
Using Fourier-Motzkin-Elimination to Derive Ca-
pacity Models of Container Vessels

Mai Lise Ajspur
Rune Møller Jensen

IT University Technical Report Series TR-2017-197

ISSN 1600–6100 January 2017

Copyright © 2017, Mai Lise Ajspur
Rune Møller Jensen

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-365-0

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Using Fourier-Motzkin-Elimination to Derive Capacity Models
of Container Vessels

Mai Lise Ajspur
Rune Møller Jensen

Abstract
Due to its high computational complexity, Fourier-Motzkin-Elimination (FME) is mainly known as a theo-

retical approach to determine feasibility of a linear program (LP). Current applications of FME in static program
analysis and logic programming is based on the fact that it is a transformation corresponding to existential quan-
tification in logic. Large-scale variable elimination, however, has to our knowledge not been attempted so far.
In this report, we introduce a novel FME-based framework for massive variable elimination that takes advantage
of the block structure found in many LP problems. Our objective is to simplify the LP by eliminating most of
its variables. We show that this is possible for the key challenge in liner shipping of defining the capacity of
container vessels as a function of the mixture of cargo they carry.

1 Introduction
Fourier-Motzkin-Elimination (FME) is a central theoretical approach to determine feasibility of linear programs
(LPs), but it is seldom used in practice due to its high computational complexity. It is an algorithm that projects
the polyhedron of feasible solutions of the LP one dimension at a time, such that the feasible values and inter-
dependencies of the remaining variables in the resulting polyhedron are unaltered. In this way, FME computes an
abstraction of the original LP corresponding to existential quantification in logic, where the value of the eliminated
variable no longer is represented.

Projection is a fundamental operation that has been successfully applied in practice, in particular in static
analysis of programs and logic programming, (see e.g. [BKM05] for applications and references). Here poly-
hedra represent numerical variable domains [CH78], and variables out of scope and other auxiliary variables are
eliminated via projection. Likewise, projection is used in constraint query languages [Las90], and other poten-
tial applications of FME include coordination and/or negotiation situations as suggested in [LS08], and as an
alternative solution method for parametric linear programming [JKM08].

We are not aware of any previous work, however, that applies FME for massive variable elimination, where
say 99% of the variables are eliminated with the purpose to simplify the LP by removing most of its variables.
This is, however, a relevant task. Consider for instance an economic model that achieves high accuracy through
a large number of economic parameters at county level, but primarily is used to analyse these parameters at an
aggregated national level. In this case, only a small fraction of the variables are of interest and the LP may be
simplified by abstracting away (i.e., eliminating) the other low-level variables.

In this report, we consider a similar problem. In liner shipping, it is challenging to evaluate how the cargo
capacity of a container vessel depends on the cargomix, i.e., the mixture of containers with different attributes
that the vessel carries. The reason for this is that containers only can be stowed certain ways (e.g., 40� containers
cannot be stowed on top of 20� containers and refrigerated containers must be stowed in slots with power plugs)
while at the same time the vessel must fulfill seaworthiness requirements such as stability rules and stress force
limits. The liner shipping companies need accurate capacity models to optimize decisions about cargo flow and
uptake management on services, but today they rely on static capacity measures (e.g., [TT04, FC08, ZF13]) that
often are too inaccurate for practical usage [Del13].

On the other hand, accurate linear models for optimization of vessel stowage planning have been developed
(e.g., [BB92, PDJB11, PDOJB12, Del13]). These models represent a feasible stowage plan as the number of
containers of different type and weight class that the vessel can carry in each of its 100 or more storage areas. A
capacity model is simply an abstraction of these stowage models, where the physical position of cargo is abstracted
away. Since there are in the order of 100 storage areas on the vessel, this corresponds to eliminating approximately
99% of the variables.

1

In this report, we introduce a novel hierarchically decomposed and parallelized FME algorithm for massive
variable elimination. Similar to other recent FME frameworks (e.g., [SK05, LS08, SL12]), our method applies
Gauss-elimination (equality removal), removal of syntactic and quasi-syntactic redundancies, complete removal
of redundancy in between variable eliminations, together with an approximation of the projection when needed.
In addition, our framework includes preprocessing with removal of less strict inequalities. Our main contribution
is a hierarchical decomposition of the problem using auxiliary variables based on the block structure that often is
observed in LPs [Wil78] as well as a sound, concurrent implementation of the redundancy removal.

Theoretically, the number of inequalities may grow double exponentially with the number of eliminated vari-
ables. Our experiments on deriving capacity models from stowage models of container vessels, however, show
only a modest growth in the number of inequalities when complete removal of redundant inequalities between
each variable elimination is carried out (e.g., see Figures 10-12 in Chapter 5). As expected, the number of in-
equalities decrease in the end where most variables are removed. The resulting capacity models are small and
useful in practice (e.g., see Table 5 in Chapter 5).

It is possible that the limited growth in non-redundant inequalities is unique for this application, but since
we mainly exploit the block structure of stowage models, we believe that similar results can be obtained in other
domains.

The remainder of this report is organized as follows. In Chapter 2, we present the definitions and notation relating
to inequality systems and projections that are used in this report. Chapter 3 outlines the basic algorithms used for
achieving the projection, namely the classical Fourier-Motzkin elimination, Gauss-elimination, and some basic
methods for preprocessing and removing redundant information (inequalities). In Chapter 4 we then describe the
alterations and improvements made to these algorithms. Specifically we detail an altered and parallellized method
for removing redundancy, how we combine the mentioned steps into an algorithm for projection, and we present
how our system (as well as other block structured systems) can be decomposed to achieve a more efficient pro-
jection. Subsequently, Chapter 5 gives a short presentation of the considered stowage model(s) after which the
results of projecting these are presented along with a few details regarding the implementation. Finally, we review
and discuss related work in Chapter 6 before Chapter 7 concludes.

2 Definitions and notation
In this report we consider a finite set of variables X plus the set IE consisting of all inequalities and equalities
over any subset of X . An element c > IE is thus an equality or inequality over a subset VAR�c� b X and is
referred to as an (in)equality over VAR�c�. It can be written as

c � Q
x>VAR�c�

co�x, c� � xbc rhs�c�, (1)

where bc > ��,B� is the relation of c, co�x, c� > R is the coefficient of x in c for any x > VAR�c�, and rhs�c� > R
is the right-hand-side of c. Letting co�x, c� � 0 for all x > X �VAR�c�, we can extend c to X for any set X b X

by letting cX be the (in)equality over X given by

cX � Q
x>X

co�x, c� � xbc rhs�c�. (2)

Assuming a given total order j on the variables in X we can order and name the variable of any subset X b

X according to this order such that X � �x1, x2, . . . , xSX S� and x1 h x2 h . . . h xSX S. Letting co�cX� def.
��co�x1, c�, . . . , co�xSX S, c�� and xX � �x1, . . . , xSX S�, the constraint cX can also be written using the dot-product

as cX � co�cX� � xX bc rhs�c�. By definition cVAR�c� equals c, so we let co�c� def.
� co�cVAR�c��, and for

convenience we leave out the subscript of xX when the X is implied e.g. by the coefficient vector in the dot
product.

We let var�c� denote the variables whose coefficient in c is nonzero, i.e. var�c� def.
� � x > VAR�c� S co�x, c� x 0 �

b VAR�c�, and we notice that we might have that var�c� ` VAR�c�. When V AR�c� is clear from context we
allow ourselves to write c as c � Px>var�c� co�x, c� � xbc rhs�c�.

The set of points in RSVAR�c�S that satisfies the (in)equality c is called the feasible region for c and is hence
defined as

feas�c� def.
� � r > RSVAR�c�S S co�c� � rbc rhs�c� �.

2

Since the feasible region of an (in)equality is just a set of points in a (multi-dimensional) Euclidian space, here the
order of the variables, h, is important and needs to be explicitly or implicitly given or assumed.

In the following, an (in)equality system is a set S of (in)equalities over the same set of variables, VAR�S�, i.e. S `

IE and VAR�c� � VAR�S� for all c > S. Therefore, when we union, intersect or subtract two (in)equality systems
S1, S2 ` IE to produce another (in)equality system S�, it is required that all (in)equalities in S� are (in)equalities
over the same set X . Hence we require that VAR�S1� � VAR�S2� when we talk about the (in)equality systems
S1 8S2, S1 9S2 or S1 �S2. However, it is always possible to extend the (in)equalities in S1 and S2 to a common
variable-set, and if VAR�S1� x VAR�S2� we therefore let S1 8 S2

def.
� � cX S c > S1 � 8 � cX S c > S2 �, where

X � VAR�S1� 8VAR�S2�, and similar for the other set-operations 9 and �.
We let eqs�S� denote the set of equalities in S, i.e. eqs�S� def.

� � c > S S bc is � �, we define the used variables
in S as var�S� def.

� 8c>Svar�c�, and we let SX
def.
� � cX S c > S � for any X b X . The feasible region for S is the

set of points in RSVAR�S�S that satisfies all (in)equalities in S, i.e.

feas�S� def.
� 9c>Sfeas�c�.

It follows that if S1, S2 b S, then feas�S1 8 S2� � feas�S1� 9 feas�S2�.
In linear programming, it is common to have bounds for some of the variables in an (in)equality system S. For

our purpose, upper and lower bounds are modeled as inequalities as in (2) with X � VAR�S� and a coefficient
of �1. If they exist, the inequalities representing upper and lower bounds for x are referred to as UBineq�x�
and lbineq�x�, respectively, while UB�x� > R and lb�x� > R denote the upper, respectively lower bound of the
variable x. That is, if the upper bound of x exists, then UBineq�x� refers to the inequality x B UB�x� in S, and
if the lower bound of x exists, then lbineq�x� refers to the inequality �x B �lb�x� in S.

We say that two (in)equality systems S1 and S2 are equivalent and write S1 � S2 if VAR�S1� � VAR�S2�
and feas�S1� � feas�S2�.

An (in)equality c > S is redundant if c does not influence the feasible region for S, i.e. if feas�S� � feas�S ��c��. The redundancy of an inequality c � co�c� � x B rhs�c� can be determined by maximizing its left-hand-side:

c is redundant iff max� co�c� � r S r > feas�S � �c�� � B rhs�c�. (3)

The equality c � co�c� � x � rhs�c� is redundant iff both inequalities co�c� � x B rhs�c� and �co�c� � x B �rhs�c�
are redundant. If the (in)equality c is not redundant, it is called non-redundant.

As described, the feasible region of S describes the combination of values for the variables in VAR�S� that
satisfy all the (in)equalities in S. However, for the sake of abstraction there are some variables Y b VAR�S�
whose value we are not interested in, we just want to know that a satisfying value for these variables exists. There-
fore, we want to find a set of values P for the variables of interest (VAR�S��Y), such that when we have a set of
values in P then we can extend it with values for the variables in Y in such a way that the collective set of values
satisfy all (in)equalities in S. The projection of the feasible region of S gives us the largest set of values with this
property.

Let S be an (in)equality system overX and let Y bX be the set of variables that we want to eliminate. Without
loss of generality we can assume that X � �x1, . . . , xSX S�, x1 h . . . h xSX S and that Y � �xi, xi�1, . . . , xSX S� for
some 1 B i B SX S. The projection of the polyhedron feas�S� with respect to Y is then the polyhedron

projY �feas�S�� def.
� � r > RSX�Y S S there exists an r� > RSY S such that �r, r�� > feas�S� �.

See Figure 1. Here �r, r�� denotes the vector �r1, . . . , rSX�Y S, r
�

1, . . . , rSY S� where r � �r1, . . . , rSX�Y S� and r� ��r�1, . . . , rSY S�.
For convenience of notation we let projY ��feas�S�� � projY �9VAR�S��feas�S�� for any Y � b X .
We notice that for arbitrary subsets Y1 and Y2 of Y such that Y18̇Y2 � Y ,1 we have that projY �P � �

projY1�projY2�P ��.

In this report, we will only be interested in the projection of the feasible region of (in)equality systems, and
these are the feasible sets of (other) (in)equality systems (see e.g. [Zie95]). What we are interested in are the

1
8̇ denotes disjoint union.

3

Sfeas

3x

2x

1x

Sfeas3xproj

Figure 1: Projection of the polyhedron feas�S� in R3 with respect to the third variable

dependencies among the non-projected variables, so we want to talk about a system that “generates” a certain
projection. For this we define PRSY �S� to be the set of (in)equality systems whose feasible set is the projection
of S w.r.t. Y , i.e.

PRSY �S� def.
� � S� ` IE S VAR�S�� � VAR�S� � Y and feas�S�� � projY �feas�S�� �.

If S� > PRSY �S� we say that S� is a projection of S w.r.t. Y .
We point out, that for arbitrary (in)equality systems S1, S2 ` IE and Y1, Y2 b X , the sets projY1�feas�S1�� and

projY2�feas�S2�� are just sets of points in RSVAR�S1��Y S and RSVAR�S2��Y S, respectively. As long as SVAR�S1�S �SVAR�S2�S these sets can therefore be intersected, unioned or subtracted, but in order to have a meaningful in-
terpretation of e.g. projY1�feas�S1�� 9 projY2�feas�S2�� in our setting, we must have that VAR�S1� � Y1 �

VAR�S2� � Y2, and projections must be given according to the same, implicitly given order h on X .

For proving the correctness of our decomposition in Section 4.3 we need the following minor propositions.

Lemma 1. Let S,S1, S2 ` IE be (in)equality systems over X and let Y bX .

1. Assume that var�S1� 9 var�S2� � g. Then

projY �feas�S1 8 S2�� � projY �feas�S1�� 9 projY �feas�S2��. (4)

2. Assume that var�S1� 9 Y � g. Then

projY �feas�S1 8 S2�� � feas��S1�X�Y � 9 projY �feas�S2��. (5)

3. LetX � b X be a super set ofX , i.e. X bX �, and letE be an (in)equality system such that projY �feas�S�� �
feas�E�. Then

projY �feas�SX��� � feas�EX��Y �.
Proof. See Appendix.

3 Basic Algorithm

3.1 Fourier-Motzkin-elimination
Traditionally, this method works on pure inequality systems (i.e. with no equalities), and we will describe it like
that. Since, an (in)equality system easily can be translated into a pure inequality system, this does not cause any
problems. The method is described below.

4

The method eliminates the variables in Y b X by creating new inequality systems in a stepwise fashion. At
each step, one of the variables in Y is eliminated from the current system to obtain the next system. A variable
x > Y is projected from the pure inequality system S as follows (see e.g. [Imb93] or [Zie95]).

Firstly, the inequalities are divided into disjoint sets depending on the sign of the variable’s coefficient in the
constraints. Thus, we define

PosS�x� def.
� � c > S S co�x, c� A 0 �,

NegS�x� def.
� � c > S S co�x, c� @ 0 �, and

ZeroS�x� def.
� � c > S S co�x, c� � 0 �.

To eliminate the variable x and construct the next inequality system, we first set aside ZeroS�x�, or rather� cX��x� S c > ZeroS�x� �. To this set we then add a new inequality for each combination of c� > PosS�x�
and c� > NegS�x�. This new inequality is constructed by first normalizing c� and c� such that their coefficients
for x are plus and minus 1, respectively, and then the two normalized inequalities are added. In this inequality, the
coefficient of x is zero, and restricting the inequality to X � �x� we then get the inequality FM�x, c�, c�� over
X � �x� given below.

FM�x, c�, c�� �
Q

x�>VAR�S���x�

� 1
co�x, c��co�x�, c�� � 1

co�x, c��co�x�, c��� � x� B 1
co�x, c��rhs�c�� � 1

co�x, c��rhs�c�� (6)

The procedure is described in pseudocode in Algorithm 1.

Algorithm 1 Eliminating variables from an inequality system S using Fourier-Motzkin-elimination.

1: function FM-ELIM(Inequality system S, variables to eliminate Y b VAR�S�)
2: S� � S, Y �

� Y
3: while Y � x g do
4: x� CHOOSEVARIABLETODELETE(Y �, S�)
5: S� � FM-ELIMVAR(S�, x)
6: Remove x from Y �

7: return S�

8: function FM-ELIMVAR(Inequality system S, variable to eliminate x > var�S�)
9: Divide S into PosS�x�, NegS�x� and ZeroS�x�

10: S� � � cVAR�S���x� S c > ZeroS�x� �
11: for all c� > PosS�x� do
12: for all c� > NegS�x� do
13: Add FM�x, c�, c�� to S� P see (6)
14: return S�

When eliminating a variable xi, the inequalities in the constructed set S� are all implied by the inequalities
in S. On the other hand, it also holds that if �x1, x2, . . . , xi�1, xi�1, . . . , xn� satisfies the inequalities in S� then
there exists an assignment to xi such that �x1, x2, . . . , xi�1, xi, xi�1, . . . , xn� satisfies the inequalities in S (e.g.
[Duf74], Lemma 1). That is, S� � proj�xi��S�.

A disadvantage of the procedure is its complexity. Due to the combination of inequalities in each step, in
the worst case scenario where SPosS�x�S � SNegS�x�S � SSS

2 for the current system S, the number of inequalities
in the succeeding system is 1

4 SSS2. This implies that (both time and space) complexity is double-exponential.
We also notice that the denser the system is, the more it will grow. It should, however, also be emphasized that
not all inequalities in a succeeding system are necessarily non-redundant. In fact, the number of non-redundant
inequalities can only grow in single exponential [Mon10].

The function CHOOSEVARIABLETODELETE in Algorithm 1 is a heuristic to determine which variable among
the ones needed to be eliminated that should be eliminated first. In principle, there are many choices for heuristics,
but the most commonly used heuristic is the greedy heuristic that aims at minimizing the size of the inequality

5

system in the next step [Duf74]2. This is easy to calculate from the current system since the increase in size only
depends on the size of the sets PosS and NegS for the variable in question. We have also chosen this heuristic,
that is, the function CHOOSEVARIABLETODELETE(Y,S) returns

argmin
y>Y

�SPosS�y�SSNegS�y�S � SPosS�y�S � SNegS�y�S�.

3.2 Gauss-elimination
When our (in)equality system contains equalities, it is often an advantage to let them remain equalities instead
of converting each one to two inequalities. Firstly, they are then easier to identify, and instead of doing FM-
elimination on a variable in an equality, we can isolate it in the equality and substitute it in the other (in)equalities.
By doing this, we avoid the increase in inequalities that an FM-elimination of the variable would otherwise (in
most cases) cause. The downside is, that we make the system more dense, which FM-elimination, however, does
as well. This is e.g. done in [SK05].

Given an equality c, isolating and substituting the variable x > var�c� in the (in)equality c� for which x >

var�c�� corresponds to scaling c� and c with 1
Sco�x,c��S and �sgn�x,c��

co�x,c� , respectively3, such that the two coefficients
for x are plus and minus 1, and then adding the resulting (in)equalities. Restricting the resulting (in)equality to
VAR�S� � �x� results in the inequality GA�x, c, c�� over VAR�S� � �x� given below.

GA�x, c, c�� � Q
x�>VAR�S���x�

��sgn�co�x, c���
co�x, c� co�x�, c� � 1

Sco�x, c��Sco�x�, c��� � x�

bc�
�sgn�co�x, c���

co�x, c� rhs�c� � 1
Sco�x, c��Srhs�c��. (7)

In our method, we will define auxiliary variables (that should not be eliminated) and we will therefore have a
number of equalities which we will use to make Gauss-elimination. The pseudocode for this step is given in
Algorithm 2. Also for this procedure, a heuristic is used for choosing which variable - and in this case also which

Algorithm 2 Eliminating variables from an (in)equality system S using Gauss-elimination.

1: function GAUSS-ELIM((In)equality system S, variables to be eliminated Y b VAR�S�)
2: S� � S
3: while Y 9 var�eqs�S��� x g do
4: �x, c�� CHOOSEVARINEQUALITY�Y,S��
5: S� � GAUSS-ELIMVAR�S�, c, x�
6: return S�

7: function GAUSS-ELIMVAR(System S, equality c, variable x > var�c�)
8: S� � g

9: Remove c from S
10: for all c� in S do
11: if co�x, c�� � 0 then
12: Add c�VAR�S���x� to S�

13: else
14: Add GA�x, c, c�� to S� P see (7)
15: return S�

equality - should be used in the elimination. Again, there are many choices and we have decided to first find
the variable (occurring in equations) that occurs the fewest times, and then find the shortest equation using this
variable. I.e. the function CHOOSEVARINEQUALITY(Y,S) returns �y, e� where

y � argmin
x>var�eqs�S��

S� c > S S x > var�c� �S and e � argmin
c>eqs�S�.y>var�c�

Svar�c�S.
2This heuristic was useful for us, but though it is very commonly used, note that its success may depend on the specific problems considered;

Imbert [Imb93] states in his conclusion to have found the related heuristic returning argminy>Y SPosS�y�SSNegS�y�S to be inferior to “any
other choice, even at random”.

3sgn is the sign-function that returns �1, �1 or 0 depending on the sign of its parameter.

6

3.3 Preprocessing
The purpose of preprocessing is to simplify the (in)equality system that we are dealing with, i.e. to reduce it
by removing redundant inequalities that are easily identifiable, updating bounds for variables and substituting
variables with implied values such that feas�S� does not change. Likewise, preprocessing can be used to figure
out at an early stage whether the problem is infeasible. However, we assume that the problem is feasible and do
not spend time on checking this during the preprocessing step.

Our preprocessing part consists of the following steps, described below: removing empty (in)equalities and
unused variables, updating bounds for (in)equalities with only one variable, substituting variables with fixed val-
ues, eliminating variables with only one sign occurring, updating bounds due to extreme values, removing linearly
dependent (in)equalities [LHM93], and removing less strict (in)equalities. The basic preprocessing steps can be
found in e.g. [BMW75], [AA95] and [Mar03].

When doing these steps, we take into consideration that not all variables should be eliminated, in fact there
are some that we need to keep. This is particularly the case when we use auxiliary variables for decomposing our
system (see Section 4.3 later). Therefore we do not remove variables that are not in Y , and we do not substitute
them with a value during the preprocessing without keeping track of these substitutions.

3.3.1 Removing empty (in)equalities and unused variables

We remove from S all inequalities c for which Svar�c�S � 0.
For all x > Y for which x ¶ var�S�, we simply remove x from VAR�S�, i.e. we restrict S to VAR�S� � �x�.

Notice that we do not remove variables that we have not specifically expressed a desire to eliminate.

3.3.2 Updating bounds for (in)equalities with only one variable

For all inequalities c for which Svar�c�S � 1, we have that c equals the inequality co�x, c� � x bc rhs�c� for an
x > X . In this case, we update the bound(s) for x accordingly. That is, if co�x, c� A 0 and rhs�c�

co�x,c� @ UB�x�, then

c is removed from S and UBineq�x� is replaced with the inequality x B
rhs�c�
co�x,c� . Similarly, if co�x, c� @ 0 and

rhs�c�
co�x,c� A lb�x�, then c is removed from S and lbineq�x� is replaced with the inequality �x B � rhs�c�

co�x,c� .
If c is an equality, both bounds are updated.

3.3.3 Substituting variables with fixed value

If UB�x� � lb�x� for a variable x >X , then we substitute x with the given value in all (in)equalities in S.
If the variable x is not in Y , meaning that we have not specified that it should be removed, then we do maintain

the bounds of x in the system, i.e. we substitute x in all (in)equalities in S except for lbineq�x� and UBineq�x�.
The main reason for keeping such inequalities is that due to our decomposition of the system (see Section 4.3
later) the system might later be joined with another system where x is present and hence x’s value should not
“disappear”.

3.3.4 Eliminating variables with only one sign occurring

If a variable x only occurs with a non-negative coefficient in S (excluding bounds) and does not occur in equalities,
then we can substitute it with its lower bound if one exists; this actually corresponds to doing FM-elimination on
x where NegS�x� equals �lbineq�x��. Notice that unlike the other described steps, this step changes the feasible
area of S, though, this change is part of the overall goal of the whole procedure.

In other words, for all x > Y 9 P for which lb�x� exists, where

P � � x > VAR�S� � var�eqs�S�� S ¦c > S � �lbineq�x�� . co�x, c� C 0 �,
we substitute x with lb�x� in all (in)equalities in S. If x > Y 9 P and x has no lower bound, we can just remove
all inequalities c for which x > var�c�, since this also corresponds to doing an FM-elimination of x. Notice, that
we again only do this for variables that we have confirmed should be eliminated.

Likewise, if x has only non-positive coefficients in S, we can substitute is with its upper bound. That is, we
substitute variables in

N � � x > VAR�S� � var�eqs�S�� S ¦c > S � �UBineq�x�� . co�x, c� B 0 �
7

with their upper bound if it exists and if the variable is in Y . As above, if a variable x > N 9Y has no upper bound,
then we simply remove all inequalities c for which x > var�c�.

3.3.5 Updating bounds due to extreme values

For an (in)equality c in S we can – given appropriate bounds for the variables in var�c� – calculate the highest and
the lowest value that the left-hand-side of c can reach when variables are restricted to feas�S� ([Mar03], [AA95]).
The highest value is

high�c� � Q
x>X.co�x,c�A0

co�x, c� �UB�x� � Q
x>X.co�x,c�@0

co�x, c� � lb�x�, (8)

while the lowest value is

low�c� � Q
x>X.co�x,c�A0

co�x, c� � lb�x� � Q
x>X.co�x,c�@0

co�x, c� �UB�x�. (9)

If c is an equality, and low�c� � rhs�c� (high�c� � rhs�c�) then all variables in var�c� needs to be have the value
of the bound that gives the lowest (highest) value in order to be in feas�S�, and we substitute the variables in
var�c� with these values in all (in)equalities in S.

If c is not an equality then we still substitute variables with the appropriate value if low�c� � rhs�c�. If
high�c� B rhs�c� then c will always be satisfied for variables in feas�S � �c��, i.e. it is redundant and we will
remove it.

Now assume x is a variable in var�c�. Staying within the feasible area given by c and also satisfying the bounds
for the other variables in c can then imply tighter bounds on x.

As in (9) we can calculate the lowest reachable value for c (within feas�S�) when disregarding the contribution
of x by not summing over x. We will call this value lowx�c�. We notice that if low�c� exists, we have that
lowx�c� � low�c� � co�x, c� � bound�x�, where bound�x� � lb�x� if co�x, c� A 0, and bound�x� � UB�x� if
co�x, c� @ 0.

In order for feas�c� to be non-empty it is then necessary that co�x, c� � x � lowx�c� is at most rhs�c�. That is,
if co�x, c� A 0 then x B

rhs�c��lowx�c�
co�x,c� , and if co�x, c� @ 0 then x C

rhs�c��lowx�c�
co�x,c� . We therefore update the upper

of lower bound for x correspondingly.
This step is performed as in Algorithm 3. We say that x > var�c� has an appropriate high bound, if UB�x�

exists when co�x, c� A 0, and lb�x� exists when co�x, c� @ 0. Likewise, x > var�c� has an appropriate low bounds
if lb�x� exists when co�x, c� A 0, and UB�x� exists when co�x, c� @ 0.

We notice that the step “updating bounds for (in)equalities with only one variable” is a special case of the
above.

3.3.6 Removing linearly dependent (in)equalities

Consider the two different (in)equalities c and c� in S. Assume that the left-hand-side of c is a multiple of the
left-hand-side of c�, i.e. there is an σ > R such that co�x, c� � σ � co�x, c�� for all x > var�c, c��. Given that S is
feasible, then one of the (in)equalities are redundant [LHM93].

More concretely, we can conclude that c is redundant in the following cases.

• c ¶ eqs�S�, σ C 0 and σ � rhs�c�� B rhs�c�.

• c ¶ eqs�S�, c� > eqs�S�, σ @ 0 and σ � rhs�c�� B rhs�c�.

• c, c� > eqs�S� and σ � rhs�c�� B rhs�c�.

In all these cases it holds that if r > feas�c�� then

co�c� � r � σ � co�c�� � r B σ � rhs�c�� B rhs�c�. (10)

In the first two cases this means that r > feas�c�, and hence c is redundant. In the last case, since S is assumed
feasible there is an r� > feas�c� 9 feas�c��, i.e. rhs�c� � co�c� � r� � σ � co�c�� � r� � σ � rhs�c��. Thus, co�c� � r �
σ � co�c�� � r � σ � rhs�c�� � rhs�c�, and hence c is redundant.

8

Algorithm 3 Removing (in)equalities that are implied due to the bounds of its variables, and updating bounds of
variables implied by the right-hand-side of the (in)equality (and the bound of the other variables).

1: function FORCEDBYBOUNDS((In)equality system S)
2: S� � S
3: for c > S� do
4: �red,Subst�� REDUNDANTDUETOBOUNDS?�S�, c�
5: if red then
6: Remove c from S�

7: for all �x, v� > Subst do
8: Substitute x with v in all (in)equalities in S�

9: else
10: �UBs, lbs��IMPLIEDBOUNDS(S�, c)
11: for all �x, b� > UBs do
12: Replace UBineq�x� in S� with x B b
13: for all �x, b� > lbs do
14: Replace lbineq�x� in S� with �x B �b
15: return S�

16: function REDUNDANTDUETOBOUNDS?(S, c > S)
17: red� false, Subst� g

18: high�ª, low � �ª

19: if x has an appropriate high bound for all x > var�c� then
20: high� high�c� P see (8)
21: if x has an appropriate low bound for all x > var�c� then
22: low � low�c� P see (9)
23: if low � rhs�c� then
24: red� true
25: for all x > var�c� do
26: Add �x,x�s appropriate low bound� to Subst
27: else if c > eqs�S� and high � rhs�c� then
28: red� true
29: for all x > var�c� do
30: Add �x,x�s appropriate high bound� to Subst
31: else if high B rhs�c� then
32: red� true
33: return �red,Subst�
34: function IMPLIEDBOUNDS(S, c > S)
35: UBs � g, lbs � g

36: for x > var�c� do
37: if y has an appropriate low bound for all y > var�c� � �x� then
38: b� rhs�c��lowx�c�

co�x,c�
39: if co�x, c� A 0 and b @ UB�x� in S then
40: Add �x, b� to UBs
41: else if co�x, c� @ 0 and b A lb�x� in S then
42: Add �x, b� to lbs
43: return �UBs, lbs�

9

If c is redundant because of an (in)equality c� as above, we say that c is linearly dependent compared to c�4.
For a given pair of (in)equalities c and c� it is of course enough to check whether a specific value of σ, namely
co�x,c�
co�x,c�� for the first variable in var�c� 9 var�c��, satisfies the given criteria; if var�c� 9 var�c�� � g then such an
σ does not exist unless var�c� � var�c�� � g, which is a case we disregard here since it should be taken case of
when removing empty (in)equalities.

Linearly dependent (in)equalities are removed from the system S by using REMOVELINEARLYDEPD in Al-
gorithm 4.

Algorithm 4 Removing linearly dependent (in)equalities from an (in)equality system S.

1: function REMOVELINEARLYDEPD((In)equality system S)
2: S� � S
3: for all c in S� do
4: for all c� in S� � �c� do
5: if c is linearly dependent compared to c� then
6: Remove c from S�

7: return S�

3.3.7 Removing less strict inequalities

Consider again two different (in)equalities c and c� in S. Assume that all variables in var��c, c��� are non-negative
(i.e. their lower bound are greater or equal to 0), and there exists a scalar σ C 0 such that

co�x, c� B σ � co�x, c�� for all x > var��c, c��� and σ � rhs�c�� B rhs�c�. (11)

If r > feas�c��, then (11) implies that co�c� � r B σ � co�c�� � r B σ � rhs�c�� B rhs�c�, i.e. r > feas�c� if
c ¶ eqs�S�. That is, c is redundant if it is not an equality. Assuming that S is feasible and that (11) holds while
c > eqs�S�, then we must have that the inequalities in (11) are in fact equalities; otherwise if r > feas�S� then
either co�c� � r @ σ � co�c�� � r B σ � rhs�c�� B rhs�c� � co�c� � r, or co�c� � r B σ � co�c�� � r B σ � rhs�c�� @

rhs�c� � co�c� � r, which are both contradictions. This again implies that c is redundant since r > feas�c�� implies
co�c� � r � σ � co�c�� � r � σ � rhs�c�� � rhs�c�.

For given inequalities c and c� it is enough to check whether a specific value of σ satisfies (11) (see Proposi-
tion 1 below). If this is the case, we say that c is less strict than c�.

Proposition 1. Let c and c� be given and assume that all variables in var��c, c��� are non-negative. If (11) hold
for an σ C 0, then (11) holds for σ� C 0 given below.

If there exists an x > var�c�� such that co�x, c�� @ 0 then

σ� � � min�m, rhs�c�
rhs�c��� if rhs�c�� A 0

m otherwise
, where m � min

x>var�c��.
co�x,c��@0

co�x, c�
co�x, c�� .

Otherwise, if co�x, c�� C 0 for all x > var�c�� and var�c�� x g, then

σ� � � max�m�, rhs�c�
rhs�c�� ,0� if rhs�c�� @ 0

max�m�,0� otherwise
, where m�

� max
x>var�c��.
co�x,c��A0

co�x, c�
co�x, c�� .

Otherwise σ� � � max� rhs�c�
rhs�c�� ,0� if rhs�c�� x 0

0 otherwise
.

Proof. See Appendix.

We implement the removal of less strict inequalities in a similar way to how the removal of linearly dependent
inequalities are done. That is, we do the same as in Algorithm 4, where line 5 has been replaced with checks
for whether c is less strict than c�. According to the above, we can check this by checking that all variables in
var��c, c��� are non-negative, and (11) holds for σ given in Proposition 1.

4Note, [LHM93] differentiates and calls c syntactically redundant if rhs�c� � σ �rhs�c�� (for positive σ), and quasi-syntactically redundant
in the first case (first item) considered.

10

3.3.8 Overall preprocessing step

The overall preprocessing step then consists of doing all the above mentioned steps repeatedly in a cycle, as long
as “something happens” in a cycle, that is, an (in)equality or variable has been removed or substituted with a value,
or a bound has been updated.

Algorithm 5 Preprocessing an (in)equality system S. The variables in VAR�S� � Y should be kept.

1: function PREPROCESS((In)equality system S, variables Y b VAR�S�)
2: S� � S
3: do
4: Start � S�

5: S� �REMOVEEMPTYINEQS(S�, Y) P See Section 3.3.1
6: S� �UPDATEBOUNDSONEVAR(S�, Y) P See Section 3.3.2
7: S� �SUBSTFIXEDVARS(S�, Y) P See Section 3.3.3
8: S� �REMOVEUNUSEDVARS(S�, Y) P See Section 3.3.1
9: S� �REMOVEVARSWITHONESIGN(S�, Y) P See Section 3.3.4

10: S� �FORCEDBYBOUNDS(S�, Y) P See Algorithm 3
11: S� �REMOVELINEARLYDEPD(S�, Y) P See Algorithm 4
12: S� �REMOVELESSSTRICTINEQS(S�, Y) P See Section 3.3.7
13: while S� x Start
14: Return S�

3.4 Removing redundancy

As previously described, at each step of the FM-elimination, the number of (in)equalities will grow with SPosS�x�S�SNegS�x�S� SPosS�x�S� SNegS�x�S inequalities. Unless either PosS�x� or NegS�x� equals one, or both numbers
equal two, this will account for an increase in the number of inequalities. For a large, dense system, the growth
will be substantial, which prohibits it from use for practical purposes if the added inequalities are non-redundant
(See e.g. [LHM93] and [LS08]). However, many of the added inequalities are potentially redundant, and it would
greatly improve the applicability of the procedure if the addition of (too many) redundant inequalities can be
(efficiently) avoided, or the redundant inequalities can be removed (efficiently) after they have been added, or
both.

Theoretically, all redundant inequalities can be removed from an (in)equality system S by examining each
inequality in turn and remove them when the property in (3) holds, see Algorithm 6. Notice, that this procedure
does not examine equalities; this could of course have been implemented, but we chose not to, partly for reasons
to be revealed later (see Section 4.3).

We notice that if c is a non-redundant inequality in S that lies in ZeroS�x� for some variable x, then cVAR�S���x�

is also a non-redundant inequality in S� for all S� > PRS�x��S�. Therefore, assuming that we have already re-
moved redundant inequalities from the system S, it is therefore only necessary to check all the new inequalities
being added to the system after each FM-elimination.

Algorithm 6 Removing redundant inequalities from an (in)equality system S. The maximum value in line 4 can
be calculated with an lp-solver

1: function REMOVEREDUNDANTINEQS((In)equality system S, Inequalities to be checked C b S � eqs�S�)
2: S� � S
3: for all c > C do
4: if max� co�c� � r S r > feas�S� � �c�� � B rhs�c� then
5: Remove c from S�

6: return S�

This method can then be called at “appropriate” times during the main algorithm, for example each time a
certain number of inequalities have been added since last redundancy check, or possibly after every elimination.

11

4 Alterations and Improvements

4.1 Improved redundancy checks
4.1.1 Taking advantage of data’s uncertainty

It is not uncommon that the coefficients and right-hand-sides in the considered (in)equality system comes from
approximations and/or predictions of certain circumstances, and hence the exact vertices of the feasible area is not
given with high accuracy. We will therefore allow slight discrepancies between the corners of the final solution
space given by our algorithm and the actual projection. When calculating the maximum in line 4 in Algorithm 6
we will therefore allow the maximum to be within a given relative ε. That is, the condition in line 4 is replaced
with the following:

max� co�c� � r S r > feas�S � �c�� � B rhs�c� � ε � Srhs�c�S. (12)

Though, if rhs�c� � 0 then we instead require the maximum to be within a certain treshold, ε�.
If c satisfies the condition in (12), we call c almost redundant, while a c that satisfies the redundancy criteria in

(3) is called truly redundant. Our definition of an almost redundant inequality is similar to the definition in [LS08]
and [SL12]. In these paper, the authors similarly use a method for coarsening the boundary of the feasible area
that relies on removing almost redundant inequalities, though it differs a bit from ours.

4.1.2 Concurrent redundancy checks

The overall setup is that a manager keeps track of k A 1 redundancy checkers to which it distributes the inequalities
that need to be checked. The redundancy checkers run in parallel. Each checker starts by removing the inequalities
from their own copy of the original system that the other checkers have found truly redundant so far. Then it checks
if its assigned inequality is truly redundant compared to this system (see (3) on page 3) and tells the result to the
manager when done. The manager then gives the idle checker a new inequality to check (if there are any left) and
remembers to inform the other checkers if the examined inequality was redundant.

When using parallel redundancy checkers, it is important that we do not remove almost redundant inequalities,
i.e. inequalities that satisfy (12). Otherwise, we might be in a situation as illustrated in Figure 2, where the two
inequalities c and c� both are almost redundant (each due to the other one). Each of them could justifiably be
removed as long as we keep the other one; removing both inequalities would result in a significantly different
feasible area. Unfortunately, using parallel redundancy checkers, c and c� could be checked by different checkers
which would then both report that their assigned inequality should be removed because it is almost redundant
resulting in both inequalities being removed. Thus, we must use true redundancy for parallel redundancy checkers.
For similar reasons, when doing parallel redundancy checks it is also required that S does not contain linearly
dependent inequalities c and c� for which co�c� � σ � co�c�� and rhs�c� � σ � rhs�c�� for a positive σ, since c and
c� in that case would define the same halfspace.

c

c

Figure 2: Both inequalities c and c� are almost redundant, but only one of them can be removed from the system.

However, we still let the checkers examine whether the inequalities are almost redundant (see (12)) and report
this back to the manager who stores these. After having examined all the needed inequalities by use of parallel
redundancy checkers, we then go through and check the almost redundant ones sequentially with a single redun-
dancy checker, and remove - in turn - the ones that are still almost redundant. For the example in Figure 2 this
would mean that which ever of c and c� is examined first is also removed, while the other is not.

The checkers also check and report on inequalities for which the optimization of its left hand side resulted in
a bad condition number (also known as κ-value). This number is a measure for how much (small) differences in
the input value (i.e. the coefficients and right-hand-side of the (in)equalities) effects the value of output (i.e. the

12

found optimal value); see e.g. [TBI07]. Essentially, the larger this number is, the less we can trust the result. We
have chosen a threshold K that gives the limit for when we can trust the result. As the system gets smaller due
to the removal of redundant inequalities, inequalities might be reexamined with a lower κ-value as a result, and
therefore we also re-examine the inequalities that resulted in a bad κ-value when they were checked by the parallel
redundancy checkers. Finally we also reexamine inequalities, for which the lp-solver was not able to solve the
optimization of its left-hand-side.

The pseudocode for the redundancy checkers is listed in Algorithm 7, and the pseudocode for the manager
is listed in Algorithm 8. When the manager receives results from the checkers (via calls to MANAGERESULT in
line 21 in Algorithm 8), it finishes handling one call before handling the next call.

Algorithm 7 Initializing and running a redundancy checker. A checker can either check for true redundancy (used
when doing concurrent redundancy checks) or not, in which case it checks for “almost redundancy” (for doing
sequential redundancy checks).

1: function CHECKREDUNDANCY(Manager m, (In)equality system S, c > S, boolean truely)
2: S� � S, c� � c, reds � g

3: while c� x null do
4: Remove reds and c� from S�

5: max �max� co�c�� � r S r > feas�S�� �
6: Inspect solution:
7: red � false, recheck � false
8: κ� GETCONDITIONNUMBER��
9: if truely then

10: red � ISTRUELYREDUNDANT?�max, rhs�c��� and κ B K

11: recheck � ISALMOSTREDUNDANT?�max, rhs�c���
12: else
13: red � ISALMOSTREDUNDANT?�max, rhs�c��� and κ B K

14: recheck � recheck or κ A K or UNSOLVED?()
15: if red then
16: Add c� to S�

17: �c�, reds��m.MANAGERESULT�c�, red, recheck�
18: return

19: function ISTRUELYREDUNDANT?(max, rhs)
20: return max B rhs

21: function ISALMOSTREDUNDANT?(max, rhs)
22: return (rhs � 0 and max B ε�) or max B rhs � ε � SrhsS

We notice that the inequalities that should be checked for redundancy is a subset of (in)equalities in S. Es-
sentially, these should be the new inequalities added to the system after each FM-elimination as described earlier.
However, the function is implemented such that it is also possible to check the whole system for redundant in-
equalities.

4.2 Combining strategies

For projecting an (in)equality system we combine the various strategies described so far in the method PROJECT
presented below in Algorithm 9. It consists of steps of preprocessing the system, doing Gauss-elimination and
doing FM-elimination on the system. After each FM-elimination of a variable some (timewise) “cheap” pre-
processing steps are done, and we also make sure to remove linearly dependent (in)equalities as well. Hence
CLEANUP consists of Algorithm 5 minus the calls to FORCEDBYBOUNDS and REMOVELESSSTRICTINEQS.
The reason we do not simply use PREPROCESS is that the two above mentioned subprocedures in experience are
more time consuming than the others and prior results showed a too little effect compared to the time taken.

After this, we remove redundant inequalities (we check only the newly added inequalities) using REMOVERE-
DUNDANCY from Algorithm 8. In REMOVEREDUNDANCY, each step of doing parallel or sequential redundancy

13

Algorithm 8 Managing the redundancy checkers. First a concurrent redundancy check is performed, followed by
a sequential redundancy check. It is assumed that C �, reds and rechecks can be accessed by any of the manager’s
functions in this algorithm.

1: function REMOVEREDUNDANCY(System S, inequalities C b S � eqs�S�, number of checkers k)
2: S� � S, C �

� C, reds � g, rechecks � g, checkers � g

3: Do parallel redundancy check:
4: do in parallel for i� 1 to min�k, SC �S�
5: Add new checker t to checkers
6: Call t.CHECKREDUNDANCY�this, S�,NEXTINEQTOCHECK��,true�
7: until all checkers in checkers have returned

8: S� � S� � reds, C �
� rechecks, reds � g, rechecks � g

9: Do sequential redundancy check:
10: if C � x g then
11: t� new checker, checkers � �t�
12: Call t.CHECKREDUNDANCY�this, S�,NEXTINEQTOCHECK��,false�
13: return S� � reds

14: function NEXTINEQTOCHECK()
15: if C � � g then
16: return null
17: else
18: c� first inequality from C �

19: Remove c from C �

20: return c

21: function MANAGERESULT(Inequality c, boolean red, boolean recheck)
22: if red then
23: Add c to reds
24: else if recheck then
25: Add c to rechecks
26: return �NEXTINEQTOCHECK��, reds�

14

checks, respectively, are potentially repeated a number of times (or until the system does not change) depending
on the values in the considered model, since “off”-numbers (according to experience) are more likely to cause
bad κ-values. If there are many inequalities resulting in bad κ-values, we would then like to test them again (after
other redundant inequalities have been removed), since the removal of other inequalities can lead to a better κ-
value when the inequality is re-evaluated. Due to the sometimes large number of inequalities that we do not know
the redundancy staus of (because of a bad κ-value, that do not change during the repeated checks for redundancy),
in some runs of the method we also start the FM-elimination-step in PROJECT with a full sequential redundancy
check.

Algorithm 9 Overview of the method for projecting the variables Y from an (in)equality system S.

1: function PROJECT(S,Y)
2: S� � S
3: S� � PREPROCESS�S�, Y � P See Algorithm 5
4: S� � GAUSS-ELIM�S�, Y � P See Algorithm 2
5: S� � FM-ELIM*�S�, Y � P FM-elimination with redundancy removal (see below)

6: function FM-ELIM*(S,Y)
7: S� � S, Y �

� Y
8: while Y � x g do
9: x� CHOOSEVARIABLETODELETE(Y �, S�)

10: S�� � �ZeroS��x��VAR�S����x�

11: S� � FM-ELIMVAR(S�, x) P Algorithm 1
12: Remove x from Y �

13: S� � CLEANUP�S�, Y �
14: S� � REMOVEREDUNDANCY�S�, S� � S��, available threads� P Algorithm 8
15: return S�

4.3 Decomposition

Given the theoretical complexity of the Fourier-Motzkin-elimination procedure, we might not have great hope of
using this to eliminate a large number of variables from a very large (in)equality system, at least not if the values of
the (in)equalities are randomly generated. However, given an (in)equality system coming from a natural occurring
problem, it is common that the constraints are block structured [Wil78], where groups of constraints are “local”
for each subdomain of the problem, while other “global” or “transverse” constraints involve many or all of the
local subdomains. We will in the following assume that the given problem has a block structure and exploit this
fact.

Given a problem with block structure, the dense, “transverse” (in)equalities are problematic for Fourier-
Motzkin-elimination, especially when they use variables that should not be eliminated, and particularly when
they are equalities. Every time a variable in a transverse equality is eliminated, all the “local” (in)equalities using
the variable will be combined with one of the two inequalities corresponding to the transverse equality. The result
is that we get a large number of inequalities using all the variables of the large transverse equality and the variables
from the local (in)equalities. Thus, not only do we increase the size of the problem, we also make it (much) more
dense, both making the rest of the elimination process more time-consuming, and also increasing the time spend
on finding redundant inequalities. Below we show how to avoid this.

4.3.1 Separating the (in)equality system

If possible, it would be an advantage to be able to separate our (in)equality system into a (preferably large) num-
ber of smaller (in)equality systems that have “nothing in common”, meaning that there is no overlap between the
sets of variables being used in the different subsystem. If this can be done, we can then solve each subsystem
separately in parallel after which the resulting systems can be combined (see Lemma 1 item 1). As long as each
subsystem is sufficiently small (such that it is can be projected in “reasonable” time) this may turn an insurmount-
able large problem into a projectable one. However, this is not always possible to do. Nonetheless, using the block

15

structure to decompose the system into smaller subsystems with only little interaction by separating the system’s
(in)equalities can still be useful.

We therefore consider k0 disjoint subsets of VAR�S� -X1,X2, . . . ,Xk0 - and letXt
def.
� VAR�S��var�81BiBk0Xi�.

For each i > �1, . . . , k0� we define Si to be the (in)equality system that only uses variables in Xi, i.e. Si
def.
�� c > S S var�c� bXi �, and we let St � S � 81BiBk0Si be the system consisting of the rest of the (in)equalities.

The result is that we have divided the system into k0 local parts with disjoint sets of used variables, and a
transverse part that contains (in)equalities using variables from more than one of the other local parts.

Our (in)equality system can thus be illustrated as in Figure 3.

tX1X

tS

1S

2S

0kS

0kX

Figure 3: Separation of the (in)equalities of an (in)equality system into local parts and a transverse part. The figure
shows the coefficient matrix for the system, where non-zero sections have been colored black.

It should be noticed that in general, this can be done in many ways, but in our case - and in many common
cases - there is a natural way in which the local parts/local variables present themselves.

We likewise notice that for any (in)equality system, such partitions of variables and (in)equalities will always
exist though they might not be very useful in practice; for any X b VAR�S�, we can make a partition of the
(in)equalities as desired, S � � c > S S var�c� bX � 8̇� c > S S var�c� ~bX �. Intuitively, though, we have a better
chance of success if St is as small as possible, as well as each Si and/or Xi.

Example 4.1. To illustrate, let us consider the (in)equality system S consisting of the following (in)equalities from
which we want to eliminate all variables but u, which is defined as a sum of the variables x1, y1, x2, y2, x3, y3:

sum � �u � x1 � y1 � x2 � y2 � x3 � y3 � 0

S1 �

¢̈̈̈
¦̈̈̈
¤
x1 � 2 � y1 B 2
�x1 B 0
�y1 B 0

, S2 �

¢̈̈̈
¦̈̈̈
¤
�x2 � 3 � y2 B 1
x2 B 0
y2 B 0

, S3 �

¢̈̈̈
¦̈̈̈
¤
�x3 � y3 B 1
2 � x3 � y3 B 0
�y3 B 0

.

S1, S2 and S3 are “local” subsystems only dealing with variables from �x1, y1�, �x2, y2� and �x3, y3�, respec-
tively. On the other hand, the equality defining u, sum, is a transverse equality. When eliminating any x or y
variable, the system will be added (in)equalities using all variables (except the eliminated one) due to combina-
tions with sum. Q

Introducing auxiliary variables As previously mentioned it is preferable to perform elimination on a (local)
subsystem such that only (in)equalities naturally “belonging” to that subsystem are produced, meaning that added
(in)equalities uses no variables from other (local) subsystems. This can be achieved by the use of auxiliary
variables.

Assume that c � Px>VAR�c� co�x, c� � xbc rhs�c� belongs to St. For all 1 B i B k0 we then define a variable5,

z0
c,i

def.
� Px>Xi

co�x, c� � x, which can be written as an equality over Xi 8 �z0
c,i� as

Def �z0
c,i� � �z0

c,i � Q
x>Xi

co�x, c� � x � 0. (13)

5Formally, we define the value of a variable in X � VAR�S� which we will rename z0
c,i, and so forth with all the following, defined

variables.

16

Since VAR�S� �X1 8̇ . . . 8̇Xk0 8̇Xt and co�x, c� � 0 for x > VAR�S� � var�c�, we therefore have that

Q
x>VAR�c�

co�x, c� � x � Q
x>VAR�S�

co�x, c� � x
� � Q

1BiBk0
� Q
x>Xi

co�x, c� � x�� � Q
x>Xt

co�x, c� � x
� � Q

1BiBk0
z0
c,i� � Q

x>Xt

co�x, c� � x,
which means that using the z0

c,i-variables, c can be rewritten as an (in)equality over 81BiBk0�z0
c,i� 8Xt as

c0
decp � � Q

1BiBk0
z0
c,i� � Q

x>Xt

co�x, c� � xbc rhs�c�. (14)

From construction it therefore follows that values for x > VAR�S� that satisfies c can be extended with values
for all z0

c,i such that c0
decp and all the defining equalities (from (13)) are satisfied, and vice versa, if the latter

(in)equalities are all satisfied then satisfying values for the variables in X will also satisfy c. That is,

feas�c� � proj81BiBk0�z0
c,i�

�feas��c0
decp� 8 �

1BiBk0
�Def �z0

c,i����. (15)

Using auxiliary variables for all c > St as above and adding the defining equalities Def �z0
c,i� to the subsys-

tem where they belong according to their variables, we can divide the (in)equality system S into a number of
(in)equality systems, S0

1 , . . . , S
0
k0 , S0

t , as described in the pseudocode below.

Algorithm 10 Separating an (in)equality system S according to a list of disjoint sets of variables X ��X1,X2, . . . ,Xk0�, where each Xi b VAR�S�
1: function SEPARATEINEQS(S, X � �X1,X2, . . . ,Xk0�)
2: St � � c > S S var�c� ~bXi for any i �
3: for i� 1 to k0 do
4: S0

i � � cXi S c > S, var�c� bXi �
5: S0

t � g

6: for all c > St do
7: for i� 1 to k0 do
8: Add Def �z0

c,i� � �z0
c,i �Px>Xi

co�x, c� � x � 0 to S0
i

9: Add c0
decp � �P1BiBk0 z0

c,i� �Px>Xt
co�x, c� � xbc rhs�c� to S0

t

10: return (�S0
1 , . . . , S

0
k0�, S0

t)

The (in)equality system consisting of the union of the systems S0
1 , . . . , S

0
k0 , S0

t will be referred to as the
separated system from S, written sep�S�. This can be illustrated as in Figure 4. For ease of notation we let
Z0 def.

� 81BiBk0� z0
c,i S c > St �. We notice that for each constructed system S0

i we have that VAR�S0
i � b Xi 8 Z

0

and VAR�S0
t � �Xt 8Z

0.

Example 4.2. Consider again the (in)equality system S from Example 4.1. As explained, separating S introduces
auxiliary variables to prevent the immediate mix of variables from var�S1�, var�S2� and var�S3� in new inequal-
ities when any of the variables are eliminated. This is done by defining u as the sum of three auxiliary variables,
z1, z2 and z3

6, which in turn are defined as the sum of the variables in each respective subsystems. Hence sep�S�
is the following system.

sum0
decp � �u � z1 � z2 � z3 � 0

S0
1 �

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

�z1 � x1 � y1 � 0
x1 � 2 � y1 B 2
�x1 B 0
�y1 B 0

, S0
2 �

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

�z2 � x2 � y2 � 0
�x2 � 3 � y2 B 1
x2 B 0
y2 B 0

, S0
3 �

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

�z3 � x3 � y3 � 0
�x3 � y3 B 1
2 � x3 � y3 B 0
�y3 B 0

.

6For clarity of the example we do not use the variable names as described in the section above.

17

t
0S

1
0S

2
0S

tX

0k
0S

1X 2X

1
0SVAR

0kX

Figure 4: The separated system from the system in Figure 3. Auxiliary variables are used to prevent local con-
straints from different local parts to instantly “mix” when their variables are eliminated. Each system S0

i , however,
only corresponds to the system encased in coloured boxes.

When we eliminate x1, y1, x2, y2, x3 and y3 from S�, we do not “mix” the local subsystems; this only happens
when z1, z2 and z3 afterward are eliminated.

Furthermore, when eliminating x1 and y1, we only need to do this with respect to the system S0
1 (and similar for

var�S0
2� and var�S0

3�). The resulting projections from PRS�x1,y1��S0
1�, PRS�x2,y2��S0

2� and PRS�x3,y3��S0
3�,

respectively, can then be added to sum0 from which z1, z2 and z3 can then be eliminated. Q

In the end, the result is that each set S0
i now have one more (in)equality for each c > St compared to the

original Si, and the number of variables in var�S0
i � has increased with the same amount compared to Xi. But,

more importantly, now Svar�S0
i � 9 var�S0

t�S equals SStS, and eliminating variables in Xi 9 Y will only produce
(in)equalities whose set of variables is disjoint from the variable sets of the other local (in)equality systems.
Furthermore, eliminating the z0

c,i-variables from the separated system will give us a system equivalent to the
original system. Hence, eliminating the variables in Y b VAR�S� from the original system is equivalent to
eliminating Y and the defined z-variables, that is

PRSY �S� � PRSY 8Z0�sep�S��.
This follows from Lemma 2 below since by construction VAR�S� � Y � VAR�sep�S�� � �Y 8Z0�.
Lemma 2.

projY �feas�S�� � projY 8Z0�feas�sep�S���.
Proof. See Appendix

4.3.2 Splitting transverse constraints

Separating the system as described above helps preventing the (in)equalities becoming too dense when eliminating
variables from the local parts. However, we also need to eliminate the defined variables in Z0, which there might
be many of. Using auxiliary variables in a way similar to the one described above, we would therefore like to
split the variables in Z0 into groups and use auxiliary variables to prevent subsystems “mixing” with each other.
Potentially, projecting the subsystems will again result in manageable systems that can then be put together.

We will exploit the fact that if the left-hand-side of a transverse (in)equality in S0
t consists of a sum of many

terms, it can always be rewritten as a sum of fewer terms by use of auxiliary variables. For example

z0
c,1 � z

0
c,2 � . . . � z

0
c,k0 � �z0

c,1 � z
0
c,2� � . . . � �z0

c,k0�1 � z
0
c,k0�

� z1
c,1 � . . . � z

1
c,k1 ,

where z1
c,1 � z

0
c,1�z

0
c,2, . . . , z

1
c,k1 � z0

c,k0�1�z
0
c,k0 . The latter sum can then again be rewritten into a sum of fewer

terms, and so on.

18

Example 4.3. If we take the (separated) (in)equality system sep�S� from Example 4.2, the variable u (which we
want to keep) is now defined as a sum of three other variables (z1, z2, z3) instead of the former six variables. Of
course, this example is very small and a further splitting of the transverse constraints is most likely not necessary,
but for the purpose of illustration, we can further split sum0

decp such that the system obtained consists of the
following (in)equalities (drawn in a tree structure)7:

sum1
decp � �u � w1 � w2 � 0

Def �w1� � �w1 � z1 � z2 � 0 Def �w2� � �w2 � z3 � 0

S0
1 �

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

�z1 � x1 � y1 � 0
x1 � 2 � y1 B 2
�x1 B 0
�y1 B 0

S0
2 �

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

�z2 � x2 � y2 � 0
�x2 � 3 � y2 B 1
x2 B 0
y2 B 0

S0
3 �

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

�z3 � x3 � y3 � 0
�x3 � y3 B 1
2 � x3 � y3 B 0
�y3 B 0

To eliminate all variables but u from the system, we first find projections E0
1 > PRS�x1,y1��S0

1�, E0
2 >

PRS�x2,y2��S0
2�, E0

3 > PRS�x3,y3��S0
3�. Then we find projections E1

1 > PRS�z1,z2��E0
1 8 E

0
2 8 �Def �w1���

and E1
2 > PRS�z3��E0

3 8 �Def �w2��� and then we find a projection E > PRS�w1,w2��E1
1 8E

1
2 8 �sum1��. Q

To further divide the transverse (in)equalities, we use an “appropriate” partition P1 � �P 1
1 , . . . , P

1
k1� of the in-

dices of the local parts, �1, . . . , k0�. What is “appropriate” can vary, depending e.g. on the number of (in)equalities
and variables in the subproblems as well as the underlying structure (if any) of the original problem. For each
transverse (in)equality c0

decp � �P1BiBk0 z0
c,i� �Px>Xt

co�x, c� � x bc rhs�c� in S0
t and each part P 1

i > P1 we then
define a variable to be the sum over the z0

c,j-variables, whose index j is in that particular part Pi. That is, we
define the following equality Def �z1

c,i� over �z1
c,i� 8�j>P i

i
�z0
c,i�.

Def �z1
c,i� � �z1

c,i � Q
j>P 1

i

z0
c,j � 0. (16)

Using the defined variables we can then substitute in c0
decp to get an (in)equality over Xt 8�1BiBk1�z1

c,i�.

c1
decp � � Q

1BiBk1
z1
c,i� � Q

x>Xt

co�x, c� � xbc rhs�c�.

Letting Z1 def.
� 81BiBk1� z1

c,i S c > St � we can now split the newly added (in)equalities into k1 “variable-

disjoint” and one “transverse” (in)equality systems by defining S1
i

def.
� � Def �z1

c,i� S c > S0
t � for each 1 B

i B k1 (i.e. VAR�S1
i � � �c>S0

t
VAR�Def �z1

c,i�� b Z0
8 Z1) and S1

t
def.
� � c1

decp S c > S0
t � (i.e VAR�S1

t� �

�c>S0
t

VAR�c1
decp� �Xt 8Z

1).
If var�c1

decp� is still deemed too large, i.e. k1 is too large, we can repeat this step - use a partition of the indices
of the previous partition to define and use auxiliary variables - until the (in)equality cKdecp only has a few terms,
see Figure 5.

The procedure for splitting the transverse (in)equalities like this according to a partition at a given level l can
be described by the following procedure SPLITTRANSVERSE in Algorithm 11.

At each step, we define auxiliary variables in terms of the previous level’s auxiliary variables, and then we
replace each decomposed transverse inequality from the previous level with another decomposed transverse in-
equality that uses the new auxiliary variables. The defining equalities are split into groups according to a partition
of (the indices of) the previous level’s variables.

Due to the definition of the new variables, Zl, and the decomposed (in)equalities at the l’th level, it follows that
eliminating the Zl-variables from the (in)equalities defined thus far gives us an the (in)equality system consisting
of all (in)equalities at the previous level; see Lemma 3 below.

7As with Example 4.2, for clarity, the variable names do not follow the described naming convention.

19

+ + + +

+ +

+ + ++ + + +

+ + +

+

3c,
1z

5c,
0z

2c,
2z

8c,
0z

0level

1level

2level

1c,
0z 2c,

0z 3c,
0z 4c,

0z 6c,
0z 7c,

0z

1c,
1z 2c,

1z 4c,
1z

1c,
2z

Figure 5: Splitting a transverse constraint c0
decp � P

8
i�1 z

0
c,i �Px>Xt

co�x, c� � x bc rhs�c� in S0
t from a separated

system using the partitions P1 � �1,2� 8̇�3,4� 8̇�5,6� 8̇�7,8� and P2 � �1,2� 8̇�3,4�.

Algorithm 11 Splitting a transverse (in)equality at the l’th level, according to a partition Pl of the indices of the
previous level.

1: function SPLITTRANSVERSE(Transverse (in)equalities S0
t , partitions Pl � �P l1, . . . , P lkl�)

2: Slt � g

3: for i� 1 to kl do
4: Sli � g

5: for all c > S0
t do

6: Add Def �zlc,i� � �zlc,i �Pj>P l
i
zl�1
c,j � 0 to Sli

7: Add cldecp � �P1BiBkl zlc,i� �Px>Xt
co�x, c� � xbc rhs�c� to Slt

8: return ��Sl1, . . . , Slkl�, Slt�

Lemma 3.
projZl�feas�Slt 8 �

1BiBkl

Sli�� � feas�Sl�1
t �

Proof. See Appendix.

Solving the (in)equality system exploiting structure

Having separated the system and split the transverse (in)equalities, we can now solve the original problem, that is,
eliminate the variables Y from the (in)equality system S. The result will be an (in)equality system, whose feasible
region is the projection of Y from S, i.e. the system belongs to PRSY �S� and will be expressed in the variables
X � Y . Though, instead of considering the whole system S and eliminating the variables in Y from this set, we
will as previously mentioned take advantage of the decomposition of the problem.

The overall idea of the procedure is to use the constructed decomposition of the (in)equality system to make
a tree structure of subsystems where a system Sli has the subsystems Sl�1

j as a child for all j > P li (see Figure 6).
The systems corresponding to the subtrees in this structure are then projected recursively (see Figure 7 later).

Given that the constraints of a given subproblem in real life deals with the same aspect of the problem in
question, there is a good chance that the projected subsystem with the aid of some variables significant for that
aspect can be expressed in only few constraints. By separating the system and splitting the transverse constraints,
which both results in divisions into subproblems, we therefore hope to better take advantage of the structure of the
problem.

Firstly, we let Sl
i denote the (in)equality system consisting of Sli together with all it’s descendants in this tree

structure, see Figure 6.
Letting kK�1 � 1, PK�1

1 � �1, . . . , kK�, and SK�1
1 � SKt , we formally define Sl

i for all 0 B l B K � 1 and all
1 B i B kl as

Sl
i � � Sli 8�j>P l

i
Sl�1
j if l A 0

Sli if l � 0

Not surprisingly it is easily shown (see Lemma 4 below) that SK�1 indeed equals the union of all the defined
subsystems.

20

1
1S

1
0S 2

0S

2
1S

3
0S 5

0S4
0S

1
2S

1
2S

1KS
t
KS

. . .

Figure 6: A part of the tree structure for an (in)equality system S. For the partitions it holds that P 1
1 , P

1
2 > P1

where P 1
1 � �1,2� and P 1

2 � �3,4,5�, and P 2
1 > P2 where P 2

1 � �1,2�.

Lemma 4.
SKt 8 �

1BiBk0
S0
i 8 . . . 8 �

1BiBkK

SKi �SK�1
1

Proof. See Appendix.

As expected, projecting all Y and Z-variables from the final system corresponds to projecting the Y variables
from the original system. From this it follows that

PRSY �S� � PRSY 8Z08...8ZK �SK�1
1 � (17)

since VAR�S� � Y � VAR�SK�1
1 � � �Y 8 Z0

8 . . . 8 ZK�. The following proposition proves the claim more
formally.

Proposition 2.
projY �feas�S�� � projY 8Z08...8ZK�feas�SK�1

1 ��
Proof. See Appendix.

To obtain a system from PRSY �S�, we can therefore instead eliminate all Y andZ variables from the final system.
Although this seems more troublesome, we can use the constructed tree structure to project the (in)equality system,
such that a subsystem Sli is projected by first projecting each of its subtree’s systems (Sl�1

j for j > P li) recursively,
add these projections to Sli and then finally project the result w.r.t. �Y 8Zl�1� 9 Sli . See Figure 7.

For each 0 B l B K and 1 B i B kl, we let Eli be one of the systems in the (recursive) projection of Sli and its
subsystems (see Figure 7).
More formally we define

Eli � � pick�PRSZl�1�Sli 8�j>P l
i
El�1
j �� if l A 0

pick�PRSY �Sli�� if l � 0 , (18)

where pick � 22IE
� 2IE is an arbitrary choice-function, i.e. given a set of (in)equality systems M , it returns one

of the (in)equality systems in M . As it turns out (see Lemma 5 later), the specific choice function is irrelevant for
our purpose, so for now we just assume this function given.

The proposition below now gives us that projecting the Y - and Z-variables recursively as given in (18) results
in the same as projecting all the variables from the final system.

Proposition 3.
projZK8...8Z08Y �feas�SK�1

1 �� � feas�EK�1
1 �

21

1
1S

1
0S 2

0S

eli
m

.

elim
.

elim.

eli
m.

2
1S

3
0S 5

0S4
0S

eli
m

.

elim
.

elim
.

1
2S

elim
. . . .

1
1E

2
1E

2
0E

1
0E

3
0E

5
0E

4
0E

Y

Y

Y

Y

Y

0Z

0
Z

1
Z

t
KS

1
1KE

1
KE

2
KE

. . .

KZelim.

1
K

Z

elim.

1
KZ
elim.

Figure 7: Using the tree structure from Figure 6 for an (in)equality system S to recursively project the variables
Y b VAR�S�.

22

Proof. See Appendix.

From Proposition 2 and Proposition 3 it follows that feas�EK�1
1 � � projY �feas�S��. It then follows from

Lemma 5 below that the given choice function is irrelevant.

Corollary 1. No matter in which way the system Eli is chosen from PRSZl�1�Sli 8�j>P l
i
El�1
j � (for l A 0) or from

PRSY �Sli� (for l � 0) we have that
EK�1

1 > PRSY �S�
Lemma 5. Let p, p� � 22IE

� 2IE be such that p�M�, p��M� >M for all M > 22IE . Then Eli�p� � Eli�p�� for all
0 B l BK � 1 and all 1 B i B kl, where

Eli�p� def.
� � p�PRSZl�1�Sli 8�j>P l

i
El�1
j �p��� if l A 0

p�PRSY �Sli�� if l � 0 , and

Eli�p�� def.
� � p��PRSZl�1�Sli 8�j>P l

i
El�1
j �p���� if l A 0

p��PRSY �Sli�� if l � 0 .

Proof. See Appendix.

4.4 Projection framework using decomposition
Below in Algorithm 12 we present an algorithm for finding a projection of S w.r.t. Y exploiting the decomposition
of a block structured (in)equality system. It producing the system Eli according to the definition in (18) for some
choice-function pick. The algorithm uses a subprocedure that returns a projection of the (in)equality system
S� w.r.t. the set of variables Y � b VAR�S��. Our framework uses PROJECT from Algorithm 9 for this, but is
not restricted to use this method; SOLVE can be combined with any other method that calculates a projection in
PRSY ��S��.

Algorithm 12 Projecting the variables Y from an (in)equality system S by decomposing it. X � �X1, . . . ,Xk0�
is a list of disjoint subsets of VAR�S�, and P � �P1, . . . ,PK� is a list of partitions. Each Pl is a partition of�1, . . . , kl�1�, where ki � SPiS for i A 0 and k0 � SXS.

1: function SOLVE(System S, variables Y b VAR�S�, variable sets X, partitions P)
2: �S0, S0

t�� SEPARATEINEQS�S,X� P See Algorithm 10
3: for l � 1 to K do
4: �Sl, Slt�� SPLITTRANSVERSE�S0

t ,Pl� P See Algorithm 11
5: SK�1 � �SKt �
6: return SOLVE-SUB(SK�1

1 , �S0, . . . ,SK�1�,P, Y, S0
t)

7: function SOLVE-SUB(Sli, �S0, . . . ,SK�1�,P, Y, S0
t)

8: if i � 0 then
9: return PROJECT(Sli , Y) P AlgorithmÂ¨9

10: else
11: S� � Sli
12: for all j > P li do
13: Add SOLVE-SUB(Sl�1

j , �S0, . . . ,SK�1�,P, Y, S0
t) to S�

14: return PROJECT(S�, Zl�1) P AlgorithmÂ¨9

It should also be noted, that having the decomposition into smaller subsystems as above, it is also possible to
parallelize the projection of the subproblems (either instead of or on top of the parallelization of the redundancy
check). In this case, we would maintain a queue of systems, that is ready to be projected (and have not been so
far), which is initialized with all leafs in the constructed tree-structure. When a system is projected, a counter for
its parent is increased, and if the counter reaches the number of the node’s children, it (i.e. the system with its
projected child-systems) is put in the queue. Then the systems in the queue are solved independently by multiple
solvers in parallel.

23

4.5 Nested structure
The method described in Algorithm 12 first makes the separated system and thereafter splits the transverse
(in)equalities. It is however possible to also use these steps in a nested fashion; on a top-level, an (in)equality
system might be divided into a transverse part and a number of local parts that in themselves can be divided into
further local parts and a transverse part, and so on. See Figure 8. In such a case, the presented algorithms are of
course modified accordingly.

Figure 8: The inequality system in the figure can be divided into a transverse part and two local parts, namely the
system enclosed within the red square and the system enclosed within the blue square. Each of the two subsystems
can in themselves be solved using a decomposition into a transverse part and local parts.

We notice that it is up to the solver of the problem to identify the various local parts to best make use of the
structure of the given problem. However, it might be possible, also at a syntactical level, to identify potential
useful partitions of the (in)equalities. This identification process is, though, left to future research.

5 Stowage capacity case study

5.1 Stowage model
In this section we present the stowage model that is the point of origin for our projected capacity model. In other
words, this model describes the (in)equality system which we want to project. The model is adapted from the PhD
thesis of Delgado [Del13]; other models for stowage planning using actual vessel profiles can be found in e.g.
[Pac12], [PDJB11] and [PDOJB12]. We will not go into details of the model in this report, but will only present
the essentials; the reader is referred to [Del13] for further details.

Description

As shown in Figure 9a, the cargo space of a container vessel is divided into sections called bays that each are
divided into a grid by stacks and tiers (Figure 9b). Each stack and tier constitute a cell that consists of two slots.

The containers transported on a vessel usually have a standard size that fits the cells and slots; the containers
are normally (ISO standard) 8� wide, 8�6�� high and 20�, 40� or 45� long, though we do not consider the latter
in this report. Accordingly, a cell can hold either two 20� containers (one in each slot) or one 40� container
(Figure 9c). Further, some containers are refrigerated (reefers), and must be stowed at a power plug. The corners
of the containers are constructed such that containers can be stacked, though 20� containers cannot be stacked on
top of 40� containers due to the lack of corner supports in the middle of 40� containers (see Figure 9c).

The capacity of a container vessel is measured in TEU (Twenty-foot Equivalent Units), i.e. a standard 20�
container as described above takes up one TEU, while a 40� container takes up two TEU. Each stack has a height
and weight limit. Separate total weight limits for 20� and 40� containers exist, since only 20� containers rest on
the middle support sockets of the stack, while the end sockets hold weight of both 20� and 40� containers (see
Figure 9c).

Though containers physically are placed in specific slots, the stowage models considered here are themselves
abstractions called master plans that specify how many containers of each type should be stowed in each subsection
of each bay, referred to as a location. These locations emerge by dividing the bays vertically into sections on deck

24

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Bays

Stations

Frames
(a)

Stacks

1 22

T
ie

rs 3 44

Cell

Location

Fore

Aft

(b)

Reefer20 20

Reefer40

40

Stack
Fore Aft

(c)

Figure 9: (a) The arrangement of bays in a small container vessel. (b) A bay divided into cells given by stacks
and tiers. The cells are grouped into four locations. (c) A side view of a stack of containers with power plugs for
reefer containers at bottom slots. Adapted from [Del13].

and below deck, respectively, and horizontally into a center section and symmetric side-sections, respectively; see
Figure 9b which shows a bay divided into four location indicated by their number. The type of containers is here
specified by the length, reefer-property and a weight class. The capacities for stacks translate to capacities for
locations.

Besides the location-based capacity constraints, global hydrostatic constraints ensure the stability of the vessel.
Stress forces arise as a result of gravitation acting downwards on the vessel and buoyancy acting upwards. The
gravity forces are divided into three components: the light ship (i.e, the vessel mass without cargo and ballast
water), cargo, and ballast water. Buoyancy forces are due to the vessel’s displacement of water and hence depends
on the varying (and irregular) shape of the hull, which is given at a set of reference points called stations (see
Figure 9a). At these stations, the area submerged in water can be approximated by linear functions of the vessel’s
longitudinal center of gravity (lcg), and from this an approximation of the buoyancy force of the vessel between
two consecutive stations can be calculated. 8

There are three major stress forces: shear force, bending moment, and torsion moment. Limits on these stress
forces are given for a set of points along the vessel called frames (see Figure 9a). In this work we only consider
the limits on shear forces.

Sets, variables, constants

To formally describe the stacking and stability constraints of the considered stowage models, we use the sets,
variables and constants summarized in Table 1, Table 2 and Table 3, respectively. Regarding the variables, we
note that even though xl,τ is a number of containers and hence a natural number, we model it as a reel number to
ensure that the resulting model is an LP. Due to the large number of containers that can be stowed in each location,
this approximation is sufficiently accurate in practice.

8A more accurate buoyancy model also takes the displacement of the vessel into account.

25

Sets
L Set of locations.
F Set of frames.
F f, F a b F Sets of frames fore and aft where shear force limits

must hold.
S,S� � �s1, . . . , sS� Number of stations and (ordered) set of stations.
T Set of types of containers.
T 20, T 40, T R, T 20R, T 40R b T Set of types that are 20� long, 40� long, reefers, 20�

reefers, and 40� reefers, respectively.
BT Set of ballast tanks.

Table 1: Sets used in the considered stowage models.

Decision variables
xl,τ > R�

0 Number of containers of each type τ > T to be stowed at each
location l > L.

xb > R�

0 The weight of each ballast tank b > BT .

Auxilliary variables
wl > R�

0 The weight of all containers stowed at each location l > L.
xτ > R�

0 The total number of containers of each type τ > T .
sf f > R The shear force at each frame f > F .
lcg > R The longitudinal center of gravity.
bfs > R The buoyancy force at each section between station s > S���sS�

and the next station.
sf c,ef , sf bt,ef , sf bc,ef > R The contribution to the shear force for/aft (e > �f,a�) each

frame f > F from containers (c)/ballast tanks (bt)/buoyancy
(bc)

Table 2: Variables used in the considered stowage models.

Constants
Cap20l , Cap40l , CapTEUl , CapRSl ,
CapRCl , CapW20l , CapW40l

The capacity for each location l > L, w.r.t. 20� containers,
40� container, TEU, reefer slots, reefer cells, weight of
20� containers, and weight of 40� containers, respectively.

Wτ The weight of a type of container τ > T .
Blcg
s , BC

s Coefficients for the linearization of the submerged area at
each station s > S�.

Ds The distance between s > S� � �sS� and the next station.
W f
f , W a

f The constant weight of the vessel fore/aft each frame f >

F (light ship)
P ef,l, P

e
f,b, P

e
f,s > �0,1� The fraction of each location l > L/ballast tank b >

BT /section between s > S� � �sS� and the next station
that lies fore/aft (e > �f,a�) each frame f > F .

UB�lcg�, lb�lcg�,
UB�sf f�, lb�sf f�,
UB�xb�, UB�WBT�,
lb�WBT�

The upper and lower bounds for the lcg, shear force at
each frame f > F , the weight for each ballast tank b > BT
(upper bound only), plus the weight of ballast tanks in
total, respectively.

Table 3: Constants used in the considered stowage models

26

Constraints

Location-based capacity constraints Firstly, we have constraints that ensure that for each location of the vessel,
the stowed containers are within the allowed capacities w.r.t. the number of 20� containers, 40� containers, TEUs,
and the weight of the 20� and 40� containers, respectively. These constraint are modeled in the inequalities (19)-
(23) below. Likewise, we have a constraint, (24), that ensures that the weight of a location is within limits, taken the
different distribution of the weight of 40� containers, respectively 20� containers, within a slot into consideration;
the weight of a 40� container is distributed on the four outer corner places of a slot while the weight of 20�
containers also rest on the inner corners of the slot. Lastly, (25) and (26) ensure that each reefer container can be
refrigerated, and that the total number of cells taken up by the reefer containers are within capacity, respectively.

¦l > L � Q
τ>T 20

xl,τ B Cap20l (19)

¦l > L � Q
τ>T 40

2 � xl,τ B Cap40l (20)

¦l > L � Q
τ>T 20

xl,τ � 2 � Q
τ>T 40

xl,τ B CapTEUl (21)

¦l > L � Q
τ>T 20

Wτ � xl,τ B CapW20l (22)

¦l > L � Q
τ>T 40

Wτ � xl,τ B CapW40l (23)

¦l > L � 0.5 � Q
τ>T 20

Wτ � xl,τ � Q
τ>T 40

Wτ � xl,τ B CapW40l (24)

¦l > L � Q
τ>T R

xl,τ B CapRSl (25)

¦l > L � Q
τ>T 20R

0.5 � xl,τ � Q
τ>T 40R

xl,τ B CapRCl (26)

Defined variables and bounds The constraint in (27) defines the variables, xτ , that specifies how many con-
tainers of a specific type τ is stowed on the vessel. These are the variables that we want the projected (in)equality
system to be expressed in.

¦τ > T � xτ �Q
l>L

xl,τ (27)

(28) below defines the total weight of the containers stowed in each location, since this number is used in further
calculations of the hydrostatic constraints (see further below).

¦l > L � wl � Q
τ>T

Wτ � xl,τ (28)

We also ensure that the number of containers placed at each location of each type as well as the amount of ballast
in the ballast tanks is positive. For the ballast tanks, we also require that each tank’s content is within limits, as
well as the total content. These constraints are given in (30) and (31) below.

¦l > L, τ > T � 0 B xl,τ . (29)
¦b > BT � 0 B xb B UB�xb� (30)

lb�WBT� B Q
b>BT

xb B UB�WBT� (31)

Hydrostatic constraints At each station, the submerged area of the cross-section has been linearized as a func-
tion of the lcg, and the buoyancy force for each section between consecutive stations are calculated as the average
of the two areas times the distance between the two stations (32). Instead of calculating the vessel’s lcg, we only
require it to be within a given interval (33).

The shear forces must be within limits for a set of fore (F f) and aft (F a) frames. The shear force for a fore
frame is the sum of resulting forces acting from the frame towards the stern, while the shear force for an aft frame
is the sum of resulting forces acting from the frame towards the bow of the vessel, see (34). For each of the frames,
we then require these shear forces to be within limits (35).

27

¦si > S
�
� �sS� � bfsi �

1
2
�Dsi � �BC

si
� lcg �Blcg

si
�BC

si�1 � lcg �Blcg
si�1� (32)

lb�lcg� B lcg B UB�lcg� (33)

¦e > �f,a�, f > F e � sf f �W e
f �Q

l>L

wl � P ef,l � Q
b>BT

xb � P
e
f,b �Q
si>S���sS�

bfsi � P
e
f,si

(34)

¦f > F � lb�sf f� B sf f B UB�sf f� (35)

5.2 Experimental results

To do a nested decomposition (see section 4.5), we will, though, divide the constraints in (34) in a part coming
from the containers, ballast tanks and bouyancy, respectively, using auxiliary variables. Thus (34) is replaced with
(36)-(39) below.

¦e > �f,a�, f > F e � sf c,ef �Q
l>L

wl � P ef,l (36)

¦e > �f,a�, f > F e � sf bt,ef � Q
b>BT

xb � P
e
f,b (37)

¦e > �f,a�, f > F e � sf bc,ef � Q
si>S���sS�

bfsi
� P ef,si

(38)

¦e > �f,a�, f > F e
� sf f �W e

f � sf c,ef � sf bt,ef � sf bc,ef (39)

We have tested our methods on three different models, each including a different number of the constraints
presented in the previous section and above. In all cases, we wanted a model capturing all the dependencies
between the variables xτ , and only those. Hence we project the variables VAR�S�� � xτ S τ > T � where S is the
system consisting of the (in)equalities corresponding to the constraints of the model.

We have used data from our industrial partner, Maersk, from a vessel with a capacity of 15.500 TEU, 91
locations, 27 ballast tanks and 33 stations. There are 25 frame points, however, we have only used one fore and
one aft (in the two models considering hydrostatics). In all models, we considered 12 types, T � �20�,40�� ��6t,21t,27t� � �R,NR�, that are defined according to the length, the weight class and the reefer property of the
containers.

In the two tables below (Table 4 and Table 5) we show which (in)equalities are present in the 3 (in)equality
systems S1, S2 and S3 that have been tested, and we state the size of each model given in number of (in)equalities,
number of variables and the two numbers multiplied. Similarly we present the size of the projected (in)equality
systems together with the approximate time taken to obtain those projections.

The (in)equality system S1 includes 3 capacity constraints per location and shear force calculations at 2 frame
points; S2 includes all capacity constraints for each location but no calculations of shear forces. S3 includes 6
capacity constraints per location and shear force calculations at the two frames.

(In)eq. system Constraints included
S1 (21), (24), (26), (27), (28), (29), (30), (31), (32), (33), (35), (36),

(37), (38), (39)
S2 (19), (20), (21), (22), (23), (24), (25), (26), (27), (28), (29)
S3 (19), (20), (21), (24), (25), (26), (27), (28), (29), (30), (31), (32),

(33), (35), (36), (37), (38), (39)

Table 4: Constraints included in test systems.

The tests have been done on a laptop with an Intel® Core™ i7-4600U-processor with a frequency of 2.10-3.3
GHz, 8GB RAM, and with 2 cores and 4 threads. The computer has also been used to perform other tasks while
doing the projection, and 3 threads were used to run the parallel redundancy checks. The time used to make the
projection is therefore not accurate, but still gives an indication of the running time (especially when these are
compared across the test results).

28

(In)equality App. time Size of system Size of projected system
system #(in)eqs #vars #ineqs �#vars #(in)eqs #vars #ineqs �#vars
S1 8 m 438 1293 566,334 26 12 312
S2 18.5 h 831 1195 993,045 42 12 504
S3 92 h 724 1263 936,132 106 12 1272

Table 5: Sizes of original and projected systems.

For comparison, the system S1 was attempted projected without decomposition, but otherwise with the same
settings. After approximately 6.5 hours the system ran out of memory with 638 variables left to project.

In all three test cases, the system consisting of the (in)equalities using xl,τ and wl were set aside; this is the
system corresponding to the constraints (19)-(29) (for S2) plus (36) (for S1 and S3). Then these systems were
decomposed according to the locations, and the variables xl,τ and wl were eliminated, leaving a system over xτ
(for S1), or xτ and sf c,ef (for S1 and S3). The decomposition was done such that Xi � � xl,τ S τ > T, l > P 0

i � 8
� wl S l > P 0

i � for each 1 B i B 45, where

�P 0
1 , P

0
2 , . . . , P

0
45� ���0,1,2�,�3,4�,�5,6�,�7,8�,�9,10�,�11,12�,�13,14�,�15,16�,�17,18�,

�19,20�,�21,22�,�23,24�,�25,26�,�27,28�,�29,30�,�31,32�,�33,34�,
�35,36�,�37,38�,�39,40�,�41,42�,�43,44�,�45,46�,�47,48�,�49,50�,
�51,52�,�53,54�,�55,56�,�57,58�,�59,60�,�61,62�,�63,64�,�65,66�,
�67,68�,�69,70�,�71,72�,�73,74�,�75,76�,�77,78�,�79,80�,�81,82�,
�83,84�,�85,86�,�87,88�,�89,90�,�91��.

For S1 and S3, the list of partitions P was P � �P1,P2,P3,P4,P5�, where

P1
� ��0,1�,�2,3�,�4,5�,�6,7�,�8,9�,�10,11�,�12,13�,�14,15�,�16,17�,
�18,19�,�20,21�,�22,23�,�24,25�,�26,27�,�28,29�,�30,31�,�32,33�,
�34,35�,�36,37�,�38,39�,�40,41�,�42,43�,�44,45��,

P2
� ��0,1�,�2,3�,�4,5�,�6,7�,�8,9�,�10,11�,�12,13�,�14,15�,�16,17�,
�18,19�,�20,21�,�22��,

P3
� ��0,1�,�2,3�,�4,5�,�6,7�,�8,9�,�10,11��,

P4
� ��0,1�,�2,3�,�4,5��,

P5
� ��0�,�1,2��.

For S2, the partitions where P� � �P�1,P�2,P�3,P�4,P�5�, where

P�1 � P�1,
P�2 � ��0,1�,�2,3�,�4,5�,�6,16�,�8,9�,�10,18�,�12,13�,�14,15�,�7,17�,�11,19�,

�20,21�,�22��,
P�3 � ��0,2�,�1,3�,�4,6�,�5,7�,�8,10�,�9,11��,
P�4 � ��0,1�,�2,4�,�3,5��,
P�5 � P5.

The reason for having P� like this (and not just “numerical”) was to “pair” partitions according to the size
of the produced (sub)projections such that some of the smaller projections were paired with some of the larger
projection. The reason that some of the (sub)projections were smaller is partly that some of the locations have
no reefer capacity, so xl,τ for such a location and a τ that is a reefer type is quickly set to 0, which makes the
projection smaller.

For S2, making the above projection resulted in the required system expressed only in the xτ -variables.
For both S1 and S3 we projected yet two more subsystems; the subsystem consisting of the (in)equalities

relating to buoyancy ((32), (33) and (38)) were projected w.r.t. lcg and bfs (leaving only the sf bc,ff and sf bc,af

29

variables), while the subsystem relating to ballast tanks ((30), (31) and (37)) were projected w.r.t. xb (leaving
the sf bt,ff and sf bt,af variables). For both S1 and S3, the three projected subsystems were then joined together
with the (in)equalities (35) and (39), relating to the shear force. In this final system, we then eliminated the sf c,ef ,
sf bt,ef , sf bc,ef , and the sf f -variables, which resulted in a system over the xτ -variables as required.

To give the reader an idea of the how the number of (in)equalities and variables, respectively progress, Fig-
ure 10, Figure 11 and Figure 12 show the evolution of these numbers when projecting the mentioned final sys-
tem stemming from S3, which is the system producing the largest intermediary systems. Each “step” in these
graphs corresponds to either the preprocessing or ”clean-up” (as a whole), Gauss-elimination of one variable, FM-
elimination of one variable, or a complete redundancy removal of the system. The first part where the number of
(in)equalities is reasonable stable (when seen in this scale) corresponds to the preprocessing and Gauss-elimination
part. This is followed by repeated steps of FM-elimination (the “peaks” in the number of (in)equalities), clean-up
(the “flat” part after the peaks) and redundancy removal (the “valleys”).

We note that S3 is the most time-consuming system to project of the three, and the final system as shown in
Figure 12 is by far the system (of all the subsystems that were projected) that produced the biggest intermediary
systems.

5.3 Implementation notes

In the following we will give a few remarks regarding the specifics of the implementation.
The program was implemented in Java, and we use rationals for the coefficients and right-hand-sides. In the

implementation, we have used a list, not a set, for representing the (in)equalities in a system. Thus, at a given point,
the (in)equality system S might contain two (in)equalities c and c� for which co�c� � co�c�� and rhs�c� � rhs�c��.
However, either c or c� will be removed in the preprocessing/clean up step (when removing linearly dependent
(in)equalities), and this does not influence the correctness of the algorithm(s). We also normalize the (in)equalities
in the inequality system such that the smallest absolute value of the coefficients is 1. This also makes it easier to
detect linear dependencies.

ε in Section 4.1.1 is set to 0.01, ε� � 0.000001, and K � 1014. The optimization software CPLEX from IBM
was used as lp-solver.

We note that because we use the almost redundant criteria when doing (sequential) redundancy, the system S�

returned by REMOVEREDUNDANCY in line 14 of Algorithm 9 is no longer completely identical to projx�S�; S�

will most likely be an overapproximation of the projection. However, as previously mentioned, the parameters
of a problem – and this indeed holds for the particular problem we have considered – are not necessarily very
accurate, and small discrepancies between the returned projection and the actual projection is acceptable. It still
remains to be shown that the overapproximation is not “too big” according to a given criterion.

Finally, we want to point out here, that the implemented program is non-deterministic due to a number of fac-
tors.

Firstly, the almost redundant-criteria for removing inequalities in the sequential redundancy removal means
that the order in which the inequalities are checked, matters. For two runs (on the same input system) to result
in the exact same projection, the variables must be projected in the same order, and at each variable elimination,
the produced inequalities must be added in the same order (or checked for redundancy in the same order), and the
redundancy check using CPLEX must result in the same yes/no answer (and κ-value).

Making use of parallel redundancy check means that when an inequality from a system is checked for redun-
dancy in two different runs, another inequality might have been deemed redundant by another checker and hence
have been removed in one run, while it is not in the other run (because the checker finished later). This can in-
fluence how long the check of the current inequality takes and influence the κ-value, so this effect can propagate.
In the end, this might cause the set of removed (in)equalities to vary in the two runs altogether (because some
inequalities in reality are redundant but cannot be determined to be so).

Likewise, we make use of an in-build mechanism in Java for parallelism, namely streams. These are used for
example when using the heuristic for finding out which variable should be removed. Again, this can of course be
avoided.

In conclusion, with careful ordering of variables e.t.c., settings of parameters for CPLEX and avoidance of
parallelism, non-determinism could possibly be avoided, but will most likely also be less efficient.

30

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

#V
ar

ia
bl

es

#(
In

)e
qu

al
iti

es

Steps in projection

(In)equalities Variables

Figure 10: Projection of the final system stemming from S1.

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

#V
ar

ia
bl

es

#(
in

)e
qu

al
iti

es

Steps in projection

(In)equalities Variables

Figure 11: Projection of the final system stemming from S2.

0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000

160000

#V
ar

ia
bl

es

#(
In

)e
qu

al
iti

es

Steps in projection

(In)equalities Variables

Figure 12: Projection of the final system stemming from S3.

31

6 Related work and Discussion
Original method and additions The presented, basic method for eliminating variables from a system of linear
inequalities was provided by Fourier in the 1820s [Fou27], while Motzkin later reintroduced the method in his
Ph.D. thesis [Mot36]. Černikov later augmented Fourier’s algorithm with computational simple rules, which were
later rediscovered by Kohler [Koh67], to both prevent additions of (some) redundant inequalities and remove
others after construction [Č63], and used together with these rules, the presented method is also referred to as
the Fourier-Černikov method. These criteria-based rules rely on keeping track of an index set for each inequality
c > S, which contains (the index of) the inequalities from the original system that during the procedure have been
combined to obtain c. However, though the proposed rules improve the method, they are incomplete, i.e. they do
not detect or remove all redundancies (see e.g. [Imb93, LS08]).

The method has subsequently been thoroughly studied, e.g. by Kohler [Koh67], Duffin [Duf74] and Imbert
[Imb90, Imb93], and several additional rules were proposed in these papers to avoid the addition of redundant
inequalities. Improving the run time of the procedure in various ways has also been studied, for example in
[HLL92] and in [BZ15], where a faster method is proposed to check the slower of the two Černikov criteria.

However, as with the rules of Černikov and Kohler, the rules suggested by Duffin and Imbert do not identify
and remove all redundant inequalities from an inequality system and it is not clear to which extend applying these
methods are compatible with removing every redundant inequality by solving a linear programming problem; the
Černikoc-rules are sound, but combining them with other sound redundancy removals (even such as removing
duplicates) are in general unsound ([JMSY93, HLL92, Imb93, Fou15]). [Imb93] further states that he does not
know “a method which suppresses all redundancies, compatible with one of [the] Fourier elimination methods”.
However, strictly redundant inequalities, whose corresponding hyperplane does not intersect the feasible area
of the system can be removed without compromising the soundness of the procedure with the additional rules
[JMSY92].

Furthermore, these rules for avoiding additions of unnecessary inequalities will not be correct when our “al-
most redundant”-criteria is used for removing inequalities, and therefore we have chosen not to use the mentioned
rules in our implementation. However, it would be possible to use them, without the added, full redundancy check,
until the system e.g. reaches a certain size, at which it will then be fully reduced and the “index sets” reset, such
that each inequality in this system is considered original.

Redundancy removal Separately, particularly within linear programming, work has also been done in the area
of classifying and removing redundant inequalities in a inequality system as well as finding implicit equalities,
e.g. [Tel83, LHM93, KLTZ83, AA95, Mat73] to name a few. Many of these (e.g. [Tel83] and the majority of the
methods presented in [KLTZ83]) are to be performed within the simplex procedure (used to optimize an LP) or
use the objective function and/or the optimal extreme point for the LP, and are hence not applicable for us. On the
other hand, we have used cheap redundancy-identifications e.g. described in [AA95], [BMW75] and [Mar03] in
our preprocessing and clean-up method, as well as the removal of linearly dependent inequalities from [LHM93].

Although it would be an advantage to be able to identify implicit equalities (inequalities that must hold as
equalities in the feasible area) such that they can be used in Gauss-elimination, a prior implementation suggested
that not much was gained when trying to identify them, while the (naïve) implementation was too time consuming.
However, it is not impossible, that our implementation could benefit from an implementation of more sophisticated
methods for redundancy detection and removal instead of or in addition to (prior to) the reasonable straight-
forward method applied here.

Methods for projection not based on Fourier-Motzkin-elimination Other methods exist for computing the
projection of a feasible area of an (in)equality system, that are not based on the method by Fourier and Motzkin.

For example, in [HLL92], the authors describe a method (based on a method from [Las90]) that they recom-
mend for dense systems, called the extreme point method. The method works by finding the extreme points of the
polytope P defined by the convex combinations of constraints in S that eliminate the variables in Y . Since the
method finds extreme points and hence inequalities in the projection space incrementally, the method can be used
to approximate the projection. The method is consequently used as a supplement to Fourier-Motzkin-elimination,
Gauss elimination and full redundancy removal in [SK05], when the system being projected becomes too dense
and an approximation is required.

Huynh, Lassez and Lassez [HLL92] further describe a method (based on [LL90]), the convex hull method,
in which the projection of an inequality system S is computed by successive refinements of an initial approxi-

32

mation of the projection. According to the authors, the complexity of their algorithm “depends essentially on the
dimension of the projection of the output not the size of the input” [HLL92], and could therefore be an interesting
alternative to Fourier-Motzkin-elimination in a case like the one we consider.

Another example is the method introduced in [JKM04], called equality set projection, which computes all
facets of the projection by first finding a random facet and then iteratively computing all adjacent facets (without
revisiting them) using a face-lattice. This method is recommended by the authors for polytopes with a low facet
count and a high vertex count.

Yet another approach to projection is presented in the work by [JKM08] and [Fou15]. This work is based on
parametric linear programming and the possibility to formulate a projection problem as a parametric programming
problem. Hence techniques for finding the solution to the latter (e.g. a “parametric” version of simplex) can be
used to find the projection.

It is an interesting direction for future research to see, if these methods are better than the currently used
method for solving the problem described in this report, or whether they can be combined advantageously with
our method. The described decomposition from Section 4.3 could for example still be used while each of the
subproblems could be projected using any method for projection.

Fourier-Motzkin-based frameworks for projection In [SK05] Simon and King combine Fourier-Motzkin-
elimination, Gauss-elimination, removal of linearly dependent inequalities and complete redundancy removal in
a similar fashion as we have done, to project sparse systems, and they use the extreme point method of Huynh et
al. [HLL92] to make approximations of the projection when this is necessary. Their method is implemented as
part of an argument-size analyzer for logic programs and tested on a variety of these. Their elimination procedure
is therefore not applied once, but instead multiple times during an analysis, and their method and results are
therefore hard to compare to ours. The (in)equality systems operated on are rather sparse and quite small, while
their objective is to do the analysis more efficiently (faster) than other methods (when using the polyhedral abstract
domain for program analysis).

Lukatskii and Shapot [LS08, SL12] describe and implement a projection method using Fourier-Motzkin-
elimination augmented with Černikov’s rules. They further use a techniques for full redundancy removal ex-
amining the solution matrix for a basic solution. Further they present and apply a method for “additional matrix
clean up” where some almost redundant inequalities are removed. Their method for this is a little more elaborate
than ours and involves a successive increase of the allowable deviation (corresponding to our ε) and a permissible
maximal ratio between the number of inequalities in the current system compared to the original system. They
perform tests on a prototype implementation, where the sized of the test ranges between 81 inequalities and 40
variables to 201 inequalities and 100 variables, i.e. the systems they project are much smaller than the ones we
have considered; granted, their run time is of course also smaller than ours.

It is shown in [SL12] that if the polyhedron is solid, then the projection algorithm is stable, while for a singular
polyhedron, small perturbations can lead to significant changes in the projection. However, no precise definitions
of solid or singular polyhedra or of a stable algorithm are given, and it is not apparent which elements (Černikov
rules, redundancy removal, additional matrix clean-up), the algorithm referred to in the proposition, contains.
Given the examples shown in e.g. [JMSY93], that Černikov’s rules together with other forms of redundancy
removals are unsound in general, and since Lukatskii and Shapot exactly augment the Fourier-Černikov method
with a procedure for removing all redundant inequalities and further use “additional matrix clean-up” it is unclear
to the authors of this report whether their presented method works in general, especially since this question is not
raised or relevant references mentioned.

7 Conclusion

In this report we have presented a framework for projecting large, block structured inequality systems. The
method incorporates procedures for preprocessing (including removal of linearly dependent inequalities), Gauss-
elimination, Fourier-Motzkin-elimination, parallel, full redundancy removal and adjustment of the edges of the
projecting (i.e. an approximation) using sequential redundancy removal of “almost redundant” inequalities. Fur-
ther, the method uses a novel decomposition of the input problem to exploit its block structure. This decomposition
method is usable not only together with Fourier-Motzkin elimination but with any other projection method; just
replace PROJECT�Sli, Y � in line 9 and line 14 of the SOLVE-algorithm in Algorithm 12 with any other method
producing a projection of Sli w.r.t. Y .

33

Further, we have applied the presented method to a problem within the domain of liner shipping as we have
obtained capacity models of manageable size from much larger stowage models. The obtained models are small
and use approximately 100 times fewer variables, yet provide a better representation of the inter-dependencies
between the number of stowed containers of different types than the very simple capacity models that are currently
used.

The results indicate that even though Fourier-Motzkin elimination has a bad time and space complexity, which
often deems it unfit for practical use, it is possible to amend it to obtain projections of large, realistic size problems.
The execution time for the test cases is still high and impractical for repeated use in online algorithm, but for the
purpose of projecting a model (inequality system) once to obtain another, smaller model, the method seems viable.

7.1 Future work
As already mentioned in Chapter 6 there are several interesting directions for future work, including

• using better methods for finding and removing redundant inequalities;

• using criteria such as Černikov’s (if compatible) to avoid the addition of some of the redundant inequalities;

• using other methods for approximating the projection, while naturally also evaluating if these are actually
better;

• possibly find and use a better evaluation of when an approximation or adjustment of the projection is nec-
essary.

Since our decomposition-approach also works for other projection methods, it is also evident to investigate
whether it can be an advantage to combine this decomposition with other, potentially more efficient methods for
projection.

A particular approach that could be interesting to pursue in our case is to add Černikov rules to the Fourier-
Motzkin-procedure, and only look for (and remove) strictly redundant inequalities in parallel after each elimina-
tion. This should be done for each subproblem, while a full redundancy removal and/or approximation of the
projection should be done when subproblems are combined at the “next level” of the decomposition, at which
point the index-set would also be reset. Instead of using the sequential redundancy check to approximate the
projection by removing almost redundant inequalities, it would here be possible to implement another method,
potentially the extreme point method or the convex hull method, both described in [HLL92]. The approximation
approach in [SL12] could also be considered, particularly using an increasing ε-value and a measure relatiing to
the size of the original problem to determine when approximations should be done and to what extend.

Other interesting topics for further research includes developing better heuristics for choosing the order of the
variables to be substituted and deleted, plus automatic detection of useful decompositions of a given problem.

References
[AA95] Erling D. Andersen and Knud D. Andersen. Presolving in linear programming. Mathematical Pro-

gramming, 71(2):221–245, 1995.

[BB92] R.C Botter and M. A. Brinati. Stowage container planning: A model for getting an optimal solution.
In Proceedings of the IFIP TC5/WG5.6 Seventh International Conference on Computer Applications
in the Automation of Shipyard Operation and Ship Design, VII, pages 217–229, Amsterdam, The
Netherlands, 1992. North-Holland Publishing Co.

[BKM05] Florence Benoy, Andy King, and Fred Mesnard. Computing convex hulls with a linear solver. Theory
and Practice of Logic Programming, 5(1-2):259–271, 2005.

[BMW75] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems prior
to applying the simplex algorithm. Mathematical programming, 8(1):54–83, 1975.

[BZ15] S.I. Bastrakov and N. Yu. Zolotykh. Fast method for verifying chernikov rules in fourier-motzkin
elimination. Computational Mathematics and Mathematical Physics, 55(1):160–167, 2015.

34

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables of
a program. In Proceedings of the 5th ACM symposium on Principles of Programming Languages,
pages 84–96. ACM, 1978.

[Del13] Alberto Delgado. Models and Algorithms for Container Vessel Stowage Optimization. PhD thesis,
IT University of Copenhagen, 2013.

[Duf74] Richard J. Duffin. On Fourier’s analysis of linear inequality systems, pages 71–95. Springer, 1974.

[FC08] Cheng-Min Feng and Chia-Hui Chang. Optimal slot allocation in intra-asia service for liner shipping
companies. Maritime Economics & Logistics, 10(3):295–309, 2008.

[Fou27] J. B. J. Fourier. Reported in ‘Analyse des travaux de l’Académie Royale des Sciences, pendant
l’année 1824, Partie mathématique’. In Histoire de l’Académie Royale des Sciences de l’Institut de
France 7, pages xlvii–lv. 1827. Partial English translation in: D. A. Kohler, ‘Translation of a Report
by Fourier on his work on Linear Inequalities’, Opsearch 10, pages 38–42 (1973).

[Fou15] Alexis Fouilhé. Revisiting the abstract domain of polyhedra: constraints-only representation and
formal proof. PhD thesis, Université Grenoble Alpes, 2015.

[HLL92] Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical issues on the projection of polyhe-
dral sets. Annals of mathematics and artificial intelligence, 6(4):295–315, 1992.

[Imb90] Jean-Louis Imbert. About redundant inequalities generated by Fourier’s algorithm. In P. Jorrand,
editor, In Proceedings of the Fourth International Conference on Artificial Intelligence (AIMSA’90),
pages 117–127, 1990.

[Imb93] Jean-Louis Imbert. Fourier’s elimination: Which to choose? In Proceedings of the First workshop
on Principles and Practice of Constraint Programming, pages 117––129, 1993.

[JKM04] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. Equality set projection: A new algorithm
for the projection of polytopes in halfspace representation. Technical report, Cambridge University
Engineering Dept, 2004.

[JKM08] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. On polyhedral projection and parametric
programming. Journal of Optimization Theory and Applications, 138(2):207–220, 2008.

[JMSY92] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H.C. Yap. Output in CLP. In In
Proceedings of the International Conference on Fifth Generation Computer Systems (FGCS), pages
987–995, 1992.

[JMSY93] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H.C. Yap. Projecting CLP(R) con-
straints. New Generation Computing, 11(3-4):449–469, 1993.

[KLTZ83] Mark H. Karwan, Vahid Lotfi, Jan Telgen, and Stanley Zionts. Redundancy in Mathematical Pro-
gramming. A State-of-the-Art Survey, volume 206 of Lecture Notes in Economics and Mathematical
Systems. Springer-Verlag Berlin Heidelberg, 1983.

[Koh67] David A. Kohler. Projections of convex polyhedral sets. Technical report, Operations Research
Center, College of Engineering, 1967.

[Las90] Jean-Louis Lassez. Querying constraints. In Proceedings of the ninth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 288–298. ACM, 1990.

[LHM93] Jean-Louis Lassez, Tien Huynh, and Ken McAloon. Simplification and elimination of redundant
linear arithmetic constraints. In Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic
Programming, pages 73–87. MIT Press, Cambridge, MA, USA, 1993.

[LL90] Catherine Lassez and Jean-Louis Lassez. Quantifier Elimination for Conjunctions of Linear Con-
straints Via a Convex Hull Algorithm. IBM Thomas J. Watson Research Division, 1990.

35

[LS08] Alexander M. Lukatskii and Demetrius V. Shapot. A constructive algorithm for folding large-scale
systems of linear inequalities. Computational Mathematics and Mathematical Physics, 48(7):1100–
1112, 2008.

[Mar03] Istvan Maros. Computational Techniques of the Simplex Method, volume 61 of International Series
in Operations Research & Management Science. Springer US, 2003.

[Mat73] Theodore H. Mattheiss. An algorithm for determining irrelevant constraints and all vertices in sys-
tems of linear inequalities. Operations Research, 21(1):247–260, 1973.

[Mon10] David Monniaux. Quantifier Elimination by Lazy Model Enumeration, pages 585–599. Springer
Berlin Heidelberg, 2010.

[Mot36] Theodore S. Motzkin. Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis, Universität
Zürich, 1936.

[Pac12] Dario Pacino. Fast Generation of Container Vessel Stowage Plans: using mixed integer programming
for optimal master planning and constraint based local search for slot planning. PhD thesis, IT
University of Copenhagen, 2012.

[PDJB11] Dario Pacino, Alberto Delgado, Rune M. Jensen, and Tom Bebbington. Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. International Joint Conference on
Artificial Intelligence. Proceedings, pages 286–301, 2011.

[PDOJB12] Dario Pacino, Alberto Delgado-Ortegon, Rune M. Jensen, and Tom Bebbington. An accurate model
for seaworthy container vessel stowage planning with ballast tanks. Lecture Notes in Computer
Science, 2012.

[SK05] Axel Simon and Andy King. Exploiting sparsity in polyhedral analysis. In Chris Hankin and Igor
Siveroni, editors, Proceedings of the 12th International Symposium in Static Analysis (SAS), pages
336–351. Springer Berlin Heidelberg, 2005.

[SL12] Demetrius V. Shapot and Alexander M. Lukatskii. Solution building for arbitrary system of linear
inequalities in an explicit form. American Journal of Computational Mathematics, 2(01):1, 2012.

[TBI07] Lloyd N. Trefenthen and David Bau III. Numerical Linear Algebra, chapter Lecture 12: Conditioning
and Condition number. Society for Industrial and Applied Mathematics (SIAM), 2007.

[Tel83] Jan Telgen. Identifying redundant constraints and implicit equalities in systems of linear constraints.
Management Science, 29(10):1209–1222, 1983.

[TT04] Shin-Chan Ting and Gwo-Hshiung Tzeng. An optimal containership slot allocation for liner shipping
revenue management. Maritime Policy & Management, 31(3):199–211, 2004.

[Č63] Sergei N. Černikov. Contraction of finite systems of linear inequalities (in Russian). Doklady
Akademiia Nauk SSSR, 152:1075–1078, 1963.

[Wil78] H. P. Williams. Model Building in Mathematical Programming. John Wiley & Sons, LTD, 1978.

[ZF13] Sebastian Zurheide and Kathrin Fischer. A revenue management slot allocation model for liner
shipping networks. Maritime Economics & Logistics, 15(4):523, 2013.

[Zie95] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate texts in mathematics. Springer,
New York, 1995.

36

Appendix
Lemma 1. Let S,S1, S2 ` IE be (in)equality systems over X and let Y bX .

1. Assume that var�S1� 9 var�S2� � g. Then

projY �feas�S1 8 S2�� � projY �feas�S1�� 9 projY �feas�S2��. (4)

2. Assume that var�S1� 9 Y � g. Then

projY �feas�S1 8 S2�� � feas��S1�X�Y � 9 projY �feas�S2��. (5)

3. LetX � b X be a super set ofX , i.e. X bX �, and letE be an (in)equality system such that projY �feas�S�� �
feas�E�. Then

projY �feas�SX��� � feas�EX��Y �.
Proof. We start by showing item 1. Thus assume that var�S1�9var�S2� � g. Order the variables such that x h y
for all x >X � Y and y > Y .

First assume that r > projY �feas�S1 8 S2��. Then there exists values for the variables in Y , rY , such that�r, rY � > feas�S1 8 S2�, i.e. for all c > S1 8 S2 it holds that �r, rY � > feas�c�. Hence �r, rY � > feas�S1�
and �r, rY � > feas�S2�, so r > projY �feas�S1�� and r > projY �feas�S2��. That is, r > projY �feas�S1�� 9
projY �feas�S2��.

On the other hand, let Y1 � Y 9 var�S1�, Y2 � Y 9 var�S2� and Y3 � Y � �Y1 8 Y2�, so that Y � Y18̇Y28̇Y3.
Order the variables such that x h y1, y1 h y2 and y2 h y3 for all x > X � Y , y1 > Y1, y2 > Y2 and y3 > Y3. Assume
that r > projY �feas�S1�� 9 projY �feas�S2��. Then r > projY �feas�S1�� and r > projY �feas�S2��. Hence there
exists values u1 and v1 for the variables in Y1, values u2 and v2 for the variables in Y2, and values u3 and v3 for
the variables in Y3 such that co�c� � �r,u1,u2,u3�bc rhs�c� for all c > S1, and co�c�� � �r,v1,v2,v3�bc� rhs�c��
for all c� > S2.

Now consider the vector �r,u1,v2,0�. Since co�x, c� � 0 for all x > Y2 8 Y3 and c > S1, we have that

co�c� � �r,u1,v2,0� � co�cX�Y � � r � co�cY1� � u1 � co�cY2� � v2 � co�cY3� � 0
� co�cX�Y � � r � co�cY1� � u1 � 0 � v2 � 0 � 0
� co�cX�Y � � r � co�cY1� � u1 � co�cY2� � u2 � co�cY3� � u3

� co�c� � �r,u1,u2,u3�bc rhs�c�
for all c > S1. Likewise

co�c�� � �r,u1,v2,0� � co�c�X�Y � � r � co�c�Y1� � u1 � co�c�Y2� � v2 � co�c�Y3� � 0
� co�c�X�Y � � r � 0 � u1 � co�c�Y2� � v2 � 0 � 0
� co�c�X�Y � � r � co�c�Y1� � v1 � co�c�Y2� � v2 � co�c�Y3� � v3

� co�c�� � �r,v1,v2,v3�bc� rhs�c��
for all c� > S2. That is, there exists an rY , namely �u1,v2,0�, such that �r, rY � > feas�S1 8 S2�, i.e. r >

projY �feas�S1 8 S2��.
This shows item 1 of the lemma.

Now we will show item 2. Thus assume that var�S1� 9 Y � g. Order the variables such that x h y for all
x >X � Y and y > Y .

First assume that r > feas��S1�X�Y � 9 projY �feas�S2��. Then it holds that co�c�X�Y � r bc rhs�c� for all
c > S1, and there exists an rY , denoting values for the variables in Y , such that �co�c�X�Y �,co�c�Y �� � �r, rY �bc�
rhs�c�� for all c� > S2. Since var�S1� 9 Y � g, we have that co�cY � � 0 for all c > S1, and hence co�cX�Y � � r �
co�cX�Y � � r � co�cY � � rY � �co�cX�Y �,co�cY �� � �r, rY �bc rhs�c� for all c > S1.

Thus rY is such that �co�cX�Y �,co�cY �� � �r, rY �bc rhs�c� for all c > S1 8 S2, i.e. there exists an rY such
that �r, rY � > feas�S1 8 S2�. That is, r > projY �feas�S1 8 S2��.

On the other hand, assume that r > projY �feas�S18S2��. Then there exists an rY such that �co�cX�Y �,co�cY ����r, rY �bc rhs�c� for all c > S18S2, so r > projY �feas�S2��. Let c > S1 be arbitrary. Then co�cY � � 0 and hence

37

co�cX�Y � � r � co�cX�Y � � r � co�cY � � rY � �co�cX�Y �,co�cY �� � �r, rY � bc rhs�c�, so r > feas�cX�Y �. I.e.
r > feas��S1�X�Y �. In conclusion we therefore have that r > feas��S1�X�Y � 9 projY �feas�S2��.

Combined, this shows that feas��S1�X�Y �9projY �feas�S2�� b projY �feas�S1 8S2�� and projY �feas�S1 8

S2�� b feas��S1�X�Y � 9 projY �feas�S2��, i.e. 2 in the lemma holds.

Finally we will show item 3. Thus assume that X b X � and projY �feas�S�� � feas�E�. We have that
X � � �X �

�X�8̇�X � Y �8̇Y , so order the variables in X such that x� h x h y for all x� > X �
�X,x > X � Y and

y > Y .
First assume that r � �rX��X , rX�Y � > feas�EX��Y �. Hence for all e > EX��Y it holds that r > feas�e�. Now

take arbitrary e� > E. For the extension e�X��Y > EX��Y we have that

co�e�X��Y � � r � co�e�X��X� � rX��X � co�e�X�Y � � rX�Y

� 0 � rX��X � co�e�X�Y � � rX�Y

� co�e�� � rX�Y .

Since r > feas�e�X��Y � andbe� � be�
X��Y

, we get that co�e�X��Y ��rbe� rhs�e�X��Y � � rhs�e��, so co�e���rX�Y be�

rhs�e��. Hence rX�Y > feas�e�� for all e� > E, so rX�Y > feas�E� � projY �feas�S�� by the assumptions.
Therefore there exists an rY such that �rX�Y , rY � > feas�S�.

Now let c > SX� be arbitrary. Then c � c�X� for a c� > S, and �rX��X , rX�Y , rY � applied to c is therefore

co�c� � �rX��X , rX�Y , rY � � co�cX��X� � rX��X � co�cX�Y � � rX�Y � co�cY � � rY
� 0 � rX��X � co�c�X�Y � � rX�Y � co�c�Y � � rY
� �co�c�X�Y �,co�c�Y �� � �rX�Y , rY �
� co�c�� � �rX�Y , rY �bc� rhs�c�� � rhs�c�

since �rX�Y , rY � > feas�S� and c� > S. Since bc� � bc, we therefore have that �rX��X , rX�Y , rY � > feas�c� for
all c > SX� , and hence �rX��X , rX�Y , rY � > feas�SX��, and �rX��X , rX�Y � > projY �feas�SX���.

On the other hand assume that r � �rX��X , rX�Y � > projY �feas�SX��� That means that there exists an rY
such that �rX��X , rX�Y , rY � > feas�SX��. Now take an arbitrary c� in S. Then �rX�Y , rY � applied to c� yields

co�c�� � �rX�Y , rY � � co�c�X�Y � � rX�Y � co�c�Y � � rY
� 0 � rX��X � co�c�X�Y � � rX�Y � co�c�Y � � rY
� co�c�X�� � �rX��X , rX�Y , rY �bc� rhs�c��

since c�X� > SX� , �rX��X , rX�Y , rY � > feas�SX��,bc�
X�

� bc� , and rhs�c�X�� � rhs�c��. Hence �rX��X , rX�Y , rY � >
feas�c�X��.

Thus, �rX�Y , rY � > feas�c�� for all c� > S, so �rX�Y , rY � > feas�S�. Hence rX�Y > projY �S� � feas�E�.
Now take arbitrary e > EX��Y , i.e. e � e�X��Y for an e� > E. Applying �rX��Y , rX�Y � to e then gives us

co�e� � �rX��X , rX�Y � � co�e�X��Y � � �rX��X , rX�Y �
� co�e�X��X� � rX��X � co�e�X�Y � � rX�Y

� 0 � rX��X � co�e�X�Y � � rX�Y

� co�e�� � rX�Y be rhs�e�
since e� > E, rX�Y > feas�E�, be� � be, and rhs�e�� � rhs�e�.

Hence �rX��X , rX�Y � > feas�e� for all e > EX��Y , i.e. �rX��X , rX�Y � > feas�EX��Y �.
This shows item 3.

Proposition 1. Let c and c� be given and assume that all variables in var��c, c��� are non-negative. If (11) hold
for an σ C 0, then (11) holds for σ� C 0 given below.

If there exists an x > var�c�� such that co�x, c�� @ 0 then

σ� � � min�m, rhs�c�
rhs�c��� if rhs�c�� A 0

m otherwise
, where m � min

x>var�c��.
co�x,c��@0

co�x, c�
co�x, c�� .

38

Otherwise, if co�x, c�� C 0 for all x > var�c�� and var�c�� x g, then

σ� � � max�m�, rhs�c�
rhs�c�� ,0� if rhs�c�� @ 0

max�m�,0� otherwise
, where m�

� max
x>var�c��.
co�x,c��A0

co�x, c�
co�x, c�� .

Otherwise σ� � � max� rhs�c�
rhs�c�� ,0� if rhs�c�� x 0

0 otherwise
.

Proof. Assume that σ satisfies (11). Then (11) implies that co�x,c�
co�x,c�� B σ for all x such that co�x, c�� A 0, and

σ B
co�x,c�
co�x,c�� for all x such that co�x, c�� @ 0. Likewise, σ B

rhs�c�
rhs�c�� if rhs�c�� A 0, and σ C

rhs�c�
rhs�c�� if rhs�c�� @ 0.

First we consider the case where � x S co�x, c� @ 0 � x g.
For all x for which co�x, c�� @ 0 we have that 0 B σ B

co�x,c�
co�x,c�� , thus m C 0. If rhs�c�� A 0 then 0 B σ B

rhs�c�
rhs�c�� ,

so σ� C 0 by definition.
Now take an arbitrary x > var�c� 8 var�c��. If co�x, c�� � 0 then it follows from (11) that co�x, c� B 0, i.e.

co�x, c� B σ� � co�x, c��. If co�x, c�� @ 0 then co�x,c�
co�x,c�� C σ

� by definition of σ�, so co�x, c� B σ� � co�x, c��. Finally,

if co�x, c�� A 0 then co�x,c�
co�x,c�� B σ�; otherwise co�x,c�

co�x,c�� A σ� � m �
co�y,c�
co�y,c�� for a y such that co�y, c�� @ 0, or

co�x,c�
co�x,c�� A σ� � rhs�c�

rhs�c�� and rhs�c�� A 0. But that means that either co�x,c�
co�x,c�� B σ B

co�y,c�
co�y,c�� @

co�x,c�
co�x,c�� , or co�x,c�

co�x,c�� B

σ B
rhs�c�
rhs�c�� @

co�x,c�
co�x,c�� , which are both contradictions. Therefore co�x,c�

co�x,c�� B σ
�, and hence co�x, c� B σ� � co�x, c��.

If rhs�c�� � 0 then from (11) it follows that rhs�c� C� 0, i.e. rhs�c� � 0 C σ� � rhs�c�� � 0. If rhs�c�� A 0 then
by definition of σ�, σ� B rhs�c�

rhs�c�� , so σ� �rhs�c�� B rhs�c�. Finally, if rhs�c�� @ 0 then we must have that rhs�c�
rhs�c�� B σ

�

and hence rhs�c� C σ� � rhs�c��. Otherwise rhs�c�
rhs�c�� A σ� � co�x,c�

co�x,c�� for an x such that co�x, c�� @ 0. Hence (11)

implies that rhs�c�
rhs�c�� B σ B

co�x,c�
co�x,c�� � σ

� @
rhs�c�
rhs�c�� , which is a contradiction.

We then consider the case where co�x, c� C 0 for all x > var�c�� x g.
By definition σ� C 0.
Take an arbitrary x > var�c� 8 var�c��. If co�x, c�� � 0 then co�x, c� B 0 � σ� � co�x, c��. If co�x, c�� x 0

then co�x, c�� A 0. By definition σ� C m�, i.e. σ� C co�y,c�
co�y,c�� for all y such that co�y, c�� A 0. Thus σ C

co�x,c�
co�x,c�� ,

and hence co�x�, c� B σ� � co�x, c��. If rhs�c�� � 0, then again rhs�c� C σ � rhs�c�� � 0 � σ� � rhs�c��. If
rhs�c�� @ 0 then by definition σ� C rhs�c�

rhs�c�� , i.e. σ� �rhs�c�� B rhs�c�. Finally, if rhs�c�� A 0, then we must have that

σ� � rhs�c�� B rhs�c�; otherwise σ� � rhs�c�� A rhs�c�, i.e. rhs�c�
rhs�c�� @ σ� � co�x,c�

co�x,c�� for an x such that co�x, c�� A 0,

or rhs�c�
rhs�c�� @ σ� � 0. In the former case we get that co�x,c�

co�x,c�� B σ B
rhs�c�
rhs�c�� @ σ� � co�x,c�

co�x,c�� , and in the latter case

0 B σ B
rhs�c�
rhs�c�� @ σ

� � 0, which are both contradictions.
In the case where var�c�� � g, then we have that σ� C 0 by definition. (11) implies that co�x, c� B 0 for all

x > var��c, c���, so co�x, c� B σ� � co�x, c�� � 0. If rhs�c�� � 0 then (11) implies that rhs�c� C 0 � σ� � rhs�c��.
If rhs�c� x 0 then either rhs�c�

rhs�c�� C 0 , or rhs�c�
rhs�c�� @ 0. In the former case we have by definition that σ� � rhs�c�� �

rhs�c�
rhs�c�� �rhs�c�� � rhs�c�. In the latter case, we must have that rhs�c�� B 0, since otherwise rhs�c�

rhs�c�� @ 0 B σ B
rhs�c�
rhs�c��

which is a contradiction. So rhs�c�� @ 0, which gives that rhs�c� A 0, and hence σ� � rhs�c�� B 0 @ rhs�c�.

Lemma 2.
projY �feas�S�� � projY 8Z0�feas�sep�S���.

Proof. Let X � VAR�S�. Order the variables such that x h y h z for all x >X � Y, y > Y and z > Z0.
First assume that r is a set of values for the variables in X � Y such that r > projY �feas�S��. This means

that there exists values for the variables in Y b X , u, such that the values �r,u� satisfy all (in)equalities c > S.
Hence Px>X�Y co�x, c� � rx �Py>X9Y co�y, c� � uy bc rhs�c� for all c > S, where rx is the value of x in r for all
x >X � Y and uy is the value of y in u for all y > Y .

Now define vz0
c,i

� Px>Xi�Y co�x, c� � rx �Py>Xi9Y co�y, c� � uy for all z0
c,i > Z

0. Let v be the vector of all
values in 81BiBk0� vz0

c,i
S c > St � in the order given by h.

Let c > S0
t 8�1BiBk0 S0

i � �S0
t�X8Z0 8�1BiBk0�S0

i �X8Z0 be arbitrary. We will then show that �r,u,v� satisfy
c, and hence r > projY 8Z0�feas�S0

t 8�1BiBk0 S0
i �� � projY 8Z0

�feas�S��.

39

If c > �S0
i �X8Z0 for an i, then by construction either c equals c�X8Z0 for a c� > S or c equals Def �z0

c�,i� for a
c� > St. In the former case, co�x, c� � co�x, c�� for all x > X , and co�x, c� � 0 for all x > Z0. �r,u,v� applied to
c is therefore

co�c� � �r,u,v� � Q
x>X�Y

co�x, c� � rx � Q
y>Y

co�y, c� � uy � Q
z>Z0

co�z, c� � vy
� Q
x>X�Y

co�x, c�� � rx � Q
y>Y

co�y, c�� � uy � Q
z>Z0

0 � vz

� Q
x>X�Y

co�x, c�� � rx � Q
y>Y

co�y, c�� � uy
� co�c�� � �r,u�bc� rhs�c��

since c� > S is satisfied by �r,u�. I.e. c is satisfied by �r,u,v� (since bc � bc� and rhs�c� � rhs�c��).
In the latter case (c equals Def �z0

c�,i� for a c� > St), c is the equality �z0
c�,i�Px>Xi

co�x, c�� �x � 0 extended to
X8Z0. So co�x, c� � co�x, c�� for all x >Xi, co�z0

c�,i, c� � �1, and co�x, c� � 0 for all x >X8Z0��Xi8�z0
c�,i��.�r,u,v� applied to c is therefore

co�c� � �r,u,v� � Q
x>X�Y

co�x, c� � rx � Q
y>Y

co�y, c� � uy � Q
z>Z0

co�z, c� � vy
� Q
x>Xi�Y

co�x, c�� � rx � Q
y>Xi9Y

co�y, c�� � uy � 1 � vz0
c�,i

� vz0
c�,i

� vz0
c�,i

� 0 � rhs�c�.
I.e. c is satisfied by �r,u,v�.

Finally, if c > �S0
t�X8V 0 then by construction c equals c�0decp extended to X 8Z0 for a c� > S, i.e. c equals the

extension of �P1BiBk0 z0
c�,i� �Px>Xt

co�x, c�� � xbc� rhs�c��. Hence �r,u,v� applied to c is

co�c� � �r,u,v� � Q
x>Xt�Y

co�x, c�� � rx � Q
y>Xt9Y

co�y, c�� � uy � Q
1BiBk0

vz0
c�,i

� Q
x>Xt�Y

co�x, c�� � rx � Q
y>Xt9Y

co�y, c�� � uy
� Q

1BiBk0
� Q
x>Xi�Y

co�x, c�� � rx � Q
y>Xi9Y

co�y, c�� � uy�
� Q
x>X�Y

co�x, c�� � rx � Q
y>Y

co�y, c�� � uy
� co�c�� � �r,u� bc� � rhs�c�� � rhs�c�,

sinceX�Y � �X1�Y �8̇ . . . 8̇�Xk0�Y �8̇�Xt�Y � and �X19Y �8̇ . . . 8̇�Xk09Y �8̇�Xt9Y � �X9Y � Y . Since
bc� � bc we therefore have that c is satisfied by �r,u,v�. Hence projY �feas�S�� b projY 8Z0�feas�sep�S���.

On the other hand assume that r consists of the values for the variables inX�Y such that r > projY 8Z0�feas�sep�S��� �
projY 8Z0�feas�S0

t 8�1BiBk0 S0
i ��. Then there exists values u and v for the variables in Y and Z0, respectively,

such that �r,u,v� satisfies all (in)equalities c in S0
t 8�1BiBk0 S0

i . To be able to refer to the values, let rx be the
value in r for the variable x >X � Y , let uy be the value in u for y > Y , and let vz be the value in c for z > Z0.

Now take an arbitrary (in)equality c in S. Either var�c� b Xi for an 0 B i B k0, or there is no such i. In the
former case, by construction cVAR�S0

i �
> S0

i for an i, and hence cX8Z0 > S0
t 8�1BiBk0 S0

i , and thus it is satisfied
by �r,u,v�. This means that

co�c� � �r,u� � Q
x>X�Y

co�x, c� � rx � Q
y>Y

co�y, c� � uy
� Q
x>X�Y

co�x, c� � rx � Q
y>Y

co�y, c� � uy � Q
z>Z0

0 � vz

� Q
x>X�Y

co�x, cX8Z0� � rx � Q
y>Y

co�y, cX8Z0� � uy � Q
z>Z0

co�z, cX8Z0� � vz
� co�cX8Z0� � �r,u,v�bcX8Z0 rhs�cX8Z0� � rhs�c�.

40

Since bc � bcX8Z0 this means that �r,u� satisfies c. Thus r > projY �feas�c��.
In the latter case (i.e. there is no i such that var�c� b Xi), we get that for each 1 B i B k0, Def �z0

c,i� extended
to X 8Z0 belongs to S0

t �1BiBk0 S0
i and are therefore satisfied, i.e. �r,u,v� applied to �z0

c,i �Px>Xi
co�x, c� � x

equals 0 for all i. That is, �vz0
c,i
�Px>Xi�Y co�x, c� � rx �Py>Xi9Y co�y, c� � uy � 0. Hence we must have that

vz0
c,i

� Px>Xi�Y co�x, c� � rx �Py>Xi9Y co�y, c� � uy .

Likewise, c0
decp is in S0

t and it is satisfied, i.e. P1BiBk0 vz0
c,i
�Px>Xt�Y co�x, c� � rx �Py>Xt9Y co�x, c� �uy bc

rhs�c�.
From this we gather that

co�c� � �r,u� � Q
x>X�Y

co�x, c� � rx � Q
y>Y

co�y, c� � uy
� Q

1BiBk0
� Q
x>Xi�Y

co�x, c� � rx � Q
y>Xi9Y

co�y, c� � uy�
� Q
x>Xt�Y

co�x, c� � rx � Q
y>Xt9Y

co�y, c� � uy
� Q

1BiBk0
vz0

c,i
� Q
x>Xt�Y

co�x, c� � rx � Q
y>Xt9Y

co�y, c� � uy
bc rhs�c�.

That is, c is satisfied by �r,u�. Hence r > projY �feas�S��, and projY 8Z0�feas�sep�S��� b projY �feas�S��.

Lemma 3.
projZl�feas�Slt 8 �

1BiBkl

Sli�� � feas�Sl�1
t �

Proof. First we will show that for all c > S0
t the following holds:

feas�cl�1
decp� � projZl�feas��cldecp� 8 �

1BiBkl

�Def �zlc,i����. (40)

Order the variables such that x h zlc,j for all x > Xt 8�1BjBkl�1�zl�1
c,j � and all 1 B j B kl, and such that zlc,i h z

l
c,j

iff i @ j.
First assume that r > feas�cl�1

decp�, i.e. r defines values for variables in Xt 8�1BiBkl�1�zl�1
c,i � that satisfy cl�1

decp.
Let therefore rx be the value of x in r for all x > Xt 8�1BiBkl�1�zl�1

c,i �. For all 1 B i B kl define values for zlc,i as
follows: vzl

c,i
� Pj>P l

i
rzl�1

c,i
Let v � �vzl

c,1
, . . . , vzl

c,kl
�. Then �r,v� applied to cldecp is

Q
1BiBkl

vzl
c,i
� Q
x>Xt

co�x, c� � rx � Q
1BiBkl

�Q
j>P l

i

rzl�1
c,i

� � Q
x>Xt

co�x, c� � rx
1
� � Q

1BiBkl�1
rzl�1

c,i
� � Q

x>Xt

co�x, c� � rx
� co�cl�1

decp� � rbcl�1
decp

rhs�cl�1
decp�,

since r > feas�cl�1
decp�. 1 holds since �1, . . . , kl�1� � P l18̇ . . . 8̇P lkl . Thus �r,v� satisfies cldecp (sincebcl

decp
� bcl�1

decp

and rhs�cldecp� � rhs�cl�1
decp�).

Now let 1 B i B kl be arbitrary. Then �r,v� applied to Def �zlc,i� is

�vzl
c,i
� Q
j>P l

i

rzl�1
c,j

� �vzl
c,i
� vzl

c,i
� 0 � rhs�Def �zlc,i��.

Thus �r,v� satisfies Def �zlc,i� for any 1 B i B kl, too.

That is, r > projZl�feas��cldecp� 8�1BiBkl�Def �zlc,i����.

On the other hand, assume that r > projZl�feas��cldecp�8�1BiBkl�Def �zlc,i����. Since �cldecp�8�1BiBkl�Def �zlc,i��
41

is a system over Xt 8�1BiBkl�zlc,i�8�1BjBkl�1�zl�1
c,j �, r defines values for the variables in Xt 8�1BjBkl�1�zl�1

c,j �,
so let rx be the value of x in r for all x >Xt 8�1BjBkl�1�zl�1

c,j �.

Then there exists values for the variables in Zl, u, such that �r,u� satisfies cldecp and Def �zlc,i� for all 1 B i B

kl. Hence we have for all 1 B i B kl that �uzl
c,i
�Pj>P l

i
rzl�1

c,j
� 0, where uzl

c,i
is the value for zlc,i in u.

Now consider r applied to cl�1
decp, which is an (in)equality over Xt 8�1BjBkl�1�zl�1

c,j �:

Q
1BiBkl�1

rzl�1
c,i

� Q
x>Xt

co�x, c� � rx � Q
1BiBkl

�Q
j>P l

i

rzl�1
c,i

� � Q
x>Xt

co�x, c� � rx
� Q

1BiBkl

uzl
c,i
� Q
x>Xt

co�x, c� � rx
bcl

decp
rhs�cldecp�,

where the last (in)equality holds because cldecp is satisfied by �r,u�. Thus r satisfies cl�1
decp since bcl�1

decp
� bcl

decp

and rhs�cl�1
decp� � rhs�cldecp�. Hence we have shown (40).

Let V � V AR�Slt 8�1BiBkl Sli� �Xt 8Z
l
8Zl�1. Now the statement in the lemma follows since

projZl�feas�Slt 8 �
1BiBkl

Sli�� � projZl�feas��Slt�V 8 �
1BiBkl

�Sli�V ��
� projZl�feas� �

c>S0
t

��cldecp� 8 �
1BiBkl

�Def �zlc,i���V ��
1
� �
c>S0

t

projZl�feas���cldecp� 8 �
1BiBkl

�Def �zlc,i���V ��
2
� �
c>S0

t

feas��cl�1
decp�V �Zl�

� feas� �
c>S0

t

��cl�1
decp�V �Zl�� � feas�� �

c>S0
t

�cl�1
decp��V �Zl�

3
� feas�Sl�1

t �.

1 follows since from Lemma 1 item 1 since var��cldecp�8�iBiBkl�Def �zlc,i���9var��c�ldecp�8�iBiBkl�Def �zlc�,i��� �
g for c, c� > S0

t where c x c�, 2 follows from Lemma 1 item 3 and (40) proven above, and 3 follows since
VAR�Sl�1

t � �Xt 8Z
l�1 � V �Zl.

Lemma 4.

SKt 8 �
1BiBk0

S0
i 8 . . . 8 �

1BiBkK

SKi �SK�1
1

Proof. We show by induction on 0 B l BK that

�
1BiBkl

Sl
i � �

1BiBk0
S0
i 8 . . . 8 �

1BiBkl

Sli (41)

For l � 0 we have by definition that S0
i �S0

i for all 1 B i B k0, so �1BiBk0 S0
i � �1BiBk0 S0

i . Thus (41) holds.

Now assume that 0 @ l BK and that (41) holds for all 0 B l� @ l. LetX � VAR��1BiBk0 S0
i 8. . .8�1BiBkl Sli� �

42

�1BiBk0 Xi 8�1BmBlZ
m. Then

�
1BiBk0

S0
i 8 . . . 8 �

1BiBkl

Sli � � �
1BiBk0

S0
i 8 . . . 8 �

1BiBkl

Sli�X
� � �

1BiBk0
S0
i 8 . . . 8 �

1BiBkl�1
Sl�1
i �

X
8 � �

1BiBkl

Sli�X
IH
� � �

1BiBkl�1
Sl�1
i �

X
8 � �

1BiBkl

Sli�X
� � �

i>P l
18...8P

l

kl

Sl�1
i �

X
8 � �

1BiBkl

Sli�X
� � �

1BiBkl

�
j>P l

i

Sl�1
i �

X
8 � �

1BiBkl

Sli�X
� �

1BiBkl

�
j>P l

i

�Sl�1
i �X 8 �

1BiBkl

�Sli�X
� �

1BiBkl

� �
j>P l

i

Sl�1
j 8 Sli�X

� � �
1BiBkl

Sl
i�X � �

1BiBkl

Sl
i.

Thus (41) also holds for l �K, which means that

SK�1
1 � SK�1

1 8 �
j>PK�1

1

SK
j � SKt 8 �

1BjBkK

SK
j � SKt 8 �

1BiBk0
S0
i 8 . . . 8 �

1BiBkK

SKi .

Proposition 2.
projY �feas�S�� � projY 8Z08...8ZK�feas�SK�1

1 ��
Proof. We will show the proposition by showing that

projY �feas�S�� � projY 8Z08...8Zl�feas�Slt 8 �
0BmBl

�
1BiBkm

Smi �� (42)

for all 0 B l B K. Then (42) holds for K too, and hence projY �feas�S�� � projY 8Z08...8ZK�feas�SKt 8

�0BmBK �1BiBkm Smi �� � projY 8Z08...8ZK�feas�SK�1
1 �� by Lemma 4.

The proof is done by induction on l.
For l � 0, Lemma 2 gives us that projY �feas�S�� � projY 8Z0�feas�S0

t 8 �1BiBk0 S0
i �� which is what we

need.
For 0 @ l B K we assume that (42) holds for all 0 B l� @ l. For ease of notation we let in the following

Z def.
� Y 8Z0

8 . . . 8Zl�1 and X � VAR�Slt� 8�0BmBl�1BiBkm VAR�Smi �. Then

projY 8Z08...8Zl�feas�Slt 8 �
0BmBl

�
1BiBkm

Smi ��
� projY 8Z08...8Zl�feas��Slt�X 8 �

0BmBl
�

1BiBkm

�Smi �X��
� projZ�projZl�feas���Slt�X 8 �

1BiBkl

�Sli�X� 8 � �
0BmBl�1

�
1BiBkm

�Smi �X����
�
� projZ�projZl�feas��Slt 8 �

1BiBkl

Sli�X�� 9 feas� �
0BmBl�1

�
1BiBkm

�Smi �X�Zl��
Lemma 1 item 3
�Lemma 3

� projZ�feas��Sl�1
t �X�Zl� 9 feas� �

0BmBl�1
�

1BiBkm

�Smi �X�Zl��
� projZ�feas��Sl�1

t �X�Zl 8 �
0BmBl�1

�
1BiBkm

�Smi �X�Zl��
� projZ�feas�Sl�1

t 8 �
0BmBl�1

�
1BiBkm

Smi ��
IH
� projY �S�.

43

Above, � follows from Lemma 1 item 2 since var��Smi �X� 9 Zl � g for all m B l � 1 and 0 B i B km. By the
principle of mathematical induction, (42) then holds for all l BK.

Proposition 3.

projZK8...8Z08Y �feas�SK�1
1 �� � feas�EK�1

1 �

Proof. We proof the proposition by showing that

projZl�18...8Z08Y �feas�Sl
i�� � feas�Eli� (43)

for all 0 B l BK � 1 and all 1 B i B kl. This is done by induction on l.

Let l � 0 and 0 B i B k0 be arbitrary. Then by definition E0
i > PRSY �S0

i �, so feas�E0
i � � projY �feas�S0

i �� �
projY �feas�S0

i ��.

For the induction step, let 0 @ l BK �1 and assume that (43) holds for all 0 B l� @ l. Let 0 B i B kl be arbitrary.
In the following we let Z � Zl�2

8Zl�3
8 . . . 8Z0

8 Y and we let X � VAR�Sl
i�. Then

projZl�18Zl�28...8Z08Y �feas�Sl
i��

� projZl�18Z�feas�Sli 8 �
j>P l

i

Sl�1
j �� def. of Sl

i

� projZl�1�projZ�feas��Sli�X 8 �
j>P l

i

�Sl�1
j �X���

� projZl�1�feas��Sli�X�Z� 9 projZ�feas� �
j>P l

i

�Sl�1
j �X��� Lemma 1 item 2,

var��Sl
i�X�9Z�g

� projZl�1�feas��Sli�X�Z� 9 �
j>P l

i

projZ�feas��Sl�1
j �X��� Lemma 1 item 1,

var��Sl�1
m �X�9var��Sl�1

m� �X��g

formxm�

� projZl�1�feas��Sli�X�Z� 9 �
j>P l

i

feas��El�1
j �X�Z�� Lemma 1 item 3,

Induction hypothesis

� projZl�1�feas��Sli�X�Z 8 �
j>P l

i

�El�1
j �X�Z��

� projZl�1�feas��Sli 8 �
j>P l

i

El�1
j �X�Z��

� projZl�1�feas�Sli 8 �
j>P l

i

El�1
j �� See below

� feas�Eli�. Eli > PRSZl�1�Sli 8 �
j>P l

i

El�1
j �

The second to last equality above holds because VAR�Sli 8�j>P l
i
El�1
j � � X � Z which is proven below. Thus,

(43) holds for l, and by the principle of mathematical induction it follows that (43) holds for K � 1.

To conclude the proof, we now show by induction on l that the following holds for all 1 B l B K � 1 and
1 B i B kl.

VAR�Sli 8 �
j>P l

i

El�1
j � � VAR�Sl

i� � �Y 8 �
0BmBl�2

Zm� (44)

44

For l � 1, we have for an arbitrary 1 B i B k1 that

VAR�S1
i 8 �

j>P 1
i

E0
j� � VAR�S1

i � 8 �
j>P 1

i

VAR�E0
j�

� VAR�S1
i � 8 �

j>P 1
i

�VAR�S0
j � � Y � E0

j > PRSY �S0
j � by def.

� �VAR�S1
i � 8 �

j>P 1
i

VAR�S0
j �� � Y VAR�S1

i � 9 Y � g

� VAR�S1
i 8 �

j>P 1
i

S0
j � � Y

� VAR�S1
i � � Y def. of S1

i

� VAR�Sl
i� � �Y 8 �

0BmBl�1
Zm�.

I.e. (44) holds for l � 1.
Now assume that 1 @ l BK � 1 and that (44) holds for all 1 B l� @ l. Let 1 B i B kl be arbitrary. Then similarly

VAR�Sli 8 �
j>P l

i

El�1
j � � VAR�Sli� 8 �

j>P l
i

VAR�El�1
j �

1
� VAR�Sli� 8 �

j>P l
i

�VAR�Sl�1
j 8�

k>P l�1
j

El�2
k � �Zl�2�

IH
� VAR�Sli� 8 �

j>P 1
i

��VAR�Sl�1
j � � �Y 8�

0BmBl�3
Zm�� �Zl�2�

� VAR�Sli� 8 �
j>P 1

i

�VAR�Sl�1
j � � �Y 8 �

0BmBl�2
Zm��

2
� �VAR�Sli� 8 �

j>P 1
i

VAR�Sl�1
j �� � �Y 8 �

0BmBl�2
Zm�

� VAR�Sl
i� � �Y 8 �

0BmBl�2
Zm�

1 holds because El�1
j > PRSZl�2�Sl�1

j 8 �k>P l�1
j

El�2
k � by definition, and 2 holds because VAR�Sli� 9 �Y 8

�0BmBl�2Z
m� � g.

Thus, (44) holds for all 1 B l BK � 1.

Lemma 5. Let p, p� � 22IE
� 2IE be such that p�M�, p��M� >M for all M > 22IE . Then Eli�p� � Eli�p�� for all

0 B l BK � 1 and all 1 B i B kl, where

Eli�p� def.
� � p�PRSZl�1�Sli 8�j>P l

i
El�1
j �p��� if l A 0

p�PRSY �Sli�� if l � 0 , and

Eli�p�� def.
� � p��PRSZl�1�Sli 8�j>P l

i
El�1
j �p���� if l A 0

p��PRSY �Sli�� if l � 0 .

Proof. By induction on l we will show that feas�Eli�p�� � feas�Eli�p��� and VAR�Eli�p�� � VAR�Eli�p���for all
1 B i B kl.

For l � 0 we have by definition that E0
i �p�,E0

i �p�� > PRSY �S0
i � for all 1 B i B k0. Hence VAR�E0

i �p�� �
VAR�S0

i � � Y � VAR�E0
i �p���, and feas�E0

i �p�� � projY �feas�Si0�� � feas�E0
i �p���.

Now assume that 0 @ l B K � 1, and assume that the induction hypothesis holds for all 0 B l� @ l. Let
1 B i B kl be arbitrary. Let X � VAR�Sli� 8�j>P l

i
VAR�El�1

j �p�� IH
� VAR�Sli� 8�j>P l

i
VAR�El�1

j �p���. Since
Eli�p� > PRSZl�1�Sli 8�j>P l

i
El�1
j �p�� and Eli�p�� > PRSZl�1�Sli 8�j>P l

i
El�1
j �p���, we have that VAR�Eli�p�� �

45

X �Zl�1 � VAR�Eli�p���. Further,

feas�Eli�p�� � projZl�1�feas�Sli 8 �
j>P l

i

El�1
j �p���

� projZl�1�feas��Sli�X� 9 �
j>P l

i

feas�El�1
j �p�X��

IH
� projZl�1�feas��Sli�X� 9 �

j>P l
i

feas�El�1
j �p��X��

� projZl�1�feas�Sli 8 �
j>P l

i

El�1
j �p����

� feas�Eli�p���.
By the principle of mathematical induction this shows the proposition.

46

