any I/Os (i.e., using only internal memory). No explicit constructions with the
mentioned (optimal) parameters are known.

To make our algorithms work in the parallel disk model, we require an ad-
ditional property of the expander graph: It should be striped. In a striped,
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d-regular, bipartite graph there is a partition of the right side into d sets such
that any left vertex has exactly one neighbor in each set of the partition. The
notion of an explicit construction for striped expander graphs has the additional
requirement that Γ(x) for any given x, should be returned in form (i, j), where
i is the index of the partition set and j is the index within that set. The results
from random constructions mentioned previously hold even for striped random
graphs. Unfortunately, most explicit constructions, in addition to not achieving
optimal parameters, are also not striped.

6.3 Deterministic load balancing

We will consider d-choice load balancing using (unbalanced) bipartite expander
graphs. Suppose there is an unknown set of n left vertices where each vertex
has k items, and each item must be assigned to one of the neighboring right
vertices (called “buckets”). We consider a natural greedy strategy for balancing
the number of items assigned to each bucket. The assumption is that the set is
revealed element by element, and the decision on where to assign the k items
must be made on-line. The strategy is this: Assign the k items of a vertex one by
one, putting each item in a bucket that currently has the fewest items assigned,
breaking ties arbitrarily. The scheme allows multiple items belonging to a vertex
to be placed in one neighboring bucket.

A special case of this load balancing scheme, where k = 1 and the bipar-
tite graph is a random graph of left degree 2, was presented and analyzed
in [ABKU99, BCSV00]. Tight bounds on the maximum load were given for
the “heavily loaded case”, showing that the deviation from the average load is
O(log log n) with a high probability. We now give an analogous result for a fixed
(d, ε, δ)-expander. The scheme places a number of items in each bucket that is
close to the average load of kn/v.

Lemma 6.3.1. If d > k
1−ε then after running the load balancing scheme using

a (d, ε, δ)-expander, the maximum number of items in any bucket is bounded by
kn

(1−δ)v + log(1−ε) d
k
v.

Proof. Let B(i) denote the number of buckets having more than i items, and
let µ stand for kn

(1−δ)v . We have that B(µ) < kn
µ = (1 − δ)v. We will show

that (1 − ε) dk · B(µ+ i) ≤ B(µ+ i − 1), for i ≥ 1. Note that there are at least
B(µ+ i)/k left vertices that have placed an item in a bucket of load more than
µ + i (after placement). Denoting the set of such left vertices by Si, by the
expansion property we have

|Γ(Si)| ≥ min((1 − ε)d ·B(µ+ i)/k, (1− δ)v) .

Every vertex from Si has all its neighboring buckets filled with more than µ+i−1
items, since the vertex was forced to put an item into a bucket of load larger
than µ + i − 1. If |Γ(Si)| was not smaller than (1 − δ)v then we would have
B(µ + i − 1) ≥ (1 − δ)v, which is a contradiction. As a result, B(µ + i) <
(1− δ)v · ((1− ε) dk )−i, and it follows that B(µ+ log(1−ε) d

k
v) = 0.
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It is not hard to observe that we actually get a bound of min( knq +log(1−ε) d
k
q),

where the minimum is over q ranging from 1 to (1− δ)v. The simpler statement
in the lemma is sufficient for the dictionary application, as we use expanders
with v not too big.

6.4 Dictionaries on parallel disks

We consider dictionaries over a universe U of size u. It is sufficient to describe
structures that support only lookups and insertions into a set whose size is not
allowed to go beyond N , where the value of N is specified on initialization of
the structure. This is because the dictionary problem is a decomposable search
problem, so we can apply standard, worst-case efficient global rebuilding tech-
niques (see [OvL81]) to get fully dynamic dictionaries, without an upper bound
on the size of the key set, and with support for deletions. The main observations,
assuming that we allow the number of disks to increase by a constant factor,
are:

• The global rebuilding technique needed keeps two data structures active
at any time, which can be queried in parallel.

• We can mark deleted elements without influencing the search time of other
elements.

• We can make any constant number of parallel instances of our dictionaries.
This allows insertions of a constant number of elements in the same number
of parallel I/Os as one insertion, and does not influence lookup time.

The amount of space used and the number of disks increase by a constant factor
compared to the basic structure. By the observations above, there is no time
overhead. Deletions have the same worst case time bound as insertions.

6.4.1 Basic dictionary functionality

Without satellite information

Use a striped expander graph G with v = N/ logN , and an array of v (more
elementary) dictionaries. The array is split across D = d disks according to
the stripes of G. The vertices from V represent indexes to the elements of the
array. The dictionary implements the load balancing scheme described above,
with k = 1. This gives a load of size Θ(logN) on each bucket.

If the block size B is Ω(logN), the contents of each bucket can be stored in
a trivial way in O(1) blocks. Thus, we get a dictionary with constant lookup
time. By setting v = O(N/B) sufficiently large we can get a maximum load of
less than B, and hence membership queries take 1 I/O. The space usage stays
linear.

The constraint Ω(logN) is reasonable in many cases. Yet, even without
making any constraints on B, we can achieve a constant lookup and insertion
time by using an atomic heap [FW94, Hag98b] in each bucket. This makes the
implementation more complicated; also, one-probe lookups are not possible in
this case.
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With satellite information

If the size of the satellite data is only a constant factor larger than the size of a
key, we can increase v by a constant factor to allow that the associated data can
be stored together with the keys, and can be retrieved in the same read operation.
Larger satellite data can be retrieved in one additional I/O by following a pointer.
By changing the parameters of the load balancing scheme to k = d/2 and v =
kN/ logN , it is possible to accommodate lookup of associated information of size
O(BD/ logN) in one I/O. Technicalities on one-probe lookups — what exactly
to write and how to merge the data — are given in the description of a one-probe
static dictionary in Section 6.4.2

6.4.2 Almost optimal static dictionary

The static dictionary presented in this section is interesting in its own right:
it offers one-probe lookups with good bandwidth utilization, uses linear space
when B = Ω(log n), and the construction complexity is within a constant factor
from the complexity of sorting nd keys, each paired with some associated data.
It is not optimal because it uses a bit more space when B is small and the
construction procedure takes more time than the time it takes to sort the input,
which would be fully optimal. The methods of this dictionary serve as a basis
of the dynamic structure of the next section.

From now on, the graph G = (U, V,E) is assumed to be an (N, ε)-expander,
unless otherwise stated. We will work only with sets such that n ≤ N .

Recall that the unique existential quantifier is denoted by ∃!. Let

ΦG(S) = {y ∈ V | (∃!x ∈ S) (x, y) ∈ E} .

We call the elements of ΦG(S) unique neighbor nodes. The following fact is
known; it says that high expansion implies that any small set has many unique
neighbors.

Lemma 6.4.1. For any S ⊂ U such that |S| ≤ N , we have |ΦG(S)| ≥ (1 −
2ε)d|S|.

Proof. Suppose that S = {x1, . . . , xn}, n ≤ N . Define the sets Tk = {x1, . . . , xk},
for 1 ≤ k ≤ n. The sets Tk form a chain of subsets of S. We have that for any
k:

Γ(Tk+1) \ Γ(Tk) = Φ(Tk+1) \ Φ(Tk) .

In the worst case, all the elements of Γ(xk+1) ∩ Γ(Tk) will be in Φ(Tk). This
leads to the inequality

|Φ(Tk+1)| ≥ |Φ(Tk)| − d+ 2(|Γ(Tk+1)| − |Γ(Tk)|) .

By induction, for all k ≤ n it holds that

2|Γ(Tk)| − |Φ(Tk)| ≤ k · d .

Therefore |Φ(S)| ≥ 2(1− ε)dn− nd.
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Lemma 6.4.2. Let S ′ = {x ∈ S : |Γ(x)∩Φ(S)| ≥ (1−λ)d}, for a given λ > 0.
Then |S′| ≥ (1− 2ε

λ )n.

Proof. Suppose that |S ′| = n − k. Let k∗ be the largest integer that satisfies
k∗(1 − λ)d + (n− k∗)d > |Φ(S)|. It is easy to see that k∗ is never smaller than
k = n− |S′|. Using Lemma 6.4.1 to lower bound |Φ(S)| gives k∗ < 2ε

λ n.

For the following static and dynamic dictionary results, the stated numbers of
used disks represent the minimum requirement for functioning of the dictionaries.
The record of one key, together with some auxiliary data, is supposed to be
distributed across 2

3d disks. For 1 I/O search to be possible, every distributed
part of the record must fit in one block of memory. If the size of the satellite data
is too large, more disks are needed to transfer the data in one probe. The degree
of the graph does not change in that case, and the number of disks should be a
multiple of d. Recall that we assume availability of a suitable expander graph
construction such that d = O(log u).

Theorem 6.4.3. Let σ denote the size in bits of satellite data of one element,
and let d be the degree of the given (n, ε)-expander graph. In the parallel disk
model there is a static dictionary storing a set of n keys with satellite data,
such that lookups take one parallel I/O and the structure can be constructed
deterministically in time proportional to the the time it takes to sort nd records
with Θ(nσ) bits of satellite information in total. The exact usage of resources
depends on the block size relative to the size of a key:

a) If Ω(log n) keys can fit in one memory block, then the structure uses 2d
disks and a space of O(n(log u+ σ)) bits;

b) If the block size is smaller, then d disks are used and the space consumption
is O(n log u log n+ nσ) bits.

The space usage in case (a) is optimal, up to a constant factor, when u is
at least polynomially larger than n. When the universe is tiny, a specialized
method is better to use, for example simple direct addressing. The space usage
in case (b) is optimal when σ > log u log n.

Proof. Fix a value of ε that will always satisfy 1/d < ε < 1/6; for concreteness
we set ε = 1/12 (this imposes the restriction that d > 12). The data structure
makes use of a striped (n, ε)-expander graph with left degree d and v = O(nd).
The main data is stored in an array A of v fields, where the size of a field depends
on the case, (a) or (b). We will first explain the structure for case (b) in detail,
then we will describe modifications made to optimize the space usage in case
(a), and finally give the algorithm for construction of the structures.

Structure in case (b). Every field of A has size log n + 3σ
2d bits (possibly

rounded up to the nearest power of two). Given any x ∈ U the set Γ(x) is
viewed as the set of indexes to the fields of A that may contain data about x.
We will later describe how to accomplish that, for every x ∈ S, a 2/3 fraction of
the fields referenced by Γ(x) store parts of the associated record for x. When a
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lookup is performed for a key x, all the fields of A pointed to by Γ(x) are read
into the internal memory in one parallel I/O. However, not all of them store
data belonging to x. Deciding the correct ones could be done by storing a copy
of the key in each of the fields of A that were assigned to it. Yet, a more space
efficient solution is to use identifiers of log n bits, unique for each element of
S. Upon retrieval of the blocks from disks, it is checked whether there exists
an identifier that appears in more than half of the fields. If not, then clearly
x /∈ S; otherwise, the fields containing the majority identifier are merged to form
a record of associated data. Note that no two keys from U can have more than
εd common neighbors in V . Therefore, we know that the collected data belongs
to x; there is no need for an additional comparison, or similar.

Structure in case (a). When the block size is reasonably large, we can
avoid storing log n bits wide identifiers within the fields of A. We use two
sub-dictionaries in parallel — one for pure membership queries and another for
retrieval of satellite data. Half of 2d available disks is devoted to each dictionary.
Checking membership in S is done using the dictionary from Section 6.4.1. Ev-
ery stored key is accompanied by a small integer of log d bits, which we call its
head pointer. By the assumption of the theorem for this case, Ω(log n) such key-
pointer pairs can fit in one block, thereby enabling one probe queries according
to Section 6.4.1.

The retrieval structure is similar to the dictionary for case (b). The array A
now has fields of size 3σ

2d + 4 bits. Instead of “big” identifiers we choose to store
succinct pointer data in every field; the fraction of an array field dedicated to
pointer data will vary among fields. For every x we may introduce an ordering
of the neighbor set Γ(x) according to the stripes of V . That order implies an
order of the fields of A assigned to a particular element. Each assigned field
stores a relative pointer to the next field in the list; if the jth neighbor follows
the ith neighbor in the list of assigned nodes, then the value j − i is stored
within A(Γ(x, i)), where Γ(x, i) denotes the ith neighbor of x. The differences
are stored in unary format, and a 0-bit separates this pointer data from the
record data. The tail field just starts with a 0-bit. The entire space occupied by
the pointer data is less than 2d bits per element of S; all the remaining space
within fields is used on storing record data. Upon parallel retrieval of blocks
from both dictionaries, we first check whether x is present in S. If it is, we use
the head pointer to reconstruct the list and merge the satellite data.

Construction in O(n) I/Os. Assigning b 2
3dc neighbors to each key from S

is done using the properties of unique neighbor nodes. By setting λ = 1/3,
according to Lemma 6.4.2 and the choice of ε, at least half of the elements of S
have at least 2

3d neighbors unique to them. For each x ∈ S ′ (with S′ defined as in
Lemma 6.4.2) any 2

3d unique neighbors are chosen to store its satellite data; the
fields of unused nodes from Γ(S ′)∩Φ(S) are labeled with an empty-field marker.
The entire process of determining Φ(S), S ′, and filling the fields can be done in
less than c·n parallel I/Os, for a constant c. The procedure is recursively applied
to the set S\S ′, independently of the assignments done at the first level, because
there is no intersection between the assigned neighbor set for S ′ and Γ(S \ S ′).
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The whole assignment procedure takes less than c(n+ n/2 + n/4 + . . .) = O(n)
I/Os.

Improving the construction. We keep the concept of making assignments
using unique neighbor nodes, but change the procedure that realizes it. We
assume that the input has a form of an array of records split across the disks,
but with individual records undivided (this should be a standard representation).
We will describe a procedure that is first applied to the input array, and then
recursively applied to the array obtained by removing the elements of S ′ from the
input array. Unlike the first version of the algorithm, the job is not completely
finished for the elements of S ′ at the end of the procedure. The ouput of the
procedure is an array of pairs of type (i, αi), where αi is data that is to be written
to A(i). This array will contain information only about the fields assigned to
the elements of S ′. Each time the procedure finishes execution, the output is
appended to a global array, call it B.

The procedure starts by making an array of all pairs of type (x, y), x ∈ S,
y ∈ Γ(x). This array is sorted according to the second component of pairs,
and then traversed to remove all sequences of more than one element that have
equal values of the second components. This effectively leaves us a list of unique
neighbor nodes, each paired with the (only) neighbor from the left side. By
sorting this list of pairs according to the fist components, we get the elements of
Φ(S) ∩ Γ(x) grouped together, for each x ∈ S, and we are able to remove data
about members of S that do not have enough unique neighbors. We now have
a list of the elements of S ′, with associated lists of unique neighbors.

We sort the input array of records according to the dictionary keys. The
resulting array is traversed simultaneously with the array of elements of S ′ (recall
that this array is also sorted), allowing us to produce an array of pairs of type
(i, αi). The description of the main procedure is now finished.

When the contents of the array B is final (at the end of the recursion), it is
sorted according to the first components of elements; this is the most expensive
operation in the construction algorithm. Filling the array A is a straightforward
task at this point.

6.4.3 Full bandwidth with 1 + ε average I/O

The aforementioned static dictionary is not hard to dynamize in a way that gives
fast average-case lookups and updates. We concentrate on the case (a) from
Theorem 6.4.3. A slightly weaker result is possible in the more general case as
well. In this section, the reader should be careful to distinguish between symbols
ε and ε; ε is a parameter of operation performance, while ε is a parameter for
expander graphs and its value will depend on the value of ε.

Theorem 6.4.4. Let ε be an arbitrary positive value, and choose d, the degree
of expander graphs, to be (a feasible value) larger than 6(1 + 1/ε). Under the
conditions of Theorem 6.4.3.a, there is a deterministic dynamic dictionary that
provides the following performance: an unsuccessful search takes one parallel
I/O, returning the associated data when a search is successful takes 1 + ε I/Os
averaged over all elements of S, updates run in 2 + ε I/Os on average.
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Proof. As mentioned at the beginning of this section it is enough to describe a
structure that supports only lookups and insertions into a set whose size is not
allowed to go beyond N , where the value of N is specified on initialization of
the structure. As in the static case, we use two sub-dictionaries. Since the first
dictionary is already dynamic, modifications are made only to the dictionary
that retrieves associated data. We choose ε so that 6

d < 6ε < 1/(1 + 1
ε ); the

restriction on d was imposed to make this possible. Instead of just one array,
now there are l = logN/ log 1

6ε arrays of decreasing sizes: A1, A2, . . . , Al. The
size of the array Ai is (6ε)i−1v. Each array uses a different expander graph for
field indexing; all expander graphs have the same left set U , the same degree
d, but the size of each expander’s right side equals the size of its corresponding
array.

The insertion procedure works in a first-fit manner: for a given x ∈ U find the
first array in the sequence (A1, A2, . . . , Al) in which there are 2

3d fields unique
to x (at that moment). Using Lemma 6.4.2, it is not hard to check that the
procedure is correct, i.e. a suitable place is always found. To briefly argue this,
observe that for the resulting set of an insertion sequence, denote it by S, the
array A1 will hold the data for a superset of S ′ (with S′ defined as in Lemma
6.4.2 and with respect to the first expander graph), and so forth. In the worst
case, an insertion takes l reads and one write. However, any sequence of n
insertions, n ≤ N , requires n parallel writes and less than

n+ (6ε)n+ (6ε)2n+ . . .+ (6ε)ln

parallel read operations. The choice of ε implies the average of less than 1 + ε
reads.

6.5 Open problems

It is plausible that full bandwidth can be achieved with lookup in 1 I/O, while
still supporting efficient updates. One idea that we have considered is to apply
the load balancing scheme with k = Ω(d), recursively, for some constant number
of levels before before relying on a brute-force approach. However, this makes
the time for updates non-constant. It would be interesting if this construction
could be improved.

Obviously, improved expander constructions would be highly interesting in
the context of the algorithms presented in this chapter. It seems possible that
practical and truly simple constructions could exist, e.g., a subset of d functions
from some efficient family of hash functions.
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Chapter 7

Near-Optimal Sparse Recovery
in the L1 norm

Abstract

We consider the approximate sparse recovery problem, where the goal is to (ap-
proximately) recover a high-dimensional vector x ∈ Rn from its lower-dimensional
sketch Ax ∈ Rm. Specifically, we focus on the sparse recovery problem in the L1

norm: for a parameter k, given the sketch Ax, compute an approximation x̂ of x
such that the L1 approximation error ‖x− x̂‖1 is close to minx′ ‖x−x′‖1, where
x′ ranges over all vectors with at most k terms. The sparse recovery problem
has been subject to extensive research over the last few years. Many solutions to
this problem have been discovered, achieving different trade-offs between various
attributes, such as the sketch length, encoding and recovery times.

In this chapter we present a sparse recovery scheme which achieves close to
optimal performance on virtually all attributes (see Figure 7.1). In particular,
this is the first scheme that guarantees O(k log(n/k)) sketch length, and near-
linear O(n log(n/k)) recovery time simultaneously. It also features low encoding
and update times, and is noise-resilient.

7.1 Introduction

Over the recent years, a new approach for obtaining a succinct approximate
representation of n-dimensional vectors (or signals) has been discovered. For
any signal x, the representation is equal to Ax, where A is a m × n matrix.
The vector Ax is often referred to as the measurement vector or sketch of x.
Although m is typically much smaller than n, the sketch Ax contains plenty of
useful information about the signal x.

The linearity of the sketching method is very convenient for a wide variety of
applications. In the area of data stream computing [Mut03, Ind07], the vectors x
are often very large, and cannot be represented explicitly; for example, xi could
denote the total number of packets with destination i passing through a network
router. It is thus preferable to maintain instead the sketch Ax, under incremental
updates to x. Specifically, if a new packet arrives, the corresponding coordinate
of x is incremented by 1. This can be easily done if the sketching procedure is
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linear. In the area of compressed sensing [CRT06a, Don06, TLW+06, DDT+08],
the data acquisition itself is done using (analog or digital) hardware, which is
capable of computing a dot product of the measurement vector and the signal
at a unit cost. Other applications include breaking privacy of databases via
aggregate queries [DMT07].

In this chapter, we focus on using linear sketches Ax to compute sparse
approximations of x. Formally, we say that a vector y is k-sparse if it contains
at most k non-zero entries. The goal is to find a vector x̂ such that the `p
approximation error ‖x − x̂‖p is at most c > 0 times the smallest possible `q
approximation error ‖x − x′‖q, where x′ ranges over all k-sparse vectors (we
denote this type of guarantee by “`p ≤ c `q”). Note that for any value of q,
the error ‖x− x̂‖q is minimized when x̂ consists of the k largest (in magnitude)
coefficients of x.

The problem has been subject to an extensive research over the last few years,
in several different research communities, including applied mathematics, digital
signal processing and theoretical computer science. The goal of that research was
to obtain encoding and recovery schemes with low probability of error (ideally,
deterministic1 schemes), short sketch lengths, low encoding, update and recovery
times, good approximation error bounds and resilient to measurement noise. The
current state of the art is presented in Figure 7.1. In the same figure we also
show the best known bound for each of the aforementioned attributes of the
algorithms (see the caption for further explanation).

Our result. The main result of this chapter is a very efficient sparse recovery
scheme, with parameters as depicted in the last row of Figure 7.1. Up to the
leading constants, the scheme achieves the best known bounds for: the error
probability (our scheme is deterministic), sketch length, encoding and update
times. Its decoding time is in general incomparable to the best prior bounds;
however, it provides an improvement for k large enough. Finally, our scheme is
resilient to noise (see Theorem 7.3.8 for the exact guarantee). The only drawback
of our scheme is the `1 ≤ C`1 error guarantee, which is known [CDD06] to be
weaker than the `2 ≤ C

k1/2 `1 guarantee achievable by some of the earlier schemes
(although given that our scheme can be instantiated with C = 1 + ε for any
ε > 0, our guarantees are technically incomparable to those of [DM08, NT09]).

The efficiency with respect to many attributes makes our scheme an attrac-
tive option for sparse recovery problems. In particular, this is the first scheme
that guarantees the O(k log(n/k)) sketch length, and the near-linear decoding
time simultaneously. Both attributes are of key importance: the sketch length
determines the compression ratio (so any extra log n factor can reduce that ratio
tenfold), while running times of Ω(nk) can quickly become prohibitive for n large
enough (say, n = 1000, 000). Measurement vector must have size Ω(k log(n/k))
[BIP09],2 which means that the we have attained optimal sketch length.

1We use the term “deterministic” for a scheme in which one matrix A works for all signals
x, and “randomized” for a scheme that generates a “random” matrix A which, for each signal
x, works with probability 1 − 1/n. However, “deterministic” does not mean “explicit” – we
allow the matrix A to be constructed using the probabilistic method.

2The lower bound was proven for deterministic measurements. For randomized measure-
ments, so far it was proven for the case k = 1.
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Paper R/ Sketch length Encoding time Sparsity/ Decoding time Approx. N
D Update time error

[CCFC04, CM06] R k logd n n logd n logd n k logd n `2 ≤ C`2
R k log n n log n log n n log n `2 ≤ C`2

[CM05] R k logd n n logd n logd n k logd n `1 ≤ C`1
R k log n n log n log n n log n `1 ≤ C`1

[CRT06b] D k log(n/k) nk log(n/k) k log(n/k) LP `2 ≤ C

k1/2 `1 Y

D k logd n n log n k logd n LP `2 ≤ C

k1/2 `1 Y

[GSTV06] D k logd n n logd n logd n k logd n `1 ≤ C log n`1 Y

[GSTV07] D k logd n n logd n logd n k2 logd n `2 ≤ ε

k1/2 `1

[GLR08] D k(log n)d log(3) n kn1−a n1−a LP `2 ≤ C

k1/2 `1
(k “large”)

[BGI+08] D k log(n/k) n log(n/k) log(n/k) LP `1 ≤ C`1 Y

[DM08] D k log(n/k) nk log(n/k) k log(n/k) nk log n
k

log R `2 ≤ C

k1/2 `1 Y

[NT09] D k log(n/k) nk log(n/k) k log(n/k) nk log n
k

log R `2 ≤ C

k1/2 `1 Y

D k logd n n log n k logd n n log n log R `2 ≤ C

k1/2 `1 Y

Best bounds D k log(n/k) n log(n/k) log(n/k) min[k logd n, `2 ≤ ε

k1/2 `1 Y

per each column n log n]

This chapter D k log(n/k) n log(n/k) log(n/k) n log(n/k) `1 ≤ (1 + ε)`1 Y

Figure 7.1: Summary of the sparse recovery results. Virtually all references can be
found at [Gro06]. All bounds ignore the O(·) constants. We also ignore other aspects,
such as explicitness or universality of the measurement matrices. We present only the
algorithms that work for arbitrary vectors x, while many other results are known for the
case where the vector x itself is required to be k-sparse, e.g., see [TG05, DWB05, Don06,
XH07]. The columns describe: citation; sketch type, deterministic or randomized; sketch
length; time to compute Ax given x; time to update Ax after incrementing one of
the coordinates of x; time to recover an approximation of x given Ax (see below);
approximation guarantee (see below); does the algorithm tolerate noisy measurement
vectors of the form Ax+ν. The parametersC > 1, d ≥ 2 and a > 0 denote some absolute
constants, possibly different in each row. The parameter ε denotes any positive constant.
We assume that k < n/2. In the decoding time column, LP=LP(n,m, T ) denotes the
time needed to solve a linear program defined by an m × n matrix A which supports
matrix-vector multiplication (i.e., the encoding) in time T . Heuristic arguments indicate
that LP(n,m, T ) ≈ √nT if the interior-point method is employed. Some of the running
times of the algorithms depend on the “precision parameter”R, which is always bounded
from the above by ‖x‖2 if the coordinates of x are integers. It is known [CDD06] that
“`2 ≤ c

k1/2 `1” implies “`1 ≤ (1+O(c))`1”, and that it is impossible to achieve “`2 ≤ C`2”
deterministically unless the number of measurements is Ω(n).
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Our techniques. We use an adjacency matrix of an unbalanced expander
as the encoding matrix A. Since such matrices can be very sparse (with only
O(log(n/k)) ones per column), the resulting scheme has very efficient encoding
and update times. To make the scheme fully efficient, we also design a very fast
recovery procedure that we call Expander Matching Pursuit (EMP) (Figure 7.2).
The procedure roughly resembles the “greedy iterative approach” (a.k.a. Orthog-
onal Matching Pursuit [Tro04, TG05, NV09, DM08, NT09]), where the idea is to
iteratively identify and eliminate “large” coefficients. However, in our procedure,
the “large” coefficients are identified only at the beginning (in Step 1). In the
remainder of the procedure, the choice of coordinates to iterate on is based on
the structure of the expander matrix A, rather than the estimated magnitudes
of coefficients.

We remark that the use of adjacency matrices of sparse random or expander
graphs as encoding matrices for sparse approximation problems is not new;
see, e.g., [CCFC04, CM06, CM05, GSTV06, GSTV07, XH07, Ind08, GLR08,
BGI+08] for related work. However, all previous schemes were sub-optimal
is some respects. In particular, the schemes of [CCFC04, CM06, CM05] pro-
vided only randomized guarantees and slightly worse measurement bounds; the
sublinear-time algorithms of [GSTV06, GSTV07, Ind08] incurred polylogarith-
mic overhead in the number of measurements; the result of [XH07] was shown
only for vectors x that are themselves k-sparse (or are slight generalizations of
thereof); the matrices employed in [GLR08] had only sublinear, not logarith-
mic sparsity; and the decoding algorithm of [BGI+08] required solving a linear
program, resulting in Ω(n3/2) running time.

Practicality of the algorithm and further developments. We have
implemented a version of the EMP algorithm. As expected, the algorithm runs
very fast. However, the number of measurements required by the algorithm to
achieve correct recovery is somewhat suboptimal. In particular, we performed
recovery experiments on random signed k-sparse signals of length n. For k = 50
and n = 20000, one typically needs about 5000 measurements to recover the sig-
nal. In comparison, the linear-programming-based recovery algorithm [BGI+08]
requires only about 450 measurements to perform the same task3.

Based on the ideas of the algorithm from this chapter, as well as from [NT09,
BGI+08], we have developed an improved algorithm for the sparse recovery prob-
lem [BIR08]. The running time of the new algorithm, called Sparse Matching
Pursuit, or SMP, is slightly higher (by a logarithmic factor) than of EMP, and has
the same asymptotic bound on the number of required measurements. However,
empirically, the algorithm performs successful recovery from a smaller number of
measurements. In particular, for the instances described earlier, SMP typically
needs about 1800 measurements. See [BIR08] for further empirical evaluation.

7.2 Preliminaries about expander graphs

An essential tool for our constructions are unbalanced expander graphs. Consider
a bipartite graph G = (U, V,E). We refer to U as the “left” part, and refer to

3For both algorithms we used randomly generated graphs with left degree equal to 20.
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V as the “right” part; a vertex belonging to the left (right) part is called a
left (right) vertex. In our constructions the left part will correspond to the set
{1, 2, . . . , n} of coordinate indexes of vector x, and the right part will correspond
to the set of row indexes of the measurement matrix. A bipartite graph is called
left-d-regular if every vertex in the left part has exactly d neighbors in the right
part.

Definition 7.2.1. A bipartite, left-d-regular graph G = (U, V,E) is an (s, d, ε)-
expander if any set S ⊂ U of at most s left vertices has at least (1 − ε)d|S|
neighbors.

Using the probabilistic method one can show that there exist (s, d, ε)-expanders
with d = O(log(|U |/s)/ε) and |V | = O(s log(|U |/s)/ε2). For many applications
one usually needs an explicit expander, that is, an expander for which we can
efficiently compute the neighbor set of a given left vertex. No explicit con-
structions with the aforementioned (optimal) parameters are known. However,
it is known [GUV07] how to explicitly construct expanders with left degree
d = O((log |U |)(log s)/ε)1+1/α and right set size O(d2s1+α), for any fixed α > 0.
In the remainder of this chapter, we will assume expanders with the optimal
parameters. The set of neighbors of a set S ⊂ U is denoted by

ΓG(S) = {v ∈ V | (∃u ∈ S) (u, v) ∈ E} .
The subscript G will be omitted when it is understood, and we write Γ(u) as
a shorthand for Γ({u}). Recall that the unique existential quantifier is denoted
by ∃! – it can be read as “there exists a unique”. Let

ΦG(S) = {v ∈ V | (∃!u ∈ S) (u, v) ∈ E} .
We call the elements of ΦG(S) unique neighbor nodes.

We will make use of the well-known fact that high expansion implies that
any small set has many unique neighbors.

Lemma 7.2.2. For any S ⊂ U such that |S| ≤ s, we have |ΦG(S)| ≥ (1 −
2ε)d|S|.
Lemma 7.2.3. Let S ′ = {u ∈ S : |Γ(u) ∩ Φ(S)| ≥ (1 − λ)d}, for a given
λ ≥ 2ε. Then |S ′| > (1− 2ε

λ )|S|.
For the proofs of these two lemmas see Chapter 6. In the special case when

λ = 2ε the set S ′ contains at least one element.

7.3 Sparse recovery

We consider linear sketches of form Ax, where A is an m× n adjacency matrix
of a (s, d, ε)-expander G, where s = 4k, d = O( 1

ε log n
k ), m = O( kε2 log n

k ) and
ε < 1/16. We will consider the general case of noisy measurements. Let c =
Ax+ ν be a sketch vector contaminated with noise ν.

We use K to denote the set of k indexes of coordinates of x having k largest
magnitudes (ties are broken arbitrarily). In other words, xK is a best k-term
approximation to x. For a coordinate subset I we will write xI to denote the
vector obtained from x by zeroing-out all entries outside of I.
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Expander Matching Pursuit

1. Compute x∗ = x∗(c) such that for any i = 1 . . . n:

x∗i (c) = median(cj1 , cj2 , . . . , cjd) , (7.1)

where {j1, . . . , jd} = Γ(i);

2. Find the set I consisting of 2k indexes of the coordinates of x∗ of highest
magnitudes, breaking ties arbitrarily;

3. Find the set Ī being the smallest-size superset of I such that

(∀i ∈ {1, 2, . . . , n} \ Ī) |Γ(i) ∩ Γ(Ī)| ≤ 2εd ; (7.2)

(we provide a more detailed description of this step later in this section)

4. x̂← 0 ;

5. j ← 1 ; Ij ← Ī ;

6. Repeat the following sequence of steps until Ij = ∅:

(a) Find I ′j = {i ∈ Ij : |Γ(i) ∩ Φ(Ij)| ≥ (1− 2ε)d} ;

(b) x∗ ← x∗(c) ;

(c) x̂I′j ← x∗I′j
;

(d) c← c−Ax∗I′j ;

(e) Ij+1 ← Ij \ I ′j ; j ← j + 1 ;

Figure 7.2: Recovery algorithm

7.3.1 Algorithm

The outline of the recovery algorithm is given in Figure 7.2. Note that the
nonzero components of the approximation x̂ are confined to the set Ī. The set Ī
can be computed as as follows. First, observe that the set Ī is uniquely defined.
The following claim establishes that |Ī | < 4k.

Claim 7.3.1. Let γ be a constant value larger than ε. Suppose that I ⊂
{1, 2, . . . , n} is a given set of coordinate positions, with |I| ≤ (1 − ε

γ )s. Let
J be the smallest-size superset of I with the property that

(∀j ∈ {1, 2, . . . , n} \ J) |Γ(j) ∩ Γ(I)| ≤ γd . (7.3)

The size of the set J is smaller than (1− ε
γ )−1|I|.

Proof. Because J is the smallest-size superset of I satisfying (7.3), it follows
that there exists a sequence of indexes (j1, . . . , jp), with p = |J | − |I|, such that
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{j1, . . . , jp} = J \ I and

|Γ(jk+1) ∩ Γ(I ∪ {j1, . . . , jk})| > γd .

Assume by contradiction that |J | ≥ (1 − ε
γ )−1|I|. Let l = (1 − ε

γ )−1|I| − |I|,
and define J ′ = I ∪ {j1, . . . , jl}. We have that d|J ′| − |Γ(J ′)| > γdl, and then
d(|J ′| − γl) > |Γ(J ′)| ≥ (1− ε)d|J ′| (the last inequality is true because |J ′| ≤ s).
We see that γl < ε|J ′|, and thus (γ − ε)|J ′| < γ|I|, which contradicts the earlier
assumption about the size of J ′.

We now discuss the procedure for finding Ī, together with the running time
analysis. Initially, we let Ī be equal to I. The algorithm maintains a priority
queue over the set {1, 2, . . . , n} \ Ī, with the priority of element i being |Γ(i) ∩
Γ(Ī)|. Each vertex from V \Γ(Ī) will have an associated list of references to the
elements of the priority queue that have it as a neighbor. When a vertex from
V enters the set Γ(Ī) the priorities of the corresponding elements are updated.
Elements whose priorities become higher than 2εd are added to the set Ī. The
priority queue can be implemented as an array of 2εd linked lists, so that every
required operation runs in constant time. The entire process takes a time of
O(nd), since we can attribute a unit cost of work to every edge of G. The
algorithm uses O(n) words of storage (in addition to the space used to store the
matrix A). A more space-efficient (but slightly slower) algorithm is described in
the appendix.

Total running time of step 6 of the algorithm is O(kd). The procedure that
performs step 6.a uses a similar method with a priority queue, only that here
elements get extracted from the set, and priorities are decreasing. This part uses
O(kd) words of storage.

In the remainder of this section we will focus on proving the approximation
bounds. We start from technical lemmas providing guarantees for the initial ap-
proximation vector x∗. Then we give the proof of the approximation guarantee.

7.3.2 Technical lemmas

The statement of the following lemma may look somewhat unintuitive, due to
the fact that its formulation needs to allow a proof by induction. More intuitive
error bounds for estimates x∗i will be presented in Theorem 7.3.3.

Lemma 7.3.2. Let I, J, L,M ⊂ {1, 2, . . . , n} be given sets of coordinate positions
such that

• |I| ≤ s/2;

• I, J, L,M are mutually disjoint, and I ∪ J ∪ L ∪M = {1, 2, . . . , n};

• (∀l ∈ L)(|Γ(l) ∩ Γ(I)| ≤ 2εd);

• (∀i ∈ I)(|Γ(i) ∩ Γ(M)| ≤ αd), where α < 1/2 − 2ε.
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There exist a chain of subsets of I and a family of disjoint subsets of J , which
we respectively write as I = I0 ⊃ I1 ⊃ . . . ⊃ Iq and {J0, J1, . . . , Jq} 4, satisfying
the following two properties:

‖xI − x∗I‖1 ≤ (1/2 − 2ε− α)−1
(
2ε‖xI‖1 +

1

d
‖(AxL)Γ(I)‖1 +

+
1

d

q∑

k=0

‖(AxJk
)Γ(Ik)‖1 +

1

d
‖νΓ(I)‖1

)
,

and (∀j ∈ Jk)(|Γ(j) ∩ Γ(Ik)| ≤ 2εd), for 0 ≤ k ≤ q.

Proof. We will prove the claim by induction on the size of the set I. Suppose
first that |I| = 1, that is I = {i} for some i. In this case we have that q = 0
and J0 = J . Consider the multiset φ = {cv1 , cv2 , . . . , cvl

} such that vk are the
indexes from Γ(i)\M (therefore l ≥ (1−α)d). The estimate x∗

i will have a rank
between d/2− (d− l) and d/2 with respect to the multiset φ (the value x∗

i need
not be equal to one of the elements of φ). In other words, at least (1/2 − α)d
elements of φ are not larger than x∗i , and at at least (1/2−α)d elements of φ are
not smaller than x∗i . Therefore in any case (xi < x∗i or xi > x∗i ) we have that

(1/2 − α)d |xi − x∗i | ≤ ‖(Ax{i} − c)Γ(i)\M‖1 ≤ ‖(AxL∪J0 + ν)Γ(I)‖1
≤ ‖(AxL)Γ(I)‖1 + ‖(AxJ0)Γ(I)‖1 + ‖νΓ(I)‖1 ,

which proves the claim for the case |I| = 1.

Now suppose that |I| > 1 and that the claim is true for index sets of smaller
sizes. Let J∗ = {j ∈ J : |Γ(j) ∩ Γ(I)| > 2εd}. Because of the expansion
property of the graph G and the condition that |I| ≤ s/2, the size of J ∗ can be
at most |I|. Let

I ′ = {i ∈ I : |Γ(i) ∩ Φ(I ∪ J ∗)| ≥ (1− 2ε)d} .

We will have that for any i ∈ I ′ the influence of other entries from xI∪J∗ to
the estimate x∗i is relatively minor. Since all elements from J ∗ have less than
(1−2ε)d unique neighbor nodes with respect to the set I∪J ∗, from Lemma 7.2.3
we conclude that |I ′| ≥ 1. Let I1 = I \ I ′, and apply the induction hypothesis
to the set I1, with I ′ and J \ J∗ merged with the set L. Let the returned
quasi-partition of J ∗ be {J ′

0, J
′
1, . . . , J

′
q−1}. We make assignments Jk+1 = J ′

k,
0 ≤ k < q, and J0 = J \ J∗.

By the triangle inequality and the induction hypothesis we have that

‖xI − x∗I‖1 ≤ ‖xI′ − x∗I′‖1 + (1/2 − 2ε− α)−1
(
2ε‖xI1‖1 + (7.4)

+
1

d
‖(AxI′∪L∪J0)Γ(I1)‖1 +

+
1

d

q∑

k=1

‖(AxJk
)Γ(Ik)‖1 +

1

d
‖νΓ(I1)‖1

)
.

4Some of the subsets may be empty; thus we cannot call this family a partition of J .
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To upper-bound ‖(AxI′)Γ(I1)‖1 we use the fact that with respect to the graph
G each i ∈ I ′ has at most 2εd adjacent nodes shared with the elements of I1.

‖(AxI′)Γ(I1)‖1 ≤
∑

i∈I′
‖(Ax{i})Γ(I1)‖1 ≤

∑

i∈I′
2εd|xi| = 2εd‖xI′‖1 .

Now we will analyse estimation error for coordinates in I ′. For any i ∈ I ′
consider the multiset φ(i) = {cv1 , cv2 , . . . , cvl

} such that vk are the indexes from
Γ(i) ∩ Φ(I ∪ J∗ ∪M) (therefore l ≥ (1 − 2ε − α)d). The estimate x∗i will have
a rank between d/2 − (d − l) and d/2 with respect to the multiset φ(i) (the
value x∗i need not be equal to one of the elements of φ(i)). In other words, at
least (1/2 − 2ε − α)d elements of φ(i) are not larger than x∗i , and at at least
(1/2 − 2ε − α)d elements of φ(i) are not smaller than x∗i . Therefore,

‖(Ax{i} − c)Γ(i)∩Φ(I∪J∗∪M)‖1 ≥ (1/2 − 2ε− α)d |xi − x∗i | .

By aggregating over all i ∈ I ′ we get

(1/2 − 2ε− α)d ‖xI′ − x∗I′‖1 ≤ ‖(AxI′ − c)Γ(I′)∩Φ(I∪J∗∪M)‖1 ≤
≤ ‖(AxL∪J0 + ν)Γ(I′)∩Φ(I∪J∗∪M)‖1 ≤
≤ ‖(AxL)Γ(I′)∩Φ(I∪J∗∪M)‖1 +

+ ‖(AxJ0)Γ(I′)∩Φ(I∪J∗∪M)‖1 +

+ ‖νΓ(I′)∩Φ(I∪J∗∪M)‖1 .

These terms are substituted into (7.4). Observe that the following four inequal-
ities hold

‖(AxL)Γ(I′)∩Φ(I∪J∗∪M)‖1 + ‖(AxL)Γ(I1)‖1 ≤ ‖(AxL)Γ(I)‖1 ,

‖(AxJ0)Γ(I′)∩Φ(I∪J∗∪M)‖1 + ‖(AxJ0)Γ(I1)‖1 ≤ ‖(AxJ0)Γ(I)‖1 ,

‖νΓ(I′)∩Φ(I∪J∗∪M)‖1 + ‖νΓ(I1)‖1 ≤ ‖νΓ(I)‖1 ,

2ε‖xI1‖1 + 2ε‖xI′‖1 ≤ 2ε‖xI‖1 .

This proves the claimed bound on ‖xI − x∗I‖1.

The following theorem is a simple consequence of Lemma 7.3.2.

Theorem 7.3.3. Let I ⊂ {1, 2, . . . , n} be a given set of coordinate positions, with
|I| ≤ s/2. Suppose that {J,M} is a partition of the set of remaining coordinates
{1, 2, . . . , n} \ I where the set M satisfies

(∀i ∈ I)(|Γ(i) ∩ Γ(M)| ≤ αd) ,

with α < 1/2− 2ε. It holds that

‖xI − x∗I‖1 ≤ (1/2 − 2ε− α)−1(2ε‖xI∪J‖1 + 1
d‖νΓ(I)‖1) .

We will now state a lemma for a special case when it is known that all
elements of I have “many” unique neighbor nodes, and the remaining elements
have a well determined structure of intersections with the neighbors of I.
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Lemma 7.3.4. Let {I, J, L,M} be a given partition of {1, 2, . . . , n} with the
following properties:

• |I| ≤ s/2 and (∀i ∈ I)(|Γ(i) ∩ Φ(I ∪M)| ≥ (1− α)d), where α < 1/2;

• (∀l ∈ L)(|Γ(l) ∩ Γ(I)| ≤ βd);

• Let ∆ = 1
d‖(AxJ + ν)Γ(I)∩Φ(I∪M)‖1.

It holds that ‖xI − x∗I‖1 ≤ (1/2− α)−1(β‖xL‖1 + ∆).

Proof. The proof is a simpler version of the previous proofs. For any i ∈ I
consider the multiset φ(i) = {cv1 , cv2 , . . . , cvl

} such that vk are the indexes from
Γ(i)∩Φ(I∪M) (therefore l ≥ (1−α)d). The estimate x∗i will have a rank between
d/2 − (d− l) and d/2 with respect to the multiset φ(i). In other words, at least
(1/2 − α)d elements of φ(i) are not larger than x∗i , and at at least (1/2 − α)d
elements of φ(i) are not smaller than x∗i . Therefore in any case (xi < x∗i or
xi > x∗i ) we have that

‖(Ax{i} − c)Γ(i)∩Φ(I∪M)‖1 ≥ (1/2 − α)d |xi − x∗i | .

By aggregating over all i ∈ I ′ we get that

(1/2 − α)d ‖xI − x∗I‖1 ≤ ‖(AxI − c)Γ(I)∩Φ(I∪M)‖1 ≤
≤ ‖(AxL∪J + ν)Γ(I)∩Φ(I∪M)‖1 ≤
≤ ‖(AxL)Γ(I)‖1 + ‖(AxJ + ν)Γ(I)∩Φ(I∪M)‖1 .

Similarly as earlier we observe that

‖(AxL)Γ(I)‖1 ≤
∑

l∈L
‖(Ax{l})Γ(I)‖1 =

∑

l∈L
|Γ(l) ∩ Γ(I)| · |xl| ≤

≤
∑

l∈L
βd|xl| = βd‖xL‖1 .

The claimed bound on ‖xI − x∗I‖1 now easily follows.

The following corollary is an obvious consequence of Theorem 7.3.3.

Corollary 7.3.5. Suppose that noise ν is zero. For any λ ≥ 1,

∣∣{i ∈ {1, 2, . . . , n} : |xi − x∗i | >
8ε

1− 4ε

λ

s
‖x‖1

}∣∣ < s

2λ
.

7.3.3 Approximation guarantees

In this section we finish the analysis of the approximation error. We start by
showing that the set Ī contains all “important” coefficients of the vector x.

Lemma 7.3.6. ‖x− xĪ‖ ≤ 1−8ε
1−16ε ‖x− xK‖1 + 4

(1−16ε)d‖ν‖1 .
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Proof. Let K1 = K \ Ī. If K1 = ∅ then the claim is clearly true. In general
we need to show that ‖xK1‖1 is not much larger than ‖xĪ\K‖1. Let I ′ = {i ∈
Ī : |Γ(i) ∩ Φ(Ī)| ≥ (1 − 4ε)d} \ K. According to Lemma 7.2.3, it is |I ′| ≥
1
2 |Ī|−|K∩Ī| ≥ k−|K∩Ī| = |K1|. Since every coordinate of x∗I′ is not smaller than
any coordinate of x∗K1

we see that ‖x∗I′‖1 ≥ ‖x∗K1
‖1. Hence, ‖xI′‖1+‖xI′−x∗I′‖1 ≥

‖xK1‖1 − ‖xK1 − x∗K1
‖1, and so ‖xK1‖1 − ‖xI′‖1 ≤ ‖xI′ − x∗I′‖1 + ‖xK1 − x∗K1

‖1.
An upper bound on ‖xI′ − x∗I′‖1 follows from Lemma 7.3.4, (in the context

of Lemma 7.3.4 we have α = 4ε, β = 2ε, and ∆ = 1
d‖νΓ(I′)∩Φ(I)‖1). Therefore,

‖xI′−x∗I′‖1 ≤ (1/2−4ε)−1(2ε‖x−xĪ‖1+ 1
d‖ν‖1). To bound ‖xK1−x∗K1

‖1 we apply

Theorem 7.3.3, which gives ‖xK1 − x∗K1
‖1 ≤ (1/2− 4ε)−1(2ε‖x− xĪ‖1 + 1

d‖ν‖1).
Combining the obtained inequalities we get that

‖x− xĪ‖ ≤ ‖x− xK‖1 + ‖xK1‖1 − ‖xI′‖1
≤ ‖x− xK‖1 + ‖xI′ − x∗I′‖1 + ‖xK1 − x∗K1

‖1
≤ ‖x− xK‖1 +

8ε

1− 8ε
‖x− xĪ‖1 +

4

(1− 8ε)d
‖ν‖1 ,

which implies the claimed bound.

Lemma 7.3.7. Suppose that (∆ij)1≤i<j≤p is a sequence of real values that satisfy
for each i

p∑

j=i+1

∆ij ≤ ρ(∆i + ∆1i + . . .+ ∆i−1 i) ,

where ρ and ∆i are some constants, with 0 < ρ < 1. Let ∆ denote
∑

i∆i. The
following inequality holds:

∑

i≥1

∑

j>i

∆ij ≤
ρ

1− ρ∆ .

Proof. We have that

∑

i≥1

∑

j>i

∆ij ≤
∑

i≥1

ρ
(
∆i +

i−1∑

k=1

∆ki

)
= ρ∆ + ρ

∑

l≥1

∑

m>l

∆lm .

As a result, (1− ρ)∑i≥1

∑
j>i ∆ij ≤ ρ∆.

Theorem 7.3.8. Given a vector c = Ax+ ν, the algorithm returns approxima-
tion vector x̂ satisfying

‖x− x̂‖1 ≤
1− 4ε

1− 16ε
‖x− xK‖1 +

6

(1− 16ε)d
‖ν‖1 .

where K is the set of the k largest (in magnitude) coordinates of x.

Proof. Let R = {1, 2, . . . , n} \ Ī and ∆j = 1
d‖(AxR + ν)Γ(I′j)∩Φ(Ij)‖1, j ≥ 1.

Denoting ∆ =
∑

j ∆j, we have that

∆ ≤ 1

d
‖(AxR + ν)Ī‖1 ≤ 2ε‖xR‖1 +

1

d
‖ν‖1 .
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When we write x∗I′j
it formally means x∗I′j

(cj), where cj is the value of vector c at

the beginning of the jth iteration of step 6 of the algorithm. By Lemma 7.3.4 it is
‖xI′1−x

∗
I′1
‖1 ≤ (1/2−2ε)−1∆1. Let ν ′ = A(xI′1−x

∗
I′1

) and ∆1j = 1
d‖ν ′Γ(I′j)∩Φ(Ij)

‖1,
for j ≥ 2. We have that
∑

j≥2

∆1j ≤
1

d
‖(A(xI′1 − x

∗
I′1

))Γ(I2)‖1 ≤ 2ε‖xI′1 − x
∗
I′1
‖1 ≤ 2ε(1/2 − 2ε)−1∆1 .

To bound ‖xI′2 − x∗I′2
‖1 in the second step of the algorithm we will again use

Lemma 7.3.4. Let x′ = x − xI′1 . For the second step we can write that c =
Ax′ + ν + ν ′, so ν + ν ′ is viewed as noise. Since xI′2 = (x′)I′2 , through Lemma

7.3.4 we get that ‖xI′2 − x
∗
I′2
‖1 ≤ (1/2 − 2ε)−1(∆2 + ∆12). In general, let ∆ij =

1
d‖(A(xI′i − x

∗
I′i

))Γ(I′j )∩Φ(Ij)‖1, for j > i ≥ 1. Similarly as before we find that

‖xI′j − x
∗
I′j
‖1 ≤ (1/2 − 2ε)−1(∆j + ∆1j + . . .+ ∆j−1 j) .

Further,
∑

l>j

∆jl ≤
1

d
‖(A(xI′j − x

∗
I′j

))Γ(Ij+1)‖1 ≤ 2ε‖xI′j − x
∗
I′j
‖1 ≤

≤ 2ε(1/2 − 2ε)−1(∆j + ∆1j + . . .+ ∆j−1 j) .

Denote the value 2ε(1/2−2ε)−1 by ρ. Summing the bounds on all the terms
‖xI′j − x

∗
I′j
‖1 produces

∑

j≥1

‖xI′j − x
∗
I′j
‖1 ≤ (1/2 − 2ε)−1

(
∆ +

∑

j≥1

∑

i<j

∆ij

)

= (1/2 − 2ε)−1
(
∆ +

∑

i≥1

∑

j>i

∆ij

)

≤ (1/2 − 2ε)−1
(
∆ +

ρ

1− ρ∆
)

(By Lemma 7.3.7)

= (1/2 − 2ε)−1∆(1− ρ)−1 .

Now we can write:

‖x− x̂‖1 = ‖xR‖1 +
∑

j≥1

‖xI′j − x
∗
I′j
‖1 ≤

≤ ‖xR‖1 + ∆(1/2 − 2ε)−1(1− ρ)−1 =

= ‖xR‖1 + ∆(1/2 − 4ε)−1 ≤ ‖xR‖1
(
1 +

4ε

1− 8ε

)
+

2

(1− 8ε)d
‖ν‖1 .

We finish the proof by plugging in the bound on ‖xR‖1 given by Lemma 7.3.6.

7.4 Appendix

7.4.1 Space efficient method for computing Ī

We will describe how it is possible reduce the storage requirement to O(kd log n)
bits, at the expense of increasing the running time to O(nd log n). Some con-
stant factors in the parameters have to be increased as well. Suppose (in this
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paragraph only) that Ī is redefined so that the constant 2ε in (7.2) is changed to
6ε (any value higher than 3ε would in principle work). Observe that any element
of Ī \ I that has at least (1 − 4ε)d unique neighbors within the set Ī \ I must
have at least 2εd neighbors shared with the neighbors of I. Therefore at least
half of the elements of Ī \ I belong to the set

T1 = {i ∈ {1, 2, . . . , n} \ I : |Γ(i) ∩ Γ(I)| ≥ 2ε} .

The algorithm first finds T1, which takes O(nd) time. The set Ī is initialized
to I, and it will be expanded incrementally. To efficiently determine T1 ∩ Ī
the algorithm constructs a priority queue over the set T1 with the priority of
element i being |Γ(i) ∩ Γ(Ī)|; in this part the process is the same as earlier.
Time O(kd) is spent on finding the intersection of T1 and Ī, since T1 can have
at most |I| = 2k elements. It is clear how the algorithm can proceed to run in
total time O(nd log n).

7.4.2 Point queries and heavy hitters

In this section we turn to the streaming model of computation, and look at
the related problems of answering point queries and reporting a set of heavy
hitters in a stream. We are interested in having reasonably good deterministic
structures for these problems. The vector x is now implicitly defined by a stream
of update operations. In the streaming context it is assumed that noise ν is zero.

For point queries, the same kind of linear sketch that we used earlier, together
with Step 1 of the recovery algorithm, immediately yields a structure with a good
average error. In general, it is possible to provide meaningful approximations for
only O(s) coordinates of x, those of relatively high magnitudes. Further, since
we want to use a fixed matrix A for any possible vector x and also want to have
m = O(s log n), we may not provide a good approximation guarantee for every
“heavy” entry of x. Yet, we may provide approximations with a reasonably small
average error, as stated in Theorem 7.3.3. To get a clear bound in the streaming
context, we put M = ∅ and α = 0 in Theorem 7.3.3. We may set a fixed value to
ε, say ε = 1/12. Then on any index set I of size exactly s/2 the average error of
point estimates is at most 1

s‖x‖1. The space requirements for the data structure
come mainly from the vector c. Assuming an explicit optimal expander G, the
memory space spent on the description ofGmay be neglected (it does not depend
on s). The size of the sketch vector c would be O(s log n logM) bits, where M
is an upper bound on ‖x‖1. It seems slightly better to tune the accuracy of
the estimates by scaling the parameter s, rather than ε, when suitable. In that
case, the trade-off between the space usage and the average error is also clearer.
Yet, if we want to guarantee good point estimates (on average) on index sets of
sizes considerably smaller than s, then taking a smaller value for parameter ε
is necessary. Our deterministic structure (yet, still non-explicit) uses the same
amount of space (up to constant factor) as the randomized Count-Min sketch
[CM05] when both structures give the same value of the error bound, but the
type of our error bound is somewhat different.

LetHHp
φ(x) = {i : |xi|p ≥ φ||x||pp} be the set of heavy hitters of the vector x.

It seems hard (if possible) in the general streaming model to report all the heavy
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hitters using space o(1/φ2). Here we will investigate the case x ≥ 0, which often
appears in applications. Some streaming algorithms work only under the non-
negativity assumption. This model stands between the most general streaming
model and the insertions-only model. We solve a version of the problem that has
been studied in the literature, showing that there exists a deterministic sketching
structure of size O(1/φ · logm logM) bits that reports a set S ⊂ {1, 2, . . . , n}
such that |S| = O(1/φ) and S contains all φ-heavy hitters of x in the `1 norm,
i.e., HH1

φ(x) ⊂ S. We will give two simple solutions.
A common way of reporting heavy hitters is via a structure for reporting

point queries. We get one solution by using our structure for point queries. We
may set s = 2/φ, ε = 1/12, and choose to return the set of indexes S = {i :
|x∗i | ≥ φ‖x‖1}. Because of the assumption that x ≥ 0 we can easily maintain the
value ‖x‖1 during updates of x. We establish a simple upper bound of |S| < 3/φ.
According to Corollary 7.3.5 there will be less than 1/φ elements from the set
{i : |xi| < φ

2‖x‖1} whose estimates x∗i are in the range x∗i ≥ φ‖x‖1, and as
such they might appear to be of higher magnitude than some of the real φ-heavy
hitters. To that number we added 2/φ, which is the upper bound on the number
of elements from {i : |xi| ≥ φ

2 ‖x‖1}. The constant factors in this approach can
be slightly optimized, but we can achieve considerably lower constants with a bit
different method. This second method is a more direct solution to the problem
of finding heavy hitters.

We again use a linear sketch of form c = Ax, where A is an m×n adjacency
matrix of an expander G, but this time with parameters (((1−ε)φ)−1 +1, d, ε).
The algorithm determines the set J = {j : cj ≥ φ‖x‖1}. Since ‖c‖1 = d‖x‖1,
it follows that |J | ≤ d/φ. The algorithm outputs the set S = {i : Γ(i) ⊂ J}.
Clearly, all the φ-heavy hitters are contained in S. It holds that |S| ≤ ((1 −
ε)φ)−1, as otherwise the expansion property would be violated.
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An Expander Conjecture

We describe a conjectured family of efficiently constructible bipartite expander
graphs with highly unbalanced sides and expansion arbitrarily close to the de-
gree. The construction is algebraic and simple. The graph representation is
succinct and evaluation of the neighbour function is fast. The graphs should
have logarithmic degree.

The proposed proof approach is not completely trivial. The missing part is
stated in the final section. Spectral methods are not used.

For a vector space Fq, let 〈· , ·〉 : Fq×Fq → F be the symmetric bilinear form
given by 〈x, y〉 =

∑q
i=1 xiyi. We will use this notation for different vector spaces

throughout the chapter. Logarithms are base 2.

A.1 Setup

We identify the left vertex set with vector space Fr, where F is a finite field,
and the right vertex set is identified with [d] × F. We first specify the form
of our expander graphs. Suppose that a = (a1, a2, . . . , ad) is some sequence of
elements of Fr. For any x ∈ Fr and 1 ≤ i ≤ d, the ith edge incident from x is
incident to the element (i, 〈x, ai〉). For such a graph to indeed be an expander,
the elements of the sequence a need to satisfy a certain relation. As an example
of inappropriate setup take r = 2 and ai = (1, i), 1 ≤ i ≤ d, with F being a
prime field. It is easy to see that the resulting graph has a poor expansion.

We restrict the field F to be of type F2q The necessary lower bound on q is
not yet clear (at least it has to be q ≥ logN). The value of the left degree is
expressed as d = 1

ε cr logN . The main property that we require for the sequence
a is that any r-element subset of {a1, a2, . . . , ad} is linearly independent. Some
additional property may be required to complete the missing part of the proof.

Let S be a subset of Fr of size n. Denote the elements of S by xi, 1 ≤ i ≤ n.
If the kth neighbour of xi is shared with some neighbour of xj then that has
to be exactly the kth neighbour of xj; this was the reason for having [d] × F
as the right vertex set. Each collision between a pair of elements from S cor-
responds to an equality of type 〈xi, ak〉 = 〈xj , ak〉. Corresponding to those
equalities we construct a big matrix with nr columns. Let rowen(i, j, y) be the
vector from Fnr that at coordinate (i − 1)r + k has value yk, 1 ≤ k ≤ r, at
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coordinate (j − 1)r + k has value −yk, and all other coordinates equal to zero.
Each equality in the system is either directly represented by one row in the ma-
trix or can be easily deducted from a set of rows (we do not want to include
rows that are “obviously” linearly dependent on the remaining ones). Con-
cretely, for any chain of equalities 〈xi1 , ak〉 = 〈xi2 , ak〉 = · · · = 〈xim , ak〉, where
i1 < i2 < . . . < im and 〈xj , ak〉 6= 〈xi1 , ak〉 for any j /∈ {i1, i2, . . . , im}, we include
the following vectors as rows of the matrix: rowen(i1, i2, ak), rowen(i2, i3, ak), . . .
, rowen(im−1, im, ak). Through this construction we end up with a matrix having
dn− |Γ(S)| rows (because for any right vertex v ∈ Γ(S) there are |Γ(v) ∩ S| − 1
matrix rows that are related to v). Denote the matrix by A0. The kernel of
A0 includes a vector that is a representation of the set S, that is the vector
((x1)1, (x1)2, . . . , (x1)r, (x2)1, (x2)2, . . . , (xn)r). Observe that Null(A0) also in-
cludes all vectors z that satisfy zi = zi+r, for every i ≤ (n− 1)r (i.e. any vector
produced by “replication” of a vector from Fr). Hence, the dimension of the
null space of A0 is at least r. If we could prove that rank(A0) = (n− 1)r when
|Γ(S)| is not large enough and n ≤ N , that would imply that the null space of
A0 consists only of trivial solutions, meaning that the vector representation of S
does not belong to Null(A), which is a contradiction. The method of our proof
is a variation of the approach of showing that rank(A0) = (n− 1)r.

To be precise about the threshold for |Γ(S)|, we consider the expansion
property violated when

|Γ(S)| ≤ n(d− cr log n) , (A.1)

assuming that n ≤ N . The value on the right hand size is somewhat higher than
(1 − ε)dn, unless n is very close to N . We may suppose that the given set S is
a minimal set that violates the expansion property, meaning it has no subset S ′

of size m < n such that |Γ(S ′)| ≤ m(d − cr logm). From (A.1) it follows that
A0 has at least n · cr log n rows.

We will assume that rank(A0) = (n− 1)r − 1. If the rank is even lower, we
may add some rows of type rowen(i, j, y) to reach this value of the rank. We
shall still arrive at a contradiction by showing that rank(A0) = (n− 1)r.

A.2 Idea for a Proof

A.2.1 Collision graph

We define collision graph H0 = (V0, E0) of the matrix A0 as follows. H0 is
an undirected multigraph over vertex set V0 = {1, 2, . . . , n}. Edges of H0 are
labeled; the domain of label values is Fr. The graph has an edge labeled y
between i and j if and only if A0 contains a row equal to rowen(i, j, y). The
average degree of H0 is at least 2cr log n. Since H0 does not contain a subgraph
of a higher average degree, the minimum degree is at least cr log n. By the
construction of A0 (see Section A.1), no three edges from incident on one vertex
can share the same label value (there may be pairs of edges with shared labels).

The property ofH0 of not having large subgraphs holds due to the minimality
condition for S. It ensures that no vertex subset has a small edge cut with the
rest of the graph. Take any U ⊂ V0 of size k ≤ n/2. The total number of edges
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incident on vertexes from U is at least k · cr log n, as otherwise the subgraph
induced by V0 \U would have average degree higher than 2cr log n. If there were
not more than k · cr log n

k edges between U and V0 \U , the average degree of the
subgraph induced by U would be at least 2(kcr log n− kcr log n

k )/k = 2cr log k,
which contradicts the property of H0. As there are at least kcr ≥ 2kr edges
in the edge cut, there are at least r distinct edge labels appearing in the cut.
Therefore, the span of the edge labels in the cut is Fr. Informally, we may say
that every edge cut “conducts” the full space Fr.

A.2.2 Matrix over F2

The field F can be viewed as a vector space over its subfield F2. Take any
additive isomorphism ρ̂ : F2q → (F2)

q. We may reinterpret any vector from Fr

as a vector from (F2)
qr by applying ρ̂ to each of r components of the vector (in

the standard basis of Fr). Denote such mapping by ρ.

Take some elements e1, e2, . . . , eq from F such that {e1, . . . , eq} is a basis
of the vector space induced by F. In other words, every element of F can be
expressed as

∑q
i=1 αiei, with αi ∈ F2.

We define multigraph H1 = (V0, E1) with an “overloaded” edge set. In place
of each edge from E0 there are q edges in E1 with the same endpoints. If the
original edge label is y, the new labels are ρ(e1y), . . . , ρ(eqy). We call edge bundle
each set of q edges from E1 that originate from a single edge in E0. Note that we
have a possibility of using different bases {e1, . . . , eq} for different edge bundles.

We denote by A1 the matrix over F2 that is determined by the multigraph
H1. The matrix A1 has nqr columns. It holds that rank(A1) = q · rank(A0).

A.2.3 Extending the matrix

From H1 we form multigraph H2 = (V0 ∪ V2, E1 ∪ E2). The vertex set V2

consists of n vertex clusters. For each vertex i ∈ V0 there is a cluster of vertices
vi1, v

i
2, . . . , v

i
di

in V2, where di is the degree of i in the multigraph H1. All edges
in E2 run between V0 and V2; they are directed, for convenience. All edges from
E1 incident on vertex i are replicated over all vertices vi1, . . . , v

i
di

, with only their

endpoint changed from i to vij ; those edges are directed as outgoing from vij . In

addition to these, every vertex vij has exactly one ingoing edge. Each edge from

E1 of vertex i is uniquely assigned a vertex from the cluster {v i1, . . . , vidi
} and

replicated on it, as an ingoing edge.

Let n1 =
∑n

i di. The collision graphH2 determines matrix A2 with (n+n1)qr
columns. There is a clear correspondence between the solutions of A1x = 0 and
the solutions of A2y = 0. If rank(A1) ≤ (nr−r−1)q then rank(A2) ≤ (n+n1)qr−
(r+ 1)q. Therefore, it is enough to show that rank(A2) > (n+n1)qr− (r+ 1)q.

Mainly for notational purposes, we will duplicate outgoing edges of vertices in
V2 a large number of times. Let g and ĝ be some large numbers. For concreteness,
we may say they equal 3n1 . They could have even much larger values, as they
do not influence the complexities of the parameters of the graph. Outgoing
edges are duplicated so that each vertex in V2 has g · ĝ edges. The edges for
each vertex are partitioned into g groups containing ĝ edges each. Every group
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should contain copies of all original edges from E2, but the concrete distribution
of repetitions is not important. Denote by H3 the multigraph obtained this way,
and let A be the matrix determined by H3. Obviously, rank(A) = rank(A2).

A.2.4 Analyzing the rank of A

Let α be a vector of coefficients associated to rows of A. The related linear
combination is αA (here α is treated as a row vector). For now, all elements
of α are free variables. For the coefficient associated to a row of A, we also say
that it is the coefficient of the related edge of H3. Let Ai be the submatrix of A
consisting of columns (i− 1)qr + 1 through i · qr; we also call it the ith section
of A. Sections 1 through n correspond to vertices from V0, while sections n+ 1
through n + n1 correspond to vertices from V2. We may also identify vertices
from V2 by numbers from {n+1, . . . , n+n1}. Let Jk be the set of indices of the
rows corresponding to the outgoing edges of vertex k, k > n, and similarly let
Jkl be the index set of the rows corresponding to the edges from group l of vertex
k, 1 ≤ l ≤ g. By αK we denote the restriction of α to components indexed by
set K. We use αm to denote α∪n+n1

i=m Ji
. Let P be the index set of rows outside

of
⋃n+n1
i=n Ji.

The submatrix of A consisting of sections 1 through n clearly has full row
rank. We want to examine how much freedom do we have in setting the resulting
value of αA at sections n+1, . . . , n+n1 (the ith section of αA is αAi). We will
analyze a process of substitutions of variables in α, where some variables are
made dependent on others. As an initialization step, variables in αP are made
dependent on the variables from αn+1 in a way that makes the restrictions of αA
to sections 1, . . . , n independent of αn+1. There are many possible substitutions
that accomplish this. Further substitutions, which happen among variables in
αn+1, cannot spoil the value of αA attained at sections 1, . . . , n. The initial-
ization step sets some values of the coefficients of ingoing rows of vertices from
V2. We express the coefficient of the ingoing edge of vertex i ≥ n as 〈bn(i),αn〉,
where bn(i) is a vector over F2. For now, we will assume an idealized property
of values bn(i).

(∀k)(∀l)(∀I ⊂ {k+1, . . . , n+n1})
∑

i∈I
bn(i)Jkl

/∈ ColSpan(A(k,l))\{0} (A.2)

Here A(k,l) denotes the submatrix of Ak containing rows indexed by Jkl, and
ColSpan(M) represents the column space of matrix M . We know that qr =
dim(ColSpan(A(k,l))). The property (A.2) cannot entirely hold, but it is easier
to first describe the process of substitutions with the idealized assumption. The
true property holds for almost all subsets I, but for a few of them it does not.
We will discuss this in Section A.2.6.

A.2.5 Substitutions of variables

The process of substitutions proceeds in steps, one section at a time. Suppose
that the order of processing sections is n + 1, n + 2, . . . , n + n1. At section m,
variables in αJm are to be expressed in terms of variables from αm+1 in a way
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that cancels the contribution of αm+1 at section m. More precisely, αJm should
be expressed in form βJm

+ Bmαm+1, where βJm
is a vector of free variables,

so that αAm = βJm
Am. If the space of vectors βJm

Am has dimension qr then
we have full freedom in setting the resulting value of αAm. Because of the
construction with exactly one ingoing edge, the dimension is at least qr− 1. We
want to show that there are less than (r + 1)q sections where such dimension is
qr − 1 (with the idealized property (A.2) it would appear that all sections may
have full rank, which is not possible).

Suppose that the process was completed at sections n + 1, . . . ,m − 1. The
coefficient of the ingoing edge of vertex i ≥ m is 〈bm(i),αm〉. Throughout the
substitution process we want to keep bm(i)Ji = 0, for all m and i. In order to
do this, we will maintain some kind of independence among vectors bm(i), which
we specify by the following property.

(∀k ≥ m)(∀l)(∀I ⊂ {k + 1, . . . , n+ n1})
∑

i∈I
bm(i)Jkl

/∈ ColSpan(A(k,l)) \ {0}

(A.3)
Now set k = m. Variables from αJk

should become dependent on variables
from αm+1. In the equaling process we separately deal with the sets of variables
αJm+1 ,αJm+2 , . . . ,αJn1

. Consider the set αJi , and denote wl = bm(i)Jkl
. In

order to keep bm+1(i)Ji = 0 we set the condition

〈wl,αJkl
〉|αJi

= 0 . (A.4)

That is, 〈wl,αJkl
〉 should not depend on αJi after the substitutions. In order to

equalize the values at section m we set the conditions that

αJkl
A(k,l) = 〈Xl,αJi〉 aµ , (A.5)

where aµ is the label of the ingoing edge of vertex k = m, andXl are some vectors
from (F2)

g·ĝ such that
∑g

l=1Xl = bm(m)Ji . According to property (A.3), wl is
either linearly independent of the columns of A(k,l) or wl = 0. Therefore, the
conditions (A.4) and (A.5) can be simultaneously satisfied.

We will add a condition that is orthogonal to the conditions (A.4) and (A.5).
This will help us to influence values bm+1(j)Ji , for j > m. Let Ul denote the
subspace of (F2)

ĝ that is orthogonal to wl and ColSpan(A(k,l)). Suppose we are
given a linear form Fl : Ul → F2. We require that

〈αJkl
, u〉 = 〈Xl,αJi〉Fl(u) , (A.6)

for all u ∈ Ul. The condition (A.6) holds for all u ∈ Ul iff it holds on a basis of
Ul.

Let us examine the influence of such a substitution on vectors bm+1(j)Ji , for
j 6= i. For easier notation, denote vjl = bm(j)Jkl

. Represent the vector vjl as
v̄jl + γjlwjl +A(k,l)yjl, where γjl ∈ F2 and v̄jl ∈ Ul. It holds that

〈bm+1(j)Ji − bm(j)Ji , αJi〉 =
∑

l

〈αJkl
, vjl〉|αJi

=
∑

l

〈αJkl
, v̄jl +A(k,l)yjl〉|αJi

=
∑

l

〈Xl,αJi〉
(
Fl(v̄jl) + 〈aµ, yjl〉

)
.
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By property (A.3) (applied with I = {i, j}), we know that v̄jl 6= 0 unless
vjl = wjl. Suppose that the linear form Fl is chosen uniformly at random,
independently for each l. Then we may write that

bm+1(j)Ji − bm(j)Ji =
∑

l

tjlXl

where tjl are random variables with range F2. There are two possible distribu-
tions for each tjl. If vjl = wjl then Pr{tjl = 0} = 1. Otherwise, Pr{tjl = 0} =
Pr{tjl = 1} = 1/2. For a fixed j, nonzero variables tjl are independent. When l
is fixed, we have no guarantee on the level of independence among variables tjl,
over different j.

We also make use of the flexibility in choosing the vectors Xl. For 1 ≤ l < g,
the vectors Xl are chosen uniformly and independently at random. The last
vector is set to Xg = bm(m)Ji −

∑g−1
l=1 Xl.

We need to examine the probability that property (A.3) holds after the sub-
stitution. Let I be any subset of {i+ 1, i+ 2, . . . , n+ n1}. We have that

∑

j∈I
bm+1(j)Jip =

∑

j∈I
bm(j)Jip +

∑

l

(∑

j∈I
tjl

)
Xl p ,

where Xlp is the restriction of Xl to positions that correspond to αJip . Observe
that for any l, ∑

j∈I
tjl = Fl

(∑

j∈I
v̄jl

)
+
〈
aµ,

∑

j∈I
yjl

〉
.

Denote
∑

j∈I tjl by τl. Using the property (A.3), applied on I ∪{i}, we conclude
that the variables τl have the same two possible distributions as we have for
variables tjl. Let Λ ⊂ {1, . . . , g} be the index set of nonzero variables τl. We
have that ∑

j∈I
bm+1(j)Jip =

∑

j∈I
bm(j)Jip +

∑

l∈Λ

τlXl p .

There are only two cases, with respect to random choices of τl, where
∑

l∈Λ τlXlp

is not a uniformly distributed vector, with respect to choices of Xl, l ∈ Λ. The
first case is τl = 0 for all l ∈ Λ. But then the property trivially continues to
hold. The second case is τl = 1 for all l ∈ {1, . . . , g} (precondition is that Λ =
{1, . . . , g}). Then,

∑
l τlXlp = bm(m)Jip . It could happen that

∑
j∈I b

m(j)Jip +
bm(m)Jip falls in ColSpan(A(i,p)). Therefore, we want to avoid the event that
τl = 1 for all l ∈ {1, . . . , g}. Its probability is at most 2−g (it is zero when
Λ ( {1, . . . , g}). Now consider any other assignment of values to (τl)l∈Λ. The
conditional probability that

∑
j∈I b

m+1(j)Jip falls in ColSpan(A(i,p)) is 2qr−ĝ,
as qr = dim(ColSpan(A(i,p))). Hence, the total probability of the event that∑

j∈I b
m+1(j)Jip ∈ ColSpan(A(i,p)) is at most

2−g + (1− 2−|Λ|) · 2qr−ĝ < 2−g + 2qr−ĝ .

By union-bounding over all i, I, and p, we find that property (A.3) is preserved
with a positive probability.
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A.2.6 Initialization of ingoing coefficients

Consider a single outgoing edge {k, j} of vertex k with label y and coefficient
α (which is a component of α). Let I be a subset of {k + 1, . . . , n + n1}. Let
γi ∈ F2 be the component of bn(i) related to the variable α. We would like to
achieve that

∑
i∈I γi 6= 〈y, z〉, for some z ∈ (F2)

qr. If we can do this for any
vector z ∈ (F2)

qr, by varying the value of z across different outgoing edges of
vertex k we can achieve that

∑

i∈I
bn(i)Jkl

/∈ ColSpan(A(k,l)) \ {0} ,

for all l. We can write
∑

i∈I γi in form 〈αP , tI〉|α, where tI is a vector that leaves
nonzeros at the positions of the ingoing edges of the vertices in I. Let A′ be the
submatrix of A consisting of rows indexed by P and sections 1, . . . , n (A′ is also
a submatrix of A2), and let v(j, y) be the vector from (F2)

nqr that has value y
at section j and zeros elsewhere. The main requirement of the initialization step
is that (αPA

′)|α = v(j, y). If tI /∈ ColSpan(A′) then it is definitely possible to
have 〈αP , tI〉|α 6= 〈y, z〉. Suppose that tI = A′x. Because tI has zeros at the
positions of edges in E1, the vector x satisfies A1x = 0.

By assumption we have that rank(A0) = (n− 1)r − 1 and thus rank(A1) =
nqr − (r + 1)q. We consider sets of ingoing edges of vertices in V2 that consist
of (r + 1)q edges which originate from r + 1 edge bundles of H1. Let J denote
the index set of rows of A′ that correspond to such an edge set. There exists J
such that (A′x)J 6= 0 for every x 6= 0.

LetK ⊂ {n+1, . . . , n+n1} be the set of sections (vertices) whose ingoing rows
are in J . We move the sections in K to the end of the substitution sequence.
Denote s = n + n1 − (r + 1)q. For convenience we reorder sections to make
K = {s+1, . . . , n+n1}. For any set I ⊂ {n+1, . . . , s}, the initial property (A.2)
can be satisfied. Thus, ignoring the sections in K, the process of substitutions
can be performed as described in Section A.2.5.

A.2.7 The tail sections

Let p be the index of the ingoing row of section s. We would like the following
to be satisfied: (A′x)p = 1 whenever (A′x)J has exactly one component equal to
1. We will show that this can be satisfied by placing an appropriate vertex on
position s and appropriately choosing bases {ei1, . . . , eiq} for that last r+ 1 edge
bundles. Let ρ(ei1aki

), . . . , ρ(eiqaki
) be the labels of the ith ingoing edge bundle

from the end; we are mainly interested in i ∈ {1, . . . , r+ 2}. Further, let li ∈ V0

be the other endpoint of these ingoing edges. Because we will also work with
the original matrix A0, we define some vectors vi from Fnr. The li-th section of
vi is equal to aki

, and zeros are elsewhere. Extending the matrix A0 with row
vectors vi, 1 ≤ i ≤ r + 1 results in a matrix of rank nr. We may suppose that
the ingoing label of vertex s in H2 is equal to ρ(akr+2) (that is, er+2

q = 1F).
For any j ∈ J , there exists exactly one solution x such that (A′x)j = 1 and

(A′x)J\{j} = 0. Adding the rows (A′)J\{j} to the matrix A1 results in a matrix of
rank nqr−1. The row p of A′ should not belong to the row space of that matrix.
This can be made true for all j by appropriately choosing bases {ei1, . . . , eiq} for
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that last r + 1 edge bundles, provided that the following holds. Let Rj be the
row space of the matrix A0 extended with rows v1, . . . , vj−1, vj+1, . . . , vr+1, for
1 ≤ j ≤ r+ 1. The row vector vr+2 should not belong to any space Rj . We will
show that some vectors among Q = {vr+2, vr+3, . . . , vn1/q} do not belong to any
space Rj , and thus sections may be swapped to have a suitable vector vr+2. We
say that vector vi belongs to section li. If at one section there exist r linearly
independent vectors from Q that belong to Rj then all vectors at that section
belong to Rj . Let Tj ⊂ {1, . . . , n} be the set of sections that entirely belong to
Rj . Recall that there are at least |Tj | · cr log n

|Tj | edge between Tj and V0 \ Tj
in H1. If it was |Tj | · cr log n

|Tj | ≥ 2r(n − |Tj |), then additional sections would

belong to Rj. Hence, |Tj | < n/(1+ c
2 log n

|Tj |). If c ≥ 2r then there exist sections

with vectors that are outside of every Rj .
Now that the ingoing row of section s satisfies the required property, we know

that the substitution process can keep bs(i)Ji = 0 for all i ∈ {s, s+1, . . . , n+n1}.
We have no guarantees on the values of bs(i)Js , for i > s. If there exists i > s
such that bs(i)Js /∈ ColSpan(As) then we can keep bs+1(i)Ji = 0, which implies
that rank(A) > (n+ n1)qr − (r + 1)q. Now suppose that bs(i)Js = Aszi, i > s.
Let y = ρ(akr+2) be the label of the ingoing edge of vertex s. If 〈y, zi〉 = 0 for
some i, it will still be bs+1(i)Ji = 0. We would like to show that it cannot be
that 〈y, zi〉 = 1 for all i. Let Z be the qr × (r + 1)q matrix whose ith column
equals zi, and let B be the (r + 1)q × qr matrix whose ith row equals the label
of the ingoing edge of vertex s+ i. By an invariant of the substitution process
it has to be that

As = AsZB . (A.7)

Since As has full row rank, ZB has to be equal to the identity qr × qr matrix.
We also have that

yZ = (1, 1, . . . , 1) . (A.8)

What remains to be shown is that ZB = I and yZ = (1, 1, . . . , 1) cannot be
simultaneously satisfied. One probably has to use the possibility of having dif-
ferent values in place of y.
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Informacii, 9:71–80, 1973.

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and
Searching. Springer, 1984.

[Mil98] Peter Bro Miltersen. Error correcting codes, perfect hashing cir-
cuits, and deterministic dynamic dictionaries. In Proceedings of the
9th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
556–563. ACM Press, 1998.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and appli-
cations (invited talk at soda’03). 2003. Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps.

[MV84] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic
simulations of PRAMs by parallel machines with restricted granu-
larity of parallel memories. Acta Inf., 21:339–374, 1984.

[NT09] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples. Appl. Comp. Harmonic Anal.,
26:301–321, 2009.

[NV09] D. Needell and R. Vershynin. Uniform uncertainty principle and
signal recovery via regularized orthogonal matching pursuit. Foun-
dations of Computational Mathematics, pages 317–334, 2009.

[ÖP02] Anna Östlin and Rasmus Pagh. One-probe search. In Proceedings
of the 29th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 2380 of Lecture Notes in Computer
Science, pages 439–450. Springer, 2002.

155



BIBLIOGRAPHY

[OvL81] Mark H. Overmars and Jan van Leeuwen. Worst-case optimal in-
sertion and deletion methods for decomposable searching problems.
Inf. Proc. Lett., 12(4):168–173, 1981.

[Pag00] Rasmus Pagh. A trade-off for worst-case efficient dictionaries.
Nordic J. Comput., 7(3):151–163, 2000.

[Pe98] H. Prodinger and W. Szpankowski (eds.). Special issue on average
case analysis of algorithms. Algorithmica, 22(4), 1998. Preface.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122–144, 2004.
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