
Towards Scalable Simulation
of Stochastic Bigraphs
Foundations for the Stochastic Bigraphical Abstract Machine
(SBAM)

Espen Højsgaard
Jean Krivine

IT University Technical Report Series TR-2011-148

ISSN 1600–6100 December 2011

Copyright c© 2011, Espen Højsgaard
Jean Krivine

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-247-9

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Abstract

We report on the progress of the development and implementation of an efficient and
scalable simulation algorithm for stochastic bigraphical reactive systems (BRSs).

The starting point is the stochastic simulation algorithm for the κ-calculus by Danos
et al. [12] (henceforth KaSim). Since the κ-calculus is a graphical formalism with a straight-
forward BRS representation, we are hopeful that their algorithm generalizes to BRSs. The
KaSim algorithm relies on a number of concepts that have not previously been developed
for BRSs: embeddings, localized matching, redex and agent modifications, and fine-grained
conflict/causality analysis at the level of rules exploiting the notion of modification. In this
report, we rigorously develop bigraph embeddings and redex/agent modifications, give an
algorithm for localized matching, and outline a fine-grained conflict/causality analysis.

Our implementation strategy is to represent the bigraphical structures as directly as
possible, as we believe that this eases implementation and increases trust in correctness.
However, it is difficult to directly represent the structures of the usual presentation of the
theory of BRSs: any non-trivial BRS contains an infinite number of ground reaction rules,
since the set of rules must be closed under support equivalence and a parametric reaction
rules generates an infinite set of ground reaction rules. In addition, the usual presenta-
tion of the dynamic theory of BRSs combines poorly with the stochastic semantics: the
stochastic semantics rely on support, i.e., concrete bigraphs, while dynamics are defined up
to support equivalence. We therefore develop, and prove equivalent, an alternative dynamic
theory for BRSs without these problems: (i) the set of rules need not be closed under sup-
port equivalence, (ii) parametric reaction rules are first-class citizens, and (iii) integrates a
(generalized) stochastic semantics. The development is based on the more general theory
of reactive systems, and is thus applicable in more settings than just (stochastic) BRSs.

The completed parts of our work have been implemented in a prototype called the
Stochastic Bigraphical Abstract Machine (SBAM), which currently allows stochastic sim-
ulation of BRSs where each redex consists of a single connected component and is solid,
i.e., matches are determined by support translations of its nodes.

i

ii

CONTENTS iii

Contents

Abstract page i

Contents iii

1 Introduction 1
1.1 Related work . 2
1.2 Outline of the Report . 3

2 Background 4
2.1 Mathematical Preliminaries . 4
2.2 Bigraphs . 5

2.2.1 Concrete Bigraphs . 5
2.2.2 S-categories and spm-categories . 10
2.2.3 Bigraphical Categories . 12
2.2.4 Reactive Systems . 13
2.2.5 Bigraphical Reactive Systems . 15

3 The Simulation Algorithm 17
3.1 Gillespie’s algorithm . 17
3.2 Incremental and Local Updates . 18

4 Stochastic Parametric Reactive Systems 20
4.1 Representative Basic Reactive Systems . 21

4.1.1 Abstract Representative Basic Reactive Systems 23
4.2 Parametric Reactive Systems . 24

4.2.1 Bigraphical Parametric Reactive Systems . 24
4.2.2 Relating Concrete PRSs and RBaRSs . 25
4.2.3 Abstract Parametric Reactive Systems . 27

4.3 Stochastic Parametric Reactive Systems . 29
4.3.1 Matches . 29
4.3.2 Deterministic Support Translation of Reactums 30
4.3.3 Abstract Stochastic Parametric Reactive Systems 31

5 Bigraph Embeddings 33
5.1 Link Graph Embeddings . 33

5.1.1 Solid Link Graphs . 35
5.2 Place Graph Embeddings . 36

5.2.1 Solid Place Graphs . 39
5.3 Bigraph Embeddings . 40

5.3.1 Solid Bigraphs . 43

6 Bigraph Edit Scripts 44
6.1 Patterns . 44
6.2 Edits . 46

6.2.1 Deriving Named Instance Maps . 48
6.2.2 Mediating edits . 49

6.3 Edit Scripts . 51
6.4 Reconfiguration Systems . 52

6.4.1 Reconfiguration Rules . 52
6.4.2 Reconfiguration Systems . 54

iv CONTENTS

7 Rule Activation and Inhibition 56
7.1 Causality and Conflict . 56
7.2 Category of Bigraph Embeddings . 57

7.2.1 Pullbacks of Embeddings . 57
7.2.2 Pushouts of Embeddings . 60
7.2.3 Characterizing Overlaps . 61

7.3 PP Diagrams, Activation and Inhibition . 61
7.3.1 Inhibition . 62
7.3.2 Activation . 63

8 Anchored Matching 64
8.1 Algorithm . 65

9 Conclusions and Future Work 67
9.1 Future Work . 67

References 68

A Proofs 70
A.1 Bigraph Embeddings . 70

A.1.1 Proof of Prop.5.3 . 70
A.1.2 Proof of Prop.5.6 . 71
A.1.3 Proof of Prop.5.9 . 74
A.1.4 Proof of Theorem5.10 . 80
A.1.5 Proof of Lemma5.11 . 84
A.1.6 Proof of Prop.5.13 . 85
A.1.7 Proof of Prop.5.17 . 86
A.1.8 Proof of Prop.5.19 . 89
A.1.9 Proof of Prop.5.21 . 89
A.1.10 Proof of Theorem5.22 . 96

A.2 Bigraph Edit Scripts . 100
A.2.1 Proof of Prop.6.13 . 100
A.2.2 Proof of Lemma6.14 . 104
A.2.3 Proof of Lemma6.15 . 115
A.2.4 Proof of Prop.6.28 . 118

1. Introduction 1

1 Introduction
The theory of bigraphs arose as a generalization of process calculi, and provides a unifying framework
for modeling systems of mobile and communicating agents. The theory excels in that it provides a
general method for deriving labeled transition systems (LTSs) from reaction semantics, with the nice
property that, in the derived LTSs, bisimulation is a congruence.

But it is also a theory with a nice graphical representation, which enables models that are more
intuitive than corresponding process calculi models. This has recently been exploited by Damgaard
et al. [9, 10] and Bacci et al. [1] to give models of protein interaction and dynamic compartmentalization
in cellular biology. In combination with Krivine et al.’s stochastic semantics for bigraphs [25], these
works enable us to construct models of biological cells that may be simulated by a computer; the only
thing missing is a simulator for stochastic bigraphs, which is what we have set out to build.

Our starting point is the efficient and scalable simulator for the κ-calculus [11] by Danos et al.
and its underlying algorithm (which we call KaSim) [12]: Since the κ-calculus is a graphical formalism
with a straightforward BRS representation, we are hopeful that KaSim generalizes to bigraphs. The
KaSim algorithm relies on a number of concepts that have not previously been developed for BRSs:
embeddings, localized matching, redex and agent modifications, and fine-grained causality analysis at
the level of rules exploiting the notion of modification. In this report, we rigorously develop bigraph
embeddings and redex/agent modifications, and outline algorithms for localized matching and fine-
grained causality analysis:

bigraph embeddings:
We develop a general theory of bigraph embeddings that are isomorphic to decompositions of the
form H = C ◦ ((G⊗ idX) ◦D⊗ id〈k,Y 〉) where D is discrete (some detail omitted). In particular,
embeddings of redexes into agents are isomorphic to matches. We also show that embeddings of
so-called solid bigraphs are determined by support translations of their nodes.

edit scripts:
We propose a set of minimal modifications to a redex, called edits, and show how the modification
of a redex can be transferred to an agent through an embedding, giving rise to an alternative,
but equivalent, way to define reaction. We prove that a sequence of edits, an edit script, can
realize any parametric reaction rule and vice versa.

rule activation and inhibition:
We outline an approach to characterizing causality and conflict at the level of rules, called
respectively rule activation and rule inhibition, based on the idea of characterizing overlaps
between bigraphs as a set of pullbacks in the category of embeddings.

anchored matching:
We give a localized matching algorithm, based on the idea of expanding a partial embedding of
a redex to total embeddings.

However, before we can hope to generalize and implement the KaSim algorithm for bigraphs, we
must develop a formulation of stochastic bigraphs that is more amenable to implementation than
the usual formulations. For example, neither Milner’s definition of bigraph dynamics [29] nor Krivine
et al.’s stochastic semantics for bigraphs [25] lend themselves easily to implementation for the following
reasons:

• The various definitions, e.g., the definitions of matches, reactions, and stochastic rates, rely on
support, i.e., node and edge identities. But at the same time, the same definitions always close
under support equivalence, whereby it becomes unclear how to handle support in practice.

• The, from a modeling perspective, essential concept of parametric reaction rules are treated as
generators of infinite families of ground (non-parametric) reaction rules, which clearly cannot be
represented directly in an implementation.

2 1.1. Related work

Furthermore, the formulation of stochastic bigraphs in [25] have two minor deficiencies: it only defines
stochastic semantics for BRSs with linear rules and so-called solid redexes, and there is a gap between
the definition of the reaction semantics and the stochastic semantics, as they rely on seemingly different
definitions of matches. We develop a theory of stochastic parametric reactive systems (SPRS) which
unifies and generalizes Milner’s reactive systems and the stochastic semantics of Krivine et al., while
avoiding the above issues. Similar to Milner’s reactive systems, we define SPRSs at the more abstract
level of s-categories, of which bigraphs are an instance.

1.1 Related work

Parametric Reactive Systems Our SPRSs are related to, and their formulation inspired by, the
parametric reactive systems of Debois, where parametric reaction rules are also first-class citizens [13].
However, contrary to our formulation, Debois does not make explicit that context and parameter
may be connected without the involvement of the redex. This has the consequence that bigraphical
reaction rules become generators of infinite families of rules. Furthermore, we go further than Debois,
by formally showing that our formulation is equivalent to the usual (non-parametric) reactive systems.

Bigraph Implementations A number of implementations of bigraphs are being developed at vari-
ous institutions. Unfortunately, it is hard to find the implementations themselves or papers describing
them, but here is a complete list of the implementations which we are aware of:

BigMC: A model checker for bigraphs which includes a command line interface and visualization [4].

bigraphspace: A Java library which provides a tuple-space-like API based on bigraphs [21].

Big Red: A graphical editor for bigraphs with easily extensible support for various file formats [17].

BigWB: A graphical workbench for bigraphs, aiming at providing a unifying GUI for the various
bigraph tools (work in progress, no website or papers at the time of writing).

BPL Tool: A command line tool for experimenting with (abstract) binding bigraphs based on Damgaard
et al.’s inductive characterization of matching in binding bigraphs [6] [7, 20, 23].

CLF based: Beauquier and Schürmann have given a model of bigraphs in the type theory CLF [3],
and thus CLF implementations, such as Celf [33], may be used for bigraphs.

DBtk: A tool for directed bigraphs, which provides calculation of IPOs, matching, and visualization
[2].

SAT based algorithm: Sevegnani et al. have presented a SAT based algorithm for matching in place
graphs with sharing [34] and an implementation is in progress based on MiniSAT [14].

Bigraphs vs Graph Transformation Ehrig and Milner have explored the connection between
traditional graph transformation and the bigraph approach [15, 28]. They have in particular focused on
the fact that in the traditional approach, graphs are objects in a category whereas they are morphisms
in the bigraphical approach. Following ideas by Cattani [8] and Sobocinsky [35] they use the cospan
construction to turn objects into morphisms, and the coslice construction to turn morphisms into
objects, thereby enabling transfer of results. As part of this work, Milner defines embeddings of
ground link graphs and show that they are isomorphic to link graph contexts [28]; this definition
serves as the basis of our bigraph embeddings.

1. Introduction 3

Stochastic Simulation of Process Algebra A number of simulators for various stochastic process
algebras have been developed in recent years, most notably

KaSim: A simulator for the κ-calculus based on the Gillespie-based algorithm presented in [12].

PEPA: The PEPA Eclipse Plug-in Project [30] provides an editor and various tools for PEPA [22],
including a stochastic simulator.

PRISM: Though not quite a stochastic simulator – it is a probabilistic model checker – it supports
(a subset of) PEPA models and is very efficient [26].

SPiM: The Stochastic Pi Machine is, as the name implies, a simulator for the stochastic π-calculus
[31].

1.2 Outline of the Report
Though this report is self contained, it is not a gentle introduction to bigraphs: we assume that the
reader has a keen intuition of bigraphs and bigraphical reactive systems and a reasonable grasp of its
categorical underpinnings.

The remainder of the report is organized as follows:

Section 2: Background
We provide a terse recap of the theory of bigraphs, along with a few new related definitions and
results that we shall need in the following sections.

Section 3: The Simulation Algorithm
We give an overview of the KaSim algorithm, recast to the setting of stochastic bigraphs.

Section 4: Stochastic Parametric Reactive Systems
We develop stochastic parametric reactive systems and prove that they generate the same abstract
reactions as Milner’s reactive systems.

Section 5: Bigraph Embeddings
We develop a general notion of bigraph embeddings which are isomorphic to certain decomposi-
tions of bigraphs. In particular, in the case of redexes, bigraph embeddings are isomorphic to
matches.

Section 6: Bigraph Edit Scripts
We develop bigraph edit scripts, fine-grained reconfigurations of redexes that may be mediated
by embeddings and generate the same reactions as bigraphical parametric reaction rules.

Section 7: Rule Activation and Inhibition
We outline a construction of fine-grained causality/conflict relations between parametric reaction
rules based on pullbacks in the category of bigraph embeddings.

Section 8: Anchored Matching
We give a backtracking algorithm for extending partial bigraph embeddings to total embeddings,
which, since embeddings of redexes into agents are matches, is equivalent to a localized matching
algorithm.

Section 9: Conclusions and Future Work
We conclude and discuss future work.

4

2 Background

We provide the necessary background theory upon which this report builds: some basic mathematical
preliminaries and a recap of the basic theory of bigraphs and bigraphical reactive systems (enriched
with a few simple definitions and results).

2.1 Mathematical Preliminaries

We briefly review the basic mathematical notations and conventions used in this report.

Natural Numbers and Sets We shall frequently treat a natural number m as a finite ordinal, the
set of all preceding ordinals: m = {0, 1, . . . ,m − 1}. We write sets as capital letters, e.g., S, T , or as
a symbol with a tilde on top to denote a set of what that symbol denotes, e.g., m̃ is a set of natural
numbers. For singletons S = {s} we often use s and S interchangeably. We write S − s and S + s
to mean S \ {s} and S ∪ {s} respectively. We write S#T for disjoint sets, i.e., S ∩ T = ∅. We write
S] T for the union of sets known or assumed to be disjoint. We write S + T for the disjoint union
{(0, s) | s ∈ S}∪ {(1, t) | t ∈ T}, and we write πi(S0 +S1) for Si. We use ı̄ to mean 1− i for i ∈ {0, 1}.

Vectors We write vectors as a symbol with an arrow on top to denote a vector of what that symbol
denotes, e.g., ~m is a vector of natural numbers. We write |~·| for the number of elements in a vector
and ~·i (i ∈ |~·|) for the ith element of the vector (i.e., indices begin at 0). We write {~·} for the set
{~·i | i ∈ |~·|}.

Functions We write IdS for the identity function on the set S. We write ∅S for the function whose
domain and codomain are the empty set and S respectively; S is sometimes omitted when it is un-
derstood from the context. We write ~f : ~S → T for the vector consisting of functions fi : Si → T
(i ∈ |~f | = |~S|), and symmetrically ~f : S → ~T for the vector consisting of functions fi : S → Ti
(i ∈ |~f | = |~T |). We write {s0 7→ t0, . . . , sn−1 7→ tn−1} for the function mapping si to ti (assuming
the si are distinct) and {S 7→ t} for the function that maps all elements of S to t. For a function
f : S → T we write f − s : (S − s)→ T for the function defined as (f − s)(s′) = f(s′) for s′ ∈ S − s,
and for sets S′ = {s0, . . . , sn−1} ⊆ S we write f − S to mean (· · · (f − s0) · · · − sn−1. Symmetrically,
we write f [s 7→ t] : (S + s)→ (T + t) for the function defined as

f [s 7→ t](s′) =

{
t if s = s′

f(s′) otherwise
.

If f : S → T is a function and S′ ⊆ S,T ′ ⊆ T , then f �S′ denotes the restriction of f to S′ and f �T
′

denotes the outward restriction of f to T ′, i.e., f �T
′

(s) = t iff f(s) ∈ T ′, and we write f(S′) to mean
{f(s) | s ∈ S′}. For an injective function f : S�T we write f−1 : rng(f)�S for its inverse which is
total, injective and surjective. For a function f : S → T we write f−1 for its preimage function defined
as f−1(t) = {s ∈ S | f(s) = t} : T → P(S), and we extend the preimage function to sets T ′ ⊆ T as
follows: f−1(T ′) = {s ∈ S | f(s) ∈ T ′} : P(T) → P(S). For a function f : S → P(T) we shall write
f(S′) to mean

⋃
s∈S′ f(s) when S′ ⊆ S, and, by extension, we shall sometimes write rng(f) to mean

f(S) when the context prevents ambiguity. We write f �T
′
for the outward restriction of f to T ′ ⊆ T ,

i.e., f �T
′

(s) = f(s) ∩ T ′. We say that f is fully injective iff ∀s, s′ ∈ S : f(s) ∩ f(s′) 6= ∅ ⇒ s = s′.
When f is fully injective we write f−1(t) (t ∈ rng(f)) for the unique s for which t ∈ f(s). Note that
for a fully injective function f we have f−1 : rng(f)�S, t ∈ f(f−1(t)), and {s} = f−1(f(s)). For two
functions f and g with disjoint domains S and T we write f] g for the function with domain S] T
such that (f] g)�S= f and (f] g)�T= g. We write� to indicate that a function is injective and ⇀
indicates partiality. We write ↪→ (↪⇀) for (partial) graph embeddings.

2. Background 5

Stochastics We use rand(S, f) to denote a random variate of a stochastic variable with outcomes S
and probability distribution f .

2.2 Bigraphs
This section is not meant as an introduction to bigraphs, but rather as a simplified and unified reference
for the parts of the bigraphical theory that we shall need in this report. In other words, we assume the
reader is already familiar with bigraphs; please refer to Milner’s recent book [29] for an introduction
to, and more complete treatment of, the theory of bigraphs.

Below we recall the definitions, notation, conventions, and terminology of bigraphs that we shall
use in this report. We follow Milner’s book closely [29], most of the time verbatim, but we have in a
few places omitted details that are irrelevant for our purposes (most significantly the notions of width
and sorting), slightly tweaked the notation to improve the readability of this report, and corrected
some minor mistakes.

We also prove a few straightforward results that will shall need later and introduce notation for
extracting subgraphs from bigraphs.

2.2.1 Concrete Bigraphs

We assume that names, node-identifiers, and edge-identifiers are drawn from three countably infinite,
mutually disjoint, sets: X , V, and E , respectively.

Nodes in bigraphs are assigned kinds, called controls, and the controls specify the number of ports
nodes of that kind have:

Definition 2.1 (basic signature (after [29, Def. 1.1])). A basic signature takes the form (K, ar). It
has a set K whose elements are kinds of node called controls, and a map ar : K → N assigning an
arity, a natural number, to each control. The signature is denoted by K when the arity is understood.
A bigraph over K assigns to each node a control, whose arity indexes the ports of a node, where links
may be connected.

A bigraph is a pair of a place graph and a link graph, called its constituents. Bigraphs and their
constituents are either concrete or abstract ; in this section we are concerned with concrete bigraphs,
and we shall defer the discussion of abstract bigraphs to Section 2.2.3. We denote concrete bigraphs
and their constituents by upper case letters A, . . . ,H.

We define concrete place and link graphs separately, and then combine them into bigraphs:

Definition 2.2 (concrete place graph (after [29, Def. 2.1])). A concrete place graph

F = (VF , ctrlF , prntF) : m→ n

is a triple having an inner face m and an outer face n, both finite ordinals. These index respectively the
sites and roots of the place graph. F has a finite set VF ⊂ V of nodes, a control map ctrlF : VF → K
and a parent map

prntF : m] VF → VF] n

which is acyclic, i.e., if prnt iF (v) = v for some v ∈ VF then i = 0. We shall call nodes, roots and sites
the places of F .

We say that a root i is idle iff there is no c ∈ VF]m with prntF (c) = i. A site i is guarding iff
its parent is a node, i.e., prntF (i) ∈ VF . Sites and nodes are siblings if they have the same parent. A
place graph with inner face m = 0 is called ground or an agent.

Definition 2.3 (concrete link graph (after [29, Def. 2.2])). A concrete link graph

F = (VF , EF , ctrlF , linkF) : X → Y

6 2.2. Bigraphs

is a quadruple having an inner face X and an outer face Y , both finite subsets of X , called respectively
the inner and outer names of the link graph. F has finite sets VF ⊂ V of nodes and EF ⊂ E of edges,
a control map ctrlF : VF → K and a link map

linkF : X] PF → EF] Y

where PF
def
= {(v, i) | v ∈ VF ∧ i ∈ ar(ctrl(v))} is the set of ports of F . Thus (v, i) is the ith port

of node v. We write Pv,ctrlF for the ports of node v given control map ctrlF , i.e., it denotes the set
{(v, i) | i ∈ ar(ctrlF (v))}; we extend the notation to sets of nodes, PV,ctrlF

def
=

⋃
v∈V Pv,ctrlF , and we

sometimes omit ctrl when it is evident from the context. We shall call X] PF the points of F , and
EF] Y its links. We say that outer names are open links and edges are closed links.

We say that a link l is idle iff there is no p ∈ X] PF with linkF (p) = l. An inner name x is
guarding iff its link is connected to a node, i.e., ∃(v, i) ∈ PF : linkF (v, i) = linkF (x). Points and inner
names are siblings if they are connected to the same link. A link graph with inner face X = ∅ is called
ground or an agent.

Definition 2.4 (concrete bigraph (after [29, Def. 2.3])). An interface, denoted by upper case letters
I, J,K, for bigraphs is a pair I = 〈m,X〉 of a place graph interface and a link graph interface. We call
m the width of I, and we say that I is nullary, unary or multiary according as m is 0, 1 or >1. A
concrete bigraph

F = (VF , EF , ctrlF , prntF , linkF) : 〈k,X〉 → 〈m,Y 〉

consists of a concrete place graph FP = (VF , ctrlF , prntF) : k → n and a concrete link graph FL =
(VF , EF , ctrlF , linkF) : X → Y . We write the concrete bigraph as F = 〈FP , FL〉. We shall call
VF] EF] k]X]m] Y the entities of F .

A bigraph is called ground or an agent iff both of its constituents are ground. A bigraph is called
discrete iff it has no edges and its link map is a bijection. A bigraph is called prime iff is has no inner
names and a unary outer face.

It should be clear from the above definitions, that the choice of node- and edge-identifiers have no
impact on the structure of the graphs. We shall now make this precise:

Definition 2.5 (support for bigraphs (after [29, Def. 2.4])). To each place graph, link graph or bigraph
F is assigned a finite set |F |, its support. For a place graph we define |F | = VF , and for a link graph
or bigraph we define |F | = VF] EF .

For two bigraphs F : I → J and G : I → J , a support translation ρ : |F | → |G| from F to G
consists of a pair of bijections ρV : VF → VG and ρE : EF → EG that respect structure, in the following
sense:

(i) ρ preserves controls, i.e., ctrlG ◦ρV = ctrlF . It follows that ρ induces a bijection ρP : PF → PG
on ports, defined by ρP ((v, i))

def
= (ρV (v), i).

(ii) ρ commutes with the structural maps as follows:

prntG ◦(Idm] ρV) = (Idn] ρV) ◦ prntF

linkG ◦(IdX] ρP) = (IdY] ρE) ◦ linkF .

Given F and the bijection ρ, these conditions uniquely determine G. We therefore denote G by
ρ F , and call it the support translation of F by ρ. We call F and G support equivalent, and
we write F l G, if such a support translation exists. Support translations ρ : |F | → |F | where
ρ F = F are called support automorphisms if they are not identities.

Support translation is defined similarly for place graphs and link graphs.

2. Background 7

The interfaces of bigraphs and their constituents enable their composition: if the inner face of a
bigraph is the same the outer face of another, they may be composed:

Definition 2.6 (composition and identities (after [29, Def. 2.5])). We define composition for place
graphs and link graphs separately, and then combine them for the composition of bigraphs.

• If F : k → m and G : m→ n are two place graphs with |F |# |G|, their composite

G ◦ F = (V, ctrl , prnt) : k → n

has nodes V = VF] VG and control map ctrl = ctrlF] ctrlG. Its parent map prnt is defined as
follows: If w ∈ k] VF] VG is a site or node of G ◦ F then

prnt(w)
def
=

prntF (w) if w ∈ k] VF and prntF (w) ∈ VF
prntG(j) if w ∈ k] VF and prntF (w) = j ∈ m
prntG(w) if w ∈ VG.

The identity place graph at m is idm
def
= (∅, ∅, Idm) : m→ m.

• If F : X → Y and G : Y → Z are two link graphs with |F |# |G|, their composite

G ◦ F = (V,E, ctrl , link) : X → Z

has V = VF] VG, E = EF]EG, ctrl = ctrlF] ctrlG, and its link map link is defined as follows:
If q ∈ X] PF] PG is a point of G ◦ F then

link(q)
def
=

linkF (q) if q ∈ X] PF and linkF (q) ∈ EF
linkG(y) if q ∈ X] PF and linkF (q) = y ∈ Y
linkG(q) if q ∈ PG.

The identity link graph at X is idX
def
= (∅, ∅, ∅, IdX) : X → X.

• If F : I → J and G : J → K are two bigraphs with |F |# |G|, their composite is

G ◦ F def
= 〈GP ◦ FP , GL ◦ FL〉 : I → K

and the identity bigraph at I = 〈m,X〉 is 〈idm, idX〉.

We shall often omit the composition operator and simply write GF for G ◦ F .

Bigraphs also have a notion of partial tensor product, called juxtaposition, which is defined for
disjoint graphs:

Definition 2.7 (disjoint graphical structure (after [29, Def. 2.6])). Two place graphs Fi (i = 0, 1) are
disjoint if |F0|# |F1|. Two link graphs Fi : Xi → Yi are disjoint if X0 #X1, Y0 #Y1 and |F0|# |F1|.
Two bigraphs Fi are disjoint if FP0 #FP1 and FL0 #FL1 .

In each of the three cases we write F0 #F1.

Definition 2.8 (juxtaposition and units (after [29, Def. 2.7])). We define juxtaposition for place
graphs and link graphs separately, and then combine them in order to juxtapose bigraphs. In each
case we indicate the obvious unit for juxtaposition.

• For place graphs, the juxtaposition of two interfaces mi (i = 0, 1) is m0 + m1 and the unit is
0. If Fi = (Vi, ctrl i, prnt i) : mi → ni are disjoint place graphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : m0 +m1 → n0 + n1 is given by

F0 ⊗ F1
def
= (V0] V1, ctrl0] ctrl1, prnt0] prnt ′1),

where prnt ′1(m0 + i) = n0 + j whenever prnt1(i) = j.

8 2.2. Bigraphs

• For link graphs, the juxtaposition of two disjoint link graph interfaces is X0]X1 and the unit
is ∅. If Fi = (Vi, Ei, ctrl i, link i) : Xi → Yi are disjoint link graphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : X0]X1 → Y0] Y1 is given by

F0 ⊗ F1
def
= (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1).

• For bigraphs, the juxtaposition of two disjoint interfaces Ii = 〈mi, Xi〉 (i = 0, 1) is 〈m0+m1, X0]
X1〉 and the unit is ε = 〈0, ∅〉. If Fi =: Ii → Ji are disjoint bigraphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : I0 ⊗ I1 → J0 ⊗ J1 is given by

F0 ⊗ F1
def
= 〈FP0 ⊗ FP1 , FLo ⊗ FL1 〉.

Notations and terminology An interface 〈n,X〉 is sometimes written as n if X = ∅ or as X if
n = 0; hence ε, 0 and ∅ all denote the same interface.

We shall denote bigraphs known to be ground using small letters and we shall often omit their
inner face ε, e.g., g : I.

We call bigraphs with zero width linkings (sometimes wirings) and we use λ and ω to denote
them. We shall often write linkings simply as their link map, and, as instance of this convention,
the empty bigraph can be denoted by ∅. We call linkings with no edges substitutions, denoted by σ
and τ . Discrete substitutions are called renamings, denoted by α and β. Ground substitutions are
called (name) introductions and we denote them by their outer face X, or just x if X is the singleton
set {x}. A linking with empty outer and inner faces and a single edge e is denoted by /e. Linkings
with empty outer face, a single inner name x, and a single edge e are called closures, denoted /ex; the
tensor product of multiple closures /e1x1 ⊗ · · · ⊗ /enxn is sometimes written as /[e1,...,en]{x1, . . . , xn}.
We sometimes omit edge when their identity is irrelevant.

We often omit identities in compositions when there is no ambiguity, and e.g., write σ ◦ G for
(σ ⊗ idm) ◦G. Also, we sometimes want to apply a linking λ : X] Y → Z to a graph g : I → 〈m,X〉
with fewer outer names than are in the inner face of the linking; in this case we write λ ◦G to mean
(λ⊗ idm) ◦ (G⊗ Y).

Bigraphs with no nodes or links are called placings. We shall often write placings simply as their
parent map. Placings where the parent map is a bijection are called permutations, denoted π.

Subtrees, Subforests, and their Contexts We shall sometimes need to extract subgraphs from
bigraphs:

Definition 2.9 (subtree, subforest). Given a bigraph H : 〈n,X〉 → 〈m,Y 〉 and a node or site c ∈
VH] n. Then the subtree rooted at c is the set of nodes and sites defined by

H �c
def
= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) = c}.

For a set of nodes or sites C ⊆ VH] n we define the subforest as the union of the subtrees:

H �C =
⋃
c∈C

H �c .

We shall also need the dual, i.e., the context of subgraphs:

Definition 2.10 (context graph). Given a bigraphH : 〈n,X〉 → 〈m,Y 〉 and a node or root p ∈ VH]m.
Then the context graph at p is the set of nodes, roots, and sites defined by

H �p
def
= (VH] n]m) \H �prnt−1(p) .

2. Background 9

For a set of nodes or roots P ⊆ VH]m we define the context graph as the intersection of the individual
context graphs:

H �P =
⋂
p∈P

H �p .

Subforests and context graphs possess a number of properties:

Proposition 2.11 (subforest and context graph). Given a bigraph H : 〈n,X〉 → 〈m,Y 〉, a set of
nodes or sites c ∈ C ⊆ VH] n, and a set of nodes or roots p ∈ P ⊆ VH] m. Then we have the
following properties:

1. H �C⊆ n] VH ,

2. c ∈ H �c,

3. C ⊆ H �C ,

4. ∀c′ ∈ H �c: ∃i ≥ 0 : prnt iH(c′) = c,

5. H �P⊆ n] VH]m,

6. H �P= (VH] n]m) \ {c | c ∈ k] VH ∧ ∃i > 0 : prnt iH(c) ∈ P}

7. p ∈ H �P , and

8. P ⊆ H �P if ∀v, p ∈ P : ∀i > 0 : prnt iH(v) 6= p.

Proof. The first 5 properties are immediate from the definitions. We prove the remaining three:

6: Expanding the definitions we get:

H �p = (VH] n]m) \H �prnt−1(p)

= (VH] n]m) \
⋃

c∈prnt−1(p)

H �c

= (VH] n]m) \
⋃

c∈prnt−1(p)

{c′ | c′ ∈ n] VH ∧ ∃i ≥ 0 : prnt iH(c′) = c}

= (VH] n]m) \ {c′ | c′ ∈ n] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ prnt−1(p)}
= (VH] n]m) \ {c′ | c′ ∈ n] VH ∧ ∃i > 0 : prnt iH(c′) = p}.

7: From (6) we can deduce p ∈ H �p iff p is a root or if it is a node satisfying ∀i > 0 : prnt iH(p) 6= p,
which is satisfied since prntH is acyclic.

8: We must show ∀p, p′ ∈ P : p′ ∈ H �p, assuming ∀v, p ∈ P : ∀i > 0 : prnt iH(v) 6= p. From the proof
of (7) we have p′ ∈ H �p iff p′ is a root or if it is a node satisfying ∀i > 0 : prnt iH(p′) 6= p which follows
from the assumption.

Derived operations When composing and juxtapositioning bigraphs we shall often want to fuse
links from the two graphs if they have the same name, and we therefore introduce two derived opera-
tions, parallel product || and nesting (sometimes dotting) .:

10 2.2. Bigraphs

Definition 2.12 (parallel product (after [29, Def. 3.11])). The parallel product || is given on interfaces
by

〈m,X〉 || 〈n, Y 〉 def
= 〈m+ n,X ∪ Y 〉.

Now let Gi : Ii → Ji (i = 0, 1) be two bigraphs with disjoint supports. Denote the link map of Gi by
link i (i = 0, 1), and assume further that link0 ∪ link1 is a function. Then the parallel product

G0 ||G1 : I0 || I1 → J0 || J1

is defined just as tensor product, except that its link map allows name-sharing.

Proposition 2.13 (parallel product (after [24, Prop. 9.14])). Let G0 ||G1 be defined. Then

G0 ||G1 = σ(G0 ⊗ τG1),

where the substitutions σ and τ are defined as follows: If zi (i ∈ n) are the names shared between
G0 and G1, and wi are fresh names in bijection with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi
(i ∈ n).

Definition 2.14 (nesting (after [29, Def. 3.13])). Let F : I → 〈m,X〉 and G : m→ 〈n, Y 〉 be bigraphs.
Define the nesting G.F : I → 〈n,X ∪ Y 〉 by:

G.F
def
= (idX ||G) ◦ F.

2.2.2 S-categories and spm-categories

Large parts of the theory of bigraphs is formulated at the more general level of spm categories and
s-categories, the definitions of which we shall briefly recall here. We shall assume that the reader is
familiar with the basic definitions of category theory. We shall use upper case bold letters to denote
categories (e.g., C) and we presuppose an infinite repository of support elements S.

Definition 2.15 (partial monoidal category (after [29, Def. 2.10])). A category is said to be partial
monoidal when it has a partial tensor product ⊗ both on objects and on arrows satisfying the following
conditions.

On objects, I⊗J and J⊗I are either both defined or both undefined. The same holds for I⊗(J⊗K)
and (I ⊗ J) ⊗ K; moreover, they are equal when defined. There is a unit object ε, often called the
origin, for which ε⊗ I = I ⊗ ε = I for all I.

On arrows, the tensor product of f : I0 → I1 and g : J0 → J1 is defined iff I0 ⊗ J0 and I1 ⊗ J1 are
both defined. The following must hold when both sides are defined:

(M1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

(M2) idε ⊗ f = f ⊗ idε = f

(M3) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦ f0)⊗ (g1 ◦ g0).

A functor of partial monoidal categories preserves unit and tensor product.

Definition 2.16 (spm category (after [29, Def. 2.11])). A partial monoidal category is symmetric
(spm) if, whenever I⊗J is defined, there is an arrow γI,J : I⊗J → J⊗I called a symmetry, satisfying
the following equations when the compositions and products are defined:

(S1) γI,ε = idI

2. Background 11

(S2) γJ,I ◦ γI,J = idI⊗J

(S3) γI1,J1 ◦ (f ⊗ g) = (g ⊗ f) ◦ γI0,J0 (for f : I0 → I1, g : J0 → J1)

(S4) γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K).

A functor between spm categories preserves unit, product and symmetries.

Definition 2.17 (precategory (after [29, Def. 2.12])). A precategory C̀ is like a category except that
composition of f and g may be undefined even when cod(f) = dom(g). We use a tag, as in C̀, to
distinguish precategories. Composition satisfies the following conditions (the first being weaker than
for a category):

(C1) if g ◦ f is defined then cod(f) = dom(g)

(C2) h ◦ (g ◦ f) = (h ◦ g) ◦ f when either is defined

(C3) id ◦ f = f and f = f ◦ id.

We understand (C3) to imply that composition of an arrow f with the identities on its domain and
codomain is always defined.

Definition 2.18 (s-category (after [29, Defs. 2.13 & A.1])). An s-category C̀ is a precategory in which
each arrow f is assigned a finite support |f | ⊂ S. Further, C̀ possesses a partial tensor product, unit
and symmetries, as in an spm category. The identities idI and symmetries γI,J are assigned empty
support. In addition:

(i) For f : I → J and g : J ′ → K, the composition g ◦ f is defined iff J = J ′ and |f |# |g|; then
|g ◦ f | = |f |] |g|.

(ii) For f : I0 → I1 and g : J0 → J1, the tensor product f ⊗ g is defined iff Ii⊗Ji is defined (i = 0, 1)
and |f |# |g|; then |f ⊗ g| = |f |] |g|.

The equations (M1)–(M3) and (S1)–(S4) from Definitions 2.15 and 2.16 are required to hold when
both sides are defined.

For any arrow f : I → J in an s-category C̀ and any partial injective map ρ : S⇀S whose domain
includes |f |, there is an arrow ρ f : I → J called a support translation of f . Support translations
satisfy the following equations when both sides are defined:

(T1) ρ idI = idI

(T2) ρ (f ◦ g) = ρ f ◦ ρ g

(T3) Id|f | f = f

(T4) (ρ′ ◦ ρ) f = ρ′ (ρ f)

(T3) ρ f = (ρ�|f |) f

(T4) |ρ f | = ρ(|f |)

(T5) ρ (f ⊗ g) = ρ f ⊗ ρ g.

Two arrows f and g are support-equivalent, written f l g, if ρ f = g for some support translation ρ.
The support automorphisms of an arrow f are the non-identity support translations ρ : |f | → |f | such
that ρ f = f .

A functor between s-categories preserves tensor product, unit, symmetries and support equivalence.

We shall later need a few results about s-categories:

Lemma 2.19. Let a l c ◦ r, c l d, and r l s with |d|# |s| in some s-category C̀. Then a l d ◦ s.

12 2.2. Bigraphs

Proof. By the definition of support equivalence, we have support bijections ρ : |c◦r| → |a|, ρ′ : |d| → |c|
and ρ′′ : |s| → |r| such that a = ρ (c ◦ r), c = ρ′ d and r = ρ′′ s. Since c ◦ r is defined we have and
|c|# |r|. Thus ρ′] ρ′′ is well-defined and we get the following equivalences:

a = ρ (c ◦ r)
= ρ ((ρ′ d) ◦ (ρ′′ s))

= ρ (((ρ′] ρ′′) d) ◦ ((ρ′] ρ′′) s))

= (ρ ◦ (ρ′] ρ′′)) (d ◦ s)

and thus a l d ◦ s (using the support translation equalities of Def. 2.18).

Lemma 2.20. Let a l c ◦ r and r l s in some s-category C̀. Then a l c′ ◦ s for some c′ with c l c′.

Proof. Choose some bijection ρ′′ : |c| → S \|s| (where S is the infinite support repository of C̀) and let
c′

def
= ρ′′ c. By construction we have c l c′ and |c′|# |s|, so by Lemma 2.19 a l c′ ◦ s as required.

Obviously, spm categories can be seen as s-categories where arrows have empty support. Conversely,
we can obtain spm categories from s-categories as follows:

Definition 2.21 (support quotient (after [29, Def. 2.14])). For any s-category C̀, its support quotient

C
def
= C̀/ l

is the spm category whose objects are those of C̀, and whose arrows [f] : I → J are support-equivalence
classes of the homset C̀(I → J). The composition of [f] : I → J with [g] : J → K is defined as
[g] ◦ [f]

def
= [g′ ◦ f ′], where f ′ ∈ [f] and g′ ∈ [g] are chosen with disjoint supports.

The tensor product is defined analogously. The identities and symmetries of C are singleton
equivalence classes since they have empty support.

Notations and terminology In any category C a pair of arrows ~f : I → ~J is a span. Dually, a
pair of arrows ~f : ~I → J is a cospan.

If ~f : I → ~J is a span and ~g : ~J → K is a cospan satisfying g0 ◦ f0 = g1 ◦ f1, then ~g is a bound for
~f and, dually, ~f is a cobound for ~g.

2.2.3 Bigraphical Categories

Concrete bigraphs and their constituents form s-categories, and by quotienting these by (essentially)
support equivalence we get spm categories of abstract bigraphs.

Definition 2.22 (graphical s-categories (after [29, Def. 2.17])). A basic signature K was defined in
Def. 2.1. Concrete place graphs, link graphs and bigraphs over an arbitrary signature were defined in
Defs. 2.2, 2.3 and 2.4. We now cast each of these kinds of graph as arrows in an s-category, denoted
respectively by P̀g(K), L̀g(K) and B̀g(K).

The objects in these three s-categories are called interfaces, or faces. For place graphs they are
natural numbers, for link graphs they are finite name-sets, and for bigraphs they are pairs of a natural
number m and a finite name-set.

Support for the three kinds of graph was defined in Def. 2.5, with support elements V] E . Com-
position and identities were set out in Def. 2.6, and juxtaposition and units in Def. 2.8, determining
tensor product.

To complete our definition it remains to define symmetries γI,J as follows:

in P̀g : γm,n
def
= (∅, ∅, prnt), where prnt(i) = n+ i (i ∈ m)

and prnt(m+ j) = j (j ∈ n)

in L̀g : γX,Y
def
= idX]Y

in B̀g : γ〈m,X〉,〈n,Y 〉
def
= 〈γm,n, γX,Y 〉.

2. Background 13

Definition 2.23 (lean, lean-support quotient, abstract bigraphs (after [29, Def. 2.19])). A bigraph is
lean if it has no idle edges. Two bigraphs F and G are lean-support equivalent, written F m G, if they
are support-equivalent ignoring their idle edges. It is easily seen that both composition and tensor
product preserve this equivalence.

For the bigraphical s-category B̀g(K), its lean-support quotient

Bg(K)
def
= B̀g(K)/ m

is the spm category whose objects are those of B̀g(K) and whose arrows JGK : I → J , called abstract
bigraphs, are lean-support equivalence classes of the homset (I → J) in B̀g(K). Composition, tensor
product, identities and symmetries for the lean-support quotient are defined just as for support quotient
in Def. 2.21.

The spm categories Pg(K) of abstract place graphs and Lg(K) of abstract link graphs are con-
structed similarly.

We shall sometimes use hat to denote that an arrow is abstract, e.g., Ĝ. We shall say that G is a
concretion of JGK.

We shall later need the following result regarding lean support equivalence:

Lemma 2.24. Let F,G,C,D be concrete bigraphs with G m F and F = C ◦ D. Then there exists
concrete bigraphs C ′, D′ with C ′ m C and D′ m D such that G = C ′ ◦D′.

Proof. Let ρ be a witness of the support equivalence part of G m F . Then ρ G and F = C ◦ D
differ only in their idle edges. Construct C ′′ and D′′ by removing the idle edges of C and D that
are not in ρ G, and add the idle edges of |ρ G| \ |F | to either one. Then clearly C ′′ m C, D′′ m D
and ρ G = C ′′ ◦ D′′. Since support translations are bijections, we have G = ρ−1 C ′′ ◦ ρ−1 D′′,
C ′

def
= ρ−1 C ′′ l C ′′ m C, and D′ def

= ρ−1 D′′ l D′′ m D as required.

Corollary 2.25 (lean support equivalence vs support equivalence). Let F,G,C,D be concrete bigraphs
with G m F and F l C ◦D. Then there exists concrete bigraphs C ′, D′ with C ′ m C and D′ m D such
that G l C ′ ◦D′.

Furthermore, if C is lean, a lean C ′ exists, i.e., C l C ′. The same holds for D and D′. Both C ′
and D′ can be lean iff G is lean.

Proof. Let ρ′ be the witness of F l C ◦D and use the construction from the proof of Lemma 2.24 for
G and ρ′ F = C ◦D (obviously G m ρ F), putting all the idle edges of |ρ G| \ |ρ′ F | in either C ′′ or
D′′.

The notations, terminology and derived operations pertaining to concrete bigraphs carry over to
abstract bigraphs.

2.2.4 Reactive Systems

Bigraph dynamics are defined as an instance of the more general basic reactive systems, where a set of
ground reaction rules generates a reaction relation by closing the set under all contexts and support
equivalence:1

1We avoid the added complexity of the so-called passive contexts, contexts that disallow reaction, from this presen-
tation as our work can be straightforwardly extended to include such contexts. Omitting passive contexts allows us to
ignore the refinement of reactive systems to wide reactive systems [29, Def. 7.2], which are only introduced to handle
passive contexts when deriving labeled transition systems (LTSs).

14 2.2. Bigraphs

Definition 2.26 (basic reactive system (BaRS) (after [29, Sec. 7.1])). A basic reactive system, written
C̀(R̀), consists of an s-category C̀ equipped with a set R̀ of reaction rules. An arrow a : ε → I in
C̀ with domain ε is a ground arrow or agent, often written a : I.

Each reaction rule R consists of a pair (r : I, r′ : I) of ground arrows, a redex and a reactum. The
set R̀ must be closed under support translation, i.e., if (r, r′) is a rule then so is (s, s′) whenever r l s
and r′ l s′.

The reaction relation _ over agents is the smallest such that a _ a′ whenever a l c ◦ r and
a′ l c ◦ r′ for some reaction rule (r, r′) and context c for r and r′.

When the underlying s-category disregards support we say that the BaRS is abstract:

Definition 2.27 (abstract BaRS (after [29, Def. 7.3])). A BaRS is abstract if its underlying s-category
is an spm category.

We saw in section 2.2.2 how we can construct spm categories from s-categories by quotienting by
support equivalence. Similarly, we may construct abstract BaRSs from concrete ones by quotienting
by support equivalence. However, as we saw in section 2.2.3, abstract bigraphs are constructed from
concrete bigraphs by quotienting by a more coarse-grained equivalence: lean-support equivalence. We
therefore generalize the constructions of spm categories and abstract BaRSs from concrete ones to
more general equivalences, so-called abstractions:

Definition 2.28 (structural congruence (after [29, Def. 7.4])). An equivalence relation ≡ on each
homset of an s-category C̀ is a structural congruence if it is preserved by composition and tensor
product. It is called an abstraction if it includes support equivalence. We denote the ≡-equivalence
class of f by JfK.

In a BaRS C̀(r)(R̀) an abstraction is dynamic if in addition it respects reaction, i.e., if f _ f ′

and g ≡ f then g _ g′ for some g′ ≡ f ′.

Clearly, support equivalence is a dynamic abstraction on any BaRS:

Proposition 2.29 (support equivalence is a dynamic abstraction). Support equivalence l is a dynamic
abstraction on a BaRS C̀(R̀).

We can now state the more general abstraction constructions and show that they indeed yield spm
categories and abstract BaRSs:

Definition 2.30 (quotient s-category (after [29, Def. 7.5])). Let C̀ be an s-category, and let ≡ be an
abstraction on C̀. Then

C
def
= C̀/ ≡

is the spm category whose objects are those of C̀, and whose arrows JfK : I → J are ≡-equivalence
classes of the homset I → J in C̀. The composition of JfK : I → J with JgK : J → K is defined as
JgK◦ JfK def

= Jf ′ ◦g′K, where f ′ ∈ JfK and g′ ∈ JgK are chosen with disjoint supports. The tensor product
is defined analogously. The identities and symmetries in C are necessarily the equivalence classes of
their C̀ counterparts.

Lemma 2.31 (quotient s-category). Let C̀ be an s-category, and let ≡ be an abstraction on C̀. Then
the quotient C = C̀/ ≡ is an spm category. Its construction defines a functor of s-categories

J·K : C̀→ C.

Proof. C is an spm category, since it inherits the tensor product, unit, and symmetries of the s-category
C̀, and the construction eliminates the partiality of composition and tensor product. J·K is a functor
by construction and it is between s-categories because any spm category is an s-category with empty
supports.

2. Background 15

Definition 2.32 (quotient BaRS (after [29, Def. 7.6])). Let C̀(R̀) be a BaRS, and ≡ a dynamic
abstraction on C̀. Then define C(R), the quotient of C̀(R̀) by ≡, as follows:

• C = C̀/ ≡, and

• R = {(JrK, Jr′K) | (r, r′) ∈ R̀}.

Theorem 2.33 (abstract BaRS (after [29, Thm. 7.7])). The construction of Def. 2.30 and Def. 2.32,
applied to a concrete BaRS C̀(R̀), yields an abstract BaRS C(R), whose underlying spm category C
is the codomain of a functor of s-categories

J·K : C̀→ C.

Moreover the construction preserves the reaction relation, in the following sense:

1. if f _ f ′ in C̀(R̀) then JfK _ Jf ′K in C(R)

2. if JfK _ g′ in C(R) then f _ f ′ in C̀(R̀) for some f ′ with Jf ′K = g′.

Proof. The first part follows immediately from Lemma 2.31 and Def. 2.27.

1: We have f l c ◦ r and f ′ l c ◦ r′ for some reaction rule (r, r′) and context c for r and r′. We must
show JfK _ Jf ′K, i.e., JfK l Jc′K ◦ JsK and Jf ′K l Jc′K ◦ Js′K for some reaction rule (s, s′) and context
Jc′K for JsK and Js′K.

Letting c′ def
= c, s def

= r, s′ def
= r′ and exploiting that ≡ includes support equivalence and that J·K is a

functor, we get (JsK, Js′K) = (JrK, Jr′K) ∈ R, JfK = Jc ◦ rK = Jc′ ◦ sK = Jc′K ◦ JsK, and Jf ′K = Jc ◦ r′K =
Jc′ ◦ s′K = Jc′K ◦ Js′K as required.

2: We have JfK l JcK ◦ JrK and g′ l JcK ◦ Jr′K for some reaction rule (r, r′) and context JcK for JrK and
Jr′K. We must show f _ f ′ for some f ′ with Jf ′K = g′, i.e., f l c′ ◦ s and f ′ l c′ ◦ s′ for some reaction
rule (s, s′) and context c′ for s and s′.

Let s def
= r, s′ def

= r′ and choose some context c′ ∈ JcK with c′# r and c′# r′. By definition of
composition in C and since abstraction includes support equivalence, we get JfK = JcK ◦ JrK = Jc′ ◦ rK
and g′ = JcK ◦ Jr′K = Jc′ ◦ r′K. By Def. 2.26 we have f ≡ c′ ◦ r _ c′ ◦ r′ and since ≡ is dynamic, there
is some f ′ ≡ c′ ◦ r′ ∈ g′ such that f _ f ′ as required.

2.2.5 Bigraphical Reactive Systems

While the rules of basic reactive systems are required to be ground, bigraphical reaction rules are
allowed to take parameters. But by viewing such parametric reaction rules as generators of ground
reaction rules, we can view bigraphical reactive systems as a sugared variant of basic reactive systems.

Before we define bigraphical parametric reaction rules and bigraphical reactive systems, let us first
define what a parameter is and how a parametric reaction rule is allowed to manipulate it through
instantiation.

First, note that ground bigraphs can be seen as the juxtaposition of a number of discrete primes
bound together by some linking:

Corollary 2.34 (ground discrete normal form (DNF) (after [29, Corol. 3.10])). A ground bigraph
g : 〈n,Z〉 can be expressed uniquely, up to renaming on Y , as g = (idn ⊗ λ) ◦ (d0 ⊗ · · · ⊗ dn−1), where
λ : Y → Z is a linking and the di are discrete primes.

We shall regard the individual primes of a ground bigraph as parameters of reaction and shall allow
each of them to be copied, discarded, or left unchanged using instantiation:

16 2.2. Bigraphs

Definition 2.35 (instantiation (after [29, Def. 8.5])). In a bigraphical s-category C̀ = B̀g(K), let
η : n → m be a map of finite ordinals. Define the instance function family η̄X,S : C̀(ε, 〈m,X〉) →
C̀(ε, 〈n,X〉), indexed by name setX and support set S, on agents as follows: Given an agent g : 〈m,X〉,
find its DNF g = λ ◦ (d0 ⊗ · · · ⊗ dm−1) (Corol. 2.34). Then

η̄X,S(g)
def
= λ ◦ (d′0 || · · · || d′n−1)

where d′j l dη(j) and |d′j |#S for each j ∈ n. The function is defined up to l.
We shall often omit X and/or S when they are evident from the context.

We have reformulated Milner’s definition to index η̄ by X and S; X was already a somewhat
implicit index whereas S is a technical measure that will allow us to ensure that instantiation chooses
fresh support with respect to the context in which it will be used.

Note that η̄X,S(g) has the same outer names as g and that linking commutes with instantiation:

Proposition 2.36 (linking an instance (after [29, Def. 8.4])). Linking commutes with instantiation;
that is, ω ◦ η̄X,S(g) l η̄X,S(ω ◦ g).

Let us now define parametric reaction rules for bigraphs and how they generate ground reaction
rules:

Definition 2.37 (bigraphical parametric reaction rules (after [29, Def. 8.5])). A parametric reaction
rule R for bigraphs is a triple of the form

(R : m→ J,R′ : m′ → J, η)

where R is the parametric redex, R′ the parametric reactum, and η : m′ → m a map of finite ordinals.
The rule generates all ground reaction rules (r, r′), where

r l R.d, r′ l R′.η̄(d)

and d : 〈m,Y 〉 is discrete.
With this definition in mind, it is clear that the following definition of bigraphical reactive systems

is an instance of the basic reactive systems defined above:

Definition 2.38 (bigraphical reactive system (BRS) (after [29, Def. 8.6])). A (concrete) bigraphical
reactive system (BRS) over K consists of B̀g(K) equipped with a set R̀ of parametric reaction rules
closed under support equivalence; that is, if R l S and R′ l S′ and R̀ contains (R,R′, η), then it
also contains (S, S′, η). We denote the BRS by B̀g(K, R̀).

Comparing the definition of BaRSs with the generation of ground bigraphical reaction rules from
parametric ones, it is clear that reactions are generated by occurrences of redexes, what we callmatches:

Definition 2.39 (match). Given a parametric reaction rule R = (R,R′, η), agent a, and bigraphs c,d,
we say that (c, d) is a match of R in a iff a l c ◦ R.d. Two matches (c, d),(c′, d′) are regarded as the
same if they differ only by a bijection on the outer faces of d and d′; otherwise they are distinct. We
write match(a,R) for the set of distinct matches of R in a.

We may construct abstract BRSs by quotienting by lean-support equivalence m since it is a dynamic
abstraction on BRSs:

Proposition 2.40 (lean-support equivalence is a dynamic abstraction). Lean-support equivalence m
is a dynamic abstraction on a BRS B̀g(K, R̀).

Proof. It is immediate from its definition that lean-support equivalence is an abstraction, so we just
need to check that it is dynamic.

Assume bigraphs a, a′, b with a _ a′ and b m a. Since a _ a′ we must have a l c ◦ r and a′ l c ◦ r′
for some rule (r, r′) and context c. By Corollary 2.25, noting that bigraph rules are lean, there are
bigraphs d, s with d m c and s l r such that b l d◦s. Since rules are closed under support translation,
there is a rule (s, s′) with s′ l r′, and we thus have the reaction b l d ◦ s _ b′ where b′ = d ◦ s′. Since
lean-support equivalence is preserved by composition we have b′ = d ◦ s′ m c ◦ r′ l a′ as required.

3. The Simulation Algorithm 17

3 The Simulation Algorithm

We give an overview of the simulation algorithm for the κ-calculus by Danos et al. [12] recast to
stochastic bigraphs. We shall refer to the algorithm in loc. cit. as KaSim. This reformulation of KaSim
to stochastic bigraphs is independent of the physical and stochastic underpinnings of the algorithm,
so we shall not concern ourselves with the details of these matters; the interested reader may refer to
[12, 18, 19].

3.1 Gillespie’s algorithm

KaSim is a generalization of what is known as Gillespie’s algorithm, an algorithm for stochastic simula-
tion of coupled chemical reactions [18, 19]. It is based on the idea of assigning probabilities to reaction
rules which are proportional to the number of instances of each rule in the current state of the system,
and letting the frequency of reaction be proportional to the total number of rule instances.

Recast to bigraphs, the algorithm in overview works as follows: given a set of reaction rules R,
with each reaction rule R assigned a rate constant %R, an agent a, and a simulation time tstop, perform
the following steps:

0. Initialization:

Initialize the simulation state:

t := 0 current simulation time, initially 0
M(a,R) := match(a,R) set of matches of R’s redex in a (∀R ∈ R)

αR := |M(a,R)| × %R activity of R
α := ΣR∈RαR system activity

If α = 0 then no reaction is possible and the simulation ends.

1. Monte Carlo step:

Sample the following random values:

R := rand(R, λR. |M(a,R)|×%R
α) rule to be applied

φ := rand(M(a,R), λm.1/|M(a,R)|) match to be applied
δt := rand(R+, λt.αeαt) time advance

2. Update:

Update the simulation state:

a := a′, if a _R,φ a
′ perform reaction

t := t+ δt advance time
M(a,R) := match(a,R) update sets of matches (∀R ∈ R)

αR := |M(a,R)| × %R update rule activities
α := ΣR∈RαR update system activity

3. Iterate:

If t > tstop or α = 0, stop; otherwise repeat from step 1.

Figure 1 illustrates the simulation loop.

18 3.2. Incremental and Local Updates

Initialization
- find all matches
- compute rule activity
- compute system activity

Monte Carlo step
- generate time advance
- choose rule
- choose match

Update
- apply reaction
- update time
- update matches
- update activities

Figure 1: The basic simulation loop.

3.2 Incremental and Local Updates
It should be clear that the update step as expressed above does not scale: it requires recomputation
of all matches at each simulation cycle. Instead, KaSim employs an incremental update phase where
(i) matches are only removed from M(a,R) if they are invalidated by the reaction and (ii) matches are
only searched for in the parts of the agent that were affected by the reaction. Thus, the update phase
actually consists of three steps2:

2a. Negative update:

Remove matches that will be invalidated by the chosen reaction and decrease activities accord-
ingly.

2b. Rewrite:

Rewrite the agent using the chosen rule and match.

2c. Positive update:

Find new matches created by the reaction and increment activities accordingly.

These steps presume that we can determine conflict and causality in an efficient manner: we must
be able to quickly identify (2a) the reactions that are in conflict with the chosen reaction and (2c)
the reactions that it causes. This is achieved in KaSim by (i) assuming that rules are enriched with
a notion of modification which characterizes how reaction modifies the redex, and (ii) assuming the
existence of two relations, called the inhibition and activation maps, that characterize the interplay
between rules:

inhibition: We say that rule R0 inhibits rule R1, written R0 #R1, iff there is some agent a and
embeddings φi : Ri ↪→ a such that cod(φ0)∩ cod(φ1) contains at least one entity modified by R0.

activation: Rule R0 activates rule R1, written R0 ≺ R1, iff there is some agent a and embeddings
φ0 : ∆0(R0) ↪→ a, φ1 : R1 ↪→ a such that cod(φ0) ∩ cod(φ1) contains at least one entity modified
by R0.

Note that these relations are not necessarily symmetric.
Assuming we can construct these relations during initialization, we may express the negative and

positive update steps in more detail as follows (recall that R is the chosen rule, φ the chosen match,
and that step 2b. sets a := a′):

2a. Negative update:

For each R′ with R#R′

2As a technicality, we have swapped steps 2a. and 2b. as it in the case of SBAM leads to a more direct implementation.

3. The Simulation Algorithm 19

(i) remove the embeddings φ′ : R′ ↪→ a fromM(a,R′) for which some elements of rng(φ)∩rng(φ′)
will be modified by the chosen reaction, and

(ii) decrease the system activity and the activity of the rule by the number of removed embed-
dings times %R′ .

2c. Positive update:

For each R′ with R ≺ R′

(i) add new embeddings φ′ : R′ ↪→ a to M(a,R′). At least one element of rng(φ′) must be
modified by the reaction in order for φ′ to be new, and

(ii) increase the system activity and the activity of the rule by the number of added embeddings
times %R′ .

Thus, using this approach we avoid considering rules that are known to never generate reactions that
are causally related to those of the chosen rule. But even in the worst case, ≺= # = R × R, this
approach is an improvement since we have restricted the part of the agent that we need to consider.

Let us consider steps 2a(i) and 2c(i) in a bit more detail:

2a(i): Though we have restricted the set of embeddings we need to consider, it is still unclear how to
efficiently identify the affected embeddings. The approach in KaSim is actually to not use the
inhibition relation, but instead maintain a so-called lift map l : |a| →M(a, ·) from entities in the
agent to the embeddings that have those entities in their co-domain. While less space-efficient,
it enables us to quickly remove invalidated embeddings.

2c(i): The notion of modification that rules are enriched with, allows us to determine which entities in
the agent have been modified, so we can perform localized matching as follows: for each modified
entity e ∈ |a| and entity e′ ∈ |R′| such that [e′ 7→ e] is a partial embedding, attempt to extend it
to a complete embedding of R′.

By extending we mean incrementally adding mappings f 7→ f ′ of entities f ∈ |a| \ rng(φ′),
f ′ ∈ |R′| \ dom(φ′) which are adjacent to elements of rng(φ′) and dom(φ′) respectively. We call
this anchored matching.

In κ, anchored matching is deterministic and there is at most one complete extension of a partial
embedding. This is not generally the case for bigraphs.

Note that anchored matching only yields complete embeddings for redexes consisting of one con-
nected component and the KaSim algorithm is actually slightly more complicated than what we have
sketched above, as it handles redexes with more than one connected component. However, the KaSim
approach to handling such redexes transfer unaltered to the bigraph version of the algorithm, so in
this report we shall simply assume that redexes consist of exactly one connected component.

20

4 Stochastic Parametric Reactive Systems

Concrete bigraphs are a means to constructing a tractable behavioral theory for abstract bigraphs:
Abstract bigraphs could be defined directly instead of being derived from concrete bigraphs3. However,
abstract bigraphs have insufficient structure for constructing minimal transition labels which is a key
construction in the behavioral theory of BRSs. By defining abstract bigraphs in terms of concrete
bigraphs, where such minimal labels can be constructed, one gets the means for obtaining minimal
labels for abstract bigraphs.

The dynamic theory of bigraphs have been designed with this construction in mind, which is
reflected in the treatment of support : (a) sets of rules are required to be closed under support
translation (cf. Def. 2.26 and Def. 2.38), (b) the construction of the reaction relation closes under
support translation (cf. Def. 2.26), and (c) the construction of ground reaction rules from parametric
ones closes under support translation (cf. Def. 2.37). In other words, these constructions are aimed at
support equivalence classes of concrete bigraphs, i.e., abstract bigraphs.

While this approach is sufficient for most applications of abstract bigraphs, it is insufficient in
the context of stochastic bigraphs, where support provides the means for counting matches: closing
under support translation would lead to an infinite number of matches for non-trivial redexes. In their
definition of stochastic bigraphs [25], Krivine et al. solve this issue by (a) replacing support equivalence
by equality in the definition of a match (cf. Def. 2.39)4, and (b) defining the number of matches in an
abstract bigraph as the number of matches in one of its concretions. However, in loc. cit. the definition
of a match is not (directly) related to the definition of the reaction relation, resulting in a conceptual
gap between the usual reaction semantics and the stochastic reaction semantics. A unified presentation
of these two aspects of stochastic BRSs would promote understanding.

Another issue is the infinite set of ground reaction rules that a parametric reaction rule generate.
Clearly, we cannot represent these explicitly in an implementation, so we cannot implement BRSs
directly as stated in Def. 2.26 and Def. 2.38. We believe that direct representations in implementations
increase trust in correctness, and it would therefore be desirable if we could give a directly representable
definition of BRSs with parametric reaction rules.

In this section we tackle both of these issues, by developing a variant of reactive systems, which
we call stochastic parametric reactive systems, that have none of the above shortcomings while giving
rise to the same abstract reaction relation. The idea is to prevent arbitrary support translation during
reaction by restricting the use of support translation to the identification of matches of redexes in an
agent.

Specifically, we incrementally develop the following kinds of reactive systems:

representative basic reactive systems (RBaRS):
Almost as BaRSs but different in two respects:

• the set of rules must not contain support equivalent rules and

• reaction cannot change the support of the context.

parametric reactive systems (PRS):
A generalization of RBaRSs where parametric reaction rules are first class citizens. Reaction is
refined further by restricting the manipulation of support in parameters.

stochastic parametric reactive systems (SPRS):
PRSs equipped with a stochastic semantics, which for bigraphs generalizes the stochastic se-
mantics of Krivine et al. [25]. The reaction relation is refined such that a match determines a
reaction.

3Milner’s algebra for abstract bigraphs could be one such definition [27].
4Krivine et al. use the term occurrence and use a slightly different definition, cf. [25, Def. 4.1 and Def. 4.2], but this

is an insignificant technicality.

4. Stochastic Parametric Reactive Systems 21

BaRS

≡

RBaRS

≈_/≡

PRS

≈_/≡

SPRS

choose rule representatives close rule set under sup-
port translation

extend rules with the in-
stantiation idε→ε

generate ground reaction
rules

extend rules with a rate
constant discard rate constants

Figure 2: The four kinds of reactive systems and how to transform one into another. The topmost
two are equivalent modulo dynamic abstraction ≡ (e.g., l) while the others have the same reaction
relation modulo dynamic abstraction.

The concrete reaction relation becomes smaller for each increment, while the abstract reaction relation
remains the same. To prove this, we for each of these systems show that its concrete reaction relation
is closely related to that of its predecessor, indeed so closely that it becomes immediate that they have
the same abstract reactions. Figure 2 gives an overview of the relations between the four kinds of
reactive systems.

4.1 Representative Basic Reactive Systems

In this section we show how one may limit Milner’s liberal use of support equivalence in the definition
of basic reactive systems, while maintaining the same dynamic behavior. We do so in two steps: (1)
first we show that we need not require the set of reaction rules to be closed under support translation,
and then (2) we reduce the reaction relation to preclude support translation in the context.

Recall from Def. 2.26 that in a BaRS

• the set of reaction rules R̀ must be closed under support translation, i.e., if (r, r′) is a rule then
so is (s, s′) whenever r l s and r′ l s′, and

• the reaction relation is also closed under support translation, since a _ a′ whenever a l c ◦ r
and a′ l c ◦ r′ for some reaction rule (r, r′) ∈ R̀.

Since the construction of the reaction relation closes under support translation, we need only consider
one concretion, a representative, of an abstract rule in order to generate all the corresponding reactions:

Proposition 4.1 (reaction rule representatives are sufficient). Let C̀(R̀) be a BaRS and let a _ a′

be a reaction generated by rule (r, r′). Then any other support equivalent rule (s, s′), i.e., r l s and
r′ l s′, generates the same reaction.

Proof. We have a l c ◦ r and a′ l c ◦ r′ for some context c for r and r′, and must show that there
is a context c′ for s and s′ such that a l c′ ◦ s and a′ l c′ ◦ s′. This follows from the proof of
Lemma 2.20 if we strengthen the requirement on the choice of c′ by also precluding the support of s′,
i.e., ρ′′ : |c| → S \ (|s| ∪ |s′|).

22 4.1. Representative Basic Reactive Systems

Thus we need not close the reaction rule set under support translation. But the reaction relation
is still somewhat unmanageable, since it is closed under support translation, and one wonders why we
must be able to change the support of the context of a reaction? Indeed, this does not strictly increase
the number of reactions, in a sense that we shall now make precise.

First, note that the reaction relation is indeed closed under support equivalence:

Lemma 4.2. Let C̀(R̀) be a BaRS and let a _ a′. Then ∀b, b′ : b l a ∧ b′ l a′ ⇒ b _ b′.

Proof. We have a l c ◦ r and a′ l c ◦ r′ for some rule (r, r′) and context c. Since b l a l c ◦ r and
b′ l a′ l c ◦ r′ we also get b _ b′.

Based on the above observations, it should be clear that a BaRS contains support equivalence
classes of rules and reactions; this naturally leads to a notion of a representative BaRS:

Definition 4.3 (representative basic reactive system (RBaRS)). A representative basic reactive system,
written C̀r(R̀), consists of an s-category C̀ equipped with a set R̀ of reaction rules.

The reaction relation _ over agents is the smallest such that a _ a′ whenever a = c ◦ ρ r and
a′ = c ◦ ρ′ r′ for some reaction rule (r, r′), support translations ρ, ρ′, and context c for ρ r and ρ′ r′.

The intuition is that an RBaRS represents a BaRS by allowing us to single out representatives for
each equivalence class of rules and reactions:

Definition 4.4 (RBaRS corresponding to BaRS). Let C̀(R̀) be a BaRS. Then the RBaRS corre-
sponding to C̀(R̀) is C̀r(R̀r), where R̀r contains a single chosen representative of each support
equivalence class of rules, i.e.,

∀(r, r′) ∈ R̀ : ∃(s, s′) ∈ R̀r : r l s ∧ r′ l s′

∀(r, r′), (s, s′) ∈ R̀r : r l s ∧ r′ l s′ ⇒ r = s ∧ r′ = s′.

Proposition 4.5 (RBaRS corresponding to BaRS). The RBaRS corresponding to a BaRS is indeed
an RBaRS.

Conversely, we can easily construct a BaRS from an RBaRS:

Definition 4.6 (BaRS corresponding to RBaRS). Let C̀r(R̀) be an RBaRS. Then the BaRS
corresponding to C̀r(R̀) is C̀(R̀∗), where R̀∗ is the support equivalence closure of R̀, i.e.,
R̀∗ = {(s, s′) | (r, r′) ∈ R̀ ∧ r l s ∧ r′ l s′}.

Proposition 4.7 (BaRS corresponding to RBaRS). The BaRS corresponding to an RBaRS is indeed
a BaRS.

Note that this construction is inverse to the previous one:

Lemma 4.8. For any BaRS C̀(R̀), the BaRS C̀((R̀r)∗) obtained through Def. 4.4 followed by
Def. 4.6 is the same, i.e., C̀(R̀) = C̀((R̀r)∗).

Proof. Immediate from the definitions.

It is immediate from the definitions, that reactions in an RBaRS are indeed reactions in the
corresponding BaRS:

Proposition 4.9 (Representative Reactions are Reactions). Let _r and _f denote the reaction
relations of a RBaRS and its corresponding BaRS respectively. Then

a _r a
′ ⇒ a _f a

′.

4. Stochastic Parametric Reactive Systems 23

It is also clear that RBaRSs in general have a smaller reaction relations than their corresponding
BaRS, since they do not allow reaction to change the support of the context. But this has a very
limited impact: any series of reactions in a BaRS can be matched by a series of reactions followed by
a single support translation in an RBaRS:

Proposition 4.10 (Representative Reactions are Sufficient). Let _r and _f denote the reaction
relations of an RBaRS C̀r(R̀) and its corresponding BaRS respectively. Then

∀n ∈ N : a _n
f a
′ ⇒ ∃a′′ : a _n

r a
′′ ∧ a′ l a′′.

Proof. By induction on n, the base case being trivial. In the induction case we have a _n−1
f b _f a

′,
a _n−1

r c, and b l c, and must show c _r a
′′ and a′ l a′′ for some a′′.

From b _f a
′ we get b l d ◦ s and a′ l d ◦ s′ for some rule (s, s′) ∈ R̀∗, i.e., b l d ◦ ρ r and

a′ l d ◦ ρ′ r′ for some rule (r, r′) ∈ R̀ and support translations ρ, ρ′. Since c l b l d ◦ ρ r, we have
c = ρ′′ (d ◦ ρ r) = (ρ′′ d) ◦ ((ρ′′ ◦ ρ) r) for some support translation ρ′′. We then choose any support
translation ρ′′′ such that a′′ def

= (ρ′′ d) ◦ (ρ′′′ r′) is defined and thus get c _r a
′′. By Lemma 2.19 a′′

is support equivalent to a′: a′ l d ◦ ρ′ r′ l (ρ′′ d) ◦ (ρ′′′ r′) = a′′.

4.1.1 Abstract Representative Basic Reactive Systems

Let us now show that, once we abstract identities away, the reaction relations of RBaRS and BaRS are
the same. The construction and properties of abstract BaRSs from Section 2.2.4 transfer unchanged to
RBaRS, so we shall not repeat them here. We shall use Cr(R) to denote the abstract RBaRS obtained
as the quotient of an RBaRS C̀r(R̀) by a dynamic abstraction.

An RBaRS has the same abstract reactions as its corresponding BaRS:

Theorem 4.11 (abstract RBaRSs are abstract BaRSs). Let C̀r(R̀) be an RBaRS and let C̀(R̀∗) be
the corresponding BaRS. Then the quotient RBaRS Cr(R) and quotient BaRS C(R∗), both obtained
using the construction of Def. 2.30 and Def. 2.32, are the same.

Proof. Given that both C̀r(R̀) and C̀(R̀∗) have the same underlying s-category, the underlying spm
categories of the quotients are also the same. Also, since abstraction includes support equivalence, we
have R = R∗.

We now show that the reaction relations are also the same. Let _f , _JfK, _r, and _JrK denote
the reaction relations of C̀(R), C(R), C̀r(R), and Cr(R) respectively.

_JfK⊆_JrK: Assume JfK _JfK Jf ′K. From Theorem 2.33 we have f _f g
′ for some g′ ∈ Jf ′K, and

Prop. 4.10 then gives us f _r h
′ for some h′ l g′. Since abstraction includes support equivalence we

have Jh′K = Jg′K = Jf ′K, and Theorem 2.33 gives us JfK _JrK Jh′K, we have JfK _JrK Jf ′K as required.

_JrK⊆_JfK: Assume JfK _JrK Jf ′K. From Theorem 2.33 we have f _r g
′ for some g′ ∈ Jf ′K, and

Prop. 4.9 then gives us f _f g
′. Finally, Theorem 2.33 gives us JfK _JfK Jg′K = Jf ′K as required.

Conversely, a BaRS has the same abstract reactions as its corresponding RBaRS:

Theorem 4.12 (abstract BaRSs are abstract RBaRSs). Let C̀(R̀) be a BaRS and let C̀r(R̀r) be
the corresponding RBaRS. Then the quotient BaRS C(R) and quotient RBaRS Cr(Rr), both obtained
using the construction of Def. 2.30 and Def. 2.32, are the same.

Proof. By Theorem 4.11, Cr(Rr) and C((Rr)∗) are the same. The latter is the quotient of C̀((R̀r)∗),
which, by Lemma 4.8, is the same as C̀(R̀), and thus Cr(Rr) = Cr((Rr)∗) = C(R).

24 4.2. Parametric Reactive Systems

4.2 Parametric Reactive Systems
Having tamed the use of support equivalence in BaRSs, we now turn our attention to the rule set
blow-up caused by treating parametric reaction rules as generators of ground reaction rules. To avoid
this blow-up, we generalize RBaRSs to parametric reactive systems (PRSs) where parametric reaction
rules are first-class citizens.

Definition 4.13 (parametric reactive systems (PRS)). A parametric reactive system, written C̀(̀R, D̀, Ì),
consists of an s-category C̀ equipped with a set R̀ of parametric reaction rules, and two subcate-
gories Ì and D̀ of identities and parameters respectively. C̀ and D̀ must be closed under support
translation.

A parametric reaction rule is a triple of the form

(R : I → J,R′ : I ′ → J, η̄J′,S)

where R is the parametric redex, R′ the parametric reactum, and the instance function is a function
family η̄J′∈ Ì,S⊂S : D̀(ε, I⊗J ′)→ D̀(ε, I ′⊗J ′) defined for all finite S and whenever I⊗J ′ is defined.

Furthermore, instantiation maps must respect support equivalence and choose sufficiently fresh
support, i.e.,

1. d l d′ ⇒ η̄J′,S(d) l η̄J′,S′(d′) for any finite S, S′ ⊂ S, and

2. |η̄J′,S(d)|#S.

We shall often omit J ′ and/or S when they are evident from the context.
The reaction relation _ over agents a, a′ ∈ C̀(ε, ·) is the smallest such that a _ a′ whenever

a = c ◦ (ρ R ⊗ idJ′) ◦ d and a′ = c ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ′)(d) for some parametric reaction rule
(R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′ with dom(ρ) = |R| and dom(ρ′) = |R′|, context c
for ρ R⊗ idJ′ and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

To some extent, one could argue that we have simply moved the infinitude to the instance func-
tion. However, in the case of bigraphs the instance function is finitely representable, cf. Def. 2.37,
so bigraphical PRSs with finite sets of reaction rules can be directly and finitely represented in an
implementation.

Another important difference, when we compare this definition to Def. 4.3, and in particular the
definition of the reaction relation, is that we have factored the parameter d out of the ground redex
r. One would perhaps expect the equations to simply read a = c ◦ ρ R ◦ d and a′ = c ◦ ρ′ R′ ◦ η̄(d)
– what is the purpose of the identities? The answer is that this enables parameter and context to be
connected without the involvement of the redex. To illustrate this, let us examine how BRSs can be
expressed as PRSs.

4.2.1 Bigraphical Parametric Reactive Systems

In bigraphs, context and parameter may share links (and nothing else) without the involvement of the
redex. To see that this is the case, let us examine Milner’s generation of ground rules from parametric
ones, cf. Def. 2.37: It relies on the bigraph specific nesting operator ’.’ (Def. 2.14) which is derived
from the parallel product ’||’ (Def. 2.12) which again can be seen as derived from the tensor product
’⊗’ . Unfolding the nestings and applying Prop. 2.13, we obtain

R.d = (R || idX) ◦ d = σ(R⊗ τ ◦ idX) ◦ d
R′.η̄(d) = (R′ || idX) ◦ η̄(d) = σ(R′ ⊗ τ ◦ idX) ◦ η̄(d)

for a suitable bijection τ : X → X ′ and a substitution σ that ensure definedness as well as the aliasing
of the shared names between R and d.

Ignoring τ , this resembles an instance of our PRS reactions, namely in the case where the context
is a substitution that aliases some of the links of the parameter and redex. But what about τ?

4. Stochastic Parametric Reactive Systems 25

The purpose of τ is to rename the links of the parameter such that the tensor product is defined.
But the names of the parameter are internal to the reaction, as they only serve as mediators in the
decomposition of the agent into context, redex, and parameter. To see this, let us rewrite R.d a bit
more:

R.d = (R⊗ τ ◦ idX) ◦ d by def. of ’.’ and Prop. 2.13
= σ(R ◦ idm ⊗ idX′ ◦ τ) ◦ d by def. of identities
= σ(R⊗ idX′) ◦ (idm ⊗ τ) ◦ d since ⊗ is a functor

Since d is discrete so is (idm ⊗ τ) ◦ d and thus R.d corresponds to the left hand side of a parametric
reaction.

We shall now make this precise by defining a bigraphical PRS and showing that the ground bi-
graphical reaction rules generated from parametric ones are reactions in that PRS:

Definition 4.14 (bigraphical parametric reactive system (BPRS)). A bigraphical parametric reactive
system over K with bigraphical parametric reaction rules R̀, written B̀g(K, R̀), is the parametric
reactive system B̀g(K)(R̀, D̀, Ì) where D̀ consists of the discrete ground bigraphs of B̀g(K) and Ì
consists of the zero-width (i.e., link graph) identities. For each rule (R : m→ J,R′ : m′ → J, η) ∈ R̀
we interpret η as the corresponding instance function family η̄X,S as given in Def. 2.35.

Proposition 4.15. Let B̀g(K, R̀) be a BPRS. Then R.d _ R′.η̄(d) is a reaction in the BPRS for
any parametric rule (R : m→ J,R′ : m′ → J, η) ∈ R̀ and discrete parameter d : 〈m,Y 〉.

Proof. By unfolding the derived operators in the left and right hand sides of the claimed reaction, and
then rewriting them according to the categorical axioms, it becomes clear that it is indeed a reaction:

R.d = σ(R⊗ τ ◦ idX) ◦ d by def. of ’.’ and Prop. 2.13
= σ((Id|R| R) ◦ idm ⊗ idX′ ◦ τ) ◦ d by def. of identities
= σ((Id|R| R)⊗ idX′) ◦ (idm ⊗ τ) ◦ d since ⊗ is a functor

R′.η̄(d) = σ(R′ ⊗ τ ◦ idX) ◦ η̄(d) by def. of ’.’ and Prop. 2.13
= σ((Id|R′| R

′) ◦ idm′ ⊗ idX′ ◦ τ) ◦ η̄(d) by def. of identities
= σ((Id|R′| R

′)⊗ idX′) ◦ (idm′ ⊗ τ) ◦ η̄(d) since ⊗ is a functor
= σ((Id|R′| R

′)⊗ idX′) ◦ η̄((idm ⊗ τ) ◦ d) by Prop. 2.36

Note that σ and τ are validly chosen to be the same in both cases, since R and R′ have the same outer
names and ditto for d and η̄(d).

Note that Prop. 4.15 only covers the ground reaction rule (R.d,R′.η̄(d)), though (R : m → J,R′ :
m′ → J, η) generates all rules on the form (ρ (R.d), ρ′ (R′.η̄(d))). This is because our definition of
PRSs does include arbitrary support translation of parameters in the reaction relation, just as it was
the case for RBaRSs. We could distinguish between PRSs and representative PRSs, analogously to the
distinction between BaRSs and RBaRS, in which case all the generated ground reaction rules would
be reactions in the PRS but not the representative PRS. However, we leave this as an exercise to the
reader as we shall not need this distinction.

4.2.2 Relating Concrete PRSs and RBaRSs

Having demonstrated the crux of the correspondence between BRSs and BPRSs, let us now return to
the general case of RBaRSs and PRSs. First, note that a RBaRS is a PRS in a very straightforward
sense:

26 4.2. Parametric Reactive Systems

Definition 4.16 (PRS corresponding to a RBaRS). Let C̀r (̀ R) be a RBaRS. Then the corresponding
PRS is C̀(R̀ × {idε→ε},1,1) (where ε ∈ C̀ is the singleton object of 1).

Proposition 4.17 (PRS corresponding to a RBaRS). The PRS corresponding to an RBaRS is indeed
a PRS.

Dually, it is straightforward to derive a RBaRS from a PRS by simply generating ground reaction
rules:

Definition 4.18 (RBaRS corresponding to a PRS). Let C̀(̀R, D̀, Ì) be a PRS. Then the correspond-
ing RBaRS is C̀r (̀R′) where R̀′ is generated from R̀ as follows: (r, r′) ∈ R̀′ whenever r = (R⊗idJ′)◦d
and r′ = (R′ ⊗ idJ′) ◦ η̄|R′|(d) for some parametric reaction rule (R : I → J,R′ : I ′ → J, η̄), parameter
d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

Proposition 4.19 (RBaRS corresponding to a PRS). The RBaRS corresponding to a PRS is indeed
an RBaRS.

Note that the first of these constructions is the inverse of the second:

Lemma 4.20. For any RBaRS C̀r(R̀), the RBaRS C̀r(R̀′) obtained through Def. 4.16 followed by
Def. 4.18 is the same.

Proof. Immediate from the definitions.

From these definitions, it is no surprise that PRS reactions are also reactions in the corresponding
RBaRS:

Proposition 4.21 (Parametric Reactions are Representative Reactions). Let _p and _r denote the
reaction relations of a PRS C̀(R̀, D̀, Ì) and its corresponding RBaRS, respectively. Then

a _p a
′ ⇒ a _r a

′.

Proof. Assume a _p a
′, i.e., a = c ◦ (ρ R ⊗ idJ′) ◦ d and a′ = c ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄(d) for some

parametric reaction rule (R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′, context c for ρ R⊗ idJ′
and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

By Def. 4.18 ((R⊗ idJ′) ◦ d, (R′⊗ idJ′) ◦ η̄|R′|(d)) is a rule in the corresponding RBaRS, and so, by
Def. 4.3, c ◦ (ρ] id|d|) ((R ⊗ IdJ′) ◦ d) _r c ◦ (ρ′] ρ′′) ((R′ ⊗ idJ′) ◦ η̄|R′|(d)), where ρ′′ is a witness
of η̄|c|∪rng(ρ′)(d) l η̄|R′|(d). Applying the definition of support translation it is easy to see that this is
indeed a _r a

′.

As we saw in the case of bigraphs, the reaction relation of a PRS will be smaller than that of its
corresponding RBaRS, since RBaRSs allow support translation of parameters. But the PRS reaction
relation characterizes that of the corresponding RBaRS, similar to how the reactions of an RBaRS
characterizes the reactions of the corresponding BaRS, cf. Prop. 4.10: any series of RBaRS reactions
can be matched by a series of PRS reactions followed by a single support translation:

Proposition 4.22 (Parametric Reactions are Sufficient). Let _p and _r denote the reaction relations
of a PRS C̀(R̀, D̀, Ì) and its corresponding RBaRS, respectively. Then

∀n ∈ N : a _n
r a
′ ⇒ ∃a′′ : a _n

p a
′′ ∧ a′ l a′′.

Proof. By induction on n, the base case being trivial. In the induction case we have a _n−1
r b _r a

′,
a _n−1

p c, and b l c, and must show c _p a
′′ and a′ l a′′ for some a′′. Let ρ′′ : |b| → |c| be a witness

of b l c.
From b _r a′ we get b = e ◦ ρ r and a′ = e ◦ ρ′ r′ for some reaction rule (r, r′), support

translations ρ, ρ′, and context e for ρ r and ρ′ r′. By Def. 4.18 we must have r = (R ⊗ idJ′) ◦ d and

4. Stochastic Parametric Reactive Systems 27

r′ = (R′ ⊗ idJ′) ◦ η̄|R′|(d) for some parametric reaction rule (R : I → J,R′ : I ′ → J, η̄), parameter
d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

We therefore get the following equalities for c:

c = ρ′′ b ρ′′ is a witness of b l c
= ρ′′ (e ◦ ρ r) b is the LHS of a representative reaction
= ρ′′ (e ◦ ρ ((R⊗ idJ′) ◦ d)) (r, r′) generated from parametric rule
= ρ′′ e ◦ ((ρ′′ ◦ ρ) R⊗ idJ′) ◦ ((ρ′′ ◦ ρ) d) by def. of supp. trans.

Letting a′′ = ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|ρ′′ e|∪|ρ′ R′|((ρ′′ ◦ ρ) d), Def. 4.13 gives us c _p a
′′, and a′ l a′′

as witnessed by ρ′′′ = ρ′′ �|e|]Id|ρ′ R′|] ρ′′′′ ◦ (ρ′ �|η̄(d)|)
−1, where ρ′′′′ is a witness of η̄|R′|(d) l

η̄|ρ′′ e|∪|ρ′ R′|((ρ
′′ ◦ ρ) d):

ρ′′′ a′ = ρ′′′ (e ◦ ρ′ r′) a is the RHS of a representative reaction
= ρ′′′ (e ◦ ρ′ ((R′ ⊗ idJ′) ◦ η̄|R′|(d))) (r, r′) generated from parametric rule
= ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ ρ′′′′ η̄|R′|(d) by def. of supp. trans.
= ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|ρ′′ e|∪|ρ′ R′|((ρ′′ ◦ ρ) d) since η̄ respects supp. eq.

4.2.3 Abstract Parametric Reactive Systems

As we have seen above, the difference between the reaction relations of a PRS and its corresponding
RBaRS is that the latter includes support translation of parameters. So we expect that if we quotient
these systems with an abstraction, as in Section 4.1.1, we get the same abstract reactive systems. This
is indeed the case, as we shall show below.

But first, we must extend the abstraction constructions and results of Section 2.2.4 to PRSs:

Definition 4.23 (abstract PRS). A PRS is abstract if its underlying s-category is an spm category.

Since we shall need to abstract instantiation maps, we must require abstractions to be well-behaved
with respect to these:

Definition 4.24 (dynamic PRS abstraction). In a PRS C̀(R̀, D̀, Ì), an abstraction ≡, as defined
in Def. 2.28, is dynamic if it respects reaction and instantiation, i.e.,

1. if f _ f ′ and g ≡ f then g _ g′ for some g′ ≡ f ′, and

2. if (R : I → J,R′, η̄) ∈ R̀, d, d′ ∈ D̀(ε, I ⊗ J ′) and d ≡ d′ then η̄S(d) ≡ η̄S′(d′).

Clearly, support equivalence is a dynamic abstraction on any PRS:

Proposition 4.25 (support equivalence is a dynamic PRS abstraction). Support equivalence l is a
dynamic abstraction on a PRS C̀(R̀, D̀, Ì).

More importantly, the lean-support equivalence of bigraphs is a dynamic abstraction on BPRSs:

Proposition 4.26 (lean-support equivalence is a dynamic BPRS abstraction). Lean-support equiva-
lence m is a dynamic abstraction on a bigraphical PRS B̀g(K, R̀).

Proof. The proof is similar to that of Prop. 2.40 only more tedious.

We can now define how to obtain abstract PRSs by quotienting by dynamic abstractions:

28 4.2. Parametric Reactive Systems

Definition 4.27 (quotient PRS). Let C̀(R̀, D̀, Ì) be a PRS, and ≡ a dynamic abstraction on C̀.
Then define C(R,D, I), the quotient of C̀(R̀, D̀, Ì) by ≡, as follows:

• C = C̀/ ≡,

• D = D̀/ ≡,

• I = Ì/ ≡, and

• R = {(JRK, JR′K, η̄) | (R,R′, η̄) ∈ R̀}.

We define η̄S(JdK) def
= Jη̄S′(d)K whenever η̄S′(d) is defined; this is unambiguous since ≡ is dynamic.

Theorem 4.28 (abstract PRS). The construction of Def. 2.30 and Def. 4.27, applied to a concrete
PRS C̀(R̀, D̀, Ì), yields an abstract PRS C(R,D, I), whose underlying spm category C is the
codomain of a functor of s-categories

J·K : C̀→ C.

Moreover the construction preserves the reaction relation, in the following sense:

1. if f _ f ′ in C̀(R̀, D̀, Ì) then JfK _ Jf ′K in C(R,D, I)

2. if JfK _ g′ in C(R,D, I) then f _ f ′ in C̀(R̀, D̀, Ì) for some f ′ with Jf ′K = g′.

Proof. The first part follows immediately from Lemma 2.31 and Def. 4.23.

1: We have f = c◦(ρ R⊗ idJ′)◦d and f ′ = c◦(ρ′ R′⊗ idJ′)◦ η̄|c|∪rng(ρ′)(d) for some parametric reaction
rule (R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′ with dom(ρ) = |R| and dom(ρ′) = |R′|,
context c for ρ R⊗ idJ′ and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

Quotienting f and f ′ we get JfK = Jc ◦ (ρ R ⊗ idJ′) ◦ dK = JcK ◦ (JRK ⊗ JidJ′K) ◦ JdK and Jf ′K =
Jc ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ′)(d)K = JcK ◦ (JR′K ⊗ JidJ′K) ◦ η̄∅(JdK), since J·K is a functor, abstraction
includes support equivalence, and η̄∅(JdK) = Jη̄|c|∪rng(ρ′)(d)K. Thus, JfK _ Jf ′K as required.

2: We have JfK = JcK ◦ (JRK⊗ JidJ′K) ◦ JdK and g′ = JcK ◦ (JR′K⊗ JidJ′K) ◦ η̄∅(JdK) for some parametric
reaction rule (R : I → J,R′ : I ′ → J, η̄), context JcK for JRK ⊗ JidJ′K and JR′K ⊗ JidJ′K, parameter
JdK ∈ D(ε, I ⊗ J ′), and identity JidJ′K ∈ I (we disregard the support translations ρ, ρ′ since spm
categories are s-categories with empty support).

Choose some context c′ ∈ JcK and parameter d′ ∈ JdK with supports that are disjoint from each
other and from |R|, |R′|. By definition of composition in C and since η̄∅(JdK) = Jη̄|c′|∪|R′|(d′)K, we
get JfK = JcK ◦ (JRK ⊗ JidJ′K) ◦ JdK = Jc′ ◦ (R ⊗ idJ′) ◦ d′K and g′ = JcK ◦ (JR′K ⊗ JidJ′K) ◦ η̄∅(JdK) =
Jc′◦(R′⊗ idJ′)◦ η̄|c′|∪|R′|(d′)K. By Def. 4.13 we have f ≡ c′◦(R⊗ idJ′)◦d′ _ c′◦(R′⊗ idJ′)◦ η̄|c′|∪|R′|(d′)
and since ≡ is dynamic, there is some f ′ ≡ c′ ◦ (R′ ⊗ idJ′) ◦ η̄|c′|∪|R′|(d′) ∈ g′ such that f _ f ′ as
required.

Now we are ready for the main results of this section, which states that a PRS has the same abstract
behavior as its corresponding RBaRS and vice versa:

Theorem 4.29 (abstract PRSs are abstract RBaRSs). Let C̀(R̀, D̀, Ì) be a PRS and let C̀r(R̀′)
be the corresponding RBaRS. Then the quotient PRS C(R,D, I) and quotient RBaRS Cr(R′) have the
same reaction relations.

Proof. Let _r, _JrK, _p, and _JpK denote the reaction relations of C̀r(R̀′), Cr(R′), C̀(R̀, D̀, Ì),
and C(R,D, I) respectively.

_JrK⊆_JpK: Assume JfK _JrK Jf ′K. From Theorem 2.33 we have f _r g
′ for some g′ ∈ Jf ′K, and

Prop. 4.22 then gives us f _p h
′ for some h′ l g′. Since abstraction includes support equivalence we

have Jh′K = Jg′K = Jf ′K, and Theorem 4.28 gives us JfK _JpK Jh′K, we have JfK _JpK Jf ′K as required.

_JpK⊆_JrK: Assume JfK _JpK Jf ′K. From Theorem 4.28 we have f _p g
′ for some g′ ∈ Jf ′K, and

Prop. 4.21 then gives us f _r g
′. Finally, Theorem 2.33 gives us JfK _JrK Jg′K = Jf ′K as required.

4. Stochastic Parametric Reactive Systems 29

Conversely, an RBaRS has the same abstract reactions as its corresponding PRS:

Theorem 4.30 (abstract RBaRSs are abstract PRSs). Let C̀r(R̀) be an RBaRS and let C̀(R̀ ×
{idε→ε},1,1) be the corresponding PRS. Then the quotient RBaRS Cr(R) and quotient PRS C(R ×
{idε→ε},1,1) are the same.

Proof. By Theorem 4.29, C(R × {idε→ε},1,1) is equal to the quotient Cr(R′) of its corresponding
RBaRS C̀r(R̀′). By Lemma 4.20, the latter is the same as C̀r(R̀), and thus C(R×{idε→ε},1,1) =
Cr(R′) = Cr(R).

4.3 Stochastic Parametric Reactive Systems

We now proceed to give a stochastic semantics to PRSs, generalizing and recasting the work on
stochastic reduction semantics for a subset of BRSs in [25].

Intuitively, this is done by interpreting reaction rules as follows: a redex models a physical con-
figuration that may lead to reaction which, over stochastic time, results in the physical configuration
described by the corresponding reactum. In other words, we assign reaction rules a stochastic speed
which will allow us to assign stochastic behavior to reactions.

In more detail, we wish to associate reactions with a rate, which “is the parameter of an exponential
distribution that characterizes the stochastic behavior of that reaction” [25]. The rate of a reaction is
then derived from the reaction rules that generate that reaction as follows:

(a) We associate a rate constant % with every reaction rule (its speed).

(b) The sum of the rate constants of all the rule instances that generate a reaction is its rate.

It is desirable for the rate of a reaction to be determined from the matches in its left-hand-side, since
the stochastic behavior of an agent may then be determined without considering the right-hand-sides
of reaction. In other words, we want each match to determine a single reaction. This is not the case
for the definition of PRSs in the previous section: since we are free to choose any support translation
of the reactum a match leads to infinitely many reactions for non-trivial reactums. We shall therefore
refine the definition of the PRS reaction relation such that the support translation of the reactum is
deterministic.

First, let us make precise what a match is in a PRS.

4.3.1 Matches

The usual definition of a bigraph match (cf. Def. 2.39) is too coarse-grained for PRSs, as it is defined
up to support equivalence. Instead, we shall use the following definition:

Definition 4.31 (match). In a PRS C̀(R̀, D̀, Ì), a match o of a parametric rule R = (R : I →
J,R′ : I ′ → J, η̄J′,S) in an agent a is a quadruple

(ρ, idJ′ , c, d)

where ρ : |R|� |a| is a support translation, idJ′ ∈ Ì an identity, c a context, and d ∈ D̀(ε, I ⊗ J ′) a
parameter such that a = c ◦ (ρ R⊗ idJ′) ◦ d.

Two matches (ρ, idI , c, d), (ρ′, idI′ , c
′, d′) are regarded as the same if they differ only by an iso between

I and I ′; otherwise they are distinct. We say that a match results in a′ if c ◦ (ρ R ⊗ idJ′) ◦ d _ a′.
We write µR[a] for the number of distinct matches of R in a, and µR[a, a′] for the number of distinct
matches of R in a resulting in a′.

Note that non-trivial support automorphisms, i.e., a non-identity support translation ρ : |G| → |G|
such that ρ G = G, give rise to distinct matches:

30 4.3. Stochastic Parametric Reactive Systems

Lemma 4.32. Given a match o = (ρ, idJ′ , c, d) of a parametric rule R = (R : I → J,R′ : I ′ → J, η̄J′,S)
in an agent a, all in a PRS C̀(R̀, D̀, Ì). Then any support automorphism ρ′ : |R| → |R| for R gives
rise to a match o′ = (ρ ◦ ρ′, idJ′ , c, d). Furthermore, if ρ′ is not the identity then o and o′ are distinct.

Proof. Since

a = c ◦ (ρ R⊗ idJ′) ◦ d
= c ◦ (ρ (ρ′ R)⊗ idJ′) ◦ d
= c ◦ ((ρ ◦ ρ′) R⊗ idJ′) ◦ d

o′ is an match. Assuming ρ′ is not an identity we have ρ 6= ρ ◦ ρ′ since both ρ and ρ′ are bijections,
and thus o′ is distinct from o.

This is a point where our stochastic semantics differ from that of Krivine et al. [25]: they consider
matches the same if they differ by a support automorphism. However, the difference is just a matter
of convention and boils down to a scaling of rate constants by the number of support automorphisms
of the corresponding redexes – we leave the details as an exercise to the reader.

4.3.2 Deterministic Support Translation of Reactums

Let us now turn to the matter of ensuring that a match determines a single reaction. The solution
is rather simple: we shall simply assume the existence of a family of canonical support translations,
ρ̄S⊂S,T⊂S : S → S \ T , defined for finite S and T . For a reactum R′ to be inserted in a context with
support T , ρ̄|R′|,T is the canonical support translation of R′ such that its support becomes disjoint
from the context. We shall often omit S and/or T when they are evident from the context.

As was the case for the instantiation families η̄J′,S , one could think that we have introduced an
intractable infinite structure. However, ρ̄S,T is simply a technical measure that need not be specified or
represented in practice: when we abstract away support, the choice of the support translation family
becomes irrelevant. In other words, as long as we are only interested in the abstract behavior of SPRSs,
an implementation is free to generate suitable support for reactums as it pleases.

We can now define stochastic PRSs:

Definition 4.33 (stochastic parametric reactive systems (SPRS)). A stochastic parametric reactive
system, written C̀s(R̀, D̀, Ì), is a PRS apart from the addition of rates and that reactum support
is chosen canonically in the reaction relation:

A stochastic parametric reaction rule is a quadruple of the form

(R : I → J,R′ : I ′ → J, η̄J′,S , %)

where the first three elements are as before and % ∈ R+ is its rate constant.
The reaction relation _ over agents a, a′ ∈ C̀(ε, ·) is the smallest such that a _ a′ whenever

(ρ, idJ′ , c, d) is a match of some parametric reaction rule R = (R,R′, η̄, %) in a and a′ = c ◦ (ρ̄|R′|,|c|
R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ̄|R′|,|c|)

(d).
We define the rate rate[a, a′] of a reaction a _ a′ to be

rate[a, a′]
def
=

∑
R=(R,R′,η̄J′,S ,%)∈ R̀

% · µR[a, a′].

For now, let us disregard stochastics and focus on the relation between SPRSs and PRSs (cf.
Def. 4.13). The difference from PRSs is that we have refined the reaction relation such that a match
determines a single reaction instead of an infinite family of support equivalent reactions (for non-trivial
reactums).

Let us make the relation between SPRSs and PRSs precise in the same manner used in the previous
sections; the proofs are trivial so we omit them.

4. Stochastic Parametric Reactive Systems 31

Definition 4.34 (SPRS corresponding to PRS). Let C̀(R̀, D̀, Ì) be a PRS. Then the SPRS
corresponding to C̀(R̀, D̀, Ì) is C̀s(R̀′, D̀, Ì) where

R̀′ = {(R : I → J,R′ : I ′ → J, η̄J′,S , 1)

| (R : I → J,R′ : I ′ → J, η̄J′,S) ∈ R̀}.

Proposition 4.35 (SPRS corresponding to PRS). The SPRS corresponding to a PRS is indeed an
SPRS.

Definition 4.36 (PRS corresponding to SPRS). Let C̀s(R̀, D̀, Ì) be an SPRS. Then the PRS
corresponding to C̀s(R̀, D̀, Ì) is C̀(R̀′, D̀, Ì) where

R̀′ = {(R : I → J,R′ : I ′ → J, η̄J′,S)

| (R : I → J,R′ : I ′ → J, η̄J′,S , %) ∈ R̀}.

Proposition 4.37 (PRS corresponding to SPRS). The PRS corresponding to an SPRS is indeed a
PRS.

Lemma 4.38. For any PRS C̀(̀ R, D̀, Ì), the PRS C̀(̀ R′, D̀, Ì) obtained through Def. 4.34 followed
by Def. 4.36 is the same.

Proof. Immediate from the definitions.

Proposition 4.39 (Stochastic Parametric Reactions are Parametric Reactions). Let _s and _p

denote the reaction relations of an SPRS C̀s(R̀, D̀, Ì) and its corresponding PRS, respectively. Then

a _s a
′ ⇒ a _p a

′.

Proposition 4.40 (Stochastic Parametric Reactions are Sufficient). Let _s and _p denote the reac-
tion relations of an SPRS C̀s(R̀, D̀, Ì) and its corresponding PRS, respectively. Then

∀n ∈ N : a _n
p a
′ ⇒ ∃a′′ : a _n

s a
′′ ∧ a′ l a′′.

4.3.3 Abstract Stochastic Parametric Reactive Systems

Given the relations between PRSs and SPRSs we saw above it is clear that the abstractions of their
reaction relations are the same. But before we can make this formal, we must first define how to
construct abstract SPRSs. The abstraction constructions and results for PRSs (cf. Def. 4.2.3) transfer
directly to SPRSs, except that the quotient construction must be extended to handle rates:

Definition 4.41 (quotient SPRS). Let C̀s(R̀, D̀, Ì) be an SPRS, and ≡ a dynamic abstraction on
C̀. Then define Cs(R,D, I), the quotient of C̀s(R̀, D̀, Ì) by ≡, as in Def. 4.27.

The rate of reaction in Cs(R,D, I) is defined as:

rate[â, â′] =
∑
a′∈â′

rate[a, a′] for any a ∈ â.

Thus we define the rate of an abstract reaction by choosing a representative of its left-hand-side
and then summing the rates of all reactions into the equivalence class of the right-hand-side.

This is well-defined since ≡ is a dynamic abstraction, and thus reactions, and thereby matches,
and rates are independent of the choice of representative:

32 4.3. Stochastic Parametric Reactive Systems

Proposition 4.42. If a ≡ b for a dynamic abstraction ≡, then∑
a′∈â′

rate[a, a′] =
∑
a′∈â′

rate[b, a′].

Proof. Follows straightforwardly from the fact that ≡ is dynamic (cf. Def. 4.24).

We can now show that, indeed, SPRSs have the same abstract reactions as their corresponding
PRSs:

Theorem 4.43 (abstract SPRSs are abstract PRSs). Let C̀s(R̀, D̀, Ì) be an SPRS and let
C̀(R̀′, D̀, Ì) be the corresponding PRS. Then the quotient SPRS Cs(R,D, I) and quotient PRS
C(R′,D, I) have the same reaction relations.

Proof. Follows easily from Prop. 4.39 and Prop. 4.40.

Conversely, a PRS has the same abstract reactions as its corresponding SPRS:

Theorem 4.44 (abstract PRSs are abstract SPRSs). Let C̀(̀R, D̀, Ì) be a PRS and let C̀s(̀R′, D̀, Ì)
be the corresponding SPRS. Then the quotient PRS C(R,D, I) and quotient SPRS Cs(R′,D, I) have
the same reaction relations.

Proof. By Theorem 4.43, Cs(R′,D, I) has the same reaction relation as C(R′′,D, I), the quotient of
its corresponding PRS C̀(R̀′′, D̀, Ì). By Lemma 4.38, the latter is the same as C̀(R̀, D̀, Ì), and
thus C(R,D, I) = C(R′′,D, I) so Cs(R′,D, I) has the same reaction relation as C(R,D, I).

Finally, as a sanity check, we verify that rates are consistent with the reaction relation:

Proposition 4.45 (consistency). Let C̀s(R̀, D̀, Ì) be an SPRS and Cs(R,D, I) its quotient by a
dynamic abstraction ≡ on C̀. Then

rate[a, a′] > 0 iff a _ a′, and rate[â, â′] > 0 iff â _ â′

Proof. rate[a, a′] > 0⇒ a _ a′: From the definition of rate[a, a′] we see that there must be some rule
R = (R,R′, η̄J′,S , %) with µR[a, a′] > 0 and thus, by definition of µR[a, a′], a _ a′.

a _ a′ ⇒ rate[a, a′] > 0: By the definition of the reaction relation, we have a match of a rule in a
resulting in a′ and thus µR[a, a′] > 0 which implies rate[a, a′] > 0.

rate[â, â′] > 0⇒ â _ â′: From the definition of rate[â, â′] we see that there must be some a ∈ â, a′ ∈ â′
such that rate[a, a′] > 0 and thus, as shown above, a _ a′. Lastly, Theorem 4.28 gives us â _ â′.

â _ â′ ⇒ rate[â, â′] > 0: Theorem 4.28 tells us that there must be some a ∈ â, a′ ∈ â′ such that a _ a′

and thus, as shown above, rate[a, a′] > 0. Now it is obvious from its definition that rate[â, â′] > 0.

5. Bigraph Embeddings 33

5 Bigraph Embeddings
In the previous section we defined stochastic parametric reactive systems. A key component in that
development was to make precise the algebraic notion of a match of a parametric redex in an agent.
The KaSim algorithm relies on a representation of matches as embeddings (cf. Section 3), so in this
section we shall develop a general theory of bigraph embeddings, where embeddings of redexes are
isomorphic to matches.

We shall exploit the orthogonality of the link and place graphs, by developing link and place graph
embeddings independently and then combine them to obtain bigraph embeddings.

In overview, the development proceeds as follows:

embedding maps:
We define an embedding of a graph as the union of maps of identities (i.e., a support translation)
and maps of the inner and outer faces. The maps must satisfy certain conditions that ensure
structure preservation and correspondence with certain algebraic decompositions.

embedding/context isomorphism:
For place graphs and bigraphs, we show that embeddings are isomorphic to certain decompo-
sitions, giving constructions in both directions. For redexes this implies that embeddings and
matches are isomorphic.

Link graphs seem to lack the necessary structure for embeddings to have this property.

We shall take special interest in the embeddings of a particular class of bigraphs: those that are
solid. Simply put, a bigraph is solid if all elements of the outer and inner interfaces are connected to a
node and not connected to each other. Solid bigraphs are interesting for two reasons: many bigraphical
models in the literature have solid redexes5 and an embedding of a solid bigraph is determined by a
support translation of its nodes, making matches compactly representable.

5.1 Link Graph Embeddings
Embeddings of link graphs are mostly what one would expect of a graph embedding: a pair of injections
of the nodes and edges which preserve the structure of the embedded graph (i.e., a support translation).
In addition, we need to specify how the names of the interfaces should be mapped; in bigraphs, a context
is allowed to alias names, so any map from the outer face names to the links of the host graph will do.
Dually, we map the names of the inner face to sets of points in the host graph.

The definition is based on Milner’s definition of link graph inclusion [28], extended to cover link
graphs in general and with a minor correction6.

Definition 5.1 (link graph embedding). Let G : XG → YG, H : XH → YH be two concrete link graphs.
Then a link graph embedding, written φ : G ↪→H, is a map φ : |G|]XG]YG → |H|]P(XH]PH)]YH ,
where φ = φv] φe] φi] φo satisfies the following conditions:

maps:

(LGE-1) φv : VG�VH is an injective map
(LGE-2) φe : EG�EH is an injective map
(LGE-3) φi : XG�P(XH] PH) is a fully injective map
(LGE-4) φo : YG → EH] YH is an arbitrary map

injectivity:

(LGE-5) rng(φe) # rng(φo)

5For example, all BRSs in [24, 25, 29] have solid redexes.
6In [28] Milner missed that embeddings must be surjective on the points of an edge, cf. Example 1.

34 5.1. Link Graph Embeddings

(LGE-6) rng(φi) # rng(φport)

surjective on edge points:

(LGE-7) φp ◦ link−1
G �EG= link−1

H ◦φe

structure preservation:

(LGE-8) ctrlG = ctrlH ◦φv

(LGE-9) ∀p ∈ XG] PG : ∀p′ ∈ φp(p) : (φl ◦ linkG)(p) = linkH(p′)

where

φl = φe] φo (map of links)
φport(v, i) = (φv(v), i) ((v, i) ∈ PG) (map of ports)

φp = φi] φport (map of points).

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several link graphs. We write φ G when applying the underlying support translation to G. If any
of the maps are partial, φ is partial, written φ : G ↪⇀H. Partial embeddings need only satisfy the
conditions where they are defined; in particular the surjectivity condition only applies to an edge e iff
φe is defined for e and φp is defined for link−1

G (e). A partial embedding is said to be non-trivial iff its
range is non-empty.

Condition (LGE-7) deserves an explanation:

Example 1. Consider the following ground link graphs

G = ({v}, {e}, {v 7→ K}, {(v, 0) 7→ e}) : ∅ → ∅
H = ({v, v′}, {e}, {v 7→ K, v′ 7→ K}, {(v, 0) 7→ e, (v′, 0) 7→ e}) : ∅ → ∅

ar(K) = 1

Then the following would be a link graph embedding if we did not include condition (LGE-7):

φ = Id{v,e} : G ↪→H

But there is no link graph C such that H = C ◦ φ G!

The problem is that the context cannot add more points to an edge, so the points of an edge in G
must cover all the points the corresponding edge in H.

In [28] Milner showed that, in the case of ground link graphs, contexts and embeddings are iso-
morphic. Unfortunately, there is no such correspondence in the general case, as the following example
shows:

Example 2. Consider the following link graphs

G = ({v}, ∅, {v 7→ K}, ∅) : ∅ → ∅
H = ({v, v′}, ∅, {v 7→ K, v′ 7→ K}, ∅) : ∅ → ∅

ar(K) = 0

Then φ = Id{v} : G ↪→H is a link graph embedding and there are two different decompositions of H
that include φ G: H = C ◦ φ G ◦D = D ◦ φ G ◦ C where

C = (∅, ∅, ∅, ∅) : ∅ → ∅
D = ({v′}, ∅, {v′ 7→ K}, ∅) : ∅ → ∅

Though one could perhaps recover the correspondence by restricting to some canonical contexts,
we shall not pursue this here, as we shall recover the correspondence once we combine link and place
graph embeddings.

5. Bigraph Embeddings 35

5.1.1 Solid Link Graphs

For an important class of link graphs, those that are solid, embeddings are determined by the injections
of nodes:

Definition 5.2 (solid link graph (after [25, Def. 2.1])). A link graph is solid iff these conditions hold:

1. no links are idle

2. no inner names are siblings

3. every inner name is guarding

4. no outer name is linked to an inner name.

The notion of solidness comes from stochastic bigraphs [25] where redexes are required to be solid,
which essentially ensures that a match is determined by the support translation. We have strengthened
the condition in two respects, which enables us to obtain a stronger and more general result without
diminishing the set of solid redexes: (a) we preclude idle edges and (b) we require inner names to be
guarding. To see that these condition do not rule out any redexes, remember that (a) we may simple
choose concretions of the abstract redexes with no idle edges, and (b) that redexes have no inner names
and thus 3. is vacuously satisfied.

The conditions ensure that an embedding and its context and parameters are determined by just
the support translation of the nodes:

Proposition 5.3 (solid link graph embeddings). Given a solid link graph G : XG → YG and an
embedding φ : G ↪→H into a link graph H : XH → YH . Then φe, φi, and φo are uniquely determined
from φv.

Proof. Here we give only the constructions of φe, φi and φo. Proofs that they are unique and satisfy
the embedding conditions may be found in Appendix A.1.1.

φe: Construct the map of each edge e ∈ EG as follows: choose a port p = (v, i) ∈ link−1
G (e), which is

always possible since no edge is idle and every inner name is guarding, and let

φe(e) = linkH(φv(v), i).

φi: Construct the map of each inner name x ∈ XG as follows:

φi(x) = pointsH,x \φp(PG,x)

pointsH,x = (link−1
H ◦φ

e)(linkG(x))

PG,x = (link−1
G ◦ linkG)(x) \ {x}

φp(v, i) = (φv(v), i).

φo: Construct the map of each outer name y ∈ YG as follows: choose a port p = (v, i) ∈ link−1
G (y),

which is always possible since no outer name is idle or connected to an inner name, and let

φo(y) = linkH(φv(v), i).

36 5.2. Place Graph Embeddings

5.2 Place Graph Embeddings
As for link graph embeddings, place graph embeddings are simply support translations along with
maps of the interfaces:

Definition 5.4 (place graph embedding). Let G : kG → mG, H : kH → mH be two concrete place
graphs. Then a place graph embedding, written φ : G ↪→H, is a map φ : |G|]kG]mG → |H|]P(kH]
VH)]mH , where φ = φv] φs] φr satisfies the following conditions:

maps:

(PGE-1) φv : VG�VH is an injective map
(PGE-2) φs : kG → P(kH] VH) is a fully injective map
(PGE-3) φr : mG → VH]mH is an arbitrary map

injectivity:

(PGE-4) rng(φv) # rng(φr)

(PGE-5) rng(φs) # rng(φv)

(PGE-6) H �rng(φs) # rng(φr)

surjective on node children:

(PGE-7) φc ◦ prnt−1
G �VG= prnt−1

H ◦φv

structure preservation:

(PGE-8) ctrlG = ctrlH ◦φv

(PGE-9) ∀c ∈ kG] VG : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prntH(c′)

where

φf = φv] φr (map of parents)
φc = φv] φs (map of children).

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several place graphs. We write φ G when applying the underlying support translation to G. If any
of the maps are partial, φ is partial, written φ : G ↪⇀H. Partial embeddings need only satisfy the
conditions where they are defined; in particular the surjectivity condition only applies to a node v iff
φv is defined for v and φc is defined for prnt−1

G (v). A partial embedding is said to be non-trivial iff its
range is non-empty.

The conditions are analogous to those for link graph embeddings, except condition (PGE-6) which
deserves an explanation. Let us first motivate it by an example:

Example 3. Consider the following place graphs

G = (∅, ∅, {0 7→ 0, 1 7→ 1}) : 2→ 2

H = ({v, v′}, {v 7→ K, v′ 7→ K}, {v 7→ 0, v′ 7→ v}) : 1

Then the following would be a place graph embedding if we did not include condition (PGE-6):

φ = φs] φr : G ↪→H

φr = {0 7→ 0, 1 7→ v′}
φs = {0 7→ {v}, 1 7→ ∅}

But there are no place graphs C and D such that H = C ◦ φ G ◦D! The problem is that root 1 of G
is mapped to node v′ which is part of the tree that site 0 is mapped to.

5. Bigraph Embeddings 37

The issue is that there are no place graph operations that can make one root of a place graph a
descendant of one of its other roots. In other words, roots do not just model possibly disjoint locations,
but subtrees that are disjoint. This is a design choice in the bigraphical model, and it is out of scope
for this report to investigate the consequences of relaxing this restriction. Thus, for embeddings
to correspond to decompositions, we need to rule out embeddings where one root is mapped to a
descendant of another, hence condition (PGE-6).

The decompositions that we can express with an embedding are the following:

Definition 5.5 (embedding corresponding to decomposition). Given a place graph decomposition

H = C ◦ (G ◦D ⊗ idk) ◦ π.

Then the corresponding embedding φ = φv] φs] φr : G ↪→H is defined by

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG .

Proposition 5.6 (embedding corresponding to decomposition). The embedding φ : G ↪→H of Def. 5.5
is indeed an embedding.

Proof. Cf. Appendix A.1.2.

Note that in the case where k = 0 and π = id, the decomposition becomes H = C ◦ G ◦ D,
demonstrating that embeddings are indeed just decompositions into context, redex, and parameter.
The identity idk allows some of the sites of H to be in the context C. The permutation π is a technical
measure to handle the fact that sites are not names but consecutive numbers: it expresses that the
sites of H may belong to either the context or the parameter, and in a decomposition we have to
partition and renumber them accordingly.

Let us make this precise, by defining when we consider decompositions equivalent:

Definition 5.7 (decomposition equivalence). Say that two decompositions

H = C ◦ (G ◦D ⊗ idk) ◦ π
= C ′ ◦ (G ◦D′ ⊗ idk) ◦ π′

are the same iff they differ only on their internal numbering of sites, i.e.,

VD = VD′

VC = VC′

prntD �VD = prntD′ �VD
prntC �VC]mG = prntC′ �VC]mG

prntD ◦π �kD = prntD′ ◦π′ �kD

prntC(π(i)− kD +mG) = prntC′(π
′(i)− kD +mG) (i ∈ π−1(kH \ kD)).

Let us now turn to showing that embeddings can only express such decompositions:

Definition 5.8 (decomposition corresponding to embedding). Given a place graph G : kG → mG and
an embedding φ : G ↪→H into a place graph H : kH → mH . Then the corresponding decomposition
into parameter prmt(φ) and context ctxt(φ) place graphs are as defined in Figure 3.

Proposition 5.9 (embeddings are decompositions). Given a place graph G : kG → mG and an
embedding φ : G ↪→H into a place graph H : kH → mH . Then construction Def. 5.8 defines a
decomposition up to decomposition equivalence.

38 5.2. Place Graph Embeddings

prmt(φ)
def
= (VD, ctrlH �VD , prntD) : kD → kG where

VD = VH ∩H �rng(φs)

k̃D = kH ∩H �rng(φs)

kD = |k̃D|
fD : kD� k̃D a bijection

prntD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)

ctxt(φ)
def
= (VC , ctrlH �VC , prntC) : kC → mH where

VC = (VH \ φv(VG)) \ VD
k̃C = kH \ k̃D
kC = mG + |k̃C |
f ′C : |k̃C |� k̃C a bijection

fC(i+mG) = f ′C(i) for i ∈ |k̃C |
prntC = φr] prntH �VC] prntH ◦fC

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |
π = f−1

D] f ′−1 : kH → kH

H = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π

Figure 3: Decomposition of place graph H : kH → mH into parameter prmt(φ) and context ctxt(φ)
corresponding to an embedding φ : G ↪→H of a place graph G : kG → mG.

5. Bigraph Embeddings 39

Proof. Cf. Appendix A.1.3.

The bijections fD and f ′C are the realizations of the internal partitioning and renumbering of
sites that we discussed above and they express the variation within decomposition equivalence classes.
Note that the support translation of G slightly muddles the correspondence with the decomposition
of Def. 5.5 above. However, letting F

def
= φ G we see that an embedding indeed specifies such a

decomposition.
Together, the above constructions form an isomorphism between embeddings and decompositions:

Theorem 5.10 (embeddings and decompositions are isomorphic). The constructions of Def. 5.5 and
Def. 5.8 are mutually inverse.

Proof. Cf. Appendix A.1.4.

When we get to edit scripts, we shall need a number of disjointness results in addition to the
injectivity conditions:

Lemma 5.11. Given a place graph G : kG → mG and an embedding φ : G ↪→H into a place graph
H : kH → mH . Then

1. rng(φf) #H �rng(φs),

2. rng(φc) #H �rng(φr),

3. H �rng(φs) #H �rng(φr), and

4. ∀i ∈ kG : rng(φc) #(H �φ
s(i) \φs(i)).

Proof. Cf. Appendix A.1.5.

5.2.1 Solid Place Graphs

As was the case with link graph embeddings, place graph embeddings are determined by the injection
of nodes iff the place graph is solid:

Definition 5.12 (solid place graph (after [25, Def. 2.1])). A place graph is solid iff these conditions
hold:

1. no roots are idle

2. no sites are siblings

3. every site is guarding .

Proposition 5.13. Given a solid place graph G : kG → mG and an embedding φ : G ↪→H into a place
graph H : kH → mH . Then φs and φr are uniquely determined from φv.

Proof. Here we give only the constructions of φs and φr. Proofs that they are unique and satisfy the
embedding conditions may be found in Appendix A.1.6.

φs: Construct the map of each site i ∈ kG as follows:

φs(i) = childrenH,i \φv(siblingsG,i)

childrenH,i = (prnt−1
H ◦φ

v)(prntG(i))

siblingsG,i = (prnt−1
G ◦ prntG)(i) \ {i}.

40 5.3. Bigraph Embeddings

φr: Construct the map of each root j ∈ mG as follows: choose a node v ∈ prnt−1
G (j), which is always

possible since no root is idle or has a site as a child, and let

φr(j) = (prntH ◦φv)(v).

5.3 Bigraph Embeddings
Having defined embeddings for each of the two constituent graphs, we can now define embeddings of
bigraphs as the combination of the two, adding only a single condition:

Definition 5.14 (bigraph embedding). Let G : 〈kG, XG〉 → 〈mG, YG〉, H : 〈kH , XH〉 → 〈mH , YH〉 be
two concrete bigraphs. Then a bigraph embedding, written φ : G ↪→H, is a map φ : |G|] kG]mG]
XG] YG → |H|] P(kH] VH)]mH] P(XH] PH)] YH , where φP = φ �VG]kG]mG : GP ↪→HP is
place graph embedding and φL = φ �|G|]XG]YG : GL ↪→HL is a link graph embedding. Furthermore,
the map must satisfy the following condition:

consistency:

(BGE-1) rng(φi) ⊆ XH] PH�rng(φs)∩VH .

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several bigraphs. We write φ G when applying the underlying support translation to G. If φP or φL
are partial, φ is partial, written φ : G ↪⇀H; if either is non-trivial, so is φ.

The consistency condition ensures that the link graph embedding only maps inner names to ports
on nodes that are in the place graph parameter. If we did not have this condition, the link and place
graph embeddings might disagree on whether a node belongs to the context or the parameter.

We saw in the previous section that the place graph structure gives us a unique way to separate
the nodes that are not in the image of the embedding into a context and parameter. Link graphs have
less structure and for a given embedding there may be several ways to decompose the link graph (e.g.,
different ways to partition the edges between context and parameter). Depending on the definition
of reaction, this may affect the reaction relation. For pure bigraphs, Milner resolves this issue by
disallowing inner names in redexes and requiring parameters to be discrete [29, Def. 8.5]. For binding
bigraphs, inner names are allowed in redexes as long as they are local and the definition of discreteness
is conservatively extended to exempt bound links [24, Sec. 11]. We shall adapt (a variant of) the latter
approach in order to avoid restricting redexes and to make our work extensible to binding bigraphs:
we shall require the parameter to be discrete except that (1) we shall discard the bijection constraint
for the links that connect to the redex, and (2) inner names can only connect to the redex. We call
this semi-discreteness:

Definition 5.15 (semi-discrete bigraph). A bigraph D : 〈XD, kD〉 → 〈XG]XI ,mD〉 is semi-discrete
on XG iff it has no edges, no outer name is idle, linkD �XI is a bijection, and linkD(XD) ⊆ XG.

Thus the decompositions that our embeddings correspond to are the following:

Definition 5.16 (embedding corresponding to decomposition). Given a bigraph

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

whereD is semi-discrete onXG. Then the corresponding embedding φ = φv]φe]φs]φr]φi]φo : G ↪→H
is defined by

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG

φe = IdEG φo = linkC �YG φi = link−1
D �XG .

5. Bigraph Embeddings 41

Proposition 5.17 (embedding corresponding to decomposition). The embedding φ : G ↪→H of
Def. 5.16 is indeed an embedding.

Proof. Cf. Appendix A.1.7.

As we discussed for place graph embeddings, idk allows sites of H to be in the context C and
π is a technical artifact reflecting that sites are consecutive numbers and not names. Similarly, the
renaming α allows inner names of H to be in the context C, though suitably renamed to handle the
case where inner names of H collide with the outer names of G. If idk = α = idε and π is an identity,
the decomposition becomes H = C ◦ (G ⊗ idXI) ◦ D, again demonstrating that embeddings are just
decompositions into context, redex, and parameter. The identity idXI expresses the fact that we allow
the parameter and context to share links without the involvement of the redex; in this sense the exact
choice of XI is internal to the decomposition.

Let us extend our definition of decomposition equivalence to disregard the internal names:

Definition 5.18 (decomposition equivalence). Say that two decompositions

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

= C ′ ◦ ((G⊗ idXI′) ◦D
′ ⊗ idk ⊗ α′) ◦ (π′ ⊗ idXH)

with D,D′ discrete, are the same iff the place graph decompositions are the same and the link graph
decompositions differ only in their internal names, i.e.,

ED = ED′ linkD �
XG = linkD′ �

XG

EC = EC′ linkC �PC]YG = linkC′ �PC]YG
linkC ◦α = linkC′ ◦α′

linkC ◦ linkD �
XI = linkC′ ◦ linkD′ �

XI′ .

In the case of bigraph matches, i.e., Def. 4.31 instantiated to BPRSs, this definition captures exactly
what it means for matches to be the same:

Proposition 5.19 (matches are decompositions). Two matches in an agent are the same iff they are
equivalent decompositions.

Proof. Cf. Appendix A.1.8.

As we did for place graphs, we shall now prove that embeddings can only express such decomposi-
tions, by showing how to construct them from an embedding:

Definition 5.20 (decomposition corresponding to embedding). Given a bigraph G : 〈kG, XG〉 →
〈mG, YG〉 and an embedding φ : G ↪→H into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then the cor-
responding decomposition into parameter prmt(φ) and context ctxt(φ) bigraphs are as defined in
Figure 4.

Proposition 5.21 (embeddings are decompositions). Given a bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and
an embedding φ : G ↪→H into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then constructions Def. 5.8 and
Def. 5.20 define a decomposition up to decomposition equivalence.

Proof. Cf. Appendix A.1.9.

We discussed the place graph aspects of the construction in Section 5.2. The bijections link ′D and
αC are the realizations of the choice of suitable internal names as discussed above and they express
the variation within decomposition equivalence classes.

Let us now prove that these constructions form an isomorphism between embeddings and decom-
positions:

42 5.3. Bigraph Embeddings

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD) : 〈kD, XD〉 → 〈kG, XG]XI〉 where

P ′D = PD \ rng(φi)

XD = rng(φi) ∩XH

XI : a set of names satisfying
|XI | = |P ′D|, XI #XG, and XI #YG

link ′D : P ′D�XI a bijection

linkD = (φi)−1] link ′D

ctxt(φ)
def
= (VC , EC , ctrlC , prntC , linkC) : 〈kC , YG]XI]XC〉 → 〈mH , YH〉 where

EC = EH \ rng(φe)

X ′C = XH \XD

XC : a set of names satisfying
|XC | = |X ′C |, XC #YG, and XC #XI

αC : XC�X ′C a bijection

linkC = φo] linkH ◦(IdPC] link ′−1
D]αC)

H = ctxt(φ) ◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH)

Figure 4: Decomposition of bigraph H : 〈kH , XH〉 → 〈mH , YH〉 into parameter prmt(φ) and context
ctxt(φ) corresponding to an embedding φ : G ↪→H of a place graph G : 〈kG, XG〉 → 〈mG, YG〉. The
decomposition of the place graph is given in Figure 3.

5. Bigraph Embeddings 43

Theorem 5.22 (embeddings and decompositions are isomorphic). The constructions of Def. 5.16 and
Def. 5.20 are mutually inverse.

Proof. Cf. Appendix A.1.10.

As an instance of this result we get that redex embeddings into agents are isomorphic to matches:

Corollary 5.23 (matches isomorphic to redex embeddings into agents). In a BPRS B̀g(̀ R), a match
o = (ρ, idXI , c, d) of a parametric rule R = (R : m → 〈n, Y 〉, R′, η) in an agent a is isomorphic to the
embedding

φ = φv] φe] φs] φr] φi] φo : R ↪→ a

φv = ρ�VR φr = prntc �n φs = prnt−1
d �m

φe = ρ�ER φo = link c �Y φi = ∅.

Proof. Follows immediately from Prop. 5.19 and Theorem 5.22.

The disjointness results for place graph embeddings extend to bigraph embeddings; we shall need
them in Section 6.

Corollary 5.24. Given a bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding φ : G ↪→H into a
bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then

1. rng(φport) #PH�rng(φs) and

2. rng(φport) #PH�rng(φr) .

Proof. 1: From Lemma 5.11 we have rng(φv) #H �rng(φs) so clearly rng(φport) #PH�rng(φs) .

2: From Lemma 5.11 we have rng(φv) #H �rng(φr) so clearly rng(φport) #PH�rng(φr) .

5.3.1 Solid Bigraphs

The results regarding solid link and place graphs of course also hold for bigraphs, i.e., embeddings of
solid bigraphs are determined by the injection of nodes:

Definition 5.25 (solid bigraph (after [25, Def. 2.1]7)). A bigraph is solid iff these conditions hold:

1. no roots or links are idle

2. no sites or inner names are siblings

3. every site and inner name is guarding

4. no outer name is linked to an inner name .

Corollary 5.26. Given a solid bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding φ : G ↪→H into
a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then φs, φr, φe, φi, and φo are uniquely determined from φv.

Proof. Follows from Prop. 5.3 and Prop. 5.13.

7These conditions are slightly stronger than those in loc. cit. cf. Sec. 5.1.1.

44

6 Bigraph Edit Scripts
As we have seen in the previous sections, bigraphical reactions are usually defined in terms of re-
placement: rewriting is performed by replacing a redex with a reactum. While this yields a simple
and elegant presentation of reaction semantics, it does not capture the relation between entities in
the redex and reactum, which is needed in the KaSim algorithm: we require a description of what is
modified by a reaction rule, which implies a relation between entities before and after reaction.

In this section, we shall develop an alternative formulation of bigraphical reaction based on recon-
figuration instead of replacement. The key ideas are:

reconfiguration rules:
Reconfiguration rules are fine-grained descriptions of how a reaction modifies the redex. They
consist of a redex and an edit script : a series of minimal modifications, edits, to the redex which
turn it into the reactum.

reaction as reconfiguration:
Exploiting that matches and embeddings are isomorphic, we define reaction as the mediation of
edits to agents through embeddings.

This formulation is equivalent to the usual formulation in that it generates the same abstract reactions,
but in addition it provides the notion of modification that is needed for the KaSim algorithm: edit
scripts allow us to characterize causation and conflict in a fine-grained and concise way, as we already
saw in the overview of KaSim (cf. Section 3.2).

In overview, the development proceeds as follows:

Section 6.1: Patterns
To simplify the development, we first introduce an alternative formulation of concrete bigraphs,
where roots and sites are named instead of being consecutive numbers. We shall call these
patterns to avoid confusion with the usual concrete bigraphs.

We also recast BPRSs and bigraph embeddings to this setting where redexes and reactums are
patterns.

Section 6.2: Edits
We introduce a set of minimal edits and define how they reconfigure compatible redexes, i.e.,
redexes that have a suitable structure for the edit to be meaningful.

Next, we show how we can extract an instantiation map from an edit, which is necessary in order
to relate edits to reaction rules.

Finally, we transfer edits to agents, by defining how an embedding of a redex can mediate an
edit to the agent, and show that such mediated edits correspond to abstract reactions in certain
BPRSs.

Section 6.3: Edit Scripts
Reaction rules cannot in general be expressed as a single edit, but require a sequence of edits,
i.e., an edit script. We show how the concepts and results for edits transfer to such edit scripts.

Section 6.4: Reconfiguration Systems
Putting the above developments together, we define reconfiguration rules and reconfiguration
systems (RCSs). We give constructions between RCSs and BPRSs that preserve and reflect
abstract reactions.

6.1 Patterns
A pattern is an alternative representation of a concrete bigraph where roots and sites are named. To
avoid confusion with the names of the link graph, we shall call these identifiers variables. We shall

6. Bigraph Edit Scripts 45

assume a countably infinite set U of variables, ranged over by q, r ∈ Q,R and disjoint from X , V, and
E .

Definition 6.1 (pattern). A pattern

P̃ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃) : 〈Q,X〉 → 〈R, Y 〉

is an alternative representation of the concrete bigraph

JP̃ K def
= (VP̃ , EP̃ , ctrl P̃ , prntJP̃ K, link P̃) : 〈|Q|, X〉 → 〈|R|, Y 〉

where

prnt P̃ : Q] VP̃ → VP̃]R,
Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1,

R = {r0, . . . , rm−1} where ∀i ∈ [0;m− 2] : ri < ri+1,

prntJP̃ K = (IdVP̃] {r0 7→ 0, . . . , rm−1 7→ m− 1})

◦ prnt P̃
◦ (IdVP̃] {0 7→ q0, . . . , k − 1 7→ qk−1}).

As we shall see when we define edits, the virtue of patterns is that we can add and remove sites
without having to renumber those that remain. Note that there are infinitely many patterns that
correspond to a concrete bigraph:

Proposition 6.2. Two patterns P̃ ,P̃ ′ differ only by order preserving bijections on their outer and
inner variables respectively iff JP̃ K = JP̃ ′K.

Proof. Immediate from the definition.

Parametric reaction rules, BPRSs, and bigraph embeddings are easily adapted to patterns:

Definition 6.3 (pattern rule). A pattern rule

R = (P̃ : Q→ 〈R, Y 〉, P̃ ′ : Q′ → 〈R, Y 〉, η : Q′ → Q)

where η is a function called the variable instance map, is an alternative representation of the parametric
bigraphical reaction rule

JRK def
= (JP̃ K : |Q| → 〈|R|, Y 〉, JP̃ ′K : |Q′| → 〈|R|, Y 〉, JηK : |Q′| → |Q|)

where

Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1,

Q′ = {q′0, . . . , q′m−1} where ∀i ∈ [0;m− 2] : q′i < q′i+1,

JηK(i) = j if η(q′i) = qj .

Definition 6.4 (pattern-based BPRS). A pattern-based BPRS over K with pattern rules R̀, written
B̀g(K, R̀), is the BPRS B̀g(K, R̀′) where R̀′ = {JRK | R ∈ R̀}.

46 6.2. Edits

Affected Entity Type

port node edge site

E
ff

ec
t

rebind �(v,i) 7→l

change control }v:K

add ⊕v:K~y@p ⊕e
delete 	v 	e 	q
move �v@p �q@p
copy ⊗q→r@p

Table 1: The set of edits organized by their effect (rows) and the type of entity they affect (columns)
(v ∈ V, K ∈ K, {~y} ⊆ X , p ∈ V] U , e ∈ E , q, r ∈ U ,i ∈ N, and l ∈ E] X).

Definition 6.5 (pattern embedding). Let P̃ : 〈QP̃ , XP̃ 〉 → 〈RP̃ , YP̃ 〉 and H̃ : 〈QH̃ , XH̃〉 → 〈RH̃ , YH̃〉
be patterns. Then a pattern embedding, written φ : P̃ ↪→ H̃, is a map φ : |P̃ |]QP̃]RP̃]XP̃] YP̃ →
|H̃|] P(QH̃] VH̃)] RH̃] P(XH̃] PH̃)] YH̃ which is an alternative representation of the bigraph
embedding

JφK : JP̃ K ↪→JH̃K

where the constituent maps are defined as:

JφK∗ def
= φ∗ where ∗ ∈ {v, e, i, o}

JφKs def
= (IdVH̃] {qH̃,0 7→ 0, . . . , qP̃ ,kH̃−1 7→ kH̃ − 1})

◦ φs ◦ {0 7→ qP̃ ,0, . . . , kP̃ − 1 7→ qP̃ ,kP̃−1}

JφKr def
= (IdVH̃] {rH̃,0 7→ 0, . . . , rP̃ ,mH̃−1 7→ mH̃ − 1})

φr ◦ {0 7→ rP̃ ,0, . . . ,mP̃ − 1 7→ rP̃ ,mP̃−1}

QP̃ = {qP̃ ,0, . . . , qP̃ ,kP̃−1} where ∀i ∈ [0; kP̃ − 2] : qP̃ ,i < qP̃ ,i+1

RP̃ = {rP̃ ,0, . . . , rP̃ ,mP̃−1} where ∀i ∈ [0;mP̃ − 2] : rP̃ ,i < rP̃ ,i+1

QH̃ = {qH̃,0, . . . , qH̃,kH̃−1} where ∀i ∈ [0; kH̃ − 2] : qH̃,i < qH̃,i+1

RH̃ = {rH̃,0, . . . , rH̃,mH̃−1} where ∀i ∈ [0;mH̃ − 2] : rH̃,i < rH̃,i+1.

Clearly, it is easy to define embeddings between patterns and concrete bigraphs in a similar manner,
and we shall freely use such embeddings.

6.2 Edits

An edit is a minimal reconfiguration of a pattern. We are concerned with edits that correspond to
reactions and shall therefore only consider edits of redexes, i.e., patterns with no inner names, which
preserve the outer face.

Definition 6.6 (edits). An edit δ over a signature K is any of the operators in Table 1. The application
of an edit δ to a pattern P̃ , written δ(P̃), is defined in Table 2. We say that an edit δ is compatible
with a pattern P̃ iff δ(P̃) is defined.

It is straightforward to verify that edits yield patterns:

6. Bigraph Edit Scripts 47

Rebind a port:

�(v,i)7→l(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : Q→ 〈R, Y 〉
if v ∈ VP̃ and i ∈ ar(ctrl P̃ (v)) and l ∈ EP̃] Y

Change a control:

}v:K(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if v ∈ VP̃ and ar(K) = ar(ctrl P̃ (v))

Add node or edge:

⊕v:K~y@p(P̃)
def
= (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : Q→ 〈R, Y 〉
if v 6∈ VP̃ and p ∈ VP̃]R and {~y} ⊆ EP̃] Y and ar(K) = n

⊕e(P̃)
def
= (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if e 6∈ EP̃

Delete node, edge, or site:

	v(P̃)
def
= (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv): Q→ 〈R, Y 〉
if v ∈ VP̃ and prnt−1

P̃
(v) = ∅

	e(P̃)
def
= (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if e ∈ EP̃ and link−1

P̃
(e) = ∅

	q(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (Q− q)→ 〈R, Y 〉
if q ∈ Q

Move node or site:

�v@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : Q→ 〈R, Y 〉
if v ∈ VP̃ and p ∈ VP̃]R

�q@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : Q→ 〈R, Y 〉
if q ∈ Q and p ∈ VP̃]R

Copy site:

⊗q→r@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (Q+ r)→ 〈R, Y 〉
if q ∈ Q and r 6∈ Q and p ∈ VP̃]R

Table 2: Application of edit δ to pattern P̃ : Q→ 〈R, Y 〉, denoted δ(P̃).

48 6.2. Edits

Proposition 6.7 (edits). Given a pattern P̃ : Q→ 〈R, Y 〉 and a compatible edit δ. Then δ(P̃) : Q′ →
〈R, Y 〉 is a pattern and

Q′ =

Q− q if δ = 	q
Q+ r if δ = ⊗q→r@p
Q otherwise.

Note that other choices of edits are possible. For instance, one could imagine allowing deletion
of nodes that have children – but what should happen to the children? Should they also be deleted
or should they become children of the deleted node’s parent? We have chosen the above set of edits
as they express minimal modifications to each of the elements of a concrete bigraph quintuple which
result in another concrete bigraph. As we shall see below, the chosen set of edits is sufficient for
completeness, so we leave it to future work to explore other sets of edits.

6.2.1 Deriving Named Instance Maps

To relate edits to reaction rules and reaction, we must define how edits relate to instantiations. There
are two important things to take into account when we define the instantiations for edits: (a) edits are
not tied to a specific pattern and thus the corresponding instance map should be the identity on all
sites except those that are affected by the edit; and (b) edits will be chained together into edit scripts
and thus the corresponding instance maps should be easily composable.

We meet these criteria by defining instance maps for edits in two steps:

forward instance map: A map which is defined for all compatible patterns and describes how sites
are modified by an edit.

derived instance map: From the forward map we derive the variable instance maps for specific
compatible patterns.

As we shall see when we get to edit scripts, the forward instance maps compose easily and we can
reuse the derivation of the pattern specific instance maps.

Definition 6.8 (forward instance map). A forward instance map z : U → P(U) is a fully injective
map on named sites.

The forward instance map finst(δ) corresponding to an edit δ is

finst(q)
def
= IdU [q 7→ ∅]

finst(⊗q→r@a)
def
= IdU−r[q 7→ {q, r}]

finst(δ)
def
= IdU in all other cases

It is clear from this definition and the definition of edits that a forward instance map corresponding
to an edit maps the sites of compatible patterns to the sites of the resulting patterns:

Proposition 6.9 (forward instance map). Given a pattern P̃ : Q→ J and a compatible edit δ. Then
Q ⊆ dom(finst(δ)) and finst(δ)(Q) = Q′ where δ(P̃) : Q′ → J .

To derive an instance map for a particular compatible pattern, we simply restrict the domain of
the forward instance map and then invert it:

Definition 6.10 (derived variable instance map). The derived variable instance map instQ(z) corre-
sponding to a forward instance map z for a set of named sites Q ⊆ dom(z) is

instQ(z)
def
= (z�Q)−1.

Note that the inverse of the forward instance map z−1, and thus instQ(z), is a function since z is
fully injective.

6. Bigraph Edit Scripts 49

Corollary 6.11 (derived variable instance map). Given a pattern P̃ : Q → J and a compatible edit
δ. Then instQ(finst(δ)) : Q′ → Q where δ(P̃) : Q′ → J .

Proof. Follows from Def. 6.10 and Prop. 6.9.

6.2.2 Mediating edits

In order to realize reactions by using edits, we must define how an embedding of a pattern can mediate
the edit of an agent. Since we wish to combine sequences of edits, the result of a mediated edit
should be both a new agent and a new embedding that can mediate the next edit into the new agent.
Furthermore, we shall define mediation of edits through embeddings into arbitrary bigraphs as we shall
need this to characterize conflict and causality in Section 7.

Definition 6.12 (mediated edits). For a pattern P̃ and compatible edit δ, the mediated edit, written
δ(a, φ), of a pattern H̃ through an embedding φ : P̃ ↪→ H̃ is defined in Table 3. When (H̃ ′, φ′) = δ(H̃, φ)
we shall often abuse the notation and write δ(H̃, φ) for H̃ ′.

Proposition 6.13 (mediated edits). Given a pattern P̃ : QP̃ → 〈RP̃ , YP̃ 〉, a compatible edit δ, and
an embedding φ : P̃ ↪→ H̃ into a pattern H̃ : 〈QH̃ , XH̃〉 → I. Then H̃ ′ : 〈Q′

H̃
, XH̃〉 → I is a pattern

and φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, where (H̃ ′ : 〈Q′
H̃
, XH̃〉 → I, φ′) = δ(H̃, φ) and P̃ ′ = δ(P̃) for some

set of variables Q′
H̃
.

Proof. Cf. Appendix A.2.1.

Mediated edits are well-behaved in the sense that the reconfigurations they cause in agents can
also be expressed as reactions:

Lemma 6.14 (mediated edits are reactions). Given a pattern P̃ : Q → 〈R, Y 〉, a compatible edit δ,
and an embedding φ : P̃ ↪→ a into a concrete agent a : 〈ma, Ya〉. Then a _ a′, where (a′, φ′) = δ(a, φ),
is a reaction in any pattern-based BPRS containing the rule (P̃ , δ(P̃), instQ(finst(δ))).

Proof. Cf. Appendix A.2.2.

The converse does not hold for two reasons:

• A single edit of course cannot express any reaction. We will solve this by introducing edit scripts
in the next section.

• Edits are much more restrictive in their handling of support: we cannot change support arbi-
trarily, but are only free to choose support for added/copied nodes and edges.

We can, however, show that any abstract reaction can be realized by edits. In general, this requires
edit scripts, but let us first show that abstract reactions generated by rules derived from edits can also
be obtained through mediated edits:

Lemma 6.15. Given a pattern-based BPRS and a reaction a _ a′ generated by some pattern rule
R = (P̃ : Q→ 〈R, Y 〉, δ(P̃) : Q′ → 〈R, Y 〉, instQ(finst(δ))). Then there is an agent a′′ and embeddings
φ : P̃ ↪→ a, φ′ : δ(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = δ(a, φ).

Proof. Cf. Appendix A.2.3.

50 6.2. Edits

Rebind a port:

�(v,i)7→l(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ , link H̃ [(φ(v), i) 7→ φ(l)]), φ)

Change a control:

}v:K(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ [φ(v) 7→ K], prntH̃ , link H̃), φ)

Add node or edge:

⊕v:K~y@p(H̃, φ)
def
= ((VH̃ + v′, EH̃ , ctrl H̃ [v′ 7→ K], prntH̃ [v′ 7→ φ(p)],

link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]),

φ[v 7→ v′])

if v′ 6∈ VH̃

⊕e(H̃, φ)
def
= ((VH̃ , EH̃ + e′, ctrl H̃ , prntH̃ , link H̃), φ[e 7→ e′])

if e′ 6∈ EH̃

Delete node, edge, or parameter:

	v(H̃, φ)
def
= ((VH̃ − φ(v), EH̃ , ctrl H̃ −φ(v), prntH̃ −φ(v), link H̃ −Pφ(v)), φ − v)

	e(H̃, φ)
def
= ((VH̃ , EH̃ − φ(e), ctrl , prntH̃ , link H̃), φ − e)

	q(H̃, φ)
def
= ((VH̃ \ H̃ �φ(q), EH̃ , ctrl H̃ −H̃ �φ(q), prntH̃ −H̃ �φ(q), link H̃ −PH̃�φ(q))

: 〈Q \ H̃ �φ(q), X〉 → I,

φ − q)

Move node or parameter:

�v@p(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(v) 7→ φ(p)], link H̃), φ)

�q@p(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(q) 7→ φ(p)], link H̃), φ)

Copy parameter:

⊗q→r@p(H̃, φ)
def
= ((VH̃] Vr, EH̃ , ctrl H̃] ctrlr, prntH̃] prntr, link H̃] linkr),

: 〈Q]Qr, X〉 → I,

φ[r 7→ f−1(φ(q))])

where Vq = H̃ �φ(q) ∩VH̃ Qq = H̃ �φ(q) ∩Q
|Vr| = |Vq| |Qr| = |Qq|
Vr # VH̃ Qr # Q

fv : Vr�Vq fs : Qr�Qq

f = fv] fs
ctrlr = ctrl H̃ ◦fv

prntr = {f−1(φ(q)) 7→ φ(p)}] f−1
v ◦ prntH̃ ◦(f − f−1(φ(q)))

linkr(v, i) = link H̃(fv(v), i) (v ∈ Vr)

Table 3: Mediating compatible edit δ of P̃ to H̃ : 〈Q,X〉 → I through embedding φ : P̃ ↪→ H̃.
Interfaces are omitted for clarity in all but the two cases where they change.

6. Bigraph Edit Scripts 51

6.3 Edit Scripts
In the previous section we took care to define the constructions such that they could easily be trans-
ferred to sequences of edits. In this section we reap the benefits: we transfer the concepts and results
from edits to edit scripts without further comment.

Definition 6.16 (edit script). An edit script is a finite sequence of edits ∆ = δ1 · · · δn. An edit script
is compatible with a pattern P̃ iff δ1 is compatible with P̃ and n = 1 or δ2 · · · δn is compatible with
δ(P̃). The application of an edit script ∆ to a compatible pattern P̃ is defined to be

∆(P̃)
def
= δn(· · · δ1(P̃) · · ·).

Similarly, the mediated application of an edit script ∆ to a pattern H̃ through an embedding φ : P̃ ↪→ H̃
of a compatible pattern P̃ is defined to be

∆(H̃, φ)
def
= δn(· · · δ1(H̃, φ) · · ·).

When (H̃ ′, φ′) = ∆(H̃, φ) we shall often abuse the notation and write ∆(H̃, φ) for H̃ ′.

Corollary 6.17 (edit scripts). Given a pattern P̃ : Q→ 〈R, Y 〉 and a compatible edit script ∆. Then
∆(P̃) : Q′ → 〈R, Y 〉 is a pattern.

Proof. Follows from Prop. 6.7 by straightforward induction on the length of ∆.

Corollary 6.18 (mediated edit scripts). Given a pattern P̃ : QP̃ → 〈RP̃ , YP̃ 〉, a compatible edit script
∆, and an embedding φ : P̃ ↪→ H̃ into a pattern H̃ : 〈QH̃ , XH̃〉 → I. Then H̃ ′ : 〈Q′

H̃
, XH̃〉 → I is an

agent and φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, where (H̃ ′ : 〈Q′
H̃
, XH̃〉 → I, φ′) = ∆(H̃, φ) and P̃ ′ = ∆(P̃)

for some set of variables Q′
H̃
.

Proof. Follows from Prop. 6.13 by straightforward induction on the length of ∆.

Definition 6.19 (edit script forward instance map). The forward instance map finst(∆) corresponding
to an edit script ∆ = δ1 · · · δn is

finst(∆)
def
= finst(δn) ◦ (· · · ◦ (finst(δ1)�dom(finst(δ2))) · · ·�dom(finst(δn))).

Corollary 6.20 (edit script forward instance map). Given a pattern P̃ : Q→ J and a compatible edit
script ∆. Then Q ⊆ dom(finst(∆)) and finst(∆)(Q) = Q′ where ∆(P̃) : Q′ → J .

Proof. Follows from Prop. 6.9 by straightforward induction on the length of ∆.

Corollary 6.21 (derived variable instance map). Given a pattern P̃ : Q → J and a compatible edit
script ∆. Then instQ(finst(∆)) : Q′ → Q is a variable instance map where ∆(P̃) : Q′ → J .

Proof. Follows from Def. 6.10 and Corol. 6.20.

Corollary 6.22 (mediated edit scripts are reactions). Given a pattern P̃ : Q→ 〈R, Y 〉, a compatible
edit script ∆, and an embedding φ : P̃ ↪→ a into a concrete agent a : 〈ma, Ya〉. Then a _ a′, where
(a′, φ′) = ∆(a, φ), is a reaction in any pattern-based BPRS containing the rule (P̃ ,∆(P̃), instQ(finst(∆))).

Proof. Follows from Lemma 6.14 by straightforward induction on the length of ∆.

Corollary 6.23. Given a pattern-based BPRS and a reaction a _ a′ generated by some pattern rule
R = (P̃ : Q→ 〈R, Y 〉,∆(P̃) : Q′ → 〈R, Y 〉, instQ(finst(∆))). Then there is an agent a′′ and embeddings
φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = ∆(a, φ).

Proof. Follows from Lemma 6.15 by straightforward induction on the length of ∆.

52 6.4. Reconfiguration Systems

6.4 Reconfiguration Systems
In the previous sections, we have seen (a) that edit scripts generate reactions and (b) that if we can
express a pattern rule as an edit script, that edit script generates the same abstract reactions as the
pattern rule. Thus, if any pattern rule can be expressed as an edit script, we can generate all abstract
reactions through edit scripts. In this section we shall give a construction of an edit script for any
pattern rule, thus providing the final piece of the puzzle.

To show the correspondence between mediated edits and reactions, we shall define reconfiguration
rules and reconfiguration systems (RCSs) and show that they are equivalent to pattern rules and
pattern-based BPRS.

In overview, the development proceeds as follows:

reconfiguration rules:
We first define reconfiguration rules as pairs of patterns and edit scripts. We give constructions
of pattern rules from reconfiguration rules and vice versa.

reconfiguration systems:
Next, we define RCSs, give constructions of pattern-based BPRS from RCSs and vice versa, and
show that the constructions preserve and reflect abstract reactions.

6.4.1 Reconfiguration Rules

A reconfiguration rule is simply a pattern paired with a compatible edit script:

Definition 6.24 (reconfiguration rule). A reconfiguration rule R̃ = (P̃ ,∆) consists of a pattern
P̃ : Q→ J and a compatible edit script ∆.

From a reconfiguration rule, we can easily construct a pattern rule:

Definition 6.25 (pattern rule corresponding to reconfiguration rule). The pattern rule corresponding
to a reconfiguration rule R̃ is defined as

JR̃K def
= (P̃ ,∆(P̃), instQ(finst(∆))).

Proposition 6.26 (pattern rule corresponding to reconfiguration rule). The pattern rule corresponding
to a reconfiguration rule is indeed a pattern rule.

Proof. Let

R̃ = (P̃ : Q→ 〈R, Y 〉,∆)

JR̃K = (P̃ ,∆(P̃), instQ(finst(∆))).

By Corol. 6.17 and Corol. 6.21, ∆(P̃) : Q′ → 〈R, Y 〉 is a pattern and instQ(finst(∆)) : Q′ → Q is
a variable instance map.

The reverse direction is more tricky: in general, there will be infinitely many edit scripts that
express a reaction, since we can always extend an edit script by two edits that cancel out, e.g., by
adding and removing an edge. Here we shall give a naive construction, which first removes all the
nodes, edges, and redundant sites from the redex and then builds up the reactum. In overview, the
edit script will consist of the following steps:

(1) Copy the sites that will be in the reactum to a root (using fresh variables to avoid clashes.

(2) Delete the original sites.

6. Bigraph Edit Scripts 53

es(R) =

(1) ⊗η(q′0)→f(q′1)@r · · · ⊗η(q′
n′)→f(q′

n′)@r
copy sites as prescribed by η
but using temporary names
and placed at root r

(2) 	q1 · · · 	qn delete redex sites

(3) 	v1 · · · 	vk delete redex nodes

(4) 	e1 · · · 	em delete redex edges

(5) ⊕e′1 · · · ⊕em′ add reactum edges

(6) ⊕v′1:ctrlP̃ ′ (v
′
1)[...,link

P̃ ′ (v
′
1,i),...]

@ prntP̃ ′ (v
′
1)

· · · ⊕v′
k′ :ctrlP̃ ′ (v

′
k′)[...,link

P̃ ′ (v
′
k′
,i),...]@ prntP̃ ′ (v

′
k′)

add reactum nodes

(7) ⊗f(q′1)→q′1@ prntP̃ ′ (q
′
1)

· · · ⊗f(q′
n′)→q

′
n′@ prntP̃ ′ (q

′
n′)

copy sites to their proper
places with proper names

(8) 	f(q′1) · · · 	f(q′
n′)

delete temporary sites

for some r ∈ R and set of variables Q′′#Q∪Q′ in bijection to Q′, i.e., f : Q′�Q′′, and assuming the
following sequencing of the entities of P̃ and P̃ ′:

Q = {q1, . . . , qn} Q′ = {q′1, . . . , q′n′}
EP̃ = {e1, . . . , em} EP̃ ′ = {e′1, . . . , e′m′}
VP̃ = {v1, . . . , vk} where ∀i, j ∈ [1; k] : prnt P̃ (vi) = vj ⇒ i < j

VP̃ ′ = {v′1, . . . , v′k′} where ∀i, j ∈ [1; k′] : prnt P̃ ′(v
′
i) = v′j ⇒ i > j.

Figure 5: Naive construction of edit script from pattern rule R = (P̃ : Q→ 〈R, Y 〉, P̃ ′ : Q′ → 〈R, Y 〉, η :
Q′ → Q), denoted by es(R).

(3) Delete all nodes (deleting children before their parents, i.e., bottom-up).

(4) Delete all edges.

(5) Add the edges of the reactum.

(6) Add the nodes of the reactum (adding parents before their children).

(7) Copy the sites to their proper place in the reactum (assigning the proper variable to the copy).

(8) Delete the sites created in step (1).

The formal construction is given by the following definition:

Definition 6.27 (naive pattern rule edit script). For a pattern rule R the corresponding naive edit
script, written es(R), is defined in Figure 5.

Proposition 6.28 (naive pattern rule edit script). Given a pattern rule R = (P̃ : Q → J, P̃ ′ : Q′ →
J, η). Then es(R) is compatible with P̃ , es(R)(P̃) = P̃ ′, and instQ(finst(es(R))) = η.

Proof. Cf. Appendix A.2.4.

Thus, for any parametric reaction rule we can construct a corresponding reconfiguration rule:

Definition 6.29 (reconfiguration rule corresponding to pattern rule). The reconfiguration rule corre-
sponding to a pattern rule R is defined as

(P̃ , es(R)).

54 6.4. Reconfiguration Systems

Proposition 6.30 (reconfiguration rule corresponding to pattern rule). The reconfiguration rule cor-
responding to a pattern rule is indeed a reconfiguration rule.

Proof. Follows immediately from Def. 6.24 and Prop. 6.28.

6.4.2 Reconfiguration Systems

Let us now give an alternative formulation of BPRSs based on reconfiguration rules:

Definition 6.31 (reconfiguration systems (RCS)). A reconfiguration system (RCS) over K, written
B̀g(K, R̃), consists of the s-category B̀g(K) equipped with a set R̃ of reconfiguration rules.

The reaction relation _ over agents a, a′ is the smallest such that a _ a′ whenever φ : P̃ ↪→ a is
a match of some reconfiguration rule R̃ = (P̃ ,∆) ∈ R̃ in a and (a′, φ′) = ∆(a, φ) for some embedding
φ′.

From the results for edit scripts, it should be clear that RCSs have the same abstract reaction
relations as pattern-based BPRSs. We shall now show this formally.

First, we can construct a pattern-based BPRS with the same abstract reactions as an RCS:

Definition 6.32 (BPRS corresponding to RCS). The pattern-based BPRS corresponding to an RCS
B̀g(K, R̃) is

B̀g(K, {JR̃K | R̃ ∈ R̃}).

Proposition 6.33 (BPRS corresponding to RCS). The pattern-based BPRS corresponding to an RCS
is indeed a pattern-based BPRS.

Proof. Follows immediately from Def. 6.4 and Prop. 6.26.

Theorem 6.34 (abstract reaction equivalence of BPRS corresponding to RCS). Given a reaction
a _r a

′ in an RCS, then the corresponding pattern-based BPRS has the same reaction. Conversely,
for any reaction a _p a

′ in the corresponding BPRS, there is an agent a′′ such that a′ l a′′ and
a _r a

′′ in the RCS.

Proof. ⇒: Assume a reaction a _r a
′ in an RCS, i.e., there is some match φ : P̃ ↪→ a of a reconfig-

uration rule R̃ = (P̃ ,∆) ∈ R̃ in a and (a′, φ′) = ∆(a, φ) for some embedding φ′. By Def. 6.32 and
Def. 6.25 the corresponding pattern-based BPRS contains the rule (P̃ ,∆(P̃), instQ(finst(∆))), so, by
Corol. 6.22, a _p a

′.

⇐: Assume a reaction a _p a′ generated by some pattern rule (P̃ ,∆(P̃), instQ(finst(∆))) in the
pattern-based BPRS corresponding to an RCS. By Corol. 6.23, there is an agent a′′ and embeddings
φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = ∆(a, φ). Thus, a _r a

′′.

Conversely, for any pattern-based BPRS we can construct an RCS which has the same abstract
reactions:

Definition 6.35 (RCS corresponding to BPRS). The RCS corresponding to a pattern-based BPRS
B̀g(K, R̀) is

B̀g(K, {(P̃ , es(R)) | R ∈ R̀}).

Proposition 6.36 (RCS corresponding to BPRS). The RCS corresponding to a pattern-based BPRS
is indeed an RCS.

6. Bigraph Edit Scripts 55

Proof. Follows immediately from Def. 6.31 and Prop. 6.30.

Theorem 6.37 (abstract reaction equivalence of RCS corresponding to BPRS). Given a reaction
a _p a

′ in a pattern-based BPRS, then there is an agent a′′ such that a′ l a′′ and a _r a
′′ in the

corresponding RCS. Conversely, any reaction a _r a
′ in the corresponding RCS is a reaction in the

pattern-based BPRS.

Proof. ⇒: Assume a reaction a _p a
′ in the pattern-based BPRS generated by some pattern rule

(P̃ , P̃ ′, η), i.e., there is a match φ : P̃ ↪→ a. By Def. 6.35 the corresponding RCS has the reconfig-
uration rule (P̃ , es(R)) and, by Prop. 6.28, es(R)(P̃) = P̃ ′, and instQ(finst(es(R))) = η. Thus, by
Corol. 6.23, there is an agent a′′ and embeddings φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and
(a′′, φ′) = ∆(a, φ). Thus, a _r a

′′.

⇐: Assume a reaction a _r a
′ in generated by some reconfiguration rule (P̃ , es(R)) in the RCS corre-

sponding to a pattern-based BPRS with R = (P̃ , P̃ ′, η). By Prop. 6.28, R = (P̃ , es(R)(P̃), instQ(finst(es(R)))),
so, by Corol. 6.22, a _p a

′.

56

7 Rule Activation and Inhibition
The KaSim algorithm presumes that we can characterize causality and conflict at the level of reaction
rules: it requires two relations over reaction rules, activation R0 ≺ R1 and inhibition R0 #R1, capturing
whether a reaction using R0 can cause or prevent, respectively, reactions using R1. These relations
reduce the number of rules that must be considered in the positive and negative update phases of the
algorithm.

In this section, we outline how we hope to construct these relations through a characterization
of causality and conflict in terms of pullbacks and pushouts in the category of bigraph embeddings:
intuitively, a pullback characterizes one way two bigraphs can overlap in a context, while the pushout
of a pullback is the minimal example of such an overlap. For simplicity, we shall assume that rules are
linear, i.e., they do not copy or delete parameters.

This section proceeds as follows:

1. First, we give definitions of the usual notions of causality and conflict in the contexts of re-
configuration systems and show how they can be expressed in terms of embeddings and edit
scripts.

2. We then define and discuss the category of bigraph embeddings and state a number of conjectures
which our approach relies on. In particular, we argue that the embedding category has pullbacks
and pushout of pullbacks if we relax the embedding conditions slightly.

3. Finally, we discuss how our conjectures about the category of bigraph embeddings should allow
us to characterize causality and conflict at the level of rules and thus construct the activation
and inhibition relations.

7.1 Causality and Conflict
The notions of causality and conflict between events are well-studied in the literature also for graph
rewriting, though sometimes through their duals, sequential and parallel independence [16, 32]: events
are causally related if one must precede the other, and in conflict if one prevents the other. In this
section we shall, essentially, take events to be reactions in an RCS where the reaction relation a _R,φ a

′

is extended with labels that record the rule R = (P̃ ,∆) and embedding φ : P̃ ↪→ a that generated the
reaction.

More precisely, we define causality and conflict as follows:

Definition 7.1 (causality). In an RCS, say that reaction a _R0,φ0
b causes reaction b _R1,φ1

c iff
there is no b′ such that a _R1,φ1

b′.

Definition 7.2 (conflict). In an RCS, say that reaction a _R0,φ0
b conflicts with reaction a _R1,φ1

b′

iff there is no c such that b _R1,φ1
c.

Inspecting the definition of RCSs (Def. 6.31) it is clear that causality and conflict can be restated
in terms of embeddings and edit scripts as follows:

Proposition 7.3 (causality). In an RCS, the reaction a _R0,φ0
∆0(a, φ0) causes the reaction ∆0(a, φ0) _R1,φ1

∆1(∆0(a, φ0), φ1) iff φ1 : P̃1 6↪→ a, where Ri = (P̃i,∆i) (i = 0,1). The following diagram illustrates the
situation:

P̃0 P̃1

a

φ0

↓

∩

.

φ1

←

+

⊃

∆0(a, φ0)

φ1

↓

∩

. ∆1(∆0(a, φ0), φ1).

7. Rule Activation and Inhibition 57

Proposition 7.4 (conflict). In an RCS, the reaction a _R0,φ0
∆0(a, φ0) conflicts with the reaction

a _R1,φ1
∆1(a, φ1) iff φ1 : P̃1 6↪→∆0(a, φ0), where Ri = (P̃i,∆i) (i = 0,1). The following diagram

illustrates the situation:

P̃0 P̃1

∆1(a, φ1) / a

φ0

↓

∩

.

φ1

←

⊃

∆0(a, φ0)

+ φ1

↓

∩

.

In both cases, reaction using R0 must modify something in the range of φ1 since it becomes, or
stops being, an embedding. Furthermore, the reaction generated by φ0 can only modify the parts of
the agent that are in its range. Thus, there must be some overlap between the embeddings which is
modified by reaction. It turns out that we can express this modification of overlaps concisely using
category theory, so let us now discuss the category of bigraph embeddings.

7.2 Category of Bigraph Embeddings

The embeddings of Section 5 form categories where the objects are graphs and the arrows are embed-
dings:

Definition 7.5 (category of bigraph embeddings). The bigraphical embedding categories LgEmb(K),
PgEmb(K), BgEmb(K) over a basic signature K respectively have link graphs, place graphs, and
bigraphs over K as their objects and the arrows are embeddings.

Composition is function composition and identities idG : G ↪→G are identity functions on the
support and interfaces of G.

These categories should not be confused with the usual bigraphical categories (cf. Section 2.2.3)
where the arrows are bigraphs. For the remainder of this section we shall use lower case letters f, g, . . .
for arrows in addition to φ.

We are interested in these categories as the categorical notions of pullback and pushout, if the
embedding categories have them, will allow us to characterize overlaps and minimal contexts exhibiting
those overlaps, respectively. Let us discuss these two notions and their interpretations in some depth:

7.2.1 Pullbacks of Embeddings

An overlap between two embeddings ~φ : ~G ↪→H can be thought of as a maximal shared subgraph
I and a pair of embeddings ~p : I ↪→ ~G such that the following diagram is a pullback diagram in the
category of bigraph embeddings:

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂

φ1

→ H

φ0

↓

∩

.

The subgraph should be maximal to ensure that ~p : I ↪→ ~G describes all of the overlap and the pullback
property captures this maximality requirement. More precisely, if there is another subgraph I ′ and
embeddings ~p′ : I ′ ↪→ ~G that make the above diagram commute, then I ′ is a subgraph of I, i.e., there

58 7.2. Category of Bigraph Embeddings

is a (unique) embedding u : I ′ ↪→ I such that the following diagram commutes:

I ′

I ⊂
p0

→

⊂............u→
G0

p′0

⊂

→

G1

p1

↓

∩

⊂

φ1

→

p′1

⊂

→

H

φ0

↓

∩

.

As an interesting special case, note that if the two embeddings do not overlap, the pullback is the
empty bigraph and two empty maps.

We believe that the embedding formulation in Section 5 will have to be relaxed slightly in order
for the embedding categories to have pullbacks. Let us first illustrate the issue with the embeddings
of Section 5 through an example:

Example 4. Assume that we have the following overlapping link graph embeddings:

G0 = [x 7→ v, y 7→ w] : {x, y} → {v, w}
G1 = [{x, y, z} 7→ u] : {x, y, z} → {u}
H = [{x, y} 7→ u] : {x, y} → {u}
φ0 = Id{x,y}[{v, w} 7→ u] : G0 ↪→H

φ1 = Id{x,y,u}[z 7→ ∅] : G1 ↪→H.

What should the pullback be? Since G0 embeds into G1 via φ0 it seems reasonable that G0 could be
the maximal overlap, i.e.,:

I ′ = G0 g0 = IdG0
: I ′ ↪→G0 g1 = φ0 : I ′ ↪→G1.

Alas, this is not a pullback! Consider the link graph

I ′′ = G0 ⊗ [z 7→ a] : {x, y, z} → {v, w, a}.

It has the following embeddings into G0,G1

f0 = IdG0
] [a 7→ v, z 7→ ∅] : I ′′ ↪→G0

f ′0 = IdG0
] [a 7→ w, z 7→ ∅] : I ′′ ↪→G0

f1 = f ′1 = φ0] [a 7→ u, z 7→ z] : I ′′ ↪→G1

which satisfy φ0◦f0 = φ0◦f ′0 = φ1◦f1. If ~g : I ′ ↪→ ~G was a pullback there should be unique embeddings
u : I ′′ ↪→ I ′, u′ : I ′′ ↪→ I ′ such that f0 = g0 ◦ u, f ′0 = g0 ◦ u′, and f1 = g1 ◦ u = g1 ◦ u′. But this is
impossible since rng(f1) 3 z 6∈ rng(g1).

Furthermore, neither ~f : I ′′ ↪→ ~G nor ~f ′ : I ′′ ↪→ ~G are pullbacks. For example, if ~f : I ′′ ↪→ ~G was a
pullback, there should be a unique u : I ′′ ↪→ I ′′ such that f ′0 = f0 ◦ u and f ′1 = f1 ◦ u = f ′1 ◦ u. Since
f ′1(z) = z and f ′−1

1 (z) = z we must have u(z) = z, and since f ′0(a) = f ′0(w) = w and f−1
0 (w) = w we

must have u(a) = u(w) = w. But this violates structure preservation which dictates (u ◦ prntI′′)(z) =
prntI′′(z)⇒ u(a) = a.

Intuitively, the problems arise because φ1 maps z to the empty set. As we saw, though ~g : I ′ ↪→ ~G
is an overlap, other subgraphs may include z which is not in I ′ and thus I ′ is not maximal. But if we

7. Rule Activation and Inhibition 59

add z to the overlap, we have to choose a single link of G0 which it belongs to, cf. f0 and f ′0. Any such
choice is equally good but not isomorphic to the others and thus not a pullback.

It is easy to transfer this example to place graph embeddings (and this is a good exercise for the
reader!) and the issues thus apply in that setting as well.

We believe that this problem can be solved by allowing outer names/roots to embed into multiple
outer names/roots, i.e., by changing conditions (LGE-4) and (PGE-3) to

(LGE-4’) φo : YG → EH] P(YH) \ ∅ is an arbitrary map

(PGE-3’) φr : mG → VH] P(mH) \ ∅ is an arbitrary map

The structure preservation conditions will ensure that outer names/roots, which contain at least one
point/child that is not mapped to the empty set, will only be mapped to a single link/place. In other
words, only outer names/roots, where all their points/children map to the empty set, are allowed to
map to multiple outer names/roots. Intuitively, this models the situation where it is irrelevant which
of the outer names/roots the outer name/root maps to.

Note that the results about decompositions and bigraph embeddings in Section 5 probably do not
hold for the more general embeddings allowed by the relaxed conditions. However, this is unimportant,
as we only need those result for the subset of embeddings that satisfy the original conditions, and they
are still embeddings under the new conditions.

With the relaxed conditions on embeddings, we can construct the pullback in the above example:

Example 5. The pullback of the embeddings ~φ : ~G ↪→H from Example 4 is

I = I ′′ = G0 ⊗ [z 7→ a] : {x, y, z} → {v, w, a}
p0 = IdG0

] [a 7→ {v, w}, z 7→ ∅] : I ↪→G0

p1 = φ0] [a 7→ u, z 7→ z] : I ↪→G1.

The unique embeddings ug : I ′ ↪→ I,uf : I ′′ ↪→ I, and uf ′ : I ′′ ↪→ I for the spans ~g : I ′ ↪→ ~G, ~f : I ′′ ↪→ ~G,
and ~f ′ : I ′′ ↪→ ~G, respectively, are

ug = Id{x,y,v,w} uf = IdI uf ′ = IdI .

We have a construction which we believe gives pullbacks for link graph embeddings, but have yet to
prove it correct. So far, however, we have no indications that it should not be correct, and we believe
that the construction transfers to place graphs and bigraphs. We therefore venture a conjecture:

Conjecture 7.6 (pullbacks in the category of bigraph embeddings). The bigraphical embedding cate-
gories LgEmb(K), PgEmb(K), BgEmb(K), where conditions (LGE-4) and (PGE-3) are replaced by
conditions (LGE-4’) and (PGE-3’), have pullbacks.

Furthermore, since bigraphs are finite, we believe that there are only a finite number of ways that
two bigraphs can overlap in any context, when we disregard the choice of support in those contexts.
In other words, we conjecture that there is a finite set of pullbacks, up to isomorphism, for any two
bigraphs:

Conjecture 7.7. For any two objects ~G in one of the bigraphical embedding categories LgEmb(K),
PgEmb(K), BgEmb(K), where conditions (LGE-4) and (PGE-3) are replaced by conditions (LGE-4’)
and (PGE-3’), there are finitely many spans ~p : I ↪→ ~G (up to iso on I) which are pullbacks of a cospan
φ : ~G ↪→H.

In other words, we expect to be able to construct a finite representation of all possible overlaps
between two bigraphs. We shall defer discussion of this construction until we have discussed pushouts
on which the construction relies.

60 7.2. Category of Bigraph Embeddings

7.2.2 Pushouts of Embeddings

Where a pullback is a maximal subgraph that characterizes the overlap of two embeddings, the dual
notion of a pushout, if it exists, is a minimal context where two embeddings exhibit a given overlap.
Pushouts do not in general exist in the bigraphical embedding categories as the following example
illustrates:

Example 6. Consider the following span of place graph embeddings (we leave out controls for brevity):

I = ({v}, [v 7→ 0]) : 1

G0 = ({v, u}, [v 7→ u, u 7→ 0]) : 1

G1 = ({v, w}, [v 7→ 0, w 7→ 0]) : 1

g0 = [v 7→ v, 0 7→ u] : I ↪→G0

g1 = [v 7→ v, 0 7→ 0] : I ↪→G1.

This span has no pushout because G1 insists that v has a sibling whereas G0 insists that v has no
siblings and clearly no context can satisfy both of these requirements.

Intuitively, this just means that we cannot single out a subgraph in two bigraphs and then construct
a context where they overlap at that subgraph – which is unsurprising, since embeddings are structure
preserving.

However, for pullbacks we know, by definition, that there are contexts where the overlap can be
found. The remaining question is then: can we construct a minimal such context? We believe the
answer is yes, but, as was the case for pullbacks, we shall have to relax the embedding conditions, as
the following example illustrates:

Example 7. Consider the following pullback of place graph embeddings (we again leave out controls
for brevity and use named sites and roots q, r, s for clarity):

I = (∅, ∅) : ∅
G0 = ({v}, [s 7→ v, v 7→ r]) : {s} → {r}
G1 = ({w}, [w 7→ q]) : {q}
H = ({v, u, x, w}, [w 7→ x, x 7→ u, u 7→ v, v 7→ r]) : {r}
p0 = ∅ : I ↪→G0

p1 = ∅ : I ↪→G1

φ0 = [v 7→ v, s 7→ u, r 7→ r] : G0 ↪→H

φ1 = [w 7→ w, q 7→ x] : G1 ↪→H.

What should the pushout of ~p : I ↪→ ~G be? The two embeddings do not overlap, so what is the
canonical context where two place graphs do not overlap? Perhaps the pushout should be the tensor
product of the two place graphs:

K = G0 ⊗G1 o0 = IdG0
: G0 ↪→K o1 = IdG1

: G1 ↪→K.

Alas, there is no embedding u : K ↪→H such that u ◦ o0 = φ0 and u ◦ o1 = φ1 since condition (PGE-6)
prevents us from mapping the root q to a descendant of the site s (in fact, this was the motivation for
adding that condition, as discussed in Example 3).

If we disregard condition (PGE-6) then ~o : ~G0 ↪→ ~G1 is a pushout. In particular, the embedding
u = φ0] φ1 is the only one that satisfies u ◦ o0 = φ0 and u ◦ o1 = φ1.

Thus, it seems that in order to have pushouts, we must discard condition (PGE-6). In fact, we
believe that this all that is required in order to have pushouts of pullbacks in the bigraphical embedding
categories. As for pullbacks, we have a construction of pushouts for pullbacks of link graph embeddings,
which we think transfers to place graphs and bigraphs. But we have yet to prove it correct, though so
far nothing indicates that it is incorrect. So, again, we venture a conjecture:

7. Rule Activation and Inhibition 61

Conjecture 7.8. For any pullback ~p : I ↪→ ~G of some cospan in one of the bigraphical embedding
categories LgEmb(K), PgEmb(K), BgEmb(K), where condition (PGE-6) is discarded and conditions
(LGE-4) and (PGE-3) are replaced by conditions (LGE-4’) and (PGE-3’), there is a pushout ~o :
~G ↪→K.

7.2.3 Characterizing Overlaps

As we discussed in Section 7.2.1, we think that there are only finitely many pullbacks for any two
bigraphs (up to iso). While we hope to eventually find a direct method for enumerating these pullbacks,
we will initially be content with any method. In particular, we believe that the following brute-force
method will work (assuming we wish to characterize the overlaps of ~G):

1. Generate overlap candidates, i.e., spans ~g : I ′ ↪→ ~G, by equating subsets of entities of G0 and
G1. It is still unclear to us exactly how this should be done, but for let us assume that we can
generate such candidates and that there are finitely many.

2. For each overlap candidate ~g : I ′ ↪→ ~G, apply the pushout construction. If it results in a bound
~o : ~G ↪→K for ~g, i.e., K is a bigraph and o0 ◦ g0 = o1 ◦ g1, then we can construct a pullback.

Let us now assume that the conjectures of the previous two sections hold and that we have a
method for obtaining the finite set of pullback spans for any pair ~G of bigraphs. In other words, for
each pair ~G of bigraphs assume that we have a finite set of pullback-pushout (PP) diagrams

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

.

such that for any pair of embeddings ~φ : ~G ↪→H ′ its pullback is in one of the PP diagrams, i.e.,

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

H ′

φ0

⊂

→

⊂...........u→
φ1

⊂

→
.

Thus, if our conjectures hold, we can give a finite characterization of all overlaps between two
bigraphs in any context.

7.3 PP Diagrams, Activation and Inhibition
Let us now return to the question of characterizing causality at the level of rules, i.e., the activation
and inhibition relations. The characterization of overlaps based on PP diagrams, as outlined in the
previous section, in itself provides the means to approximate the activation and inhibition relations ≺
and #. For example, if two redexes can never overlap in a context, i.e., the only PP diagram has I = ∅,
then they can never be in conflict. However, as discussed above in Section 7.1, we can do better than

62 7.3. PP Diagrams, Activation and Inhibition

that by exploiting that edit scripts provide a notion of modification, and in this section we outline
how.

We shall need a development for edit scripts which we, due to time constraints, only state as an
assumption: we assume that we can construct an inverse ∆−1 of any linear edit script ∆ which satisfies

φ : ∆(P̃) ↪→H

⇒ ∃H ′, φ′ : P̃ ↪→H ′ . (H,φ) = ∆(H ′, φ′) ∧ (H ′, φ′) = ∆−1(H,φ).

7.3.1 Inhibition

Recall from Section 3.2 that rule R0 inhibits rule R1, written R0 #R1 iff R0 generates at least one
reaction which conflicts with a reaction generated by R1.

We believe that we can construct the inhibition relation through the PP diagrams of the previous
section. More precisely, we make the following conjecture:

Conjecture 7.9. Assume an agent a, two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1), and
embeddings ~φ : ~̃P ↪→ a. By definition, the rules and embeddings generate the reactions a _R0,φ0

∆0(a, φ0) and a _R1,φ1
∆1(a, φ1), as illustrated by the following diagram:

P̃0 P̃1

∆0(a, φ0) / a .

φ1

←

⊃

φ0

⊂

→
∆1(a, φ1) .

Also, assume that the cospan ~φ : ~̃P ↪→ a has the PP diagram

I ⊂
p0

→ P̃0

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

a

φ0

⊂

→

⊂.............u→
φ1

⊂

→
.

We then conjecture

φ0 : P̃0 6↪→∆1(a, φ1) ⇔ o0 : P̃0 6↪→∆1(H, o1)

φ1 : P̃1 6↪→∆0(a, φ0) ⇔ o1 : P̃1 6↪→∆0(H, o0).

Assuming this conjecture holds, we get that PP diagrams characterize inhibition:

Theorem 7.10. Given two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1) then R0 #R1 iff there
is a PP diagram

I ⊂
p0

→ P̃0

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

7. Rule Activation and Inhibition 63

such that o1 : P̃1 6↪→∆0(H, o0).

Proof. Follows immediately from Prop. 7.4 and Conjecture 7.9.

7.3.2 Activation

Recall from Section 3.2 that rule R0 activates rule R1, written R0 ≺ R1 iff R0 generates at least one
reaction which enables a reaction generated by R1.

We believe that we can construct the activation relation through the PP diagrams of the previous
section. More precisely, we make the following conjecture:

Conjecture 7.11. Assume an agent a, two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1), and
embeddings φ0 : P̃0 ↪→ a, φ′0 : ∆0(P̃) ↪→ a′, φ1 : P̃1 ↪→ a′ where (a′, φ′0) = ∆0(a, φ0), as illustrated by the
following diagram:

P̃0 ∆0(P̃0) P̃1

a

φ0

↓

∩

. ∆0(a, φ0)

φ′0

↓

∩

φ1

←

⊃

.

Also, assume that the cospan φ′0 : ∆0(P̃0) ↪→ a′, φ1 : P̃1 ↪→ a′ has the PP diagram

I ⊂
p0

→ ∆0(P̃0)

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

∆0(a, φ0)

φ′0

⊂

→

⊂...........u→
φ1

⊂

→
.

We then conjecture

φ1 : P̃1 6↪→ a ⇔ o1 : P̃1 6↪→∆−1
0 (H, o0).

Assuming this conjecture holds, we get that PP diagrams characterize activation:

Theorem 7.12. Given two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1) then R0 ≺ R1 iff there
is a PP diagram

I ⊂
p0

→ ∆0(P̃0)

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

.

such that o1 : P̃1 6↪→∆−1
0 (H, o0).

Proof. Follows immediately from Prop. 7.3 and Conjecture 7.11.

64

8 Anchored Matching
A pillar in the scalability of the KaSim algorithm is that, after reaction, we only search for new matches
in the parts of the agent that have been modified. In other words, KaSim requires a localized matching
algorithm that only searches a subset of the agent. Such an algorithm has not yet been presented in
the bigraph literature. Previously published matching algorithms find matches anywhere in the agent
[20, 34]; these algorithms are useful for the initialization phase of KaSim, where all matches must be
found, but it is unclear how to specialize them to local matching.

In this section we shall present a localized matching algorithm, based on the idea of expanding
partial embeddings to total embeddings, i.e., matches. Not only is this a localized matching algorithm,
but it combines well with our edit scripts and causality analysis:

1. Mediation of an edit script results in a reaction a _ a′ and an embedding φ0 : R′0 ↪→ a′ of the
reactum of the applied reaction rule R0 = (R0, R

′
0, η0) into the resulting agent a′.

2. For any rule R1 that may be activated by R1 = (R1, R
′
1, η1), i.e., R0 ≺ R1, the causality analysis

gives us a set of PP diagrams of the form

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

where I 6= ε, which characterizes all matches of R′0 and R1 that overlap exactly as prescribed by
~p : I ↪→ ~R.

3. Iff φ0 ◦ o−1
0 : H ↪⇀a′ is a partial embedding

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

a′

φ0

⊂

→

⊂

φ
0 ◦
o −

10

⇀

then any and all extensions to a total embedding of H, i.e., φH : H ↪→ a′ where φH �rng(o0)=

φ0 ◦ o−1
0 , is a match of R1, as witnessed by the composition φH ◦ o1 : R1 ↪→H

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

a′.

φ0

⊂

→

⊂

φ
H

→φH ◦ o1

⊂

→

8. Anchored Matching 65

We call the initial partial embedding of H the anchor and, derived from this, we call the algorithm
anchored matching. Note that we assume that the redex is one connected component. However, as
discussed in the original presentation of the KaSim algorithm [12], this is not a problem, since the
separate connected components of a redex can be matched separately and then combined ad hoc during
simulation; see loc. cit. for details.

8.1 Algorithm
Due to time constraints, we shall only present a very naive algorithm, and only discuss possible
optimizations. While this algorithm is too naive to be practical in an implementation, it is sufficient
for communicating our approach and it can probably serve as a nice and simple starting point for
soundness and completeness proofs.

The algorithm builds on the following two ideas:

fringe: For a bigraph G : 〈k,X〉 → 〈m,Y 〉 and a subset of its entities S ⊂ VG]EG] k]X]m] Y ,
the fringe of S in G are the entities of G that are adjacent to entities of S but not in S, i.e.,

fringe(G,S) = {c ∈ (k] VG) \ S | ∃p ∈ S : prnt(c) = p}
] {p ∈ (VG]m) \ S | ∃c ∈ S : prnt(c) = p}
] {l ∈ EG] Y \ S | ∃v ∈ S, i ∈ N : link(p) = l

∨ ∃x ∈ S : link(x) = l}
] {v ∈ VG \ S | ∃l ∈ S, i ∈ N : link(v, i) = l}
] {x ∈ X \ S | ∃l ∈ S : link(x) = l}.

If G consists of a single connected component and S is non-empty, then if we keep expanding S
by entities in its fringe, eventually S will cover G.

valid extension: For a partial embedding φ : G ↪⇀a into an agent a : 〈m,Y 〉, an entity s in the fringe
of φ in G, and subset T of the entities of a, i.e.,

s ∈ fringe(G, dom(φ))

T ⊆ Va] Ea]m] Y

the define the predicate validExt(φ, s 7→ T) to be true when φ[s 7→ T] : G ↪⇀a is also a partial
embedding. Note that T is a subset of the entities of a, since embeddings of sites and inner
names map to subsets; for the other entities T should be a singleton.
Note that the injectivity and structure preservation conditions on embeddings imply that T must
be on the fringe of φ in a.

The algorithm is listed in Algorithm 1. In brief, it works as follows:

line 2: If the fringe of φ in G is empty, φ is total (since G is a connected component) and thus we
have found a match.

line 6: Otherwise, choose an entity s on the fringe of φ in G which shall be matched next.
line 7: For any possible mapping of s to entities T on the fringe of φ in a:
line 8: If s 7→ T is a valid extension of φ
line 9: find all total extensions of φ[s 7→ T].

The obvious places to optimize this algorithm are the choices of s and T :

choosing T : It should be possible to only choose T ’s such that validExt(φ, s 7→ T). In particular, the
structure preservation conditions on embeddings should guide the choice of T . For instance, if s
is a node, T should be a singleton {t} where t is a node with ctrlG(s) = ctrla(t), and if s is on
the fringe of φ because prntG(s) ∈ dom(φ), then t ∈ prnt−1

a (φ(prntG(s))).

66 8.1. Algorithm

Algorithm 1 The Anchored Matching algorithm
Require: φ : G ↪⇀a non-trivial, G has one connected component
1: procedure Anchored-Matching(φ : G ↪⇀a)
2: if fringe(G, dom(φ)) = ∅ then
3: return {φ}
4: else
5: M ← ∅
6: choose s ∈ fringe(G, dom(φ))
7: for all T ⊆ fringe(a, rng(φ)) do
8: if validExt(φ, s 7→ T) then
9: M ←M ∪ Anchored-Matching(φ[s 7→ T])

10: return M

choosing s: The heuristic for choosing s is critical for narrowing down the number of T ’s we will have
to explore for each s. We believe that a good strategy could be to choose an s that is estimated
to have a small number of possible embeddings.

For instance, note that if s is on the fringe of φ because of one of its children c, i.e., c ∈ prnt−1
G (s)∩

dom(φ), then structure preservation dictates that the only choice is T = {prnta(φ(c))}. Similarly,
embeddings of nodes and inner names determine the embeddings of the connected links.

We therefore envision a representation of the fringe of φ in G as a prioritized queue, where the
priority of each entity is an estimation number of possible embeddings based on its adjacency
relation to dom(φ). Whenever the embedding is extended with an entity, the estimate of adjacent
entities in the fringe should be updated.

Furthermore, note that an inner will only be on the fringe of φ in G if the link is connected to
is already mapped by φ. Together with the embedding conditions, this means that extending
an embedding by an inner name will only affect the choice of sibling inner names. In fact, there
are very few restrictions on how such sibling inner names should be mapped, and it therefore
seems reasonable to postpone matching of inner names to the end. Similarly, sites could also be
postponed.

9. Conclusions and Future Work 67

9 Conclusions and Future Work
In this report we have laid a firm, formal foundation for an implementation of stochastic bigraphs:

1. We have defined stochastic parametric reactive systems, an alternative foundation for the dy-
namic semantics of bigraphs which is amenable to implementation: support is handled explicitly,
parametric reaction rules are first-class citizens, and the stochastic rates of an agent is deter-
mined by its matches. Furthermore, we have shown that stochastic parametric reactive systems
have the same abstract reactions as Milner’s reactive systems.

2. We have defined bigraph embeddings and shown that they are isomorphic to certain decompo-
sitions of bigraphs; in particular, embeddings of redexes into agents are isomorphic to matches.
Furthermore, we have shown that embeddings of a solid bigraph are determined by support
translations of its nodes.

3. We have proposed, and proven sound and complete, a set of minimal edits of parametric redexes
which, when put in sequence to form edit scripts, are equivalent to parametric reaction rules and
generate the same abstract reactions.

4. We have outlined a characterization of causality and conflict for linear parametric reaction rules,
based on pullbacks in the category of bigraph embeddings.

5. We have given a localized matching algorithm: starting from a partial match, i.e., a partial
embedding, of a connected component, it finds all completions.

The presented work is part of an effort to build an efficient and scalable simulator for stochastic bi-
graphs: the Stochastic Bigraphical Abstract Machine. So far a prototype based on SPRSs, embeddings,
edit scripts, and anchored matching have been implemented. It allows stochastic simulation of certain
BRSs: all controls must be active, reaction rules must be linear, and redexes must be solid and consist
of a single connected component.

9.1 Future Work
Localized matching and causality analysis of rules should be investigated in more detail. In particular,
we must prove our conjectures about the embedding categories and soundness and completeness of an-
chored matching. Furthermore, it it unclear whether the pullback approach to characterizing causality
and conflict will (a) result in a practical algorithm, and (b) generalize to non-linear reaction rules.

Our presentation of bigraph embeddings, and the related proofs, could probably be simplified by
using a formulation of concrete bigraphs where roots and sites are named (as we did in our development
of edit scripts). In fact, we believe that, for many purposes, the theory of bigraphs would be simpler
to work with if roots and sites were named.

From an implementation perspective, there is a need for representing sets of embeddings efficiently:
in biological models there will often be a large number of embeddings of each redex. This needs further
investigation, but as a first step we believe the following conjecture may prove useful: embeddings of
solid bigraphs are determined by the support translation of the leaves of the place graph.

For the biological simulation scenarios we have in mind, we expect the user to provide edit scripts
as they provide a natural way to express protein-protein interaction as well as dynamic compartmen-
talization. However, there might be applications where the user would prefer to provide reaction rules
and have the system infer suitable edit scripts. While we have given a simple construction of edit
scripts for any parametric reaction rule, it is very naive and assumes that there is no relation between
nodes and edges of redex and reactum, resulting in inefficient simulation. It should therefore be inves-
tigated how one can derive better edit scripts. This seems related to the tree edit distance problem,
where one wishes to find a minimal edit script that transforms one tree into another [5].

68 REFERENCES

References
[1] G. Bacci, D. Grohmann, and M. Miculan. Bigraphical models for protein and membrane in-

teractions. In Proceedings of the Third International Workshop on Membrane Computing and
Biologically Inspired Process Calculi (MeCBIC 2009), pages 3–18. EPTCS 11, 2009.

[2] G. Bacci, D. Grohmann, and M. Miculan. Dbtk: A toolkit for directed bigraphs. In CALCO,
pages 413–422, 2009.

[3] M. Beauquier and C. Schürmann. A bigraph reactive systems realtion model. Technical Report
TR-2010-126, IT University of Copenhagen, June 2010.

[4] BigMC. BigMC – Bigraphical Model Checker. http://bigraph.org/bigmc/.

[5] P. Bille. A survey on tree edit distance and related problems. Theoretical Computer Science, 337:
217–239, June 2005.

[6] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. Matching of bigraphs. Electronic
Notes in Theoretical Computer Science, 175(4):3–19, 2007.

[7] BPLTool. BPL Tool. http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool.

[8] G. L. Cattani, J. J. Leifer, and R. Milner. Contexts and embeddings for closed shallow action
graphs. Technical Report UCAM-CL-TR-496, University of Cambridge, Computer Laboratory,
July 2000.

[9] T. C. Damgaard and J. Krivine. A generic language for biological systems based on bigraphs.
Technical Report TR-2008-115, IT University of Copenhagen, December 2008.

[10] T. C. Damgaard, V. Danos, and J. Krivine. A language for the cell. Technical Report TR-2008-
116, IT University of Copenhagen, December 2008.

[11] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science, 325, 2004.

[12] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling networks.
In Proceedings of the 5th Asian conference on Programming languages and systems, APLAS’07,
pages 139–157. Springer-Verlag, 2007.

[13] S. Debois. Computation in the informatic jungle. Technical Report TR-2011-147, IT University
of Copenhagen, 2011. (forthcoming).

[14] N. Eén and N. Sörensson. MiniSAT. http://minisat.se.

[15] H. Ehrig. Bigraphs meet double pushouts. Bulletin of the EATCS, 78:72–85, 2002.

[16] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of graph grammars
and computing by graph transformation, Volume 3: Concurrency, Parallelism, and Distribution.
World Scientific Publishing Co., Inc., 1999. ISBN 9-810240-21-X.

[17] A. Faithfull. Big Red. http://www.itu.dk/research/pls/wiki/index.php/Big_Red, 2010.

[18] D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics, 22(4):403–434, 1976.

[19] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical
Chemistry, 81(25):2340–2361, 1977.

[20] A. J. Glenstrup, T. C. Damgaard, L. Birkedal, and E. Højsgaard. An implementation of bigraph
matching. Technical Report TR-2010-135, IT University of Copenhagen, December 2010.

http://bigraph.org/bigmc/
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool
http://minisat.se
http://www.itu.dk/research/pls/wiki/index.php/Big_Red

REFERENCES 69

[21] C. Greenhalgh. bigraphspace. http://bigraphspace.svn.sourceforge.net/, 2009.

[22] J. Hillston. A compositional approach to performance modelling. Cambridge University Press,
1996. ISBN 0-521-57189-8.

[23] E. Højsgaard and A. J. Glenstrup. The BPL Tool: A tool for experimenting with bigraphical
reactive systems. Technical Report TR-2011-145, IT University of Copenhagen, October 2011.

[24] O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report UCAM-
CL-TR-580, University of Cambridge – Computer Laboratory, February 2004.

[25] J. Krivine, R. Milner, and A. Troina. Stochastic bigraphs. Electronic Notes in Theoretical Com-
puter Science, 218:73 – 96, 2008. ISSN 1571-0661. Proceedings of the 24th Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXIV).

[26] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In CAV, pages 585–591, 2011.

[27] R. Milner. Axioms for bigraphical structure. Journal of Mathematical Structures in Computer
Science, 15(6):1005–1032, 2005.

[28] R. Milner. Embeddings and contexts for link graphs. In H.-J. Kreowski, U. Montanari, F. Orejas,
G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software and Systems Modeling,
volume 3393 of Lecture Notes in Computer Science, pages 343–351. Springer Berlin / Heidelberg,
2005.

[29] R. Milner. The Space and Motion of Communicating Agents. Cambridge University Press, 2009.

[30] PEPAPlugIn. The PEPA Plug-in Project. http://www.dcs.ed.ac.uk/pepa/tools/plugin/
index.html.

[31] C. Priami. Stochastic π-calculus. Computer Journal, 38(7):578–589, 1995.

[32] G. Rozenberg, editor. Handbook of graph grammars and computing by graph transformation,
Volume 1: Foundations. World Scientific Publishing Co., Inc., 1997. ISBN 98-102288-48.

[33] A. Schack-Nielsen and C. Schürmann. Celf - a logical framework for deductive and concurrent
systems (system description). In IJCAR, pages 320–326, 2008.

[34] M. Sevegnani, C. Unsworth, and M. Calder. A SAT based algorithm for the matching problem
in bigraphs with sharing. Technical Report TR-2010-311, University of Glasgow, Department of
Computing Science, 2010.

[35] P. Sobocinsky. Relative pushouts in graphical reactive systems. February 2002.

http://bigraphspace.svn.sourceforge.net/
http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html
http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html

70

A Proofs

A.1 Bigraph Embeddings

A.1.1 Proof of Prop. 5.3

φe: Construct the map of each edge e ∈ EG as follows: choose a port p = (v, i) ∈ link−1
G (e), which is

always possible since no edge is idle and every inner name is guarding, and let

φe(e) = linkH(φv(v), i).

By construction it satisfies condition (LGE-9); it must satisfy the other conditions since φ is an
embedding and φe is the only embedding of edges that will satisfy condition (LGE-9): To see that φe
is unique, assume that there is a different φ′e, i.e., φe(e) 6= φ′e(e) for some e ∈ EG. Since they both
satisfy condition (LGE-9), the following must hold for the port p we chose when defining φe(e):

φe(e) = (φe ◦ linkG)(p)

= (linkH ◦φp)(p)
= (φ′e ◦ linkG)(p) = φ′e(e)

which contradicts our assumption that φe and φ′e are different.

φi: Construct the map of each inner name x ∈ XG as follows:

φi(x) = pointsH,x \φp(PG,x)

pointsH,x = (link−1
H ◦φ

e)(linkG(x))

PG,x = (link−1
G ◦ linkG)(x) \ {x}

φp(v, i) = (φv(v), i).

This is well-defined since no outer name of G is linked to an inner name, thus linkG(x) ∈ EG, and
no inner names are siblings. By construction it satisfies condition (LGE-7); it must satisfy the other
conditions since φ is an embedding and φi is the only embedding of inner names that will satisfy
condition (LGE-7): To see that φi is unique, assume that there is a different φ′i that satisfies the
conditions of Def. 5.1, i.e., there must be some x ∈ XG and p ∈ XH] PH with p ∈ φi(x), p 6∈ φ′i(x)
(or vice versa). Since they both satisfy condition (LGE-7) and G no outer name is linked to an inner
name we have:

linkG(x) ∈ EG
(φp ◦ link−1

G �EG)(linkG(x)) = (link−1
H ◦φ

e)(linkG(x))

= (φ′p ◦ link−1
G �EG)(linkG(x))

where

φp(p′) =

{
(φv(v), i) if p′ = (v, i) ∈ PG
φi(p′) if p′ ∈ XG

φ′p(p′) =

{
(φv(v), i) if p′ = (v, i) ∈ PG
φ′i(p′) if p′ ∈ XG

And since p ∈ φi(x), and φp(p′) and φ′p(p′) agree on ports, we must have p ∈ φ′i(x′) for some
x′ ∈ link−1

G �EG (linkG(x)). But no inner names are siblings, so x′ = x and thus p ∈ φ′i(x′) which
contradicts our assumption that p 6∈ φ′i(x).

A. Proofs 71

φo: Construct the map of each outer name y ∈ YG as follows: choose a port p = (v, i) ∈ link−1
G (y),

which is always possible since no outer name is idle or connected to an inner name, and let

φo(y) = linkH(φv(v), i).

By construction it satisfies condition (LGE-9); it must satisfy the other conditions since φ is an
embedding and φo is the only embedding of outer names that will satisfy condition (LGE-9): To see
that φo is unique, assume that there is a different φ′o, i.e., φo(y) 6= φ′o(y) for some y ∈ YG. Since they
both satisfy condition (LGE-9), the following must hold for the port p we chose when defining φo(y):

φo(y) = (φo ◦ linkG)(p)

= (linkH ◦φp)(p)
= (φ′o ◦ linkG)(p) = φ′o(y)

which contradicts our assumption that φo and φ′o are different.

A.1.2 Proof of Prop. 5.6

From the definitions of support translation, composition, and tensor product we have:

VH = VC] VG] VD C : mG + k → mH

ctrlH = ctrlC] ctrlG] ctrlD D : kD → kG

kD ⊆ kH
To show that φ is an embedding we need to express the parent map of H in terms of it decomposition
C ◦ (G ◦D⊗ idk) ◦ π. We construct the map incrementally according to the definitions of composition
and tensor product (cf. Def. 2.6 and Def. 2.8)

G ◦D: We write prnt1 for the parent map of the resulting place graph:

prnt1(w) =

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntG(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG

G ◦D ⊗ idk: We write prnt2 for the parent map of the resulting place graph:

prnt ′idk(kD + i) = mG + i (i ∈ k)

prnt2(w) = (prnt1] prnt ′idk)(w)

=

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntG(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG
mG − kD + w if w ∈ (kD + k) \ kD

(G ◦D ⊗ idk) ◦ π: We write prnt3 for the parent map of the resulting place graph:

prnt3(w) =

{
prnt2(π(w)) if w ∈ kH
prnt2(w) if w ∈ VG] VD

=

prntD(π(w)) if w ∈ kH and π(w) ∈ kD and prntD(π(w)) ∈ VD
prntG(j) if w ∈ kH and π(w) ∈ kD and prntD(π(w)) = j ∈ kG
mG − kD + π(w) if w ∈ kH and π(w) ∈ (kD + k) \ kD
prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntG(j) if w ∈ VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG

72 A.1. Bigraph Embeddings

H = C ◦ (G ◦D ⊗ idk) ◦ π:

prntH(w) =

prnt3(w) if w ∈ kH] VG] VD and prnt3(w) ∈ VG] VD
prntC(j) if w ∈ kH] VG] VD and prnt3(w) = j ∈ kC
prntC(w) if w ∈ VC

=

prntD(π(w)) if w ∈ kH and π(w) ∈ kD
and prntD(π(w)) ∈ VD

prntG(j) if w ∈ kH and π(w) ∈ kD
and prntD(π(w)) = j ∈ kG
and prntG(j) ∈ VG

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntG(j) if w ∈ VD and prntD(w) = j ∈ kG

and prntG(j) ∈ VG
prntG(w) if w ∈ VG and prntG(w) ∈ VG
prntC(j) if w ∈ kH and π(w) ∈ kD

and prntD(π(w)) = i ∈ kG
and prntG(i) = j ∈ mG

prntC(mG − kD + π(w)) if w ∈ kH and π(w) ∈ (kD + k) \ kD
prntC(j) if w ∈ VD and prntD(w) = i ∈ kG

and prntG(i) = j ∈ mG

prntC(j) if w ∈ VG and prntG(w) = j ∈ mG

prntC(w) if w ∈ VC

We can now verify that φ is a place graph embedding, i.e., that it satisfies the conditions of Def. 5.4:

(PGE-1) Satisfied since IdVG is an identity map.

(PGE-2) Since prntD : kD] VD → VD] kG, kD ⊆ kH , VD ⊆ VH , and π : kH → kH we have
φs = (IdVD] π−1) ◦ prnt−1

D �kG : kG → P(kH] VH); it is fully injective since prntD, IdVD , and π
are functions.

(PGE-3) Since prntC : (mG + k)] VC → VC]mH and VC ⊆ VH we have φr = prntC �mG : mG →
VH]mH .

(PGE-4) Satisfied since rng(φv) = VG, rng(φr) = rng(prntC �mG) ⊆ VC]mH , and VG #(VC]mH).

(PGE-5) Satisfied since rng(φs) = rng((IdVD] π−1) ◦ prnt−1
D �kG) ⊆ kH] VD, rng(φv) = VG, and

VG #(kH] VD).

(PGE-6) We have H �φ
s(kG)⊆ kH] VD which can be seen as follows (noting that prntH(w) ∈ VD ⇒

w ∈ kH] VD):

H �φ
s(kG) = {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ φs(kG)}

= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ ((IdVD] π−1) ◦ prnt−1
D)(kG)}

= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ kH] VD}
= {c′ | c′ ∈ kH] VD ∧ ∃i ≥ 0 : prnt iH(c′) ∈ VD}
⊆ kH] VD

Since rng(φr) = rng(prntC �mG) ⊆ VC]mH and (kH]VD) #(VC]mH) the condition is satisfied.

A. Proofs 73

(PGE-7) Satisfied since we have the following equalities:

(φc ◦ prnt−1
G �VG)(w) = φc(prnt−1

G (w))

= φs(kG ∩ prnt−1
G (w))

∪ φv(VG ∩ prnt−1
G (w))

= ((IdVD] π−1) ◦ prnt−1
D �kG)(kG ∩ prnt−1

G (w))

∪ (VG ∩ prnt−1
G (w))

= {i ∈ π−1(kD) | prntD(π(i)) = j ∈ kG and prntG(j) = w}
∪ {v ∈ VD | prntD(v) = j ∈ kG and prntG(j) = w}
∪ {v ∈ VG | prntG(v) = w}

= prnt−1
H (w)

= (prnt−1
H ◦IdVG)(w)

= (prnt−1
H ◦φ

v)(w).

(PGE-8) Satisfied since φv = idVG and ctrlG ⊆ ctrlH .

(PGE-9) We check the condition separately for the nodes and sites:

v ∈ VG: We check the condition separately for the cases where the parent is a node or a root:
prntG(v) ∈ VG:

(φf ◦ prntG)(v) = (φv ◦ prntH)(v)

= (IdVG ◦ prntH)(v)

= (prntH ◦IdVG)(v)

= (prntH ◦φc)(v).

prntG(v) ∈ mG:

(φf ◦ prntG)(v) = (φr ◦ prntG)(v)

= (prntC ◦ prntG ◦IdVG)(v)

= (prntH ◦φc)(v).

i ∈ kG: We check the condition separately for the cases where the parent is a node or a root:
prntG(i) ∈ VG:

(φf ◦ prntG)(i) = (φv ◦ prntG)(i)

= (IdVG ◦ prntG)(i)

= prntG(i)

= prntH(((IdVD] π−1) ◦ prnt−1
D �kG)(i))

= (prntH ◦φs)(i)
= (prntH ◦φc)(i).

prntG(i) ∈ mG:

(φf ◦ prntG)(i) = (φr ◦ prntG)(i)

= (prntC ◦ prntG)(i)

= prntH(((IdVD] π−1) ◦ prnt−1
D �kG)(i))

= (prntH ◦φs)(i)
= (prntH ◦φc)(i).

74 A.1. Bigraph Embeddings

A.1.3 Proof of Prop. 5.9

We first show that prmt(φ) and ctxt(φ) are indeed place graphs:

prmt(φ) : Clearly, ctrlH �VD is a control map defined for VD. We must check that the parent map
prntD : kD] VD → VD] kG is (1) well-defined and (2) acyclic:

1. Since φs : kG → P(kH] VH) is fully injective, (φs)−1 is a function and thus prntD is clearly
well-defined.

2. It is immediate that prntD is acyclic iff ∀c ∈ kD] VD : ∃i > 0 : prnt iD(c) ∈ kG. This is clearly
the case for the elements of (fD] IdVD)−1(dom((φs)−1)) and for the remaining elements it follows
from the definition of the subtree operator, cf. Def. 2.9, and the fact that rng(prntH) # kD.

ctxt(φ) : Clearly, ctrlH �VC is a control map defined for VC . We must check that the parent map
prntC : kC] VC → VC]mH is (1) well-defined and (2) acyclic:

1. The constituent functions have the following domains and codomains:

φr : mG → VH]mH

prntH ◦fC : {i+mG | i ∈ |k̃C |} → VC]mH

prntH �VC : VC → VC]mH

Since kC = mG+ |k̃C | it is clear that prntC is well-defined, but we must show rng(φr) ⊆ VC]mH

to know cod(prntC) = VC]mH . Since VC = (VH \ φv(VG)) \ VD and VD = VH ∩H �rng(φs) this
amounts to showing rng(φr) # rng(φv) and rng(φr) #H �rng(φs), which follows from the fact that
φ is an embedding and thus satisfies conditions (PGE-4) and (PGE-6).

2. Since prntH is acyclic and rng(prntH) # kC , prntC is acyclic.

To see that any valid choices of fD and f ′C yield equivalent decompositions, cf. Def. 5.7, assume that
we have two other bijections

gD : kD� k̃D g′C : |k̃C |� k̃C

and construct the corresponding parent maps prntD′ and prntC′ and permutation π′

prntD′ = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD)

gC(i+mG) = g′C(i) for i ∈ |k̃C |
prntC′ = φr] prntH �VC] prntH ◦gC

g′(i+ kD) = g′C(i) for i ∈ |k̃C |
π′ = g−1

D] g
′−1 : kH → kH .

A. Proofs 75

Finally, we check the equivalence conditions

prntD �VD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)�VD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs))�VD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD)�VD

= prntD′ �VD
prntC �VC]mG = (φr] prntH �VC] prntH ◦fC)�VC]mG

= (φr] prntH �VC)�VC]mG
= (φr] prntH �VC] prntH ◦gC)�VC]mG
= prntC′ �VC]mG

prntD ◦π �kD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD) ◦ π �kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD) ◦ (f−1
D] f ′−1)�kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs))�k̃D
= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD) ◦ (g−1

D] g
′−1)�kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD) ◦ π′ �kD

= prntD′ ◦π′ �kD

prntC(π(i)− kD +mG) = (φr] prntH �VC] prntH ◦fC)(π(i)− kD +mG)

= prntH(fC((f−1
D] f ′−1)(i)− kD +mG))

= prntH(f ′C(f ′−1(i)− kD))

= prntH(f ′C(f ′C
−1

(i)))

= prntH(i)

= prntH(g′C(g′C
−1

(i)))

= prntH(g′C(g′−1(i)− kD))

= prntH(gC((g−1
D] g

′−1)(i)− kD +mG))

= (φr] prntH �VC] prntH ◦gC)(π′(i)− kD +mG)

= prntC′(π
′(i)− kD +mG).

We now show that prmt(φ) and ctxt(φ) are indeed parameter and context for the embedding of G:
Let

D : kD → kG = prmt(φ),

C : kC → mH = ctxt(φ), and

(V, ctrl , prnt) = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π.

By the definitions of composition and tensor product (cf. Def. 2.6 and Def. 2.8) we have the following
equalities:

V = VC] φv(VG)] VD Defs. 2.6 and 2.8
= ((VH \ φv(VG)) \ VD)] φv(VG)] VD Def. 5.8
= VH

76 A.1. Bigraph Embeddings

ctrl = ctrlH �VC] ctrlG ◦(φv)−1] ctrlH �VD Defs. 2.6 and 2.8

= ctrlH �VC] ctrlH ◦φv ◦ (φv)−1] ctrlH �VD Condition (PGE-8)
= ctrlH �VC] ctrlH �φv(VG)] ctrlH �VD φv is injective on VG
= ctrlH VH = VC] φv(VG)] VD

We construct the parent map prnt incrementally according to the definitions of composition and tensor
product (cf. Def. 2.6 and Def. 2.8), and then verify prnt(w) = prntH(w):

φ G: We write prntφ G for the parent map of the resulting place graph:

prntφ G = (φv] IdmG) ◦ prntG ◦((φv)−1] IdkG).

φ G ◦ prmt(φ): We write prnt1 for the parent map of the resulting place graph:

prnt1(w) =

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntφ G(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntφ G(w) if w ∈ φv(VG)

.

φ G ◦ prmt(φ)⊗ id|k̃C |: We write prnt2 for the parent map of the resulting place graph:

prnt2 = prnt1] prnt ′id|k̃C |

where

prnt ′id|k̃C |
(kD + i) = mG + i for i ∈ |k̃C |.

(φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π: We write prnt3 for the parent map of the resulting place graph:

prnt3(w) =

π(w) if w ∈ kH] ∅ and π(w) ∈ ∅
prnt2(j) if w ∈ kH] ∅ and π(w) = j ∈ kH
prnt2(w) if w ∈ φv(VG)] VD

=

{
prnt2(j) if w ∈ kH and π(w) = j ∈ kH
prnt1(w) if w ∈ φv(VG)] VD

=

prnt1(j) if w ∈ kH and π(w) = j ∈ kD
prnt ′id|k̃C |

(j) if w ∈ kH and π(w) = j ∈ kH \ kD
prnt1(w) if w ∈ φv(VG)] VD

=

prnt1(j) if w ∈ kH and π(w) = j ∈ kD
j +mG − kD if w ∈ kH and π(w) = j ∈ kH \ kD
prnt1(w) if w ∈ φv(VG)] VD

ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π: Finally, we have

prnt(w) =

prnt3(w) if w ∈ kH] φv(VG)] VD and prnt3(w) ∈ φv(VG)] VD
prntC(j) if w ∈ kH] φv(VG)] VD and prnt3(w) = j ∈ kC
prntC(w) if w ∈ VC

.

A. Proofs 77

Let us now verify prnt = prntH . prnt is defined for w ∈ kH] VC] φv(VG)] VD and so is prntH
since VC] φv(VG)] VD = VH , so let us consider prnt(w) in each case (noting that kH = k̃C] k̃D):

w ∈ k̃C : This implies

π(w) = f ′−1(w)

⇔ kD ≤ π(w) < kD + |k̃C |
⇒ prnt3(w) = π(w) +mG − kD and mG ≤ prnt3(w) < mG + |k̃C |
⇒ prnt(w) = prntC(π(w) +mG − kD)

= (prntH ◦fC)(π(w) +mG − kD)

= (prntH ◦fC)(f ′−1(w) +mG − kD)

= (prntH ◦fC)((f ′C)−1(w) +mG)

= (prntH ◦fC)((fC)−1(w))

= prntH(w)

w ∈ k̃D: This implies

π(w) = (fD)−1(w) ∈ kD
⇒ prnt3(w) = prnt1(π(w))

which further divides into two cases:

prntD(π(w)) ∈ VD: This implies

prnt1(π(w)) = prntD(π(w)) ∈ VD
⇒ prnt(w) = prnt3(w) = prntD(π(w))

= prntD((fD)−1(w))

= (((φs)−1] prntH �(VD]k̃D)\rng(φs))

◦ (fD] IdVD))((fD)−1(w))

= prntH(w)

prntD(π(w)) ∈ kG: This implies

prnt1(π(w)) = prntφ G(prntD(π(w)))

= prntφ G(prntD((fD)−1(w)))

= prntφ G((((φs)−1] prntH �(VD]k̃D)\rng(φs))

◦ (fD] IdVD))((fD)−1(w)))

= prntφ G((φs)−1(w))

which again divides into two cases:

78 A.1. Bigraph Embeddings

prntφ G((φs)−1(w)) ∈ φv(VG): This implies

prnt(w) = prnt3(w) = prnt1(π(w)) = prntφ G((φs)−1(w))

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w))

= (φv ◦ prntG �
VG)((φs)−1(w))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

prntφ G((φs)−1(w)) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(π(w)))

= prntC(prntφ G((φs)−1(w)))

= prntC(((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w)))

= prntC(prntG((φs)−1(w)))

= (φr] prntH �VC] prntH ◦fC)(prntG((φs)−1(w)))

= φr(prntG((φs)−1(w)))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

w ∈ VD: This implies

prnt3(w) = prnt1(w)

which further divides into two cases:

prntD(w) ∈ VD: This implies

prnt1(w) = prntD(w) ∈ VD
⇒ prnt(w) = prnt3(w) = prntD(w)

= (((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))(w)

= (prntH �(VD]k̃D)\rng(φs))(w)

= prntH(w)

prntD(w) ∈ kG: This implies

prnt1(w) = prntφ G(prntD(w))

= prntφ G((((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))(w))

= prntφ G((φs)−1(w))

which again divides into two cases:
prntφ G((φs)−1(w)) ∈ φv(VG): This implies

prnt(w) = prnt3(w) = prnt1(w) = prntφ G((φs)−1(w))

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w))

= (φv ◦ prntG �
VG)((φs)−1(w))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

A. Proofs 79

prntφ G((φs)−1(w)) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(w))

= prntC(prntφ G((φs)−1(w)))

= prntC(((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w)))

= prntC(prntG((φs)−1(w)))

= (φr] prntH �VC] prntH ◦fC)(prntG((φs)−1(w)))

= φr(prntG((φs)−1(w)))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

w ∈ VC :

prnt(w) = prntC(w) cf. def. of prnt

= prntH(w) cf. def. of prntC

w ∈ φv(VG):

prnt3(w) = prnt1(w) = prntφ G(w)

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))(w)

= ((φv] IdmG) ◦ prntG ◦(φv)−1)(w)

There are two cases for prnt3(w):

prnt3(w) ∈ φv(VG)] VD: This implies

prnt(w) = prnt3(w) = prnt1(w) = prntφ G(w)

= ((φv] IdmG) ◦ prntG ◦(φv)−1)(w)

= (φv ◦ prntG �
VG ◦(φv)−1)(w)

= (prntH ◦φv ◦ (φv)−1)(w)

= prntH(w)

prnt3(w) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(w)) = prntC(prntφ G(w))

= prntC(((φv] IdmG) ◦ prntG ◦(φv)−1)(w))

= prntC((prntG ◦(φv)−1)(w))

= (φr] prntH �VC] prntH ◦fC)((prntG ◦(φv)−1)(w))

= φr((prntG ◦(φv)−1)(w))

= (φr ◦ prntG ◦(φv)−1)(w)

= (prntH ◦φv ◦ (φv)−1)(w)

= prntH(w)

80 A.1. Bigraph Embeddings

A.1.4 Proof of Theorem 5.10

Def. 5.5 ◦ Def. 5.8 = Id: Assume

H = C ◦ (G ◦D ⊗ idk) ◦ π
φ = φv] φs] φr : G ↪→H

φv = IdVG
φr = prntC �mG

φs = (IdVD] π−1) ◦ prnt−1
D �kG

and the results from the proof of Prop. 5.6.

Now, using construction Def. 5.8 we obtain:

prmt(φ) = (VD′ , ctrlH �VD′ , prntD′) : kD′ → kG where

VD′ = VH ∩H �rng(φs)

k̃D′ = kH ∩H �rng(φs)

kD′ = |k̃D′ |
fD′ : kD′� k̃D′ a bijection

prntD′ = ((φs)−1] prntH �(VD′]k̃D′)\rng(φs)) ◦ (fD′] IdVD′)

ctxt(φ) = (VC′ , ctrlH �VC′ , prntC′) : kC′ → mH where
VC′ = (VH \ φv(VG)) \ VD′

k̃C′ = kH \ k̃D′

kC′ = mG + |k̃C′ |
f ′C′ : |k̃C′ |� k̃C′ a bijection

fC′(i+mG) = f ′C′(i) for i ∈ |k̃C′ |
prntC′ = φr] prntH �VC′] prntH ◦fC′

H = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C′ |) ◦ π
′

= ctxt(φ) ◦ (G ◦ prmt(φ)⊗ id|k̃C′ |) ◦ π
′

π′ = f−1
D′] f

′−1 : kH → kH

f ′(i+ kD′) = f ′C′(i) for i ∈ |k̃C′ |.

A. Proofs 81

We must show D = prmt(φ), C = ctxt(φ), and π = π′. First, let us unfold some of the definitions:

rng(φs) = rng((IdVD] π−1) ◦ prnt−1
D �kG)

= (IdVD] π−1)({c | c ∈ kD] VD ∧ prntD(c) ∈ kG})
= {c | (c ∈ π−1(kD) ∧ prntD(π(c)) ∈ kG) ∨ (c ∈ VD ∧ prntD(c) ∈ kG)}

H �rng(φs) = {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ rng(φs)}
= {c′ | c′ ∈ kH] VH
∧ ∃i ≥ 0 : (prnt iH(c′) ∈ π−1(kD) ∧ prntD(π(prnt iH(c′))) ∈ kG)

∨ (prnt iH(c′) ∈ VD ∧ prntD(prnt iH(c′)) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prntD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prntD(c′) ∈ kG)

∨ (c′ ∈ π−1(kD) ∧ prnt i−1
H (prntD(π(c′))) ∈ VD ∧ prntD(prnt i−1

H (prntD(π(c′)))) ∈ kG)

∨ (c′ ∈ VD ∧ prnt i−1
H (prntD(c′)) ∈ VD ∧ prntD(prnt i−1

H (prntD(c′))) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prntD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prntD(c′) ∈ kG)

∨ (c′ ∈ π−1(kD) ∧ prnt i−1
D (prntD(π(c′))) ∈ VD ∧ prntD(prnt i−1

D (prntD(π(c′)))) ∈ kG)

∨ (c′ ∈ VD ∧ prnt i−1
D (prntD(c′)) ∈ VD ∧ prntD(prnt i−1

D (prntD(c′))) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prnt iD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prnt iD(c′) ∈ kG)}
= π−1(kD)] VD

k̃D′ = kH ∩H �rng(φs)= kH ∩ (π−1(kD)] VD) = π−1(kD)

kD′ = |k̃D′ | = |π−1(kD)| = kD

fD′ : kD = kD′ � k̃D′ = π−1(kD)

k̃C′ = kH \ k̃D′ = kH \ π−1(kD) = π−1(kH \ kD)

kC′ = mG + |k̃C′ | = mG + |π−1(kH \ kD)| = mG + kH − kD
f ′C′ : (kH − kD) = |k̃C′ | � k̃C′ = π−1(kH \ kD)

fC′(i+mG) = f ′C′(i) for i ∈ |k̃C′ | = (kH − kD)

f ′(i+ kD′) = f ′C′(i) for i ∈ |k̃C′ | = (kH − kD)

With these in mind, we proceed to prove D = prmt(φ), C = ctxt(φ), and π = π′:

π = π′: Remember that in Def. 5.8 we are free to choose the two bijections fD′ ,f ′C′ as they are internal
to the decomposition. We choose them to be suitable restrictions of the inverse of π:

fD′ = π−1 �kD : kD�π−1(kD)

f ′C′(i) = π−1(i+ kD) : (kH − kD)�π−1(kH \ kD)

82 A.1. Bigraph Embeddings

Expanding these in the derived functions we get:

fC′(i+mG) = f ′C′(i) = π−1(i+ kD)

f ′(i) = f ′C′(i− kD) = π−1(i− kD + kD) = π−1(i) for (i− kD) ∈ |k̃C′ | = kH − kD
π′ = f−1

D′] f
′−1

π′(i) =

{
f−1
D′ (i) if i ∈ π−1(kD)

f ′−1(i) if i ∈ π−1(kH \ kD)

=

{
π(i) if i ∈ π−1(kD)

π(i) if i ∈ π−1(kH \ kD)

= π(i).

D = prmt(φ): It suffices to show VD′ = VD and prntD′ = prntD, which is easily seen by unfolding the
definitions:

VD′ = VH ∩H �rng(φs)= VH ∩ (π−1(kD)] VD) = VD

prntD′ = ((φs)−1] prntH �(VD′]k̃D′)\rng(φs)) ◦ (fD′] IdVD′)

= (((IdVD] π−1) ◦ prnt−1
D �kG)−1

] prntH �(VD]π−1(kD))\({c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}))

◦ (fD′] IdVD)

= ((prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}

] (prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c)) 6∈kG)∨(c∈VD∧prntD(c)6∈kG)}))

◦ (fD′] IdVD)

= ((prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}

] (prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c)) 6∈kG)∨(c∈VD∧prntD(c)6∈kG)}))

◦ (fD′] IdVD)

= prntD ◦(IdVD] π) ◦ (fD′] IdVD)

= prntD ◦(IdVD] π′ ◦ fD′)
= prntD ◦(IdVD] (f−1

D′] f
′−1) ◦ fD′)

= prntD .

C = ctxt(φ): It suffices to show VC′ = VC and prntC′ = prntC , which is seen by unfolding the
definitions:

VC′ = (VH \ φv(VG)) \ VD′ = (VH \ VG) \ VD = VC

(prntH ◦fC′)(i) = prntC(mG + π(fC′(i))) for i ∈ kH − kD
= prntC(mG + π(π−1(i−mG + kD)))

= prntC(mG + i−mG + kD)

= prntC(i+ kD)

prntC(i) = prntH(π−1(i−mG + kD)) for i ∈ (mG + kH − kD) \mG

= (prntH ◦fC′)(i)
prntC′ = φr] prntH �VC′] prntH ◦fC′

= prntC �mG] prntH �VC] prntH ◦fC′
= prntC �mG] prntC �VC] prntC �(mG+kH−kD)\mG

= prntC .

A. Proofs 83

Def. 5.5 ◦ Def. 5.8 = Id: Assume a place graph G : kG → mG, an embedding φ : G ↪→H into a place
graph H : kH → mH (for simplicity, assume φ G = G),

prmt(φ) = (VD, ctrlH �VD , prntD) : kD → kG where

VD = VH ∩H �rng(φs)

k̃D = kH ∩H �rng(φs)

kD = |k̃D|
fD : kD� k̃D a bijection

prntD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)

ctxt(φ) = (VC , ctrlH �VC , prntC) : kC → mH where
VC = (VH \ VG) \ VD
k̃C = kH \ k̃D
kC = mG + |k̃C |
f ′C : |k̃C |� k̃C a bijection

fC(i+mG) = f ′C(i) for i ∈ |k̃C |
prntC = φr] prntH �VC] prntH ◦fC

H = ctxt(φ) ◦ (G ◦ prmt(φ)⊗ id|k̃C |) ◦ π

π = f−1
D] f ′−1 : kH → kH

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |

where we assume that the bijections are chosen as in the previous proof case, i.e.,

fD = π−1 �kD : kD�π−1(kD)

f ′C(i) = π−1(i+ kD) : (kH − kD)�π−1(kH \ kD).

Now, using construction Def. 5.5 we obtain:

φ′ = φ′v] φ′s] φ′r : G ↪→H

φ′v = IdVG
φ′r = prntC �mG

φ′s = (IdVD] π−1) ◦ prnt−1
D �kG .

We must prove φ = φ′, and it suffices to show φv = φ′v, φr = φ′r, and φs = φ′s.

φv = φ′v: Satisfied by assumption.

φr = φ′r: Easily seen by unfolding the definitions:

φ′r = prntC �mG
= (φr] prntH �VC] prntH ◦fC)�mG
= φr.

84 A.1. Bigraph Embeddings

φs = φ′s: Easily seen by unfolding the definitions:

φ′s = (IdVD] π−1) ◦ prnt−1
D �kG

= (IdVD] π−1) ◦ (((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))−1 �kG

= (IdVD] π−1) ◦ (f−1
D] IdVD) ◦ (φs] (prntH �(VD]k̃D)\rng(φs))

−1)�kG

= (IdVD] π−1) ◦ (π] IdVD) ◦ φs

= φs.

A.1.5 Proof of Lemma 5.11

1: We show that v ∈ H �rng(φs)= {v | v ∈ VH ∧ ∃i ≥ 0 : prnt iH(v) ∈ φs(kG)} implies v 6∈ rng(φf) by
induction on i:

i = 0: We have v ∈ rng(φs) and conditions (PGE-5) and (PGE-6) then give us v 6∈ rng(φf).

i > 0: We have prnt iH(v) ∈ rng(φs), i.e., prnt i−1
H (prntH(v)) ∈ rng(φs) which by the induction hypoth-

esis means prntH(v) 6∈ rng(φf). Thus condition (PGE-9) cannot be satisfied if v ∈ rng(φv) and
condition (PGE-6) prevents v ∈ rng(φr), so v 6∈ rng(φf).

2: First, we show that prnt iG(c) = p (i > 0) implies prnt iH(φc(c)) = φf(p). We show this by induction
on i:

i = 1: Assuming prntG(c) = p, we have φf(prntG(c)) = φf(p) and thus, by condition (PGE-9),
prntH(φc(c)) = φf(p) as required.

i > 1: Assuming prnt iG(c) = p, we have prnt i−1
G (prntG(c)) = p and thus, by the induction hypothesis,

prnt i−1
H (φc(prntG(c))) = φf(p). Since dom(φc)∩ cod(prntG) = VG, φf = φv]φr and φc = φv]φs,

we have

prnt i−1
H (φc(prntG(c)))

= prnt i−1
H (φv(prntG(c)))

= prnt i−1
H (φf(prntG(c)))

=φf(p)

and thus, by condition (PGE-9), prnt i−1
H (prntH(φc(c))) = prnt iH(φc(c)) = φf(p) as required.

Now, since prntG is acyclic we have:

c ∈ VG] kG ⇒ ∃i > 0 : prnt iG(c) ∈ mG

and thus, using the above result, we have

c ∈ VG] kG ⇒ ∃i > 0 : prnt iH(φc(c)) ∈ φr(mG) = rng(φr)

i.e., for any c ∈ rng(φc) we have

∃i > 0 : prnt iH(c) ∈ rng(φr).

But this cannot be satisfied by any c ∈ H �rng(φr), since Prop. 2.11 gives us

H �rng(φr) = (VH] kH]mH)

\ {c′ | c′ ∈ kH] VH ∧ ∃i > 0 : prnt iH(c′) ∈ rng(φr)}

i.e., c ∈ H �rng(φr) iff ∀i > 0 : prnt iH(c) 6∈ rng(φr).

A. Proofs 85

3: From the previous proof case, we have that any c ∈ rng(φc) satisfies

∃i > 0 : prnt iH(c) ∈ rng(φr).

Now, from Prop. 2.11 we have that c ∈ H �rng(φs) implies c ∈ kH] VH and ∃i ≥ 0 : prnt iH(c) ∈ φs(kG),
which combined the above result and the fact φs(kG) ⊆ rng(φc) we get

∃i > 0 : prnt iH(c) ∈ rng(φr)

which by Prop. 2.11 means c 6∈ H �rng(φr).

4: Let i ∈ kG be a site and c ∈ H �φs(i) \φs(i). Then by Def. 2.9

H �φ
s(i) \φs(i)

= {c | c ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c) ∈ φs(i)} \ φs(i)
= {c | c ∈ kH] VH ∧ ∃i > 0 : prnt iH(c) ∈ φs(i)}.

We show that c ∈ H �φs(i) \φs(i) implies c 6∈ rng(φc)] rng(φr) by induction on i:

i = 1: We have prntH(c) ∈ φs(i). We obtain a contradiction if c ∈ rng(φc)] rng(φr):

c ∈ rng(φc): (φc)−1(c) is defined and so, by condition (PGE-9), prntH(c) = φf(prntG((φc)−1(c))) ∈
φs(i) which violates conditions (PGE-5) and (PGE-6).

c ∈ rng(φr): This violates condition (PGE-6).

i > 1: We have prnt iH(c) = prnt i−1
H (prntH(c)) ∈ φs(i), so by the induction hypothesis prntH(c) 6∈

rng(φc)] rng(φr). We obtain a contradiction if c ∈ rng(φc), because then (φc)−1(c) is defined
and so, by condition (PGE-9), prntH(c) = φf(prntG((φc)−1(c))) which contradicts prntH(c) 6∈
rng(φc)] rng(φr).

A.1.6 Proof of Prop. 5.13

φs: Construct the map of each site i ∈ kG as follows:

φs(i) = childrenH,i \φv(siblingsG,i)

childrenH,i = (prnt−1
H ◦φ

v)(prntG(i))

siblingsG,i = (prnt−1
G ◦ prntG)(i) \ {i}.

This is well-defined since every site of G is guarding, thus prntG(i) ∈ VG, and no sites are siblings. By
construction it satisfies condition (PGE-7); it must satisfy the other conditions since φ is an embedding
and φs is the only embedding of inner names that will satisfy condition (PGE-7): To see that φs is
unique, assume that there is a different φ′s that satisfies the conditions of Def. 5.4. For the two to be
different, there must be some i ∈ kG and c ∈ kH] VH with c ∈ φs(i), c 6∈ φ′s(i) (or vice versa). Since
they both satisfy condition (PGE-7) and no root has a site as a child we have:

prntG(i) ∈ VG
(φc ◦ prnt−1

G �VG)(prntG(i)) = (prnt−1
H ◦φ

v)(prntG(i))

= (φ′c ◦ prnt−1
G �VG)(prntG(i))

where

φc = φv] φs

φ′c = φv] φ′s.

86 A.1. Bigraph Embeddings

And since c ∈ φs(i), and φc and φ′c agree on nodes, we must have c ∈ φ′s(i′) for some i′ ∈ prnt−1
G �VG

(prntG(i)). But no sites are siblings, so i′ = i and thus c ∈ φ′s(i) which contradicts our assumption
that c 6∈ φ′s(i).

φr: Construct the map of each root j ∈ mG as follows: choose a node v ∈ prnt−1
G (j), which is always

possible since no root is idle or has a site as child, and let

φr(j) = (prntH ◦φv)(v).

By construction it satisfies condition (PGE-9); it must satisfy the other conditions since φ is an
embedding and φr is the only embedding of outer names that will satisfy condition (PGE-9): To see
that φr is unique, assume that there is a different φ′r that satisfies the conditions of Def. 5.4. For
the two to be different, we must have φr(j) 6= φ′r(j) for some j ∈ mG. But since they both satisfy
condition (PGE-9), the following must hold for the node v we chose when defining φr(j):

φr(j) = (φr ◦ prntG)(v)

= (prntH ◦φc)(v)

= (φ′r ◦ prntG)(v) = φ′r(j)

which contradicts our assumption that φr and φ′r are different.

A.1.7 Proof of Prop. 5.17

It is clear that the place graph may be expressed as

HP = CP ◦ (GP ◦DP ⊗ idk) ◦ π

and thus Prop. 5.6 applies, whereby we have that φP = φv] φs] φr : GP ↪→HP is a place graph
embedding and that VD = VH∩H �rng(φs). What remains to show is that φL = φv]φe]φi]φo : GL ↪→HL

is a link graph embedding and that the two embeddings are consistent.
From the definitions of support translation, composition, tensor product, and VD = VH ∩H �rng(φs)

we have:

VH = VC] VG] VD ctrlH = ctrlC] ctrlG] ctrlD

PH = PC] PG] PD C : 〈mG + k, YG]XI]XC〉 → 〈mH , YH〉
EH = EC] EG D : 〈kD, XD〉 → 〈kG, XG]XI〉
XH = XD]X ′C α : X ′C → XC

PD = PH�rng(φs)∩VH

To show that φL is a link graph embedding, we need to express the link map of H in terms of it
decomposition. It is clear that the link graph may be expressed as

HL = CL ◦ ((GL ⊗ idXI) ◦DL ⊗ α).

We construct the link map incrementally according to the definitions of composition and tensor product
(cf. Def. 2.6 and Def. 2.8)

GL ⊗ idXI : We write link1 for the link map of the resulting link graph:

link1 = linkG]IdXI .

A. Proofs 87

(GL ⊗ idXI) ◦DL: We write link2 for the link map of the resulting link graph:

link2(p) =

linkD(p) if p ∈ XD] PD and linkD(p) ∈ ∅
link1(y) if p ∈ XD] PD and linkD(p) = y ∈ XG]XI

link1(p) if p ∈ PG

=

linkG(y) if p ∈ XD] PD and linkD(p) = y ∈ XG

y if p ∈ XD] PD and linkD(p) = y ∈ XI

linkG(p) if p ∈ PG.

(GL ⊗ idXI) ◦DL ⊗ α: We write link3 for the link map of the resulting link graph:

link3 = link2]α.

HL = CL ◦ ((GL ⊗ idXI) ◦DL ⊗ α):

linkH =

link3(p) if p ∈ XD]X ′C] PD] PG and link3(p) ∈ EG
linkC(y) if p ∈ XD]X ′C] PD] PG and link3(p) = y ∈ YG]XI]XC

linkC(p) if p ∈ PC

=

link2(p) if p ∈ XD] PD] PG and link2(p) ∈ EG
linkC(y) if p ∈ XD] PD] PG and link2(p) = y ∈ YG]XI

linkC(α(p)) if p ∈ X ′C
linkC(p) if p ∈ PC

=

linkG(y) if p ∈ XD] PD and linkD(p) = y ∈ XG

and linkG(y) ∈ EG
linkG(p) if p ∈ PG and linkG(p) ∈ EG
linkC(y) if p ∈ XD] PD and linkD(p) = z ∈ XG

and linkG(z) = y ∈ YG
linkC(y) if p ∈ XD] PD and linkD(p) = y ∈ XI

linkC(y) if p ∈ PG and linkG(p) = y ∈ YG
linkC(α(p)) if p ∈ X ′C
linkC(p) if p ∈ PC .

We can now verify φL is a link graph embedding and that φ is a bigraph embedding, i.e., they
satisfy the conditions of Def. 5.1 and Def. 5.14:

φL:

(LGE-1) Satisfied since IdVG is an identity map.
(LGE-2) Satisfied since IdEG is an identity map.
(LGE-3) Since linkD : XD]PD → XG]XI , XD ⊆ XH , and PD ⊆ PH we have φi = link−1

D �XG :
XG → P(XH]XH); it is fully injective since linkD is a function.

(LGE-4) Satisfied since EC ⊆ EH .
(LGE-5) Satisfied since rng(φe) = rng(IdEG) = EG, rng(φo) = rng(linkC �YG) ⊆ EC] YH , and

(Ec] YH) #EG.
(LGE-6) Satisfied since rng(φi) = rng(link−1

D �XG) ⊆ XD] PD, rng(φport) ⊆ PG, and XD]
PD #PG.

88 A.1. Bigraph Embeddings

(LGE-7) Satisfied since we have the following equalities:

link−1
H ◦φ

e = ((φe] IdYG) ◦ linkG ◦(φp)−1)−1 ◦ φe

= φp ◦ link−1
G ◦(φ

e] IdYG)−1 ◦ φe

= φp ◦ link−1
G �EG .

(LGE-8) Satisfied since φv = idVG and ctrlG ⊆ ctrlH .

(LGE-9) We check the condition separately for the ports and inner names:

p ∈ PG: We check the condition for edges and outer names separately (noting φp(p) = p):
linkG(p) ∈ EG:

(φl ◦ linkG)(p) = (φe ◦ linkH)(p)

= (IdEG ◦ linkH)(p)

= (linkH ◦φp)(p).

linkG(p) ∈ YG:

(φl ◦ linkG)(p) = (φo ◦ linkG)(p)

= (linkC �YG ◦ linkG)(p)

= (linkC ◦ linkG ◦φp)(p)
= (linkH ◦φp)(p).

x ∈ XG: We check the condition for edges and outer names separately:
linkG(x) ∈ EG:

(φl ◦ linkG)(x) = (φe ◦ linkG)(x)

= (IdEG ◦ linkG)(x)

= linkG(x)

= linkH(link−1
D (x))

= (linkH ◦φp)(x).

linkG(x) ∈ YG:

(φl ◦ linkG)(x) = (φo ◦ linkG)(x)

= (linkC ◦ linkG)(x)

= linkH(link−1
D (x)

= (linkH ◦φp)(x).

φ: We have verified that φ is both a place and link graph embedding, so it only remains to show that
these are consistent:

(BGE-1) Satisfied since rng(φi) = rng(link−1
D �XG) ⊆ XD] PD, XD ⊆ XH , and PD =

PH�rng(φs)∩VH .

A. Proofs 89

A.1.8 Proof of Prop. 5.19

⇒: Assume two matches (ρ, idI , c, d), (ρ′, idI′ , c
′, d′) in an agent a that are regarded the same, i.e.,

a = c ◦ (ρ R⊗ idXI) ◦ d = c′ ◦ (ρ R⊗ idXI′) ◦ d
′

Vc = Vc′ Ec = Ec′ ctrlc = ctrlc′ prntc = prntc′

Vd = Vd′ Ed = Ed′ = ∅ ctrld = ctrld′ prntd = prntd′

link c �Pc]YG= link c′ �Pc]YG

and there is a bijection α : XI′�XI such that

link c ◦α = link c′ �XI′ linkd = α ◦ linkd′ .

The matches are clearly decompositions

a = c ◦ ((ρ R⊗ idXI) ◦ d⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

= c′ ◦ ((ρ R⊗ idXI′) ◦ d
′ ⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

and all but the following decomposition equivalence condition are trivially satisfied:

link c ◦ linkd �
XI = link c ◦(α ◦ linkd′)�

XI

= link c ◦α ◦ linkd′ �
XI′

= linkd′ ◦ linkd′ �
XI′ .

⇐: Assume two decompositions of an agent a

a = c ◦ ((ρ R⊗ idXI) ◦ d⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

= c′ ◦ ((ρ R⊗ idXI′) ◦ d
′ ⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

where R is a redex and d,′d are discrete and ground, and assume that they are equivalent, i.e.,

Vc = Vc′ Ec = Ec′ ctrlc = ctrlc′ prntc = prntc′

Vd = Vd′ Ed = Ed′ = ∅ ctrld = ctrld′ prntd = prntd′

link c �Pc]YG= link c′ �Pc]YG linkC ◦ linkD �XI= linkC′ ◦ linkD′ �XI′ .

Clearly, the decompositions are matches

a = c ◦ (ρ R⊗ idXI) ◦ d = c′ ◦ (ρ R⊗ idXI′) ◦ d
′

differing only by a bijection α : XI′�XI defined by

α = linkd ◦ link−1
d′ .

A.1.9 Proof of Prop. 5.21

We first show that prmt(φ) and ctxt(φ) are indeed bigraphs:

90 A.1. Bigraph Embeddings

From Prop. 5.9 we have that prmt(φ)P and ctxt(φ)P are place graphs, so we just need to show that
the following are link graphs:

prmt(φ)L = (VD, ∅, ctrlD, linkD) : XD → XG]XI

ctxt(φ)L = (VC , EC , ctrlC , linkC) : YG]XI]XC → YH .

In both cases the node sets and control maps are shared with the corresponding place graphs and are
thus well-defined, and thus we just need to show that linkD and linkC are well-defined:

linkD : Since φi is fully injective (φi)−1 is a function and thus so is linkD.
What remains to show is dom(linkD) = XD]PD and cod(linkD) = XG]XI . Since, by definition,

we have dom(link ′D) = P ′D ⊆ PD and cod(link ′D) = XI , this amounts to showing dom((φi)−1) =
XD] (PD \ P ′D) and rng((φi)−1) ⊆ XG] XI . The latter is immediate since dom(φi) = XG. To see
dom((φi)−1) = rng(φi) = XD] (PD \ P ′D), we expand the definitions of XD and P ′D:

XD] (PD \ P ′D) = (rng(φi) ∩XH)] (PD \ (PD \ rng(φi)))

= (rng(φi) ∩XH)] (PD ∩ rng(φi))

= rng(φi) ∩ (XH] PD).

Thus dom((φi)−1) = XD] (PD \ P ′D) if rng(φi) ⊆ XH] PD. But this is exactly the consistency
condition (BGE-1) and must thus be satisfied since φ is an embedding.

linkC : The constituent functions have the following domains and codomains:

φo : YG → EH] YH
linkH : XH] PH → EH] YH
IdPC : PC → PC

link ′−1
D : XI → P ′D

αC : XC → X ′C

Since link ′D is a bijection, link ′−1
D : XI → P ′D is a function. By construction we have XI #XC and

clearly PC #XI] XC , so IdPC] link ′−1
D]αC : PC] XI] XC → PC] P ′D] X ′C is a function. By

construction X ′C ⊆ XH and as shown in the proof of Theorem 5.9 we have VC , VD ⊆ VH and by
definition ctrlC = ctrlH �VC and ctrlD = ctrlH �VD , so PC ⊆ PH and P ′D ⊆ PD ⊆ PH , and thus
linkH ◦(IdPC] link ′−1

D]αC) is a function. Also by construction we have YG #XI , YG #XC and clearly
PC #YG, so linkC is a function.

What remains to show is dom(linkC) = YG] XI] XC] PC and cod(linkC) = EC] YH . The
first is immediate from the domains of the constituent functions. The latter amounts to showing
cod(φo) = cod(linkH ◦(IdPC] link ′−1

D]αC)) = EC] YH . Noting cod(φo) : EH] YH , cod(linkH) :
EH]YH , cod(linkH), and EC]YH = (EH \ rng(φe))]YH , we just have to show rng(φo) # rng(φe) and
rng(linkH ◦(IdPC] link ′−1

D]αC)) # rng(φe):

rng(φo) # rng(φe): This is the first injectivity condition for link graph embeddings, condition (LGE-5),
and is thus assumed to be satisfied.

rng(linkH ◦(IdPC] link ′−1
D]αC)) # rng(φe): By the surjectivity condition (LGE-7), a point p ∈ link−1

H (e)
of an edge e ∈ rng(φe) in the image of edges must be in the image of points, i.e.,

p ∈ rng(φp)

= rng(φport)] rng(φi)

⊆ rng(φport)]XH] PD.

A. Proofs 91

where the last inclusion follows from the consistency condition (BGE-1). Note that rng(φport) #PD
and rng(φport) #XH .

But the images of the three functions IdPC , link ′−1
D , αC are not in the image of points, which can

be seen as follows:

PC : Immediate from the construction of PC :

PC = PH \ rng(φport) \ PD.

P ′D: Unfolding the construction of P ′D it becomes immediate:

P ′D = PD \ rng(φi).

X ′C : Unfolding the construction of X ′C it becomes immediate:

X ′C = XH \XD

= XH \ (rng(φi) ∩XH)

= XH \ rng(φi).

We now turn to the matter of showing that the construction is defined up to decomposition equivalence.
Since the place graph decomposition is defined up to decomposition equivalence, it suffices to show
that any valid choices of XI , link ′D, XC , and αC yield equivalent decompositions cf. Def. 5.18.

Assume that we have alternative choices:

XI′ : a set of names satisfying
|XI′ | = |P ′D|, XI′ #XG, and XI′ #YG

link ′D′ : P ′D�XI′ a bijection
XC′ : a set of names satisfying

|XC′ | = |X ′C |, XC′ #YG, and XC′ #XI′

αC′ : XC′�X ′C a bijection

and construct the corresponding link maps

linkD′ = (φi)−1] link ′D′

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′).

92 A.1. Bigraph Embeddings

Finally, we check the equivalence conditions:

linkD �
XG = ((φi)−1] link ′D)�XG

= (φi)−1 �XG

= ((φi)−1] link ′D′)�
XG

= linkD′ �
XG

linkC �PC]YG = (φo] linkH ◦(IdPC] link ′−1
D]αC))�PC]YG

= (φo] linkH ◦IdPC)�PC]YG

= (φo] linkH ◦(IdPC] link ′−1
D]αC′))�PC]YG

= linkC′ �PC]YG

linkC ◦α−1
C = (φo] linkH ◦(IdPC] link ′−1

D]αC)) ◦ α−1
C

= linkH

= (φo] linkH ◦(IdPC] link ′−1
D]αC′)) ◦ α−1

C′

= linkC′ ◦α−1
C′

linkC ◦ linkD �
XI = (φo] linkH ◦(IdPC] link ′−1

D]αC)) ◦ ((φi)−1] link ′D)�XI

= linkH �P ′D
= (φo] linkH ◦(IdPC] link ′−1

D′]αC′)) ◦ ((φi)−1] link ′D′)�
XI

= linkC′ ◦ linkD′ �
XI′ .

We now show that prmt(φ) and ctxt(φ) are indeed parameter and context for the embedding of G:
Let

D : 〈kD, XD〉 → 〈kG, XG]XI〉 = prmt(φ),

C : 〈kC , YG]XI]XC〉 → 〈mH , YH〉 = ctxt(φ), and

(V,E, ctrl , prnt , link) = ctxt(φ)

◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id〈|k̃C |,XC〉)

◦ (π ⊗ idXH).

As composition and tensor product of bigraphs are defined pointwise on the constituent place and
link graphs (cf. Def. 2.6 and Def. 2.8), it is straightforward to see that the proof of Theorem 5.9 is also
a proof of VH = V, ctrlH = ctrl , prntH = prnt , since this theorem only adds link graph structure.

By the definitions of composition and tensor product (cf. Def. 2.6 and Def. 2.8) we have the following
equalities:

E = EC] φe(EG)] ED Defs. 2.6 and 2.8
= (EH \ rng(φe))] φe(EG)] ∅ Def. 5.20
= EH .

To prove linkH = link , we construct the link map link incrementally according to the definitions
of composition and tensor product (cf. Def. 2.6 and Def. 2.8), and then verify linkH(p) = link(p):

φ G: We write linkφ G for the link map of the resulting bigraph:

linkφ G = (φe] IdYG) ◦ linkG ◦((φp)−1] IdXG).

A. Proofs 93

where

φp(v, i) = (φv(v), i).

Also, we write Pφ G for the ports of that bigraph: Pφ G = φp(PG).

φ G⊗ idXI : We write link1 for the link map of the resulting bigraph:

link1 = linkφ G]IdXI .

(φ G⊗ idXI) ◦ prmt(φ): We write link2 for the link map of the resulting bigraph:

link2(p) =

linkD(p) if p ∈ XD] PD and linkD(p) ∈ ∅
link1(x) if p ∈ XD] PD and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G

=

{
link1(x) if p ∈ XD] PD and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G
.

(φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C : We write link3 for the link map of the resulting bigraph:

link3 = link2]α−1
C .

π ⊗ idXH : We write link4 for the link map of the resulting bigraph:

link4 = Id∅] IdXH = IdXH .

((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH): We write link5 for the link map of the resulting

bigraph:

link5(p) =

link4(p) if p ∈ XH and link4(p) ∈ ∅
link3(x) if p ∈ XH and link4(p) = x ∈ XH

link3(p) if p ∈ Pφ G] PD

=

{
link3(x) if p ∈ XH and IdXH (p) = x ∈ XH

link3(p) if p ∈ Pφ G] PD

=

{
link3(p) if p ∈ XH

link3(p) if p ∈ Pφ G] PD
= link3(p).

ctxt(φ) ◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH): Finally, we have

link(p) =

link3(p) if p ∈ XH] Pφ G] PD and link3(p) ∈ φe(EG)

linkC(x) if p ∈ XH] Pφ G] PD and link3(p) = x ∈ YG]XI]XC

linkC(p) if p ∈ PC

94 A.1. Bigraph Embeddings

Unfolding the definitions of the involved link maps, we get the following equalities:

link(p) =

α−1
C (p) if p ∈ X ′C and α−1

C (p) ∈ φe(EG)

link2(p) if p ∈ XD] Pφ G] PD and link2(p) ∈ φe(EG)

linkC(y) if p ∈ XD] Pφ G] PD and link2(p) = y ∈ YG]XI

linkC(y) if p ∈ X ′C and α−1
C (p) = y ∈ XC

linkC(p) if p ∈ PC

=

link1(x) if p ∈ XD] PD and link1(x) ∈ φe(EG) and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G and link1(p) ∈ φe(EG)

linkC(y) if p ∈ XD] PD and link1(x) = y ∈ YG]XI and linkD(p) = x ∈ XG]XI

linkC(y) if p ∈ Pφ G and link1(p) = y ∈ YG
linkC(y) if p ∈ X ′C and α−1

C (p) = y ∈ XC

linkC(p) if p ∈ PC

=

linkφ G(x) if p ∈ XD] PD and linkφ G(x) ∈ φe(EG) and linkD(p) = x ∈ XG

linkφ G(p) if p ∈ Pφ G and linkφ G(p) ∈ φe(EG)

linkC(x) if p ∈ XD] PD and linkD(p) = x ∈ XI

linkC(y) if p ∈ XD] PD and linkφ G(x) = y ∈ YG and linkD(p) = x ∈ XG

linkC(y) if p ∈ Pφ G and linkφ G(p) = y ∈ YG
linkC(y) if p ∈ X ′C and α−1

C (p) = y ∈ XC

linkC(p) if p ∈ PC

.

Let us now verify link = linkH . link is defined for XD] X ′C] PC] Pφ G] PD and so is linkH
since XD]X ′C = XH and VC]φv(VG)]VD = VH , ctrlH �VC] ctrlG ◦(φv)−1] ctrlH �VD= ctrlH which
implies PC] Pφ G] PD = PH . Let us examine each case of link(p) separately:

p ∈ XD] PD and linkφ G(x) ∈ φe(EG) and linkD(p) = x ∈ XG:

We have

link(p) = linkφ G(linkD(p))

= ((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(linkD(p))

= (φe ◦ linkG)(linkD(p))

= (φe ◦ linkG)(((φi)−1] link ′D)(p))

= (φe ◦ linkG)((φi)−1(p))

= (linkH ◦φp
′
)((φi)−1(p))

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ Pφ G and linkφ G(p) ∈ φe(EG):

A. Proofs 95

We have

link(p) = linkφ G(p)

= ((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(p)

= (φe ◦ linkG ◦(φp)−1)(p)

= (linkH ◦φp
′
◦ (φp)−1)(p)

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ XD] PD and linkD(p) = x ∈ XI : We have

link(p) = linkC(linkD(p))

= linkC(((φi)−1] link ′D)(p))

= linkC(link ′D(p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(link ′D(p))

= (linkH ◦ link ′−1
D)(link ′D(p))

= linkH(p).

p ∈ XD] PD and linkφ G(x) = y ∈ YG and linkD(p) = x ∈ XG:

We have

link(p) = linkC(linkφ G(linkD(p)))

= linkC(linkφ G(((φi)−1] link ′D)(p)))

= linkC(linkφ G((φi)−1(p)))

= linkC(((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))((φi)−1(p)))

= linkC(linkG((φi)−1(p)))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(linkG((φi)−1(p)))

= φo(linkG((φi)−1(p)))

= (φo ◦ linkG)((φi)−1(p))

= (linkH ◦φp
′
)((φi)−1(p))

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ Pφ G and linkφ G(p) = x ∈ YG:

96 A.1. Bigraph Embeddings

We have

link(p) = linkC(linkφ G(p))

= linkC(((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(p))

= linkC((linkG ◦(φp)−1)(p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))((linkG ◦(φp)−1)(p))

= φo((linkG ◦(φp)−1)(p))

= (φo ◦ linkG ◦(φp)−1)(p)

= (linkH ◦φp
′
◦ (φp)−1)(p)

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ X ′C and α−1
C (p) = y ∈ XC :

We have

link(p) = linkC(α−1
C (p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(α−1

C (p))

= (linkH ◦αC)(α−1
C (p))

= linkH(p).

p ∈ PC :

We have

link(p) = linkC(p)

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(p)

= linkH(p).

A.1.10 Proof of Theorem 5.22

Def. 5.20 ◦ Def. 5.16 = Id: Assume

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG

φe = IdEG φo = linkC �YG φi = link−1
D �XG

where D is semi-discrete on XG. Also, assume the results from the proof of Prop. 5.17.
It is clear that the place graph may be expressed as

HP = CP ◦ (GP ◦DP ⊗ idk) ◦ π

A. Proofs 97

and thus Theorem 5.10 applies, so using construction Def. 5.20 we obtain

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD′) : 〈kD, XD′〉 → 〈kG, XG]XI′〉

ctxt(φ)
def
= (VC , EC′ , ctrlC , prntC , linkC′) : 〈kC , YG]XI′]XC′〉 → 〈mH , YH〉

P ′D′ = PD \ rng(φi)

XD′ = rng(φi) ∩XH

XI′ : a set of names satisfying
|XI′ | = |P ′D′ |, XI′ #XG, and XI′ #YG

link ′D′ : P ′D′�XI′ a bijection

linkD′ = (φi)−1] link ′D′

EC′ = EH \ rng(φe)

X ′C′ = XH \XD′

XC′ : a set of names satisfying
|XC′ | = |X ′C′ |, XC′ #YG, and XC′ #XI′

αC′ : XC′�X ′C′ a bijection

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′)

H = ctxt(φ) ◦ ((φ G⊗ idXI′) ◦ prmt(φ)⊗ idk ⊗ α−1
C′) ◦ (π ⊗ idXH).

Thus it suffices to show DL = prmt(φ)L, CL = ctxt(φ)L, XI = XI′ , and α = α−1
C′ .

Let us first unfold some of the definitions (noting that XD ⊆ XH and that D is semi-discrete on
XG):

P ′D = PD \ rng(φi)

= PD \ rng(link−1
D �XG)

= PD \ link−1
D (XG)

XD′ = rng(φi) ∩XH

= rng(link−1
D �XG) ∩XH

= rng(link−1
D �XG) ∩XH

= XD

EC′ = EH \ rng(φe)

= EH \ EG
= EC

X ′C′ = XH \XD′

= XH \XD

= X ′C .

With these in mind, we proceed to prove DL = prmt(φ)L, CL = ctxt(φ)L, XI = XI′ , XC = XC′ ,
and α = α−1

C′ :

XI = XI′ : Remember that we are free to choose XI′ as it is internal to the decomposition, as long as
it satisfies |XI′ | = |PD|, XI′ #XG, and XI′ #YG. From the initial decomposition we know that
XI satisfies these conditions, and thus we simply choose XI′ = XI .

98 A.1. Bigraph Embeddings

Similarly, we are free to choose a suitable bijection link ′D′ : P ′D�XI , so we simply choose
link ′D′ = linkD �P ′D .

XC = XC′ : Again, we are free to choose XC′ as it is internal to the decomposition, as long as it
satisfies |XC′ | = |X ′C′ |, XC′ #YG, and XC′ #XI′ . From the initial decomposition we know that
XC satisfies these conditions, and thus we simply choose XC′ = XC .

α = α−1
C′ : Again, we are free to choose αC′ as it is internal to the decomposition. So we simply choose
αC′ = α−1.

DL = prmt(φ)L: Since DP = prmt(φ)P it suffices to show ED = ∅, and linkD = linkD′ :

ED = ∅: Satisfied since D is semi-discrete.

linkD = linkD′ : Easily seen by expanding the definitions:

linkD′ = (φi)−1] link ′D′

= (link−1
D �XG)−1] linkD �P ′D

= linkD �
XG] linkD �PD\link−1

D (XG)

= linkD .

CL = ctxt(φ)L: Since CP = ctxt(φ)P and EC′ = EC it suffices to show linkC = linkC′ which is easily
seen by expanding the definitions:

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′)

= linkC �YG] linkH ◦(IdPC] (linkD �P ′D)−1] α−1)

= linkC �YG] linkH �PC] linkH ◦(linkD �PD\link−1
D (XG))

−1] linkH ◦α−1)

= linkC �YG] linkC �PC] linkH ◦(linkD �
XI)−1] linkC �XC

= linkC �YG] linkC �PC] linkC �XI] linkC �XC
= linkC .

Def. 5.16 ◦ Def. 5.20 = Id: Assume a bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding φ : G ↪→H

A. Proofs 99

into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉 (for simplicity, assume φ G = G),

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD) : 〈kD, XD〉 → 〈kG, XG]XI〉

ctxt(φ)
def
= (VC , EC , ctrlC , prntC , linkC) : 〈kC , YG]XI]XC〉 → 〈mH , YH〉

(VD, ctrlD, prntD) : kD → kG = prmt(φP)

P ′D = PD \ rng(φi)

XD = rng(φi) ∩XH

XI : a set of names satisfying
|XI | = |P ′D|, XI #XG, and XI #YG

link ′D : P ′D�XI a bijection

linkD = (φi)−1] link ′D

(VC , ctrlC , prntC) : kC → mH = ctxt(φP)

EC = EH \ rng(φe)

X ′C = XH \XD

XC : a set of names satisfying
|XC | = |X ′C |, XC #YG, and XC #XI

αC : XC�X ′C a bijection

linkC = φo] linkH ◦(IdPC] link ′−1
D]αC)

H = ctxt(φ) ◦ ((G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH)

π = f−1
D] f ′−1 : kH → kH

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |.

where we assume that the name sets and bijections are chosen as in the previous proof case, i.e.,

XI′ = XI XC′ = XC link ′D′ = linkD �P ′D αC′ = α−1.

It is clear that the place graph may be expressed as

HP = ctxt(φ)P ◦ (GP ◦ prmt(φ)P ⊗ id|k̃C |) ◦ π

and thus Theorem 5.10 applies, so using construction Def. 5.16 we obtain

φ′ = φv] φ′e] φs] φr] φ′i] φ′o : G ↪→H

φ′e = IdEG φ′o = linkC �YG φ′i = link−1
D �XG .

We must prove φ = φ′, and it suffices to show φe = φ′e, φo = φ′o, and φi = φ′i.

φe = φ′e: Satisfied by assumption.

φo = φ′o: Easily seen by unfolding the definitions:

φ′o = linkC �YG

= (φo] linkH ◦(IdPC] link ′−1
D]αC))�YG

= φo.

100 A.2. Bigraph Edit Scripts

φi = φ′i: Easily seen by unfolding the definitions:

φ′i = link−1
D �XG

= ((φi)−1] link ′D)−1 �XG

= ((φi)−1] linkD �P ′D)−1 �XG

= ((φi)−1] linkD �PD\link−1
D (XG))

−1 �XG

= φi.

A.2 Bigraph Edit Scripts

A.2.1 Proof of Prop. 6.13

It is straightforward to check that H̃ ′ is a pattern, since δ is compatible with P̃ and φ is an embedding
and thus satisfies the embedding conditions of Def. 5.1 Def. 5.4, and Def. 5.14. Also, H̃ ′ clearly has the
same outer face and inner names as H̃ since mediated edits can only affect the set of inner variables
of a patterns interfaces.

What remains is to check that for each mediated edit, φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, i.e., that it
satisfies the embedding conditions. In most cases this follows easily from the fact that φ satisfies the
conditions and we shall omit these, but a few cases are more interesting. Note that, by Prop. 6.7, P̃ ′
is a pattern.

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]RP̃ , v′ 6∈ VH̃ , and

P̃ ′ = (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ + v′, EH̃ , ctrl H̃ [v′ 7→ K], prntH̃ [v′ 7→ φ(p)],

link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′].

The interesting cases are:

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ (link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1])−1)(e)

=φ′p(link−1

P̃
(e) ∪ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]−1(e))

=(φ′p ◦ link−1

P̃
)(e) ∪ (φ′p ◦ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]−1)(e)

=(φp ◦ link−1

P̃
)(e) ∪ [(v′, 0) 7→ ~y0, . . . , (v

′, n− 1) 7→ ~yn−1]−1(e)

=(link−1

H̃
◦φe)(e) ∪ ([(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]−1 ◦ φ′e)(e)

=(link−1

H̃
◦φ′e)(e) ∪ ([(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]−1 ◦ φ′e)(e)

=((link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])−1 ◦ φ′e)(e).

(PGE-7) We check the two cases for w ∈ VP̃ + v:

A. Proofs 101

w ∈ VP̃ : We have the following equalities:

(φ′c ◦ (prnt P̃ [v 7→ p])−1)(w)

=φ′c(prnt−1

P̃
(w) ∪ [v 7→ p]−1(w))

=(φ′c ◦ prnt−1

P̃
)(w) ∪ (φ′c ◦ [v 7→ p]−1)(w)

=(φc ◦ prnt−1

P̃
)(w) ∪ [v′ 7→ p]−1(w)

=(prnt−1

H̃
◦φv)(w) ∪ ([v′ 7→ φ(p)]−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w) ∪ ([v′ 7→ φ(p)]−1 ◦ φ′v)(w)

=((prntH̃ [v′ 7→ φ(p)])−1 ◦ φ′v)(w).

w = v: Since v 6∈ VP̃ and v′ 6∈ VH̃ we have v 6= p, v 6∈ rng(prnt P̃), v′ 6= φ(p), and v′ 6∈
rng(prntH̃). Thus (prnt P̃ [v 7→ p])−1(v) = ∅ = (prntH̃ [v′ 7→ φ(p)])−1(v′).

⊕e : We have e 6∈ EP̃ , e′ 6∈ EH̃ , and

P̃ ′ = (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ + e′, ctrl H̃ , prntH̃ , link H̃)

φ′ = φ[e 7→ e′].

All the conditions are obviously satisfied.

	v : We have v ∈ VP̃ , prnt−1

P̃
(v) = ∅, and

P̃ ′ = (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ − φ(v), EH̃ , ctrl H̃ −φ(v), prntH̃ −φ(v), link H̃ −Pφ(v))

φ′ = φ − v.

The interesting cases are:

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ (link P̃ −Pv)
−1)(e)

=φp(link−1

P̃
(e) \ Pv)

=(φp ◦ link−1

P̃
)(e) \ φ(Pv)

=(link−1

H̃
◦φe)(e) \ Pφ(v)

=((link H̃ −Pφ(v))
−1 ◦ φ′e)(e).

(PGE-7) Assuming w ∈ VP̃ − v we have the following equalities:

(φ′c ◦ (prnt P̃ −v)−1)(w)

=φc(prnt−1

P̃
(w)− v)

=(φc ◦ prnt−1

P̃
)(w)− φ(v)

=(prnt−1

H̃
◦φv)(w)− φ(v)

=((prntH̃ −φ(v))−1 ◦ φ′v)(w).

102 A.2. Bigraph Edit Scripts

	e : We have e ∈ EP̃ , link−1

P̃
(e) = ∅, and

P̃ ′ = (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ − φ(e), ctrl H̃ , prntH̃ , link H̃)

φ′ = φ − e.

All the conditions are obviously satisfied.

	q: We have q ∈ QP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (QP̃ − q)→ 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ \ H̃ �

φ(q), EH̃ , ctrl H̃ −H̃ �
φ(q), prntH̃ −H̃ �

φ(q), link H̃ −PH̃�φ(q))

: 〈QH̃ \ H̃ �
φ(q), XH̃〉 → I

φ′ = φ − q.

The interesting cases are:

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ link−1

P̃
)(e)

=(φp ◦ link−1

P̃
)(e) \ PH̃�φ(q)

=(link−1

H̃
◦φe)(e) \ PH̃�φ(q)

=((link H̃ −PH̃�φ(q))
−1 ◦ φ′e)(e)

since rng(φp) = rng(φport) #PH̃�rng(φs) ⊇ PH̃�φ(q) , cf. Corollary 5.24.
(PGE-7) Assuming w ∈ VP̃ we have the following equalities:

(φ′c ◦ (prnt P̃ −q)
−1)(w)

=φc(prnt−1

P̃
(w)− q) \ (H̃ �φ

s(q) \φs(q))

=((φc ◦ prnt−1

P̃
)(w) \ φ(q)) \ (H̃ �φ

s(q) \φs(q))

=(prnt−1

H̃
◦φv)(w) \ H̃ �φ

s(q)

=((prntH̃ −H̃ �
φs(q))−1 ◦ φ′v)(w)

since rng(φc) #(H̃ �φ
s(q) \φs(q)), cf. Lemma 5.11.

�v@p: We have v ∈ VP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(v) 7→ φ(p)], link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

�q@p: We have q ∈ QP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(q) 7→ φ(p)], link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

A. Proofs 103

⊗q→r@p: We have q ∈ QP̃ , r 6∈ QP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (QP̃ + r)→ 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃] Vr, EH̃ , ctrl H̃] ctrlr, prntH̃] prntr, link H̃] linkr)

: 〈QH̃]Qr, X〉 → I

φ′ = φ[r 7→ f−1(φ(q))]

where
Vq = H̃ �φ(q) ∩VH̃ Qq = H̃ �φ(q) ∩Q
|Vr| = |Vq| |Qr| = |Qq|
Vr # VH̃ Qr # Q
fv : Vr�Vq fs : Qr�Qq
f = fv] fs

ctrlr = ctrl H̃ ◦fv
prntr = {f−1(φ(q)) 7→ φ(p)}] f−1

v ◦ prntH̃ ◦(f − f−1(φ(q)))
linkr(v, i) = link H̃(fv(v), i) (v ∈ Vr)

The interesting cases are:

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ link−1

P̃
)(e)

=(φp ◦ link−1

P̃
)(e)

=(link−1

H̃
◦φe)(e)

=(link−1

H̃
◦φ′e)(e) ∪ (link−1

r ◦φ′e)(e)

=((link H̃] linkr)
−1 ◦ φ′e)(e)

since link−1

H̃
(rng(φe)) ⊆ rng(φp) = rng(φport) #PH̃�rng(φs) ⊇ PH̃�φ(q) , cf. condition (LGE-7)

and Corollary 5.24, and thus link−1
r (rng(φ′e)) = φ′p((link H̃ �PVq)−1(rng(φ′e))) = φ′p((link H̃ �PH̃�φ(q)

)−1(rng(φe))) = φ′p(∅) = ∅.

(PGE-7) Assuming w ∈ VP̃ we have the following equalities:

(φ′c ◦ (prnt P̃ [r 7→ p])−1)(w)

=φ′c(prnt−1

P̃
(w) ∪ [r 7→ p]−1(w))

=(φ′c ◦ prnt−1

P̃
)(w) ∪ (φ′c ◦ [r 7→ p]−1)(w)

=(φc ◦ prnt−1

P̃
)(w) ∪ [f−1(φ(q)) 7→ p]−1(w)

=(prnt−1

H̃
◦φv)(w) ∪ ([f−1(φ(q)) 7→ φ′v(p)]−1 ◦ φ′v)(w)

∪ ((f−1
v ◦ prntH̃ ◦(f − f

−1(φ(q))))−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w)

∪ (([f−1(φ(q)) 7→ φ′v(p)]] f−1
v ◦ prntH̃ ◦(f − f

−1(φ(q))))−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w) ∪ (prnt−1

r ◦φ′v)(w)

=((prntH̃] prntr)
−1 ◦ φ′v)(w)

since rng(f−1
v) = Vr #VH̃ ⊇ rng(φ′v) and thus ((f−1

v ◦prntH̃ ◦(f−f−1(φ(q))))−1 ◦φ′v)(w) =
∅.

104 A.2. Bigraph Edit Scripts

�(v,i)7→l: We have v ∈ VP̃ , i ∈ ar(ctrl P̃ (v)), l ∈ EP̃] YP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ , link H̃ [(φ(v), i) 7→ φ(l)])

φ′ = φ.

All the conditions are obviously satisfied.

}v:K : We have v ∈ VP̃ , ar(K) = ar(ctrl P̃ (v)), and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ [φ(v) 7→ K], prntH̃ , link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

A.2.2 Proof of Lemma 6.14

By Corol. 5.23 we have a match

a = ctxt(JφK) ◦ (JφK JP̃ K⊗ idXI) ◦ prmt(JφK)

for some set of names XI , so we just have to show

a′ = ctxt(JφK) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ JinstQ(finst(δ))K(prmt(JφK))

and a _ a′ then follows from cf. Def. 4.14.
Let

D : 〈|Q|, XI〉 = prmt(JφK)
C : 〈|R|, Y]XI〉 → J = ctxt(JφK)

P̃ ′ : Q′ → 〈R, Y 〉 = δ(P̃)

Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1

Q′ = {q′0, . . . , q′k′−1} where ∀i ∈ [0; k′ − 2] : q′i < q′i+1

R = {r0, . . . , rm−1} where ∀i ∈ [0;m− 2] : ri < ri+1.

By the definitions of parameter (cf. Defs. 5.8 and 5.20) and patterns (cf. Def. 6.1) we have the
following equalities:

D : 〈|Q|, XI〉 = (a�rng(φs), ∅, ctrla �a�rng(φs) ,

[φ(q0) 7→ 0, . . . , φ(qk−1) 7→ k − 1]

] prnta �a�rng(φs)\ rng(φs),

link ′D) Defs. 5.8 and 5.20
= d0 ⊗ · · · ⊗ d|Q|−1 Def. 2.34 and

link ′D a bijection

Vdi = a�φ
s(qi) Defs. 6.1 and 2.9

where

link ′D : Pa�rng(φs) → XI a bijection.

A. Proofs 105

By the definitions of composition and tensor product (cf. Def. 2.6 and Def. 2.8) and the constructions
from Defs. 5.8, 5.20, and 6.1 we have the following equalities:

Va = VC] φv(VP̃)] VD
Ea = EC] φe(EP̃)

ctrla = ctrla �VC] ctrl JφK JP̃ K] ctrla �VD

prnta(w) =

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC

linka(p) =

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

where

ctrl JφK JP̃ K = ctrl P̃ ◦(φ
v)−1

link JφK JP̃ K = φl ◦ link P̃ ◦(φ
p)−1,

prntJφK JP̃ K = (φv] {r0 7→ 0, . . . , rm−1 7→ m− 1})

◦ prnt P̃

◦ ((φv)−1] {0 7→ q0, . . . , k − 1 7→ qk−1}).

Similarly, unfolding the definitions of composition and tensor product (cf. Def. 2.6 and Def. 2.8)
and the constructions from Defs. 5.8, 5.20, and 6.1, we see that we have to show the following equalities

106 A.2. Bigraph Edit Scripts

in order for a′ to be on the prescribed form:

Va′ = VC] φ′v(VP̃ ′)] VD′
Ea′ = EC] φ′e(EP̃ ′)

ctrla′ = ctrla �VC] ctrl Jφ′K JP̃ ′K] ctrla �VD′

prnta′(w) =

prntD′(w) if w ∈ VD′
and prntD′(w) ∈ VD′

prntJφ′K JP̃ ′K(i) if w ∈ VD′
and prntD′(w) = i ∈ |Q′|
and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)

prntC(j) if w ∈ VD′
and prntD′(w) = i ∈ |Q′|
and prntJφ′K JP̃ ′K(i) = j ∈ |R|

prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

linka′(p) =

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

where

D′ : 〈|Q′|, XI〉 = JinstQ(finst(δ))K(prmt(JφK)),

ctrl Jφ′K JP̃ ′K = ctrl P̃ ′ ◦(φ
′v)−1,

link Jφ′K JP̃ ′K = φ′l ◦ link P̃ ′ ◦(φ
′p)−1,

prntJφ′K JP̃ ′K = (φ′v] {r0 7→ 0, . . . , rm−1 7→ m− 1})

◦ prnt P̃ ′

◦ ((φ′v)−1] {0 7→ q′0, . . . , k − 1 7→ q′k−1}),

We show that this is the case for each edit:

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]R, v′ 6∈ Va, and

P̃ ′ = (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : Q→ 〈R, Y 〉
a′ = (Va + v′, Ea, ctrla[v′ 7→ K], prnta[v′ 7→ φ(p)],

linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′]

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

A. Proofs 107

The interesting cases are the parent and link maps:

prnta′(w) = prnta[v′ 7→ φ(p)](w)

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
φ(p) if w = v′

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φv(VP̃) + v′

prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|
and prntJφ′K JP̃ ′K(i) = j ∈ |R|

prntJφ′K JP̃ ′K(w) if w ∈ φv(VP̃) + v′

and prntJφ′K JP̃ ′K(w) ∈ φv(VP̃) + v′

prntC(i) if w ∈ φv(VP̃) + v′

and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since v′ 6∈ Va]ma = cod(φf) ⊇ rng(prntJφ′K JP̃ ′K) and prntJφ′K JP̃ ′K = prntJφK JP̃ K[v
′ 7→ φ(p)].

108 A.2. Bigraph Edit Scripts

linka′(p) = linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)](p)

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC
[. . . , (v′, i) 7→ φ(~yi), . . .](p) if p ∈ Pv′

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφv(VP̃)] Pv′ and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφv(VP̃)] Pv′ and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

since link Jφ′K JP̃ ′K = link JφK JP̃ K[. . . , (v
′, i) 7→ φ(~yi), . . .].

⊕e : We have e 6∈ EP̃ , e′ 6∈ Ea, and

P̃ ′ = (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea + e′, ctrla, prnta, linka)

φ′ = φ[e 7→ e′]

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

The interesting case is the link map:

linka′(p) = linka(p)

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃) + e′

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

since e′ 6∈ Ea] Y ⊇ rng(link JφK JP̃ K).

A. Proofs 109

	v : We have v ∈ VP̃ , prnt−1

P̃
(v) = ∅, and

P̃ ′ = (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv) : Q→ 〈R, Y 〉
a′ = (Va − φ(v), Ea, ctrla−φ(v), prnta−φ(v), linka−Pφ(v))

φ′ = φ − v
instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

The interesting case is the link map:

linka′(p) = (linka−Pφ(v))(p)

=

linkC(x) if p ∈ PD \ Pφ(v) and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) \ Pφ(v) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) \ Pφ(v) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC \ Pφ(v)

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃−v) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃−v) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

since φ(v) ∈ φv(VP̃), φv(VP̃) #VD, φv(VP̃) #VC , and link Jφ′K JP̃ ′K = link JφK JP̃ K−Pφ(v).

	e : We have e ∈ EP̃ , link−1

P̃
(e) = ∅, and

P̃ ′ = (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea − φ(e), ctrla, prnta, linka)

φ′ = φ − e
instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

	q: We have q ∈ Q, and (noting that a has no sites)

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (Q− q)→ 〈R, Y 〉
a′ = (Va \ a�φ(q), Ea, ctrla−a�φ(q), prnta−a�φ(q), linka−Pa�φ(q)))

φ′ = φ − q
iq = i if qi = q

instQ(finst(δ)) = (IdU [q 7→ ∅]�Q)−1

= IdQ−q

JinstQ(finst(δ))K = JIdQ−qK
= Idiq] [iq 7→ iq + 1, . . . , |Q| − 2 7→ |Q| − 1]

D′ : 〈|Q′|, XI〉 = JIdQ−qK(D)

110 A.2. Bigraph Edit Scripts

By the definition of instantiation (Def. 2.35), we obtain:

D′ : 〈|Q′|, XI〉 = JIdQ−qK(D)

= dJIdQ−qK(0) || · · · || dJIdQ−qK(|Q|−2)

= d0 ⊗ · · · ⊗ diq−1 ⊗ diq+1 ⊗ · · · ⊗ d|Q|−1

= (a�rng(φs) \a�φ
s(q), ∅, ctrla �a�rng(φs)\a�φs(q) ,

(JIdQ−qK−1] Ida�rng(φs)\a�φs(q))

◦ (prntD −a�φ
s(q)),

link ′D −Pa�φs(q))

The interesting case is the parent map:

prnta′(w) = (prnta−a�φ(q))(w)

=

prntD(w) if w ∈ VD \ a�φ(q) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD \ a�φ(q) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD \ a�φ(q) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) \ a�φ(q) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) \ a�φ(q) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC \ a�φ(q)

=

prntD(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since

φv(VP̃) # a�φ(q) Lemma 5.11

VC # a�φ(q) Def. 5.8

prntD′ = (JIdQ−qK−1] IdVD′)

◦ (prntD −a�φ
s(q))

rng(prntD′) = VD′] |Q′|
prntJφ′K JP̃ ′K = prntJφK JP̃ K ◦(JIdQ−qK] Idrng(φ′v)).

�v@p: We have v ∈ VP̃ , p ∈ VP̃]R, and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta[φ(v) 7→ φ(p)], linka)

φ′ = φ

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

A. Proofs 111

The interesting case is the parent map:

prnta′(w) = prnta[φ(v) 7→ φ(p)](w)

=

prntD(w) if w ∈ VD − φ(v) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD − φ(v) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD − φ(v) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃)− φ(v) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃)− φ(v) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC − φ(v)

φ(p) if w = φ(v)

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since φ(v) ∈ φv(VP̃), φv(VP̃) #VD, φv(VP̃) #VC , and prntJφ′K JP̃ ′K = prntJφK JP̃ K[φ(v) 7→ φ(p)].

�q@p: We have q ∈ Q, p ∈ VP̃]R, and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta[φ(q) 7→ φ(p)], linka)

φ′ = φ

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

112 A.2. Bigraph Edit Scripts

The interesting case is the parent map:

prnta′(w) = prnta[φ(q) 7→ φ(p)](w)

=

prntD(w) if w ∈ VD \ φ(q) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD \ φ(q) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD \ φ(q) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) \ φ(q) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) \ φ(q) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC \ φ(q)

φ(p) if w ∈ φ(q)

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since prntD(φ(q)) ∈ |Q|, φ(q) ⊆ VD, cf. Def. 5.8, VD #φv(VP̃), VD #VC , and prntJφ′K JP̃ ′K =

prntJφK JP̃ K[i 7→ p′] if q = qi and

p′ =

{
j if p = rj

φv(p) if p ∈ VP̃
.

⊗q→r@p: We have q ∈ Q, r 6∈ Q, p ∈ VP̃]R, and (noting that a has no sites)

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (Q+ r)→ 〈R, Y 〉
a′ = (Va] Vr, Ea, ctrla] ctrlr, prnta] prntr, linka] linkr)

φ′ = φ[r 7→ f−1
v (φ(q))]

Q′ = {q0, . . . , qir−1, r, qir , . . . , qk−1} where qir−1 < r < qir

iq = i if qi = q

instQ(finst(δ)) = (IdU−r[q 7→ {q, r}]�Q)−1

= IdQ[r 7→ q]

JinstQ(finst(δ))K = JIdQ[r 7→ q]K
= Idir] [ir 7→ iq]] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1]

D′ : 〈|Q′|, XI〉 = JIdQ[r 7→ q]K(D)

A. Proofs 113

where

Vq = a�φ(q)

|Vr| = |Vq|
Vr #Va

fv : Vr�Vq

ctrlr = ctrla ◦fv
prntr = {f−1

v (φ(q)) 7→ φ(p)}] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

linkr(v, i) = linka(fv(v), i) (v ∈ Vr)

By the definition of instantiation (Def. 2.35), we obtain:

D′ : 〈|Q′|, XI〉 = JIdQ[r 7→ q]K(D)

= dJIdQ[r 7→q]K(0) || · · · || dJIdQ[r 7→q]K(|Q|)

= d0 ⊗ · · · || dir−1 || dr || dir || · · · ⊗ d|Q|−1

= (VD] Vr, ∅, ctrla �a�rng(φs)] ctrlr,

((Idir] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1])−1] Ida�rng(φs)) ◦ prntD

] ([ir 7→ iq]
−1] f−1

v) ◦ prntD ◦fv,
linkD] linkr)

dr = f−1
v diq .

114 A.2. Bigraph Edit Scripts

The interesting case is the parent map:

prnta′(w) = (prnta] prntr)(w)

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
prntr(w) if w ∈ Vr

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) = j ∈ |R|
prntJφK JP̃ K(w) if w ∈ φ′v(VP̃ ′) and prntJφK JP̃ K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
prntD′(w) if w ∈ Vr and prntD′(w) ∈ Vr
φ(p) if w ∈ Vr and prntD′(w) = ir

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

A. Proofs 115

since

prntD′ = ((Idir] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1])−1] Ida�rng(φs)) ◦ prntD

] ([ir 7→ iq]
−1] f−1

v) ◦ prntD ◦fv

prntr = [f−1
v (φ(q)) 7→ φ(p)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [iq 7→ φ(p)] ◦ prntD ◦[f−1
v (φ(q)) 7→ φ(q)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [φ(p) 7→ iq]
−1 ◦ prntD ◦[f−1

v (φ(q)) 7→ φ(q)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [φ(p) 7→ iq]
−1 ◦ prntD ◦fv �f−1

v (φ(q))

] f−1
v ◦ prntD ◦(fv − f−1

v (φ(q)))

= ([φ(p) 7→ iq]
−1] f−1

v) ◦ prntD ◦fv
= ([ir 7→ φ(p)]] IdVr) ◦ ([ir 7→ iq]

−1] f−1
v) ◦ prntD ◦fv

= ([ir 7→ φ(p)]] IdVr) ◦ prntD′ �Vr

prntJφ′K JP̃ ′K = prntJφK JP̃ K ◦(Idir] [ir 7→ iq]] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1]] Idrng(φ′)).

�(v,i)7→l: We have v ∈ VP̃ , i ∈ ar(ctrl P̃ (v)), l ∈ EP̃] Y , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta, linka[(φ(v), i) 7→ φ(l)])

φ′ = φ

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

}v:K : We have v ∈ VP̃ , ar(K) = ar(ctrl P̃ (v)), and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla[φ(v) 7→ K], prnta, linka)

φ′ = φ

instQ(finst(δ)) = IdU

D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

A.2.3 Proof of Lemma 6.15

By Def. 6.4 we have a match of R in a and thus by Corol. 5.23 we have an embedding φ : P̃ ↪→ a such
that

a = ctxt(JφK) ◦ (JφK JP̃ K⊗ idXI) ◦ prmt(JφK)

a′ = ctxt(JφK) ◦ (ρ′ Jδ(P̃)K⊗ idXI) ◦ JinstQ(finst(δ))K(prmt(JφK)).

116 A.2. Bigraph Edit Scripts

What remains is to show (a′′, φ′) = δ(a, φ) and a′ l a′′ for each edit. The difficulty lies in the
instantiation and the interesting cases are those that delete or copy a parameter; the others are very
similar to each other, and we only show the first one.

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]R, {~y} ⊆ EP̃] Y , ar(K) = n, and

a′′ = (Va + v′, Ea, ctrla[v′ 7→ K], prnta[v′ 7→ φ(p)],

linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′]

instQ(finst(δ)) = IdQ

for some v′ 6∈ Va.
By Corol. 5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 5.20 and φ′ = φ[v 7→ v′] it is clear that ctxt(Jφ′K) = ctxt(JφK) and prmt(Jφ′K) =
prmt(JφK), so it is sufficient to show

prmt(JφK) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 2.35) and instQ(finst(δ)) = IdQ we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQK(prmt(JφK))

= Id|Q|(prmt(JφK))
l prmt(JφK)

as required.

⊕e : Similar to the first case.

	v : Similar to the first case.

	e : Similar to the first case.

	q: We have q ∈ Q and (noting that a has no sites)

a′′ = (Va \ a�φ(q), Ea, ctrla−a�φ(q),

prnta−a�φ(q), linka−Pa�φ(q))

φ′ = φ − q
instQ(finst(δ)) = IdQ−q.

For simplicity, assume ∀q′ ∈ Q− q : q > q′.
By Corol. 5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 5.20 and φ′ = φ − q it is easy to see that

ctxt(Jφ′K) = ctxt(JφK)
prmt(JφK) = d0 ⊗ · · · ⊗ d|Q|−1

prmt(Jφ′K) = d0 ⊗ · · · ⊗ d|Q|−2

A. Proofs 117

so it is sufficient to show

prmt(φ′) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 2.35) and instQ(finst(δ)) = IdQ−q we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQ−qK(prmt(JφK))

= Id|Q|−2(prmt(JφK))
l d0 ⊗ · · · ⊗ d|Q|−2

l prmt(Jφ′K)

as required.

�v@p: Similar to the first case.

�q@p: Similar to the first case.

⊗q→r@p: We have q ∈ Q, r 6∈ Q, p ∈ VP̃]R, and (noting that a has no sites)

a′′ = (Va] Vr, Ea, ctrla] ctrlr, prnta] prntr, linka] linkr)

φ′ = φ[r 7→ f−1
v (φ(q))]

instQ(finst(δ)) = IdQ[r 7→ q]

where

Vq = a�φ(q)

|Vr| = |Vq|
Vr #Va

fv : Vr�Vq

ctrlr = ctrla ◦fv
prntr = {f−1

v (φ(q)) 7→ φ(p)}] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

linkr(v, i) = linka(fv(v), i).

For simplicity, assume r > q and ∀q′ ∈ Q− q : q > q′.
By Corol. 5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 5.20 and φ′ = φ[r 7→ f−1
v (φ(q))] it is easy to see that

ctxt(Jφ′K) = ctxt(JφK)
prmt(JφK) = d0 ⊗ · · · ⊗ d|Q|−1 = (VD, ∅, ctrlD, prntD, linkD)

R = (Vr, ∅, ctrlr, prntR, linkR)

prntR = {f−1
v (φ(q)) 7→ 0)}] f−1

v ◦ prnta ◦(fv − f−1
v (φ(q)))

linkR(v, i) = linkD(fv(v), i)

prmt(Jφ′K) = prmt(JφK) ||R
d|Q|−1 = (Vq, ∅, ctrlD �Vq , prntD �Vq , linkD �PVq)

l R

118 A.2. Bigraph Edit Scripts

so it is sufficient to show

prmt(φ′) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 2.35), instQ(finst(δ)) = IdQ[r 7→ q], and d|Q|−1 l R we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQ[r 7→ qK](prmt(JφK))

= Id|Q|−1[|Q| 7→ |Q| − 1](prmt(JφK))
l prmt(JφK) ||R
l prmt(Jφ′K)

as required.

�(v,i)7→l: Similar to the first case.

}v:K : Similar to the first case.

A.2.4 Proof of Prop. 6.28

For each section of the script, we show (1) that it is compatible with the pattern at that point, (2)
what the resulting pattern is, and (3) what the resulting forward instance map is. Finally, we show
that the named instance map we derive from the forward instance map is η.

⊗η(q′i)→f(q′i)@r
: Compatible since η(q′i) ∈ cod(η) = Q, f(q′i) ∈ Q′′#Q, and the redex must have a root

if it has sites, since the parent map is acyclic.
The resulting pattern is

(VP̃ , EP̃ , ctrl P̃ , prnt P̃][f(Q′) 7→ r], link P̃) : Q]Q′′ → 〈R, Y 〉.

The resulting forward instance map is

IdU−f(q′
n′)

[η(q′n′) 7→ {η(q′n′), f(q′n′)}]

◦ (· · · ◦ (IdU−f(q′1)[η(q′1) 7→ {η(q′1), f(q′1)}]�U−f(q′2)) · · ·�U−f(q′
n′))

= IdU−f(Q′)[η(q′1) 7→ {η(q′1), f(q′1)}, . . . , η(q′n′) 7→ {η(q′n′), f(q′n′)}].

	qi : Compatible since qi ∈ Q.
The resulting pattern is

(VP̃ , EP̃ , ctrl P̃ , (prnt P̃][f(Q′) 7→ r])−Q, link P̃) : Q′′ → 〈R, Y 〉.

The resulting forward instance map is

IdU [qn 7→ ∅]
◦ (· · · ◦ (IdU [q1 7→ ∅]
◦ (IdU−f(Q′)[η(q′1) 7→ {η(q′1), f(q′1)}, . . . , η(q′n′) 7→ {η(q′n′), f(q′n′)}]�U)

�U) · · ·�U)

= IdU−f(Q′)[q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {f(q′1)}, . . . , η(q′n′) 7→ {f(q′n′)}].

A. Proofs 119

	vi : Compatible since vi‖nVP̃ and the nodes has no remaining children since sites are only at root r
and for any node vvj ∈ prnt−1

P̃
(vi) we have j < i and thus vj has already been deleted.

The resulting pattern is

(∅, EP̃ , ctrl P̃ −VP̃ , ((prnt P̃][f(Q′) 7→ r])−Q)− VP̃ , link P̃ −PP̃) : Q′′ → 〈R, Y 〉
= (∅, EP̃ , ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

	ei : Compatible since ei‖nEP̃ and there are no points left.

The resulting pattern is

(∅, ∅, ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

⊕e′i : Compatible since there are no edges left.

The resulting pattern is

(∅, EP̃ ′ , ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

⊕v′i:ctrlP̃ ′ (v
′
i)[...,link

P̃ ′ (v
′
i
,i),...]@ prntP̃ ′ (v

′
i)
: Compatible since there are no nodes left, the links and roots are

all present and if the parent is a node v′j = prnt P̃ ′(v
′
i) then we have j < i and thus it has been

added before its children.

The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , (prnt P̃ ′ −Q
′)] [f(Q′) 7→ r], link P̃ ′) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

⊗f(q′i)→q′i@ prntP̃ ′ (q
′
i)
: Compatible since f(q′i) ∈ Q′′, q′i ∈ Q′#Q′′, and prnt P̃ ′(q

′
i) ∈ VP̃ ′]R.

The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , prnt P̃ ′][f(Q′) 7→ r], link P̃ ′) : Q′]Q′′ → 〈R, Y 〉.

The resulting forward instance map is

IdU−q′
n′

[f(q′n′) 7→ {f(q′n′), q
′
n′}]

◦ (· · · ◦ (IdU−q′1 [f(q′1) 7→ {f(q′1), q′1}]
◦ (IdU−f(Q′)[q1 7→ ∅, . . . , qn 7→ ∅]

[η(q′1) 7→ {f(q′1)}, . . . , η(q′n′) 7→ {f(q′n′)}�U−q
′
1)

�U−q
′
2) · · ·�U−q

′
n′)

= Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {f(q′1), q′1}, . . . , η(q′n′) 7→ {f(q′n′), q

′
n′}].

120 A.2. Bigraph Edit Scripts

	f(q′i)
: Compatible since f(q′i) ∈ Q′′.
The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , prnt P̃ ′ , link P̃ ′) : Q′ → 〈R, Y 〉 = P̃ ′.

The resulting forward instance map is

finst(es(R))

= IdU [f(q′n′) 7→ ∅]
◦ (· · · ◦ (IdU [f(q′1) 7→ ∅]
◦ (Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]

[η(q′1) 7→ {f(q′1), q′1}, . . . , η(q′n′) 7→ {f(q′n′), q
′
n′}]�U)

�U) · · ·�U)

= Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}]

The derived named instance map for the entire script is thus:

instQ(finst(es(R))) = (Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}]�Q)−1

= ([q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}])−1

= [q′1 7→ η(q′1), . . . , q′n′ 7→ η(q′n′)]

= η.

	Introduction
	Related work
	Outline of the Report

	Background
	Mathematical Preliminaries
	Bigraphs
	Concrete Bigraphs
	S-categories and spm-categories
	Bigraphical Categories
	Reactive Systems
	Bigraphical Reactive Systems

	The Simulation Algorithm
	Gillespie's algorithm
	Incremental and Local Updates

	Stochastic Parametric Reactive Systems
	Representative Basic Reactive Systems
	Abstract Representative Basic Reactive Systems

	Parametric Reactive Systems
	Bigraphical Parametric Reactive Systems
	Relating Concrete PRSs and RBaRSs
	Abstract Parametric Reactive Systems

	Stochastic Parametric Reactive Systems
	Matches
	Deterministic Support Translation of Reactums
	Abstract Stochastic Parametric Reactive Systems

	Bigraph Embeddings
	Link Graph Embeddings
	Solid Link Graphs

	Place Graph Embeddings
	Solid Place Graphs

	Bigraph Embeddings
	Solid Bigraphs

	Bigraph Edit Scripts
	Patterns
	Edits
	Deriving Named Instance Maps
	Mediating edits

	Edit Scripts
	Reconfiguration Systems
	Reconfiguration Rules
	Reconfiguration Systems

	Rule Activation and Inhibition
	Causality and Conflict
	Category of Bigraph Embeddings
	Pullbacks of Embeddings
	Pushouts of Embeddings
	Characterizing Overlaps

	PP Diagrams, Activation and Inhibition
	Inhibition
	Activation

	Anchored Matching
	Algorithm

	Conclusions and Future Work
	Future Work

	References
	Proofs
	Bigraph Embeddings
	Proof of Prop. 5.3
	Proof of Prop. 5.6
	Proof of Prop. 5.9
	Proof of Theorem 5.10
	Proof of Lemma 5.11
	Proof of Prop. 5.13
	Proof of Prop. 5.17
	Proof of Prop. 5.19
	Proof of Prop. 5.21
	Proof of Theorem 5.22

	Bigraph Edit Scripts
	Proof of Prop. 6.13
	Proof of Lemma 6.14
	Proof of Lemma 6.15
	Proof of Prop. 6.28

