

PTaaS: Platform for Providing Software Developing Applications
and Tools as a Service

Muhammad Aufeef Chauhan
PhD Student
Software and Systems Section
muac@itu.dk

Muhammad Ali Babar
Professor
Software and Systems Section
maba@itu.dk

IT University Technical Report Series TR-[2014-176]

ISSN 1600-6100 [March 2014]

Copyrigth © [2014], Muhammad Aufeef Chauhan
 Muhammad Ali Babar

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 78-87-79-49-314-8

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK – 2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

IT University of Copenhagen

Software and Systems Group

PTaaS: Platform for Providing
Software Development

Applications and Tools as a Service

Supervisor Student
M. Ali Babar Muhammad Aufeef Chauhan

! 2!

! 3!

Acknowledgement

I would like to acknowledge valuable contributions from my supervisor, M. Ali Babar
for mentoring me to carry out the research presented in the thesis. I would also like to
thank him for providing me opportunity to carry out research under his supervision,
his guidance in designing and refining the research objectives, reviewing my work,
answering my questions and providing valuable feedback on intermediate
deliverables. It would not have been possible to complete this work without his active
involvement and thorough guidance.

Muhammad Aufeef Chauhan
May 21, 2013

! 4!

! 5!

Abstract

Cloud computing has become an established paradigm for enabling organizations to
build scalable software systems and to meet challenges of rapid demand of computing
and storage resources. There has been a significant success in building cloud-enabled
applications for many disciplines ranging from web based and mobile application to
intensive video and data processing systems. This initial success of cloud has opened
new horizons for more complex domains. Global Software Development (GSD) is
one of such domains. GSD is different than traditional applications domains because
of involvement of large number of complex activities that does not only include
technological aspects but also social aspects. A large number of applications and tools
have been devised for providing solutions to the challenges of the GSD that emerge as
a result of distributed development teams. However, the technological solutions that
have been proposed so far are limited in their ability to meet specific GSD challenged
and emerging trends of GSD in which software development is not only global but it
also involve multiple organizations. Involvement of the multiple organizations in
GSD increase the complexity of aligning their processes and establishing technology
support needed to facilitate working according to new processes. Although the
benefits of using cloud computing to solve GSD issues have been discussed in the
literature but there has not been a significant attempt to provide fully functional
technological support for it that is not limited to one specific tools and a particular
phase of software development life cycle. In this thesis, we have explored the
possibility of offering software development applications and tools as services that
can be acquired on demand according to the software development process in globally
distributed environment. We have performed the structured review of the literature on
GSD tools to identify attributes of the software development tools that have been
introduced for addressing GSD challenges and we have discussed significance of
technology alignment with process. Information gained from the review of literature
on GSD tools and processes is used to extract functional requirements for the
middleware platform for provisioning of software development applications and tools
as services. Finding from the review of literature on architecture solutions for cloud-
enabled systems has been used to seek inspirations for providing architecture of the
platform. In order to demonstrate feasibility of our proposed architecture, we have
implemented a prototype of the middleware using Amazon as underlying IaaS Cloud
and have demonstrated its functionality with the help of simple client application that
act as a bridge between software development tools and middleware platform.

! 6!

! 7!

Table of Contents

1.! Introduction ... 13!
2.! Related Work... 17!
2.1.! Question.1:.Types.and.characteristics.of.applications.and.tools.used.for.
supporting.GSD.activities ... 18!
2.2.! Question.2:.Role.of.Process.in.GSD .. 19!
2.3.! Question.3:.Limitations.of.Existing.Solutions .. 20!
2.4.! Question.4:.Key.Characteristics.of.Cloud.Enables.Systems........................... 21!
2.4.1.! Multi/tenancy... 21!
2.4.2.! Supporting!Multiple!Types!of!Client!Devices ... 21!
2.4.3.! Middleware!and!Platforms... 21!
2.4.4.! Workflow!Support ... 22!
2.4.5.! Consideration!for!Building!Cloud!Applications... 23!
2.4.6.! Data!Management .. 23!
2.4.7.! Managing!Distributed!Resources .. 23!
2.4.8.! Risks!in!Cloud/Enabled!Systems.. 23!
2.4.9.! Resource!Scalability .. 24!
2.4.10.! Reliability.. 24!
2.4.11.! Service!Adaptability ... 25!

2.5.! Discussion .. 25!
3.! PTaaS Requirements ... 27!
3.1.! Requirements.for.Platform.Features.. 28!
3.2.! Quality.Requirements.. 30!
3.3.! Scenario.Analysis... 30!

4.! Architecture of PTaaS ... 33!
4.1.! Interface.Layer ... 35!
4.2.! Accounting.Services.. 36!
4.3.! Applications,.Tools.and.Services.Management.Layer..................................... 36!
4.3.1.! Repository!Manager.. 37!
4.3.2.! Multi/tenancy!and!Location!Manager ... 37!
4.3.3.! Life!Cycle!and!Provisioning!Manager .. 37!
4.3.4.! Service!Composer!and!Orchestrator.. 38!
4.3.5.! Authentication!and!Process!Manager ... 40!

5.! Proof.of.Concept.. 45!
5.1.! Architecture.Description.Methodology ... 45!
5.2.! Use.Cases: ... 46!
5.2.1.! Authentication... 46!
5.2.2.! Development!Process!Handling... 47!
5.2.3.! User!Access!to!Resources ... 47!
5.2.4.! Support!for!Collaborative!Work .. 47!
5.2.5.! Support!for!Traceability.. 48!
5.2.6.! Accounting!Services .. 48!
5.2.7.! Collaboration!Activities ... 48!
5.2.8.! Notifications!for!Traceability .. 48!
5.2.9.! Posting!and!Retrieving!Generated!Artifacts!at!Collaboration!Points 49!

5.3.! Deployment.View .. 49!
5.4.! Logical.View... 50!
5.5.! Process.View ... 54!
5.6.! Data.Model ... 56!

! 8!

5.7.! Implementation.Overview ... 57!
5.7.1.! Middleware!Platform!Services ... 57!
5.7.2.! Client!Application!for!Defining!Software!Development!Process!in!the!
Middleware!and!Invoking!Application!and!Tools .. 58!
5.7.3.! Desktop!Client ... 61!

6.! Conclusion and.Directions.for.Future.Work... 65!
7.! Appendix ... 77!
A.1.! PTaaS.APIs... 79!
A.1.1.! Overview.of.OCCI.Specification ... 79!
A.1.2.! APIs.to.Access.Platform.Features... 82!
A.1.2.1.! Authentication!Mechanism.. 82!

A.1.3.! Platform.APIs .. 83!
A.1.3.1.! APIs!for!Tenant!Management ... 83!
A.1.3.1.1.! Get!Information!of!an!Existing!Tenant .. 83!
A.1.3.1.2.! Register!a!New!Tenant ... 83!
A.1.3.1.3.! Update!Information!of!an!Existing!Tenant .. 84!
A.1.3.1.4.! Delete!a!Tenant.. 85!
A.1.3.2.! User!Management .. 85!
A.1.3.2.1.! Get!Information!of!an!Existing!User ... 85!
A.1.3.2.2.! Register!a!New!User .. 85!
A.1.3.2.3.! Update!Information!of!an!Existing!User ... 86!
A.1.3.2.4.! Delete!a!User... 86!
A.1.3.3.! Registration!of!Applications,!Tools!and!Services ... 86!
A.1.3.3.1.! Get!Information!of!a!Registered!Application,!Tool!or!Service 86!
A.1.3.3.2.! Registered!a!new!Application,!Tool!or!Service.. 87!
A.1.3.3.3.! Update!a!Registered!Application,!Tool!or!Service.. 88!
A.1.3.3.4.! Delete!an!Application,!Tool!or!Service .. 89!
A.1.3.4.! Collaboration!APIs ... 90!
A.1.3.4.1.! Initiate!Collaboration!Activity .. 90!
A.1.3.4.2.! Register!Application,!Tool!or!Service!in!a!Collaboration!Activity 90!
A.1.3.4.3.! Unregister!Application,!Tool!or!Service!in!a!Collaboration!Activity 91!
A.1.3.4.4.! Post!Data!in!a!Collaboration!Activity ... 91!
A.1.3.4.5.! Get!Data!from!a!Collaboration!Activity ... 91!
A.1.3.4.6.! Terminate!a!Collaboration!Activity .. 92!
A.1.3.5.! Workflow!Management... 92!
A.1.3.5.1.! Process!Workflow!Management .. 92!
A.1.3.5.1.1.! Create!Process!Workflow.. 92!
A.1.3.5.1.2.! Get!Process!Workflow .. 92!
A.1.3.5.1.3.! Update!Process!Workflow .. 93!
A.1.3.5.1.4.! Delete!Process!Workflow .. 93!
A.1.3.5.2.! Node!Managements!on!a!Process!Workflow .. 93!
A.1.3.5.2.1.! Add!Node!in!a!Process!Workflow .. 93!
A.1.3.5.2.2.! Get!Node!in!a!Process!Workflow.. 94!
A.1.3.5.2.3.! Update!Node!in!a!Process!Workflow.. 95!
A.1.3.5.2.4.! Delete!Node!in!a!Process!Workflow ... 95!
A.1.3.5.3.! Managing!Tools!assigned!to!the!Workflow!Node... 96!
A.1.3.5.3.1.! Assign!Application,!Tools!or!Services!to!a!Node ... 96!
A.1.3.5.3.2.! Get!Application,!Tools!or!Services!to!a!Node .. 96!
A.1.3.5.3.3.! Update!Application,!Tools!or!Services!to!a!Node .. 97!
A.1.3.5.3.4.! Update!Application,!Tools!or!Services!to!a!Node .. 97!
A.1.3.5.4.! Managing!Tenants!assignment!to!the!Nodes!in!the!Workflow................. 98!
A.1.3.5.4.1.! Assign!Tenants!to!a!Node.. 98!

! 9!

A.1.3.5.4.2.! Get!Tenants!Assigned!to!a!Node... 98!
A.1.3.5.4.3.! Update!Tenants!Assigned!to!a!Node... 99!
A.1.3.5.4.4.! Delete!Tenants!Assigned!to!a!Node .. 99!
A.1.3.6.! APIs!for!Supporting!Traceability...100!
A.1.3.6.1.! Register!Artifact!for!Traceability!and!Get!Identifier100!
A.1.3.6.2.! Get!Identifier!of!an!already!Registered!Artifact ..100!
A.1.3.6.3.! Update!an!already!Registered!Artifact ..101!
A.1.3.6.4.! Delete!a!Registered!Artifact ...101!
A.1.3.6.5.! Register!Callback!Method!for!Traceability ..101!

! 10!

! 11!

Table of Figures

Figure!1:!Context!of!Middleware!Platform.. 33!
Figure!2:!Subsystems!making!up!Middleware!Platform ... 34!
Figure!3:!Interface!Layer... 35!
Figure!4:!Provisioning!Management.. 38!
Figure!5:!Composition!Scheme... 39!
Figure!6:!Composition!Handling.. 39!
Figure!7:!Authentication!and!Process!Management ... 41!
Figure!8:!Collaboration!Handling.. 42!
Figure!9:!Collaboration!Flow .. 43!
Figure!10:!Use!Cases ... 46!
Figure!11:!Deployment!View .. 50!
Figure!12:!Sequence!Diagram!/!Define!and!Enact!Development!Process!–!(i) 51!
Figure!13:!Sequence!Diagram!/!Define!and!Enact!Development!Process!–!(ii)..... 51!
Figure!14:!Authentication!Service .. 52!
Figure!15:!Using!XML!annotations!for!converting!java!objects!into!XML!

documents ... 52!
Figure!16:!Code!for!enacting!Amazon!EC2!Instances!hosting!Applications!and!

Tools... 53!
Figure!17:!Node!Entity... 53!
Figure!18:!Activity!diagram!for!enacting!software!development!process 54!
Figure!19:!Activity!diagram!for!collaboration ... 55!
Figure!20:!Activity!diagram!for!traceability ... 56!
Figure!21:!Data!Persistence!Model... 57!
Figure!22:!Authentication .. 59!
Figure!23:!Creating!Process!(i)... 59!
Figure!24:!Creating!Process!(ii) ... 59!
Figure!25:!Adding!Nodes/Sites!to!the!Process.. 60!
Figure!26:!Defining!Data!Movement!Sequence!Between!Nodes/Sites 60!
Figure!27:!Displaying!Access!Information .. 61!
Figure!28:!Desktop!Client!Supporting!Collaboration!and!Traceability!–!(i)........... 61!
Figure!29:!Desktop!Client!Supporting!Collaboration!and!Traceability!/!(ii) 62!
Figure!30:!Desktop!Client!Supporting!Collaboration!and!Traceability!/!(iii)......... 63!

! 12!

! 13!

1. Introduction

On demand resource provisioning model of cloud computing has opened new
horizons for organization to meet increasing demand of computing and storage
resources without huge upfront investments [1-3]. It does not only provide scalability
but also provides freedom from low-level configuration and maintenance tasks
associated with infrastructure as well as services hosted on infrastructure [1, 2]. There
are a large number of studies reporting application development using cloud
computing targeting various domains including information systems [4, 5], video
processing [6-9], e-government [10-12] and health care [13-15]. Initial success of
cloud computing has opened new horizons for applications domains, which are of
high complexity and are diversified in nature.

Cloud computing offerings are broadly classified into three services and five
deployment models [1, 2, 16-18]. Three categories of service models are:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). Five deployment models include: public, private, hybrid, community
and virtual private clouds. IaaS cloud provides abstraction to underlying computing,
storage and network resources using virtualization technologies. It also provides basic
software resources such as operating systems to utilize the virtualized hardware
resources. IaaS Clouds poses additional overhead to applications and technical staff
for monitoring and optimizing resources to meet Quality of Service (QoS)
requirements according to Service Level Agreements (SLAs). However, this
infrastructure has advantage of support for customization. Additional tools and
software can be installed as per requirements of the applications and end users.
Amazon elastic cloud [19], Amazon storage services [19], Eucalyptus1 and
OpenNebula2 are example of IaaS cloud. PaaS cloud provides application
programmable interfaces (APIs) to develop applications. Application build using
PaaS APIs do not need to handle resource provisioning from underlying
infrastructure. Google app engine3, Microsoft azure platform4 and SalesForce5 are
examples of the PaaS cloud. SaaS represents applications that are build on top of
either IaaS or PaaS clouds and offer business solutions to end users. One of the key
features of these applications is multi-tenancy. It enables single instance of the
application to service large number of organizations and end users. SaaS provide
limited support for application customization.

Public clouds represent cloud infrastructure and software resources maintained by an
organization and is offered to end users for lease on basis of some pricing model. End
users can access infrastructure through Internet. Amazon elastic computing (EC2) and
storage (S3), Google app engine and Microsoft azure are examples of public clouds.
Private clouds represent infrastructure and software resources maintained by
organization for its internal use. In some cases, organizations adopt a hybrid strategy
!!
1!http://www.eucalyptus.com/
2!http://opennebula.org/
3!http://code.google.com/appengine/
4!http://www.windowsazure.com/
5!http://www.salesforce.com/

! 14!

and combine private infrastructure with public clouds. It is called hybrid cloud.
Virtual private cloud (VPC) [18] and community cloud [16] are build on top of the
public and private clouds [20]. A VPC utilize resources of public cloud with
additional features of virtual private network. It provides support for customizable
network topology an security settings [20]. In some cases, organization with shared
business objectives decide to collaborate with each other and form a common cloud
by combining their private cloud. It is referred as community cloud.

Global Software Development, which is characterized as software development from
geographically distributed locations, has specific challenges that are not easy to
address using conventional desktop and client/server technologies and infrastructure.
The challenges occur as a result of:
• Involvement of stakeholders in software development process from

geographically distributed locations.
• A large number of software applications and tools used for development as well as

management activities.
• Tractability between artefacts that are produced and consumed by multiple tools.
• Specific requirements of data privacy and constraints on their storage locations

because of sensitive nature of data and legal constraints imposed by organizations
involved in GSD project.

• In many cases, involvement of more than one organization in a GSD project that
maintains their own isolated set of applications and tools.

• Software development activities are carried out by following some specific
software development process and organizations have to tailor their tools suites
according to the processes.

Cloud computing has potential to address challenges associated with software
development in general and GSD in particular. Potential benefits of using cloud
computing in Global Software Development have been discussed in literature [21,
22]. Many of the benefits that can be achieved by incorporating cloud-computing
paradigm are targeted to problems that emerge as a result of distance, differences in
time and culture, and lack of face-to-face communication support. Some of the
potential benefits that can be achieved by incorporating cloud-computing in GSD are
possibility for increased coordination, easy support for technical development,
minimize impact of geographic distances, enhanced communication and
collaboration, and rapid solutions to technical issues [21, 22]. Moreover, applications
and tools provisioning as services can reduce tools licensing costs, facilitate easy
alignment of tools with processes, support enhanced traceability between artefacts
managed by geographically distributed teams, enable manipulation of huge data
volumes of sensitive nature, provide easy access to expensive technology and
sensitive hardware, and enhance awareness and collaboration [22].

Few studies have reported potential benefits that can be achieved by introducing
cloud computing paradigm in GSD [21, 22] and have elaborated high-level
requirements as well potential solutions [22]. However, to the best of our knowledge
there are no comprehensive solutions available that use cloud-computing paradigm to
support software development activities throughout GSD lifecycle. In order to support
the provisioning of GSD applications and tools, we do not only need to provision
them rapidly but also be able to combine individual services inside applications and
tools to match end user requirements. It is important to bundle the applications and

! 15!

tools together so that they can be offered as a suite of tools that can seamlessly be
adopted by a organizations involved in GSD project. When we consider bundling
heterogeneous tools and applications together, there is also a need for providing
support for traceability among artefacts being maintained by tools and supporting
collaboration activities among applications/tools. The applications and tools may
compose multiple services inside and the services may have multiple versions, hence
we also need to incorporate composition of services according to the requirements.

Software development processes are main drivers of development activities. When
bundled suite of applications and services are provisioned, they need to be aligned on
the software development process and data transformation between them should take
place according to the defined process. Last but not the least, all the provisioning
should take place according to the according to the location constrains of the data. To
meet the challenged associated with a GSD we have provided a middleware Platform
for providing software development applications and Tools as a Service named
PTaaS. The platform presented in this thesis is a first step to move forward in
addressing GSD challenges. Our aim is to complement existing pool of available
applications and tools by providing a platform that supports on demand provisioning
and seamless integration among them. In the thesis; we have discussed the possibility
for provisioning software development applications and tools as services, the
important features and requirements for the platform to support offering of
applications and tools as services in GSD context, and software architecture of the
platform that satisfy the requirements. Although the platform may be used to support
collocated teams as well but our focus is on GSD; hence, the discussion carried out in
the thesis is focusing on GSD. Specifically, we address following research questions.

1. What are important characteristics of the GSD tools, which should be considered

while providing a platform for their provisioning as services?
2. What are important attributes of software architectures for cloud-enabled systems,

what are different approached for achieving those attributes?
3. How the knowledge gain from research question 1 and 2 can be combined and can

be extended to provide architecture for the middleware platform that can support
provisioning of software development applications and tools as services?

In order to find answers of research question 1 and 2, we have discussed literature
relevant to GSD and software architecting techniques for cloud-enabled systems in
considerable depth in Chapter 2. We have used this knowledge to extract
requirements for the middleware platform and have presented the requirements in
Chapter 3. In Chapter 4 we have provided reference architecture of the middleware
platform for satisfying the requirements described in Chapter 3. In Chapter 5, we
provide detail of the prototype implementation of the platform to demonstrate proof
of concept. In Chapter 6 we have provided summary of the topics to conclude the
thesis and have provided direction for future work. Detail of APIs to access important
features of the platform is provided in Appendix.

! 16!

! 17!

2. Related Work#

In this chapter, we present an overview of the related work to gain through
understanding of the literature that can be used to provide software development
applications and tools as services using scalability and resource provisioning model of
cloud computing to meet Global Software Development (GSD) challenges. The
literature discussed in this chapter is aimed at not only providing a useful insight into
the state of the art practices for designing and implementing systems using cloud
computing resource provisioning model but we also aim at discussing specific GSD
challenged that arise the need for having software development applications and tools
provisioning as services. We discuss the current web enabled applications and
integrated development environments (IDEs) being offered by different vendors and
discuss why the currently approaches are not sufficient to provide solutions to GSD
challenges. We also elaborate specific GSD dimensions to find out specific features
that our envisioned reference architecture should support. The related work discussed
in this section aims at addressing the following questions.

Question 1: What type of application and tool support is available for GSD projects
and what are primary problems that the applications and tools are addressing? The
software applications in general and GSD applications in particular can be provided in
many different forms and at many different layers. For example, applications can be
provided as independent tools, in form of integrated development environments and
or in terms of middleware platforms. First purpose of this question is to identify the
different types of applications and tools. Second purpose is to identify what are key
features of the applications and tools used in GSD. It is important to find out key
features and characteristics so that the envisioned reference architecture of the
platform for hosting GSD applications and tools can be designed accordingly.

Question 2: Does shared software development process among multiple sites
involved in GSD play a role in success of GSD project? This question is aimed at
finding evidence regarding the importance of having a shared development process
and a common set of applications and tools aligned with the process.

Question 3: Do existing cloud-enabled applications and tools are able to provide an
appropriate solution to meet GSD challenges? Are there any shortcomings that
hinder the adoption of existing cloud-enabled solutions? These research question
aims at briefly analyzing existing solutions and find a gap between offerings and
needs.

Question 4: What are key characteristics of the cloud-enabled systems that should be
considered while designing and constructing them? As stated in introduction that the
main objective of this thesis is to propose reference architecture for facilitating
software development applications and tools as services. By exploring different
dimensions of the cloud-enabled systems, we get an insight to the related aspects of
proposing reference architecture for the platform.

In the following subsections, we explore related literature to find answers of the
research questions. We use important findings from the literature to extract

! 18!

requirements of the platform for providing software development applications and
tools as services (described in chapter 3 of the thesis).

2.1. Question#1:#Types#and#characteristics#of#applications#and#tools#used#for#
supporting#GSD#activities#

In is stated earlier that GSD is characterized by involvement of distributed
development teams from geographically distributed locations and it has emerged as
one of the most popular model for developing software [23, 24]. In order to
successfully leverage the advantages of the GSD, appropriate tooling support is
required for all the activities encompass in GSD [25]. There are a large number of
open source and closed source tools available to support GSD activities [26]. Tell and
Ali Babar has also provided a comprehensive overview of the available tools for
supporting GSD in their systematic mapping study on Tools for Distributed Software
Development Teams [27]. They have classified studies into categories including
communication, collaboration and coordination. Steinmacher et al. have also
described communication collaboration and coordination as primary means to raise
awareness among distributed development teams [28]. Tell and Ali Babar [27] has
argued that applications and tools for supporting GSD are offered in following forms
or types.

• Stand along applications and tools: These are independent applications and tools

developed by vendors to address a specific activity of GSD.
• Frameworks: Applications structures to provide a foundation for building domain

specific tools.
• Middleware and platforms: These are middleware software implemented to

facilitate integration between compatible applications and supporting intra
operability.

• Integrated Development Environments: These tools consist of development
environments for programming languages with the ability to integrate with related
applications, e.g. databases, applications servers and version control repositories.

• Plug-in: There are extensions developed on top of existing applications or
integrated development environments by using the APIs provided by them.

Questions 1 also aim at finding problems, which software development applications
and tools are trying to address so that we can identify support required by the platform
for provisioning them as services. For that purpose we have reviewed the problems
that applications and tools used in GSD are trying to solve. We have gathered the list
of tools and corresponding literature reported in mapping studies on software
development tools used in GSD [27, 29]. Our aim is only to find out the key
characteristics that are to be supported by the envisioned platform for hosting GSD
tools as services; hence we are providing main classes of the problems reported in the
[27, 29] below without going into details of studies.

Awareness, Collaboration and Coordination:
It is one of the primary features being focused by tools for supporting GSD.
Awareness is defined as “an understanding of the activities of others, which provides
context of one’s own activities” [30]. Awareness is improved by allowing people to
coordinate and collaborate with each other. The objective of collaboration is to allow
people to collaboratively work with each other in relevant group activities [28],
Whereas coordination focuses on making people aware of their activities and its

! 19!

effects on others [28]. Collaboration and coordination are considered essential to raise
awareness among team members. The large number of studies reporting the need for
awareness [30-33], collaboration [34-37] and coordination [23, 38-41]; and proposing
tool support emphasize their critical role in GSD and the need to incorporate them in
new paradigms for supporting GSD activities.

Support for Integration:
Software development tools need to be properly integrated with each other in order to
support end-to-end software development life cycle to maximize the productivity of
the stakeholders involved in software development activities [42]. Maalej has also
reported challenges that traditional software integration mechanisms fail to cater [42].
These challenges are associated with retrieving artifacts and making establishing
context of the change on local environment, synchronization of the development
artifacts among development teams, manual synchronization of artifacts and
corresponding working plans and sharing context of the changes.

Virtual Communities/Teams:
The stakeholders involved in GSD are often referred as virtual teams because they do
not share physical locations but still work as teams. Although software development
activities on distributed locations are controlled through processes; but the
unavailability of the thorough integration between application, tools and technologies
used make it hard to keep the stakeholders aware of the each other activities when
working in a collaborative fashion [43]. Choosing appropriate tools for virtual teams
involved in distributed development is also not straight forward, specially when
participating sites of GSD are not part of same organization [44]. A large number of
studies have been reported to address challenges associated with virtual teams [44-47]
highlighting the importance of explicitly taking care of technology need for virtual
teams for supporting tool integration, collaboration, coordination and support for
adoption of desired applications and tools.

Traceability and Automated Updates:
Providing traceability between artifacts being maintained at distributed sites is of high
importance in order main integrity of products under development. Souza et al. have
highlighted the need for having explicit support for traceability through visualization
and emphasized that tools should not only offer support for traceability but should
also keep record of producers and consumers of the artifacts [48]. Although
traceability between a unified set of tools offered by some vendors specific tools (e.g.
IBM Rational Suite), but providing traceability between across heterogeneous tools is
a challenging task because of unavailability of the information about the users and
context of the artifacts.

2.2. Question#2:#Role#of#Process#in#GSD#
The role of software development process in success of GSD projects for successful
coordination while performing team activities has been discussed in many studies [32,
49-51]. Dustdar and Gall [32] has argued the need for process awareness of virtual
teams involved in GSD and described information sharing, process sharing and
process composition as key requirements to be met by the automation support. They
have also emphasized that the need for synchronous collaboration of artifacts. Wiredu
[49] has marked process as an important dimension in his framework for analyzing
coordination in GSD and has phrased is as “mode of operation”. Bhat et al. has [51]

! 20!

marked process as a strategic success factor for requirements engineering and have
argues that lack of shared process can result in conflicting requirements. These studies
shows that the absent of a shared process across sites involved in GSD can result in
improper artifacts. All of these studies emphasize that any technology support for
providing for GSD should keep software development process at it core.

2.3. Question#3:#Limitations#of#Existing#Solutions#
There are many web based and cloud based applications available to support GSD.
These tools include project management applications, tools to facilitate distributed
teams engage in collaborative activities like planning, software design tools,
development IDEs, and collaborative text writing tools. A list of some poplar cloud
enables applications and tools is shown in Table!1 along with their main features. All
the tools provide comprehensive solutions to address GSD problem. However, their
inability to integrate with each other make them less effective to provide end-to-end
solutions. Many of them (for example, LucidChart, Cloud9 and eXo) does not provide
control over acquiring them according to location and security constraint (for example
secure multi-tenant support) make them not usable in projects that involve working on
security sensitive artifacts. Moreover, few tools including development IDEs need to
integrate with a large number of other applications and tools (for example, version
control systems, applications servers and databases) before they can be efficiently
used in the software development environment. There are also integration frameworks
like IBM Jazz Platform [52] those provide comprehensive support for collaborative
software development and has been discussed in literature. However, the
infrastructure and cost required to set up Jazz Platform make it less effective to be
used in small and medium sized organization. These limitations raise the need to have
a new paradigm that can incorporate integrate platforms like IBM Jazz and provide on
demand provisioning of applications and tools to support their integration based on
the data artifacts they produce or consume and allow their provision according to
location and security (secure multi-tenancy) constraints.

Table.1:.Available.CloudZenabled.Solutions.

Tool Name Features

AgileZen [53] Collaborative project management.
LucidChart [54] Tool to create flowcharts, organizational charts, website wireframes,

UML designs, mindmaps, software prototypes.
MeetingSphere [55] Group meeting and decision support system.
Microsoft Live Meeting
[56]

Web conference service.

Microsoft Project [57] Project management solution.
Microsoft Team
Foundation Server [58]

Source control, data collection/reporting and project tracking.

Pidoco [59] Software to design GUIs for web and mobile apps and make it live to
share with other users.

IBM Rational Software
Solution for Cloud [60]

Suite of tools consisting Rational Team Concert, Rational Quality
Manager, Rational Requirements Composer, Rational Asset Manager,
Rational Build Forge, Rational Solution for collaborative lifecycle
management, and IBM Smart Cloud.

Cloud9 IDE [61] Cloud-anabled Online IDE.
Eclipse Orion [62] Cloud-enabled IDE that can be hosted on private/public clouds.
eXo Platform [63] Collaboration Platform and IDE.

! 21!

2.4. Question#4:#Key#Characteristics#of#Cloud#Enables#Systems#
There are a large number of studies focusing on solving problems for cloud-enabled
system at different levels of abstractions. We have picked up selected number of
paper from the available literature to find out answer of question 4. These papers are
grouped into different categories of themes on the basis of the problems they are
addressing to identify important characteristics of the cloud-enabled system. These
characteristics are used to identify requirements of the platform as described in
Chapter 3 and reference architecture as described in Chapter 4.

2.4.1. MultiItenancy#
Multi-tenancy is a characteristic of cloud-enabled applications to serve multiple
clients through same instance of application. Multi-tenancy in cloud enabled system
can be achieved at different levels of abstractions, i.e. at service level as well as at
data level.

Multi-tenancy at middleware is supported by assigning separate service instances
from repositories to each tenant [64, 65]. Information of services corresponding to
tenants is maintained in service registry and a message handler at server routes client
requests to services with the help of message dispatcher. A security component is
responsible for handling user management by considering roles assigned to each user
belonging to a specific tenant along with resources assigned to tenants and actions
that users can perform on the specific resource. Services of a specific tenant have their
own infrastructure, persistence units and management console for managing
infrastructure.
Multi-tenancy at database layer can be achieved by implementing a database driver
capable of maintaining database index that can provide a mapping between tenants
and their databases [66]. Moreover, inside each database, every table has an additional
column that specify owner of the data. Having this type of multitenant database index
allows applications to query databases in normal way without explicitly selecting
separate databases for each tenant.

2.4.2. Supporting#Multiple#Types#of#Client#Devices#
The ability of being part of network enables different types of client devices to utilize
features of cloud computing for accessing smart and reliable applications [13, 67].
Limitation of processing and storage resources on mobile devices can be overcome by
taking advantage of automated, dynamic and reliable runtime configuration of
components on mobile devices and on cloud [13, 68]. Spatial and context awareness
features allow building location aware services on mobile devices [67-69].
The studies [70, 71] discuss distribution schemes of components on mobile devices to
perform complex tasks. The technique described in [71] divides components into two
categories; i) components used for interaction with end users and ii) components used
to perform business logic. Components used for business logic can be deployed on
available mobile devices even though the devices are not being used by end users for
interacting with system. The study [70] presents algorithms for selecting optimal
configuration of components on mobile and on cloud to take maximum advantage of
mobile platforms and network bandwidth while keeping cloud resources and cost and
bare minimum level.

2.4.3. Middleware#and#Platforms#
The papers grouped into this category described middleware software platforms that
are supporting services and applications hosting on cloud infrastructure and their

! 22!

interaction with each other. The studies [13, 72, 73] describe middleware support for
reliable automated deployment of services and components on cloud as well as on
front-end machines according to Quality of Service (QoS) requirements. The
communication between services satisfying QoS agreements is also the focus of these
studies. Representational State Transfer (REST) based approach for managing
infrastructure and REST based services on cloud is described in [74, 75]. The
techniques separately maintain configuration of distributed services and services
associated with domain aware processes. This configuration is managed at three
different levels of isolation: information common for all services containing contract
information and device configuration, standard management information of services
defining standard specifications, and private information of services like QoS
requirements and Service Level Agreements (SLAs). Altocumulus framework by
IBM is described in [76] which address intra operability issues between clouds. It
provides Dashboard supporting interaction point between end users, a core
encapsulating rules and cloud adapters for supporting execution on different cloud
platforms. An extended YML framework for scientific computing is presented in [77]
explaining different components of the framework used in scientific computing.

Cloud-enabled applications can server a large number of tenants that can use different
versions of the same software. Architecture for maintaining multiple versions is
presented in [78] and suggested need of version management system module capable
of maintaining partitioning between different versions of the system and capable to
bundle specific version of the system with respect to a particular tenant’s subscription.
The platform presented in [79] allows home services to be selectively opened to
remote users and semi-trusted external services. The motivations to host data and
services at private self managed location is availability of large and cheap storage
availability as compared to the online services, data privacy with full administrative
and legal rights, real-time data access if the data is available directly from private
locations and common repository with all contents at the single location. Two steps
request filtration mechanism is suggested by using with trusted proxy server on public
Internet as first level of filtration and tunnel server between Internet and home
network as second level of filtration.

2.4.4. Workflow#Support#
Papers included in this category provide architectures for trust worthy and continuous
data processing in open distributed systems, workflow management for processing
huge volumes of data and distributed processing on sensitive data [80-84]. This
section focuses on architecture constructs for taking advantage of combining private
cloud with public infrastructure in workflow bases system.

The data processing approach presented in [80] propose that every component should
know about minimum part of the workflow rather than knowing all of it. Components
keep track of each data unit they receive and produce and know only about its
upstream and downstream components. A randomized consistency check is
performed for verification and integration of scalable dataflow processing. For
distributed processing of data, use of cloud side engine and client side engine is
presented in [82]. These engines are responsible for managing components’
configurations according to data sensitivity requirements as well as with respect to
processing capabilities of infrastructure at client and cloud side. The studies [81, 83,
84] describe components of workflow systems and multiple stages involved in data

! 23!

processing. The components are distributed among user layer, infrastructure layer and
middleware. Cloud side engine and user end engine is responsible for components
distribution on user end and cloud end. Data collection, re-projection, analysis, task
scheduling and processing correspond to multiple data processing stages.

2.4.5. Consideration#for#Building#Cloud#Applications#
Studies presented in [85, 86] layouts factors to consider for considerations while
building applications for cloud. The main considerations are integration with existing
ecosystem of application, exposing reusable business logic as services, subscription
based resource provisioning of cloud resources through application and service
offerings according to QoS requirements. The cloud aware approach is presented in
[86] that suggests building applications after considering underlying cloud virtual
infrastructure of the target platform in order to achieve application’s non functional
quality attribute requirements. The cost of CPU, storage and networking resource
should be carefully analyzed for estimating overall application cost.

2.4.6. Data#Management#
Multiple alternatives for implementing databases in cloud applications are presented
in [87-90]. Data partitioning and replication is commonly used technique for handling
data in distributed environment while exposing database services as REST interfaces
is convenient approach for using a shared database by multiple services. Memory-
based column database is presented in [89] to make aggregations and joins at run time
without having materialized views. It consists of three types of processing
components: cluster leader, router and instance managers. Cluster leader assigns the
data to the instance manager, which takes care of multiple tenants. Assignment
information is maintained in a cluster map and managed by cluster leader. Cluster
map is propagated to the routers and instance managers. Cluster leader also track
changes to the cluster state. As a response to the valid request, a change is made in the
node for which request is received and later it is asynchronously replicated to other
nodes.

A model for defining boundaries of sensitive data and achieving data privacy in
Service Oriented Architectures (SOA) is discussed in [91]. The model suggests that
services for managing data privacy and protection at run-time should take care of
boundaries, ownership and legal requirements regarding the sensitivity of data. The
use of separate management services on cloud and data hosting platform is also
suggested.

2.4.7. Managing#Distributed#Resources#
The studies [90, 92, 93] describe techniques for utilizing distributed cloud resources.
Google has developed a Map Reduced programming framework for supporting
parallel computing and access to the database [92]. Client side execution, cashing,
pre-fetching of data, paging scheme for faster data retrieval, environmental aware
evolution and adaptation, autonomous handling of scheduling, prioritization, safety
and security issues, design of product services, design of business cases and
considerations for service delivery platform are key features of architecture for real
time and enterprise service oriented cloud computing [90].

2.4.8. Risks#in#CloudIEnabled#Systems#
Risks associated with cloud computing are grouped into four categories: operational
risks, contingent risks, security risks and business risks [94]. Operational risks deal

! 24!

with availability, reliability, integrity of services and data, service provision according
to users’ requirements and maintainability. Contingent risks address service and data
survival, impact of major service interruption, frequency of interruption and
resilience, as well as compatibility and flexibility. Security risks include service and
data security, authentication and authorization, and susceptibility to denial of service
attacks. Business risks involve cost, unsatisfied customer service by cloud providers,
privacy breach, and legal conflict of application requirements with how infrastructure
is maintained by cloud providers.

2.4.9. Resource#Scalability#
An approach to achieve pre-specified scalability of cloud-enabled application and
mash-up services using resources pooling from multiple clouds is presented in [95].
System level schedulers and load dispatchers are used for sharing load between
services deployed on cluster of clouds. Some other system services are suggested for
providing enhanced availability of the system. These services include fault
identification services to determine services failures and possible cause of failure,
actuator services for finding remedies of the failures, proxies for providing
encapsulation and orchestration, and modules taking care of adaptability of partially
mismatching services.

Scalability and resource provisioning can also be achieved by defining elasticity rules
and load balancing algorithms [96, 97]. It requires explicit declaration of rules for
resource allocation, replication, migration and decomposition of composite services as
well as each individual service inside composite ones. The language for describing
constrains on architecture for cloud computing infrastructure that can deal with
resource allocation and implementation of service life cycle management process is
also discussed in [96]. A dynamic scaling algorithm monitors the performance of
application instances and launches new instances on pre-configured virtual machine
images. It also handles shutting down of running instances if load is reduced. It
considers number of concurrent users, number of active connections, number of
requests per second and average response time per second are important scalability
indicators for monitoring the scalability requirements of the services and application
on cloud [97]. However, these studies do not describe applicability of this technique
on PaaS environment where users don’t have specify scalability rules for aggregated
or composed services.

2.4.10. Reliability#
Reliability deals with system functioning according to the desired behavior. It is
measured in terms of systems availability and correctness of the results produced. It is
more complicated to ensure reliability on cloud enables systems. These systems are
often built on top of infrastructure and services provided by external providers. If any
of the services fails to meet reliability standards, it will impact whole system. In order
to cope with this challenge, the system should be able to dynamically find
replacement services in case any of existing services fails to meet reliability
conditions. In order to have risk free collaboration, services build using cloud
infrastructure also requires assurance for reliability. An insurance based reliability
scheme is introduced in [98] for achieving this quality attribute. Insurance agent
supports matching between service provider and service consumer. It also guarantees
that service providers offer services according to QoS requirements by charging
insurance fee from each of the service provider in case they fail to meet SLA. A
mathematical model to predict bankruptcy risk is also presented. According to this

! 25!

scheme, aggregated service provider is responsible for reliability of all the composed
services and it does not take into account reliability of composed services.

2.4.11. Service#Adaptability#
It allows services to be deployed on heterogeneous cloud environments and with self-
organizing deployment mechanisms services can manage resource provisioning
without human administration. Services build using REST architecture style is easily
adoptable because of their stateless nature. The term liquid services is used in [99] for
adaptive and transparently deployable services. In the proposed model, every resource
(reactor) can be a service provider as a well as service consumer. Web service
application has one entry reactor to accept requests from the external clients and to
provide the final results. It further categorizes reactors into two types, managed
reactors (whose business logic is maintained within the application) and unmanaged
reactors (proxies to external third party RESTful web services used by managed
reactors to provide final services). The approach presented in [100] uses service
mediation and negotiation techniques to handle environmental changes and system
failures. However, both of these approaches neither discuss cross platform
adaptability nor describe how services can be ported from one environment to other
when they are live.

2.5. Discussion#
It is described in the beginning of this chapter that the aim of literature review is to
find out answers of the research questions 1, 2, 3 and 4. After reviewing the relevant
literature, we are able to find the answers in sufficient detail that can help to derive
inspiration for forming requirements and designing architecture of the middleware
platform.

Regarding questions 1, the review of the literature has identified that applications and
tools to support GSD are implemented in different forms ranging from stand-alone
applications to plug-in for integrated environments. This highlighted that middleware
should support its interface in a platform neutral fashion that are accessible by all
types of application. The important characteristics that middle should incorporate are
support for collaboration, traceability, explicit support for integration between
different types of information, and capability to address needs of virtual teams. The
literature reviewed to find answer of question 2 suggests the importance of explicitly
taking care of software development process by the middleware.

The tools discussed in regard to find answer of question 3 demonstrate that there are
selected tools available in form of online IDEs, design tools, text processing software,
and platforms to support for software development activities like Jazz Platform and
IBM rational suite. The inability of the cloud based tools to integrate with other tools
in order to support full life cycle of software development life cycle make them less
effective to meet needs of complex GSD activities. The investment and effort required
adapting to platform like Jazz Platform and IBM rational suit make them less feasible
for small and medium sized organization. Hence, there is a need for a new paradigm
that is only easy to adopt but also cost effective for small and medium sized
organization with limited resource. After reviewing the literature to get in depth
knowledge and answer of question 4, we have come up with large number
characteristics for cloud-enabled systems. More important of these characteristics are
support for multi-tenancy, ability of the applications to server different types of client

! 26!

devices, workflow support, managing distributed resources, scalability and reliability
of the resource.

The knowledge gained from the review of literature is used to come with the
requirements of the platform elaborated in Chapter 3. The review of the literature on
cloud computing has provided us detailed knowledge about important characteristics
and architecture solutions to incorporate these characteristics in cloud-enabled
systems. We have utilized this knowledge in designing architecture of the PTaaS
described in Chapter 4.

! 27!

3. PTaaS Requirements##

In this chapter, we give a brief description of the requirements that we intend to
incorporate while defining the reference architecture of the platform. Although, we
already have discussed the relevant literature in detail in Chapter 2; we will discuss
some important aspects in a bit more detail to lay foundation for the requirements.

There are few studies attempting to describe the role of cloud computing and
virtualization technologies in the Global Software Development [21, 22, 101, 102].
Use of virtualization technologies to bundle set of tools in a virtualized environment
is demonstrated in [101]. Hashmi et al. [21] have described how GSD can take
advantage of the cloud computing offerings to address geographical and temporal
issues. These issues emerge as a result of distance between distributes teams, lack of
knowledge transfer, limited access to unified set of tools, less visibility of the
activities across other sites and a risk of loosing project artifacts. Introducing cloud
and service computing in the context of GSD can make it possible to achieve dynamic
and runtime binding of the services and their availability to the end users on demand
[21, 102]. It also reduces overhead of manual configuration of development
environments on each site involved in GSD. By utilizing scalable of cloud storage and
computing resources, organizations can host their data and services on centralized
locations and make them available to the end users [21].

In our previous work [22], we have investigated concept of offering software
engineering applications and tools as services on cloud. We have provided a high
level overview of the advantages that can be achieved by the offering. The advantages
include: no obligations to fixed license fees, possibility of aligning tools with software
development processes, tractability between artifacts maintained on different
distributed sites, ability to work with huge volumes of sensitive data, and support for
awareness & collaboration. Some of the quality attributes that are important to be
achieved in such an infrastructure include: support for large number of organizations
following different processes, maintaining different version of the applications &
services, composing them into a unified solution, inter tool compatibility, providing
secure access to sensitive data, ability to consider need of multiple types of end user
devices and compliance with end user service level agreements.

Martignoni [102] has argued that lack of transparency in traditional software
development and management tools may arise problems when used for GSD. He has
emphasized the need for tools and services that can align business and technical
issues. He has proposed a model to combine functional and strategic dimensions
together to support and achieve optimal technical development strategy and
minimizing project risks. Using SaaS model in GSD can enable tools offerings from a
centralized location and help external collaborators to have access to same
development environments as used by teams who are working on development of
projects. Apart from providing support to meet technical challenges, centralized
offerings of GSD tools and services can also enables organizations to develop best
practices by having a complete insight into software development and management
activities.

! 28!

Richardson et al. [103] formalize the concept of Virtual Teams in GSD as described in
chapter 2. Although virtual teams work to achieve shared objectives in the same way
as traditional teams, but their placement on different geographic locations and
working from different time zones make them different because communication takes
place through electronic communication channels rather than face-to-face meetings.
They have emphasized importance of collaboration between teams to maintain work
product ownership boundaries among interfacing locations, define and maintain
processes to exchange data, and exchange of actual artifacts that are either consumed
by sites or produced by sites. Awareness and visibility of activities among sites is also
an important factor that plays a role in more fruitful GSD environment.

Based on the finding from question 1, 2 and 3 explored in Chapter 2 and points
discussed above; we provide brief description of the platform requirements in
following subsections. The requirements are derived by taking inspirations from the
discussed literature and our vision of the platform for providing GSD applications,
tools and services. We have divide requirements into two main parts: features of the
platform and quality requirements the middleware platform needs to satisfy.

3.1. Requirements#for#Platform#Features#
.
R1:.Providing.Support.for.Applications.of.Different.Types.
We have discussed in chapter 2 that applications for supporting software development
activities can exist in many forms including stand alone application, integrated
development environments, middleware platforms and plug-in. For the envisioned
platform to be able to support this heterogeneous types of applications, it should
expose its interfaces in form of platform neutral APIs so that the tools can access
platform’s features seamlessly.
.
R2:.Authentication.and.Authorization.
One of the primary requirements of platform to provide end-to-end solution for GSD
applications, tools and services is to manage users and tenants on the platform. In the
context of our middleware platform, we consider tenants as a group of users with a
specific set of preferences. A tenant may represent all stakeholders involved in the
GSD project, a project site, or an individual team on a distributed site. Management of
tenants and users by the platform is also needed to provide single authentication
mechanisms when application, tools and services developed by multiple vendors
integrate with each other. If we do not provide a uniform authentication scheme
through a single point, it is not possible to combine different set of applications, tools
and services according to their features and provide them to end users as a unified
solution.

R3: Repository Management
For materializing concept of offering software development application and tools as
services, first and one of the foremost requirements is to manage the repository of
applications, tools and their corresponding services so that they can be bundles and
provisioned according to the need.

R4: Integration
Our goal to provide the platform for offering software development tools and
applications as services in context of GSD is to provide an end-to-end solution to the

! 29!

organizations that are participating in a globally distributed project. Hence, the
platforms should be able to capture tenant’s requirements, and use the requirements to
bundle tools and applications in a way that the bundled package supports all the
necessary requirements.
When application, tools and individual components are to be bundled as a unified
solution, the platform should support a mechanism to resolve interoperability issues
and facilitate data exchange between individual elements of bundled package. The
inter operability solution should not only provide support to exchange data in
different formats but also should support different communications protocols.

R5: Composition
Software development activities are specific because they often involve more than
one tool to carry out development task. The required tools and applications are
dependent upon each other and cannot be used in isolation. For example, during
development of web applications, IDEs often need to be configured with application
server so that unit testing can be performed. The platform should provide features and
interfaces so that tools dependencies can be specified.
Compatibility between the applications, tools and individual services should also be
considered when they are composed as a unified solution. To cater this requirement,
the platform should have feature matching and compatibility support so that the
desired configuration can be composed by combining compatible individual elements
and satisfying users’ requirements.

R6: Alignment of Tools with Processes
To materialize the concept of offering software development applications and tools as
services, it is important that the platform is able to capture the process that
organizations involved in the GSD activity are going to follow and map tools on
process accordingly. To accomplish this feature, the platform needs to consider
different stages of the process, tenant participating in each stage, which tools are
going to be associated with each stage, how tenants from one stage of the process are
going to have access to produced artifacts, how tenants from different stages of the
process will have access to produced artifacts and how the artifacts can be managed
on cloud so that they satisfy data privacy requirements of the tenants. When large
numbers of software are working in a workflow like approach, the platform also
needs to ensure that data is exchanged between software in proper order.

R7: Support for Collaboration and Traceability
Collaboration among teams is a primary concern in GSD. The published literature
refers collaboration as interaction between teams members to facilitate them in
carrying out their daily tasks as discussed in chapter 2. This interaction takes place
through the use of electronic medium. In context of software development application
and tools as services, collaboration takes an additional dimension. The set of tools
provisioned for a particular project also need to collaborate with each other in order to
exchange data. Similarly the platform should also support traceability among artifacts
that are maintained inside heterogeneous tools so that other tools can be notified
whenever the artifacts are modified.

R8: Supporting Virtual Teams
The platform should provide appropriate support for virtual teams and keep virtual
team management aligned with processes. It is necessary to capture concept of virtual

! 30!

teams at the platform so that appropriate persons can be assigned to different parts of
the software development process and only assigned persons can have access to the
provisioned tools and engage in collaboration activities.

3.2. Quality#Requirements#
Other than incorporating functional requirements, the cloud platform also needs to
incorporate some non-functional requirements. This section provide a description of
the quality concerns that important from the point of view of GSD application and
tools as services.

QR1: Compliance with location and multi-tenancy constraints
Location of data and services, and sharing of services among multiple tenants are
primary concerns in multi-tenant cloud environments. This concern becomes
prevalent in GSD context because of involvement of multiple stakeholders. The
stakeholders may have different privacy concern. Therefore the platform need not
only capture these concerns but also provision application, tools and individual
components/services according to preferences.

The provisioning of applications and tools should be done according to multi-tenancy
and location constrains specified by the users. Multi-tenancy constrains can be
specified as shared or exclusive. If tenants have opted for exclusive usage, separate
instances of applications, tools and services are to be enacted for the tenant. If tenants
have opted for shared usage, they can be granted access to applications instances that
are shared among other users as well. For shared usage, application users have to rely
on multi-tenancy support provide by applications and tools. Tenants can also specify
location constraints on application and tools, and these are provisioned on the
underlying IaaS cloud on the specified locations (e.g. US Region or EU region)
provided that IaaS provides hosting support on the regions.

QR2: Awareness of Context of the Client Devices
The clients of the applications and tools may access the hosted applications from
different types of devices. Also the tools and services may have different flavors of
the services for different types of client devices. The platform should be able to
manage different flavors of applications and tools as well as should be able to identify
context of the client devices and manage requests accordingly.

QR3: Lifecycle Management
The applications and tools are hosted on the underlying IaaS cloud when they are
enacted and provisioned. The platform must have capabilities to manage resource
provisioning from the underlying IaaS cloud and impose constrains on the IaaS that
ensure smooth functioning of the applications, tools and associated
components/services.

3.3. Scenario#Analysis#
To better explains the potential benefits that can be achieved by having a platform
that can support software development applications and tools as services, and to
clarify the requirements elaborated in section 3.1; we are providing a concrete
scenario. The scenario covers potential benefits that can be achieved by having the
platform and why it is important to incorporate the specified requirements.

! 31!

The hypothetical scenario describes enhancement in the software named
ShipDesigner dealing with core business of the company named XBuilder. XBuilder
is a Scandinavian company having expertise in design ships. The company has its
offices located in two Scandinavian countries Denmark and Sweden. The software
development company named DesignerSoft had been developing software in the past.
Before they enhancement project was initiated, DesignSoft had reduced their
workforce in Denmark because of some organizational restructuring. As a result,
when they have received enhancement request they do not have required workforce to
allocate on the project. To meet this challenge they have decided to introduce global
software development in their company.

After initial analysis of the potential companies around the word, they have identified
that Vietnam and China are potential countries where they can find partners
organizations with required expertise and workers with proper domain knowledge.
However, DesignSoft has to consider a number of factors before they can engage in
partnership with Chinese and Vietnamese companies. The first and foremost
challenge that they encounter is constraints on project source code and test bed of data
that XBuilder has provided to DesignSoft. XBuilder does not want its complete
source code to be provided to development firms in China and Vietnam because they
are afraid that their competing organizations can have access to it and they may loose
their competitive advantage over them. Second concern they have is about movement
of test data drawings. Some of the test data drawings are of sensitive nature and
contain designs of some Danish and Swedish war ships. They are under obligations
by both Danish and Swedish government to not let the data go out of European
Union.

DesignSoft has decided to introduce cloud in their company for the first time to
address this situation. They have set up a small private cloud to store private and
sensitive ship drawings on their premises to avoid a risk of their theft or loss. To store
the non sensitive data and they have acquired resources of Amazon’s European Cloud
offerings. This setup helps them to address the issues of data privacy and risk of theft.
The other part of the problem remains unsolved, i.e. how to enable offshore software
development firms from China and Vietnam to have access to data and do
development on the project without actually handing over project’s code to them.

Software architects and engineering at DesignSoft have decided to exploit few other
features of cloud to solve their problem. They have decided to configure virtual
machines on Amazon European cloud that developers from China and Vietnam can
access to perform their development activities. They have configured the virtual
machines in a way they developers from remote sites cannot transfer code and related
artifacts to other sources. However in order to get the code compiled and integrate
with main code base, they need to transfer individually developed code artifacts from
virtual machines and place them on a place where they can be effectively integrated
and easily compiled. The developers may need to compile code several time during
development to check errors, perform unit testing and see the results of their code.
Hence software engineering at DesignSoft has written glue code components that can
fetch code from the virtual machines and deploy that on a cluster of scalable Amazon
European cloud so that large number of requests can be catered without introducing
any unnecessary delay. They have also written applications to display compilation
results to the developers. As virtual machines also hosted on Amazon European cloud

! 32!

where source code is being compiled, hence the data propagation delays are not
significant high. Facilitate testing on using private data; DesignSoft has deployed
their testing environments and virtual machines on private cloud enabling testers from
remote site to use real data and enabling testing on all possible scenarios.

Data transmission schemes are managed by implementing a process bus on Amazon
and DesignSoft’s private cloud that ensures artifacts are posted on the corresponding
services (for example for compilation of code artifacts) and results are sent to
intended destination (compilation result of the code is returned to the virtual machines
of the developer who placed a compilation request). DesignSoft is able to meet to the
requirements of their current development phase by exploiting cloud-computing
features. This setup has enabled DesignSoft to take benefits of the GSD without
imposing any risk on their business and assets of their clients. This scenario depicts
how we can cope with complex challenged of GSD by utilizing cloud computing
which otherwise would have been difficult to address.

! 33!

4. Architecture of PTaaS #
This chapter describes the reference architecture of the PTaaS (middleware Platform
for providing software development applications and Tools As A Service). The
reference architecture is designed following Service Oriented Architecture and REST
principles [104]. SOA approach is adopted to make it easy to replaces application
services with vendor specific implementations. In order to provide the reference
architecture for providing software development applications as services we have
taken inspiration from available literature on software architecting approaches for
cloud enabled systems as discussed in section 2.4 and have tailored the approaches
according to requirements for our platform.

Figure!1 shows an abstract view of middleware platform and elaborates how it fits
into concept of providing application as services in GSD context. It is elaborated
earlier that GSD is characterized by involvement of stakeholders in application
development from geographically distributed locations. Figure!1 shows hypothetical
scenario representing stakeholders from four different locations involved in a
software development process. There are two sites hosting development teams and
one site hosting testing team. Figure! 1 also shows a fourth site representing main
office responsible for designing application architecture, managing development
operations and interaction with clients.

!
Figure.1:.Context.of.Middleware.Platform

When a new project is kicked off, management team and architects defines
development process in the middleware defining nodes to represent each development
site. The management team also specifies that how the artifacts would be shared
among different sites or how ownership of the artifacts would be changes from one
site to another. The stakeholders from the development sites request middleware with
their requirement for applications needed at each site. The middleware platform

! 34!

bundles applications as required by tenants at each site and provision them on cloud
according to their requirements. Middleware also attach bundled applications with the
nodes in process that represent each unit involved in the development process. The
unit can be an organization involved in GSD, a development site of a GSD project or
a department at a development site. Users at each unit can request applications suite in
multiple forms. They can request for applications that would be shared among all the
users in a development site (e.g. web based applications or specific services), they can
request individual tools (e.g. development IDEs and applications servers) hosted
inside virtual machines for a specific user or they can request an application that will
be used by stakeholders from all sites (e.g. bug tracking system or requirements
management application). The traceability between artifacts is provided through
platform (applications needs to implement compatible interfaces to support
traceability) among application provisioned within a site and across multiple sites.
Changes in data ownerships and data transmissions (in case data need to be
transmitted from application to another) are also managed by platform with the help
of collaboration points.

Figure! 2 shows block diagram of the subsystem making middleware platform for
supporting applications and tools provisioning as services. The middleware is
designed as a layered architecture in which each subsystem provides different
functionalities. Each layer of the middleware is explained in subsequent subsections.
First, the interface layer is described which provide support for having access to
system resources and applications from multiple types of devices. Second, role of
accounting services is described. Third, management layer is explained. This layer is
responsible for management of applications, tools and their corresponding services on
cloud. This layer also takes care of provisioning of the applications and associated
resources on cloud according to the tenants’ location and multi-tenancy specifications.
After that fourth layer is described that is responsible for management of data during
collaboration activities and providing authentication support for users when multiple
applications and services are bundled together. Fifth and sixth layers of the

!
Figure.2:.Subsystems.making.up.Middleware.Platform.

! 35!

middleware platform deals with management of development process and integration
of application and services when bundled together to work as a unified application
suit. We are treating different components inside each layer of the reference
architecture as services so that they can easily be deployed on heterogeneous cloud
environments without imposing any additional constraints on their configurations in
context of a particular cloud environment.

4.1. Interface#Layer#
The Interface Layer is the top layer of the platform. It provides support for
applications to handle request from multiple types of devices, routing of requests to
the appropriate clients and adjust cloud resources according to the specific needs of
clients. The ability of the cloud environment to support adjustment of application
resources on cloud makes it easy for applications to support multiple types of client
devices [13, 67]. Especially for mobile devices, limited processing and storage power
can be balanced by automated, dynamic and reliable runtime configuration of
components on cloud to perform resource hungry operations on clouds and sending
them results to client devices in compatible formats [13, 68]. Spatial and context
awareness features of mobile devices can also be helpful for many GSD applications
to support awareness inside application [67-69]. Applications specific components on
the clouds need to be adjusted according to perform complex tasks when different
types of devices are accessing same application through unified interfaces [70, 71].
To provide these features on the cloud platform, we are presenting architecture style
described in Figure!3. The presented architecture style is only focusing on platform
specific features for supporting multiple types of devices (mobiles, tablets as well as
PC variants). Applications can implement their internal processing components
according to their specific requirements and can keep this information abstract from
the platform.

!
Figure.3:.Interface.Layer

! 36!

We have taken inspirations from the studies [13, 67-71] and concepts presented in
them, and have applied the concepts to propose this reference architecture style. The
description of the different services of the reference architecture style is as follows.

The request from client devices is received by Request Handler service. This service
monitors the request and forwards it to the corresponding Context Monitor that is
capable to parse the request and fetch context information out of it. This context
information is then passed to the Configuration and Adaptation service that
determines the optimal service configuration and sends this information to the
Provisioning Manager inside Management Layer. Internal functioning of the
Provisioning Manager is provided in section 4.3. For first request from a specific kind
of devices Provisioning Manager configures application services according to the
configuration information. To serve future requests from the same types of devices,
service requests are directly transferred to the corresponding services. Response
Dispatcher use context information of the device to transforms the response
recognizable for the client device and dispatches it.

4.2. Accounting#Services#
These services are responsible to record utilizations of the resources and act as a
logger of the resource utilizations by tenants and individual users. This information is
used by the platform to compute user and tenants specific billing. Applications and
tools hosted on cloud that want smart resource accounting needs to call these services
in order to have billing details of each user and tenant. Accounting services are
needed because platform enacts applications and tools at run time and information of
how much actual cost is incurred when resources are utilized cannot be captures
outside the platform.

4.3. Applications,#Tools#and#Services#Management#Layer#
Management layer encapsulates intermediate services responsible for composition of
applications into a suit, their provision on the underlying cloud resources and
monitoring of services once they are deployed and running on the cloud.

The platform support for reliable and autonomous composition and deployment of
services is a key feature for providing applications suits as services for GSD teams.
The importance of having middleware support for autonomous service acquisition is
reported in numerous studies [13, 72, 73, 76, 77]. Autonomous management as a part
of cloud middleware platform to support provisioning of GSD tools as services is
important from two perspectives. First, as applications hosted on cloud can serve a
large number of tenants each of them may have specific requirements for a particular
version of the software [78]. In GSD context, there may be large number of tenants
requesting for multiple tools with their specific version requirements. It is impossible
to manage all the requests through manual administration; hence the platform needs to
provide automated support for selecting applications and services according to their
specific versions. The complexity increase multiple times when multiple applications
and tools are bundles together to be provisioned as a suit. Moreover, when it is
required to host data on secure private cloud, external application and service should
have only selected access to the data [79]. In short, the platform needs to support
following features for managing applications and associated services.
• Handle autonomous composition of application and services according to tenants’

specification [13, 72, 73].

! 37!

• Separate application and service management and distribution strategy from
business logic of the applications and services [74, 75].

• Version management of applications and services to maintain separation between
different components of the applications and their version specific composition
according to the tenant’s specification.

• Trusted services that act as proxies of the secure data services hosted on private
cloud [79].

In the following subsection, we provide description of the main components of the
applications, tools and services Management Layer shown in Figure!2. The reference
architecture styles and their services are also described.

4.3.1. Repository#Manager#
This service takes care of registration of applications and tools associated with GSD,
and their services with the middleware platform. The applications, tools and services
can be registered in two forms.
• By registering their executables, version, list of features, deployment scripts and

information about hosting platforms (application servers, operations system,
network requirements).

• By registering the unique identity of the preconfigured virtual machine template
that can be provisioned to make an application or tool available for use.

The applications and tools are classified into different categories. E.g. integrated
development environments (IDEs), design tools, requirements engineering tools etc.
Whenever applications and tools are registered in the platform, their category is also
specified. Inside each category, applications have sub categories. For example, sub
categories for IDE are Eclipse, NetBeans etc. Sub categories of design tools are
ArgoUML, Visio etc.

4.3.2. MultiItenancy#and#Location#Manager#
This service takes care of tenants’ locations and multi-tenancy preferences and
facilitates service provisioning according to their specification by collaborating with
Initialization and Realization module of provisioning management sub-system.
Multi-tenancy specifications have two levels in the platform, shared or exclusive. If
tenants have specific shared level, then if applications and tools are already enacted,
tenants are granted access to them and these applications and tools as well as their
compose services are shared among multiple tenants. If exclusive option is selected,
then new instances of applications and tools are enacted with a specific tenant as an
exclusive user of the application and tool instance.
Tenants can specify location constrains so that applications and tools are hosted on
underlying IaaS resources on the specified location. If location constraints are
defined, then applications and tools along with their composed services are enacted on
the specified locations provided that underlying IaaS cloud supports location specific
enactment.

4.3.3. Life#Cycle#and#Provisioning#Manager#
This set of services takes care of deployment of application, services and tools on
underlying cloud infrastructure, enact them and make them available for end users.
This service is composed of multiple sub service. Tenant specific location constraints
and elasticity rules are stored in Life Cycle & Scaling Rules Repository. Whenever a
new request is received for provision, its life cycle and scalability rules are retrieved

! 38!

from the Life Cycle & Scaling Rules Repository. These rules are parsed by Parser
and are structured so that Interpreter can covert them into action scripts and pass it on
to Initialization & Realization Module so that applications and services can be
provisioned according to the location and privacy constraints. Once applications and
services are deployed on the underlying IaaS cloud, these are continuously monitored
by Monitor to see if services performing according to performance and privacy
constraints. Monitor takes input from Performance Parameter Manager for required
performance requirements. Monitoring report is send to Analyzer. Analyzer analyzes
the monitoring report and metrics for inconsistencies. If any inconsistency is detected,
analysis report is passed on to the Planner service, which makes a new execution plan
and pass it on to the Adaptation Module. The adaptation module then adjusts the
resource provisioning according to the new execution plan.

!
Figure.4:.Provisioning.Management

4.3.4. Service#Composer#and#Orchestrator#
The set of services included in this module performs composition of applications,
tools and their respective services. The module also takes care of applications and
services placement on the cloud and provides integration support. Graphical
representation of the composition mechanism is shown in Figure!5. For each request
of applications and tools provisioning, they are bundled together in form of a tool
suite that is capable of handling end-to-end operations against a particular task. Each
tool suite has a distribution scheme that determines that how individual tools inside
suit should be deployed on cloud and their mapping on the software development
process. A tool suite can consist of one or more applications and/or tools.
Applications and tools are connected to each other through connectors. Each tool
may has one or more services inside it. A service can either be scalar or can be
composed of multiple sub-services. Applications, tools and services have their
deployment information associated with them. This information is used by the
platform to deploy for their provisioning on underlying cloud environment.
Applications and tools are connected to each other through connectors. Services
inside applications and tools have properties containing any additional information
needed for service enactment and management.

! 39!

!
Figure.5:.Composition.Scheme

The overview of the how the composition works and services involved in the process
are shown in Figure! 6. The information of the applications, tools and services
available for provisioning is stored in “Application, Tools and Services Resource
Pool” the as described in section 4.3.1. Services composer compose them according
to requirements of tools as specified by tenant. Distribution Manager interacts with
Provisioning Manager (section 4.3.3) to deploy applications (or tools) and
associated services on underlying cloud infrastructure. Data transfer manager
established interaction points on the Integration Bus and through which bundled
applications, tools and services interacts with each other. Details on how the
interaction points are defined and how the communication between services takes
place are described in section 4.3.5.

!
Figure.6:.Composition.Handling

! 40!

4.3.5. Authentication#and#Process#Manager#
When applications, tools and services are provisioned at run time: there is a need to
provide a unified mechanism for authentication and authorization of services.
Authentication Manager takes care of it. All the application, tools and services that
need to authentication users should interact with this service in order to verify end
users credentials.
It is discuss in introductory part of the thesis and in chapter 2 that software
development incorporates multiple activities. These activities are streamlined by
defining a software development process. Hence, a cloud platform for supporting
software development activities in general and GSD activities in particular, should be
able to define and manage a software development process. Moreover, it should also
take care of applications, tools and services provisioning according to the process
defined for development activities.
There are few studies that are explicitly discussing strategies for pipeline based data
processing on cloud [81, 83, 84]. The studies focus on three aspects:
• Processing of the data on independent nodes.
• Re-collection or re-projection of data to produce results.
• Scheduling of tasks to be distributed on different nodes.
Apart from this, when data pipelines are distributed across a hybrid cloud the
pipelines also needs to consider:
• The track of data that is produced by different processing nodes and how it is

propagated across nodes [80].
• In case of secure pipeline, the processing nodes need to know only about their

immediate down stream node (the node from which it receive data) and upstream
node (to node to which it sends data) to avoid exposing whole pipeline [80].

• When processing pipeline is distributed on a federated cloud, the processing nodes
should be distributed according to the data sensitivity requirements [82].

Figure! 7 describes how authentication and process management works. The
processing pipeline of the platform described in figure takes care of all the features
described above for pipeline styled process. The process pipeline also encapsulates
Integration Buss. Integration Bus supports integration among different types of
applications and tools attach with each node of the process pipeline with the help of
collaboration and traceability points.

Development Process Handler takes care of initializes the process on pipeline. The
process consists of nodes on which applications/tools can be attached. A node can
represent a developer machine, a team, a development site involved in GSD project or
a whole organization participating in GSD project. It also consists of workflow
specifying the sequence of nodes in the development process (e.g. which node is
associated with design tools, which node is associated with development tool, which
node is producer of artifacts, which node is consumer of artifacts etc.). Realization of
the nodes on cloud infrastructure is done with the help of Provisioning Manager
(Section 4.3.3) according to the requirements of the respective tenants. Each node of
the workflow is associated with one or more collaboration & traceability points
represented as CP in Figure! 7. These points facilitates inter application/tool
collaboration and traceability. Collaboration and Traceability Handler manages
collaboration and traceability points. It also takes care of how data will be transmitted
from one point to next one depending upon how the workflow is created. Each
application/tool can have one or more Re-projection Components/Services. These

! 41!

components/services takes care of merging data artifacts together when artifacts are
processed at more than one node. Other than Re-projection Services, additional
services can also be attached with traceability and collaboration points that are
invoked whenever data is posted on or retrieved from them. Workspace represents a
virtual abstraction of the location involved in a GSD process. Each workspace has
applications and services associated with it, users of the workspace, their roles and
activities that users will perform on artifacts using applications/tools. Workspace is
composed of four services. Applications and Tools Association for managing
association of applications and tools with nodes of process workflow. User Manager
for managing users of applications and tools. Role Manager for taking care of users’
role while they are using applications and tools to work on software artifacts. Activity
Manager to manage activities that users perform on artifacts.

!
Figure.7:.Authentication.and.Process.Management

Collaboration and Traceability Handler supports two types of inter application
activities: collaborative work on artifacts from different types of applications and
traceability support among artifacts being maintained by different applications. It is
discussed in section 4.3.1 that applications and tools are classified into different
categories. Each category of application has a set of predefined collaboration types
corresponding to features that are supported by the applications. For example,
software architecture design tools have a collaboration type associated with the design
activity that is supported by the tool; i.e. activity diagram collaboration, use case
diagram collaboration, class diagram collaboration, deployment diagram collaboration

! 42!

etc. Similarly, each category of application also has a set of predefined traceability
types corresponding to features that are supported by the applications. Traceability
types associated with software design tools are activity diagram traceability, use case
diagram traceability, class diagram traceability, deployment diagram traceability etc.

Figure! 8 shows collaboration supports with the help of a hypothetical scenario in
which two software applications intend to engage in a collaborative task. The
collaboration activity can be invoked by any of the participating applications. In the
scenario depicted in Figure!8; Application A, as first participant of the collaborative
activity invokes collaboration by sending information of the participant including
tenants’ and users’ identities. Each application that wants to utilize collaboration
features of the platform can register a call back interface with the platform for each
type of collaboration activity. In case call back method cannot be registered (for
example in case of desktop based applications and tools), information on
collaboration can be found by periodically calling method to retrieve collaboration
information. In case when call back methods are registered, the platform notifies the
application through registered call back methods whenever there is an update on
artifact for an application participating in the collaboration activity. In the scenario
depicted in Figure!8, Application B will be notified about the update collaboration
activity. In case if there are more than more one applications being involved for a
collaboration activity, all of them are notified about the update or alternatively they
can ask information about updated by calling collaboration APIs. A collaboration
points is established between every two interacting nodes of the process workflow by
the middleware platform. The platform maintains intermediate copies of the artifacts
inside each collaboration point. An instance of the Time Stamping Component is
associated with each collaboration point that is used to generate vector time stamps
[105] in which each entry of the vector time stamp represents logical time of the user
participating in collaborative work. For N applications associated with a collaboration
point, vector time stamp takes form [t1, t2, t3 …….. tN] corresponding to applications
[A1, A2, A3 …… AN]. Whenever application Ai makes an update, ti is incremented by
one. Whenever there is an update on the intermediate copy of the shared artifacts, all
the applications participating in the collaboration activity are notified. The
notification includes the information of who made the last update (including
application id, tenant id and user id), the identity of updated the artifacts, and the time

!
Figure.8:.Collaboration.Handling.

! 43!

stamp associated with the updated version of the artifact. The data can be fetched
from the collaboration point by passing the artifact identify and time stamp by the
applications who are set as consumers of the artifacts in the process workflow. If the
time stamp provided by application is older than time stamp of the collaboration
point, updated artifact is returned. Otherwise an error code is returned. Applications
and tools that cannot register callback methods need to call collaboration interfaces
periodically in order to find about updates on collaboration activity.

A simple collaboration flow is shown in Figure! 9 in which three nodes in the
workflow are connected to each other according to waterfall proves model. There is a
collaboration point between every two connected nodes. Tools are posting and
retrieving information from collaboration points with the help of collaboration
handler. Whenever workflow is enacted by the platform, collaboration and
traceability points between every two interacting nodes of the process workflow are
automatically enacted.

!
Figure.9:.Collaboration.Flow

The platform is aimed to provide end-to-end solution for GSD project by bundling
applications and tools into a suite. The tools suite may contain multiple tools that are
associated with more than one sites involved in a GSD project. When artifacts are
being developed across multiple sites using heterogeneous tools, the platform needs to
support traceability mechanism so that if there is a change made on an artifact by an
application or tool, the information about the change can be propagated to other tools
(tools that are working on the artifacts that are linked to or dependent upon the
changed artifact). Collaboration and Traceability Handler provides following
features to support traceability.
i) Features to acquire unique identity for each artifact that needs to be traceable

with other artifacts.
ii) Features to register call back methods of tool that contain artifacts in form of a

tuple [T, A, F] where T is the application/tools that contains artifacts
corresponding to identity A and F is the callback method of application/tool T.
This step is optional and alternatively, applications and tool can periodically
call interfaces for traceability to get updated information.

! 44!

iii) Features to register a traceability request. Traceability request can be
registered with the system in form of a tuple [A, (B, C, D)]. Where A, B, C
and D are identities of the artifacts such that if artifact corresponding to
identity A is changed; artifacts corresponding to identities B, C and D also
need to be updated.

iv) Interface that applications/tools can call to provide information to the platform
whenever the artifact is updated. The information is provided to applications
and tools in inform of tuple [A, D] where A is the artifact id and D is the data
describing information of the updates.

When the platform is informed about the updates in any artifact, it calls the callback
methods of the dependent tools if these are registered. Time stamp associated with
artifact is incremented with every update. The platform keeps record the artifacts that
are linked with each other traceability along with tools that are maintaining the
artifacts as described in (ii) and (iii). By using this information, the platform send
information to the tools that need to be informed about the update in the artifact by
using their registered call back methods. The data containing information about the
update is passed as it is by using the callback methods. If callback methods are not
registered, client applications and tools can get this timestamp to compare with their
locally stored time stamp to check if any update is made and get the traceability
information. Processing of the data is left on the applications/tools because each
application may need to process it according to their specific requirements and it is
not feasible to capture all processing scenarios in the platform. However, Intermediate
services can be attached with traceability points and these services can perform
desired computation on the artifacts.

! 45!

5. Proof#of#Concept#

In this chapter, we provide overview of the prototype implementation of the reference
architecture elaborated in chapter 4, analysis of the main features of the platform and
design decisions that are made to support them. In the prototype implementation of
the reference architecture elaborated in chapter 4, we are focusing on the core
functionality of the middleware platform; i.e. defining the development process,
specifying different development sites in the development process, assigning
applications and tools with each development site, assigning tenants to different
development sites (nodes of the development process), defining artifacts flow
sequence between nodes, assigning additional services to be called when artifacts are
exchanged between nodes, establishing collaboration and traceability points, and
enactment of the all these involved application, tools services on the underlying cloud
infrastructure. We are elaborating implementation details using 4+1 view model of
software architecture description as explained in [106].

In first subsection we architecture description methodology followed by system use
case. Then we describe different view of the system according to 4+1 view model
[106]. Finally, we explain implementation details.

5.1. Architecture#Description#Methodology#
Kruchten [106] have presented an architecture representation model called 4+1 view
model for describing architecture of software intensive system. This model has four
view (logical, development, process and deployment) plus an additional dimension
described as either by using use cases or architecture scenarios description. The four
views are briefly described as follows.

Logical View:
This view describes the functionality of the system provided to end-users. Sequence
diagrams, class diagrams and collaboration diagrams are used to present this view.

Development View:
This view presents the internal details of sub-systems and sub-services. We can also
say that this view illustrates system from development points of view explaining
system’s internals. Components diagrams, sub-services and package diagrams are
used to support this view.

Process View:
This view represents the dynamic (runtime) behavior of the system by explaining
system processes using UML activity diagrams.

Deployment View:
This view represents topology of the system on physical layers by elaborating how
system components or services are deployed on physical runtime environment and
how physical interaction between these components is being taking place. This view
is represented by using UML deployment diagrams.

! 46!

Use Cases:
This view is expressed using UML user case diagrams and represent sequence of
interaction between system’s features and their actors.

We have chosen specific parts of the middleware platform to provide implementation
detailed of different services of the middleware and interaction between applications
and services that are provisioned using the middleware.

5.2. Use#Cases:#
Selective use cases of the middleware platform are shown in Figure!10. The figure
incorporated most important use cases of the prototype implementation. Our
prototype implementation covers a middleware platform as well as a client application
that facilitates existing desktop-based tools to interact with the middleware. On the
left side of the diagram, the features of the middleware platform are shown that are
used by applications and tools provisioned by the middleware. These features can be
accessed by interacting with corresponding APIs as explained in Appendix A.1. The
right side of the diagram shows use cases corresponding to the client
components/plug-in for accessing middleware features from a desktop based
environment. Corresponding to the middleware and the client, actors are classified
into two categories, external systems/client applications and users that interact with
middleware platform using client applications. A quick description of each use case is
provided in the following subsections.

!
Figure.10:.Use.Cases.

5.2.1. Authentication#
Use Case Description:
Before applications, tools and their associated services interact with the middleware
platform to utilize its features, these need to be authenticated by the platform. Upon

! 47!

requesting the platform by providing a valid user id and password, an access key is
returned. This access key is in subsequent request to the platform for verification of
the credentials.
Pre Condition:
N/A
Post Condition:
Verification key is generated and returned to the client application/tool.

5.2.2. Development#Process#Handling#
Use Case Description:
This use case represents platform features to define a development process, assign
different nodes to the development process, define how artifacts are going to be
transmitted between the nodes (sequence of data movements between nodes),
associate applications and tools with each development node, and assign tenants to the
nodes. Additional services can also be attached with the development process flow
that can perform some actions on the data when it is transmitted between nodes.
Encryption/decryption services and services for verification of artifacts are examples
of the intermediate services that can be associated with nodes. Once development
process is successfully defined, it is enacted and associated applications and tools are
provisioned on the cloud.
Pre Condition:
Application/tools, tenants, and intermediate services should be registered with the
middleware.
Post Condition:
Development process is enacted and applications and services are provisioned on
cloud infrastructure.

5.2.3. User#Access#to#Resources#
Use Case Description:
This use case facilitates users to access provisioned applications and tools, and to
utilize features of the platforms; platform provides authentication services that need to
be accessed by applications and tools registered on the platform. These services verify
if the user is one of the tenants that are assigned to a development site (node of the
development process), and if check gives positive results, users are granted access to
corresponding resources.
Pre Condition:
Application and tools provisioned by the platform must have implemented
authentication services to validate users.
Post Condition:
After successful verification, access to the corresponding cloud resources is granted.

5.2.4. Support#for#Collaborative#Work#
Use Case Description:
The platform provides collaboration services for supporting collaborative work on the
artifacts using applications and tools provisioned by the middleware platform. A
collaboration point is established between every two nodes of the development
process that are linked with each other. To utilize the collaboration features,
applications and tools need to interact with platform APIs. The artifacts for
collaborative work are exchanged between nodes and associated tools according to
the defined sequence as described in use case 5.2.2.

! 48!

Pre Condition:
Application and tools provisioned by the platform must implement features to utilize
collaboration services using corresponding APIs.
Post Condition:
N/A.

5.2.5. Support#for#Traceability#
Use Case Description:
These features represent traceability support by the platform for heterogeneous
applications and tools. The platform APIs corresponding to the traceability services
facilitated traceability between artifacts within the applications/tools attached to the
node in a development process. A traceability points is established between every two
nodes of the development process that are linked with each other. To achieve this
functionality, the applications and tools need to call platform features through
specified APIs.
Pre Condition:
Application and tools provisioned by the platform must have implemented features to
utilize traceability services using corresponding APIs.
Post Condition:
N/A.

5.2.6. Accounting#Services#
Use Case Description:
To keep record of the cloud resource utilization, platform needs to offers APIs that
can be called by the applications and services to register functionalities that are
accessed by end users. The provisioning of the resources is transparent to the
applications and tools. The applications and tools call corresponding APIs of the
billing services to compute resource utilization metrics against each individual users
and tenants.
Pre Condition:
Application and tools provisioned by the platform must have implemented features to
utilize billing services using corresponding APIs.
Post Condition:
N/A.

5.2.7. Collaboration#Activities#
Use Case Description:
The client applications need to provide support for engaging into collaboration task
activities as defined in the development process. The end users not necessarily to be
aware of the overall collaboration flow and from which collaboration points data need
to be fetched or posted, so the whole working should be transparent to end users. The
client applications should be able to fetch all the corresponding information against a
collaboration activity and perform accordingly.
Pre Condition:
Development process is enacted and collaboration points are established on the
platform.
Post Condition:
N/A.

5.2.8. Notifications#for#Traceability#
Use Case Description:

! 49!

The client applications and tools need to provide support for receiving traceability
notifications from the platform and send notification back using the traceability points
defined against the development process and its nodes. Like collaboration activities,
the traceability handling should also be transparent to the end users and should be
done according to the defined development process.
Pre Condition:
Development process is enacted and traceability points are established on the
platform.
Post Condition:
N/A.

5.2.9. Posting#and#Retrieving#Generated#Artifacts#at#Collaboration#Points#
User Case Description:
The client applications and tools associated with a site (node of a development
process) should be able to post generated artifacts to applications and tools associated
with next nodes in the process workflow. Similarly when artifacts are generated from
preceding nodes in the process workflow, client applications should be able to pull the
artifacts generated by applications and tools in the preceding node of the process
flow.
Pre Condition:
Development process is enacted and artifacts flow sequence between nodes is
defined.
Post Condition:
Artifacts are pulled/pushed as they are produced.

5.3. Deployment#View#
For pilot implementation of the reference architecture for PTaaS, we are using
Amazon IaaS Cloud [19] as underlying infrastructure for hosting the middle platform,
its services, and tools and application when these are enacted. Services of the platform
are hosted on windows server 2008 with cloud watch and elastic load balancer
associated with it. Underlying persistence units of the middleware are hosted on
Amazon MySQL Relational Ratabase Service (RDS). Database is wrapper by a
RESTful web service wrapper to facilitate data base porting. Middleware and its
different services are implemented using RESTful [104] approach, hence its services
are stateless and can be scaled by specifying elasticity rules in Amazon’s Cloud
Watch and Elastic Load Balancer. All instances of the PTaaS access a common
RESTful web service wrapper on MySQL database instance (when PTaaS instances
are scaled up according to specified parameters). States of the services (e.g. active
workflows and associated collaboration and traceability points) is maintained in the
database, hence when middleware platform and its composed services are replicated,
they can access the state information from a common persistence unit. Server
instances are hosted virtual machine on EU-Ireland. Applications and Services that
are enacted by the middleware are hosted on Amazon according the location
constrains of the tenants associated with applications and services. The collaboration
and traceability points can be enacted inside PTaaS or according to the location
constraints of tenants that are associated with nodes producing artifacts. High-level
view of the deployment view is presented in Figure!11. Detailed architecture of the
middleware PTaaS can be found in section 4 and is not described here again to avoid
redundancy.

! 50!

!
Figure.11:.Deployment.View

5.4. Logical#View#
The logical view of the middleware platform is explained by using a sequence
diagram, showing the interaction of middleware platform services involved in the
defining the development process, adding nodes to it, assigning applications/tools
with a development site, defining artifacts flow between applications/tools and
enacting them on the underlying cloud infrastructure along with collaboration and
traceability points corresponding to each interaction point between process nodes.
There can be multiple development processes inside main development process but to
keep the sequence diagram simple, we are considering only the root level
development process. We also provide a quick overview of the interaction happening
between the technologies of adopted along with code snippets of the selected parts of
middleware services.

! 51!

!
Figure.12:.Sequence.Diagram.Z.Define.and.Enact.Development.Process.–.(i)

!
Figure.13:.Sequence.Diagram.Z.Define.and.Enact.Development.Process.–.(ii)

Sequence diagram shown in Figure! 12 and Figure! 13 presents interaction of the
services involved in defining and enacting software development process. The
interfaces of all the services are exposed in a RESTful manner [104, 107] and are
implemented using Jersey framework (JSR 252 specifications) [108]. Before external
applications can access system services, they need to acquire an access code from
Authentication service. The authentication can be acquired by providing id and
password of user and corresponding tenant in http header. The platform features can
also be accessed by providing user and tenant credentials with every request.
However, the authentication mechanism is provided so that users and tenants

! 52!

credentials do not need to be exposed with every single request. Once access code is
obtained, it is passed in http header for subsequent requests to the platform features.
Figure!14 shows web service method that generates and returns authentication code.

!
Figure.14:.Authentication.Service

The platform APIs receive/send request in from of XML documents. Java objects
inside applications are converted into XML documents using javax XmlElement and
XmlRootElement annotation. Figure! 15 shows code snippet of node object with
XML annotations. Details of the services APIs used to create software development
process and assign applications tools and tenants to it are provided in Appendix
A.1.3.5.

!
Figure.15:.Using.XML.annotations.for.converting.java.objects.into.XML.documents.

Figure! 16 shows code that is used to launch Amazon EC2 [19] instances hosting
desktop based applications and tools. The RESTful web service wrapper is using Java
Persistence APIs (JPA) [109] to interact with database. Figure!17 shows node entity
class that is used to persist node information in the database.

! 53!

!
Figure.16:.Code.for.enacting.Amazon.EC2.Instances.hosting.Applications.and.Tools.

!
Figure.17:.Node.Entity

! 54!

5.5. Process#View#
The process view is illustrated through activity diagrams corresponding to creating
and enactment of the software development process, collaboration and traceability.
Figure!18 shows the overall activities to create a software development process in the
middleware for provisioning of applications and tools. The activity begins by
selecting/specifying software development process name though front-end application
of the middleware platform. If the process against the selected/specified name is
already defined then an exception is raised. If the process is not already defined, user
can create different nodes of the development process. Each node at the root process
represents the development site involved in GSD. Once nodes are defined, the
applications/tools and tenants are attached to the nodes. All the users belonging to the
attached tenants have access to the applications/tools attached to the node. The
sequence of the nodes in the process is defined. This sequence is used to allow
applications/tools in the proceeding nodes have access to artifacts generated by the
applications/tools of the preceding nodes. The applications/tools attached to a node

!
Figure.18:.Activity.diagram.for.enacting.software.development.process.

! 55!

can engage in collaborative work with application/tools of the proceeding and
preceding nodes and can receive traceability notifications if the artifacts associated
with traceability points are updated. Intermediate applications can be attached to the
process to perform specific types of operations on the artifacts before they are passed
on to the tools in proceeding nodes.
Activity diagrams for collaborative work on artifacts are shown Figure! 19. The
platform established a collaboration point for each pair of interacting nodes. For
example, if three nodes N1, N2 and N3 are defined in the software development
process such that N2 is proceeding node of N1 and preceding node of N3. The
platform established two collaboration points one between N1 and N2, and one
between N2 and N3. Two types of collaboration activities are supported by the
platform: push in which platform application/tools register their RESTful callback
methods with the collaboration points so that updated versions of the shared artifacts
can be automatically pushed to the applications/tools, and pull in which
application/tools check the collaboration points for updated artifacts. Details of the
activities for posting and retrieving artifacts for push and pull types are shown in Part
A and B of Figure!19.

!
Figure.19:.Activity.diagram.for.collaboration.

The platform established the traceability point between two nodes in same way as it
defines collaboration points. Vector time stamp is used for maintaining artifacts’
information on traceability and collaboration points. The vector time stamp consists
of form [t1, t2] where t1 and t2 are logical time for application A at node 1 and
application B at node 2 respectively, exchanging information through traceability
point between node 1 and node 2. If application A make update in the artifacts and
post this information of update on traceability point t1 is incremented by one. If
application B make update in the artifact and post the information on traceability
point t2 is incremented by one. For N applications associated with a traceability point,
vector time stamp takes for [t1, t2, t3, …….. , tN] corresponding to applications [A1,
A2, A3, …… , AN]. Detail of how the information is posted and retrieved from
traceability points is elaborated in part A and B of Figure!20. Detail on working of
collaboration and traceability is provided in section 4.3.5.

! 56!

!
Figure.20:.Activity.diagram.for.traceability.

5.6. Data#Model#
Data model used for persistence is shown in Figure! 21. The boxes in the figure
represents group of entities responsible to persist data from respective services. In
order to avoid unnecessary complexities, we are not providing details of the entities
inside each entity group. The relationship between entity groups in maintained at
services level, i.e. relation between entities inside entity group is maintained at
database level in form of referential integrity constrains whereas inter entity group
relationships are logical relations maintained in form of aggregation and composition
of services corresponding to entity groups. In this section, we are only explaining
relations of the entity groups and how they satisfy the requirements of the platform
for provisioning of applications and tools as services.

Workflow is central entity group of the data model that is used to store information of
process workflows. Process workflow stores information of the development process
being following by organizations involved in GSD project. More details are described
in sections 4.3.5 and 5.7.2. Workflow is composed of multiple Nodes. Nodes
information is stored in Node entity group. Each node corresponds to one element of
the development process. At first level of abstraction, a node is a development site
involved in a GSD project. At second level of abstraction, a node can be a department
inside a development site. Nodes are associated with tool suits and tenants, and this
information is maintained in Tool Suit and Tenants entity groups. A tool consists of
combination of applications associated with a Node. Tenants are assigned to nodes.
All the users belonging to assign tenants have access to tools associated with nodes.
Deployment information of the applications is stored in Deployment Information
entity group. Deployment information consists of deployment scripts that are needed
to deploy applications and tools on cloud when are enacted. In case of desktop based
tools, information of virtual machine images are maintained in Virtual Machine
Images entity group. This group maintains information of cloud environments, virtual
machine image identities, their access information, and scripts to launch virtual
machine images. Applications and tools may be composed of multiple sub-services.
The information of sub-services is maintained in Services entity group and their
deployment information is maintained in associated Deployment Information entity
group. For all interaction nodes of the process workflow, collaboration and
traceability services are enacted as described in section 4.3.5. The information of
where collaboration and deployment services are deployed and enacted is stored in
Collaboration Service and Traceability Service entity groups.

! 57!

!
Figure.21:.Data.Persistence.Model

5.7. Implementation#Overview#
The prototype implementation of the proposed reference architecture consists of
RESTful middleware and three applications. The middleware implements core
features of the reference architecture presented in Chapter 4. Front end of the
middleware is web-based application that is used to facilitate applications and tool
provisioning as services. Second client application facilitates administration of the
middleware and facilitates registration of applications/tools with the middleware
along with related information. Third application is a client implemented to facilitate
interaction of desktop-based applications and tools with the middleware. The desktop
is implemented to provide an easy access for the desktop-based applications and tools
to interact with middleware. The tools and applications can also directly access the
middleware without relying on client application. In the following sub sections, we
provide overview of the middleware implementation, web based client applications
facilitating defining process and provision tools according to the requirements, and
desktop client.

5.7.1. Middleware#Platform#Services#
The middleware consists of following RESTful services [104] implemented using
Jersey Framework [110]; an implementation of JSR 252 specification [108]. The
middleware platform is using Amazon EC2 [19] as underlying infrastructure as a
service cloud. In out pilot implementation we have only implemented following
services dealing with core part of the platform. For managing life cycle of the
middleware platform resources, we are relying on Amazon Cloud Watch [111] and
Load Balancer [112].

User, Tools and Applications Registration Services:
These services facilitate registration of the users and application/tools with the
middleware platform. Each user in the system is associated with a tenant. A tenant
can be a team working on a particular activity of a GSD project, all the stakeholders
from a location involved in a GSD project, or the whole staff or the organization
involved in GSD project. Access to application/tools and corresponding resources is

! 58!

granted to tenants. All the users belonging to that tenant automatically get access to
the resources. Applications and tools are provisioned by the platform dynamically and
the platform control access to the provisioned resources. The applications and tools
need to call platform for the verification of the users.
Tools and applications registration maintains repositories of the applications and
services, their deployment information, information of the cloud images stored on
underlying IaaS cloud and deployment scripts need to deploy the services and
associated database scripts in case of web based applications.

Authentication Service:
This service facilitates authorization of the users to access an application or tool
hosted on cloud. The applications that need to verify the users need to call
authentication services for verification of the users. The platform checks if the
corresponding tenant of the users is associated to the nodes on which applications are
attached, and grant or reject access accordingly.

Process Management and Enactment Services:
This set of services facilitates defining software development process in the
middleware, defining nodes in the process, specifying sequence of information flow
between nodes of software development process, assigning applications and tools
with the nodes and enacting them on underlying IaaS cloud. If users select desktop-
based applications and clients, preconfigured cloud images are invoked. If based
applications and tools are selected, they are deployed on the cloud resources
according to specification of end users. The platform supports defining nested
processes to accommodate individual processes inside
Two types of constraints can be imposed on applications and service provisioning.
Location constraints specifying if applications and tools are to be deployed and
enacted on certain regions of the cloud. E.g. European, American or Asian regions.
The location preferences are associated with tenants. Services are invoked according
to the location constraints of the tenant assigned to a particular node. For web-based
tools there is an additional constraint regarding sharing of services. If tenants do not
need exclusive access to the applications and tools, already invoked instances of the
services are shared among new tenants who want to avail the services. If exclusive
access is required then new instances of the services are invoked.

Collaboration and Traceability Services:
For every two interacting nodes inside the process, collaboration and traceability
services are invoked. The collaboration services provide a bridge for exchanging
information on collaborative work. The traceability service serve a notification point
to raise alarms if the documents defined as a part of traceability and maintained inside
an applications or tool are changed. The detail on working of collaboration and
traceability services is provided in section 4.3.5.

5.7.2. Client# Application# for# Defining# Software# Development# Process# in# the#
Middleware#and#Invoking#Application#and#Tools#

Front end of the middleware provides graphical user interface to the platform APIs for
defining software development process, adding nodes in the development process and
assigning applications and tools with development nodes. The frond end also
facilitated assigning tenants to the nodes and defining sequence of collaboration and

! 59!

data movement between nodes. Figure! 22 shows authentication screen. Users with
administrative privileges can have access to the platform.

!
Figure.22:.Authentication

Users can define a new process by pressing create process button as and then
specifying process name as shown in Figure! 23 and Figure! 24. Once the process
name is entered, nodes can be added to the process by invoking corresponding
interface by clicking Add Node button.

!
Figure.23:.Creating.Process.(i)

!
Figure.24:.Creating.Process.(ii)

Once process is defines, nodes can be added to the process. With each node, a set of
tools and tents can be attached. Nested nodes can be defined inside a node
representing nested processes. For example, if first level nodes represent sites
involved in GSD development, nested nodes may be a representation of teams
involved in a project. GUI for node management is shown in Figure! 25. In the
scenario presented in the diagrams a simple process is defined involving two
development nodes and one testing node. First development node is associated with
an Eclipse IDE. Second development node is associated with NetBeans IDE and
testing node represents a virtual machine where code generated by node 1 and 2 can
be deployed there.

! 60!

!
Figure.25:.Adding.Nodes/Sites.to.the.Process

Once all nodes in the process are defined, nodes sequence and connection between
nodes can be defined by using GUI shown in Figure!26. Nodes listed under source
are predecessors of the nodes specified in the destination. The last node of the source
does not have any destination. Some intermediate services can be assigned to process
data when it is transmitted from source to destination. In the scenario presented in
Figure!26, an intermediate service for compiling java source code classes and making
a jar file is associated when artifacts are transmitted from development node 2 to
testing node 1. After defining the nodes sequence and specifying intermediate
services between nodes if needed, the process flow can be saved and enacted by
pressing “Save and Enact” button. Once the process is enacted, a collaboration point
and a traceability point are also established and enacted between every source and
destination nodes. After successful deployment of services and establishment of
collaboration and traceability point, access information is displayed as shown in
Figure!27. In the scenario presented in diagrams, development node 1 is source for
node 1 and node 2 is source for testing node 1.

The scenario depicted in the diagrams corresponds to a simple case in which there are
three nodes in a process connected to each other in a waterfall fashion. The platform
can accommodate complex scenarios where multiple nodes can be source or target for
produced artifacts. In case that there are more than one applications or tools working
on a collaboration point, the applications and services are required to have
corresponding services that can be called whenever collaboration points are accesses.
These services take care of how data is merged together and data integrity is
maintained.

!
Figure.26:.Defining.Data.Movement.Sequence.Between.Nodes/Sites

! 61!

!
Figure.27:.Displaying.Access.Information

5.7.3. Desktop#Client#
Desktop client is implemented to facilitate interaction of existing desktop-based
software development tools with the platform and to demonstrate access to
middleware platform from clients. Although, desktop applications and tools can also
access the middleware through plug-in and extensions, but it is out of scope of the
thesis to develop plug-in for applications/tools, that is why we have not implemented
the plug-in for Eclipse and NetBeans IDEs. Software development process and
information flow between different nodes of the process is maintained by the middle.
The users of applications, or applications do not need to take care of how artifacts are
passed and made available to the consumers. They only need to post the artifacts on

!
Figure.28:.Desktop.Client.Supporting.Collaboration.and.Traceability.–.(i)

! 62!

corresponding collaboration points (information for change in artifacts in case of
traceability points) and the middleware take care of making the artifacts available to
the corresponding nodes and generating notifications (in case application has
registered their RESTful callback methods with the middleware).

!
Figure.29:.Desktop.Client.Supporting.Collaboration.and.Traceability.Z.(ii)

The screen shots of the enacted virtual machine instances of the scenario described in
section 5.7.2 are shown in Figure! 28, Figure! 29 and Figure! 30. Virtual machine
images used for provisioning of desktop-based applications and tools are
preconfigured with DesktopClient. Users become part of the development process
when process workflow is enacted and get access to the resources attached with a
development node including collaboration and traceability points by signing in on the
desktop client. In case there are multiple users inside tenants assigned to a node,
separate virtual machines are enacted for user. The machines have the application and
tools configured on them (which are specified when workflow nodes are defines). In
case of web-based applications, only one instance for each application is created for a
tenant and all the users in the tenant have access to the applications. Figure!28 shows
screenshot corresponding to Development Node 1 with eclipse IDE and desktop client
installed on VM. “When devuser1” signs into desktop client, the information for user
is sent to middleware for verification of credentials. If credentials are successfully
verified, the DesktopClient fetches information of collaboration points associated
with the node. Development Node 1 one is only a producer of an artifact; hence the
DesktopClient only displays the name of destination node, which in this case is
Development Node 2. If there are multiple destination nodes, there names are
displayed accordingly. The location of the data artifacts that are produced is selected
by pressing Browse button. Once artifacts are ready to be posted, they can be posted
on the collaboration point by pressing post button. Details the internal working of
collaboration can be found in section 4.3.5 and section 5.5.

! 63!

Figure! 29 corresponds to Development Node 2 with NetBeans IDE and
DesktopClient. Development Node 2 is consumer of artifacts from the Development
Node 1 and producer of artifacts for Testing Node 1, hence both source and
destination are mentioned by the DesktopClient. When updated artifacts are available
on Development Node 1, a message is displayed by the desktop client to raise
awareness about the activity of the users from the Development Node 1. Users at
Development Node 2 can get document on select location by pressing “Get Updated
Artifacts” button. Produces artifacts can be posted to collaboration node between
Development Node 2 and testing Node 1 when these are ready to be posted. Figure!
30 shows the desktop client on Testing Node 1. Its works in the same fashion as
described for Development Node 1 and Development Node 2. Testing Node 1 is the
last node of the process that is why destination option is disabled. Java Code
Compilation service is attached when data is passed from Development Node 2 to
Testing Node 1. When user at Testing Node 1 press “Get Updated Artifact” button,
source code available with collaboration point at node is compiled and send at Testing
Node 1.

!
Figure.30:.Desktop.Client.Supporting.Collaboration.and.Traceability.Z.(iii)

! 64!

! 65!

6. Conclusion and#Directions#for#Future#Work#

In this thesis, we have presented the reference architecture and prototype
implementation of middleware platform named PTaaS for providing software
development applications and tools as services to address GSD challenges. The first
phase of effort to provide a middleware platform that can provision GSD applications
and tools as services resulted in a set of requirements to be considered while
developing the middleware [22]. These requirements are further enhanced in this
thesis and followed by a careful design of reference architecture of the middleware
platform as well as it prototype implantation. In the following points, we provide an
overview of how the requirements for the middleware platform are satisfied by the
reference architecture and its prototype implementation.

• Supporting applications of different types
The middleware platform APIs are exposed as REST interfaces which make it
possible for applications and tools implemented in different programming languages
to access the features of the middleware platform. Underlying resources (e.g. virtual
machines) are acquired from the IaaS cloud as needed to host application and tools.

• Authentication and authorization of users within applications
When applications and tools are provisioned by the platform, the authorization and
authentication schemes need to be taken out of the application control because
assignment of tenants and users with the tools is managed by the middleware
platform. To facilitate authentication and authorization of application users, special
services are provided by the platform. Application and tools hosted on the platform
needs to modify their authentication schemes according to the specifications of the
platforms’s authentication services.

• Managing applications and tools provision
Lifecycle and Provisioning services along with Repository Management services of
the middleware platform maintain the application and tools and enact them according
to their location and multi-tenancy constraints.

• Alignment of tools with the processes
On demand provisioning of software development applications and tools make it easy
for organizations to acquire needed tools according to the processes. Moreover, the
ability of PTaaS to capture the software development process, assign tenant (and users
inside a tenant) and application/tools to nodes of the software development process
supports applications and tools alignment with process and their seamless integration.

• Integration and support for collaboration & traceability
To streamline the software development, software development applications need to
interact with each other in order to exchange artefacts. PTaaS automatically establish
collaboration and traceability services between all interaction points of the software
development process to facilitate the integration between applications and tools. It
provides applications and tools ability to integrate with each other, collaboratively
work on artefacts and engage in workflow kind of activities.

! 66!

• Support for Virtual Teams
Virtual teams are characterized in GSD as teams located at distributed locations and
yet able to engage in shared and collaborative tasks. Tenants (along with users inside
tenants) are assigned to nodes (for example a distributed sites, or a department on a
site involved in GSD project) of the process. Applications and tools are also assigned
to the nodes that can collaboration with each other through collaboration points.
These features of the middleware support Virtual Teams to effectively engage in GSD
activities.

Having identifying requirements of the middleware platform through a review of
literature on GSD, reference architecture for the middleware platform is proposed that
facilitates provision of software development applications and tools as services
according to location and multi-tenancy constrains specified by the tenants. The
platform is capable of capturing software development process and makes sure that
artefacts flow among applications according to the defined process. For facilitating
heterogeneous applications and tools to collaborate with each other, collaboration
points (services) are established between interacting nodes of the process through
which applications and tools can exchange artefacts. Applications and tools maintain
artefacts in their own data store units according to proprietary formats but the
artefacts may be dependent upon other artefacts and need to be modified if the
artefacts on which they are dependent are changed. To accommodate this kind of inter
application traceability, the platform also established traceability points through
which applications and tools can send or receive traceability notifications if artefacts
in the traceability chain are modified. In short, this thesis makes three significant
contributions:
1. It provides theoretical foundation for providing software development

applications and tools as services.
2. It provides requirement that should be accommodated in order to make

provisioning of applications and tools as services in GSD context.
3. It provides details on design strategies and a reference architecture, which consists

of multiple architecture styles; for building the platform that can facilitate desired
provisioning of applications and tools by using cloud-computing paradigm.

We have demonstrated feasibility of the proposed approach through prototype
implementation of most important features of the reference architecture by using
Amazon as underlying IaaS cloud. The implementation consists of a set of
middleware platform services including authentication services, registration services
(for users, tenants, applications and tools), process management and enactment
services, and collaboration and traceability services. In order to facilitate provisioning
of applications and tools as services, we have implemented a web passed client
application through which users can define their software workflow process, attach
application and tools as well as middleware services to different nodes of the
workflow and can specify tenants that should be allowed to have access to the
applications and tools. The information to access the enacted resources is also
displayed though web based interface. A client application is implemented to
facilitate desktop-based tools hosted on virtual machines to interact with the platform.

In this thesis, we have not only established foundations for providing software
development tools and applications as services but have also provided practical
solutions in terms of reference architecture and prototype implementation. However,

! 67!

we realise that the approach presented and strategies discussed in this thesis need to
be further enhanced and evaluated for more complex software development scenarios.
In future, we intend to extend the reference architecture and implementation for
hybrid cloud environments where the platform can also incorporate applications and
tools provisioning on private cloud, and support collaboration and traceability
between them. In some cases, for example software testing, data artefacts are too
large to transmit from one location to another. The more feasible approach in such
cases is to enact applications and tools closer to data sources so that minimum data
transmission is required. We intend to extend the architecture to accommodate
enacting applications and tools closer to data sources. In current architecture and
prototype implementation we are catering relation of artefacts with specific types of
tools and applications (for example development tools, design tools), and their sub
types (for example Visio or ArgoUML in case of design tools) for supporting
collaboration and traceability, but we are not considering standardizations that these
tools are following (for example design tools following a specification like Object
Management Group’s specification6 of UML 1.0 or 2.0, or SoaML). In future, we
intend to enhance the architecture in a way that standardizations and corresponding
meta-models are recognized by the platform and can be dynamically enhanced. Last
but not the least, in some cases applications and tools generate executable artefacts
(for example executable files). Such artefacts can cause security threats on consumer
applications and tools if not properly validated before that are transmitted to them. It
can be explicitly handled in current architecture and prototype implementation by
specifying intermediated services to process data before it is transmitted to
consumers; however we intend to extend this feature further into more implicit and a
default security model of the platform.

 !

!!
6!http://www.omg.org/!

! 68!

! 69!

References.
.

[1] M. Armbrust, et al., "A view of cloud computing," Commun. ACM, vol. 53,
pp. 50-58, 2010.

[2] A. Lenk, et al., "What's inside the Cloud? An architectural map of the Cloud
landscape," in Software Engineering Challenges of Cloud Computing, 2009.
CLOUD '09. ICSE Workshop on, 2009, pp. 23-31.

[3] P. Louridas, "Up in the Air: Moving Your Applications to the Cloud,"
Software, IEEE, vol. 27, pp. 6-11, 2010.

[4] L. Xiaolin, "An Approach to Service and Cloud Computing Oriented Web
GIS Application," in 2010 International Conference on Internet Technology
and Applications, ed: IEEE, 2010, pp. 1-4.

[5] L. Xiaolin, "Service and cloud computing oriented web GIS for labor and
social security applications," in 2010 2nd International Conference on
Information Science and Engineering (ICISE), ed: IEEE, 2010, pp. 4014-
4017.

[6] M. Azambuja, et al., "An Architecture for Public and Open Submission
Systems in the Cloud," in 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD), ed: IEEE, 2010, pp. 513-517.

[7] R. Pereira, et al., "An Architecture for Distributed High Performance Video
Processing in the Cloud," in 2010 IEEE 3rd International Conference on
Cloud Computing (CLOUD), ed: IEEE, 2010, pp. 482-489.

[8] R. Pereira and K. Breitman, "A Cloud Based Architecture for Improving
Video Compression Time Efficiency: The Split & Merge Approach," in Data
Compression Conference (DCC), 2011, ed: IEEE, 2011, pp. 471-471.

[9] P. Rodriguez, et al., "VaaS: Videoconference as a service," in 5th
International Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2009. CollaborateCom 2009, ed: IEEE, 2009,
pp. 1-11.

[10] W. Cellary and S. Strykowski, "e-government based on cloud computing and
service-oriented architecture," presented at the Proceedings of the 3rd
international conference on Theory and practice of electronic governance,
Bogota, Colombia, 2009.

[11] M. Pokharel, et al., "Cloud Computing in System Architecture," in
International Symposium on Computer Network and Multimedia Technology,
2009. CNMT 2009, ed: IEEE, 2009, pp. 1-5.

[12] D. Zissis and D. Lekkas, "Securing e-Government and e-Voting with an open
cloud computing architecture," Government Information Quarterly, vol. 28,
pp. 239-251, 2011.

[13] S. van der Burg, et al., "Software deployment in a dynamic cloud: From
device to service orientation in a hospital environment," in ICSE Workshop on
Software Engineering Challenges of Cloud Computing, 2009. CLOUD '09, ed:
IEEE, 2009, pp. 61-66.

[14] N. Botts, et al., "Cloud Computing Architectures for the Underserved: Public
Health Cyberinfrastructures through a Network of HealthATMs," in 2010
43rd Hawaii International Conference on System Sciences (HICSS), ed: IEEE,
2010, pp. 1-10.

[15] S. Chia-Ping, et al., "Bio-signal analysis system design with support vector
machines based on cloud computing service architecture," in 2010 Annual

! 70!

International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), ed: IEEE, 2010, pp. 1421-1424.

[16] F. Baiardi and D. Sgandurra, "Securing a Community Cloud," in Distributed
Computing Systems Workshops (ICDCSW), 2010 IEEE 30th International
Conference on, 2010, pp. 32-41.

[17] A. Khajeh-Hosseini, et al., "Cloud Migration: A Case Study of Migrating an
Enterprise IT System to IaaS," in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, 2010, pp. 450-457.

[18] Q. Zhang, et al., "Cloud computing: state-of-the-art and research challenges,"
Journal of Internet Services and Applications, vol. 1, pp. 7-18, 2010.

[19] "Amazon, http://aws.amazon.com/ [May, 2013]."
[20] M. A. Babar and M. A. Chauhan, "A tale of migration to cloud computing for

sharing experiences and observations," presented at the Proceedings of the 2nd
International Workshop on Software Engineering for Cloud Computing,
Waikiki, Honolulu, HI, USA, 2011.

[21] S. I. Hashmi, et al., "Using the Cloud to Facilitate Global Software
Development Challenges," in Global Software Engineering Workshop
(ICGSEW), 2011 Sixth IEEE International Conference on, 2011, pp. 70-77.

[22] M. A. Chauhan and M. A. Babar, "Cloud infrastructure for providing tools as
a service: quality attributes and potential solutions," presented at the
Proceedings of the WICSA/ECSA 2012 Companion Volume, Helsinki,
Finland, 2012.

[23] J. D. Herbsleb, "Global Software Engineering: The Future of Socio-technical
Coordination," in Future of Software Engineering, 2007. FOSE '07, 2007, pp.
188-198.

[24] J. D. Herbsleb and D. Moitra, "Global software development," Software,
IEEE, vol. 18, pp. 16-20, 2001.

[25] F. Lanubile, et al., "Collaboration Tools for Global Software Engineering,"
Software, IEEE, vol. 27, pp. 52-55, 2010.

[26] Rodri, et al., "Technologies and Tools for Distributed Teams," Software,
IEEE, vol. 27, pp. 10-14, 2010.

[27] Tell P. and A. B. M., "A Systematic Mapping Study of Tools for Distributed
Software Development Teams, TR-2012-161, Oct. 2012.."

[28] I. Steinmacher, et al., "Awareness support in global software development: a
systematic review based on the 3C collaboration model," presented at the
Proceedings of the 16th international conference on Collaboration and
technology, Maastricht, The Netherlands, 2010.

[29] J. Portillo-Rodr√≠guez, et al., "Tools used in Global Software Engineering: A
systematic mapping review," Information and Software Technology, vol. 54,
pp. 663-685, 2012.

[30] P. Dourish and V. Bellotti, "Awareness and coordination in shared
workspaces," presented at the Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, Toronto, Ontario, Canada, 1992.

[31] J. T. Biehl, et al., "FASTDash: a visual dashboard for fostering awareness in
software teams," presented at the Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, San Jose, California, USA, 2007.

[32] S. Dustdar and H. Gall, "Process awareness for distributed software
development in virtual teams," in Euromicro Conference, 2002. Proceedings.
28th, 2002, pp. 244-250.

! 71!

[33] C. Gutwin, et al., "Workspace Awareness in Real-Time Distributed
Groupware: Framework, Widgets, and Evaluation," presented at the
Proceedings of HCI on People and Computers XI, 1996.

[34] L. Aversano, et al., "Managing coordination and cooperation in distributed
software processes: the GENESIS environment," Software Process:
Improvement and Practice, vol. 9, pp. 239-263, 2004.

[35] G. Booch and A. W. Brown, "Collaborative Development Environments," in
Advances in Computers. vol. Volume 59, ed: Elsevier, 2003, pp. 1-27.

[36] B. Bruegge, et al., "Sysiphus: Enabling informal collaboration in global
software development," in Global Software Engineering, 2006. ICGSE '06.
International Conference on, 2006, pp. 139-148.

[37] M. Cataldo, et al., "CAMEL: A Tool for Collaborative Distributed Software
Design," in Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE
International Conference on, 2009, pp. 83-92.

[38] A. Feng, et al., "Updating semantic information to support coordination in
distributed software development environments," in System Sciences, 1993,
Proceeding of the Twenty-Sixth Hawaii International Conference on, 1993,
pp. 13-22 vol.4.

[39] S. B. Fonseca, et al., "Exploring the Relationship between Dependencies and
Coordination to Support Global Software Development Projects," in Global
Software Engineering, 2006. ICGSE '06. International Conference on, 2006,
pp. 243-243.

[40] R. E. Grinter, et al., "The geography of coordination: dealing with distance in
R&D work," presented at the Proceedings of the international ACM
SIGGROUP conference on Supporting group work, Phoenix, Arizona, USA,
1999.

[41] A. Sarma, et al., "Categorizing the Spectrum of Coordination Technology,"
Computer, vol. 43, pp. 61-67, 2010.

[42] W. Maalej, "Task-First or Context-First? Tool Integration Revisited," in
Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM
International Conference on, 2009, pp. 344-355.

[43] D. G. Boyer, et al., "Virtual community prescence awareness," SIGGROUP
Bull., vol. 19, pp. 11-14, 1998.

[44] M. K. Brown, et al., "Choosing the Right Tools for Your Virtual Team:
Evaluating Wikis, Blogs, and Other Collaborative Tools," in Professional
Communication Conference, 2007. IPCC 2007. IEEE International, 2007, pp.
1-4.

[45] A. Ferscha and C. Scheiner, "Collective choice in virtual teams," in Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1999. (WET ICE
'99) Proceedings. IEEE 8th International Workshops on, 1999, pp. 96-101.

[46] R. E. Kraut, et al., "The use of visual information in shared visual spaces:
informing the development of virtual co-presence," presented at the
Proceedings of the 2002 ACM conference on Computer supported cooperative
work, New Orleans, Louisiana, USA, 2002.

[47] A. Powell, et al., "Virtual teams: a review of current literature and directions
for future research," SIGMIS Database, vol. 35, pp. 6-36, 2004.

[48] C. R. B. D. Souza, et al., "Toward visualization and analysis of traceability
relationships in distributed and offshore software development projects,"
presented at the Proceedings of the 1st international conference on Software

! 72!

engineering approaches for offshore and outsourced development, Zurich,
Switzerland, 2007.

[49] G. O. Wiredu, "A framework for the analysis of coordination in global
software development," presented at the Proceedings of the 2006 international
workshop on Global software development for the practitioner, Shanghai,
China, 2006.

[50] M. Cataldo, et al., "On Coordination Mechanisms in Global Software
Development," in Global Software Engineering, 2007. ICGSE 2007. Second
IEEE International Conference on, 2007, pp. 71-80.

[51] J. M. Bhat, et al., "Overcoming Requirements Engineering Challenges:
Lessons from Offshore Outsourcing," Software, IEEE, vol. 23, pp. 38-44,
2006.

[52] "IBM Jazz Platform, http://www-01.ibm.com/software/rational/jazz/ [May,
2013]."

[53] "AgileZen, http://www.agilezen.com/ [May, 2013]."
[54] "Lucid Chart, https://www.lucidchart.com/ [May, 2013]."
[55] "MeetingSphere, http://www.meetingsphere.com/ [May, 2013]."
[56] "Microsoft Live Meeting, http://support.microsoft.com/ph/925 [May, 2013]."
[57] "Microsoft Project, http://office.microsoft.com/en-us/project/ [May, 2013]."
[58] "Team Foundation Server, http://msdn.microsoft.com/en-

us/vstudio/ff637362.aspx [May, 2013]."
[59] "Pidoco, https://pidoco.com/ [May, 2013]."
[60] "IBM Rational Cloud Services, http://www-

01.ibm.com/software/rational/info/cloud-services/ [May, 2013]."
[61] "Cloud9 IDE, https://c9.io/ [May, 2013]."
[62] "Eclipse Orion, http://www.eclipse.org/orion/ [May, 2013]."
[63] "eXo Platform, http://www.exoplatform.com/company/en/home [May, 2013]."
[64] A. Azeez, et al., "Multi-tenant SOA Middleware for Cloud Computing," in

2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), ed:
IEEE, 2010, pp. 458-465.

[65] Z. Pervez, et al., "Multi-Tenant, Secure, Load Disseminated SaaS
Architecture," in 2010 The 12th International Conference on Advanced
Communication Technology (ICACT) vol. 1, ed: IEEE, 2010, pp. 214-219.

[66] E. J. Domingo, et al., "CLOUDIO: A Cloud Computing-Oriented Multi-tenant
Architecture for Business Information Systems," in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD), ed: IEEE, 2010, pp.
532-533.

[67] J. H. Christensen, "Using RESTful web-services and cloud computing to
create next generation mobile applications," presented at the Proceeding of the
24th ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications, Orlando, Florida, USA, 2009.

[68] W. Qian and R. Deters, "SOA's Last Mile-Connecting Smartphones to the
Service Cloud," in IEEE International Conference on Cloud Computing, 2009.
CLOUD '09, ed: IEEE, 2009, pp. 80-87.

[69] P. Papakos, et al., "VOLARE: context-aware adaptive cloud service discovery
for mobile systems," presented at the Proceedings of the 9th International
Workshop on Adaptive and Reflective Middleware, Bangalore, India, 2010.

[70] I. Giurgiu, et al., "Calling the Cloud: Enabling Mobile Phones as Interfaces to
Cloud Applications," in Middleware 2009. vol. 5896, J. Bacon and B. Cooper,
Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 83-102.

! 73!

[71] L. Qingfeng, et al., "An Optimized Solution for Mobile Environment Using
Mobile Cloud Computing," in 5th International Conference on Wireless
Communications, Networking and Mobile Computing, 2009. WiCom '09, ed:
IEEE, 2009, pp. 1-5.

[72] S. V. Gogouvitis, et al., "An Architectural Approach for Event-Based
Execution Management in Service Oriented Infrastructures," in 2010 12th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), ed: IEEE, 2010, pp. 395-399.

[73] A. Chazalet, "Service Level Agreements Compliance Checking in the Cloud
Computing: Architectural Pattern, Prototype, and Validation," in 2010 Fifth
International Conference on Software Engineering Advances (ICSEA), ed:
IEEE, 2010, pp. 184-189.

[74] H. Hyuck, et al., "A RESTful Approach to the Management of Cloud
Infrastructure," in IEEE International Conference on Cloud Computing, 2009.
CLOUD '09, ed: IEEE, 2009, pp. 139-142.

[75] H. Ludwig, et al., "REST-based management of loosely coupled services,"
presented at the Proceedings of the 18th international conference on World
wide web, Madrid, Spain, 2009.

[76] E. M. Maximilien, et al., "IBM altocumulus: a cross-cloud middleware and
platform," presented at the Proceeding of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages
and applications, Orlando, Florida, USA, 2009.

[77] L. Shang, et al., "Extending YML to Be a Middleware for Scientific Cloud
Computing," in Cloud Computing. vol. 5931, M. Jaatun, et al., Eds., ed:
Springer Berlin / Heidelberg, 2009, pp. 662-667.

[78] Y. Badr and G. Caplat, "Software-as-a-Service and Versionology: Towards
Innovative Service Differentiation," in 2010 24th IEEE International
Conference on Advanced Information Networking and Applications (AINA),
ed: IEEE, 2010, pp. 237-243.

[79] P. Belimpasakis and S. Moloney, "A platform for proving family oriented
RESTful services hosted at home," IEEE Transactions on Consumer
Electronics, vol. 55, pp. 690-698, 2009.

[80] J. Du, et al., "Towards secure dataflow processing in open distributed
systems," presented at the Proceedings of the 2009 ACM workshop on
Scalable trusted computing, Chicago, Illinois, USA, 2009.

[81] I. Gorton, et al., "Exploring Architecture Options for a Federated, Cloud-
Based System Biology Knowledgebase," in 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), ed:
IEEE, 2010, pp. 218-225.

[82] Y.-B. Han, et al., "A Cloud-Based BPM Architecture with User-End
Distribution of Non-Compute-Intensive Activities and Sensitive Data,"
Journal of Computer Science and Technology, vol. 25, pp. 1157-1167, 2010.

[83] L. Jie, et al., "eScience in the cloud: A MODIS satellite data reprojection and
reduction pipeline in the Windows Azure platform," in 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS), ed:
IEEE, 2010, pp. 1-10.

[84] K. Kim, "A model-driven workflow fragmentation framework for
collaborative workflow architectures and systems," Journal of Network and
Computer Applications, vol. In Press, Corrected Proof %U
http://www.sciencedirect.com/science/article/pii/S108480451100083X.

! 74!

[85] Z. Liang-Jie and Z. Qun, "CCOA: Cloud Computing Open Architecture," in
IEEE International Conference on Web Services, 2009. ICWS 2009, ed: IEEE,
2009, pp. 607-616.

[86] B. Sodhi and T. V. Prabhakar, "Application architecture considerations for
cloud platforms," in 2011 Third International Conference on Communication
Systems and Networks (COMSNETS), ed: IEEE, 2011, pp. 1-4.

[87] D. Kossmann, et al., "An evaluation of alternative architectures for transaction
processing in the cloud," presented at the Proceedings of the 2010
international conference on Management of data, Indianapolis, Indiana, USA,
2010.

[88] Z. Wenjun, "2-Tier Cloud Architecture with maximized RIA and SimpleDB
via minimized REST," in 2010 2nd International Conference on Computer
Engineering and Technology (ICCET) vol. 6, ed: IEEE, 2010, pp. V6-52-V6-
56.

[89] J. Schaffner, et al., "Towards enterprise software as a service in the cloud," in
2010 IEEE 26th International Conference on Data Engineering Workshops
(ICDEW), ed: IEEE, 2010, pp. 52-59.

[90] T. Wei-Tek, et al., "Real-Time Service-Oriented Cloud Computing," in 2010
6th World Congress on Services (SERVICES-1), ed: IEEE, 2010, pp. 473-478.

[91] B. Liver, et al., "Privacy in Service Oriented Architectures: SOA Boundary
Identity Masking for Enterprises," in 2010 IEEE 12th Conference on
Commerce and Enterprise Computing (CEC), ed: IEEE, 2010, pp. 204-211.

[92] X. Jia, "Google Cloud Computing Platform Technology Architecture and the
Impact of Its Cost," in 2010 Second World Congress on Software Engineering
(WCSE) vol. 2, ed: IEEE, 2010, pp. 17-20.

[93] S. Wei, et al., "Design Aspects of Software as a Service to Enable E-Business
through Cloud Platform," in 2010 IEEE 7th International Conference on e-
Business Engineering (ICEBE), ed: IEEE, 2010, pp. 456-461.

[94] R. Clarke, "User Requirements for Cloud Computing Architecture," in 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), ed: IEEE, 2010, pp. 625-630.

[95] L. Hyun Jung, et al., "Technical Challenges and Solution Space for
Developing SaaS and Mash-Up Cloud Services," in IEEE International
Conference on e-Business Engineering, 2009. ICEBE '09, ed: IEEE, 2009, pp.
359-364.

[96] C. Chapman, et al., "Software architecture definition for on-demand cloud
provisioning," Cluster Computing, pp. 1-22, 2011.

[97] T. C. Chieu, et al., "Dynamic Scaling of Web Applications in a Virtualized
Cloud Computing Environment," in IEEE International Conference on e-
Business Engineering, 2009. ICEBE '09, ed: IEEE, 2009, pp. 281-286.

[98] Z. Changli and Y. Maode, "Insurance-Based Cloud Computing-Architecture,
Risk Analysis and Experiment," in 2010 International Conference on
Computational Intelligence and Software Engineering (CiSE), ed: IEEE, 2010,
pp. 1-4.

[99] D. Bonetta and C. Pautasso, "Towards liquid service oriented architectures,"
presented at the Proceedings of the 20th international conference companion
on World wide web, Hyderabad, India, 2011.

[100] I. Brandic, et al., "Service mediation and negotiation bootstrapping as first
achievements towards self-adaptable grid and cloud services," presented at the

! 75!

Proceedings of the 6th international conference industry session on Grids
meets autonomic computing, Barcelona, Spain, 2009.

[101] J. C. Duenas, et al., "System Virtualization Tools for Software Development,"
Internet Computing, IEEE, vol. 13, pp. 52-59, 2009.

[102] R. Martignoni, "Global Sourcing of Software Development - A Review of
Tools and Services," in Global Software Engineering, 2009. ICGSE 2009.
Fourth IEEE International Conference on, 2009, pp. 303-308.

[103] I. Richardson, et al., "Global Software Engineering: A Software Process
Approach," in Collaborative Software Engineering, I. Mistr√≠k, et al., Eds.,
ed: Springer Berlin Heidelberg, 2010, pp. 35-56.

[104] R. T. Fielding, "Architectural styles and the design of network-based software
architectures," University of California, Irvine, 2000.

[105] P. J. Leu and B. Bhargava, "Multidimensional Timestamp Protocols for
Concurrency Control," Software Engineering, IEEE Transactions on, vol. SE-
13, pp. 1238-1253, 1987.

[106] P. B. Kruchten, "The 4+1 View Model of architecture," Software, IEEE, vol.
12, pp. 42-50, 1995.

[107] A. E. Thijs Metsch, "Open Cloud Computing Interface - RESTful HTTP
Rendering," 2011.

[108] "JSR 252, http://www.jcp.org/en/jsr/detail?id=252 [May, 2013]."
[109] "Java Persistence APIs,

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html [May, 2013]."

[110] "Jersey, http://jersey.java.net/ [May, 2013]."
[111] "Amazon Cloud Watch, http://aws.amazon.com/cloudwatch/ [May, 2013]."
[112] "Amazon Elastic Load Balancing,

http://aws.amazon.com/elasticloadbalancing/ [May, 2013]."
.

! 76!

! 77!

7. Appendix

! 78!

! 79!

A.1. PTaaS#APIs#
This chapter explains the Application Programmable Interfaces (APIs) to access
important features of PTaaS. We have followed Open Cloud Computing Interface
(OCCI) RESTful HTTP Rendering specification [107]. APIs of the infrastructure are
provided in a RESTful [104] style to provide easy access to platform resources. REST
APIs are accessed using HTTP protocols and our decision to choose REST style will
enable different types of application and clients to have access to platform resources
through unified interface. In this chapter, we first provide a brief overview of OCCI
specifications and its important components as described in [107]. After that we
described APIs detailed of different platform interfaces to access to its features.

A.1.1. Overview#of#OCCI#Specification#
OCCI specifications follow a RESTful protocol and APIs to perform all types
operations on resources. The specifications were originally developed to performed
management operations on IaaS cloud. Later, the specifications were adapted to other
types of cloud service model including PaaS and SaaS. The specifications adopt
REST, therefore it is taking use of foundation protocols of HTTP. An implementation
of the OCCI standards much adheres to following characteristics.

Path:
Every resource being exposed using OCCI specifications should have a uniquely
identifiable resource path in form of URI. E.g. http://resourcepath/servicename.

Support filtering mechanism:
Resources that represent collections (of a kind), must be able to support filtering
mechanism to identify which collection of the resource instances are target of a
request. E.g. a resource associated with a uri http://resourcepath/(servicecollection)/
should be able to filter parameters passed in “(servicecollection)” should be able filter
and find out which service collection of the request.

GET:
External applications and services should be able to retrieve the resource using HTTP
GET methods on the URI.

POST:
External applications and services should be able to update a resource, create a new
instance of a resource or update an instance of a resource using HTTP POST method
on the URI.

POST (actionQuery = ?parameter1=value1, parameter1=value1…..):
External applications and services should be able to perform an action on a resource
or on a collection of the resource using HTTP POST method with query parameters
on a resource URI.

PUT:
External applications and services should be able to add a new resource or add a new
collection of the resources using HTTP PUT method on a resource URI.

! 80!

DELETE:
External applications and services should be able to delete a resource, remove a single
entry for a collection of the resources and remove a subset from a collection of the
resources using HTTP DELETE method on a resource URI.

Resource’s Capabilities:
External applications and services should also be able to get, add and delete
capabilities of the resources using using HTTP GET, POST and DELETE operations.

Additional Information and Parameters:
Additional information and parameters can be passed to resources through HTTP
additional parameters in HTTP header either as a single attribute:
OCCI-Attribute: occi.service.id = serviceId
OCCI-Attribute: occi.service.name = serviceName
OCCI-Attribute: occi.service.user = userId
OCCI-Attribute: occi.service.password = password

or as a collection of attributes:
OCCI-Attribute: occi.service.id = serviceName, occi.service.name = serviceName
OCCI-Attribute: occi.service.user = userId, occi.service.password = password

Return Codes:
For return codes we are using HTTP return codes as described in [107]. Following is
brief description of codes and their interpretation in context of our platform.

Response code: 200
Description: OK
Interpretation: Indicates that request was successful and response contains generated
data.

Response code: 201
Description: OK
Interpretation: Indicates that request was successful and response contains http
location header information to access generated data.

Response code: 202
Description: Accepted
Interpretation: Indicated that synchronous messaging request is accepted.

Response code: 204
Description: OK, without any return data
Interpretation: This indicates that request is successful but return collection does not
contain any information.

Response code: 400
Description: Bad Request
Interpretation: This indicates if there occurs an error while parsing request and/or
data that was sent with request. It applied both on individual data sets as well as on
collections.

! 81!

Response code: 401
Description: Unauthorized
Interpretation: This indicates that access denied because client does not have required
permission or have provided wrong credentials.

Response code: 404
Description: Not found
Interpretation: This indicates that requested information was not found.

Response code: 409
Description: Conflict
Interpretation: This indicates that request contained data that resulted in a conflict
with existing data because of resource internal constraints.

Response code: 410
Description: Gone
Interpretation: This indicates that requested resource instance does exist.

Response code: 500
Description: Internal server error
Interpretation: This indicated that client should restore itself to the state before
request was sent.

Response code: 501
Description: Not Implemented
Interpretation: It indicates that requested functionality is not implemented yet.

Response code: 503
Description: Service Unavailable
Interpretation: This response code indicates that service is temporarily unavailable.

Return Values:
Resources can return information after processing a request. The information that is
returned contains return code and additional information about the contents that is
produced as a result of the response. Following is an example response returned from
a resource.

<response>
 <responsecode>
 One of the response code as described above.

</responsecode>
<responsemessage>
 One of the response messages as described above.
</responsemessage>
<returndata>
 <contenttype>
 text/plain or XML
 </contenttype>
 <location>
 http://example.com/users/

! 82!

</location>
<data>

It contains data generated by the resource and returned as a
result of an operation. In the subsequent parts of the report, we
will only specify the information that is to be placed inside
<data> tags.

</data>
<accessinformation>

< id >tempid< /id >
< password>password</password>

</accessinformation >
<additionalinformation>
</additionalinformation>

</returndata>
</response>

A.1.2. APIs#to#Access#Platform#Features#
The APIs for the platform are defined in terms of the features that platform will
support. Apart from registration of tenants and users, all other APIs require
authentication credentials of tenants or users or both. To avoid redundant information
in the document, we are describing authentication mechanism in a separate section. In
other APIs where authentication is required, we will only refer if user authentication
is required or tenant authentication is needed. APIs for accessing features are
explained in terms of five sub-sections as described in Table!2.

Table.2:.Legend.of.API.Description.Subsections.

Section Purpose
URI It specifies address on which resource is hosted.
Method One of the four HTTP methods: GET, PUT,

POST or DELETE.
Functionality It describes the functionality that is performed by

the resource.
Inputs It elaborates inputs that are sent to the resource.
Return Values It explains outputs that are returned from the

resource.

In order to avoid redundancy while describing return values of APIs, we only provide
information that is tagged inside <data></data>. Other values in the response message
are populated as described in subsection Return Values in section A.1.1.

A.1.2.1. Authentication#Mechanism#
The platform services need to authenticate incoming requests in order to verify
whether request is coming from a valid source or not. The services perform two types
of authentications; verify users while performing user specific operations and verify
tenants while performing tenant specific operations. The information of users and
tenants along with their security credentials is passed in HTTP request header. The
HTTP request header expects four types of attributes as described in Table!3.

! 83!

Table.3:.Authentication.Attributes.

Attribute Purpose
resource.tenant.id = tenantId Contains tenant id
resource.user.id = userId Contains user is
resource.tenant.password = tenantPassword Contains tenant password or authentication code
resource.user.password = userPassword Contains user password or authentication code

A.1.3. Platform#APIs#
This!section!defines!APIs!of!the!main!components!of!the!platform.!We!have!
divided!APIs!description!into!five!sections:!Tenant!Management,!User!
Management,!Application/Tools/Services!Management,!Collaboration!Service!
and!Workflow!Management.!

A.1.3.1. APIs#for#Tenant#Management#
APIs explained in this section are associated with management of tenant on platform.

A.1.3.1.1. Get#Information#of#an#Existing#Tenant#
URI: (host)/tenant/(id)
Method: GET
Functionality: It returns tenants detail after verification of access id (user id) and
password provided in HTTP header.
Input: Id of the tenant whose information is required.
Output: It returns following XML structure in data part of the return structure. Other
parts of the return XML structure will be same as explained in Return Values in
Section A.1.1.
<data><tenant>
 <id>tenantid</id>
 <name>tenantname</name>
 <temppassword> this field will be empty</ temppassword >
 <password>this field will be empty</password>

<confirmpassword>this field will be empty</confirmpassword>
 <email>tenant@email.com</email>
 <webaddress>www.exampletenant.com</webaddress>
 <physicaladdress></physicaladdress>
 <status>Y for active, N for inactive</status>
 <sharingpreference>E for exclusive, S for shared</sharingpreference>

<locationpreference>
Information of geographic region where tenant want to store its data
and services.

</locationpreference>
<encryption>Y for yes, N for no</encryption>

</tenant></data>

A.1.3.1.2. Register#a#New#Tenant#
URI: (host)/tenant/(tenantInformation)
Method: PUT
Functionality: It registers a new tenant with the platform. After first time registration
an auto generated email will be sent to tenant with a temporary password. Tenant
need to update its password after that in order to have access to platform resources.
Input: Tenant information is passed in following structure.

! 84!

<tenant>
 <name>tenantname</name>
 <temppassword> this field will be empty</ temppassword >
 <password>this field will be empty</password>

<confirmpassword>this field will be empty</confirmpassword>
 <email>tenant@email.com</email>
 <webaddress>www.exampletenant.com</webaddress>
 <physicaladdress></physicaladdress>
 <status>Y for active, N for inactive</status>
 <sharingpreference>E for exclusive, S for shared</sharingpreference>

<locationpreference>
Information of geographic region where tenant want to store its data
and services. E for Europe, US for united states and N for not
applicable.

</locationpreference>
<encryption>Y for yes, N for no</encryption>

</tenant>
Output: It returns XML structure as explained in Return Values in Section A.1.1
along with additional information as described below.
<data>
 <tenant>

<id>tenantid</id>
 </tenant>
<data>

A.1.3.1.3. Update#Information#of#an#Existing#Tenant#
URI: (host)/tenant/(tenantInformation)
Method: POST
Functionality: It updates information of the tenant already registered with the
platform.
Input: Tenant information is passed in following structure. Tenant’s id and password
fields are mandatory to be filled in. Only filled fields will be updated. Empty fields
will be ignored and will retain old values in the platform.
<data></tenant>
 <id>tenantid</id>
 <name>tenantname</name>
 <temppassword> this field will be empty</ temppassword >
 <password>this field contains tenant’s password</password>

<confirmpassword>this field will be empty</confirmpassword>
 <email>tenant@email.com</email>
 <webaddress>www.exampletenant.com</webaddress>
 <physicaladdress></physicaladdress>
 <status>Y for active, N for inactive</status>
 <sharingpreference>E for exclusive, S for shared</sharingpreference>

<locationpreference>
Information of geographic region where tenant want to store its data
and services. E for Europe, US for united states and N for not
applicable.

</locationpreference>
<encryption>Y for yes, N for no</encryption>

! 85!

</tenant></data>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.1.4. Delete#a#Tenant#
URI: (host)/tenant/(tenantInformation)
Method: DELETE
Functionality: It inactivates the tenant that is already registered with platform.
Input: Tenant information is passed in following structure. Tenant’s id and password
fields are mandatory to be filled in.
<data></tenant>
 <id>tenantid</id>
</tenant></data>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.2. User#Management#
APIs explained in this section are associated with management of users on platform.
Users email address is treated as id in the platform.

A.1.3.2.1. Get#Information#of#an#Existing#User#
URI: (host)/user/(email)
Method: GET
Functionality: It returns user’s detail after verification of user email and password
provided in HTTP header.
Input: Email of the user whose information is required.
Output: It returns following XML structure in data part of the return structure. Other
parts of the return XML structure will be same as explained in Return Values in
Section A.1.1.
<data><user>
 <email>useremail@email.com</email >
 <name>username</name>
 <temppassword> this field will be empty</ temppassword >
 <password>this field will be empty</password>

<confirmpassword>this field will be empty</confirmpassword>
<address>user address</address>

 <status>Y for active, N for inactive</status>
</user></data>

A.1.3.2.2. Register#a#New#User#
URI: (host)/user/(userInformation)
Method: PUT
Functionality: It registers a new user with the platform. After first time registration
an auto generated email will be sent to users with a temporary password. User need to
update her password after that in order to have access to platform resources.
Input: User information is passed in following structure.
<data><user>
 <email>useremail@email.com</email >
 <name>username</name>
 <temppassword> this field will be empty</ temppassword >
 <password>this field will be empty</password>

<confirmpassword>this field will be empty</confirmpassword>
<address>user address</address>

! 86!

 <status>Y for active, N for inactive</status>
</user></data>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.2.3. Update#Information#of#an#Existing#User#
URI: (host)/user/(userInformation)
Method: POST
Functionality: It updates information of the user already registered with the platform.
Input: User’s information is passed in following structure. User’s email and
password fields are mandatory to be filled in. Only filled fields will be updated.
Empty fields will be ignored and will retain old values in the platform.
<data><user>
 <email>useremail@email.com</email >
 <name>username</name>
 <temppassword>

If user is updating its auto generated system password then this field is
mandatory.

</ temppassword >
 <password>User’s password</password>

<confirmpassword>
If user is updating its auto generated system password then this field is
mandatory.

</confirmpassword>
<address>user address</address>

 <status>Y for active, N for inactive</status>
</user></data>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.2.4. Delete#a#User#
URI: (host)/user/(userInformation)
Method: DELETE
Functionality: It inactivates the user who is already registered with platform.
Input: User’s information is passed in following structure. User’s email and
password fields are mandatory to be filled in.
<data><user>
 <email>useremail@email.com</email >
</user></data>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.3. Registration#of#Applications,#Tools#and#Services#
APIs explained in this section are associated with management of applications, tools
and services on the platform.

A.1.3.3.1. Get#Information#of#a#Registered#Application,#Tool#or#Service#
URI: (host)/apptoolservice/(id)
Method: GET
Functionality: It returns information of already registered application, tool or
services in the platform. Tenant verification is required in order to access the API.
Input: Uniquely identifiable information about application tool or service.

! 87!

Output: It returns following XML structure in data part of the return structure. Other
parts of the return XML structure will be same as explained in Return Values in
Section A.1.1.
<data><apptoolservice>
 <apptoolserviceid>Service identity</apptoolserviceid>
 <servicename>Service name</servicename >
 <servicetype>

Service type. W for a web based application, MW for application that
supports both mobile and web based interfaces. D for a desktop
application. S for a web service that performs some business logic can
be integrated with other applications and services.

</servicetype>
 <vmtemplateid>

Uniquely identifiable virtual machine template that is stored in
underlying IaaS cloud with application, tools and/or services stored on
it.

</vmtemplateid>
<executablebundle>

Executable file of application tool or service (.exe, .war, .jar etc) that
can be deployed on cloud. This is used when vmtemplate hosting
service is not available on underlying IaaS cloud.

</executablebundle/>
<deploymentinstallationscript>
 <script>

Deployment or installation scripts that can be used to install or
deploy applications, tools and services.

</script>
<type>
 Deployment script type. A for Ant and M for Maven.
</type>

</deploymentinstallationscript>
<interfaces>

Information on interfaces of services. E.g. Web Service Descriptive
Language (WSDL).

</interfaces>
<prerequisiteservices>

Comma separated list of service IDs that should be invoked before this
service.

</prerequisiteservices>
</apptoolservice></data>

A.1.3.3.2. Registered#a#new#Application,#Tool#or#Service#
URI: (host)/apptoolservice/(information)
Method: PUT
Functionality: It registers a new application, tool or service with the platform. Tenant
verification is required in order to access the API.
Input: Following information needs to be provided to do registration.
<apptoolservice>
 <servicename>Service name</servicename >
 <servicetype>

! 88!

Service type. W for a web based application, MW for application that
supports both mobile and web based interfaces. D for a desktop
application. S for a web service that performs some business logic can
be integrated with other applications and services.

</servicetype>
 <vmtemplateid>

Uniquely identifiable virtual machine template that is stored in
underlying IaaS cloud with application, tools and/or services stored on
it.

</vmtemplateid>
<executablebundle>

Executable file of application tool or service (.exe, .war, .jar etc) that
can be deployed on cloud. This is used when vmtemplate hosting
service is not available on underlying IaaS cloud.

</executablebundle/>
<deploymentinstallationscript>
 <script>

Deployment or installation scripts that can be used to install or
deploy applications, tools and services.

</script>
<type>
 Deployment script type. A for Ant and M for Maven.
</type>

</deploymentinstallationscript>
<interfaces>

Information on interfaces of services. E.g. Web Service Descriptive
Language (WSDL).

</interfaces>
<prerequisiteservices>

Comma separated list of service IDs that should be invoked before this
service.

</prerequisiteservices>
</apptoolservice>

Output: It returns XML document structures in the same way as explained in Section
A.1.1 containing additional information of the service id.
<data>
 <apptoolservice>

<apptoolserviceid>
Id of the registered application, tool or service

</apptoolserviceid>
</apptoolservice>

</data>

A.1.3.3.3. Update#a#Registered#Application,#Tool#or#Service#
URI: (host)/apptoolservice/(information)
Method: POST
Functionality: It updates information of an existing application, tool or service in the
platform. Tenant verification is required in order to access the API. Only
<apptoolserviceid> and at least of the other tag is mandatory to have a value. If other

! 89!

tags contain a valid value it is updated, if they do not have a valid value or are empty,
the value that is already there is platform is retained.
Input: Following information needs to be provided to do registration.
<apptoolservice>
 <apptoolserviceid>Service Identify</apptoolserviceid>
 <servicename>Service name</servicename >
 <servicetype>

Service type. W for a web based application, MW for application that
supports both mobile and web based interfaces. D for a desktop
application. S for a web service that performs some business logic can
be integrated with other applications and services.

</servicetype>
 <vmtemplateid>

Uniquely identifiable virtual machine template that is stored in
underlying IaaS cloud with application, tools and/or services stored on
it.

</vmtemplateid>
<executablebundle>

Executable file of application tool or service (.exe, .war, .jar etc) that
can be deployed on cloud. This is used when vmtemplate hosting
service is not available on underlying IaaS cloud.

</executablebundle/>
<deploymentinstallationscript>
 <script>

Deployment or installation scripts that can be used to install or
deploy applications, tools and services.

</script>
<type>
 Deployment script type. A for Ant and M for Maven.
</type>

</deploymentinstallationscript>
<interfaces>

Information on interfaces of services. E.g. Web Service Descriptive
Language (WSDL).

</interfaces>
<prerequisiteservices>

Comma separated list of service IDs that should be invoked before this
service.

</prerequisiteservices>
</apptoolservice>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.3.4. Delete#an#Application,#Tool#or#Service#
URI: (host)/apptoolservice/(information)
Method: DELETE
Functionality: It unregisters an existing application, tool or service in the platform.
Tenant verification is required in order to access the API. Only service identity is
needed to be provided.
Input: Following information needs to be provided to do registration.

! 90!

<apptoolservice>
 <apptoolserviceid>Service Identify</apptoolserviceid>
</apptoolservice>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.4. Collaboration#APIs#
This!section!explains!APIs!to!support!collaboration!among!applications!hosted!
on!the!platform.!

A.1.3.4.1. Initiate#Collaboration#Activity#
URI: (host)/ collaboration/(information)
Method: PUT
Functionality: This API supports initialization of a new collaboration activity.
Input: Following information needs to be provided.
<collaboration>
 <name>Name</servicename >
 <type>

A for asynchronous collaboration and S for synchronous collaboration.
</type>

</collaboration>

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with containing additional information of the initiated collaboration id.
<data>
 <collaboration>

<id>
Id of the newly instantiated collaboration activity.

</id>
</collaboration>

</data>

A.1.3.4.2. Register#Application,#Tool#or#Service#in#a#Collaboration#Activity#
URI: (host)/collaboration/(information)
Method: POST(if information = register)
Functionality: This API supports addition of new clients application, tool and service
into collaboration. If a client application, too and service is already register; its
information is updated with new information passed in parameters.
Input: Following information needs to be provided.
<collaboration>
 <id>collaboration id</id>
 <client>
 <id>Application, tool or service id</id >

<iterfacetypes>
R for rest, S for SOAP Web Service.

</iterfacetypes>
<callbackmethod>

<information>
It contains call method address and signature. For
example in case of REST it contains resource URI.

<information>

! 91!

</callbackmethod>
</client>

</collaboration>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.4.3. Unregister#Application,#Tool#or#Service#in#a#Collaboration#Activity#
URI: (host)/collaboration/(information)
Method: POST(if information = unregister)
Functionality: This API supports initialization of a new collaboration activity. This
API can also accept list of clients.
Input: Following information needs to be provided.
<collaboration>
 <id>collaboration id</id>
 <client>
 <id>Application, tool or service id</id >

</client>
</collaboration>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.4.4. Post#Data#in#a#Collaboration#Activity#
URI: (host)/collaboration/(information)
Method: POST(if information = postdata)
Functionality: This API supports adding data to collaboration activity.
Input: Following information needs to be provided.
<collaboration>
 <id>collaboration id</id>
 <data>
 It contains collaboration data.

</data>
</collaboration>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.4.5. Get#Data#from#a#Collaboration#Activity#
URI: (host)/collaboration/(information)
Method: GET(if information = getdata)
Functionality: This API provides latest copy of data placed in a collaboration
activity.
Input: Following information needs to be provided.
<collaboration>
 <id>collaboration id</id>
</collaboration>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.
<data>
 <collaborationdata>
 <type>

Data format: T for text, X for XML document and O for all
other types of data.

! 92!

 </type>
 <data>
 It contains collaboration data.
 </data>

</collaborationdata>
</data>

A.1.3.4.6. Terminate#a#Collaboration#Activity#
URI: (host)/collaboration/(information)
Method: DELETE
Functionality: This API terminates a collaboration activity. To terminate
collaboration, tenant authentication parameters passed in HTTP header for
authorization should match with one passed for creating an activity
Input: Following information needs to be provided.
<collaboration>
 <id>collaboration id</id>
</collaboration>
Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5. Workflow#Management#
This section provides overview of APIs to define and manage process workflows. The
APIs are classified into three sub groups describing APIs associated with creation and
management of actual process flows, APIs to add tools to workflow nodes and APIs
to attach tenants to individual processing points of workflows.

A.1.3.5.1. Process#Workflow#Management#

A.1.3.5.1.1. Create#Process#Workflow#
URI: (host)/processworkflow/
Method: PUT
Functionality: This API supports initialization of a new process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <name>Name</name>
</processworkflow >

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with containing additional information of the newly created workflow id.
<data>
 <processworkflow>
 <id>Workflow id</id>

</processworkflow >

</data>

A.1.3.5.1.2. Get#Process#Workflow#
URI: (host)/processworkflow/
Method: GET
Functionality: This API supports to get information of an existing workflow.
Input: Following information needs to be provided.

! 93!

<processworkflow>
 <id>Workflow id</id>
</processworkflow >

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with containing additional information of the newly created workflow id.
<data>
 <processworkflow>
 <id>Workflow id</id>
 <name>Workflow name</name>

</processworkflow >
</data>

A.1.3.5.1.3. Update#Process#Workflow#
URI: (host)/processworkflow/
Method: POST
Functionality: This API provides update operation on an existing workflow.
Input: Following information needs to be provided.
<processworkflow>
 <id>Workflow id</id>
 <name>Name</name >
</processworkflow >

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.1.4. Delete#Process#Workflow#
URI: (host)/processworkflow/
Method: DELETE
Functionality: This API supports initialization of a new process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <id>Workflow id</id>
</processworkflow >

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.2. Node#Managements#on#a#Process#Workflow#

A.1.3.5.2.1. Add#Node#in#a#Process#Workflow#
URI: (host)/processworkflow/node
Method: PUT
Functionality: This API supports initialization of a new node in the process
workflow.
Input: Following information needs to be provided.
<processworkflownode>
 <processworkflow>
 <id>workflow id</id>

</processworkflow>
<name>

! 94!

 Name of the process workflow node.
</name>
<parentnode>
 Parents node id.
</parentnode>
<preceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 <proceedingnode>
<proceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 <proceedingnode>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with containing additional information of the newly created node’s id.
<data>
 <processworkflownode>
 <id>
 Node id

</id>
 </processworkflownode>
</data>

A.1.3.5.2.2. Get#Node#in#a#Process#Workflow#
URI: (host)/processworkflow/node
Method: GET
Functionality: This API supports get information of a node in the process workflow.
Input: Following information needs to be provided.
<processworkflownode>

<id>
 Node id.
</id>

</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with containing additional information of the node.
<data><processworkflownode>
 <processworkflow>
 <id>workflow id</id>

</processworkflow>
<id>
 Node id.
</id>
<name>
 Name of the process workflow node.
</name>

! 95!

<parentnode>
 Parents node id.
</parentnode>
<preceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 </proceedingnode>
<proceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 </proceedingnode>
</processworkflownode></data>

A.1.3.5.2.3. Update#Node#in#a#Process#Workflow#
URI: (host)/processworkflow/node
Method: POST
Functionality: This API supports update of a node in the process workflow.
Input: Following information needs to be provided.
<processworkflownode>
 <processworkflow>
 <id>workflow id</id>

</processworkflow>
<id>

 Node id
</id>
<name>
 Name of the process workflow node.
</name>
<parentnode>
 Parents node id.
</parentnode>
<preceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 <proceedingnode>
<proceedingnode>

<id>
 Id of the preceeding node of workflow.
</id>

 <proceedingnode>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.2.4. Delete#Node#in#a#Process#Workflow#
URI: (host)/processworkflow/node

! 96!

Method: DELETE
Functionality: This API removes node from the process workflow.
Input: Following information needs to be provided.
<processworkflownode>

<id>
 Node id.
</id>

</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.3. Managing#Tools#assigned#to#the#Workflow#Node#

A.1.3.5.3.1. Assign#Application,#Tools#or#Services#to#a#Node#
URI: (host)/processworkflow/tool
Method: PUT
Functionality: This API assigns the list of tools to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
<apptoolservicelist>
 <apptoolservice>
 <id>application, tool or service id 1<id>
 </apptoolservice>
 <apptoolservice>
 <id>application, tool or service id 2<id>
 </apptoolservice>
 …..

…..
…..

</apptoolservicelist>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.3.2. Get#Application,#Tools#or#Services#to#a#Node#
URI: (host)/processworkflow/tool/
Method: GET
Functionality: This API returns a list of applications, tools or services registered
assigned to a node of the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
</processworkflownode>

! 97!

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with additional information of tools that attached to a processing node.
<data><processworkflow>

<apptoolservicelist>
 <apptoolservice>
 <id>application, tool or service id 1<id>
 </apptoolservice>
 <apptoolservice>
 <id>application, tool or service id 2<id>
 </apptoolservice>
 …..

…..
…..

</apptoolservicelist>
</processworkflow></data>

A.1.3.5.3.3. Update#Application,#Tools#or#Services#to#a#Node#
URI: (host)/processworkflow/tool
Method: POST
Functionality: This API updates the list of applications, tools and services assigned
to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
<apptoolservicelist>
 <apptoolservice>
 <id>application, tool or service id 1<id>
 </apptoolservice>
 <apptoolservice>
 <id>application, tool or service id 2<id>
 </apptoolservice>
 …..

…..
…..

</apptoolservicelist>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.3.4. Update#Application,#Tools#or#Services#to#a#Node#
URI: (host)/processworkflow/tool
Method: DELETE
Functionality: This API deletes the list of applications, tools and services assigned to
a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 </processworkflownode>
 <id>workflow id</id>

! 98!

</processworkflownode>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.4. Managing#Tenants#assignment#to#the#Nodes#in#the#Workflow#

A.1.3.5.4.1. Assign#Tenants#to#a#Node#
URI: (host)/processworkflow/tenants
Method: PUT
Functionality: This API assigns the list of tenant to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
<tenantlist>

<tenant>
 <id>tenant id 1</id>
 <tenant>

<tenant>
 <id>tenant id 2</id>
 <tenant>
 …..

…..
…..

</tenantlist>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.4.2. Get#Tenants#Assigned#to#a#Node#
URI: (host)/processworkflow/tenants
Method: GET
Functionality: This API returns the list of tenant to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>

</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1 along with information of tenants.
<data>

<tenantlist>
<tenant>

! 99!

 <id>tenant id 1</id>
 <tenant>

<tenant>
 <id>tenant id 2</id>
 <tenant>
 …..

…..
…..

</tenantlist>
</data>

A.1.3.5.4.3. Update#Tenants#Assigned#to#a#Node#
URI: (host)/processworkflow/tenants
Method: POST
Functionality: This API updates the list of tenant to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
<tenantlist>

<tenant>
 <id>tenant id 1</id>
 <tenant>

<tenant>
 <id>tenant id 2</id>
 <tenant>
 …..

…..
…..

</tenantlist>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

A.1.3.5.4.4. Delete#Tenants#Assigned#to#a#Node#
URI: (host)/processworkflow/tenants
Method: DELETE
Functionality: This API deletes the list of tenant to a node in the process workflow.
Input: Following information needs to be provided.
<processworkflow>
 <processworkflownode>
 <id>workflow id</id>

</processworkflownode>
</processworkflownode>

Output: It returns XML document structures in the same way as explained in Section
A.1.1.

! 100!

A.1.3.6. APIs#for#Supporting#Traceability#
This section explains the APIs for providing traceability support by the platform.

A.1.3.6.1. Register#Artifact#for#Traceability#and#Get#Identifier#
URI: (host)/ traceabilityartifact/(artifactInformation)
Method: PUT
Functionality: This API registers a new artifact for traceability in the platform. After
successful registration of the artifact, a unique identity is returned which is used for
subsequent traceability operations.
Input: Artifact information is passed in following structure.
<artifact>
 <name>

Artifact name that is uniquely identifiable by the application that is
registering it for traceability.

</name>
<type>

Specifies type of artifact. E.g. Design document, text document etc.
</type>

 <category>
This field contains category of the artifact. For example, design
document can be any of the class diagram type, component diagram
type, sequence diagram type, collaboration diagram type etc.

</category>
<applicationid>

Identity of the application/tool registering artifact for traceability.
</applicationid>

</artifact >
Output: It returns XML structure as explained in Return Values in Section A.1.1
along with additional information as described below.
<data>
 <artifact>

<id>artifactId</id>
 </artifact>
<data>

A.1.3.6.2. Get#Identifier#of#an#already#Registered#Artifact#
URI: (host)/ traceabilityartifact/(artifactInformation)
Method: GET
Functionality: This API returns identifier of an already registered artifact.
Input: Artifact information is passed in following structure.
<artifact>
 <name>

Artifact name that is uniquely identifiable by the application that is
registering it for traceability.

</name>
<applicationid>

Identity of the application/tool registering artifact for traceability.
</applicationid>

</artifact >

! 101!

Output: It returns XML structure as explained in Return Values in Section A.1.1
along with additional information as described below.
<data>
 <artifact>

<id>artifactId</id>
 </artifact>
<data>

A.1.3.6.3. Update#an#already#Registered#Artifact#
URI: (host)/ traceabilityartifact/(artifactInformation)
Method: POST
Functionality: This API updates name of an already registered artifact.
Input: Artifact information is passed in following structure.
<artifact>
 <id>artifactId</id>
 <name>

Artifact name that is uniquely identifiable by the application that is
registering it for traceability.

</name>
<applicationid>

Identity of the application/tool registering artifact for traceability.
</applicationid>

</artifact >
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.6.4. Delete#a#Registered#Artifact#
URI: (host)/ traceabilityartifact/(artifactInformation)
Method: DELETE
Functionality: This API deletes an already registered artifact after verifying
application identity.
Input: Artifact information is passed in following structure.
<artifact>

<id>artifactId</id>
<applicationid>

Identity of the application/tool that registered artifact for traceability.
</applicationid>

</artifact>
Output: It returns XML structure as explained in Return Values in Section A.1.1.

A.1.3.6.5. Register#Callback#Method#for#Traceability#
URI: (host)/traceabilitycallback/(methodInformation)
Method: PUT
Functionality: This API registers a new call method to notify application/tools
whenever there is an update in the linked document.
Input: Method information is passed in following structure.
<callbackmethod>
 <applicationtoolidentity>

Unique identity of the application or tool (as described in section
A.1.3.3.2).

</ applicationtoolidentity >
<artifactid>

! 102!

This is a unique identity of the artifact registered in the platform for
traceability (as explained in section A.1.3.6.1).

</artifactid>
 <callbackmethod>
 <type>

This field specifies type of callback method. It is either of two
types: remote method invocation (RMI) and REST.

 </type>
 <address>

 This field specifies address of callback method
</address>
<signature>
 This field specifies name of callback method.
</signature>

</callbackmethod>
</callbackmethod>
Output: It returns XML structure as explained in Return Values in Section A.1.1.
<data>
 <callbackmethod>

<id>Unique callbackmethod id</id>
 </callbackmethod>
<data>

