
The BPL Tool
A Tool for Experimenting with Bigraphical Reactive Systems

Espen Højsgaard
Arne John Glenstrup

IT University Technical Report Series TR-2011-145

ISSN 1600–6100 October 2011

Copyright c© 2011, Espen Højsgaard
Arne John Glenstrup

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-244-8

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

The BPL Tool

A Tool for Experimenting with Bigraphical Reactive Systems

Espen Højsgaard Arne John Glenstrup∗

November 2, 2011

We present the BPL Tool, a first implementation of bigraphical reactive systems with binding.
The BPL Tool provides manipulation, simulation and visualisation of bigraphs and bigraphical
reactive systems, and can be used either through the included web and command line user interfaces
or as a programming library.

Contents

1 Introduction 2
1.1 Related work . 2
1.2 Outline . 3

2 Installation 4
2.1 User installation . 4
2.2 Developer installation . 4

3 Example: Polyadic π and Mobile Phones 5
3.1 A mobile phone system . 5
3.2 Polyadic π . 5

4 Reference 9
4.1 Preliminaries . 9
4.2 Signatures . 11
4.3 Types for bigraph terms . 12
4.4 Bigraphs . 12

4.4.1 Syntactic Sugar . 13
4.5 Bigraph Operations . 14
4.6 Matching . 15
4.7 Lazy lists . 15
4.8 Reaction rules . 16
4.9 Simulation . 17
4.10 Pretty printing . 17
4.11 Visualization . 18

∗{espen,panic}@itu.dk. IT University of Copenhagen, Denmark

1

4.12 Controlling tool behaviour . 19
4.13 Exceptions . 20

5 Conclusions and Future Work 21

1 Introduction

The theory of bigraphical reactive systems [19] provides a general meta-model for describing and an-
alyzing mobile and distributed ubiquituous systems. Bigraphical reactive systems form a graphical
model of computation in which graphs that embody both locality and connectivity can be recon-
figured using reaction rules. So far it has been shown how to use the theory to recover behavioural
theories for various process calculi [16, 15, 17] and how to use the theory to model context-aware
systems [6].

In this report, we describe the BPL Tool, a first prototype implementation of bigraphical reactive
systems, which can be used for experimenting with bigraphical models with binding. The theoretical
foundations for the implementation have been developed in detail in [13], but in summary the BPL
Tool is based on Damgaard et al.’s axiomatization of binding bigraphs [9] (i.e. it is term based)
and the inductive characterization of matching [5] by the same authors. In [13] we have extended
the inductive characterization from graphs to a term representation of bigraphs and have given an
algorithmic interpretation of this characterization of matching. This required the development of
some additional algorithms for bigraph terms: normalisation, renaming, and regularisation.

The BPL Tool is written in SML, consists of parser, normalisation and matching kernel, and
includes web and command line user interfaces. To ensure correctness, we have implemented nor-
malisation, renaming, regularisation and matching faithfully by implementing one SML function
for every inference rule – in the case of matching, two: one for applications above and one for below
the swx rule.

The BPL Tool has been used to model the following:

the ARAN protocol (Bentzen, [2])

the GeoCast protocol (Niss, unpublished)

IEEE 802.11 MAC 4-way handshake (Bentzen, [2])

the Insider Problem (Bentzen, [2])

a mobile phone system (Glenstrup, included in this report)

platographical models (Elsborg, [12])

WS-BPEL and HomeBPEL (Bundgaard et al., [8])

The BPL Tool is available at http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

where also some additional material can be found, such as API documentation and slides from
presentations.

1.1 Related work

A number of implementations of bigraphs are being developed at various institutions. Unfortu-
nately, it is hard to find the implementations themselves or papers describing them – until now,

2

http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

this has also been the case for the BPL Tool – but here is a complete list of the implementations
of which we are aware:

BigMC: A model checker for bigraphs which includes a command line interface and visualisation
[4].

bigraphspace: A Java library which provides a tuple-space-like API based on bigraphs [14].

Big Red: A graphical editor for bigraphs with easily extensible support for various file formats
[3].

BigWB: A graphical workbench for bigraphs, aiming at providing a unifying GUI for the various
bigraph tools (no website or papers at the time of writing).

DBtk: A tool for directed bigraphs, which provides calculation of IPOs, matching, and visualisation
[1].

SAT based algorithm: Sevegnani et al. has presented a SAT based algorithm for matching in
place graphs with sharing [21] and an implementation is in progress based on MiniSAT [11].

SBAM: A stochastic simulator for bigraphs, aimed at simulation of biological models [20].

1.2 Outline

In the remainder of this report, we assume a basic knowledge of bigraphs; we refer the uninitiated
reader to Milner’s book [19]. We shall use the bigraph notation from [13].

This report encourages a hands-on approach, and our focus is therefore on getting the tool
installed and trying an example. The tool has built-in documentation, which we include (and
slightly expand) for easy reference.

Section 2, Installation

Instructions for how to obtain, install and run the BPL Tool.

Section 3, Example: Polyadic π and Mobile Phones

We demonstrate the features of the BPL Tool using Milner’s polyadic π calculus model of
mobile phones [18].

Section 4, Reference

We present the BPL language (BPLL) for bigraphical reactive systems and the various func-
tions that the BPL Tool provides.

Section 5, Conclusions and Future Work

We present our experiences with the BPL Tool and conclude on its strengths and weaknesses,
and present our plans for future improvements.

3

2 Installation

The BPL Tool is distributed as source code as it relies on an SML compiler with an interactive
mode to provide a command line interface. The source code can be obtained from the BPL Tool
website [7].

We shall here distinguish between two types of installation: user and developer installations.

2.1 User installation

The BPL Tool requires the following software to be installed on your system:

SML compiler preferably SML of New Jersey but Moscow ML and MLton should work as well.

GNU make

GNU sed

The BPL Tool has been known to run on the following platforms: Linux (Ubuntu), OS X (ver.
10.4-10.6), and Windows XP (using Cygwin).

When you have installed the above and obtained a copy of the BPL Tool sources, you need to
configure the tool to your setup. This is done by executing the following command in the $BPL/src
directory:

./configure

To use the BPL Tool CLI, you need to use an SML compiler with an interactive mode (i.e.
not MLton) – it works particularly well with SML of New Jersey, since SML/NJ allows the use of
custom pretty-printers for values.

To start the CLI, execute the following command in the $BPL/src directory:

./bpltoolcli.sh

Once the BPL Tool has loaded you should be met with the prompt:

BPL (revision 3294) interactive prompt. Type ’help[];’ for help.

-

2.2 Developer installation

BPL Tool developers will – in addition to the basic installation – need the following software:

GNU autoconf: needed if you change configure.in.

SML#: BPL Tool uses some of the tools, SMLUnit and SMLDoc, from the SML# distribution,
but not SML# itself.

To run the unit tests, execute the following command in the $BPL/src directory (or one of its
sub-directories):

make test

If you have multiple SML compilers installed, you can switch between them by running the configure
script with the MLC option set to one of the values mlton, mosml, or smlnj. E.g. to use the Moscow
ML compiler, run

./configure MLC=mosml

4

3 Example: Polyadic π and Mobile Phones

We model the polyadic π calculus, running the mobile phone system introduced in Milner’s π
book [18].

3.1 A mobile phone system

The mobile phone system we shall model is the following: there is a static network of transmitters
which are all connected to a central control. Each mobile phone is located in a car and is connected
to a single transmitter using a unique frequency. On some events, e.g. signal fading, the mobile
phone may switch to another transmitter.

A simple example of such a system, call it System1, is shown in Figure 1, where we also show
how to define the system in the BPL Tool: the system consists of a car, one active and one idle
transmitter, and a control centre. Note that the controls are atomic, since nodes with these controls

val (switch1, talk1, lose1, gain1) =

("switch1","talk1","lose1","gain1")

val (switch2, talk2, lose2, gain2) =

("switch2","talk2","lose2","gain2")

val Car = atomic ("Car" -: 2)

val Trans = atomic ("Trans" -: 4)

val Idtrans = atomic ("Idtrans" -: 2)

val Control = atomic ("Control" -: 8)

val System1 =

Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]

‘|‘ Idtrans[gain2,lose2]

‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

Figure 1: Definition of the mobile phone system, System1

should not contain other nodes.
The illustration of System1 in Figure 1 is “hand-drawn” in TikZ, but we can also use the BPL

Tool to render the system using either SVG or TikZ. For example, Figure 2 shows how to generate
TikZ for System1 and the resulting diagram. This uses the default configuration, but it is possible
to obtain more fine grained control over the appearance of roots, nodes and sites. As is evident
from the diagram in this example, it cannot replace hand-drawn figures. Nevertheless, it is our
experience that such automatic visualisation is very helpful when working with bigraphs in the
BPL Tool.

3.2 Polyadic π

Let us now examine how we can model a dynamic aspect of the mobile phone system, namely the
hand-over protocol for when a mobile phone switches from one transmitter to another. We shall
model this in the polyadic π calculus which again can be modelled directly in the BPL Tool.

5

- print (tikz System1);

\tikzstyle nametext=[font=\footnotesize\itshape,inner sep=0pt]%

\tikzstyle root=[dashed,rounded corners]%

\tikzstyle binder=[draw,fill=white]%

\tikzstyle node=[draw]%

\tikzstyle nodetext=[font=\sffamily\bfseries,text=blue,inner sep=0pt]%

\tikzstyle site=[fill=gray!25,rounded corners]%

\tikzstyle sitetext=[font=\sffamily,inner sep=0pt]%

\tikzstyle link=[draw]%

\begin{tikzpicture}[x={(0.02cm,0cm)},y=-0.02cm,baseline=-1cm]

\draw[style=root] (0,16) rectangle +(260,88);

\draw[style=node] (29,64) ellipse (0.5cm and 0.4cm);

\draw (4,100) node [style=nodetext,anchor=south west] {Car};

\draw[style=node] (83,64) ellipse (0.5cm and 0.4cm);

\draw (58,100) node [style=nodetext,anchor=south west] {Trans};

\draw[style=node] (147,64) ellipse (0.7cm and 0.4cm);

\draw (112,100) node [style=nodetext,anchor=south west] {Idtrans};

\draw[style=node] (221,64) ellipse (0.7cm and 0.4cm);

\draw (186,100) node [style=nodetext,anchor=south west] {Control};

\draw (231,45) .. controls +(0,-24) and +(0,20) .. (109,13);

\draw (72,46) .. controls +(0,-24) and +(0,20) .. (109,13);

\draw (25,44) .. controls +(0,-24) and +(0,20) .. (109,13);

\draw (109,10) node [style=nametext,anchor=south] {talk1};

\draw (238,47) .. controls +(0,-24) and +(0,20) .. (158,13);

\draw (79,44) .. controls +(0,-24) and +(0,20) .. (158,13);

\draw (32,44) .. controls +(0,-24) and +(0,20) .. (158,13);

\draw (158,10) node [style=nametext,anchor=south] {switch1};

\draw (196,50) .. controls +(0,-24) and +(0,20) .. (207,13);

\draw (93,46) .. controls +(0,-24) and +(0,20) .. (207,13);

\draw (207,10) node [style=nametext,anchor=south] {lose1};

\draw (245,49) .. controls +(0,-24) and +(0,20) .. (249,13);

\draw (86,44) .. controls +(0,-24) and +(0,20) .. (249,13);

\draw (249,10) node [style=nametext,anchor=south] {gain1};

\draw (217,44) .. controls +(0,-24) and +(0,20) .. (291,13);

\draw (143,44) .. controls +(0,-24) and +(0,20) .. (291,13);

\draw (291,10) node [style=nametext,anchor=south] {gain2};

\draw (224,44) .. controls +(0,-24) and +(0,20) .. (333,13);

\draw (150,44) .. controls +(0,-24) and +(0,20) .. (333,13);

\draw (333,10) node [style=nametext,anchor=south] {lose2};

\draw (203,47) .. controls +(0,-24) and +(0,20) .. (375,13);

\draw (375,10) node [style=nametext,anchor=south] {talk2};

\draw (210,45) .. controls +(0,-24) and +(0,20) .. (424,13);

\draw (424,10) node [style=nametext,anchor=south] {switch2};

\end{tikzpicture}

Car Trans Idtrans Control

talk1 switch1 lose1 gain1 gain2 lose2 talk2 switch2

Figure 2: Generating TikZ

6

The polyadic π calculus can be modeled by a family of reaction rules {reacti | i = 0, 1, . . .},
one for each number of names that are to be communicated in a reaction [16]; react2 is shown
in Figure 3. The signature for the nodes modelling the polyadic π calculus is constructed using

react2: (x̄〈y1, y2〉.P0 + P1) | (x(z1, z2).P2 + P3)→ {zi/yi
}P0 | P2

0

1

2

3

Send2 Get2

Sum Sum

x

z1
z2

y1y2

0

1
z1z2

y1y2x

0:=0,1:=2

react2

val REACT2 = "REACT2" :::

Sum o (Send2[x,y1,y2] ‘|‘ ‘[]‘)

‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ ‘[]‘)

--[0 |-> 0, 1 |-> 2]--|>

(y1/z1 * y2/z2 * x//[]) o (‘[]‘ ‘|‘ ‘[z1, z2]‘)

Figure 3: π calculus reaction rule shown as bigraphs and BPL values.

passive controls as shown in Figure 4. For this system, we only need Send and Get nodes for

val Sum = passive0 ("Sum")

val Send0 = passive ("Send0" -: 0 + 1)

val Get0 = passive ("Get0" -: 0 + 1)

val Send2 = passive ("Send2" -: 2 + 1)

val Get2 = passive ("Get2" =: 2 --> 1)

Figure 4: Signature for polyadic π calculus.

react0 and react2. Note that all reaction rule nodes are passive, preventing reaction within a
guarded expression.

In the π calculus the nodes in System1 are defined as recursive equations. In the BPL tool, they
are defined by a rule that unfolds an atomic node into a bigraph corresponding to the defining π
calculus expression. The definitional equations and BPL definitions are shown in Figure 5.

The definitions allows the control centre to switch Car communication between the two trans-
mitters (supposedly when the car gets closer to the idle than the active transmitter), and allows
the car to communicate with the active transmitter.

7

Defining equation BPL definition

Car(talk , switch)
def
=

talk .Car〈talk , switch〉
+ switch(t, s).Car〈t, s〉

val DEF_Car = "DEF_Car" :::

Car[talk,switch]

----|>

Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]] o Car[t,s])

Trans(talk , switch, gain, lose)
def
=

talk .Trans〈talk , switch, gain, lose〉
+ lose(t, s).switch〈t, s〉

. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::

Trans[talk,switch,gain,lose]

----|>

Sum o (Get0[talk][]

o Trans[talk,switch,gain,lose]

‘|‘ Get2[lose][[t],[s]]

o Sum o Send2[switch,t,s]

o Idtrans[gain,lose])

Idtrans(gain, lose)
def
=

gain(t, s).Trans〈t, s, gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::

Idtrans[gain, lose]

----|>

Sum o Get2[gain][[t],[s]] o Trans[t,s,gain,lose]

Control(lose1, talk2, switch2, gain2,

lose2, talk1, switch1, gain1)
def
=

lose1〈talk2, switch2〉.gain2〈talk2, switch2〉
.Control〈lose2, talk1, switch1, gain1,

lose1, talk2, switch2, gain2〉

val DEF_Control = "DEF_Control" :::

Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]

----|>

Sum o Send2[lose1,talk2,switch2]

o Sum o Send2[gain2,talk2,switch2]

o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Figure 5: Definitions of Car, Trans, Idtrans and Control nodes.

8

Our BPL definition of the initial system in Figure 1, System1, is the folded version; querying the
tool reveals the four possible unfolding matches, illustrated in Figure 6. Here mkrules constructs

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans, DEF_Idtrans, DEF_Control];

[...]

- print_mv (matches rules System1);

[{rule = "DEF_Car",

context

= (talk1/talk * switch1/switch) ||

‘[]‘ ‘|‘ Trans[talk1, switch1, gain1, lose1] ‘|‘

Idtrans[gain2, lose2] ‘|‘

Control[lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1],

parameter = idx0},

{rule = "DEF_Control", [...] },

{rule = "DEF_Idtrans", [...] },

{rule = "DEF_Trans", [...] }]

Figure 6: Determining which rules match System1.

the internal representation of a rule set, and print mv prettyprints a lazy list of matches, produced
by the matches function, cf. Sections 4.6 and 4.9.

We can unfold the four nodes into their defining π calculus expressions by using the reaction
tactic TAC_unfold, shown in Figure 7. The tactic is constructed using the react rule tactic which
simply applies a named reaction rule and the ++ tactic which runs its arguments sequentially, cf.
Section 4.9. Applying this tactic using the function run, we get an unfolded version of the system.

Querying the BPL Tool for matches in the unfolded system reveals exactly the switch and
talk actions, initiated by react2 and react0 rules, respectively, cf. Figure 8. Applying the π
calculus reaction rules for switching, using the TAC switch tactic, we arrive at System2, where Car
communication has been switched to the other transmitter, as witnessed by the outer names to
which Car ports link, as well as the order of names to which Control ports link.

4 Reference

The language used in the BPL Tool is called BPLL, and it consists of a number of SML constructs
which allows you to write BPLL directly in SML programs. This also means that your favorite
interactive SML environment doubles as BPLL environment.

In this section we present the BPLL syntax for bigraphs and bigraphical reactive systems. Much
of this information is also accessible through the help function in the BPL Tool CLI.

4.1 Preliminaries

BPLL is a DSL embedded in Standard ML. This has the benefit of allowing easy extensions to
the language and easy integration into SML programs. But it also imposes some restrictions on
the syntax; for example, we cannot use | to denote the prime parallel product operator, so instead
we use ‘|‘, i.e. we wrap the operator in backquotes. In general, we have attempted to choose a
syntax which visually closely resembles Milner’s bigraph notation. While we believe we have been

9

- val TAC_unfold =

react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++

react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]

- val System1_unfolded = run rules TAC_unfold System1;

val System1_unfolded =

Sum o

(Send0[talk1] o Car[talk1, switch1] ‘|‘ Get2[switch1][[t], [s]] o Car[t, s]) ‘|‘

Sum o

(Get0[talk1] o Trans[talk1, switch1, gain1, lose1] ‘|‘

Get2[lose1][[t], [s]] o Sum o Send2[switch1, t, s] o Idtrans[gain1, lose1]) ‘|‘

Sum o Get2[gain2][[t], [s]] o Trans[t, s, gain2, lose2] ‘|‘

Sum o

Send2[lose1, talk2, switch2] o

Sum o

Send2[gain2, talk2, switch2] o

Control[lose2, talk1, switch1, gain1, lose1, talk2, switch2, gain2]

: 0 -> <{talk1, switch1, gain1, lose1, gain2, lose2, talk2, switch2}>

: agent

Figure 7: Unfolding System1, using the TAC unfold tactic.

Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);

[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]

[...]

- val TAC_switch =

react_rule "REACT2" ++ (* Control tells Trans to lose. *)

react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)

react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]

- val System2 = run rules TAC_switch System1_unfolded;

val System2 =

Idtrans[gain1, lose1] ‘|‘ Car[talk2, switch2] ‘|‘

Control[lose2, talk1, switch1, gain1, lose1, talk2, switch2, gain2] ‘|‘

Trans[talk2, switch2, gain2, lose2]

: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}>

: agent

-

Figure 8: Checking possible matches, then switching to System2, using the TAC switch tactic.

10

reasonably successful at this, we also appreciate that the notation is a bit heavy and we welcome
any suggestions for improvements.

In order to keep bigraph terms as readable as possible, the BPL Tool assumes that bigraph
names are bound to string variables of the same name. For example, the identity wiring id{x} will
be printed as idw[x], thus assuming the preceding declaration of x: val x = "x". The same goes
for named ports (see below). This saves a lot of quotes when the BPL Tool prints bigraph terms.

4.2 Signatures

The definition of signatures in the BPL Tool is centered around controls: to define a control called
K which has status s ∈ {active,passive,atomic}, global arity m and local arity n one writes:

val K = s ("K" =: m --> n)

For instance, in the example in Section 3 we needed a passive control with global arity 1 and local
arity 2 called Get2, which was defined as follows:

val Get2 = passive ("Get2" =: 2 --> 1)

There is syntactic sugar for the common cases where the local arity is zero or both arities are
zero, and for named ports:

general case:

val K = s ("K" =: m --> n)

local arity = 0:

val K = s ("K" -: n)

global and local arity = 0:

val K = s0 ("K")

named ports, general case:

val K = s ("K" ==: [p′1,...,p
′
m] ---> [p1,...,pn])

named ports, local arity = 0:

val K = s ("K" --: [p1,...,pn])

where K is the control name, s ∈ {active,passive,atomic} is the status, m is the global arity, n
is the local arity, and the pi and p′i are the names of global and local ports respectively.

It is not quite precise to say that the latter four cases are just syntactic sugar, as the way the
control is used depends on how it was declared (i.e. their SML types are different) (cf. Ions below).

11

4.3 Types for bigraph terms

The BPL Tool uses the following types to distinguish bigraph terms on certain forms:

bgterm: a bigraph term that might not be well-formed, i.e. interfaces in compositions might not
match;

bgval: a well-formed bigraph term with interfaces;

’a bgbdnf: a bigraph term which is on a binding discrete normal form indicated by the phantom
type used for ’a:

M: molecule

S: singular top-level node

G: global discrete prime

N: name-discrete prime

P: discrete prime

D: discrete bigraph

B: bigraph

DR: discrete, regular bigraph

BR: regular bigraph

The normal forms are shown in Figure 9.

M ::= (idZ ⊗K~y(~X))N molecule

S ::= pαq | M singular top-level node

G ::= (idY ⊗mergen)(
⊗n

i Si)π global discrete prime

N ::= (X)G name-discrete prime

P,Q ::= (idZ ⊗ σ̂)N discrete prime

D ::= α⊗ (
⊗n

i Pi)π discrete bigraph

B ::= (ω ⊗ id(~X))D bigraph

DR ::= α⊗ (
⊗n

i Pi) discrete, regular bigraph

BR ::= (ω ⊗ id(~X))DR regular bigraph

Figure 9: Normal forms for binding bigraphs.

4.4 Bigraphs

Bigraphs are built from elementary bigraphs and operators:

Ions: (K,L,M : control ; x,y,p,p’ : string)
K[y,...] Ion with control of global arity
L[y,...][[x,...],...] Ion with control of global/local arity
K[p==y,...] Ion with control of global arity with named ports

12

L[p==y,...][p’==x,...] Ion with control of global/local arity with named ports

Wirings: (x,y : string)
y/x Renaming link
y//[x,...] Substitution link
y//[] Name introduction
-/x Closure edge
-//[x,...] Multiple closure edges
idw[x,...] Identity wiring

Concretions: (n >= 0 ; x : string)
‘[x,...]‘ Concretion of names x,...

Merges: (n >= 0)
merge(n) Merge of inner width n
<-> Barren root (= merge 0)

Permutations: (0 <= ik < m ; x : string)
@[..., ik, ...] Permutation mapping site k to root ik
@@[..., ik&[x,...], ...] Permutation with local names
idp(m) Identity permutation of width m

Operators: (x : string ; A,B : bgval ; P : prime bgval)
<[x,...]> P Abstract names x,... of a prime P
A * B Tensor product
A || B Parallel product
A ‘|‘ B Prime product
**[A,...] Tensor procuct of n factors
|||[A,...] Parallel product of n factors
‘|‘‘[A,...] Prime product of n factors
A o B Composition

Precedence: (x : string ; P : prime bgval)
o Composition (strongest)
*, ||, ‘|‘ Product, left associative
<[x,...]> P Abstraction (weakest)

Bigraphs built using these combinators have the SML type bgval. Note that since the BPL Tool
binds bigraph composition to ’o’, we rebind function composition to ’oo’.

4.4.1 Syntactic Sugar

The BPL Tool allows some of the syntactic shorthands used in the bigraph literature – the short-
hands for each relevant combinator are as follows:

13

abstraction: In an abstraction (X)P , one may abstract names that are not in the outer face of
P and we allow abstractions on name introductions. For example, <[x]> y//[] is allowed.
The desugared form of such an abstraction is

(X)P
def
= (X)(P ⊗ Y ⊗ id)

where Y are the names of X which are not in the outer face of P and id is either id1 if

width(P) = 0 and id0 otherwise. Thus, <[x]> y//[]
def
= <[x]>(y//[] * x//[] * idp(1)).

composition: The BPLL composition operator is a generalization of Milner’s nesting operator: in
a composition A ◦B the outer names of A and B may be shared. For example, K[x] o K[x]

is allowed. The desugared form of such a composition is

A ◦B def
= (A || idX) ◦B

where X are the outer names of B. Thus, K[x] o K[x]
def
= (K[x] || idw[x]) o K[x].

Also, it allows implicit abstraction of names in primes: in a composition A ◦ P where P is
prime, the local inner names of A that are not local in the outer face of P will be abstracted.
The desugared form of such a composition is

A ◦ P def
= A ◦ ((X)P)

ion: The global ports of an ion K~y are allowed to use the same name, i.e. the names of ~y need not
be distinct. For example, K[x,x] is allowed. The desugared form of such an ion is

K~y(~X)

def
= (ω ⊗ id1) ◦K~z(~X)

where ~z is a vector of n distinct names, ar(K) = m→ n, and ω : {~z} → {~y} is a substitution

satisfying ~yi = ω(~zi) (i ∈ n). Thus, K[x,x]
def
= (x//[x,y] * idp(1)) o K[x,y].

Note that the BPL Tool will do its best (subject to the configuration options discussed in
Section 4.12) to use the syntactically sugared forms whenever possible.

Also, the BPL Tool internally works on bigraph terms in the normal forms shown in Figure 9.
Such terms are not easily readable, in particular because ‘|‘ and || are treated as derived operators.
The BPL Tool will try (again subject to configuration options) to simplify the terms and use ‘|‘

and || whenever possible.

4.5 Bigraph Operations

=== : bgval * bgval -> bool Equality (infix)

==== : ’a bgbdnf * ’a bgbdnf -> bool Equality (infix)

norm v : bgval -> B bgbdnf Normalise

denorm b : ’a bgbdnf -> bgval Denormalise

regl v : bgval -> BR bgbdnf Regularise

regl b : B bgbdnf -> BR bgbdnf Regularise

simpl v : bgval -> bgval Attempt to simplify

simpl b : ’a bgbdnf -> bgval Attempt to simplify

14

4.6 Matching

Matching is computationally intensive, so the BPL Tool uses lazy lists to represent sets of matches.

match v : {agent:bgval, redex:bgval} -> match lazylist

Match redex in agent, returning a lazy list of matches.

match b : {agent:B bgbdnf, redex:B bgbdnf} -> match lazylist

Match redex in agent, returning lazy list of matches.

print mv : match lazylist -> unit

Print lazy list of matches.

print mb : match lazylist -> unit

Print lazy list of matches.

print mtv : match lazylist -> unit

Print lazy list of matches with trees.

print mtb : match lazylist -> unit

Print lazy list of matches with trees.

4.7 Lazy lists

The main functions for working with lazy lists are the following; see the online API for a complete
list [7].

15

lznull : ’a lazylist -> bool

Test whether the lazy list is empty.

lzhd : ’a lazylist -> ’a

Return the first element of a lazy list.

lztl : ’a lazylist -> ’a lazylist

Return the tail of a lazy list.

lzunmk : ’a lazylist -> ’a lazycell

Return the head and tail of a lazy list, or Nil if it is empty.

lzmap : (’a -> ’b) -> ’a lazylist -> ’b lazylist

Map a function on all elements of a lazy list.

4.8 Reaction rules

Reaction rules are constructed using the following combinators:

Instantiations: (ik,jk : int ; xk,yk : string)
[..., ik |-> jk, ...]

Instantiation mapping reactum site ik to redex site jk
[..., ik&[x0, ..., xm−1] |--> jk&[y0, ..., ym−1], ...]

Instantiation mapping local reactum name xk to redex name yk

Rules: (R,R’ : rule ; rho : instantiation ; N : string)
R ----|> R’ Rule with redex R, reactum R’ and default instantiation
R --rho--|> R’ Rule with redex R, reactum R’ and instantiation rho
N ::: R ----|> R’ Named rule

Operators on rules: (R : rule)
redex R Extract the redex of a rule
reactum R Extract the reactum of a rule
inst R Extract the instantiation of a rule

For convenience, instantiations in rules need not be fully specified; if an instantiation ρ : J → I,
where J and I are the reactum and redex innerfaces respectively, is partially specified, the BPL
Tool will automatically add missing mappings as follows:

1. if a site of J is not mentioned, it is assumed to map to the same site at I, inferring the name
map as in (2);

2. if the name lists of a map are empty, the local renaming will be inferred as follows:

16

(a) if the relevant sites of I and J have the same local names, an identity renaming will be
used;

(b) otherwise, if there is only one local name at both sites, say x at Ii and y at Jj , the local
renaming (y)/(x) will be used.

An exception will be raised if this procedure not yield an instantiation.

4.9 Simulation

Tactics: (i : int ; N : string ; ti : tactic)
react rule N Apply rule N

react rule any Apply any rule
roundrobin Apply rules roundrobin until none match
t1 ++ t2 Use t1, then t2
TRY t1 ORTHEN t2 If t1 fails, use t2 on its result
IF t1 THEN t2 ELSE t3 If t1 finishes, use t2, else t3 on its result
REPEAT t Repeat t until it fails
i TIMES DO t Use t i times
finish Finish tactic
fail Fail tactic

Reaction operations: (v : bgval; m : match; ri : rule ; Ni : string ; rs : rules)
react m Perform a single reaction step
mkrules [r0, ..., rn] Construct a rule map
mknamedrules [..., (Ni, ri), ...] Construct a rule map with explicit names
matches rs v Return lazy list of all matches of all rules
run rs t v Perform agent reactions using a tactic
steps rs t v Return agent for each step using a tactic
stepz rs t v Return lazily agent for each step using a tactic

4.10 Pretty printing

Bigraphs:
str v : bgval -> string Return as a string
str b : ’a bgbdnf -> string Return as a string
print v : bgval -> unit Print to stdOut
print b : ’a bgbdnf -> unit Print to stdOut

Matches:
print mv : match lazylist -> unit Print lazy list of matches
print mb : match lazylist -> unit Print lazy list of matches
print mtv : match lazylist -> unit Print lazy list of matches with trees
print mtb : match lazylist -> unit Print lazy list of matches with trees

Rules:
str r : rule -> string Return rule as a string
print r : rule -> unit Print rule

17

4.11 Visualization

Configuration:
makecfg (string * BG.PPSVG.path -> configinfo) -> config

Construct a config

unmkcfg config -> string * BG.PPSVG.path -> configinfo

Deconstruct a config

defaultcfg config

Default config

Scalable Vector Graphics (SVG):
svg v config option -> bgval -> string

Return as SVG fragment string

svg b config option -> B bgbdnf -> string

Return as SVG fragment string

svg bgval -> string

Return as SVG fragment string

svgdoc v config option -> bgval -> string

Return as SVG document string

svgdoc b config option -> B bgbdnf -> string

Return as SVG document string

svgdoc bgval -> string

Return as SVG document string

outputsvgdoc v string -> config option -> bgval -> unit

Output as SVG document to file

outputsvgdoc b string -> config option -> B bgbdnf -> unit

Output as SVG document to file

outputsvgdoc string -> bgval -> unit

Output as SVG document to file

TikZ:
tikz v real option -> config option-> bgval -> string

Return as TikZ string

tikz b real option -> config option -> B bgbdnf -> string

18

Return as TikZ string

tikz bgval -> string

Return as TikZ string

outputtikz v string -> real option-> config option -> bgval -> unit

Output as TikZ to file

outputtikz b string -> real option-> config option -> B bgbdnf -> unit

Output as TikZ to file

outputtikz string -> bgval -> unit

Output as TikZ to file

4.12 Controlling tool behaviour

The behaviour of the BPL Tool can be modified by changing a number of configuration flags. Flags
are accessed by two families of functions:

Flags.getTypeFlag "name" Get the value of the named flag of the given type
Flags.setTypeFlag "name" value Set the value of the named flag of the given type

The help function for flags displays and explains all the available flags as well as their current
and default values:

help["flags"];

Matching:

name type description
/kernel/match/match/nodups bool Remove duplicate matches.

Miscellaneous:

name type description
/debug/level int Level of debugging information (0 = no info, >0 = info).
/dump/prefix string Filename prefix for pretty print dumps to a file.
/misc/timings bool Enable timings.

Pretty printing:

19

name type description

/misc/indent int Set extra indentation at each level when
prettyprinting to N.

/misc/linewidth int Set line width to W characters.

/kernel/ast/bgterm/pp0abs bool Explicitly display empty-set abstrac-
tions (ignored if ppabs is false).

/kernel/ast/bgterm/ppabs bool Explicitly display abstractions (ab-
stractions on roots are always dis-
played).

/kernel/ast/bgterm/ppids bool Explicitly display identities in tensor
and parallel products.

/kernel/ast/bgterm/ppmeraspri bool Replace merge with prime product
(best effort).

/kernel/ast/bgterm/pptenaspar bool Replace tensor product with parallel
product.

/kernel/ast/bgval/pp-merge2prime bool Substitute | for || by removal of merges
before prettyprinting.

/kernel/ast/bgval/pp-simplify bool Simplify BgVal terms before pret-
typrinting.

/kernel/ast/bgval/pp-tensor2parallel bool Substitute || for * by removal of y//X’s
before prettyprinting.

/kernel/bg/name/strip bool Strip trailing xx off input names (xx
are hex digits).

/kernel/match/rule/ppsimplereactum bool Simplify reactum when displaying
rules.

/kernel/match/rule/ppsimpleredex bool Simplify redex when displaying rules.

For convenience, one can switch the use of syntactic shorthands on and off with a single com-
mand:

use shorthands on/off

This will modify the following flags appropriately:

/kernel/ast/bgterm/ppids

/kernel/ast/bgterm/ppabs

/kernel/ast/bgterm/pp0abs

/kernel/ast/bgterm/pptenaspar

/kernel/ast/bgterm/ppmeraspri

4.13 Exceptions

Exceptions can be explained by the BPL Tool using the following command:

explain exn -> ’a Explain exception in detail and raise it again

20

If the debug level is greater than 0, and the SML interpreter supports it, the exception history will
also be printed.

5 Conclusions and Future Work

We have introduced the BPL Tool, a first implementation of bigraphical reactive systems with
binding, and have demonstrated its use by modeling a simple mobile phone system.

Our research group has used the BPL Tool to successfully model a number of sytems (cf.
Section 1). Our experience is, that the BPL Tool is that it is quite useful for modeling as it validates
well-formedness of terms and rules, and its visualization capabilities, in particular through the web
interface, provides a good overview of reaction rules.

However, there is also room for improvement:

• The tool would benefit from a more complete graphical user interface than what the web
interface provides. One approach would be to extend Big Red [3] as follows:

– add support for binding,

– add facilities for modeling reaction rules, and

– add simulation facilities, by using the BPL Tool as a simulation backend.

• The BPLL syntax is a bit heavy due to the fact that it is embedded in Standard ML. By
building a dedicated command line interface one would be free to choose a simpler syntax.
The BPL Tool code base already contains a parser for an older version of BPLL, so the
main task is to implement an interactive prompt. The compromise would of course be that
end-users will have a harder time extending the tool.

• The implementation of matching is not very fast, due to the fact that it is derived directly
from the inductive characterization of matching which is based on the binding discrete normal
form. The main issues are the following:

– Structural congruence is currently handled näıvely: when matching children of a node,
one need to find partitions and permutations and the BPL Tool simply generates them
all.

– Matching currently follows the place graph structure, and the link graph is only matched
at the root and leaves of the matching inference tree. By interleaving the matching of the
two graphs in a more fine-grained manner, one could probably prune the search space
significantly; this would perhaps be easier if one based matching on a connected normal
form where edges are as close to their constituent points as possible instead of being at
the outermost level.

– Only one redex is matched at a time, as this is the algorithm that naturally falls out of
the inductive characterization of matching. By matching all redexes simultaneusly, only
one traversal of the agent term would be necessary.

However, while we believe the suggested improvements are significant, we believe that more
efficient matching will be achieved by using SAT-solvers, which is currently being investigated
by Sevegnani et al. [21], or by the graph embedding based approach of Højsgaard et al. [20].
Note that matching is NP-complete [20] and thus no efficient algorithm exists unless P = NP.

21

• From a modeling perspective, is would be convenient if the BPL Tool was extended with
support for sortings of some kind, such that modellers could specify the structure of well-
formed bigraphs and then have the BPL Tool verify well-formedness of agents and rules and
that the latter preserves well-formedness.

• Similarly, built-in support for datatypes and manipulation of data would make it easier to
express models containing computations. We suggest that such that an extension should be
founded on a solid formal foundation, such as the calculational bigraphical reactive systems
of Debois [10].

References

[1] Giorgio Bacci, Davide Grohmann, and Marino Miculan. DBtk: A toolkit for directed bigraphs.
In CALCO, pages 413–422, 2009.

[2] Jørgen Eske Runge Bentzen. Master’s thesis, IT University of Copenhagen, 2007.

[3] Big Red. http://www.itu.dk/research/pls/wiki/index.php/Big_Red, 2010.

[4] BigMC – Bigraphical Model Checker. http://bigraph.org/bigmc/.

[5] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. Electronic Notes in Theoretical Computer Science, 175(4):3–19, 2007.

[6] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Troels Hildebrandt, and Henning Niss.
Bigraphical models of context-aware systems. In Luca Aceto and Anna Ingólfsdóttir, edi-
tors, Proceedings of the 9th International Conference on Foundations of Software Science and
Computation Structure, volume 3921 of LNCS, pages 187–201. Springer-Verlag, March 2006.

[7] BPL Tool. http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool.

[8] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Henning
Niss. Formalizing WS-BPEL and higher order mobile embedded business processes in the
bigraphical programming languages (BPL) tool. Technical Report TR-2008-103, IT University
of Copenhagen, 2008.

[9] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Jour-
nal of Computing, 13(1–2):58–77, 2006.

[10] Søren Debois. Computation in the informatic jungle. Draft, 2011.

[11] Niklas Eén and Niklas Sörensson. MiniSAT. http://minisat.se.

[12] Ebbe Elsborg. Bigraphs: Modelling, Simulation, and Type Systems. PhD thesis, IT University
of Copenhagen, 2009.

[13] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen Hjsgaard. An
implementation of bigraph matching. Technical Report TR-2010-135, IT University of Copen-
hagen, December 2010.

[14] Chris Greenhalgh. bigraphspace. http://bigraphspace.svn.sourceforge.net/, 2009.

22

http://www.itu.dk/research/pls/wiki/index.php/Big_Red
http://bigraph.org/bigmc/
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool
http://minisat.se
http://bigraphspace.svn.sourceforge.net/

[15] Ole Høgh Jensen. Mobile processes in bigraphs. Available at http://www.cl.cam.ac.uk/

~rm135/Jensen-monograph.html, 2006.

[16] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580, University of Cambridge, February 2004.

[17] James Judi Leifer and Robin Milner. Transition systems, link graphs and Petri nets. Technical
Report UCAM-CL-TR-598, University of Cambridge, August 2004.

[18] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press, 1999.

[19] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

[20] Stochastic Bigraphical Abstract Machine (SBAM). http://www.itu.dk/research/pls/

wiki/index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29.

[21] M. Sevegnani, C. Unsworth, and M. Calder. A SAT based algorithm for the matching problem
in bigraphs with sharing. Technical Report TR-2010-311, University of Glasgow, Department
of Computing Science, 2010.

23

http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.html
http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.html
http://www.itu.dk/research/pls/wiki/index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29
http://www.itu.dk/research/pls/wiki/index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29

	Introduction
	Related work
	Outline

	Installation
	User installation
	Developer installation

	Example: Polyadic and Mobile Phones
	A mobile phone system
	Polyadic

	Reference
	Preliminaries
	Signatures
	Types for bigraph terms
	Bigraphs
	Syntactic Sugar

	Bigraph Operations
	Matching
	Lazy lists
	Reaction rules
	Simulation
	Pretty printing
	Visualization
	Controlling tool behaviour
	Exceptions

	Conclusions and Future Work

