
co-Laevo
Supporting Cooperating Teams by
Working ‘within’ Shared Activity Time Lines

Steven Jeuris
Paolo Tell
Jakob E. Bardram

IT University Technical Report Series TR-2016-193

ISSN 1600–6100 June 2016



Copyright c© 2016, Steven Jeuris
Paolo Tell
Jakob E. Bardram

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-358-2

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk



June 24, 2016

Abstract

In this paper, we describe the interaction design and implementation
of co-Laevo: an activity-centric desktop computing system supporting
task coordination within cooperating teams. Coordination is supported
by having all team members orchestrate their dependent tasks on a shared
activity time line. Each task (or activity) is associated with a personal
dedicated workspace within which related resources, like files and win-
dows, are embedded. As users access activity workspaces, the past, cur-
rent, and planned state of the activity can be updated to reflect ongoing
work. In contrast to stand-alone scheduling tools, like a team calendar,
the actual work is not disconnected from the plan. In essence, users work
‘within’ a shared schedule, suspending and resuming activity workspaces
in order to access the contained resources required for their work. Users
are thereby constantly confronted with their own and collaborators’ ac-
tivities as part of task switching during everyday work. We introduce
this concept, and several entailing design implications, as cooperative ac-
tivity life cycle management. We anticipate the design of such a system
to decrease information overload and increases awareness among team
members.

1 Introduction

A wide range of personal information management (PIM) tools support knowl-
edge workers in managing their work on desktop computers. These can be
broadly categorized based on the main practices they support: the management
of tasks, windows, and files. Unfortunately these tools aren’t well integrated,
causing conflicts where functionalities overlap [8]. For example, window man-
agers support multitasking but are disconnected from the tasks specified in
task management tools. Most notably, information related to the same project
(or activity) is fragmented across several data collections managed by different
tools [2]. These problems are exacerbated within distributed and collaborative
activities, in which data in addition can be fragmented across multiple devices
and collaborators. Users need to decide where to store data, how to transfer it
across devices, and how to share it with others [10]. To address these problems
there is a need to rethink the traditional computing paradigm, which is rapidly
becoming ill-suited to handle the modern day needs of complex knowledge work.

What unifies task, window, and file management is the actual work they
support—the user’s activities. Therefore, prior Activity-Based Computing (ABC)

1



systems (or activity-centric computing systems) allow aggregating resources,
support for communication, and collaboration, within computational represen-
tations of activities [6, 7, 8, 14]. These activities can be managed by the user and
are well integrated into the operating system, e.g., supporting easy suspension
and resumption of activity resources, thus facilitating multitasking. A recent
ABC system, Laevo [8], has explored how to better support the full activity life
cycle: the creation, use, and evolution of activities over time, including archival
after their completion. Supporting the full activity life cycle is needed as part
of a scalable solution capable of managing ever-increasing numbers of activities,
preventing information overload. However, Laevo focuses solely on PIM, man-
aging the activities of just one user, and unlike other ABC or groupware systems
does not support coordination and collaboration within cooperating teams.

This paper presents co-Laevo, a system extending on the design of Laevo to
incorporate support for cooperating teams. Considering the activity life cycle
introduced by Laevo, several implications for design in regards to cooperative
activity life cycle management are formulated. Extending on the original fea-
tures of Laevo, activity hierarchies are introduced as a way to allow grouping
related activities together. This supports the user in defining more granular
activities within the context of higher-level activities. To enable this, co-Laevo
introduces an activity time line per activity on which containing sub-activities
are displayed and managed. Coordination is supported by allowing users to
share selected activity time lines with other users. By orchestrating dependent
tasks on a shared activity time line, team members can become aware of each
other’s past, ongoing, and planned activities.

In this paper, we present (i) design implications for an ABC system support-
ing cooperative activity life cycle management, and (ii) co-Laevo, a cooperative
activity-centric system introducing activity hierarchies and shared activity time
lines. Within the scope of this paper, we restrict ourselves to reporting on the
results of an iterative heuristic design of co-Laevo and a technical discussion of
the newly introduced features.

2 Related Work

Prior ABC systems support the user in constructing computational represen-
tations of activities which aggregate activity resources [6, 7, 8, 14]. There is a
focus on activity management as a whole, rather than providing separate sup-
port for the management of tasks, windows, and files [8]. This allows offloading
common meta-work, like opening required resources when resuming an activity,
to the ABC system. Laevo [8] added temporal support for activities, integrat-
ing long-term task management within an ABC system by representing personal
activities on a time line. For example, a manager can easily revisit notes taken
during a meeting a month ago by opening the time line at that point in time,
finding the activity he labeled “Progress Meeting”, and resuming it. However,
unlike other ABC systems [6, 14] which support users to collaborate on activi-
ties, Laevo does not support any form of cooperation.

2



In this paper, we refer to ‘cooperation’ as conceptualized within the field
of Computer-Supported Cooperative Work (CSCW), where it refers to inter-
dependence in work : “multiple individuals working together in a conscious
way in the same production process or in different but connected production
processes” [11]. Computer systems in support of cooperation are often called
‘groupware’. Such systems are generally designed to support a subset of co-
operative work, e.g., messaging systems, multi-user editors, or group decision
support systems [3]. In addition to the actual cooperative work, articulation
work needs to occur in order to enable effective cooperation: the coordinating,
scheduling, meshing, and integrating of interdependent activities. To this end,
coordination mechanisms are often put in place [12]. Our work is situated in
providing computational support for such coordination mechanisms as part of
everyday work in a desktop work environment for knowledge workers.

The work presented in this paper differs from prior activity-centric systems
in that it is the first ABC system to support scheduling of long-term coop-
erative activities in time. This work differs from traditional groupware and
coordination tools like electronic calendars or Gantt charts in that coordination
mechanisms are supported as part of an ABC system well-integrated into the
operating system, rather than being an independent tool. Within co-Laevo the
actual resources needed to start work on activities are not disconnected from the
activity description (name, representation and schedule), i.e., the actual work
is not detached from the plan. In essence users work ‘within’ a shared schedule,
suspending and resuming activity workspaces in order to access required re-
sources. Users are thus constantly confronted with their own and collaborators’
activities as part of everyday work when switching between tasks.

3 The Cooperative Activity Life Cycle

As part of the design of Laevo the activity life cycle was introduced [8]: a
model representing the fundamental practices that influence the state of activ-
ities over time (activity construction, interruption, resumption, and closure),
framed within three fundamental processes of knowledge work (archiving, mul-
titasking, and planning). In this section, we discuss the implications of the ac-
tivity life cycle in a cooperative environment where activities are shared. This
gives rise to several design implications for cooperative activity life cycle man-
agement, which we will discuss from three different perspectives (the user, their
data, and the different views on that data), summarized in Figure 1.

3.1 Users: Shared Activities

In addition to personal activities, users need to have access to the shared activ-
ities of users they cooperate with. This implies that for each activity there is
a local, as well as possibly shared context associated to it. Common to both,
however, is the activity signifier [5]: a necessary description used to refer to
and discuss the activity. To this end, each participant needs to be able to

3



have a personal workspace associated to a shared activity signifier. Although
the workspace is local, it can be used to access shared resources and initiate
collaboration with users working on the same activity.

Activity construction is “the practice of defining the context of an ongoing
or planned activity. During this practice, users gradually build up and modify
the content, thus refining the scope of the activity” [8]. Different from PIM, ac-
tivity construction is no longer restricted to one individual user. As posited by
Schmidt and Bannon [11], within cooperating teams there is a need to “support
the ongoing dynamic articulation of distributed activities and the cooperative
management of the mechanisms of interaction themselves”. Activity coordina-
tion can be supported by collectively managing the state of activities in a shared
work environment (e.g., an activity that changes from a planned state to open,
indicating work has started on it). However, in order to keep users that depend
on an activity up to date, there is a need to inform everyone within the shared
work environment of modifications (these might be possible interruptions during
ongoing work), including life cycle state changes (e.g., an activity which is com-
pleted by another user). In addition to facilitating coordination, this supports
team awareness by regularly confronting users with the activity descriptions
and states of other users while switching between their own activities as part of
everyday knowledge work (multitasking).

1. Users

2. Data

3. Views

Personal Cooperative

Figure 1: We discuss design implications for a system supporting cooperative
activity life cycle management from three different perspectives: the user, their
data, and different views on that data. Activities can be both personal and
cooperative, thus data structures need to be devised which can support creating
ensembles of the two. To prevent information overload (given the increase in the
number of activities to be managed) we suggest a seamless transition between
a conceptually coherent personal and cooperative view on available activities.

4



3.2 Data: Organizing Activities

Considering that the number of activities that need to be managed in a cooper-
ative environment is the same as during personal information management, but
multiplied (approximately) by the number of users one cooperates with, there is
a scalability issue that needs to be addressed. Even more so than in PIM, there
is a need to be able to group related activities together and relate them to other
groups of activities. Merely representing activities along a temporal dimension
no longer suffices (even for small activity sets) since the user needs to be able
to share groups of activities with other users. These should be separable from
one’s own private activities. Additionally, groups of activities might be part of
an overarching higher-level goal. For example, programming activities can be
shared within a software development team, but furthermore are part of higher-
level project management of the overseeing company. It should thus be possible
to fluently define, relate, and share, collections of activities.

A permanent internet connection, and thus a continuous up-to-date collec-
tion of activities, cannot be guaranteed. Therefore, activity state conflicts can
arise when users modify the state of a shared activity while offline. Since the
personal planning and associated local workspace of users might depend on
the state or existence of the activity, concerned users need to be notified and
presented with a resolution mechanism once activities are synchronized. For ex-
ample, two separate users might have opened (and thus indicate having started
work on) an activity. A choice needs to be made whether one of the users aban-
dons ongoing work, or whether work up to that point should be aggregated.
Alternatively, one of the user continues work on a copy of the activity.

3.3 Views: Personal and Cooperative Workspaces

Laevo was designed with PIM in mind, providing support to easily suspend and
resume the activities of just one user. Although cooperative activity life cycle
management additionally requires access to the activities of users one cooperates
with, not all shared activities should be made part of the personal workspace.
This would rapidly lead to information overload. Users thus need to be able to
claim ownership (which can be shared with other users) over the activities they
are interested in. To further support coordination, it should also be possible to
suggest ownership to others. A similar view to that of Laevo (a personalized
overview) can show all activities one has claimed ownership over, distinct from
a view which provides access to the full set of activities one has access to. A
seamless transition between the two supports frequent switching between them
as part of creating and selecting new activities to work on.

4 Design of co-Laevo

The original design of Laevo [8] has two distinct work environments, one ac-
tivity management environment dedicated to creating and managing the state
of activities (the activity time line), and several dedicated workspaces (one per

5



activity) dedicated to performing actual knowledge work. On the activity time
line, Laevo employs the inherent state changes of activities over time as a way
of organizing and accessing them. As demonstrated in Figure 2, activities can
be open to represent ongoing work, archived when completed in the past, or
scheduled as either planned events at a particular point in time or as to-do
items when no point in time to work on them has been decided yet. Activities
are displayed along a time line to emphasize their fragmented and parallel exe-
cution over time, supporting multitasking [4]. This is distinctly different from
the ordinary day, week, or month view in traditional calendar systems. It is up
to the user to change the state of activities as they unfold, e.g., a to-do item can
be dragged from the to-do list to the time line in order to plan it at that point
in time. A dedicated workspace per activity, implemented as virtual desktops,
provides access to activity resources and serves as a focused work environment
free from distractions from other activities.

co-Laevo extends on the design of Laevo by introducing activity hierarchies
and shared activity time lines, which we will describe in this section. Findings
from prior versions of the system are taken into account, including the suggested
improvement to visualize activity revisitations as ‘multiple instances’ of the same
activity over time, rather than long-running uninterrupted activities [8] (e.g., the
“Read Related Work” activity in Figure 3). During the design process a strong
emphasis was placed on finding a satisfactory compromise between the original
requirements derived from PIM literature (the personal overview of activities as
presented in Laevo) and incorporating access to even larger numbers of activities
part of a cooperative work environment. The newly introduced features do not

Figure 2: Different supported activity states represented on the activity time
line of Laevo: open, archived, and scheduled (planned or to-do).

6



6. Independent
positioning

Personal View

7. Access
activity log

Hierarchy View

4. Add/remove
ownership

2. Manage 
access

3. Switch 
overviews

1. Breadcrums

5. Awareness 
of other's activities

Figure 3: An overview of the newly introduced cooperative features of co-Laevo
in both the new hierarchy view, and preexisting personal view.

conflict with the earlier design of Laevo. In fact, co-Laevo can be seen as a
conceptually coherent superset of Laevo which merely introduces an additional
layer of abstraction to scale up the original design to a cooperative context.

7



4.1 Activity Hierarchies

As part of the evaluation of Laevo, we noticed insufficient support for high-level
activities that need to be revisited only sporadically, like long-term projects
representing particular clients. Users expressed problems in managing them:
stopping and reopening projects did not feel adequate as the project was not
discontinued, but rather, did not require any attention at the time. This indi-
cates a need for the user to be able to define more granular activities within
the context of higher-level activities. For example, a meeting activity could be
considered part of an overarching project activity. This observation is reflected
in activity theory [9], in which activities constitute actions directed at specific
goals which in turn are part of attaining an underlying motive. Goals can be
decomposed into sub-goals, sub-sub-goals, and so forth. For example, a PhD
student might be motivated to graduate (the activity), for which he needs to
write a thesis (the action), containing several different lower-level actions tar-
geted at sub-goals, like reading up on related research. Although activity theory
distinguishes between activities and actions, there is no such need to make a
distinction in the user interface. It is the user who mentally assigns an intent to
an activity upon its creation. We are merely interested in the hierarchical na-
ture of goals, which should be reflected in the user interface in order to support
richer management of both high-level and low-level goals.

To support the hierarchical nature of activities, co-Laevo introduces a sep-
arate time line for each activity within the system. Each activity represents
thus not only a point of access to a dedicated workspace, but also serves as
a point of access to a time line from where its sub-activities can be managed.
For intelligibility reasons (as not to confuse the user) we chose not to make the
state of containing activities depend on that of parent activities, and vice versa.
Activities can thus contain sub-activities of any state, e.g., open activities can
contain planned activities, and closed activities can contain to-do items. There
is not much to be gained from automating possible dependencies between the
two, in contrast to the added complexity this would introduce. The ‘Home’
activity of Laevo is used as the root for the activity tree which represents a top
level time line. An example activity hierarchy for a PhD student is shown in
Figure 4.

Meet 
Supervisor

...

Teach 
Course

Write
Thesis

Read Related 
Work

PhD

Pinpoint 
Contributions

...

Figure 4: An example activity tree for a PhD student.

8



The original time line of Laevo provides a complete overview of all the user’s
personal activities and provides access to their dedicated workspaces. In con-
trast, the personal view in co-Laevo shows only a subset of all accessible activ-
ities. In a newly introduced hierarchy time line view (top image in Figure 3)
all activities in the hierarchy can be accessed and users can decide which ac-
tivities to show on their personal time line by claiming ownership over them
(Figure 3.4). The personal time line thus provides an aggregated overview of a
set of selected activities from different levels in the hierarchy view. Browsing
hierarchies is similar to how folders are navigated in an ordinary file system,
with breadcrumbs indicating the current position within the activity hierarchy
(Figure 3.1). The time line shows the containing activities of the currently se-
lected activity (functionally identical to the old personal view from Laevo since
there were no hierarchies). The vertical position of activities on the personal
view can be modified independently from the vertical position on the hierarchy
view (Figure 3.6). This is necessary to maintain a personalized organization
of activities in the personal view as opposed to the hierarchy view which can
be organized collaboratively. Pressing a button allows seamlessly transitioning
between both views (Figure 3.3): the background color changes, the time line is
repopulated with the requested activities, but the current visible time interval
remains the same.

Compared to Laevo, the personal time line remains largely unchanged, ex-
cept for newly added cooperative features including a user profile (Figure 5.2), a
list of owners per activity, and the ability to remove ownership over an activity
(personal view in Figure 3). Removing ownership removes the activity from the
personal time line but keeps it in the hierarchy view. Activity ownership is not
shown for the active user on the personal time line as this would be a redundant
visualization; it is, however, shown in the hierarchy view. Lastly, in both the
personal and hierarchy view, an activity log keeps track of changes made to the
activities of the currently visible time line (Figure 3.7).

Figure 5: The window used to (1) add and remove access for users, and (2)
modify the user profile. Initials are shown when no profile picture is set.

9



4.2 Shared Activity Time Line

Prior ABC systems [6, 14] provide the means to share activities and their work
context with other users and devices. However, support for coordination is lim-
ited to sharing individual activities. No explicit support is provided to articulate
(divide, allocate, coordinate, schedule, mesh, interrelate, etc.) activities within
cooperative work arrangements [11]. Although some strict interpretations of
situated action favor highlighting the ad hoc (in situ) nature of knowledge work
over elaborate support for planning, the two are not mutually exclusive [13]. For
example, activity theory argues that plans are achieved, but undergo continual
modifications in the course of action. There is thus a need to support situated
planning : the plan should be made a malleable part of the activity [1].

co-Laevo supports situated planning by allowing users to access shared ac-
tivity time lines (Figure 3, Hierarchy View). The notion of activity access is
distinct from activity ownership. Activity access implies having access to an
activity and all of its sub-activities (and their sub-sub-activities, etc.), but does
not imply activity owernship. Activity ownership means users claim ownership
over an activity, at which point it will be displayed on their personal time line.
Users who have access to an activity can see who has claimed ownership over it
(if sufficient space is available) (Figure 3.4). Users are notified of changes made
to activities they own in the activity log of their personal view (Figure 3.7).
In short, activity access can thus be used to share and coordinate plans with
participating users, and activity ownership can be used to set up a personal
work environment.

From the hierarchy view, access can be given to other users to the activ-
ity time line currently shown (Figure 3.2 and Figure 5.1). This will trigger an
interruption which is added to the to-do list of the recipient, representing the
activity they were just invited to. Interruptions which carry context in Laevo
are simply highlighted activities in the to-do list. This is distinct from a notifi-
cation (introduced in co-Laevo), which does not carry context, but refers to an
existing activity and gets added to the activity log. Although the initial activity
representation (icon, color, and name) corresponds to that of the invited activ-
ity, invited users can freely change the representation locally. In essence, only
the containing activity time line is shared, allowing users to freely mount the
shared activity anywhere within their own personal activity hierarchy using the
original activity manipulations available in Laevo. They can thus also choose
to represent it as an open, closed or planned activity.

Activity ownership can be suggested to other users, but remains in a pending
state until approved. Users are notified of ownership invitations through the
activity log on the personal time line (Figure 3.7). In case an owned activity
is removed by someone else, the activity is automatically moved to the home
time line, removing it from the shared context. Similar to other activity state
changes of owned activities, the user is notified of removal through the personal
activity log.

10



5 Technical Implementation

co-Laevo reuses the ABC infrastructure of Laevo [8] to manage local workspaces
(including the virtual desktop manager) and introduces a new distributed archi-
tecture to manage the sharing of hierarchical activities and distribution of activ-
ity related events (e.g., the state of an activity changing from open to planned,
or ownership changes). The hierarchical nature of activities is reflected in the
distributed architecture, which comprises several peer-to-peer networks each re-
sponsible for part of the activity hierarchy, as depicted in Figure 6. When a user
modifies a shared activity, the peer-to-peer network responsible for that part of
the hierarchy is used to notify all participating nodes. A new peer-to-peer net-
work is created for each branch in the activity tree which includes additional
participants with whom the branch needs to be shared. A peer-to-peer network
is thus responsible for all underlying activities of the root activity it controls, up
to the point where a new peer-to-peer network at a lower branch takes control.

A central peer-to-peer network is dedicated to user discovery (not tied to
any activity hierarchies). This network is used to look up currently connected
users and invite them to activities, at which point the required information to
connect to the peer-to-peer network associated to the activity becomes avail-
able. Upon connecting, a full synchronization step ensures the alignment of all
participating nodes. Although a peer-to-peer network does not support asyn-
chronous communication between participants, a dedicated seed can easily be
introduced by sharing an activity with an always on-line server.

...

...

User Discovery

Figure 6: An example of four active peer-to-peer networks for the activity tree
represented in Figure 4. One central user discovery network, and three activity
peer-to-peer networks, each responsible for a subset of the activity tree. Three
separate activity networks are created due to the difference in users whom the
branches are shared with.

11



6 Discussion

To extend on the temporal activity management of Laevo, co-Laevo introduces
activity hierarchies. This has two advantages: (i) it allows for richer organiza-
tional strategies, since related activities can be grouped within parent activities,
and (ii) it simplifies sharing of activity collections since sharing an activity also
shares all of its containing activities. By introducing a new user interface to
navigate activity hierarchies, very similar to the personal activity time line, the
user is supported in navigating both the personal and the full set of accessible
activities in a consistent way. Cooperative activity life cycle management is
thus supported by allowing to group related activities together and by providing
a seamless transition between a personal and cooperative work environment.

To support multiple participants, co-Laevo associates each activity with a
shared time line and a local dedicated workspace. Within the local workspace
users can set up their own private work environment, yet access shared resources
associated to the activity. As in an ordinary desktop environment, collaboration
can be initiated using traditional collaboration tools. Within the shared time
line (accessible from the activity hierarchy view), sub-activities of the parent
activity can be coordinated, supporting planning and division of labor. Since
users need to access the hierarchy view to create or search for new activities to
work on, they are regularly confronted with the ongoing, past, and future work
of all participants, thus improving awareness within cooperating teams.

7 Conclusion

In this paper, we provided insights for other systems on how to provide support
for cooperative life cycle management. In particular, we presented how the
interaction technique of defining ownership over activities can be used both
to filter personal activities as well as to provide coordination and awareness
within cooperating teams. As a technical contribution, we described how local
dedicated activity workspaces, combined with a distributed hierarchical peer-to-
peer network, can be used to support the cooperative activity life cycle. co-Laevo
provides explicit support for the articulation of activities by providing access
to shared activity time lines from where collaborative activity workspaces can
be coordinated and instantiated. Our final design is based on activity theory,
theories on cooperation, and insights gained during the iterative heuristic design
of co-Laevo. An in-field evaluation of the system is outside of the scope of this
paper and will be the focus of future work.

8 Acknowledgments

This research has been funded by the Danish Agency for Science, Technology
and Innovation under the project “Next Generation Technology for Global Soft-
ware Development”, #10-092313.

12



References

[1] Jakob E. Bardram. 1997. Plans as situated action: an activity theory
approach to workflow systems. In Proceedings of the Fifth European Con-
ference on Computer Supported Cooperative Work. Springer, 17–32.

[2] Ofer Bergman, Ruth Beyth-Marom, and Rafi Nachmias. 2006. The
Project Fragmentation Problem in Personal Information Management. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’06). ACM, New York, NY, USA, 271–274. DOI:

http://dx.doi.org/10.1145/1124772.1124813

[3] Clarence A Ellis, Simon J Gibbs, and Gail Rein. 1991. Groupware: some
issues and experiences. Commun. ACM 34, 1 (1991), 39–58.

[4] Victor M. González and Gloria Mark. 2004. ”Constant, Constant, Multi-
tasking Craziness”: Managing Multiple Working Spheres. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’04). ACM, New York, NY, USA, 113–120. DOI:http://dx.doi.org/10.

1145/985692.985707

[5] Steven Houben. 2014. An Activity-Centric Approach to Configuration Work
in Distributed Interaction. Ph.D. Dissertation. IT University of Copen-
hagen.

[6] Steven Houben, Jakob E. Bardram, Jo Vermeulen, Kris Luyten, and Karin
Coninx. 2013. Activity-centric Support for Ad Hoc Knowledge Work: A
Case Study of Co-activity Manager. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2263–2272. DOI:http://dx.doi.org/10.1145/2470654.

2481312

[7] Steven Houben, Paolo Tell, and Jakob E. Bardram. 2014. ActivitySpace:
Managing Device Ecologies in an Activity-Centric Configuration Space.
In Proceedings of the Ninth ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’14). ACM, New York, NY, USA, 119–128.
DOI:http://dx.doi.org/10.1145/2669485.2669493

[8] Steven Jeuris, Steven Houben, and Jakob E. Bardram. 2014. Laevo:
A Temporal Desktop Interface for Integrated Knowledge Work. In Pro-
ceedings of the 27th Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). ACM, New York, NY, USA, 679–688. DOI:

http://dx.doi.org/10.1145/2642918.2647391

[9] Victor Kaptelinin. 2014. Activity Theory. In The Encyclopedia of Human-
Computer Interaction, 2nd Ed., Mads Soegaard and Rikke Friis Dam
(Eds.). The Interaction Design Foundation, Aarhus, Denmark, Chapter 16.

13

http://dx.doi.org/10.1145/1124772.1124813
http://dx.doi.org/10.1145/985692.985707
http://dx.doi.org/10.1145/985692.985707
http://dx.doi.org/10.1145/2470654.2481312
http://dx.doi.org/10.1145/2470654.2481312
http://dx.doi.org/10.1145/2669485.2669493
http://dx.doi.org/10.1145/2642918.2647391


[10] Stephanie Santosa and Daniel Wigdor. 2013. A Field Study of Multi-device
Workflows in Distributed Workspaces. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13). ACM, New York, NY, USA, 63–72. DOI:http://dx.doi.

org/10.1145/2493432.2493476

[11] Kjeld Schmidt and Liam Bannon. 1992. Taking CSCW seriously. Computer
Supported Cooperative Work (CSCW) 1, 1-2 (1992), 7–40.

[12] Kjeld Schmidt and Carla Simone. 1996. Coordination mechanisms: To-
wards a conceptual foundation of CSCW systems design. Computer Sup-
ported Cooperative Work (CSCW) 5, 2-3 (1996), 155–200.

[13] Kjeld Schmidt and Carla Simone. 2000. Mind the gap! Towards a unified
view of CSCW. In Proceedings of the Fifth International Conference on the
Design of Cooperative Systems (COOP ’00). IOS Press, Amsterdam 2000,
205–221.

[14] Stephen Voida and Elizabeth D. Mynatt. 2009. It Feels Better Than Filing:
Everyday Work Experiences in an Activity-based Computing System. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). ACM, New York, NY, USA, 259–268. DOI:http://

dx.doi.org/10.1145/1518701.1518744

14

http://dx.doi.org/10.1145/2493432.2493476
http://dx.doi.org/10.1145/2493432.2493476
http://dx.doi.org/10.1145/1518701.1518744
http://dx.doi.org/10.1145/1518701.1518744

	Introduction
	Related Work
	The Cooperative Activity Life Cycle
	Users: Shared Activities
	Data: Organizing Activities
	Views: Personal and Cooperative Workspaces

	Design of co-Laevo
	Activity Hierarchies
	Shared Activity Time Line

	Technical Implementation
	Discussion
	Conclusion
	Acknowledgments

