

What happens in Triage?
An Empirical Study of Bug Triage in Software Product Evolution?

Marjahan Begum
Yvonne Dittrich

IT University Technical Report Series TR-2024-210

ISBN 978-87-7949-008-3 December 2024

Copyrigth ã 2024 Marjahan Begum
 Yvonne Dittrich

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISBN 978-87-7949-008-3

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK – 2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

What happens in Triage?
An Empirical Study of Bug Triage in Software Product

Evolution

Marjahan Begum

School of Computer Science
University of Nottingham, UK

marjahan.begum@nottingham.ac.uk

Yvonne Dittrich

Department of Computer Science)
IT University of Copenhagen

Copenhagen, Denmark ydi@itu.dk

Abstract—This paper investigates and evaluates the role of
bug Triage in software evolution and maintenance. Traditionally,
Triage decision-making has been based on bug reports. Decision-
making concerns whether a bug is to be fixed and, if so, when and
by whom. Research in this area focuses on automation of some
aspects of bug fixing, enhancing information on bugs reports, and
most significantly, automating Triage through Machine Learning
(ML) techniques. Our paper is based on an ethnographic study
of a software team, and includes Triage and Stand-up meeting
observation, analysis of bug report documents, study of the
development environment and ad-hoc meetings. The framework
of Distributed Cognition for Teamwork served as a theoretical
lens for this study. Based on the analysis 33 complex bugs, the
paper argues that Triage was used as a major information hub for
discussing a wide range of information (e.g. about organisational
processes and development of the software), allowing knowledge
development that is valuable in software evolution beyond bug
fixing alone.

Index Terms—software engineering, empirical studies, collab-
orative and social computing, DiCoT

I. INTRODUCTION

Fixing bugs is an important part of software evolution and
maintenance. However, it is also considered cumbersome and
work-intensive. In many cases, work on bugs begins with
Triage, where software engineers and domain experts jointly
decide whether and how a reported bug should be fixed, its
priority, and to which engineer or domain expert it should
be assigned. Triage is a decision-making process that requires
significant organisational resources.

This article argues that Triage is not only about deciding
how, when and who is best-qualified to fix a bug. Our
analysis of what actually happens in Triage finds that it yields
much richer information for software evolution. Therefore,
it complements other research on bug resolution, including
ML approaches [1]–[4], by focusing on the research question,
What types of knowledge are generated in the Triage of
complex bugs?

The analysis suggests that Triage is a major information
hub one of the principle concept of information flow in
Distributed Cognition for Teamwork (DiCoT) [5]. The infor-
mation discussed in Triage has a wide range of implications,

including for organisational processes and future development
beyond deciding whether, when, how, or by whom a bug
should be fixed. Through the discussions, the participants
share knowledge and maintain their understanding of why the
software was developed in a particular way (past), its current
usage and problems (present), and how it should be developed
and changed to meet customer needs (future). In other words,
Triage raises awareness and yields knowledge that is important
for present and future development. This value is hidden from
researchers if the focus of the research is on reducing time
spent. Machine learning (ML) algorithms may be used to
support the Triage (e.g. categorising complex bugs for Triage,
whereas simple bugs are automatically assigned to engineers).

This paper presents a seven-month ethnographic study
that focused on software maintenance at the Warehouse and
Transportation division of some enterprise resource planning
(ERP) software. Data were collected through offline and online
observation of Triage and Stand-up meetings, interviews with
engineers, and by analysing the information in the related
software repository. The results were discussed with members
of the Triage team. Distributed cognition [6] provided the
framework for the analysis.

The importance of understanding social aspects of software
engineering has been thoroughly argued, for example, by
Storey and her colleagues [7]. They show that, in 2017, on
average, only five articles published by the ICSE and EMSE
communities addressed descriptive field studies. This study
provide descriptive insights into the way Triage operates, thus
extending descriptive and qualitative research with profes-
sional software engineers in their everyday work environment.

This paper is structured as follows. Section II provides
background of the study. Section III explains the paper’s
theoretical underpinning. Section IV presents the research
method with details of the case, field work and data-collection,
and data analysis. It also discusses the trustworthiness of
the data and research triangulation, member checking, pro-
longed engagement, audit trails and research ethics. Section
?? describes the bug’s journey through the lens of DiCoT.
Section VI presents the analysis of DiCoT’s information-flow

in Triage. Section VII discusses the findings. Section VIII
offers conclusions and directions for future research.

II. BACKGROUND

Fixing bugs has long been a subject of research in software
maintenance and evolution. This section contextualises our
investigation by presenting three relevant types pf research
into fixing bugs: enhancing quality of bugs reports; using ML
approaches for automation; coordination and collaboration.

Bug reports are important electronic artefacts for resolving
bugs. They contain basic descriptions of the bug, related bugs,
associated work items and sometimes code snippets, among
other information. One of the most important items of infor-
mation is the ’Steps to Reproduce’ (S2R). S2R gives the run-
time behaviour of a bug and the problems faced from the end-
users perspectives. Good bug reports support decision-making
in Triage. As bug reports include vast amounts of information,
it is important to identify the information most relevant to
fixing bugs. Bettenburg et al [8] investigated the quality of bug
reports with quantitative and qualitative surveys of 466 open-
source developers. They found that S2Rs, stack traces, and test
cases provided the most helpful information. This information
is also very difficult to provide in a bug report. They used
these insights to build a ML model to predict the quality of
289 bug reports with an accuracy of between 31% and 48%,
and this provided feedback to the bug reporter. Chaparro et
al. [9] explored the quality of S2R using language analysis,
matching sentences with a neural sequencing labelling model
in the steps leading to the application interactions. A low
match was attributed to a S2R having multiple or no matching
screen elements, or requiring additional steps that were not
documented in the report. The technique gives feedback on
the clarity of the information and on any missing steps.

In recent years, most of the research on bug Triage has
concerned the use of ML techniques to assign bugs to de-
velopers to fix [1], [10]–[14] and to prioritise bugs [12] to
reduce time in Triage. Various types of information were used
for the ML models. Naguib et (2013) et al [15] profiled the
user of a bug tracking system based on engineers’ activities,
to see whether they are assigning and/or resolving bugs, and
combined this with engineers’ expertise in prediction. Xuan et
al. proposed a text-classification approach to automate Triage
through data-reduction techniques [16]. Condensing the bug
report to only relevant information improves the bug report
from a ML perspective, as it does not have to incorporate
irrelevant variables. Jeong et al [11] combined ML with bug
tossing graphs, which detail a graph from a bug to the fixer.
Most of the ML approaches used supervised learning, and the
accuracy of the predictions ranged from 30% [14] to 98% [4]
in some cases. Anvik et. al [4] corroborated their findings with
human triagers.

ML driven research assumes that all relevant information
on bugs may be made explicit with the help of the project
repository, and that ML algorithms can identify the required
information, and provide recommendations that support bug
fixing [17]. This assumption is challenged by Aranda et

al. [3]. They demonstrate that information is distributed
among various parts of the repository, and of course resides
with individual developers. Co-workers are the most frequent
source of information, and if they are unavailable, progress
is slow [18]. They concluded that the distributed nature of
the information should be taken into consideration when
assessing the quality of a bug report or discussing a bug
in Triage. Making Triage decisions based solely on a bug
report may be counterproductive, when some key information
is not explicitly available. Carstensen et al. researched the
coordination of the work surrounding bug fixing, and identified
the bug report as a central coordinating mechanism [19], [20].
The patterns surrounding bug fix and the behind-the-scenes
automated information were later explored by Aranda et al.
[3]. They categorised coordination activities, related commu-
nication, bug databases, coding, reviewing code, and meetings
such as Triage. They suggest that Triage and code review were
perceived as the most essential coordination patterns, and are
strongly dependent on the social, organisational and technical
knowledge of individual developers [18]. Another coordination
activity that has been researched is bug reassignment in Open
Source Software [21]: the main reasons for reassignment are
identification of the root cause, ambiguous ownership, a poor
quality bug report, difficulty in determining a proper fix or
balancing a workload between developers.

The research discussed in this section confirms that in-
formation in the bug report needs to be relevant. Several
articles propose the use of automation to enhance information
and to sift out unnecessary elements. However, few articles
explore the dynamics of the collaboration surrounding bug
fixing and explore Triage as an important coordination activity
for resolving bugs.

III. THEORETICAL UNDERPINNINGS

Distributed Cognition (DCog) and Distributed Cognition
for Teamwork (DiCoT) theory and framework [5], [6], [22]
provide a lens for analysing our field work. DCog advocates an
understanding of how an entire environment, its physical arte-
facts and information, are used to coordinate and execute tasks
that are regarded as involving cognition. Cognitive processes
are often distributed among the members of a social group,
and require coordination of the internal cognitive activity and
the external (physical, material or environmental) structure.
Similarly, cognitive processes may be cognitive processes may
be distributed over time in such a way that the products of
earlier events may effect the nature of later events [6].

Grounded on DCog, DiCoT [5] was developed to explore
the understanding of the information flow during team commu-
nication and collaboration in the context of software engineer-
ing and other socio-technical domains [5], [23]. DiCoT was
developed around three main themes or groups of concepts:
physical layout, artefact and information flow.

A. Physical layout

Physical layout includes equipment, artefacts and people
working in the environment, and how their placement affects

what team members can access, hear and see. An example of
where the Scrum board is located and its role and function in
Agile development context [24].

Artefacts are enablers, mediators and/or are used simply
to monitor progress [5]. Therefore, they have specific roles
depending on the context of the respective task. As our
observations and part of the work of interacting with the
software repository were mainly virtual, the virtual artefact
concept is more relevant to this study. Virtual artefacts may
include and reference other artefacts [23]. Information resides
in artefacts and flows among them.

Information flow is another core theme that helps to un-
derstand how teams cooperate to execute cognitive tasks. As
the information flow theme turned out the main theme in the
analysis, the individual elements are discussed in detail:

Information movement describes how information is moved
between subsystems of complex systems [25]. Information
moves for functional reasons and results in different represen-
tation and physical transformation of artefacts. The mechanism
can be physical movement of the artefacts or change of the
representation of the information (text, graphical, verbal, facial
expression, telephone, electronics, alarms).

Information transformation occurs when the representation
changes from one form to another. The representation is to aid
reasoning and problem solving. An example is the process of
filtering where information is gathered, structured and sifted
so that it would aid problem solving for the next agent in the
pipeline. Flor and Hutchins [26] show how software engineers
reused previous code, shared goals and plans, negotiated
various approaches to problem-solving, solved problems in
a shared space, and collaboratively searched through large
alternative solution spaces.

Information hubs are team meetings where different in-
formation channels meet and information is processed and
results in information transformation. Such information hubs
have a high communication bandwidth [5]. An example are
Sprint planning meetings where decisions are made concerning
what software features will be developed. They have a high
communication bandwidth because information from various
sources (channels) is brought together for discussion. Without
such meetings, coordination concerning, and collaboration on
the work item would be compromised.

Buffering refers to the storage of information from various
sources or channels for a period of time, until decisions
are made or there is further information transformation and
movement.

DCog and DiCoT have been used to study software engi-
neering [23], [24], [26] due to the complex nature of software
engineering, and the nature of interactions between people and
artefacts. They provide a lens for analysing interactions as a
whole or part of bug fixing process. Sharp et al.’s study of
virtual and geographically dispersed settings [23], they explore
the role of key virtual artefacts (e.g. OneNote, Microsoft
Visual Studio Team Foundation Server (TFS), Skydrive). For
example, OneNote was used for scaffolding when it was
adopted as a way to outline behaviour of the software.

To summarise, DCog and DiCot are powerful tools for
analysing and understanding complex collaboration. In line
with Sharp et al. [23], we use the DCog underpinning and
DiCoT’s terminology to analyse collaboration around the bug
fixing process at a software product development organisation.

IV. RESEARCH METHOD

The purpose of this study was to better understand the bug
handling process and the information it requires by investigat-
ing what information is brought to and generated in Triage and
how Triage is done, from the members’ perspective by focus-
ing on the rationale behind various activities. Accordingly, this
was designed as an ethnographic study [27]. The fieldwork was
carried out by the first author. The second author supported
the fieldwork through regular debriefing and participated in the
data analysis detailed below. The field work began in February
2020 on-site, and then moved online during the COVID-19
lock-down. To understand the complex interaction between
people and virtual artefacts, the information flow from DiCoT
as described above was used as an analytical lens, as described
in section IV-C

A. Case Description

This study was carried out in Microsoft with a team that
was responsible for the Warehouse and Transportation module
of Microsoft Dynamics Enterprise Resource Planning (ERP).
This software is highly customisable and may be configured
to customers’ specific needs. The team adapted a variation of
agile software development model, with sprints, retrospectives
and backlogs that comprised of work items, including bugs.
Bug fixes were prioritised, and often resolved within a few
days.

The development of the ERP system is distributed over
several countries: USA, China, Denmark and Ukraine. The
study focused on a team that develops and maintains the
Warehouse and Transportation modules of the system. The
team consists of four to five software engineers (SEs), two
to three senior software engineers (SSEs) and three program
managers (PMs). They were employed by the main company.
There were also five to six SE employed by the subcontractor,
based in a different country. Employees in the subcontractor’s
company are treated in the same way as the main team
members. SEs are directly involved in fixing bugs, whereas
SSEs have advisory roles, as they have extensive experience
of the code base. SSEs have over five years of experience,
whereas PMs are very knowledgeable about the product from a
business perspectives. PMs act as an interface between design
that involves important domain knowledge centred around use
cases, and development. This team develops new features as
well maintenance of the software which includes fixing bugs.
In the context of bug Triage and fixing, the team collaborates
with support engineers, and the teams responsible for other
modules of the software that has dependencies with Warehouse
and Transportation modules as necessary.

The main collaboration and coordination environment used
by Microsoft is Azure DeveOps, which is integrated into the

engineers’ development environments, Code Flow (for code
review) and Version Control Systems.

Bug reports are stored as work items in databases. Bug
reports consist of a unique number, title and description, S2R
(Steps to Reproduce), indicators of severity and priority, and
links to related bugs and/or deliverables. The priority to the
customer. Severity indicates how often the scenario is used.
S2R is step-by-step instruction on how to reproduce the bug in
the local environment with reference to the Demo Application,
a specific version of the application, with demo data

B. Field work and data collection

In line with ethnographic research traditions, our field work
began with immersion, from February 3rd to March 23rd,
2020. This began with a meeting with the Senior Architect in
charge of the focal team. This meeting focused on understand-
ing the team structure and the organisation’s general software
engineering process. The Stand-up and Triage meetings were
the key meetings related to bug fixing. At 09:00 stand-up meet-
ings began, followed by Triage meetings. Stand-up meetings
averaged 10 minutes, whereas Triage meetings lasted 10 to 30
minutes. There were 18 onsite observations between February
10th and March 23rd which provided access to the daily
working of the teams, to understand the context to build trust
which proved vital when the researcher asked for permission
to record Triage and Stand-up meetings, when development
work moved online during the Covid 19 lockdown.

TABLE I
FIELDWORK

Method Date(s) Documentation
Meeting, Senior Architect Feb 3, 2020 Field notes,

whiteb. photo
Observation, 18 stand-up
meetings and 18 Triages

Feb 10 –
Mar 23, 2020

Field notes

Virt. observ., 12 stand-up
meetings and 12 Triages

Mar 24 –
Apr 8, 2020

Field notes,
transcripts

Interview, Senior Engineer Apr 30, 2020 Transcript
Interview, Senior Archi-
tect

June 26, 2020 Notes from
recordings

Clarification interview, Se-
nior Engineer

July 20, 2020 Transcript

Desk research of develop-
ment environment

until
Aug 2020

Field notes

Detailed observation notes were taken. As the discussions
in these meetings focused on individual work items and bugs,
where possible, bug numbers/work items (unique numbers)
were taken and the gist of the conversation was noted without
any set protocols. Ad hoc conversations with a core SSE in
the team provided an understanding of relevant parts of the
development environment.

Studying software engineering in a large organisation is a
challenge. The DiCoT framework helped us focus on identify-
ing where in the processes there was evidence of collaboration.
The observation showed that during the Triage meetings there
were important exchanges that went far beyond decisions
regarding which bug should be fixed, and by whom. The

researcher decided to focus on Triage as it was one of the
core collaborative activities for fixing bugs. Following onsite
observations, the field notes were reviewed to identify where
any clarification was needed from the SEE, the bug database
was accessed to follow specific bugs and the information
shared was studied.

Following this phase, the characteristic of the field work
changed, due to the pandemic: software development and
maintenance activities moved online and used Microsoft
Teams for meetings, and the research followed accordingly.
From March 24th to April 8th, Stand-up and Triage meetings
were recorded and transcribed, in order to capture their de-
tailed references to various sources of information. This com-
prised 12 hours of Triage and Stand-up meeting observation
(see Table I). Researchers supplemented meeting observation
with the study of the information about the bugs discussed
in the meetings. This desk research amounted to about 125
hours, distributed over the entire period.

When the principal researcher discovered that the observa-
tion did not yield any new knowledge about bug resolution, the
observation was terminated and the focus shifted to analysing
the data. During this analysis, the researcher interacted with
the main SSE daily, to clarify the meaning of the recorded
data. Several formal interviews (4 hours) were conducted to
clarify details about the bug handling process and to obtain
an in-depth understanding of the background of some of the
bugs. These interviews functioned as member checking to
corroborate and develop our understanding of the information
shared during meetings.

Though not used as an explicit framework for note-taking,
it was soon evident that the DiCoT’s information flow theme,
specifically the information hub, was very relevant for the
analysis of the field material.

C. Data Analysis

Data analysis began in parallel with data collection, al-
lowing the adaptation of the fieldwork to further explore
the evolving findings. During the immersion phase (February
3rd to March 23rd), the complexity and importance of the
information that flowed from various artefacts and people was
crucial to decision-making that concerned how bugs should
be fixed. Information flow, a fundamental theme of DiCoT,
became the analytical lens for studying Triage.

To analyse the information discussed in greater detail,
Triage and Stand-up recordings were transcribed verbatim and
contextual information was added, for example, bug numbers
or the focus of the screen, where it was relevant to under-
standing the discussion. This contextual information helped to
identify specific bugs in the bug database.

As the bug was the core unit of discussion in Triage
meetings, the analysis also focused on the paths of individual
bugs. All the transcript data associated with each unique bug
was collated including relevant contextual information. During
the 12 days of Triage and Stand-up meetings, 85 bugs were
followed from when they reached the development team to
their resolution. In reading the transcripts several times, it

became apparent that some bugs required repeated Triage and
long discussions. We began to call these bugs ’complex bugs’:
a bug is complex if it requires Triage several times, and/or
additional background investigations were required for Triage
to reach the correct decision. Thus, we identified a subset of
33 complex bugs.

The Triage discussions of complex bugs were then subject
to a thematic analysis: the transcripts were open-coded, that
is, the themes were identified in a bottom-up way. These
codes were discussed, categorised and consolidated through
several iterations. This resulted in the identification of the four
categories of information that are presented in Section VI-C.
A further analysis of each of these categories showed that
the information discussed had a temporal dimension: for
example past decisions were referenced and markers were
communicated for future development.

D. Trustworthiness

We carefully designed our research to address factors that
could undermine its validity [28], [29]. Below we detail the
measures taken.

1) Data and researcher triangulation: We used a variety
of data sources. The initial interview and observations were
supplemented with recorded and transcribed observation. The
analysis was supported by the desk research in the devel-
opment environment. Interviews with core members of the
team triangulated and deepened the understanding of specific
bugs. The first author was responsible for the fieldwork
and the analysis. During the fieldwork, debriefing meetings
with the second author were held. The second author joined
the thematic analysis of the Triage meetings. Disagreements
regarding the coding were discussed and resolved, which in
some cases resulted in changes to the coding scheme.

2) Member Checking: The interviews that were held fol-
lowing the observation phase served to clarify open questions
and as a vehicle that enabled members to check the evolving
analysis. The draft paper was shared with the Senior Architect
and Senior Engineer, who were the contacts for this research.
They clarified and confirmed the definition of complex bugs,
and the description of the bug resolution process. They also
confirmed the categories of knowledge we identified.

3) Prolonged engagement: As the fieldwork took place
over an extended period. Over time, the first author, in partic-
ular, gained knowledge and insight into company terminology,
which reduced the risk of misunderstanding. An example of
an insight that may not be directly relevant to the focus
of this research, but helped to understand SE processes, is
that a bug is not resolved until it goes through the code
review process and passes all tests. This ensured a reasonable
understanding of how bugs are resolved, and the role and the
flow of information in Triage and Stand-ups.

4) Audit trail and detailed description: The fieldwork was
carefully documented. The detailed descriptions that underpin
the findings provided below are meant to help the reader to
follow – and criticise – the grounding of the discussion and
insights from the field material.

5) Research ethics: We developed an information sheet
and consent form detailing which data were to be collected,
how anonymity and confidentiality would be maintained and
addressed issues of data security. These documents were circu-
lated to all team members, and they were encouraged to seek
clarification if required. Data and excerpts from the research
have been anonymised. All the names in the presentation of
the results are changed. All recordings of the meetings and
engineering work on bugs and interviews were deleted by
30 August 2020. The Triage and Stand-up transcriptions and
details of the bugs were retained for cross-checking.

V. A BUG’S JOURNEY FROM THE PERSPECTIVE OF DICOT

In this section we describe the journey of the bug through
DiCOT lense. From a DiCoT perspective, Azure DevOps is
a virtual artefact. It contains other virtual artefacts, which in
turn contain relevant information. The most important virtual
artefact is the bug report, which has information about a bug
and S2R. The information flow theme is also very important,
as information flows between people and between people and
artefacts. The information hub is where people meet to make
important decisions with or without their being mediated by
artefacts. Broadly, information transformation and/or move-
ment from one source to another enables collaborative activity.
Figure 1 details of a bug’s journey.

Fig. 1. Bug’s Journey using DiCoT Framework

1) Bug Inception: A bug report is created as a result of
consultation(s) between the customer, and a Microsoft Support
Engineer or an Escalation Engineer. In some cases, the support
team resolves the problems before a bug report is created.
The Support Engineer’s understanding of a bug involves

transforming the information into a bug report, which is then
moved to the pre-triage information hub. During information
transformation, the movement of information is implicit.

2) Pre-Triage: The SSE(s) and RM(s) collaboratively in-
vestigate the bugs, and prepare a bug by adding relevant
information to the bug report (information transformation,
dotted line to bug database), so that a Triage decision may
be reached. The bugs’ S2Rs are checked, and, for some bugs,
new S2Rs are generated. If it is relevant to the bug report,
related previous bugs and deliverables are linked. Sometimes,
open issues on bugs are tagged to relevant team members.
Tagged team members are then required to respond to the
tagged issues before Triage begins. At this point, information
is moving from pre-Triage to Triage. Pre-Triage is another
information hub, because of its collaborative nature, and it is
where information transformation and information movement
are essential to decision-making. This is also true of Triage,
which is introduced in the subsection below.

3) Triage: Once a bug report has the required information,
it is discussed during a Triage meeting. Triage meetings take
place daily, and average 20 minutes. A Triage team consists
of PMs and SSE. The PMs are key persons, as they bring
domain knowledge about how the software is supposed to
behave. They act as an interface between the customer and
the engineering team. During Triage, an informed decision is
reached regarding whether the bug is ‘to fix’, ‘to not fix’,
‘investigate’ or if it is ‘by design’. When the decision is ‘to
fix’, the bug is taken up by the development team. Often, if the
decision is ‘by design’, some documentation is updated and the
customer is familiarised with how they may use the software
to achieve their goal. In some cases, fixing the bug would
require a fundamental design change that would need to be
discussed in other contexts. The Triage is the most important
information hub in a bug’s journey, as it determines how
to handle it. The information transformation and movement
results in knowledge development. This will be explored in
depth in Section VI.

4) Set-up, Investigation and Fixing : If a bug is marked
as ‘to fix’, a SE selects the bug according to FIFO. The
engineer first investigates the root cause, using the Demo
application to reproduce the bug with the S2R. This stage
helps to localise the bugs. The engineer reports on the progress
and status (investigating, creating tests, pull request, waiting
for review) of the bug at Stand-up meetings. These Stand-
up meetings are held daily. Most changes are by editing
the existing classes. For testing, new tests are added or old
test classes are edited. These test classes are usually testing
scenarios reported in the S2R. ‘Scenario’ is a term used by
the company to describe a part of the functional requirements,
and it is integral to deliverables in software development.
Sometimes, manual smoke tests are done by playing around
with the scenarios for the reported bugs. As soon as all formal
tests are passed, a pull request is created. If further problems
are encountered during the investigation phase, the engineer
responsible for the bug contacts other team members to help
them identify the correct strategy to fix it. This may require

a number of meetings, emails and discussion. Once a pull
request is created, the code review process starts in the Code
Flow tool. On successful code review, the automatic testing
cycles are initiated. If the tests are positive, the bug is closed.

From the DiCoT perspective, this part needs to be regarded
as an information hub as well, as the complex nature of a fix is
discussed between the senior engineer(s) and the engineer(s)
who will fix the bug. So far, we have seen that there were four
information hubs in a typical bug journey, and of those, we
found Triage the central one.

VI. ANALYSIS OF INFORMATION FLOW IN TRIAGE

Thirty-eight per cent of the bugs identified on our field work
were complex bugs. In contrast to simple bugs, complex bugs
require more than one Triage to decide how to resolve them.
In this section, we first describe the history of a complex
bug, then we present an analysis of the information categories
referred to in the Triage meetings that concerned complex bugs
whose Triage and resolution we were able to follow during
field work. We use this to establish the basis for our discussion
of the role of Triage.

A. The History of Bug no. 430105

Bug no. 403105 related to the movement of goods between
warehouses. When goods are moved from warehouses that
are not managed with the help of the ERP system, certain
information is missing, which in turn affects the inventory
functionality of the receiving managed warehouse. It took
three Triage meetings and five Stand-ups to resolve this bug.
Also, this bug was one of the few that was reactivated before
being picked up by an engineer. Table II gives an overview
of the events, starting with the first Triage meeting. The terms
used in the table are company’s own terms.

TABLE II
TIMELINE OF BUG NO. 430105

Date Event Result
Mar 19 2020 Opened Opened by support engineer
Mar 20 2020 1st Triage Investigation needed
Mar 23 2020 Resolved S2R cannot be reproduced
Mar 24 2020 Re-activated Re-opened by support engi-

neer
Mar 24 Resolved S2R cannot be reproduced
Mar 26 2020 Re-activated Re-opened by support engi-

neer
Mar 26 2020 2nd Triage Fixing strategy,

assigned for fixing
Mar 27 2020 Stand-Up Ready for pick-up
Mar 30 2020 Stand-Up SE reports on investigation
Mar 31 2020 Stand-Up Report on further investiga-

tion, question whether to fix
Mar 31 2020 3rd Triage Decision on work around;

area declared as bug farm
Apr 1 2020 Stand-Up SE announces pull request
Apr 2 2020 Stand-Up Peer review prepared

During the first Triage, Bug no. 430105 was assigned
the label ‘Investigate’, because in Pre-Triage stage, the SSE
was unable to reproduce the bug based on the S2R. The
SSE leading the investigation informed the SE to whom the

investigation was assigned. As a result of the investigation,
the bug was marked ‘resolved’. The bug was subsequently
reactivated by the Support Engineer on March 24th, because
the customer’s end-users could not execute a business-critical
task. On this same day, the SSE marked it as resolved a second
time, because he was still unable to reproduce it using S2R.

After two days the bug was again re-activated by the
Support Engineer. Then, during the second Triage, six days
after it was first opened, the Triage leader and PM, Mathias,
opened the discussion by summarising key information from
the bug report and the S2R for the others. Together, Nicola,
the SSE responsible for the bug, Jan and Mathias, both PMs,
tried to clarify their understanding of the actual behaviour
versus the intended behaviour. Mathias then further explained
the use scenario. This pattern (clarifying and explaining)
continued among Mathias, Jan and Nikola until the participants
determined that they had reached a sufficient understanding.
Finally, Mathias proposed fixing the problem by treating the
goods with the missing information, as they do with purchased
items. The bug was designated ‘to be fixed’. At the Stand-up
meeting the next day, a Friday, Nikola emphasised that bug
no. 430105 needed to be addressed soon, as it took some time
to reach a decision. At the Monday Stand-up meeting, Petre,
a SE, informed the others that he had taken up the bug.

On Tuesday, Petre reported on the status of his investigation
and on discussions with other team members and experts for
specific domains: they discovered that the bug caused incon-
sistencies in the inventory data, and other bugs were found
with similar problems. Nikola, the SSE, recommended further
expert meetings, which in turn resulted in the realisation that
the proposed fix did not work. The bug was returned for
discussion during a third Triage meeting. During that Triage
meeting, the same day, the bug was further discussed at length.

Two software engineers, Chris and Filip, and the PM,
Mathias, discussed the problems the team encountered when
fixing this bug. While investigating the bug fix, they discovered
a serious error that caused data corruption in the functionality
they wanted to use. They also emphasised that they did not
have tests for the relevant functionality, which made it difficult
to implement the change safely. In the discussion, they referred
to the behaviour the code described, and the usage scenario
that provided the requirements for the functionality. At some
point, Per proposed taking the discussion to another meeting,
as the technical details were not at a level of that was suited
to a Triage meeting.

Filip spoke up again and explained that the problem was that
the possible fix they developed with an expert on the data side
of the ERP system resulted in ripple effects that affected other
aspects of the functionality. They again engaged in several
rounds of clarification and explanation. Filip summarised that
the whole area might be problematic: ‘It sounds like this is a
bug farm, is kind of I guess what I am saying.’ A bug farm is
an area in the code that is related to a number of bugs. Mathias
confirmed that the problematic functionality was part of a
problematic area – ‘We have already have tracking dimension
in the bug farm’ – and that the redesign was already scheduled

for future releases – ‘[...] we have plenty of deliverables in
the bug farm for tracking number, so but...’

At that point Nikola spoke up and questioned whether the
proposed fix would not merely shift the problem to another
part of the workflow. Nikola and Filip then directly discussed a
possible temporary solution: ‘So “Manual Movement” would
be a temporary workaround for this case.’ Here, Mathias tried
to conclude the discussion by asking about the next steps.
Filip asked him to meet with Petre to agree on the details of
the specific behaviour of the software for various connected
scenarios, as this was a risky fix. Per agreed and stated, ‘[...]
this [part of the software] is definitively a bug farm that we
have known about, right? [...]’

Petre picked up the bug again on next day, and the day
after reported that the pull request was ready for code review.
Nicola and Petre briefly discussed who should do the code
review for this fix, during the Stand-up.

B. Information movement and transformation in Triage

Applying the DiCoT framework the Triage meetings func-
tioned as an information hub. In this section we present a
rich analysis of the nature of information transformation and
information movement [5] in Triage.

The participants brought their specific domain knowledge
to the meeting, in order to make an informed choice about
whether and how to fix a bug. In the discussion of Bug no.
430105, the most prevalent information sources were the bug
report and the source code from the software engineering
domain, and the use scenarios from the PM (information-
movement). The latter two kinds of information were discussed
in a tightly integrated fashion: The changes to the code were
presented with respect to their effect on the use scenarios,
and vice versa. This was done to the extent that sometimes it
was difficult for us, as researchers, to distinguish whether they
were talking about scenarios or the source code. Similarly,
the results of meetings outside of Triage with other SE
was shared (information movement). When reporting on the
results of these meetings, the participants summarised the
relevant information and highlighted the conclusions that were
relevant to the Triage discussion. Similar sifting occurred when
a longer discussion was summarised to prepare a decision
(information transformation). Similar sifting occurred when a
longer discussion was summarised to prepare a decision about
information transformation.

However, information was not only shared, sifted and com-
bined; in several cases, the Triage meeting was a place where
a fix or, as emerged in the discussion above, a workaround was
designed. Here, new information was generated to support the
later implementation process. Similarly, the SE emphasised
that ripple effects were to be avoided when fixing a bug.
Interestingly, such future-related information generation was
not only related to the specific, active bug. For example, at
some point in the discussion, Mathias stated, ‘We already have
a tracking dimension in the bug farm. I mean we have plenty
of deliverables in the bug farm for tracking. So but... ’ He used
the term deliverable to indicate features already specified for

future development. The reference to deliverable was used to
argue that a quick fix or workaround was adequate until the
new functionality was developed. At the same time, it served
as a mental note to pay attention to the issue under discussion
when redesigning this aspect. Similarly, the term bug farm was
used. A bug farm refers to ‘something that is a rich source of
bugs’ [30]. By declaring some area a bug farm, or by relating
an error to an existing bug farm, the participants created a
mental note to pay attention to this area in future, for example,
when deciding on the development in future releases.

Finally, when Mathias scheduled meetings with some of the
SE, he planned specific meetings to communicate information,
in this case about the intended behaviour of the software from
a domain perspective.

To summarise, the Triage meeting yielded not only a
decision concerning whether, when and who should fix Bug
no. 430105, but information from various domains and the
results of other meetings were also shared and connected,
bug fixes and workarounds were developed, notes for future
development were taken, and problematic areas of the code
were marked for future, more systematic refactoring.

Up through this section we presented what happened in
Triage for a specific complex bug. This understanding could
be developed due to DiCoT. DiCoT made it possible to
identify Triage as an important information hub. The con-
cept information transformation and information movement
[5] enabled us to investigate from whom and from where
information is brought to the Triage and explore the nature
of the information and knowledge developed. Therefore, we
needed to examine the nature of the information brought to
and created in Triage. The following subsection presents an
analysis of the information of all complex bugs that were
discussed in the observed Triage meetings.

C. Categories of Information Discussed in Triage

The previous section concluded that what happens during
Triage goes beyond assigning bugs; information is shared and
information for future development is generated. In this section
the analysis digs deeper into the categories of information that
were discussed during the Triage of the 33 complex bugs
we analysed. We categorised the information shared in the
Triage meetings as technical, domain-related, organisational
processes and business-context-related. Below, we discuss
each category of information we found, and provide examples.

1) Technical: This category comprises information related
to the technical side of a bug and how to fix it. These kinds
of information range from discussing the code, test cases,
whether the fix would break previously-working functionality,
data integrity and data corruption, the discussion of parts of the
code as ’bug farms’, and ripple effects, that is, the impact of a
bug fix on other areas of the code. The discussion connected
the current problem and how to fix it to both past development
and to how the fix may affect future developments. The
discussion of backports, that is, integrating a change to a recent
release into an older version, is an example of knowledge of
past development. Backports may also be discussed when a

bug is found and fixed in the current release, and the fix
should also be implemented in earlier releases that are still
covered by the support agreement with customers. In some
cases, the Triage team was unsure whether a possible fix would
risk breaking other functionality. The discussion of the data
integrity in the analysis of Bug 430105 in section VI-A is
a good example for the discussion of the ripple effects of a
bug fix. The statement below is another example from our
fieldwork:

’First one here is a very technical thing around some index.
At least Cole has some comments, here. It’s the new area for
this sorting. I suggest maybe we get Aman to look into whether
he can come up with a scenario for this [, based on this code,]
and not risk that we break something by making the suggested
fix by the Cole. And then I guess we would like to fix it.’

A very obvious example of addressing future technical
development was the connection of a bug to a ‘bug farm’,
as also discussed in section VI-A. Similar discussions were
observed in the discussions of other complex bugs. The team
communicated, and by discussing a specific bug, contributed
new knowledge of problematic areas in the code. In some
cases, the group decided to take the bug fix into a grooming
meeting, to discuss it in relation to ongoing development.

2) Domain: Under this category, sharing information about
the ERP system’s functionality from a user or domain per-
spective was addressed. This could be information regarding
features, scenarios often associated with complex work flow as
they are currently supported, scenarios as they should be, and
how errors are seen from the end users’ perspective. Also,
the S2R information falls into this category. With respect
to technical information, the discussion connects information
about past development, a current problematic situation and
how to address it, and future planned development.

Usually, when scenarios related to bugs were discussed,
the question was about why the design did not take into
account the particular flow the customer was implementing:
’... to release the one order with the correct address, and then
I enabled the new consolidated shipment feature, and then
things stopped working.’ - 436803

In the example below, the team states that the lack of
information about how the software actually should function
is related to past decisions:

’Then I put one on, PM X. I tried to follow up with him. [...
[Describes the feature] We can’t find whether you are allowed
to mix dimensions, so basically variant driven [highlights the
title on the screen]. [...] My problem is that I am not even
able to find documentation for it, except these links I found,
but none of the places it says anything about that it should
only work for limited processes.’ - 434161.

During Triage, some bugs were designated as being ‘by
design’. In these cases, a change that would meet the cus-
tomer’s expectations would be in conflict with the current
design rationale of the whole module. At the beginning of
Triage, the team often focused on ensuring that scenarios and
flows were well-understood by all, and that the S2R accurately
reflected the problems encountered by the user. The way a fix

affects end-user and customer experience was often discussed
at length. Often, these discussions also addressed the severity
of the bug. ‘[...]so the thing is: it ... I think, it needs a little bit
grooming: what exactly do we want to do? Because, like, every
time when you click it, do you want to show this? or do you
want to show this dialogue only if there are already existing
transactions? Which would add like a slight performance
impact, but again, then this is a setup form, maybe it’s not
problematic.’ - 436696

An example of the future dimension of domain knowledge
is when the team discovered that fixing a bug should be
addressed through a new deliverable.

3) Organisationl: In several Triage meetings, the team
discussed how a bug related to organisational concerns.
This could include identifying the expertise within the
team/organisation to support fixing bugs. Or it could refer
to changes to the development process. For example, in one
Triage meeting, the team discussed how they could improve
their testing strategy, and that they had taken up this issue in
a past retrospective: ‘Sounds like a typical PM forgot to test
the scenario ... And this is exactly what we talked about – just
sidetrack – talked about in the last sprint retrospective [...]:
All PMs and maybe one engineer to do a cookbook every time
you do a feature on inbound, what you need to test. And the
same for outbound and all other stuff.’- 435902

On another occasion, the team discussed their documen-
tation processes, when, during the discussion of a bug, the
team recalled a similar problem, but could not find the
documentation of the older bug in the repository.

4) Business: This category refers to discussions of support
contracts and specific customer relations that had an impact
on the decision to fix or not fix a bug. Discussions of
business information often coincide with the discussion of the
possibility of backporting. If a previous release is no longer
covered by a support agreement, the company is not required
to continue to fix bugs. In such cases, customers would be
encouraged to upgrade. Sometimes, the fix was backported
even though customers had plans to upgrade to a working
version, if the customer was not able to wait for the upgrade.
Often, such situations also prompted discussions regarding
support contracts and customer relationships.

’Customer requested this [...] now that the end of support
has been extended. So I have not seen that in mail from Susan
this morning. So for this [release] 10.08, I still see ‘End of
servicing: April the 13th’. So maybe what they think is moved.
And yeah, so we still have few days to actually backport it,
and they can still use that build.’ - 427767.

5) Summary: Information is the building block in the infor-
mation flow [5], hence it was important to analyse information
types. This analysis shows that there is a wide range of
different kinds of information shared and discussed in the
Triage meetings. Information is related not only to the whether,
how and who of a bug fix, but also to the domain knowledge
necessary for fixing bugs, how the possible fix would interact
with other bugs, scenarios and tasks, and to improving the
process of bug fixing.

In a given Triage meeting, these categories of information
were often tightly interlaced. For example, in one case (Bug
no. 431122), it was impossible to reproduce the problem in
the current version of the software. Various reasons were
considered: the customer was still deploying an earlier ver-
sion; that it was fixed in an earlier version, to which the
customer had not yet upgraded yet; that the customer may
have customised the software in ways that interfered with this
scenario, or the error could be caused by hardware dependency.
These problems could be resolved if the customer upgraded
to the current version. Contractual conditions and customer
relationship management also influenced the how the technical
fix would be done. In other words, domain related, technical,
business and organisational information were related in one
and in the same discussion. This discussion also resulted in
pointers for future development: problems to consider when
designing new features (deliverables) and parts of the code that
needed special attention. In other words, the Triage meetings
generated information and developed knowledge that informed
future design and developments.

VII. DISCUSSION

The previous section presented an in-depth analysis of
Triage on 33 complex bugs. In this section, we first present the
role of DiCoT in the analysis and the resulting understanding
of Triage, then we discuss the nature of the information
generated and discussed in Triage, and finally we consider the
implications of our understanding of ML research on bugs.

A. The Role of DiCoT in the Analysis

DiCoT’s information flow with its associated concepts
of information hub, information movement and information
transformations [5] provided the conceptual framework for
structuring and analysing the complex nature of observa-
tions/data of the various stages of a bug’s journey see Figure
1. This led to identification and a deeper understanding of
various information hubs [5], especially the Triage meeting.
DiCoT’s principles of information movement and information
transformation kept the focus on identifying which types of
information were brought into the hubs, by whom and how
team members transformed them, to understand past, present
and future software development. Without DiCoT, the sheer
volume of information that is available in a development
environment would have been difficult to navigate without
losing sight of the original overarching aim: to understand how
bugs are resolved. At the same time, the analysis deepened
the understanding of what happens in an information hub: we
understand the information hub as a socio-technical collab-
orative environment that requires information movement and
information transformation, mainly from people. This occurs
through an iterative process of explanation and clarification
at team level. This is where most important decisions are
made, and during this process, information is generated for
a collaborative task, in this case, bug fixing.

As shown above, Triage is a goal-driven, team-coordination
activity that aims to determine whether, when and how to

address a bug. Using the DiCoT framework, it functions as
an information hub [5] for knowledge-building and sharing,
where experienced members of the team meet to take the most
important decisions about a bug: to fix or to not fix. It has a
high bandwidth, given the diverse information types discussed,
and in terms of its impact on changes in the source code,
changes in business practices and in changes in organisational
processes. Participants share a wide range of information
that relates domain knowledge, technical expertise, business
knowledge and organisational information. The information
movement and transformation [5] generates information that
has implications for future design, and in some cases even
underpins changes in the development organisation. The Arte-
facts principle of DiCoT also has a role here [5]. Information
hubs, like Triage, are mediated by artefacts, like the S2R
as part of the bug report, which in turn resides in the bug
database. The bug database is an artefact that coordinates
resources, as after the discussion of each bug, information
about it is updated, for example engineers are tagged to fix
bugs. This finding resonates with previous research that finds
that Triage is an important coordinating activity, which cannot
be accomplished solely by being based on electronic traces in
the database [3].

B. Triage is a trigger for generating information and knowl-
edge

Though the main goal of Triage is to determine whether or
not, and how to fix bugs, the discussions in Triage are not
limited to this goal, and the information shared and developed
in the discussions is important input for future development
of the software. The nature of the information discussed
and generated in Triage expands the boundary of time, and
brings together several dimensions. Though the focus is on
information related to the bug, the Triage discussions help to
identify information the team lacks, which in turn prompts
a series of information-seeking and information-clarification
events. This process generates further information that is
essential to understanding the past and present, and to prepare
for the future evolution of the software: Triage leads to a better
understanding of why the software was designed the way it
was, how it should have been designed (bugs), and it also
feeds into future deliverables.

Technical: Triage leads to better understanding of the code
base, not only with regard to a given bug, but also to the
related area, on which resolving the bug will have an impact.
For example, discussing data corruption (data integrity) and
‘bug farms’ leads to a better understanding of fixing, beyond
the current bug. Business: Triage has an impact on understand-
ing the business setting, in terms of contractual obligations,
managing customer relationships and their impact on upgrades
to the latest version. Organisational: Information generated
in Triage is fed back into software engineering and other
organisational processes (see the ’cookbook’ example) and it
resulted in issues that were fed into retrospectives. Domain:
Discussing information concerning domain knowledge that is
about functionality and scenarios from a customer perspective.

The existing research focuses on the importance of artefacts,
such as bug reports, supporting collaboration and coordination
[19]. Ko et al. [18] explored what information engineers need,
and why they need this during Triage. Their analysis focuses
on legitimacy, difficulties and the cost of fixing a given bug. To
the best of our knowledge, none of the literature has addressed
the role of the Triage in generating information to support the
future of design and development, of the code base and the
software.

C. Role of Machine Learning(ML)

ML has proven to be very effective in categorising or classi-
fying problems. Therefore, it is unsurprising that previous re-
search used machine learning approaches to determine whether
bugs may be assigned automatically or provide feedback on
the quality of bug reports. Important information from the bug
reports might be generated using ML approaches, but in this
case, ‘learning’ resides in the machine.

Most of the ML research into automation related to bug
fixing has focused on electronic traces, such as the bug report
and other repository sources [1], [10]–[12], [17]. Our analysis
shows how the participants in Triage meetings combine and
relate a wide range of information. The specific information
needed was often not anticipated. Triage yielded not only a
decision concerning fixing bugs, but also strategies for fixing
complex bugs, and, last but not least, information regarding
the future evolution of the software.

ML could be used to complement human Triage, which is an
expensive process and may waste resources, especially when
it is a question of simple bugs. Perhaps ML could be used to
categorise simple and complex bugs. Currently, all bugs are
discussed in Triage, 62% of which are simple bugs. Simple
bugs could then be handled by the developers directly. For
complex bugs, Triage could be kept as an important space
for decision-making, and continue to be an information hub,
where learning and knowledge-development occur and informs
future development and organisational processes.

VIII. CONCLUSION

In our analysis of Triage, we show how information con-
cerning the source code, current and future deliverables, and
organisational processes are discussed, contributing to the
team’s expertise, and generating information that informs the
future development of the software. This is done through
a series of clarifications and explanations. Thus, this study
concludes that the traditional understanding of the objective of
Triage should be reconsidered. The final outcome of Triage is
not just the assignment of bugs; instead, the process that leads
to this outcome generates important information for the future
design and development of the software in question. If Triage
is seen as bug assignment only, this hidden value of the Triage
meetings is overlooked. There are three points that future
research could take up. First, ML may be used to categorise
simple and complex bugs. This would depend on data to train
the ML algorithm. Also, it would be interesting to investigate
whether the ML algorithm previously researched performs

better when applied to simple bugs assigned to engineers.
Second, there is growing evidence of the importance of the
role of awareness-building through the social structure and
organisation of software engineering [4], [14], [18], [31]–[33],
yet progress on this research has been sporadic. Building on
our findings, future research could investigate whether similar
results emerge in the Triage of other software development
teams or for other types of software. Finally, though DiCot
has been instrumental in our analysis it has its limitations. It
addresses awareness of information in collaborative environ-
ment only in relation to physical layout of the team, and the
concept of the information hub is not well-developed. Here the
research method applied in the research presented here could
help to further understand in detail of information exchange
in different contexts. In distributed software development, the
physical layout may not be as important as social and organ-
isational structures. So far, DiCot has not defined principles
surrounding social structures [5]. Theoretical work on refining
DiCot principles may yield a more suitable framework for
analysing this type of work.

REFERENCES

[1] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”
The Journal of Systems and Software, vol. 85, pp. 2275–2292, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2012.04.053

[2] S. R. Lee, M. J. Heo, C. G. Lee, M. Kim, and G. Jeong, “Applying deep
learning based automatic bug triager to industrial projects,” Proceedings
of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, vol. Part F130154, pp. 926–931, 2017.

[3] J. Aranda and G. Venolia, Proceedings: The Secret Life of Bugs: Going
Past the Errors and Omissions in Software Repositories, 2009.

[4] J. Anvik and G. C. Murphy, “Reducing the Effort of Bug Report
Triage: Recommenders for Development-Oriented Decisions,” ACM
Trans. Softw. Eng. Methodol, vol. 20, no. 10, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000791.2000794

[5] A. Blandford and D. Furniss, “DiCoT: a methodology for applying
Distributed Cognition to the design of team working systems,” Tech.
Rep., 2005.

[6] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed Cognition:
Toward a New Foundation for Human-Computer Interaction
Research,” ACM Transactions on Computer-Human Interaction,
vol. 7, no. 2, pp. 174–196, jun 2000. [Online]. Available:
http://dl.acm.org/doi/10.1145/353485.353487

[7] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou, “The
who, what, how of software engineering research: a socio-technical
framework,” Empirical Software Engineering, vol. 25, pp. 4097–4129,
2020. [Online]. Available: https://doi.org/10.1007/s10664-020-09858-z

[8] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, T. Zim-
mermann, and T. Org, “What Makes a Good Bug Report?” IEEE
Transactions on Software Engineering, vol. 36, no. 5, 2010.

[9] O. Chaparro, C. Bernal-Cárdenas, K. Moran, A. Marcus, M. D. Penta,
D. Poshyvanyk, V. Ng, J. Lu, D. Penta, and V. . Ng, “Assessing the
Quality of the Steps to Reproduce in Bug Reports,” 2019. [Online].
Available: https://doi.org/10.1145/3338906.3338947

[10] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?”
Tech. Rep., 2006. [Online]. Available: www.bugzilla.org/,

[11] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in ESEC-FSE’09 - Proceedings of the Joint 12th
European Software Engineering Conference and 17th ACM SIGSOFT
Symposium on the Foundations of Software Engineering. New York,
New York, USA: ACM Press, 2009, pp. 111–120. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1595696.1595715

[12] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Character-
izing and Predicting Which Bugs Get Fixed: An Empirical Study of
Microsoft Windows,” in ICSE 2010, 2010.

[13] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information
Needs in Bug Reports: Improving Cooperation Between Developers
and Users,” in CSCW ’10: Proceedings of the 2010 ACM conference
on Computer supported cooperative work, 2010. [Online]. Available:
http://www.mozilla.org/

[14] D. Cubranic and G. C. Murphy, “Automatic bug triage using text
categorization,” in 16th Int. Conference on Software Engineering and
Knowledge Engineering, 2004, pp. 92–97.

[15] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” IEEE International Working
Conference on Mining Software Repositories, pp. 22–30, 2013.

[16] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu, “Towards
effective bug triage with software data reduction techniques,” arXiv,
vol. 27, no. 1, pp. 264–280, 2017.

[17] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[18] A. J. Ko, R. Deline, and G. Venolia, “Information N eeds in Collocated
Software Dev elopment Teams,” Tech. Rep., 2007.

[19] P. H. Carstensen, C. Sørensen, T. Tuikka, P. H. . Carstensen, and C. .
Sørensen, “Let’s Talk About Bugs!” Tech. Rep. 1, 1995. [Online].
Available: http://aisel.aisnet.org/sjis/vol7/iss1/6

[20] K. Schmidt and C. Simonee, “Coordination mechanisms: Towards a
conceptual foundation of cscw systems design,” Computer Supported
Cooperative Work (CSCW), vol. 5, no. 2-3, pp. 155–200, 1996.

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Not my bug!
and other reasons for software bug report reassignments,” Proceedings of
the ACM Conference on Computer Supported Cooperative Work, CSCW,
pp. 395–404, 2011.

[22] E. Hutchins, “Cognition, Distributed,” International Encyclopedia of the
Social & Behavioral Sciences, no. Kitcher 1990, pp. 2068–2072, 2001.

[23] H. Sharp, R. Giuffrida, and G. Melnik, “Information flow within a
dispersed agile team: A distributed cognition perspective,” in Lecture
Notes in Business Information Processing, vol. 111 LNBIP. Springer
Verlag, 2012, pp. 62–76.

[24] H. Sharp, H. Robinson, J. Segal, and D. Furniss, “The role of story
cards and the wall in XP teams: A distributed cognition perspective,”
Proceedings - AGILE Conference, 2006, vol. 2006, pp. 65–75, 2006.

[25] D. Furniss and A. Blandford, “Understanding emergency medical dis-
patch in terms of distributed cognition: A case study,” Ergonomics,
vol. 49, no. 12-13, pp. 1174–1203, 2006.

[26] N. Flor and E. Hutchins, “Analyzing Distributed Cognition in Software
Teams: A Case Study of Team Programming During Perfective Soft-
ware Maintenance,” in EMPIRICAL STUDIES OF PROGRAMMERS:
FOURTH WORKSHOP. Ablex, Norwood, 1991, vol. 1, no. -, pp. 36–
64.

[27] H. Sharp, Y. Dittrich, and C. D. Souza, “The Role of Ethnographic
Studies in Empirical Software Engineering The Role of Ethnographic
Studies in Empirical Software Engineering,” no. c, pp. 1–25, 2016.

[28] J. W. Creswell, A Concise Introduction to Mixed Methods Research.
Sage Publications, 2014.

[29] C. Robson and K. McCartan, Real World Research,
4th ed. Wiley. [Online]. Available: https://www.wiley.com/en-
us/Real+World+Research%2C+4th+Edition-p-9781118745236

[30] R. Chen. (2011, Sep.) Microspeak: The bug farm. [Online]. Available:
https://devblogs.microsoft.com/oldnewthing/20110920-00/?p=9603

[31] C. Treude and M.-A. Storey, “Awareness 2.0: Staying Aware of Projects,
Developers and Tasks Using Dashboards and Feeds,” in ICSE 2010,
2010.

[32] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “Using developer
activity data to enhance awareness during collaborative software devel-
opment,” Computer Supported Cooperative Work, vol. 18, no. 5-6, pp.
509–558, 2009.

[33] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in
distributed software development,” in Proceedings of the ACM
Conference on Computer Supported Cooperative Work, CSCW. New
York, New York, USA: ACM Press, 2004, pp. 72–81. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1031607.1031621

	MBEG-YDI-TEchreport-frontpage - MK
	ITU

