
Abstract

In this PhD Dissertation we develop methods for proving contextual equivalence
and termination.

Contextual equivalence. It is common to define two programs to be con-
textually equivalent if they have the same termination behavior in all closing
contexts. We analyse equivalence in a functional language with recursive and
polymorphic types and extended with constructs to dynamically allocate and
update higher-order store. The aim is to give a sound characterization that
eases proofs of contextual equivalence in many cases.

In the thesis we present three papers on contextual equivalence. All three
share a common setup: They are based on an FM-denotational model with an
admissible Kripke-style logical relation on top of a universal recursive domain.
The methods give ways to express why two programs are expected to be equiv-
alent via definitions of local parameters. Such definitions of local parameters
express the intuition for why two programs are equivalent and are essentially
the only non-trivial parts in a proof of equivalence. The combination of ex-
pressible parameters and a recursive domain makes it, however, non-trivial to
establish the existence of the relations in the first place. This has required some
new ideas. Our work is inspired from the work of Benton and Leperchey and
extends earlier research on equivalence proofs in several ways. We extend the
language to encompass recursive and polymorphic types and dynamic alloca-
tion of higher order store. Further we refine the definition of parameters and
also taylor the definition to the extended language. The additional features in
our language add some extra significant complications to the understanding of
equivalence as well as to the denotational interpretation. Our method is the first
proof method for contextual equivalence based on a logical relation over a deno-
tational semantics for a language with recursive types and dynamic allocation
of references of any type.

The first paper gives the general setup. The second paper gives a relationally
parametric interpretation of polymorphic types. This is not quite as general
as we would like; we restrict the type of references so that the type must be
closed. It is to our knowledge the first relationally parametric model for higher-
order store and polymorphic and recursive types. The third paper is primarily
concerned with refining the definition of parameters.

Termination analysis. The last paper develops a sound and fully-automated
algorithm to show that evaluation of a given untyped λ-expression will terminate
under call-by-value. The “size-change principle” from first-order programs is ex-
tended to arbitrary untyped λ-expressions in two steps. The first step suffices to
show call-by-value termination of a single, stand-alone λ-expression. The second
suffices to show termination of any member of a regular set of λ-expressions,
defined by a tree grammar.


